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Abstract 

 

 As research into Operating and Support (O&S) costs matures, the focus can 

narrow.  This research represents a first of its kind for the Air Force; it is an empirical 

study to analyze the effects of new engines on fuel efficiency and maintenance over those 

engines they replace.  Within this research, new engines are those with distinct Type 

Series Modification (TMS) designators that appear within categories of Mission 

Designation System (MDS) aircraft.  The only new engines appear on C-5s, C-130s, and 

C-135s. The inclusion of retired engines brings in two fighter aircraft, F-15s and F-16s.  

The data source is the Air Force Total Ownership Cost (AFTOC) database, which 

collects flying hours and gallons of fuel and is available by engine.  Using this data, the 

realized fuel efficiencies of the new engines can be effectively graphed, quantified and 

tested. Maintenance costs are not tracked by engine but are approximated from ratios 

determined by AFTOC.  Of note, these costs do not include Contractor Logistics Support 

(CLS) which may weaken the analysis for estimating future engine maintenance costs.  

From the data available, the potential savings that can be realized in fuel and maintenance 

are significant and do not come at a trade-off in engine performance. 
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QUANTIFYING THE EFFECTS OF AIRCRAFT ENGINE UPGRADES ON 
OPERATING AND SUPPORT COSTS 

 
I. Introduction 

1.1 Background 

Despite Operating and Support (O&S) costs accounting for an average of 55 

percent of total life cycle costs (Jones, et al., 2014), no study to date has attempted to 

quantify the effects of new engines on sustainment costs.  This thesis fills that void by 

analyzing before and after effects on O&S costs based on three new engines and seven 

retired engines across 38 aircraft platforms and one additional new engine on a helicopter 

platform. O&S consists of all sustainment costs, including manpower, fuel, supplies, 

maintenance, upgrades, etc. (CAPE, 2016), but this thesis examines the fuel performance 

and maintenance costs of engines only. 

The B-52H re-engine cost estimate motivated this research.  The analysts at the 

Air Force Life-Cycle Management Center (AFLCMC) were tasked to brief what the new 

B-52H O&S costs would be after the engines were upgraded.  Unfortunately, the cost 

community does not have available or published Cost Estimating Relationships (CERs) 

for how to account for O&S effects after an engine modification.  Therefore, to have a 

defendable estimate, the analysts turned to the analogous C-5 RERP (Reliability 

Enhancement and Re-engining).  Using programmatic data for the C-5 and the B-52 as 

well as the historical costs per Flying Hours the cost analysts derived the estimate. 

This work broadens those efforts by more holistically examining the effects of 

engine upgrades on ongoing O&S costs across a variety of aircraft systems.  Future cost 

analysts for major modifications may be able to use these findings to help formulate cost 



2 

estimates with the results of this research. The impact of these better refined estimates 

will be found in the improved decision support process by program managers competing 

for Air Force resources.  

1.2 Problem Statement 

 Put succinctly, how do engine upgrades impact ongoing O&S costs?  The first 

step entails finding comparable aircraft with data on at least two different engines.  As 

further discussed in Chapter III, a different engine is defined here as of those engines 

with a separate Type Series Modification (TMS) designator.  For the purpose of this 

thesis, a major engine modification is one that is applicable to the O&S Cost 

Management Guidebook published by Department of Defense (DoD) whose glossary 

defines a modification as “any modification that is of sufficient cost and complexity that 

it could itself qualify as an Acquisition Category (ACAT) I through ACAT III program 

for acquisition management purposes (2016, pg 151).”  This includes any modification 

that is itself a Major Defense Acquisition Program (MDAP) or qualifies as an ACAT III 

or higher. 

Effectively solving ongoing engine costs improves O&S cost estimates.  This is 

particularly important since O&S costs are historically some of the most difficult costs to 

correctly capture (Ryan, et al., 2012).  Better estimates arm decision makers with better 

information.  Properly informed decision makers can then decide between alternatives 

balancing the cost or performance of an engine modification.  Decision makers will likely 

value improved O&S estimates as evidenced by the recent increase in the focus of getting 

O&S costs estimates correct (GAO, 2010). 

1.3 Method of Analysis 
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Further described in Chapter III, this thesis descriptively compares the actual 

maintenance costs and calculated fuel efficiencies characteristics of new engines against 

the actual observations of those engines that are being replaced.  The observed 

differences are displayed visually and are statistically tested.  Actual data for engine 

inventory on aircraft is used to find engine pairings. Engines put into place after Fiscal 

Year (FY) 2017 do not have at least two years of new O&S costs for statistical 

comparison. By the same logic, only those engines that have been in place since FY1998 

allows for two years of pre-modification O&S data using Air Force Total Ownership 

Cost (AFTOC) stand-up-date of FY1996. In short, only those engines which entered the 

service between FY1998 through FY2017 are considered, for a total of 19 years of O&S 

data.  Discussed further in Chapter II, not all weapon systems account equally in O&S 

costs and this research focuses solely on Air Force aircraft. 

To be useful, the structural break comparing the –pre and –post modification cost 

data must have statistically significant relationships.  In order to mitigate against a Type 

II error, which is a failure to find a relationship where one exists, a chosen alpha (α) level 

of 0.1 applies. An alpha of 0.1 is appropriate for exploratory analysis where the desire is 

to minimize missed opportunities that show statistically significant relationships. 

1.4 Research Questions 

Using the methods just described, the scope of this analysis addresses the 

following research questions: 

1. What are the quantifiable effects of an engine upgrade to the ongoing O&S 

costs of a weapon system? To what effect can these be measured and how useful are they 

in analysis for the future? 
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2. How do these effects vary across different weapon systems? Specifically, do 

different platforms or categories of aircraft behave the similiar ways?  Is a new engine to 

a heavy transport analogous to a new engine in a fighter jet?  

3. To what extent do historical data have predictive capacity for future O&S cost 

estimates? What are the corresponding confidence levels?  What does the empirical data 

reveal? 

1.5 Thesis Organization 

The remainder of this thesis is divided into four chapters. Chapter II covers a 

review of the literature pertaining to O&S cost estimates as well as a description of the 

statistical methods applied to the empirical data.  Chapter III focuses on the methodology 

of the data collection sources and the limits of the data.  Additionally, this chapter 

explains the statistical method applied.  Within Chapter IV, the analysis and results of the 

statistical tests address the research questions posed. Lastly, Chapter V formally 

concludes the thesis with the interpretation and summarization proposed to answer the 

research questions as well as provide recommendations on further areas of study. 
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II. Literature Review 

2.1 Chapter Overview 

 This chapter discusses what the current state O&S research reveals. We first 

examine what exactly O&S is and how it is recorded. We then discuss some of the 

research concerning O&S, which has benefited from an increased focus in recent years 

(Ryan, et al., 2012) as Congress and the DoD have tried to control what is frequently the 

highest portion of a weapon system life cycle. In addition to peer reviewed journals, 

interested parties that have analyzed O&S costs include the Congressional Budget Office 

(CBO), the Government Accountability Office (GAO), Federally Funded Research and 

Development Centers (such as the RAND Corporation), and DoD schools such as the 

Naval Postgraduate School or the Air Force Institute of Technology.  Finally we discuss 

some characteristics of engines and what the research suggests should happen as they are 

upgraded. 

2.2 What Qualifies as Operating and Support Costs? 

 The rules and definitions for O&S costs are defined in the Cost Assessment and 

Program Evaluation (CAPE) O&S Cost Estimating Guide, the DoD O&S Cost 

Management Guidebook, DoD Instruction 5000.02, and Air Force Instruction 65-508.  

The Guidebook defines O&S costs as “sustainment costs incurred from the initial system 

deployment through the end of system operations. Includes all costs of operating, 

maintaining, and supporting a fielded system. Specifically, this consists of the costs 

(organic and contractor) of personnel, equipment, supplies, software, and services 

associated with operating, modifying, maintaining, supplying, and otherwise supporting a 

system in the DoD inventory (DoD, 2016, pg 5).”  Costs also occur before initial system 
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deployment, as well as disposal costs after a system’s useful life.  Taken together these 

costs constitute a weapon systems Life Cycle Costs (LCC).  LCCs consist of four 

overlapping phases of support which include: Research and Development, Investment, 

O&S, and Disposal.  This relationship is demonstrated in Figure 1. 

 

Figure 1: Life-Cycle Costs for a DoD Weapon System (Jones, et al. 2014) 

 Research and Development includes activities such as creating and testing 

prototypes.  Investment costs can be viewed synonymously as production costs. Disposal 

costs tend to be minimal, and can usually be simplified into O&S costs (O’Hanlon et al., 

2018; Hewitson, et al., 2018).  For the purposes of this thesis, we are concerned only with 

O&S costs. CAPE directs O&S costs are categorized into six main categories as shown in 

Table 1. Each category also has sub-hierarchies underneath them which further categorize 

costs into lower levels.   
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Table 1: Main Categories of O&S Costs from CAPE 

Level Title Description 

1.0 Unit-Level Manpower 
Cost of operators, maintainers, and other support manpower 
assigned to operating units. May include military, civilian, 

and/or contractor manpower. 

2.0 Unit Operations 
Cost of unit operating material (e.g., fuel and training 

material), unit support services, and unit travel. Excludes 
material for maintenance and repair. 

3.0 Maintenance 
Cost of all system maintenance other than maintenance 

manpower assigned to operating units. Consists of organic 
and contractor maintenance. 

4.0 Sustaining Support Cost of system support activities that are provided by 
organizations other than the system’s operating units. 

5.0 Continuing System 
Improvements Cost of system hardware and software modifications. 

6.0 Indirect Support 
Cost of support activities that provide general services that 
lack the visibility of actual support to specific force units or 

systems.  
 

