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Abstract

Currently, Unmanned Aerial Vehicles are unsafe to refuel in-flight due to the commu-

nication latency between the UAVs ground operator and the UAV. Providing UAVs

with an in-flight refueling capability would improve their functionality by extending

their flight duration and increasing their flight payload. Our solution to this problem

is Automated Aerial Refueling (AAR) using stereo vision from stereo electro-optical

and infrared cameras on a refueling tanker. To simulate a refueling scenario, we use

ground vehicles to simulate a pseudo tanker and psuedo receiver UAV. Imagery of

the receiver is collected by the cameras on the tanker and processed by a stereo block

matching algorithm to calculate a position and orientation estimate of the receiver.

GPS and IMU truth data is then used to validate these results.
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INFRARED AND ELECTRO-OPTICAL STEREO VISION FOR AUTOMATED

AERIAL REFUELING

I. Introduction

Unmanned Aerial Vehicles (UAVs) are a relatively new technology that has seen

a great increase in use over the past couple of decades. The United States Air Foce

(USAF) relies on UAVs for accomplishing several types of missions, such as, surveil-

lance or combat support. As technology improves, so do the capabilities of UAVs.

For that reason, the use of UAVs will only continue to increase. UAVs do not have an

on-board pilot, but are instead piloted by an operator at a remote location. UAVs,

however, are set apart from manned aircraft by the fact that UAVs are not able to

be refueled in-flight. Aerial refueling has a long history and is a regularly employed

capability of the USAF. It is only reasonable that this technology should be extended

to UAVs given their importance to the USAF.

In-flight refueling via the USAF’s boom method requires precise movements from

the receiver aircraft, which UAVs are incapable of performing. The limiting factor

in the UAVs maneuverability is in the communication latency between the UAV and

its remote operator. The operator is unable to make the required maneuvers as

quickly as needed, which makes aerial refueling for UAVs dangerous. Providing the

capability of aerial refueling to UAVs would have many benefits. Aerial refueling is

often used to increase the flight duration of the aircraft being refueled and would

certainly increase a UAVs flight duration. If the flight duration of the UAV can be

increased, other possibilities are opened to the UAV, such as increasing the UAV’s

weapon payload. In-flight refueling would also reduce the cost associated with a UAV

1



mission by eliminating the need to return to the ground for refueling.

The primary solution offered for solving this UAV problem is to make aerial refu-

eling automated through a process called Automated Aerial Refueling (AAR). There

have been multiple methods offered for accomplishing AAR, however, there is a fun-

damental problem that must be addressed to make AAR possible. The fundamental

problem is that the relative position and orientation between the tanker and the re-

ceiver must be known. If this unknown can be solved, then the tanker can transmit a

refueling flight path to the UAV with low latency, ultimately automating the refuel-

ing process. This research focuses on determining the position and orientation of the

UAV from the tanker’s perspective.

1.1 Problem Statement

The fundamental AAR problem boils down to answering the following question:

how can the position and orientation of the UAV be determined? To answer that

question, this research implements a stereo computer vision approach. In general, the

stereo computer vision approach addresses the problem by reconstructing a 3D point

cloud from a 2D image and finding the position and orientation estimates of the UAV

from this point cloud. The first goal of this research was to validate electro-optical

and infrared stereo vision systems for producing accurate estimates by recreating an

aerial refueling scenario on the ground. The second goal was to validate the estimates

using a highly accurate truth source, providing a way to make error assessments. The

last goal was to create a framework for properly collecting stereo vision data for

upcoming flight tests involving two C-12Cs acting as pseudo tanker and receiver.

2



1.2 Assumptions

Certain assumptions had to be made to formulate reasonable experiments. Since

ground experiments would take place on a flat surface, it was assumed that an air-

craft being refueled would approach the tanker with a linear flight path. The linear

flight path aids in equalizing the two situations because the receiver in the ground

experiments is level with the ground plane. Next, it was assumed that the receiver

would make contact with the tanker’s refueling source at approximately 30 meters

from the cameras. This assumption was made since the distance at contact point is

an essential part of aerial refueling. Finally, it was assumed that the receiver aircraft

would approach the tanker with the same look direction as the tanker. By assuming

the look direction, a basic estimate can be made for the orientation of the receiver.

This basic estimate serves as a starting point for computing the complete orientation

estimate.

1.3 Contributions

The most impactful contribution of this research is the validation of IR stereo

vision for pose estimation. IR stereo vision is a new method for finding pose esti-

mation, and the results of this research show that IR stereo vision is highly accurate

for pose estimation. Additionally, pose estimation using EO stereo vision is further

validated in this research. Both the IR and EO results are consistent with each other,

further showing that each system can compute an accurate pose estimate. The next

contribution is the use of an Inertial Measurement Unit system combined with GPS

to serve as the truth system for analyzing the results. This truth system provided a

method for determining error in the pose estimates and for validating the results from

both the IR and EO stereo vision systems. Finally, the experiments were completed

in the real world and were modeled as closely as possible to a real refueling scenario.

3



Therefore, these results are more applicable to AAR than results produced only from

simulation.

1.4 Overview

This Thesis has five chapters, which are the Introduction, Background, Methodol-

ogy, Results, and Conclusion. The current chapter, the Introduction, introduces the

research problem. The Background chapter studies the previous work that has been

completed in the AAR field. The Background also evaluates all of the techniques for

creating pose estimates using stereo vision. The Methodology chapter provides an

in-depth account of all of the processes and mechanisms used to setup experiments,

collect data, and analyze the data. The Methodology outlines the ground experiments

and how they were designed and completed. Additionally, the Methodology discusses

virtual modeling of the experiments so they could be visualized and the results could

be produced. The Results chapter lays out the pose estimation error from the ex-

periments and discusses potential sources of error. Finally, the Conclusion chapter

explores the impact of the results and provides improvements that can be made to

the Methodology in future work.
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II. Background

2.1 Automated Aerial Refueling

The USAF is a world leader in air dominance and aircraft superiority. USAF

aircraft are known for being some of the most capable and powerful aircraft known

to the world. Although there are many technical and non-technical factors that

contribute to the high performance of USAF aircraft, one of those factors is aerial

refueling. Aerial refueling is the process of transferring fuel from one aircraft to

another while in-flight. The aircraft supplying the fuel is defined as the tanker and

the aircraft receiving the fuel is defined as the receiver.

There are two primary methods of aerial refueling within today’s standards, the

boom method and the probe-and-drogue method [5]. The probe-and-drogue method

uses a long flexible pipe that transports fuel to a drogue at the end of the pipe. The

receiver aircraft then has a probe that presses into the drogue to begin refueling.

The boom method utilizes a rigid mechanical arm, called the boom, that extends out

from the rear of the tanker. To refuel an aircraft, the boom connects to a refueling

receptacle on the receiver and passes fuel from the tanker to the receiver through the

boom. Currently, a boom operator aboard the tanker is the person responsible for

mechanically operating the boom. The boom method is capable of refueling aircraft

of various types, sizes, and shapes as seen in Figure 1 and Figure 2. The boom method

will be the primary aerial refueling method considered in this research.

