
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2020

Quantum Transpiler Optimization: On the Development, Quantum Transpiler Optimization: On the Development,

Implementation, and Use of a Quantum Research Testbed Implementation, and Use of a Quantum Research Testbed

Brandon K. Kamaka

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kamaka, Brandon K., "Quantum Transpiler Optimization: On the Development, Implementation, and Use of
a Quantum Research Testbed" (2020). Theses and Dissertations. 3590.
https://scholar.afit.edu/etd/3590

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3590?utm_source=scholar.afit.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Quantum Transpiler Optimization:
On the Development, Implementation, and Use

of a Quantum Research Testbed

THESIS

Brandon K Kamaka

AFIT-ENG-MS-20-M-029

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-029

QUANTUM TRANSPILER OPTIMIZATION:

ON THE DEVELOPMENT, IMPLEMENTATION, AND USE OF A QUANTUM

RESEARCH TESTBED

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Brandon K Kamaka, B.Sc.

March 26, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-029

QUANTUM TRANSPILER OPTIMIZATION:

ON THE DEVELOPMENT, IMPLEMENTATION, AND USE OF A QUANTUM

RESEARCH TESTBED

THESIS

Brandon K Kamaka, B.Sc.

Committee Membership:

Laurence D Merkle, Ph.D
Chair

David E Weeks, Ph.D
Member

Lt Col Patrick J Sweeney, Ph.D
Member

AFIT-ENG-MS-20-M-029

Abstract

Quantum computing research is at the cusp of a paradigm shift. As the complex-

ity of quantum systems increases, so does the complexity of research procedures for

creating and testing layers of the quantum software stack. However, the tools used

to perform these tasks have not experienced the increase in capability required to

effectively handle the development burdens involved. This case is made particularly

clear in the context of IBM QX Transpiler optimization algorithms and functions.

IBM QX systems use the Qiskit library to create, transform, and execute quantum

circuits. As coherence times and hardware qubit counts increase and qubit topolo-

gies become more complex, so does orchestration of qubit mapping and qubit state

movement across these topologies. The transpiler framework used to create and test

improved algorithms has not kept pace. A testbed is proposed to provide abstrac-

tions to create and test transpiler routines. The development process is analyzed and

implemented, from design principles through requirements analysis and verification

testing. Additionally, limitations of existing transpiler algorithms are identified and

initial results are provided that suggest more effective algorithms for qubit mapping

and state movement.

iv

Acknowledgements

I would first like to offer my everlasting gratitude to my advisor, Dr. Laurence D

Merkle for his time, guidance, knowledge and most of all for his faith in my ability

to succeed. His unflappable calm in the face of chaos was equal parts frustrating,

comforting, and empowering. I’d also like to thank my committee, Dr. David Weeks

and Lt Col Patrick Sweeney, for their time and expertise. Whatever success may

come from my time and work at AFIT, they will forever be a part of it.

I’d also like to thank my family. I could not have understood before I began this

journey the time required to get here, and without my family’s boundless support

and accommodation I could never have succeeded.

Finally, I’d like to thank my fellow students and researchers for their support,

assistance, and advice. Lt Marvin Newlin, Lt Chris Dukarm, Ms. Jessica Switzler,

and Capt Leleia Hsia were instrumental to this achievement. Time with them did

not always raise my grades, but always raised my spirits and especially when I most

needed it.

Brandon K Kamaka

v

Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

I. Introduction . 1

1.1 Motivation . 1
1.2 Problem Background. 2
1.3 Research Objectives . 5
1.4 Limitations . 6
1.5 Document Overview . 8

II. Background and Literature Review . 9

2.1 Overview . 9
2.2 Quantum Computation Model . 9

2.2.1 Hilbert Spaces . 10
2.2.2 Qubits . 12
2.2.3 Unitary operators . 13
2.2.4 Measurement Operators . 14
2.2.5 Quantum Algorithms . 16
2.2.6 Quantum Annealing . 16
2.2.7 Quantum Gate Model . 17

2.3 Qiskit and IBM QX Architecture . 18
2.3.1 Terra . 19
2.3.2 Aer . 22
2.3.3 IBM Quantum Hardware . 25

2.4 IBM QX Transpilation . 29
2.5 Quantum Layout Problem . 30

2.5.1 Optimization Techniques (Previous Work) 32
2.6 Summary . 38

III. Methodology . 39

3.1 Overview . 39
3.2 Approach . 39
3.3 Test Bed Design Principles and Goals . 39

3.3.1 Design Principles . 40
3.3.2 Requirements Analysis . 43

vi

Page

3.4 Algorithm Overview . 45
3.4.1 Initialization and Pre-processing . 47
3.4.2 Connectivity Component . 49
3.4.3 Distance Component . 50

3.5 Benchmarks and Evaluation . 54
3.5.1 Evaluation Circuits . 55
3.5.2 Evaluation Transpiler Configurations . 57

3.6 Summary . 62

IV. Results and Analysis . 63

4.1 Overview . 63
4.2 Quantum Layout Problem Testbed (QLP-TB) Design

Implementation . 63
4.2.1 Design Principle Analysis and Results . 64
4.2.2 QLP-TB Requirements Results . 67
4.2.3 Verification Results . 73
4.2.4 QLP-TB Results Summary . 76

4.3 Quantum Layout Solver (QLS) Heuristic Results 82
4.4 Summary . 83

V. Conclusions . 85

5.1 Overview . 85
5.2 Contribution . 85
5.3 Future work on the QLP-TB . 86
5.4 Future Work on the Quantum Layout Problem (QLP) 87

5.4.1 Global Improvements . 88
5.4.2 Connectivity Improvements . 90
5.4.3 Distance Improvements . 90

5.5 Concluding Remarks . 92

Appendix A. Quantum Circuits Provided by the QLP-TB 94

Appendix B. Experiment Script for the QLP-TB . 98

Appendix C. Code Snippets . 103

Bibliography . 117
Acronyms . 125

vii

List of Figures

Figure Page

1 A schematic view of the circuit model constructed by
Qiskit Terra . 20

2 Simple quantum program in Qiskit and its associated
circuit . 23

3 Example topologies available on IBM QX QCs . 26

4 An example simple circuit and an associated, fully
satisfactory layout . 30

5 An example complex circuit and an associated, partially
satisfactory layout . 31

6 Siraichi SWAP minimization algorithm . 35

7 A circuit with its locally-optimal and globally preferred
layouts . 46

8 Grover’s Algorithm test circuit . 57

9 Full pass sets for the IBM pre-populated PassManager
configurations . 61

10 Increase in SWAP count after transpilation . 77

11 Increase in SWAP count after transpilation, relative to
the starting size of the circuit . 78

12 Euclidean distance between the results distributions
from real and ideal executions . 79

13 Jensen-Shannon distance between the measurement
distributions of noiseless circuit simulation and actual
execution on quantum hardware . 80

14 Transpilation time (ms) of each configuration and circuit 81

viii

List of Tables

Table Page

1 Summary of commonly used gates and their matrix
representations . 28

2 Summary of test set circuits for evaluating QLS
performance . 58

3 Summary of test set circuits available in the QLP-TB 97

ix

QUANTUM TRANSPILER OPTIMIZATION:

ON THE DEVELOPMENT, IMPLEMENTATION, AND USE OF A QUANTUM

RESEARCH TESTBED

I. Introduction

1.1 Motivation

Quantum computing is a rapidly growing field with imminent potential to dramat-

ically increase the tractability of numerous problems of concern to the Department of

Defense, including resource allocation, cryptanalysis and cryptography, and advanced

materials engineering.

In pursuit of such capabilities, successful implementation of advanced compiler

optimization techniques for generic quantum algorithms is a key milestone in achiev-

ing quantum supremacy on Noisy Intermediate-Scale Quantum (NISQ) systems. As

NISQ systems are likely to be the dominant paradigm of quantum computers for

the near and mid-term in quantum computation, the Air Force mission to maintain

information dominance rests greatly on such quantum capabilities.

However, previous work has been highly varied in both techniques used and in

choices of parameters to optimize in compilation schemes. Although algorithms and

tools exist to improve qubit lifetime heuristics, SWAP minimization heuristics, and

gate optimization procedures, there is little integration research designed to enable

rapid prototyping of algorithms and optimization methodologies, nor are there effec-

tive or efficient benchmarking tools to generate or analyze the results of applying such

optimizations.

1

1.2 Problem Background

Quantum computing shows significant promise for enhancing the future capabili-

ties of the military and civilian organizations that have the expertise, engineering, and

resources to construct and use them. However, quantum computing is in its infancy,

and most notably no known quantum service provider has yet solved the physical

and engineering challenges necessary to enable the level of abstraction end-users of

classical computers systems are accustomed to. In particular, traditional computer

technology is sufficiently matured such that developers and users generally are not

required to understand the physical workings and constraints of an executing ma-

chine, instead multiple layers of interfaces permit developers to perform operations

like data storage and retrieval, networking, operation scheduling, or multi-processing

without engaging directly with the hardware that enables such operations; in short,

the average developer does not need to know, for example, the voltage or timing of

the transistors they are making use of.

Quantum computers, by comparison, require significant investment by developers

and users in understanding and engaging directly with the constraints of the underly-

ing hardware. There are multiple, substantial consequences of the current paradigm:

first is that this limits the pool of available users and developers by restricting the

operation of quantum computers to multi-disciplinarians comfortable with more than

the usual programming principles; second, there is a significant workload associated

with each new task executed on quantum hardware—including experimental tasks

to resolve the existing abstraction issue—and users must develop solutions, often

replicating the work of others, to solve the constraints presented and perform basic

tasks like operation scheduling. The goals of providing comprehensive layers of ab-

straction are to identify and consistently use optimal solutions to simple, recurring,

low-level tasks, as well as to enable end-users to expend their time and expertise

2

solving higher-order problems in a more portable manner.

In classical computer systems, compilers and operating systems transparently

manage memory access. Developers identify symbols that map to virtual memory

locations and data to associate with them [35], but these virtual memory locations

exist only within the scope of the program being executed; the compiler and operat-

ing system map the virtual memory locations to physical memory, and also ensure

that the same physical memory is not unintentionally mapped to multiple symbols.

This allows developers to allocate and use memory without concern for the under-

lying memory architecture. This abstraction also permits arbitrary memory access,

regardless of location; that is, two integers can be allocated, stored, and later, e.g.,

summed without reference to the physical location of the data in the memory chips.

Quantum compilers currently lack this abstraction layer. All memory—physical

qubits storing some quantum state—must be allocated manually, bit-by-bit, and re-

trieved by explicit reference to the physical qubit’s address in the architecture [25]. If

a quantum developer wishes to have data from two qubits interact, then an entangle-

ment operation must be performed on both qubits simultaneously. The constraints

of all existing transmon architectures, including that used by IBM, are such that en-

tanglement operations can only be performed on qubits that are physically adjacent

and share a single, microwave-pulse wave-guide. One goal of quantum compilers,

or in IBM’s nomenclature the quantum transpiler, is to orchestrate remapping of

symbols and their associated data present in a quantum program to different physical

qubits, such that when program execution requires an entanglement, the qubits being

entangled are physically co-located as required.

Additional characteristics of the IBM quantum architecture also affect the remap-

ping process. Although all operations on classical computers have some non-zero

probability of failure, such probabilities are individually extremely low [52] and the

3

large number of bits available for program execution makes error correction proce-

dures easy to implement and effective. Conversely, quantum computers have relatively

high error rates associated with data storage, manipulation, movement, and retrieval,

varying between approximately 0.5 and 7% [5] depending on the specific qubit and

operation. Additionally, the no-cloning theorem of quantum mechanics identifies a

critical constraint on all quantum systems without exception: quantum state cannot

be copied between quantum objects [51].

These characteristics mean that mapping and remapping operations on qubits are

fraught with difficulties. First, is that the initial mapping of virtual to physical qubits

should be done in a way that maximizes the reliability of operations performed; all else

being equal, it is better to select qubits with superior associated reliabilities. Second,

since qubits cannot be cloned, then Virtual-to-Physical (V2P) mappings should take

into account which qubits need to be near one another throughout the execution of

the quantum program. The relatively high failure rate of qubit operations compared

to bit-wise operations means that probabilities of failure when moving a virtual qubit

between physical locations are a dominant concern.

Taken together, these goals, constraints, and methodologies for accommodating

them are known as the circuit mapping problem [32], the Quantum Layout Problem

(QLP) [37], or the qubit allocation problem [47], and will be referred to as the QLP

throughout this paper.

Compounding the difficulties associated with the lack of abstraction layers on

existing IBM QX architecture is the fact that testing and experimenting on pro-

posed policies, routines, or algorithms intended to provide such abstractions is itself

a manual procedure requiring explicit engagement with complicated, low-level code

constructs. Further, development in this environment is plagued by the necessity of

making a multitude of small, arbitrary decisions. Although such decisions are a nat-

4

ural component of many development tasks, they are rarely commented on, justified,

or given visibility. This leads to a multitude of researchers using slightly different

techniques, algorithms, or data structures to accomplish fundamentally similar tasks,

which both hampers collaboration and makes replication or extension of existing re-

sults a frustrating and difficult task. This lack of wrappers, utility functions, and

structured access to system internals is an issue whose resolution necessarily precedes

future work on solving the QLP and similar issues.

1.3 Research Objectives

Little research has been done to optimize the compiler operations that orches-

trate the V2P mapping and movement of qubit state among hardware qubits. This

research is intended to facilitate comprehensive testing of qubit allocation and map-

ping algorithms and to introduce and analyze new methods of determining optimal

qubit orchestration. In particular, there are two primary questions and an additional

question to guide future research in consideration of the primary research goals:

1. What are the design principles and requirements of an effective testbed for

proposed QLP solvers?

2. What tradeoffs should be made among various software engineering principles

in a testbed implementation satisfying those requirements?

3. Can a method be devised that mitigates the limitations to effectiveness and

efficiency that exist with current QLP solutions?

The first two research questions capture an essential problem for quantum com-

puting research previously expounded on in Section 1.2. If toolsets and workflows

are to enable research and the practical application of quantum systems, then soft-

ware engineering principles and best practices must be applied to the issue. This is

5

a necessary component to have quantum systems leave the laboratory and enter the

office. Towards that end, the often antagonistic concerns of functionality, adherence

to standards, and accommodation for the scientific computing environment must be

evaluated against one another.

The third, aspirational question concerns limitations of existing QLP solutions.

Although there are known methods for determining optimal qubit allocations, the

general problem is known to be NP-hard [47], and existing methods require imprac-

tically large number of operations even for small numbers of virtual and hardware

qubits. As such, quantum researchers have focused on finding heuristic solutions that

are executable in reasonable time. Some existing techniques have emphasized finding

sub-graphs of hardware qubits that exhibit desirable reliability traits for single-qubit

and entanglement operations. Although ideally a quantum program could be wholly

executed on a single sub-graph as a static V2P mapping, this is rarely possible for any

non-trivial quantum circuit. As such, it is often true that a series of maps must be

identified, each of which identifies some sub-graph of hardware qubits that meet the

entanglement constraints of the executing quantum algorithm at a specific moment

in time. Thus, other existing techniques have emphasized finding paths to efficiently

move virtual qubit states such that these entanglement constraints can be met with a

minimum of reliability cost. In contrast to both types of existing techniques, this re-

search assesses the viability of a function that constitutes a tradeoff between these dual

concerns—a weighted heuristic that takes into account both sub-graph and pathing

optimizations.

1.4 Limitations

This research is intended to advance the field of quantum computation optimiza-

tion on IBM (transmon) architecture. In particular, by first enabling more efficient

6

and effective research methods on transpiler optimization, and second by exploring

potential avenues for improvement to existing algorithms for solving the QLP. There

are numerous avenues beyond this area that also demonstrate some potential for im-

provement, including work on gate scheduling, novel methods for partitioning circuits

beyond the layering method described in Section 2.4, including single-gate errors in

optimization decision-making, and developing and using more advanced noise models.

These methods, though possibly fruitful, are beyond the scope of the optimization

research described in this work. Other potential avenues including circuit character-

ization schemes and distinct metrics for assessing sub-graph quality are also beyond

the scope of this work and are discussed in more detail in Section 5.4.

Moreover, distinct quantum computing architectures, like topological qubits or

those exploiting quantum annealing, have distinct concerns and programming models

to which this research does not apply. Constraint topologies may not be present

or defined in the same form as on transmon architecture—specifically in that other

architectures do not always require physical adjacency to perform entanglements or

may use a distinct quantum operation to entangle their quantum state.

Finally, the developed quantum testbed is intended to work with IBM’s Qiskit

programming library. This means that functionality is not guaranteed—or even

intended—in environments that do not have Python and Qiskit installed. Nor is

the testbed intended to be used in the same manner as the transpiler routines im-

plemented by [33, 50] or others. Their methods use external applications that Qiskit

assembly code are exported to, transformed, and then re-imported into Qiskit, while

the intention of the testbed is to be fully integrated into a Qiskit workflow. Although

there may be some value in increasing the portability of the testbed or by improving

its efficiency through the use of more efficient, lower-level languages like C++ or C#,

such work is also beyond the scope of this research.

7

1.5 Document Overview

Chapter II provides background information on quantum computing, the IBM QX

architecture, and previous research on the QLP. Chapter III defines the methodol-

ogy used to implement and evaluate the proposed Quantum Layout Solver (QLS).

Chapter IV presents the results and a comparative analysis against existing methods.

And, finally, Chapter V concludes and offers areas of potentially fruitful future work

to extend on the initial results provided here.

8

II. Background and Literature Review

2.1 Overview

This chapter covers information relevant to quantum computing the Quantum

Layout Problem (QLP). Section 2.2 begins with a general understanding of quan-

tum computation and its mathematical and operation models. Following this Sec-

tion 2.3 provides specific background on the IBM QX project which provides public

and institutional access to quantum hardware for research purposes. This section also

includes information about the Qiskit library and its organization, used in Python

to access quantum services. Subsequently, the specific Qiskit Transpiler procedures

are described in Section 2.4, and finally the Transpiler discussion is extended into

a description of the QLP and previous work that defines it and heuristic solutions

proposed to solve it in Section 2.5.

2.2 Quantum Computation Model

Quantum computing can be understood by analogy to classical computation. Just

as classical computers exploit the physical properties of an artificially constructed

system to model a mathematical operation as a series of physically-instantiated state

changes - e.g. using the magnetic properties of platters to allow data storage and re-

trieval, or manipulating the voltage present in a circuit in a manner that corresponds

to a bitwise operation on memory locations that themselves map to variables in the

mathematical algorithm being performed – so too can quantum computing be un-

derstood as exploiting the quantum properties of an artificially constructed physical

system to model a sequence of abstract, mathematical operations [24]. And just as

understanding Boolean algebra, operations in the finite field F2, and binary arithmetic

are critical to crafting and comprehending the execution of algorithms on classical

9

computers, quantum computation requires understanding the underlying mathemati-

cal model of the space the input and output information occupies. This understanding

enables the user to semantically map problems to inputs in the computational space

and to, similarly, map outputs in such a space to solutions comprehensible in the

semantics of the problem [46].

2.2.1 Hilbert Spaces

The, imperfect, quantum analogue to F2 is a Hilbert space HN . Hilbert spaces are

tuples, H = (VNC , F) composed of an N -dimensional vector field V whose component

scalar field is C and an associated dot product F : Vi × Vj −→ C : 〈·, ·〉 = 〈·|·〉 is

defined for all Vn ∈ H [9]. Each

Vi ∈ H =

v0

v1
...

vn−1

= |Ψ〉 (1)

represents some quantum state |Ψ〉. In a quantum computing context, H is given

characteristics that make it convenient for representing data in standard, binary for-

mat and for easing elements of the calculation in involved. In particular, in the single

qubit space H2, Vi represents a state within a two-level system with the basis vectors

{e0, e1} defined in the normal way:

(
e0 e1

)
=

1 0

0 1

 (2)

Again for convenience of notation and semantic mapping, the basis states are most

commonly labeled by analogy to classical computer logic: e0 = |0〉 and e1 = |1〉, such

10

that Vi can be represented as Vi = v0 |0〉 + v1 |1〉 = (v0v1). Additionally, all vectors

are normalized to have unit length, such that ∀Vi ∈ H : | v0 |2 + | v1 |2 = 1.

The total dimensionality, N , of a Hilbert space modeling an n-qubit, two-level

system is N = 2n. This is best understood by reference to the fact that the basis of

some HN is exactly the basis induced by the tensor product on all the component,

single-qubit systems:

HN =
⊗
n

H2 (3)

and this basis is generally referred to as the computational basis of H.

For example, if we consider the Hilbert space modeling a two-level, two-qubit

system, H4, it is known that each component qubit can be represented in H2 as a

linear combination of two basis states: |φ〉 , |θ〉 = α |0〉+β |1〉. By linearity, for a state

vector |Ψ〉 ∈ H4 composed by |φ〉 |θ〉, we have:

|Ψ〉 = |φ〉 |θ〉 (4)

= (αφ |0〉+ βφ |1〉)(αθ |0〉+ βθ |1〉) (5)

= αφαθ |00〉+ αφβθ |01〉+ βφαθ |10〉+ βφβθ |11〉 (6)

Although the reverse mapping of a given |Ψ〉 to individual vectors inH2 is not guaran-

teed – and in fact fails exactly when |Ψ〉 represents an entangled state – the example

serves well to demonstrate that the computational basis of HN system can be natu-

rally interpreted as all possible bitstrings of length N . This also provides a convenient

mapping from basis states (usually returned by measurement operators) to integer

solutions to a problem encoded in the quantum computation; it also provides a nat-

ural order on the bases. As such, it is common to render the basis states of HN as

{|0〉 , |1〉 , |2〉 . . . , |N − 1〉} [34].

