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Abstract

Within satellite rendezvous and proximity operations lies pursuit-evasion differential

games between two spacecraft. For example, a rescuing satellite pursuing an uncon-

trolled “evading” satellite can be formulated as a pursuit-evasion differential game.

The extent of possible outcomes resulting from the interaction of the pursuer and

evader satellites can be mathematically bounded by pursuit-evasion differential games

where each player employs optimal strategies against the other. Typically, pursuit-

evasion games are formulated as optimal control problems that require significant

computational expense and time to solve. A linear regression model is developed to

enable on-board computation of these pursuit-evasion games for possible autonomous

action. Built from a large data set of optimal control solutions, the model is solved

at geosynchronous altitudes using an indirect heuristic method with particle swarm

optimization (IHM-PSO). Using linearized dynamics, the model is shown to quickly

map pursuer relative starting positions to final capture positions and estimate capture

time. The model is 3.8 times faster than the IHM-PSO method for arbitrary per-

formance scaling between the two spacecraft and arbitrary pursuer starting positions

on an initial relative orbit about the evader (at the origin of the coordinate frame).

A parameter study is performed to analyze the effect of uncertainty in the pursuer

starting position, and to develop “rules of thumb” trends. The solution trajectories

are validated in a closed-loop controller in order to ensure their viability. The trajec-

tories are also propagated using higher fidelity simulation software, showcasing how

the developed model is accurate enough for real-world mission planning. Thus the

linear regression model is shown to be well suited for onboard implementation capable

of evaluating results of optimal control pursuit-evasion differential games for optimal

response and autonomous mission planning.

iv



Life is meta-heuristical optimization. How do you know what’s good unless you have

lots of data from past experiences? Can life then be described mathematically?

v
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LINEAR REGRESSION MODELS APPLIED TO IMPERFECT INFORMATION

SPACECRAFT PURSUIT-EVASION DIFFERENTIAL GAMES

I. Introduction

1.1 Motivation

Pursuit-evasion games can be played in the space environment, where two agents

are involved in a game of “cat and mouse.” For example, the pursuer agent could

be a rescuing satellite that is trying to rendezvous with an evader agent, who could

be a satellite in need of servicing. Prior to spending time computing a rendezvous

trajectory, the pursuer spacecraft needs to make the decision whether or not to chase

the evading spacecraft. Assuming capture is possible, the pursuer needs to character-

ize the game, (prior to playing it) in order to determine the time and travel distance

required. The motivation for this research is to provide the ability for spacecraft to

autonomously characterize an imminent pursuit-evasion game by developing a new

algorithm for rapid estimation of optimal capture time and position. In order for this

algorithm to be effective, the solution process must be accurate enough for on-orbit

use, fast enough for real-time actions to be made from the information provided, and

require minimal computational power in order to fit within the confines of typical

space-based hardware. If the pursuer and evader employ optimal strategies, then

the solution can be obtained by solving an optimal control problem. Unfortunately,

optimal control problems are not typically computed on-board spacecraft (except in

certain cases like model predictive control) due to both the high computational power

required, and minutes of computation time typically needed to solve them. This re-
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search seeks to eliminate these problems by pre-evaluating a multitude of solutions,

and then reducing the data set through the use of linear regression techniques in

order to develop input-output relations. Instead of running an optimal control algo-

rithm on board a spacecraft, one can instead evaluate a set of functions to obtain

the predicted end state and final time with the same accuracy and in a fraction of

the time. The output of the linear regression model could then be used as the initial

guess to other optimization formulations if required. Finally, the linear regression

model computational speed advantage over classical optimal control solution strate-

gies lends itself well to large scale parameter studies. These parameter studies can be

performed in order to analyze trends inherent within the total solution space. The

identified trends can then be extracted to provide physical intuitiveness and “rules

of thumb” for space-based pursuit-evasion games. For example, knowledge of these

trends can help future mission planners predict the end state of pursuit-evasion games

without employing computer software! The trends also serve the purpose of informing

Techniques, Tactics, and Procedures (TTPs) for space engagements that should be

developed as the United States transitions from space as a peaceful domain into a

wartime domain.

1.2 Research Overview

This research will seek to expand the knowledge pertaining to the treatment of

mainly open-loop space-based pursuit-evasion differential games. To build a linear

regression model, a collection of deterministic optimal control solutions will be built

in layers that together will form a means from which to derive an input-output rela-

tionship. In particular, the pursuer initial states will be mapped to the final capture

position and final capture time. With the linear regression models created, a param-

eter study will be conducted to uncover trends within the solution space for a gener-
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alized pursuit-evasion game. In this parameter study a normally distributed number

of sample points will be taken from an initial covariance ellipse that represents the

uncertainty in the pursuit starting position from the perspective of the evader. Each

pursuer starting position will be mapped to its respective capture position using the

linear regression model. A new covariance ellipse will be calculated from the resulting

group of capture points. In this way, a large amount of deterministic simulations can

be brought together to model a stochastic effect. Finally, the trends that are shown

as a result of the parameter study, as well as the solution trajectories, are validated

for closed-loop performance and propagated in a high fidelity simulation environment

to evaluate their applicability to real-world operations.

1.2.1 Problem Statement and Hypothesis.

There is a need to develop existing optimal control algorithms for implementation

onboard spacecraft in preparation for spacecraft autonomy. It is hypothesized that

linear regression models can be used to largely eliminate the roadblocks that keep

optimal control solutions from being computed onboard spacecraft by improving the

computational speed, lessening the memory burden, and reducing the required com-

putational power.

1.2.2 Questions.

In this research effort the following research questions are posed:

1. Assuming that capture is possible, can a linear regression model be used to map

initial pursuer positions to final capture positions?

2. Is the accuracy of the linear regression model sufficient enough to replace an

optimal control solver?
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3. Can the speed of the linear regression model make large scale parameter studies

feasible without super-computing resources?

4. Are the generated optimal control solutions viable when applied in a Guidance

Navigation and Control (GNC) closed-loop system?

5. Can linearized dynamics be used to model the nonlinear real-world orbital envi-

ronment with acceptable levels of error when compared to higher fidelity prop-

agators? Is this impact negligible enough for real-world operational use?

1.2.3 Tasks.

This research effort intends to explore the following:

1. Utilize existing two-player pursuit-evasion differential game solution algorithms

to collect data for the linear regression model.

2. Build a linear regression model capable of predicting capture time and position

for an arbitrary set of initial conditions.

3. Use the linear regression model to evaluate a large-scale parameter study to

develop “rules of thumb” for two-player differential pursuit-evasion games.

4. Characterize the trends associated in the parameter study to inform future

mission planning and create TTPs for orbital engagements.

5. Implement a closed-loop GNC system to track provided guidance trajectories

in the presence of additive white Gaussian noise corrupting the state measure-

ments.

6. Validate the linear regression model’s accuracy against higher fidelity commer-

cial propagators.
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1.2.4 Scope.

This work is based solely on simulation with no experimental investigation. The

dynamics models are entirely deterministic. This research effort studies a geostation-

ary orbit (GSO) altitude, where each satellite remains sufficiently close to the origin

of the coordinate frame (< 200 km), and will have sufficiently short games compared

to the orbital period (< 3 hours). These assumptions allow the use of linearized

dynamics, which will neglect environmental disturbances such as the Earth’s gravi-

tational J2 effect, solar radiation pressure, and gravitational disturbances from other

celestial bodies (like the Sun and Moon) effects. Furthermore, each spacecraft will

be assumed to be 180 kg and carry one single low thrust continuous electric engine.

For the closed-loop analysis, uncertainty in the propagated state will be incorporated

by injecting additive white Gaussian noise into the deterministic dynamics model

output.

1.3 Mathematical Notation

The following notation shown in Table 3 will be used in this thesis:

Table 3. Notation Used in Thesis

Quantity Representation

Scalar a

Vector ā

Unit vector â

Magnitude of the vector ||ā||, ||â||
Matrix [A]

Time derivative ȧ

Derivative with respect to true anomaly a′

Partial derivative of a with respect to x ∂a
∂x
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1.4 Problem Introduction

The research questions identified in Section 1.2.2 are answered by four problems

within this work. Problem A builds a 2D linear regression model to map pursuer

initial position to final capture position for arbitrary initial conditions assuming a

game played entirely within the orbital plane (no cross-track motion). An evader

performance scale factor (SF) is introduced to vary the relative performance between

the pursuer and evader in order to fully scope the solution space. Problem B expands

upon Problem A by creating a 3D linear regression model, including cross-track mo-

tion. In essence, problem A solves a simplified solution space that is important in

developing the framework for the more complicated Problem B. Problem C takes the

two developed linear regression models and utilizes them in a large scale parameter

study. The parameter study of problem C aims at identifying trends that can be

used to create TTPs and inform future mission planning. Finally, problem D aims

to address the viability of the generated solution trajectories used to build the lin-

ear regression models. Additionally problem D validates that the trends identified

in problem C also exist in higher fidelity dynamics, thus making the problem C’s

“rules of thumb” relevant and useful for real-world mission planning. Problem D

validates the use of simplified dynamics by showing similar results can be obtained

with higher fidelity simulation software, namely AGI’s System Tool Kit (STK). To

further address the viability of the generated solutions, the solution trajectories are

used as a reference within a developed closed-loop GNC system. Performing closed-

loop analysis enables the study of effects such as: control saturation, use of simplified

(mismatched) dynamics, and incorporation of measurement uncertainty. The four

research problems tackled by this thesis address the research questions as shown in

Table 4.
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Table 4. Research Problems Traced to Research Questions

Research Question PBM A PBM B PBM C PBM D

1 x x

2 x

3 x

4 x

5 x

1.5 Thesis Overview

The remainder of this document is comprised of four more sections. Chapter 2

presents a background and literature review of topics required for Chapter 3; the

methodology, which is undertaken to arrive at Chapter 4, the results produced by

this research effort. Finally, closing thoughts and ideas for future work are presented

in Chapter 5.
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II. Background

This chapter provides an introduction to pursuit-evasion differential games by

first introducing the dynamical models for relative satellite motion, optimal control

techniques, and finally methodologies for solving differential games. In addition, a

primer on linear regression will be covered. Finally, state estimation theory and

closed-loop control techniques are used within the GNC architecture for the closed-

loop analysis, and thus is briefly covered.

2.1 Dynamics Models

2.1.1 Coordinate Systems.

The Earth-Centered-Inertial (ECI) coordinate system (sometimes referred to as

the geocentric-equatorial coordinate system [1]) is shown in Figure 1. The ECI co-

ordinate system’s origin is coincident with the Earth’s center of mass with its x̂ axis

pointing in the direction of Vernal Equinox. The ẑ direction is aligned with the true

north pole, and the ŷ direction completes the right-handed, orthogonal coordinate

system. While the ECI reference frame is not strictly inertial, it is often deemed

“sufficiently inertial” for the purposes of most astrodynamics research within Earth’s

gravity well [2]. The ECI coordinate frame will be utilized when expressing the inertial

satellite motion, and is the frame used to calculate time derivatives [2].

The Local Vertical, Local Horizontal (LVLH) coordinate frame, shown in Figure

2, will be utilized for relative satellite motion. The LVLH frame is a body fixed

coordinate system that has the primary x̂ axis aligned along the radius vector of the

satellite’s instantaneous position from the Earth’s center. This is known as the radial

component of the LVLH frame. The LVLH ẑ axis, usually referred to as the cross-

track component, is perpendicular to the orbital plane, pointing in the direction of
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Figure 1. The Earth Centered Inertial (ECI) reference frame, adapted
from [2]

the orbit’s angular momentum vector (h̄). The ŷ axis, called the in track component,

completes the right-handed orthonormal set. In the specific case of a circular orbit,

which will be studied in this research effort, the ŷ axis points in the direction of travel,

along the velocity vector.

Figure 2. The Local Vertical, Local Horizontal (LVLH) Reference Frame,
adapted from [2]

2.1.2 Inertial Dynamics Models.

The mathematical formulation to describe the realistic motion of a satellite through

space can be difficult, or sometimes insurmountable. For example, Conway [3] notes

that there are nonlinearities that arise from trigonometric functions, constant changes

in system properties as on-board resources are used, and time varying forces such as
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drag. The contribution of these nonlinear factors formulate a problem in which the

boundary conditions are either not fully known, or depend upon the value being op-

timized [3]. Trying to fully describe realistic, perturbative orbital motion analytically

is often futile; thus, simplifying assumptions and various numerical formulations have

been derived, each with their own pros and cons. In the case of this research, or-

bital perturbations will be neglected for simplicity in the development of the linear

regression model. Furthermore the nonlinear equations will be linearized in order to

gain closed-form solutions that enable relatively quick computation of pursuit-evasion

games. The impact of neglecting orbital perturbations, and use of linearized dynam-

ics, will be analyzed to ensure accuracy is still acceptable for real-world use. Thus,

the fundamental two-body problem will first be introduced, which leads to the full

nonlinear equations of motion for unperturbed relative satellite motion. The results

of reducing the full nonlinear equations into two different sets of linearized dynam-

ics is shown in order to present a formulation for the dynamics underpinning the

pursuit-evasion game.

2.1.2.1 The Two Body Problem.

The two body problem is the fundamental model that describes the gravitational

pull that two bodies exert on each other based upon their mass and position vector (r̄).

The two bodies are usually assumed to be point masses, where one is the Earth’s mass

(M) and the other is the satellite’s mass (m). Using Newton’s laws the differential

equation for satellite motion, with respect to the inertial frame, is [1]:

¨̄r = −G(M +m)

‖r‖3 r̄ � − μr̄

‖r‖3 (2.1)

Often, the mass of the satellite is considered negligible compared to the mass of the

Earth. Thus, the gravitational constant (G) is multiplied by the Earth’s mass (M),
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and denoted by μ = 398601.2 km3/s2. The magnitude of the orbit radius can be

found using known orbital elements [1]:

‖r̄‖ =
a(1− e2)

1 + e cos f
(2.2)

where a is the semi-major axis of the orbit, e is the eccentricity, and f is the true

anomaly.

2.1.3 Relative Orbital Dynamics.

Thus far, orbital dynamics has been used to describe satellite motion with respect

to the Earth. In order to study the relative motion of two satellites in a more intuitive

sense, one satellite’s motion will be described relative to the other. In this context,

the reference satellite is usually called the chief, or leader. The other satellite is often

referred to as the deputy, or follower [2]. By differencing the inertial position vectors,

Equation (2.1), of both satellites, the separation vector ρ̄ can be found:

ρ̄ = r̄d − r̄c (2.3)

where subscripts to denote r̄c and r̄d for the chief and deputy respectively. Noting

that ρ̄ is still in the inertial reference frame, inertial time derivatives can be taken to

yield:

¨̄ρ = ¨̄rd − ¨̄rc (2.4)

Substituting in the fundamental two body equation for motion (Equation (2.1)) for
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each satellite and recognizing r̄d = ρ̄+ r̄c yields:

¨̄ρ =
−μr̄d
‖rd‖3 −

(
−μr̄c
‖rc‖3

)

=
−μ(ρ̄+ r̄c)

‖ρ̄+ r̄c‖3 +

(
μr̄c
‖rc‖3

) (2.5)

In this form, the dynamics are realized in the ECI reference frame and thus the axes

do not rotate with the chief satellite along the orbital trajectory. In order to gain a

more intuitive sense of motion, Equation (2.5) needs to be resolved from the inertial

ECI reference frame to the rotating LVLH reference frame. Figure 3 shows the LVLH

reference frame in red, and the ECI reference frame in black for reference.