The boom method does have its challenges, however. The volume of space that an

aircraft occupies while being refueled in-flight is called the refueling envelope. There-

fore, the refueling envelope is not constant and depends on the size of the aircraft

being refueled. Within the refueling envelope, the receiver must make precise move-

ments to receive the boom and to maintain contact with the boom during refueling.
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Figure 1. Cargo Plane Aerial Refueling via Boom Method from USAF Tanker [1]

Figure 2. Nearby View of USAF Aircraft Aerial Refueling [2]
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Any aircraft that is incapable of performing the precise movements required for re-

fueling would not be able to be refueled in-flight. This is the problem that (UAVs)

face.

UAVs, by definition, do not have a pilot on-board. Instead, a UAV is controlled

either autonomously or by a ground based operator. As outlined in [6], UAVs expe-

rience various forms of communication latency between the UAV and its operator.

This communication latency prevents the UAV from making the precise movements

required for aerial refueling. Therefore, Automated Aerial Refueling (AAR) is offered

as a solution to the in-flight UAV refueling problem. AAR seeks to determine the

position and orientation of the receiver, such that a flight path can be communicated

directly from the tanker to the receiver. The receiver can then autonomously follow

the communicated flight path in a precise manner to safely be refueled. For the pur-

poses of this research, the position and orientation of an object collectively is defined

as the object’s pose.

Determining an aircraft’s pose for AAR is accomplished through a means of pose

estimation. If an inaccurate pose estimate is computed, the receiver would risk follow-

ing an incorrect flight path, which would jeopardize the in-flight refueling. Therefore,

the goal of pose estimation is to calculate the aircraft’s pose as accurately as possible

to the aircraft’s true pose. This research focuses on using stereo vision as the method

to accurately determine a receiver’s pose. The use of stereo cameras for pose esti-

mation is made possible through the equipping of stereo cameras on next-generation

tankers, as indicated in [7].

2.2 Stereo Computer Vision

The key to pose estimation is through stereo vision is computer vision. Computer

vision in its simplest terms is the modeling of imagery into a 3D environment using
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computer technology [8]. Computer vision seeks to model the environment in a man-

ner similar to how human sight works. The human brain uses imagery from eyes and

“computes” a 3D environment that is seen by the human. However, computer vision

is challenged with determining many unknowns that makes modeling an environment

to the accuracy of a human eye very difficult [8].

The image source is an important aspect of computer vision. Cameras, whether

virtual or physical, are the most common source of imagery. Monocular vision is

one form of vision which captures imagery using a single image source or camera.

Likewise, stereo vision uses multiple image sources or cameras for capturing imagery.

Therefore, stereo computer vision is the art of modeling a 3D environment using

multiple sources of vision. For computer vision to be achievable, the stereo vision

system itself must be modeled as described in Sections 2.3 - 2.5.

2.3 Pinhole Camera Model

Modeling the stereo vision system often begins with the pinhole camera model.

At a basic level, an image is simply a set of pixels from the viewpoint of a computer.

Therefore, much work must be done to take sets of pixels (images) and turn them

into a 3D environment. The pinhole camera model translates properties of a camera

into geometric and mathematical properties. These geometric and mathematical

properties can then be used to determine unknowns about the pixels in the image.

This translation of properties is shown in Figure 3.

The pinhole camera model is based on a tiny pinhole that defines how light passes

through the aperature [9]. Referring to Figure 3, the camera’s focal point Fc is

centered in the pinhole camera model and defines the optical axis. The optical axis,

Zc, then passes through the center of a pinhole image plane at the principal point.

Finally, refracted light from some point P in 3D space passes through a point (u, v)
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Figure 3. Pinhole Camera Model [3]

on the pinhole image plane. The point (u, v) on the image plane dictates the pixel

in an image that shows point P . Ultimately, this geometric model helps extract a

pixel’s location in 3D space.

2.4 Epipolar Geometry

Since stereo vision makes use of multiple cameras, the geometric properties of each

camera’s pinhole model need to be modeled in the same system. This research utilizes

a stereo vision system with two cameras, therefore, Epipolar Geometry can be used

to relate the geometry of the first camera to the second camera. More specifically,

Epipolar Geometry will relate the pixels of each camera that correspond to the same

point in 3D space.

Given a point q in 3D space, an “epipolar” plane can be drawn amongst the points
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Figure 4. Epipolar Geometry [4]

q, o1 (the focal point of the first camera), and o2 (the focal point of the second camera)

[10]. The plane must then intersect the first camera’s image plane at some point p1

and e1 and as well as the second camera’s image plane at some point p2 and e2. The

goal then becomes determining what point p2 corresponds to a given point p1. To

help determine p2, the epipolar lines l1 and l2 are defined as the lines along which

the epipolar plane intersects each camera’s image plane. An epipolar baseline is then

drawn as the line that connects the focal points of each camera and intersects the

epipolar plane at points e1 and e2. Finally, point p2 can be solved geometrically if

the epipolar baseline, camera focal lengths, and depths of the points are known. the

geometric relationship between p1 and p2 ultimately relates the position of q in 3D

space to the cameras.
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2.5 Camera Calibration

Camera calibration is a process that finds the intrinsic and extrinsic properties of

stereo cameras. The intrinsic properties are the focal length and the principal point

location specific to an individual camera. The extrinsic properties are the properties

that correspond to both stereo cameras, such as the distance between each camera’s

focal point. More specifically, camera calibration determines the rotation and trans-

lation (epipolar baseline) from the first camera to the second camera, allowing the

corresponding points in each camera’s image plane to be found.

The method for camera calibration is given by Zhang in [11]. Zhang’s method

begins with taking images of patterns with known dimensions. An example of a good

pattern is a checkboard, where the length of each square box on the checkerboard is

constant and the length is a known value. For this process to work, multiple images

should be taken from each camera with the checkerboard at different orientations.

The corners of each square can then be visibly matched between the corresponding

images from the two cameras at specific pixels. Having multiple images at multiple

orientations reduces the error that the pixels chosen as the corners from the two cam-

era’s images are not the exact same point in 3D space. In [11], Zhang also describes

how to mathematically find the rotation matrix and translation vector between the

two cameras from the matched corners in the images. An example of images taken

for calibration for this research are shown in Figure 5.

2.6 Image Rectification

Image rectification is the process of rotating corresponding images from the two

cameras such that the epipolar lines become horizontal [8]. If comparing multiple

points on the same images, then multiple epipolar lines will then appear horizontal

and parallel to each other. Image rectification is useful because it simplifies the feature
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(a) Left Stereo Image (b) Right Stereo Image

Figure 5. Stereo Images from a Left and Right Infrared Camera

matching process by using the parallel lines to match features between the images.

The center of the rectified images is also useful as a reference point for centering the

3D reconstruction between the cameras. At this stage, the camera calibration and

rectified images can be used to reconstruct the pixels of each image into points in 3D

space. The collective reconstructed pixels then forms a point cloud in 3D space.

2.7 Registration

From the standpoint of AAR, images of the receiver being refueled are captured

and the reconstructed point cloud represents the receiver. The receiver point cloud

is called the sensed model. However, the sensed model is simply a set of (x, y, z)

position vectors at this point. The data from the sensed model needs to be turned

into a pose estimate of the receiver. Registration is the process of matching 2D or

3D objects using features [8], or in this case using the point cloud’s individual points.