 The current cost element structure shown in Table 1 originated in 2014.  The 2014 

change was mostly to the titles with the exception of changing how contractor support 

was combined under Maintenance (for a detailed analysis of each of the different 

categories and subcategories and definitions see Chapter 6 of the CAPE O&S Cost 

estimating guide).  While there is natural variation, people, parts and fuel account for 70 

to 90 percent of O&S costs (OSD, 2016).  For the purpose of this thesis it is important to 

realize that many factors affecting the costs reported. For instance, Unit-Level Manpower 

includes operator and maintenance crews, such as air crews.  Manpower billets can act 

more of a function of the total overall budget rather than only tied to the costs of 

maintaining an engine.  Similarly, changes to overall Air Force budget can affect unit 
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operation costs as expenses such as temporary duty travel become subject to higher 

scrutiny and justification.   

Indirect Support costs do not tie directly to any particular weapon system or piece 

of equipment.  Some examples would include base operations support, personnel 

management, family housing or general training and education such as Professional 

Military Education.  Since these costs are indirect, if they vary after an engine 

modification, those costs would not tie directly to that engine change; therefore indirect 

support costs are excluded from this analysis. This approach is also consistent with the 

Boito et al. (2015) recommendation to include only elements one through five when 

comparing O&S costs.  

Complicating O&S costs, when evaluating modifications is that O&S costs 

sometimes include continuing system improvements to hardware or software that could 

be coded as either Research, Development, Test and Evaluation (RDT&E), Procurement 

or simple O&S costs (OSD CAPE, 2014).  Within the same guidance, life cycle estimates 

for O&S should include a note about assumptions for mid-life upgrades or Service Life 

Extension Programs (SLEP) associated with the planned system life (OSD CAPE, 2014). 

The methodology section of Chapter III expands on these concepts and how it is handled 

where it is relevant.  

2.3 How much are O&S costs? 

For many programs, the system O&S costs will be the largest of the four cost 

categories, which is a key reason why there is renewed emphasis on O&S affordability 

and cost management (OSD CAPE, 2014). Although overall costs did decline somewhat 

under sequestration around 2013, O&S costs on average are rising (Ferry, 2013). In 
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constant 2019 dollars O&S costs went from $13.5 billion dollars in 1999 to $39.6 billion 

in 2019 as recorded in AFTOC. Given that the effects of inflation are removed from 

Figure 2, we would expect the slope of costs to be relatively flat if O&S only kept pace 

with inflation. 

Figure 2: O&S Costs 1999-2019 

Conventional wisdom used to hold that O&S, as the longest phase of the life cycle 

costs, accounted for approximately 70% of total costs.  This was coined the “golden 

ratio.”  However, Jones, White, Ryan and Ritschel (2014) investigated the accuracy of 

the golden ratio and discovered that the true cost of O&S varies based on weapon system, 

with a low of 16% for Space Systems, to a high of 70% for Automated Information 

systems.  The calculated overall average O&S costs across the DoD was around 55%. 

Even using those more conservative figures, it still holds that O&S costs consist of the 

majority of a weapon system costs over the life cycle. Jones, et al. (2014) also stated that 
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the tendency to reduce the life-cycle costs of a weapon systems to a single ratio with 

respect to acquisition costs is impractical. 

What remains practical are initiatives to reduce O&S costs. GAO (2010) 

highlighted the lack of initiatives to reduce O&S costs, and the Air Force pointed to the 

Expeditionary Logistics for the 21st Century program which had the goal (among others) 

of reducing O&S costs by 10 percent. The extent to which that happened is unknown. 

RAND (Boito, et al., 2016) also made a recommendations to senior leadership to place 

more attention on O&S costs to increase visibility of these costs and their drivers in order 

to make cost savings improvements. Modifications are one of those O&S cost drivers and 

the answers to the research questions are designed to help meet this goal. 

2.4 Prior O&S Cost Research 

Traditionally, the DoD focused cost research on the acquisition component of a 

system’s life cycle instead of O&S costs.  Because of this focus, DoD research has 

managed to gain valuable insights into acquisition costs and how those costs behave over 

time.  These insights formed the framework for acquisition process revisions and cost 

saving improvements (Ryan, 2012). Ryan, et al. made the further observation that: 

“Between 1945 and 2009, there were over 130 separate studies and commissions focused 

on the acquisition of DoD systems, dozens of which involved the nature of acquisition 

cost behavior. During this same time period, there appears not to be a single published 

study pertaining to how system costs behave during the O&S phase (2012, pg 363).”  

Ryan's observations would be supported by the GAO’s 2010 conclusion that the DoD 

lacks key information to effectively manage and reduce O&S costs on most military 

weapon systems. Further support from GAO came in 2012 that also concluded that 
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weapon system O&S cost estimating and reporting were inconsistent, unreliable, and 

lacked effective oversight.  A similar observation to Ryan (2012) was reiterated more 

recently by O’Hanlon (2018) who stated that an abundance of military research focused 

on acquisition and research and development costs while minimal research specifically 

focused on O&S costs.  

This is not to say that there were no studies on O&S results but rather a lack of 

focus.  There are some earlier studies within the DoD which compare the operating costs 

caused by aging weapon systems.  For example, the CBO studied the effects of aging on 

O&S as early as 2001 and Dixon (2005) also researched the rising costs of aging aircraft.  

In addition, studies have been performed to exam how to best use O&S dollars in order to 

increase aircraft availability (Fry, 2010).  However, examined as a whole, the DoD did 

not routinely study O&S costs prior to 2012. 

 Attention to O&S costs increased with the passage of the Weapon Systems 

Acquisition Reform Act (WSARA) of 2009.  WSARA dictates that within a year from 

enactment, the Comptroller General is to submit a report on growth in O&S for major 

weapon systems (Public Law, 2009).  Since then, WSARA has served as a catalyst for 

increased focus on O&S costs in the DoD (Ryan, 2012).  Worth noting is that despite this 

increased focus, there may be no direct measureable linkage between WSARA policies 

and improvements to the acquisition process (Banford, et al., 2014). 

 In O&S research many of the studies compare O&S estimates to actuals. This was 

for good reason since, as of 2012, the DoD had no concept for how O&S cost estimates 

compared to actual costs (Ryan et al., 2012).  A possible reason for this would be that 

cost reports changed and varied among programs based on metric or time frame (GAO, 
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2012). That is to say that the earlier studies compared estimates to actual costs instead of 

focusing on trends within the actual costs themselves, which is the manner of this 

research. 

 There has been research related to O&S actual costs and into the many factors that 

may drive O&S costs.  Some cost drivers are more apparent than others, for example 

O&S costs are theorized to be unique to a particular weapon system; for example, the 

cost profile and expenditures of a fighter aircraft may be different than that of a cargo 

aircraft (O’Hanlon et al., 2018). Other research shows that as the US Air Force responds 

to more threats and increases its Operations Tempo (OPTEMPO), this will lead to the use 

of more fuel and cause additional wear and tear on the equipment.  Both of these factors 

lead to increases in O&S costs (GAO, 2018).  Additionally, as alluded to in Section 2.2, 

increasing the overall budget will lead to increases in O&S costs. The CBO normalized 

for increasing budgets in their 2018 study and estimated that the real cost growth 

associated with aircraft aging generally ranged from 1.5 to 4.1 percent from 1999-2016 

(CBO, 2018).  Additionally, research has shown that changes to the overall flying hour 

budget led to changes in O&S expenditures, with the exception of Petroleum, Oil, and 

Lubricants (POL), which were found to be directly proportional to flying hours, O&S 

costs have been shown on average to increase by about six percent as flying hours 

increase ten percent (Unger, 2009). 

 Other O&S research has had more surprising results; contrary to expectations one 

finding was that cost O&S cost estimate accuracy should improve as programs mature 

but in fact, they improve little over the time of a program (Ryan, et al., 2012).  

Nevertheless, Hewitson et al. (2018) conducted research on the stabilization properties in 
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O&S costs as a measure of when the variability of costs from year to year and he found 

that stability results vary by category but generally it is found to occur 80% of the time 

around five years after the Initial Operating Capability (IOC) phase (Hewitson, 2018). 

There have also been studies on O&S cost differences across platforms; for 

example, in one study a comparison of the O&S costs of 21 platforms with their 

antecedent showed only seven of them to be cheaper to operate (Harrison, 2013). Since 

then, studies have also looked at the timing of O&S costs and looked into the bathtub 

effect where costs are initially high when the system is new, shrink as expertise is 

acquired and grow again as systems age.  Because of this effect, it is also important in 

cross system comparisons that costs be compared ideally at maturity, meaning when the 

fleet reaches the maximum size and steady-state in order to have a more homogeneous 

comparison (Boito, et al., 2015). 

A study into newer planes showed a decreasing O&S cost in the maturation phase 

(CBO, 2018), which is important to take into consideration in cross system comparisons.  

The importance of good research into O&S cannot be understated as today’s acquisitions 

commit the government to large future obligations in O&S costs (Ferry, 2013).  The 

impact of the magnitude of O&S cost decisions are at their greatest during early design 

decisions (DoD, 2016). Sustainment strategy decisions originate early in the program 

lifecycle with significant long-term operational and cost implications (Ritschel and 

Ritschel, 2016).  

2.5 How are O&S Costs are Recorded? 

Since WSARA created the requirement for O&S estimates and cost reporting, the 

DoD has mandated that each military service maintain a historical database of actual 
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O&S costs for their systems. This led to DoD Directive (DoDD) 5000.4-M, Cost 

Analysis Guidance and Procedures, which tasked each Component to provide a single 

authoritative, database for financial and logistics data organized by system or 

infrastructure. Since then, each military department has developed and maintains their 

own historical O&S cost data collection system. These data systems were developed in 

response to an initiative known as Visibility and Management of Operating and Support 

Costs (VAMOSC). CAPE provides broad policy guidance pertaining to the military 

department VAMOSC programs, but leaves the details concerning implementation to 

each department. CAPE took this approach so that each department could make 

maximum use of its existing unique management information systems (e.g., maintenance 

data collection or logistics financial management systems) (OSD CAPE, 2014).  Though 

the primary focus of VAMOSC is for future planning and the development of O&S 

estimates, the nature of the database allows for actual O&S costs to be sorted by weapon 

system and by year (Ryan, et al. 2012).  

