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Abstract

Aviation fuel is a major component of the Air Force (AF) budget, and vital

for the core mission of the AF. This study investigated the viability of Long-Short

Term Memory (LSTM) networks to increase the accuracy of deterministic numeri-

cal weather prediction (NWP) models, while also investigating the ability to reduce

model generation time. Increased forecast accuracy for wind speeds could be im-

plemented into existing flight path models to further increase fuel efficiency, while

reduced modeling times would allow flight planners to generate a flight plan in rapid

response situations. The most viable model consisted of an ensemble of six LSTMs

trained off six coordinates. The model’s error was on average +1.2 m/s higher than

the deterministic NWP with a computation time of 1.85 s. The LSTM generated a

flight path that was on average 14.2 min slower for an approximately 7 hour 32 min

flight. This forecast generation took seconds to complete compared to hours from

the deterministic model. While the LSTM architecture in this study was not able

to increase forecast accuracy, the speed at which it generates an approximately close

forecast can be an integral tool for flight planners in the future.

iv
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PREDICTING UPPER ATMOSPHERIC WEATHER CONDITIONS UTILIZING

LONG-SHORT TERM MEMORY NEURAL NETWORKS FOR AIRCRAFT

FUEL EFFICIENCY

I. Introduction

1.1 Background

The Department of Defense (DoD) has an obligation to the American people

to be stewards of their tax dollars in all defense related spending. As such, the

DoD is always searching for ways to minimize spending while also increasing combat

capabilities, military readiness, and operational effectiveness. Aircraft are an integral

part of the United States Air Force (USAF) and by its very nature, fulfilling these

goals incurs a substantial cost for procuring and consuming fuel. From the 2019

fiscal year budget for the DoD, $24 billion was requested for fuel consumption with

$6.6 billion going to operations and $4.5 billion going to transportation [2]. The

USAF consumes around half of this budget for aviation fuel with majority of it being

used by Air Mobility Command (AMC), a major command (MAJCOM) within the

USAF structure [3]. Many of the aircraft within the AMC inventory are responsible

for global transportation of cargo and personnel, along with aerial refueling. These

operations are not only vitally important to the AF, but also to fulfilling the national

defense strategy. Increasing efficiency in fuel consumption within these aircraft can

have an immense impact on cost savings for the USAF and the DoD as a whole, while

not sacrificing on mission capabilities.

1



1.2 Overview

There are multitude of ways to address increasing efficiency in fuel consumption

among aircraft. This study focuses particularly on headwind predictions in the upper

atmosphere relating to mission planning for various air mobility operations. Having

accurate predictions for the varying spatial regions of the atmosphere enable mission

planners to develop the most fuel efficient route from origin to destination. Thereby

being able to optimize altitude and flight path which are natural parameters of con-

structing a fuel-efficient route [4].

When looking at wind speed forecast there are two distinct classes of weather

models to look at; deterministic and ensemble. While a deterministic model is com-

prised of a single model, an ensemble model is comprised of multiple deterministic

models [5]. In an ensemble model, each of its members is initialized with slightly

different values for their parameters. This generates a forecast giving a variety of re-

sults, which provides keener insights into accurate forecast predictions. The weather

data for this study comes from the Global Data Assimilation System (GDAS), which

is run by NOAA. The GDAS takes in all available global satellite, conventional (raw-

insonde, aircraft, surface), and radar observations to report weather conditions across

the globe every six hours. This report details conditions for every latitude and lon-

gitude coordinate across 31 different pressure layers. The system is responsible for

providing the initial conditions for the deterministic and ensemble weather forecast

produced by the global forecast system (GFS) [6]. Currently operations within AMC

still rely on the deterministic forecast while NOAA has switched to utilizing results

from the ensemble forecast.

Wind speeds are known to follow a nonlinear behavior when modeled over time.

Their discontinuous and stochastic nature makes it difficult to provide accurate pre-

dictions utilizing linear approximation techniques [7]. Artificial neural networks

2



(ANN) have been shown to learn the underlying structure of data sets and provide

accurate predictions for seemingly complex weather problems [8]. This ability has

generated a research surge in investigating the application and development of ANNs

to solve varying weather related problems [9].

1.3 Research Objectives

The goal of this study was to explore the viability for LSTMs to model and predict

wind speeds either as accurate or more accurate than the deterministic numerical

weather prediction (NWP) models. This enables the model to act as an error reducing

post processor for current weather models to help reduce the error in their forecasting

methods. It would also allow its inclusion into existing fuel optimization algorithms

to help assist in further increasing fuel efficiency.

A secondary objective was to explore the LSTMs computational speed advantage

over the deterministic NWP model. If the LSTM cannot achieve the accuracy goal,

but it is still relatively close then exploring the difference in computing speed can

bring an important benefit to flight planners.

The following chapter will discuss background literature relating to the method-

ologies being deployed within this work, including the difference in weather model

types and ANNs.

3



II. Literature Review

2.1 Overview

There are many different methodologies being employed to construct a model in

this study. As such, this section examines some of the previous research done in these

areas, along with providing background information on the techniques themselves.

2.2 Weather Models

Two main techniques for weather forecasting are used in the industry today, these

being deterministic and ensemble forecasting [7]. A deterministic forecast focuses on

making a single forecast of the most likely weather outcomes given the best approxi-

mation and modeling of the initial conditions. This is done by having the initial state

of the atmosphere established using observational data. Then an atmospheric model

simulates evolution from the initial state. From this the output is processed and

made available. According to a reference document put out by NOAA this method

has some drawbacks due a few reasons relating to error [6]. These being that the

equations used by the model do not fully capture processes in the atmosphere, model

resolution is not sufficient to capture all features in the atmosphere, the initial ob-

servations are not available at every point in the atmosphere, and the observational

data cannot be measured to an infinite degree of precision.

In an ensemble forecast, multiple deterministic forecasts are developed represent-

ing a set of possible future states. These can be developed in many different ways,

but one technique used is to slightly perturb the initial conditions then develop deter-

ministic models from each instance of perturbation. This approach addresses certain

sources of uncertainty that are not captured in a deterministic forecast. These be-

ing uncertainty introduced as part of imperfect model formulation, and uncertainty

4



introduced as part of imperfect initial conditions [5].

Ensemble modeling for weather is the current method employed by large organi-

zations, such as NOAA, while deterministic is still used by AMC. Ensemble modeling

has been shown to perform better at forecasting than deterministic models in a myr-

iad of applications [10]. For example, Keith and Leyton [11] displayed how ensemble

weather models were better predictors of adverse weather conditions, which would

require aircrafts to consume more fuel than originally expected. In a study by Taylor

and Buizza [12], ensemble forecasting showed higher accuracy levels than determin-

istic for a one to ten day weather forecast looking at electricity demand. However,

ensemble forecasting is not always superior in every instance. An incident in Venice

showcased this, where the accuracy for predicting flooding due to storms more than

four days out with a deterministic model was comparable to the ensemble model [13].

In another instance, Leonardo and Colle [14] found that a deterministic model gave

the lowest total track error when predicting North Atlantic tropical cyclones, even

when compared against several different ensemble models. In general, the World Me-

teorological Organization notes ensemble forecast produce more reliable results than

the deterministic forecast, especially when the forecast is for more than 1-3 days out

[15]. This is due to the ensemble’s ability to capture the uncertainty inherent within

the deterministic model.

Since AMC relies on using the deterministic model for forecasts and mission plan-

ning, this study focuses on performance metrics comparing techniques used in this

study to the deterministic model outputs.

2.3 Weather Factors

While some of the factors in this study may be self-explanatory, others require

further detailing. Within the GDAS, wind speeds are expressed in terms of their or-

5



thogonal velocity components, which is the zonal velocity (u) and meridional velocity

(v). If relating to an x-y Cartesian coordinate system, u runs parallel to the x-axis

and v runs parallel to the y-axis. Therefore positive u values represent winds blowing

east while positive v values represent winds blowing north. These components are

then combined using the Pythagorean Theorem to acquire the magnitude of the wind.