Registration helps determine a pose estimate by taking a reference model of the object

and matching it to the sensed point cloud. The resulting pose of the reference model

is the pose estimate of the object. In the case of AAR, the object is the receiver.

One mathematical process for completing registration is through an Iterative Clos-
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est Point (ICP) algorithm. An ICP algorithm can work by either matching the sensed

point cloud to the reference point cloud or vice versa. Since the reference point cloud

is matched to the sensed point cloud in this research, this is the perspective that will

be used. First, each point in the reference point cloud is compared to each point

in the sensed point cloud to find the closest point. After the closest point is found

for each point in the reference point cloud, the rotation and translation between the

points is found. The root mean square (RMS) distance between each of the nearest

points is also calculated as the error. The rotation and translation that reduces the

RMS error from the current RMS error is then applied to all of the points and the

process is repeated. The registration is complete when the RMS error cannot be

reduced any further. Although a solution may be found, the solution may be a local

minima for the RMS error and not the global minima, which is the most accurate an-

swer. Symmetrical objects are good examples of objects that can have local minima

errors during registration. About the axis of symmetry, the object may be incorrectly

oriented while having a RMS error local minima that prevents the error from being

corrected. Examples of ICP implementations are given by [12, 13, 14].

2.8 Truth Sources

Modeling the physical world is a difficult process and has error associated with

it. For example, the lenses on the stereo cameras may distort the resulting images.

Therefore, correction needs to take place to eliminate distortion error. The camera

calibration process can also introduce error if the checkerboard corners are not per-

fectly aligned in the calibration. Therefore, the sensed model could have rotation

and translation error associated with it. Ideally, error is recognized and reduced to

0. Nevertheless, it is important to compare the pose estimate for the sensed model

with a truth source for the receiver’s pose. Truth sources themselves may have known
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error, but the truth source’s known error allows one to quantify the total error of the

system.

2.9 Previous and Related Work

In the past two decades, much research has been done to solve the AAR problem

and many solutions have been offered. In [15], Thomas lists various methods that

have been researched to solve the AAR problem, such as using radar, GPS, vision

navigation, electro-optical systems, and systems that combine more than one of these

approaches. These solutions have eliminated parts of the AAR problem, however,

no solution has completely solved the AAR problem. In this section, the previous

research conducted on the AAR problem and the work related to the research in this

thesis will be discussed.

Simulation Environments.

Some of the earliest AAR research began with setting up simulation environments

for modeling the AAR problem and using the simulation to discover solutions to the

problem. Although many AAR researchers use simulation environments to research

specific solutions, the authors in [16, 17] used their simulation environments as general

testbeds for solving the AAR problem. These simulation environments were impor-

tant for modeling the AAR problem and gathering information on the problem. In

[18], An used a simulation environment as well, however, An’s main focus is on a

UAV’s relative position-holding while being refueled.

GPS and INS.

One of the most common solutions to estimating pose for the AAR problem is

using a combination of GPS and Inertial Navigation Systems (INS) with a Kalman
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filter for filtering the signals. Some early work in the realm of AAR used only GPS in

their solutions. Ross uses GPS in [19] to gather a Differential GPS (DGPS) solution

between the tanker and receiver and to improve aircraft control. Dibley [20] also

used relative GPS but used it for real-world probe-and-drogue tests by sending the

calculated relative GPS solution from the tanker to the receiver. Additionally, Dibley

found success using relative GPS during the real-world tests.

In [21], Williamson uses a combination of GPS and INS with an Extended Kalman

Filter (EKF). Williamson then combines the GPS/INS solution with electro-optical

sensors for an improved result. Liu [22] additionally provides methods for using

GPS/INS with a Kalman filter as a solution. Similar to [21, 22], Johnson [23] simulates

an INS with an EKF and combines that solution with simulated stereo vision to find

a pose estimate that does not rely on GPS. Zhu [24] also searched for a solution that

did not require GPS by complementing a GPS/INS with an EKF solution with an

Infrared Search and Track (IRST) solution.

LiDAR.

Light Detection and Ranging (LiDAR) is another method used by researchers to

either find a pose estimate of the receiver or to guide a receiver to the tanker. In

the case of [25], Chen uses a 3D flash LiDAR camera to detect the drogue for a

probe-and-drogue refueling scenario. Once the drogue is detected, the receiver can

be guided to the drogue using the information from the LiDAR. Curro [26] also uses

LiDAR to aid in navigation but does not limit the research to the probe-and-drogue

method for refueling.
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Features and Markers.

Another popular solution to the AAR problem is using features or markers for

guiding a receiver to a tanker. Although most feature/marker solutions use a simu-

lation environment, Deng [27] uses binocular vision from a small handheld drone to

evaluate position using markers on the handheld receiver drove. The computer algo-

rithms in [27] use the sensed markers on the top of the receiver drone and output a

position that can be used for navigation. Duan [28] also used markers on the receiver,

however, Duan used real physical cameras pointed at screens to capture imagery of a

receiver in a simulation environment. In [29, 30, 31, 32, 33, 34], the researchers use a

mono vision camera on the receiver to either detect corners on the tanker or detect

various types of markers placed on the tanker. Xin [35] uses a similar approach but

instead uses an infrared mono camera to detect features. And in [36], Valasek uses a

sensor on the receiver to detect visual beacons on the drogue for a probe-and-drogue

refueling.

Stereo Vision.

Just as stereo vision is the focus of this research, others have also used stereo

vision to compute pose estimates of the receiver. In Parson’s work [7], Parson uses

stereo cameras on a tanker to estimate the pose of the receiver in a 3D virtual world.

Paulson [37] uses an approach similar to [7] but focuses on mitigiating the effects of

the boom occluding the receiver for boom refueling. For both [38, 39], real-world

stereo cameras combined with computer vision were used to find pose estimates of

a receiver. In [38], Seydel created flight paths with a handheld drone and computed

the pose estimate of the drone from the stereo vision imagery. Seydel also used Vicon

chamber data for the drone as a truth source for validating the pose estimate. Stuart

[39] also used stereo vision but used it with both electro-optical and infrared stereo
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vision. Additionally, Stuart was able to capture real imagery of an aircraft in-flight.

However, Stuart’s truth source for evaluating the pose estimates was only accurate

to within 1.5 feet and Stuart was not able to evaluate the infrared imagery due to

complications.

2.10 Discussion on Previous Work Methods

Although GPS has been shown to work as a solution to the AAR problem, the

focus of this research is on finding a solution that does not depend on GPS. In certain

environments, GPS may not be available, so the ideal solution to the AAR problem

is one that works in any environment. Additionally, many previous researchers have

focused their research on the probe-and-drogue refueling method. As stated earlier,

this research is related to the boom method due its ubiquitous use by the Air Force.

And finally, solutions that use features or markers are not considered due to the

tremendous burden it would place on the Air Force to retrofit its fleet.
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III. Methodology

To make AAR a possibility, real-world tests must be conducted. And although it

may not be possible to gather real tankers and receivers for the tests, the tests must

resemble an aerial refueling as closely as possible. In preparation for the future AAR

flight test, experiments were prepared and conducted with the flight test in mind. All

hardware and software for the stereo vision system were designed to be used for the

flight test with minimal or no changes. Pseudo refueling experiments were completed

on the ground using the entire stereo vision system to evaluate the system and ensure

its capability for the AAR flight test.

