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Abstract

In situations where global positioning systems are unavailable, alternative methods

of localization must be implemented. A potential step to achieving this is semantic

segmentation, or the ability for a model to output class labels by pixel. This research

aims to utilize datasets of varying spatial resolutions and locations to train a fully

convolutional neural network architecture called the U-Net to perform segmentations

of aerial images. Variations of the U-Net architecture are implemented and compared

to other existing models in order to determine the best in detecting buildings and

roads. A final dataset will also be created combining two datasets to determine the

ability of the U-Net to segment classes regardless of location. The final segmentation

results will demonstrate the overall efficacy of semantic segmentation for different

datasets for potential localization applications.

iv
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SEMANTIC SEGMENTATION FOR AERIAL IMAGERY USING U-NETS

I. Introduction

Modern navigation technology used in practical applications heavily relies on the

use of the Global Positioning System (GPS) or Global Navigation Satellite System

(GNSS) to achieve accurate locations. Though the advent of GPS has been con-

ducive to many military and commercial advancements, this innovation has created

a weakness in situations where it is not available. To combat these crucial situations,

a need for image-aided navigation has been sought out [5]. Extensive research has

led to many advancements in this area [5, 6, 7, 8, 9, 10]; many of the current state

of the art advancements have come through machine learning technology applied to

this application [11]. This thesis documents an attempt to perform semantic seg-

mentation on aerial images to obtain important features for localization. A specific

convolutional neural network (CNN) architecture known as the U-Net [3] is employed

in the research and applied to existing and newly created datasets.

1.1 Problem Background

Current interest is high in surveillance, combat, and commercial technology that

is able to localize in an area without the use of GPS. Having the robust ability to

determine location makes a system much more valuable for armed forces.

A possible step that may help to improve localization tasks from an aerial per-

spective is the use of semantic segmentation [12, 5, 6]. Semantic Segmentation is the

ability for a machine to classify features in a given image pixel-by-pixel to create a

mask. The goal for the research is to input these masks into a feature detector to
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determine significant features in an image that do not vary with temporal or seasonal

changes. A U-Net architecture will be utilized to perform this semantic segmentation

since it is the best performing method for aerial imagery [4, 13].

1.2 Research Objectives

Current efforts to achieve accurate aerial segmentation for the purposes listed

are hindered due to a lack of data in various spatial resolutions and locations. This

is likely due to the difficult and time consuming nature of creating labelled masks

for numerous classes for a sufficient number of images with sufficient variations in

environments. Baseline comparisons for developing higher performing models are also

scarce based on a lack of data and a standardized dataset. A new labelled dataset

will be created using images from public datasets to accurately assess the capability

of the U-Net for this application and determine the efficacy of combining existing

datasets. The final goal of this research is divided into the following two objectives:

• Develop a dataset using publicly accessible aerial imagery to create a larger

dataset despite different spatial resolutions and locations.

• Create U-Nets that will be able to accurately determine the presence and loca-

tion of buildings or roads in an image.

The classes specified for this instance of semantic segmentation includes roads

and buildings, since these are the most prominent classes that can be found in public

datasets. This data will then be given to separate U-Net models, one for each class.

Each model will be trained on the labelled images and their corresponding ground

truth masks. Ultimately, the U-Net will be used to provide a learning-based feature

detector and localization approach to determine information on which classes can be

used to localize a system regardless of temporal and seasonal variations.
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The methodology in developing this initial data set consists of gathering datasets

from four different sources and preprocessing the images to have uniform crops and

spatial resolution for the input of the U-Nets. The U-Nets will be trained on each

dataset individually and have their performance measured against other architectures.

The built models will then be tested using the final dataset, which combines data

from two sources. The U-Net built in Keras will use the mean intersection over union

(mIoU) as the loss function based on prior research [14]. The VGG16 and ResNet50

architectures found in the Keras applications will also be tested for comparison. For

all models, parameters such as initializers, optimizers, and testing image size are

adjusted to provide an optimized model on the dataset for future feature extraction.

1.3 Limitations and Assumptions

The greatest limitations in achieving the research objectives is the amount of

data available. Optimally this research would produce a network that is invariant to

spatial resolution and also able to detect buildings and roads regardless of location.

However, there currently does not exist enough data at varying spatial resolutions

and locations for this to be a reasonable goal.

The lack of data also means that there are very few aerial imagery datasets which

are used as a baseline for comparison. Comparing currently built models to previous

work is limited to the datasets used by others, which are limited to single spatial

resolutions and sometimes single locations. As more accurately labelled data becomes

available, a finalized dataset for aerial imagery should be created to test numerous

types of invariance to compare and assess overall model performance.

This thesis is organized as follows: Chapter II describes the basics of deep learning,

current architectures for semantic segmentation, and results using U-Nets [3]. This
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chapter also explains why this network architecture was selected for aerial localization.

Chapter III discusses the processes used to create and train the U-Net and other model

architectures for comparison, along with the creation of a new dataset. This chapter

also includes the methodology of the optimization of the U-Net and the respective

performance measures. Chapter IV provides the results of the final optimized U-Net

and the other architectures used, and the overall performance in providing an accurate

output mask of the input images. Finally, Chapter V discusses the conclusions drawn

from the performance of the final model, and future improvements that can be made

to ultimately aid in aerial visual navigation.
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II. Background

This chapter provides a technical overview of deep learning along with background

information on the semantic segmentation task. In doing so, convolutional neural

networks (CNNs) and their use in this image classification problem will be reviewed,

along with a variation of the CNN called the U-Net. Metrics and loss functions specific

to this task will also be explored, along with their effect on the final segmentations

versus conventional evaluation metrics for classification.

2.1 Artificial Intelligence

To accomplish the final task for localization in varying environmental conditions, a

basic understanding of artificial intelligence (AI), machine learning, and deep learning

is required. AI has been defined by Chollet as the effort to automate intellectual tasks

normally performed by humans. While this definition includes both machine learning

and deep learning, it also includes programs in which hard-coded rules are used to

perform intellectual tasks, known as symbolic AI [1, 15].

2.1.1 Machine Learning

Machine learning requires the system to be trained rather than explicitly pro-

grammed using examples relevant to the given task. The machine learning system

then determines statistical structure that allows it to learn meaningful representa-

tions of the input data. These learned representations can then allow the system to

develop its own rules by which the task can be automated. There are four types of

machine learning: supervised, unsupervised, self-supervised, and reinforcement. This

thesis utilizes supervised learning, which requires three components:

• Input data points
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• Examples of expected output

• Performance metrics

The performance measures used in a machine learning algorithm connect the input

and the output by providing a feedback signal to correct the algorithm outputs to

better match the expected output. This allows the system to learn from the given

data and transforms the input into representations that perform the best based on a

given performance metric [1, 15].

2.1.2 Deep Learning

Deep learning is a subset of machine learning which takes the machine learning

approach further by learning many successive layers of representations of the data.

These layers make up what is known as the depth of the model. Deep learning must be

utilized using neural networks to learn the many different features and representations

of the data. [1, 15].

2.2 Neural Networks

Neural networks are models that are structured with layers stacked on top of each

other, with each stage successively filtering the input data to learn a final useful

representation for some given task [1, 15]. The structure of a basic four layer neural

network used for identifying hand-written digits from the MNIST dataset is shown

in Figure 1.
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9Artificial intelligence, machine learning, and deep learning

 What do the representations learned by a deep-learning algorithm look like? Let’s
examine how a network several layers deep (see figure 1.5) transforms an image of a
digit in order to recognize what digit it is.

As you can see in figure 1.6, the network transforms the digit image into representa-
tions that are increasingly different from the original image and increasingly informa-
tive about the final result. You can think of a deep network as a multistage
information-distillation operation, where information goes through successive filters
and comes out increasingly purified (that is, useful with regard to some task).

So that’s what deep learning is, technically: a multistage way to learn data representa-
tions. It’s a simple idea—but, as it turns out, very simple mechanisms, sufficiently
scaled, can end up looking like magic. 