11

2.2.2 Qubits

Qubits are the quantum analogue to classical ‘bits’ in computing; they both rep-

resent a two-level system and act as carriers of information for the computation,

although they are significantly different in a variety of ways that are key to under-

standing quantum advantage in certain computational tasks. While a classical bit

is a scalar that takes exactly the values J0, 1K - and therefore store exactly one bit

of information - qubits are multi-dimensional vectors and take continuous, complex

arguments in each level. In particular, let q be some isolated qubit with access to two

relevant energy levels (in general, there are more than two energy levels available to

the qubit, but higher-order levels are not used and a qubit’s excitation into higher

states is frequently pathological behavior [44]); we denote these energy levels with

the symbols |0〉 and |1〉, respectively. Then the qubit can be represented by the state

vector |Ψ〉 = α |0〉+ β |1〉, with α, β ∈ C. In this context, α and β are the amplitudes

of the state |Ψ〉 in the eigenbasis of the model of the single-qubit system, and if α

and β are each non-zero, then q is in a superposition of the states |0〉 and |1〉.

The ability of a qubit to exist in a superposition of its basis states is a significant

feature in quantum advantage, for example in enabling quantum parallelism (see

Section 2.2.5).

In addition to amplitudes, qubits have a phase, which characterizes their rotation

in the complex plane [34]. If a qubit has a phase, then this is represented by the

inclusion of an additional factor: |Ψ〉 = ekπiα |0〉+emπiβ |1〉 for k,m ∈ [0, 2). Although

a qubit can have a phase in either component, it is often convenient to factor this into

a global phase and a relative phase solely on the |1〉 component, since global phase

factors are physically immeasurable and can be discarded [34]. “[T]wo amplitudes a

12

and b differ by a relative phase if there is a real θ such that a = exp(iθb)” [34].

|Ψ〉 = ekπiα |0〉+ enπiβ |0〉 (7)

|Ψ〉 = ekπi
[
α |0〉+ e(n−k)πiβ |0〉

]
= ekπi |Ψ′〉 (8)

Let M̂ be a projective measurement operator, then:

M̂ |Ψ〉 = 〈Ψ′| e−kπiM̂ †M̂ekπi |Ψ′〉 (9)

= M̂ |Ψ′〉 (10)

|Ψ〉 can now be interpreted as a state with a (discardable) global phase ekπi and a

relative phase emπi.

2.2.3 Unitary operators

Physical constraints on the evolution of quantum mechanical systems determine

the set of algebraic operations permitted on H. Most important, because all non-

measurement quantum operations must be conceptually reversible, then they must

be norm-preserving [41]; that is, given an operator Â that represents such a transform

on H and Vi,Vj ∈ H:

〈ÂVi, ÂVj〉 = 〈Vi | Â†Â | Vj〉 = 〈Vi|Vj〉 (11)

And it thus true that Â is unitary ⇐⇒ Â†Â = I [41]. We can then conceptualize

state changes on this space as rigid rotations of the underlying Hilbert space. This

view continues to hold for spaces representing systems with greater numbers of qubits.

Quantum computation on transmon acrhictectures, like classical computation,

takes place on a machine that implements a sequence of instructions that alter the

13

machine state. Some subset of the instructions a machine is capable of interpreting

are fundamental in the sense that they are directly, atomically implemented at the

hardware-level of the machine; the remainder of the instructions are then aliases for

some sequential composition of this fundamental set. True quantum computation, like

its classical counterpart, then requires that this fundamental subset of instructions

be capable of composing arbitrary algorithms [29]; if it does so, we refer to it as the

set of basis gates for the quantum architecture, and all gates that are implementable

on the architecture but that are not basis gates are composed of sequences of basis

gates. The basis gates relevant to this work are discussed in Section 2.3.

2.2.4 Measurement Operators

As referenced prior, measurement operators compose the sole class of non-unitary

operations allowable on a quantum system, because measurement is not a reversible

process [34]. Instead, as projectors measurement operators must be Hermitian - i.e.

given an operator Ĥ, Ĥ is Hermitian ⇐⇒ Ĥ = Ĥ†.

It is not possible to measure the exact quantum state, |Ψ〉 of a given quantum

system at a given point in time [51]. Instead, the application of a measurement

operator to |Ψ〉 returns exactly one basis vector of HN , with an associated probability

proportional to the original state’s amplitude in that basis. Given Basis(HN) =

{|ω0〉 , · · · , |ωN−1〉}, then:

P
(
Ĥ |Ψ〉 = |ωi〉

)
= 〈ωi | Ψ〉2 , and (12)

1 =
N−1∑
i=0

〈ωi | Ψ〉2 (13)

As noted before, although measurement operators cannot distinguish the global phase

of an arbitrary state—regardless of the bases chosen for the projection—a relative

14

phase does impart a physically measurable difference in quantum state, but only if

measured in a basis where the amplitudes of the basis states vary by more than a

relative phase. Consider the state |θ〉 = ekπiβ |1〉 in the standard basis. Measured in

this basis, we observe that since |ekπi|2 = ekπi ·
[
ekπi
]∗

= 1 then P (|θ〉 = |1〉) = |β|2

for all k.

However, appropriate measurement bases may be chosen to distinguish relative

phases, depending on the phase. For example, consider |Ψ〉[e] = 1√
2

(|0〉+ eπi |1〉),

as before, with a measurement in the standard basis we have P
(
M̂ |Ψ〉 = |0〉

)
=

P (M̂ |Ψ〉 = |1〉) = 1
2
. However, by applying a change of basis transform:

Given, H =
1√
2

1 1

1 −1

H |Ψ〉[e] = H

(
1√
2

(
|0〉 − |1〉

))
(14)

H |Ψ〉[e] =
1

2

1 1

1 −1

 1

−1

 =

0

1

 (15)

|Ψ〉[H] = 0 |0〉[H] + 1 |1〉[H] (16)

A measurement in the H basis would therefore distinguish a relative phase that

is otherwise immeasurable in the standard basis, since P
(
M̂ |Ψ〉[H] = |0〉[H]

)
= 0,

while P
(
M̂ |Ψ〉[H] = |1〉[H]

)
= 1. Even if immeasurable however, phase is often

introduced and later eliminated as an intermediate step in quantum algorithms to

select or distinguish states [14].

15

2.2.5 Quantum Algorithms

Quantum algorithms are distinct from classical algorithms in a variety of ways. Of

foremost concern is that quantum algorithms are probabilistic [45]. As such any quan-

tum procedure is run repeatedly from which a distribution of state vectors are mea-

sured. Although all quantum computation will necessarily engage with the physics

of quantum systems occupying a continuous configuration space, it is convenient to

differentiate two broad families of techniques: continuous and discrete. That is, some

methods for implementing quantum algorithms depend on permitting a constructed

quantum system to continuously vary over time until some certain condition is met,

while others assume a discrete time evolution of the system under the application of

distinct gates [12].

2.2.6 Quantum Annealing

Quantum annealing is a technique developed by Kadowaki and Nishimura [23]

and used primarily in adiabatic quantum computing, as on D-Wave systems [16].

Encoding an algorithm as a quantum annealing process first requires formulating the

problem being solved as a constraint satisfaction problem with a well-defined objective

function [23]. In general, the goal is to map candidate solutions to the problem to the

basis states of the underlying quantum system, most commonly such that each qubit’s

state is mapped to a single degree of freedom in the solution configuration space,

and a measured basis state then defines the total configuration best satisfying the

constraints by specifying all the relevant variables corresponding with those degrees

of freedom.

Once the problem is mapped appropriately, the quantum system implemented

by the annealer is tuned. In particular, like all quantum systems the (nominally)

isolated quantum system of the annealer has an associated Hamiltonian constraining

16

its time-evolution. If the quantum system can be transformed such that its associated

Hamiltonian reflects the constraints of the initial problem, then identifying the ground

state of this Hamiltonian—which is an eigenvector and thus a measurable state—

allows the user to invert the mapping and recover a particular configuration that

satisfies the given constraints and maximizes the objective function.

The challenge is thus to tune the quantum system such that it is governed by

a Hamiltonian that generates an energy landscape of the correct “shape” and then

to ensure that this Hamiltonian is in its ground state at the time of measurement.

The details for how these tasks are accomplished can vary based on the particular

annealing method being used and the hardware involved [16]. On D-Wave systems,

the Hamiltonian can be developed by changing the coupling values between individual

qubits—that is, by changing the entanglement between them—and by varying the bias

for each qubit, which changes the value of the scalar components of its state vector

by applying a magnetic field, thereby modifying the intrinsic probability the qubit is

measured in each basis state [7]. The ground state is maintained by slowly applying a

transverse magnetic field to the quantum system after a uniform superposition of all

possible basis states is introduced. The magnetic field then, ideally, causes a smooth

transition from the ground state of this system to its first excited state, and then via

quantum tunneling, into the ground state of the related Hamiltonian that encodes

the objective-function-maximizing state.

2.2.7 Quantum Gate Model

Unlike quantum annealing, which uses continuously varying fields to manipulate

the quantum system, and so in some sense embodies a more physical approach to

modeling quantum computation, quantum gate models of computation derive more

inspiration from existing classical computation by treating the procedure as a discrete

17

algorithm. Gate-modeled quantum computation is “the generalization of digital com-

puting where bits are replaced by qubits and logical transformations by a finite set

of unitary gates that can approximate any arbitrary unitary operation. A classical

digital circuit transforms bit strings to bit strings through logical operations, whereas

a quantum circuit transforms a special probability distribution over bit strings—the

quantum state—to another quantum state” [12]. The user begins with a mapping,

as above, that relates measured basis states to solutions to the problem being solved,

with the goal of transforming the original quantum system into a state that, when

measured, is likely to return the basis state corresponding to the correct solution.

The gate model of quantum computation is more flexible in the types of problems

to which it applies, as it is not constrained to finding solutions encoded only as the

ground state of a particular Hamiltonian that must be constructed.

Gates are defined by the specific architecture, analogous with classical computers,

as discrete operations on one or more qubits that transform the state in a defined

way; that is, given the desired solution state |ω〉 and some sequence of unitary gates

implementing a sequence of operators
(
Û0, Û1, . . . , Ûn−1

)
such that Ûi |Ψ〉i = |Ψ〉i+1,

the desired outcome is the state |Ψ〉n = Ûn−1Ûn−2 . . . Û0 |Ψ〉0 which has the property

〈ω | Ψn〉2 > 0.5

2.3 Qiskit and IBM QX Architecture

Qiskit is an open-source software development kit sponsored by IBM, designed to

provide a standardized interface for programming IBM QX Architecture Quantum

Computers (QCs) [21]; it is provided in the form of a Python 3.x library.

Qiskit is divided into sub-libraries, each specializing in particular elements of quan-

tum computation. These sub-libraries are referred to within Qiskit as “elements” [21],

as a mnemonic referencing the pre-scientific belief that the known world was com-

18

posed by combinations of air, fire, water, etc. In the Qiskit context, the elements are

Terra, Aer, Ignis, Aqua and although technically a component of the Terra library,

the IBMQ (and related) modules are often considered a fifth component - though

frustratingly, they are not associated with a name referencing the traditional “spirit”

component completing the classical pentalogy. A brief overview of the most relevant

elements is included below.

2.3.1 Terra

Terra is “the foundation on which the rest of Qiskit lies,” which “provides a

bedrock for composing quantum programs at the level of circuits and pulses”[21].

It defines a particular construction of quantum computational procedures using its

circuit, pulse, and transpiler modules. At the top level, circuits are defined by Qiskit

as objects containing details about available quantum gates, sequences of gates to be

executed, metadata about a given procedure, virtual qubits and classical bits used,

and the compilation and transpilation procedures necessary to define the circuit as a

computable sequence. Each circuit contains at least one quantum register and zero

or more classical registers. Each register is simply a Qiskit wrapper around a Python

list object: which is to say a generically-typed, integer-indexed array. Registers have

names, and own a defined, finite number of bits to which they provide access methods.

Each bit is then defined in this context as a tuple of two elements; the first element

is itself a 2-tuple containing the name and size of the parent register, and the second

element is the index associated with the qubit. Figure 1 shows a schematic view of

this structure.

Although Terra allows each QC to define and provide its own basis set of gates,

at this time all IBM computers use the same set. On the IBM QX architecture, the

19

Figure 1: A schematic view of the circuit model constructed by Qiskit Terra

basis gate set is {U1, U2, U3, Id, CX }, where CX denotes the sole two-qubit gate.

CX = CNOT =

1

1

0 1

1 0

(17)

Id = I =

1

1

 (18)

U3(θ, φ, λ) =

 cos(θ
2
) −eiλ sin(θ

2
)

eiφ sin(θ
2
) ei(λ+φ) cos(θ

2
)

 (19)

U1(λ) = U3(0, 0, λ) (20)

U2(φ, λ) = U3(
π

2
, φ, λ) (21)

Each gate is represented in Qiskit by a method on objects of the QuantumCircuit class,

and accepts one or more arguments denoting the target bit(s) of the operation. Al-

though not in the basis set, Table 1 shows the symbol and matrix operator associated

with other, common quantum gates.

The SWAP gate is of particular importance to transpiler optimization research.

20

Applying a SWAP operator to two adjacent qubits exchanges their quantum state.

Let Ŝ represent the SWAP operator defined in Table 1 and let q0, q1 be two adjacent

qubits on some hardware topology such that q0 encodes the quantum state |Ψ〉 and

q1 encodes the state |Θ〉, then Ŝ |q0q1〉 = |q1q0〉 = |ΘΨ〉, or equivalently {qo : |Ψ〉 , q1 :

|Θ〉} Ŝ−→ {qo : |Θ〉 , q1 : |Ψ〉}. On IBM QX QCs, the SWAP operator is implemented

as a series of three CX gates where the direction (i.e. the control/target relationship)

of the second CX gate is flipped—which is accomplished by bracketing the flipped

gate with two Hadamard gates. Let Ĉ represent the operator associated with the CX

gates, then Ŝ |q0q1〉 = ĈĤĈĤĈ |q0q1〉.

An important consequence of this architectural implementation is that SWAP op-

erations are expensive in terms of reliability cost, as they introduce noise proportional

to the cube of the noise introduced by the CX gate. As an example, an otherwise

noiseless circuit performing a CX over an edge of reliability 0.9 would have a final

reliability of 0.9 after the CX, while that same circuit instead performing a single

SWAP over that edge would result in a final reliability of ≈ 0.73—nearly 20% less

reliable.

The Pulse module of Terra can be directly accessed by the end user, but is most

often a transparent translation layer between the gate methods and the physical

hardware. Quantum state on IBM transmon qubits is modified by the application of

microwave pulses whose frequency is determined by the qubit being addressed, and

whose amplitude, duration, and shape are determined by the gate being applied [28].

The Pulse module schema reproduces the circuit schema at a lower level: the top-

level container corresponding with the circuit object is the pulse schedule, which is

an ordered sequence of defined pulses intended to implement a sequence of discrete

quantum state changes. Each pulse schedule owns its component pulse object, each of

which corresponds with the action of a gate object from the circuit module. Because

21

exposure of the pulse interface breaks abstraction, it is useful for experimentalists but

has limited usefulness for the creation and execution of quantum programs [21]. A

short example using the Terra library to create a two-qubit circuit implementing the

Bell state is shown in Figure 2.

Terra additionally provides a transpile module, which provides the methods neces-

sary to take a given circuit and quantum hardware system and transform the former to

a format compatible for execution on the latter. Transpilation, also known as source-

to-source compilation [4], is a process of mapping source code in a given language to

source code at the same level of abstraction; this is distinct from compilation, which

maps source code at a given level of abstraction to a lower-level language like assembly

or bytecode. Pasquier et al. define transpilers as “software programs that take source

code in a given language as input and generate the equivalent source code in a second

language at an equivalent level of abstraction,” or that provide “translation of source

code between different versions of the same language” [36]. In this context, we are

concerned with this second sense. The Qiskit transpiler performs Python-to-Python

mappings of quantum circuits that consume information about the coupling map of

a given QC and transform the circuit code to conform to the constraints created by

this coupling map. It additionally performs gate reductions that eliminate redundant

procedures—for example, using double-negation elimination to reduce the total num-

ber of applied gates. The Qiskit Transpiler also provides a series of analysis functions

that modify the object attributes of the circuit being transpiled [21]. The structure

of the Qiskit transpiler is discussed in more detail in Section 2.4.

2.3.2 Aer

Aer is the Qiskit module that “permeates all Qiskit elements,” and helps re-

searchers “understand the limits of classical processors by demonstrating to what

22

1 # Standard qiskit

↪→ imports for creating a

↪→ quantum circuit

2 from qiskit import

↪→ QuantumCircuit ,

↪→ QuantumRegister ,

↪→ ClassicalRegister , IBMQ

3

4 IBMQ.load_account

↪→ () # Requires pre -

↪→ existing IBM API key

5

6 qr =

↪→ QuantumRegister (2, name=’

↪→ q’)

7 cr =

↪→ ClassicalRegister (2, name

↪→ =’c’)

8 qc =

↪→ QuantumCircuit(qr , cr ,

↪→ name=’qc’)

9

10 # Adds a hadamard

↪→ gate to the 0th qubit of

↪→ the quantum register

11 qc.h(0)

12

13 # Adds a CX gate ,

↪→ controlled by the 0th

↪→ qubit and targetted at

↪→ the 1st qubit

14 qc.cx(0, 1)

15

16 # Use a

↪→ measurement operator

↪→ mapping every qubit to a

↪→ classical bit , matched on

↪→ index

17 qc.measure(qr , cr)

18

(a) Simple quantum circuit program code

(b) The circuit represented in “Com-
poser” style

Figure 2: Simple quantum program in Qiskit and its associated circuit

23

extent they can mimic quantum computation” [21]. It is designed primarily to pro-

vide simulators and simulation methods for executing quantum routines on classical

hardware. The simulators provided by Aer are run locally on the machine executing

the code, instead of being submitted as a remote job to IBM hardware. They ex-

pose interfaces mimicking that of the real hardware, to enable interoperability with

circuits constructed for actual quantum computation. The simulators generally do

not include noise-components and so are useful for verifying algorithmic correctness

or to establish truth values. Additionally, noise model objects can be derived from

real hardware and applied to some Aer simulators to provide rapid, local testing of

algorithms for noise-sensitivity or noise-mitigation purposes.

In particular, Aer provides three simulators with differing purposes and interfaces.

The QASM_simulator, where “QASM” denotes the quantum assembly language, is de-

signed to simulate a circuit as it would behave on an IBM QC, with the exception

that the default QASM simulator is noise-free. It accepts circuits containing mea-

surement gates and given a circuit to execute will return as a result one vector in

the computational basis for each execution. It additionally permits noise-models to

be introduced (derived from empirical machine data or manually crafted to exhibit

specific properties). The QASM simulator is the closest match to a simulation of

actual quantum hardware available in Qiskit.

Aer also contains a unitary_sim and a statevector_sim. Both simulators are in-

tended to expose more of the computational process than is otherwise physically

possible, and neither accepts measurement gates in the circuits they simulate, since

measurement collapses the quantum state being exposed by the simulators. Specif-

ically, the unitary simulator accepts a quantum circuit that does not contain mea-

surement gates and returns the unitary matrix composed by the sequence of gates in

the circuit. That is, given a sequence of unitary gates serially applied by the circuit

24

(U0, U1, . . . , Un−1), the unitary simulator returns the matrix A = Un−1Un−2 . . . U1U0.

The state vector simulator is similar, but returns the state vector defining the quan-

tum state at the termination of execution of a given quantum circuit. Given a serially

applied sequence of gates (U0, U1, . . . , Un−1) such that Ui |Ψ〉i = |Ψ〉i+1, the output

of the state vector simulator is the vector |Ψ〉n = Un−1Un−2 . . . U1U0 |Ψ〉0. This is

distinct from the QASM simulator, since the vector returned from the latter is the

probabilistic result of the projection of |Ψ〉n onto the computational basis.

2.3.3 IBM Quantum Hardware

IBM first made QCs available to the public as part of their IBM QX Experience

program in 2017 [20]. From 2017 to 2019, a total of approximately 11 QCs were

made available for commercial and public use, with qubit counts ranging from four

to 53 [21]. QCs are most often classified according to the type of qubit they use

and the information-carrying medium of that qubit. And in particular, it is useful

to distinguish two major classifications: microscopic and macroscopic. Microscopic

qubits are constructed around quantum-scale qubits that naturally behave according

to observable quantum principles [48]. Conversely, macroscopic systems are human-

scaled devices that require exotic conditions to produce exploitable quantum behavior.

“Quantum phenomena in mesoscopic qubits require extremely low electrical resistance

for viability and are realized in the form of electrical circuits on ICs. These devices

are often referred to as superconducting solid-state qubits” [48]. IBM QX machines

use macroscopic, solid-state, superconducting qubits referred to as transmons [21].

Transmon qubits exploit the quantum coherence of a superconducting state to

minimize decoherence and noise effects, and employ a Josephson junction as a non-

linear element to create an anharmonic system that provides a distinctly-addressable,

two-level system; this also means that transmon qubits use charge as the information

25

(a) “Poughkeepsie,” a 20-qubit device (b) “Rochester,” a 53-qubit device

Figure 3: Example topologies available on IBM QX QCs

carrier [18]; in many respects transmon qubits can be interpreted as modified Cooper

Pair Boxes (CPBs) [18]. The quantum state of transmon qubits is manipulated by the

application of microwave pulses at specific frequencies and specific durations that are

driven by the underlying chip characteristics and the desired quantum operation. One

significant implication of this control methodology is that all transmon qubits must be

co-located with a microwave waveguide that permits microwave pulses to be targeted

at them, and similarly entanglement operations require that qubits involved in the

entanglement must jointly share a single waveguide to permit a single pulse to affect

a multi-qubit system; this places a practical limit on the number of qubits that can be

made adjacent, i.e. that can share waveguides so that they can be entangled, and the

majority of qubits across all IBM QX devices have either two or three neighbors. The

adjacency relationships described here are represented in topology graphs available for

each device, where nodes represent individual transmon qubits, and edges represent

a shared waveguide between nodes that enables an entanglement operation to be

performed; Figure 3 shows the topologies of two IBM QX machines.

Although not unique to transmon architectures, the noise levels of operations on

26

transmon QCs is also significant in determining the feasibility of successfully executing

quantum circuits on available hardware [38]. Each qubit and edge on each IBM device

has an error rate associated with each gate capable of being executed on that qubit or

pair. The error rate can be conceptualized as the probability that executing the given

gate on the target(s) results in a quantum state matching that of the same circuit

executed on a noiseless simulator.