3.1 Stereo Vision System

At the heart of the stereo vision system are the stereo cameras. In an attempt to

match stereo vision systems used on next-generation tankers, separate stereo vision

systems comprised of stereo electro-optical (EO) cameras and infrared (IR) cameras

were used as the stereo vision cameras. Using both EO and IR cameras increases

the variability of the experiments and provides multiple data collection sources for

analyzing. Additionally, the use of IR cameras provides the opportunity to validate

stereo IR cameras as a viable option for stereo vision in the AAR domain.

Allied Vision® Proscilica GT1290C EO cameras were chosen for the EO stereo

vision system. The GT1290Cs capture 24-bit RGB images at a resolution of 1280x960

and have adjustable focal points and aperatures. The adjustable focal point has the

advantage of setting the focus to infinity to maximize image clarity for objects at

a distance, since a receiver being refueled will be at a distance of greater than 30

meters prior to contact with the refueling boom. Additionally, the cameras will not

auto focus, which would interfere with the camera calibration. Since the flight test is
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a day-time flight test, the adjustable aperature enabled the aperature to be closed to

its maximum closure in preparation for the flight test.

The IR cameras chosen for the IR stereo vision system were two long-wave infrared

(LWIR) cameras. The image resolution for the IR cameras is 1024x768 and the images

produced are 16-bit grayscale PGM images. Like the EO cameras, the IR cameras

were also focused to infinity. And although the image resolution of the EO and IR

cameras is not the same, both stereo pairs have the same 16:9 aspect resolution and

56 degree field of view. Both the GT1290C EO cameras and the IR cameras are

capable of capturing imagery at a rate of 30hz. Additionally, both sets of cameras

are equipped with gigabit network outputs that interface with gigabit ethernet. The

gigabit outputs are important for being able to transfer up to 30 images per second.

When an image is captured, it is transfered via the gigabit output to a data collection

computer where it is saved.

Figures 6 and 7 show the EO and IR stereo cameras. In Figure 7 the cameras are

mounted to a bracket. This bracket is the same bracket that is used for the future

flight test. The bracket mounts to the underside of the C-12 to capture imagery at a

downward look angle conducive for refueling. The downward look angle provides the

ability to view the receiver aircraft from a perspective near the boom. The bracket

was machined for a 0.5 meter baseline between each camera pair. Therefore, the IR

cameras are 0.5 meters apart and the EO cameras are 0.5 meters apart. The expected

epipolar baseline after camera calibration is then 0.5 meters for each camera pair.

3.2 Trigger Board

Even though the cameras are capable of capturing images at 30hz each, the stereo

cameras act independently and will not capture the images at the exact same time.

However, camera calibration and image rectification requires image pairs to be cap-
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Figure 6. From the Left to the Right: Left IR Camera, Left EO Camera, Right IR
Camera, Right EO Camera

Figure 7. Cameras Mounted to Test Bracket in the Same Order as Figure 6

tured at the exact same moment. Otherwise any change in the image plane of the

cameras between captured images will result in error. The solution is to send a 30hz

pulsed signal to each camera at the same time and to trigger an image capture when

a pulse’s edge is received by the camera. Therefore, all 4 cameras will maintain a

synchronized 30hz image capture rate.

The pulsed signal was created through the use of a trigger board specifically built

for the flight test. The trigger board is designed to receive an RS-232 serial input

signal from an FTDI USB cable connected to the data collection computer. Prior

to capturing images, the cameras are connected to the trigger board by coax cables

with BNC connections on the trigger board. When ready to collect imagery, the
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data collection computer’s CPU transmits the serial 30hz signal through the FTDI

USB cable to the trigger board. The trigger board then sends the 30hz pulsed signal

to each of the cameras to capture images. Although the IR and EO stereo systems

are independent from each other, each stereo system receives the same pulses and

triggers at the same time. Each set of images is also timestamped with the CPU

time, which allows the IR and EO images to be compared for data analysis based on

their timestamp.

Figures 8 and 9 show the trigger board and coax trigger cables respectively. Both

the trigger board and trigger cables were designed to specification for the flight test.

Figure 8. Trigger Board with FTDI USB Cable and Power Adapter

Figure 9. Coax Trigger Cables for Each Camera

3.3 Calibration

The imagery captured is only useful if the cameras are calibrated, providing the

ability to extract features and 3D points from the rectified images. A metallic checker-

board with 30 millimeter square tiles provided the means for calibrating the cameras.
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One set of tiles used the metal surface of the board as the tile. The other set of

tiles used a white heat insulating paint. On the back of the checkerboard is a black

painted surface that absorbs IR heat. The checkerboard was specifically designed in

this manner so it could be used to calibrate both the IR and EO cameras at the same

time. To the EO cameras, there is a clear color distinction between the metal tiles

and the white paint tiles. To the IR cameras, the metal tiles would emit a bright

heat signature due to the black backing and the white paint tiles would appear nearly

heat-less. Therefore a contrast existed between the tiles for both the IR and EO

images.

For calibration images, it is not useful to use the 30hz pulsed signal because the

total number of images would amass quickly. Instead a software module was utilized

that used the FTDI drivers to only send a pulse on the FTDI cable upon key press via

the data collection computer. The key press method provided an easy way to move

the checkerboard to different positions and orientations and capture an image when

ready. A sample of the calibration images taken for each camera is shown in Figure

10. For reasons discussed later in this chapter, the cameras are angled at an upward

direction for the calibration images. However, the upward angle made it difficult

to capture images with the checkerboard covering the entire image plane for each

camera. Therefore, the camera calibration quality may not have been as accurate as

possible. Error in the camera calibration is further discussed in the Results chapter.

The intrinsic and extrinsic parameters were calculated for each stereo vision system

using the MATLAB® Camera Calibration Toolbox. Within the Camera Calibration

Toolbox, MATLAB® offers an app named the Stereo Camera Calibrator, which is

specifically designed for stereo cameras. The Stereo Camera Calibrator takes a set

of images from the left camera and the corresponding set of images from the right

camera as input. Additionally, the 30 millimeter length of each checkerboard tile is
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(a) Left EO Camera (b) Right EO Camera

(c) Left IR Camera (d) Right IR Camera

Figure 10. Calibration Images for EO and IR Cameras

input. The Stereo Camera Calibrator then finds the checkerboard tile corners for

each image and calculates the pixel error for the images as seen in Figure 11. Finally,

the intrinsic and extrinsic parameters are calculated and exported.

3.4 Truth Source

Creating a pose estimate of a receiver is only useful if there is a truth source to

validate the estimate. To produce accurate orientation and position truth data for the

psuedo receiver that is used during experiments, the Geodetics, Inc. Geo-RelNAV®

system was utilized. The Geo-RelNAV® system creates a differential orientation and

DGPS solution between a Primary system and Secondary system. Both the Primary
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Figure 11. MATLAB ® Stereo Camera Calibrator Output for EO Cameras

and the Secondary systems are equipped with their own KVH1750 Inertial Measure-

ment Units (IMU) and GPS units. The KVH1750 uses a Laser Ring Gyroscope to

collect IMU data and the GPS data is collected through a GPS antenna. Together,

the IMU and GPS data is used to calculate the pose truth data via a tightly coupled

EKF. The Primary and Secondary systems both collect and save their IMU and GPS

data for processing. The Secondary system, identical to the Primary system, is shown

in Figure 12.