1.1.5 Understanding how deep learning works, in three figures

At this point, you know that machine learning is about mapping inputs (such as
images) to targets (such as the label “cat”), which is done by observing many examples
of input and targets. You also know that deep neural networks do this input-to-target
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Figure 1.5 A deep neural 
network for digit classification
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Figure 1.6 Deep representations learned by a digit-classification model
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Figure 1: Four-Layer Neural Network for MNIST dataset [1]

Training a neural network involves four components:

• Layers

• Input data

• Loss function

• Optimizer

This multistage method of learning various data representations is the core prin-

ciple of deep learning [1].

Layers can be defined as the fundamental data structure of a neural network.

Each layer processes inputs and outputs in data containers called tensors. Layers also

frequently have values called weights. The ultimate goal of training a neural network

is to find the correct values for these weights, which specify what transformations the

layer performs on the incoming data [1, 15]. This parameterization of the network

layers is shown in Figure 2.
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10 CHAPTER 1 What is deep learning?

mapping via a deep sequence of simple data transformations (layers) and that these
data transformations are learned by exposure to examples. Now let’s look at how this
learning happens, concretely.

 The specification of what a layer does to its input data is stored in the layer’s
weights, which in essence are a bunch of numbers. In technical terms, we’d say that the
transformation implemented by a layer is parameterized by its weights (see figure 1.7).
(Weights are also sometimes called the parameters of a layer.) In this context, learning
means finding a set of values for the weights of all layers in a network, such that the
network will correctly map example inputs to their associated targets. But here’s the
thing: a deep neural network can contain tens of millions of parameters. Finding the
correct value for all of them may seem like a daunting task, especially given that mod-
ifying the value of one parameter will affect the behavior of all the others!

To control something, first you need to be able to observe it. To control the output of
a neural network, you need to be able to measure how far this output is from what you
expected. This is the job of the loss function of the network, also called the objective
function. The loss function takes the predictions of the network and the true target
(what you wanted the network to output) and computes a distance score, capturing
how well the network has done on this specific example (see figure 1.8).

Goal: finding the
right values for

these weights

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

Weights

Figure 1.7 A neural network is 
parameterized by its weights.
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(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

True targets
Y

Weights

Loss function

Loss score
Figure 1.8 A loss function measures 
the quality of the network’s output.
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Figure 2: Parameterization of Deep Learning Layers based on Weight Values [1]

The difficulty in optimizing these networks for various tasks is the configuration

of these weights, since there can exist tens of millions of parameters that depend on

each other. To determine a weight configuration, a loss function is used as a measure-

ment of how well the layer representations from the network output are performing

compared to the expected output. This score is then used as a feedback signal for

the optimizer to adjust the weights of the network layers using a backpropagation

algorithm [1, 15].

The backpropagation algorithm starts with the final loss value and works from

the top to the bottom layers to compute the contribution each parameter had in that

value [1]. Stochastic gradient descent is the process of taking the derivative of the

loss function at a local point in training to determine the adjustments required to

minimize the loss and optimize the model to a defined evaluation metric [15].

The final depiction of a neural network training loop is shown in Figure 3. This

training loop begins with the weights being randomly initialized, which leads to a high

loss score since these initial weights are likely incorrect for representing the data in

a useful manner. With each training batch, however, the network adjusts its weights

and slowly begins to improve until the network has a minimal loss score that can
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generalize to the test set [1, 15].

58 CHAPTER 3 Getting started with neural networks

3.1 Anatomy of a neural network
As you saw in the previous chapters, training a neural network revolves around the fol-
lowing objects:

 Layers, which are combined into a network (or model)
 The input data and corresponding targets
 The loss function, which defines the feedback signal used for learning
 The optimizer, which determines how learning proceeds

You can visualize their interaction as illustrated in figure 3.1: the network, composed
of layers that are chained together, maps the input data to predictions. The loss func-
tion then compares these predictions to the targets, producing a loss value: a measure
of how well the network’s predictions match what was expected. The optimizer uses
this loss value to update the network’s weights.

Let’s take a closer look at layers, networks, loss functions, and optimizers.

3.1.1 Layers: the building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were
introduced in chapter 2. A layer is a data-processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but
more frequently layers have a state: the layer’s weights, one or several tensors learned
with stochastic gradient descent, which together contain the network’s knowledge.

 Different layers are appropriate for different tensor formats and different types of data
processing. For instance, simple vector data, stored in 2D tensors of shape (samples,
features), is often processed by densely connected layers, also called fully connected or dense
layers (the Dense class in Keras). Sequence data, stored in 3D tensors of shape (samples,
timesteps, features), is typically processed by recurrent layers such as an LSTM layer.
Image data, stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D).

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

Weight
update

True targets
Y

Weights

Loss functionOptimizer

Loss score
Figure 3.1 Relationship between the 
network, layers, loss function, and optimizer

Licensed to   <null>

Figure 3: Training Loop for a Neural Network [1]

2.2.1 Dense Layers

Traditionally for datasets other than images, densely connected layers are used,

also known as fully connected layers in which each neuron in one layer is connected

to all neurons from the previous layer. However, these dense layers are only able

to learn global patterns in their input feature space, whereas convolution layers are

able to learn local patterns [1, 15]. This means that input images can be broken into

features such as edges and textures which can be learned and are more useful than

global patterns for classification purposes [1, 15].
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2.3 Convolutional Neural Networks

CNNs are a type of neural network primarily used for computer vision tasks in

deep learning. These networks are identical to typical neural networks, except that

a convolution kernel is used in one or more of their layers instead of general ma-

trix multiplication [15]. These types of networks are able to take image tensors as

an input, determine which features in the image are important for classification or

differentiation, and output these classifications [1, 16].

CNNs are used because of their ability to learn patterns that are translation in-

variant along with their spatial hierarchies using relevant filters. Learning translation

invariant patterns means that after learning a pattern in one section of a given image,

the network will be able to recognize that same pattern anywhere else in the image.

This provides efficiency when processing images, leading to fewer training samples

needed to learn representations that are able to be generalized [1].

Spatial hierarchies describe how earlier layers in the network will be able to learn

small local patterns and increase into larger patterns consisting of these small patterns

in the following layers. This also increases efficiency of the network to learn complex

and abstract visual concepts. This also allows these networks to have a much higher

accuracy when performing predictions of classes versus simply vectorizing a complex

image with pixel dependencies throughout. Thus for any image classification task,

CNNs must be utilized in order to track these important aspects and relationships

between features [1].

2.3.1 Convolution

Convolution is an operation on two functions of a real-valued argument that out-

puts a new function. Let s(t) be the output estimation function based on time t, x(a)

be the input position function based on age of the measurement a, and w(a) be the
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weighting function which prioritizes recent measurements. The general formula for

convolution using these defined functions from [15] is

s(t) =

∫
x(a)w(t− a)da. (1)

For CNNs, the function x(a) is referred to as the input, the weighting function w(a) is

called the kernel, and the output s(t) is called the feature map [15]. The convolutions

used in CNNs are performed over two dimensional tensors that are comprised of

height, width, and color channels of the input images. These operations extract

patches and perform transformations from the input to produce an output feature

map with varying depth. The size of these extracted patches are one of the two key

parameters for defining these convolutions. The second is the depth of the output

feature map. This number represents the number of filters created by the layer which

can encode various aspects from the input data [1].

2D Convolutions are calculated by sliding a square window of specified height and

width over all pixels of the input feature map. The input feature map for images

consists of three dimensions: height, width, and color bands, which generally cor-

respond to red, green, and blue. Performing 2D convolution on these feature maps

creates two dimensional patches of surrounding features. These patches are then

transformed through a convolution kernel into a one dimensional vector representing

the output depth. The vectors are then spatially reassembled into a two dimension

output map, which corresponds to all locations in the input map [1]. The process of

this convolution is shown in Figure 4.
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Figure 4: Visual Representation of Two Dimensional Convolution [1]

2.3.2 Strides

A factor that can contribute to a different output size in CNNs is called the stride

of the convolution. Stride is a parameter of the convolution operation which defines

the distance between patches that are extracted from the input feature map. With

a stride of 2, the width and height of the output feature map are downsampled by a

factor of 2 with no padding [1].

2.3.3 Max-Pooling

Max-Pooling is an operation used in CNNs to aggressively downsample feature

maps [1, 15]. Downsampling is done for two reasons. First, downsampling reduces the
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number of feature-map coefficients for the model to process, and thus can potentially

prevent over-fitting to the training data. Second, it allows learning of the spatial

hierarchies of filters by making successive convolution layers look at increasingly large

windows [1].