27

Gate Name Gate Symbol Associated Matrix

Hadamard

(
1√
2

1√
2

1√
2
−1√
2

)

NOT / Pauli-X

(
0 1
1 0

)

Pauli-Y

(
0 −i
i 0

)

Pauli-Z

(
1 0
0 −1

)
S / Phase Gate /
Z90

(
1 0
0 i

)

T

(
1 0

0 e
iπ
4

)

CX / Controlled
NOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

SWAP

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Toffoli

1 0 . . . 0
0 1

...
. . .

0 1
0 1 0

Table 1: Summary of commonly used gates and their matrix representations

28

2.4 IBM QX Transpilation

The IBM QX Transpiler (IQT) is responsible for transforming quantum circuits

from their original format to one conducive to being executed on hardware. The

transpiler’s operations can be understood as comprising compilation functions and

transpilation functions. In general, compilation functions modify a given circuit by

reducing it to a more fundamental form; in classical computation, this is most com-

monly exemplified by the mapping of code functions from their representation in the

original, human-readable language to a sequence of machine-code instructions, each

of which has an immediate reference to some physical state change in the execut-

ing computer [1]. Conversely, transpiler functions execute a functionality-preserving

transform to an input a circuit at a given level of abstraction and create and return

a different circuit at the same level of abstraction. Symbolic substitution with macro

definitions, stripping of comments, or transliteration between high-level languages are

all examples of transpilation functions.

Functions of either type are encapsulated by the IQT into Pass objects. Concep-

tually, each pass executes one, simple transpiler function; architecturally, each Pass

is an object of the Transpiler class that defines a run method that performs a specific

transform. For example, a single pass might substitute all references to logical, user-

defined quantum registers with references to a single, combined quantum register that

simplifies operations for subsequent passes. Passes are either analysis passes (i.e. of

the type AnalysisPass), which collect information about the state of the circuit and

store it for use by subsequent operations, or they are transformation passes (i.e. of

the type TransformationPass), which actually change, delete, or insert operations into

the circuit.

Passes are ordered and controlled by a PassManager object, which also provides

shared memory so that the results of analysis passes can be consumed by others. The

29

PassManager not only executes the passes in their defined order, but also permits

passes to be looped over and to be conditionally executed. The particular passes

used by a given PassManager depend on the transpiler options used for the specific

program being transpiled.

Alongside predefined sets of passes Qiskit provides as defaults, developers may

modify these sets by adding or removing passes or changing flow control criteria or

may alternatively define their own bespoke set of passes and add them to an empty

PassManager.

2.5 Quantum Layout Problem

Given a quantum circuit to be run that includes entanglement operators (CX

gates) and some particular machine topology, as in Figure 3, the transpiler must

select a layout that maps each virtual qubit defined in the circuit to a physical qubit

existing in the machine topology. Since qubit states cannot be wholly known nor

cloned [51], then if two qubits are to entangle—that is, to share state—then they

must be co-located on the topology so that they share a microwave waveguide [30].

(a) Circuit with simple adja-
cency constraints

(b) Layout that satisfies the
circuit’s requirements for its
full execution

Figure 4: An example simple circuit and an associated, fully satisfactory layout

30

In simple circuits, this layout can be easily determined and is static for the duration

of the execution of that circuit, as in Figure 4.

However, more complex circuits often have connectivity constraints that cannot

be met by a static layout. This is illustrated in Figure 5, where there is no sub-

graph on the hardware topology that permits all entanglement constraints to be met

with a single map; no layout permits qubits q1 and q2 to communicate with each

other and with q0 simultaneously while also allowing qubit q1 to control q3. Issues

with static layouts occur very frequently for all but the simplest circuits, since Noisy

Intermediate-Scale Quantum (NISQ) computers are in part characterized by their

limited connectivity [38]. As such, IBM developed the layering technique currently

used by the IBM QX transpiler.

Given a quantum circuit, the transpiler first partitions the circuit into a set of

layers {`0, `1, . . . , `n−1}, where each layer contains the maximum number of gates

that have no data dependency between them. Each layer `i can then be associated

with a layout λi that maps virtual qubits in the layer to physical qubits on the

(a) Circuit with complex ad-
jacency constraints

(b) Optimal layout still leaves
some constraints unsatisfied.
qubit 1 cannot be a target of
qubit 0 and control 2 addi-
tional qubits simultaneously

Figure 5: An example complex circuit and an associated, partially satisfactory layout

31

machine topology. If λi ensures qubits requiring entanglement via CX operations are

co-located on the machine topology, then we say that λi satisfies `i: λi ` `i. Since by

construction each layer is independent from the layer preceding it, then once some

set of satisfying layouts has been calculated, the transpiler is free to insert SWAP

operators into the circuit to migrate the quantum state associated with some virtual

qubit in the circuit to a new, physical qubit and thereby transform the mapping

`i → `i+1.

Because SWAP operations are particularly noisy and prone to causing execution

failure for a given circuit, it is of significant interest to develop techniques for finding

and assigning sequences of layouts that minimize the number of SWAP operations

required to ensure every layer has a satisfying layout. Let M denote a mapping for

a quantum algorithm that consists of a sequence of layouts, where each layout meets

the connectivity constraints of its associated layer:

Mi = (λ0, λ1, . . . , λn) such that λi ` `i (22)

The goal of this research is to select the best Mi such that the reliability of each λi

and the total SWAPs required to permute between them are jointly optimized in a

manner that maximizes the probability that arbitrary quantum circuits executed on

a given IBM QX QC return their desired state vector.

2.5.1 Optimization Techniques (Previous Work)

IBM made their first quantum devices available for public and research use in

2017. The vast majority of work on the QLP for QX architectures was published

in 2018, though work on platform-dependent and simplified models extends back at

least ten years further. This work can be understood as relating to one or both of two

distinct, but related problems: connectivity optimization and distance optimization.

32

Connectivity algorithms emphasize finding Virtual-to-Physical (V2P) mappings that

are optimal against some metric, e.g. sub-graph connectivity [13]; distance algorithms

emphasize finding the optimal ways to assign qubits so as to minimize their traversal

between qubits in the coupling map. In short, connectivity methods often find the best

static layout for a given circuit or layer, while distance methods improve the dynamic

behavior of the layouts during execution but may sacrifice per-layer reliability.

Early works focused primarily on models that worked for tightly constrained

topologies permitting simplifying assumptions, or sought optimal solutions in small

search spaces—with performance on the order of O(en) [27, 32]. Maslov in 2008 first

formulated a version of the QLP, the “quantum circuit placement problem” [32]:

The quantum circuit placement problem is to construct an injec-
tive (one-to-one) function P : {q1, q2, . . . , qn} 7→ {v1, v2, . . . , vm} such that
with this mapping the runtime of a given circuit is minimized. The gate’s
G(qi, qj) execution cost is defined by the mapping qi 7→ vi, qj 7→ vj accord-
ing to the formula

GateOperatingT ime(G(qi.qj)) := W (vi, vj) ∗ T (G(qi, qj)).

Maslov’s work applied to Nuclear Magnetic Resonance (NMR) QCs and assumed

coupling maps with properties distinct from solid-state superconducting qubit archi-

tectures. This work also defined the first layering procedure for satisfying sub-circuits

and concatenating them with SWAP interludes, although Maslov’s algorithm defined

layers by the maximum-length sub-circuit that could be satisfied with a layout on the

NMR coupling map. Maslov also provided a linear time algorithm for determining

SWAP paths using graph coloring on recursively-defined sub-graphs.

In 2014, Lin developed the first QLP heuristic for a plausible superconducting

qubit architecture, but assumed grid connectivity [27]. Like many early efforts, Lin’s

work makes use of an external tool to transpile circuits into executable formats for

33

the (assumed) architecture. Lin distinguishes algorithms for qubit placement and

qubit routing. However, the nature of the tiled architecture Lin focuses on limits the

applicability of the work to existing IBM systems, as the algorithms inflexibly depend

on assumptions about what paths exist between qubits.

Shafei in 2014 extends Mixed Integer Programming solutions from circuit place-

ment problems occurring in very large scale integration for classical integrated circuits

to develop a qubit mapping on a grid architecture, similarly to Lin [40]; however the

algorithm provided does not extend to arbitrary coupling topologies [47].

Post-2017, the pace of work on the QLP accelerated drastically as did applicabil-

ity to real-world architectures and circuits. In early 2018, Siraichi, Dos Santos, and

Pereira first formalized both components of the QLP in the context of a supercon-

ducting qubit architecture over arbitrary coupling maps that resemble those found

on IBM QX systems, including analyzing performance on the ibmqx4 QC [47]. The

authors define two problems analogous to the previously defined connectivity and

distance sub-problems: first, the Qubit Assignment Problem defined as a decision

problem on the existence of a V2P mapping from “pseudo qubits” (virtual qubits)

to physical qubits that satisfy Ψ, the ordered dependency list of a given program;

second, the Swap Minimization Problem, which they formulate as a decision problem

on a coupling graph, Ψ, and a constant integer K, returning whether or not “we can

use up to K swaps to produce a version of Ψ that complies with Gq” [47]. Their

solution to the assignment problem requires creating a coupling graph of Ψ whose

nodes are virtual qubits and whose edges represent a “control relationship” (i.e. a

CX gate with those two qubits), weighted by count. SWAP minimization is solved

by a recursive algorithm shown in Figure 6.

Of note is that the technique presented does not institute any “layering,” and

therefore only works on circuits and architectures that permit a fully compliant map-

34

Given a coupling graph Gq = (Q,Eq), an initial mapping `0, and the dependencies
Ψ, for each i in the domain of Ψ, let (p0, p1) = Ψ(i). If (`0(p0), `0(p1)) /∈ Eq,
then:

1. if (p0, p1) appears in Ψ two or more times, then we use a swap to move p1
closer to p0 in the coupling graph, update `0 and re-evaluate the four
cases in this algorithm;

2. else if the edge (`o(p1), `0(p0)) ∈ Eq, then we use a reversal between
`0(p1) and `0(p0);

3. else if ∃q ∈ Q, such that (`0(po), q) ∈ Eq, and (q, `0(p1)) ∈ Eq, then
we use a bridge between (`0(p0), `0(p1)) ∈ Eq;

4. else we create swaps, i.e., apply step (1) onto (`0(p0), `0(p1)).

Figure 6: SWAP minimizing algorithm to extend the initial layout to cover the entire
dependency list, from Siraichi et al. [47]

ping prior to execution. This is primarily a result of hardware limits at the time

driving research towards small circuits on small topologies; in particular the pro-

vided layout algorithm was tested on a five qubit IBM machine with relatively high

connectivity.

Quickly thereafter, in March 2018, Zulehner, Paler, and Willie developed the

first layered approach implemented in IBM QX devices. Given a circuit already

decomposed to operations in the basis gate set, they define a main objective: “to

minimize the number of elementary gates which are added in order to make the map-

ping CNOT-constrain-compliant” [53]. The process introduced is divided into three

primary components: first, the circuit is divided into layers; second, compliant map-

pings are derived for each layer, finally SWAP operations are introduced as required

to transform between identified compliant mappings between layers.

The layering process used here will continue to be used throughout most of the

following work by this and other authors, and is the dominant paradigm for accom-

plishing complete mappings for quantum circuits on IBM QX architecture. Given a

circuit and an empty layer `i, the algorithm consumes gates from the circuit, in order,

and adds them to `i until it encounters a gate that cannot be concurrently applied

35

with the gates already in `i, at which point `i is complete, a new layer `i+1 is created,

and the current gate is added to it, after which the process continues with `i+ 1.

This algorithm is greedy in that it prioritizes adding gates to the existing layer over

creating new layers, so all gates composing the circuit are moved as far left (as early

in the execution process) as possible.

Once the circuit has been layered, then compliant mappings can be found for each

layer, individually. In particular, Zuheler et al. define permutation layer πi as the

sequences of SWAP operations required to transform mapping λi−1, which satisfies

the dependency constraints of `i−1, to λi; this results in a mapping that consists of a

sequence of layouts interleaved with permutations: (λ0, π1, λ1, π2, λ2, . . . , πn−1, λn−1).

Given an existing λi ` `i, λi+1 is found by defining a configuration space whose nodes

are V2P maps (i.e. node n represents λn) and each edge represents a single SWAP

operation that transforms one map to another, and using an A* search over this space

to find a compliant λi+1; If an admissible heuristic were used, this search would be

guaranteed to find some λi+1 whose πi+1 is of minimal SWAP count, however the

authors also include a look-ahead heuristic that, given a candidate λi+1, estimates

the size of πi+2 with the goal of finding maps that are both compliant with their layer

and also near future maps. For λ0, the authors begin with with an empty map, and

define an initial placement scheme that minimizes π1 according to their look-ahead

heuristic.

Finally, given the complete mapping M, the permutation layers (π0, . . . , πn−1),

having been previously identified by the A* search, are interleaved into the circuit.

Of primary interest in this result are: the introduction of a look-ahead to balance

local and global optima, and the unique decision of the authors to prioritize the

distance sub-problem such that resulting maps are simple side-effects of the SWAP-

minimization algorithm and not independently chosen maps that exhibit some desir-

36

able connectivity properties, in stark contrast to earlier efforts.

At this point in the chronology, methods have advanced to introduce layering, en-

abling significantly more complex circuits to be successfully mapped, have emphasized

SWAP-minimization as a metric of interest for maximizing reliability, and have iden-

tified techniques to do so on realistic topologies. In the following period, multiple au-

thors switched focus to alternative reliability measures. Tannu and Qureshi and Mu-

rali et al., independently pioneered noise-adaptive approaches in early 2019 [33, 50].

In both works, the authors devise methods for optimizing algorithms solving con-

nectivity, distance, or both problems by changing distance metrics from gate counts

to formulas that actually take into account individual variations in qubit gate errors.

Tannu and Qureshi describe two algorithms. Their “Variation-aware qubit movement

algorithm” (VQM) proposes a solution to the distance problem by first calculating

a distance matrix D, where element dij is defined as the distance between physical

qubits i and j, and the distance between any two adjacent qubits is the probability

of failure of a SWAP gate exchanging state between those qubits. Path weight is

then the product of the respective weights of every edge on the path. This method

is fundamentally similar to that proposed by Zulehner, with the exception of edge

weights used by the minimum-path algorithm.

Second, they propose a “variation-aware qubit allocation algorithm” (VQA) for

determining layouts. Assuming a circuit requiring k physical qubits, VQM begins by

finding the Aggregate Node Strength (ANS) for all sub-graphs of size k. Let G be

the coupling graph of the QC, wij represent the reliability of a CX gate applied on

the edge (qi, qj), and let di =
∑

k:(qi,qk)∈G

wij be the sum of the reliability of all edges

coincident with qubit qi, then ANS =
∑
i∈k

di. Once a sub-graph with the greatest ANS

is identified, virtual qubits are ordered by the number of CX gates they are involved in

throughout program execution, and then the algorithm maps the most active qubits

37

to the most reliable sub-graph. These methods of VQA and VQM prioritize finding

optimal allocations for each layer (i.e. solving the connectivity problem), and then

find the best paths to permute between layouts given the chosen allocations; that

is, although the transpiler operation is variation-aware, allocation is not movement-

aware, unlike, e.g., Zulehner’s method. Additionally, Tannu and Qureshi do not take

into account any other factors affecting SWAP count, like out-degree of involved

qubits.

Murali et al. construct an allocation heuristic that is substantially similar to VQA,

except that it begins with a sub-graph with k = 1, that is allocation begins with a

single qubit with the highest ANS, and each subsequent qubit is either mapped to a

qubit that shares an edge with a previously mapped qubit or, if none are available,

to the next-highest ANS qubit [33]. Pathing is incidental and substantially resembles

previous attempts at finding shortest paths by using an A* search heuristic.

2.6 Summary

This chapter begins with a description of the mathematical and computational

models defining quantum computation in Section 2.2, defining and demonstrating

the construction of Hilbert spaces and associated matrix transforms that can be im-

plemented as quantum gates to perform qubit operations. Then Section 2.3 presents

information about the specific implementation of quantum services provided by the

IBM QX environment and Qiskit quantum programming library. The IBM QX Tran-

spiler and its procedures are described in Section 2.4, showing how passes are defined

and used to transform quantum circuits and enable them to execute on quantum

hardware. Finally, the QLP is defined and previous work on finding effective and

efficient methods to map virtual qubits to physical topologies is covered, including

the limitations of existing solutions, in Section 2.5.

38

III. Methodology

3.1 Overview

This chapter defines and describes the methodology being used to analyze the

research questions proposed in Chapter I. After a brief overview of the approach,

the motivation for test bed development is introduced in Section 3.3. Subsequently, a

discussion of relevant software design principles and requirements analysis is provided

in Section 3.3.1 and Section 3.3.2, respectively. Section 3.4 then proposes a heuris-

tic that builds on research identifying important characteristics of Quantum Layout

Problem (QLP) solvers and defines its various components. Finally, the experimen-

tal configurations and benchmarks are proposed and described in Section 3.5. The

results of both the software engineering and Quantum Layout Solver (QLS) analyses

are provided in Chapter IV.

3.2 Approach

There are three primary goals to this effort. First, to identify the design principles

and requirements for an effective and efficient testbed for QLP solvers. Second,

to identify appropriate tradeoffs within and among the functional requirements and

design principles and to implement this determination into the development process

to create such a testbed. Finally, the third goal is to develop a proposed heuristic

that overcomes weaknesses in existing techniques for solving instances of the QLP.

3.3 Test Bed Design Principles and Goals

Because research into QLP methods is in its relative infancy, there are significant

and fundamental issues with early approaches. Researchers do not yet have stan-

dardized test sets, transpilation models, or metrics of success, and there is little to

39

no literature justifying even simple decisions made during experiments. It is clear

that there does not yet exist a body of knowledge informing particular experiment

methodologies. Instead, early efforts are scattered, independent forays into a space

still mostly unexplored. As such, there is not only an opportunity, but a demand

for foundational tools to transform existing, highly technical and specialized pro-

cesses and codebases into robust toolchains that provide simple, functional interfaces

to regulate and structure research in this nascent field. As quantum computers be-

come more accessible—an explicit goal of the IBM QX project—demand for physicist

and mathematician involvement will decrease and demand for computational and nu-

meric expertise will grow. The paradigm shifts from one dominated by the concept of

quantum computers as objects of study to one dominated by the concept of quantum

computers as tools. Thus, long-term benefit can be generated by capitalizing on this

shift and providing methods that researchers emphasizing use of Quantum Comput-

ers (QCs) can use while avoiding engaging with the complicated code and methods

developed by and used by researchers emphasizing development of QCs.

3.3.1 Design Principles

Although there are many factors that distinguish computational science software

from commercial software, the principles of software engineering are still broadly

applicable. Software design must take into account: first, that the functional perfor-

mance desired is achieved; second, that training or specialized skill requirements are

minimized; third, that the developed system achieves required reliability; and finally,

that the developed system promotes standardization [19].

Functional Performance: Of obvious and primary importance is that software

should be designed to achieve its purpose. Regardless of what other design principles

it adheres to, software that does not function is not useful. Functional performance

40

should be validated and verified against requirements generated by system stakehold-

ers; however, this practice must also be understood in context. Scientific software is

by its nature distinct in context because verification is not always possible [11]. Or-

acles or other truth-value generators may not exist or be feasible, and inappropriate

system behavior can be due to design errors or algorithmic or computational errors.

These causes may not be easy to disentangle and even if they are, algorithmic or com-

putational correctness may require significant effort to implement—as the property

of research dictates that proper methods are not always known ahead of time. The

requirements analysis for the QLP test bed is the focus for Section 3.3.2.

Skill Requirement Minimization: Understanding and implementing this prin-

ciple is closely tied to an understanding of software lifecycle expectations, extensibil-

ity, abstraction, and maintainability concerns. First, the developer must anticipate

the lifecycle of the application, because this changes the expected return on train-

ing and subject matter expertise development. A system intended to be used over

long time periods and to have regular maintenance and patch cycles yields increasing

benefits to trained personnel since training is primarily a one-time cost event.

Conversely, six months of training and familiarity for an application with a year-

long lifetime is wasteful and representative of poor design. However, highly extensible

software necessarily makes use of abstraction and increased, underlying complexity

to provide the necessary flexibility for easy extension—e.g. by providing interfaces,

metaclasses, models and schemas, or abstract base classes that are then given concrete

implementations. All of these concerns are then modified by the scientific context of

this research effort, which affects both the kinds of specialized skill sets available to

likely users and maintainers as well as obviating commercial cost-benefit analyses and

making lifecycle determinations difficult at best.

Reliability: Software reliability, the assurance that functions behave as expected,

41

that displayed data is accurately representative of database contents, that the sys-

tem is available for use as required, and that identical operations on identical states

return identical results [42], is of heightened importance in a scientific computing con-

text. Because, as mentioned, known-good outputs are not always predictable prior

to program execution, reliable program interaction is absolutely critical to ensuring

the integrity of generated scientific data. Hidden or obscure errors within experimen-

tal algorithms or procedures are potentially undetectable and outside of the scope

of system design, but insofar as it is feasible, scientific software should both provide

reliable behaviors and increased visibility into operations to enable rapid evaluation

of data reliability.

Standardization: Finally, the standardization design principle is best thought

of, for the purpose of this research, as concerning two distinct development strategies.

First, let external standardization be defined as enforcing uniformity of interfaces or li-

braries, using naming conventions, documentation conventions, and style conventions

that adhere to best practices or industry standards. This thread of standardization

makes it easier to maintain software and find developers for it by allowing people

to leverage existing knowledge and skillsets. It also allows other developers to more

easily create systems that integrate the application or communicate with it and is

broadly speaking the primary concern of standardization as it is commonly used for

software development.

