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Abstract

The Air Force Analyses and Assessment Directorate (AF/A9) is developing the

Bayesian Enterprise Analysis Model (BEAM), which is a process to answer defense

strategy and force structure questions. BEAM is a new type of military modeling

with more aggregated resolution than campaign models. Demonstrating when, if

ever, Bayesian Networks are a better or a comparable substitute to Monte Carlo

simulation would assist in BEAM’s development and implementation. A major un-

derlying assumption of BEAM is that Bayesian Networks can produce a distribution

of outcomes similar to the distribution from multiple replications of Monte Carlo

simulations.

This research compares simulations to Dynamic Bayesian Networks in analyzing

situations. The research applies models that have known output mean and variance.

Queueing systems have theoretical values of the steady-state mean and variance for

the number of entities in the system. Monte Carlo simulation development is broken

down into two separate approaches: discrete-event simulation and time-oriented sim-

ulation. The discrete-event simulation is an object-oriented modeling approach where

model progression is triggered from using pseudo-random numbers to schedule future

events. The time-oriented simulation utilizes fixed-width time intervals and updates

the system state according to a stochastic process for the set of events occurring dur-

ing each time period. The accuracy of each approach is estimated by a comparison to

the theoretical mean, variance, and state probability values. The Bayesian approach

does produce state space probabilities very similar to the Monte Carlo simulations

approaches.
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ANALYSIS WITH DYNAMIC BAYESIAN NETWORKS COMPARED TO

MONTE CARLO SIMULATIONS

I. Introduction

1.1 Background

The continual development and augmentation of today’s technologies often provide

new insights as well as improved effectiveness for any given task. Operations Research

(OR) is the application of scientific and mathematical methods to the study and

analysis of problems involving complex systems. Along with optimization and applied

mathematics, simulation is often a standard method of analyzing data that deals with

risk and uncertainty. While useful, Monte Carlo simulations may sometimes come at

a trade-off between, accuracy, model run-time, and possible insights. In instances

with large complex systems, simulations may have long run-times, requiring both

replications and separate instances for each unique set of system parameters.

Advances in computation speed may allow Bayesian Networks to serve as a po-

tential alternative to a Monte Carlo simulation. In an attempt to improve Bayesian

Network computational speed, the Johns Hopkins University Applied Physics Lab

(JHU/APL) is researching to reformat inputs of a Bayesian Network as a series of

nodes compared to a traditional format that includes every permutation of influenced

nodes in the system. Rather than computing all possible permutation of nodes simul-

taneously, the computations are handled two per iteration, containing a new input

node in each step. This sequentialization significantly reduces the Bayesian Net-

work computational time while producing the same results under certain conditions.
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Additionally, JHU/APL researchers found that number of bins used in a Bayesian ap-

proach may be greatly reduced with minimal loss in accuracy [16] [15]. Rather than

using fixed-width bins for probability distributions, they use constant-probability,

which results in fewer required bins and thus further reducing computational time.

Partitioning a distribution into fewer bins based on constant-probability allows for

the reduction of computations spent on rare events. The constant-probability bins

greatly reduces overall computation time while not substantially affect results.

The primary mission of the United States Department of Defense (DoD) is to

provide military forces needed to deter war and to protect the security of the nation.

Operating at a high operations tempo, the DoD requires expedited, as well as accu-

rate, research to efficiently support the war fighting mission. To safeguard national

security and to improve United States military capabilities, the DoD must continually

progress and evaluate military strategies, tactics, and weapons systems. Currently,

the predominant method for analyzing uncertain events and future predictions is sim-

ulation, or more specifically, combat modeling. Due to complexity and size of these

models, implementation can often be time-consuming. A long simulation setup-time

has the possibility to limit the ability to effectively evaluate the diverse strategy and

structure trade-space under the vast plausible conflict types. Analysts need effective

and efficient tools to evaluate the diverse possibilities of scenarios.

1.2 Problem Statement

The Air Force Analyses and Assessment Directorate (AF/A9) is developing the

Bayesian Enterprise Analysis Model (BEAM), which is a process to answer defense

strategy and force structure questions. BEAM is a new type of military modeling

approach with more aggregated resolution than campaign models. BEAM provides

different evaluation tools that the DoD can use to assess military strategies and de-

2



fense force structures across multiple campaign scenarios [8]. BEAM may provide

useful insights to the Air Force and DoD senior leaders. Demonstrating when, if ever,

Bayesian Networks are a better or comparable substitute to a Monte Carlo simulation

would assist in BEAMs development and implementation. A major underlying as-

sumption of BEAM is that Bayesian Networks can produce a distribution of outcomes

similar to the distribution from multiple replications of Monte Carlo simulations.

1.3 Approach and Research Objectives

This research compares Monte Carlo simulation techniques to constructed Bayesian

Networks in analyzing situations. It begins with models with known output mean

and variance. Queueing systems have theoretical steady-state values for mean and

variance of the number of entities in the system. Reliability models with any com-

bination of series and parallel constructs are another application where we have a

known theoretical mean and variance. The accuracy of each approach is compared by

estimating the theoretical mean, variance, and probability values. Additionally, this

examines the computational setup time and run-time of all approaches. The model

results are then summarized in an attempt to seek insight into how the complexity of

the underlying analytic situation impact performance and overall computation time.

Analysis associated with either Monte Carlo simulation or Bayesian Networks

require specialized knowledge and training. Both of these techniques are considered

to be highly specialized and require proper knowledge in order to extract proper

insights or influences. An incorrectly constructed simulation or Bayesian Network

is highly susceptible to bias or error. Simulation software requires highly-trained

and knowledgeable subject matter experts (SMEs) to correctly model and interpret

systems or interactions. Analytic software often is expensive and requires continued

updates and support from the developers. This research does not investigate the
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training or education requirements necessary to implement either approach.

1.4 Summary

Today’s technologies are evolving at an extremely fast rate with abundant new

techniques and theories. When dealing with uncertainty or unknown parameters,

there exist a multitude of proven techniques to estimate the underlying distribution

and behavior of a modeled system. A popular modeling technique used today is

Discrete-Event Simulation. Time-oriented situations are applied when interaction

between entities makes predicting the time of future simulated events difficult. The

DoD relies heavily on simulation techniques and software to mimic actions for future

situations. Due to trade-offs, the DoD is continually looking to improve ways of op-

erating. Bayesian Networks, developed and applied correctly in certain settings, may

provide an alternative to Monte Carlo simulations. Demonstrating that a Bayesian

Network can serve as an adequate substitute to simulation can possibly help the fur-

ther development of BEAM and most importantly, provide a new technique that the

DoD can implement for analysis. This research compares Bayesian Networks to Monte

Carlo simulations to explore the technical differences between the differing techniques

on the bases of computation run-time and accuracy of the predicted outcomes.

4



II. Methodology

2.1 Overview

The primary focus of this research is to develop and compare different types of

modeling techniques. In order to adequately assess each technique, a test case is

utilized as a baseline approach that has known theoretical steady-state values. These

known values are useful in determining the overall accuracy and validity of a model.

Such a system that meets this criteria is an M/M/1 queue. More precisely, the state

of interest is the length of the system for a single server with exponential inter-arrival

and service rates. Three modeling techniques are tested and compared: Discrete-

Event Simulation (DES), Time-Oriented Simulation (TOS), and a Dynamic Bayesian

Network (DBN).

DES is a simulation technique which deals with events triggered by object genera-

tion within the system. TOS is similar to DES development but utilizes a user-defined

time interval with likelihood of event occurrences. The time-oriented approach is use-

ful in situations when the occurrence time of simulated events cannot be determined,

such as when the interaction of entities affects the time of events. A military exam-

ple is predicting when the radar from one aircraft will detect another aircraft. TOS

is specifically useful in this research because it closely aligns with the development

of the DBN model, as both techniques use the same system states and transition

probabilities.

2.2 Queueing Theory

Queueing theory may be described as an analytical study of waiting lines for a

specific system of interest. The queueing theory studies processes where the need to

carry out certain tasks (i.e. services) arises on one side, and the need to fulfil them
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arises (i.e. arrivals) on the other side of a system [6]. Models may vary in a number

of parameters which includes entity inter-arrival times, service times, and amount of

servers in the system. The movement of an entity through the system is an assumed

instantaneous transfer between system states, thus not requiring additional travel

time or a resource required for transition.

The queueing system of interest is defined with three primary parameters: inter-

arrival rates, service rates, and the quantity of servers in the system. As previously

mentioned, a commonly modeled system is an M/M/1 queue, which represents a sys-

tem that follows a Markovian Poisson process. This system has a known exponential

customer inter-arrival rate, exponential service rate, a single server, and no limit on

queue length. Additionally, each server will have a specified capacity, which in this

case is one system entity. The more general notation is an M/M/c queue, where c is

the number of servers in the system. The exponential probability density function is

derived as:

f(x, λ) =


λe−λx, x > 0

0, x < 0,

(1)

where λ is the rate parameter of arrivals per time interval T and defined as the

reciprocal of the mean.

Table 1 displays commonly tracked metrics in queueing models along with their

theoretical steady-state calculations. LS is the length of the system, including both

the queue and server, while LQ is the average number of customers in the queue. WS

represents the average amount of time that the customer spends in the entire system,

while WQ is the amount of time a customer waits for service while in the queue [14].

In the specific case of the M/M/1 queueing system, λ represents the customer

inter-arrival rate, and µ is the rate parameter of service completions per time interval

T for their respective exponential distributions. The parameter ρ = λ
µ

is the theoret-
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Table 1. M/M/1 Queue Theoretical Characteristics [14]

Parameter Equation Description

ρ λ
µ

Proportion of time server is busy

LS
ρ

1−ρ Length of the system

WS
1/µ
1−ρ Wait in the system

LQ
λ2

µ(µ−λ) Length of the queue

WQ
λ

µ(µ−λ) Wait in the queue

ical proportion of time that the server is busy in steady state. To properly achieve a

stable system without balking or reneging, the system must have λ < µ.

As ρ approaches the value of one, the system will have periods with more entities

in the system. This system contains a single server queue with an infinite system

capacity. The entities in the queue are processed as first-in-first-out (FIFO) service

meaning that the system entities are serviced in the order in which they arrive. The

system characteristics, including system length and entity waiting time, are deter-

mined solely based on the parameters λ and µ.

2.3 M/M/1 Queue

For a comparable application of the three modeling techniques, an M/M/1 queue

will be used with its theoretical outcomes and state probabilities of the system. Specif-

ically, each model estimates the average number of customers in the system (LS). A

practical example of this system is a bank with only one open service counter or a

grocery store with a single self check-out kiosk. This system will utilize a user-defined

λ and µ such that λ < µ. As part of this analysis, these rate parameters will have var-

ied combinations along with varied magnitudes. The magnitude affects each model’s

predictive capability as it may change the required time to reach steady-state, time

interval size, or additional calculations due to a larger range of variability of possible

state values. A primary concern is to ensure that each model executes for a duration
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that properly allows the system to reach steady-state characteristics.

Additionally, each model must generate enough data points to properly analyze the

system’s behavior. Enough model entities or observations must occur to adequately

mimic the system. For instance if λ = 0.01, the expected number of arrivals within

the first 100 time units is one. In this hypothetical scenario, it is possible that even

1000 time units might not be of sufficient length to generate enough simulated arrivals

to observe the system since the expected number of arrivals in this amount of time is

only 10.

This single server system contains a server capacity of one entity (i.e. customer)

and has instantaneous transfer time. The system does not allow for balking or reneg-

ing, defining it as a true birth-death Poisson process with the known exponential

inter-arrival and service rates.

2.4 Discrete-Event Simulation (DES)

Simulations are the imitations of the operation of a real-world process or sys-

tem over time [2]. Simulations are useful to draw inferences of system operation

characteristics in various scenarios based on known or hypothesized parameters. A

simulation could be accomplished manually, however time-consuming and difficult to

track. However, computers, along with their current high capacity of computing,

allow simulations to be executed in a more efficient manner at higher speeds when

compared to manual methods. The development of the DES model involves defining

discrete states, assuming that a system may not contain partial entities or events.

Additionally, events occur at discrete moments in simulated time even though time

is a continuous variable. The DES modeling technique is considered dynamic, dis-

crete, and stochastic. It represents a system over time while containing input random

variables defined in discrete states.

8



The event-based DES modeling approach schedules events at random. The ran-

dom event generation follows a theorized or empirical distribution where a pseudo-

random number is utilized. The algorithm used to generate the pseudo-random num-

ber varies between software applications. In this research, the Mersenne Twister

random number generator is used to generate the pseudo-random number values.

The Mersenne Twister algorithm is one of the most widely used random number

generators, especially within high performance computing applications used by large

financial institutions [19]. The algorithm sequence of a pseudo-random number gen-

erator is not truly random because it relies on an initial prime value. The Mersenne

Twister algorithm’s complexity allows for a possible 219937−1 numbers prior to cycling;

Tian and Benkrid [19] prove its pseudo-random numbers to be equally distributed in

623 dimensions. The algorithm’s long cycle duration and fast computational time

leads to its popularity among other generators.

The DES random events are rank-ordered on a timeline. The user (or system) can

then parse to observe the system’s behavior. Since a discrete-event model generates

randomly scheduled events, either a very long replication or multiple replications

are necessary to assess the average system parameters. The system may also have

an initial transient prior to achieving steady-state operation. The simulation graph

displayed in Figure 1 shows the system behavior of an M/M/1 queue. The system

contains three primary nodes: Arrival, Service Begin, and Service End. The five

characteristics of this system at a given time, t, includes the Q(t) length of the queue

and S(t) status of the server. The next state transition is either determined by the

next scheduled a(t) arrival tA arrival time or the next scheduled tS service time.

To obtain a probability distribution of end states, the probability of system length,

LS, is estimated by percent of time the simulated system status was in that state.

Initialization bias may be present due to the beginning status of the modeled
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Figure 1. Simulation Graph: M/M/1 queue

system. For proper comparison, all modeling techniques will begin with a system

that is empty and idle. Since the desired metric tracks LS, model conditions must

be considered to allow the system to reach steady-state characteristics. Conway

states that there are also circumstances where steady-state measurements cannot

be obtained due to reasonable sets of system parameters [4]. One such circumstance

includes an unstable system when the mean service and arrival rates are equal. Rather

than truncating initial warm up time, initialization bias is accounted for by ensuring

that the model is executed for a long enough time such that the system reaches

steady-state behavior without influence of the initial starting condition. The warm

up period truncation may be somewhat arbitrary and differs between modeled system

[21].