Figure 3. A Illustration of Relative Satellite Motion, adapted from [2]

Vectors in the ECI reference frame will be resolved in the LVLH reference frame

by utilizing the rotation matrix [RLI ], which is built from the unit vectors [2]:

ôr =
r̄

‖r̄‖
ôh =

h̄

‖h̄‖ =
r̄ × v̄

‖r̄ × v̄‖
ôθ = ôh × ôr

(2.6)
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These unit vectors form the [RLI ] matrix [2]:

[RIL] =
[
ôr ôθ ôh

]

[RLI ] = [RIL]T
(2.7)

Using the rotation matrix [RLI ] on Equation (2.3) yields:

ρ̄L =

[
RLI
]
ρ̄I (2.8)

Next, using the transport theorem [4] twice and rearranging terms yields the resulting

derivative of ¨̄ρ with respect to the rotating LVLH reference frame given by Equation

(2.9). Here superscripts on the left identify frames that derivatives are taken in and

superscripts on the right denote the coordinate frame the vector is resolved in. In this

manner, the inertial derivatives can be related to vectors resolved in a non-inertial

frame:

I ¨̄ρ = L ¨̄ρ+ 2
(
ω̄LI × ρ̄L

)
+ ˙̄ωLI × ρ̄L + ω̄LI ×

(
ω̄LI × ρ̄L

)
(2.9)

where

ω̄LI =

[
0 0 ḟ

]T

ρ̄L =

[
x y z

]T

and ḟ is the time rate of change of the true anomaly, (x, y, z) are the radial, in-track

and cross-track coordinates expressed in the LVLH relative frame. In this formulation,

the pre-superscripts denote the coordinate frames: L for the LVLH frame and I for

the inertial frame. Expanding Equation (2.9) leads to the Nonlinear Equations of
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Relative Motion (NERMs)[5]:

ẍ− 2ḟcẏ − f̈cy − ḟ 2
c x =

−μ

r3d

(
rc + x

)
+

μ

r2c
+ ax

ÿ + 2ḟcẋ+ f̈cx− ḟ 2
c y =

−μ

r3d
y + ay

z̈ =
−μ

r3d
z + az

(2.10)

where [2]:

f̈c =
−2ṙcḟc

rc

ḟc =
‖hc‖
r2c

r̈c = rcḟ
2
c − μ

r2c

ṙc = ḟc
acec(1− e2c) sin fc(
1 + ec cos fc

)2

(2.11)

The NERMs exactly describe the relative motion of a deputy satellite around a chief

satellite. Since the two body problem was utilized, there is inherently an assumption

that the Earth’s gravitational force is the only external force acting on each of the

two satellites. This implies the absence of disturbing forces such as those caused by

solar radiation pressure, J2 gravitational oblateness effects, aerodynamic drag forces,

etc [2].

Ten states are needed to fully parameterize the NERMs, given in Table 5. Six

of the ten parameters describe the position and velocity of the satellite with respect

to the chief, and the remaining four describe the chief orbit. To solve the NERMs,

typically numerical integration is required. No general closed-form solution exists,

which motivated the need to develop linearized sets of dynamics to obtain closed-

form solutions.
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Table 5. Paramters to Describe the NERMs

Parameter Description Describes

x Radial Position Deputy w.r.t. Chief
y In-track Position Deputy w.r.t. Chief
z Cross-track Position Deputy w.r.t. Chief
ẋ Radial Velocity Deputy w.r.t. Chief
ẏ In-track Velocity Deputy w.r.t. Chief
ż Cross-track Velocity Deputy w.r.t. Chief
f True Latitude Chief w.r.t. ECI
ḟ Time Rate of Change of True Latitude Chief w.r.t. ECI
rc Radius of Chief’s Orbit Chief w.r.t. ECI
ṙc Time Rate of Change of Chief’s Orbit Chief w.r.t. ECI

2.1.4 The Tschauner-Hempel Equations.

The NERM equations can be reduced down to the Tschauner-Hempel equations of

motion by linearizing about a reference (chief) orbit by assuming [2]:

rd ≈ rc

√
2x

rc
+ 1 (2.12)

and converting the independent variable from time to true anomaly, f [6]:

[
x̃ ỹ z̃

]T
= (1 + e cos f)

[
x y z

]T
(2.13)

After the independent variable transformation, denoted by the tilde, the Tschauner-

Hempel equations of motion equations are [6]:

x̃′′ − 2ỹ′ − 3

1 + e cos(f)
x̃ =ax

ỹ′′ + 2x̃′ =ay

z̃′′ + z̃′ =az

(2.14)

where the prime operator denotes derivatives taken with respect to true anomaly, f .

The Tschauner-Hempel equations of motion are useful for chief orbits of arbitrary
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eccentricity. They can be further simplified into the Hill-Clohessy-Wiltshire (HCW)

dynamics by assuming a circular chief reference orbit and converting the independent

variable back to time [6].

2.1.5 The Hill-Clohessy-Wiltshire (HCW) Equations.

Hill-Clohessy-Wiltshire [7] show how the NERMs can be linearized about a circular

chief orbit under the assumption of small separation distances between the deputy and

chief relative to the chief’s orbital radius and that the total time studied is sufficiently

small compared to the total orbital period. As a rule of thumb, the total time should

be less than the orbital period, given that error accumulates with both distance and

time [8]. The result is a set of equations given by [7]:

ẍ− 2nẏ − 3n2x = ax

ÿ + 2nẋ = ay

z̈ + n2z = az

(2.15)

where x, y, and z are the LVLH reference frame components of relative position.

In Equation (2.15), n represents the mean motion of the chief orbit (comprised of

the standard gravitational parameter μ, and the semi-major axis a). Note, the mean

motion refers to the average angular frequency of a satellite about a closed orbit [9].

n =

√
μ

a3
(2.16)

The HCW equations consist of a set of three 2nd order differential equations. The z̈

equation, being completely independent from the other two, implies that the cross-

track motion is decoupled from the in-plane motion. Therefore, one can solve the

in-plane motion separately from the out-of-plane motion. The solutions to the HCW

equations are given by Alfriend et al. (with adapted notation)[2]:
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x(t) =
[
4x0 +

2

n
ẏ0
]
+

ẋ0

n
sin (nt)− [3x0 +

2

n
ẏ0
]
cos (nt)

y(t) = −[6nx0 + 3ẏ0
]
t+
[
y0 − 2ẋ0

n

]
+
[
6x0 +

4

n
ẏ0
]
sin (nt) +

2

n
ẋ0 cos (nt)

z(t) =
ż0
n
sin (nt) + z0 cos (nt)

ẋ(t) = ẋ0 cos (nt) +
[
3x0n+ 2ẏ0

]
sin (nt)

ẏ(t) = −[6nx0 + 3ẏ0
]
+
[
6ẋ0n+ 4ẏ0

]
cos (nt)− 2ẋ0 sin (nt)

ż(t) = ż0 cos (nt)− z0n sin (nt)

(2.17)

The HCW equations have formed the basis for modeling relative satellite motion

that many authors have extended by adding in disturbances or eliminating various

assumptions, as shown in Figure 4. For example by adding in the gravitational J2

perturbation, Schweighart and Sedwick arrive at a form of the HCW equations that

yields slightly better accuracy when there is a large J2 effect, as shown by Sullivan [10].

Work done by Alfriend et al. [11] and De Bruin et al. [12] redefine the HCW equations

with curvilinear coordinates, which show distinct improvements in modeling error if

the satellites are separated along the direction of travel (i.e. along the ŷ axis of the

LVLH reference frame). Yamanaka and Ankersen [13] utilize the Tschauner-Hempel

equations as a starting point for deriving a singularity free dynamical representation

for elliptical relative satellite motion. By removing the circular orbit restriction, the

Yamanaka-Ankersen State Transition Matrix (STM) is effective at modeling relative

motion in Geosynchronous Transfer Orbits (GTO) and Molniya orbits, which the

original HCW could not adequately model. And finally, by reparameterizing the

orbit by relative orbital elements instead of position and velocity states, Gim and

Alfriend utilize a technique to develop a dynamics model that accounts for both J2

and eccentricity which yields at least an order of magnitude better accuracy than

other types of formulations such as the HCW, and Yamanaka-Ankersen [10].
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Figure 4. A Non-Exhaustive List of Dynamical Models for Relative Satel-
lite Motion (adapted from [10])

2.1.6 Lovell’s Relative Orbital Elements.

For certain velocities within the relative frame, there exists bounded Natural Mo-

tion Circumnavigation (NMC) trajectories that are periodic in nature and stable

(excluding external disturbances). Shown in Figure 5, these NMC trajectories have

a 2× 1 elliptical shape, and are centered at the point (yr, xr). To satisfy a bounded

relative NMC, the HCW equations require control in the in-track direction in order

to control in-plane motion. Alfriend et al. [2] show that the condition to nullify drift

in the in-plane motion is:

ẏ0 = −2nx0 (2.18)

For circular chief orbits, this is known as the energy matching condition. Alfriend

et al. [2] further states this energy matching condition establishes a local region

of stability that is valid for small separation distances. Enforcing this condition

creates bounded relative orbits in the LVLH frame that repeat indefinitely (neglecting

real-world environmental perturbations). Thus these trajectories are extremely fuel

efficient and are a common RPO technique in inspection missions, and formation

keeping.
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Figure 5. Lovell’s ROEs, adapted from [14]

The work of both Lovell and Tragesser [15], and Lovell and Spencer [14] repa-

rameterizes the HCW equations into parameters with geometric significance. These

parameters provide intuitiveness that is invaluable in setting up relative motion orbits

of a specific size and shape. They are given by [14]:

xr = 4x0 +
2ẏ0
n

yr(t) = y0 − 2ẋ0

n
− (6nx0 + 3ẏ0)(t− t0)

ar =

√(
6x0 +

4ẏ0
n

)2

+

(
2ẋ0

n

)2

Er(t) = atan2

(
2ẋ0

n
, 6x0 +

4ẏ0
n

)
+ n(t− t0)

Az =

√
z20 +

(
ż0
n

)2

ψ(t) = atan2

(
z0,

ż0
n

)
+ n(t− t0)

νr(t) = tan−1
[
2tan
(
Er(t)

)]
γ(t) = ψ(t)− Er(t)

(2.19)

where the parameters are propagated in time [14]:
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xr = xr,0

yr(t) = yr,0 − 3

2
nxr,0(t− t0)

ar = ar,0

Er(t) = Er,0 + n(t− t0)

Az = Az,0

ψ(t) = ψ0 + n(t− t0)

(2.20)

In particular, these Relative Orbital Element (ROE) parameters also provide a

convenient method for calculating the required initial velocity given either (y, x) po-

sition or the phasing angle, νr, shown in Figure 5.

Given a known semi-major axis of the NMC ellipse, ar and the relative orbit phase

angle, νr, Lovell’s ROEs [14, 15] can be solved to get the required initial position (point

D in Figure 5):

x0 =
ar√

tan(νr)2 + 4

y0 =
ar tan(vr)√
tan(vr)2 + 4

(2.21)

Once the radial and in-track components of position are known and assuming the

center of the ellipse is coincident with the origin of the LVLH frame, the required

velocity at point D is:

ẋ0 =
ny0
2

ẏ0 =− 2nx0

(2.22)

2.2 Optimal Control

An optimal control problem deals with the determination of a function that min-

imizes or maximizes a given cost functional. Commonly, the solution of an optimal
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control problem is applied as an open loop control law that, if followed, will optimize

the objective (time, amount of control, etc). An optimal control problem is notionally

structured as follows [16]:

minimize
ū ∈ U

J = φ(t0, tf , x̄(t0), x̄(tf )) +

∫ tf

t0

L(τ, x̄(τ), ū(τ))dτ (2.23)

subject to the system dynamics

˙̄x(t) = f̄(t, x̄(t), ū(t))

subject to the path constraints

h̄(t, x̄(t), ū(t)) ≤ 0̄

subject to the boundary constraints

ḡ(t0, tf , x̄(t0), x̄(tf )) ≤ 0̄

where the states (x̄), control (ū), and time (t) are bounded by

x̄lower ≤ x̄(t) ≤ x̄upper

ūlower ≤ ū(t) ≤ ūupper

tlower ≤ t0 < tf ≤ tupper

and the initial conditions are bounded by

x̄0,lower ≤ x̄(t0) ≤ x̄0,upper

x̄f,lower ≤ x̄(tf ) ≤ x̄f,upper

In these functions, L is the integrand of the running cost integral when written in

the Bolza or Lagrange form. The Bolza form of the cost functional is a combination

of the Mayer form (comprised of only terminal costs) and the Lagrange form (com-

prised of only cost integrals). The cost functional J can be easily converted between

the three forms using the fundamental theorem of calculus [17]. The choice of L is
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synonymous with picking a performance measure. There are a variety of forms of the

cost functional J based upon the problem formulation. For example, in this research

the minimum time formulation of the cost functional J is [6]:

J = tf (2.24)

In order to enforce the dynamics, i.e. x̄ = f̄
(
t, x̄(t), ū(t)

)
, the Hamiltonian H is

introduced. Kirk [17] shows that the Hamiltonian is formulated as the sum of the

running cost (L) and the costates (λ̄) multiplied by the dynamics, f̄(x̄, ū, t):

H = L+ λ̄T f̄(x̄, ū, t) (2.25)

The costates in Equation (2.25) are continuous analogues to the adjoint Lagrange

multipliers and are added to the cost functional J according to:

J =

∫ tf

t0

{
L(τ, x̄(τ), ū(τ))+

[
∂φ(x̄, τ)

∂x̄

]T
˙̄x+

∂φ(x̄, τ)

∂τ
+ λ̄T [f̄(x̄, ū, τ)− ˙̄x]

}
dτ (2.26)

The three necessary conditions for optimal control are then derived from Equation

(2.26) through the use of the Calculus of Variations. Whenever these conditions hold

true for admissible, bounded control, then the candidate function is an extrema [18]:

˙̄x(t) =
∂H
∂λ̄

(x̄∗(t), ū∗(t), λ̄∗(t), t)

˙̄λ = −∂H
∂x̄

(x̄∗(t), ū∗(t), λ̄∗(t), t)

H(x̄∗(t), ū∗(t), λ̄∗(t), t) ≤ H(x̄∗(t), ū(t), λ̄∗(t), t)

0 =
[∂φ
∂x̄

(
x̄∗(tf ), tf

)− λ̄∗(tf )
]T

δx̄f

+
[
H(x̄∗(tf ), ū∗(tf ), λ̄∗(tf ), tf ) +

∂φ

∂t
(x̄∗(tf ), tf )

]
δtf

(2.27)
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The above conditions are necessary for bounded optimal control policies; however,

they are not sufficient conditions. The sufficient conditions for optimal control are

needed in order to determine if an extrema constitutes a local minimum, maximum, or

saddle point solution. These sufficient conditions state that the first partial derivative

of H with respect to the control is equal to zero and the second derivative matrix,

the Hessian, is positive definite [17]:

∂H
∂ū

(x̄∗(t), ū∗(t), λ̄∗(t), t) = 0[
∂2H
∂ū2

]
> 0

(2.28)

Thus, the objective of the optimal control problem is to find the admissible control,

u∗(t), that satisfies Pontryagin’s Minimum Principle for bounded control [19]:

ū∗(t) = argmin
ū∗ ∈ U

H (2.29)

Thus, the optimal control ū∗(t), within the admissible set U , minimizesH. In contrast,

if we wished to maximize an objective, one would simply minimize the negative of H
[17, 18].