Comparatively, let internal standardization be enforced uniformity of application

content. To some extent, this alternative mode of standardization overlaps with ex-

ternal standardization concerns—for example, in ensuring messages generated in an

application follow a specific format that would both enforce content standards and

also assist with interoperability with external systems. However, internal standardiza-

tion of content is uniquely important to scientific computing for two reasons: first, in

42

ensuring that experimental setups can be reproduced reliably. If a scientific applica-

tion enforces uniformity for experimental configuration parameters, then it improves

reproducibility and also makes it easier to rapidly repeat and iterate on experimental

design parameters. Second, internal standardization is also important to ensuring

that results generated by experiments are comparable to one another. This form of

standardization is an important consideration for scientific design in that it promotes

rapid development of scientific knowledge by allowing cross-comparison and easy data

sharing. It also relates to reliability, in that standardized information gathering makes

the occurrence of anomalous results less likely and easier to detect.

3.3.2 Requirements Analysis

Requirements analysis for the QLP testbed is a functional design-driven process.

The aforementioned design principles should guide development efforts, but only sec-

ondarily to the functional parameters that fill the capability gaps identified in Sec-

tion 3.3. In particular, there are clearly three functional areas whose features ought

to drive the development of the testbed: experimental configuration, circuit modifi-

cation, and experimental results.

A functional testbed application for IBM QX quantum circuit experiments must

first provide easy access to a variety of experimental configurations. Of foremost

interest is, naturally, a method of uniformly creating and executing circuits. As

currently implemented, circuit creation is not extremely difficult, but it is clumsy.

Circuits must be created in sequential order, with no trivial methods provided for gate

insertion. Additionally, the stochastic nature of some native Qiskit operations means

that even identically created circuits may be transformed into distinct configurations

at execution time (see Section 3.5.2 for more information). Sometimes this behavior

is desirable, but frequently it is not, and there is again no accessible functionality to

43

control this variation solely with native Qiskit functions.

Second, presumably a researcher seeking to perform experiments on IBM QX

architecture will desire to actually effect some change on the system—else there is no

experiment occurring, merely standard execution. As such, any testbed system must

provide a method for modifying system internals in order to test such modifications.

This feature will likely be antagonistic to the design principle of training minimization,

as by their nature experimental modifications occupy an immeasurably large space.

Simple modification systems would be easier to use, but permit fewer modification

options; conversely, complex modification systems permit much larger families of

experiments at the cost of more user complexity. In line with most existing scientific

Python libraries, like scipy, NetworkX, numpy, and matplotlib, this requirement is

best defined in terms of maximizing flexibility at the cost of end user accessibility.

Given the infeasability of anticipating even a small number of potential proposed

experiments, it is better for the testbed to expose more functionality and thus to

enable greater experimental variation.

Finally, empirical research depends ultimately on generating and analyzing data.

A key function point of a testbed system is the ability to reliably gather and pro-

cess important data. Observationally, it appears that many research efforts, especially

those performed by individuals, have scattered and various data gathering methodolo-

gies, including unstructured text files, inconsistent data fields, and poor data integrity.

Ideally, a testbed would automate statistics collection to the maximum reasonable ex-

tent. By doing so, risks of misattributing data to test cases or configurations that did

not generate it, misplacing data, failing to gather key information in a timely man-

ner, or collecting similar data in dissimilar ways can be minimized. In particular, the

testbed data collection method should emphasize reliability, traceability, and repro-

ducibility. Sufficient data to allow experimentalists to know its source and the state

44

of external systems that were used and to recreate it, and the collection methodology

should ensure that information cannot be silently changed or corrupted. As such,

at minimum the proposed testbed application should store time and date informa-

tion and execution and configuration information, so that even if some key data were

missed, that data can be generated de novo from existing records.

3.4 Algorithm Overview

Characteristic of attempts made so far at optimizing SWAP and CX use on quan-

tum circuits for IBM QX hardware is limited or no use of global information and a lack

of communication between distance- and connectivity-emphasizing passes. Methods

that emphasize selecting optimal layouts from the perspective of a given layer are at

risk of identifying locally-optimal solutions that blindly generate a circuit structure

requiring significant inter-layer SWAPs, as in Figure 7. Although qubits q0 and q1

are mapped to the most reliable CX connection in Figure 7b, later layers require that

qubit q0 have a SWAP gate applied to move its state to the center hardware qubit in

order to accommodate entanglement requirements for subsequent layers. Depending

on the specific reliability measures, the extra noise introduced by the SWAP opera-

tion may outweigh the benefit of performing the first CX across a less reliable edge by

adopting a layout similar to Figure 7c immediately. Conversely, methods that use A*

or similar methods across a configuration space whose distance is defined by SWAP

operations find the most efficient path between layers, but may select layouts that

have poorer reliability measurements or internal connectivity.

Additionally, although recent work has demonstrated the value of including dy-

namic reliability information in the mapping process, the tradeoff threshold between

lower-reliability, high-connectivity layouts and high-reliability, low-connectivity lay-

outs is unclear and likely depends on the particular application. Given the choice

45

(a) Qiskit Program
with multiple layers

(b) Optimal selection
for first layer sub-
graph

(c) Locally optimal se-
lection for subsequent
layers sub-graph

Figure 7: A circuit and its two locally optimal sub-graphs for layout in successive
layers. Notice that the locally optimal selection results in many SWAP gates be-
ing required to move state between them. Brighter colors represent more reliable
connections

between two otherwise equivalent layouts, connectivity is frequently still the predom-

inant consideration; let λ0 be a layout characterized by edge reliability p and satisfying

layer `i with n entanglement constraints, and let λ1 be a layout satisfying the same

constraints with reliability q such that p > q, then λ0 has a layer reliability of pn, and

λ1 similarly has a layer reliability qn [18]. If λ1 requires k SWAP operations over edges

with reliability r to setup, and λ0 is coupled such that k + 1 SWAP operations are

required to achieve its configuration, then including the inter-layer SWAP error rates,

the overall reliabilities are R(λ0) = (r)3(k+1)pn and R(λ1) = (r)3kqn. R(λ0) > R(λ1)

if and only if p > q

r
3
n

, or equivalently r
3
n > q

p
.

This is revealing for multiple reasons. First, and most obviously, it is clear that

the factor of n makes selecting higher-reliability layouts increasingly valuable as the

number of operations being performed in the layout increases; in short, the additional

cost of reaching such a configuration can be amortized over all the entanglements—

the longer you spend in a given layout, the more worthwhile it is to spend reliability

to get there. Second, it lays bare the importance of the SWAP edge reliability to

the decision-making involved. Although many algorithms include reliability metrics

46

for both selecting layouts and SWAP paths, none explicitly relate SWAP reliability

costs to layout reliability as a decision-making component. For example, current

noise-aware algorithms, faced with the decision between selecting a layout with an

edge-reliability of 0.9 or taking a single additional SWAP over a high-reliability edge

to instead achieve a layout with an edge reliability of 0.95 will uniformly select the

latter option, but this actually reduces the overall reliability of the layer by ≈ 1.5%

unless there are at least three entanglement operations being applied in the layout.

Understanding and applying these tradeoffs will become increasingly important as

layer-size and travel distances increase, and in the current paradigm with relatively

small qubit and entanglement counts, it’s almost always true that the extra travel

cost associated with achieving high-reliability layouts does not yield a net benefit.

Most important is that these initial considerations lay bare the necessity of circuit

characterization to the layout process. That is, the most effective future heuristics

for solving the QLP will likely need to engage with the properties of the circuits

being mapped. For example, by classifying the circuits into families based on the

distribution of entanglement constraints across layers or by the topology implied by

the constraints (hub-and-spoke, mesh, pairwise, etc.) [49]. A thorough and structured

treatment of characterization categories and methodologies is beyond the scope of this

work, however as demonstrated previously, some understanding of the relationship

between operator reliability and connectivity can be important and is relatively easy

to implement as an initial step towards this paradigm.

3.4.1 Initialization and Pre-processing

In order to improve efficiency, a variety of non-circuit-specific information is first

derived as a pre-processing step. In a full implementation of the QLP solver, these

characteristics can be routinely calculated and made available by the service provider

47

independent of the transpilation and execution of circuits. Since they do not need to

be re-calculated per execution, their cost can be amortized across all circuits executed

over relatively long periods of time.

First, as part of a topological characterization, a reduced coupling map is created

from the original coupling map. Given n nodes representing hardware qubits, mapped

to integers in the interval J0, n− 1K, then each edge present in the hardware can be

defined by a tuple of the two nodes constituting the endpoints of that edge. The

coupling map is then a list of all such edges in the topology. Each edge has an

associated CX reliability measure, and a reduced coupling map can be constructed

by removing from the coupling map all edges with a reliability less than the cube

of the median reliability. This reduction has the effect of constraining the search

space for optimal layouts in an efficient manner, and concordant with this, increasing

the likelihood that the algorithm will find beneficial tradeoffs between layouts with

additional SWAP requirements and layouts with fewer SWAPs but lower reliability

sub-graphs.

Second, once the reduced coupling map is derived, Dijkstra’s algorithm is used to

calculate the shortest-path information between all nodes. This information is stored

in an adjacency matrix where each element Mij contains the length of the shortest

path connecting nodes i and j and a list of nodes on that path, along with the total

reliability of a SWAP along it, calculated as the product of the cubes of the reliability

of each edge on the path.

Third, the exogenous parameters p, γ are selected from the interval [0, 1]. p is used

to select the weight—that is, preference—that each component score contributes to

the final result. γ is a discount factor used by the distance metric to define the

importance of satisfying future circuit constraints in the current layer. Both of these

variables are discussed in more detail in their relevant sections.

48

Using the reduced coupling map, the given circuit, and p, γ, a series of candidate

sub-graphs of the reduced coupling map is produced, each of which is potentially the

target for the initial layout of the circuit. Each sub-graph is measured for suitability

as mapping targets, and then associated with a proposed layout. These layouts are

then respectively measured for their distance from future, suitable mappings—that is,

a heuristic measure of how many SWAPs might eventually be required to create a fully

compliant mapping from the initial layout. Finally, a combined score is calculated

that identifies the initial layout most compatible with the prioritized connectivity and

distance requirements explicated by the experimental variables. The intention is that

this prioritization will reduce total errors over the execution lifetime of the circuit.

An overview of this process is provided by Algorithm 1.

3.4.2 Connectivity Component

The connectivity heuristic provides a metric to measure the value of selecting one

sub-graph over others. In particular, it is clear that the most generally optimal sub-

graph to select to run a circuit requiring n qubits would be a sub-graph isomorphic to

κn where each edge and qubit has reliability 1, since such a sub-graph can accommo-

date the largest variety of constraint topologies. Since this is generally not possible,

sub-graphs are ranked according to their number of edges and subsequently to the

product of the reliability of all their edges, which constitutes a heuristic for measuring

overall sub-graph reliability. The heuristic takes as input a number of sub-graphs to

explore and the size of sub-graph to return, and returns a list of candidate sub-graphs.

The optimal solution to finding such a list is trivial but intractable: simply exploring

the graph to find all connected sub-graphs of the appropriate size. Unfortunately,

such an operation is NP-hard [3] and therefore not a suitable technique for even

relatively small problems.

49

Instead, the connectivity heuristic begins by picking likely seed nodes by iden-

tifying the most connected nodes in G′. Each seed node is then identified as an

independent sub-graph and grown. This is done by exploring all neighbors of the sub-

graph that are not currently members, and then selecting the neighbor that shares

the most neighbors with nodes within the sub-graph, breaking ties on the reliabil-

ity of the edges connecting the candidate to its neighbors. This process continues

iteratively until the sub-graph has size nodes, and then the next seed node is se-

lected to develop a new sub-graph. After each sub-graph has reached the appropriate

size, it is associated with its connectivity measure, the ratio of the number of edges

within the sub-graph to the number of edges in a complete sub-graph of the same

size: Cs = 1
edges(κn)

∑
n edges(n). Finally, when all seed nodes have been consumed

and the list of sub-graphs has size stop, this list is returned. This process is more

rigorously defined in algorithm 2.

3.4.3 Distance Component

In order to improve the ability of the IBM transpiler to find more globally effective

solutions, the final layout choice must be made based on more than a consideration

of sub-graph quality, unlike current methods [33]. Towards that end, the list of sub-

graphs and their connectivity measures returned by the connectivity component of

the QLS is then passed to a distance measurement routine which additionally accepts

the quantum circuit to be executed and a discount factor gamma. First, making use

of the standard layering pass in the IBM transpiler, the provided circuit is separated

into a sequence of layers, L = {`0, . . . , `n}. Each layer contains a set of gates that can

be applied simultaneously; equivalently, each layer contains as many gates as possible

where each gate has no data dependency on the execution of any other gate in the

layer. Each `i ∈ L is then fed into a function that derives a constraint graph ci. This

50

Algorithm 1 Find Best Connected Sub-Graph

1. Parameters: size – size of desired sub-graph
G – Coupling map

2. Create a reduced coupling map, G′ by removing all edges whose reliabilities are
less than the cube of the median reliability.

3. Using Dijkstra’s algorithm on G′, create an adjacency matrix M , each of whose
elements mij contains a tuple (distance, reliability, path). Where distance is
defined as the number of SWAPs required to move state from qubit i to qubit
j; reliability is the product of the reliabilities of all edges on the most reliable
path between i and j; and path is a dictionary containing the nodes connecting
i and j.

4. Let wi be the weight of qubit i, where the weight is defined as the number of
edges incident to node i in G. Create a sorted, descending list, W whose sort
key is this weight function.

5. (a), if there exists at least one qubit i such that wi > size, then select the most
reliable sub-graph, g centered on a qubit whose weight is maximal.

6. (b) if there exists no such qubit, then select the most connected sub-graph of
size size using the procedure defined in algorithm 2

7. The output of algorithm 2 is then fed into algorithm 3, this returns a list of
explored sub-graphs, each associated with their connectivity score, Cs – that is,
a measure of how complete the sub-graph is – and their distance score, Ds – a
measure of how near the initial sub-graph is to fully satisfying the constraint
requirements of all layers.

8. Each sub-graph s is then given a final ranking Rs = pCs + (1 − p)Ds, with p
provided as an experimental input to weight the scores.

9. The sub-graph with the highest R is then fed to the transpiler as the initial
layout.

10. Finally, all subsequent layouts for each circuit layer are generated by the tran-
spiler according to the default, IBM shortest path SWAP algorithm.

51

Algorithm 2 Connected Sub-graphs

Parameters: stop – number of sub-graphs to explore
size – The desired number of nodes each returned sub-graph should

have

1: subgraphs = {} . an empty dictionary
2: while i← 0;i+ +;i < stop do
3: subgraph← []
4: while len(subgraph) < size do
5: max weight node← W [i]
6: all neighbors← max weight node.neighbors()
7: max child weight← 0
8: candidate← None
9: for node in all neighbors do

10: if len(all neighbors ∩ node.neighbors() > max child weight) then
11: max child weight← len (all neighbors ∩ node.neighbors())
12: candidate← node
13: end if
14: end for
15: subgraph.append(candidate)
16: all neighbors.append(candidate.neighbors)
17: end while
18: connectivity ← len(subgraph.edges())

κsize
. ratio of edges to complete graph of size

nodes
19: subgraphs[subgraph]← (connectivity, inf) . inf represents the unknown

distance factor
20: end while

52

graph contains a node for each qubit involved in an entanglement operation in that

layer, and an edge connects two nodes when they have a control-target relationship

in that layer. This results in a sequence of constraint graphs C = c0, . . . , cn.

A nested loop is then executed wherein each sub-graph in the subgraphs list is

given a layout. This is accomplished by leveraging existing transpiler routines that

make use of the greedyE* layout pass provided by Murali et.al. [33] and included

in the Qiskit library. This layout pass takes the provided sub-graph, and maps the

virtual qubits of the circuit to them by selecting the virtual qubit with the most

entanglement constraints across circuit execution and mapping it to the most reliable

qubit in the sub-graph. For each subsequent virtual qubit, if an entanglement partner

has already been mapped then the virtual qubit is mapped to the most reliable shared

edge; if the virtual qubit has no entanglement partners already mapped, then it is

mapped to the most reliable, free qubit. In this manner, each sub-graph is associated

with a single layout that maps each virtual qubit in the circuit to one node in the

sub-graph.

Subsequently, each layout is assessed against each constraint in C, returning the

number of constraints met by the provided layout, per layer: let M() represent a

function that counts the number of met constraints, then m = M (subgraph, ci).

This results in each candidate sub-graph being associated with a series of mi values,

corresponding with the number of constraints met per layer by that sub-graph. This

set of mi values is finally converted into a single score by normalizing against the total

number of constraints the circuit requires be met in each layer, i.e. the number of CX

gates present, then discounting by the factor γi, and finally summing the resulting

series and associating each sub-graph with this distance score. Algorithm 3 represents

this process in pseudocode.

53

Algorithm 3 Sub-graph Coupling Distance

Parameters: subgraphs – A list of sub-graphs of G′

circuit – Circuit to be executed on a sub-graph.
gamma – Discount factor to reduce the weight of the subsequent layer

constraints.

1: layers← layer(circuit) . use standard circuit layering
2: constraints← []
3: distance score← []
4: for layer in layers do
5: constraints.append (layer.get cx constraints()) . Stores CX constraints per

layer
6: end for
7: for subgraph in subgraphs do
8: for constraint in constraints do
9: layer score← met constraints(subgraph, constraint)

10: distance score← distance score+ gammai ∗ layer score
11: end for
12: subgraphs[subgraph][1]← distance score . Replaces inf
13: end for

3.5 Benchmarks and Evaluation

The evaluation of the Quantum Layout Problem Testbed (QLP-TB) design natu-

rally assesses the performance of the library against the defined requirements. Thus,

the verification procedure must assess the QLP-TB’s capability to enable rapid cre-

ation, modification, and evaluation of quantum circuit experiments in an efficient and

effective manner.

A subset of the available test circuits provided within the library have been se-

lected to exhibit a range of behavior. Then a series of transpiler configurations are

constructed using distinct algorithms to determine circuit layouts and SWAP paths.

Each of the circuit and configuration combinations is then measured against the

performance of the IBM baseline transpiler configuration in terms of the euclidean

distance separating each resulting measurements distribution from an ideal variant,

in terms of additional SWAP gates induced by the transpiler configuration, and in

54

terms of the time taken by each transpiler configuration to transpile each circuit.

Verification is confirmed provided the QLP-TB demonstrates the ability to meet the

defined functional requirements, and that the experimental test script used for execu-

tion demonstrates efficiency gains relative to a similar experiment performed absent

the QLP-TB capabilities.

The circuits and transpiler modifications relevant to the QLP-TB verification pro-

cedure are detailed below, and a complete listing of circuits and their descriptions

provided by the QLP-TB can be found in Appendix A.

3.5.1 Evaluation Circuits

From a high-level view, the ultimate goal of improving layout selection is to

broaden the scope of successful quantum circuit execution. That is, to enable circuits

requiring more qubits or greater number of gates to generate useful results. Towards

this end, benchmarks circuits have been selected with a diversity of behaviors in

mind to ensure tests characterize a variety of constraint topologies that might natu-

rally arise as sub-circuits. As circuits grow larger, the probability they succeed falls

precipitously, and SWAP-induced error is only one cause. Additionally, circuits may

experience time-based decoherence [34], environmentally induced decoherence [39],

accrue errors from imprecise gate calibration [33], and generally experience as of yet

uncharacterized errors [18]. As such, the benchmark circuits have been kept relatively

small in order to minimize the effects of unrelated errors on the results [50]. Addi-

tionally, the test set is closely related to test sets used by previous, related efforts in

that small algorithms with known truth values are used—like Grover’s algorithm and

the Bernstein-Vazirani algorithm—and a few circuit primitives that are likely to be

useful components of larger, complex algorithms are also included [33, 50, 53, 54]. A

brief description of the test set is provided, summarized by Table 2.

55

Two Bell: The two-bell circuit creates random pairs of bell states across the

width of the circuit, repeatedly until the final circuit is square. In particular, it

operates only on sub-graphs with an even size and randomly permutes the available

qubits. Given this permutation, a Bell state is formed from each consecutive pair of

qubits in the permutation. Then the process repeats, with a new permutation, until

the circuit depth is equal to the number of Bell state pairs formed in each layer.

Grover: A full explanation of Grover’s algorithm can be found in [14], but in sum-

mary it is a circuit designed to perform an efficient search on an unsorted list. Beyond

the fact that it is a practical quantum circuit where improved error performance can

have real world consequence, it is included as a test circuit primarily because of the

entanglement constraints it requires. Grover’s algorithm requires multi-controlled en-

tanglement gates—that is, entanglements of more than 2 qubits simultaneously. Since

the IBM QX architecture does not directly implement entanglements on > 2 qubits,

the derived circuits are extremely SWAP intensive. Since the SWAP counts are not

particularly tied to topological or layering concerns, it is unlikely the proposed QLS

will show significant improvement over existing methods. However, doing so would

be particularly valuable.

Uniform Random: Creates a circuit whose gates are uniformly chosen from

H, X, Y, Z, S, T, CX and whose CX endpoints are chosen uniformly from available

qubits. The loop is iterated until the circuit is square.

Bernstein-Vazirani: This test circuit implements the Bernstein-Vazirani algo-

rithm [2]. An integer in the interval 0, size is selected as a truth value for the circuit.

This truth value is encoded as binary representation into an oracle sub-circuit using

CX gates. Then, the remainder of the circuit creates a uniform superposition to be

fed into the oracle and the output is read into another uniform superposition. This

56

algorithm is designed to permit recovery of the encoded truth value in constant time,

while classical equivalents require size queries. The use of CX gates to encode the

oracle and the fact that the truth value is well-defined and easily measurable make

this a valuable contribution to the test set.

Quantum Fourier Transform: Finally, the Quantum Fourier Transform (QFT)

is implemented as another practical circuit often implemented as a sub-circuit to

algorithms [43]. The QFT is generally used to recover phase information from a given

quantum state provided as input, and more generally serves to provide a structured

basis transform: Let |x〉 =
∑N−1

i=0 xi |i〉 be the original basis and |y〉 =
∑N−1

i=0 yi |i〉 be

the desired output basis of the transform. Then under a QFT each coefficient yk for

k ∈ J0, N−1K is defined as yk = 1√
N

∑N−1
i=0 xiω

ki
N , where ωN is the Nth root of unity [6].