2.5 Time-Oriented Simulation (TOS)

Time-oriented simulation (TOS) is similar to DES, but defined as a time series

progression rather than event scheduling for each system entity. This time series

progression contains a fixed-width time interval in which the number of events are

determined to occur within the specified time interval. This simulation approach is

also referred to as fixed-increment time progression due to its nature of time interval
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formulation. Buss and Rowaei develop similar discrete-time simulation models, con-

cluding that the choice of time interval size has substantial impact on model results

and execution time [3]. The TOS modeling technique utilizes static determinations

of system states as it progresses over time. While this is considered dynamic due to

its progression over time, states are determined within each static time interval and

thus, also including a Monte Carlo approach. For the sake of comparison, the DES

and TOS models are simply referred to as simulations, not including the Dynamic

Bayesian Network.

The DES model’s object-focused progression captures data and system character-

istics at the point of the randomly generated events, while in contrast, TOS evaluates

the system state at each individual fixed time interval. Both simulation techniques

produce unique output, thus requiring either a single long replication or multiple

replications of shorter length to capture the true system behavior. Time-oriented

simulation takes an equivalent timeline and splits the time space into user-defined

fixed intervals. The progression through the TOS model uses a stochastic process

with theorized probabilities of event occurrences while updating system states ac-

cording to the set of events or activities occurring within each time interval.

The TOS model uses a pseudo-random number to determine the amount of simu-

lated arrivals and service completions within each time interval. Specifically, a random

number is compared to a calculated cumulative probability distribution to determine

the number of arrivals or service completions. The service completion distribution

depends on the status of the system and amount of arrivals within a time interval.

Within simulation model progression, the system entities that exist at the end

of the prior time interval plus new arrivals during the current time interval limit

the amount of possible service completions. Since M/M/1 queue has exponential

distributed service completions, if an infinite number of service completions were
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theoretically possible, the number of service completions would follow a Poisson dis-

tribution. However, the service completions are limited due to logic which dictates

that a service may not be performed for entities that do not yet exist in the simulated

environment. The result is the possible service completions follows a truncated distri-

bution, which is dependent on system status of number in the system at the beginning

of time interval and the number of arrivals during the time interval. This research

proposes and tests four different approaches to approximate the service estimation

distribution for the TOS model.

The TOS and DBN model development requires an appropriate estimation of the

system’s service characteristics. For an M/M/1 queue, the defined exponential arrival

rate λ along with a pseudo-random draw from the appropriate Poisson distribution,

determines the amount simulated arrivals within each time interval. The service com-

pletions also follow this generation technique with rate of µ. The service completions,

however, require approximations because their likelihood are dependent on the status

of the system at time t and the number of arrivals. A stable queue requires that

λ < µ, meaning that the system has a higher rate of service than arrivals. The

number of arrivals during a time interval may be modeled with a Poisson distribu-

tion; however, the Poisson distribution with probabilities that extend to infinity does

not fit service completions because the system cannot service entities that are not

yet present. The service probabilities are dependent on the system state, specifically

system length (LS) and amount of arrivals within a time interval (A). The service

rate follows an exponential distribution, so the four approximations for the number

of service completions are based on transformations of a Poisson distribution. The

Poisson probability density function (pdf) is defined as:

Poisson(µ) =
µxe−µ

x!
(2)
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where µ is the rate.

A service probability distribution derivation should properly account for the state

of the system which includes system length LS and the number of arrivals A. The

system length LS, exists at the beginning of each time interval and thus, no adjust-

ment is required for the service probabilities pertaining to states zero through LS−1.

The arrivals during the interval, however, require separate consideration to account

for randomness of the time of each arrival.

Any new arrival is unlikely to have occurred precisely at the beginning of the

interval, so a time interval adjustment, equivalently the rate of service, is required to

account for a shorter time the arrivals have to be serviced. Thus, the new arrivals

should have a lower probability to be serviced because they have a shortened time

in the system, which is dependent on their exact arrival time. However, in TOS,

the actual arrival times are not determined. Since the inter-arrival times follow an

exponential distribution, the spacing of arrivals in a time interval conditioned on the

number of arrivals follows a uniform distribution [20]. (See [1] for proof.) Thus, the

expected portion of remaining time tj after the jth of A arrivals in a time interval of

duration T is:

tj =
(A− j + 1)

A+ 1
, for j = 1,..., A (3)

For instance, in the case A = 2, the first arrival will have the expected portion of time

remaining t1 = 2
3
, and the second arrival will have expected portion of time remaining

t2 = 1
3
. All of the LS entities in the system at the start of the interval will have the

entire time interval for service.

2.5.1 Service Probability Bounds

The service probability calculations vary depend upon the assumptions that affect

the likelihood of a new arrival completing service within a time interval. States in
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the service probability density function (pdf) range from zero up to the length of

the system from the previous time interval plus new arrivals in the current interval

(LS +A). The simulated number of service completions follows a distribution where

the service of entities in the system at the beginning of the interval generally follow

a Poisson distribution, and the service of arriving entities require adjustments due

to their decreased time in the system. Once the service probability distribution is

determined, a pseudo-random draw is used to select the simulated number of service

completions in the time interval. The TOS model progresses through time and defines

system states as LS, which is dependent on the number of arrivals and service com-

pletions occurring within each time interval. Service estimation bounds help identify

accuracy while guiding the approach’s development. Additionally, these bounds assist

with debugging and identifying possible logic errors.

An assumption that all arrivals have the entire time interval length to be serviced

constitutes a lower bound for the overall mean length of the system. This assump-

tion follows that along with the system length (LS) from the prior interval, the new

arrivals appear precisely at the beginning of the interval. Since all entities exist at

the beginning of a time interval, the service rate or probabilities are not adjusted to

account for simulated arrival times during the interval. Thus, µ serves as the expo-

nential service rate that derives the service probability distribution for all entities.

The assumption of arrivals occurring at the start of the interval serves as a lower

bound for the average length of the system because it allows the entire interval to

service the existing system length plus new arrivals. The resulting calculated mean

for number in the system is lower than the theoretical steady-state LS value because

the calculation does not account for arrivals occurring too late to complete service.

Similar to that of the lower bound of average length of the system, an upper bound

may also be obtained with an assumption that all arrivals during an interval occur
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at the end of the interval. This assumption defines arrival time such that entities

have no chance to complete service within the time interval in which they arrive.

Thus, service completions are only considered for the existing system length, while

disregarding opportunities for the service completion of new arrivals. In this case, the

calculated mean of the length of the system is higher than the theoretical steady-state

value because the model services fewer entities than technically possible.

The following subsections describe four approaches to estimate the service com-

pletion distribution given the prior number in the system and the number of arrivals,

which is determined by a pseudo-random draw.

For each of the four approaches, LS and A are predetermined values prior to each

time interval. The random variable Zj represents the number of entities serviced

within time interval j. Zj is conditioned on the predetermined LS and A values at

the beginning of the interval. A pseudo-random draw determines the service amount

after all service probabilities are calculated. The service amount is then used to

calculate Sj, representing the amount of entities remaining at the end of time interval

j. The new system length for the next time interval is equal to the result of the current

state, so LS = Sj. Since the value LS + A truncates the service probability table,

there exists a residual probability from the right tail of the Poisson distribution that is

not feasible due to system status. This approach aggregates this residual probability

value into state LS. If there exists a probability of servicing more than LS, then

servicing LS should have a higher likelihood of occurrence, and thus absorbing the

remaining probability to ensure that the discrete probability density function (pdf)

sums to one. This residual probability assumption will be discussed in more detail

later in this chapter.
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2.5.2 Service Estimation - Approach #1: Current State, Conditioned

on Prior Entities

This first approach focuses on appropriately adjusting service rate µ based on the

assumed uniform arrival time where tj estimates the portion of time remaining for the

jth arrival. This approach models arrival services based on the system assumption of a

first-in-first-out (FIFO) system. An arrival may only be serviced if all prior entities in

the system (LS) and prior arrivals are serviced. The jth arrival’s service is dependent

upon the expected portion of remaining time in the interval. The random variable

X is defined for the entities in the system at the beginning of the time interval (LS),

and X
′
j for entities arriving during the interval, each following a Poisson distribution

such that:

X ∼ Poisson(µ)

X
′
j ∼ Poisson(µtj)

(4)

The random variable Zi is the distribution of service completion during the ith time

interval. The number entities in the system prior, LS, and the number of arrivals A

are known prior to determining the service completions Zi.

Service Estimation Approach #1:

Zi =


Prob(Yi = j) = Prob(X = j) for j = 0, ..., LS − 1

Prob(Yi = j) = 1−
∑k=LS+A

k=0,k 6=LS
Prob(Yi = k) for j = LS

Prob(Yi = j) = Prob(Yi = j − 1)Prob(X
′
j−Ls

= 1) for j = LS + 1, ..., LS + A

(5)

for i = 0, ..., LS + A

The random variable for number of entities in the system, Sj, at the end of interval
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may be described by equation 6.

Sj = LS + A− Zj for j = 0, ..., LS + A (6)

In TOS, a pseudo-random draw is used along with the distribution for Zi to determine

the number of service completions in the interval and the number in the system at

the end of the time interval.

2.5.3 Service Estimation - Approach #2: Scaled Probabilities

The second service estimation approach also focuses on new arrival service proba-

bility calculations. This approach calculates a service probability evaluated from the

Poisson distribution and multiplies the value by a scalar to account for the varying

time of arrivals within a time interval. For the entities arriving within an interval

T , this approach scales the probabilities based on the expected total time that ar-

rivals are present in the system. Again, the random variable X follows a Poisson

distribution with rate µ.

Service Estimation Approach #2:

Zi =


Prob(Yi = j) = Prob(X = j) for j = 0, ..., LS − 1

Prob(Yi = j) = 1−
∑

k 6=LS
Prob(Yi = k) for j = LS

Prob(Yi = j) = Prob(X = j)
LST+

∑k=j
k=1 tk

(LS+j)T
T for j = LS + 1, ..., LS + A

(7)

The scalar adjustment used for the new arrivals accounts for the decreasing amount

of time available because the arrivals occur during time interval. The adjustment

factor must be less than one since tj < T . Again, the probabilities are adjusted

accordingly to ensure that the probabilities sum to one.
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2.5.4 Service Estimation - Approach #3: Scaled Service Rates

The third service estimation approach is a blend of the first two approaches while

primarily focusing on scaling the service rate when calculating the associated service

probabilities. For the entities arriving within an interval, this approach scales the

service rates based on expected time of arrival. Based on µ = rt with r expressed in

units of 1
T

at time t, the service rates are a product of the time interval size. Therefore,

a shortened service rate accompanies a shortened time interval in the same proportion.

Again, the X random variable is used for entities in the system at the beginning

of the time interval (LS).

The random variable X
′′
j is defined for entities arriving during time interval j with

adjusted service rate based on expected average time available. This random variable

follows a Poisson distribution such that:

X
′′
j ∼ Poisson(µ

LST+
∑k=j

k=1 tk
(LS+j)T

T ) (8)

Service Estimation Approach #3: The probability density function for service

completions is:

Zi =


Prob(Yi = j) = Prob(X = j) for j = 0, ..., LS − 1

Prob(Yi = j) = 1−
∑

k 6=LS
Prob(Yi = k) for j = LS

Prob(Yi = j) = Prob(X
′′
i = j) for j = LS + 1, ..., LS + A

(9)

2.5.5 Service Estimation - Approach #4: Markov Transitions

This approach for estimating the service probabilities models state transitions

within a time interval as a Markov Chain. A Markov Chain is a Markovian process

whose state space is discrete, while its time domain T may be either continuous or

discrete [5]. This discrete Markov process is memoryless, meaning that the progression

18



though the states within the Markov chain are independent from one another and

thus determined solely by the present state of the process. This discrete process may

then be expressed as X(t), t ∈ T and P [X(tn+1) = j|X(t1) = i1, ..., X(tn) = in] =

P [X(tn+1) = j|X(tn) = in], where t1 < ... < tn < tn+1 for any n > 0 and state j

within the state space. Simply, at each stage, the probabilities for each possible state

in the system is the sum of probabilities of transitioning to that present state times

the probability of being in the former state.

For the M/M/1 queue example, this Markov process progresses through each time

interval using arcs to represent the service quantity (transition to new state) and nodes

as the probability of being in each state, which is the number in the system. The

summation of all possible combinations arriving at a particular state node represents

the probability for a new state transition. The end result of this process produces the

state probabilities at the end of each time interval.

Since arrivals follow an exponential distribution, the expected spacing of the

known number of arrivals within a time interval are uniformly spaced in T
A+1

in-

crements. These time increments are the standard transition points for the Markov

chain for all LS and A combinations. Figure 2 displays an example of an M/M/1

queue time interval where the length of the system is one and two arrivals were gen-

erated (LS = 1, A = 2). The first arrival is assumed at the expected time 1
3
T , and

the second arrival is assumed at expected time 2
3
T . The end result of this transition

process results in the pdf end state probabilities for states 0, 1, 2, and 3. The pdf

probabilities are then used to generate a cdf in which the pseudo-random draw is

compared to generate a new LS system length value for the subsequent time interval.

The issue arises with how to properly handle the residual probability remaining from

the truncated probability tables for each state transition.

Random variable Yi is defined as the probability of transitioning out of system
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Figure 2. Markov Chain Example: M/M/1 queue with LS = 1, A = 2

state i (i.e. service probability). Random variable X
′′′

follows a Poisson distribution

that is adjusted to account for the Markov transition segments within a time interval

such that:

X
′′′ ∼ Poisson( µ

A+1
) (10)

A truncated service probability table is created in each step transition from each

possible states along with its service transitions. Each service probability table has

residual probability calculations from the service states that are not allowed. The

system may only service up to LS +A entities within a full time interval, resulting in

residual probabilities from states (LS +A+ 1) to∞. Because pdf tables must sum to

one, this residual value needs to be redistributed back into the pdf probability table

containing only allowed service states.

This research explores two redistribution techniques for the residual probabilities

for states that are not viable. The first technique includes the extra probability

into the highest service state assuming that if the system could serve more that

it would serve the most possible. The second technique redistributes the residual
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probability as a proportional spread of the pre-calculated state probabilities. The

service state calculations are then normalized to determine what proportion of the

residual probability that it will absorb.

Residual probability redistribution #1 (highest state):

Yi =

 Prob(Yi = j) = Prob(X
′′′

= j) for j = 0, ..., i− 1

Prob(Yi = j) = 1−
∑k=i−1

k=0 Prob(X
′′′

= k) for j = i
(11)

Residual probability redistribution #2 (proportion spread):

Yi =

{
Prob(Yi = j) =

Prob(X
′′′

= j)∑k=i
k=0 Prob(X ′′′ = k)

for j = 0, ..., i (12)

The predetermined system length (LS) and number of arrivals (A) affect the sys-

tem’s progression and the Markov transition structure. Random variable Zj repre-

sents the number of entities serviced within a time sub-interval of T
1+A

. Zj is condi-

tioned on the predetermined LS and A values at the beginning of the interval. This

approach focuses on the probability of transitioning from a state, so the notation for

service probabilities changes to Zi, where the states transition from state i to state

j. Thus, the service probability from transitioning out of a state i and into state j

for each of the Markov stages takes the form:

Zi = Prob(Yi = i− j) (13)

where Yi is sampled from one of the two residual redistribution techniques. These

calculations are repeated for each of A+ 1 stages of the Markov process.