Max-Pooling is done by extracting patches from the input feature maps and out-

putting the maximum value of each channel. Other methods of downsampling exist,

such as Average-Pooling [1, 15]. However, max-pooling tends to perform better since

for neural networks it is more valuable to learn the maximal presence of different

features versus their average presence [1, 15].

2.4 Semantic Segmentation

Semantic Segmentation is a method of image classification in which each pixel of

an image is associated with a corresponding class label [16, 5]. This image classifica-

tion task currently has numerous applications such as biomedical image detection [3],

autonomous driving [11], and navigation [9]. Semantic segmentation for aerial im-

agery is implemented in this paper for future use in a feature extractor to determine

significant aspects of an image that may indicate invariance between times of day

and season. Though fully convolutional networks (FCNs) can be used for this task,

these networks require vast amounts of data to accurately learn image segmentations

and localizations. Due to the time consuming nature of manually labelling satellite

images with various classes, few datasets are publicly available with extensive pixel-

wise labels. In order to combat both problems, FCNs and U-Nets are widely used for

segmentation in aerial imagery [4, 13, 17].
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2.4.1 Fully Convolutional Networks

2.5 Fully Convolutional Networks

One of the greatest advancements made in the task of image segmentation came

in a variation of the CNN called the FCN [2]. The FCN differs from the conventional

CNN by transforming the fully connected layers at the end of the CNN into convo-

lution layers. This creates a network that computes a nonlinear filter for the output

vectors in each layer. The final network is thus enabled to operate on an input of

arbitrary size and produce an output of corresponding spatial dimensions. This also

enables the classification network to output a heatmap of the desired object class.

Further modifying the network by adding layers and a spatial loss produces an effi-

cient machine for end-to-end dense learning [2]. An example of this transformation

is shown in Figure 5.

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long∗ Evan Shelhamer∗ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [19],
the VGG net [31], and GoogLeNet [32]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [4] to the segmentation task. We then de-
fine a novel architecture that combines semantic informa-
tion from a deep, coarse layer with appearance information
from a shallow, fine layer to produce accurate and detailed
segmentations. Our fully convolutional network achieves
state-of-the-art segmentation of PASCAL VOC (20% rela-
tive improvement to 62.2% mean IU on 2012), NYUDv2,
and SIFT Flow, while inference takes less than one fifth of a
second for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [19, 31, 32], but also making progress on lo-
cal tasks with structured output. These include advances in
bounding box object detection [29, 12, 17], part and key-
point prediction [39, 24], and local correspondence [24, 9].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[27, 2, 8, 28, 16, 14, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN),
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [27, 2, 8, 28, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [8, 16], proposals [16, 14],
or post-hoc refinement by random fields or local classifiers
[8, 16]. Our model transfers recent success in classifica-
tion [19, 31, 32] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[8, 28, 27].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
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Figure 5: Fully Convolutional Neural Network making dense predictions for per-pixel

tasks such as semantic segmentation [2]

The use of FCNs is not only more flexible with the ability to take various input

sized images, but has also been proven to be more efficient through in-network up-

sampling for learning dense predictions [2]. The FCN is also able to retain the spatial
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information of the input, which is crucial for the application of semantic segmentation

since this task requires both localization and classification.

While a FCN is able to take an input image of any size, the output resolution

is reduced using convolutions with no padding. These were introduced in order to

keep filters small and computational requirements reasonable. The result is a coarse

output with a reduced size by a factor equal to the pixel stride of the receptive field

of the output units [2].

2.5.1 U-Nets

The U-Net architecture is a variation of a FCN, most often applied for the task of

semantic segmentation. The original U-Net architecture was designed by Ronneberger

et al. in 2015 to perform image segmentation and localization for biomedical use [3].

U-Nets are advantageous compared to typical CNNs due to their ability to provide

localization in their output as well as classification. Localization in this case means

each individual pixel in an image is labeled with a respective class. It is also advan-

tageous compared to FCNs since U-Nets are able to work with few training images

while also yielding more precise segmentations. This is done by creating upsampling

layers that contain a large number of feature channels which enable the propagation

of context information to higher resolution layers. U-Net segmentation networks are

most valid to use in this particular application since they are the most easily scalable

and sizeable FCN, avoid tradeoffs in localization and contextual information, and

are widely used in state-of-the-art methods for semantic segmentation for satellite

imagery [3, 4].
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2.5.1.1 Network Architecture

The architecture of the U-Net consists of a contracting path at the input and an

expanding path at the output. The basic architecture of this network is introduced

in Ronneburger’s paper, shown in Figure 6 [3].
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 6: Architecture for the U-Net where each blue box corresponds to a multi-

channel feature map with the number of channels at the top. The size of the image

is shown at the lower left edge of each box, and the white boxes represent copied

feature maps. The contracting path is found on the left side and the expanding path

is on the right with arrows denoting concatenation of feature maps [3].

The contracting path of the U-Net follows the traditional architecture of a CNN,

consisting of repeating 3x3 convolutions and max pooling operations with stride 2

for downsampling. These downsampling operations double the number of feature

channels, and are then followed by upsampling the feature map and a 2x2 convolution

for the expanding path. These operations halve the number of feature channels, and

are then concatenated with the cropped feature map from the contracting path. This
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is then followed by additional convolution layer to finally map each feature vector to

the desired number of classes [3].

By using the contracting path, the U-Net is able to capture context of the image,

while the symmetric expanding path enables precise localization. Localization is

enabled by combining the high resolution features from the contracting path with the

upsampled output. The upsampling portion of the model also has a large number

of feature channels to allow the network to propagate context information to higher

resolution layers [3].

2.5.1.2 Results in Aerial Imagery

Though initially intended for the purposes of biomedical image segmentation, the

U-Net has been the primary architecture used for problems involving segmentation of

aerial imagery [4, 13, 17]. An example of this is through the 2017 Kaggle competition

entitled the “DSTL Satellite Imagery Feature Detection” challenge. This competition

required participants to take high resolution aerial imagery and classify 10 different

defined classes using pixel-wise segmentation. The dataset consisted of 57 images

divided into 25 training images and 32 test images. All of the top entries in this

competition used some variation of the U-Net due to its ability to combine low-level

feature maps with higher-level ones, enabling precise localization [13].

U-Nets were also utilized in a paper written by Khalel and El-Saban on the auto-

mated pixel labeling for both the INRIA Aerial Imagery dataset and the Massachus-

setts buildings dataset [17]. In this instance, the authors cascade two U-Nets together,

with the second one acting as a post-processor for the output of the first. By doing so,

the stacked U-Net architecture outperforms state-of-the-art models on these datasets

with a 74.55 mean intersection over union (mIoU) score and 96.05% pixel accuracy

level for the INRIA Aerial Imagery dataset and a 0.9633 precision-recall breakeven
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point for the Massachussetts buildings dataset. This further supports the importance

and efficacy of U-Nets for both biomedical and aerial imagery [17].

2.5.2 Evaluation Metrics

To measure the performance of various network architectures for semantic seg-

mentation, a proper metric that accurately describes the network’s ability to identify

a class is required. While other metrics will be explored, the primary metric used for

this thesis will be the mIoU.

2.5.2.1 Pixel Accuracy

Pixel accuracy is the most basic method of testing overall accuracy for the classi-

fication of images. This measure is the result of calculating the percentage of pixels

correctly identified from a given test image. Often times for the semantic segmenta-

tion task, however, this measure is not utilized.

Because many of the classes for various datasets are imbalanced, a network can

be naively regarded as an excellent performing classifier if it was optimized for pixel

accuracy. For example, take a network that classifies images between background

and a defined object class. If a given image consists of 90% background, the network

would predict every pixel as the background class and achieve a high accuracy without

learning any segmentation [18].

2.5.2.2 Jaccard Index (Intersection over Union)

To combat the unreliable measure of accuracy from the previous method, a dif-

ferent performance measure is more commonly used called the Jaccard Index. This

metric is also referred to as the intersection over union (IoU). This metric calculates

the similarity between the predicted region and the ground-truth region for an object
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present in a set of images. The equation used to calculate the IoU is shown in (2),

where TP is true positive, FP is false positive, and FN is false negative between the

prediction and the ground truth images. A corresponding diagram is also shown in

Figure 7 [4, 18, 14].