2.2.1 Solving Optimal Control Problems.

Some optimal control problems can be solved analytically, however most real-world

problems are often too complicated, or would take too much time to determine a solu-

tion. To aid the solution finding process, a variety of different algorithms exist, which

include direct, indirect, and metaheurstic methods [16]. An indirect method ana-

lytically derives the necessary conditions to ensure mathematical optimality, namely

those in Equation (2.27). If solvable, an indirect method produces a guaranteed local

optimal solution, however the difficulty of deriving the necessary conditions varies on
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the complexity of the problem [16]. For example, if the derivative information cannot

be analytically solved for with a closed-form solution, perhaps because of discontinu-

ities, or singularities, then the derivation of the analytic conditions for optimality may

prove infeasible unless a numerical approximation for the derivatives can be found

[3].

Indirect methods usually involve solving a two-point boundary value problem [3],

which is defined as a differential equation(s) that contain a set of constraints. Conway

[3] notes that these constraints are usually a combination of boundary conditions on

the states and costates at the initial time and final time. For example, Lambert’s

problem is a well known two-point boundary value problem where an initial and

terminal state is given, and a trajectory is sought that passes through both points as-

suming two-body dynamics [20]. A closed-form solution to Lambert’s problem is not

possible, however it is easily solved with indirect numerical methods [20]. Further-

more, given that costates are often non-physical, and can have values that are orders

of magnitude different than the states, one cannot intuitively select initial costates

for the problem [3]. Thus, indirect methods can provide a way to numerically solve

an optimal control problem, but are sometimes too cumbersome because they require

values at the initial and terminal states which may not be fully known, or else are

being optimized [3].

Direct methods eliminate the need for finding analytical conditions for optimality

by approximating the optimal control solution and then continually refining it until

the solution converges within the error specification defined by the user. For example,

Conway [3] shows how one direct optimization method converts the continuous opti-

mal control problem into parametric representations of the control and state histories

(either discretely or continuously through polynomial approximation). A collocation

method is used to transcribe the optimal control problem into a nonlinear program
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(NLP) by creating a series of points on a mesh where the governing equations are

satisfied at each collocation point [3]. States and controls in between the colloca-

tion points are approximated with various interpolation techniques. The candidate

solution is then obtained through NLP solvers such as the Interior Point Optimizer

(IPOPT) [21] and the Sparse Nonlinear Optimizer (SNOPT) [22].

Pseudospectral methods are a type of direct optimization numerical method. Con-

way [3] provides an example of how one type of pseudospectral method employs

Lagrange interpolating polynomials to create a polynomial expression for the state

history (in contrast to the Hermite-Simpson rules typically used in indirect methods).

These Lagrange interpolating polynomials are utilized to calculate the error in ap-

proximation through the use of differentiation matrices. The resulting error from the

derivative computation is then reduced by either picking more interpolation points

for the Lagrange interpolation polynomial or by increasing the order of the polyno-

mial until the error drops below the required user specification [3]. One downside

to pseudospectral solvers is that, like many direct methods, an initial guess is often

required to start the approximation process [23].

The last category of optimization methods discussed here are called “metaheuris-

tic”, which are often inspired by biology. Metaheuristical optimization techniques

employ optimal search methods to find a local extrema for a given cost function. For

example, the particle swarm algorithm is a metaheuristic method that was originally

developed by Kennedy and Eberhart [24], and inspired by flocks of birds searching

for food. Kennedy and Eberhart [24] formulate a collection of particles with three

properties which influence how the particle moves around the solution space. These

properties can be thought of as components of a velocity vector that help shape the

direction the particle will move in one iteration. The first property is coined the

“inertial” component and serves to keep the particle moving in the “same direction”
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as the last iteration. This inertial component of velocity is counter-acted by the other

two properties: cognitive and social. The cognitive component of the velocity vector

points to the location of the particles best fitness (the minimum value of the cost

functional that the individual particle has come across). The social component of

the velocity vector is similar to the cognitive component, except that it points in the

direction of the group’s best fitness. These velocity components for the ith particle

at the jth iteration are expressed as [19]:

V j+1
k (i) =c1V̄

j
k (i) + c2R(0, 1)

[
Ψ̄j

k(i)− r̄jk(i)
]

+c3R(0, 1)
[
ρ̄jk(i)− r̄jk(i)

] (2.30)

where Ψ̄j
k(i) contains the individual particles best fitness location, ρ̄jk(i) contains the

swarm’s best fitness location, R(0, 1) are randomized variables ranging from 0 to 1,

and c1 through c3 are constant scalar tuning terms. A particle swarm optimization’s

purpose is to find a set of parameters, or coefficients in the given cost function, that

will produce a minimum cost function result. As the particle moves around the

solution space the cost function is continually evaluated at each jth iteration, which

provides a measure of fitness that is compared to the individual particle’s and group’s

best result. These search parameters are often final time and other parameters from

necessary conditions for optimally [25].

2.3 Zero-Sum Differential Games

Differential game theory is the mathematical formulation of the possible outcomes

resulting from the interaction of two or more players having different (conflicting) ob-

jectives. These players are assumed to be intelligent in that they will utilize optimal

strategies and have perfect information about the other player. Making these as-

sumptions narrows the scope from all possible outcomes to the optimal outcomes
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that represent the best action for each player. Isaacs [26] describes the objective of

the game as the pay-off, which is a measurable value of the particular end state of the

differential game for each player. In this research, consistent with much of literature,

the pay-off will be the value of the cost functional.

Differential game theory applied to space yields a plethora of literature, which

is summarized in Table 6. At the heart of every article is an optimal control prob-

lem. The differential games studied exist in two large categories: deterministic and

non-deterministic (stochastic). A deterministic game considers scenarios where there

is perfectly complete information shared between the two players. In other words,

each player knows the other’s state (such as position and velocity) at each instance

of time. In contrast, the main difference in stochastic games is the incorporation

of uncertainty, which can be implemented in a variety of places such as in the state

measurements, the assumed orbital dynamics, and the other player’s control law coef-

ficients. Stochastic games are almost always paired with an estimation algorithm that

takes in measurements and produces a single estimated value of the true measurement

with a new confidence bound. The end result of analyzing stochastic games is to add

realism by incorporating things such as measurement uncertainty and process noise

into the solution process that deterministic games lack.

The solutions to pursuit-evasion games have been found using a variety of different

techniques, which can be broken down into three large categories: direct, indirect,

and metaheuristical optimization methods as discussed in Section 2.2.1. Using an

indirect heursitc method, Pontani and Conway [25] solve the optimization problem

by satisfying the relative magnitude of the costates and showing how the transver-

sality condition is ignorable in certain circumstances. Stupik [19] utilizes this indi-

rect heuristic method along with a particle swarm optimization routine to solve a

pursuit-evasion differential game. Stupik utilizes simplified dynamics, which is taken
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by Prince et al. [27] and applied to elliptical orbits with more complex dynamics.

Taking this a step further, Shen et al. [28] formulate a pursuit-evasion differential

game using a high fidelity SGP4 propagator where the pursuer and evader start in

non-coplanar orbits. Shen et al. show how a pursuer spacecraft can become coplanar

and then catch the evader in a zero-sum game within a high fidelity NASA Gen-

eral Mission Analysis Tool (GMAT) simulator tool [28]. While not directly stated

by Shen et al., this work validates the use of linearized dynamics for pursuit-evasion

games because Shen et al. show that similar solutions can be gained from both the

linearized and nonlinear set of dynamics. Taking a different approach to solving the

3D pursuit-evasion game, Pontani and Conway [29] utilize a semi-direct collocation

with nonlinear programming (semi-DCNLP) to solve a two-sided path optimization

problem. This solution technique was originally developed by Horie and Conway [30],

which uses indirect optimization methods to derive optimality criteria for one player

to include in the other’s NLP solution process. A genetic algorithm provides an initial

guess at the solution, which is iterated upon by the NLP until it converges to a final

solution [30]. Liu et al. [31] takes this semi-DCNLP method further by expanding it

to a three player differential game of the lady, bandit, and body-guard [32], in which

the lady is a non-maneuvering spacecraft that the bandit spacecraft intends to inter-

cept while the body-guard spacecraft intends to protect. Liu et al. [31] show how the

semi-DCNLP architecture can handle multiple objectives of the two players; that is

they must interact with one another while also attempting to intercept/protect the

lady spacecraft.

In these deterministic games, a zero-sum differential game condition occurs when

both players employ optimal strategies towards a common, but opposing goal [33].

Jagat [5] shows that these zero-sum differential games satisfy the Nash equilibrium,

which is inherently a saddle-point solution. Therefore, it follows that each player can
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only employ the optimal strategy if there is perfect and shared information between

the two players, since each player needs to know what the other player is doing at all

times in order to maintain the best strategy. Carr [33] reiterates this point by showing

how the Nash equilibrium results in the best possible outcome for the evader, and

moving off the saddle-point solution through the use of a sub-optimal strategies results

in a quicker time to capture. In this way, Carr [33] and Prince [27] show that the

results of the Nash equilibrium can be viewed as a performance ceiling from which one

can judge various sub-optimal strategies. For example, if the evader performed any

action other than the optimal strategy, they would be captured more quickly than

the optimal control solution. With the incorporation of uncertainty into the shared

states between the two players, sub-optimal strategies could arise. These sub-optimal

results can be compared back to their analogous perfect information game in order to

determine how sub-optimal the outcome became as a result of adding in uncertainty.

Stochastics is introduced into deterministic pursuit-evasion games to add real-

ism by accounting for sources of inaccuracy. Stochastic pursuit-evasion games are

typically subdivided into three smaller categories: incomplete information, imperfect

information, and uncertain information [34]. Incomplete information games deal with

uncertainty in the control strategy employed by the other player, which is often then

estimated by a type of filter. Imperfect information games deal with uncertainty

in the shared states between the players, whereas uncertain information games deal

with uncertainty in the system dynamics [34]. By examining an incomplete, imperfect

information differential pursuit-evasion game Woodbury and Hurtado [34] utilize an

Unscented Kalman Filter (UKF) to estimate both the strategy and the state of the

other player. Woodbury and Hurtado [34] form the basis for their control estimation

process off the work done by Satak [35], who shows how estimation theory can be

utilized in a behavior learning sense to predict the other player’s control inputs if an
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assumed form of control (such as the Riccati equation) is utilized. Woodbury and

Hurtado [34] then apply a UKF to refine the full state measurements taken with white

Guassian noise. Cavalieri et al. [36] also utilize Satak’s behavior learning algorithm

[35] to estimate the impact of uncertain dynamics on the pursuer’s trajectory. Maloy

and Lee [37] study a pursuit evasion game in the polar coordinate frame where each

player makes noisy (imperfect) measurements on the other using sensors capable of

measuring range, range rate, and bearing angles. Amato et al. [38] formulate a game

based off the solution of two scaled Riccati differential equations where each player

must model the dynamics of the system, implying a level of uncertain information to

the scenario that’s different from each player’s perspective. Willman [39] derives a

class of pursuit evasion scenarios affected by noisy (imperfect) measurements that un-

der certain assumptions can be related back to their analogous deterministic scenario

without stochasticity. Behn and Ho [40] show how a pursuer with perfect information

is able to close in on an evader with noisy (imperfect) information, demonstrating

the power of having access to less noisy measurements. Similarly, Rhodes and Luen-

berger [41] add noise to one or both player state measurements, and formulate optimal

closed-loop controllers for each case. Finally, Antoniades et al. [42] show how a team

of pursuers with only a limited view of the total simulation space (imperfect informa-

tion) can utilize probability mapping theory to minimize the overlap of their search

patterns for the evaders.

2.3.1 Knowledge Gap.

Of all the work pertaining to stochastic space based pursuit-evasion differential

games surveyed, the focus has been on employing filtering algorithms to produce

optimal control solutions. This research approaches the imperfect stochastic pursuit-

evasion game differently by focusing not on a particular algorithm for solving stochas-
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Table 6. Survey of PE Games

Researcher Incomplete Imperfect Uncertain Perfect
Stupik [19] ×
Prince et al. [27] ×
Shen et al. [28] ×
Pontani and Conway [29] ×
Horie and Conway [30] ×
Liu et al. [31] ×
Rusnak [32] ×
Carr et al. [33] ×
Jagat [5] × ×
Woodbury and Hurtado [34] × ×
Satak [35] ×
Cavalieri et al. [36] × ×
Maloy and Lee [37] ×
Amato et al. [38] ×
Willman [39] ×
Behn and Ho [40] ×
Rhodes and Luenberger [41] ×
Antoniades et al. [42] ×

tic games, but instead on analyzing the entire stochastic solution set with statistical

regression techniques. A collection of inputs and outputs from a large set of optimal

control solutions will be used, along with robust multivariate regression techniques, to

produce a linear regression model that maps the initial pursuer position to final cap-

ture position. With this model, a stochastic scenario will be analyzed where an evader

is uncertain of the true pursuer’s starting position. In this scenario, it is assumed that

the pursuer is on an NMC trajectory about the evader, and the pursuer’s starting

position is inside a given covariance ellipsoid known to the evader. A parameter study

of this scenario is performed by modifying elements of the scenario, such as the size of

the initial covariance ellipse, and implementation of an evader performance scale fac-

tor (which handicaps the evader’s available control acceleration). The results of the

parameter study are geared towards finding advantageous/disadvantageous match-

ups to increase mission planning effectiveness for future space operations. The linear

regression model by itself is also useful for forecasting pursuit-evasion interceptions
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for mission planning purposes when only the terminal position and time are required

(since the control profile is not calculated). Thus, this research begins to bridge

the gap between deterministic and stochastic pursuit-evasion differential games by

utilizing deterministic games to analyze stochastic effects [43].

2.4 Closed-Loop Control Theory

Thus far, everything discussed has been open loop in nature. Closed-loop designs

are needed to apply estimation theory, as well as applications of controllers to drive the

error associated with the difference in a reference trajectory and the actual trajectory

to zero.