Prior to using the Geo-RelNAV® system, the Primary and Secondary systems

must be calibrated. Each unit must receive GPS signals from the GPS signal for

approximately 1 minute before it has a fix on the GPS position from the satellite

constellation. The KVH1750 IMU is initially required to be coarse aligned. Coarse

alignment is an initial attidude estimate made by each unit after the IMU has been

held stationary for approximately 1 minute. After coarse alignment is achieved, the
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Figure 12. Secondary Geodetics Geo-RelNAV® System

IMU must be fine aligned. Fine alignment requires the IMU to be moved at a steady

fast-walking pace while making yaw movements. The yaw movements are accom-

plished by moving in approximately 15x15 meter rectangular patterns. Fine align-

ment typically finishes after completing 3-4 of the rectangular patterns. Once fine

alignment is complete, the attitude output from the IMU is highly accurate but the

solution may drift over time if the IMU does not move or is moved with a constant

bias. The Geodetics software shown in Figure 13 shows the attitude output from

the IMU after fine alignment has completed. The top right box in the figure shows

a top-down view of the rectangular patterns that were traversed. Additionally, the

Geodetics software will indicate when a GPS fix is acquired and when coarse and fine

alignment are complete via th Quality value in the bottom left of the figure.

A contributing factor to using the Geo-RelNAV® system was its high level of ac-
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Figure 13. An Attitude Recording of the Primary Geo-RelNAV® System after Fine
Alignment

curacy. The GPS portion of the system is advertised to have a 5cm/10cm GPS error

for L1/L2 respectively when used in differential mode [40]. And the IMU portion has

an advertised 0.01 degree to 0.05 degree error for differential solutions [40]. Because

the GPS antenna and IMU are not co-located, the Geo-RelNAV® system must ac-

count for the difference in position between the GPS and IMU. The Geo-RelNAV®

system accounts for this difference by using the measured (x, y, z) lever-arm vector

between the GPS antenna and the IMU and computing all data relative to the IMUs

position.

All data collected for the experiments was done using the system in differential

mode, which is the mode the system will use for the flight test. The differential

orientation and position solutions are calculated by post-processing through filtering

techniques completed by Geodetics, Inc. For the data collected in the experiments,

the GPS data was collected at 10hz and the IMU data was collected at 100hz.
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3.5 GPS Time Server

The accuracy of the Geo-RelNAV® system is useless if the pose data from the

sytem is not time aligned with the imagery taken from the stereo vision systems.

Therefore, each image needs to be time stamped with a GPS time that correlates to

the GPS time for the each data point in the truth pose data. The time stamping

is accomplished using a TM2000A time server made by Time Machines Corp. The

TM2000A time server receives GPS signal using a GPS antenna and supports the

Precision Time Protocol (PTP) and Network Time Protocol (NTP). The protocols

are used to turn the TM2000A into a time server with GPS time.

Prior to collecting imagery, the data collection computer is connected to the

TM2000A via ethernet. Once connected, the internal clock for the data collection

computer is synced with the GPS time hosted on the TM2000A. The data collection

computer can then be disconnected from the TM2000A, however, the internal clock

then relies on its own accuracy to keep its clock time close to GPS time. When first

synced, the data collection computer’s clock is accurate to within 10-6 seconds. Once

synchronized to 10-6 seconds, the data collection machine’s Xeon processor is assumed

to not drift by more than 1/30 of a second over the 2 hours of image collection. The

TM2000A itself is handheld in size and requires a power connection to operate.

3.6 Pseudo Tanker

A successful pseudo refueling experiment depends on properly establishing a pseudo

tanker and pseudo receiver. The refueling experiments are conducted on the ground,

therefore, the pseudo tanker was designed using a wagon that could securely support

the vision system, the data collection computer, the Primary Geo-RelNAV® system,

and a power supply system. Additionally, the GPS antenna was placed above all of

the equipment to prevent the blocking of GPS signals traveling to the GPS antenna.
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Figures 14 and 15 show the pseudo tanker with the IMU axis attached.

Figure 14. Rear View of Pseudo Wagon Tanker with Primary IMU Axis

As noted previously, the cameras are angled upward. The upward angle was

deliberately designed to increase the amount of sky shown in the background of the

images. Having the sky in the background is important for reducing the number of

features in the images from the ground. This setup also attempts to better replicate

an aerial refueling operation since the receiver is surrounded by the sky during the

refueling. Additionally, the ground shown in the background of aerial refueling images

is a great distance from the receiver itself.
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Figure 15. Side View of Pseudo Wagon Tanker with Primary IMU Axis

3.7 Pseudo Receiver

The next step in the design process was to develop a pseudo receiver for the ground

experiment. Since the cameras on the pseudo tanker are angled upward, the pseudo

receiver needed to be hoisted up into the air to be shown in the image plane of the

cameras. The pseudo receiver was designed using another wagon, but with a wooden

platform lofted into the air using steel pipes. The platform was needed to secure the

Secondary Geo-RelNAV® system on the receiver. The receiver was then designed

with a pseudo wing and pseudo body using wood boards. After various pattern

designs for the wing and body, a random shapes pattern was affixed to the wing and

body to increase feature detection in the images. The random pattern replicates the

fact that a receiver aircraft has various corners, painting, rivets, and other features
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for detection. Otherwise, the boards by themselves did not produce many features.

Figures 16 and 17 show different views of the pseudo receiver. Refer to Figure 12 for

an up-close view of the Secondary Geo-RelNAV® system on the pseudo receiver.

Figure 16. Front View of Pseudo Receiver

When a receiver approaches the tanker with a constant approach, the look direc-

tion of the stereo vision system will intersect with the receiver at an angle. Therefore,

the wing on the pseudo receiver was intentionally angled so the look direction of the

stereo cameras on the pseudo tanker would intersect the pseudo receiver wing at an

angle throughout an experiment. Figure 18 shows an example of camera look di-

rections from a tanker and the pseudo tanker. The specific angle was not modeled

because the angle of intersection with the receiver is not always going to be the same

angle for every refueling approach. The pseudo receiver’s wing was simply modeled
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Figure 17. Side View of Pseudo Receiver with IMU Axis

to have an angle of intersection because a tanker’s cameras will intersect the receiver

at an angle during an aerial refueling.

3.8 Experiments

The actual experiments were completed in a parking lot with an open field in

the field of view from the cameras. The pseudo tanker was set on one end of the

parking lot with the stereo vision cameras’ look direction facing the pseudo receiver.

In total, 8 test runs were completed. For each test run, the pseudo tanker remained
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Figure 18. Camera Look Directions and Receiver Intersection

stationary while the pseudo receiver approached the pseudo tanker. Throughout

approach, the stereo vision system captured imagery of the pseudo receiver and save

the Geo-RelNAV® data. Figure 19 shows a general top-down view of the experiments

that were completed. Figure 20 shows a view of the pseudo receiver during the first

test run.

For the first 6 test runs, the pseudo tanker remained in the exact same position.