Jaccard =
TP

TP + FP + FN
=
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(2)

Figure 7: Visual representation of Jaccard Index, where A is the ground truth data

and B is the output prediction for a single class [4].

The IoU equation is more accurate at evaluating a network since it more heavily

punishes incorrect classifications and rewards only correct ones by not including true

negatives as a factor in performance. For binary or multi-class segmentations, the

average of each class IoU is taken, known as the mIoU. For this thesis, only one class

is evaluated at a time: buildings or roads. Because of this, the IoU and mIoU values

will be the same [4, 14, 18].

2.5.3 Loss Functions for Segmentation

Much like the evaluation metrics used to more accurately determine the efficacy

of a model, different loss functions exist for this segmentation task. To achieve the

best performance possible, the loss function should optimize the network to achieve

a better IoU accuracy rather than the basic pixel accuracy. The widely used binary

cross-entropy loss function will be explored for this application, but ultimately an
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approximation of Equation (2) is used to develop the final loss function used in this

research.

2.5.3.1 Binary Cross Entropy

Binary cross entropy, or log loss, is considered to be a baseline loss function for

many classification and segmentation works [3, 16]. However, studies in [19] conclude

that this loss is often used without considering more useful alternatives based on the

given task. The formula for binary cross entropy is

LBCE =
∑
x

− (Tx log (Px) + (1− Tx) log (1− Px)) , (3)

in which T is a single image of labels used as truth data, Tx is a single element of T ,

and Px is a single element of the output prediction mask of the network.

Because this function still awards both true positives and false negatives, the

resulting network becomes more prone to naive solutions such as classifying all pixels

based on the majority. For this reason, it is likely more suitable to develop a loss

function that directly incorporates the evaluation metric that is desired [14].

2.5.3.2 Intersection over Union as a Loss Function

It is important to note that the mIoU evaluation metric cannot be used as a loss

function by itself since it is not differentiable. The calculation for IoU in (2) assumes

that the output prediction mask consists of 1’s and 0’s. However, the actual output

of neural networks is an array of probabilities representing the likelihood the network

predicts a pixel belongs in a particular class. Because of this, the mIoU score cannot

accurately be measured at the output of the network. To allow this, an approximation

must be made using the output probability values [14]. This approximation is
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IoU ′ =
|T ∗ P |

|T + P − (T ∗ P )|
=

I

U
, (4)

where T is the truth data for an image and P is the prediction mask of the same

image, averaged throughout the entire set to create an IoU value between 0 and 1.

Because this new approximation uses arithmetic operations versus the set opera-

tions shown in (2), it is now differentiable and able to be used as a loss function [14].

Because the goal of a loss function is to be minimized, the final loss function used for

semantic segmentation is

LIoU = 1− IoU ′. (5)

Based on previous research and the architectures discussed in this chapter, the U-

Net and some variations will be implemented for semantic segmentation in this thesis.

To evaluate the final models, mIoU will be used as the baseline for all comparisons.

Because of this evaluation metric, a loss function based on the mIoU will be used to

maximize the final scores for each model. Chapter 3 will discuss the implementation

of the models, the datasets used, and the required processing done for the input

images and the final test sets.
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III. Methodology

This chapter discusses the methods used in this research to achieve semantic

segmentation. Section 3.1 explains the datasets used for this thesis and the necessary

preprocessing required to optimize and run the models. Section 3.2 discusses the

various model architectures used, along with the evaluation metrics and loss functions

utilized to optimize the final models for comparison. Finally, section 3.3 will cover the

processing for the final test sets and determining the overall accuracy for the outputs

of the final models.

3.1 Dataset

Currently there is a lack of abundant aerial imagery data with pixel-wise labels

for semantic segmentation. This is caused by the fact that labelling multiple classes

of objects in high resolution images is an incredibly time-expensive task. This section

will discuss an initial approach of manually hand-labeling data, the final datasets

used, and the preprocessing required.

3.1.1 Initial Labeling

The dearth of accurately labeled aerial images resulted in an initial approach of

creating a new dataset. This new dataset consisted of randomly augmented images

from existing ANT Center flight test data around the area of Dayton, Ohio. The

algorithm used for this data procuring process is described in [12]. Using this

algorithm, 1000 images were randomly extracted from the bank of flight test data.

Each of these images were then labeled using a Microsoft Surface tablet and the Image

Labeler application within the computer vision toolbox in MATLAB. Three classes

were labeled: buildings, roads, and clouds. An example of one of the many labeled
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images is shown in Figure 8

Figure 8: Sample of initial hand-label approach, with streets labeled as lines in the

images.

This initial approach was abandoned due to time-constraints and lack of precision.

Other datasets were discovered that were shown to have higher accuracy of labels,

though the number of labeled classes was less than the number in which this research

was originally intended. This lack of data prevents a single network from being capa-

ble of classifying multiple key features in an image at once, such as bodies of water,

buildings, roads, trees, cropland, etc. However, the varying geographic locations of

roads and buildings found in the final datasets allows the final network to gain some

invariance in detecting these classes with changes in environment, which can prove

to be useful in future navigation research.

3.1.2 Existing Datasets

Currently existing datasets that can be applied for the semantic segmentation task

for aerial imagery consist of binary classifications of single classes. While some exist
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that contain multiple classes in a single image, the only ones that contain an ade-

quate number of samples were images that classified roads and images that classified

buildings. The datasets for buildings are then combined together to create a larger

dataset and for the created models to gain some invariance on location of the images.

The datasets for roads were not combined due to the large imbalance in number of

samples.

3.1.2.1 INRIA Aerial Image Labeling Dataset

The INRIA Aerial Image Labeling dataset was created for achieving automated

pixelwise labeling for aerial images. The images provided are three-band, colored

orthorectified images, and cover 810 square kilometers of land, 405 for training and

405 for testing. The spatial resolution of these images are 0.3 meters per pixel, and

the ground truth data for the classes are ”building” and ”not building” [8].

This dataset consists of different cities in the training and test sets. There are 36

images for each region, which have dimensions of 5000x5000 pixels and cover an area of

1500x1500 meters. The training set consists of images over Austin in Texas, Chicago

in Illinois, Kitsap County in Washington, Western Tyrol in Austria, and Vienna in

Austria, with the first five images of each city used as validation. The test set consists

of images over Bellingham in Washington, Bloomington in Indiana, Innsbruck in

Austria, San Francisco in California, and Eastern Tyrol in Austria. Because the test

set analysis is only available through submission to the INRIA website, however, the

validation data will be used for testing. Sample images of some of these different

cities and their ground truth data are shown in Figure 9.
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Figure 9: Sample of INRIA Dataset

The original intent of separating the cities this way was to make networks learn

from the data provided in the training set and be scored on their ability to gener-

alize to other regions of varying urban densities and architectures. This allows the

network to achieve a degree of robustness to these variations, along with invariance

to illumination conditions, urban landscape, and time of year [17, 8].

3.1.2.2 Massachusetts Dataset

The Massachusetts Dataset consists of two different datasets: one for the detection

of roads and the other for the detection of buildings. The Massachusetts Buildings

Dataset consists of 151 aerial images covering urban and suburban regions of Boston.

Each image has a resolution of 1500x1500 pixels for an area of 2.25 square kilometers,

making the spatial resolution of the dataset 1 meter per pixel. This dataset was

randomly split into a training set of 137 images, a test set of 10 images, and a

validation set of 4 images [20]. A sample of this dataset is shown in Figure 10.
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Figure 10: Sample of Massachusetts Buildings Dataset

The Massachusetts Roads Dataset consists of 1171 aerial images of the entire state

of Massachusetts. These images maintain the resolution of 1500x1500 and spatial

resolution of 1 meter per pixel. The data was again randomly split by the author

into a training set of 1108 images, a validation set of 14 images, and a test set of 49

images [20]. A sample of this dataset is shown in Figure 11.

Figure 11: Sample of Massachusetts Roads Dataset
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3.1.2.3 Roadnet Dataset

The Roadnet Dataset was one of the first comprehensive datasets created for the

road detection task, and contains images and masks of the classes ”road” and ”not

road”. These high resolution images are divided into 14 for training and 6 for testing.