2.4.1 The Linear Quadratic Regulator (LQR) Controller.

A typical linear, time-invariant, state-space dynamical system is given by [44]:

˙̄x = [A]x̄+ [B]ū (2.31)

where x̄ ∈ Rn and ū ∈ R
m. A simple closed-loop control scheme can be chosen such

that ū = −[K]x̄, where [K] is a carefully selected constant scalar matrix whose size

depends upon the size of the control vector and number of states. In general, [K] is

size m× n. The dynamical system then becomes:

˙̄x = [A]x̄+ [B]
(− [K]x̄

)
=
(
[A]− [B][K]

)
x̄

(2.32)

whose characteristic equation (in the s domain) is [44]:

det

[
s[I]− [A] + [B][K]

]
= 0 (2.33)
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The control system is then stable so long as the roots of the characteristic equation

are negative, and non-repeating on the imaginary axis of the jω plane. The optimal

value of [K], is found with the given cost functional, J , given by [44]:

J =
1

2

∫ ∞

0

(x̄T [Q]x̄+ ūT [R]ū)dt (2.34)

In this formulation, the term x̄T [Q]x̄measures the cost associated with error, whereas

the term ūT [R]ū measures the cost associated with amount of control used. The

matrices [Q] and [R] are then user chosen constant weighting matrices that allow the

user to prioritize the importance in reducing the error compared to the amount of

control utilized in the final solution’s value for [K]. Note that since there are assumed

6 states (x, y, z, ẋ, ẏ, ż) the performance matrix [Q] is a 6×6 square matrix. Similarly

with an assumed control in x, y, z, direction, the control matrix [R] is a 3× 3 square

matrix. The user may specify any value for the [Q] and [R] matrices, so long as they

are symmetric, [Q] is positive semi-definite, and [R] is positive definite [17, 44]. Thus,

the algebraic Riccati equation becomes [45]:

[P ][A] + [A]T [P ]− [P ][B][R]−1[B]T [P ] + [Q] = 0 (2.35)

where [K] = [R]−1[B]T [P ]x̄. An appropriate choice of the [K] matrix is thus based

upon the solution to the algebraic Riccati equation and the constant covariance matrix

[P ] [44]. The presented LQR control method will be chosen in the GNC architecture

because of its ease in implementation, and that its linearization assumptions already

exist because of the use of HCW and TH dynamics. Another advantage of the LQR,

over heuristically selecting a value for the gain [K] is that the LQR methodology

guarantees both stability and optimal performance [17].
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2.4.2 Estimation Theory - Filters.

The primary purpose of any filter is to reduce a particular aspect in the input.

In the context of control theory, it is desired to reduce measurement and/or process

noise. In this research, additive, white Gaussian noise will be added to the states in

order to simulate imperfections in the way data is gained from sensors, limitations on

accuracy from hardware, etc. Maybeck describes the concept of white noise as time

invariant and infinite in power [46]. In other words, Maybeck explains that white

noise is assumed constant power across all frequencies (hence infinite in power), and

knowledge of the value of measurement noise at one instance in time does not allow

you to predict the value of measurement noise at any other time (wide sense stationary

processes)[46].

2.4.3 Filters vs. Observers.

Maybeck [46] describes a filter as an algorithm that processes data given as an

input. This data is usually in the form of past measurements, which the filter processes

in order to estimate future measurements, or to estimate variables that cannot be

directly measured by a sensor. Similarly Ogata describes a full-order observer, shown

in Figure 6, as a type of estimator that utilizes the same dynamics as the plant to

propagate and estimate the missing unmeasured state(s). An observer is deterministic

in nature, and by definition it does not include schochastics. This constitutes a

fundamental difference between an observer and a filter; an observer is inherently

deterministic, and a stochastic observer is another name for a filter [47].
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Figure 6. Full-State Observer [47]

2.4.4 The Linear Kalman Filer.

The Linear Kalman Filter (LKF) is defined by Maybeck as an “optimal recursive

data processing algorithm” [46]. In other words, the LKF is a filter that optimally

drives the mean squared error to zero. Maybeck asserts that one aspect of optimality

that an LKF provides is that all information that is input into the filter is utilized,

which is optimal in the sense that no data is wasted. Maybeck notes another strength

of Kalman filter designs is that they do not require the entire data history, but instead

only the last measurement, which is propagated to the new time step when the new

measurement is taken. In other words, as time progresses the past measurement

becomes less accurate in predicting the current state. This idea is illustrated by

Figure 7, which shows how the error in the last estimate’s probability density function

steadily increases over time, lowering its overall usefulness as its amplitude drops and

the base stretches outward to cover larger possible values of x. Note, in Figure
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7 the data spread is notional, and should not always to be expected to be uniform,

symmetric, etc. It is a common assumption, however, to assume a normal distribution

of data when the true distribution is not known [48].

Figure 7. Propagation of Estimate Probabilities through System Dynam-
ics, adapted from [46]

The linear Kalman filter begins by initializing the Kalman gain with a set of user

defined initial estimates. These estimates consist of the state covariance [P ], known

at time k and the measurement covariance, [R]. The Kalman gain is given by [49]:

[K]k = [P ]
′
k[H]T

(
[H][P ]

′
k[H]T + [R]

)−1
(2.36)

where the prime operator denotes previous iteration information. When the filter is

started, the initial covariance estimate take the place of the previous measurement in

Equation (2.36). When a set of new measurements are given as inputs to the LKF,

the estimation is updated [49]:

x̂k = x̂
′
k + [K]k

(
zk − [H][x]

′
k

)
(2.37)
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where the term
(
zk − [H][x]

′
k

)
is called the “innovation” or “measurement residual”.

Next, the covariance [P ]k for the kth iteration is calculated [49]:

[P ]k =
(
[I]− [K]k[H]

)
[P ]

′
k (2.38)

With the current iteration’s covariance estimate, the k + 1 estimate can be found

from the kth estimate[49]:

x̂k+1 =[Φ]x̂k

[P ]k+1 =[Φ][P ]k[Φ]
T + [Q]

(2.39)

where Φ is the state transition matrix (obtainable by solving the matrix exponential

for linear time invariant systems) and [Q] is the process noise matrix. A new Kalman

gain can then be calculated with the newly projected k + 1 state and covariance

estimates.

2.4.5 The Extended Kalman Filter.

The inherent linearity assumption in a LKF limits its applicability to nonlinear

estimation. It is best practice to assume that a linearization is only accurate about

the linearization point for short periods of time and thus not well suited for estima-

tion of nonlinear systems. An Extended Kalman Filter (EKF) takes the same process

framework of a LKF, but linearizes the state and measurement functions about the

point of estimation. By utilizing the Jacobian matrix, a first order approximation of

the nonlinear functions can be obtained, which increases the accuracy of the estima-

tion process. Thus, the EKF propagates the mean and covariance through linearized

state and measurement functions rather than assuming a set of linear functions as in

the LKF [50].
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2.4.6 The Unscented Kalman Filter.

The Unscented Kalman Filter (UKF) was developed to handle nonlinear measure-

ment models through the use of the unscented transform, and thus avoiding the mea-

surement linearization process performed within the EKF [50]. Julier and Uhlmann

show how their unscented transform method approximates the probability distribu-

tion rather than approximating the transformation function [51], which by doing so

avoids taking the Jacobian derivatives normally done within an EKF. The unscented

transform method utilizes an optimal 2n+1 number of sigma points to propagate the

first two statistical moments (the mean and covariance) through the full nonlinear

measurement transformation, which has a distinct number of advantages. First, the

calculation of the Jacobian for a nonlinear system could be intractable or subject to

human error when coding, transcribing, and/or solving. Second, the unscented trans-

form can be both rotated and weighted to account for things such as sensor bias, and

higher order information like the third statistical moment (skewness). Ultimately the

UKF is demonstrated to be on the same order of computational speed as the EKF,

while providing more accurate measurement estimates compared to simulated truth

data for certain cases [51].

2.5 Regression and Interpolation Techniques

2.5.1 Regression Techniques.

When an analytical function describing the relationship between two quantities is

not available, empirical equations from identified data trends are often the next best

option. One method of obtaining empirical equations is through statistical regression.

Regression is another name for curve fitting, in which a function is found to identify a

data trend in collection of points. The goal of regression is to determine the coefficients
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of β that minimize the distance between the function and each point. Linear regression

assumes that the β coefficients are linear; that is, the β terms are not raised to a power,

nor multiplied by other β’s. It is important to note that linear regression does not

mean that the regression produces only straight lines. For example, linear regression

can be expressed as [52]:

f(x, y) = β0x
2 + β1x+ β2 (2.40)

Equation (2.40) is polynomial in nature, however the β coefficients vary linearly.

There are a variety of methods to determine the values for β, such as ordinary least

squares, weighted least squares, and generalized least squares [52]. In all these meth-

ods, it is sought to minimize the summation of the squared residuals. A residual in

this context is simply the vertical distance between the point and the fitting function.

The coefficient of determination, r2, is a widely used metric of measuring the variance

in the residuals, which is given by the following formula [53]:

r2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(2.41)

where ȳ is the mean and ŷ are the calculated values of y from the fitting function. The

coefficient of determination ranges from zero to one. An r2 value of 1.0 corresponds to

no variance in the calculated values of y, meaning that the regression results exactly

fit the data points.

Matlab will be used to compute the linear regressions given a collection of points

from the optimal control solutions. These linear regression models will form the

underlying structure of the models built for Section 3.1 and 3.2. With these linear

regression models, an input to output mapping can be made to replace the optimal

control solution process, which is described in more detail in Section 3.1.3.
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2.5.2 Interpolation Techniques.

In addition to regression techniques, interpolation methods will also be used to

augment the linear regression models. After a linear regression model has been built,

it can be evaluated like an ordinary function. In this way the linear regression model

can estimate results for arbitrary points around its creation data, thereby providing

results in between the data points used to construct it. However if a linear regression

model was built for a specific evader performance scale factor, the model cannot

predict values for any other evader performance scale factor. If the requested evader

performance scale factor falls in between the values of two linear regression models,

then the results of both those models can be interpolated between to provide results

for the requested evader performance scale factor. In its simplest form, a straight line

is drawn between the two values: (x1, y1) and (x2, y2) the requested value is found for

y, given x:

y =
y1(x− x2)− y2(x− x1)

x1 − x2

(2.42)

The accuracy of this result depends upon the separation distance between the two

points used in the interpolation process, and can be improved further still by in-

cluding more points. Davis [54] states that a straight line passing through 2 points

can be interpolated for an interior point. He goes on to state that a more accurate

result can often be obtained by passing a parabola through 3 points, and similarly a

cubic polynomial through four points, [54]. Using this information, and taking the

idea of straight line interpolation to three dimensions results in bilinear interpolation.

Whereas before the function, f , depending upon only one independent parameter, x,

consider the case where it depends upon two independent parameters: z = f(x, y).

Depicted in Figure 8, if there are known z values at points (x1, y1), (x1, y2), (x2, y1),

and (x2, y2), then multiple straight interpolations can be performed to obtain esti-

mates for arbitrary requested values (x, y). Thus, as stated by Davis [54], four points
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will be required to find the interior point because straight line interpolation requires

two points each, and there are two lines.

Figure 8. Bilinear Interpolation

Following Wang [55] (with adapted notation), interpolating in the first direction

yields:

f(x, y1) =
x− x1

x2 − x1

(
f(x2, y1)− f(x1, y1)

)
+ f(x1, y1)

f(x, y2) =
x− x1

x2 − x1

(
f(x2, y2)− f(x1, y2)

)
+ f(x1, y2)

(2.43)

then in the second direction [55]:

f(x, y) =
y − y1
y2 − y1

[
f(x, y2)− f(x, y1)

]
+ f(x, y1) (2.44)

Expanding upon this concept, Chang [56] shows that bilinear interpolation is a form

of surface estimation, called trend surface analysis. Through the use of statistics,

Chang [56] shows how bilinear interpolation approximates the surface given by:

f(x, y) = b0 + b1x+ b2y (2.45)
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Through the use of statistics for n arbitrarily arranged points, one can form the

matrix [56]:

⎡
⎢⎢⎢⎢⎣

n
∑n

i=1(x)
∑n

i=1(y)∑n
i=1(x)

∑n
i=1(x

2)
∑n

i=1(xy)∑n
i=1(y)

∑n
i=1(xy)

∑n
i=1(y)

∑n
i=1(y

2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
b0

b1

b2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
∑n

i=1(z)∑n
i=1(xz)∑n
i=1(yz)

⎤
⎥⎥⎥⎥⎦ (2.46)

Equation (2.46) can then be solved for the b coefficients and plugged into Equation

2.45 to obtain an estimate for the interpolation. This formulation is an improvement

over the formulation shown by Wang [55] since more than four points can be used to

increase the accuracy of the result. For example, Figure 9 depicts a surface with known

points arranged in a grid pattern. The intersection of the line and the surface indicates

a point at which the two presented bilinear interpolation methods will estimate using

the surrounding data. Table 7 shows the comparison in accuracy for the two methods.

Figure 9. Bilinear Interpolation Example
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Table 7. Effect of Using More Sample Points in Interpolation

Method z Value % Diff

Wang’s Method: 2091.408 0.123%

Chang’s Method (4 pts): 2091.393 0.122%

Chang’s Method (5 pts): 2089.571 0.035%

Chang’s Method (6 pts): 2089.488 0.0311%

Chang’s Method (7 pts): 2089.294 0.0217%

Truth: 2088.839

Bilinear interpolation will be used to interpolate between linear regression models

that have two independent parameters. Similar to linear interpolation, bilinear inter-

polation’s accuracy is dependent upon the distance between the chosen interpolated

points. Therefore, for the purposes of this research interpolation techniques will only

be employed when needed and always with nearest neighbor points.