With the magnitude calculated, it is a simple trigonometric expression to discover the

direction, or angle, of the resulting wind vector [16].

Weather measurements are recorded in the GDAS by latitude, longitude, and

pressure. Earth’s atmosphere can be divided up into multiple layers which are mea-

sured for similarity around the globe by their pressure levels as opposed to actual

altitude. For example, the upper edge of the troposphere may be 13 km in altitude

above England, but may be 12 km high above China. Both will have similar pressure

levels that are typically around 25 kPa.

2.4 Neural Networks

ANNs are brain inspired systems which are intended to loosely replicate the way

humans learn. ANNs consist of input and output layers, as well as one or more hidden

layers containing neurons (nodes, units, or processing elements) that transform the

input into something that the output layer can use. The strength of an ANN is

obtained as the result of the connectivity and collective behavior of the neurons within

the layers. This technique has been shown to have a high degree of accuracy when

predicting weather forecasts in single location studies when modeling temperature

and wind speed [17]. A study by Wang and Balaprakash [18] showed the ability

for ANNs in forecasting weather variables in a single location and generalizing to a

limited location around that area. Limited literature has focused on utilizing ANNs

for forecasting weather conditions across the upper atmosphere using a single model
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to generalize across the entire globe.

The mathematical goal of a ANN is to approximate some function f ∗, where f ∗

can be a continuous function or a classifier. The architecture of a basic ANN is shown

in Figure 1. The neuron is the basic building block of the network and exist in all

the layers. The number of neurons in a layer is commonly referred to as the width of

the layer. The width of the input layer reflects the number of features or predictor

variables used to characterize an observation or function f . The output layer width

represents how many outputs the model is attempting to approximate for function f ∗.

This could be multiple in the case of multivariate regression, or one if approximating

a single continuous output function or classification problem [19].

Figure 1. Basic ANN architecture

When an input vector is passed into the network, that vector passes through each

node in the hidden layer, multiplied by that neuron’s weight, and has some bias added

to it. It is then acted upon by a chosen activation function. Activation functions are

mathematical equations that determine the output of a neuron. It is simulating if a

neuron should “fire” or not based on whether the input is relevant for the model’s

prediction. For example a sigmoid function will output a value between 0 and 1
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while a hyperbolic tangent (tanh) function will output a value between -1 and 1 [19].

Equation 1 displays the math for computing the node output.

aj = h(
∑
i

wijxi + bj) (1)

Where aj represents the output from the jth node, xi is the ith element of input vector

x, wij is the weight for the ith element of input vector x going to the jth node, bj is

the bias on the jth node, and h is the activation function. The function f ∗(y) is then

calculated by summing all the neuron outputs going into the output layer. This is

represented in equation 2.

f ∗(y) =
∑
j

wjkaj + bj (2)

Where wjk is the weight for the jth node to the kth output. The goal of the network’s

learning process is to find the best weights to provide a mathematical model that

best approximates a y for some given input x. To do this, a method called back

propagation is employed. After the forward pass of information is sent through the

network, a loss function C determines the error in the estimate. This error is then

sent backwards through the network utilizing the gradient descent method in order to

readjust the weights based on the loss. This is the main concept of back propagation.

An observation is feed back into the network again with the readjusted weights, and

the loss is sent backwards to adjust the weights again. This process iterates some

number of times depending on the design of the network to meet convergence of some

minimal error.
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2.5 Long-Short Term Memory

Long-Short Term Memory (LSTM) networks are a special kind of Recurrent Neu-

ral Network (RNN). RNNs were developed by the need to use information from past

observations in order to inform decisions made on the current observation. Tradi-

tional ANNs are not equipped for this kind of sequential analysis. RNNs address this

by including a loop in the network allowing parameter sharing among observations.

For example, separate parameters for every input feature are needed in a feed forward

ANN. In a RNN, the parameter weights are shared across several time steps. This

makes each member of the output a function of the previous members of the output.

Also, the same update rule applied to the previous outputs is used to produce each

member of the current output [19].

An issue with regular RNNs is with long-term dependencies. The benefit of RNNs

are their ability to connect previous information to the current observation. The issue

of long-term dependencies occurs when the gap between the previous information

and current observation becomes very large [19]. In theory this should not be an

issue, but in practice this is not the case. In a study done by Bengio, Simard, and

Frasconi [20] it was shown that RNNs have an issue with long-term dependencies

due to gradient based learning algorithms experiencing difficulty as the length of

dependencies captured increases.

LSTMs help rectify this problem with long-term dependencies. Hochreiter and

Schmidhuber [21] showed that by adding gates within the cell state to truncate the

gradient, LSTMs can bridge the gap on information far in the past. Figure 2 shows

the difference between unrolled repeating modules that exist within a standard RNN

and a LSTM. While the RNN uses a single tanh layer to control the parameter sharing

of past observations, an LSTM has four layers interacting with each other.
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Figure 2. Comparison of RNN Structure to LSTM [1]

These gates allow the LSTM to do many things to configuring the cell state. The

first step involves deciding what information needs to be removed followed by what

new information needs to be kept. These layers are thought of as the “forget gate”

and “input gate”. The last step involves updating the cell state and producing an

output based on the information [1]. A number of variants for LSTMs exist but for

this study, a standard LSTM was investigated. Future work can explore the potential

of advanced variants.
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III. Methodology

3.1 Overview

This section explores in detail the methodology used within this study. The first

section details the preprocessing done with the data, as this is an essential step in the

process of a machine learning pipeline. Following that is an exploratory data analysis

and architecture selection for the LSTM model. Finally, the different model types are

discussed along with the performance metrics used to identify the best performing

design.

3.2 Data Preprocessing

Weather data for this study was obtained from NOAA’s data archives developed

from the deterministic GFS model. The set used ranges from 20 July 2017 to 18 De-

cember 2017, with readings taken every six hours. From these readings, deterministic

forecast are made from +6 hours to +168 hours out. Each reading contains weather

data for each integer latitude and longitude intersection with latitudes ranging from

−90◦ to 90◦, and longitudes ranging from −180◦ to 180◦. Additionally each coordi-

nate has data for 31 different pressure levels within the atmosphere, with a range from

100 Pa to 100,000 Pa. This is approximately equivalent to an altitude measurement

between 80 m to 41,700 m. This provides 2,008,800 unique coordinates across the

entire globe, with each coordinate having 603 observations within the time range. A

downside of this data set is that each coordinate has a small sample size. When con-

sidering the amount of data needed to sufficiently model the underlying non linear

function using an LSTM, typically more would be appropriate for each coordinate

[19].

The original data was contained in a GRIB2 file format which is not readily
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readable on a Windows operating system. To mitigate this, MATLAB has a free tool

called the “nctoolbox” which converts GRIB2 files to NetCDF. This new file format is

readable by Windows, and can be manipulated in MATLAB to extract the variables

of interest for any specific coordinate. For each coordinate and date, the temperature

and wind components were extracted and organized into a file containing the time

series data for each coordinate. Appendix A provides the code used in MATLAB to

pull the data and structure it into a time series for every coordinate.

3.3 Parameter Tuning and Data Selection

As part of the design process, many parameters are tuned and optimized before

the model designs are tested. With over 2 billion coordinates to select for train-

ing the model, a decision was made on selecting the optimal coordinates that best

generalize to a majority of the others. The following subsections details the method-

ology used for selecting each of these along with other parameters that were tuned.

These included feature selection, hyper-parameters of the LSTM architecture, and

the sequence length of each observation.

3.3.1 Coordinate Selection

Due to time constraints, all 2 billion coordinates could not be tested and validated

against each other. Instead a random sampling of coordinates was taken to find a

suitable point for training the neural network. A suitable point allows the neural

network to learn the underlying physics governing the weather dynamics, thereby

enabling the model to generalize to other coordinates across all spatial dimensions of

the globe.