Though these images are of varying height and width, they are all captured with a

spatial resolution of 0.21 meters per pixel covering 21 urban areas of Ottawa, Canada

[21]. A sample of this dataset is shown in Figure 12.

Figure 12: Sample of Roadnet Dataset

3.1.3 Preprocessing

Due to current computational limitations, full sized high resolution imagery is un-

able to be input into a CNN and trained efficiently. This creates a need to preprocess

the images from the datasets into smaller augmented patches in which the models

train and test. The final test images are then stitched back together from the patches

to create a final prediction mask. Spatial resolutions were also normalized for use in

the final combined buildings dataset.

The resolution of the input image crops was chosen to be 224x224 pixels since

this is a common resolution for semantic segmentation [13, 17, 1], and also because

of the computational resources available. Image data generators were created for use

with Keras, which yield batches of 32 randomly augmented 224x224 crops from the
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high resolution images with each step in the epoch. The random augmentations used

for this project include horizontal flips, vertical flips, and rotations. A fill mode of

”mirror” was used, which takes the empty portions of the image caused by rotation

and mirrors the actual image until those portions are filled. These augmentations

are done to allow the model to learn from different perspectives, since aerial imagery

is not always going to be uniform to one orientation. This also artificially generates

more training data for the model to more confidently learn and generalize [1].

The INRIA and RoadNet datasets were tested using a 85-15 split for training

and validation, which is used to check the performance of the model as it trains. The

Massachusetts datasets, however, already had validation images provided, which were

used instead.

The training and validation sets of the Massachusetts Buildings dataset were com-

bined with the INRIA dataset to create the separate Buildings dataset. Before these

datasets were added together, however, the INRIA dataset was resized to the same

scale as the Massachusetts Buildings dataset so that both would have the same spatial

resolution. This was done using the OpenCV library in Python to resize the INRIA

images to a resolution of 1500x1500 for a matching spatial resolution of 1 m. Resizing

was done since the datasets likely do not have enough data to allow the networks to

learn different locations as well as different spatial resolutions. These training sets

were then also divided using an 85-15 split.

3.2 Model Architectures

This section discusses the various model architectures used in this investigation.

These models were tested and compared against other models from previous research

to determine their ability to sufficiently learn from the datasets [8, 20, 21].
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3.2.1 U-Net

The baseline U-Net architecture used for this thesis is mostly unchanged from

the original model in [3]. The diagram for this architecture is shown in Figure 13.

The contracting path of the network consists of repeating 3x3 convolutions followed

by a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2

for downsampling. Each downsampling step doubles the number of features, which

are then halved in the expanding path. This is done by performing upsampling

followed by 2x2 convolutions, and concatenating the output with the corresponding

feature map from the contracting path. The final layer uses a 1x1 convolution to

map the feature vector to the number of classes, which is one for binary classification.

The primary difference between the finalized U-Net architecture and the original is

the addition of batch normalization between the convolutions and ReLU activation

functions for faster convergence [17].
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Figure 13: Final U-Net Model Architecture
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This version of the U-Net will be used as the baseline model for all comparisons.

It will also be compared against the findings in [17], which show an increase in clas-

sification performance by stacking two U-Nets. This means a second U-Net model

will be compiled that consists of two simply stacked U-Net architectures. Another

architecture consisting of three stacked U-Nets will also be created and tested to test

the theory that simply stacking U-Nets in succession will lead to a drastic increase in

performance.

All final models for this thesis utilize the Adam optimizer with Nestorov momen-

tum based on its greater performance and use in other state-of-the-art U-Net models

[22, 17]. All models also use the He uniform variance scaling initializer for the same

reasons [23, 17].

3.2.2 Pre-trained Models

Within Keras various pretrained models widely used for segmentation are available

for use. Two of the most frequently used of these available models are ResNet and

VGGNet. These models are all pre-trained to identify over 1000 classes using the

ImageNet dataset, which consists of various images. These models will be tested

alongside the U-Net to determine their effectiveness in learning semantic segmentation

of aerial imagery.

3.2.3 VGG16

The VGG-Net architecture was developed to determine the effect of increasing the

depth of a network by adding small convolution filters. The study resulted in the VGG

network that consisted of 16-19 weight layers with a state-of-the-art performance in

large-scale image classification at the time [24]. This study confirmed the importance

of depth in visual representations. The original design of the 16 layer model is shown
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in Figure 14 [24].

Figure 14: VGG16 Model Architecture

For all of these models, the expanding path of the U-Net shown in ?? is added to

the end of the model to map the output to the desired output resolution of 224x224.

3.2.3.1 ResNet50

The ResNet architecture was developed for easier training and optimization through

the use of residual functions which reference the layer inputs, rather than arbitrar-

ily adding more layers hoping for higher accuracy. The original design of a 34 layer

ResNet is shown in Figure 15 [25]. This thesis utilizes a 50 layer variation of this

model entitled the ResNet50.
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Figure 15: VGG-19 vs. Plain 34 Layer Model vs. ResNet Model Architecture
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3.2.4 Evaluation Metrics

The evaluation metrics used during training are binary accuracy and mIoU, since

these are the primary metrics used by the authors of the original datasets [8, 21]. The

weights of the models with the lowest validation loss and high mIoU scores are used

since these models are more likely to perform the best when predicting the final test

set and because mIoU is more commonly used for semantic segmentation.

3.2.5 Loss Functions

The loss functions used for these experiments were the mIoU approximation (5)

and binary cross-entropy (3). The mIoU approximation, also known as Jaccard loss,

was implemented since the evaluation metrics for most of the datasets as well as many

others in semantic segmentation use mIoU as a standard. Binary cross-entropy was

also used as a comparison for some of the datasets.

3.3 Testing

To properly test the images against their existing truth data using these networks,

additional processing is required to interpret the output of the networks and make

accurate comparisons. This section will discuss the steps used to process the test set,

along with the final metrics used for comparison of the created models and models

from previous research.

3.3.1 Test-Set Processing

Because the models cannot be tested on the full high resolution images provided

in the datasets, crops of the test images are used. These crops are then used to

created the final high resolution prediction mask using stitches of the smaller output

prediction masks. The size of these test crops can vary between the original size of
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224x224 and 112x112 based on previous research indicating that testing on smaller

crops may result in increased segmentation performance [13, 3]. Because the test

images are not evenly divisible by these resolutions, an algorithm was developed to

create evenly distributed overlapping patches. This was done to prevent cropping out

large portions of the test image. The final patches of test data are taken by using

(Algorithm 1) throughout the image.

Algorithm 1 Test Image Cropping

x = Image Width
y = Image Height
L = CropLength
xBottomBoundary = x/2 - floor((x/2)/L)
xTopBoundary = x - xBottomBoundary
yBottomBoundary = y/2 - floor((y/2)/L)
yTopBoundary = y - yBottomBoundary
CroppedImage = []
Counter = 0
for xIndex in (xBottomBoundary, xTopBoundary, L) do

if xIndex + croplength < x
CroppedImage[Counter] = Image[xIndex:xIndex+L]
Counter++

for yIndex in (yBottomBoundary, yTopBoundary, L) do
if yIndex + croplength ¡ y

CroppedImage[Counter] = Image[yIndex:yIndex+L]
Counter++

return CroppedImage

By cropping the test images and masks using this algorithm, the entire image is

utilized and the overlap is distributed throughout the edges of the image. Having

this distributed overlap helps the final prediction since FCNs are known to vary their

predictions on edges of the imagery. The prediction values of all of the crops are

added together into a separate array and averaged to determine the final prediction

mask for a given image. These values are then used against a threshold of 0.5 in

order to create a definitive binary mask, which is then evaluated using the various

evaluation metrics.
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3.3.2 Metrics

The final evaluation metrics for comparison are based upon the metrics used in the

original research papers for each dataset [8, 20, 21]. The INRIA dataset uses IoU and

accuracy for each specified city as their measure of performance. The Massachusetts

datasets use a lesser known metric called the precision-recall breakeven point. This

is the point on the precision-recall curve for the model in which precision and recall

are the same. The calculation of these values are shown in below where TP, FP, and

FN are true positives, false positives, and false negatives respectively.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Finally, the RoadNet dataset uses accuracy and IoU as well as precision and recall.