Sj represents the amount of entities remaining at the end of a time interval. The

new system length for the next time interval is equal to the result of the current

state, so LS = Sj. Segments, denoted a, represents a predetermined portion of
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the Markov transition process prior to state calculations. The amount of transition

segments within an interval divides into A + 1 segments so a = {0, ..., A + 1}. The

example shown in Figure 2 has A = 2, so there are A + 1 = 3 segments within

the process. Calculating the probabilities of being in each state at the end of time

segment is important for each step in this process. The Markov process updates state

probabilities (nodes) one segment at a time while considering the prior transitioned

states. This process begins with initializing the beginning state node LS with a

probability of 1 because it is a known set value for each time interval.
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Service Estimation Approach #4:

Initialize Prob(S0 = LS) = 1

Sj =



Prob(Sa = j) =
∑LS+a

i=1 Prob(Sa−1 = i)Prob(Zi = i− j + 1)
for j = 1,...,LS + 1

and a = 1, ..., A− 1

Prob(SA = j) =
∑LS+a

i=1 Prob(Sa−1 = i)Prob(Zi = i− j)
for j = 0,...,LS + A

and a = A

(14)

To obtain a probability distribution of end states based on TOS results, the proba-

bility of system length LS is estimated by a frequency count at the end of the time

intervals.

2.6 Dynamic Bayesian Network (DBN)

The third modeling technique constructs a Dynamic Bayesian Network (DBN)

to serve as a comparison to the other simulation techniques. A Bayesian Network

graphically presents the joint distribution of several random variables. A DBN takes

the form of a direct acyclical graph (DAG) containing a probability distribution table

for each node in the system [13]. That is, all of the edges in the graph contain

direction without the possibility of cycling.

Within the DBN process, calculations update node probability tables using Bayesian

statistics in which prior nodes influence state probabilities through conditioning. Each

node represents a random variable while the arcs connecting nodes indicate the re-

lationship and thus influence between variables. For each step calculation, the prior

(parent) nodes in the network influence the (child) nodes in which they connect. Sim-

ilar to influence diagrams, this network structure maps out relational dependencies

for system entities.

Each node in the network represents a user-defined system state. This definition

of a state node depends on the unique system or characteristic of interest.
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A conditional probability table (CPT) expresses each node for a finite set of mu-

tually exclusive states. The CPT contains probability values for every possible state

and takes the general form:

Prob(Xj|Πj) (15)

where Xj is a random variable for state j and Πj represents all parent nodes to Xj.

Nodes without parents contain their prior probability distributions [17]. A simple

DBN is displayed in Figure 3, which includes the parent random variable A1, along

with its children B1, B2, and B3. To numerically present the network’s joint distri-

bution, the CPT contained in each node must sum to one and contain an exhaustive

list of possible state values.

Figure 3. Dynamic Bayesian Network. (probabilities are omitted)

Subject matter experts (SME) or collected data typically help form the network’s

development and structure [12]. Eliciting all required information from SMEs may

often prove difficult, especially for system with large networks and dependencies. SME

probability elicitation can be subjective and susceptible to cognitive or motivational

bias [9]. Keeney states that a common issue with elicitation from experts concerns the

feasibility of the elicitation process. For the elicitation process to produce meaningful

output, SMEs should be properly trained in the elicitation process. For effective

results, the this elicitation process should include: the problem scope, process of SME

selection, multiple SME inputs, proper SME training, lengthy elicitation interviews,
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and extensive documentation [7]. Involving so many factors, SME input may be

infeasible due to the large number of technical estimates that vary among numerous

SMEs in a complex problem scope.

Due to possible issues regarding SME elicitation, probability estimations from

collected data points are preferred when available and feasible. To help properly

observe the true underlying probability distribution, frequency calculations serve as

a means to achieve the estimates. The networks serve as a way to analyze the joint

distribution of variables with their respective dependencies through computationally

effective algorithms.

In the network, if there exists an edge from Xi to Xj, Xi is defined as the parent

of Xj. The set of all parents of Xj is defined as its parent set, denoted by Πj.

Prob(Xi|Πi) represents the conditional probability distribution for the network N

containing the attribute set χ and is defined as follows [10]:

ProbN [χ] = Πn
i=1Prob(Xi|Πi) (16)

In the simple example from Figure 2, the defining probability is:

ProbN [χ] = Π3
i=1Prob(Bi|A1) = Prob(B1|A1)Prob(B2|A1)Prob(B3|A1).

A major benefit of Bayesian Networks comes from the ability to inference. Infer-

ence is the task of computing the probability of each value of a node in a network when

other variables’ values are known [18]. After the completion of all node conditional

probability calculations, an analyst is able to extract different “what-if” analyses,

furthering the network’s usefulness. Since all possible permutations of system nodes

must be computed within the network, the DBN model is often initially very time

consuming and computationally expensive to calculate each unique node dependency

along with its associated probability distribution. Once all of the probabilities are

estimated however, the DBN is extremely useful and may offset the initial computa-
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tional effort since no additional derivations are required for “what-if” analysis. Unlike

simulations, Bayesian Networks do not require replications. The network maintains

the probability distribution for each node, thus allowing the user to update the system

probabilities for desired outcomes or starting states. DBN model formulation must

define all possible system states and node conditioning within the network. Due to

many branches within the network and assumed slow computational run-time, the

DBN may not be considered as a viable modeling technique for complex systems.

For instance, if there exists an arbitrary system that begins with three states and

every node in the system may branch out into three additional states, the amount of

node computations grows at the rate of 3n where n is the amount of steps in the sys-

tem. Even though this is initially computationally expensive, it is possible that it is

still beneficial in the future where multiple “what-if” scenarios are needed. This also

serves in a case requiring reverse inferencing where parent node state probabilities

serve as the subject of interest.

A common method for assessing the underlying distribution of a DBN is through

frequency tables. One of the challenges faced by analysts is how to properly split

continuous variables into discrete bins [11]. The selection for the number of bins

can greatly affect the theorized distribution from the model output. A common

method for choosing these bins is assigning an equal number of cases to each bin

or assigning equal-sized bins. Equal-sized bins may result in CPTs that contain

uninformed probabilities due to missing or scarcity of data, which adds computational

run-time to states that do not affect the model performance or overall outcome. Even

if a discretized bin has insignificant probability of occurrence, the computations are

still conducted with this method of bin definition. The higher number of bins may

help identify the proper distribution but comes at the trade off of computation time.

When determining state probabilities, too many bins may lead to poor model quality
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due to insufficient data contained within each bin of the probability distribution.

Too few bins however, may also limit the model’s ability to represent the probability

distribution as a result of low resolution.

This is not specifically applicable to the discrete M/M/1 queue, but useful for

networks containing continuous probability distributions.

The development of the DBN for the M/M/1 queue example is similar to the

TOS modeling technique. The DBN uses user-defined time intervals however, rather

than generating a pseudo-random number to determine simulated outcomes, the DBN

incorporates all probabilities as the likelihood of taking a particular arc in the network.

If the time interval duration is increased in size, then more events (arrivals or services)

occur within the interval for the same rate. For example, if λ = 1 for time interval

size of T = 1, then λ = 1.5 has the same rate for time interval size of T = 1.5. The

probability of transitioning from a state (number in the system, LS) to another state

is the sum of the probability paths between those states. For example, the probability

to transition from state 1 (LS = 1) to state 2 (LS = 2) is the sum of probabilities of

one arrival with no service completions and two arrivals with one service completion,

and so on. This infinite stream of probabilities may only be calculated for those

feature combinations that have a significant probability within a specified tolerance.

Instead of replications, the DBN calculates and maintains all state probabilities while

progressing through the model. The DBN process has achieved steady state when the

probabilities stabilize between time intervals. The initial starting condition may affect

the time required for these probabilities to stabilize. Once probabilities converge to

steady-state, the end product takes the form of a probability table for the likelihood

of being in each end state.
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2.6.1 DBN Process - Service Estimation Approaches #1 through #3

The service probability estimation approaches are identical to that of the time-

oriented simulation. The most accurate estimation approach for the conditional ser-

vice probabilities will be chosen for DBN model execution, specifically for the gen-

eration of the unique CPTs. As described earlier, the DBN model does not require

replications because it stores all probabilities while continually updating CPTs as the

model progresses. The DBN is an iterative process where it constructs a probability

table for all possible system states.

The process for calculating state probabilities are broken down into four primary

steps: initial, arrivals, services, and end. The inital CPT contains probabilities of be-

ing in each system state (LS) at the beginning of the time step iteration. For example,

if the system is beginning at time t0 while empty and idle, the CPT will have a 1.0

probability of being in state 0 while all other states have probability 0. The arrival

CPT follows a discrete Poisson distribution where probabilities remain constant for

each iteration due to a fixed arrival rate λ that is independent of external entities

or processes. The service CPT however contains variability because this probability

table is dependent on the system state probabilities for both the initial as well as the

arrival CPTs. Since the initial CPT varies per iteration, it causes the service CPT

to vary in possible states. Service probability estimations are most crucial because

they directly affect model results. This process may use any of service estimation

approaches #1 through #3 when deriving the service CPTs. With the initial, arrival,

and service CPTs formed, the DBN process then calculates the end CPT based on the

information prior. The end CPT derivation treats all of the inputs (initial, arrivals,

and service CPTs) as independent, resulting in a simple multiplication of CPT state

combinations. For instance, there are multiple ways to end in state 0 which include

(initial state=0, arrivals=0, services=0) or (initial state=0, arrivals=1, services=1).
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All possible combinations have associated probabilities and summed together to up-

date its respective end state. The end CPT then serves as the initial CPT for the

next iteration in the DBN process. This iterative process continues until system state

probabilities converge to steady-state values. A user-defined convergence tolerance

level serves as the model termination criteria, which may change due to system speci-

fications. A relatively small convergence tolerance threshold is highly encouraged but

may require more computational run-time.

Figure 4. Dynamic Bayesian Network Process Flow: Approaches #1 - #3 (probabilities
displayed are not calculated and intended for process demonstration only)

2.6.2 DBN Process - Service Estimation Approach #4 (Markov Tran-

sitions)

Implementation of the service estimation approach #4 within the DBN process is

nearly identical to approaches #1 through #3 but embeds the service distributions

into the Markov transitions. The primary difference of this approach emerges with

the structure of the Markov transition process. Each Markov transition accounts

for the service rates, combining the service CPT and end CPT together within the

transition steps of a time interval. Figure 5 highlights these details for the DBN
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process as the service and end state CPTs exist simultaneously within the Markov

transition process.

Figure 5. Dynamic Bayesian Network Process Flow: Approach 4 (probabilities dis-
played are not calculated and intended for process demonstration only)

To obtain a probability distribution of end states, the probability of system length

LS is simply derived directly from the final end probability distribution due to the

unique processing of the DBN model.

2.7 Model Comparisons

The system example using an M/M/1 queue is beneficial to this research be-

cause this discrete system is well researched, containing theoretical steady-state val-

ues which serve as a baseline to calculate overall model accuracy. Comparing model

output to the system’s theoretical state value produces an error value which then

serves as a quantifiable metric to assess the model’s accuracy and precision. The

system characteristic of interest is the system length (LS) and thus defines states

in the model. The outputs include mean and variance calculations, where theoreti-
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cal steady-state mean is represented as ρ
1−ρ and theoretical steady-state variance as

ρ
(1−ρ)2 .

From queueing theory, the length of the system, LS, depicted at steady-state

LS = ρ
1−ρ , where ρ = λ

µ
, serves as the primary system metric of interest. Each

modeling technique uses the system state definition as discrete counts of LS. A

probability table of possible state values may be produced from each technique’s

results. Table 2 shows the different approach for calculating the average end state

probabilities.

Table 2. Probability of M/M/1 System Length Estimation

DES Percent of simulated time
TOS Relative frequency
DBN Final probability upon convergence

The sum product of the state values times their associated probabilities produces

an estimate for the steady-state length in the system LS. Each modeling technique

contains unique characteristics that may affect the model’s accuracy. Table 3 illus-

trates possible factors that may affect the model’s development and performance.

First, the beginning state of the system is important to consider because as λ

and µ rates increase, the model run time may also need to increase to ensure that

the modeled system reaches steady-state behavior. In this research, each model will

begin empty and idle without a warm up period, meaning that the modeled system

will begin on time t0 with zero entities in both the queue and server. The amount

of replications is also considered for both simulation techniques because they utilize

pseudo-random numbers, causing each replication to contain a unique set of outputs.

The DBN model however, does not require replications as it is a single pass through

the model. The DBN terminates execution when the state probabilities between time

intervals converge within a specified convergence tolerance level.

All of the models have to handle probability table truncation due to disallowed
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combinations between the system state and amount of possible services. Each service

estimation approach addresses this probability distribution truncation. Finally, the

time interval size affects both TOS and DBN models. As the time interval size

duration increases, the likelihood of multiple events occurring during that time also

increases. This has the possibility to cause increased variation in the results due to a

higher amount of events occurring simultaneously.

Table 3. M/M/1 Queue Characteristics

Conditions DES TOS DBN
Beginning State X X X

Replications X X n/a
Convergence Tolerance n/a n/a X

Truncation Amount X X X
Time Interval Size n/a X X

Each model results in a table representing the overall probability of being in a

particular state. For DES, the percent of time of being in each state determines the

probability of states. For the TOS, the relative frequencies of system states within the

duration of the model estimates the overall end state probability distribution. Since

the simulation techniques require replications, the final step calculates state frequen-

cies from a matrix containing all stored values for state counts across replications.

Conducting the frequency calculations in the final step helps reduce rounding error

that may be present when compared to taking the average of averages. The end state

probability distribution output from the DBN model is extracted directly from the

end CPT upon model convergence.
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III. Results and Analysis

3.1 Model Development

Python 3.6.5 serves as the primary coding platform for each modeling technique.

Model execution uses a Windows 10 computer with 16GB of physical memory and an

Intel i7-8550U CPU @ 1.80GHz. The DES model uses SimPy 3.0.11, which is a free-

to-use python module published under The MIT Licence. SimPy is a simple discrete-

event simulation framework that utilizes python’s base computing environment. Both

TOS and DBN models also execute python code, developing from the ground up for

this research. Aggregating all models into one master python file enhances usability

and also consolidates each model’s output between runs.

