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Abstract

Dynamic soaring is a unique flying technique designed to allow air vehicles to extract
energy from horizontal wind shears. Dynamic soaring has been used by seabirds like the
Albatross to fly hundreds of kilometers a day across the ocean. Small hobby radio controlled
sailplanes have also used this technique to achieve sustained speeds of over 200 miles per hour
from just a simple hand toss. Dynamic soaring, however, has never before been studied for use
on full size aircraft. The primary goal of this research was to prove or disprove the viability of
dynamic soaring for enhancing a full size aircraft’s total energy by using a manned sailplane as a
demonstration air vehicle. The results of this study will have a direct impact on the sport of
soaring, as well as the design of the next generation of large, sailplane-like, robotic planetary
explorers for the National Aeronautics and Space Administration (NASA).

This research began with a point mass optimization study of an L-23 Super Blanik
sailplane. The primary goal of this study was to develop and analyze optimal dynamic soaring
trajectories. A prototype 6 degrees of freedom (DOF) flight simulator was then developed. This
simulator helped to validate the dynamic soaring aircraft equations of motion derived for this
research and built operational simulator development experience. This experience was then
incorporated into a full dynamic soaring research simulator developed at the NASA Dryden
Flight Research Facility (NASA DFRC). This NASA simulator was used to develop advanced
dynamic soaring flight displays, flight test techniques, and aircrew coordination procedures.
Flight test were successfully accomplished using an instrumented L-23 Super Blanik sailplane
and advanced weather monitoring equipment. Through modeling and simulation, flight test, and
mathematical analysis, this research provided the first documented proof of the energy benefits

realized using dynamic soaring techniques in full size sailplanes.
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OPTIMAL DYNAMIC SOARING FOR FULL SIZE SAILPLANES

1. Introduction

Motivation

Dynamic soaring is a unique flying technique designed to allow air vehicles to extract
energy from horizontal wind shears. Dynamic soaring has been used by seabirds like the
Albatross to fly hundreds of kilometers a day across the ocean. Small hobby radio controlled
gliders have also used dynamic soaring to achieve sustained speeds of over 200 miles per hour
from just a simple hand toss. Dynamic soaring, however, has never before been studied for use
on full size aircraft. The significance of this gap in dynamic soaring research has impact on
future of space exploration and the sport of soaring.

Unlike the current generation of land roving robotic explorers, the National Aeronautics
and Space Administration (NASA) is developing a new series of relatively large sailplane-like
aircraft that will deploy from deep space planetary probes during atmospheric entry. To reduce
on board power requirements, these airborne robotic explorers will rely on soaring techniques
already commonly used on manned sailplanes in order to enhance their endurance and range. By
extracting energy from the atmosphere in this manner, these vehicles would be able to devote
more of their limited payload to science and engineering as opposed to propulsion. Hence, the
primary goal of this research was to prove or disprove the viability of dynamic soaring for
enhancing a full size aircraft’s total energy by using a manned sailplane as a demonstration air
vehicle. Additionally, this research was dedicated to increasing the knowledge base of dynamic

soaring as a new technique for the sport of soaring.




Background

By using naturally occurring phenomenon of the Earth’s atmosphere, soaring pilots are
able to fly distances and achieve altitudes that rival or even exceed the capabilities of many
powered aircraft. Modern sailplane feature sleek, low weight, high lift to drag airframes that are
designed to give them enhanced aerodynamic performance and efficiency. To understand the
significance of dynamic soaring as a flight technique for full size sailplanes, it is important to
understand the origins of soaring and the techniques currently employed by sailplane pilots to
enhance the sailplane’s total energy state.

Inventor Leonardo Da Vinci, shown in Figure 1, is credited with designing the world’s
first glider (Leonardo Website). Da Vinci, inspired by studying the wing designs of local birds
and bats, created a harness attached to a bat wing like flying machine that was appropriately

scaled to accommodate a human pilot (Short, 2004:2).
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Figure 1. Leonardo Da Vinci and the Bat Wing Flying Machine

Unfortunately, as revolutionary as his design was, the bat wing never flew and languished in
obscurity for several hundred years until a new study was initialed by Sir George Cayley in the

early 1800’s (Short, 2004:2). Cayley, shown in Figure 2, was inspired by Da Vinci’s glider




design and built several gliders to further investigate the possibility of manned flight (Circling
Hawk Paragliding Website). Cayley was the first to quantify the primary forces of flight and
proved that manned gliding flight was possible through several very short duration
demonstration flights. His research ultimately laid the foundation for Otto Lilienthal first glider

flights during the late 1800°s (Short, 2004:2).
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Figure 2. Sir George Cayley and Early Glider Design

Regarded as the world’s first glider pilot, Lilienthal, shown in Figure 3, designed, built,
and flew his full sized gliders based on the earlier research conducted by Cayley and Da Vinci
(Invention Psychology Website). His flights were performed from a symmetric hill he
constructed that allowed for brief gliding flights into a headwind based on the prevailing winds.
Fittingly, Lilienthal’s glider design bore a good resemblance to Leonardo Da Vinci’s bat wing
like design of the Renaissance. Sadly, Lilienthal suffered a severe crash during one of his glider
flights and died two days later from his injuries (Short, 2004:2). His famous last words were,

“Sacrifices must be made.”




Figure 3. Otto Lilenthal and his Glider

To his credit, Lilienthal’s life work and sacrifice provided much of the foundation for the
Wright Brothers initial acronautical research and glider designs. The Wright Brothers, shown in
Figure 4, used Lilenthal’s designs to help ensure their ultimate success in powered flight at Kitty

Hawk in December of 1903 (Library of Congress Website).

Figure 4. Wright Brothers and Early Glider Tests at Kitty Hawk North Carolina

With the birth of powered aviation, gliders became viewed as anachronistic in an age
where aircraft were being pushed to achieve faster speeds, longer ranges, greater payloads, and

longer endurance. The need for combat aircraft at the start of World War I only accelerated this




drive. Ironically, the end of World War I unknowingly gave a second birth to the sport of
soaring through the Treaty of Versailles (Short, 2004:2).

This treaty imposed heavy training and technology restrictions on the defeated German
Air Force in order to destroy the threat that Germany posed. These restrictions were primarily
aimed at powered aviation, but made no limitations on un-powered flight (Short, 2004:2). These
restrictions were ultimately ignored by Adolf Hitler in the late 1930’s, but not before many
government sponsored and private gliding clubs sprang up across Germany. An example of one
of these clubs is shown in Figure 5 (Vintage Sailplanes Website). These clubs ultimately served

as initial pilot training for the first cadre of the Third Reich’s Luftwaffe.

Figure 5. German Gliding Club DFS Reiher II Sailplane

The legacy of Germany’s heavy involvement during the second dawn of the sport of
soaring can still be seen today in two primary ways. First, the majority of current sailplane
designers and manufactures are based in Germany or countries occupied by Germany during
World War II. Secondly, the flying methods pioneered by these German gliding clubs still
dominate the sport of soaring today in the form of three major static soaring techniques (Short,

2004:3-4).




Traditional Soaring Techniques

Successful soaring has primarily relied on mastering three techniques that exploit
atmospheric conditions in order to enhance sailplane endurance. These techniques are
thermaling, ridge soaring, and wave soaring. Collectively they are known as static soaring
techniques and all involve using a vertical velocity component of moving air.

Thermaling, shown in Figure 6, is the most common and popular of these techniques
(Civil Air Patrol National Technology Center Website). This technique can be used on sun lit
days where the heated surface of the Earth radiates heat back to the atmosphere at non-uniform
rates. For instance, dark ploughed fields, exposed rock outcroppings, and asphalt all radiate heat
back to the atmosphere faster than other areas of the Earth’s surface. Air above these surfaces
heats up, becomes less dense, and hence rises faster than the cooler air surrounding it. This
creates small regions of the atmosphere with rising columns of air. Soaring pilots can use these
rising columns of air to offset the natural sink rate of the sailplane. If the thermal is strong

enough, pilots can gain altitude by flying tight circles or weaving across the rising pockets of air.




Ridge soaring, shown in Figure 7, is a form of orthographic lift in the sense that it takes
advantage of wind that flows up and over ridge lines much like water flows around a rock placed
in a stream (Civil Air Patrol National Technology Center Website). Soaring pilots can exploit
the upwards moving air on the windward side of a ridge by flying parallel to the ridge line.
Ridge soaring, however, is only possible over localized areas with steady state winds and

generally loses effectiveness at altitudes significantly above the height of the ridge itself.

Area of Best
Ridge Li

Figure 7. Ridge Soaring

Wave soaring, shown in Figure 8, is also a type of orthographic lift that functions
similarly to ridge soaring (Civil Air Patrol National Technology Center Website). However, this
form typically involves extremely strong, broad currents of air associated with massive weather
fronts flowing over large mountain ranges. Unlike ridge soaring, these currents of moving air
can flow into the upper reaches of the stratosphere. Wave soaring conditions were responsible
for the current world soaring altitude record of 50,699 feet set by Steve Fossett on 31 August

2006 (Experimental Aircraft Association Website).
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Figure 8. Wave Soaring

These static soaring techniques are popular since they are thoroughly documented, are
normally of sufficient strength to be of use to full sized aircraft, and because their existence in
the atmosphere can usually be physically seen. For instance, cumulous clouds indicate the
position of thermals, and standing lenticular clouds mark wave soaring conditions. Dynamic

soaring, however, is fundamentally different than any of these static soaring techniques.




Dynamic Soaring

Unlike static soaring, which relies on a rising vertical component of velocity to the wind,
dynamic soaring involves extracting energy from strictly horizontal wind shears. This theory
was first proposed by Physics Nobel Laureate Lord Rayleigh, show in Figure 9 (Physics and

Advanced Technologies Website).

Figure 9. Lord Rayleigh

Much like Da Vinci, Lord Rayleigh observed birds in flight and noticed that, without
flapping their wings to generate thrust, birds were sometimes able to traverse great distances

seemingly without the presence of traditional forms of lift.




Puzzled by this phenomenon, he proposed:

...a bird without working his wings cannot, either in still air or in a uniform

horizontal wind, maintain his level indefinitely. For a short time such

maintenance is possible at the expense of an initial velocity, but this must soon

be exhausted. Whenever therefore a bird pursues his course for some time

without working his wings, we must conclude either

(1)  that the course is not horizontal

(2)  that the wind is not horizontal

(3)  that the wind is not uniform

It is probable that the truth is represented by (1) or (2); but the question I wish to

raise is whether the cause suggested by (3) may not sometimes come into

operation. (Lord, 1883:354-355)

Through this statement, Lord Rayleigh was the first to propose the idea that birds could
extract energy from the atmosphere by flying between regions of air moving at different
horizontal velocities. To understand this phenomenon further, a brief explanation is given
below. Additional details regarding extracting energy from wind are given in (Lissaman, 2005:2-
3).

A sailplane, unlike powered aircraft, is affected by only three of the forces of flight,
namely lift, drag, and weight. Lift is defined as operating perpendicular to the relative wind,
drag is defined as operating parallel to the relative wind, and weight points to the center of Earth
regardless of aircraft’s orientation. A vehicle’s energy state can only be affected by forces acting
parallel to its motion (Meriam, 1986: 147) in the inertial reference frame, so a sailplane’s energy
state is only affected by forces acting parallel to its flight path. Furthermore, gravitational forces
perform conservative work and, hence, have no effect on the total energy. Therefore, in calm air,
when the lift acts perpendicular to the flight path, drag is the only force that can change a

sailplane’s energy state and it dissipates it. This is shown in Figure 10. However, as explained in

more detail below, when flying in winds it is possible for a sailplane’s relative wind to be in a
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direction that is not parallel to its flight path, which makes it possible for the lift force to affect
the energy state of the sailplane. In this case, whether the lift increases or decreases the energy
state depends on the flight path relative to the wind. Exploiting this effect to increase the energy

state of the sailplane is the goal of dynamic soaring.