This can also be thought of as the quantum analogue to the classical inverse Fourier

transform. Additionally, since the key operator used by the QFT is a controlled phase

shift—implemented by IBM using a CX gate—then there is significant opportunity

for improving implementation with the QLS.

Figure 8: Grover’s Algorithm implementation in the test set, with a search space size
of 8 and a truth value of 3—separated from Tables 2 and 3 due to length

3.5.2 Evaluation Transpiler Configurations

Four distinct transpiler configurations were chosen for the verification procedure.

Two of these configurations represent the IBM Qiskit baseline transpiler configura-

tions: one that provides the default pass set created if users do not specify otherwise,

57

Circuit Name Function Name Example Implementation

Two Bell two bell

Uniform Random uniform random

Bernstein-Vazirani bv

QFT qft
Grover’s grover See fig. 8

Table 2: Summary of test set circuits for evaluating QLS performance

and one that represents the Qiskit-defined optimal pass set—where optimal is un-

derstood to mean most likely to generate efficient circuits, but not necessarily the

most time-efficient. The other two configurations are modifications to the baseline

pass set and are included both to exploit QLP-TB features for verification purposes

and also because they reproduce efforts by previous researchers to optimize IBM QX

transpilation operations.

1. IBM Baseline Configuration: The IBM baseline configuration is automati-

cally used unless the user explicitly requests a distinct PassMaanger configura-

tion. The complete list of passes implemented in this configuration can be found

below in Figure 9, though an explanation of most is beyond the scope of this

effort. Of particular note, however, are the TrivialLayout and Stochastic-

Swap passes, as they provide connectivity and distance metrics, respectively,

58

as identified in Section 2.5.

The TrivialLayout pass is intended to identify the correct hardware sub-

graph to map a given circuit’s virtual qubits onto. In the case of TrivialLayout,

the procedure is simple: each virtual qubit is mapped to the hardware qubit

with the same index. For example, given a quantum circuit defined on qubits

q0, q1, . . . , qn−1, the Virtual-to-Physical (V2P) mapping is defined by TrivialLay-

out as qo : 0, q1 : 1, . . . , qn−1 : n− 1. Clearly, this process although quite efficient

does not take into account connectivity, CX weight, CX constraints, reliability,

or other desirable sub-graph properties.

The StochasticSwap pass is intended to identify the best SWAP paths,

but does so using random selection. After generating a random seed and a pre-

processing step that collects information about edges in the backend coupling

map, computes a distance matrix, and gathers the gates of the circuits, the

StochasticSwap pass iterates through edges and randomly permutes layouts

on those edges, calculates if the resulting layout results in a lower cost than

the best candidate layout—where the cost is defined by the number of SWAP

gates required to reach the layout from the current layout—and if so, sets it and

begins iteration anew. If no successful SWAP path is found after a set number

of iterations, the procedure fails.

2. Lookahead SWAP: This transpiler configuration is based on the IBM baseline

but exchanges the StochasticSwap pass for a LookaheadSwap pass. This

configuration was chosen because it implements the proposal of the IBM Qiskit

Developer Challenge winner for transpiler optimization routines [22]. Instead

of stochastically searching for compliant layouts, the pass instead performs a

narrowed breadth-first search. Given an existing mapping and a list of upcoming

CX gate constraints, the pass finds the top four individual SWAP gates which

59

each result in a layout that minimizes the total distance between the qubits

in that mapping and the CX constraints. Any constraint that is met by the

candidate mapping is removed from its list of upcoming CX constraints. This

process is then iterated on four items, with each iteration taking the candidate

mappings and reduced constraint lists from the previous iteration and again

returning the four best, single layouts. Once a total of 256 mappings have been

generated then the SWAP path resulting in the best final layout is selected.

3. Noise-Adaptive Layout: This transpiler configuration is based on the IBM

baseline, but exchanges the TrivialLayout pass for the NoiseAdaptiveLay-

out pass. Whereas the TrivialLayout pass simply maps matching indices,

the NoiseAdaptiveLayout pass operates by finding the densest sub-graph of

appropriate size to layout the given circuit on. In particular, the procedure per-

forms a breadth-first search beginning at every node in the backend topology

and for a circuit of size n, inspects the first n nodes in each search graph. Each

node is scored by how many other nodes in the first n of each search graph are

also in the first n nodes of the search graph starting with that node. Once the

connected collection of n nodes with the highest scores are discovered, a V2P

mapping is created by sorting each hardware node by its total edges and then

by edge reliability, and each virtual qubit is sorted by the number of CX gates

it is involved in. Finally, the mapping is defined on matching indices in the two

sorted lists.

This transpiler configuration was chosen both because it differs from the

baseline in exactly the connectivity algorithm used and because it is the imple-

mentation proposed by Murali et al. [33]

4. IBM Optimal Configuration: similar to the IBM Baseline configuration, this

transpiler configuration is a default provided natively in Qiskit. IBM defines

60

four “optimization levels” that aggregate passes into standard PassManagers,

and whereas the IBM Baseline is the default level one, the IBM optimal con-

figuration uses optimization level three—the highest available. Although this

configuration is not necessarily reflective of the most cutting edge techniques

proposed, it is representative of the pass set a researcher could naturally and

easily access as a generic “best effort” configuration that does not require sig-

nificant tailoring. Although this configuration uses the same SWAP and layout

passes as the Noise Adaptive Layout, it includes other gate optimizations that

are intended to provide an efficient and effective PassManager. The specific

passes implemented in this configuration are located below in Figure 9.

IBM Baseline Passes
(Optimization Level 1)

SetLayout
TrivialLayout
CheckMap
FullAncillaAllocation
EnlargeWithAncilla
ApplyLayout
Unroller
CheckMap
BarrierBeforeFinalMeasurements
Unroll3qOrMore
StochasticSwap
Decompose
RemoveResetInZeroState
Depth
FixedPoint
Optimize1qGates
CXCancellation

IBM Optimal Passes
(Optimization Level 3)

Unroller
SetLayout
NoiseAdaptiveLayout
FullAncillaAllocation
EnlargeWithAncilla
ApplyLayout
CheckMap
BarrierBeforeFinalMeasurements
Unroll3qOrMore
StochasticSwap
Decompose
Depth
FixedPoint
RemoveResetInZeroState
Collect2qBlocks
ConsolidateBlocks
Unroller
Optimize1qGates
CommutativeCancellation
OptimizeSwapBeforeMeasure
RemoveDiagonalGatesBeforeMeasure

Figure 9: Full pass sets for the IBM pre-populated PassManager configurations

61

3.6 Summary

After brief coverage of the general approach, this chapter defined the design prin-

ciples and goals of an effective QLP-TB development project, based on human en-

gineering principles defined in [19], and presented in Section 3.3.1. A functional re-

quirements analysis was presented in Section 3.3.2 that identified three key function

points necessary for the QLP-TB. Next, an algorithmic overview was presented identi-

fying the limitations and inefficiencies of existing approaches and proposing solutions

to them, in Section 3.4. Finally, the set of test circuits and transpiler configura-

tions constituting the verification testing procedure for the QLP-TB are presented in

Section 3.5.

62

IV. Results and Analysis

4.1 Overview

The research results and data analysis are presented in this chapter. The results

are separated into four components: the first research question is answered in Sec-

tion 4.2.1 with an analyses of the features and qualities of application development

and scientific computing. The second research question is approached in Section 4.2.2,

where a concrete testbed implementation is presented and implementation features

are traced directly to the requirements analysis presented in section 3.3.2. The results

of full-scale verification test are presented and analyzed in Section 4.2.3. Finally, Sec-

tion 4.3 analyzes the last research question and a brief treatment is given in pursuit

of avenues for future research.

4.2 Quantum Layout Problem Testbed (QLP-TB) Design Implementa-

tion

Based on the requirements identified in Section 3.3.2: experiment configura-

tion, experiment modification, and data controls—the final QLP-TB implementation

sought to balance basic design principles with the unique execution environment of

scientific computing.

The final environment is packaged as a Python library, which provides portability

at the cost of usability. Although most applications are self-contained and have

accessible user interfaces, the demands of scientific computing for significant access

to and modification of system details makes such an effort unreliable at best. Similar

tools, like Matlab, Mathematica, and scipy are similarly situated [8]. In all cases, the

tools are designed and optimized for environments where users have and will seek to

use scripting experience to formulate and resolve research problems.

63

The QLP-TB package consists of a variety of Python modules, each of which pro-

vide a set of functionality related to the identified requirements. In summary, the

main run_experiment module functions as a driver class, where users can script their

experiment and call or coordinate all library operations. All functionality is alterna-

tively available when accessed from an external module importing the QLP-TB. From

this central scripting location, users have access to circuits – which provides access

to circuit creation and initial experimental setup, transpilertools – which exposes

transpiler functionality from Qiskit, and also provides helper and wrapper functions

to easy configuration changes, dbconfig – which provides functions to regulate and

structure read and write operations from a variety of database tables storing exper-

imental data, and statblock – which allows easy modification of statistics gathered

during experiments.

By using the provided functionality, an end user can quickly script a complete ex-

periment from initialization and test-set definition, to transpiler configuration modi-

fication, and finally data storage and retrieval. More details of each component are

provided below at Section 4.2.2, following an analysis of the relevant design principles

and tradeoffs chosen to accommodate them. The code snippets referenced here can

be found at Appendix C.

4.2.1 Design Principle Analysis and Results

1. Skill Requirement Minimization: The most relevant feature of develop-

ment in this research environment is that IBM Qiskit is in alpha phase. Alpha

development is characterized by rapid feature and interface changes, and incon-

sistent behavior across patch cycles. As such, planning for an extended lifecycle

would incur the associated costs of more robust development but be unlikely

to return reasonable dividends for the invested effort. Indeed, the native Qiskit

64

transpiler interface underwent major changes during the QLP-TB development

process. Bolstering this conclusion is the fact that scientific computing, as op-

posed to commercial applications, often does not provide maintenance cycles or

the opportunity to hire or use dedicated developers.

Both of these conclusions drive the determination that the QLP-TB is best

implemented concretely and with minimal abstraction, since the flexibility pro-

vided by extensive abstraction would likely still be insufficient to survive major

Qiskit codebase changes and because the skillset to make use of such abstrac-

tion cannot be relied upon to be available. Fortuitously, these conclusions also

harmonize with the design goal of minimizing required skills, as the simplified

codebase and shorter lifecycle promote simple use cases. Additionally, the QLP-

TB is written to use an industry standard documentation format, extensive use

is made of the Python Annotations module, and Pep8 style recommendations

are enforced. Cumulatively, these factors make the software significantly more

accessible to developers and permit deep introspection by Pylint into program

behavior. These features also make function parameter information, docstrings,

and return types accessible to most IDE interfaces, speeding the acquisition of

application information by users. It is important to note, however, that the

skillset required to design and evaluate experiments is a distinct, academic con-

cern and unrelated to the design goal of minimizing the skills required to use

the software.

2. Reliability: Reliability is perhaps the most critical design principle for QLP-

TB implementation, but also the simplest to enforce with existing best prac-

tices. First, reliable program interaction is best guaranteed in this context with

strong use of Python error catching and raising constructs. Such use provides

clear error traceability and ensures errors cannot propagate beyond their point

65

of initiation and especially cannot do so silently. Second, data reliability is

enforced with a well-developed logging interface that provides constant visibil-

ity into program execution throughout its lifetime and additionally promotes

traceability by ensuring every module is provided its own, unique entry point

to the common logging system. In service of these features, the library also

implements standard verbosity flags, enabling users to raise the logging and re-

porting level at each execution, increasing visibility when required. Finally, the

data storage mechanisms use database best practices, controlling access with

context managers that regulate transactions and permit automatic rollback in

the event of a data integrity failure.

3. Standardization: External standardization was determined to be of minimal

value to the QLP-TB. Very few system even enable quantum computation,

and quantum computing systems from competing companies do not yet imple-

ment any universal interface or enable cross-communication. The components

of external standardization relating to code style and documentation conven-

tions were implemented, assisting any experienced developer with extending

functionality or interfacing with the QLP-TB, but public-facing APIs were not

considered valuable for the current effort. Internal standardization was, con-

versely, determined to be another critical design component. Towards this end,

it was concluded that a common interface must be provided for circuit creation.

This allows the user to provide a relatively small number of configuration op-

tions to generate a wide variety of test circuits, which promotes a uniformity of

test design and allows results to be compared more easily.

Additionally, circuits are saved both prior to and following transpilation op-

erations, which permits a researcher to rigorously identify and re-use stochastically-

constructed transpiled circuits. Additionally, transpilation configuration ob-

66

jects are saved alongside their circuits, permitting researchers to recreate the

state of the IBM Qiskit backend being targeted by the transpiler at arbitrary

points in the future. Finally, although experiments may require gathering spe-

cific and distinct data to accomplish a specific mission, a broad selection of

circuit data—including a serialization of the objects themselves—is stored in

non-volatile memory and updated after every circuit operation, minimizing the

need of users to design bespoke data collection methods.

4.2.2 QLP-TB Requirements Results

The requirements analysis provided in Section 3.3.2 resulted in the development

of the QLP-TB, and conclusions about the best tradeoffs between standard design

principles, functional requirements, the nature of quantum development efforts and

Qiskit, and the limitations and peculiarities of development in a scientific computing

context are represented by and instantiated within the codebase.

1. Experimental Configuration: Conclusions about the functional implemen-

tation of the experimental configuration requirement are embodied primarily in

the PreMades and TestCircuit classes of the circuits module.

(a) TestCircuit: The TestCircuit class is designed to wrap circuit creation

functionality to prevent unnecessary exposure of circuit creation function-

ality and assist with rapid experimental configuration. The TestCircuit

constructor (referenced in Python as the __init__() method) shown in

Listing C.1 demonstrates the core results of this goal. TestCircuit objects

automatically instantiate uniform statistics gathering via a statblock mem-

ber, associate themselves with a Premades quantum circuit object, and are

capable of holding additional information about the particular execution

environment the TestCircuit is intended for. Since TestCircuit instantia-

67

tion does not require a Premades quantum circuit object, then the user can

provide configuration information and rapidly generate distinct TestCircuit

objects without binding them to a particular algorithm or circuit.

The TestCircuit class also provides simple wrapper methods to run

transpilation tests and gather statistics on SWAP insertions performed

by the transpiler and automatic transpile timing measurements in List-

ing C.2 and similarly provide actual execution testing in Listing C.3 which

additionally uses the provided TestCircuit fields to fully transpile and ex-

ecute families of TestCircuit objects. This implementation, alongside the

Premades class, fully adheres to the experimental configuration requirement

by providing quick configuration and simple utility functions which pre-

vent end user exposure to system internals while enabling experiments to

be intelligently set up and executed.

(b) Premades: In tandem with the TestCircuit construct, Premades are sub-

types of the native Qiskit QuantumCircuit class, intended to provide easy ac-

cess to test sets for experimentation. The constructor shown in Listing C.4

demonstrates that Premades objects are relatively simple QuantumCircuit ob-

jects with the addition of size, truth value, and measurement fields. These

fields provide a simple, universal interface for circuit creation. Although

not all circuits have a known truth value, those that do encode some par-

ticular basis state as the correct result of execution all can automatically

do so with the given truth value. This means a user can provide 3 simple

parameters and generate a variety of distinct circuits for testing purposes.

The class is also easily extensible, as method interfaces are designed

to accept native QuantumCircuits, which permits end users to design and

use any custom circuit as part of the testing process or they can quickly

68

add a new Premades circuit by simply defining it and modifying a single

circuit library. More details of the particular test circuit code can be found

at Appendix C and motivation for test circuit selection can be found at

Section 3.5.

2. Circuit Modification: The circuit modification requirement is implemented

throughout the QLP-TB, but is primarily identifiable in the circuits module

previously discussed and in the transpilertools module. Because circuit modifi-

cation possibilities are endless, constrained selection of modification options was

determined to be a poor choice. Instead, the conclusion was that users are best

served by controlled, simplified exposure to system internals that accomplished

two tasks: first, it provided a relatively small number of available modifications

that could be predicted and made substantially easier than through the native

Qiskit interface; second, it also allowed researchers who needed it the option of

performing arbitrary, but complex, modifications and then passing the results

of those modifications into the existing QLP-TB system.

(a) circuits: The task of permitting arbitrary modification is enabled by de-

velopment decisions in both classes of the circuits module. Testing in-

terfaces make extensive use of default parameters, so that users desiring

simple functionality can easily and smoothly access it, but researchers are

still able to independently generate a variety of modifications but use them

within the QLP-TB environment. For example, although the ability to

modify transpiler configuration options is provided by the transpilertools

↪→ module, there is no reasonable way to provide easy access methods to

all potential transformations. Instead, by exposing the transpiler config-

uration field of the TestCircuit class, but also automatically populating

this field as necessary, the QLP-TB permits users who do not desire such

69

modification to ignore the feature, but also permits researchers to sepa-

rately generate any transpiler configuration necessary and provide it to the

testbed for further automation.

Similarly, functions in the circuits module automate compiled circuit

generation, but users are free to compile circuits separately—even by use of

independent compilers as in [33]—and then pass the pre-compiled circuits

to the testbed. Users can then set testing parameters to use these compiled

circuits instead of requiring the tools to compile their own copies.

(b) transpilertools: In contrast with the paradigm described in the circuits

module, the transpilertools module of unbound functions is intended to

predict the most commonly sought modifications and provide constrained,

but simple access to them and avoid exposing Qiskit internals. Given the

primary functional purpose of the QLP-TB is to enable transpiler modifica-

tion testing, focusing on simplifying transpiler transforms was the natural

choice.

In particular, functions are provided to easily mate a family of TestCircuit

↪→ objects to individual transpiler configurations (Listing C.5), to quickly

access Qiskit pre-populated PassManager objects (Listing C.6), and to make

simple modifications to existing PassManager objects by automating replace-

ment of layout and swap Pass objects (Listing C.7). Although the set of

available modifications is relatively small, it is well tailored to the primary

purpose of the QLP-TB and in conjunction with the exposed interface

design of the circuits module it provides a diverse set of behaviors to

accommodate user goals regardless of complexity.

3. Experimental Results: The experimental results requirement was the most

conducive to being solved with existing, best practices widely implemented

70

across industry software. Given the breadth of data to be gathered, functional-

ity exists throughout the QLP-TB that assists with meeting this requirement,

however all such functionality stems from the interaction of two primary mod-

ules of the testbed: the statblock module and the dbconfig module. Essentially,

reliable data gathering and processing was determined to depend on two ca-

pabilities that were implemented: first, insight must be provided into the data

actually generated by the testbed, this was the domain of the statblock mod-

ule and class; second, the data gathered should be reliably and automatically

structured and stored, and this capability was provided by the dbconfig module

and class.

(a) statblock: The statblock class, contained in the module of the same name,

provides a consistent data structure that can be instantiated as an object

and then attached to all TestCircuits. By doing so, statistics gathered

throughout testbed execution can be gathered and stored in a consistent

way. In particular, this design decision ensures each statblock is always

in the relevant scope during TestCircuit execution, but also permits easy

extensible modification of statistics gathered. Any new statistic can be

introduced in a single location—the statblock constructor—and then is

automatically available for use throughout the testbed. The existing con-

structor is shown in Listing C.8 and currently is designed to store data of

clear importance for general experimentation (e.g. date and time of test-

ing) and also data values of particular note for Quantum Layout Problem

(QLP) testing in particular (e.g. transpiler-induced SWAP gate count).

Methods and functions throughout the QLP-TB automatically add

data to the statblock as it is generated, ensuring users are not required

to define or remember information to collect on an ad hoc basis. The stat-

71

block also generates a UUID allowing every generated TestCircuit to be

uniquely associated with its statistics. Although the UUID4 generation

procedure is not guaranteed unique, the time-based PRNG functionality

makes collision exceedingly unlikely, severely mitigating the risk of data

misattribution [26].

(b) dbconfig: While the statblock associated with each TestCircuit provides

the capability for every test, function, or method to ensure updated and

consistent data is saved, this data is associated only with the object in-

volved and is not automatically available in a human-readable format. The

dbconfig class, in the module of the same name, provides controlled access

to non-volatile storage and retrieval of objects and their associated statis-

tics. The Circs table stores the unique ID of every object and its associated

serialization, making it possible for any researcher or user to recreate ob-

jects and retrieve all their properties, including transpiler configuration,

compiled and uncompiled circuit variants, and the backend and its prop-

erties associated with the TestCircuit at the time of creation or execution,

making reproduction of experimental results trivial, rapid, and reliable.

In service of this requirement, dbconfig provides insertion, update,

delete, and read operations to its tables. Each method uses context man-

agers, error catching, and a transactional paradigm to ensure data integrity

is maintained at all times. Additionally, the dbconfig class also provides

a method for retrieving stored objects and their associated statistics to

store into a stats table that makes the statblock information available in

a human-readable format and permits easy export of TestCircuit data csv

or similar formats for use in external applications. Finally, the Running

table is used by the driver module run_experiment to track running ex-

72

periments and ensure results are not lost even under application restart

or crash, as automated functionality is provided to retrieve running jobs,

associate them with the original TestCircuits the execution was called on,

and update the statistics generated by IBM QX execution.

4.2.3 Verification Results

QLP-TB functional capabilities were discussed and fully traced back to require-

ments and design principle constraints in Section 4.2.2 and Section 4.2.1, respectively.

Those results confirm that the design and implementation of the QLP-TB conform

to the stated standards. However, the verification procedure is additionally included

to confirm the effectiveness and efficiency of the QLP-TB at performing the practical

task of experimentation. In particular, the verification is intended to assess whether

an experiment in the scope of QLP testing can be easily constructed, modifications

to existing native Qiskit functionality introduced, and results reliably gathered. Ad-

hering to the testing procedure identified in Section 4.2.3, the experiment was defined

in four, simple phases. These phases are described below, and the full experimental

configuration script is available in Appendix B.

1. Phase 1: Initial circuit creation. Leveraging the capabilities of the circuits

module, ≈ 26 lines of code are used to define the common circuit generation in-

terface, create 50 copies each of five distinct circuits exhibiting diverse behavior,

and finally register those circuits with the statistics and database modules.