Since the DES model did not require a service probability estimation, this model

did not require different versions of development. The TOS model however, requires

many versions to test and analyze each service estimation approach along with calcu-

lating the lower and upper bounds. TOS model development was an iterative process

where each service estimation approach was an evolution from the one prior. The

theoretical mean was used to determine the accuracy of each approach. Verification

includes analyzing the amount of simulated arrivals and services within each time

interval while ensuring that the overall expected behavior is proper. For instance, if

λ = 0.1, then 10 total arrivals are expected in 100 time intervals. The service estima-

tion approaches use the TOS modeling technique for development. The DBN then

adopts the most appropriate technique based on accuracy. Since both TOS and DBN

models utilize the same service estimation approach, both are expected to produce

similar accuracy.
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3.2 Service Estimations

With the exception of service estimation approach #4, Markov transitions, each

approach is an evolution of the one prior. Initial test model runs considering the

first three approaches appears to estimate the services generations well. The results

of additional test cases with varying λ and µ values indicate that the overall TOS

models were estimating service states poorly, in particular cases. Cases where the

inter-arrival are very small, the estimation approaches are seldom used. As the ar-

rival rates increases, the service completion approximations are used more frequently.

The results indicate that the estimation approaches did not capture the true char-

acteristic of the M/M/1 queue system. Table 4 shows two sample cases and each

approach’s estimate of the steady-state theoretical mean of LS. Out of these three

estimation approaches, approach #3 appears to be the most consistent in estimating

the steady-state mean. The second case with λ = 4 has more arrivals per interval,

Table 4. Service Estimation - Mean Comparison (Two Sample Cases)

Case λ = 0.1 and µ = 0.4 Case λ = 1 and µ = 4
TOS App

#1
App
#2

App
#3

App
#1

App
#2

App
#3

Calculated
Mean

0.353 0.349 0.343 1.060 0.908 0.746

Theoretical
Mean

0.333 0.333 0.333 0.333 0.333 0.333

* 2000 time intervals, time interval size 1

and hence, used the service completion approximations more frequently. All three of

these approaches served too few of the arrivals within an interval, which results in

the calculated mean of the number in the system LS to be too high.

Understanding that there still exists error in the first three service estimations, the

development of a fourth approach begins which involves treating each time interval as

a Markov transition process. This Markov process takes in consideration all possible
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service states as well as feasible end states, which are all conditioned on the status of

the system (LS and A) for that time interval.

Considering calculations of service probabilities, there exists an issue with trun-

cated probability distributions due to disallowed service amounts. The probabilities

for possible service amounts must sum to one within each Markov transition. After

service probability calculations for allowed service states, there still exists a residual

probability amount which requires redistribution among the possible service states.

The first theory includes the residual probability into the highest service state. For

instance, if the service probability table contains service states 0, 1, and 2, then ser-

vice state 2 receives the remaining residual probability amount, which ensure that

the probabilities sum to one. The second theory redistributes the residual probability

proportionally into the state values. Table 5 displays two sample outputs with service

estimation approach #4 for each residual probability redistribution technique. While

not perfect, each of the techniques performed fairly well when considering model out-

put compared to theoretical steady-state values. The first technique, where the last

state receives the remaining probability, is less accurate as the service rate parameter

increases.

Table 5. Residual Probability Comparison (Sample Cases using Markov transitions)

Case λ = 0.1 and µ = 0.4 Case λ = 1 and µ = 4
TOS Include

in Last
State

Proportional
Spread

Include
in Last
State

Proportional
Spread

Calculated
Mean

0.338 0.367 0.240 0.309

Theoretical
Mean

0.333 0.333 0.333 0.333

* 2000 time intervals, time interval size 1
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3.3 Model Accuracy

For each unique combination of λ and µ, accuracy measures the error value when

comparing the output mean and variance to their respective theoretical steady-state

values. Here, ρ
1−ρ represents the theoretical steady-state mean and ρ

(1−ρ)2 as theo-

retical variance, where ρ = λ
µ
. To analyze each modeling technique under different

conditions, parameters are varied to help identify true model performance. These pa-

rameters include λ, µ, replications, number of entity generations (arrivals), amount of

time intervals, time interval duration size, and convergence tolerances. Table 6 indi-

cates which modeling technique is influenced by each parameter. All models execute

with adequate duration which ensures that each model properly obtains steady-state

characteristics.

Table 6. Varied Parameters by Modeling Technique

DES TOS DBN
λ / µ X X X

Replications X X n/a
Number of Entities (Arrivals) X n/a n/a
Amount of Time Intervals n/a X n/a

Time Interval Size n/a X X
Convergence Tolerance n/a n/a X

Figure 6 displays 32 unique cases where the bars represent a modeling technique

compared to the theoretical mean values. The x-axis in this graph displays each

unique λ and µ pairing with increasing magnitudes of the parameters. At first glance,

it appears that each technique is modeling the system adequately with each bar closely

following the theoretical mean trend line. While it appears small, closer inspection

shows that there exists a small gap between the calculated bars versus the theoretical

line in some cases.

The results for the same 32 test cases are presented as the percent difference of

the theoretical steady-state number in system LS minus the calculated mean value.
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Figure 6. Model Calculated Mean Versus Theoretical Mean

This view scales the error values between each model while adjusting accordingly to

the magnitude of the outputs. For example, there is a distinct difference in the error

between 0.4 and 0.5 compared to 4.9 and 5.0. While both of these contain a raw dif-

ference of 0.1, the proportion of the error is an important factor when assessing model

accuracy. Figure 7 displays the same test cases with the model error as a percent

difference from the theoretical mean. In Figure 7, a negative value indicates that the

calculated mean is lower than the theoretical mean, i.e. indicating that the model

generates too many services and thus resulting in a mean value that is too low. The

modeling error, whether high or low, is a function of the service completion approxi-

mations for entities arriving during an interval. Those approximations on the number

of arrivals completing service during an interval occurs more often with a higher rate

of service. However, the approximations are applied more often with a higher ar-

rival rate. The services specifically drive model output because this is the portion

within the TOS and DBN modeling techniques that uses the estimation approaches,

which depends on other internal factors. The arrival probability distribution does

not change with model progression because it is independent of modeling factors and

states. The inter-arrival rate λ dictates the arrival probability derivations.
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For the data shown in Figure 7, a linear regression line can also be properly

fit to the data that is significant at the 95% confidence level. This best fit line

utilizes service rate µ parameter as the regression’s independent variable, and the

proportion difference error value as the dependent variable. The resulting best fit

line is: error = 0.0188− 0.0141 ∗ µ, which indicates that as the service rate increases

the model error becomes more negative. The increasing error in the negative direction

expects to follow the linear trend of the fitted regression line. A fairly easy way to

combat this error is to decrease the time interval size because it directly scales the

model parameters.

Figure 7. Model Error - Percent Difference from Theoretical Mean

Further exploring model errors includes analyzing the calculated end state prob-

abilities for each modeling technique. Generally, the DES models contain small error

values since it represents the system fairly accurately. The system’s true end state

probability distribution should closely mirror the DES model output. Since there

does not exist a true theoretical distribution of the M/M/1 states for comparison,

the DES state probabilities serves as a baseline when analyzing the other modeling
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techniques. In a specific case using λ = 2 and µ = 8 shown in Figure 8, the TOS

and DBN state 0 probabilities appear to be slightly high while the state 1 probabili-

ties are low. These state probabilities cause the overall mean value to be lower than

the theoretical mean, again assuming that the DES output is closest to the desired

distribution.

Figure 8. State Probability Distribution (λ = 2, µ = 8)

To ensure that results are both tractable and comparable, each model executes un-

der proper conditions. That is, each modeling technique requires proper conditions

to allow the system to reach steady-state probabilities. DES requires an adequate

amount of generated model entities, TOS requires an adequate amount of time in-

tervals, and DBN requires a proper convergence tolerance. Each of these factors will

individually affect the models abilities to produce accurate results. This highlights

the issue of initialization bias because each model begins with an empty and idle

system. Since the M/M/1 queue does not have a known steady-state probability

distribution, the DES, as the most accurate approach, serves as the baseline for com-

parison. Again, the DES model best estimates the steady-state mean, so it serves as
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the baseline.

Since the TOS model’s termination criteria is the amount of specified time inter-

vals to simulate, this factor may possibly contribute to model error. A model run

must be long enough to adequately reach steady-state characteristics. Figure 9 dis-

plays the TOS model with Markov transitions to estimate service probabilities for

the system containing λ = 2 and µ = 8. Consistent results with varied time interval

amounts indicate that initialization bias does not contribute to the model’s error. The

state probabilities are unchanged among the differing run lengths, illustrating that

initialization bias from an inadequate amount of time intervals does not attribute to

model error.

Figure 9. TOS Initialization Bias (λ = 2, µ = 8)

An initialization bias analysis may also affect the DBN model output. The varied

parameter of interest for the DBN model is convergence tolerance, which affects the

point at which the model terminates. The DBN output in Figure 10 also indicates

that the model parameters do not attribute to model error. Since both TOS and

DBN models have nearly identical output, the analysis concludes that the model

errors most likely result from service estimations because both models share the same

approximation of the embedded Markov Process.
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Figure 10. DBN Initialization Bias (λ = 2, µ = 8)

3.4 Model Run-Time

An additional measure to compare the modeling techniques is to assess computa-

tional run-time. This requires a basic assumption for each model because they are

each affected by separate termination criteria. To terminate a model, the total num-

ber of specified entity generations affects DES while the amount of simulated time

intervals affects TOS. The DBN model’s run length is dependent on a user-defined

tolerance level for end state probability convergence. Due to difficulty in properly

scaling each of these factors to a similar magnitude, each model stopping criteria is

set to a constant number of entities so that the rune-time values are adequate for all

cases.

The DES model consistently has the quickest run-time among the modeling tech-

niques. Each instance of this model generates 5000 entities at 30 replications and

is unaffected by the varied λ and µ parameters. For DES, the model parameters

do not affect run-time generation of 5000 entities. Model entity arrival and service

times each follow an exponential distribution with their associated rate parameters.

The higher parameter values do not affect the DES model’s total amount of required

computations, but do increase the simulated time.
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Figure 11. Model Run-Time (DES: 5000 entities, TOS: 2000 time intervals, DBN:
0.00001 tolerance)

The TOS model was among the slowest techniques while executing a simulation

consisting of 2000 time intervals with a time interval length of one and 30 replica-

tions. This model’s run-time varies around 0.8-1.1 minutes for each unique test case.

A possible explanation for this technique’s relatively poor run-time results may be

due to the model’s construction. The model requires a loop through each of the 2000

time intervals while evaluating probabilities and pseudo-random draws within each

interval. In an attempt to increase code efficiency, each unique probability distri-

bution calculates once and then stored in a matrix for future reference. Figure 11

indicates that there exists a gradual upward trend in run-time as the system param-

eters increase. The analysis expects this behavior because as the λ and µ parameters

increase, the higher the chance of multiple occurrences within the same time inter-

val. Increased rate parameters creates more variability, but also higher amount of

probability calculations due to an increasing length of possible state values.

The DBN model’s stopping criteria is a fixed probability convergence tolerance

of 0.00001. This value is set small enough to ensure that the probabilities reached a

steady-state value without the chance of coincidence. For small system parameters,

this model performs similar to that of DES. As the system parameters increase, the
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run-time also increases due to longer probability tables. This technique calculates

separate probability distributions for the start state, arrivals, services, and end states.

To determine the end state distribution within each time interval, the model evaluates

the probability tables and retains all possible combinations between states. Large λ

and µ values result in long probability tables for all possible states, requiring more

computations in each step iteration for the Bayesian network process. This higher

amount of possible state values implies that the amount of state computations also

increases.

There exist scenarios when time-oriented simulations are preferred over discrete-

event simulations. Specifically, combat and agent-based modeling techniques use a

time-series progression. A specific example of such a situation is if a manufactur-

ing plant is trying to assess a system’s state at any given time. Even though rates

and output numbers are known, the entire system requires analysis to ensure that

each section is running optimally. A discrete-event approach may produce the overall

behavior of the system while a time-oriented approach may provide additional behav-

ioral detail to a specified level of aggregation. Under certain conditions, a DBN model

may serve as an adequate alternative to the TOS approach. The DBN model also has

the strengths of reverse inferencing for further system exploration because all of the

possible state probabilities have been calculated and stored after model execution.

43



IV. Conclusion

4.1 Summary

This research explores the development and execution of three separate modeling

techniques. The three models of interest include a discrete-event simulation, time-

oriented simulation, and a dynamic Bayesian network. Each modeling technique has

its own definition and method of execution to estimate system outcomes.

The DES model is an object-oriented approach where the generation of system

objects trigger model progression. This implies that the DES model has unique ran-

dom outcomes and require enough system entities as well as replications to properly

estimate steady-state values.

The TOS model is a time series approach with fixed intervals in which probabili-

ties of system states are estimated within each time interval of the model progression.

A pseudo-random draw compares to a state probability distribution, which in turn

determines the system state within each interval. This process in the TOS model con-

tinues for a user-specified amount of time intervals. Similar to DES, the TOS model

also contains unique outcomes and requires an adequate amount of time intervals and

replications to properly estimate system steady-state behavior.

The last model is the DBN, which also utilizes fixed-width time intervals similar

to TOS. The DBN model however, does not utilize a random draw to determine state

values but rather maintains all state probabilities and updates the distribution based

on the time interval prior. The DBN process executes until the state probabilities

converge within a user-defined tolerance level and thus does not require replication.

To compare modeling techniques, an M/M/1 Queue example is chosen because it

is a discrete system that has closed-form theoretical steady-state values for system

behavior. Each model defines system state as the amount of entities in the system
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(LS). The steady-state values serve as a baseline for model comparison of accuracy.

During model development, analysis reveals that the TOS and DBN models re-

quire service probability estimation for arrivals during time intervals. This service

estimation is necessary because though there is a known mean service rate (µ), the

amount of services are dependent on the current system state. In any given time

interval, the system cannot serve more entities than currently exist. This creates a

situation with truncated probability distributions. Since exact time of arrivals are

unknown, each arrival generation requires an assumption to arrive in the system at

its expected time. This arrival assumption leads to the development of four different

service estimation approaches. The fourth approach treats the progression through a

time interval as Markovian transitions with an assumed time for each arrival. Among

all service estimation approaches, the fourth approach produced the most accurate

and consistent results when modeling average system length.