The final U-Net model along with the other pre-trained models from Keras will be

measured using the respective metrics for each of the four datasets, and with IoU and

accuracy for the final combined U-Net Buildings dataset.

The four datasets tested for this research consist of the following: INRIA Aerial

Imagery, Massachusetts Buildings and Roads, and RoadNet. Along with the four

individual datasets, a final combined dataset is also created and tested using a com-

bination of the INRIA Aerial Imagery and Massachusetts Buildings datasets. The

baseline U-Net was created using most of the original architecture found in [3], along

with the Jaccard loss function, Adam optimizer with Nestorov momentum, and He

uniform initializer. Two other models with two cascaded U-Nets and three cascaded

U-Nets were also created to test the findings in [17] that stacking U-Nets can improve

model performance. Other previously established architectures known as the ResNet
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and the VGGNet are also implemented for further comparison. Lastly, the final test

sets were processed using Algorithm 1 in order to properly evaluate the models based

on the training images. The results of these implementations are found in Chapter

4.
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IV. Results and Analysis

This chapter discusses the overall results of each model and the ability of each

to perform semantic segmentation the four datasets along with the final combined

buildings dataset. The metrics used for this measurement will vary based on the

ones used by the original authors, but will primarily be based on IoU and accuracy

[8, 21, 20].

The sections in this chapter will cover the training and testing results of all five

created models, and the following subsections will discuss the performance of the

models on each of the five datasets for comparison. Along with the numerical results

of each model, examples of the segmentation outputs for a common image will also

be shown for visualization purposes.

All models were trained for 1000 epochs with 500 batches of 32 images per epoch.

Based on the model architectures and the number of datasets used for this thesis,

a large number of models and variations were trained. This required considerable

computational resources and time, which meant some models were stopped early if

training showed little to no improvement.

4.1 Training

The following sections discuss the training performance of each proposed model

using accuracy, mean intersection over union (mIoU) and loss curves for each model

and each dataset. Because the training curves of all three levels of the U-Net and the

ResNet50 models were fairly similar, the graphs for the 2-Level and 3-Level U-Nets

and the ResNet50 models are included in Appendix A.
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4.1.1 INRIA Dataset

The training curves for each of the five models for the INRIA Buildings dataset

are shown in Figure 16 - Figure 17

Figure 16: The 1-Level U-Net INRIA training curves. The validation loss follows the

training loss despite the noise, indicating that the model is able to learn the dataset.

The mIoU curve reinforces this by increasing as the loss curves decrease.
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Figure 17: The VGG16 INRIA training curves. All three curves exhibit a drastic

decrease in performance approximately at epoch 40.

The most important characteristic that was analyzed during training for all datasets

was the validation loss over each epoch. The validation loss curves roughly follow the

training loss, indicating that the models are able to learn the dataset. This is also

shown by the increase in mIoU as the loss curves decrease. This is also a common

occurrence in the training curves presented in the other 4 datasets. It is also impor-
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tant to note that the biggest difference between these models shown is in the VGG16

architecture. After approximately 40 epochs the model immediately drops off with

a drastic decrease in accuracy and mIoU, and a large increase in loss. Reducing the

learning rate at this point may have been able to improve the final performance as

the epochs increased. Overall it seems that most of the models except for the VGG16

had a decent capacity to learn the INRIA dataset.

4.1.2 Massachusetts Buildings Dataset

The training curves for the models used for the Massachusetts Buildings dataset

are shown in Figure 18 - Figure 19. The 2-level U-Net, 3-level U-Net, and ResNet50

training curves can be found in Appendix A. Much like the INRIA dataset, the

validation loss curves roughly follow the training loss. Most of the models appear

to have the capability of learning the dataset, except for the VGG16 model, which

drastically decreased in performance again around epoch 60.
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Figure 18: The 1-Level U-Net Massachusetts Buildings training curves. The variance

of the validation loss curve against the training curve indicates that the validation

set is likely poor in assessing generalization of the model.
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Figure 19: The VGG16 Massachusetts Buildings training curves. The VGG16 model

begins to fail after approximately 60 epochs.

4.1.3 Massachusetts Roads Dataset

The training curves for the models used for the Massachusetts Roads dataset are

shown in Figure 20 - Figure 21. The 2-level U-Net, 3-level U-Net, and ResNet50

training curves can be found in Appendix A.
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Figure 20: The 1-Level U-Net Massachusetts Roads training curves. The loss curves

may indicate that the validation data may be poor at assessing model performance.
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Figure 21: The VGG16 Massachusetts Roads training curves. The VGG16 model

begins to fail after approximately 40 epochs.

The validation loss curves shown for the Massachusetts Roads dataset again fol-

lows roughly follows the training curve and shows significant noise. However, the

validation loss is also consistently below the training loss. The VGG16 model again

begins to fail after approximately 40 epochs.
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4.1.3.1 RoadNet

The training curves for the models used for the RoadNet dataset are shown in

Figure 22 - Figure 23. The 2-level U-Net, 3-level U-Net, and ResNet50 training

curves can be found in Appendix A. The loss curves overall for the RoadNet dataset

appear to be less noisy and have a better fit with most models. All of the models

appear to train fairly well to the data based on the decreasing loss scores except for

VGG16, which again falters around epoch 40.
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Figure 22: The 1-Level U-Net RoadNet training curves. The validation loss curves

for this dataset exhibit less noise compared to those found in other datasets.
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Figure 23: The VGG16 RoadNet training curves. The VGG16 model begins to fail

after approximately 40 epochs.

4.1.3.2 Combined Buildings

The final training curves for the models used for the newly created buildings

dataset are shown in Figure 24 - Figure 25. The 2-level U-Net, 3-level U-Net, and

ResNet50 training curves can be found in Appendix A.
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Figure 24: The 1-Level U-Net Buildings training curves. The validation loss curve is

not nearly as noisy as those found in the Massachusetts Buildings dataset.
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Figure 25: The VGG16 Buildings training curves. This model was not able to be

tested extensively, but based on performance on other datasets, the model would

have likely failed with more epochs.

The loss curves after combining the INRIA and Massachusetts Buildings datasets

are similar to those found in the original INRIA dataset versus the larger discrepancies

in the original Massachusetts dataset. The VGG16 model was unable to be tested

extensively for this dataset due to time limitations, but would likely have drastically
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decreased in performance after a few more epochs due to its inability to learn the

previous four datasets.

Overall based on the training curves presented, most of the models have an ad-

equate capacity to learn the various datasets presented. The final results and com-

parisons are determined using the final predefined test sets to obtain the highest

performing model.

4.2 Test

The output prediction masks of the tested models are compared alongside the

results of other research to determine the efficacy of the proposed architectures. The

prediction masks of the proposed architectures are also plotted alongside the truth

data to visualize the results of the segmentations. The test data used for the Mas-

sachusetts Buildings, Massachusetts Roads, and RoadNet datasets were predefined by

the authors [20, 21]. The validation set defined by the author was used as the test set

for the INRIA Buildings dataset [8]. The final test data for the combined buildings

dataset was created by combining the test data from the Massachusetts Buildings

dataset and the validation data from the INRIA Buildings dataset. [8, 20]. The final

mIoU calculation was found using Equation (2) with the output prediction mask and

truth data.

4.2.1 INRIA Dataset

Because the INRIA Dataset uses binary accuracy and mIoU as metrics [8], the

predictions of the models will be calculated in the same manner. The results of the

predictions for each model and other existing models are shown in Table 1

None of the proposed model architectures were able to achieve a higher mIoU

than any presented by Khalel et al [17]. The 1-Level U-Net, however, was able
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to outperform all of the models introduced by the authors of the INRIA dataset

[8]. The results from this particular dataset show a decrease in performance with

the addition of U-Net levels, contrary to what was found in previous research [17].

This may be attributed to a drastic increase in complexity in the model for a less

complex dataset. The ResNet50 is also shown to be drastically worse in producing

accurate prediction masks against the other models. The VGG16 model with the

lowest validation loss was unable to output valid values when predicting on the INRIA

test set. The prediction masks for each model along with the truth data for an example

image is shown in Figure 27.