DRAWING NOT TO SCALE

Figure 10. Sailplane in Horizontal Flight in no Wind Shear

When flying in winds, the lift force can act to affect the energy state of a sailplane. In
climbing and descending flight in horizontal wind shears, a new effective angle of attack of the
wing can develop. This new angle of attack is the result of a vector sum between the inertial
based winds the aircraft is flying through, and the inertial velocity of the aircraft. This effect can
serve to rotate the lift vector of the aircraft forward such that a component of the lift force will

act parallel to the aircraft’s motion. In essence, this component of lift acts like a thrust force.
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This component of lift can offset the energy loss due to drag. If this effect is strong enough, the
sailplane can even fly energy neutral or energy gaining profiles. This is what Lord Rayleigh
described while observing birds in flight and is the essence of what has come to be known as

dynamic soaring. This concept is illustrated in Figure 11 for climbing flight.

Components of Lift
and Drag Forces
parallel to Inertial
Motion

DRAWING NOT TO SCALE

Figure 11. Sailplane in Climbing Flight in Wind Shear

In this example, the sailplane is pulled higher in altitude by this lift vector thrust effect. The
opposite is true in a descent with a tailwind shear, where the sailplane is propelled faster by the

thrust effect of the rotated lift vector. This is shown in Figure 12.
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Figure 12. Sailplane in Climbing Flight in Wind Shear

Hence, the sailplane can gain both potential and kinetic energy from the wind. A wind
shear is required in order to create a continuously changing wind gust effect on the sailplane as it
transits shear layers. This wind gust effect continuously changes the sailplane’s airspeed with
respect to the airmass it is traveling through. For instance, if a sailplane were to suddenly
encounter a 10 knot headwind gust, its effective airspeed with respect to the air mass would
momentarily increase by 10 knots along with a momentary increase in both lift and drag.
However, its ground speed for that moment in time would be nearly identical to what it was
before the gust since the wind gust would primarily flow around and past the airframe as

opposed to impeding its forward motion instantly. As the sailplane transits forward through the
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wind shear, this changing wind gust effect allows the aircraft to carry this increase in effective
airspeed and corresponding lift forward to the next moving air mass reference frame where the
process is repeated. The component of lift acting as a thrust resulting from the wind shear effect
enables the sailplane to climb higher to achieve greater potential energy, or descend faster to
increase kinetic energy. This effect is similar to the increase in inertial velocity, with respect to a
non-moving observer, a roller skater would experience immediately upon “transiting a shear
boundary” by entering or exiting a moving sidewalk from a stationary sidewalk. If the sailplane
were to encounter no wind shear conditions (i.e. steady state or calm winds), this continuously
changing gust effect and associated forward rotation of the lift vector would be eliminated and
dynamic soaring would cease.

Dynamic soaring is enhanced the steeper the gradient of the wind shear. Hence, the
perfect dynamic soaring environments occur when regions of calm or slower air are separated
from regions of faster moving air by infinitesimally small shear boundaries. In reality, however,
such an environment does not exist. Fortunately, wind shears caused by boundary layers or
physical obstructions occur frequently in nature and can be sufficient to create a dynamic soaring

environment.

Problem Statement
Early attempts at dynamic soaring were performed by German gliding clubs, but were
ultimately unsuccessful and abandoned. However, in his book (Reichmann, 1978) titled,

Streckensegelflug (distance soaring flight), Helmut Reichmann relates the legend of a soaring

pilot named Ingo Renner, shown in Figure 13 (Fiddlers Green Website). While flying a Libelle

sailplane over Tocumwal Australia on 24 October 1974, Ingo Renner encountered a sudden 40
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knot wind shear caused by a strong temperature inversion. Using this wind shear, Mr. Renner
was allegedly able to maintain his altitude for over 20 minutes without the presence of any

traditional lift sources.

Figure 13. Ingo Renner and Libelle Sailplane

In light of this account, modern computer analytical techniques, advanced sailplane
designs, and a desire by NASA to study energy enhancing techniques for its next generation of

planetary explorers, a new in depth study of dynamic soaring in full size sailplanes is warranted.
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Supporting Research and Dynamic Soaring Research Objective

Initial ground work for the research presented in this thesis began at the USAF TPS
during the spring of 2004. A fully instrumented LET L-23 Super Blanik sailplane, shown in
Figure 14, was flown using aerodynamic modeling test profiles in order to fully characterize the

aircraft’s lift and drag characteristics (drag polar, speed polar, etc).

Figure 14. Test Aircraft L-23 Super Blanik

The ultimate goal of this project, known as SENIOR IDS (Borror, 2004), was to lay the
research basis for a full dynamic soaring study. Although the SENIOR IDS test team attempted
a best guess at a dynamic soaring maneuver as the culmination of their project, their chief

recommendation was given as:

No good models or prediction tools were available to the test team, and
insufficient time was available to construct such models. Optimization of the
dynamic soaring maneuver is likely not possible without being able to run large
numbers of trials on a representative simulation. As there was no model or
comprehensive theoretical understanding of dynamic soaring, there was no
prediction of energy loss and therefore there was no comparison of test results
against the predicted results. Develop and use a model to optimize the dynamic
soaring maneuver. (Borror, 2004:15)
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Additional L-23 Super Blank aerodynamic data was collected by the HAVE BLADDER
(Aviv, 2005) test team at the United States Air Force Test Pilot School (USAF TPS) during the
fall of 2005. The primary goal of this project was to quantify the L-23 aerodynamic stability
derivatives and the moments of inertia (Aviv, 2005:2). This data was specifically collected in
direct support of dynamic soaring modeling and simulation efforts required for this research.

With this foundation of data, the primary objective of this research was to continue the
work begun by the SENIOR IDS and HAVE BLADDER test teams on the L-23 Super Blanik by
developing, flying, analyzing, and evaluating the viability of optimal dynamic soaring maneuvers

for full size sailplanes.

Assumptions

For sake of mathematical analysis, a non-rotating, flat earth was assumed since a
dynamic soaring trajectory typically occurs over a very brief period of time and over a small
localized area of the Earth’s surface. Hence, only the Body Fixed and North-East-Down
coordinate systems were used. It was also assumed that the wind shear was steady, operated
uniformly from the inertial west direction (cross-range), and featured no vertical component to
its velocity. All aircraft equations developed for this research assumed a rigid body, constant

mass aircraft.

General Approach
The development of an optimal dynamic soaring trajectory was of primary importance
since its creation was required before any other phase of the project could begin. This was

accomplished by first deriving the appropriate aircraft point mass equations of motion for the L-

17




23 Super Blanik from the full set of non-linear 6-DOF equations of motion. These equations
were then modified to include the effects of a steady state wind shear. Control inputs for these
equations were identified as the aircraft’s commanded coefficient of lift, C;, and the aircraft’s

commanded bank angle, ¢. The optimization objective function was formulated so as to

maximize the final energy state of the L-23 Super Blanik at the conclusion of the dynamic
soaring maneuver subject to several spatial and aerodynamic constraints. A nominal initial guess
trajectory was developed that approximated the dynamic soaring flight of an Albatross seabird

by assuming that C; and ¢ inputs were sinusoidal throughout the flight. The resultant state

equations, controls, constraints, objective function, and initial guess trajectory were then
incorporated into a MATLAB® dynamic optimization routine in order to produce converged
optimal dynamic soaring trajectories.

The dynamic soaring aircraft equations of motion developed for this research were then
programmed into a prototype sailplane simulator developed at the Large Amplitude Multi-Mode
Aerospace Research Simulator (LAMARS). This facility is located at the Aerospace Vehicles
Technology Assessment and Simulation Branch (VACD) of the Air Force Research Laboratory
(AFRL) in Wright Patterson AFB Ohio. This simulator was used to validate these dynamic
soaring aircraft equations of motion and to obtain simulator experience to be incorporated into a
final dynamic soaring research simulator developed at the NASA DFRC. This NASA L-23
Super Blanik sailplane flight simulator was used to develop advanced dynamic soaring cockpit
displays, develop appropriate flight test techniques, and to practice aircrew coordination.
Dynamic soaring maneuvers, known as hairpins due to their trajectory shape as viewed from
above, were then flown in the simulation in horizontal wind shear conditions representative of

Edwards AFB. These wind shears were modeled based on ten years worth of historical wind
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shear data above the Rogers dry lakebed. In order to further demonstrate the energy benefit of a
properly executed hairpin maneuver, a mirror image of the optimal dynamic soaring trajectory
was developed. Known as the anti-dynamic soaring maneuver, or anti-hairpin, this profile was
designed to illustrate the energy loss realized when flying the sailplane contrary to dynamic
soaring theory. The hairpin and the anti-hairpin maneuvers were developed to provide a large
enough spread in the final energy data results so that a sufficient statistical analysis could be
performed and conclusions could be made more obvious. Multiple flight simulator runs were
conducted as a risk mitigation strategy to help ensure the success of the actual flight test and to
evaluate the optimal trajectories obtained through mathematical analysis.

Finally, a fully instrumented L-23 Super Blanik sailplane was flown in real world wind
shear conditions in both the hairpin and anti-hairpin maneuvers in order to gather flight test data.
Results from the flight test were compared against mathematical analysis, and simulation

predictions.

Overview of Thesis

Chapter I of this thesis began with a brief overview of the motivation behind this research,
the history of the sport of soaring, and an explanation of traditional static soaring techniques that
have been in use by sailplane pilots for almost 80 years. This built the foundation for the next
section of Chapter 1 which explained the theory of dynamic soaring and allowed for the
development of the thesis problem statement. Chapter II explains how this problem statement is
then formulated into non-linear point mass aircraft equations of motion based on the modeled
aerodynamic performance characteristics of a specially modified L-23 Super Blanik owned by the

USAF TPS. The resulting dynamic soaring point mass equations of motion are then transformed
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into discrete equations designed for use with trajectory dynamic optimization. Chapter III
explains how the results of this optimization analysis and L-23 Super Blanik stability derivatives
and moment of inertia data are used to develop a prototype sailplane simulator at the VACD
LAMARS facility of the AFRL. This simulator is used as a build up to a full 6-DOF L-23
dynamic soaring flight simulator developed at the NASA DFRC. In Chapter IV, the results of
sailplane flight test in an instrumented L-23 Super Blanik are described. This flight test program
was performed at Edwards Air Force Base (AFB) in real world wind shear conditions in order to
collect dynamic soaring data. The thesis then concludes with Chapter V, which provides overall
dynamic soaring conclusions and recommendations based on the sum total of dynamic

optimization, flight simulator data, and flight test results.
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II. Development of Optimal Dynamic Soaring Trajectory

Point Mass Equations

In order to develop the optimal dynamic soaring trajectory, the L-23 Super Blanik was
first reduced to a point mass model. This technique was chosen due to its success in previous
trajectory optimization research projects, such as developing the minimum time to climb
trajectories for the F-4 Phantom and energy maneuverability profiles for the F-15 Streak Eagle
flights of the 1970’s (Bryson, 1999:172). Hence, a point mass model was considered sufficient
to yield an optimal dynamic soaring flight profile for a sailplane. In order for this method to be
successful, however, accurate data about the aircraft’s weight and performance characteristics

were first required. This information is shown in Figure 15 (LET,1993:1-5 - 2-3).

59.71
ALY

weight = 1124 lbs Vs = 60 ft/s Wing Area (S) =215.27ft*
V manuvering=132 ftft/s/ft Vinax = 206.7 ft/s Crmax = 1.239

Figure 15. L-23 Super Blanik Data
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Neglecting the aircrafts rotational dynamics and treating it as a point mass with no thrust,
the twelve nonlinear equations of motion (EOMs) used to represent 6-DOF aircraft motion

(Honeywell, 1996:65-66) reduce to the following six nonlinear differential equations.

1 )

V.= —[—D —mg s1n(7/)]
m

. 1

Y= W[L sin(g)]

;./ = #[L cos(¢) —mg cos(y)]

h=V,sin(y)
E =, cos(y)sin(y)

N =¥, cos(y)cos(y)

Where:
V; = True airspeed (ft/s) #=Roll Angle (deg)
w = Heading Angle (deg) m = Mass (lby,)
y = Flight Path Angle (deg) g = Gravitational Acceleration (ft/s”)
h = Inertial Altitude (ft) D = drag (Iby)

N = Inertial Downrange Distance (ft) L = lift (Iby)
E = Inertial Cross range Distance (ft)

In order to use these point mass equations to optimize dynamic soaring
trajectories in horizontal wind gradients, the effects of the horizontal winds were added to the
EOMs above (Jackson, 1999:220) to obtain the point mass equations of motion used by
Professor Yiyuan Zhao of the University of Minnesota in an earlier dynamic soaring study
(Zhao, 2004:70-71). The following assumptions were made about the winds:

1. Winds operate only in the direction of the inertial £-axis (cross-range).

Hence, winds in the inertial N-axis direction (down-range) were zero.
2. Thermal, ridge, and wave soaring conditions were non existent. Hence, there

were no vertical winds.