2. Phase 2: PassManager creation and Modification. In phase two, the exper-

imental modification requirement is verified by requiring four distinct modifi-

cations to native Qiskit transpiler configurations to test both connectivity and

distance algorithms against existing baselines. In ≈ 13 lines of code, making sig-

nificant use of the transpilertools module, a transpiler configuration is created

73

for each of the 1000 eventual executions, that configuration is used to generate

a pre-populated PassManager object for each execution, and four groups of 250

circuits each have a unique modification to their PassManagers applied that

reflect the identified transpiler configuration test cases.

3. Phase 3: Execute Tests. The actual execution phase requires only four lines

of code, primarily due to the availability of automated testing routines in the

TestCircuits class.

4. Phase 4: Data Collection. Finally, data concerning initial circuit construction

parameters and statistics that can be derived prior to actual execution have

been gathered throughout all three preceding phases, but the final results gen-

erated by measurements after hardware execution on quantum systems must be

gathered to complete the process. Because of the automated execution check-

ing routine that stores information about circuits pending execution at the IBM

QX backend and that automatically checks and retrieves completed jobs as they

become available, this phase takes only one line of code, which simply passes

the list of unique TestCircuit IDs to the checking routine.

Including comments and logging calls, 77 total lines of code are required to create

20 distinct variations of circuit type and transpiler configuration pairs and to generate

50 copies of each of them, to modify test parameters, execute tests, and gather the

raw data.

The final results after statistical processing—independent of the QLP-TB—allow

comparison between the effectiveness of each transpiler configuration at three tasks,

measured on five circuits. Each configuration was assessed against SWAP count,

Euclidean distance, and transpiler time.

Since SWAP gates drastically increase a circuit’s probability of failure, connec-

74

tivity and distance algorithms implemented by the various passes in the transpiler

configurations seek to define mappings that minimize the total number of SWAPs that

they must introduce into the provided circuits to successfully execute them. Lower

numbers are better, and in some cases the transpiler configurations were successful

enough at identifying efficiencies that via gate cancellation they reduced the necessary

SWAPs to zero.

Since all quantum programs are fundamentally probabilistic in nature, the output

of an algorithm cannot be well-defined by a scalar. Instead, each circuit proba-

bilistically generates one measurement after each execution, with each measurement

resulting in exactly one basis state of the Hilbert space the computation occurred

in. Each trial circuit used 4 qubits and, in accordance with standard IBM QX pro-

cedure, each individual circuit was executed a total of 1024 times. This results in

each circuit returning 1024 measurements, each measurement in one of 16 buck-

ets. Let the result set of a circuit on
√
n qubits, run on a noiseless simulator be

S = {s0, s1, . . . , sn−1} such that
∑
s∈S

s = 1024 and the result set from execution on

quantum hardware similarly be R = {r0, r1, . . . , rn−1}. Then by calculating the Eu-

clidean distance De =
√∑n−1

i=0 (si − ri)2, a metric of how reliable the circuit is can be

generated – as defined by how near the actual output from execution on a Quantum

Computer (QC) is to the expected result. Lower numbers are better.

An additional distance metric, the Jensen-Shannon distance, is also used to pro-

vide an alternative perspective of how near the actual distributions are to their ideal

counterparts. Let D(P ||Q) be the Kullback-Leibler divergence of the probability

distribution Q from the probability distribution P , where both are defined on the

probability space X.

D(P ||Q) =
∑
χ∈X

P (χ) log
P (χ)

Q(χ)
(23)

And let M = 1
2
(P +Q) be the pointwise mean of P and Q, then the Jensen-Shannon

75

distance is defined by,

JSD(P,Q) =

√
D(P ||M) +D(Q||M)

2
(24)

This metric can be thought of as an assessment of the similarity of P and Q by

measuring the information gained towards discriminating which of P and Q random

variables wer sampled from, as the number of samples increases—assuming a uni-

form prior probability. More information about the Jensen-Shannon divergence, from

which Jensen-Shannon distance is derived, can be found in [10].

Finally, given the NP-hard nature of the QLP, the time efficiency of various

heuristics is of substantial interest. It is well known that the best possible mapping

can be found, but not in any reasonable time using known methods. As such, QLP

heuristics that are highly effective but extremely slow are of little interest. Lower

numbers are better.

Although direct analysis of this information is not the primary goal of this research,

some results are discussed in the context of the proposed Quantum Layout Solver

(QLS) as confirmation of analyses made during its design.

4.2.4 QLP-TB Results Summary

As identified throughout Section 4.2.1 and Section 4.2.2, a series of tradeoffs were

identified and weighed as part of the QLP-TB development process. In summary,

these tradeoffs were:

1. Usability vs. Extensibility: Although in a commercial environment usability

is often of prime importance, the nature of the scientific environment identified

as the primary use context of the QLP-TB led to an alternative priority. Re-

searchers are both more accustomed to using libraries and scripts to access

76

Figure 10: Increase in SWAP count after transpilation

functionality than commercial end users and also more likely to need to do so

to more finely control experimental behavior.

2. Reliability vs. Functionality: Reliable data collection was identified to be

of the utmost priority for scientific software. Unlike commercial software where

applications frequently have known-good outputs that permit relatively easy

verification, experiments do not. Data integrity often cannot be determined

77

Figure 11: Increase in SWAP count after transpilation, relative to the starting size of
the circuit

a posteriori. Instead, integrity must be ensured as much as possible at the

framework level, even at the cost of functionality. In this case, the QLP-TB

limits end user ability to define fully custom statistics to gather per experiment.

3. Standardization vs. Maintainability: Maintainability as a best practice is

most frequently understood in a commercial context. Facts about this context

78

Figure 12: Euclidean distance between the results distributions from real and ideal
executions

are not true in a scientific context: e.g., the availability of dedicated developers

or reliable funding streams. Additionally, commercial products are, generally,

not released until they have stable versions. Qiskit is an alpha product under-

going rapid change. The QLP-TB was made more maintainable in an academic

environment by eschewing best practices like use of abstraction to separate in-

terfaces and implementations.

79

Figure 13: Jensen-Shannon distance between the measurement distributions of noise-
less circuit simulation and actual execution on quantum hardware

80

Figure 14: Transpilation time (ms) of each configuration and circuit

81

4.3 QLS Heuristic Results

There are two notable facets of the QLS heuristic design process that are weakly

indicated by the experimental results generated as part of the QLP-TB verification

process.

First, as was noted in Section 3.4 and expanded on in Section 5.4, circuit char-

acterization appears to be a potentially important process that has yet to be imple-

mented or tested. Ostensibly more effective connectivity and distance algorithms im-

plemented by the NoiseAdaptive and LookaheadSwap passes show strong SWAP and Eu-

clidean distance reduction in the Bernstein-Vazirani and Quantum Fourier Transform

(QFT) circuits, respectively in Figures 10 and 12. But conversely shorter circuits with

different constraint topologies like the Two Bell test circuit show significantly worse

results. Although identifying the exact cause of this behavior is beyond the scope of

this effort, the fact that the Bernstein-Vazirani and QFT circuits both tend towards

a many-to-one constraint topology where the quantum state from many qubits is

collected into a single qubit while the Two Bell and Uniform Random circuits have

many-to-many constraints is at least indicative of an avenue for further exploration.

Second, it was noted in section 3.4.1 that existing algorithm methodologies that

do not permit tradeoff between sub-graph connectivity and sub-graph distance from

future layouts might make locally optimal but globally sub-optimal decisions. It was

further noted that such mistakes were more likely when relatively few CX gates were

implemented on each sub-graph before the next layout was instantiated. The fact

that the NoiseAdaptiveLayout pass doubled the number of SWAP gates applied to the

Two Bell circuit, and thus also significantly increased the resulting circuit’s distance

from the correct result, is indicative that this hypothesis holds.

In particular, the NoiseAdaptiveLayout pass emphasizes selecting the best sub-graph

for layout—where best is determined by the number of edges in the sub-graph and the

82

reliability of those edges—and is prone exactly to selecting layouts that are best for

their layer but that might potentially make it more difficult or expensive to find good

layouts for subsequent layers. Additionally, the Two Bell circuit is quite small, so

any benefits generated by ensuring CX gates occur over reliable edges are mitigated

by the fact that any given edge may be used very few times.

In this case, it appears that the pass selected a layout for the Two Bell circuit

that would serve larger, more CX-intensive circuits well—as happened with Bernstein-

Vazirani—but the extra cost of moving into or out of those layouts ended up creating

a net negative reliability to circuit execution.

4.4 Summary

This chapter discussed the results generated from exploration of three research

questions:

1. What are the design principles and requirements of an effective testbed for

proposed QLP solvers?

2. What tradeoffs should be made among various software engineering principles

in a testbed implementation satisfying those requirements?

3. Can a method be devised that mitigates the limitations to effectiveness and

efficiency that exist with current QLP solutions?

The first question was answered by the design principle and requirements analysis

found in Section 4.2.1 and Section 4.2.2, with the result that a system employing

a diverse set of wrapper and utility functions, careful interface exposure of Qiskit

functionality, and best practices database, logging, and error correction methods was

determined to adequately meet all listed requirements.

83

The second question was answered in Section 4.2.4 and Section 4.2.3. The unique

context of experimental and scientific software significantly modified ideal capabilities,

user interface design, and the priority of considerations like data integrity, system

reliability, and security. Finally, the verification procedure demonstrated the value of

these tradeoffs when implemented and applied to practical experimentation.

The final question is left without a rigorous analysis and full experimental testing

but was discussed in Section 4.3. However, data generated as part of the verifica-

tion procedure made strong indications that hypotheses provided as part of the QLS

development process are worth future investigation.

84

V. Conclusions

5.1 Overview

This chapter describes the contributions made to the quantum computing research

field by this research in Section 5.2. In Section 5.3, avenues for growth and future

development of the Quantum Layout Problem Testbed (QLP-TB) are discussed, with

an emphasis on increasing the flexibility of the tool and promoting portability. Finally,

additional formulations of the proposed Quantum Layout Solver (QLS) are discussed

and proposed for research by interested parties in Section 5.4.

5.2 Contribution

Quantum computing has experienced an incredible surge in capability over the last

few years [17]; Quantum Computers (QCs) have ever increasing numbers of available

qubits and coherence times, decreasing error rates, and ever more varied topologies.

Unfortunately, the libraries and tools available for research on these devices have

not kept apace. Significant engagement with low-level hardware and behavior is still

required by researchers seeking to improve the operational abilities of quantum hard-

ware and quantum programming. This research has resulted in a contextually-specific

analysis of the design principles and requirements of a new tool to provide this missing

functionality. By means of a verification procedure, the QLP-TB has demonstrated

how it can make quantum computer research more efficient and effective, and has

also made steps towards guiding future transpiler optimization efforts towards the

creation of a more cohesive body of knowledge. One that promotes collaboration,

reproducibility, and more productive and structured experimentation.

Additionally, initial efforts were made towards the construction of a superior

Quantum Layout Problem (QLP) solver that engages with identified limitations of ex-

85

isting methods. The underlying hypotheses related to the construction of this routine

were also credibly supported by data gathered as part of the QLP-TB verification rou-

tine, providing a strong impetus and clear direction for future efforts directly related

to this proposal.

5.3 Future work on the QLP-TB

The QLP-TB is an alpha product, and offers many opportunities for future devel-

opment. The most significant existing limitation relates to the database model and

operations. Currently, database operations are defined statically and are inflexible

in the sense that they do not change or accommodate distinct table formats, and

similarly although additional statistics can easily be gathered by TestCircuit objects,

modifying the existing database schema to store and retrieve these statistics in a

human-readable format is not trivial. The implementation of an Object-Relational

Mapper (ORM)—as by the use of the Python SQLAlchemy library—would effectively

solve this issue and yield notable benefit. ORMs provide an additional abstraction

layer between program objects and the underlying database used to store attributes.

This abstraction layer permits improved processing of data values to make storing,

retrieving, and modifying database records significantly easier and provides flexibility

for a wider variety of experimental statistics to be gathered.

Additionally, although experimental data is stored by the QLP-TB, data analysis

is expected to be handled by external tools like scipy. Although it would be redundant

and difficult to implement a custom statistical analysis capability, functions to wrap

data in pandas dataframes and more easily hook into existing scipy interfaces could

be of benefit.

One of the development priorities of the QLP-TB was to create a library accessible

to improvement by follow-on researchers seeking to extend its capabilities. However,

86

as with many scientific computing libraries, the accessibility of functionality to end

users can be less than ideal. Although documentation is extensive, improvements

made by providing tutorial configurations, associated material, or even implementing

some form of user interface may be beneficial for improving the use of the QLP-TB

in academic and educational contexts.

Finally, the tradeoff paradigm established by the QLP-TB sought to provide ex-

posure to native Qiskit functionality to enable extensive changes to underlying op-

erations, while also simultaneously providing simple functions for tuning or modify-

ing specific subsets of the transpiler operation. There is ample opportunity for fu-

ture efforts at increasing the variety, scope, and population of simple transformation

techniques—for example, to make the connectivity and distance metric comparisons

described in Section 5.4 much easier to implement by creating a modular system for

exchanging the metrics used within transpiler SWAP and layout routines.

5.4 Future Work on the QLP

Having first become publicly available in 2017, the IBM QX project is still in

its infancy, and there are ample opportunities for optimization and further testing

of heuristic solutions to the QLP. There are three, inter-related areas that are most

fruitful for further efforts in characterizing QLP behavior: global optimizations, con-

nectivity optimization, and distance optimization. Primarily, future work should

emphasize building a solid foundation of comparative knowledge, since although re-

search has introduced and tested specific techniques, little-to-no research has sought

to develop a fundamental understanding of how varying techniques varies outcome in

a systematic manner, and justifications for various decisions are elided.

A series of alternative functions for measuring concepts of connectivity and dis-

tance are introduced, any of which may conceivably demonstrate some advantage,

87

but primarily the central problem demonstrated by these alternatives is not if they

work or show such advantage, but rather if decisions from among these alternatives

can be justified in a rigorous, structured manner. Each quantum layout methodology

consists of a variety of seemingly minor, arbitrary choices between metrics that must

be rigorously evaluated to formalize this evolving field of research.

5.4.1 Global Improvements

Perhaps the most critical area for future research is to define and test circuit char-

acterization schema. Current efforts attempt to measure themselves broadly across a

variety of circuit topologies in order to generate average metrics indicative of gener-

alized behavior and performance. However, it has become clear throughout work on

this project that distinct circuit topologies are plausibly better dealt with by distinct

layout solutions. Currently, look-ahead heuristics exist to attempt to predict how

currently selected layouts may benefit future constraint operations—e.g. by reducing

SWAPs required to meet future layouts, or by selecting to place virtual qubits in

locations that maximize reliability for frequently entangled qubits [50, 54]– however,

these efforts operate by identifying specific qubits with specific traits like maximal

weight, or by examining the topology of the computational substrate.

Characterization at the circuit level shows promise for providing efficient means

to distinguish types of circuits and then mapping those types to specific layout pro-

cedures. For example, characterization efforts could assess differences between the

most entanglements in any circuit layer and the average entanglements per layer;

doing so would potentially allow the transpiler to identify programs that have signifi-

cant entanglements requirements for a specific sub-circuit, but primarily single-qubit

operators for most of the algorithm, and in such a situation a layout procedure that

is more computationally intensive can be selected to better optimize the mapping

88

associated with the entanglement sub-circuit at the cost of reducing time devoted to

optimizing the relatively unimportant sub-circuits that have few entanglements.

Similarly, characterizing based on the ratio of ρ =
verticesentangled
edgesentangled

could provide in-

sight into the kinds of entanglement occurring. ρ→ 2 when entanglement constraints

apply to many distinct pairs (as in a circuit with many, independent, Bell pairs) while

ρ→ 1 if entanglement tends to have a hub-and-spoke arrangement, and this property

is distinct from existing metrics that merely sort qubits by entanglement count [33].

A similar measurement may be made by counting the number of entanglement op-

erations per layer in an N qubit circuit, c` ∈ [1, N
2

]. Circuits characterized by many

hub-and-spoke entanglements will tend towards c` → 1, while conversely distinct-

pair entanglement will result in C` → N
2

. Understanding these characteristics could

easily change the value of optimizing ideal sub-graph selection (for hub-and-spoke)

versus optimizing the minimum distance between a variety of clustered sub-graphs

(for distinct-pair entanglement). Allowing the exogenous parameters p and γ to vary

as a function of these metrics may show marked improvement over a naive, uniform

solution for all circuits.

Ultimately, these characterization efforts could be integrated into a complete sys-

tem for automatically tuning circuit transpilation. Given some quantum circuit to

be executed and a reduced version exhibiting similar topological constraint proper-

ties (e.g. a full Grover’s algorithm search that is infeasible to simulate on classical

hardware and an implementation on few qubits that is feasible to simulate), a routine

could be developed to generate the ideal results of the reduced circuit on a simulator

and then to execute the reduced version on quantum hardware. Taking the difference

between the ideal and real results distributions with a continuous metric like that

proposed by Guerrero [15] might permit gradient descent—or an analogous process—

to be used to tune p and γ until some minimum distance is found. The resulting

89

transpiler tuning could then be applied to the full circuit being executed solely on

quantum hardware.

5.4.2 Connectivity Improvements

The connectivity measure defined for the QLS is to measure internal connectivity

of sub-graphs, s ∈ S, relative to the connectivity of a complete graph of the same size,

C(s) = edge count(s)

edge count(κs.size())
; this is driven primarily by existing methods [33]. However,

while this decision has some empirical support in measured improvement in transpiler

mapping behavior, this decision has not been justified directly against alternatives.

Additional connectivity measures are likely of significant use especially when paired

with circuit characterization, since presumably distinct connectivity concerns arise

from distinct circuit topologies. For example, given the recent work on noise-adapting

transpiler operations [33, 50], a modification to C ′(s) =
edge count(s)

∏
e=edges weighte

κs.size()

would balance the internal connectivity of the selected sub-graph against the quality

of those edges. It might conversely be more important to assess the average number

of edges per node in the sub-graph than the global connectivity—as when multiple

qubits regularly require multiple entanglements—and so C ′(s) =
∑
n=nodes edge count(n)

s.size()

might show improvement in selecting sub-graphs that are better for such a circuit. If

the circuit contains a single, or few, extremely important hub qubits for entanglement,

simply assessing the quality of the sub-graph with C(s) = max(edge count(n)) for

n = node ∈ s could be an extremely computationally efficient method for assessing

sub-graph suitability for such circuits.

5.4.3 Distance Improvements

Thematically, potential for future research into distance component improvement

is similar to that for connectivity improvements. That is, different functions for de-

90

termining or defining distance could plausibly show improvement across a variety of

circuit topologies or may be well-suited to a characterization-based effort to select

particular distance functions to optimize a narrower set of topologies. The exist-

ing distance component provides a computationally efficient method of look-ahead

functionality by simple calculating the number of future but not existing circuit con-

straints that are met by the current layout. Since it is less important that constraint

requirements in layers occurring significantly later in execution order are met than

it is that constraints near in time are met, the distance function uses an exponential

discount factor γk ∈ [0, 1), where k increases with the number of layers separating

the current layout from the constraint being assessed, to reduce the weight of future

constraint satisfaction: let c represent the circuit to be executed, with c` being the

sub-circuit of c partitioned into layer ` and let λ` be the layout defined on layer `

then Dλ(c, s) =
∑`final

k=`+1 γ
k ∗met constraints(λ, `k).

This distance formula should be assessed against a variety of alternatives, none

of which have been used and measured in any systematic way. Since the purpose of

Dλ(c, s) is to heuristically determine layouts that will likely reduce SWAP require-

ments to meet future layer constraints, other methods of achieving this goal can be

readily identified. For example, given a graph G and a sub-graph s of G, we can

define the external diameter of s as the maximum path length from any node n in

G∧ /∈ s to any node m ∈ s. The external diameter then functions as a measure of

how far s is from an arbitrary qubit in G, and thus may provide a useful measure

of how “far” s is from other sub-graphs used in mapping the circuit being executed.

Similarly, external diameter could be modified to measure the average or minimum

path length instead of maximum.

As a distinct measure, given some s of suitable size to layout all qubits used in

circuit execution, an alternative distance function could be developed that measures

91

the total or average number of edges with exactly one end-point in s; such a measure of

external edges may again be useful in determining the ease with which virtual qubits

that need to be entangled with a partner they currently do not share an edge with can

be moved out of and into the chosen sub-graph. If instead the connectivity function

were altered to select, for example, sub-graphs with a size less than the number of

qubits required to execute the full circuit (as might happen if smaller, higher quality

sub-graphs were prioritized over full sub-graphs due to the number of entanglements

required being much less than the total number of qubits involved) then a distance

measure on external edges might have significant value in heuristically assessing the

flow rate between the high-quality “entanglement cluster” and the periphery that

merely stores quantum state.

5.5 Concluding Remarks

Increasing the complexity of systems available to quantum computing researchers

serves no purpose if there is not a corresponding improvement in the capabilities

provided to researchers to exploit the additional opportunities presented by quan-

tum system development. The continued necessity to perform manual, individual,

or low-level operations on quantum systems will, if not resolved, hamper research by

preventing the development of standards, impeding collaboration, and making efforts

to extend and reproduce existing work ever more difficult. This issue is of concern

not only to the academic community, but governmental organizations concerned with

exploiting quantum capabilities to build and maintain the strategic margin of the

United States over its adversaries.

First efforts were made at improving the ability of quantum computing researchers

to create, modify, test, and report quantum circuit experiments, especially those

concerned with transpiler optimization algorithms. These efforts comprised a design

92

principle analysis, functional requirements analysis, and testbed implementation and

verification. Using data generated by the QLP-TB verification, additional inroads

were made towards identifying potential improvements to existing transpiler routines.

Although significant progress has been made by this effort, there is ample op-

portunity for future research to build on these results. First, to improve and extend

testbed functionality for broader use cases and provide quality of life improvements to

improve the accessibility of this system to users. Second, to develop and test a newer

class of optimization algorithm and, in doing so, to more solidly justify algorithmic

procedures currently in use or proposed for future application.