Table 1 shows the approaches that were made for the first 6 test runs. The pseudo

tanker was moved to a different position for the final 2 test runs to gather data from
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Figure 19. General Outline of Experiments

a new position. Table 2 shows the approaches that were made for the final 2 test

runs.

Test Number Pseudo Receiver Approach Pattern
Test 1 Approach in the receiver’s +x direction
Test 2 Approach in the receiver’s +x direction, then reverse to -x
Test 3 Zig-zag towards pseudo tanker
Test 4 Same as Test 2
Test 5 Approach in the receiver’s +x, -y direction
Test 6 Approach in the receiver’s +x, +y direction

Table 1. Pseudo Receiver’s First 6 Test Approaches

Test Number Pseudo Receiver Approach Pattern
Test 7 Approach in the receiver’s +x direction
Test 8 Approach in the receiver’s +x direction

Table 2. Pseudo Receiver’s Final 2 Test Approaches
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Figure 20. View of the Pseudo Receiver Approach from the First Test Run

Image Processing.

With all of the data collected from the experiments, the imagery could be pro-

cessed to create a pose estimate of the pseudo receiver. The image processing began

with the use of OpenCV. OpenCV is an open source Computer Vision Library [9].

OpenCV provides many functions for processing imagery. The primary functions

used for processing the images were the rectify and stereo block matching functions.

Figure 21 shows sample images from both the EO and IR stereo vision systems from

the first test run. As previously noted, the apertures on the EO cameras were closed

to the maximum closure which is why the images appear dark.

Using the calculated intrinsic and extrinsic calibration parameters, the OpenCV

rectify function rotates the image pairs to rectify the epipolar lines. Along the epipolar

lines, the OpenCV stereo block matching function matches features along the epipolar

lines and creates a disparity map. The disparity map is an image that uses a black-

to-white scale for the pixels in the dispartiy map. The white pixels indicate features
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(a) Left EO Camera Image (b) Right EO Camera Image

(c) Left IR Camera Image (d) Right IR Camera Image

Figure 21. Stereo Images from Test 1

that were matched with high parallax and are closer to the camera than dark pixels,

which are features that were matched with low parallax. The dispartiy map in Figure

22 shows the pseudo receiver close to the camera, as the near-white pixels show the

outline of the pseudo receiver. Therefore, the calibration parameters and disparity

map provide a means to map each disparity map pixel into a 3D point cloud.

3.9 Virtual World

From the standpoint of computer vision, each point from the point cloud has

its own position vector in (x, y, z) coordinates that can be modeled in 3D space.

Modeling the experiments in a virtual world provides many benefits. First, it provides
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Figure 22. Disparity Map from the First Test Run using IR Imagery

a way to visualize the experiment and visualize aspects such as the registration.

Second, the virtual world is a simulation environment that can deterministically re-

execute the experiments as many times as necessary, provided the computing power

is available. The virtual world also improves the ability to make statistical analysis

of the experiments, improving the feasibility of error correction. If the experiments

experienced any errors from a constant bias, the bias can be adjusted in the data

and the experiment can be corrected in the virtual world. Lastly, a set of images

taken over time can be reconstructed as a point cloud in real-time in the virtual

world, rendering the scene in real-time in the same manner as when the images were
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captured.

The experiments were modeled in the virtual world using the AFTR Burner en-

gine, which is based on the engine in [41]. Rendering in the AFTR Burner engine

is done using OpenGL. Since each experiment was completed in the parking lot, the

scene in the virtual world was set to show the parking lot via satellite imagery com-

bined with elevation data. The coordinate frame for the terrain was expressed in the

ECEF frame and the Geo-RelNAV® position data was converted to ECEF. There-

fore, the virtual models could be placed in the virtual world to appear exactly as they

did in the real world. Figure 23 shows the virtual world with the models from the

experiment.

Figure 23. Virtual World View of the First Test Run
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Modeling.

To simulate the experiments in an exact manner in the virtual world, each aspect

of the experiment was modeled with 3D models. The 3D models were created using

Blender, which is an open source modeling software package [42]. Although the

virtual world is unit-less, all of the virtual models have dimensions modeled in meters.

Therefore, all points in the virtual world are relative to meters. The pseudo tanker

was modeled with the stereo vision system and its IMU. In the virtual world, the

pseudo tanker is positioned using the Geo-RelNAV® data relative to the IMU on

the virtual model, making the virtual model appear in the same location in the

virtual world as its physical counterpart was in the real world. The same process was

completed for the pseudo receiver as was done for the pseudo tanker. The primary

difference between the virtual world and the real world was that the wagon portion

of the pseudo tanker and pseudo receiver were not modeled. Modeling the wagons

was not necessary since the receiver was the focus of the imagery. Figure 24 shows

the pseudo tanker and pseudo receiver as modeled in Blender. It is important to note

that the pseudo receiver model is used as the truth source and its pose is driven by

the Geo-RelNAV® truth data.

Another important aspect of modeling the experiment in the virtual world was

appropriately modeling the virtual camera frusta. In the virtual world, the position

of the 3D reconstructed point cloud (sensed model) was relative to the center point

between the stereo camera’s focal points. The sensed model was positioned in this

manner because the image rectification will center the reconstructed points between

the camera focal points. The physical vector between the IMU and the center point

between the cameras was measured so it could be modeled in the virtual world as

an offset. The offset was used to place the center of the stereo cameras’ frusta on

the virtual pseudo tanker relative to the pseudo tanker’s IMU, replicating the real-
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(a) Pseudo Tanker

(b) Pseudo Receiver

Figure 24. Models of the Pseudo Tanker and Pseudo Receiver in Blender

world setup. Since the IR and EO stereo vision systems have different center points

between the camera’s, the proper offsets for each stereo vision system were measured

for processing their respective data.

Registration of Reference Model.

The final step before producing a pose estimate is registration. In order to ac-

complish registration, areference model of the pseudo receiver was created using only

red 3D points, as shown in Figure 25a. Because the cameras primarily only see the

front of the pseudo receiver, the reference model does not contain any points from the

backside of the pseudo receiver. Additionally, the points for the pole were removed

to best replicate an object in the air.

Because there are objects in each image other than the pseudo receiver, such as

light poles, the sensed point cloud originally included points for all of these objects.
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However, it is assumed for an aerial refueling that there would be few, if any, other

objects in the tanker’s cameras’ image frame. Therefore, the largest mass of points

could be assumed to be the receiver and all other points would be removed from

the sensed model. Under this assumption, a virtual box was constructed around the

sensed receiver model using the truth data and all points outside of the box were

removed from processing.The pole was removed from the sensed receiver model as

well, since the pole was only used to enable the experiment in the first place. The

sensed point cloud model of the pseudo receiver is shown as yellow 3D points in Figure

25b.

(a) Red Reference Point Cloud (b) Yellow Sensed Point Cloud

Figure 25. Reference Model and Sensed Model as Point Clouds

To finish the registration process, ICP needed to best align the reference model

onto the sensed model. Since a receiver will approach a tanker with roughly the same

look direction as the tanker, it was assumed that the reference model could initially

set its orientation to the tanker’s orientation before performing ICP. Orienting the

reference model with the tanker minimized the chance of ICP converging on a local

minima. When ICP completes, the pose of the reference model serves as the pose

estimate for the pseudo receiver, providing a solution for the pose of the pseudo

receiver. With the pose estimate “in-hand”, the estimate can then be compared to

the truth data. Figure 26 shows the reference point cloud matched to the sensed point
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cloud with the truth model in nearly the same orientation and position, indicating a

good estimate.