These assumptions resulted in the following equations of motion.
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_ i{—D _ mgsin(y)—mWind , cos(y) sin(l//)} (1)
m

~

. 1 . .0

W= m [L sin(¢) —mWind, cos(w)} (2)

7./ = LV[L cos(¢)—mgcos(y)+m Wiijza’E sin(y) sin(l//)} 3)
m t

h=V,sin(y) (4)

E =V, cos(y)sin(y) + Wind,, (5)

N =V, cos(7) cos(y) (©)

Where:

Windg = Wind in the east (cross-range) direction

Lift and drag were determined by equations (7) and (8) respectively.

L= pV2sC, (7)
D= ) pVsC, (8)
Where:
p = Atmospheric Density (Ibm/ft’) s = Wing Area (ft)
C; = Coefticient of lift Cp = Coefficient of drag

The use of equations (7) and (8) required accurate models for the L-23 sailplane’s C; and
Cp in order to be precise. These were provided by the USAF TPS SENIOR IDS project
accomplished in 2004 (Borror, 2004). Derived using aerodynamic modeling flight test
techniques, the lift curve slope and drag polar for the test aircraft L-23 Super Blanik were

determined as shown in equations (9) and (10).

C;. = -0.0029%0” + 0.0917*q + 0.6041 (9)
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When C; < 1.0:
Cp=0.027*C;* +0.01
When C, > 1.0 (10)
Cp=(CL—0.7)/7.2
Where:
a = Angle of Attack (deg)

Equations (1) through (6) included a unique Windg term that was is not normally featured
in standard point mass aircraft equations of motion. This Windg term described the strength of
the horizontal wind at a given altitude (i.e. it described the wind shear). This term was
significant to this research and merits further explanation.

The development of the Windg term first required a valid wind model representative of
typical wind conditions at Edwards AFB during the proposed research flight test window (March
through May of 2006). This wind model was developed by analyzing the previous ten years
worth of Edwards AFB wind data as complied by the NASA DFRC weather observatory. A
typical wind observation across the proposed dynamic soaring altitude band over the Rogers dry

lakebed at Edwards AFB is shown in Figure 16.

Edwards AFB Wind Profile: 1200Z 31 March 2005
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Figure 16. Winds at Edwards AFB

24




The NASA DFRC weather observatory regularly measured wind conditions at Edwards
AFB through the use of instrumented weather balloons launched from the field elevation of 2378
ft above Mean Sea Level (MSL) and Sound Detection And Ranging equipment (SODAR).
Based on these observations, winds across the Rogers dry lakebed generally blew from the West
on a heading of 090°. Wind strengths varied linearly with altitude with the slowest velocities at
the surface due to boundary layer and/or temperature inversion effects. Accordingly, the Windg
terms shown in equations (11) and (12) were developed as a linear approximation of actual wind

shear conditions across the Rogers dry lake bed at Edwards AFB.

Wind,, = WINDy, ,p; h (11)

Taking the derivative of equation (11) with respect to time and using equation (4) gives,

Wind,, == =5 = WINDyyop; h =WINDgyop, ¥, 5in() (12)

Where:
Winds;opr= Change in the wind velocity per foot of altitude gain (ft/s / ft)

An understanding of the current energy state of the sailplane was also critical to the
success of this project. Insight into this aspect of the research was obtained by beginning with

the classic definition for energy shown in equation (13).

2

E=m;/t + hmg (13)
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Dividing this classical total energy equation by weight yielded the specific energy equation, or

Ej of the sailplane as shown in equation (14).

E =—+h (14)

The equation for specific excess power, or Ps, as shown in equation (15), is found by taking the

derivative of equation (14) with respect to time.

N

CNNAANY (15)
dt g

By substituting in equation (1), (4), and (12) as appropriate, the specific excess power equation

becomes as shown in equation (16).

. . 2
py =DV, _[WINDy o siny)cos(y) sinw), (16)
mg g

Equation (16) held the key to understanding dynamic soaring. This equation illustrated

the interplay between energy loss due to drag and energy gained from exploiting horizontal wind

: . D : :
shears. The first term in equation (16), — 4 , demonstrated that as a sailplane flies through the
mg

air, it will always lose energy to drag effects. This loss increases with an increase in airspeed.

However, this energy loss due to drag could be offset or even eliminated by the second term in
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WINDy, o Sin(y) cos(y) sin(y )V’
g

. This term, henceforth referred to as the

equation (16),

dynamic soaring term, or (DST), was the centerpiece of the mathematical analysis accomplished
in this research.

The DST was primarily a function of wind shear, defined as Winds;opr because of the
slope or gradient of the wind shear, the flight path angle, y, the heading angle, v, and the true
airspeed V;. The relationship between these variables dictated the performance of the sailplane in
dynamic soaring conditions. For instance, if the sailplane were to fly in a region where there was
no wind gradient, then the Winds;opr variable would be zero and the energy rate of the sailplane
would be governed only by the loss rate due to drag. Of greater significance, however, is the
relationship between y and .

In order to offset energy loss due to drag, the DST as a whole must be negative. Under
this circumstance, the specific excess power equation becomes a negative drag loss term minus a
negative DST. From basic algebra, depending on the relative magnitude of the drag loss term to
the DST, this situation has the possibility to develop an overall positive P; for the sailplane. A
positive P, results in a positive, or at least a less negative, E; for the sailplane. This only occurs

when either:

1. 0°<y<90° while 180° <y <360°
or

2. -90° <y < 0° while 0° <y < 180°
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These two situations mean that when encountering a wind shear (in this case from the
West), the sailplane must either climb while facing a headwind or descend while traveling with a
tailwind in order to realize an energy benefit. If the sailplane were to fly contrary to this rule, the
rate of energy loss would only be greatly exacerbated since losses would occur from both drag

and horizontal wind shear effects.

Dynamic Optimization Problem Formulation

The development of an ideal dynamic soaring trajectory required the use of dynamic
optimization (Bryson, 1999: Larson, 2005: Zhao, 2004). The first step was to properly pose the
dynamic soaring optimal path problem as a dynamic optimization problem. To facilitate solving
this dynamic optimization problem numerically, the equations were expressed in discrete form.

The first step of this process was to express the point mass equations of motion parametrically.
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Equations (1) through (6), when expressed in parametric form, become the following.

u(t) =u(t0)+jz}(t)dt 17)
70 =w(r0)+jz}<r>dz (18)
y(r>=y(to)+j}(z)dr (19)
h() = h(t,) + j h(e)dt (20)
E(t)=N(1,) + j E(1)dt 1)
N(t) = N(z0)+jz§f(t)dt 22)

ty

Using equations (17) through (22), the state equations could be analyzed using discrete time

increments. The time interval was defined as:

o Stst; (23)
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When the time interval was divided into N discrete steps, then time became defined by the

following.

t, =1, + NAT

Where:
t; is the time at the i step

t, —t
AT is the time increment defined as ——

Hence, the sailplane’s flight state at any “/™ time, #; could be expressed as:

e
w (i)
S(i) = Z 8 where i=0,1,2,..N
l
E()
[ N@)

The sailplane state vector shown in equation (25) was subject to the 2x1 control vector

(24)

(25)

comprised of C; (coefficient of lift), and ¢ (bank angle). This control vector is shown below in

discrete form.

C. ()

U(i) =
O b(z‘)

} where i=0,1,2,..N—1
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For sake of visualization, C; and ¢ could be thought of controls used to position the

sailplane in three dimensional space, much like a pilot would deflect aileron, rudder, and elevator
for this task.

Expressing the equations in this parametric form facilitated the use of Euler’s integration
technique to propagate state equations (1) through (6) forward in time. Since Euler’s integration
technique is sensitive to the magnitude of the time step used, a time convergence study was
accomplished in order to determine that a time step of approximately 0.3 seconds was sufficient

for this research to allow for convergence. By using this technique, the discrete state equations

became:
() +DAT |
[u@i+1)] .
w(i+1) l//(i)+1/./(i)AT
S+ = £S@O.UG.AT) =| T | TOTTOAT e =002 1 27)
RGO )+ h()AT
E(i+1) .
NG+ | | EO+EDAT
| N(i)+ N()AT |

To help ensure a realistic converged solution, the optimized trajectory was subject to constraints
placed on the control vectors and terminal states. The control inputs were limited by the

following restrictions.

C, <C,(H)<C,
By < P0) < Prix (28)
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Bank angles were limited to a maximum of +120° to enforce compliance with USAF low
altitude safety restrictions. The C; was limited such that it could not exceed 1.329, the
maximum lift coefficient capability of the sailplane as reported by the SENIOR IDS test team
(Borror, 2004:17). The C; was also limited to not be less than zero so as to minimize the
possibility of negative g “bunting” at low altitude. Detailed state and control vectors, however,
were not enough to begin optimization runs. The optimization routine also required an initial
guess at a control sequence and a list of sailplane terminal state constraints.

Much like Da Vinci or Lord Rayleigh, modeling for this initial guess at a dynamic
soaring profile was develop by studying the flight of the Albatross sea bird. This bird is well
known for its ability to soar great distances across the ocean without flapping its wings through
its innate mastery of the dynamic soaring technique. A typical Albatross flight profile is shown

below in Figure 17 (Hoppi Segelflug Website).

Figure 17. Albatross on a Dynamic Soaring Profile

32




By observation, this profile is cyclical in nature. The final heading, altitude, and flight
path angle are identical to the initial values of these parameters. This profile was approximated

by functions that varied the control inputs according to the following equations:

. (i
C,()=(Ke, €, = C, )sin (nﬁj +C,
(29)

T I
)=K,120—sin| 3z—+rx
H)=K, 180 ( N j

Where:
Kcr and K, = parameters that could be adjusted between zero and one to vary the

aggressiveness of the initial maneuver
Crir= Cr required for level flight at the maneuver starting airspeed

In order to minimize the potential for noise in actual flight test data, only one cycle of the
Albatross trajectory was desired. This prevented errors from one cycle of dynamic soaring from
corrupting subsequent cycles. Hence, to build this “half-wave” shape, these control input
sinusoids were allowed to propagate forward in time to only half of their respective periods. The
resulting three dimensional profile was similar enough in shape to one cycle of the actual
Albatross dynamic soaring trajectory. This allowed for an optimization routine to build on this
initial trajectory and converge to an appropriately shaped solution. This initial trajectory shape,
however, was very dependent on choosing an appropriate starting velocity.

The Maneuvering Airspeed of the sailplane was chosen as an initial guess at a
dynamic soaring entry speed. Maneuvering Airspeed was defined by the Federal Aviation

Administration as the maximum speed where full, abrupt control movement could be used
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without overstressing the airframe (FAA, 2004:G-10). This airspeed decreases with increasing
gross weight. Maneuvering Airspeed for the L-23 at the projected test gross weight of 1124 Ibs
was defined by the flight manual as 143 ft/s or 85 knots indicated airspeed (KIAS). This
airspeed represented an acceptable middle ground between stall airspeed and the never exceed
airspeed, and was sufficient to form the appropriate trajectory shape. Based on the analysis
described above, the final altitude, heading, and flight path angle had to equal the initial values
of these respective states. The terminal constraints required to enforce the Albatross half wave

trajectory shape are shown below.

h(t,)=h(z,)
2, (N)=|w(t,)-w(,)|=0 (30)
y(,)-r(@,)

Finally, an optimization objective function needed to be developed that was simple, but
still emphasized the end goal of dynamic soaring. Ultimately, the goal of an optimal trajectory
was to arrive at the final position of the path with the maximal amount of energy achievable
given the environmental conditions. This goal was captured by the objective function shown

below.

uf(N)=—ES(N)={h(N)+%} (1)
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The complete optimization problem was defined as:

% # ) T
Subject to:

Si+1)=f[S().UG),AT]

i=0,1,2,..N—1 > (32)

2, [S(N)]=0
CLM,N <C,(1)=<C,

‘MAX

Py <P < Dyix _/

In addition to optimizing over the control sequence, the time increment, 47, was included to
allow the dynamic optimization routine free reign over the required trajectory time of flight.
When the equality constraints were adjoined to the objective function using vectors of

Lagrange multipliers, defined as A and », the augmented objective function became:
J=pu,(N)+0 7, + gf(i +D[ f[SG).UG@), A =S+ 1) |+ A" (0)[S, - S(O)]  (33)
The Hamiltonian function for this problem was defined as:
H(@i) =" +1) f[S(),U(0),At] (34)
The combination of terminal costs and constraints was defined as

D(N) = u(N)+v" x(N) (35)
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The boundary conditions and Euler-Lagrange Equations used to solve the dynamic optimization

problem for the optimal control sequence were:

BN
S(i) = f[SG),U ), At]

ATy =Hg (D)= A" (i+1) f[S(), U (i), At]

Hy ()= 2" i+ 1)/, [S@),U(@),i] =0 — a6
i=0,1,2,..N-1
S0)=3S,
AT(N)=®,=pu,+0"y
N S N _/
The Transversality condition was defined as:
N-1
Dy + D Hyp(0)=0 (37)

i=0
The subscripts S, U, and AT in equations (36) and (37) indicate partial derivatives.