The sampling of coordinates ensured both the northern and southern hemispheres

were sampled, along with the eastern and western hemispheres. When sampling in
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the spatial dimension of altitude, not every pressure layer was considered. Since

typical cruising altitude for most aircraft exists between 9 - 14 km, only pressure

layers from 30 - 15 kPa were considered. This was extended higher to 0.5 kPa (35

km) after investigation of multiple points. The higher altitudes generally showed

smoother functions, which could be beneficial in the model learning the underlying

dynamics. It was hypothesized that this could lead to a robust model. Therefore

those pressure layers became part of the exploratory data analysis and parameter

tuning. Figure 3 shows one example of this difference in smoothness for a random

coordinate. The wind component at 7 km shows a highly chaotic nature compared to

that same component at 26 km. The higher altitude chart displays a clearer pattern

with less noise, albeit it still has a fair amount of chaotic nature to it.

Figure 3. Wind V Component at Coordinate (40◦, 110◦)

Five latitudes from the northern and southern hemispheres each were randomly

chosen along with seven longitudes each representing the eastern and western hemi-

spheres. Seven pressure layers were randomly selected from the 11 layers defined

earlier, between 30 kPa and 0.5 kPa. Producing combinations of these ranges gave

980 unique coordinates to test, sampled from all spatial dimensions of the globe.

Since each coordinate was tested against all the others, this led to 980 models trained

and validated and 959,420 total model evaluations conducted. This illustrates why

every coordinate could not be tested in the time allocated for this study, as it would
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result in approximately 2 billion models, and over 4 trillion tests.

A basic LSTM network with one layer, 256 nodes and a tanh activation function

was built to test the coordinates for the one that could best generalize globally. The

network was tested on a couple of coordinates to ensure it could converge to a solution,

and had enough capacity to learn. Each coordinate was then trained and validated

against a randomly sampled coordinate with the mean squared error (MSE) used as

the loss function. Each trained model was then tested against the other 979 sampled

coordinates, with RMSE for the two predicted outputs of the wind-u component, u,

and wind-v component, v, being recorded. An ideal set of coordinates would have a

low RMSE for both outputs.

Each set of 979 test results from each coordinate was averaged to give each of the

980 coordinates an average RMSE for the two outputs u and v. This distribution of

the 980 average RMSEs was examined for each output in order to determine a proper

range to pull the best performing points from. If non-normality was discovered in the

distribution then the median was used since it is a more robust statistic.

A weighting scheme was employed to ensure the ideal coordinates minimized the

total RMSE from u and v, and minimized the difference in RMSE between the two.

Both of these objectives were equally weighted and added together to produce a final

score for each coordinate, as shown in equation 3.

W = 0.5(RMSEs
total) + 0.5(RMSEs

difference) (3)

Where RMSEs
total is the total RMSE between u and v for a coordinate, and normal-

ized against the set of totals. Likewise, RMSEs
difference is the absolute difference in

RMSE between u and v for a coordinate, and normalized against the set of differences.

Finally, W is the final score for each coordinate.

A set of ideal coordinates, Ci, was built from those that scored low in all three
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outputs as opposed to just one output. The overall best performing point, C0, was

then used for training the network for parameter tuning.

3.3.2 Sequence Length

The sequence length defines how many time steps in the past to use for the current

observation. Every observation fed into an LSTM is a sequence, with two dimensions.

One defining the number of features and the second defining the number of time steps

in the past, or sequence length. For example, a sequence of length three includes the

observation’s u and v values, along with the values for two time steps before shown in

Figure 4. The risk in this when dealing with a small data-set pertains to the reduction

of observations available for the model as the sequence length increases. For example,

every +1 increase in sequence length, S, yields -1 observations, n, from the data set.

Stated mathematically, nt−S = nf , where nT is the total observations in the original

data set, nF is the final number of observations, and S is the length of the sequence.

To test for the optimal sequence length, S0, the same basic LSTM architecture

was used. Training and validation was conducted on C0 and a randomly selected

point from Ci with sequence lengths ranging from 1-15 time steps. Additionally, this

parameter was trained for predicting all four time steps of +18, +36, +54, and +90

hours as opposed to just 18 hours. Each instance of the model was then run 20 times

to develop an average RMSE. This yielded 1200 models trained and validated with

the average validation RMSE for each output used as the performance metric for

determining S.

Statistical analysis was done on the results using box plots and Tukey’s T-test

to determine differences that existed within the groups and determining the best

performing sequence length value for each prediction range.
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Figure 4. Sequence Length

3.3.3 Feature Selection

There were six different sets of features investigated in this study. The first set,

which is feature set 1, included only the base features of temperature and wind

components (u, v). This set is small, representing the bare minimum needed to

run the model. The rest of the sets are compared against this base set to determine

whether the added features increased prediction accuracy.

Feature set 2 consisted of the base features along with the base features of neigh-

boring coordinates. This is called the neighbor set, as it uses the base features of

the neighbors as a means to help predict wind speed for the primary coordinate. Six

total neighboring coordinates were used. Each was taken from a +1 increase and -1

decrease to the initial coordinate’s latitude, longitude, and pressure layer. Their base
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features were then added to the data set for C0, increasing the input dimensions to

21 features. Figure 5 shows a representation of the location of the points.

Figure 5. Neighbor Coordinates for Model

Feature set 3, 4, 5 and 6 are all very similar as they used different variations of

the deterministic forecast to aid in predicting wind speeds. Feature set 3 used the

base features from the +18 hour forecast, while feature set 4 used the base features

from the +18 hour and +36 hour forecast. This pattern followed for the last two

feature sets. Feature set 5 included base features from the +18, +36, and +54 hour

forecasts, while feature set 6 included base features from the +18, +36, +54, and +90

hour forecasts. Using the deterministic forecast as a feature can assist the network

in learning the underlying behavior in the data, and correcting some of the error in

the forecast to adjust for a more accurate result. Table 1 summarizes the different

feature sets examined.
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Table 1. Feature Sets

Feature Set Features
1 Base
2 Neighbors
3 Forecast +18hr
4 Forecast +18hr, +36hr
5 Forecast +18hr, +36hr, +54hr
6 Forecast +18hr, +36hr, +54hr, +90hr

Including the base feature set, there were six sets to test with each set trained and

validated on C0 and a randomly selected point from Ci not previously used. Each

set was trained 20 times for each of the four prediction periods of T = (18, 36, 54, 90)

hours. This yielded 480 models trained and validated with the average validation

RMSE for u and v being used as the performance metric for determining the best

performing feature set. Statistical analysis involved using box plots and Tukey’s T-

test to determine differences that existed within the feature sets and determining the

overall best performing set.

3.3.4 LSTM Architecture Parameters

The final step in parameter tuning is to fine tune the LSTM architecture utilizing

all the results from the previous sections and the final training data set. Parameters

that were tuned for in the LSTM architecture were the number of layers, layer width,

optimizer, learning rate, activation function, and early stopping criteria. While many

“deep learning” networks are considered deep because they extend past one hidden

layer, and in truth have a multitude of hidden layers, LSTM networks do not neces-

sarily need as many layers. Generally one layer is sufficient with two being utilized for

more complex problems. Extending beyond two is generally done for image, video,

and text prediction problems that have more underlying features to describe, and may

be paired with convolution layers instead. Table 2 shows all the options examined for

18



these parameter values.

Table 2. LSTM Parameter Options

Parameter Options
Layers Layer Width Activation Function Optimizer Learning Rate Patience

1 64 Relu SGD 0.001 25
2 128 Tanh Adam 0.01 50

256 Sigmoid RMSprop 0.1 75
512 100

In total 864 different designs were trained and validated using the combinations

created from Table 2. Due to the large number of architectures explored, total valida-

tion MSE was used as the performance metric. This is not dissimilar to the previous

sections as MSE is already used as the loss function, then converted to RMSE for

each output. Here, time is a constraint preventing the examination of all these archi-

tectures if examined by RMSE for each output, which is why total validation MSE is

being used instead. Since a difference in network architecture was examined, running

multiple instances of each architecture design to achieve an average validation RMSE

was not necessary. Model initialization kept the same random number generation in

order to keep the initial weights of the network the same. This allowed observing

the effect of changing a network parameter and the resulting change in prediction

accuracy.