Figure 26. Registration of the Reference Point Cloud with the Sensed Point Cloud
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IV. Results

4.1 Comparison to Real-World Flight Test

The comparisons between the pseudo refueling experiments and a real aerial re-

fueling would not be significant if the pose estimate is poor when the pseudo receiver

is equidistant from the cameras to a real world receiver. Since the pseudo receiver

is much smaller than the C-12 receiver that will be used during the flight test, an

equivalence ratio must be developed to compare the two situations. For the purposes

of holding the two situations equal, it is assumed that the C-12 receiver and pseudo

receiver are centered on the horizontal field of view of left stereo camera on their re-

spective tankers. It is also assumed that the contact point for the C-12 being refueled

is approximately 30 meters from the rectified camera, which is centered between the

stereo cameras.

The two refueling situations are compared by finding the ratio of each receiver’s

wingspan to the width of the horizontal field of view of the camera at a given distance

d. For any angle θ for the horizontal field of view for the camera, the equation for

finding the width of the horizontal field of view at a distance d is given by Equation

1 and shown in Figure 27.

Figure 27. Width of Horizontal Field of View
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width = 2 ∗ d ∗ tan
θ

2
(1)

The ratio of wingspan to width is then given by Equations 2 and 3.

equivalence ratio =
wingspan

width
(2)

equivalence ratio =
wingspan

2 ∗ d ∗ tan θ
2

(3)

Since θ will be held the same for both refueling scenarios, it is considered constant

for the comparison. Equation 4 shows the final ratio with constants removed.

equivalence ratio =
wingspan

2 ∗ d
(4)

The C-12C is a re-purposed variant of the C-12A. The wingspan of the C-12A is

54 feet, 6 inches [43] which is equivalent to 16.16 meters. At a distance of 30 meters,

the assumed contact point for the receiver, the equivalence ratio for the receiver is

equal to 0.269, as shown in Equation 5.

equivalence ratio =
16.16

2 ∗ 30
= 0.269 (5)

Equation 6 is now used to find the distance at which the pseudo receiver’s wingspan

will appear equal to the C-12C’s wingspan in the imagery.

d =
wingspan

2 ∗ equivalence ratio
(6)

The wingspan of the pseudo receiver is approximately 1.842 meters. Solving for

Equation 6 yields a distance of 3.42 meters, as shown in Equation 7.
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d =
1.842

2 ∗ 0.269
= 3.42 meters (7)

Therefore, the wingspan of the C-12C at a distance of 30 meters will appear

similar in imagery to the wingspan of the pseudo receiver when it is at a distance of

3.42 meters. In general, this wingspan comparison provides a baseline for comparing

the distances at which the objects appear relative to each other. Because the edge

of a wing is not infinitely thin, the wing will always be visible during a horizontally

centered approach. And although the bodies of the C-12C and the pseudo receiver are

not compared, some portion of the receiver’s body will also be visible at the contact

point, providing additional features for stereo block matching.

The wingspan comparison is not perfect due to the fact that two pixels will map

to features whose separation increases as object’s distance increases from the camera.

Therefore, the error will be greater for an object farther from the camera than an

object closer to the camera, even if they appear as the same size in the image plane.

One method of addressing this issue is to increase the resolution of the camera images,

thereby decreasing the physical separation between features that map to individual

pixels for an object at a set distance. However, even for the resolution of the IR

cameras, 1024x768, the error increase would be minimal for an object 30 meters away.

If a wing covered the entire image plane horizontally at a distance of 30 meters, the

1024 horizontal pixels would map to features approximately 3 centimeters apart. Even

at a distance of 80 meters, the pixels would map to features that are approximately

8 centimeters apart. Therefore, the increased error due to distance would be minor

given the resolution of the stereo cameras and the distance at which the a real aircraft

would refuel.

For all results in this chapter, distance is measured from the left camera to the

pseudo receiver’s IMU. The error is provided as the 6 degrees of freedom (6DOF), the
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(x, y, z) position error and the roll, pitch, yaw (RPY) error. Additionally, the position

error between the truth data and the pose estimate is given in the frame of the pseudo

receiver’s IMU. In this chapter, references to position error are based on when the

pseudo receiver is 5 meters from the camera. Additionally, the IMU’s reference frame

(north-west-up) is not used for the RPY error. Instead, the RPY error is given from

the pseudo receiver’s IMU using a north-east-down reference frame. Lastly, only the

results from the first 6 test runs are shown in this chapter.

4.2 Analysis of IR Imagery

For the IR cameras, Figures 28, 29, 30, 31, 32, and 33 RPY estimation error and

Figures 34, 35, 36, 37, 38, and 39 show the position estimation error.

In general, the RPY error for all of the test runs was highly consistent. When at

a distance between 10 and 5 meters from the camera, the pitch error was near or less

than 5 degrees for each of the runs. However, the roll and yaw error were around 2

degrees or less. The RPY error in test run 4 is scattered when the pseudo receiver was

near the camera due to the receiver going out of the frame of the camera. Overall,

the IR RPY error was low and consistent across all of the test runs.

The position error was also relatively consistent. For tests runs with a steady

approach (1, 2, and 4), the (x, y, z) error was around 10 centimeters or less when

the distance was less than 5 meters. The y error was especially low, being nearly

0. The z error was consistently under 10 centimeters for all of the runs when near a

distance of 5 meters and with the exception of test run 4, the x error was also around

10 centimeters or less. For test runs 5 and 6, the y error is higher than the other

runs but the distance from the camera in test runs 5 and 6 is beyond 5 meters. The

important takeaway is that the position error for (x, y, z) is below 20 centimeters for

all of the runs.
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For test runs 2 and 4, the x error is different when the pseudo receiver is reversed

compared to when it is moved forward. This is likely due to the fact that the pseudo

receiver was reversed at a different angle than when moved forward, which would

affect the consistency in the depth results. However, when traveling forward or in

reverse, the results maintain a high accuracy. This phenomenon also occurs in the

EO results, indicating consistency amongst the results.

4.3 Analysis of EO Imagery

For the EO cameras, Figures 40, 41, 42, 43, 44, and 45 RPY estimation error and

Figures 46, 47, 48, 49, 50, and 51 show the position estimation error.