The dynamic optimization problem posed above was solved using MATLAB® and the
Optimization Toolbox. Note that the Euler-Lagrange Equations above do not account for the
inequality constraints imposed on the control inputs; however, these constraints were enforced
within the optimization algorithm. The results of this dynamic optimization are presented in the

following section.
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Point Mass Dynamic Optimization Results

A comparison trajectory analysis was performed in order to illustrate the energy benefits
of dynamic soaring. The first step in this analysis was accomplished by modeling a dynamic
soaring profile in zero wind conditions. This established a baseline set of maneuver and energy
data with which to compare other trajectories against. The results from this trajectory dynamic

optimization are presented in detail in the following set of figures beginning with Figure 18.

3-D View | Data Basis: Matlab 7.0 Optimization Toolbox
Entry A/S: 143 ftfs (85 KIAS)

Wind Slope: 0.00 /s (NO WIND SHEAR)
Energy Difference: -22%

Edge On View Wind Speed (ft/s)
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Figure 18. Dynamic Soaring 4-View Trajectory (No Wind Shear Baseline)
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Figure 18 shows four different perspectives of the same dynamic soaring profile in zero
wind shear conditions. The sailplane’s position was initialized at the origin of an inertial North-
East-Down reference frame with the sailplane pointed North. The white translucent cones depict
the direction and strength of the wind. In all cases, the wind is blowing directly from the West
and the wind speed increases linearly with altitude according to the given wind shear. In this
particular case, a wind shear of 0.001 ft/s / ft, or a 0.1 knot increase in wind velocity per 100 feet
of altitude gain, was used to approximate a zero wind shear gradient in order to avoid numerical
singularities in some state equations. The color bar depicts wind strength, with blue colors
indicating lower velocity winds and red/orange colors depicting higher velocity winds. The
black line represent the sailplane’s trajectory while the red arrows attached to the black line
represent the velocity vector of the sailplane at that corresponding trajectory position. This
symbology combines to yield insight into dynamic soaring profiles.

In this particular case, the optimal dynamic soaring profile in a zero wind shear condition
resulted in a loss of 78 specific energy height feet. This equated to an energy loss of 22%. Even
with the very light wind shear used in this case, a quick glance at Figure 18 reveals that the
sailplane indeed climbed into the headwind, reversed direction quickly once it nearly ran out of
airspeed, and descended with the tailwind. This is in keeping with earlier mathematical
predictions provided by equation (16). Furthermore, this trajectory matched closely the hairpin
shape of the dynamic soaring profile flown by the Albatross in wind shears over the ocean.

Further detail about this trajectory is shown in Figure 19.
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Figure 19. Trajectory Data (No Wind Shear Baseline)

During the flight of this trajectory, the sailplane traveled down-range (North)

approximately 600 feet and achieved a peak altitude gain of approximately 275 feet before

the sailplane

9

returning back to the initial altitude (0 f#). Because of the very light wind shear

was able to return to its initial cross-range position (0 f7) after achieving a maximum cross range

distance of approximately -200 ft (200 ft West of the initial position). Since the trajectory was

structured such that the sailplane returned to its initial altitude, all changes in energy state were

s final velocity as compared to its initial velocity. In this example,

2

represented in the sailplane

the sailplane began at 85 knots indicated airspeed (KIAS) and finished at 75 KIAS. This

accounted for the sailplane’s loss of 22% of its initial energy. The maneuvering required to

achieve this trajectory is shown in Figure 20.
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Data Basis: Matlab 7.0 Optimization Toolbox

Entry A/S: 143 ft/s (85 KIAS)

-22%

Hairpin Wind Slope: 0.00 /s (NO WIND SHEAR)
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Figure 20. Euler Angles (No Wind Shear Baseline)

Figure 20 depicts bank angle (¢ ), heading angle (i), and flight path angle (y) vs. time

during the dynamic soaring trajectory. In the figure, negative angles equate to left bank angles,

heading changes to the West, and/or flight path angles below the horizon while positive angles

represent the opposite direction of these maneuvers respectively. Collectively, these figures

depict a sailplane that entered a climbing left hand turn to the West with decreasing airspeed for

This was followed by a descending right hand turn with

approximately the first 6 seconds.

increasing airspeed as the sailplane returned to the starting altitude, heading, and cross range

and a maximum

the sailplane achieved a maximum left bank angle of -40°,

2

position. Of note

right bank angle of 45°. Heading changes were limited to a cone of + 60° from North. During

the climbing portion of the trajectory, the sailplane achieved a maximum flight path angle
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approximately 45° above the horizon while climbing, and a maximum -50° nose low flight path
angle during the descending portion of the trajectory. Aerodynamic performance during this

dynamic soaring trajectory is presented in Figure 21.

the sailplane was traveling relatively

b

Time(sec)
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Figure 21. Aerodynamic Performance (No Wind Shear Baseline)
Of particular note during this trajectory was the initial rolling/climbing pull to the West

From a practical employment standpoint, these portions of the trajectory represented the greatest
risk of an over-g since the published limit load factor of the sailplane in this weight configuration

fast (75-85 KIAS), as compared to the airspeeds experienced elsewhere in the trajectory, and
generating approximately 5000 Ibs of lift. Since the sailplane’s weight in this analysis was at its
maximum gross weight of 1124 Ibs, these pulls represented an acceleration of nearly 5g’s.

and the final dive recovery. At these stages of the profile



was 5.33 g’s (LET,1993:1-5 - 2-3). As will be discussed in chapter III of this Thesis, this fact
was a contributing factor to a modified dynamic soaring profile used in actual flight test in order
to provide an adequate flight safety margin.

Figure 21 also illustrates the relative magnitudes of lift and drag for a sailplane in
maneuvering flight. While the lift force was generally on the order of thousands of pounds, the
drag generated was only on the order of hundreds of pounds. This is testament to the relatively
good lift to drag performance of sailplanes as opposed to other air vehicles. This point also
illustrates the fact that relatively small forward rotations of the lift vector due to flight through
wind shear can be significant enough to generate a horizontal component of lift large enough to
offset the drag loses.

Figure 18 through Figure 21 illustrate the fine details of this dynamic soaring hairpin
trajectory and ultimately form the basis for the energy state performance of the sailplane during

this maneuver. This energy performance is illustrated in Figure 22.
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Data Basis: Matlab 7.0 Optimization Toolbox
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Figure 22. Energy State Performance (No Wind Shear Baseline)

Figure 22 is the most significant figure of this set as it shows specific energy, E;, and

specific excess power, P, vs. time. The top chart in Figure 22 depicts the A specific energy

height of the sailplane at any moment in time along the trajectory. In the baseline case, the

sailplane lost 78 specific energy height feet from its initial energy height. The underlying cause

for this loss is shown in the bottom chart in Figure 22. This chart illustrates specific excess

power vs. time. Since there was essentially no wind shear, the energy losing P, performance was

due exclusively to drag (the brief positive Ps portions of the trajectory were due to effects from

the very light wind shear used to approximate zero wind shear conditions).

Now that a baseline dynamic soaring hairpin profile had been constructed, performance

comparisons could now be made by introducing various wind shear strengths. For instance, a

43




wind shear of 0.04ft/s / ft was used to construct the following set of figures. This wind shear was
chosen since, according to the ten year compiled weather data from the NASA DFRC weather
observatory, it represented a relatively strong wind shear that was occasionally generated across
the Rogers dry lakebed by natural phenomenon such as temperature inversions and boundary
layer winds. This wind shear was equivalent to a 2.4 knot wind speed increase per 100 feet of

altitude gain. The results are shown in Figure 23.

3.D View | Data Basis: Matlab 7.0 Optimization Toolbox . Wind Speed (ft/s
Entry A/S: 143 ft/s (85 KIAS) LA IR LY ()
Wind Slope: 0.04 /s (2.4 knots inc. per 100 ft)

Energy Difference: - 12% 9

300/
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Figure 23. Hairpin 4-View Trajectory (0.04ft/s / ft Wind Shear)
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In this case, since the sailplane was able to extract energy from the existing 0.04 ft/s / ft
wind shear, its energy loss was only 42 specific energy height feet. This equated to an energy
loss of only 12% or only approximately half as much energy loss as compared to the baseline
profile. This was a tremendous energy state improvement. Further comparisons with the

baseline trajectory are provided in Figure 24.

Data Basis: Matlab 7.0 Optimization Toolbox
Entry A/S: 143 ft/s (85 KIAS)
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Figure 24. Trajectory Comparison (0.04ft/s / ft Wind Shear)

With a 0.04 ft/s / ft wind shear, the maximum altitude, cross-range, and downrange
distances increased by only approximately 20 to 30 feet. The most significant change in distance
measurements was that the stronger wind shear caused the final cross range position to drift
downwind from the initial start position by approximately 70 feet. Because the range increases
were relatively modest, the trajectory time of 12.4 seconds was nearly identical to the baseline
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trajectory time of 12.6 seconds. Furthermore, the minimum airspeed experienced during the
profile only decreased by 3 KIAS as compared to the baseline trajectory. However, because of
the stronger wind shear, the sailplane recovered back to 80 KIAS at the end of the profile, a 5
KIAS increase over the baseline trajectory final velocity. This resulted in the improved energy
state performance as compared to the baseline trajectory. However, one of the most significant
observations from Figure 24 is the relatively minor differences between the baseline trajectory
and the hairpin trajectory in a 0.04 ft/s / ft wind shear. This is further emphasized by Figure 25.
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Figure 25. Euler Angle Comparison (0.04ft/s / ft Wind Shear)




Here, bank, heading, and flight path angles were all very similar to the baseline trajectory

with only slight increases in magnitudes on the order of 3° to 5°. These changes would be

relatively imperceptible to a pilot trying to fly these trajectories.

Because of the similarities in the profiles, the aerodynamic performance of the sailplane

was also very similar to the baseline profile. This is illustrated in Figure 26.
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Figure 26. Aerodynamic Performance Comparison (0.04{t/s / ft Wind Shear)
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Figure 26 illustrates that the sailplane aerodynamic performance in this profile was nearly
identical to its performance in the baseline trajectory. Again, the over-g potential existed at the
beginning and end of the profiles. While sailplane performance, thus far, was nearly identical to
the baseline trajectory, the differences in energy state performance, as shown in Figure 27, were

significant.
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Figure 27. Hairpin Energy State Performance Comparison (0.04 ft/s / ft Wind Shear)

The top chart in Figure 27 illustrates the effects of flying a dynamic soaring hairpin
profile in a wind shear. While the sailplane began its profile with the same Ej as the baseline
trajectory, its final £; was improved by 36 specific energy height feet as compared to the baseline
trajectory. The reason for this increase is illustrated in the bottom chart of Figure 27. Here, the
initial turn and climb into the headwind resulted in a P gain from the wind. At slightly over two
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seconds into the flight, this P, gain from the wind was actually significant enough to offset the P
loss due to drag. Beyond two seconds into the flight, the P became neutral to positive for
approximately the next four seconds. This same process repeated itself as the sailplane reversed
direction and performed a descending right hand turn back to the start altitude, bank, and
heading. It was this P interplay between drag loss and wind shear gain that improved the final
energy state of the sailplane over the baseline case.