In the early stages of the VAMOSC data system, a GAO review showed that the 

Air Force’s and Navy’s systems do not collect actual cost data for several cost elements 

(2010).  VAMOSC does not collect actual cost data on some recommended cost elements 

such as support equipment replacement or modifications. These findings were validated 

by Boito, et al. when they studied aircraft O&S costs and found challenges with the 

VAMSOC system specifically, they noted that they did not always capture cost metrics 

for O&S activities and that metrics should “be formally established and consistently 

tracked within both organically performed and contracted activities, and periodically 
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reviewed by Air Force leadership in conjunction with corresponding mission 

performance measures (2016, pg 5).”  

Despite early challenges, there is evidence that some improvements have been 

made.  In recent study the GAO determined the information to be sufficiently reliable for 

the purposes of presenting sustainment metrics, such as aircraft availability and O&S 

costs, although that study was more concerned with reliability metrics than strictly with 

costs (2018).  This runs contrary to a CBO study that expressed a need for more 

comprehensive and complete data—specifically, cost and age data for individual aircraft 

over a longer period so that estimates could be more precise. This level of detail would 

have allowed the CBO to estimate the effects of aging over the life cycle of aircraft under 

different budgetary regimes. Those data, however, were not readily available (CBO, 

2018). 

The Air Force system designed to be compliant with the requirements of 

VAMOSC is the AFTOC system, or the Air Force Total Ownership Cost system. It 

provides O&S cost information on all Air Force aircraft, space systems, and missiles. The 

O&S cost information collected includes unit-level manpower, fuel, depot maintenance 

overhaul costs, depot-level reparable costs, and other costs of major US Air Force aircraft 

and engines. AFTOC also maintains data on aircraft quantities and flying hours, numbers 

of personnel, and other non-cost information (OSD CAPE, 2014). The system provides 

more than just costs, and, in compliance with the CAPE guide, also provides users with 

system-level data, as well as lower levels of data (major subsystems and components). 

VAMSOC data systems, such as AFTOC, should provide O&S-related non-cost data, 

such as system quantities, manning levels, and operating tempos. [Note: Further 
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information about data fields and AFTOC reporting is available in AFTOC manuals.] 

AFTOC data presentation is generally well suited for analysis in statistical programs or 

common software programs within the force. 

2.6 Contractor Logistics Support 

Contractor Logistics Support (CLS) is another complication to the analysis of 

O&S costs.  CLS is when the contractor performs the maintenance on a weapons system 

instead of the DoD organically performing maintenance.  The popularity of CLS has been 

rising in recent years and may be beneficial.  Ritschel and Ritschel (2016) found that CLS 

average performance outperforms organic by over three percent for the standard ratio, 

meaning that the availability rate of aircraft is higher.  However, CLS comes as a trade-

off since it was found to be more expensive than organic aircraft maintenance. 

Specifically, they found that the asset specificity phenomenon (propriety advantages) 

outweighs the benefits of competition such that the contractor’s intimate knowledge of 

complex platforms made up for the monopoly of servicing the aircraft. 

The reason CLS can be a challenge for analysis is because VAMOSC systems 

may collect CLS costs in aggregate but without providing any details by cost elements 

such as depot maintenance (OSD CAPE, 2014).  Within reported CLS costs it is difficult 

to determine what preciously is being paid for other than the overall category of 

maintenance.  The guidebook states that CLS and Depot cost categories are difficult to 

categorize since they are likely to include costs for manpower and parts as well as other 

things such as overhead and facilities (DoD, 2016). 

2.7 Reasons for Engine Upgrades 
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Saving money is a job of Program Managers (PM) who must manage O&S costs 

to realize more affordable programs, and DoD leadership expects the PM to report 

progress toward meeting affordability requirements at program reviews. Because of this, 

it is important that O&S data be collected so that the PM or Component can evaluate the 

success of the O&S cost management efforts (DoD, 2016). 

Aging aircraft is itself a driver of cost increases. The Heritage Foundation 

reported that, as of 2019, the average age of our aircraft is over 29 years, yet the Air 

Force has no plans to raise acquisition rates for the F-35 or KC-46 to buy down that 

average (Heritage Foundation, 2019).  Another alternative to replacing a fleet is to 

replace an engine, a major driver of O&S costs.  This is the tactic employed by the B-52 

program office to extend the life of that fleet while capturing reductions in fuel costs (Air 

Force, 2017). 

The Air Force has commissioned studies to investigate the savings potential from 

installing more fuel efficient or more reliable engines.  One such example was a 2016 

RAND study discussing potential C-130 improvements such as engine-out taxiing, 

optimum flying levels and speeds, weight reductions, load-balancing improvements, 

reducing auxiliary power units, and installing microvanes. RAND suggested that full 

implementation of these options would save about 16 million gallons of fuel annually 

(Boito, et al., 2016). This can be compared to the savings of a new engine as discussed in 

Chapters IV and V. These types of modifications are becoming more and more important 

as AF systems age. 

Some other reasons for engine upgrades are unrelated, or tangentially related, to 

costs savings, they may entail adding capabilities or improving readiness.  Either of these 
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types of modifications could increase or decrease costs and are trade-offs for the PM and 

higher leadership to decide, but their decision depends on quality analysis of what those 

trade-offs will cost.   

2.8 Chapter Conclusion 

O&S costs are expensive and increasing.  Many legacy systems are experiencing 

growth in O&S costs that will require mitigation. In the past, the DoD neglected proper 

analysis of the behavior of O&S costs, which has led to a recent increase in O&S studies.  

The reason for these studies is highlighted in Appendix C of the OSD CAPE Cost 

Estimating guide which provides an example of how O&S cost estimates can be an 

important input to a decision that is often faced by DoD, namely to replace a fleet now, or 

to upgrade the current fleet and defer replacement until later. One alternative, is to retire 

the legacy systems and replace with new; another alternative is to upgrade the legacy 

systems to extend the system service life.  For the first alternative, it is assumed that the 

procurement cost will be lower for a system upgrade than for a new replacement system. 

This assumption relies on a second level assumption that the new replacement system 

will have lower O&S costs due to improved reliability, performance or maintainability.  

In order to properly perform such an analysis, the quantifiable effects of a proposed 

modifications would need to be estimated and the answers to the research questions 

posed in Chapter I could direct such an analysis. 
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III: Data Collection and Methodology 

3.1 Chapter Overview 

This chapter documents the method of data collection and the required analysis to 

address the research questions from Chapter I.  We first discuss the process of data 

collection, screening, and standardization as well as the limitations and assumptions 

related to Air Force data collection methods.  We then discuss the methods used to 

compute and to compare cost and performance metrics.  Both descriptive and inferential 

analysis are used, with an emphasis on the descriptive analysis due to the small sample 

size.  Consequently, the proposed methods are more exploratory than confirmatory as 

discussed near the end of the chapter. 

3.2 Data Limitations 

The optimal approach to compare engine performance or cost would be by aircraft 

tail number in order to compare and to contrast specific aircraft before and after a new 

engine installation, which would minimize any other external factors.  Unfortunately, this 

ideal approach is impractical Air Force data collection systems.  Fuel consumption and 

flying hours are available by tail number based on the Fuel Automated System (FAS) and 

is available within AFTOC, but not engines.  Neither program offices nor AF data 

systems track modifications or engine upgrades by tail number.  Aside from 

programmatic information, such as fuel consumption and flying hours, sustainment costs 

are not available by engine at all.  Air Force Lines of Accounting do not isolate a 

particular tail number or engine.  The lowest level of direct data allocation is at the 

aircraft, or Mission Designation Series (MDS), level as captured by a combination of the 
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data elements, namely the Program Element Code (PEC), Operating Agency Code 

(OAC) or Resource Center/Cost Center (RC/CC). 

AFTOC compiles data into various “data cubes,” sometimes called “universes,” 

which encapsulates a category of costs.  In this research, the three principle data cubes 

are the CAPE 14 data cube, which contains the aggregate costs from financial systems, 

the Engine Programmatic data cube which reports fuel usage, flying hours etc. and the 

CAPE14 Engine Data Cube, hereafter just Engine data cube which attempts to match 

costs reported in the CAPE14 data cube to aircraft engines using a variety of business 

rules. There is no Line of Accounting element tied to engines, so the reported Engine data 

is approximated by using ratios from the REMIS (Resources Management Information 

Systems) flying hours and comparing them to CEMS (Consolidated Engine Management 

System) Engine Actuarial data (AFTOC fact sheet, 2017).  The engine cost information 

used in this research is are therefore approximations. 

Because of these limitations in how the Air Force collects source data, it is not 

possible to isolate the effects of new and old engines unless they belong to a separate 

MDS.  One example where this is the case, as highlighted in Chapter I, is with the C-5.  

The C-5A, B and C all use the TF39-GE-1 engine exclusively.  The new F138-GE-100 

engine was given its own MDS, the C-5M.  Only because of the creation of a new MDS, 

which is distinguished by the new engine, is it possible to compare the costs of the old 

engine with the new engine.  In the event that a new engine is not isolated to its own 

MDS, costs are estimated on a proportionate basis as reported by AFTOC Engine data 

cube.  This second approach introduces variation into the computation since it relies on 
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the assumption that the percentage of aircraft with newer engines equates to the same 

percentage of the flying hours for any particular MDS. 

3.3 Engine Inventory Analysis 

A first step for comparative analysis is to isolate aircraft platforms with more than 

one engine, in other words to generate a listing of MDS categories with more than one 

engine type/model/series (TMS).  For the purpose of this analysis, a MDS category is a 

shared airframe within a larger parent MDS, for example, the various aircraft sharing the 

C-130 airframe (i.e. AC-130, EC-130, etc.) would count as one MDS category under a 

parent MDS of C-130. AFTOC did not have an available report field to extract an 

inventory number of engines, but this information is available from CEMS, which is 

incorporated into AFTOC.  Therefore, the AFTOC helpdesk was able to compile a 

database of engine inventory by TMS, base, aircraft platform, and serial number. The 

available information covered 1996 to 2019. This is all the information required to 

determine which engines aligned to which MDS and if the inventory was increasing or 

decreasing over the timeframe. 