The results for the EO cameras were even better than for the IR cameras. The

RPY error was also extremely consistent with the error being around 2 degrees or

less for all of the test runs at distances near 5 meters. This RPY error in general is

outstanding for AAR. The (x, y, z) error was also around 10 centimeters or less for all

of the runs except test run 5 and test run 6. In test runs 5 and 6, the y error is near

15 centimeters. However, the distance in these tests is beyond 5 meters. Therefore,

the y may have been lower had the pseudo receiver been closer to the camera. It

should again be noted that the large amount of error near the camera in test run 4

is due to the pseudo receiver going out of the view of the cameras. For both the EO

and IR results, the position error near 15 meters on tests 5 and 6 is due to the pseudo

receiver nearing the edge of the image plane of the stereo vision system. Therefore,

the results will be poor as the pseudo receiver moves out of the images.
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Figure 28. IR RPY Error for Test Run 1

Figure 29. IR RPY Error for Test Run 2
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Figure 30. IR RPY Error for Test Run 3

Figure 31. IR RPY Error for Test Run 4
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Figure 32. IR RPY Error for Test Run 5

Figure 33. IR RPY Error for Test Run 6
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Figure 34. IR Position Error for Test Run 1

Figure 35. IR Position Error for Test Run 2
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Figure 36. IR Position Error for Test Run 3

Figure 37. IR Position Error for Test Run 4
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Figure 38. IR Position Error for Test Run 5

Figure 39. IR Position Error for Test Run 6
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Figure 40. EO RPY Error for Test Run 1

Figure 41. EO RPY Error for Test Run 2
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Figure 42. EO RPY Error for Test Run 3

Figure 43. EO RPY Error for Test Run 4
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Figure 44. EO RPY Error for Test Run 5

Figure 45. EO RPY Error for Test Run 6
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Figure 46. EO Position Error for Test Run 1

Figure 47. EO Position Error for Test Run 2
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Figure 48. EO Position Error for Test Run 3

Figure 49. EO Position Error for Test Run 4
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Figure 50. EO Position Error for Test Run 5

Figure 51. EO Position Error for Test Run 6
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4.4 Error Analysis

Calibration.

Using the IMU’s reference frame for the position error, the depth error is relative

to the x error. Although the depth error was typically around 10 centimeters or less,

the error was the least linear component of the position error. This inconsistency is

believed to be the result of imperfect calibration. Depth is the most difficult compu-

tation for stereo computer vision, so the calibration must be highly accurate to give

good depth results. Calibration will attempt to calculate the most accurate intrinsic

and extrinsic parameters, however, not all parameters will be perfectly calculated.

Therefore, it may be necessary to fix some of the parameters to known values rather

than relying on the calibration. In the case of the EO calibration, the focal length

was adjusted to give better results. However, the IR calibration was not changed

from its original output from MATLAB®.

The checkerboard used also made calibration difficult at times for the EO cameras

because the metallic surface would reflect light and wash out some of the corners

in the image. Due to the upward angle of the cameras, it also wasn’t possible to

capture calibration images with the checkerboard covering the entire image plane.

Therefore, improving the initial calibration could increase the accuracy of the results.

Additionally, adjusting the calibration parameters to more exact values for both the

IR and EO cameras could also improve accuracy.

Timing Error.

Due to the data collection computer relying on its own clock’s accuracy after

syncing with GPS time, it’s possible that the clock’s drift from GPS time could affect

the results. A drift in time would then misalign the images with the GPS truth data.

If the approach rate during the experiments is assumed to be around 1.5 meters per
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second, and the clock has drifted by 1/30 of a second by the end of the experiment,

then the resulting error would be a maximum of 5 centimeters. Since the clock drift

would increase throughout the experiment, the error would be minor for most of the

tests. However, the higher than usual position error in tests 5 and 6 could be from

the clock drift, especially due to the consistency in the error between the IR and EO

results. Therefore, regularly updating the CPU clock to GPS time would resolve the

CPU drift error.

IMU Drift Error.

Each IMU can also have drift error if the IMU remains stationary. Since the pseudo

tanker’s IMU remained stationary during the test runs 1-6, the IMU accuracy would

have drifted. However, the IMU drift would occur over time, which would eliminate

fixing the drift with a constant offset. Therefore, moving the tanker between test

runs could improve accuracy. For the actual flight tests with the C-12Cs, the IMUs

will remain moving in-flight, so IMU drift error will not be an issue.

Physical Measurements.

All physical lever arm measurements were made using a tape measure. Since the

lever arms required measuring the x, y, and z components, error could have occurred

while adding each component together. Additionally, the measurements had to be

“eyed up” using the tape measure, which also increased the possibility for error. Lever

arms had to be measured between pseudo receiver IMU and GPS, between the pseudo

tanker IMU and GPS, and between the pseudo tanker IMU and cameras, therefore,

measurement error could be compounded from each of the separate measurements.

Using an improved measuring system, such as laser measurements, could negate any

measurement error.
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Summary of Results.

Given the many different components of the experiment and the various sources

of error that had to be minimized, the relatively low position and orientation er-

ror achieved through stereo vision is good news for pose estimation and for AAR.

Additionally, the consistent behavior between the IR and EO results proved useful

for validating IR stereo vision as a legitimate source of pose estimation. Even with-

out making any updates to the IR calibration, the IR results had a low amount of

error. Additionally, the resolution of the IR cameras is lower than for the EO cam-

eras, further proving the effectiveness of the IR cameras. The results also show that

pose estimation can be completed in a real world environment with a high level of

accuracy.

61



V. Conclusion

Stereo vision provides a unique opportunity for solving the AAR problem due to

the stereo cameras already equipped on next-generation tankers. And although there

are many steps involved in the stereo computer vision process, all of these steps can be

completed aboard a next-generation tanker. The ground experiments show that the

camera technology and computer power is available to make accurate pose estimates.

There is also room for the experiments to be improved and to reduce the error even

further. In most cases, the pseudo approaches produced results with position error

of less than 10 centimeters and RPY error typically around 2 degrees.

The accuracy of the pose estimates presented in the Results chapter is promising

for the future of AAR. Both the IR and EO cameras showed similarly accurate results,

providing variety in the stereo vision system that could be used for AAR. Although

some research has been done with monocular and stereo EO systems, this research

further validated the ability to create pose estimates using an EO stereo vision system.

However, IR stereo vision is a new method for solving the AAR problem, and this

research has shown that IR stereo vision can have the same accuracy as EO stereo

vision. IR stereo vision may also be applicable to AAR scenarios that EO vision

does not make possible, such as aerial refueling during the night. In addition to

producing results with low error, the experiments conducted here have established a

good framework for collecting valid and useful flight data during the upcoming flight

tests.

5.1 Future Work

The Results chapter listed several potential sources of error. Each of these po-

tential error sources should be further analyzed to either rule them out, or correct
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them to improve the stereo vision results. Improving the calibration process by us-

ing a better checkerboard for the EO cameras could easily improve the calibration

process and potentially improve the intrinsic and extrinsic calibration parameters.

Additionally, collecting calibration imagery with the cameras parallel to the ground

would make it possible to cover the entire image plane with the checkerboard, thus

improving camera calibration.

Increasing the variability of the experiments would further validate stereo vision

for the various refueling scenarios that could occur. Experiments involving different

receivers would prove useful, since a tanker will refuel different types of aircraft.

Completing the experiments on various different days would help validate the system’s

durability over prolonged use, as will also be the case with a tanker. Lastly, the

cameras should undergo additional environmental tests, such as temperature changes,

light changes, and vibration changes.

To fully solve the AAR problem, flight test data must be analyzed. The upcoming

flight tests provide an opportunity to collect and analyze real flight data. The data

collected from the flight tests should be processed to determine pose estimates and

validate stereo vision for aerial refueling. The results from the flight test data will lay

the groundwork for stereo computer vision being used by tankers. Ultimately, these

results could be what makes stereo computer vision a reality for AAR.
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