In an attempt to further illustrate the wind shear effect on the energy state of the
sailplane, the hairpin dynamic soaring maneuver described above was reversed such that the
sailplane climbed into a tailwind and descended with a headwind. For this to occur, the sailplane
initiated a climbing turn to the East as opposed to the West. The result was an anti-hairpin
dynamic soaring maneuver. Since the baseline profile was flown in no wind shear conditions,
there was no difference in energy state between a hairpin and anti-hairpin maneuver. However,
with a wind shear present, the energy state penalty effect of anti-hairpin maneuvers became
apparent. This is illustrated by the following set of figures. Figure 28 illustrates the differences

in the orientations of the two maneuvers with respect to the prevailing wind shear.
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3.D View |Data Basis: Matlab 7.0 Optimization Toolbox Wind Speed (ft/s)
Entry A/S: 143 ft/s (85 KIAS)
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Figure 28. Hairpin vs. Anti-hairpin Trajectory 4-View Comparison (0.04ft/s / ft Wind Shear)

The hairpin, represented by the green line and arrows, and anti-hairpin, represented by
the red line and arrows, were essentially mirror images of one another. The differences apparent
in the edge on view (top right) and the top down view (bottom right) in Figure 28 were due
exclusively to the wind effects on the shape of the profile. For example, in the anti-hairpin, the
sailplane was blown downwind by the tailwind at the beginning of its profile when the sailplane
had the greatest amount of airspeed. At the apex of the profile, when the sailplane was at its
slowest point of the trajectory, the sailplane had to penetrate against the headwind in order to
travel back upwind towards the start cross range position. As a result, the edge on view shape
was somewhat distended and, due to the initial push of the tailwind, the final downrange distance

shown in the top down view was approximately 70 feet greater than the hairpin maneuver.
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maneuver was able to achieve 25 feet more of altitude gain and finish the maneuver 5 KIAS

However, because of the energy depleting nature of the anti-hairpin maneuver, the hairpin

faster. These differences are shown in greater detail in Figure 29.

Time (sec)
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hairpin Trajectory Comparison (0.04{t/s / ft Wind Shear)

Here, the hairpin maneuver is represented by the green dashed line and the anti-hairpin

Figure 29. Hairpin vs. Anti

maneuver is represented by the red dotted line.



Figure 30 demonstrates that, from a practical employment standpoint, the control inputs
required to execute either maneuver were virtually identical to one another with the exception of

the initial turn direction either into or away from the headwind.
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Figure 30. Hairpin vs. Anti-hairpin Euler Angle Comparison (0.04{t/s / ft Wind Shear)
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"Hairpin" Trajectory

Data Basis: Matlab 7.0 Optimization Toolbox
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Likewise, Figure 31 illustrates that the aerodynamic performance of the sailplane was similar in
both maneuvers. The slight differences in lift and drag at the conclusion of the profiles were
primarily due to the minor differences in control inputs caused by wind effects on the shape of

the profile described earlier.

Time(sec)

-hairpin Aerodynamic Performance Comparison
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(0.04ft/s / ft Wind Shear)

Figure 31. Hairpin vs. Anti
The primary difference between the hairpin and anti-hairpin maneuvers was in the energy

state performance. This is illustrated in Figure 32.
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Figure 32. Hairpin/Baseline/Anti-hairpin Energy State Performance Comparison
(0.04ft/s / ft Wind Shear)

The top chart in Figure 32 shows the energy benefit of the hairpin maneuver in wind
shear when compared to the baseline trajectory in no wind shear and the anti-hairpin profile in
wind shear. Based on these dynamic soaring conditions, the hairpin maneuver would have only
lost approximately 42 specific energy ft, or -12% of its initial £, while the baseline trajectory in
no wind shear would have lost 78 specific energy height feet, or 22% of its E;. The anti-hairpin
would have exhibited the worst energy performance of the three with a final £ loss of 109 feet,
fully 32% lower than its initial specific energy. This analysis leads to the importance of properly
executed dynamic soaring maneuvers with respect to the direction of the wind shear. It also

lends credibility to the flight test approach of executing both hairpin and anti-hairpin maneuvers
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in order to exacerbate the spread of specific energy data from the baseline trajectory results,
thereby enhancing data analysis and conclusions.

To further investigate these effects, the wind shear was decreased to 0.02 ft/s / ft. Based
on the compiled weather data from the NASA DFRC weather observatory, this strength of wind
shear was very common across the Edwards AFB dry lakebed and would therefore represent the
typical dynamic soaring conditions expected during flight test. This wind shear equated to an

increase of 1.2 knots per 100 feet of altitude gain.
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Figure 33. Hairpin Trajectory 4-View (0.02 ft/s / ft Wind Shear)
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With a reduced wind shear strength, the optimal profile was still nonetheless very similar
to the baseline trajectory. Just as when the wind shear was at 0.04 ft/s / ft, the primary impact to
the shape of the trajectory was a final cross-range position slightly displaced downwind from the

start position. Figure 34 provides more information on this trajectory.
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Figure 34. Trajectory Comparison (0.02 ft/s / ft Wind Shear)

Figure 34 illustrates that, next to the slightly displaced final cross-range position, the only
significant change from the baseline trajectory was that the final sailplane velocity was 78 KIAS.
This return airspeed, only 7 KIAS slower than the start airspeed, accounted for the improved
energy state performance of the sailplane through this wind shear condition as opposed to the

baseline trajectory in no wind shear.
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Despite the improvement in energy performance, the shape of the trajectory remained

relatively unchanged from the baseline trajectory as shown in Figure 35.
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Figure 35. Euler Angle Comparison (0.02 ft/s / ft Wind Shear)

Figure 36 illustrates the aerodynamic performance of the sailplane while flying a hairpin

dynamic soaring maneuver in 0.02 ft/s / ft wind shear conditions.
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Data Basis: Matlab 7.0 Optimization Toolbox

Entry A/S: 143 ft/s (85 KIAS)
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Figure 36. Aerodynamic Performance Comparison (0.02 ft/s / ft Wind Shear)

The Cy lift, Cp, and drag all remained nearly identical to the baseline data. Figure 37

summarizes the expected energy benefit of flying hairpins in both a 0.02 ft/s / ft and a

0.04 ft/s / ft wind shear as compared to the baseline.
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Figure 37. Summary Hairpin Energy State Performance Comparison

Flying a hairpin profile in a 0.02 ft/s / ft wind shear represented an E; improvement of 16
ft from the baseline. However, a hairpin performed in a 0.02 ft/s /ft wind shear still resulted in a
final E 20 ft worse than a hairpin performed in a 0.04 ft/s / ft. These trends were due to the P
benefit from the wind shear described earlier. Even though the 0.02 ft/s / ft wind shear was fairly
light, the effect was still strong enough to show the benefits of flying a hairpin maneuver in wind
shear conditions. To illustrate this point further, the anti-hairpin maneuver was again modeled in
order to build a comparison between the two profiles performed in the same wind shear

conditions.
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3-D View | Data Basis: Matlab 7.0 Optimization Toolbox
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Figure 38. Hairpin vs. Anti-hairpin 4-View Trajectory Comparison (0.02 ft/s / ft Wind Shear)

Similar to the 0.04 ft/s / ft wind shear scenario, the hairpin and the anti-hairpin
maneuvers were virtual mirror images of each other. The slight differences in shape were due to

the wind effects on the profiles described earlier. However, since the wind shear in this case was

weaker, these effects were not as pronounced. Figure 39 provides more detail on the shape of

these profiles.
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"Hairpin" Trajectory

Data Basis: Matlab 7.0 Optimization Toolbox
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Figure 39. Hairpin vs. Anti-hairpin Trajectory Comparison (0.02 ft/s / ft Wind Shear)

The similarity in the trajectories of both the hairpin and anti-hairpin maneuvers is shown

in Figure 39. Because of this similar performance, the control inputs required to perform either

maneuver, with the exception of the turn direction, were also virtually identical. This is shown

in Figure 40.
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hairpin maneuver in this wind shear was also

Figure 40. Hairpin vs. Anti-hairpin Euler Angle Comparison (0.02 ft/s / ft Wind Shear)

Because of the similarities in Euler angles and trajectories, the aerodynamic performance of the

sailplane while performing a hairpin or anti-
identical. This is shown in Figure 41.
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Figure 41. Hairpin vs. Anti-hairpin Aerodynamic Performance (0.02 ft/s / ft Wind Shear)

, the energy state performance of the maneuvers were, again,

While the trajectories were similar

This is shown in Figure 42.
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very different from one another due to the wind shear effects.
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Figure 42. Hairpin/Baseline/Anti-hairpin Energy State Performance (0.02 ft/s / ft Wind Shear)

The anti-hairpin maneuver lost 95 specific energy height feet, or 27% of its E; while the
hairpin only lost 62 specific energy height feet, or only 18% of its initial energy height. Just as
when the wind shear was 0.04 ft/s / ft, the hairpin maneuver in this wind shear condition
outperformed the baseline trajectory in no wind shear and significantly outperformed the anti-
hairpin maneuver.

Based on the analysis performed above, a summary of the energy penalty of anti-hairpin

maneuvers when compared to the baseline trajectory was developed and is shown in Figure 43.
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Figure 43. Summary Anti-hairpin Energy State Performance Comparison

Anti-hairpin maneuvers performed in stronger wind shears result in worse energy
penalties just as hairpins performed in stronger wind shears result in increased energy benefit.
This was expected and reasonable according to dynamic soaring theory.

Hence, a detailed analysis of these three wind shear profiles and the hairpin vs. anti-
hairpin maneuvers revealed another important conclusion of dynamic soaring: So long as the
entry speed into the maneuver was set beforehand, the control inputs and resulting shape of the
optimal dynamic soaring profile were relatively unaffected by the strength of the wind shear.
Furthermore, once the shape of the hairpin dynamic soaring profile was known, the anti-hairpin
trajectory was its mirror image with respect to the prevailing wind shear direction. This is a very
significant finding, especially for the dynamic soaring flight test portion of this research, since it

meant that the maneuvers should be repeatable, predictable and therefore trainable to soaring
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pilots and programmable to NASA airborne robotic explorers given that an appropriate entry
speed had been selected. In addition, once in the profile, the greatest exchange of energy with
the wind shear occurred while the sailplane was climbing or descending through the wind shear
layers. The energy exchanged by the turn reversal at the peak of the maneuver was negligible in
comparison. Essentially, this rule instructs aircraft to reverse turn directions as smoothly and
quickly as possible once the peak of the dynamic soaring maneuver is achieved.

Since the strength of the wind shear had a negligible effect on the optimal profile, a study
was conducted on the effects of entry speed on dynamic soaring. Ultimately, the goal of this
portion of the research was to discover the best entry speed to ensure the success of energy gain
from dynamic soaring. The same objective function and the same wind shear of 0.02 ft/s / ft
were used to ensure equal conditions for all dynamic optimization trials and to ensure the results
were representative of typical wind shear conditions expected at Edwards AFB. The results are

presented below and offer a new perspective on dynamic soaring flight.
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Figure 44. Entry Airspeed Hairpin Trajectory Comparison (0.02 ft/s / ft Wind Shear)

Figure 44 depicts three different optimal dynamic soaring profiles in 0.02ft/s/ft wind
shear condition. These profiles differ only in the selected entry airspeed. The red curve
represents the fastest entry speed of 177 ft/s or 105 KIAS. The black curve represents an entry
speed of 160 ft/s, or 95 KIAS, and the green curve represents the slowest entry speed of 143 ft/s,
or 85 KIAS.