Among the three modeling techniques, the DES model consistently outperforms

the others in both accuracy and run-time. The DES has the lowest calculated error

when modeling average length of the system and was also the quickest to execute when

considering computation time. The TOS and DBN models have similar accuracy

results because they were both using the same service estimation technique. As

rate parameters or time interval size increase, the TOS and DBN models continue

to underestimate the average length of the system. In cases where the calculated

average system lengths are lower than their theoretical values, this indicates that the

service estimation approaches are generating too many services for the entities arriving

within the time interval. Especially when the rate parameters or time interval sizes

are small, the DBN model executes quicker than the TOS model. In a correct set of

circumstances, if a system requires a time step approach, a DBN model may serve as

an appropriate alternative to simulation. The results of this research demonstrate that
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a Bayesian Network can produce a distribution of outcomes similar to the distribution

from multiple replications of simulations.

4.2 Future Research

This research may serve as a baseline for further development and refining of each

of these modeling techniques. The service probability estimations have error in the

formulation, especially when rate values increase. This is an area that may be further

developed to improve on the estimation approach. These models may also be im-

plemented using different systems, mainly other queueing models containing multiple

servers and possibly different arrival and service distributions. A major benefit of

Bayesian networks is the possibility for inferencing. Once a DBN model is computed,

the state probabilities are stored, thus having the ability to be used in different what-

if scenarios without executing a new instance of the model. Further research may

benefit from exploring Bayesian inferencing further for additional insights and overall

usefulness.

Further development of the DBN model may be devised to represent a system

with continuous distributions. An example of such an application may be to develop

the DBN for reliability models to assess some component’s expected lifetime and

mean time to failure. The adaptation to continuous cases gives rise to the need to

evaluate distributions. One focus may be to assess the trade-off between using fixed-

width bins versus fixed-probability bins when evaluating continuous distributions. In

complex systems, DBNs are often initially computationally expensive because they

calculate all possible permutations of system states. Using fixed-width bins has the

possibility to use computational power on the distribution tails, even for insignificant

probability. Implementation of fixed-width bins may help improve DBN execution

time while preserving model accuracy.
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Appendix A. Python Code

1 ' ' '==================================================================== ' ' '

2 ' ' ' ' ' ' ' ' ' Capt Aaron Sa lazar ' ' ' ' ' ' ' ' '

3 ' ' ' ' ' ' ' ' ' M/M/1 Queue ' ' ' ' ' ' ' ' '

4 ' ' ' Master code conta in ing a l l models − DES, TOS, DBN ' ' '

5 ' ' 'TOS and DBN s e r v i c e e s t imat ion based on approach #4 (Markov Process ) ' ' '

6 ' ' '==================================================================== ' ' '

7

8 ' ' ' Residual s e r v i c e probs with in markov proce s s i s spread p r o p o r t i o n a l l y ' ' '

9

10 #Library −− C:\ Users\Aaron\Desktop\Thes is

11

12 ####################################################################

13 ####### Required Packages and Parameter D e f i n i t i o n s #######

14 ####################################################################

15 import random

16 import simpy #SimPy 3 .0

17 import pandas as pd

18 import numpy as np

19 from sc ipy . s t a t s import po i s son

20 import t ime i t

21

22 m o d e l l i s t = [ ”DBN” ] # inputs : [ ”DES” ,”TOS” ,”DBN” ]

23

24 ou tput de c i s i on = 'No ' # ' Yes ' or 'No ' i f we want to output ex c e l f i l e

25 o u t f i l e = ” master output markov ( p ropo r t i ona l r e s ) 5 . x l sx ”

26

27 l ambda l i s t = [ . 1 , . 2 5 , . 5 , . 7 5 , . 9 , 1 , 1 . 5 , 2 ]

28 m u m u l t s c a l a r l i s t = [ 2 , 2 . 5 , 3 , 4 ]

29

30 r e p l i c a t i o n s = 30 # DES and TOS

31

32 NUM CUSTOMERS = 5000 # DES ONLY − Total number o f customers

33

34 time end = 2000 # TOS ONLY − Total time

35 s t e p s i z e = 1 # TOS and DBN

36

37 conv to l = 0.000001 # DBN ONLY

38

39 n=0

40 ####################################################################

41 ####################################################################

42

43 f o r model in range ( l en ( m o d e l l i s t ) ) : #run the models s p e c i f i e d

44

45 i f m o d e l l i s t [ model ] == ”DES” :

46 ' ' '#######################################################################' ' '

47 ' ' '################## Discrete−Event Simulat ion (DES) ##################' ' '

48 ' ' '#######################################################################' ' '

49 mean l i s t = [ ]

50 v a r l i s t = [ ]

51 my lambda l i s t = [ ]

52 my mu list = [ ]
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53 t h e o r e t i c a l m e a n l i s t = [ ]

54 t h e o r e t i c a l v a r l i s t = [ ]

55 r a w d i f f l i s t = [ ]

56 a b s d i f f l i s t = [ ]

57 p r o p o r t i o n d i f f l i s t = [ ]

58 o v e r a l l s y s s i z e l i s t = [ ]

59 s t a t e p r o b s l i s t = [ ]

60 r u n t i m e l i s t = [ ]

61

62 loop counte r = 0

63 f o r lambda loop in range ( l en ( l ambda l i s t ) ) :

64 f o r mu loop in range ( l en ( m u m u l t s c a l a r l i s t ) ) :

65

66 s t a r t t i m e r = t ime i t . d e f a u l t t i m e r ( )

67 loop counte r += 1 #used to pr in t loop counter whi le running code

68

69 f o r r in range ( r e p l i c a t i o n s ) : #amount o f r e p l i c a t i o n s

70

71 RANDOM SEED = random . seed (5 ,95)

72 n = 0 #drop f i r s t 'n ' obse rva t i on s to delay record keeping f o r each i t e r a t i o n

73 my lambda = lambda l i s t [ lambda loop ]

74 my mu = my lambda∗ m u m u l t s c a l a r l i s t [ mu loop ]

75 my rho = my lambda/my mu

76 overa l l mean numinsys = my rho/(1−my rho ) #t h e o r e t i c a l mean

77 t h e o r e t i c a l v a r = my rho/((1−my rho )∗(1−my rho ) )

78

79 #i n i t i a l i z e l i s t s to s t o r e l o c a l va lues per r e p l i c a t i o n

80 n u m i n s y s l i s t = [ ]

81

82 queue time stamps = [ ]

83

84 de f source ( env , number , i n t e rva l , counter , mu) :

85 ' ' ' Source gene ra t e s customers randomly ' ' '

86 f o r i in range ( number ) :

87 c = customer ( env , ' Customer%02d ' % i , counter , s e r v i c e t i m e=random .

expovar ia te (mu) )

88 env . p roce s s ( c )

89 t = random . expovar ia te ( i n t e r v a l )

90 y i e l d env . timeout ( t )

91

92 de f customer ( env , name , counter , s e r v i c e t i m e ) :

93 ' ' ' Customer a r r i v e s , i s served and l eave ' ' '

94 #a r r i v e = env . now

95 #pr in t ( '%7.4 f %s : Arr ived ' % ( ar r ive , name) )

96

97 with counter . r eques t ( ) as req :

98 y i e l d req

99 #wait = ( env . now − a r r i v e )

100 # We got to the counter

101 #pr in t ( '%7.4 f %s : Waited %6.3 f ' % ( env . now , name , wait ) )

102 svc = s e r v i c e t i m e

103 y i e l d env . timeout ( svc )

104 #pr in t ( '%7.4 f %s : Fin i shed ' % ( env . now , name) )

105
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106 n u m i n s y s l i s t . append ( l en ( counter . queue )+len ( counter . u s e r s ) )

107 queue time stamps . append ( env . now)

108

109 # Setup and s t a r t the s imu lat i on

110 random . seed (RANDOM SEED)

111 env = simpy . Environment ( )

112 # Star t p r o c e s s e s and run

113 counter = simpy . Resource ( env , capac i ty =1)

114 env . p roce s s ( source ( env , NUM CUSTOMERS, my lambda , counter , my mu) )

115 env . run ( )

116

117 average num in sys = sum( n u m i n s y s l i s t [ n : ] ) / l en ( n u m i n s y s l i s t [ n : ] )

118 o v e r a l l s y s s i z e l i s t . append ( average num in sys )

119

120 ' ' ' ' ' ' ' ' ' Tal ly exact amount o f time in each system−s t a t e ' ' ' ' ' ' ' ' '

121 s y s i n f o = pd . DataFrame({ 'Time ' : queue time stamps , ' System Length ' :

n u m i n s y s l i s t })

122 max size = max( s y s i n f o [ ' System Length ' ] )

123

124 #i n i t i a l i z e prob tab l e up to the max number generated in the system

125 t i m e i n s t a t e s = [ ]

126 f o r i in range ( max size +1) :

127 t i m e i n s t a t e s . append (0)

128

129 ### t a l l y t imes per s t a t e

130 f o r i in range ( l en ( s y s i n f o ) ) :

131 i f i != 0 :

132 temp state = s y s i n f o . i l o c [ i , 1 ]

133 t i m e i n s t a t e s [ temp state ] += s y s i n f o . i l o c [ i , 0 ] − s y s i n f o . i l o c [ i

−1 ,0]

134 s y s i n f o s t a t e t i m e s d f = pd . DataFrame({ ' System Length Rep%s ' % r :

t i m e i n s t a t e s })

135

136 ### save counts in each i t e r a t i o n

137 i f r == 0 :

138 o v e r a l l s y s s t a t e c o u n t s = s y s i n f o s t a t e t i m e s d f

139 e l s e :

140 o v e r a l l s y s s t a t e c o u n t s = pd . concat ( [ o v e r a l l s y s s t a t e c o u n t s ,

s y s i n f o s t a t e t i m e s d f ] , ax i s =1)

141

142 ### rep l a c e nan ' s with 0 ( nan ' s happen because o f varying s t a t e l eng ths

between reps )

143 f o r row in range ( l en ( o v e r a l l s y s s t a t e c o u n t s ) ) :

144 f o r c o l in range ( l en ( o v e r a l l s y s s t a t e c o u n t s . columns ) ) :

145 i f np . i snan ( o v e r a l l s y s s t a t e c o u n t s . i l o c [ row , c o l ] ) == True :

146 o v e r a l l s y s s t a t e c o u n t s . i l o c [ row , c o l ] = 0

147

148 ### convert counts to p r o b a b i l i t i e s

149 f o r c o l in range ( l en ( o v e r a l l s y s s t a t e c o u n t s . columns ) ) :

150 p rob t emp l i s t = [ ]

151 c o l t o t a l = sum( o v e r a l l s y s s t a t e c o u n t s . i l o c [ : , c o l ] )

152 f o r row in range ( l en ( o v e r a l l s y s s t a t e c o u n t s ) ) :

153 p rob t emp l i s t . append ( o v e r a l l s y s s t a t e c o u n t s . i l o c [ row , c o l ] / c o l t o t a l

)
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154

155 end probs = pd . DataFrame({ ' State Probs Rep%s ' % co l : p r ob t emp l i s t })

156

157 i f c o l == 0 :

158 end probs d f = end probs

159 e l s e :

160 end probs d f = pd . concat ( [ end probs df , end probs ] , ax i s =1)

161

162 ### c a l c u l a t e o v e r a l l probs by averag ing each row ac ro s s the columns

163 f i n a l p r o b l i s t = [ ]

164 f o r row in range ( l en ( o v e r a l l s y s s t a t e c o u n t s ) ) :

165 row tota l temp = sum( o v e r a l l s y s s t a t e c o u n t s . i l o c [ row , : ] )

166 temp prob = row tota l temp /sum( o v e r a l l s y s s t a t e c o u n t s . sum ( ) ) #prob i s

rowtota l / t o t a l o f e n t i r e d a t a f r a m e

167 f i n a l p r o b l i s t . append ( temp prob )

168

169 #s t a t e l i s t

170 s t a t e l i s t = [ ]

171 f o r i in range ( l en ( f i n a l p r o b l i s t ) ) :

172 s t a t e l i s t . append ( i )

173

174 f i n a l p r o b d f = pd . DataFrame({ ' State ' : s t a t e l i s t , ' Prob ' : f i n a l p r o b l i s t })

175

176 #i f r % 10 == 0 :

177 # pr in t (”DES rep : ” , r , ” out o f ” , r e p l i c a t i o n s )

178

179 ##### Calcu la te system s t a t s #####

180 ## expected value and s t a t e l i s t s used in dataframe

181 mean=0

182 f o r i in range ( l en ( f i n a l p r o b l i s t ) ) :

183 mean += i ∗ f i n a l p r o b l i s t [ i ]

184 ## var iance

185 var=0

186 f o r i in range ( l en ( f i n a l p r o b l i s t ) ) :

187 var += ( i−mean) ∗( i−mean) ∗ f i n a l p r o b l i s t [ i ]

188

189 r a w d i f f = mean−overa l l mean numinsys

190 a b s d i f f = abs ( r a w d i f f )

191 p r o p o r t i o n d i f f = r a w d i f f / overa l l mean numinsys

192 s top t imer = t ime i t . d e f a u l t t i m e r ( )

193

194 #append a l l o f the l i s t s to c o l l e c t data in each i t e r a t i o n

195 mean l i s t . append (mean)

196 v a r l i s t . append ( var )

197 my lambda l i s t . append ( my lambda )

198 my mu list . append (my mu)

199 t h e o r e t i c a l m e a n l i s t . append ( overa l l mean numinsys )

200 t h e o r e t i c a l v a r l i s t . append ( t h e o r e t i c a l v a r )

201 r a w d i f f l i s t . append ( r a w d i f f )

202 a b s d i f f l i s t . append ( a b s d i f f )

203 p r o p o r t i o n d i f f l i s t . append ( p r o p o r t i o n d i f f )

204 s t a t e p r o b s l i s t . append ( f i n a l p r o b l i s t )

205 r u n t i m e l i s t . append ( ( stop t imer−s t a r t t i m e r ) /60)

206
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207 pr in t ( ”DES loop ” , l oop counte r )

208

209 s t a t e p r o b s d f = pd . DataFrame ( s t a t e p r o b s l i s t )

210 DES system output = pd . DataFrame({”Mean” : mean l i s t , ” Theoret ical Mean ” :

t h e o r e t i c a l m e a n l i s t , ”Var” : v a r l i s t , ” Theore t i ca l Var ” : t h e o r e t i c a l v a r l i s t , ”Lambda” :

my lambda l ist , ”Mu” : my mu list , ”Raw D i f f ” : r a w d i f f l i s t , ”Abs D i f f ” : a b s d i f f l i s t , ”Run Time (

min ) ” : r u n t i m e l i s t , ” Proport ion D i f f ” : p r o p o r t i o n d i f f l i s t })

211 DES system output = pd . concat ( [ DES system output , s t a t e p r o b s d f ] , ax i s =1)

212 pr in t ( ”DES Complete ! ” )

213

214

215 i f m o d e l l i s t [ model ] == ”TOS” :