The resulting database contains inventory data by quarter and has over a million 

rows of data.  The initial database had 166 different MDSs and 65 distinct engines as 

designated by TMS. Approximately 250 rows had no associated aircraft and were 

deleted.  Much of the remaining database was not usable for the purposes of this analysis 

and therefore needed to be reduced to only the relevant aircraft as we discuss next.  Four 

of the MDSs were Air Cruise Missiles engines that are outside the scope of analysis and 

were excluded. 
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Helicopters have a lower O&S profile compared to fixed wing aircraft.  Using 

AFTOC total O&S numbers, helicopter O&S costs on average 18% of what fixed wing 

aircraft cost. Helicopter engines also operate in a fundamentally different manner than 

turbojet, turbofan, and turboprop engines as they generate lift through shaft power rather 

than thrust (MacIsaac & Langton, 2011).  Using the metric of gallons per flying hour (see 

Section 3.4 for the discussion of metrics used), Figure 3 shows that in flying hour terms, 

helicopters operate a full order of magnitude more efficiently than the fixed wing 

categories (the MC-12 was removed because of AFSOC reporting abnormality not 

relevant to the rest of this thesis).   

Figure 3: Gallons per Flying Hour by Aircraft Category 

Helicopters consist of 15 different MDSs and nine different Engines.  Only two 

engine systems experienced an increasing inventory over the time period, the CV-22B 

and the TH-1H.  The CV-22B entered into the service in 2006 and has no basis for 

comparison with other MDSs in AFTOC and this eliminates it from analysis.  The other 

new engine is the T53-L-703 associated with the UH-1H and the TH-1H, which is 

comparable to the T400-CP-400 on the UH-1H. The analysis between these models is 
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complicated by the fact that the TH-1H models are used in training where the usage 

profile could be expected to deviate from operational use. For these reasons, helicopters 

are analyzed separately from fixed wing aircraft in this analysis.  Within this research, 

aircraft refers to fixed wing aircraft and helicopters will be referred to as helicopters. 

Drones also have a distinct O&S profile from manned aircraft as they have no 

pilots and operate on a distinct system software.  Drones include 11 MDSs, which share 

ten engines.  They were examined separately from the rest of the database, however 

within the drone data there are no reengine modifications available for analysis and 

therefore drones were excluded from any further analysis. 

The data was then examined for a one-to-one relationship with a weapon system 

and an engine.  If a particular MDS category exclusively matched with only TMS, then 

those data points were excluded for not having two engines to compare performance.  

This removal represented almost a third of the total database representing 39 MDS 

variants and 18 associated TMSs.  The list of excluded engines and MDS are in Table 2.   

Table 2: Aircraft Excluded from Analysis for Lack of Comparison 

 

Despite initially passing the criteria of having more than one TMS engine within a 

MDS category, other aircraft (AC) were excluded from analysis.  The NC-130 variants 
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were removed since they were a prototype, were too small in inventory with a maximum 

of two aircraft, and were modified in such ways that the fuel efficiency would not be 

comparable with the other 130 variants.  Additionally, the EC-18 and E-8 category of 

aircraft were excluded from analysis despite the fact that they shared the TF33-PW-102 

engines with the C-135 models. The EC-18 aircraft has a sufficiently modified mission as 

well as an airframe design that would have separate effects on fuel efficiency; the nose of 

the aircraft has a different aerodynamic shape and holds distinct equipment.  The KC-

135A and the C-137B and C were excluded since there were no active aircraft of these 

types during the period of analysis. 

Upon first glance, the B-52H appears to have two engines, the TF33-103 and the 

TF33-PW-3.  The later engine is not mentioned within the Engine Handbook.  Upon 

request, AFLCMC researched the engines for analysis and revealed identical 

specifications between the two engines.  This led to a request to the System Program 

Office (SPO) which confirmed that the two engines are the same (C. Honious, personal 

communication, Dec 10, 2019).  With this information, the B-52H was removed from 

analysis.  

 Problems in the source data led to the exclusion of the F-4 categories of Aircraft.  

The Fuel Automated System (FAS) underreported the F-4 fuel consumption and this is a 

known deficiency documented by AFTOC in a 30 August 2019 factsheet. This error leads 

to an unreliable measure of fuel consumption, even going into negative amount of fuel 

per flying hour in 2004.  Because of this deficiency in the source data, the F-4 and its 

variants were altogether eliminated from further analysis. 
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After all these exclusions, only five MDS categories remain, the various C-130s, 

C-135s, F-15s, F-16s, and the C-5s.  One of the C-130 engines, TF33-PW-105, is a very 

low inventory engine, reaching six engines at its peak, which means it would correspond 

to at most one aircraft.  Because of this small effect size, it was excluded.  The remaining 

categories include 17 engines and 80 MDSs.  The MDS breakout includes two fighter 

aircraft, the F-15 and F-16, and three categories of cargo aircraft/refuelers, the various C-

5, C-130 and C-135 variants such as the KC-135.  Of the 17 engines, only three are new 

engines that the Air Force introduced into the Air Force inventory since 1996, the F138-

GE-100 on the C-5M (in FY2010), the AE2100 on various C-130”J” models (in 

FY2016), and the F108-GE-201 on various C-135 models (in FY2001).  Seven of the 17 

Engines fully phased out or retired.  

Summarizing this section, Table 3 is the inclusion/exclusion table that shows the 

criteria used to find the MDS to engine pairings used in the subsequent AFTOC data 

pulls described in Section 3.4.   Appendix A contains a table listing the aircraft and 

engines considered in the analysis, including the last 42 exclusions. The Total Inventory 

column in Appendix A is not a count of the engines but is an inventory over time. That is, 

if a particular engine serial number was in use from 1996-2018, then it would have been 

counted each year and would account for 23 in the Total Inventory column.  

 For helicopters, the only pairing that could be found among helicopters with four 

or more PAA with more than one engine is the T53-L-703 and T53-L-13 on the  UH-1H 

and the TH-1H, which is comparable UH-1N which operates on the older, but still in 

service, T400-CP-400 TMS.  
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Table 3: Inclusion/Exclusion Table from Engine Analysis 

 

Table 4 contains a listing of the specifications of the engines used in the analysis.  

Engine specifications are available from the 2014 Engine Handbook as prepared by the 

Director of Propulsion from the AFLCMC.  In some cases, such as the max thrust for the 

T56-A-7B, the data was not available in the Engine Handbook.  Table 5 is a similar 

listing for the Helicopter engines, where the T53-L-13 is not in the Engine Handbook. 
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Table 4: Aircraft Engine Specifications from Engine Handbook 

 

Table 5: Helicopter Engine Specifications from Engine Handbook 

 

3.4 AFTOC Data pulls 

The query for engine costs required three pulls from separate databases within 

AFTOC.  In the first, programmatic information was pulled in order to find the PAA of 

the MDSs listed in Appendix B.  The purpose of this was to investigate for aircraft with a 

PAA of less than five in order to exclude them, as already seen in Table 3.  In other 

words, if the Air Force did not operate at least five of a particular MDS in any of the 

years under consideration, then that MDS platform was excluded. Aircraft with a small 

PAA may have an overly influential effect in the database as errors will have a larger 

effect and any fixed effects within the figures will have a greater impact.  Using this 
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exclusion criteria, the analysis was able to eliminate 24 of the C-135 variants reducing 

the analysis to five, while keeping approximately 95% of the C-135 aircraft (mostly KC-

135s) in consideration. From here the analysis centers on the 38 remaining MDSs as 

shown in Table 6.  

Table 6: Aircraft MDSs with 5 or more PAA 

 

The second AFTOC data pull was from the Engine Programmatic data cube.  This 

data cube contains the fuel costs, flying hours from REMIS, and fuel usage from the Fuel 

Automated System (FAS) and pulled only for those MDSs in Table 3. There are no costs 

in this data cube; so it will be used to compute and to compare performance metrics only 

as discussed in Chapter IV, sections two through seven.  In the analysis in Chapter IV, 

outliers from this metric can be removed.  While it is possible an aircraft has a fuel leak 

or some other reason for wild changes in performance, large outliers are not expected and 

are likely traced to errors in the source data. 

AFTOC created the Engine data cube in response to field requests to track O&S 

costs by engines.  Those costs which are directly attributable to an engine should appear 
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here.  However, it is important to realize that not all engine costs can be tied directly to an 

engine and are therefore not captured within this cube.  Of significant note is that CLS 

costs are not reported in the engine data cube, which will serve to severely underestimate 

the costs and therefore any savings that are analyzed in Chapter IV.   

3.5 How Metrics are Considered  

 It would be unfair to compare fuel costs without normalizing for usage.  If 

operations tempo increases over time, then costs will vary in accordance with that usage 

instead of the engine.  In order to isolate the effects of the engine costs the most efficient 

metric available within the database is the number of gallons used divided by the number 

of flying hours.  Using the metric of Gallons / Flying Hour (fuel consumption) should 

have the effect of creating a homogeneous comparison as long as the comparison is 

within similar aircraft in the same MDS category. If all else could be held equal, changes 

in Gallons / Flying Hour would be reasonably well isolated to the new engine. 

Unfortunately, the comparison cannot be perfect since there will be errors in the 

data and measuring inefficiencies.  Even if these did not exist, all else cannot be held 

constant since fuel efficiency varies by altitude, atmosphere conditions, and cruise speed 

(Rolls Royce, 2005 pg 75), none of which are captured within AFTOC. Aircraft with few 

flying hours may have a distorted Gallon / Flying Hour metric caused by the fuel used in 

take-off and landings and taxiing, especially since flying hours are in the denominator of 

the metric. Since this analysis attempts to quantify the effects of average usage, aircraft 

with fewer than 20 flying hours by fiscal year were removed.  This removal represented 

1063 flying hours out of 18 million. In addition, four data points also showed zero or no 

fuel usage and were removed. 
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Maintenance costs are normalized to base year 2019 in order to remove the effects 

of inflation. While maintenance costs do vary by flying hour in the same way that 

mileage affects automotive maintenance, the number of aircraft is even more important 

for cost normalization. In accordance with a RAND 2015 study, PAI is inherently more 

stable than flying hours and is the preferred metric by subject matter experts.  This thesis 

uses PAI to normalize maintenance costs within MD categories (Boito, et al. 2015).  In 

summary, the metrics used are Gallon / Flying Hour for performance metrics, and for 

maintenance costs it will be BY2019 Maintenance costs / PAI excluding CLS. 