These profiles show something that may be initially counter-intuitive: Faster entry speeds
result in approximately the same downrange distance as slower entry speeds. This is due to the
dynamic soaring conclusion described earlier which stated that the most energy is gained from
the climb into the headwind or the descent away from the tailwind. A sailplane with more initial
airspeed has the ability to climb higher into the wind shear than a sailplane with less initial

airspeed. In essence, the sailplane is “reaching through the shear” in order to extract as much
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energy as possible. This climb and descent for energy, however, is at the expense of potential

downrange distance. This is further illustrated in Figure 45.
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Figure 45. Entry Airspeed Trajectory Comparison (0.02 ft/s / ft Wind Shear)

As detailed in Figure 45, the only significant impact of higher entry speeds was increased

altitude gain, and longer trajectory times. Euler angles during the maneuvers were also very

similar to each other and are illustrated in Figure 46.
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Figure 46. Entry Airspeed Euler Angle Comparison (0.02 ft/s / ft Wind Shear)

Figure 46 details the fact that the magnitudes of the sailplane’s Euler angles remained
virtually identical across the entry speeds, but the duration of those inputs varied in order to
achieve their respective trajectory shapes. For instance, the 177 ft/s entry speed (red dotted line)
was able to maintain a positive y of 50° longer than the other entry speeds due to its higher initial
entry energy conditions. This resulted in the 177 ft/s entry speed achieving the highest altitude
gain through the wind shear of all the entry speeds. Figure 47 illustrates the aerodynamic

performance of the sailplane across the various entry speeds.
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Figure 47. Entry Airspeed Aerodynamic Performance Comparison (0.02 ft/s / ft Wind Shear)

Figure 47 shows that the relative magnitude of lift and drag forces acting on the sailplane
were nearly identical despite the differences in entry airspeed. This is primarily due to the
interplay between the coefficients of lift and drag and dynamic pressure. For example, slower
speeds commanded higher coefficients of drag and lift in order to execute the maneuver, but
because of the lower dynamic pressure at these speeds, the resulting forces were very similar to
the higher speeds. The higher entry speeds, however, did suffer from higher parasite drag on the
sailplane at the beginning of the maneuver and higher induced drag generated during the dive
recovery at the end of the maneuver. This higher drag had a negative impact on the sailplane’s
dynamic soaring performance since it mitigated much of the energy gained by transiting through

the wind shear. Higher entry speeds also increased the risk of an over-g due to excessive
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maneuvering. Based on this information, an apparent tradeoff existed between using a higher
entry speed to penetrate through the wind shear vice the penalty of increased drag and over-g

potential. This is illustrated in Figure 48.
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Figure 48. Entry Airspeed Energy State Performance Comparison (0.02 ft/s / ft Wind Shear)

The most significant finding of Figure 48 was that neither entry speed performed
significantly better than the others with respect to the percentage of energy lost. This
demonstrated the interplay between using higher entry speeds to penetrate higher into the wind
shear at the potential expense of losing too much of that energy to the higher drag incurred
because of high speeds. For example, even though the 177 ft/s entry speed extracted the most

energy from the wind, it also lost much of that energy to parasite drag in the beginning of the
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profile and induced drag during the dive recovery at the end of the maneuver. The result was the
same final energy state as the slower speeds with respect to the percentage of energy lost.

This entry speed analysis revealed two more useful conclusions about dynamic soaring.
Higher speeds increase the potential energy gaining performance of the sailplane from the wind
shear, but at the expense of increased parasite and induced drag, the increased risk of an over-g,
and at the expense of downrange distance. Additionally, for the L-23 Super Blanik, entering the
dynamic soaring profile at approximately 95 KIAS represents a good compromise between net
energy benefit, operational limitations of the aircraft, and downrange distance achieved. One
final study needed to be conducted in order to understand the relationship between entry speed
and the strength of the wind shear. Figure 49 in this analysis depicts the minimum wind shear

required in order to fly an energy neutral dynamic soaring profile.
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Figure 49. Minimum Wind Shear for Energy Neutral Profiles
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If wind shears were above the plotted data, an energy gaining profile could be flown,
while if wind shears were below the data, only an energy losing profile could be flown. The
airspeed band spans the range of the sailplane capability from stall through the never exceed
speed of the aircraft and the airspeed data point were selected to be spaced at 30 ft/s intervals in
order to provide sufficient data for analysis. The data points for Figure 49 were generated by
using the same optimization problem formulation described earlier, with the exception of a new

objective function equation shown below.

,uf(N)=[h(N)+LN)2}—{h(I)+LDZ} (38)
2g 2g

This objective function was designed to minimize the difference between the beginning Es and
the final Es. The strength of the wind shear was manually varied until an optimal solution
converged.

Figure 49 also shows a dynamic soaring valley existed above 120 ft/s, in which the wind
shear required for an energy neutral profile varied little with airspeed. At this speed and above,
wind shears on the order of 0.06 ft/s / ft to 0.08 ft/s / ft were required for energy neutral flights.
Even though these wind shears are considered fairly strong, these wind shears are capable of
occasionally being reproduced in nature by unusually strong temperature inversions, boundary
layer effects in strong winds, or orthographic effects on the leeward side of mountain ridges. As
the entry speed decreases below 120 ft/s / ft, increasingly unrealistic wind shears were required
for the same energy neutral flights. For instance, an entry speed of 70 ft/s required a wind shear
of 0.53 ft/s / ft. This is an increase of 53 ft/s, or 31 knots, per 100 ft gain in altitude. This wind
shear is equivalent to winds experienced in a Category I hurricane. However, at very high
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airspeeds above 160 ft/s, the sailplane is required to over-g the airframe in order to fly the
optimal profile. Modifications to the flight profile would have to be made in order to avoid over
stressing the airframe through aggressive maneuvering. This final analysis led to another
important dynamic soaring conclusion: On the scale of full sized sailplanes, dynamic soaring
requires strong wind shears and is best achieved by using moderate to fast entry airspeeds with

smooth control inputs to avoid an over-g.
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III. Pilot-in-the-Loop Simulator Trials

Aircraft Equations of Motion Development

By observing the results of the point mass analysis, great precision would be required in
order to fly the dynamic soaring maneuver correctly. Heading, airspeed, altitude, and bank
angles all changed rapidly over the course of only several seconds. Without a means with which
to practice the maneuver in a benign environment, precious time, data, and program funds could
be potentially wasted in actual flight test. Commercially available sailplane simulators were
woefully inadequate for this task due to their lack of engineering quality data output and a
faithful aeronautical model representation of an L-23 Super Blanik sailplane. Furthermore, due
to the relatively unexplored practice of dynamic soaring with full sized sailplanes, all
commercially available software was specifically designed to only simulate static soaring
environments, not dynamic soaring conditions. This realization prompted the next step of this
research project: The development of a high fidelity L-23 Super Blanik simulator. This
simulator would be capable of allowing the flight crew to study various dynamic soaring
maneuvers, to develop the dynamic soaring flight test techniques (DS FTT) / crew coordination
procedures, and to evaluate custom built dynamic soaring electronic avionics displays. This
process was broken down into three distinct build up phases. The first phase involved
developing and verifying high fidelity aircraft equation of motion using MATLAB® simulations.
Phase two involved building a prototype flight simulator in the Air Force Research Laboratory’s
Aerospace Vehicles Technology Assessment and Simulation Branch (AFRL/VACD) Large

Amplitude Multi-Mode Aerospace Research Simulator (LAMARS) facility located at Wright
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Patterson AFB, OH. LAMARS would be used to evaluate the ease and feasibility of
implementing these equations of motion for dynamic soaring research using advanced flight
simulators developed specifically for dynamic soaring.

The lessons learned from phase two would then be used to develop a full capability
research flight simulator at the NASA Dryden Flight Research facility at Edwards AFB
California. This NASA simulator would be designed to meet all the objectives of the flight
simulator portion of this research.

Phase one began by developing the appropriate aircraft equations of motion. Point mass
equations of motion may have been sufficient for trajectory development, but by their very
nature, lacked any information on moments of inertia, aerodynamic moments, control surface
deflections, stability coefficients, and angular rates. This made them inappropriate for a high
fidelity aircraft simulator. A set of equations was needed that described an aircraft’s motion in
6-DOF. This could only be accomplished by using the set of twelve aircraft equations of motion.
For the highest fidelity, these equations must be subject to non-linear forces and moments, and
also must include the effects of wind shears. The performance of these equations would be
governed in large part by the effects of stability coefficients and moments of inertia. This
required a valid aeronautical model of the L-23 Super Blanik sailplane.

Since this acronautical model did not exist at the start of this research, another Test
Management Project was initiated by the USAF TPS during the fall of 2005. Using the same L-
23 sailplane the SENIOR IDS (Borror, 2004) test team used in 2004 to research the lift and drag
characteristics of the aircraft, the HAVE BLADDER (Aviv, 2005) test team conducted a test
program in order to produce accurate moment of inertia data and stability coefficient information

for the test L-23. These results are summarized in the tables shown below.
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Table 1. Longitudinal Stability Coefficients

Pitch Moment lift Force drag Force
Coefficient Value Coefficient | Value | Coefficient| Value
C, -0.014 C. 0.342 Cp, 0.0007
Cu, -25 C, 9.16 C, 1.145
Cy. -5.2 C, 0.5 Cp, 0.0
Cy, -0.01710+0.0986
My -0.025
Where
w, = Pitch Moment [M] Coefficient due to Angle of Attack (/rad)
C v, = Pitch Moment Coefficient due to Body Fixed Pitch Rate [(Q] (/rad)
C,. = Pitch Moment Coefficient due to Angle of Attack Rate [0.5 ] (/rad)
Cy, = Pitch Moment Coefficient at Zero Angle of Attack (/rad)
Cy, = Pitch Moment Coefficient due to Elevator Deflection [, ] (/rad)
G, = lift[1] Coefficient due to Elevator Deflection (/rad)
C, = lift Coefficient due to Angle of Attack (/rad)
G, = lift Coefficient at Zero Angle of Attack (/rad)
Cp,, = drag Coefficient at Zero Angle of Attack (/rad)
C, = drag Coefficient due to Angle of Attack (/rad)
C, = drag Coefficient due to Elevator Deflection (/rad)

&
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Table 2. Lateral Directional Stability Coefficients

Side Force Roll Moment Yaw Moment
Coefficient | Value | Coefficient Value Coefficient | Value
Cyﬂ -0.006 CLﬁ -0.001 szﬂ 0.001
Yo 0.001 CLP -0.7 CNP -0.0157a.
-0.0689
N 0.0028 C. 0.0265a-+0.1667 Cy. -0.04
Cy 0.0 C,. 0.006 Ch. 0.0
. 0.0003 Ch. -0.009
C., 0.0 Cy, 0.0005

Where:
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Side Force [Y] Coefficient due to Sideslip [ £ ] (/rad)

Side Force Coefficient due to Aileron Deflection [ 6, ] (/rad)
Side Force Coefficient due to Rudder Deflection [ ] (/rad)
Side Force Coefficient at Zero Angle of Attack (/rad)

Roll Moment Coefficient [L] due to Sideslip (/rad)

Roll Moment Coefficient due to Roll Rate [P] (/rad)

Roll Moment Coefficient due to Yaw Rate [R] (/rad)

Roll Moment Coefficient due to Aileron Deflection (/rad)
Roll Moment Coefficient due to Rudder Deflection (/rad)
Roll Moment Coefficient at Zero Angle of Attack (/rad)
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Continued from Table 2
CNﬁ = Yaw Moment [N] Coefficient due to Sideslip (/rad)
Cy, = Yaw Moment Coefficient due to Roll Rate (/rad)
Cy, = Yaw Moment Coefficient due to Yaw Rate [R] (/rad)
Cy, = Yaw Moment Coefficient due to Aileron Deflection (/rad)
Cy, = Yaw Moment Coefficient due to Rudder Deflection (/rad)
Cy, = Yaw Moment Coefficient at Zero Angle of Attack (/rad)

Table 3. Moments of Inertia

(1124 1bs Gross Weight)
Moment of Inertia Value (slug-ftz)
I 2080
I, 1010
I, 2700
Iy, 190

Table 4. Control Surface Deflection Limits

Control Surface Limit (°)
Elevator 32°up
25° down
Aileron 34° up
13° down
Rudder +30°

With this aero model data, the construction of non-linear, rigid body, constant mass,
aircraft equations of motion could begin. The first step was to determine how winds would

affect these equations. The following figures are provided to show the development of the
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relationships within and between reference frames used in the subsequent aircraft equations of

motion.