216 ' ' '#######################################################################' ' '

217 ' ' '########## Time−Oriented Simulat ion (TOS) − Markov Process ###########' ' '

218 ' ' '#######################################################################' ' '

219 random . seed (53)

220 mean l i s t = [ ]

221 v a r l i s t = [ ]

222 my lambda l i s t = [ ]

223 my mu list = [ ]

224 t h e o r e t i c a l m e a n l i s t = [ ]

225 t h e o r e t i c a l v a r l i s t = [ ]

226 r a w d i f f l i s t = [ ]

227 a b s d i f f l i s t = [ ]

228 p r o p o r t i o n d i f f l i s t = [ ]

229 s t a t e p r o b s l i s t = [ ]

230 r u n t i m e l i s t = [ ]

231

232 loop counte r = 0

233 f o r lambda loop in range ( l en ( l ambda l i s t ) ) :

234 f o r mu loop in range ( l en ( m u m u l t s c a l a r l i s t ) ) :

235 s t a r t t i m e r = t ime i t . d e f a u l t t i m e r ( )

236 loop counte r += 1 #used to pr in t loop counter whi le running code

237 ### NOTE: lambda and mu are dependent on time i n t e r v a l s i z e

238 def ined lambda = lambda l i s t [ lambda loop ]

239 defined mu = def ined lambda ∗ m u m u l t s c a l a r l i s t [ mu loop ]

240 my lambda = def ined lambda ∗ s t e p s i z e

241 my mu = defined mu ∗ s t e p s i z e

242 my rho = my lambda/my mu

243 #o v e r a l l m e a n t h e o r e t i c a l = ( my rho∗my rho )/(1−my rho )

244 overa l l mean numinsys = my rho/(1−my rho )

245 t h e o r e t i c a l v a r = my rho/((1−my rho )∗(1−my rho ) )

246

247 #i n i t i a l i z e time i n t e r v a l s (+1 added f o r index ing purposes but i s not r e ta ined )

248 i f s t r ( s t e p s i z e ) [ : : − 1 ] . f i nd ( ' . ' ) == −1:

249 dec ima l p l ace = 0

250 e l s e :

251 dec ima l p l ace = s t r ( s t e p s i z e ) [ : : − 1 ] . f i nd ( ' . ' )

252

253 t i m e s t e p l i s t = [ x∗ s t e p s i z e f o r x in range (0 , round ( time end / s t e p s i z e ) ) ]

254 t i m e s t e p l i s t = [ round (x , dec ima l p l ace ) f o r x in t i m e s t e p l i s t ] #round to amount

o f decimal p l a c e s from s t e p s i z e

255

256 s e r v i c e p r o b l i s t = [ ]
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257 f o r a r r i v a l l o o p in range (200) :

258 p o i s s o n t e m p l i s t = [ ]

259 f o r i in range (200) :

260 p o i s s o n t e m p l i s t . append ( po i s son . pmf ( i , ( 1 / ( a r r i v a l l o o p +1) ) ∗my mu) )

261 s e r v i c e p r o b l i s t . append ( p o i s s o n t e m p l i s t )

262 s e r v i c e p r o b d f = pd . DataFrame ( s e r v i c e p r o b l i s t )

263

264 ### cdf

265 s e r v i c e c u m p r o b l i s t = [ ]

266 f o r row in range ( l en ( s e r v i c e p r o b d f ) ) :

267 prob l i s t cum = [ ]

268 f o r c o l in range ( l en ( s e r v i c e p r o b d f . columns ) ) : #f i r s t prob i s j u s t the pdf

269 i f c o l == 0 :

270 prob = s e r v i c e p r o b d f . i l o c [ row , c o l ]

271 e l i f c o l == len ( s e r v i c e p r o b d f . columns ) : #l a s t prob i s 1−sum of the

othe r s

272 prob = 1 − sum( s e r v i c e p r o b d f . i l o c [ row , 0 : co l −1])

273 e l s e :

274 prob = s e r v i c e p r o b d f . i l o c [ row , c o l ] + sum( s e r v i c e p r o b d f . i l o c [ row , 0 :

co l −1])

275 prob l i s t cum . append ( prob )

276 s e r v i c e c u m p r o b l i s t . append ( prob l i s t cum )

277 se rv i c e p rob cum df = pd . DataFrame ( s e r v i c e c u m p r o b l i s t )

278

279 row names = [ ]

280 f o r i in range ( l en ( s e rv i c e p rob cum df ) ) :

281 row names . append ( ”A = %s ” %i )

282 col names = [ ]

283 f o r i in range ( l en ( s e rv i c e p rob cum df . columns ) ) :

284 col names . append ( ” Serv = %s ” %i )

285 s e rv i c e p rob cum df . columns = col names

286 se rv i c e p rob cum df . index = row names

287 s e r v i c e p r o b d f . columns = col names

288 s e r v i c e p r o b d f . index = row names

289

290 #i n i t i a l i z e master matrix

291 #This w i l l s t o r e the p r o b a b i l i t i e s l i s t s as they are generated f o r each unique

case

292 t e m p l i s t = [ ]

293 f o r i in range (50) : #c r e a t e s nxn matrix

294 t e m p l i s t . append (0)

295

296 row names = [ ]

297 f o r i in range ( l en ( t e m p l i s t ) ) :

298 row names . append ( ”Ls = %s ”%i )

299 col names = [ ]

300 f o r i in range ( l en ( t e m p l i s t ) ) :

301 col names . append ( ”A = %s ”%i )

302 maste r prob matr ix d f = pd . DataFrame ( columns=col names , index=row names )

303 #chunk prob matrix = pd . DataFrame ( )

304 f o r i in range ( l en ( maste r prob matr ix d f ) ) :

305 f o r j in range ( l en ( maste r prob matr ix d f . columns ) ) :

306 maste r prob matr ix d f . i l o c [ i , j ] = 0

307 maste r prob matr ix d f = master prob matr ix d f . astype ( ' ob j e c t ' )
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308

309 f o r r in range ( r e p l i c a t i o n s ) : #amount o f r e p l i c a t i o n s

310 q u e u e l e n g t h l i s t = [ ]

311 q l en = 0 #i n i t i a l i z e queue length

312 s e r v i c e c a r r y o v e r = 0

313

314 a r r i v a l l i s t = [ ]

315 cum arr iva l = 0

316 c u m a r r i v a l l i s t = [ ]

317 t i m e i n t l i s t = [ ]

318

319 f o r t imes in range ( l en ( t i m e s t e p l i s t ) ) :

320 r v a r r = random . uniform (0 ,1 ) #a r r i v a l

321 r v q l e n = random . uniform (0 ,1 ) #s e r v i c e

322 r v d e c i s i o n = random . uniform (0 ,1 ) #determine i f s e v i c e generated p r i o r to

a r r i v a l

323

324 f i n i s h e d=False

325 a r r l o o p=0

326 whi le not f i n i s h e d :

327 i f r v a r r <= poi s son . cd f ( a r r l oop , my lambda ) :

328 a r r i v a l = a r r l o o p

329 f i n i s h e d=True

330 a r r l o o p+=1

331

332 i f maste r prob matr ix d f . i l o c [ q len , a r r i v a l ] == 0 :

333 #i n i t i a l i z e matrix f o r time chunks

334 t e m p l i s t = [ ]

335 f o r i in range (30) : #c r e a t e s nxn matrix

336 t e m p l i s t . append (0)

337

338 row names = [ ]

339 f o r i in range ( l en ( t e m p l i s t ) ) :

340 row names . append ( ”Time Chunk : %s ”%i )

341 col names = [ ]

342 f o r i in range ( l en ( t e m p l i s t ) ) :

343 col names . append ( ” State = %s ”%i )

344 chunk prob matrix = pd . DataFrame ( columns=col names , index=row names )

345 #chunk prob matrix = pd . DataFrame ( )

346 f o r i in range ( l en ( chunk prob matrix ) ) :

347 f o r j in range ( l en ( chunk prob matrix . columns ) ) :

348 chunk prob matrix . i l o c [ i , j ] = 0

349

350 time chunk = 0

351

352 i f q l en + a r r i v a l == 0 :

353 chunk prob matrix . i l o c [ 0 , 0 ] = 1

354

355 i f q l en > 0 and a r r i v a l == 0 : #hardcode row as 0 because a r r i v a l==0

356 f o r s t a t e in range ( q l en ) :

357 s t a t e +=1 #we want to index (1 to q l en )

358 chunk prob matrix . i l o c [ 0 , s t a t e ] = s e r v i c e p r o b d f . i l o c [ 0 , q len

−s t a t e ]

359 chunk prob matrix . i l o c [ 0 , 0 ] = s e r v i c e p r o b d f . i l o c [ 0 , q l en ]
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360 #chunk prob matrix . i l o c [ 0 , 0 ] = 1 − sum( chunk prob matrix . i l o c

[ 0 , : ] )

361

362 #### propo r t i ona l spread

363 denom = sum( chunk prob matrix . i l o c [ 0 , : ] ) #denominator used f o r

normal ized proport ion

364 r e s i d u a l p r o b = 1 − denom

365

366 stop = 0

367 co l = 0

368 whi le stop == 0 :

369 i f chunk prob matrix . i l o c [ 0 , c o l ] == 0 and chunk prob matrix .

i l o c [ 0 , c o l +1] == 0 :

370 c u t o f f = co l

371 stop = 1

372 co l += 1

373

374 f o r r e s p r ob l oop in range ( c u t o f f ) :

375 chunk prob matrix . i l o c [ 0 , r e s p r ob l oop ] += ( chunk prob matrix .

i l o c [ 0 , r e s p r ob l oop ] / denom) ∗ r e s i d u a l p r o b #add r e s i d u a l to e x i s t i n g prob p r o p o r t i o n a l l y

376

377 i f a r r i v a l > 0 :

378 chunk prob matrix . i l o c [ 1 , 0 ] = 0

379

380 i f q l en == 0 :

381 chunk prob matrix . i l o c [ 1 , 1 ] = 1

382 e l i f q l en > 0 :

383 s t a t e = 2

384 whi le s t a t e <= q l en +1:

385 chunk prob matrix . i l o c [ 1 , s t a t e ] = s e r v i c e p r o b d f . i l o c [

a r r i v a l , q len−s t a t e +1]

386 s t a t e += 1

387 chunk prob matrix . i l o c [ 1 , 1 ] = s e r v i c e p r o b d f . i l o c [ a r r i v a l ,

q l en ]

388 #chunk prob matrix . i l o c [ 1 , 1 ] = 1− sum( chunk prob matrix . i l o c

[ 1 , : ] )

389 #### propo r t i ona l spread

390 denom = sum( chunk prob matrix . i l o c [ 1 , : ] ) #denominator used f o r

normal ized proport ion

391 r e s i d u a l p r o b = 1 − denom

392

393 stop = 0

394 co l = 0

395 whi le stop == 0 :

396 i f chunk prob matrix . i l o c [ 1 , c o l ] == 0 and

chunk prob matrix . i l o c [ 1 , c o l +1] == 0 :

397 c u t o f f = co l

398 stop = 1

399 co l += 1

400

401 f o r r e s p r ob l oop in range ( c u t o f f ) :

402 chunk prob matrix . i l o c [ 1 , r e s p r ob l oop ] += (

chunk prob matrix . i l o c [ 1 , r e s p r ob l oop ] / denom) ∗ r e s i d u a l p r o b #add r e s i d u a l to e x i s t i n g prob

p r o p o r t i o n a l l y
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403

404 i f a r r i v a l != 0 :

405 time chunk = 2

406 whi le time chunk <= a r r i v a l :

407 f o r s t a t e in range (1 , q l en+time chunk ) :

408 #s t a t e+=1 # f i x zero index

409 f o r s e r v i c e s in range ( s t a t e ) :

410 chunk prob matrix . i l o c [ time chunk , s tate−s e r v i c e s +1] =

chunk prob matrix . i l o c [ time chunk , s tate−s e r v i c e s +1] + chunk prob matrix . i l o c [ time chunk−1,

s t a t e ]∗ s e r v i c e p r o b d f . i l o c [ a r r i v a l , s e r v i c e s ]

411 chunk prob matrix . i l o c [ time chunk , 1 ] = s e r v i c e p r o b d f . i l o c [

a r r i v a l , q l en ]

412

413 #### propo r t i ona l spread

414 denom = sum( chunk prob matrix . i l o c [ time chunk , : ] ) #denominator

used f o r normal ized proport ion

415 r e s i d u a l p r o b = 1 − denom

416

417 stop = 0

418 co l = 0

419 whi le stop == 0 :

420 i f chunk prob matrix . i l o c [ time chunk , c o l ] == 0 and

chunk prob matrix . i l o c [ time chunk , c o l +1] == 0 :

421 c u t o f f = co l

422 stop = 1

423 co l += 1

424

425 f o r r e s p r ob l oop in range ( c u t o f f ) :

426 chunk prob matrix . i l o c [ time chunk , r e s p r ob l oop ] += (

chunk prob matrix . i l o c [ time chunk , r e s p r ob l oop ] / denom) ∗ r e s i d u a l p r o b #add r e s i d u a l to

e x i s t i n g prob p r o p o r t i o n a l l y

427

428 time chunk += 1

429

430 f o r s t a t e in range ( q l en+a r r i v a l ) :

431 s t a t e += 1 #f i x zero index

432 f o r s e r v i c e s in range ( s t a t e +1) :

433 chunk prob matrix . i l o c [ a r r i v a l +1, s tate−s e r v i c e s ] =

chunk prob matrix . i l o c [ a r r i v a l +1, s tate−s e r v i c e s ] + chunk prob matrix . i l o c [ a r r i v a l , s t a t e ]∗

s e r v i c e p r o b d f . i l o c [ a r r i v a l , s e r v i c e s ]

434

435 f o r row in range ( l en ( chunk prob matrix ) ) :

436 chunk prob matrix . i l o c [ row , 0 ] = 1−sum( chunk prob matrix . i l o c [

row , 1 : ] )

437

438 stop = 0

439 co l = 0

440 whi le stop == 0 :

441 i f chunk prob matrix . i l o c [ time chunk , c o l ] == 0 and

chunk prob matrix . i l o c [ time chunk , c o l +1] == 0 :

442 c u t o f f = co l

443 stop = 1

444 co l += 1

445
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446 p r o b l i s t = [ ]

447 f o r i in range ( c u t o f f ) :

448 p r o b l i s t . append ( chunk prob matrix . i l o c [ time chunk , i ] )

449

450

451 prob l i s t cum = [ ]

452 f o r i in range ( l en ( p r o b l i s t ) ) :

453 i f i == 0 :

454 prob l i s t cum . append ( p r o b l i s t [ i ] )

455 e l s e :