All the results were examined using an iterative elimination process to hone in on

the optimal architecture. Parameter values that produced large errors were removed

until only well performing combinations remained. Then the parameters were chosen

from the remaining designs with the best validation MSE.

3.4 Model Types

Two model types were examined in this study, with both utilizing the same LSTM

architecture designed in the previous section. The first is the classic LSTM network.
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The second model is an LSTM ensemble network, composed of six of the classic

LSTM networks. The goal of the ensemble network is to investigate the ability to

combine the predictive powers of multiple models to achieve greater accuracy and

generalization.

Each member of the ensemble network was trained using one of the top ten coor-

dinates identified during coordinate selection, but not C0. Validation was done using

a randomly selected unused coordinate from Ci. Each trained model then acted as an

input into a one layer basic neural network that acted as a meta-learner. The meta-

learner was trained on C0 to find the proper weights for combining the predictive

scores from the input models.

The trained models were tested against 4,000 randomly sampled coordinates. Re-

sults were recorded for each prediction period, and statistical analysis involved box

plots and a T-test to determine differences that existed within the two models. This

determined the best performing model type, which was then used for final testing.

3.5 Deterministic Forecast Comparison

Comparison with the deterministic forecast is the final measure of performance

conducted. The deterministic forecast represents the current technique utilized at

AMC for mission planning. Performance of the constructed LSTM model against

the deterministic model serves as a benchmark for determining the model’s ability

to predict future weather factors, or acting as a post processor for reducing error in

the deterministic forecast. If predictions are comparable or better, then it is assumed

that the model is beneficial in existing fuel optimization scenarios for reducing fuel

usage.

The test was conducted by taking the best performing LSTM model design and

the deterministic forecast, and evaluating both against 10,000 randomly sampled
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coordinates for prediction periods T = (18, 36, 54, 90) hours. The RMSE for u and

v for each test was utilized in statistical analysis to determine the model’s overall

performance to current industry methods. Statistical analysis involved box plots and

a T-test to determine differences that existed within the two models, and determining

the performance of the LSTM compared to the deterministic forecast.

3.6 Flight Path Comparison

An indirect estimate of fuel efficiency can be taken from the travel time between

two locations. To do this a shortest path optimization was conducted to find the

optimal altitudes to fly at to maximize tailwinds. Maximizing tailwinds is one indirect

way to gauge fuel efficiency, since positive tailwinds imply negative headwinds. With

negative headwinds the plane receives more force from the back as opposed to the

front, generally requiring less fuel to propel the plane forward.

To evaluate this, a network of paths was built for a flight between McGuire AFB to

Ramstein AFB. The flight path was divided into 20 equally spaced way-points, with

each way-point having five altitude levels to choose. The minimum and maximum for

these altitudes was based on average cruising altitudes between 8 to 13.5 km. Table 3

shows the altitude levels, and Table 4 displays the coordinates for the 20 way-points.

Table 3. Flight Path Altitude Levels
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Table 4. Flight Path Way-points

A couple assumptions were made in order to populate the network with wind

values given the dynamic nature of the network. First involves the cruising speed of

the aircraft. This was set to a constant 450 knots or 231.5 m/s with no headwind or

tailwind present. The second involves take-off and landing, which were ignored given

the length of the travel between the two locations. The distance between way-points

is sufficiently long enough for the aircraft to reach the desired altitude level without

considering the time difference imposed.

Each way-point was populated with the predicted wind speeds for the time elapsed

from traveling. Wind speed predictions came from the +36, +54, and +90 hour

LSTM prediction models. This model was the same as the final one used in the

deterministic comparison, except feature set 1 is used as opposed to any others.

Limiting the feature set was done to highlight the computational speed and accuracy
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trade-offs. If deterministic forecast features were included, then running the LSTM

model would be reliant on having that forecast available. Leaving the features out

allows the LSTM model to run independent of the deterministic model, and actually

allow a computational speed comparison between the two.

Since weather readings occur every six hours, this implies that wind speed values

for a set of way-points will become inaccurate as the plane moves through the network

and time elapses. Therefore, a linear interpolation was conducted between the time

steps in order to find the wind speeds at the elapsed time. Once the time values

were known, linear interpolation was used again in the spatial dimension to find the

wind speed values at the exact way-point’s coordinate. This was done for wind speed

values from the LSTM model, deterministic model, and the truth values from the

GFS.

Performance was measured by looking at the difference in optimal paths compared

to the GFS model, along with the estimated total travel time. Statistical measures

were used for to analyze the time difference between the LSTM flight path travel

compared to the GFS and deterministic outputs.
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IV. Results

4.1 Overview

This section details the results from the testing phase along with results from

the data pre-processing and parameter tuning. Since the significance of a machine

learning model depends on the manipulation of the data-set and tuning of the model

parameters, these results are integral to understanding the final model.

4.2 Parameter Tuning Results

There were many parameters that were investigated and tuned to design the op-

timal model for the given data-set. This section reviews the results from coordinate

selection, sequence length selection, feature selection, and the final architecture de-

sign.

4.2.1 Coordinate Selection

Sampling for the optimal coordinates with the ability to best generalize required

a multitude of models to run and evaluate. With a sample size of 980 coordinates,

this required training 980 models along with 959,420 model evaluations.

Figure 6 shows the error distribution for u and v from the completed model evalu-

ations along with their associated normal probability plots. The histograms indicate

a distribution for the error that may be non-normal. Investigating the normal proba-

bility plots more clearly displays the non-normality of the error, with majority of the

points falling out of the CI bands for the fitted line. This non-normality can be due

to the non-negative nature of the error. In this instance zero acts as a lower bound

and constraint on the distribution, giving this distribution more of a log-normal look.
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Figure 6. Distribution of RMSE for Coordinate Selection

Due to this non-normality, the median and quantile ranges of the data were used

to identify the best performing coordinates since the median is a more robust statistic

than the mean, and is less effected by outliers. Using the 5th percentile as a cutoff

for the weighted scoring scheme implemented, the upper limits for u and v RMSE

respectively were 5.088 m/s and 5.075 m/s with the minimum values being 4.553 m/s

and 4.647 m/s. Table 5 shows the final selection of coordinates in rank from their

weighted score on performance. The top ranked coordinate was (−78◦, 68◦), now

referred to as C0.
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Table 5. Final Coordinate Selection and RMSE

The location of the top performing coordinates are of interest. They mostly all fall

along the same latitude, but spread among various longitudes and altitudes. Figure

7 is a visual representation of the coordinate random sampling along with where the

final chosen coordinates were located. Interestingly, the region representing the final

points is close to the same region as the southern polar jet stream. This indicates

a possible relationship exist here with this particular jet stream, and the rest of the

global coordinates. The regions containing the other three jet streams did not pop

up in the top scoring sampled coordinates suggesting a future area of investigation.

This insight might imply a bias within point selection but reviewing the sampling

of points reveals that regions covering all four jet streams were part of the sampling

set. Their non-inclusion into the top coordinates indicates that if a bias exist, it is

not due to non-sampling of the regions.
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Figure 7. Initial and Final Coordinate Selection
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4.2.2 Sequence Length

The following sections examine prediction periods +18, +36, +54, and +90 hours.

The optimal sequence length could depend on the prediction range, with different

lengths being appropriate for each range.

4.2.2.1 18 hours

Figure 8. Sequence Length Box Plots, 18hr Results

Figure 8 above shows the box plots for u and v, for the +18 hour prediction

range, T = 18 hours. The red line indicates the 75th percentile for the value with the

lowest median, which for both outputs is S = 13. Using this threshold certain length

values can be removed from consideration by observing if their 25th percentile does
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not overlap with the red line. These groups are considered statistically different by

observation. For u, only S = 2 is eliminated, while none are eliminated from v. For

both outputs, the longer sequence length values generally had smaller spreads of data

indicating smaller variance, while the lower ones had a much higher variance. Low

variance is a highly desired trait here that comes into consideration for final sequence

length selection.