3.6 Statistical Method Employed 

 In all cases the data is first visually observed in order to remove outliers where 

appropriate and to gauge the sense of the differences in the engines.  Graphs and 

statistical tests are generated using the statistical software program JMP 13 Pro. The most 

common test for comparing differences in means is a student t-test, however this method 

is inappropriate when the underlying distributions are non-normal.  Therefore, we follow 

visual examinations of the data with the Wilcoxon Rank Sum test, also called the Rank 

Sums test. This non-parametric method does not require normality and provides more 

robust comparisons in addition to being less susceptible to outliers. The chosen α of 0.10 

as stated in Chapter I is applied to all Rank Sum tests. 

3.7 Chapter Conclusion 

In order to quantify costs, we must first determine comparable MDSs that share a 

similar aircraft frame but that operate on two or more engines.  Only five categories of 

MDSs met this requirement, with only three of them having new engines since 1999, all 

three on cargo aircraft.  Seven engines retired over this time frame, which introduces the 
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two fighter aircraft into the analysis. Lastly, among helicopters, only one engine is 

present creating another pairing. The data analysis is limited to these engines. 

This chapter started with a discussion of the limitations in how the AFTOC 

system collects O&S data.  The lowest level of data available is at the MDS level, which 

does not allow for pinpoint accuracy on the effects of modifications or engines; that data 

is simply not available.  The engine data cube does approximate engine costs based on 

time on wing ratios, but it excludes some major expenses, most significantly CLS. 

In contrast to those limitations on cost, performance metrics are discernable at the 

engine level since data is collected this way.  Here the performance in fuel efficiency can 

be calculated and gallons saved per flying hours along with cost savings can be calculated 

from that.  In Chapter IV we present the findings from the data cubes created for analysis 

in this chapter. 
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IV: Analysis and Results 

4.1 Chapter Overview 

This chapter discusses the results of the analysis.  Except where noted, descriptive 

patterns for engines are grouped into three broad color-coded categories: red for new 

engines, green for retired engines, and blue for engines that are active over the whole 

study period.  For the performance metrics, the data is first examined for outliers, which 

will be removed.  Then, by MD category we visually show the graphs of the data for fuel 

performance metrics (Gallon / Flying Hour) to observe the effects of new engines. 

Following that is a discussion of the results of the Wilcoxon Rank Sum statistical tests.  

After examining fuel performance metrics, we investigate the MD categories by 

maintenance costs associated with their engines and limitations.  The Wilcoxon Rank 

Sum test is used again to statistically test and quantity the differences between the engine 

categories. 

4.2 Fuel Performance Characteristics of C-130 Models 

In Figure 4 we can see the outliers removed from the C-130s.  Only the figures 

showing MD category are shown within this analysis.  Outliers for each MD category are 

further examined within the specific TMS and MDS to ensure that they are outliers.  

Outliers are determined by visual examination on the relative effect they have on the 

trend line within their category. While engine fuel performance does vary, large outliers 

are more likely the result of faulty data collection, such as an underreporting of flying 

hours, instead of actual fuel performance of the engine and as such are excluded.  
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Figure 4: C-130 Outliers Removed 

Figure 5 highlights the LC-130 models whose performance is atypical.  The LC-

130H operates in the Antarctic and has skis instead of landing gear, which explains why 

its fuel efficiency metrics appear to be different.  In order to capture the mean 

performance of the T56-A-15 engine, which is on multiple C-130 variants, the LC-130 

was removed from the analysis.  
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Figure 5: Atypical Fuel Performance of the LC-130 

Figure 6 shows the final chart of C-130 performance with the outliers from Figure 

4, and the LC-130 from Figure 5 removed.  The new engines, (belonging to the –J 

models) are in red and appear to have a lower gallon per flying hour than the other C-130 

models.  The Wilcoxon Rank Sum Test results are shown in Table 7. 
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Figure 6: C-130 Models Fuel Performance Metrics 

Table 7: Wilcoxon Rank Sum Test Results of C-130 Fuel Performance

 

Each test is statistically significant suggesting that there is a difference between 

each of the categories of engines at the α of 0.10.  The score mean difference between the 

retired and the new is 12.9, which means that the retired engine’s performance is higher 

on average.  Since it has a higher Gallon / Flying Hour ratio the new engine is more fuel 
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efficient.  The Hodges-Lehmann column is the estimated median performance difference. 

In this case the new engine is performing more fuel effiecnetly on average by 42.4 

gallons per flying hour, with a 90% confidence that we captured the real performance 

improvement between 28.8 to 60.6 fewer gallons per flying hour.  The interpretation for 

the other two lines is the same with the exception that the sign is negative.  Focusing on 

the last row, the new engine scored a negative 108 when compared to an engine 

encompassing the full period. This lower Wilcoxon Rank Sum score reflects better fuel 

performance measured by fewer gallons used per flying hour.  Using the Hodges-

Lehmann value in the last row of Table 7, each flying hour on the full period engine 

(T56-A-15) is burning an additional 115 gallons of fuel when compared to the new 

engine (AE-2100) in median fuel performance. 

4.3 Fuel Performance Characteristics of C-135 Models 

 Three data points on the C-135s were deleted as shown in Figure 7.  There are a 

cluster of data points below one of the removed outliers belonging to the new engine.  

Since there are five data points in the same general region they were not be removed 

using the justification of an error in data collection/reporting and further investigation is 

warranted.  The cluster belongs to the RC-135V/W models and when overlaid by using 

command (and not engine status) as can be seen in Figure 8, it is observed that Air Force 

Material Command (AFMC) appears to have a distinctive fuel performance profile 

compared to Air Combat Command (ACC).  This may be explained by how AFMC is 

using the engines in a testing environment.  In order to isolate the effect of the fuel 

performance in operational use of the engines the data points in the AFMC cluster were 
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also excluded for Figure 9.  A further discussion of fuel usage by Command is in Chapter 

V and Appendix C. 

 

Figure 7: C-135 Outliers Removed  

Figure 9 shows the performance of the various C-135 models. Of note, there are 

three engines comprising the retired category.  The performance of all three are still 

within a relatively small range with the two outliers removed.  The fuel performance is 

not clearly lower than full period engine from the figure. 
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Figure 8: C-135 Fuel Performance by Command 

 

Figure 9: C-135 Models Fuel Performance Metrics 
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Since the missions of C-135 models are distinct (refueling versus reconnaissance) 

it makes more sense to compare them by sub-MDS categories as seen in Figures 10 and 

11.  Figure 10 is for the KC-135E (using the retired engine) compared with the KC-

135R/T.  Figure 11 is of the RC-135V/W, in Figure 11 the overlay is by engine instead of 

since they transition from three engines to one. Once broken down in sub categories the 

fuel efficiency performance is clearly distinguishable as compared to Figure 9. 

 

Figure 10: KC-135E and KC-135R/T Fuel Performance Metrics 
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Figure 11: RC-135V/W Fuel Performance Metrics 

We can see in the fuel performance metrics that for each pair, the retired engines 

appear to be acheving a poorer Gallon / Flying Hour than the full period or new engine 

since the green line is on top of the red line.  Table 8 shows the results of statistical tests 

by MDS pairs and confirms the visual with the statistically significant conlcusion that the 

Air Force is using a more fuel efficient engine.  The interpretation follows the same as 

the C-130s discussed in Section 4.2.  Here, the full period engine on the KC-135s are, in 

estimated median performance, using 110.9 to 217.6 fewer gallons per flying hour than 

the retured engine and the results are statisitically significant. 
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Table 8: Wilcoxon Rank Sum Test Results of C-135 Fuel Performance 

 

4.4 Fuel Performance Characteristics of C-5 Models 

 The C-5 is the clearest comparison since there are only three MDSs and one MDS 

(C-5M) corresponding to only one engine.  Figure 12 shows the outliers removed from 

analysis.  The outliers are especially large and are likely related to errors in data 

collection at the source. 

 

Figure 12: C-5 Model Outliers Removed 
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  Figure 13 shows the performance of the C-5 models.  It can be observed that the 

new C-5 engine is performing better than the retired engine.  There is an interesting dip in 

FY 2002, which shows better performance in that year.  The reason for this is unclear, but 

an observation of the other performance figures shows a similar pattern.  Possible 

explanations could be over reporting in flying hours or underreporting in fuel.  This could 

be further researched.  

 

Figure 13: C-5 Model Fuel Performance Metrics 

 Wilcoxon Rank Sum statistics can be seen in Table 9.  When the retired engine is 

compared with the new, the positive score mean difference implies that the retired engine 

consumed more fuel than the new one.  The result is statistically significant with the 

estimated fuel savings being between 116.7 to 216.7 gallons per flying hour. 
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Table 9: Wilcoxon Rank Sum Test Results of C-5 Performance 

 

4.5 Fuel Performance Characteristics of F-15 Models  

Three outliers identifed in Figure 14 were removed from analysis.  In the analysis 

of the F-15s, and later in the F-16s, there are no new engines, just retired engines. 

 

Figure 14: F-15 Model Outliers Removed 

 The performance metrics for the F-15 models can be seen in Figure 15.  In a 

reversal from the observations of the Cargo/Tanker aircraft, here the green line is below 
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the blue, suggesting that the retired engine was more fuel efficient than the engines being 

used currently. 