2.6 Chapter Summary

A background in all areas necessary for understanding relative satellite motion,

as it applies to pursuit-evasion differential games, has been given. Through extensive

literature review, many solution algorithms have been shown to exist. This research

will seek to create a solution algorithm ideal for on-board computation by utilizing

regression techniques on a generated data set. The use of regression techniques solves

the computational challenges associated with most existing algorithms by providing

a computationally efficient method of calculating a new solution based upon known

data trends. The next section will examine in detail how to build a linear regression

model for a notional pursuit-evasion differential game based upon validated data, and

then showcase its use in a large scale parameter study.
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III. Methodology

This chapter describes the methodology used to formulate the four specific prob-

lems covered in more detail in the separate sections below. First, a methodology

for solving a two-player differential game is introduced. This work will utilize the

algorithm developed by Prince et al. [27]. For Problem A, the pursuit-evasion differ-

ential game solution algorithm will be modified to work as a function, and then run

iteratively to create layers for a 2D linear regression model. This linear regression

model will be crafted to support arbitrary pursuer positions on a bounded relative

NMC about the evader, along with arbitrary evader performance scale factors. Prob-

lem B will extend the linear regression model to include cross-track motion. Finally,

Problem C will conduct a parameter study of a common RPO scenario involving

a pursuer in an initial relative NMC orbit about an evader. Results for both the

2D and 3D case will be shown using the developed linear regression models. The

parameter study will examine the effects of varying the NMC semi-major axis, the

covariance of the pursuer’s uncertainty ellipsoid, the performance scale factors, and

pursuer starting angle relative to the evader to identify trends that can be used to

form “rules of thumb” for spacecraft pursuit-evasion differential games. Problem D

will seek to answer questions relating to the applicability of the developed linear re-

gression models and IHM-PSO solutions. A sample of trajectories generated by the

IHM-PSO method will be used as a guidance trajectory in a closed-loop Guidance

Navigation and Control (GNC) algorithm to determine if the trajectories are viable in

a closed-loop manner and in the presence of noisy measurements. Problem D will also

take the planned control profile into high fidelity propagators and examine the open

loop reference trajectory against realistically propagated results in order to gauge the

level of inaccuracy inherent in using linearized dynamics without perturbations.
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3.1 Problem A: 2D Linear Regression Model

In order to build the linear regression model, one first needs a collection of data. To

solve the pursuit-evasion optimal control problem with the addition of uncertainty in

starting position, the particle swarm function within the Matlab global optimization

toolbox will be used with a script developed by Prince et. al [27], that was based off

the indirect metaheustric algorithm devised by Pontani and Conway [25]. Pontanti

and Conway state that for a zero-sum game with homogeneity of the costate equations

and free final time, the optimal control transversality condition is ignorable. This

implies that only the relative magnitude of the pursuer and evader costates must be

satisfied at the boundary conditions [57]. Stupik [19] provides the costates for an

intercept pursuit-evasion game as:

λ1 + λ7 = 0 λ2 + λ8 = 0

λ3 + λ9 = 0 λ4 + λ10 = 0

λ5 + λ11 = 0 λ6 + λ12 = 0

(3.1)

Prince [6] shows how the terminal constraints, φ, can be solved with Matlab’s PSO

algorithm. Whereas Stupik [19] formulates the problem with the initial costates,

Prince et al. [27] formulate the same problem with the final costates. These are given

by [27]:

λ1,f = ν1 λ7,f = −ν1

λ2,f = ν2 λ8,f = −ν2

λ3,f = ν3 λ9,f = −ν3

λ4,f = 0 λ10,f = 0

λ5,f = 0 λ11,f = 0

λ6,f = 0 λ12,f = 0

(3.2)
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where the νi values are the unknown terminal costates needed to enforce Equation

(3.1) [19].

This research will leverage code previously developed by Prince et al. [27], which

utilizes the Tschauner-Hempel equations of motion to handle eccentric chief reference

orbits. For this research effort, the eccentricity of the chief orbit is set to zero, reducing

the equations down to HCW dynamics. In Prince et al.’s [27] work, the utilization of

the Tschauner-Hempel equations allow the Yamanaka-Ankersen [13] state transition

matrix to propagate the states in terms of true anomaly, f . The Yamanaka Ankersen

[13] matrix is then used by Prince et al. [27] to develop a state transition matrix for

the costate equations:

[Ξ](f, f0) =
(
[Θ(f, f0)]

−1
)T

(3.3)

where [Ξ] is the costate STM and [Θ] is the Yamanaka Ankersen STM. Following

the Prince et al. solution process [27], shown graphically in Figure 10, the indirect

heuristic method starts at the final state and propagates backward in time to the

initial state in order to get the costates at the initial time, t0. The states are then

numerically propagated forward from the initial time, t0, to the final time using both

STMs. As a post processing step, the results are then converted back to the time

domain. The control for the pursuer and evader, ū and ν̄ respectively, is formulated

as a continuous thrust able to be pointed in any direction, found by an azimuth and

elevation angle. Therefore they can be written [6]

ū = [αP , φP ]
T

ν̄ = [αE, φE]
T

(3.4)

Note that Equation (3.4) involves only thrust angles and does not contain a pa-

rameter for the magnitude of the thrust value. The magnitude of thrust is assumed

continuously applied in the azimuth-elevation angles specified by the control law. The
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Figure 10. Indirect Heuristic Method Flow, adapted from [6]

magnitude of the applied thrust is directly affected by the performance scale factor

and propellant mass loss given by Equation (3.5), taken from Prince [6]:

a(t) =

(
a0

1− ta0/c

)
SF (3.5)

where the initial control acceleration (a0) is 3.43 × 10−5 km/sec2, and the effective

exhaust velocity (c) is 3 km/sec to match the work done by Prince et al. [27], Spendel

[58], and Stupik [19]. These control angles can be solved for in relation to the costates

to represent optimal steering laws [6]:

sinα∗
P = −λ4√

λ2
4+λ2

5

cosα∗
P = −λ5√

λ2
4+λ2

5

sinφ∗
P = −λ6√

λ2
4+λ2

5+λ2
6

sinα∗
E = λ10√

λ2
10+λ2

11

cosα∗
E = λ11√

λ2
10+λ2

11

sinφ∗
E = λ12√

λ2
10+λ2

11+λ2
12

(3.6)
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Prince et al. [27] show how the indirect heuristic method [25] transforms the optimal

control problem into a type of parameter optimization problem, sometimes referred

to as a boundary value problem. Matlab’s particle swarm routine, within the Global

Optimization Toolbox, is utilized with default options (except for an increase in max

iteration limits), to solve the parameter optimization problem by obtaining the vector

ψ̄ of parameters [6]:

ψ̄ =

⎡
⎢⎢⎢⎢⎣
λ1,f − λ7,f

λ2,f − λ8,f

λ3,f − λ9,f

⎤
⎥⎥⎥⎥⎦ (3.7)

Given that the terminal costates are equal and opposite for the pursuer and evader,

ψ̄ should be zero. However, the tendency of the PSO to return sub-optimal results is

quite high, and thus the cost function to minimize in the PSO process is [6]:

JPSO =
m=3∑
i

(
ψ̄(i)2

)
(3.8)

3.1.1 Application of IHM-PSO Algorithm.

Given a single set of initial conditions consisting of a starting position for the

pursuer and evader, the IHM-PSO routine [25, 27] is able to solve the two-player

pursuit-evasion differential game. The next step is to build a collection of data for

the linear regression model, as is outlined in Figure 11. The inherited code from Prince

et al. [27], has been modified to work as a single function for this research. All of

the separate function files were compiled into a single main function that takes initial

conditions of the game as inputs, and outputs the solved optimal control trajectory as

an output. This makes deploying the function possible on multiple computers without

having to deal with search paths and callbacks. One layer above the optimal control

solver is a script, called the “intermediate script” in Figure 11, which iteratively
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executes each optimal control simulation. After each run, the intermediate function

stores the information and provides the optimal control solver with the next pursuer

starting position. During this process, the intermediate layer plots each completed

simulation result so that one can monitor progress as the simulation goes on. The

highest layer of the program, called the “Control Loop Script” in Figure 11, controls

the variation in parameters such as scale factor, pursuer relative phasing angle, etc.

For building the linear regression model, the control loop script will be fairly simplistic

as the only change being made is the evader performance scale factor. The other

function of the control loop script is to save individual runs to their designated file

folder, labeling the files appropriately to avoid the intermediate layer overwriting

successive runs as the factors such as evader performance scale factors are varied.

Figure 11. Programming Overview

To build the linear regression model, the intermediate script will setup a series of

pursuer positions that evenly sample the total solution space. For the 2D (in-plane)

case a 50 × 50 km square sampled at intervals of 2 km for a total of 2601 pursuer

positions, shown in Figure 12. For the 3D case (where cross-track motion is allowed),
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the 50 × 50 × 50 km cube centered at the origin will be sampled at an interval of 7

km for a total of 3375 pursuer positions. Note that these variations are all bounded

NMC orbits about the evader (at in the LVLH frame), and the chief reference orbit is

a geosynchronous equatorial orbit. At each of these pursuer positions, the IHM-PSO

solver will determine an optimal control profile, capture position, and capture time.

The intermediate program will store all the data produced by the IHM-PSO solver

to a “.mat” file every so often as the loop iteration progresses. In this way, the data

is stored as the program is executing. If the program is interrupted before it finishes,

the loop can be restarted from the last checkpoint simply by changing a declaration

variable at the top of the intermediate script and running the program again.

Figure 12. Set-up for the Parameter Study Analysis (Note only one of
many NMC trajectories is shown)

3.1.2 Outlier Identification and Removal.

Prince et al. [27] states the developed PSO algorithm usually provides accurate

optimal results 70-90% of the time. During the process of building the linear regression

models this statistic was largely verified, however it was noted that the lower bound

on the stated accuracy could be much lower for certain repeatable circumstances like

those shown in Figure 13. In these instances, the PSO particles are believed to be

50



too strongly attracted to a sub-optimal local minimum while searching the solution

space. A solution to this problem would be to tune the social and cognitive weights,

however doing so would invalidate the other data runs for comparison and use in the

same linear regression model.

(a) (b)

Figure 13. IHM-PSO Results with Rampant Outliers

In more common scenarios, only a couple of outliers were found to be present,

which means that the results from the constructed grid, shown in Figure 12, will

almost certainly contain some sub-optimal results. These sub-optimal results will

negatively impact the accuracy of the linear regression model and must be dealt

with. Either the data will need to be cleaned to remove the outliers, or the method of

constructing the linear regression model must be able to identify and ignore outliers.

Where possible, Matlab’s robust linear regression toolbox will be used to build the

linear regression models and at the same time ignore the suboptimal results in the

IHM-PSO results. When Matlab’s robust programs cannot be used, then two other

methods are used to identify outliers in the data set. Once identified, they can be

either removed or the IHM-PSO algorithm [27] can be rerun at those selected points.
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By taking advantage of the symmetry of the capture position’s solution set shown

in Figure 14, potential outliers can be determined. First the median of the data set is

found, and then the second half of the data is flipped and compared to the first half.

At each point the data is compared, and correspondingly large discrepancies between

the two symmetric points identify possible outliers. It is important to note that this

method requires no points to have been removed prior, because doing so breaks the

symmetry of the data.

Figure 14. Symmetry of Capture Data Set

Another tool used to find outliers within a data set is the Matlab built-in function

“isoutlier”, using the method “movmedian”. This algorithm moves across the data

set with a small window. Within this small subsection of the data the median is

utilized to identify outliers. The “isoutlier” routine returns data indices of values

found to be 3 standard deviations (σ) from the local median [59]. This method is

largely accurate, however sensitive to the user defined window size. When given too

large of a window, the method fails to report all outliers. With a too small window,

one bad outlier affects the local median too much. Figure 15 shows an example of

the moving median method not finding all of the outliers with the given 3σ range.
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Shrinking the 3σ range often finds the outliers better, but shrinking the confidence

interval too much has a tendency to return false positives.

Figure 15. Using Matlab’s Moving Median Outlier Identification Method
[59]

The above methods largely automate the data cleaning process, however they

were intentionally not fully automated. The author checked each time the methods

completed in order to visually identify any outliers that the methods missed. For

example the moving median method sometimes fails to find outliers that are direct

neighbors because the local median is too far skewed. Other times it was observed

that both points selected in the mirror method were suboptimal, and a false negative

was given as a result.

3.1.3 Linear Regression.

With a large collection of clean data, one can formulate an input-output empirical

relation with regression techniques. Looking at the process shown in Figure 16, the

mapping can be thought of as a multi-input multi-output (MIMO) system.
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Figure 16. Optimal Control Mapping Process

Matlab’s robust multivariate regression tools are setup to handle only multi-input,

single-output (MISO) systems. Fortunately, the MIMO system shown in Figure 16

can be decomposed into two MISO systems and analyzed separately. This does not

mean that the radial and in-track positions are decoupled, but merely that the map-

ping to final positions can be done separately. A linear regression model is then

created for each output (x̄f and ȳf ), which takes in both pursuer initial state inputs

(x̄0 and ȳ0).

Figure 17. Robust Multivariate Regression Mapping Process

The result is a pair of functions, shown in Figure 18, that together take in the

initial pursuer positions and output the estimated capture position. Through experi-

mentation, a seventh-order polynomial fit was found to produce the best results (see

Table 8, 9, and 10).
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Figure 18. Linear Regression Equations

The evader performance scale factor was not an input into the regression curve fit

process, and was instead kept as a given constant inherent as an assumption in the

optimal control solution process. The evader performance scale factor, SF, varies the

available control acceleration of the evader relative to the pursuer:

a0,e = SF a0,p (3.9)

where a0,p is 3.43 × 10−5 km/sec2 and SF ranges from 0.05 and 0.70. To further

improve the linear regression model, the capability for arbitrary evader performance

scale factors is addressed. This is accomplished by evaluating each linear regression

model at the given initial condition over a variety of evader performance scale factors,

and then performing a curve fit on the collection of points, as shown in Figure 19.

Thus, the linear regression model is able to take arbitrary initial pursuer positions

as well as arbitrary evader performance scale factors as an input to produce the

expected capture position. It is important to note that to ensure accuracy of the

linear regression model, the inputs should be within, or near, the range of data

used to create the model. This research effort utilizes HCW dynamics that start to

lose accuracy as the distances from the virtual chief (the origin of the LVLH frame)

increase. Thus for a GEO scenario, the linear model was built from −50 ≤ x ≤ 50

km, −50 ≤ y0 ≤ 50 km, and evader performance scale factors ranging from 0.05 to 0.7

at intervals of 0.05. The 50 km square and max evader performance scale factor of 0.7

were chosen to ensure that the capture positions found with the IHM-PSO algorithm
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do not exceed more than approximately 100km from the origin of the LVLH frame.

Note, that for the case shown in Figure 19, the maximum capture time is only 3% the

orbital period, and the maximum capture position is 0.14% the orbital chief radius,

thus satisfying the assumptions and limitations outlined in Section ??.

(a) Variance in Capture Position vs. SF (b) Variance in Capture Time vs SF

Figure 19. Variance as a Function of Scale Factor

Along with the capture position data, the IHM-PSO method also provides the

capture time. Shown in Figure 20b, an example of the capture time data points from

the PSO solution is plotted with respect to initial pursuer position. The complex-

ity of the solution’s surface can not adequately be fit by any expression within the

Matlab regression toolbox library because of the funnel shape that constricts down

to the origin. Trying to fit this surface with a polynomial approximation, shown in

Figure 20a, produces large errors when the polynomial approximation fails to reach

all the way down the funnel. This inaccuracy precludes the use of the linear regres-

sion curve fitting process that was applied to the capture position data. Instead, an

interpolation of data is performed using the Matlab function “fit()” with the method

“nearestinterp.” This process uses linear interpolation on the given data using the

nearest neighbor approach [60], which means two things. First, interpolation inher-
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ently has an accuracy proportional to the density of the data sampled. And second,

the interpolation routine does not have a robust option like the linear regression tool-

box does, which then implies that the erroneous results contained within the data

set will significantly affect the interpolation process. Thus the methods described for

locating and eliminating outliers in Section 3.1.2 will prove crucial for ensuring the

accuracy of the capture time data fits.