The next step was comparing the CI on the difference of means for the groups

to S = 13 using Tukey’s test. Table 6 displays the results for u with S = 13 and

compared to the rest of the values.

Table 6. Sequence Tukey Test Results, Wind U 18 hours

When compared against S = 13, none of the other values showed a statistically sig-

nificant difference, indicating a statistical difference doesn’t exist between the means

given the sample size. With only 20 samples per group, the limited sample size could

be a hindrance. Observing the mean difference being smaller for the higher valued

sequence lengths illustrates the smaller variance that existed in those groups, and

their similarity to each other compared to the lower values. Test results for v with

S = 13 are shown in Table 7.
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Table 7. Sequence Tukey Test Results, Wind V 18 hours

Similar results are observed for v, where none of the means of the groups compared

against S = 13 are statistically different. Again, this could be due to the smaller

sample size collected. Using the evidence of the smaller variances and lowest median

values for RMSE, S = 13 was chosen as the sequence length parameter for T = 18

hours.
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4.2.2.2 36 hours

Figure 9. Sequence Length Box Plots, 36hr Results

For T = 36 hours, Figure 9 shows the box plots for u and v. The 75th percentile

here falls on S = 12 for u, and S = 1 for v. This is a surprising observation for v,

while u seems to fall in line with the previous sections. It still holds that the larger

S values tend to have lower median RMSE values along with smaller variances, with

S = 1 being an exception. Also, both charts in Figure 9 show a similar pattern from

S = 1 to S = 15 where the middle values tend to increase in error then drop back

down. It is an interesting phenomenon that warrants further investigation.

Using the red line as a threshold, S = (2, 3, 4, 5, 6, 8, 9, 11) and S = (2, 3, 4, 5, 6, 7, 9, 11, 13, 15)

were removed for u and v respectively. A few discrepancies exist among the two groups

but they are overall very similar. The further out in prediction range, the declining
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accuracy might have an effect on distinguishing between the two wind components

more distinctly, and bringing out any nuanced differences that are starting to appear

here between u and v.

The next step was comparing the CI on the difference of means for the groups to

the lowest value using Tukey’s test. Table 8 displays the results for u with S = 12

and compared to the rest of the values.

Table 8. Sequence Tukey Test Results, Wind U 36 hours

Only two groups are statistically significant in their difference, S = (3, 5). This is

also apparent from looking at the box plots. While many of the others did not exhibit

a statistical difference in their means, it is shown that the higher value groups mean

difference was smaller than the lower value groups. This again gives more evidence

that the upper groups where S > 10 are more similar than the others (excluding

S = 1 here) when comparing means. Similar insight comes when looking at v. Test

results for v with S = 1 are shown in Table 9.
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Table 9. Sequence Tukey Test Results, Wind V 36 hours

Another way to examine these results is to look at their p-values. While all, except

a couple groups, are not statistically different, the highest p-values for commonality

exist among S = 1 and S > 10. This is true for both u and v, indicating any choice

within that set could be reasonable as a parameter. Since S = 1 still seems like an

oddity, S = 12 is being used for T = 36 hours since it scored best for u and second

best for v. It also more closely follows the pattern being set for this parameter.
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4.2.2.3 54 hours

Figure 10. Sequence Length Box Plots, 54hr Results

For T = 54 hours, Figure 10 above shows the box plots for u and v. The 75th

percentile here falls on S = 15 for u, and S = 15 for v. Again a similar pattern exist

with the groups, where S = 1 is low and the error generally rises before coming back

down at S > 10. Little differences exist in these charts that was not already explored

from the previous time ranges. Groups that were removed from consideration based

on the red line were S = (2, 4, 6, 8, 10) for u, and S = (2, 3, 4, 5, 6, 7, 10) for v.

The next step was comparing the CI on the difference of means for the groups to

the lowest value using Tukey’s test. Table 10 displays the results for u with S = 15

compared to the rest of the values.
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Table 10. Sequence Tukey Test Results, Wind U 54 hours

When compared against S = 15 only two values tested to be statistically different,

S = (4, 8). The same pattern exists where the higher values and S = 1 share higher

p-values compared to the rest of the groups. Moving on to v this is also apparent

again as shown in Table 11. Thus, S = 15 was chosen as the parameter value for

both u and v.

Table 11. Sequence Tukey Test Results, Wind V 54 hours
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4.2.2.4 90 hours

Figure 11. Sequence Length Box Plots, 90hr Results

For T = 90 hours, Figure 11 shows the box plots for u and v. The 75th percentile

here falls on S = 14 for u, and S = 1 for v. Again a similar pattern exist with

the groups, where S = 1 is low and the error generally rises before coming back

down at S > 10. This is much more pronounced for v since S = 1 again scores the

lowest. Groups that were removed from consideration based on the red line were

S = (2, 3, 5, 6, 7, 11, 12) for u, and S = (3, 5, 6, 7, 12, 13) for v. The major difference

here is the removal of some of the high value sequence lengths. This is most likely

due to the larger uncertainty pertaining to T = 90 hours requiring a larger sample

size in the future.

The next step was comparing the CI on the difference of means for the groups to
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the lowest value using Tukey’s test. Table 12 displays the results for u with S = 15

compared to the rest of the values.

Table 12. Sequence Tukey Test Results, Wind U 90 hours

When compared against S = 15 only one value tested to be statistically different,

S = (3). With this being the longest prediction range, it is expected that each group

tested would have a higher variance. Therefore making it more difficult to discern

more statistical differences among the groups. This is evident from the results for v

shown in Table 13. Given that consistency has been with the higher values for u and

v, the chosen sequence length for T = 90 hours was S = 15.
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Table 13. Sequence Tukey Test Results, Wind V 90 hours

4.2.3 Feature Selection

To examine the results from feature selection, the following sections discuss pre-

diction periods +18, +36, +54, and +90 hours. This helps to determine if any top

performing feature sets faltered in any particular prediction period, as opposed to

performing high in all of them. The feature set chosen is the one that performs high

in all four prediction periods.
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4.2.3.1 18 hours

Figure 12. Feature Selection Box Plots, 18hr Results

Figure 12 above shows the box plots for u and v, for the +18 hour prediction

range, T = 18 hours. The red line indicates the 75th percentile for the value with the

lowest median, which for both outputs is feature set 3. Using this threshold certain

length values can be removed from consideration by observing if their 25th percentile

does not overlap with the red line. These groups are considered statistically different

by observation. For u and v, feature sets 1-2 were eliminated.

Feature set 1 performed the worst, while feature set 2 performed only marginally

better. This indicates that the neighbor set is contributing a slight benefit to accuracy

but not as well as the forecast sets. Feature set 3 performed the best but it was only
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marginally better than feature sets 4-6, indicating there might not be any statistical

difference between the four sets. This would make sense since having extra forecast

features beyond the +18 hour should not hinder the model, as long as the +18 hour

feature is included. An interesting observation is that extra forecast features beyond

the prediction period did not help in increasing accuracy for T = 18 hours. This is a

detail that is examined in the rest of the prediction periods.

Examining results from Tukey’s T-test showed similar conclusions. Table 14 and

Table 15 show the results from these tests for u and v. These results mirror what was

shown in the box plots. The forecast feature sets are statistically similar to each other

while different from feature sets 1-2. The best performing feature sets for T = 18

hours are sets 3-6.

Table 14. Feature Set Tukey Test Results, Wind U 18 hours
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Table 15. Feature Set Tukey Test Results, Wind V 18 hours
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4.2.3.2 36 hours

Figure 13. Feature Selection Box Plots, 36hr Results

Figure 13 shows the box plots for u and v, for the +36 hour prediction range,

T = 36 hours. The red line indicates the 75th percentile for the value with the lowest

median, which for both outputs is feature set 4. Using this threshold feature sets 1-3

were eliminated for u and v.