 

Figure 15: F-15 Model Fuel Performance Metrics 

The F-15 category also contains the F-15E, which has neither a new engine nor a 

retired engine.  It does have two engines for the whole period from 1999-2019, which 

allows for a comparasion between them to be made and for completeness it is included 

the analysis.  Figure 16 shows the F-15E on the right along side the F-15C and D in order 

to show the different fuel efficience of the F-15E.  The A and B models were left off the 

chart for presentation but the performance of those engines are comparable with the C 

and D. In Figure 16 it appears that, in terms of fuel efficiency, the F100-PW-220 

outperforms the F100-PW-229. 
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Figure 16: F-15E Fuel Performance Metrics Compared to F-15C/D 

 Table 10 confirms the visual patterns that the F100-PW-229 performs less fuel 

efficiently.  It has an estimated difference of 53 more gallons per flying hour. 

Table 10: Wilcoxon Rank Sum Test Results of F-15E Performance

 

The results of the Wilcoxon Rank Sum test for the remaining F-15 models are 

shown in Table 11 and show that the retired engines may have a lower score mean, 

meaning better fuel efficiency but the results are not statistically signficant with a P value 

of .46 making it unable to reach a conclusion with a 90% confidence.   



46 

Table 11: Wilcoxon Rank Sum Test Reults of F-15A-D Performance

 

4.6 Fuel Performance Characteristics of F-16 Models 

   

 

Figure 17: F-16 Model Outliers Removed 

Five outliers were removed from the F-16 performance metrics as can be seen in 

Figure 17.  Within the F-16s, only the A/B models have a retired engine, while the C/D 

models share four engines that all operate over the entire time period, but can still be 
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tested in the same way that the F-15E is tested.  Figures 18 and 19 show the relevant 

model pairings side by side. In the A/B models the retired engine appears to be more fuel 

efficient, but no patterns are evident in the C/D pairing. 

 

Figure 18: F-16A/B Fuel Performance Metrics 
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Figure 19: F-16C/D Fuel Performance Metrics 

The Wilcoxon Rank Sum tests for the F-16s are shown in Table 12. The F-16A/B 

model engines are in the first row, with a black line separating the F-16C/D models. 

While some of the test results on the C/D models are significant, the magnitude is not that 

large with the best performing engine consumes 33 fewer gallons per flying hour.   

Table 12: Wilcoxon Rank Sum Test Reults of F-16A-D Performnace
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4.7 Fuel Performance Metrics for Helicopters 

 Within the helicopter performance, the UH-1H from 2010-2014 was excluded 

from analysis due to having only 2 PAA, low levels of flying hours, and minimal levels 

of maintenance.  Figure 20 shows the performance with a clear difference of a lower 

gallon per flying hour for the new aircraft showing it is significant.  The Wilcoxon Rank 

Sum test is significant and confirms that the new engine performs better as can be seen in 

Table 13. However, these results are complicated as new engines are predominantly on 

trainers. 

 

Figure 20: Fuel Performance Metrics for Helicopters 
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Table 13: Wilcoxon Rank Sum Test Results for Helicopter Fuel Performance 

 

4.8 Summary of Fuel Performance Metrics 

 Within the cargo aircraft, new engines appear to be more fuel efficient than old 

engines.  With each engine comparison of the cargo aircraft, the tests were statistically 

significant and represented better efficiency of the aircraft.  With a 90% confidence 

interval of the estimated location of performance, the gallons of fuel per flying hour 

saved ranges from a low of 28 (C-130s), to a high of 280 (RC-135s).  For the fighter 

aircraft not all results were statistically significant.  For those that were, the range of the 

estimated confidence intervals from 3 to 90 gallons per flying hour.  No new engines 

were in this later group though. 

 Table 14 shows the descriptive statistics (mean, median, range, etc.) of the MD 

category and the engine, as well as the total flying hours since 1999.  Using Table 14 the 

average of the T56A15 engine on the C-130 category is 821, which is compared to the 

average of the AE2100 new engine of 703.  This represents a point estimate of 107 fewer 

gallons per flying hour.  Using that average and multiplying by the 352K flying hours 

represents 41.6M gallons of fuel saved. Similar calculation for the C-5 results in 15.7M 

gallons saved.  For the new C-135 engine, the comparison is made against the average of 

the three engines it replaced (the TF33-PW models).   The three new engines represent 
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$279M in savings using 2019 fuel prices. Table 15 is a similar to Table 14 but for 

helicopters. 

Table 14: Descriptive Statistics of Aircraft Fuel Performance Metrics 

 

Table 15: Descriptive Statistics of Helicopter Fuel Performance Metrics 

 

4.9 Maintenance Costs Limitations 

 Maintenance costs are significantly more difficult to normalize than fuel 

performance metrics.  Maintenance costs are more variable with higher coefficients of 

variation and larger outliers.  This makes it difficult to detect any outliers that should be 
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removed and consequently none were.  The AFTOC engine cost cube does not include 

CLS costs, which serve to underestimate total costs, an acknowledged limitation in the 

data.  This is complicated by the fact that CLS costs generally are growing as a 

percentage of maintenance costs (Ritschel and Ritschel, 2016). Figure 21 provides a 

visual representation of the scale of this limitation but needs to be interpreted with 

caution as it is not taken from the same source data as the remainder of the charts.  Figure 

21 comes from AFTOC’s Weapon System data cube converted to Base Year 2019.  It 

includes the maintenance costs of the 38 MDSs in this study taken as an aggregate and is 

only used here to show the growth of CLS both in dollar amounts and as a percentage of 

maintenance.  These costs correspond to all maintenance costs on the weapon systems 

and not just engines since the Weapon System data cube does not have a breakout for 

engine costs. CLS is in red.  Table 16 provides further evidence that CLS is more 

prevalent on new engines; Table 16 shows the average amount of CLS as a percentage of 

maintenance for each MD category by engine status if the engine corresponded to a new 

MDS (C-5M and C-130”J” models).  Since the F-15 and F-16s contain no new engines 

the F-22 and F-35 are included in Table 16 to provide an indication of how much CLS is 

being used to support the newer platforms.   
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Figure 21: Maintenance and CLS Costs of the 28 Aircraft MDSs 

Table 16: Average Percentage of Maintenance that is Performed via CLS

 

When analyzing for fuel performance, a standard metric of Gallons / Flying Hour 

is homogenous.  In analyzing maintenance costs, there is not an obvious way to 

normalize the data.  Costs in maintenance could vary by flying hour but could also vary 

based on the number of planes in inventory in the same way that the maintenance on a 

fleet of cars varies both in how much they are driven and how many cars are in the fleet.  

The number of planes is an appropriate measure to use when comparing across aircraft 

systems since the inventory is more stable over time than flying hours (Boito et al., 
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2015).  However since this research is looking at costs within the same weapon system 

we have chosen to use BY 2019 costs divided by PAA divided by Flying Hours to 

capture both usage and quantity.   

 Another aspect that complicates the analysis of maintenance is the effect of aging.  

Over time engines will likely cost more to maintain through the accumulation of wear 

and tear as well as obsolete parts and supply chains.  Engines maintenance costs are 

theorized to follow a bathtub effect where costs are higher in the beginning due to initial 

learning or defects, reach a lower steady state and then the ending with higher costs due 

to the aging effect. (Kiley, G. T., & Skeen, J., 2001).  The best comparison of engine 

costs would be to compare base year costs from steady-state of one engine to the steady-

state the other.  Unfortunately, this comparison is not possible using AFTOC as the data 

source.  Referring back to Table 4, there are only three new engines with 10, 9 or 5 years 

from when they initially entered inventory and fewer years from when they become 

widely used.  Only one engine, the F108-GE-201, has 20 or more flying hours before 

2010.  Given how long the Air Force keeps engines in inventory, AFTOC’s 21 years of 

data does not capture a large enough time frame to compare steady operations.  And what 

is available is understated because CLS is not reported as an engine cost. 

 A final note for the limitations with the Engine Data Cube is that the F-15A/B, F-

15C/D, F-16A/B and F-16C/D MDS model pairs are grouped together and the individual 

costs for each aircraft is not known.  There are additionally some TMS costs for the 

F100-PW-100 mapped to the F-15 without the model destination.  This analysis adds 

these costs to the C/D models, which is the predominate user of the engine. 
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4.10 Maintenance Costs of New, Retired and Full Period Engines 

Figures 22 and 23 are not colored by engine status but instead are colored by MD 

category.  The three sections represent the retired engines on the left, those operating over 

the full period in the middle, and the new engines on the right.  Figure 22 shows the 

manpower maintenance costs (CAPE 1.2) and Figure 23 shows the 3.0 maintenance 

costs, which are repair parts, depot level maintenance and engine overhauls.  These 

figures have no data points excluded, however the scale was adjusted to show the patterns 

that would otherwise be obscured by large outliers.  Figure 22 is cut off at $100 per 

Flying Hour per PAA, and Figure 23 is cut off at $300 per Flying Hour per PAA. 

 

Figure 22: CAPE 1.2 Engine Maintenance Costs by MD Category 
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 Figure 23: CAPE 3.1-3.4 Engine Maintenance Costs by MD Category 

The intention of these two figures is to show the scale and variability of the 

maintenance costs, and that the maintenance cost on the new engines is significantly 

lower compared to the other engines.  This is likely a result of the aging factor and the 

incomplete ramp up of the new engines.  In both figures many of the costs appear to be 

around zero as a result of the scale of some of the other MD categories. 

Another observation from Figures 22 and 23 is that maintenance costs, especially 

manpower, precede and succeed usage.  Engines not in use incur costs, while retired 

engines continue to accrue costs well beyond usage.  In an attempt to remove this effect 

engines costs in the year of retirement onward, and prior to the year of inception were 

removed in subsequent maintenance charts.  Of particular note, the C-130J models have a 

discrepancy between the usage reported in the Engine Programmatic cube, which shows 
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usage only from 2016 onwards and the Weapon System Cost cube which shows usage 

from 1999 onwards; in this analysis we opted to use the Engine Programmatic data.  An 

investigation into the discrepancy is ongoing with the AFTOC helpdesk. 