The potential exists for vast improvement that brings into the grasp of the aca-

demic and government communities a new form of computational power, the limit

of whose capabilities are not yet even known. By building and improving the tools

required to enable more efficient and effective improvements in this realm, these ca-

pabilities can be brought closer to fruition.

93

Appendix A. Quantum Circuits Provided by the QLP-TB

Two Bell: The two-bell circuit creates random pairs of bell states across the

width of the circuit, repeatedly until the final circuit is square. In particular, it

operates only on sub-graphs with an even size and randomly permutes the available

qubits. Given this permutation, a Bell state is formed from each consecutive pair of

qubits in the permutation. Then the process repeats, with a new permutation, until

the circuit depth is equal to the number of Bell state pairs formed in each layer.

Many to Many: This circuit is conceptually very simple. Given a circuit size,

each available qubit is added to a candidate pool. Each candidate is given a number

of available CX edges chosen uniformly at random from the interval J0, 5K. Once the

number of edges are selected, then that number of additional candidates are selected,

uniformly at random, from the candidate pool to be the targets of a CX operation

controlled by the original candidate. This process is continued for each candidate in

the pool until all have been assigned CX targets. Essentially, this circuit forms an

arbitrary web of many-to-many CX gates.

Grover: A full explanation of Grover’s algorithm can be found in [14], but in sum-

mary it is a circuit designed to perform an efficient search on an unsorted list. Beyond

the fact that it is a practical quantum circuit where improved error performance can

have real world consequence, it is included as a test circuit primarily because of the

entanglement constraints it requires. Grover’s algorithm requires multi-controlled

entanglement gates – that is, entanglements of more than 2 qubits simultaneously.

Since the IBM QX architecture does not directly implement entanglements on > 2

qubits, the derived circuits are extremely SWAP intensive. Since the SWAP counts

are not particularly tied to topological or layering concerns, it is unlikely the pro-

posed QLS will show significant improvement over existing methods, doing so would

94

be particularly valuable.

Moving Island: The Moving Island circuit is a more structured variant of the

Many to Many circuit. The primary difference is that while the Many to Many circuit

permits each qubit to be both a control and a target to a CX operation, the Moving

Island circuit is designed to mimic algorithm sub-routines that require specific qubits

to store evolving quantum state. First, all available qubits are added to a candidate

set. On each loop, a qubit is consumed from the candidate set and made the control of

an “island”. The island is then associated with a number of edges, selected uniformly

at random from the interval [0, len(candidates)]. A number of qubits are consumed

from the candidates set equal to the number of edges and set as CX targets of the

central qubit. The loop is then repeated until all candidates are consumed. The entire

loop is then repeated until the circuit is square. The final circuit contains clusters of

distinct qubit entanglements, with the hub of the cluster varying on each iteration.

Uniform Random: Creates a circuit whose gates are uniformly chosen from

H, X, Y, Z, S, T, CX and whose CX endpoints are chosen uniformly from available

qubits. The loop is iterated until the circuit is square.

Bernstein-Vazirani: This test circuit implements the Bernstein-Vazirani algo-

rithm [2]. An integer in the interval 0, size is selected as a truth value for the circuit.

This truth value is encoded as binary representation into an oracle sub-circuit using

CX gates. Then, the remainder of the circuit creates a uniform superposition to be

fed into the oracle and the output is read into another uniform superposition. This

algorithm is designed to permit recovery of the encoded truth value in constant time

– while classical equivalents require size queries. The use of CX gates to encode the

oracle and the fact that the truth value is well-defined and easily measurable make

this a valuable contribution to the test set.

95

Toffoli: A Toffoli gate is an algorithmic primitive used in a variety of quantum

algorithms [31]. Also known as the CCX gate, it implements a Pauli-X gate on the

target qubit ⇐⇒ both of two identified control qubits have a non-zero |1〉 component.

Because this gate allows arbitrary continuation of entanglement gates with n controls

to structures providing n+1 controls, it has significant value in both the functionality

it provides and as a sub-circuit to optimize, since any derived performance advantage

will accrue throughout execution of the algorithm being implemented. In particular,

this test circuit uses the IBM Aqua library’s mcz() implementation.

Quantum Fourier Transform: Finally, the Quantum Fourier Transform (QFT)

is implemented as another practical circuit often implemented as a sub-circuit to

algorithms [43]. The QFT is generally used to recover phase information from a given

quantum state provided as input, and more generally serves to provide a structured

basis transform: Let |x〉 =
∑N−1

i=0 xi |i〉 be the original basis and |y〉 =
∑N−1

i=0 yi |i〉 be

the desired output basis of the transform. Then under a QFT each coefficient yk for

k ∈ J0, N−1K is defined as yk = 1√
N

∑N−1
i=0 xiω

ki
N , where ωN is the Nth root of unity [6].

This can also be thought of as the quantum analogue to the classical inverse Fourier

transform. Additionally, since the key operator used by the QFT is a controlled phase

shift – implemented by IBM using a CX gate – then there is significant opportunity

for improving implementation with the QLS.

96

Circuit Name Function Name Example Implementation

Two Bell two bell

Many to Many m to m

Moving Island moving island

Uniform Random uniform random

Bernstein-Vazirani bv

Toffoli toff

QFT qft
Grover’s grover See fig. 8

Table 3: Summary of test set circuits available in the QLP-TB

97

Appendix B. Experiment Script for the QLP-TB

Listing B.1: Complete Experiment Run for Verification for the QLP-TB

1 def run_local_experiment () -> List[str]:

2 """By Brandon Kamaka , 30 Jan 2020. Reproducibility experiment

↪→ to validate test bed

3 Create a series of test circuits , and transpile each series

↪→ with distinct options from various layout and SWAP

4 optimizing papers. Compare success , SWAP efficiency , and

↪→ time efficiency metrics

5 """

6

7 from qiskit.transpiler import CouplingMap

8 from qiskit.transpiler.passes import LookaheadSwap , DenseLayout

9

10 dbc.set_db_location(’data/circuit_data.sqlite ’)

11 pass_configurations = {

12 0: ’IBM Baseline ’,

13 1: ’Lookahead SWAP’,

14 2: ’Noise -Adaptive (GreedyE)’,

15 3: ’IBM Optimized ’

16 }

17

18 circuits_to_test = {

19 0: ’two_bell ’,

20 1: ’uniform_random ’,

21 2: ’bv’,

22 3: ’qft’,

23 4: ’grover ’

24 }

25

26 num_trials = 50

98

27 tests_all_ids = []

28

29 for conf in pass_configurations.keys():

30 for circ_case in circuits_to_test.keys():

31 test_config = (conf , circ_case)

32 logger.info(f’+++++++++++++++++ TEST CONFIG: {test_config

↪→ }++++++++++++++++++++++++++++++++++ ’)

33

34 # ************************** Phase 1: Make initial

↪→ circuits and prep

35 case = circuits_to_test[test_config [1]]

36 filename = f’{pass_configurations[test_config [0]]} - {

↪→ case}’

37

38 # Make the Premades object.

39 # It does not contain a circuit but stores the uniform

↪→ information for circuit creation.

40 exp_size = 4

41 exp_truth_value = 3

42 circ = Premades(size=exp_size , truth_value=

↪→ exp_truth_value , measure=True)

43

44 # Actually add a specific QuantumCircuit instance based

↪→ on the stored parameters

45 Premades.circ_lib[case](circ)

46 circ.draw(output=’mpl’,

47 filename=filename)

48 tests = []

49 for i in range(num_trials):

50 # Create distinct TestCircuit objects (so that each

↪→ gets its own unique ID),

51 # but each TC gets the same PreMade

99

52 tc = TestCircuit ()

53 tc.add_circ(circ , size=exp_size , truth_value=

↪→ exp_truth_value , measure=True)

54 tc.stats.name = case

55 tc.stats.notes = filename + f’ - {i}’

56 tests.append(tc)

57

58 # Register initial statistics

59 dbc.write_objects(dbc.db_location , tests)

60

61 # ************************** Phase 2, make the distinct

↪→ PassmMnagers for each test config and circuit

62

63 # Start by getting a transpiler config from the circuits

↪→ and backend

64 level = 1 if pass_configurations[test_config [0]] != ’IBM

↪→ Optimized ’ else 3

65 configs = transpilertools.get_transpiler_config(circs=

↪→ tests , be=backend , optimization_level=level)

66

67 # Then we use the configs to get the appropriate

↪→ PassManager for each configuration

68 pms = []

69 for idx , config in enumerate(configs):

70 pm = transpilertools.get_basic_pm(config , level=

↪→ level)

71 cm = CouplingMap(backend.configuration ().

↪→ coupling_map)

72

73 if test_config [1] == 1:

74 pass_type = ’swap’

75 new_pass = LookaheadSwap(coupling_map=cm)

100

76

77 elif test_config [1] == 2:

78 pass_type = ’layout ’

79 new_pass = DenseLayout(coupling_map=cm,

↪→ backend_prop=backend.properties ())

80

81 else:

82 modified_pm = pm

83 continue

84

85 modified_pm = transpilertools.get_modified_pm(

↪→ pass_manager=pm , version=level , pass_type=pass_type ,

86

↪→ new_pass=new_pass)

87 pms.append(modified_pm)

88

89 # logger.info(f ’++++++++++++++++++++++++ PM BEING USED

↪→ ++++++++++++++++++++++++++++++++++ ’)

90 # logger.info(transpilertools.get_passes_str(pms [0]))

91 # logger.info(f

↪→ ’+++ ’)

↪→

92

93 # ************************** Phase 3: Run tests on

↪→ circuits with custom PassManagers

94

95 # Just in case our number of test_cases exceeds a

↪→ reasonable size (25)

96 test_batches = get_batches(tests)

97 pms_batches = get_batches(pms)

98 assert len(test_batches) == len(pms_batches)

99 for test_batch , pms_batch in zip(test_batches ,

101

↪→ pms_batches):

100 TestCircuit.run_all_tests(test_batch , pass_manager=

↪→ pms_batch , be=PREFERRED_BACKEND , attempts =5)

101

102 # ************************** Phase 4: Return final circ

↪→ ids so the normal routine can save them to Stats

103 tests_all_ids.extend ([test.id for test in tests])

104

105 return tests_all_ids

102

Appendix C. Code Snippets

Listing C.1: Constructor for the TestCircuit class

1 def __init__(self):

2 self.stats = Statblock(parent=self)

3 self.compiled_circ = None

4 self.backend = None

5 self.job_id = None

6 self.transpiler_config = None

7 self.circuit = None

8

9 # if isinstance(circuit , QuantumCircuit):

10 # self.circuit = circuit

11 # elif circuit is not None:

12 # raise TypeError(f’Circuit must be a QuantumCircuit , or

↪→ Premade. Was given type: {type(circuit)}’)

Listing C.2: Example wrapper function to automate testing transpiler operations

1 def transpile_test(self , pass_manager=None , default_be=

↪→ preferred_backend , ATTEMPTS: int = 1) -> QuantumCircuit:

2 """ Transpile TestCircuit with provided pass_manager and

↪→ register statistics , but do not execute.

3

4 Args:

5 pass_manager (PassManager): Custom PassManager to use to

↪→ transpile this circuit.

6 default_be (str): Optional. Default backend to use for

↪→ transpilation; defaults to preferred_backend defined

7 in run_experiment.py

8 ATTEMPTS (int): Optional. Number of transpile tests to

↪→ be run to generate averages.

103

9

10 Returns:

11 qiskit.circuit.quantumcircuit.QuantumCircuit: Returns

↪→ the compiled circuit for chaining; also saves it to

12 self.compiled_circ as a side -effect.

13 """

14

15 if self.backend is None:

16 logger.warning(f’Transpiler: Circuit ({self.id}) had no

↪→ backend. Resorted to default: {preferred_backend}’)

17 self.backend = default_be

18

19 transpile_times = []

20

21 # Get the average transpile time over ATTEMPTS number of

↪→ trials

22 for i in range(ATTEMPTS):

23 start_time = time.process_time ()

24 self.compiled_circ = transpile(self.circuit ,

25 backend=self.

↪→ get_circ_backend (),

26 optimization_level =0,

27 pass_manager=pass_manager

↪→)

28 transpile_times.append(time.process_time () - start_time)

29

30 tc: QuantumCircuit = self.compiled_circ

31 stats = self.stats

32

33 logger.info(f’Transpiled and registered {self.stats.name}: {

↪→ self.id}’)

34

104

35 # Returns average in ms

36 stats.compile_time = (sum(transpile_times) * (10 ** 3)) /

↪→ len(transpile_times)

37 stats.post_depth = tc.depth ()

38

39 logger.info(f’Transpiled circ of depth {stats.post_depth} in

↪→ {stats.compile_time}ms.’)

40

41 pre_cx = 0

42 post_cx = 0

43 if ’cx’ in self.circuit.count_ops ().keys():

44 pre_cx = self.circuit.count_ops ()[’cx’]

45 if ’cx’ in tc.count_ops ().keys():

46 post_cx = tc.count_ops ()[’cx’]

47

48 stats.swap_count = (post_cx - pre_cx) / 3

49

50 dbc.write_objects(dbc.db_location , [self])

51

52 return tc

Listing C.3: Example wrapper function to automate execution testing, executing, and

timing transpiler operations

1 @staticmethod

2 def run_all_tests(tests: Union[List[TestCircuit], List[

↪→ QuantumCircuit], TestCircuit , QuantumCircuit],

3 pass_manager: Union[PassManager , List[

↪→ PassManager]] = None , generate_compiled: bool = True ,

4 be: str = preferred_backend , attempts: int =

↪→ 1) -> None:

5 """ Given a circuit or list of circuits to execute , it

105

↪→ executes all of them and writes all results to the

6 appropriate db. Depending on parameters , a custom

↪→ PassManager can be used , and the circuits will also be

7 compiled before execution.

8

9 Args:

10 tests (List[TestCircuit]): Circuits to be tested

11 pass_manager (PassManager): Custom PassManager to use

↪→ for transpilation , if desired. Default: IBM default

12 generate_compiled (bool): If True , will transpile

↪→ circuits prior to execution

13 be (Backend): IBM backend to use for transpilation and

↪→ execution. Default: preferred_backend

14 attempts: Number of times to transpile the circuits to

↪→ generate average compile time

15

16 Returns: None (but writes results to statistics database as

↪→ a side effect)

17

18 """

19

20 if not isinstance(tests , List): tests = [tests]

21 if len(tests) > 25:

22 logger.warning(f’Batch size might exceed maximum.

↪→ Currently {len(tests)}’)

23

24 # If the circuits have been separately transpiled , we need

↪→ to ensure they were done so uniformly

25 compiled_circs = []

26 if not generate_compiled:

27 if len({tc.backend for tc in tests}) != 1:

28 raise ValueError(f’All circuits in the same batch

106

↪→ must use the same backend.’)

29

30 compiled_circs = [tc.compiled_circ for tc in tests]

31 if None in compiled_circs:

32 raise ValueError(f’Test Run failed on batch (first

↪→ id: {tests [0].id}). ’

33 f’No transpiled circuits available.

↪→ ’

34 f’Set generate_compiled=True to

↪→ have this done automatically ’)

35 else:

36 # If a a list of PassManagers of the same len() as tests

↪→ was provided , we’re good. Otherwise listify.

37 if not isinstance(pass_manager , List):

38 pass_manager = [pass_manager for t in tests]

39

40 elif len(pass_manager) != len(tests):

41 raise IndexError(f’Error in function run_all_tests:

↪→ Mismatch in len(tests) && len(pass_manager)’)

42

43 for idx , tc in enumerate(tests):

44 tc.backend = be

45 tc.transpile_test(pass_manager=pass_manager[idx],

↪→ default_be=be, ATTEMPTS=attempts)

46 compiled_circs.append(tc.compiled_circ)

47 tc.stats.iteration = idx

48

49 dbc.write_objects(dbc.db_location , tests)

50 job = execute(compiled_circs , backend=tests [0].

↪→ get_circ_backend ())

51 for tc in tests:

52 tc.get_ideal_result ()

107

53 tc.job_id = job.job_id ()

54

55 dbc.insert_in_progress(dbc.db_location , tests)

56 dbc.write_objects(dbc.db_location , tests)

108

Listing C.4: Constructor for the Premades class

1 def __init__(self , size: int , truth_value: int , measure: bool = True

↪→ , seed: int = None):

2 """ Creates a Premades object that wraps QuantumCircuits to

↪→ carry additional information. Most important is

3 that the PreMades object stores the uniform interface

↪→ parameters for generating new circuits.

4

5 Args:

6 size (int): Width of the desired circuit. i.e. the

↪→ register size of the quantum register defining it.

7 truth_value (int): An inteeger to encode in any oracles

↪→ that the circuit uses. Usually used to define

8 the "right" value for the circuit to return. E.g.

↪→ the correct value for a grover ’s search to find.

9 measure (bool): Optional. If True , adds measurement

↪→ operators to the end of the circuit.

10 seed (int): Optional. If not None , the provided seed is

↪→ used to set random state for reproducibility.

11 """

12 if truth_value == 0:

13 logger.warning(’Truth values that evaluate to basis 00

↪→ ... 00 may cause misleading accuracy measurements ’)

14

15 qr = QuantumRegister(size , ’qr’)

16 cr = ClassicalRegister(size , ’cr’)

17 super ().__init__(qr, cr, name=’qc’)

18 self.circ_size = size

19 self.truth_value = truth_value

20 self.meas = measure

21 self.seed = seed

109

Listing C.5: Easy access function to retrieve transpiler configurations for a list of

TestCircuits

1 def get_transpiler_config(circs: Union[List[TestCircuit],

↪→ TestCircuit , List[QuantumCircuit], QuantumCircuit],

2 be: basebackend , layout: Layout = None ,

↪→ optimization_level: int = None ,

3 callback: callable = None) -> List[

↪→ TranspileConfig]:

4 """ Given a list of circuits and a backend to execute them on ,

↪→ return a list of transpiler configs of the same

5 length such that configs[i] is the config for circs[i]

6

7 Args:

8 circs (Union[List[qls.circuits.TestCircuit], qls.circuits.

↪→ TestCircuit]): List of circuits to

9 compile configurations for

10 be (qiskit.providers.ibmq.ibmqbackend.IBMQBackend): Backend

↪→ object to execute the circuits on.

11 layout (Layout): Optional. Initial layout to use.

12 optimization_level (int): Optional. IBM transpiler

↪→ optimization level to target [0, 3].

13 callback (Callable): Optional. Function to call at the end

↪→ of execution of each pass in the PassManager.

14

15 Returns:

16 List[qiskit.transpiler.transpile_config.TranspileConfig]:

↪→ List of transpiler configurations associated with

17 circs.

18 """

19 # First , parse the input type of circs and process it correctly

↪→ to return a list of only QuantumCircuits

110

20 # Also set a flag to save TestCircuit.transpiler_config to

↪→ member field if TestCircuits were provided.

21 circuits = []

22 save_configs = False

23 if isinstance(circs , List):

24 if isinstance(circs[0], TestCircuit):

25 circuits = [tc.circuit for tc in circs]

26 save_configs = True

27 elif isinstance(circs [0], QuantumCircuit):

28 circuits = circs

29 elif isinstance(circs , TestCircuit):

30 circuits.append(circs.circuit)

31 circs = [circs]

32 save_configs = True

33 elif isinstance(circs , QuantumCircuit):

34 circuits.append(circs)

35 else:

36 raise TypeError(f’The circuit must be a single

↪→ QuantumCircuit (or subclass) or list of elements of that type.

↪→ ’

37 f’Instead received: {type(circs)}’)

38

39 # _parse_transpile_args will call _parse_x_args () where x is

↪→ each parameter type.

40 # If this parameter is None , then each _parse_x_arg function

↪→ will retrieve that parameter from backend.

41 # Hence backend being the only requirement. All other params

↪→ exposed by get_transpiler_config are for custom tests

42 configs = _parse_transpile_args(circuits , backend=be ,

↪→ basis_gates=None , coupling_map=None ,

43 backend_properties=None ,

44 initial_layout=layout ,

111

↪→ seed_transpiler=None ,

45 optimization_level=

↪→ optimization_level ,

46 pass_manager=None , callback=

↪→ callback , output_name=None)

47

48 if save_configs:

49 for idx , circ in enumerate(circs):

50 circ.transpiler_config = configs[idx]

51

52 return configs

Listing C.6: Utility function to retrieve native Qiskit pre-populated PassManager

objects

1 def get_basic_pm(transpiler_config: TranspileConfig , level: int = 0)

↪→ -> PassManager:

2 """ Get a pre -populated PassManager from the native Qiskit

↪→ implementation.

3

4 Args:

5 transpiler_config (qiskit.transpiler.transpile_config.

↪→ TranspileConfig): Configuration used to generate the

6 tailored PassManager.

7 level (int): Optional. Qiskit Transpiler optimization level

↪→ to target.

8

9 Returns:

10 qiskit.transpiler.passmanager.PassManager: PassManager

↪→ instance associated with the provided config.

11 """

12 pm_funcs = {

112

13 0: level_0_pass_manager ,

14 1: level_1_pass_manager ,

15 2: level_2_pass_manager ,

16 3: level_3_pass_manager

17 }

18

19 pm_func = pm_funcs[level]

20 return pm_func(transpiler_config)

Listing C.7: Wrapper function to enable quick modification of pre-populated Pass-

Manager objects

1 def get_modified_pm(pass_manager: PassManager , version: int ,

↪→ pass_type: str , new_pass: BasePass) -> PassManager:

2 """ Modifies a provided PassManager instance by exchanging swap

↪→ or layout passes with others of the same basic type.

3

4 Args:

5 pass_manager (qiskit.transpiler.passmanager.PassManager):

↪→ PassManager instance to modify.

6 version (int): Which optimization level the original

↪→ PassManager was targeted at.

7 pass_type (str): Type of pass to exchange. Must be one of

↪→ (’swap ’, ’layout ’)

8 new_pass (BasePass): The pass to insert into pass_manager in

↪→ place of that pass_manager ’s pass of type (type).

9

10 Returns:

11 qiskit.transpiler.passmanager.PassManager: Modified

↪→ PassManager instance.