A similar pattern is occurring here as we increase the prediction period. Feature

set 1-2 still performed the worst with feature set 2 only a bit better than 1. Feature

set 3 decreased in performance once the prediction period was increased beyond the

forecast features that it contained. This was expected, although it is shown that

having only a forecast feature earlier than the prediction period still helps improve
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accuracy more than just the base features or neighbor features. Feature sets 4-6

performed the best with little being shown in u, though in v a larger difference is

noticed that could lead to a statistical difference between the sets. While this would

be unexpected, the small sampling of 10 runs could being having an effect on the

variance.

Results from Tukey’s T-test are shown in Table 16 and Table 17. The results for u

show a result that is expected, with feature sets 4-6 being statistically similar to each

other while being different from sets 1-3. The results from v show a more surprising

result. Feature sets 1-3 behave as expected, being statistically different from the rest.

The discrepancy occurs in feature sets 4-6, where sets 5 and 6 are statistically similar

but different from set 4. As mentioned, this could be due to the small sampling

size. Investigating the lower bounds of the CI along with the mean difference shows

a relatively small difference. This could be improved by more sampling and won’t

be used a means to disqualify the groups. Looking at their median values from the

box plots, the difference is 0.62 m/s and 0.36 m/s for set 5 and 6 respectively when

compared to set 4. Realistically this isn’t as huge of a difference as sets 1-3. Therefore

the best performing feature sets for T = 36 hours are sets 4-6.
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Table 16. Feature Set Tukey Test Results, Wind U 36 hours

Table 17. Feature Set Tukey Test Results, Wind V 36 hours
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4.2.3.3 54 hours

Figure 14. Feature Selection Box Plots, 54hr Results

Figure 14 above shows the box plots for u and v, for the +54 hour prediction

range, T = 54 hours. The red line indicates the 75th percentile for the value with

the lowest median, which for u is feature set 6 and feature set 5 for v. Using this

threshold, feature sets 1-4 were eliminated for u and v. Set 5 for u could be eliminated

but further examination is needed using the Tukey T-test.

A similar pattern is occurring here as we increase the prediction period. Feature

set 1-2 still performed the worst with feature set 3 decreasing even more in perfor-

mance. Feature set 4 had a drop in performance but it is similar to feature set 3’s

drop in prediction period T = 36 hours. Feature sets 5-6 performed the best with
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little being shown in v, though in u a larger difference is noticed that could lead to

a statistical difference between the sets. Again, small sampling could be the cause of

this which would need to be investigated in future work.

Results from Tukey’s T-test are shown in Table 18 and Table 19. The results for

u show a result that is expected, with feature sets 5-6 being statistically similar to

each other while being different from sets 1-3. The interesting aspect here is set 5

being similar with 4 and 6, but set 4 being different to 6. Set 5 has an overlap with

the two which is due to the larger variance apparent in that sample. The results from

v show a more consistency with the previous patterns. Feature sets 5-6 are statically

similar while different from the rest of the sets. The best performing feature sets for

T = 54 hours are sets 5-6.

Table 18. Feature Set Tukey Test Results, Wind U 54 hours
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Table 19. Feature Set Tukey Test Results, Wind V 54 hours
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4.2.3.4 90 hours

Figure 15. Feature Selection Box Plots, 90hr Results

Figure 15 shows the box plots for u and v, for the +90 hour prediction range,

T = 90 hours. The red line indicates the 75th percentile for the value with the lowest

median, which for u and v is feature set 6. Using this threshold feature sets 1-5 were

eliminated for u and v. Steadily increasing the time steps from the forecast feature to

the prediction period decreases accuracy until it performs no better than the base set.

Having a forecast feature including the prediction period greatly increases accuracy.

Results from Tukey’s T-test are shown in Table 20 and Table 21. The results for

u and v show that feature set 6 is statistically different from the rest of the sets. This

indicates feature set 6 is the best performing set for T = 90 hours.
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Table 20. Feature Set Tukey Test Results, Wind U 90 hours

Table 21. Feature Set Tukey Test Results, Wind V 90 hours
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4.2.3.5 Feature Selection Conclusion

Since feature set 6 was included in the best performing sets for all prediction

periods, this set is used for training the final model. This set includes the base

features, along with the deterministic forecast features from the +18, +36, +54, and

+90 hour forecast.

4.2.4 LSTM Final Architecture

With the large amount of parameter options looked at for LSTM architecture

tuning, an iterative process helped eliminate options that did not perform well. The

first parameter investigated was the optimizer employed. Figure 16 shows the results

for the validation MSE from an aggregated list of options. The first noticeable thing

is RMSprop consistently performs poorly when paired with the sigmoid and tanh

activation functions. While having 2 layers reduces this only for the larger layer

widths, it does not correct it.

Figure 16. Architecture Selection Initial Results

Activation functions tanh and sigmoid were filtered out to further explore the

RMSprop optimizer. These results are shown in Figure 17. The ReLU activation

function seems to fix the issue RMSprop was having with the training data. This
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piece of evidence indicates that the combination of sigmoid and tanh with RMSprop

was running into the vanishing gradient problem. This is an issue corrected with the

ReLU function. Also, the other optimizers have varying built in features to mitigate

this issue. Since RMSprop did not perform better than Adam even with a ReLU

activation function, RMSprop was removed from consideration.

Figure 17. Architecture Selection, ReLU results

Figure 18 shows the filtered results with RMSprop removed. The SGD optimizer

consistently under performs Adam for every option combination without dispute. Due

to that, SGD was removed leaving Adam to be the best performing optimizer.

Figure 18. Architecture Selection, SGD and Adam Results

Activation functions were explored next. Table 19 shows results filtered to include
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only the Adam optimizer with all the rest of the parameter options. The tanh function

is the best performing activation function here. ReLU comes the second closest, and

only beats it on one layer networks when the layer width grows larger 128 nodes. On

the 2 layer network, this does not happen and tanh out preforms ReLU on all explored

layer widths. With this all other activation functions except tanh were removed, and

learning rates were explored next.

Figure 19. Architecture Selection, Adam Results

Figure 20 shows the filtered results with the Adam optimizer and tanh activation

function. Exploring the learning rates, there is a consistent pattern of the largest

learning rates having the highest error while the opposite is true for the lower learning

rates. Based on that evidence a learning rate of 0.001 was chosen for the final model.

The last step was to explore the number of nodes and layers.
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Figure 20. Architecture Selection, Adam and tanh Results

Figure 21 shows the filtered results to explore the number of nodes and layers that

perform best for the model. The results are not sorted even though they have that

look. The performance of the model seemed to steadily decrease as the layer width

increased, and with the addition of the extra layer. This could be due to the small

sample size. Although the patience is meant to help correct over fitting, the speed at

which it may occur with the addition of extra layers and increased layer width may

be the cause of the increased error. The final model will go with one layer with 64

nodes.

Figure 21. Architecture Selection, Learning Rates Results

The only thing not shown in these graphs was patience. This parameter did not
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seem to have a large effect past 50 epochs, so the patience was set to 50 epochs. The

final LSTM architecture parameters are displayed in Table 22.

Table 22. Final LSTM Architecture Parameters

Parameter Value
Layers 1
Layer Width 64
Activation Function tanh
Optimizer Adam
Learning Rate 0.001
Patience 50

4.3 Model Design Choice

The final LSTM architecture was tested against an ensemble network of six LSTM

models. Both were trained against C0, with the individual ensemble members being

trained on six random coordinates from Ci. The test was done against 4,000 randomly

sampled coordinates, with the results shown in Figure 22. The plots are in order from

T = 18 hours to T = 90 hours. Table 23 displays the median and mean values for

each scenario.
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Figure 22. Model Selection Box Plot Results
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Table 23. Model Selection Numeric Results

Initial investigation of the box plots reveals the medians for both model types

being slightly close, with the ensemble edging out each time. The single model tends

to suffer from more outliers and higher variance. Investigation of the outliers revealed

a handful of coordinates responsible for the behavior. They were not removed since

the ensemble model was also tested against the same coordinates, but produced better

results and less outliers than the single LSTM model. The difference in performance

became more apparent as the prediction period increased towards T = 90 hours. The

exception being v at T = 90 hours for the single model LSTM displayed performance

that was closer to the ensemble than in the previous prediction period. To test for

statistically significant differences between the model types, a T-test was performed.