4.11 Maintenance Cost Results by MD category 

Once the exclusions are made for engine maintenance costs, which occurred 

outside of their usage, we are left with 645 data points.   Since the presentation of this 

data is primarily visual, graphs with large outliers distort the visual to such an extent that 

it obscures patterns.  For that reason, outliers more than three standard deviations from 

the mean (within their respective MDS and TMS) are excluded in Figures 24-28. This 

represented 12 data points; a further discussion of these data points and some graphs and 

data statistics and are included in Appendix C. With these last data points removed we 

now examine Figures 24-28, which are the normalized maintenance costs by MD 

categories. These costs are for total maintenance costs, so both 1.2 and the 3.0 categories. 

Figure 24: Maintenance Costs of the C-130 Models 
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 Figure 25: Maintenance Costs of the C-135 Models 

 Figure 26: Maintenance Costs of the C-5 Models 
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 Figure 27: Maintenance Costs of the F-15 Models 

 Figure 28: Maintenance Costs of the F-16 Models 
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The results are mixed.  Within the C-130 models both the retired and the new 

engines appear cheaper to operate.  Within the C-5s, the new engines were initially more 

expensive, but the costs quickly fell to lower levels (consistent with the bathtub concept).  

With the F-15s the retired engines appear somewhat higher but it is inconclusive from the 

diagram.  For the F-16 models the retired engine appears to have been less expensive to 

operate, although that may be the result of some unusual outliers.  The most interesting 

results are from the C-135 models; here the new engine appears much more expensive.  

Similar to the fuel performance section, the C-135s are further investigated by breaking 

them into their MDS.  Figures 29 and 30 shows the results by MDS which reveals the 

potential source of the higher engine maintenance costs. 

Figure 29: KC-135 Model Maintenance Costs 
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Figure 30: RC-135 Model Maintenance Costs 

From these two figures, the differences in costs are not as pronounced as what is 

observed in Figure 25.  Despite being normalized by base year, the costs show upward 

trends; Figure 29 shows the KC-135s, and interesting there appear to be some 

maintenance costs, especially on the KC-135R, that were assigned to the wrong engine.  

The dollar figures were very small and were excluded; similar analysis was performed on 

all MDSs and 27 more data points were excluded, for a total of 39.  The retired engines 

on the KC-135E are more expensive than the KC-135R, but because of the variability in 

the KC-135T the results are inconclusive.  For Figure 30, the engines appear to be around 

the same maintenance costs, and then the new engines experience increases in costs in the 

later years. 

Each engine within the MD category was tested using the Wilcoxon Rank Sum 

test.  Table 17 contains the listing of comparisons that were not significant at the 0.10 

level.  None of the F-15 tests were significant.  Table 18, contains the results of the 
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Wilcoxon Rank Sum test that were significant at the 0.10 level.  Where a new engine is 

compared to an engine it replaced the line is bolded. For the fighter jets, the estimated 

saving are very small, the highest median difference as computed by the Hodges-

Lehmann is $2.67 per flying hour per aircraft.  Table 19 shows only the new engines 

compared against the engine they replace with the exception of the F108GE201 and 

TF33PW9 since it was statistically insignificant.  Where available, Table 19 is 

supplemented with the average amount of support that the aircraft receive as a percentage 

of CLS computed by taking the average from 1999-2019 reported in AFTOC.  This was 

possible for the C-5 and C-130 since the new engines correspond to MDSs.  However, it 

is not known how much CLS is spent on engines or on other aircraft maintenance 

activities.  Since the new and retired engines on the RC-135 models do not have distinct 

MDSs the percentage of CLS is estimated based on averages from 2000-2003 

(predominately retired engines) and 2004 to 2019 (predominately new engines). 

Table 17: Statistically Insignificant Test Results of Maintenance Costs  
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Table 18: Wilcoxon Rank Sum Test Results for Aircraft Maintenance Costs  

  

Table 19: New Engines Compared to Replaced Engine Maintenance Costs  
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As discussed in Section 4.8 the limitations in the data impact the results. 

Generally, the data available reveals that a new engine is less expensive to maintain, with 

the exception that the F108GE201 tested as more expensive than the TF33PW105, but 

not the TF33PW5, all of which belong to the RC-135V/W. When computing for fuel 

performance these models required the removal of AFMC. For both the C-130 and the C-

5 more maintenance was performed by CLS on the aircraft with new engines than on the 

old engines.  

Table 20 contains the descriptive statistics of the data with mean, median, 

standard deviation and coefficient of variation of each engine by MD category.  Table 20 

is computed without the 39 exclusions discussed earlier in this section, and in Appendix 

C.  The maintenance costs are inclusive of CAPE 1.2 as well the 3.0 categories recorded 

in AFTOC (CAPE 3.1 through 3.4).  The new engines, along with the engines they are 

meant replace, are displayed next to each other and are in bold print.  The costs are 

normalized by Base Year 2019 and PAA / FH.  Of note is the high coefficient of 

variations that remain even with the removal of the 12 data points that were over three 

standard deviations from the mean. 
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Table 20: Descriptive Statistics of Aircraft Maintenance Costs  

 

4.12 Maintenance Cost Results for Helicopters 

 The maintence costs of helicopters are displayed in Figure 29 and shows that the 

newer aircraft appear significantly cheaper.  Unlike fixed wing Aircraft, Figure 29 only 

shows the results of the CAPE category 3 costs and not unit level maintenacne (CAPE 

1.2).  The reasons for the ommision is because unit level maintenance for training aircraft 

is not available in AFTOC, and this can be seen in the descriptive statitics provided in 

Table 21.  Lastly, the Wilcoxon Rank Sum Test is available in Table 22 and the results 

are significant at the α level of 0.10. 
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Figure 31: CAPE 3.0 Maintenance Costs for Helicopters 

Table 21: Descriptive Statistics of Helicopter Maintenance Costs 

 

Table 22: Wilcoxon Rank Sum Test Results for Helicopter Maintenance Costs
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4.13 Chapter Summary 

In this chapter each MD category and helicopters available are graphically and 

descriptively examined for fuel efficiency performance and maintenance costs.  The 

comparison for fuel efficiencies generally show improvement in fuel performance with 

statistically significant results when compared to older engines. The same is true for 

maintenance costs within the available data. 

We addressed some of the limitations that complicate the analysis, especially 

within the maintenance costs. In the course of this analysis, we found statistically 

significant results at the 0.10 confidence level that are visible in the graphs of the engine 

performance.  In Chapter V we conclude the thesis with a discussion of the research 

questions, some lessons learned and a discussion of the implications of the research.  
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V.  Conclusions and Recommendations 

5.1 Chapter Overview 

In this chapter we answer the research questions posed in Chapter I.  After that we 

discuss the significance of the research and conclusions.  In addition to broader 

implications of the research, we use a case study for the performance cost savings that 

could be materialized using the recent reengine efforts from the E-8 (JSTARS) aircraft.  

We conclude with recommendations for future action and research.  

5.2 Investigative Questions Answered  

1). What are the quantifiable effects of an engine upgrade to the ongoing O&S 

costs of a weapon system? Only three new engines were able to be analyzed on aircraft, 

AE-2100 on the C-130”J” models, the F138-GE-100 on the C-5M, and the F108-CF-201 

on the RC135 models.  One new engine was available in the data for helicopters, the T53-

L-703.   Seven engines were retired on various MDSs including fighter and cargo aircraft 

as seen in Table 4. Engine fuel performance is measurable with the available data and is 

capable of being normalized.  The difference in fuel performance is statistically 

significant in almost all cases with the exception of the retired F100-PW-100 compared 

to the newer F100-PW-220.  Fuel performance is rated better in the estimated range of 28 

to 280 fewer gallons per flying hour on cargo aircraft.  Maintenance costs are difficult to 

quantify as costs available by engine are approximated and do not include CLS, and 

using AFTOC data steady-state to steady-state comparisons are not available.  From the 

data that is available, maintenance costs on new engines are significantly lower than the 

engines they are replacing.   
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2). How do these effects vary across different weapon systems? Only cargo, 

refuelers and fighter aircraft could be analyzed.  Compared to the retired fighter jet 

engine, fuel efficiencies are either not statistically different or are more costly for fighter 

aircraft, suggesting that other characteristics of the engine, such as thrust, power or 

reliability were determined to be more important.  Helicopters followed the same fuel 

performance pattern as cargo aircraft, where the increase to other engine performance 

characteristics still resulted with improved to fuel efficiency.  

3). To what extent do historical data have predictive capacity for future O&S cost 

estimates? In most cases, the p-values from the various Wilcoxon Rank Sum tests are 

usually less than 0.0001, suggesting a high statistical significance. This suggests that the 

observed differences seen in the graphs are predictive of what fuel savings are attainable.  

Point estimates for fuel savings on aircraft can be computed by comparing the average of 

one engine with another is possible by examining Tables 4 and 14.  Tests regarding 

engine maintenance costs also had low p-values which normally suggest predictive 

ability, but the limitations in how the data are collected raise doubts to their reliability 

and interpretation, namely the inability of tracing CLS costs to engines and the inability 

of comparing engines at steady-state since there are only four new engines. More studies 

will be required as new engines reach steady-state.  The early indications are that 

maintenance costs are lower for replaced engines and the savings are potentially 

significant.   
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5.3 Significance of Research 

Within the cargo aircraft, we observed large improvements in fuel efficiencies. 

This happened despite an increase in the power of the engines as captured in Table 4.  In 

terms of maintenance, they appear to be cheaper to operate, although this will take time 

to fully capture the extent of these savings. In essence, the Air Force has perhaps enjoyed 

the best of both worlds, higher quality performance for a lower price.  How did this 

happen?  The answer could be in the advancement of technology compared to the age of 

our engines.  Our aircraft are old (Heritage, 2019) with some aircraft, such as the B-52, 

already in their mid to late sixties.  While the engines are not always as old as the aircraft, 

we can infer that with only three new TMS engines in over 20 years, the engines are too 

old to compete in performance and cost with modern technology both in terms of 

maintenance costs and fuel consumption.  

In financial terms, the cost of a new engine should be compared to the present 

value of the potential savings.  This thesis has only looked at one side of that equation, 

how much can we expect in potential savings.   Recently, because of the state of the B-

52H, a new engine was necessary in order to keep the aircraft operational, but the 

evidence suggests that the decision to purchase new engines may save significant sums in 

fuel and maintenance.  