(a) Polynomial Approximate Example (b) Linear Interpolation Example

Figure 20. Solution Set Comparison

3.2 Problem B: 3D Linear Regression Model

3.2.1 Extending Linear Regression Model to 3D.

Incorporation of cross-track motion, even though it is a simple harmonic oscillator

[14], presents several challenges by virtue of adding an additional degree of freedom

to the problem. Lovell’s relative orbital elements [14] will again be used to shape

the desired relative NMC and find the initial velocities required for the pursuer. To

determine the one additional cross-track velocity component requires two additional

Lovell relative orbital element parameters [14], ψ and z0. The required initial cross-

57



track velocity, ż, is found by [14]:

ż0 =
z0n

tan (ψ0)
(3.10)

where ψ0 is the initial angle of the cross-track motion. From Equation (3.10), there

exists a singularity if tan (ψ0) is allowed to be zero. Thus for the parameter study

and linear model, tan (ψ0) will be purposely chosen to be nonzero.

In the context of this problem there are four parameters that define the 3D orbit:

the three relative Cartesian coordinates (x0,y0,z0) and ψ0. Going from two parame-

ters to four substantially increases the number of layers required to create the linear

regression model since each combination of cross-track angle (ψ0) and evader perfor-

mance SF are needed, in addition to extra layers needed for z0. Thus in order to

reduce the number of total iterations, the parameters that make up the linear regres-

sion model were spaced more loosely than in the 2D model. The 50km cube of points

that the IHM-PSO algorithm is evaluated on was spaced at an interval of 7 km. The

evader performance SF ranged from 0.10 to 0.70 in increments of 0.10. And finally

the cross-track angle was spaced at angles: 5◦, 50◦, 85◦, 95◦, 130◦, and 165◦. A total

of 3,375 points were used to evaluate the 50× 50× 50 km cube for each variation of

ψ0 and SF.

3.2.2 3D Regression Model.

At first attempt, the linear regression model was built by including the cross-track

component as a third independent variable, X̄3 in the linear regression formula:

Ȳ = f(X̄1, X̄2, X̄3) (3.11)
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where X̄1 represents the initial radial positions, and X̄2 represents the initial in-

track positions, and X̄3 represents the initial cross-track positions. While Matlab was

successful at building a linear regression model, the accuracy was poor. Experimenta-

tion among the various regression models failed to improve the accuracy of the linear

model. Further examination found that there were small “waves” within the solution

set, shown in Figure 21, that appeared to cause the regression algorithm trouble as it

tried to account for these variations. Furthermore it can be seen that the regression

fit falls off near the corners of the grid, where accuracy deteriorates to as much as 3

km off.

Figure 21. Matlab 3D Regression

Given that Matlab’s linear regression was highly accurate in the 2D case, it was

sought to use multiple 2D regression layers stacked by their associated Z height. The

use of HCW equations allows the in-plane and cross-track motion to be separated,

which allows the 3D linear regression model to become a stack of 2D linear regression

models with variations in the initial cross-track starting positions. This point is shown

in Figure 22, where all starting positions with a initial cross-track value of 50 km in

the IHM-PSO data map to the same layer in the capture region (Figure 22b).
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(a) Starting Positions at z0 = 50 km (b) Associated Capture Positions

Figure 22. Z Height Separability of IHM-PSO Data

Thus the 3D linear regression model first needs to determine the correct z height

(given by the initial pursuer starting position), and then evaluate the correct 2D linear

regression model to get the final radial and in-track capture position. To determine the

final cross-track capture position, a regression identical to that discussed in Section

3.1.3 is performed. When the initial z0 condition does not coincide with any of the

2D regression layers, then the initial (x, y) pair are evaluated and fit across all of the

z0 layers. Figure 23 shows how the 3D regression model is built and evaluated for

arbitrary inputs of x0, y0, z0, ψ0, and SF .

Each 3D linear regression model was run with a given constant value for evader

performance SF and initial cross-track angle, ψ0. If a selection of initial pursuer cross-

track angle and evader performance SF values are chosen coincident with a particular

model, then only that model is needed to evaluate the answer. More than likely

this will not be the case, and the initial values will require interpolation between

linear model combinations, as depicted in Figure 23. Thus in summary the 3D linear

regression model is a collection of 2D linear regression models run for variations of z0

heights, evader performance SFs, and pursuer initial cross-track phase angles. The

groups of linear models are interpolated between using bilinear interpolation to obtain
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Figure 23. 3D Linear Regression

values not explicitly evaluated at, which provides an means for obtaining results for

arbitrary initial conditions.

3.3 Problem C: 2D and 3D Parameter Study

3.3.1 2D Parameter Study.

This section focuses on applying the linear regression models developed in Problem

A (Section 3.1) and Problem B (Section 3.2) to analyze the behavior of the solution

set when uncertainty is applied to the pursuer’s initial starting position relative to the

evader’s within the orbital plane, as shown in Figure 24. Note: this implies that the

evader always starts at the origin of the LVLH frame. The initial radial and in-track

velocity of the pursuer is initialized such that the pursuer is in a NMC trajectory

about the origin (and the evader). For the 2D analysis the cross-track initial velocity

is set to zero, effectively ensuring that the game is played out in-plane. To compare

various positions of the pursuer relative to the evader, the pursuer’s position is varied
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such that the initial position remains on the same NMC, but at different phasing

angles (see Figure 5) from the evader. A covariance ellipse, centered on each of the

chosen pursuer’s positions, is drawn based upon a fixed confidence interval of 95% (2

standard deviations) utilizing code developed by Johnson [61]. A random sampling of

1,000 normally distributed points are taken within the covariance ellipse, which then

represent all of the initial pursuer starting positions that need to be mapped to final

capture positions. Running the PSO-IHM [27] algorithm at each of these starting

positions would take approximately 32 hours per scale factor. To do a full run across

the seven evader performance scale factors would then take 9 days, and 8 hours. The

wait time of 9 days and 8 hours would have to be repeated for each variation on the

NMC semi-major axis and initial covariances. Conversely, the linear regression model

produced estimates of the capture time and position for the entire parameter study

in a matter of 30 minutes or less.

Figure 24. Set-up for the 2D Analysis

3.3.2 3D Parameter Study.

Similar to the 2D parameter study, for the 3D parameter study it is desired to

provide relative orbital angles instead of Cartesian coordinates so that the pursuer

starting angles can be varied while keeping semi-major axis of the relative orbit the
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same. To solve for the initial cross-track velocity, and initial cross-track position,

some more work with Lovell’s relative orbital elements [14] is needed. From Lovell

[14], let the maximum cross-track amplitude Az and initial cross-track angle, ψ0 be

given:

ψ0 = atan2

(
z0,

ż0
n

)
(3.12)

Az =

√
z20 +

(
ż0
n

)2

(3.13)

where the initial cross-track position, z0 and cross-track velocity, ż0 are unknown.

Rearranging the equations and solving for z0 yields:

z0 =
Az tan (ψ0)√
tan2 (ψ0) + 1

(3.14)

where ż0 can be found by rearranging Equation (3.13):

ż0 = n
√

A2
z − z20 (3.15)

Note that this method for solving for ż0 was judiciously chosen since an answer using

Equation (3.12) would contain a singularity when ψ0 = 2πk where k = 0, 1, 2, ...∞.

As a result, in the 3D parameter study the pursuer is located on a initial relative

NMC about the origin and the evader by νr,0, ψ0, ar, and Az. As seen in Figure

25, varying the relative phasing angle νr varies the angle that the pursuer starts at

very similarly to the true anomaly orbital element. Variations to ψ0 have the effect

of changing the initial z height at the starting angle found by νr. A change to Az

affects the maximum value of cross-track motion. And finally, ar changes affect the

semi-major axis of the 2× 1 relative orbit ellipse.
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Figure 25. Moving Around in the 3D Relative Orbit

As a result of reworking the Lovell relative orbital elements [14] the 3D parameter

study can be conducted by varying the relative pursuer starting angles, relative orbit

semi-major axis, covariance ellipse sizes, and maximum cross-track amplitude. The

setup for this parameter study is shown in Figure 26.

Figure 26. Set-up for the 3D Analysis
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3.4 Problem D: Closed-Loop Control and High Fidelity Propagation

3.4.1 GNC Architecture.

This problem takes the open-loop guidance trajectories generated in Problem A

and Problem B, and applies them in a closed-loop manner with a developed GNC

model [45]. The GNC system is modeled in Matlab’s Simulink, and consists of the

guidance, navigation, control, plant, and sensors subsystems as shown in Figure 27.

Figure 27. Main Layer of GNC Simulation

The GNC model is capable of using a linear Kalman filter, extended Kalman filter,

unscented Kalman filter, or particle filter. Harris et al. [45] found that the LKF was

sufficient for most applications (dependent upon the sensor and filter combination

used) and easiest to implement. Thus it will be the filter chosen for this application.

Using the developed Matlab Appdesigner front end [45], as shown in Figure 28, easily

allowed various sensor/filter combinations to be run. The LKF and LQR choices were

chosen within the GUI after implementing all other combinations, showing the power

and flexibility of the modular GNC architecture.

The flight computer component, shown in gray in Figure 27, consists of a navi-

gation and controller subsystems. The navigation subsystem determines where the

spacecraft is in relation to the reference trajectory by using one of a variety of filters.

Within the flight computer is also a controller, which takes the information provided

by the navigation subsystem and determines the required thrust input to drive the

65



Figure 28. GNC GUI App

error between the actual and reference measurements to zero. Thus the open-loop

guidance trajectories developed in Problems A and B will be differenced with the

navigation measurements and then translated into thrust maneuvers within the flight

computer block of Simulink. The control input will be calculated with a simple linear

quadratic controller using negative feedback control, where the LQR gain K obtained

from the steady-state algebraic Riccati equation. While the GNC is capable of more

complex types of control, the LQR was found to be most robust across a wide variety

of initial conditions, and much easier to tune than the other control methods that are

available in the GNC system.

The actuator component in Figure 27 is responsible for interpreting the flight con-

troller’s requested amount of thrust and firing the thrusters accordingly. This is the

component responsible for modeling effects such as thruster pointing inaccuracies,

time delays in thruster firing, etc. For the purposes of this research, the actuator

block will be setup to model a single low thrust electric propulsion engine. Mass loss

will be accounted for matching the model used in the IHM-PSO algorithm [6], given

in Equation (3.5), which provides the magnitude of the control acceleration. In the
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actuator block, this term is calculated and represents the total magnitude of accel-

eration available from the thruster, aavailable. The controller’s requested acceleration,

ārequested, is then saturated if ||ārequested|| > aavailable. Otherwise, it is left the same

and aavailable = ||ārequested||. Using the following relation, the applied acceleration,

āapplied, given to the plant is:

āapplied =

(
ārequested

||ārequested||
)
aavailable (3.16)

Essentially, the orientation of the thrust vector desired by the flight controller is

preserved while the magnitude is scaled by the calculated control acceleration from

the mass loss in Equation (3.5).

The plant block in Figure 27 propagates the provided control to the next time step

by integrating the NERMs. Disturbance and perturbation forces are not accounted

for in this formulation, however could easily be added by swapping out this dynamics

block entirely, or by adding in perturbing effects like J2 as extra components added

to the acceleration terms.

Finally, the sensor component in Figure 27 takes the propagated states from the

plant model and adds additive white Gaussian noise to simulate a noisy state. With

the noisy state, the sensor model makes a measurement using either a range/range-

rate, range, angles/range, or angles only sensor. The sensor measurements are re-

turned to the flight computer in the next time step for the next cycle to repeat.

3.4.2 High Fidelity Propagation.

To gauge the total amount of inaccuracies inherent in the linearized set of dy-

namics used, AGI’s STK software [62] will be utilized to propagate the generated

IHM-PSO solutions with a high fidelity propagator called the High-Precision Or-

bit Propagator (HPOP). HPOP is capable of including perturbations such as Solar
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Radiation Pressure (SRP), third body gravitational effects, and a full fidelity earth

gravitational model [63]. Within STK, a mission planning aid called Astrogator is

used to input impulsive maneuvers and coasting periods. Recall, the IHM-PSO solu-

tion trajectories are formulated in continuous thrust and thus will be converted from

a continuous to impulsive thrust model. To make this conversion, code developed by

LeValley and George [64] will be utilized. Using Matlab’s unconstrained optimization

tool “fminunc”, the code creates an impulsive burn-coast-burn profile that matches

the position and velocity of the given continuous trajectory using an HCW propaga-

tion model. Within the spacecraft parameters, both the evader and pursuer were left

with identical default values. For each the engine model was generically selected as a

constant Isp, constant thrust model.

Astrogator is also capable of handling and propagating continuous thrust trajec-

tories. Unfortunately STK is fairly rigid in the types of continuous thrust profiles

that it can be given. To vary either the body or thrust axes an attitude “.a” file is

required. This would require converting the Azimuth/Elevation angles into one of

the required formats: Euler angles, quaternions, roll-pith-yaw angles, or ECI vector

components. With the correct angle representations, one then has to write the angles

into a specially formatted ASCII text file [65]. This route was attempted for compar-

ison purposes, but unsuccessful since STK only recognized the propagation file but

did not propagate it.

STK was driven with a Matlab script using the object model language. The

script automatically creates the STK scenario, initializes the satellites parameters,

and configures the burn lists. This is especially handy since a large number of burns

can be used, and one can avoid having to manually configure the segments in the

Astrogator GUI. A reference satellite is inserted into the GEO belt that establishes the

origin of the LVLH coordinate frame. The pursuer and evader coordinate systems are

68



placed into a LVLH coordinate system of the reference satellite object. To extract the

positional state information, custom vectors were created in the analysis workbench

that measured distance from the pursuer and evader with respect to the LVLH origin

as shown in Figure 29.

Figure 29. STK LVLH Vectors

3.4.3 Chapter Summary.

The methodology for each problem has been laid out in detail. Problem A showed

how a large data set could be constructed by iteratively running an existing determin-

istic solver across a wide range of pursuer starting positions. Then, the setup for a 2D

linear regression model was presented as a way to find empirical solutions to the data

set. Problem B increased the complexity of the formulation by adding in cross-track

motion, which required interpolation across nodes consisting of 2D linear regression

models stacked by z height. with these the 2D and 3D linear regression models, Prob-

lem C setup a scenario to evaluate a large scale parameter study. Finally, Problem D

discussed the developed GNC system and implementation of commercial software in

order to validate the IHM-PSO solution trajectories accuracy and viability.
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IV. Results

This chapter discusses the results for each problem. For Problem A (Section 3.1)

the 2D linear regression model is shown to have extremely high accuracy (< 0.01%)

as a result of the robust multivariate regression techniques used to create it. Problem

B (Section 3.2) successfully extends the linear regression model to three dimensions,

but because of interpolation techniques, exhibits an average estimation error of 2%.

Problem C (Section 4.3) applies the linear regression models to a 2D and 3D pursuit

evasion game in order to develop “rules of thumb” from trends in the solution set

for both cases. Finally, Problem D (Section 3.4) shows that the trends shown in

Problem C persist in higher fidelity dynamics models, and that the accuracy from

using linearized dynamics and ignoring perturbative effects is acceptable. It is also

shown that the open loop trajectories are largely viable given sufficient acceleration

limits.

4.1 Problem A: 2D Linear Regression Model

4.1.1 2D Linear Regression Model Results.