The results for u are displayed in Table 24, and the results for v are displayed in

Table 25.
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Table 24. Model Selection T-Test Results, Wind U

Table 25. Model Selection T-Test Results, Wind V

These results indicate that a statistical difference exist between the ensemble

model and the single LSTM model at a 95% confidence level. Sample size is not

an issue here since 4,000 samples were used to generate the results. Going from the

mean or median values the ensemble performed better in each metric. Therefore

the ensemble model was chosen as the final model to test against the deterministic

forecast.
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4.4 Deterministic Forecast Comparison

Figure 23. Deterministic Comparison Box Plot Results
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Figure 23 displays the box plot results for the test between the deterministic

forecast and the ensemble LSTM for 10,000 randomly sampled coordinates. The de-

terministic forecast appears to be better, but only marginally. This is more distinctive

in the larger prediction periods where the uncertainty increases and the models ap-

pear to be very similar. In the smaller prediction periods the deterministic forecast

seems to have an advantage in terms of a tighter variance. The numeric results for

the mean and median are shown in Table 26.

Table 26. Deterministic Comparison Numeric Results

A t-test was conducted to examine statistical differences in the two models. Table

27 and Table 28 show the results for u and v, respectively. The results show that

the difference between the models is statistically significant to a confidence level of

95%. This difference can be put into perspective with the margin of error. The

LSTM ensemble model’s error was on average 1.18 m/s for +18 hours, 1.25 m/s for

+36 hours, 0.97 m/s for +54 hours, and 1.32 m/s for +90 hours higher than the

deterministic forecast. While the model is not statistically similar, the difference in

error is small. Also, in approximately 11% of points the LSTM ensemble model

outperformed the deterministic forecast by an average of 0.67 m/s. This indicates
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the model is benefiting from the addition of the forecast features to learn the true

wind speed values as opposed to being bound by the value of the forecast feature.

This is further seen in Figure 24 where the predicted wind speeds for a random point

is shown against the truth values at varying altitudes. While the LSTM may not

be outperforming the deterministic model, it is still showing its ability to learn the

complex underlying wind dynamics.

Table 27. Deterministic Comparison T-Test Results, Wind U

Table 28. Deterministic Comparison T-Test Results, Wind V
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Figure 24. Predicted Wind Components at Coordinate (52◦, 13◦)
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4.5 Flight Path Results

Figure 25. Percent Error for Flight Path Travel Time

Table 25 displays the results for the percent error of the average predicted travel

time from McGuire AFB to Ramstein AFB for the deterministic NWP and the LSTM
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model. It is not surprising that the deterministic model has lower error than the

LSTM. The previous sections already highlighted this difference in accuracy. Consid-

ering this, the actual percent difference is relatively quite small for the LSTM model.

Table 29 shows the numeric results for both models while Table 30 shows the pre-

dicted travel times for this particular route. The GFS represents the best estimate

using the truth information.

Table 29. Numeric Results for Flight Path Travel Time Error

Table 30. Predicted Flight Path Travel Time

With a percent error ranging from 3-7% for the LSTM model, this accounts to

only 13-30 min or error in the predicted travel time for an approximately 7 hour and
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30 min flight. The trade-off that needs to be considered here is if the decrease in

accuracy for the LSTM is worth the benefit of decreased computation times. While

the 36 hour LSTM model maybe be off by 13 min, it will give an answer in a couple

seconds compared to the couple hours the deterministic NWP takes to run. This

significant decrease in computation time for the LSTM model is worth

consideration for all future flight planning needs.

Table 31. Model Computation Times

Model Approximate Run Time
LSTM 1.85 seconds

Deterministic NWP 3 hours
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V. Conclusions and Future Research

5.1 Conclusion

This study examined the potential for LSTMs to model and predict upper atmo-

spheric wind speeds for any given latitude and longitude coordinate. The prediction

periods examined were T = (18, 36, 54, 90) hours with the results being compared

against the GFS deterministic weather model for the same forecast periods. The

goal was to reduce the error in the deterministic model, thereby giving users of the

forecast data more accurate information. A secondary goal was to develop a model

that computed faster than current methods with a reasonable level of accuracy. This

would be usable by AMC for aircraft mission planning to build more fuel efficient

routes, and reduce fuel usage thereby saving money to the AF for fuel procurement.

A faster model would also increase productive time for mission planners, and allow

them to respond rapidly to building flight plans.

An important insight from this study was the importance of model tuning and

the effect it can have on results. Keying in on the LSTM parameters, the difference

between pairing a tanh activation function with the RMSprop optimizer as opposed

to the Adam optimizer had stark differences with this data set. The Adam opti-

mizer significantly outperformed the RMSprop optimizer when paired with the tanh

or sigmoid activation function. Exploring layer width and learning rates had sim-

ilar insights. While higher learning rates were expected to not perform well, more

unexpected was that a larger layer width also did not perform as well. This can be

an overcapacity to the network where the model over fits faster than the validation

methods can terminate the training at an appropriate point. Other interesting in-

sights came from the features used in the model. While it was expected that adding

the forecast features would help, having a forecast feature further away in the past
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from the predicted period provides negligible help. The range seems to grow as the

prediction period extends out.

While the ensemble LSTM model was the best performing of the architectures

tested, it did not beat the deterministic model on a majority of occasions. Although

the difference between the two for error was small, with the ensemble LSTM on

average off by 1.18 m/s for T = 18 hours, 1.25 m/s for T = 36 hours, 0.97 m/s for

T = 54 hours, and 1.32 m/s for T = 90 hours. On 11% of tested coordinates the

ensemble LSTM outperformed the deterministic model by an average of 0.67 m/s.

These results demonstrate a viability for this technique exist, and can be improved

upon if certain shortfalls and limitations are addressed for further research.

Even though the LSTM did not achieve its accuracy goal, its error was relatively

close. Removing the forecast features increased the error a small amount, but allowed

the LSTM model to function without being reliant on results from the deterministic

NWP model. In this instance instead of acting as a post processor for error, it was

used as a means to achieve similar predictive results at an incredibly faster rate.

The LSTM was able to optimize flight paths between two points with an average

error of 4.6% to the travel time using predictions from +36, +54, and +90 hours out.

The computation time was approximately 1.85 seconds compared to the deterministic

NWP which takes approximately 3 hours. That is 7,200 times faster than current

methods for approximate solutions that are close to truth. This is a major benefit for

flight planners, as it increases productive time and allows rapid generation of flight

plans. It also does not require anything more than a basic computer or laptop, and

as such enables its ability to be deployed in a myriad of situations and environments.
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5.2 Limitations

There were some limitations in this study. The biggest limitation was the size of

the data. While the results of this study were promising, it was trained on a small

set representing six months or half a season of weather. This is not enough to fully

explore the ability of the LSTM to learn the weather dynamics, and generalize them.

The smaller data size also contributed to limited feature selection. While a multitude

of weather variables existed to include in the model, limited features were chosen as

to not incur a dimensionality issue while training the data.

A second limitation presented itself in the complex nature of sequential weather

data. Training the models takes an extensive amount of time, upwards to weeks

to fully complete parameter tuning. This prevented a full exploration of parameter

values and feature variables that could improve the network. It also deterred from

using more complex LSTM variant networks, which could possibly assist in improving

accuracy.