Method Metric Austin Chicago Kitsap Co. West Tyrol Vienna Overall
FCN [8] mIoU 47.66 53.62 33.70 46.86 60.60 53.82

Acc. 92.22 88.59 98.58 95.83 88.72 92.79
Skip [8] mIoU 57.87 61.13 46.43 54.91 70.51 62.97

Acc. 93.85 90.54 98.84 96.47 91.48 94.24
MLP [8] mIoU 61.20 61.30 51.50 57.95 72.13 64.67

Acc. 94.20 90.43 98.92 96.66 91.87 94.42
SegNet (Single-Loss) [17] mIoU 76.49 66.77 72.69 66.35 76.25 72.57

Acc. 93.12 99.24 97.79 91.58 96.55 95.66
SegNet + MultiTask-Loss [17] mIoU 76.76 67.06 73.30 66.91 76.68 73.00

Acc. 93.21 99.25 97.84 91.71 96.61 95.73
2-Levels U-Net + Aug. [17] mIoU 77.29 68.52 72.84 75.38 78.72 74.55

Acc. 96.69 92.40 99.25 98.11 93.79 96.05
Resnet50 mIoU 41.68 54.03 44.00 50.88 55.82 51.24

Acc. 85.52 85.92 98.57 95.76 83.27 89.81
1-Level U-Net mIoU 68.91 64.83 51.57 65.90 75.17 69.10

Acc. 95.42 91.09 98.88 97.16 92.70 95.05
2-Level U-Net mIoU 68.14 61.89 52.10 62.71 71.37 66.25

Acc. 95.15 90.02 98.86 96.66 91.55 94.44
3-Level U-Net mIoU 64.35 60.23 50.21 61.16 71.94 64.99

Acc. 94.37 89.09 98.73 96.31 91.34 93.97

Table 1: INRIA Dataset Results

The segmentations provided by each of the U-Nets appears to perform well in

densely crowded areas of the image. However, in large areas without buildings the

networks seem to exhibit slight edge artifacts, despite testing on smaller images,

which was previously found to help prevent such effects [13]. The U-Nets also seem to

struggle with predicting perfect edges as well, since the building predictions are almost
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Original Ground Truth 1-Level U-Net 2-Level U-Net

3-Level U-Net VGG16 ResNet50

Figure 27: Output Prediction Masks for INRIA Dataset

never perfectly rectangular. The ResNet50 predictions suffered from the boundary

effects found in patch predictions, and was more likely to use a blanket prediction for

larger areas of the image rather than precisely segmenting the more crowded areas

of the image. The VGG16 network with the lowest validation loss was unable to

produce any meaningful outputs in its prediction process.

4.2.2 Massachusetts Dataset (Buildings)

The Massachusetts dataset results are calculated using the precision-recall breakeven

point [20]. The results of the predictions for each model and other existing models is

shown in Table 2

Mean intersection over union and accuracy metrics were added to the Massachusetts

datasets for future methods of comparison and to also compare between the created

models. The models created for this thesis were unable to achieve a higher precision-

recall breakeven point score against the 2-Level U-Net with data augmentation and

all other tested methods, including the original model presented by Mnih et al [20].

The results for this dataset also slightly contradict those found in the INRIA dataset,
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Method Precision-recall breakeven point mIoU Accuracy
Mnih et al. [20] 0.9211 - -
Saito et al. [26] 0.9230 - -
Marcu et al. [7] 0.9423 - -
2-Level U-Net + Aug [17] 0.9633 - -
Resnet 0.5542 39.40 82.38
1-Level U-Net 0.8355 71.75 93.90
2-Level U-Net 0.8328 71.36 93.76
3-Level U-Net 0.8479 73.60 94.32

Table 2: Massachusetts Buildings Dataset Results

since mIoU and accuracy now appear to increase with the addition of two U-Net

stages. The ResNet50 is consistent against the INRIA Buildings dataset with a much

lower mIoU and accuracy compared to the U-Nets. The VGG16 model was again

unable to produce meaningful output predictions for this dataset. The prediction

masks for each model along with the truth data for an example image is shown in

Figure 28.

Original Ground Truth 1-Level U-Net 2-Level U-Net

3-Level U-Net VGG16 ResNet50

Figure 28: Output Prediction Masks for Massachusetts Buildings Dataset

The output masks appear to follow the same general pattern found in the INRIA

masks. Though both are not particularly excellent at detecting edges, the 3-Level
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U-Net appears to have an overall sharper prediction mask for each building than the

lower level ones. The slight edge artifacts, however, are still present in all models

in areas with a lower density of buildings. The ResNet50 model again struggles the

most with edge artifacts and exhibits poor precision in each prediction patch.

4.2.3 Massachusetts Dataset (Roads)

The results of the predictions for each model and other existing models are shown

in Table 3. Using the precision-recall breakeven metric, the final post-processing

network introduced by Mnih et al. performed significantly better than those proposed

in this thesis. Other methods using this dataset, however, utilized the traditional

metrics of mIoU and accuracy [27]. All of the U-Nets trained for this thesis were

able to provide a higher mIoU than the U-Net model presented in [27], however, the

U-Nets for this thesis were greatly outperformed by the alternative methods found

in [27]. The 2-Level U-Net was able to achieve the highest overall accuracy, but for

evaluating the performance of useful predictions this metric means much less, since a

higher accuracy can simply mean more ”not road” predictions.

Method Precision-recall breakeven point mIoU Accuracy
Neural net [20] 0.8873 - -
CRF [20] 0.8904 - -
Post-processing net [20] 0.9006 - -
U-Net [27] - 59.85 95.66
LinkNet [27] - 67.92 96.78
DeepLabv3+ [27] - 66.72 96.67
D-LinkNet [27] - 67.03 96.75
ResNet34 + ASPP + LinkNet [27] - 68.78 96.72
VGG16 0.3291 5.19 95.39
Resnet 0.3505 8.12 95.45
1-Level U-Net 0.8354 61.73 97.81
2-Level U-Net 0.7663 62.15 97.83
3-Level U-Net 0.7614 61.57 97.80

Table 3: Massachusetts Roads Dataset Results
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The prediction mask for each model along with the truth data for an example

image is shown in Figure 29. Because the number of road pixels in these images are

much smaller than background pixels, it is slightly more difficult to determine patterns

in the output predictions. The U-Nets again appear to have slight edge artifacts based

on the lack of continuous lines between prediction patches for each detected road. The

VGG16 network was able to produce valid outputs for this dataset, but was only able

to mostly predict every pixel as background to achieve a high accuracy. The ResNet50

also performed poorly, likely due to the artifact effect found in the previous dataset

predictions. The results of this dataset also highlight the important of each stage of

the network; while the ResNet50 on its own performed poorly, the smaller ResNet34

combined with alternative encoders and decoders was able to achieve state-of-the-art

results [27].

Original Ground Truth 1-Level U-Net 2-Level U-Net

3-Level U-Net VGG16 ResNet50

Figure 29: Output Prediction Masks for Massachusetts Roads Dataset

4.2.4 RoadNet Dataset

The RoadNet results were compared using mIoU and accuracy [21]. The results

of the predictions for each model and other existing models are shown in Table 4.
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All architectures introduced with the RoadNet dataset by Liu et al. perform signifi-

cantly better in segmenting roads than any of the proposed U-Net architectures. The

difference in performance between the U-Nets created for this thesis and the U-Net

created by Liu et al. for road segmentation is likely due to the different preprocessing

methods used for inputting images into the network, dividing the validation set from

the training set, and the implementation of the different loss functions [21]. The

prediction masks for each model along with the truth data for an example image is

shown in Figure 30. The performance of the U-Nets in this dataset is greatly improved

over the Massachusetts Roads dataset, which is shown by the detection of most of

the roads found in the ground truth data. However, the models still lack the ability

to consistently label continuous roads between image patches. The ResNet50 model

rarely predicted a positive class, and those that were predicted still showed signs of

edge artifacts.