Inertial Frame

Body Frame Expanded Inset Picture

Figure 50. Reference Frame Relationships

80




Figure 51. Winds in the Body Fixed Reference Frame

Winds had the ability to influence only the effective angle of attack, sideslip angle, and
the true airspeed experienced by the aircraft. For instance, if the sailplane flew 50 knots into a
50 knot headwind, the effective true airspeed experienced by the aircraft would be the same as if
the sailplane were flying at 100 knots in zero wind conditions. Furthermore, if the aircraft

experienced an updraft, the effective angle of attack of the sailplane would increase.
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A front quartering headwind from the right, as shown in Figure 51, would make the
aircraft behave as if it were experiencing a positive sideslip. These relationships are illustrated in

the equations shown below.

& = ATAN (Mj (39)
U+ Upyyp
= ASIN [—V * Vo j (40)
v,
4 =\/(”‘"”W1ND)2 +(V+VWIND)2 +(W+WWIND)2 (41)
Where:
u = Component of aircraft velocity along the body fixed x-axis (ft/s)
uwivp = Component of wind velocity along body fixed x-axis (ft/s)
v = Component of aircraft velocity along the body fixed y-axis (ft/s)
viminp = Component of wind velocity along body fixed y-axis (ft/s)
w = Component of aircraft velocity along the body fixed z-axis (ft/s)
wwivp = Component of wind velocity along body fixed z-axis (ft/s)
v, = True airspeed of aircraft (ft/s)

These angle and true airspeed relationships required that inertial frame winds were accurately

modeled in a body fixed frame. This was accomplished by the following conversion matrix.

T COCy) CO)Sy) ~S(6) [-Wind,
Yoo |=| ~CASW) +S@ASOCW)  CHCH)+SPSOSW)  SHCO) || Wind, | (42)
W | | S@S@) +CAHSOCH) ~S@CW)+CHSO)SW) CHCO) || Wind,

Where:
C = Cosine
S = Sine
Windg = Component of wind along E-axis inertial frame (ft/s)

Windy Component of wind along N-axis inertial frame (ft/s)
Wind), = Component of wind along /-axis inertial frame (ft/s)
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Unlike in the point mass model, all body fixed velocities became significant when using the full

6-DOF aircraft equations of motion set. This set of equations is defined below.

i = Rv—Ow— gsin(0) + 1 43)
m
\./ =—Ru+ Pw+ gsin(g)cos(d)+ £y (44)
m

v.v =Qu— Pv+ gcos(g)cos(0)+ il (45)
m

Where:

Sum of forces in body fixed x-axis direction (Iby)
= Sum of forces in body fixed y-axis direction (lby)
= Sum of forces in body fixed z-axis direction (Iby)
= Euler Pitch Angle (deg)

© = m

The forces in the above equations were determined by the following set of equations.

F, =—Dcos(a)cos(f)—Y cos(a)sin(f)+ Lsin(xr) (46)
F, ==Dsin(f)+7Y cos(f) (47)
F, =-Dsin(a)cos(f)—Y sin(a)sin(f) — Lcos(ar) (48)

Where:
Y = Side Force (lby)
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Lift and drag were determined by equation (7) and (8) respectively mentioned earlier in this

Thesis. However, a new term, known as side force, was determined via the equation shown

below.
Y= )5 pV3sC, (49)
Where:
Y = Side Force (1by)
Cy = Coefficient of Side Force

The coefficients of lift, drag, and side force in the above equations were determined by the

following equations.

C,=C, a+C, Elev (50)
C, :(-0027*C12+-017)+C95E Elev (51)
Cy =Cy f+Cy Rdr (52)
Where:
Elev = Elevator Deflection (rad)
Rdr = Rudder Deflection (rad)
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The body fixed roll, yaw, and pitch angular rates were determined by the equations shown

below.

s Lol =1, +1,1PQ-[1,(I, ~ 1)+ I}, JOR+1,L+1,,N

P 2
IXIZ_IXZ
Qz (I,-1,)PR—1,(P*-R*)+m
IY(IXIZ _I)z(z)
~ [y —I ), +1,1PO—1,[1,—1,+1,JOR+1,L+I,N
R =

IXIZ _])zrz

The pitch, roll, and yaw moments were determined by equations (56) through (58).

L=}, pV;’sbC,

t

t

M = 12,0V2SCCM

N = > pV.2sbC,
Where:
b = Wing Span (ft)
c = Wing Chord (ft)
C = Roll Moment Coefficient
Cu = Pitch Moment Coefficient
Cy = Yaw Moment Coefficient

85

(53)

(54)

(55)

(56)
(57)
(58)




The moment coefficients shown in the preceding equations were determined by using the

equations below.

q=c¢ﬂ+c%Aﬂ+c%RW+§%KLP+c%m (59)
CM:cma+c%JmW+§ﬂﬁ%Q+CM&] (60)
t a
Cy= CNﬂﬂ +Cy Rdr+C, Ail+ %[CNPP +Cy, Rdr] (61)
Where:
Ail = Aileron Deflection (rad)

Euler angles were computed by using equations (62) though (64) shown below.

é = cos(¢p)— Rsin(9) (62)
# = P+ tan(0)Q'sin(¢) + R cos() (63)
* Qsin(@)+ Rcos(p)

V= cos(6) (64)

The final set of equations concern the translational distances covered across the inertial
reference frame. This was found via a conversion matrix between the body and inertial

frames as shown below in equation (65).
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COXC(y) S@PSOCY)-C@PSy) CPSOC(y)+SP)Sy)
N|=1COSy) SAOSOSW)+CACY) CASOSY)-SACW) || v
p —S(0) S($)C(0) C(P)C)

(65)

Where:

Position along the inertial frame E-axis (ft)
Position along the inertial frame N-axis (ft)
= Position along the inertial frame /-axis (ft)

> = Iy
I

These equations of motion formed a new state and control matrix. The state vector was a
12x1 vector that described all of the sailplane’s body fixed velocities, angular velocities, Euler
angles, and translational position in inertial space. This state vector was subject to the
conventional controls of the sailplane, namely aileron, rudder, and elevator deflections, which

formed a 3x1 control vector. These vectors are shown below.

(66)

S 2O yRQ0 v o = < =

Ail
U =| Elev (65)
Rdr

87




LAMARS Simulator Development

Equations (39) through (65) were first constructed and then verified using MATLAB®
simulations. Once the state equations propagated appropriately based on control surface
deflections and environmental conditions, the MATLAB® code was then translated into C++
code for use with the Air Force Research Laboratory’s VACD LAMARS facility located at
Wright Patterson AFB, OH. This prototype dynamic soaring flight simulator was the second

phase of the flight simulator build up.

Figure 52. LAMARS Facility

LAMARS was chosen as a build up to the final flight simulator because of its successful
30 year history of simulating various aircraft for a wide variety of Air Force research programs.
From a risk reduction standpoint, the simulator’s pilot-to-vehicle interface was well validated
and the software engineers that programmed and maintained LAMARS were highly experienced.

Furthermore, the LAMARS simulator featured a wide angle 120° field of view and a heads up
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display (HUD). All of these features made easier the task of evaluating the implementation of
the dynamic soaring aircraft equations of motion in a flight simulator. As a final note, any
parameter of the dynamic soaring profile could be output in a matrix format compatible with
MATLAB® input protocols. This allowed for near real-time analysis of any simulated dynamic

soaring flight. An example screen shot from the pilot’s cockpit is shown in Figure 53.

A Cross-Range from start position (ft)
Flight Path Marker
Pitch
Ladder
()
-
Altitude
(ft)
: Bank
Airspeed Heading (°) S::le ©)
(ft's) A Downrange from start position (ft)

Figure 53. LAMARS Sailplane Heads Up Display

89




Using the experience gained from the LAMARS prototype flight simulator, the final
stage of the dynamic soaring flight simulator build up process could begin. Again, because of
the ground breaking nature of this research, no dynamic soaring instrumentation, displays, or
procedures existed. These would all have to be developed specifically for this research and

refined in a flight simulator in order to improve flight test efficiency and data results.

APEX Simulator Development

The prototype LAMARS flight simulator was primarily used to evaluate the
implementation of the dynamic soaring aircraft equations of motion and to build an initial
experience base on simulator development and ease of flying the hairpin and anti-hairpin
maneuvers. Hence, the final stage of the flight simulator development was used to develop the
electronic avionics displays, to refine the dynamic soaring maneuvers, and to collect flight
simulator data predictions for actual flight test. The NASA Dryden flight simulator facility was
chosen for this task due to their extensive experience with developing advanced flight research
simulators. NASA Dryden’s APEX flight simulator, shown in Figure 54, was originally
developed in 1992 to simulate sailplane flight for a project using a modified glider developed by
NASA (NASA Dryden). As such, it was already capable of accepting the L-23 Super Blanik
aerodynamic model and the dynamic soaring aircraft equations of motion developed and refined

with MATLAB® and the prototype flight simulator used at the LAMARS facility.
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Figure 54. NASA Dryden APEX Flight Simulator Facility with DynaSoar 3.0 Display

In addition, the NASA Dryden Flight Research Center instrumentation office was chosen
as the agency to develop the dynamic soaring flight displays. The proximity of NASA Dryden to
the USAF Test Pilot School also greatly facilitated the concurrent development and coordination
efforts required to integrate the research simulator with the electronic avionics display.

Experience with the prototype LAMARS simulator in phase two emphasized the need for
the flight crew to be able to precisely track pitch, yaw, and roll real-time in order to ensure
maneuver precision and repeatability across various flight crews. The prototype also
demonstrated the need to automatically calculate and display specific energy and specific excess
power for the dynamic soaring maneuvers to the flight crew. The position and strength of wind
shears would also have to be known real-time so that flight crews could orient the hairpin and
anti-hairpin accurately. Lastly, flight crews would also need to be able to precisely track the
trajectory of their maneuvers for in flight real time analysis and post flight reconstruction. The
final software package developed for this research, known as DynaSoar Version 3.0, was
installed on a Motion Computer Tablet PC unit and mounted in both cockpits in the actual
sailplane and also in the simulator (reference Figure 54). Because the hardware interface in both
the APEX simulator and the actual L-23 sailplane were identical, this integration allowed the test

aircrew to build sufficient experience with the electronic avionics display in anticipation of flight
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test. In addition, the output data files from both the simulator and the aircraft were exactly the
same. This allowed for data reduction and analysis protocols to be verified and validated before

the beginning of flight test. An example of the DynaSoar 3.0 electronic display is shown in

Figure 55

6 EsF

7 | 1877

2~ DynaSoar Yersion 3.0
File Data Options Help
DynaSoar | Quick Look |

04192008 17-400T
Altitude:
1ft)

oo %

4500
\ N |
4000
4945
WSE Es(ﬁ) fifsec

Dowriange

Es Maneuver ussl

— —529
Es Minimum Altll
T 1122

I okebed Conion -ﬁk---:\--,--x---x---ﬁ----&----k-----\»,—--------------71 2 o

T

13 14 15 16 17 18 19 20
1 Attitude ball with embedded heading scale and 14 | Cross range distance from start of maneuver (ft)
heading bug (bug was set at start of maneuver when
the HOS controller was pressed)
2 Pressure altitude (ft) 15 | Downrange distance from start of maneuver (ft)
3 Normal load factor 16 | Wind data zoom control
4 Airspeed (KIAS) 17 | Wind data (altitude, direction, speed)
5 Energy rate Ps gauge (ft/sec) (Negative rate displays 18 | Energy height bingo (ft MSL)
a red bar, Positive rate displays a green bar)
6 Energy height (ft MSL) 19 | Pressure altitude (ft)
7 Energy height (ft AGL): Prior to takeoff this button 20 | Energy height (ft MSL)
was pressed to zero the energy height. (Below (Energy height shown is not representative of an actual
bingo energy the block turns red) flight because the picture shown was not captured in
flight.)
8 Energy difference from start of maneuver (ft) 21 | Current heading reference line (red)
9 Energy height bingo (ft AGL) 22 | Own ship icon
10 Lakebed status toggle (red/green) 23 | Ground track history (blue)
11 EGI/GPS status display 24 | Moving map display with zoom control
12 | DAS status display (Green indicates data is 25 | Start of maneuver heading reference line (green)
recording)
13 Altitude from start of maneuver (ft)

Figure 55. Dynamic Soaring DynaSoar 3.0 Avionics Display
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Using this electronics display coupled to the concurrently developed NASA Dryden APEX
dynamic soaring flight simulator, refinement of the dynamic soaring flight maneuvers and
procedures used for actual flight test could begin.