5.3 Future Research

This study serves as a starting point for a number of future projects. With a

benchmark established for ensemble LSTM performance, the next steps would look

to improve upon the existing architecture or available data. A reforecast data set exist

from NOAA which contains data from 1984 with readings done every day instead of

the six hour intervals used here. This set offers the potential to test longer series

of weather data, and would allow the exploration of a deeper LSTM network. With

more data available, more features could be explored for adding into the model since

dimensionality would be less on an issue. Some of these features could include relative

humidity, max ground wind speeds, convective potential energy, potential vorticity
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surfaces, etc.

Another area to explore would be the flight planning itself and the path optimiza-

tion. Building a more complex time dynamic three dimensional network could offer

interesting insights into the best flight path that maximizes tailwinds. The exist-

ing LSTM architecture could be used for this as it shows relatively small error and

provides wind speed predictions at an incredibly fast rate.

Future work can be done studying the coordinate regions. With over 2 billion co-

ordinates, a deeper study could investigate the relationships between different global

regions and their ability to model other regions. This could lead to developing of

regional LSTM models built from coordinates that characterize that area, and gen-

eralize to similar areas around the globe. These regional weather similarities can be

of importance to many national weather agencies.
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Appendix A. Weather Truth Data Pre-Processing MATLAB
Code

1 c = {}; % create empty cell to hold specific variables from data

2 countF = 0; % count number of actual files opened

3 time = [0, 6, 12, 18]; % array of time intervals

4

5 for k = 8:9 % year

6 for j = 1:12 % months

7 for i = 1:31 % days

8 for n = 1:4 % time intervals

9 try

10 % create filename to open

11 if j < 10

12 month = strcat(num2str (0),num2str(j));

13 else

14 month = num2str(j);

15 end

16

17 if i < 10

18 day = strcat(num2str (0),num2str(i));

19 else

20 day = num2str(i);

21 end

22

23 if n < 3

24 timeS = strcat(num2str (0),num2str(time(n)));

25 else

26 timeS = num2str(time(n));

27 end

28

29 tic
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30

31 date = strcat(’201’,num2str(k),month ,day);

32 file = strcat(’G:\ Thesis\Deterministic\’,date ,’\

’,date ,timeS ,’\gfs_3_ ’,date ,’_’,timeS ,’00_000.grb2’);

33 ds = ncgeodataset(file);% open file

34 var = ds.variables;% save variable data

35

36 %len = length(var);

37 %meta = ds.metadata;

38

39 countF = countF + 1;

40

41 % Temperature data

42 c{countF ,1} = ds.data(var {11});

43 c{countF ,1} = squeeze(c{countF ,1});

44

45 % Wind -U data

46 c{countF ,2} = ds.data(var {37});

47 c{countF ,2} = squeeze(c{countF ,2});

48

49 % Wind -V data

50 c{countF ,3} = ds.data(var {46});

51 c{countF ,3} = squeeze(c{countF ,3});

52

53 % Geopotential Height data

54 c{countF ,4} = ds.data(var {74});

55 c{countF ,4} = squeeze(c{countF ,4});

56

57 % Pressure Layer data

58 c{countF ,5} = ds.data(var {108});

59 c{countF ,5} = squeeze(c{countF ,5});

60
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61

62 toc

63

64 catch

65

66 end

67 end

68 end

69 end

70 end

71

72 % Parse out all data into separate time series files for each

coordinate

73

74 for lat = 1:181

75 for long = 1:360

76 for alt = 1:31

77 tic

78 data = zeros(length(c) ,7);

79

80 for loc = 1: length(c)

81

82 tempArr = c{loc ,1};

83 WindUArr = c{loc ,2};

84 WindVArr = c{loc ,3};

85 GeoArr = c{loc ,4};

86 PresArr = c{loc ,5};

87

88 data(loc ,1) = lat - 91;

89 data(loc ,2) = long - 180;

90 data(loc ,3) = PresArr(alt);

91 data(loc ,4) = GeoArr(alt ,lat ,long);
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92 data(loc ,5) = tempArr(alt ,lat ,long);

93 data(loc ,6) = WindUArr(alt ,lat ,long);

94 data(loc ,7) = WindVArr(alt ,lat ,long);

95

96 end

97

98 data = data(any(data ,2) ,:);

99 fileName = strcat(’D:\ Thesis\Points\data_all_ ’,num2str(

lat),’_’,num2str(long),’_’,num2str(alt),’.txt’) %Enter your own

file destination

100 writematrix(data , fileName);

101

102 toc

103 end

104 end

105 end
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Appendix B. Weather Forecast Data Pre-Processing
MATLAB Code

1 c = {}; % create empty cell to hold specifc variables form data

2 countF = 0; % count number of actual files opened

3 time = [0, 6, 12, 18]; % array of time intervals

4 forecast = [18, 36, 54, 90]; % forecast to pull

5

6 for h = 1: length(forecast)

7 for k = 8:9 % year

8 for j = 1:12 % months

9 tic

10 for i = 1:31 % days

11 for n = 1:4 % time intervals

12 try

13 % create filename to open

14 if j < 10

15 month = strcat(num2str (0),num2str(j));

16 else

17 month = num2str(j);

18 end

19

20 if i < 10

21 day = strcat(num2str (0),num2str(i));

22 else

23 day = num2str(i);

24 end

25

26 if n < 3

27 timeS = strcat(num2str (0),num2str(time(n

)));

28 else

73



29 timeS = num2str(time(n));

30 end

31

32 date = strcat(’201’,num2str(k),month ,day);

33 file = strcat(’G:\ Thesis\Deterministic\’,

date ,’\’,date ,timeS ,’\gfs_3_ ’,date ,’_’,timeS ,’00_0’,num2str(

forecast(h)),’.grb2’);

34 ds = ncgeodataset(file);% open file

35 var = ds.variables;% save variable data

36

37 %len = length(var);

38 %meta = ds.metadata;

39

40 countF = countF + 1;

41

42 % Temperature data

43 c{countF ,1} = ds.data(var {12});

44 c{countF ,1} = squeeze(c{countF ,1});

45

46 % Wind -U data

47 c{countF ,2} = ds.data(var {54});

48 c{countF ,2} = squeeze(c{countF ,2});

49

50 % Wind -V data

51 c{countF ,3} = ds.data(var {63});

52 c{countF ,3} = squeeze(c{countF ,3});

53

54 % Geopotential Height data

55 c{countF ,4} = ds.data(var {101});

56 c{countF ,4} = squeeze(c{countF ,4});

57

58 % Pressure Layer data
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59 c{countF ,5} = ds.data(var {154});

60 c{countF ,5} = squeeze(c{countF ,5});

61

62 % Note that for the forecast , the variables

of interest are located in different indices of the ds.data array

63

64

65 catch

66

67 end

68 end

69 end

70 toc

71 end

72 end

73 end

74

75 for h = 1: length(forecast)

76 for lat = 1:55

77 tic

78 for long = 1:360

79 for alt = 1:31

80 data = zeros(length(c) ,7);

81

82 for loc = 1: length(c)

83

84 if loc ~= 225

85

86 tempArr = c{loc ,1};

87 WindUArr = c{loc ,2};

88 WindVArr = c{loc ,3};

89 GeoArr = c{loc ,4};

75



90 PresArr = c{loc ,5};

91

92 data(loc ,1) = lat - 91;

93 data(loc ,2) = long - 180;

94 data(loc ,3) = PresArr(alt);

95 data(loc ,4) = GeoArr(alt ,lat ,long);

96 data(loc ,5) = tempArr(alt ,lat ,long);

97 data(loc ,6) = WindUArr(alt ,lat ,long);

98 data(loc ,7) = WindVArr(alt ,lat ,long);

99

100 end

101 end

102

103 data = data(any(data ,2) ,:);

104 fileName = strcat(’D:\ Thesis\Points_54hr\data_all_ ’,

num2str(lat),’_’,num2str(long),’_’,num2str(alt),’_0’,num2str(

forecast(h)),’.txt’);

105 writematrix(data , fileName);

106

107 end

108 end

109 toc

110 end

111 end

76
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