12 """

13

113

14 if version not in range (4):

15 raise ValueError(f’version must correspond to an existing

↪→ optimization level (range (4)). Got {version}’)

16

17 if not pass_type == ’swap’ and not pass_type == ’layout ’:

18 raise KeyError(f’Can only exchange swap or layout passes.

↪→ Was given type {pass_type}’)

19

20 # Map of which indices the pass of each type are located at for

↪→ each basic pm

21 locations = {

22 0: {’swap’: (6, 0), ’layout ’: (1, None)},

23 1: {’swap’: (7, 1), ’layout ’: (1, None)},

24 2: {’swap’: (6, 1), ’layout ’: (2, None)},

25 3: {’swap’: (6, 1), ’layout ’: (2, None)}

26 }

27

28 # The particular pass to replace depends on which test group the

↪→ given pm is supposed to work for

29

30 # The transpiler passmanager format is a mess. The PassManager

↪→ is actually gives us a list of dictionaries

31 # of dictionaries of lists of passes. No, I’m not kidding.

32 pass_list = pass_manager.passes ()

33 first_index = locations[version][pass_type][0]

34 inner_index = locations[version][pass_type][1]

35 passes_dict = pass_list[first_index]

36

37 passes = []

38 for i in range(len(passes_dict[’passes ’])):

39 if inner_index is None:

40 passes = new_pass

114

41 break

42 elif i == inner_index:

43 passes.append(new_pass)

44 else:

45 passes.append(passes_dict[’passes ’][i])

46

47 pass_manager.replace(first_index , passes)

48

49 return pass_manager

115

Listing C.8: Constructor for the statblock class

1 def __init__(self , parent):

2 self.id = uuid.uuid4 ().hex

3 self.parent = parent

4 self.name = None

5 self.truth_value = None

6 self.ideal_distribution = None

7 self.results = None

8

9 self.circ_width = None

10 self.pre_depth = None

11 self.seed = None

12

13 self.backend = None

14 self.post_depth = None

15 self.swap_count = None

16

17 self.compile_time = None

18

19 self.datetime = None

20 self.iteration = None

21

22 self.batch_avg = None

23 self.global_avg = None

24

25 self.notes = None

116

Bibliography

1. A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles, Techniques &

Tools, 2nd ed. Pearson, 1986.

2. E. Bernstein, U. Vazirani, and S. J. Comput, “QUANTUM COMPLEXITY

THEORY,” Society for Industrial and Applied Mathematics, vol. 26, no. 5,

p. 7, 1997. [Online]. Available: http://www.siam.org/journals/sicomp/26-

5/30092.html

3. A. Botea, A. Kishimoto, and R. Marinescu, “On the Complexity of

Quantum Circuit Compilation,” in The Eleventh International Symposium

on Combinatorial Search. Association for the Advancement of Artificial

Intelligence, 2018. [Online]. Available: www.aaai.org

4. M. Bysiek, A. Drozd, and S. Matsuoka, “Migrating legacy fortran to python

while retaining fortran-level performance through transpilation and type hints,”

in Proceedings of PyHPC 2016: 6th Workshop on Python for High-Performance

and Scientific Computing - Held in conjunction with SC16: The International

Conference for High Performance Computing, Networking, Storage and Analysis.

Institute of Electrical and Electronics Engineers Inc., 1 2017, pp. 9–18.

5. D. Chandra, Z. Babar, H. V. Nguyen, D. Alanis, P. Botsinis, S. X. Ng, and

L. Hanzo, “Quantum Topological Error Correction Codes are Capable of Improv-

ing the Performance of Clifford Gates,” IEEE Access, vol. 7, pp. 121 501–121 529,

8 2019.

6. D. Coppersmith, “An approximate Fourier transform useful in quantum

factoring,” IBM Research Division, Yorktown Heights, New York, Tech. Rep., 1

1995. [Online]. Available: http://arxiv.org/abs/quant-ph/0201067

117

http://www.siam.org/journals/sicomp/26-5/30092.html
http://www.siam.org/journals/sicomp/26-5/30092.html
www.aaai.org
http://arxiv.org/abs/quant-ph/0201067

7. D-Wave Systems Inc., “D-Wave System Documentation,” 2019. [Online].

Available: https://docs.dwavesys.com/docs/latest/c gs 2.html

8. S. Developers, “Numpy and Scipy Documentation — Numpy and Scipy

documentation,” 2020. [Online]. Available: https://docs.scipy.org/doc/

9. E. Deza and M. M. Deza, Encyclopedia of Distances. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009. [Online]. Available: www.springer.comhttp:

//link.springer.com/10.1007/978-3-642-00234-2

10. D. Endres and J. Schindelin, “A new metric for probability distributions,”

IEEE Transactions on Information Theory, vol. 49, no. 7, pp. 1858–

1860, 7 2003. [Online]. Available: http://www.stat.cmu.edu/∼minka/pa-http:

//ieeexplore.ieee.org/document/1207388/

11. D. Falessi and F. Shull, “Towards flexible automated support to improve the qual-

ity of computational science and engineering software,” in 2013 5th International

Workshop on Software Engineering for Computational Science and Engineering,

SE-CSE 2013 - Proceedings, 2013, pp. 88–91.

12. M. Fingerhuth, T. Babej, and P. Wittek, “Open source software in quantum

computing,” PLOS ONE, vol. 13, no. 12, p. e0208561, 12 2018. [Online].

Available: http://dx.plos.org/10.1371/journal.pone.0208561

13. W. Finigan, M. Cubeddu, T. Lively, J. Flick, P. Narang, and J. A.

Paulson, “Qubit Allocation for Noisy Intermediate-Scale Quantum Computers,”

Cambridge, MA, 2018. [Online]. Available: https://arxiv.org/pdf/1810.08291.pdf

14. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing

118

https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://docs.scipy.org/doc/
www.springer.com http://link.springer.com/10.1007/978-3-642-00234-2
www.springer.com http://link.springer.com/10.1007/978-3-642-00234-2
http://www.stat.cmu.edu/~minka/pa- http://ieeexplore.ieee.org/document/1207388/
http://www.stat.cmu.edu/~minka/pa- http://ieeexplore.ieee.org/document/1207388/
http://dx.plos.org/10.1371/journal.pone.0208561
https://arxiv.org/pdf/1810.08291.pdf

- STOC ’96. New York, New York, USA: ACM Press, 2003, pp. 212–219.

[Online]. Available: http://portal.acm.org/citation.cfm?doid=237814.237866

15. N. Guerrero, “Solving Combinatorial Optimization Problems using the Quantum

Approximation Optimization Algorithm,” Wright-Patterson, AFB, 2020.

16. R. Hamerly, T. Inagaki, P. McMahon, D. Venturelli, A. Marandi, T. Onodera,

E. Ng, E. Rieffel, M. M. Fejer, S. Utsunomiya, H. Takesue, and Y. Yamamoto,

“Quantum vs. Optical Annealing: Benchmarking the OPO Ising Machine

and D-Wave - IEEE Conference Publication,” in 2018 Conference on Lasers

and Electro-Optics (CLEO). San Jose: IEEE, 2018. [Online]. Available:

https://ieeexplore-ieee-org.afit.idm.oclc.org/document/8426769

17. K. Hartnett, “A New “Law” Suggests Quantum Supremacy Could Happen This

Year - Scientific American,” Quanta Magazine, pp. 1–1, 6 2019.

18. A. A. Houck, J. Koch, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,

“Life after charge noise: recent results with transmon qubits,” Quantum

Information Processing, vol. 8, no. 2-3, pp. 105–115, 6 2009. [Online]. Available:

http://link.springer.com/10.1007/s11128-009-0100-6

19. Human Engineering, “MIL-STD-1472G Design Criteria Standard,” 2012. [On-

line]. Available: http://everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-

STD-1472G 39997/

20. IBM, “IBM Announces Advances to IBM Quantum Systems & Ecosystem,” 11

2017. [Online]. Available: https://www-03.ibm.com/press/us/en/pressrelease/

53374.wss

21. IBM Quantum Experience, “Qiskit API documentation,” 2020. [Online].

Available: https://qiskit.org/documentation/index.html

119

http://portal.acm.org/citation.cfm?doid=237814.237866
https://ieeexplore-ieee-org.afit.idm.oclc.org/document/8426769
http://link.springer.com/10.1007/s11128-009-0100-6
http://everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/
http://everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
https://qiskit.org/documentation/index.html

22. S. Jandura, “Improving a Quantum Compiler,” 2018. [Online]. Available:

https://medium.com/qiskit/improving-a-quantum-compiler-48410d7a7084

23. T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising

model,” Physical Review E - Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics, vol. 58, no. 5, pp. 5355–5363, 1998.

24. P. Knight, “Quantum communication and quantum computing,” in Technical

Digest. Summaries of Papers Presented at the Quantum Electronics and Laser

Science Conference. Baltimore, Maryland: IEEE, 1992, p. 32. [Online].

Available: http://ieeexplore.ieee.org/document/807126/

25. A. Kole, S. Hillmich, K. Datta, R. Wille, and I. Sengupta, “Improved Mapping of

Quantum Circuits to IBM QX Architectures,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2019.

26. P. Leach, Microsoft, M. Mealling, Refactored Networks, R. Salz, and I. Dat-

aPower Technology, “RFC 4122,” 2005.

27. C. C. Lin, S. Sur-Kolay, and N. K. Jha, “PAQCS: Physical Design-Aware Fault-

Tolerant Quantum Circuit Synthesis,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 23, no. 7, pp. 1221–1234, 7 2015.

28. N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Lands-

man, K. Wright, and C. Monroe, “Comparing the architectures of the first pro-

grammable quantum computers,” in Optics InfoBase Conference Papers, vol.

Part F81-EQEC 2017. OSA - The Optical Society, 2017.

29. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,”

Physical Review A, vol. 57, no. 1, p. 120, 1 1998. [Online]. Available:

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.57.120

120

https://medium.com/qiskit/improving-a-quantum-compiler-48410d7a7084
http://ieeexplore.ieee.org/document/807126/
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.57.120

30. J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier,

L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret,

S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity

bus,” Nature, vol. 449, no. 7161, pp. 443–447, 9 2007.

31. D. Maslov, “On the Advantages of Using Relative Phase Toffolis with an

Application to Multiple Control Toffoli Optimization,” 2016. [Online]. Available:

https://arxiv.org/pdf/1508.03273.pdf

32. D. Maslov, S. M. Falconer, and M. Mosca, “Quantum Circuit Placement *,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 27, no. 4, pp. 752–763, 2008.

33. P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi,

“Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum

Computers,” in roceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems,

I. Bahar and M. Herlihy, Eds. Providence, Rhode Island: Association for

Computing Machinery, 2019. [Online]. Available: https://arxiv.org/pdf/1901.

11054.pdf

34. M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information,

10th ed. New York, New York, USA: Cambridge University Press, 2011.

35. Y. Park, R. Scott, and S. Sechrest, “Virtual Memory versus File Interface

for Large, Memory-Intensive Scientific Applications,” in Supercomputing

’96:Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

Pittsburgh: IEEE, 1996. [Online]. Available: https://ieeexplore-ieee-org.afit.

idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=1392923

121

https://arxiv.org/pdf/1508.03273.pdf
https://arxiv.org/pdf/1901.11054.pdf
https://arxiv.org/pdf/1901.11054.pdf
https://ieeexplore-ieee-org.afit.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=1392923
https://ieeexplore-ieee-org.afit.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=1392923

36. T. Pasquier, D. Eyers, and J. Bacon, “PHP2Uni: Building unikernels using script-

ing language transpilation,” in Proceedings - 2017 IEEE International Conference

on Cloud Engineering, IC2E 2017. Institute of Electrical and Electronics Engi-

neers Inc., 5 2017, pp. 197–203.

37. M. Pedram and A. Shafaei, “Layout Optimization for Quantum Circuits with

Linear Nearest Neighbor Architectures,” IEEE Circuits and Systems Magazine,

vol. 16, no. 2, pp. 62–74, 4 2016.

38. J. Preskill, “Quantum Computing in the NISQ era and be-

yond,” Quantum, vol. 2, p. 79, 8 2018. [Online]. Avail-

able: http://arxiv.org/abs/1801.00862%0Ahttp://dx.doi.org/10.22331/q-2018-

08-06-79https://quantum-journal.org/papers/q-2018-08-06-79/

39. M. Sandberg, M. R. Vissers, T. A. Ohki, J. Gao, J. Aumentado, M. Weides, and

D. P. Pappas, “Radiation-suppressed superconducting quantum bit in a planar

geometry,” Applied Physics Letters, vol. 102, no. 7, 2 2013.

40. A. Shafaei, M. Saeedi, and M. Pedram, “Qubit placement to minimize commu-

nication overhead in 2D quantum architectures,” in Proceedings of the Asia and

South Pacific Design Automation Conference, ASP-DAC, 2014.

41. N. Sharma, T. K. Rawat, H. Parthasarathy, and K. Gautam, “Performance anal-

ysis of quantum unitary gates in presence of noise in the field of quantum commu-

nication,” in India International Conference on Power Electronics, IICPE, vol.

2016-November. IEEE Computer Society, 6 2016.

42. B. Shneiderman, Designing the User Interface, 3rd ed. Reading, Massachusetts:

Addison Wesley Longman, 1998.

122

http://arxiv.org/abs/1801.00862%0Ahttp://dx.doi.org/10.22331/q-2018-08-06-79 https://quantum-journal.org/papers/q-2018-08-06-79/
http://arxiv.org/abs/1801.00862%0Ahttp://dx.doi.org/10.22331/q-2018-08-06-79 https://quantum-journal.org/papers/q-2018-08-06-79/

43. P. Shor, “Algorithms for quantum computation: discrete logarithms and

factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer

Science. IEEE Comput. Soc. Press, 2002, pp. 124–134. [Online]. Available:

http://ieeexplore.ieee.org/document/365700/

44. M. Y. Simmons, “Atomic qubits in silicon,” in 2019 Silicon Nanoelectronics Work-

shop, SNW 2019. Institute of Electrical and Electronics Engineers Inc., 6 2019.

45. D. R. Simon, “On the Power of Quantum Computation * Quantum Probability

computation and,” SIAM Journal on Computing, vol. 26, no. 5, pp. 116–123,

1994.

46. M. Sipser, Introduction to the Theory of Computation, 2nd ed.,

Https://dl.acm.org/doi/book/10.5555/524279, Ed. Cambridge, MA: In-

ternational Thomson Publishing, 1996.

47. M. Y. Siraichi, S. Collange, V. F. Dos Santos, and F. M. Q. Pereira, “Qubit

allocation,” CGO 2018 - Proceedings of the 2018 International Symposium on

Code Generation and Optimization, vol. 2018-Febru, pp. 113–125, 2018.

48. K. N. Smith and M. A. Thornton, “Automated Mapping Methods for the IBM

Transmon Devices,” Dallas, Texas, 2018.

49. M. Suchara, J. Kubiatowicz, A. Faruque, F. T. Chong, C.-Y. Lai, and G. Paz,

“QuRE: The Quantum Resource Estimator toolbox,” in 2013 IEEE 31st

International Conference on Computer Design (ICCD). IEEE, 10 2013, pp.

419–426. [Online]. Available: http://arxiv.org/abs/1312.2316http://dx.doi.org/

10.1109/ICCD.2013.6657074http://ieeexplore.ieee.org/document/6657074/

50. S. S. Tannu and M. K. Qureshi, “Not All Qubits Are Created Equal,” in

Proceedings of the Twenty-Fourth International Conference on Architectural

123

http://ieeexplore.ieee.org/document/365700/
http://arxiv.org/abs/1312.2316 http://dx.doi.org/10.1109/ICCD.2013.6657074 http://ieeexplore.ieee.org/document/6657074/
http://arxiv.org/abs/1312.2316 http://dx.doi.org/10.1109/ICCD.2013.6657074 http://ieeexplore.ieee.org/document/6657074/

Support for Programming Languages and Operating Systems - ASPLOS ’19.

New York, New York, USA: ACM Press, 2019, pp. 987–999. [Online].

Available: https://doi.org/10.1145/3297858.3304007http://dl.acm.org/citation.

cfm?doid=3297858.3304007

51. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”

Nature, vol. 299, no. 5886, pp. 802–803, 10 1982. [Online]. Available:

http://www.nature.com/articles/299802a0

52. Y. Zhang and Q. Yuan, “A multiple bits error correction method based on cyclic

redundancy check codes,” in International Conference on Signal Processing Pro-

ceedings, ICSP, 2008, pp. 1808–1810.

53. A. Zulehner, A. Paler, and R. Wille, “Efficient mapping of quantum

circuits to the IBM QX architectures,” in 2018 Design, Automation & Test

in Europe Conference & Exhibition (DATE). IEEE, 3 2018, pp. 1135–

1138. [Online]. Available: http://www.jku.at/iic/eda/ibm qx mapping.http:

//ieeexplore.ieee.org/document/8342181/

54. A. Zulehner and R. Wille, “Compiling SU(4) quantum circuits to IBM QX

architectures,” in Proceedings of the 24th Asia and South Pacific Design

Automation Conference on - ASPDAC ’19. New York, New York, USA: ACM

Press, 8 2019, pp. 185–190. [Online]. Available: https://arxiv.org/abs/1808.

05661http://dl.acm.org/citation.cfm?doid=3287624.3287704

124

https://doi.org/10.1145/3297858.3304007 http://dl.acm.org/citation.cfm?doid=3297858.3304007
https://doi.org/10.1145/3297858.3304007 http://dl.acm.org/citation.cfm?doid=3297858.3304007
http://www.nature.com/articles/299802a0
http://www.jku.at/iic/eda/ibm_qx_mapping. http://ieeexplore.ieee.org/document/8342181/
http://www.jku.at/iic/eda/ibm_qx_mapping. http://ieeexplore.ieee.org/document/8342181/
https://arxiv.org/abs/1808.05661 http://dl.acm.org/citation.cfm?doid=3287624.3287704
https://arxiv.org/abs/1808.05661 http://dl.acm.org/citation.cfm?doid=3287624.3287704

Acronyms

CPB Cooper Pair Box. 26

IQT IBM QX Transpiler. 29

NISQ Noisy Intermediate-Scale Quantum. 1, 31

NMR Nuclear Magnetic Resonance. 33

ORM Object-Relational Mapper. 86

QC Quantum Computer. viii, 18, 19, 21, 22, 24, 25, 26, 27, 32, 33, 34, 37, 40, 75, 85

QFT Quantum Fourier Transform. 57, 58, 96, 97

QLP Quantum Layout Problem. vii, 4, 5, 6, 7, 8, 9, 32, 33, 34, 38, 39, 41, 43, 47,

71, 73, 76, 83, 85, 87

QLP-TB Quantum Layout Problem Testbed. vii, ix, 54, 55, 58, 62, 63, 64, 65, 66,

67, 69, 70, 71, 73, 74, 76, 78, 79, 82, 85, 86, 87, 93, 94, 97, 98

QLS Quantum Layout Solver. vii, ix, 8, 39, 50, 56, 57, 58, 76, 82, 84, 85, 90, 94, 96

V2P Virtual-to-Physical. 4, 5, 6, 33, 34, 36, 59, 60

125

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

Quantum Transpiler Optimization:
On the Development, Implementation, and Use of a Quantum Research

Testbed

Brandon K Kamaka

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-029

AFRL Quantum Science & Technology
525 Brooks Rd.
Building 3, Suite H6-2
Rome NY 13441
DSN 587-2504, COMM 315-330-2504
Email: afrl.ritc@us.af.mil

AFRL/RITQ

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Quantum computing research is at the cusp of a paradigm shift. As the complexity of quantum systems
increases, so does the complexity of research procedures for creating and testing layers of the quantum software stack.
However, the tools used to perform these tasks have not experienced the increase in capability required to effectively
handle the development burdens involved. This case is made particularly clear in the context of IBM QX Transpiler
optimization algorithms and functions. IBM QX systems use the Qiskit library to create, transform, and execute
quantum circuits. As coherence times and hardware qubit counts increase and qubit topologies become more complex, so
does orchestration of qubit mapping and qubit state movement across these topologies. The transpiler framework used to
create and test improved algorithms have not kept pace. A testbed is proposed to provide abstractions to create and test
transpiler routines. The development process is analyzed and implemented, from design principles through requirements
analysis and verification testing. Additionally, limitations of existing transpiler algorithms are identified and initial
results are provided that suggest more effective algorithms for qubit mapping and state movement.

Quantum Computing, Transpiler Optimization, IBM QX, Qiskit, qisquick

U U U UU 136

Laurence D Merkle, AFIT/ENG

(312) 785-3636 x4526 Laurence.Merkle@afit.edu

	Quantum Transpiler Optimization: On the Development, Implementation, and Use of a Quantum Research Testbed
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Background
	Research Objectives
	Limitations
	Document Overview

	Background and Literature Review
	Overview
	Quantum Computation Model
	Hilbert Spaces
	Qubits
	Unitary operators
	Measurement Operators
	Quantum Algorithms
	Quantum Annealing
	Quantum Gate Model

	Qiskit and IBM QX Architecture
	Terra
	Aer
	IBM Quantum Hardware

	IBM QX Transpilation
	Quantum Layout Problem
	Optimization Techniques (Previous Work)

	Summary

	Methodology
	Overview
	Approach
	Test Bed Design Principles and Goals
	Design Principles
	Requirements Analysis

	Algorithm Overview
	Initialization and Pre-processing
	Connectivity Component
	Distance Component

	Benchmarks and Evaluation
	Evaluation Circuits
	Evaluation Transpiler Configurations

	Summary

	Results and Analysis
	Overview
	qlptb Design Implementation
	Design Principle Analysis and Results
	qlptb Requirements Results
	Verification Results
	qlptb Results Summary

	qls Heuristic Results
	Summary

	Conclusions
	Overview
	Contribution
	Future work on the qlptb
	Future Work on the qlp
	Global Improvements
	Connectivity Improvements
	Distance Improvements

	Concluding Remarks

	Quantum Circuits Provided by the qlptb
	Experiment Script for the qlptb
	Code Snippets
	Bibliography
	Acronyms