Method mIoU Accuracy
FCN8s [21] 91.9 98.1
FCN8s+ [21] 91.6 98.0
SegNet [21] 85.3 96.3
SegNet+ [21] 87.7 97.0
UNet [21] 88.7 97.3
UNet+ [21] 91.1 97.9
CasNet [21] 91.1 97.9
CasNet+ [21] 92.1 98.2
RoadNet+ [21] 92.4 98.2
ResNet50 0.8 87.5
1-Level U-Net 81.5 97.5
2-Level U-Net 82.2 97.5
3-Level U-Net 83.9 97.8

Table 4: RoadNet Dataset Results (+ refers to the inclusion of the loss function by
Liu et al.)
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Original Ground Truth 1-Level U-Net 2-Level U-Net

3-Level U-Net VGG16 ResNet50

Figure 30: Output Prediction Masks for RoadNet Dataset

4.2.5 Combined Buildings Dataset

The final results for the newly created Buildings dataset utilize the conventional

metrics of mIoU, shown in Table 5. The result of combining the two buildings datasets

was surprisingly a much lower mIoU and accuracy score than either of the two datasets

individually. Even with the scaling of the INRIA images to match the spatial reso-

lution of the Massachusetts Buildings dataset, none of the models seem to have the

ability to learn location invariance. This is most likely due to the lack of data that

have the same spatial resolution. By having a sufficient number of aerial images of the

same spatial resolution, potential artifacts detected by the models from preprocessing

can likely be avoided. This can be seen by comparing the output prediction results

of the Massachusetts Buildings and INRIA portions of the dataset, which are shown

in Figure 31 and Figure 32. Both figures use the same original image from Figure 28

and Figure 27 for comparison.

The U-Net models for this dataset have similar segmentation masks found in the

original Massachusetts Buildings dataset. The biggest difference found is that with

the addition of the INRIA dataset, the ResNet50 and VGG16 models were finally

58



Methods mIoU Accuracy
VGG16 50.33 88.91
ResNet50 35.03 86.80
1-Level U-Net 37.20 81.37
2-Level U-Net 46.09 87.65
3-Level U-Net 46.21 89.76

Table 5: Combined Buildings Dataset Results

Original Ground Truth 1-Level U-Net 2-Level U-Net

3-Level U-Net VGG16 ResNet50

Figure 31: Output prediction masks for the final buildings dataset for an image
originally from the Massachusetts Buildings dataset.

able to output decent predictions, with the VGG16 network performing the best.

The performance on the INRIA dataset however greatly differs for the U-Nets likely

due to the effects of resizing the original image. The outputs of all models resulted

in a choppy final image with poor predictions occurring at the edges of the output

patches.
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Original Ground Truth 1-Level U-Net 2-Level U-Net

3-Level U-Net VGG16 ResNet50

Figure 32: Output prediction masks for the final buildings data for an image originally
from the INRIA Buildings dataset. The discrepancy in segmentation quality can likely
be attributed to artifacts introduced to the input image after resizing.

4.3 Summary

The results of both building and road datasets varied greatly. Based on these

tests there seems to be no definitive evidence that the addition of U-Net levels leads

to an increase in segmentation performance. The mIoU values found in Table 4 and

Table 5 seem to support this theory with a consistent increase with additional levels of

U-Nets, however, Table 1 indicates a consistent decrease. The results in Table 2 show

an initial decrease with the 2-level U-Net and an the greatest overall mIoU with the

3-level U-Net. Lastly, the results in Table 3 show an initial increase with the 2-level

U-Net and the lowest mIoU value for the 3-level U-Net. Because these variations in

performance do not appear to be linked to additional U-Net levels or the datasets

used, the value of adding levels is inconclusive.

This testing also shows that U-Nets are not necessarily an optimal or universal

solution for segmenting any class from an aerial perspective. Out of all of the models

compared, the only model that was able to outperform prior research was the 2-
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level U-Net model in Table 3 for the least valuable metric in semantic segmentation,

accuracy. Rather than arbitrarily implementing U-Nets or adding U-Net levels for

minimal gains in performance, it is likely more effective to develop specific encoders

and decoders based on the dataset. In the future a universal network for roads and

buildings may be developed and implemented, but with the current lack of labeled

data and baselines for comparison, it is difficult to determine if U-Nets are the future

for all segmentation.
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V. Conclusion

This research aimed to train variations of the U-Net on multiple datasets, as

well as combine two publicly available datasets for use in semantic segmentation.

This new dataset, however, proved to be inconclusive in allowing networks to learn

invariances between the two. Though these networks were unable to achieve state-

of-the-art results and perform successful classifications on the combined dataset, the

performance of these models can serve as a baseline for others at Air Force Institute

of Technology (AFIT) attempting to perform these segmentations.

5.1 Performance

Despite the fact that the proposed architectures were outperformed by existing

ones, the output segmentations of the U-Nets performed fairly well for both buildings

and roads. While designing model architectures specifically for a given dataset will

lead to higher mean intersection over union (mIoU) and accuracy scores, the U-Net

has proven to be a useful model to establish a baseline for comparison. Since few

models are able to output decent prediction masks for vastly different classes, the

U-Net will likely be consistently used in the future as a benchmark for this task.

5.2 Hyperparameters

Due to the large number of models trained for this thesis, the only hyperparame-

ters modified from the original U-Net created were the initializer, optimizer, and loss

function. The original models trained on the datasets used the Glorot Uniform initial-

izer and the Adam optimizer based on previous research with this model. These were

adjusted based on further research to the He Uniform initializer and Adam optimizer

with Nesterov momentum, which improved the overall output predictions [22, 23, 13].
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All of the models were also trained using binary cross-entropy as a loss function to

determine whether performance is truly enhanced with the Jaccard loss function. The

outputs of these models were significantly worse, confirming previous research [14, 19]

5.3 Edge Predictions

Edge predictions are a common concern in performing semantic segmentation for

high resolution images [13]. As shown in the results of this study, convolutional neural

networks (CNNs) tend to lose accuracy the further from the center the predictions

are made, which can result in predictions that look abnormal at the edges. Because

of this, some authors utilize a cropping layer to the end of the network [13]. The

test images used for this thesis were instead overlapped at the edges of the high

resolution images to slightly mitigate this issue. A sliding window method could also

be utilized in which predictions are made throughout the image and averaged for a

final prediction mask, at the cost of drastically increased training time.

5.4 Future Work

In the future the performance of these models can likely be improved with a larger

batch size and smaller image patches. Previous research found that a larger batch

size is more important in improving the U-Net model versus a larger receptive field

[13]. With either smaller image crops for training or more powerful resources to

handle larger batches, the results found in this thesis could be drastically improved.

The possibility of implementing generative adversarial networks may also be of value.

These networks have shown to be versatile in many applications and may also have

potential in semantic segmentation for aerial imagery. Finally, while the use of U-Nets

has shown to be a competent benchmark for static images, utilization of these mod-

els in real-time applications with the Autonomy and Navigation Technology (ANT)
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Center would also be valuable.
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Appendix A. Additional Training Curves

1.1 INRIA Dataset

Figure 34: 2-Level U-Net INRIA Training Curves
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Figure 35: 3-Level U-Net INRIA Training Curves
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Figure 36: The ResNet50 INRIA training curves. On average, the training loss was

below the noisy validation loss, leading to the conclusion that the U-Net may have

had a better fit to the data.
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1.2 Massachusetts Buildings Dataset

Figure 37: 2-Level U-Net Massachusetts Buildings Training Curves
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Figure 38: 3-Level U-Net Massachusetts Buildings Training Curves
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Figure 39: The ResNet50 Massachusetts Buildings training curves. The curves exhibit

generally the same pattern as the U-Net models, but with larger variance in the

validation loss curve against the training loss curve.
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1.3 Massachusetts Roads Dataset

Figure 40: 2-Level U-Net Massachusetts Roads Training Curves
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Figure 41: 3-Level U-Net Massachusetts Roads Training Curves
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Figure 42: ResNet50 Massachusetts Roads Training Curves
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1.4 Roads Dataset

Figure 43: 2-Level U-Net RoadNet Training Curves
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Figure 44: 3-Level U-Net RoadNet Training Curves
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Figure 45: ResNet50 RoadNet Training Curves
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1.5 Combined Buildings Dataset

Figure 46: 2-Level U-Net Buildings Training Curves
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Figure 47: 3-Level U-Net Buildings Training Curves
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Figure 48: ResNet50 Buildings Training Curves
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