456 prob l i s t cum . append ( p rob l i s t cum [ i−1]+ p r o b l i s t [ i ] )

457

458 maste r prob matr ix d f . i l o c [ q len , a r r i v a l ] = prob l i s t cum

459

460 prob l i s t cum = master prob matr ix d f . i l o c [ q len , a r r i v a l ]

461 ' ' ' generate s e r v i c e s based on pseudo−random number ' ' '

462 f i n i s h e d=False

463 j=0

464 whi le not f i n i s h e d :

465 i f r v q l e n <= prob l i s t cum [ j ] :

466 q l en = j

467 f i n i s h e d=True

468 j+=1

469

470 a r r i v a l l i s t . append ( a r r i v a l )

471

472 q u e u e l e n g t h l i s t . append ( q l en )

473

474 arr iva l mean = sum( a r r i v a l l i s t ) / l en ( a r r i v a l l i s t )

475 ##combine queue length l i s t s f o r each r e p l i c a t i o n

476 queue in f o t ime s t ep = pd . DataFrame({ 'Time ' : t i m e s t e p l i s t [ 0 : l en ( t i m e s t e p l i s t

) ] , ' Queue Length %s ' % r : q u e u e l e n g t h l i s t [ 0 : l en ( t i m e s t e p l i s t ) ]} )

477 queue in f o t ime s t ep = queue in f o t ime s t ep . i l o c [ n : ]

478 #o v e r a l l q u e u e s i z e l i s t t i m e s t e p . append ( q u e u e s i z e l i s t )

479 i f r == 0 :

480 o v e r a l l q u e u e s i z e t i m e s t e p = queue in f o t ime s t ep

481 e l s e :

482 o v e r a l l q u e u e s i z e t i m e s t e p = pd . concat ( [ o v e r a l l q u e u e s i z e t i m e s t e p ,

queue in f o t ime s t ep . i l o c [ : , 1 ] ] , ax i s =1)

483

484 i f r % 10 == 0 :

485 pr in t ( 'TOS rep : ' , r , ' out o f ' , r e p l i c a t i o n s )

486

487 overa l l mean = o v e r a l l q u e u e s i z e t i m e s t e p . l o c [ : , o v e r a l l q u e u e s i z e t i m e s t e p .

columns != 'Time ' ] . s tack ( ) . mean ( )

488

489 #cr ea t e l i s t to count the l engths to f i nd the t o t a l s o f each s t a t e

490 c o u n t l e n g t h s l i s t = [ ]

491 f o r i in range (50) : #pick a r b i t r a r i l y big number to account f o r a l l p o s s i b i l i t i e s

492 c o u n t l e n g t h s l i s t . append (0)

493 #counts f o r each s t a t e

494 f o r i in range ( l en ( o v e r a l l q u e u e s i z e t i m e s t e p ) ) : #rows

495 f o r j in range (1 , l en ( o v e r a l l q u e u e s i z e t i m e s t e p . columns ) ) : #c o l s

496 f o r l eng ths in range ( l en ( c o u n t l e n g t h s l i s t ) ) :

56



497 i f o v e r a l l q u e u e s i z e t i m e s t e p . i l o c [ i , j ] == lengths :

498 c o u n t l e n g t h s l i s t [ l eng ths ] += 1

499 #i d e n t i f y l o c a t i o n where counts are not zero

500 i=0

501 whi le c o u n t l e n g t h s l i s t [ i ] != 0 :

502 i+=1

503 #only keep counts that are not zero

504 c o u n t l e n g t h s l i s t = c o u n t l e n g t h s l i s t [ 0 : i ]

505 #l i s t o f s t a t e s

506 s t a t e l i s t = [ ]

507 f o r i in range ( l en ( c o u n t l e n g t h s l i s t ) ) :

508 s t a t e l i s t . append ( i )

509

510 #c a l c u l a t e p r o b a b i l i t i e s

511 end probs = [ ]

512 f o r i in range ( l en ( c o u n t l e n g t h s l i s t ) ) :

513 end probs . append ( c o u n t l e n g t h s l i s t [ i ] / sum( c o u n t l e n g t h s l i s t ) )

514 end probs [−1]=1−sum( end probs [ 0 : l en ( end probs ) −1])

515

516 ## expected value and s t a t e l i s t s used in dataframe

517 mean=0

518 s t a t e l i s t = [ ]

519 f o r i in range ( l en ( end probs ) ) :

520 mean += i ∗ end probs [ i ]

521 s t a t e l i s t . append ( i )

522 ## var iance

523 var=0

524 f o r i in range ( l en ( end probs ) ) :

525 var += ( i−mean) ∗( i−mean) ∗ end probs [ i ]

526

527 r a w d i f f = mean−overa l l mean numinsys

528 a b s d i f f = abs ( r a w d i f f )

529 p r o p o r t i o n d i f f = r a w d i f f / overa l l mean numinsys

530 s top t imer = t ime i t . d e f a u l t t i m e r ( )

531

532 #append a l l o f the l i s t s to c o l l e c t data in each i t e r a t i o n

533 mean l i s t . append (mean)

534 v a r l i s t . append ( var )

535 my lambda l i s t . append ( my lambda )

536 my mu list . append (my mu)

537 t h e o r e t i c a l m e a n l i s t . append ( overa l l mean numinsys )

538 t h e o r e t i c a l v a r l i s t . append ( t h e o r e t i c a l v a r )

539 r a w d i f f l i s t . append ( r a w d i f f )

540 a b s d i f f l i s t . append ( a b s d i f f )

541 p r o p o r t i o n d i f f l i s t . append ( p r o p o r t i o n d i f f )

542 s t a t e p r o b s l i s t . append ( end probs )

543 r u n t i m e l i s t . append ( ( stop t imer−s t a r t t i m e r ) /60)

544

545 pr in t ( ”TOS loop ” , l oop counte r )

546 s t a t e p r o b s d f = pd . DataFrame ( s t a t e p r o b s l i s t )

547 TOS system output = pd . DataFrame({”Mean” : mean l i s t , ” Theoret ical Mean ” :

t h e o r e t i c a l m e a n l i s t , ”Var” : v a r l i s t , ” Theore t i ca l Var ” : t h e o r e t i c a l v a r l i s t , ”Lambda” :

my lambda l ist , ”Mu” : my mu list , ”Raw D i f f ” : r a w d i f f l i s t , ”Abs D i f f ” : a b s d i f f l i s t , ”Run Time (

min ) ” : r u n t i m e l i s t , ” Proport ion D i f f ” : p r o p o r t i o n d i f f l i s t })
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548 TOS system output = pd . concat ( [ TOS system output , s t a t e p r o b s d f ] , ax i s =1)

549 pr in t ( ”TOS Complete ! ” )

550

551 i f m o d e l l i s t [ model ] == ”DBN” :

552 ' ' '#######################################################################' ' '

553 ' ' '########## Dynamic Bayesian Network (DBN) − Markov Process ##########' ' '

554 ' ' '#######################################################################' ' '

555 pr in t ( ”DBN Started . . . ” )

556 mean l i s t = [ ]

557 v a r l i s t = [ ]

558 my lambda l i s t = [ ]

559 my mu list = [ ]

560 t h e o r e t i c a l m e a n l i s t = [ ]

561 t h e o r e t i c a l v a r l i s t = [ ]

562 r a w d i f f l i s t = [ ]

563 a b s d i f f l i s t = [ ]

564 p r o p o r t i o n d i f f l i s t = [ ]

565 s t a t e p r o b s l i s t = [ ]

566 r u n t i m e l i s t = [ ]

567

568 t o l = 0.001

569

570 loop counte r = 0

571 f o r lambda loop in range ( l en ( l ambda l i s t ) ) :

572 f o r mu loop in range ( l en ( m u m u l t s c a l a r l i s t ) ) :

573 s t a r t t i m e r = t ime i t . d e f a u l t t i m e r ( )

574 loop counte r += 1 #used to pr in t loop counter whi le running code

575 ### NOTE: lambda and mu are dependent on time i n t e r v a l s i z e

576 def ined lambda = lambda l i s t [ lambda loop ]

577 defined mu = def ined lambda ∗ m u m u l t s c a l a r l i s t [ mu loop ]

578 my lambda = def ined lambda ∗ s t e p s i z e

579 my mu = defined mu ∗ s t e p s i z e

580 my rho = my lambda/my mu

581 overa l l mean numinsys = my rho/(1−my rho )

582 t h e o r e t i c a l v a r = my rho/((1−my rho )∗(1−my rho ) )

583

584 a r r i v a l c d f = [ ]

585 s e r v i c e c d f = [ ]

586 a r r i va l pmf = [ ]

587 s e rv i c e pmf = [ ]

588

589 ########### DEFINE PROB LIST LENGTHS ###########

590 # cr ea t e cdf probs f o r a r r i v a l and s e r v i c e

591 f o r i in range (30) :

592 a r r i v a l c d f . append ( po i s son . cd f ( i , my lambda ) )

593 s e r v i c e c d f . append ( po i s son . cd f ( i ,my mu) )

594 #f ind l o c a t i o n where change in prob i s i n s i g n i f i c a n t ( important f o r a r r i v a l s )

595 f i n i s h e d = False

596 j=0

597 whi le not f i n i s h e d :

598 i f a r r i v a l c d f [ j +1] − a r r i v a l c d f [ j ] <= t o l :

599 a r r i v a l c u t o f f = j

600 f i n i s h e d = True

601 j+=1
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602

603 f i n i s h e d = False

604 j=0

605 whi le not f i n i s h e d :

606 i f s e r v i c e c d f [ j +1] − s e r v i c e c d f [ j ] <= t o l :

607 s e r v i c e c u t o f f = j

608 f i n i s h e d = True

609 j+=1

610 #o v e r a l l c u t o f f = max( a r r i v a l c u t o f f , s e r v i c e c u t o f f )

611

612 ########### CREATE PDF LISTS ( with t runcat ion ) ###########

613 #cr ea t e pdf probs o f equal l ength and l a s t truncated due to t o l e r e n c e l e v e l

614 # a r r i v a l s − f i x e d f o r computations

615 f o r i in range ( a r r i v a l c u t o f f +1) :

616 i f i != a r r i v a l c u t o f f :

617 a r r i va l pmf . append ( po i s son . pmf ( i , my lambda ) )

618 e l s e :

619 a r r i va l pmf . append(1−sum( a r r i va l pmf [ 0 : a r r i v a l c u t o f f +1]) )

620

621 ########### CALCULATIONS ###########

622 l e n g t h m u l t i p l i e r = 2

623

624 # i n i t i a l i z e beg inning s t a t e ( empty and i d l e )

625 s t a r t p r o b s = [ ]

626 f o r i in range ( l en ( a r r i va l pmf ) ∗ l e n g t h m u l t i p l i e r ) :

627 s t a r t p r o b s . append (0)

628 s t a r t p r o b s [ 0 ] = 1 #assume empty and i d l e

629

630 ### pdf

631 s e r v i c e p r o b l i s t = [ ]

632 f o r a r r i v a l l o o p in range (200) :

633 p o i s s o n t e m p l i s t = [ ]

634 f o r i in range (200) :

635 p o i s s o n t e m p l i s t . append ( po i s son . pmf ( i , ( 1 / ( a r r i v a l l o o p +1) ) ∗my mu) )

636 s e r v i c e p r o b l i s t . append ( p o i s s o n t e m p l i s t )

637 s e r v i c e p r o b d f = pd . DataFrame ( s e r v i c e p r o b l i s t )

638

639 ### cdf

640 s e r v i c e c u m p r o b l i s t = [ ]

641 f o r row in range ( l en ( s e r v i c e p r o b d f ) ) :

642 prob l i s t cum = [ ]

643 f o r c o l in range ( l en ( s e r v i c e p r o b d f . columns ) ) : #f i r s t prob i s j u s t the pdf

644 i f c o l == 0 :

645 prob = s e r v i c e p r o b d f . i l o c [ row , c o l ]

646 e l i f c o l == len ( s e r v i c e p r o b d f . columns ) : #l a s t prob i s 1−sum of the

othe r s

647 prob = 1 − sum( s e r v i c e p r o b d f . i l o c [ row , 0 : co l −1])

648 e l s e :

649 prob = s e r v i c e p r o b d f . i l o c [ row , c o l ] + sum( s e r v i c e p r o b d f . i l o c [ row , 0 :

co l −1])

650 prob l i s t cum . append ( prob )

651 s e r v i c e c u m p r o b l i s t . append ( prob l i s t cum )

652 se rv i c e p rob cum df = pd . DataFrame ( s e r v i c e c u m p r o b l i s t )

653
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654 #i n i t i a l i z e master matrix . This w i l l s t o r e the p r o b a b i l i t i e s l i s t s as they are

generated f o r each unique case

655 t e m p l i s t = [ ]

656 f o r i in range (50) : #c r e a t e s nxn matrix

657 t e m p l i s t . append (0)

658

659 row names = [ ]

660 f o r i in range ( l en ( t e m p l i s t ) ) :

661 row names . append ( ”Ls = %s ”%i )

662 col names = [ ]

663 f o r i in range ( l en ( t e m p l i s t ) ) :

664 col names . append ( ”A = %s ”%i )

665 maste r prob matr ix d f = pd . DataFrame ( columns=col names , index=row names )

666 #chunk prob matrix = pd . DataFrame ( )

667 f o r i in range ( l en ( maste r prob matr ix d f ) ) :

668 f o r j in range ( l en ( maste r prob matr ix d f . columns ) ) :

669 maste r prob matr ix d f . i l o c [ i , j ] = 0

670 maste r prob matr ix d f = master prob matr ix d f . astype ( ' ob j e c t ' )

671

672 # c a l c u l a t i o n s f o r each time step . Stop when s t a t e probs converge based on t o l

l e v e l

673 check=0 #t h i s s tops the loop i f

674 whi le check != len ( s t a r t p r o b s ) :

675 end probs = [ ]

676 f o r r e s e t in range ( l en ( s t a r t p r o b s ) ) :

677 end probs . append (0)

678 # s t a r t + a r r i v a l − s e r v i c e = end

679 f o r end s ta t e in range ( l en ( end probs ) ) :

680 f o r s t a r t s t a t e in range ( l en ( s t a r t p r o b s ) ) :

681 f o r a r r i v a l s in range ( l en ( a r r i va l pmf ) ) :

682 #f o r s e r v i c e s in range ( a r r i v a l c u t o f f +10) :

683 f o r s e r v i c e s in range ( s t a r t s t a t e+a r r i v a l s +1) :

684 i f s t a r t s t a t e + a r r i v a l s − s e r v i c e s == end s ta t e : #only

f e a s i b l e combinations

685 i f maste r prob matr ix d f . i l o c [ s t a r t s t a t e , a r r i v a l s ] == 0 :