The JSTARS were in the process of acquiring new engines, with $160M in then 

year dollars on RDT&E from 2007 to 2011 based on the President’s Budget in those 

years.  However, the acquisition of the engines has not yet materialized.  The JSTARS 

operate on the TF33-P-102C with similar characteristics to the TF33-PW-102 which was 

analyzed in this study. If the JSTARS had new engines with similar fuel consumption as 
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the F108-GE-201, then (from Table 4) a point estimate for the average fuel savings 

would be 348 gallons per flying hour.  Using AFTOC data over the last six years the 

JSTARS have averaged 8,100 flying hours per year, which equates to 2.8 million gallons 

of fuel a year.  Using the 2020 DLA standard rate for JP-8 of $2.96 per gallon, this 

represents $8.3M of savings per year.   Using a conservative 2% inflation rate, the 

savings in fuel has a present value of $136M over 20 years.  Given how long engines stay 

in inventory, 20 years may also prove to be conservative. Additionally, the maintenance 

savings would add to this figure. The increased reliability and performance upgrades 

would be a bonus. 

5.4 Recommendations for Action and Future Research 

Acquisition cost research is well studied, and cost analysts create estimates for 

each new ACAT program.  The O&S side of the estimate is less researched and more 

uncertain.  This research helps to fill in that gap for some aircraft engines.  For those 

engines that the Air Force is considering replacing, decision makers need reliable 

information in order to understand the trade-offs.  Part of that trade-off comes in the form 

of more capabilities, but maintenance and fuel performance are measurable and also need 

to be taken into account. 

Research like this is hampered by the availability of data.  Originally, the scope of 

this thesis was on modifications generally.  However, that data is not available.  Costs are 

not tracked at a low enough level to compare the performance of tail numbers.  The 

lowest level that costs can be tied to is by MDS or engine, which is where this research 

was forced to focus. It is not known (in an accessible manner) when any particular 
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aircraft has been modified or is awaiting modification.  Program offices do not track 

modifications with this level of granularity and neither do Air Force data entry systems.   

Since the past is the best predictor of the future, it would behoove the Air Force to track 

costs at lower levels. 

Our engines are old and have reached the point where the trade-off in 

performance on cargo aircraft comes at a reduction in costs instead of an addition to 

costs. Future research should be able to further bear this out.  A more exact estimate of 

savings could be accomplished if an analyst were able to exam the costs per aircraft and 

normalize by metrics other than flying hours, such as cargo load or distance of sortie. A 

root cause analysis for the lower fuel performance deviations that were noted in FY 2002 

(as mentioned in Section 4.5) could be further examined.  Additionally, further 

examination of the variation in command or type of usage (refueling, training etc.) may 

be of value to analysists at those commands.  Appendix D contains charts of the fuel 

performance by each MD category broken out by the Major Commands.  The colors used 

in Appendix D are consistent with the majority of the thesis, red for new engines, green 

for retired, and blue for engines in use over the full time period. In each case, AFMC 

shows higher variation in fuel performance, likely as a result of how AFMC uses aircraft. 

Lastly, a normalization for the amount of cargo, or alternately the weight of the 

aircraft, would also improve the results of this research.  Much of the variation in fuel 

performance is likely explainable by the weight of the aircraft.  A limitation for this 

research though is that would entail significant resources in order to collect in order to 

compile the necessary database.  Research could also be performed on Navy systems. 
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5.5 Chapter and Thesis Summary 

In this chapter concluded the thesis by restating and answering the research 

questions from Chapter I.  Fuel efficiency can be calculated from data that is already 

captured by AFTOC, but maintenance costs caused by modification or tied directly to an 

engine is not available the way the AF currently collects data.  The costs allocated to 

engines is estimated by ratios and, significantly, does not include CLS at all since CLS is 

generally not traceable to components. If the AF desires to track the costs of engines it 

will require some amount of restricting of the line of accounting or contract reporting 

requirements.  Further complicating engines maintenance analysis is the inability to 

compare steady-state engines when starting with the AFTOC stand up date of 1996. 

We also used the JSTARS re-engine effort as a case study for potential savings. 

While we are left with a significant shortfall for estimating the costs of maintenance, the 

saving potential in fuel could be approximated to a present value of $136M.  Different 

assumptions as far as inflation, usage and the range of actual fuel savings will provide 

different point estimates 

This research could be improved if costs could be more narrowly pinned down, 

but regardless the results are overwhelming for the cargo aircraft.  There are significant 

savings available for the reduction of O&S costs in the future, both in maintenance and 

fuel as the AF modernizes its inventory of engines. Further areas of research are available 

to exam performance metrics that can be analyzed or normalized by command or usage. 

 



74 

Appendix A – Acronym Listing 

ACAT Acquisition Category  
AFLCMC Air Force Life-Cycle Management Center  
AFTOC Air Force Total Ownership Costs 
BY Base Year 
CAPE Cost Assessment and Program Evaluation 
CBO Congressional Budget Office  
CEMS Consolidated Engine Management System 
CER Cost Estimating Relationship 
CLS Contractor Logistics Support  
DLR Depot Level Maintenance 
DoD Department of Defense 
FAS Fuel Automated System 
FFRDC Federally Funded Research and Development Centers  
FH Flying Hours 
FY Fiscal Year 
GAO Government Accountability Office  
LCC Life Cycle Costs  
MDAP Major Defense Acquisition Program  
MDS Mission Designation Series 
O&S Operations and Support 
OAC Operating Agency Code  
OPTEMPO Operations Tempo  
PAA Primary Aircraft Assigned 
PAI Primary Aircraft Inventory 
PEC Program Element Code  
PM Program Manager 
RC/CC Resource Center  
RDT&E Research, Development, Test and Evaluation  
REMIS Resources Management Information Systems 
RERP Reliability Enhancement and Re-engining 
SLEP Service Life Extension Programs 
SPO System Program Office  
TAI Total Aircraft Inventory 
TMS Type Series Modification  
VAMOSC Visibility and Management of Operating and Support Costs 
WSARA Weapon Systems Acquisition Reform Act  
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Appendix B – Listing of Included MDS Categories and Engines 

MDS 
Category Engine TMS MDS 

Total 
Inventory 
(over time) 

MDS 
Category Engine TMS MDS 

Total 
Inventory 
(over time) 

C-5 F138GE100 C-5M 577.5 C-135 F108GE100 KC-135R 21784.75 
  TF39GE1 C-5A 3499.25     KC-135T 3287.25 
    C-5B 2818   F108GE201 RC-135S 86.25 
    C-5C 125.5     RC-135U 68.75 
C-130 AE2100 AC-130J 43.75     RC-135V 292.25 
    C-130J 675.5     RC-135W 291.5 
    EC-130J 48.5     TC-135S 10.5 
    HC-130J 128.75     TC-135W 96.25 
    MC-130J 243.25   TF33PW102 C-135E 49.75 
    WC-130J 42.25     EC-135E 33 
  T56A15 AC-130H 478     EC-135K 23.5 
    AC-130U 1073     EC-135N 22.25 
    AC-130W 261.5     EC-135Y 11 
    C-130E 309.75     KC-135D 106 
    C-130H 19337.25     KC-135E 4220 
    EC-130E 380.75     KC-135R 5.75 
    EC-130H 951.5     NKC-135E 51.75 
    GC-130H 3.75   TF33PW5 C-135B 34.25 
    HC-130N 663.5     C-135C 36.75 
    HC-130P 1338.5     OC-135B 74.25 
    LC-130H 601.75     RC-135S 53.25 
    MC-130E 568     RC-135W 125.5 
    MC-130H 1601.5     TC-135S 25 
    MC-130P 1669.25     TC-135W 16.25 
    MC-130W 128     WC-135W 42.75 
    TC-130H 44.75   TF33PW9 EC-135C 76.5 
    WC-130H 594.75     NKC-135B 25.5 
  T56A7 C-130E 8535.75     RC-135U 43.75 
    GC-130E 16.5     RC-135V 133.5 
            WC-135C 52.5 
F-15 F100PW100 F-15A 2184.5 F-16 F100PW200 F-16A 321.75 
    F-15B 465.75     F-16B 162.25 
    F-15C 5599   F100PW220 F-16A 720 
    F-15D 1212.75     F-16B 331.75 
    GF-15C 4.5     F-16C 6049.75 
    YF-15A 5.25     F-16D 1525.75 
  F100PW220 F-15A 378   F100PW229 F-16C 1451 
    F-15B 32.5     F-16D 260.25 
    F-15C 7009.75   F110GE100 F-16C 10207 
    F-15D 821.5     F-16D 1340.25 
    F-15E 4977.25   F110GE129 F-16C 3410.75 
  F100PW229 F-15E 3997.75     F-16D 531 
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Appendix C, Maintenance Cost Statistics with Outliers Included 
 

As discussed 12 outliers were removed from the Section 4.11 of Chapter IV.  

Unlike with fuel performance, large outliers are possible based on how maintenance costs 

are performed.  While unusual, it is not surprising if maintenance in one year is three or 

four times higher the next year, which would be unusual in fuel performance. 

Since this thesis is based on typical operation, outliers more than 3.5 standard 

deviations from the mean were removed.  In total, 12 outliers were removed, seven on 

full period engines and five on retired engines.  Due to the nature of the data all 12 were 

3.5 or more standard deviations above the mean, and none below. Seven were from the 

C-130 models, two from F-15s and one each from F-16, C-135s, and C-5s. Outliers were 

identified using histograms by MDS and TMS, two examples are shown below: as shown 

below (C-5B and F-16A/B): 
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Since Section 4.11 is based on charts, removing outliers like the one above create 

meaningful figures.  With removing outliers, Figure 24 (and others) would not be very 

meaningful and look like this: 

 
For completion Table 20 is replicated below and includes all data points. 
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Appendix D – Fuel Performance by MD Catergory by Major Command 

MD Catergory C-130s
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MD Catergory C-135
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MD Category C-5
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MD Category F-15
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MD Category F-16
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