The linear regression model was evaluated at each of the pursuer initial starting

positions on the grid in Figure 12 and then compared to the results obtained through

the PSO algorithm. Shown in Figure 30 are the terminal capture positions estimated

by the linear regression model overlaid upon the results found by the PSO algorithm.

Figure 30 highlights areas where the PSO algorithm produces erroneous suboptimal

results. At these problem areas, the model correctly predicts the correct capture

point. If the PSO algorithm were to be run again at the points where suboptimal

results were provided, the output would eventually converge to the points predicted

by the model. In comparing the speed of these two algorithms, the PSO routine
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produced results in approximately 8-12 hours, whereas the linear regression model

completed the mapping in less than 3 minutes. Thus, when the optimal control

profile is not needed and there is only interest in the terminal conditions, the linear

regression model is an ideal tool for providing results on the same level of accuracy

as that of the PSO algorithm.
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Figure 30. Regression Curve Fit for Capture Positions (SF = 0.4)

The accuracy of the linear regression model is related to the density of the points

used to create it. This is considered one of the downsides to the utilization of a linear

regression model; a significant computational effort must be taken upfront in order to

create the model. For each evader performance scale factor “layer,” shown in Figure

30, 2601 points were used to produce fits that have r2 values given in Table 8.
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Table 8. Goodness of Regression Fits for Linear Models

Scale Factor r2x r2y Points Used

0.2 0.99858 0.99844 2601

0.4 0.99940 0.99895 2601

0.5 0.99992 0.99948 2601

0.7 0.99972 0.99942 2601

The high degree of accuracy in Table 8 across various evader performance scale

factors indicates that enough points were chosen for accurate results. Examining the

solution sets in Figure 31, shows that the general shape of the solution set remains

the same regardless of choice in evader performance scale factor. Between two evader

performance scale factors, the only difference is the scaling of the axes values. Thus,

it is no surprise that the same level of accuracy can be achieved with the same number

of points for each layer.
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(a) Capture Positions for SF = 0.2

-50 0 50

-50

0

50
Actual Data
Regression Fit

(b) Capture Positions for SF = 0.5

Figure 31. Solution Set Comparison

Table 9 shows an example comparison between the PSO solution (rerun multiple

times to ensure its convergence) and the estimated solution from the linear model.

The evader performance scale factor chosen for Table 9 matches a “layer” within

the linear regression model, meaning that no regression between evader performance
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scale factors is required and only one set of functions needs to be evaluated. Table 10

shows the same example comparison, but at an evader performance scale factor that

requires the linear regression model to regress between scale factor data. In either

case, the results are accurate enough that the linear model can serve as a replacement

for the PSO algorithm.

Table 9. Results Requiring No Regression Between Models (SF = 0.50,
X0 = 18 km, Y0 = 30 km)

Solution xf (km) yf (km) tf (sec)

PSO -19.109 -27.0483 1961.817

Estimate -19.107 -27.0571 1961.804

% Difference 0.0085 0.033 0.00066

Table 10. Results Requiring Regression Between Models (SF = 0.43,
X0 = 18 km, Y0 = 30 km)

Solution xf (km) yf (km) tf (sec)

PSO -14.357 -20.550 1841.152

Estimate -14.356 -20.555 1841.141

% Difference 0.0075 0.0028 0.00063

Table 11. Comparison of Computational Speed Between Models Using the
Same Computer

Solution Method Computation Time (sec)

IHM-PSO Method (Non-Parallelized) 1 min 45.55 sec

IHM-PSO Method (Parallelized) 22.86 sec

2D Regression Model 2.17 sec
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4.2 Problem B: 3D Linear Regression Model

4.2.1 3D Linear Regression Model.

Results of the 3D linear regression model show similar accuracy to that of the 2D

case. On average the 3D linear regression model is able to predict capture positions

and time to within 2% of the IHM-PSO data. The source of inaccuracy is largely due

to interpolation error and lower density of points used (compared to the 2D case).

Recall, in the 2D case there was no interpolation used; linear regression of the evalu-

ated x and y points with respect to evader performance scale factor was performed.

This minimized the error by fitting a line to a set of 7+ points. In the 3D case, this

methodology is plausible, but too slow. Recall, as mentioned in Section 3.2.1, a single

3D linear regression model is made up of a collection of 2D linear regression models

that map (yi, xi) to (yf , xf ) for a given z0, scale factor, and ψ0. Thus fitting a linear

regression to the evaluated (yf , xf , zf ) points like in the 2D case is actually fitting a

surface of (yf , xf , zf ) points that vary with respect to scale factor and ψ0. The total

number of linear regression models to evaluate becomes substantial, making the total

evaluation time akin to the IHM-PSO method. Therefore bilinear interpolation is

used instead, which interpolates between scale factor and ψ0 points, requiring only

four 3D linear regression models to be evaluated. In Chang’s formulation of a trend

surface [56], more 3D models could be used to increase the accuracy, however exper-

imentation showed that adding more 3D models had diminishing return on accuracy

and steady impact on computational time. The use of four 3D models balanced both

speed and accuracy, resulting in a 3 second computation on average, which is once

again substantially faster than the IHM-PSO method. A summary of the compu-

tational speed of the 3D linear regression model, baselined against the IHM-PSO

method, is shown in Table 12.
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Figure 32. Example of IHM-PSO method

Table 12. Comparison of Computational Speed Between Models

Solution Method Computation Time (sec)

IHM-PSO Method (Non-Parallelized) 1 min 45.55 sec

3D Regression Model (Surface Regression) 56.10 sec

IHM-PSO Method (Parallelized) 22.86 sec

3D Regression Model (1D Interpolation) 10.06 sec

3D Regression Model (Bilinear Interpolation) 6.03 sec

3D Regression Model (No Interpolation Needed) 1.91 sec

Examining the accuracy of the 3D linear regression model shows that accuracy

depends upon the mode of operation. When no interpolation between linear regression

models is needed the accuracy is quite high, as shown in Table 13. When interpolation

in one direction is required the 3D linear regression model’s accuracy worsens slightly,

as shown in Table 14 and in Table 15. Finally when both the initial cross-track angle

and evader performance scale factor require interpolation, bilinear interpolation is

used. This has the largest impact on error from interpolation, especially in regions

where either the distance between the four points is large or the range of values of

evaluated points is large, as shown in Table 16.
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Table 13. Results Requiring No Interpolation (SF = 0.60, X0 = 40 km,
Y0 = 35 km, Z0 = 34 km, ψ0 = 50◦)

Solution xf (km) yf (km) zf (km) tf (sec)

PSO : -63.494 -38.235 -53.785 2971.423

Estimate : -63.494 -38.236 -53.802 3005.510

% Diff: -0.0002 -0.003 -0.03 1.14

Table 14. Results Requiring SF Interpolation (SF = 0.65, X0 = 43 km,
Y0 = 32 km, Z0 = 30 km, ψ0 = 5◦)

Solution xf (km) yf (km) zf (km) tf (sec)

PSO : -85.853 -34.620 -139.969 3865.096

Estimate : -85.425 -34.676 -139.131 3873.227

% Diff: -0.50 -0.16 -0.60 0.21

Table 15. Results Requiring ψ0 Interpolation (SF = 0.40, X0 = 50 km,
Y0 = 4 km, Z0 = 50 km, ψ0 = 70◦)

Solution xf (km) yf (km) zf (km) tf (sec)

PSO : -33.729 3.792 -33.536 2629.971

Estimate : -33.727 3.780 -33.324 2624.318

% Diff: -0.01 0.30 -0.63 0.22

Table 16. Results Requiring SF and ψ0 Interpolation (SF = 0.45, X0 =
10 km, Y0 = 35 km, Z0 = 3 km, ψ0 = 140◦)

Solution xf (km) yf (km) zf (km) tf (sec)

PSO : -9.197 -27.135 -2.209 1927.696

Estimation : -9.379 -27.624 -2.170 1898.678

% Diff: -1.95 -1.79 -1.79 1.52

Looking further inside the 3D linear regression model, each cross-track capture

position was estimated using a cubic interpolation of final cross-track position (zf )

plotted with respect to initial radial (xi) and in track (yi) positions. Capture time (tf )

was also found in this manner. Recall, as discussed in Section 3.1.3, linear regression
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could not be used in cases where the funnel shape constricted too narrowly for a

polynomial surface to adequately approximate. It was found that the funnel exists

only for z heights that approach zero, and the larger the magnitude of z, the more

parabolic the z capture surface becomes. Given that some z surfaces still exhibited

the funnel behavior, interpolation was chosen over regression for both the capture

time and z height surfaces. The results of cubic interpolation can be seen in Figure

33.

(a) Capture Time (sec) (b) Z Capture Position (km)

Figure 33. Cubic Interpolation Results

In summary, the 3D linear regression model sufficiently predicts the capture po-

sition and time across the solution space of all relative orbits within 50 km of the

evader. A small accuracy penalty of approximately 1 − 2% error was paid for 9.3

times faster computational speed by using bilinear interpolation over calculation of a

trend surface. The speed of the 3D linear regression model is quick enough for possi-

ble onboard computation. Furthermore it only takes up 55 MB of memory, which is

impressive considering the raw data used to make it is approximately 3 GB of data.
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4.3 Problem C: Parameter Study of 2D/3D Game

4.3.1 2D Analysis.

Running the PSO algorithm, developed by Prince et al. [27] and modified to work

as a function, produced results that form the data set for the linear regression model.

An example of the output from the iterated routine is shown in Figure 34.

As an observation from the shown results, the family of blue pursuer trajectories

share a point of inflection near the center of the NMC initial trajectory. This phe-

nomenon persists throughout the range of evader performance scale factors, sizes of

covariance ellipses, and initial phasing angles.

(a) PSO Output for SF = 0.4 (b) PSO Output for SF = 0.7

Figure 34. Solution Set Comparison

The inflection of the capture positions are shown in Figure 35, where the results

are colorized based upon the sign of the in-track component of the final capture

position. The colorization shows how pursuer starting positions and the final capture

positions are opposite one another, inflected through the “pinch point” that occurs

near the center of the initial NMC trajectory.
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Figure 35. Colorized PSO Output (SF = 0.4)

Figure 36 showcases a variety of different results. First, the green pursuer starting

regions are phased roughly 180 degrees from the red capture regions (i.e. they are

on the other side of the NMC). The phasing of the capture region in relation to the

initial starting region is not affected by the choice of the NMC’s semi-major axis or

by the evader performance scale factors. However, changing the evader performance

scale factor affects both the distance of the capture region from the evader starting

position and the size of the covariance ellipse, as shown in Figure 37.

It can be seen in Figure 37 that selecting an evader performance scale factor

greater than 0.5 (corresponding to less penalization on the evader’s performance) re-

sults in final capture regions that are outside the pursuer’s initial NMC trajectory.

As the evader becomes as capable as the pursuer, the terminal time (as well as the

distance covered) increases. Likewise, when the evader performance scale factor is

less than 0.5 (the evader’s performance is heavily handicapped), then the pursuer

easily catches the evader inside of the initial NMC trajectory. Based on this anal-

ysis, a good rule of thumb is if the pursuer is at least twice as fast as the evader

(i.e. the evader performance scale factor < 0.5) then the center of the capture re-

gions, or average capture position, will always occur inside the area bounded by the

pursuer’s initial instantaneous NMC trajectory.
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Figure 36. Covariance Effects Based on Angle and Range (SF = 0.5)

Figure 36 shows that the covariance ellipses for the starting regions are approxi-

mately the same size as the capture regions, which is confirmed by Table 17. However,

this is only the case for a evader performance scale factor of 0.5. When the scale fac-

tor is anything else, the size of the covariance ellipse changes depending upon the

performance scale factor chosen, as seen in Figure 37 for an scale factor of 0.4 and

0.7. Regarding the size of the covariance ellipses, the scale factor of 0.5 again seems to

be the division upon which the size of the covariance ellipses start to either contract

or expand. For example, depicted in Figure 36 and given in Table 17, the percent

change from initial to final variances are on the order of one percent. When the scale

factor is raised from 0.5 to 0.7, the percent changes in variance are on the order of

450%, or approximately 5.5 times their initial values as seen in Table 18.

Figure 38 shows how the orientation of the covariance ellipses is mostly preserved

as a result of initial variance and angle. Plotted are two groups of runs at the same

range, and for the same evader performance scale factor. In each run, the choice

of initial variances in pursuer position is switched. The results indicate that the
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(a) Covariance Effects Based on Angle
and Range (SF = 0.4)

(b) Covariance Effects Based on Angle
and Range (SF = 0.7)

Figure 37. Covariance Effects Based on Angle and SF

final covariance ellipse for the terminal capture positions is independent of phasing

angle. The results also show that the orientation of the covariance ellipses is largely

preserved. There is a slight tilt of the capture position covariance ellipses that seems

to indicate that the capture position variances are slightly affected as a result of the

solution process, which is worth looking into further.

Figure 38. Covariance as a Function of Angle and Variance
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Table 17. Variance as a Function of Relative Phasing Angle, νr (SF = 0.5,
Initial Var(x) = 1.5 km, Initial Var(y) = 1 km)

νr Var0(x) Varf (x) % Change Var0(y) Varf (y) % Change

0 1.583 1.592 0.577 1.037 1.075 3.649
60 1.531 1.554 1.501 0.941 0.914 -2.793
90 1.570 1.569 -0.083 0.954 0.970 1.749
120 1.495 1.495 -0.027 1.066 1.091 2.309
180 1.430 1.442 0.837 0.973 0.987 1.365
240 1.562 1.590 1.816 0.945 0.904 -4.309
270 1.510 1.512 0.138 0.992 0.996 0.470
300 1.496 1.484 -0.786 1.042 1.106 6.139

Table 18. Variance as a Function of Relative Phasing Angle, νr (SF = 0.7,
Initial Var(x) = 1.5 km, Initial Var(y) = 1 km)

νr Var0(x) Varf (x) % Change Var0(y) Varf (y) % Change

0 1.367 7.567 453.414 1.041 5.955 471.946
60 1.368 7.661 460.089 0.993 5.154 418.831
90 1.479 8.136 450.280 1.037 5.661 445.900
120 1.411 7.661 442.841 0.950 5.680 498.424
180 1.424 7.900 454.848 0.968 5.463 464.188
240 1.444 8.142 463.834 1.039 5.233 403.733
270 1.548 8.571 453.686 1.046 5.583 433.957
300 1.481 8.087 445.975 1.056 6.127 480.506

A closer look at how the variance (in both the radial and in-track capture posi-

tions) varies as a function of evader performance scale factor is shown in Figure 39a.