686 #i n i t i a l i z e matrix f o r time chunks

687 t e m p l i s t = [ ]

688 f o r i in range ( l en ( end probs ) +20) : #c r e a t e s matrix

b igge r than end probs l i s t

689 t e m p l i s t . append (0)

690

691 row names = [ ]

692 f o r i in range ( l en ( t e m p l i s t ) ) :

693 row names . append ( ”Time Chunk : %s ”%i )

694 col names = [ ]

695 f o r i in range ( l en ( t e m p l i s t ) ) :

696 col names . append ( ” State = %s ”%i )

697

698 chunk prob matrix = pd . DataFrame ( columns=col names ,

index=row names )

699 f o r i in range ( l en ( chunk prob matrix ) ) :

700 f o r j in range ( l en ( chunk prob matrix . columns ) ) :

701 chunk prob matrix . i l o c [ i , j ] = 0

702
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703 time chunk = 0

704

705 i f s t a r t s t a t e + a r r i v a l s == 0 :

706 chunk prob matrix . i l o c [ 0 , 0 ] = 1

707

708 i f s t a r t s t a t e > 0 and a r r i v a l s == 0 :

709 f o r s t a t e in range ( s t a r t s t a t e ) :

710 s t a t e +=1

711 chunk prob matrix . i l o c [ 0 , s t a t e ] =

s e r v i c e p r o b d f . i l o c [ 0 , s t a r t s t a t e−s t a t e ]

712 chunk prob matrix . i l o c [ 0 , 0 ] = s e r v i c e p r o b d f . i l o c

[ 0 , s t a r t s t a t e ]

713 #### propo r t i ona l spread

714 denom = sum( chunk prob matrix . i l o c [ 0 , : ] ) #

denominator used f o r normal ized proport ion

715 r e s i d u a l p r o b = 1 − denom

716

717 stop = 0

718 co l = 0

719 whi le stop == 0 :

720 i f chunk prob matrix . i l o c [ 0 , c o l ] == 0 and

chunk prob matrix . i l o c [ 0 , c o l +1] == 0 :

721 c u t o f f = co l

722 stop = 1

723 co l += 1

724

725 f o r r e s p r ob l oop in range ( c u t o f f ) :

726 chunk prob matrix . i l o c [ 0 , r e s p r ob l oop ] += (

chunk prob matrix . i l o c [ 0 , r e s p r ob l oop ] / denom) ∗ r e s i d u a l p r o b #add r e s i d u a l to e x i s t i n g prob

p r o p o r t i o n a l l y

727

728 i f a r r i v a l s > 0 :

729 chunk prob matrix . i l o c [ 1 , 0 ] = 0

730

731 i f s t a r t s t a t e == 0 :

732 chunk prob matrix . i l o c [ 1 , 1 ] = 1

733 e l i f s t a r t s t a t e > 0 :

734 s t a t e = 2

735 whi le s t a t e <= s t a r t s t a t e +1:

736 chunk prob matrix . i l o c [ 1 , s t a t e ] =

s e r v i c e p r o b d f . i l o c [ a r r i v a l s , s t a r t s t a t e−s t a t e +1]

737 s t a t e += 1

738 chunk prob matrix . i l o c [ 1 , 1 ] = s e r v i c e p r o b d f .

i l o c [ a r r i v a l s , s t a r t s t a t e ]

739 #### propo r t i ona l spread

740 denom = sum( chunk prob matrix . i l o c [ 1 , : ] ) #

denominator used f o r normal ized proport ion

741 r e s i d u a l p r o b = 1 − denom

742

743 stop = 0

744 co l = 0

745 whi le stop == 0 :

746 i f chunk prob matrix . i l o c [ 1 , c o l ] == 0 and

chunk prob matrix . i l o c [ 1 , c o l +1] == 0 :
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747 c u t o f f = co l

748 stop = 1

749 co l += 1

750

751 f o r r e s p r ob l oop in range ( c u t o f f ) :

752 chunk prob matrix . i l o c [ 1 , r e s p r ob l oop ] +=

( chunk prob matrix . i l o c [ 1 , r e s p r ob l oop ] / denom) ∗ r e s i d u a l p r o b #add r e s i d u a l to e x i s t i n g prob

p r o p o r t i o n a l l y

753

754 i f a r r i v a l s != 0 :

755 time chunk = 2

756

757 whi le time chunk <= a r r i v a l s :

758 f o r s t a t e in range (1 , s t a r t s t a t e+time chunk ) :

759 #s t a t e+=1 # f i x zero index

760 f o r se rv in range ( s t a t e ) :

761 chunk prob matrix . i l o c [ time chunk ,

s tate−se rv +1] = chunk prob matrix . i l o c [ time chunk , s tate−se rv +1] + chunk prob matrix . i l o c [

time chunk−1, s t a t e ]∗ s e r v i c e p r o b d f . i l o c [ a r r i v a l s , s e rv ]

762 chunk prob matrix . i l o c [ time chunk , 1 ] =

s e r v i c e p r o b d f . i l o c [ a r r i v a l s , s t a r t s t a t e ]

763 #### propo r t i ona l spread

764 denom = sum( chunk prob matrix . i l o c [ time chunk

, : ] ) #denominator used f o r normal ized proport ion

765 r e s i d u a l p r o b = 1 − denom

766

767 stop = 0

768 co l = 0

769 whi le stop == 0 :

770 i f chunk prob matrix . i l o c [ time chunk , c o l ]

== 0 and chunk prob matrix . i l o c [ time chunk , c o l +1] == 0 :

771 c u t o f f = co l

772 stop = 1

773 co l += 1

774

775 f o r r e s p r ob l oop in range ( c u t o f f ) :

776 chunk prob matrix . i l o c [ time chunk ,

r e s p r ob l oop ] += ( chunk prob matrix . i l o c [ time chunk , r e s p r ob l oop ] / denom) ∗ r e s i d u a l p r o b #add

r e s i d u a l to e x i s t i n g prob p r o p o r t i o n a l l y

777

778 time chunk += 1

779

780 f o r s t a t e in range ( s t a r t s t a t e+a r r i v a l s ) :

781 s t a t e += 1 #f i x zero index

782 f o r se rv in range ( s t a t e +1) :

783 chunk prob matrix . i l o c [ a r r i v a l s +1, s tate−

se rv ] = chunk prob matrix . i l o c [ a r r i v a l s +1, s tate−se rv ] + chunk prob matrix . i l o c [ a r r i v a l s , s t a t e

]∗ s e r v i c e p r o b d f . i l o c [ a r r i v a l s , s e rv ]

784 f o r row in range ( l en ( chunk prob matrix ) ) :

785 chunk prob matrix . i l o c [ row , 0 ] = 1−sum(

chunk prob matrix . i l o c [ row , 1 : ] )

786

787 #f ind stopping point o f p r o b a b i l i t i e s

788 stop = 0

62



789 co l = 0

790 whi le stop == 0 :

791 i f chunk prob matrix . i l o c [ time chunk , c o l ] == 0 and

chunk prob matrix . i l o c [ time chunk , c o l +1] == 0 :

792 c u t o f f = co l

793 stop = 1

794 co l += 1

795

796 p r o b l i s t = [ ]

797 f o r i in range ( c u t o f f ) :

798 p r o b l i s t . append ( chunk prob matrix . i l o c [ time chunk

, i ] )

799

800 prob l i s t cum = [ ]

801 f o r i in range ( l en ( p r o b l i s t ) ) :

802 i f i == 0 :

803 prob l i s t cum . append ( p r o b l i s t [ i ] )

804 e l s e :

805 prob l i s t cum . append ( p rob l i s t cum [ i−1]+

p r o b l i s t [ i ] )

806

807 maste r prob matr ix d f . i l o c [ s t a r t s t a t e , a r r i v a l s ] =

p r o b l i s t

808

809 p r o b l i s t = master prob matr ix d f . i l o c [ s t a r t s t a t e ,

a r r i v a l s ]

810 end probs [ end s ta t e ] += s t a r t p r o b s [ s t a r t s t a t e ]∗

a r r i va l pmf [ a r r i v a l s ]∗ p r o b l i s t [ end s ta t e ]

811

812 end probs [−1]=1−sum( end probs [ 0 : l en ( end probs ) −1])

813

814 #stop o f a l l o f the s t a t e probs converge with in t o l e r e n c e l e v e l

815 check=0

816 f o r j in range ( l en ( s t a r t p r o b s ) ) :

817 i f abs ( s t a r t p r o b s [ j ]− end probs [ j ] ) <= conv to l :

818 check += 1

819

820 s t a r t p r o b s = end probs

821

822 ## expected value and s t a t e l i s t s used in dataframe

823 mean=0

824 s t a t e l i s t = [ ]

825 f o r i in range ( l en ( end probs ) ) :

826 mean += i ∗ end probs [ i ]

827 s t a t e l i s t . append ( i )

828 #pr in t (”Mean : ” ,mean)

829 ## var iance

830 var=0

831 f o r i in range ( l en ( end probs ) ) :

832 var += ( i−mean) ∗( i−mean) ∗ end probs [ i ]

833 #pr in t (” Variance : ” , var )

834

835 r a w d i f f = mean−overa l l mean numinsys

836 a b s d i f f = abs ( r a w d i f f )
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837 p r o p o r t i o n d i f f = r a w d i f f / overa l l mean numinsys

838 s top t imer = t ime i t . d e f a u l t t i m e r ( )

839

840 #append a l l o f the l i s t s to c o l l e c t data in each i t e r a t i o n

841 mean l i s t . append (mean)

842 v a r l i s t . append ( var )

843 my lambda l i s t . append ( my lambda )

844 my mu list . append (my mu)

845 t h e o r e t i c a l m e a n l i s t . append ( overa l l mean numinsys )

846 t h e o r e t i c a l v a r l i s t . append ( t h e o r e t i c a l v a r )

847 r a w d i f f l i s t . append ( r a w d i f f )

848 a b s d i f f l i s t . append ( a b s d i f f )

849 p r o p o r t i o n d i f f l i s t . append ( p r o p o r t i o n d i f f )

850 s t a t e p r o b s l i s t . append ( end probs )

851 r u n t i m e l i s t . append ( ( stop t imer−s t a r t t i m e r ) /60)

852

853 pr in t ( ”DBN loop ” , l oop counte r )

854

855 s t a t e p r o b s d f = pd . DataFrame ( s t a t e p r o b s l i s t )

856 DBN system output = pd . DataFrame({”Mean” : mean l i s t , ” Theoret ical Mean ” :

t h e o r e t i c a l m e a n l i s t , ”Var” : v a r l i s t , ” Theore t i ca l Var ” : t h e o r e t i c a l v a r l i s t , ”Lambda” :

my lambda l ist , ”Mu” : my mu list , ”Raw D i f f ” : r a w d i f f l i s t , ”Abs D i f f ” : a b s d i f f l i s t , ”Run Time (

min ) ” : r u n t i m e l i s t , ” Proport ion D i f f ” : p r o p o r t i o n d i f f l i s t })

857 DBN system output = pd . concat ( [ DBN system output , s t a t e p r o b s d f ] , ax i s =1)

858 pr in t ( ”DBN Complete ! ” )

859

860 ####################################################################

861 ##################### Fina l Output Preparat ion #####################

862 ####################################################################

863

864 ### so r t and j o i n a l l o f the output f i l e s

865 master output = pd . DataFrame ( )

866 i f m o d e l l i s t == [ ”DES” , ”TOS” , ”DBN” ] :

867 f o r row in range (max( l en ( DES system output ) , l en ( TOS system output ) , l en ( DBN system output ) ) ) :

868 master output = pd . concat ( [ master output , DES system output . i l o c [ row , : ] , TOS system output .

i l o c [ row , : ] , DBN system output . i l o c [ row , : ] ] , ax i s =1, s o r t=False )

869 e l i f m o d e l l i s t == [ ”DES” , ”TOS” ] :

870 f o r row in range (max( l en ( DES system output ) , l en ( TOS system output ) ) ) :

871 master output = pd . concat ( [ master output , DES system output . i l o c [ row , : ] , TOS system output .

i l o c [ row , : ] ] , ax i s =1, s o r t=False )

872 e l i f m o d e l l i s t == [ ”DES” , ”DBN” ] :

873 f o r row in range (max( l en ( DES system output ) , l en ( DBN system output ) ) ) :

874 master output = pd . concat ( [ master output , DES system output . i l o c [ row , : ] , DBN system output .

i l o c [ row , : ] ] , ax i s =1, s o r t=False )

875 e l i f m o d e l l i s t == [ ”TOS” , ”DBN” ] :

876 f o r row in range (max( l en ( TOS system output ) , l en ( DBN system output ) ) ) :

877 master output = pd . concat ( [ master output , TOS system output . i l o c [ row , : ] , DBN system output .

i l o c [ row , : ] ] , ax i s =1, s o r t=False )

878 e l i f m o d e l l i s t == [ ”DES” ] :

879 f o r row in range ( l en ( DES system output ) ) :

880 master output = pd . concat ( [ master output , DES system output . i l o c [ row , : ] ] , ax i s =1, s o r t=False )

881 e l i f m o d e l l i s t == [ ”TOS” ] :

882 f o r row in range ( l en ( TOS system output ) ) :

883 master output = pd . concat ( [ master output , TOS system output . i l o c [ row , : ] ] , ax i s =1, s o r t=False )
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884 e l i f m o d e l l i s t == [ ”DBN” ] :

885 f o r row in range ( l en ( DBN system output ) ) :

886 master output = pd . concat ( [ master output , DBN system output . i l o c [ row , : ] ] , ax i s =1, s o r t=False )

887

888 ### column l a b e l s f o r f i n a l output

889 name l i s t = [ ]

890 f o r i in range ( round ( l en ( master output . columns ) / l en ( m o d e l l i s t ) ) ) :

891 f o r check in range ( l en ( m o d e l l i s t ) ) :

892 i f m o d e l l i s t [ check ] == ”DES” :

893 name l i s t . append ( 'DES ' )

894 i f m o d e l l i s t [ check ] == ”TOS” :

895 name l i s t . append ( 'TOS ' )

896 i f m o d e l l i s t [ check ] == ”DBN” :

897 name l i s t . append ( 'DBN ' )

898 master output . columns = name l i s t

899

900 ### rep l a c e nan ' s with 0 ( nan ' s happen because o f varying s t a t e l eng ths between reps )

901 f o r row in range ( l en ( master output ) ) :

902 f o r c o l in range ( l en ( master output . columns ) ) :

903 i f np . i snan ( master output . i l o c [ row , co l ] ) == True :

904 master output . i l o c [ row , co l ] = 0

905

906 #output to ex c e l

907 i f ou tpu t de c i s i on == ' Yes ' :

908 master output . t o e x c e l ( o u t f i l e )
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