The results show that the variance in the capture region increases as a function of

evader performance scale factor, reaffirming what was already seen in the previous

plots where a larger scale factor resulted in a larger covariance ellipse. Among differ-

ent phasing angles for each evader performance scale factor, the variances show good

agreement, however they start to diverge from one another at large scale factors. Fi-

nally, the variance in the in-track component of the capture positions increase much

more quickly than the variance in the radial component. In fact, the variance in the

radial direction best fits a power curve (f(x) = axb) whereas the in-track direction

best fits an exponential curve (g(x) = aebx), both with b > 0.
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Figure 39. Covariance Results

Distances from the evader to the center of each capture region, (as a function of

evader performance scale factor), is shown in Figure 39b. As the scale factor increases

(as the evader is less penalized in terms of performance) the average distance the

evader moves increases, which makes intuitive sense. In Figure 39b, there are a total

of eight different angles plotted, however each angle has paired off with the angle

180 degrees across from it. Interestingly, there are four total groups instead of three

because of the slight positional shift in the centers of the capture region best seen in

Figure 37a. This positional shift disrupts the would-have-been symmetry of capture

regions which results in the distances of the pairings {2, 6} and {4, 8} (from Figure

37a) not having equivalent distances from the evader.

4.3.2 3D Analysis.

Results from the 3D analysis compliment the 2D analysis, and verify that the

trends that exist in the 2D planar case also exist in the more general 3D case. Shown
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in Figure 40 is an example of the 3D analysis showing how the capture covariance

ellipsoid changes size and position based upon evader performance scale factor.

Figure 40. Movement and Size of Capture Region as a Function of Evader
Scale Factor

4.4 Problem D: Validation of PSO-IHM Solutions

The trends shown in Section 4.3 have been shown for a 2D and 3D analysis,

however they both assume that the states are propagated using linearized dynamics.

Furthermore it is assumed that the flight trajectories generated by the IHM-PSO

method are able to be flown by the satellites. This section investigates both the

accuracy of the linearized assumptions made in this work and validates that the

generated trajectories are flyable by running the open loop trajectories through a

Guidance and Navigation framework [45] in a closed-loop manner. Both the accuracy

of the orbits and ability to be flown are crucial to this research being applicable to

real-world mission planning.
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4.4.1 Flying the IHM-PSO Generated Orbits.

The GNC system [45] was used to determine if the IHM-PSO trajectories are able

to be flown in a closed-loop manner. The results appear to indicate that the success

in “flying” the trajectory depends upon the distance traveled by the spacecraft. Over

relatively short distances the LQR controller is able to satisfactorily track the desired

trajectories. However as the distance traveled increases, the LQR fails to adequately

control the spacecraft motion. This was discovered after reviewing results where the

evader trajectory was successfully flown and the pursuer trajectory (which travelled

approximately double the distance) suffered from poor accuracy. Investigating this

further yields an indication that the problem lies with the available control acceler-

ation. As formulated in the IHM-PSO method, the initial control acceleration, a0,

without any modification from performance scale factors is 3.43×10−5 km/sec, which

is much lower than the requested acceleration from the LQR controller. While the

IHM-PSO method takes into account the control bounds, the GNC system propa-

gates the dynamics with the NERMs instead of the HCw equations. The resulting

error over time has the effect of saturating the control applied to the system, which

negatively impacts the controller’s ability to keep the spacecraft on course. As the

distance travelled by the spacecraft increases, so does the time that the control is sat-

urated. The results, shown in Figures 41 and 42, indicate that the LQR controller is

able to deal with a limited amount of saturation, but over time the difference between

the estimated (actual) trajectory and the reference trajectory steadily grows, driving

the requested acceleration larger, which then results in more substantial saturation

of the requested input.
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(a) Error in States (b) Requested vs. Applied Control

Figure 41. Pursuer Trajectory (SF = 1)

(a) Error in States (b) Requested vs. Applied Control

Figure 42. Pursuer Trajectory (SF = 4)

The problem of too low initial control accelerations are exacerbated by the ap-

plication of performance scale factors. As discussed in the Section 3.1.3, the evader

performance scale factor was chosen as a value between 0.05 and 0.70 and the pursuer

performance scale factor was left as 1.0. In the case of the evader, dividing the already

too low initial control acceleration by as much as a factor of ten resulted in even less

ability of the evader to maintain their course in the closed-loop simulation. Note that

in the open loop formulation, dividing the evader performance scale factor by as much
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as ten was plausible because it was not being evaluated whether or not that amount

of reduction was realistic in terms of “flying” the trajectory that was solved. Math-

ematically the trajectories are solvable for any positive value of initial acceleration.

Realistically, however, picking too low of an initial control acceleration term results

in a “non-flyable” trajectory. Figure 43 shows that using an evader scale factor of

1.0 and a pursuer performance scale factor of 2.0 resulted in adequate closed-loop

performance, and thus a likely more realistic value for a0. It should be pointed out

that this simulation assumes a single electric propulsion thruster, which is not likely

the case for real systems, which would have cold gas systems for maneuvering as well.

Thus as demonstrated by the results of the GNC closed-loop simulation, the initial

control acceleration chosen in this research, based off values chosen by Prince [27],

appears slightly optimistic for adequate performance over distances, but is plausible

for short distances where LQR can compensate with a saturated control.

Figure 43. Flown IHM-PSO Trajectories

It is important to point out that the GNC system is designed to track the particular

relative orbit, and not to pursue/evade the other player. This distinction is important

because the measurements made by the sensors establish position/velocity that is used
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to drive the error between the reference trajectory and the actual trajectory to zero.

In an actual pursuit-evasion game the pursuer and evader would take measurements

of the position of the other player and then use these measurements to make course

corrections to minimize/maximize the capture time (depending upon the player). As

such, because of the GNC’s primary purpose as a trajectory tracker, there are miss

distances between the pursuer and evader, which result from things such as saturated

control, propagation error resulting from the difference in NERMs vs HCW equations,

etc. It was not the intent of this section to provide a solution to the pursuit-evasion

game in a closed-loop manner, but instead to validate that the open loop trajectories

can be adequately flown. The next step in the evolution of this research would be to

tie in measurements made on the other player to enable a course correction pursuit-

evasion game. Thus it has been shown that the GNC framework provides evidence

that these trajectories are “flyable” with a proper choice of initial control acceleration.

4.4.2 Accuracy of IHM-PSO Generated Orbits.

To gauge if the IHM-PSO solutions are accurate representations of what on orbit

conditions would be like, the trajectories are planned with Astrogator and propagated

with HPOP, both of which are tools within AGI’s STK software. A selected solution

from the IHM-PSO algorithm was purposely chosen at the 50 km range such that the

game covers the maximum distance the linear regression model is capable of working

with. As a result, the error that accumulates from the linearization assumption will

be the maximum expected error, given the distance traveled for all games studied is

the furthest in this selected solution. An evader scale factor of 0.50 was chosen to

validate the trends analyzed in Section 4.3; namely that the expected capture position

is 180◦ in phase, and on the initial relative NMC orbit. The results of the numerically

propagated trajectories are shown graphically within STK in Figure 44a, and plotted
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with respect to time in Figure 44b for the long range game. The video file for this

STK simulation is attached to this pdf under the paperclip icon in Adobe.

(a) STK Visualization (b) STK Propagated Trajectories

Figure 44. STK Propagation Results

In Figure 44a, the 3D pursuit-evasion game with high fidelity propagation shows

a variety of results. First, the validity of using linearized HCW dynamics is proven

by STK results matching those found with the IHM-PSO method. The miss distance

as a result of higher-fidelity propagation is 434.2 meters, which is largely insignificant

compared to the total amount of distance traveled by each spacecraft. This is most

likely because the duration of all games studied satisfy the requirement of HCW

dynamics in that the total time studied is much less than the orbital period. Second,

the trends and “rules of thumb” discussed in Section 4.3 are shown to be valid for

not only HCW dynamics, but valid in general for higher-order dynamics as well. This

is significant because it shows that the trends shown are not only applicable in an

idealized world of linearized dynamics, but can see application in real-world mission

operations.

Combined together, the GNC framework and the STK propagation support the

claim that this research is applicable to real-world scenarios and can be used for future
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space mission planning. The linear regression model is capable of quickly determining

the estimated capture time and position for a generalized pursuit-evasion scenario that

has been shown to work quite well even in environments that contain perturbation

and nonlinearities that are not modeled in the dynamics formulation underpinning

the linear regression model data set. With a nonlinear set of dynamics, with the

inclusion of perturbative forces, a new data set could be constructed to yield an even

more accurate linear regression model.

4.4.3 Chapter Summary.

This chapter has shown the results for each problem studied in this thesis. Problem

A documented that the results of the 2D linear regression model achieved an accuracy

within 2% of the optimal control solutions and could be solved for approximately 3.8

times faster that the IHM-PSO method. Problem B extended the linear regression

model to include cross-track motion, and saw similar performance to that of the 2D

case. To retain the speed advantage over the optimal control solution method, a

small accuracy penalty of 1− 2% was paid. Thus, by choosing a local approximation

technique over a global one, the 3D regression technique increased its computational

speed by a factor of 9.3. Problem C took the developed linear models and created a

large scale parameter study that uncovered numerous trends for a generalized pursuit-

evasion game. These trends were presented as the beginnings of TTP development for

this type of pursuit-evasion game. Finally, Problem D showed that the pursuit-evasion

trajectories solved by the IHM-PSO method are both accurate and largely viable for

use in real-world environments with a sufficient engine setup. In addition, Problem

D showed that the trends identified in Problem C remained valid when higher fidelity

dynamics were used to propagate the states, reaffirming they’re validity for real-world

mission planning.
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V. Conclusion

This chapter provides a conclusion to the thesis by summarizing important points

to each part of the thesis, providing ideas for future work, and identifying specific

contributions to the DoD.

A linear regression model has been shown to effectively map the initial pursuer

relative starting positions to the terminal capture positions in a zero-sum pursuit-

evasion differential game, effectively answering the first research question. These

linear regression models are useful in situations where computational speed and ef-

ficiency are prioritized, and where the control profiles are not required. The linear

regression model is simply a group of functions, and as such, could easily be imple-

mented on-board a spacecraft for quick evaluations and possible autonomous mission

planning.

Answering the second research question, this research has shown that the linear

regression model is just as accurate as the PSO algorithm that was used to create it.

While the results are within 2% of the IHM-PSO algorithm, they provide consistent

results whereas the IHM-PSO returns optimal results only 70 − 90% of the time

[6]. Thus it has been shown that the linear regression models are both accurate and

reliable enough to be utilized in real-world mission planning and TTP development. In

certain cases, like the scenarios studied in this research effort, linear regression models

could replace optimal control solvers in determining the optimal control solution.

The third research question sought to investigate large scale parameter studies

aimed at finding trends for a generalized pursuit-evasion game. This research has

shown how a parameter study that would have taken a month to compute with the

IHM-PSO method instead took only 15 minute to perform. Born from the results of

this parameter study, several trends were identified. First, regardless of the range,

the capture positions are approximately 180 degrees in phase from the initial starting
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positions. Changing the evader performance scale factor affects both the distance of

the capture regions from the evader’s starting position and the size of the capture

position’s covariance ellipse. Finally, in all the scenarios examined, the trajectories

shared a point of inflection close to the LVLH origin. This represents a point at which

all trajectories will pass through at some point in time, marking a prime place for

an interceptor spacecraft to be placed in the “Lady, Bandit, Bodyguard” differential

game [32].

The fourth and fifth research questions aimed at determining the viability of the

generated IHM-PSO solutions. In particular the solution trajectories were used as

guidance in a trajectory tracking GNC system, and propagated with high fidelity

simulation software. This research has shown that with the use of a developed GNC

closed-loop control system, along with STK’s high fidelity propagation tools, have

provided evidence to support the claim that the linear regression model can likely

be used in real-world applications. Specifically, the GNC system showed that the

trajectories are flyable given the right setup of controller and filtering algorithms.

The STK propagation showed that the error due to assuming linearized dynamics

is sufficiently small over the quick time durations studied in this research. A higher

fidelity propagation also validated the “rules of thumb” that are proffered as a means

for characterizing how pursuit-evasion games of this type will be played out. Doing

so allows the linear regression model and associated trends to better inform mission

planners for real-world operations.

In summary, by using a several gigabytes of data, it is possible to create a linear re-

gression model that maps the pursuer initial positions to final capture positions. The

linear regression model boasts the advantages of being fast, requires minimal com-

putational power, and takes up only 55 MB of memory. The original data set was

created by transforming the optimal control problem into a parameter optimization

92



problem through the use of an indirect heuristic method. The resulting parameter

optimization problem was then solved with a particle swarm optimization routine.

Applying the linear regression model to the collected data proved useful in conduct-

ing a parameter study of an imperfect information pursuit-evasion differential game.

Doing so showcases the power of the linear regression model to quickly and efficiently

produce data useful in identifying trends to help future mission planning for space-

based proximity operations.

5.1 Future Work

There are a number of ways that this research could be used in the future. By

implementing a more complex (nonlinear) set of dynamics into the IHM-PSO algo-

rithm, two improvements could be made. First, the accuracy of the orbital results

would improve, lending to better open loop guidance profiles for closed-loop trajec-

tory planning. Adding in environmental disturbances, such as J2 gravitational effects

could bring the results closer to what one would expect on orbit. Second, the evader

performance scale factors above 0.7 could be examined since there would no longer

be linearization distances and times to keep small. This would allow games with

satellites of almost equal performance to be analyzed, where the distances travelled

could potentially be great.

Along this same vein, by reformulating the relative orbital elements to solve for the

required initial velocities when using TH dynamics would allow games of arbitrary

eccentricity to be studied. A study analyzing how accurate the linear regression

models developed in this research are when compared to slightly eccentric games

could provide further credibility regarding the real-world use of the developed linear

regression models, while at also expanding the linear regression model’s flexibility to

handle elliptic reference orbits.
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This research has produced a large amount of input-output data and optimal

control trajectories. A neural network could be given this research’s collected PSO

data to train on in order to predict the trajectories for arbitrary cases. Doing so

could result in a model that retains the advantages of being fast (similar to the

linear regression model), but could also provide the entire trajectory profile, thereby

sacrificing none of the results (such as the state information) between the initial and

terminal positions. Conversely, the underlying manifolds shown with the linear model

could be used to validate the optimality of results obtained by other AI developed

solutions.

5.2 Contributions and Impact to DoD

This research has pushed the boundaries on how deterministic games can be it-

eratively solved for in order to model stochastic effects. The work regarding the 2D

linear regression model has been published in a SciTech 2020 paper [43], and the GNC

framework published in a conference paper at the 2020 Institute of Navigation (ION)

Position Location and Navigation Symposium (PLANS) [45]. This research effort

was also presented at the 2020 Dayton-Cincinnati Aerospace Sciences Symposium

in an effort to share and collaborate with other researchers. The linear regression

models have thus been proven to work mathematically and in highly realistic simu-

lated space environments. These linear regression models provide the Department of

Defense with new tools to help develop TTPs to quickly characterize and respond to

pursuit-evasion scenarios. By providing intuitive “rules of thumb”, this research en-

ables future mission planners to be able to effectively gauge terminal capture regions

with simple visual aids, without running optimal control problems. By evaluating the

linear regression model, future mission planners can gain quick estimates for duration

of the “what-if” pursuit-evasion scenario as well as distance travelled. These metrics
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can be used to determine time evading assets are taken off mission as well as total

fuel consumption required (based off first order time and distance). In summary, this

research provides methods intended to help develop DoD develop TTPs to enhance

capabilities in a “congested, contested, and competitive” space environment.
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