The DS FTT developed for this project, shown in Figure 56, was selected to optimize
energy extraction from horizontal wind shear, while at the same time ensuring repeatability,
simplifying data analysis, and abiding by flight safety restrictions (Gordon, 2006:6). This
modified profile was necessarily less aggressive than the point mass optimal trajectory due to the
fact that the point mass model was not restricted by moments of inertia, pilot capabilities, or low
altitude safety maneuvering restrictions, whereas the 6-DOF flight simulator and actual aircraft
were. The result was an elongated profile with downrange distances on the order of 2000-3000
feet and trajectory times between 20 to 25 seconds. The energy state impact of this modified
profile in comparison to the optimal profile is detailed at the end of this chapter in Table 5 and

Table 6.
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Figure 56. Dynamic Soaring Flight Test Technique

Three airspeeds, 85, 95, and 105 KIAS were used to enter the maneuver based on the
dynamic optimization described earlier in this Thesis. The DS FTT was initiated from wings
level flight at the target entry airspeed, perpendicular to the wind, and at the bottom of the wind
shear gradient. The pilot smoothly rolled and pulled to execute a 45° heading change
simultaneous with a 15° to 25° pitch up. For an entry airspeed of 85 KIAS the pitch up was 15-
20°, and for a 95 or 105 KIAS entry the pitch up was 20-25°. As airspeed decreased in the climb
the pilot reversed the turn and rolled the aircraft to approximately 50° of bank across the apex of
the maneuver. At the apex of the maneuver the nose was near the horizon and the sailplane was
back on the maneuver entry heading. Minimum airspeed over the top was 40 KIAS, and the
apex altitude was 200-400 feet above the entry altitude depending on the entry airspeed. As the
sailplane was turned back towards the original ground track the nose was allowed to drop to 15

to 25° nose low (amount of nose low attitude matched the amount of nose high attitude on the
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first leg of the maneuver). As the sailplane descended, the pilot again reversed the roll and
pulled to fly back to the initial heading and altitude. The maneuver ended with the sailplane on
the entry heading and altitude with the wings level. Just as described in the MATLAB® analysis,
a hairpin maneuver was defined by flying the DS FTT with a climb into a headwind and a
descent with a tailwind. An anti-hairpin maneuver was defined by flying the DS FTT with a
climb into a tailwind and a descent with a headwind.

Aircrew coordination procedures were refined in the APEX simulator such that the pilot
in the front cockpit of the sailplane was primarily responsible for flying the maneuver and had
overall responsibility for safety of flight. The rear cockpit crewmember, a flight test engineer
(FTE) or flight test navigator (FTN), would be primarily responsible for providing clearance to
the pilot to continue to fly the profile based on established criteria for data and maneuver
tolerances. The rear cockpit crew member would also provide altitude pacing calls to the pilot to
ensure maneuvers ended at the altitude where the maneuvers started. With this modified profile
maneuver defined and avionics display completed, flight test simulations could begin.

As in the point mass model, the simulator was initialized with the sailplane pointed North
and centered at the origin of a North-East-Down inertial frame. Winds were initialized to blow
directly from the West with a linear wind shear profile based on historic wind shear conditions at
Edwards AFB as provided by the NASA DFRC weather observatory. The sailplane was
initialized approximately 1000 ft above the start of the shear layer in order for aircrews to gain
experience judging the amount of altitude required to dive to the bottom of the shear layer and
arrive at the appropriate entry airspeed conditions. Experience with this setup for the initial
conditions would later help aircrews during flight test to best position the tow aircraft to release

the sailplane in an optimal position to exploit the wind shear. Due to the identical DynaSoar 3.0
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hardware/software used in the simulator and the sailplane, the output data protocols and data
reduction/analysis for both flight test and simulator trials were exactly the same. The data
reduction methodology was designed to mirror the point mass analysis techniques to the greatest
extent possible in order to simplify data reduction and comparisons. Ultimately, over 100
dynamic soaring sorties were performed in the flight simulator across a range of entry airspeed
and wind shear conditions. Examples of the resulting data plots from the DynaSoar 3.0 package

for a single dynamic soaring hairpin maneuver are provided below.

3-D View Data Basis: DynaSoar 3.0 & APEX NASA DFRC sim Edge On View Wind Speed ft/s
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Figure 57. APEX Simulator Hairpin Trajectory (0.016 ft/s / ft Wind Shear)

For this example, a wind shear strength of 0.015 ft/s / ft was used since this represented
an average Edwards AFB wind shear. In this simulation with a 105 KIAS entry airspeed, the

sailplane traveled North approximately 2000 ft and achieved a maximum altitude gain of
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approximately 320 feet. Total time for the trajectory was 17 seconds. These details are

illustrated in greater detail in Figure 58.
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Figure 58. APEX Simulator Trajectory Data (0.015 ft/s / ft Wind Shear)

Using the modified profile, the sailplane traveled approximately 1300 feet further
downrange and 150 feet further cross range than the optimal profile with the same 105 KIAS

entry speed. The resulting inertial velocities from this elongated profile are shown in Figure 59.
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Data Basis: DynaSoar 3.0 & APEX NASA DFRC sim
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Figure 59. APEX Simulator Inertial Velocities (0.015 ft/s / ft Wind Shear)

Figure 59 illustrates an aircraft that began its profile oriented North, entered a
decelerating climbing turn to the West followed by an accelerating descending turn to the East,
and finally completed its profile traveling North again. When these inertial velocities were
converted using the inverse of the matrix shown in equation (65), the resulting body fixed

velocities became as shown in Figure 60.
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Figure 60. APEX Simulator Body Fixed Velocities (0.015 ft/s / ft Wind Shear)

The most significant velocity change from the optimal profile can be seen by studying the

top plot in Figure 60. Since the modified profile was designed partly with safety and pilot

repeatability considerations in mind, airspeed changes, particularly at the apex of the maneuver,

were less dramatic than the optimal profile. Whereas the optimal profile commanded the

sailplane to decrease its velocity to approximately 25 KIAS at the apex, the modified profile only

decayed to approximately 55 KIAS. This was designed to ensure that the aircraft never

decelerated past 40 KIAS, an airspeed chosen to provide sufficient safety margin above the stall
speed of 35 KIAS. This change in the airspeed profile was responsible for the elongated shape
of the modified profile as compared to the optimal profile. Euler angle information about the

simulator flight is shown in Figure 61.
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Data Basis: DynaSoar 3.0 & APEX NASA DFRC sim
Entry A/S: 177 ft/s (105 KIAS)
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Figure 61. APEX Simulator Euler Angles (0.015 ft/s / ft Wind Shear)

Figure 61 describes an aircraft that smoothly blended pitch, bank, and roll angles to
transcribe an inclined sinusoidal like path across the sky. Unlike the optimal profile, the
maximum nose high and nose low pitch angles in this example were only approximately £25° as
opposed to upwards of £55°. This was performed so as to keep the modified profile’s minimum
airspeed above the 40 KIAS limit described earlier. Body fixed angular rates encountered during

this maneuver are illustrated in Figure 62.
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Figure 62. APEX Simulator Angular Rates (0.015 ft/s / ft Wind Shear)

Of interest in Figure 62 is the increase in yaw rate, R, during the middle of the profile.
Yaw rates remained relatively low until the aircraft reached the peak of the trajectory, at which
point the yaw rate increased to approximately 20 deg/s as the nose sliced down and to the right
during the turn reversal back to the East. The simulator runs indicated that this yaw rate, while
moderately high, was normal for an aircraft in a near stall turn reversal, did not laterally
overstress the aircraft, and should not disorient the pilot during its execution so long as it is
performed in clear visual meteorological conditions. The profile detailed in the previous

simulator figures ultimately produced the energy state of the sailplane as shown in Figure 63.
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Figure 63. APEX Simulator Energy State Performance (0.015 ft/s / ft Wind Shear)

Energy states for both the flight simulator and the actual test aircraft were derived using
Pitot-static theory. Pitot-static derived energy data were calculated using the sailplane’s Pitot
static instruments for airspeed and altitude sources, and then applying standard Pitot static

corrections as appropriate before calculating energy states.
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Pitot static energy states were governed by the following equation:

V2
ESPimt—static = H : (66)

corrected + 2

In equation (66), true airspeed, or V,, and the corrected altitude, or H.oprecred, Were
determined by recording the indicated airspeed, indicated outside air temperature, indicated
dynamic pressure, and indicated static pressure and applying the following corrections as

determined by trailing cone Pitot-static calibration flights in preparation for flight test.

Pstaticcorrecrep = Pstaticiypicarep — (Cp) * qivpicaren (67)
qmpicarep = 0.5 *pSL*ViZ (68)
qcorrecrep = (1 + Cp)* qvpicarep (69)
p — PSTA TIC(:ORRECTED (70)

R*0OAT
= | dcorrecrep. (71)
t
Yo,

Where:

Cp = Test Pitot-static nose boom pressure correction coefficient (0.095 from flight test)
V;= Indicated airspeed (ft/s)

V,= True airspeed (ft/s)

ps. = Density at Sea Level (0.002377 slug/ft’)

givpicarep = Indicated dynamic pressure (lbs/ftz)

qcorrecrep = Corrected dynamic pressure (lbs/ftz)

Paiic npicarep = Indicated static pressure (Ibs/ft)

Psaic correcrep = Corrected static pressure (lbs/ftz)

OAT = Outside air temperature (°R)

R = Atmospheric gas constant ( 1716 ft Ibf/ (slug °R))
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Since, during actual flight test, dynamic soaring maneuvers could be initiated at any
altitude depending on the vertical location of the prevailing wind shear, the initial energy state at
the start of the maneuver was set as a reference energy state, and then the change in energy state
was tracked from this initial value. This technique was the same as that applied to energy state
measurements performed earlier in the Thesis. In the example in Figure 63, the shape of the E;
and P; profiles was identical to those predicted by dynamic optimization. The final A E; value
was nearly twice the energy loss predicted in dynamic optimization from flying the much more
aggressive optimal profile, but nearly identical to the mathematically predicted energy loss from
flying the modified profile. This fact lended credence to the viability of the mathematical
analysis performed in anticipation of flight test.

Ultimately, the experience gained from the flight simulator was invaluable in preparing
for flight test. It represented the bridge between dynamic optimization and practical application.
The final results of this modeling and simulation effort, both from dynamic optimization and the
flight simulator research, are presented in Table 5 and Table 6. Results are presented for both

the hairpin and anti-hairpin maneuvers.
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Table 5. Summary of Dynamic Soaring Hairpin Modeling and Simulation

Entry No Wind Shear
Airspeed (BASELINE)
A Es (ft)
Optimal Modified Flight Optimal Modified Flight Optimal Modified Flight
Profile Profile Simulator Profile Profile Simulator Profile Profile Simulator
MATLAB® | MATLAB® (APEX) MATLAB® | MATLAB® (APEX) MATLAB® | \iATLAB® (APEX)
143 fi/s
(85 KI4S) 75 -103 -117 -58 -96 -105 -40 -88 -92
160 fi/s
(95 KI4S) -83 -146 -136 77 -136 -122 -60 -116 -98
177 fi/s
(105 KIAS) 97 -185 -180 -80 -165 -163 -57 -128 -138
Direction of Increasing Energy Benefit >
Table 6. Summary of Dynamic Soaring Anti-hairpin Modeling and Simulation
Entry No Wind Shear
Airspeed (BASELINE)
A Es (ft)
Optimal Modified Flight Optimal Modified Flight Optimal Modified Flight
Profile Profile Simulator Profile Profile Simulator Profile Profile Simulator
MATLAB® | MATLAB® | (APEX) | MATLAB® | MATLAB® | (APEX) | MATLAB® | MATLAB® | (APEX)
143 fi/s
(85 -106 -118 -140 -95 -111 -131 -75 -103 -117
KIAS)
160 fi/s
(95 -102 -171 -167 -89 -160 -150 -83 -146 -136
KIAS)
177 fi/s
(105 -132 =221 =223 -114 =205 -200 -97 -185 -180
KIAS)
< Direction of Increasing Energy Penalty
_ —

As would be expected, the optimal profile performed the best from an energy state

perspective. When the optimal profile was shifted to the modified profile, the results from the

MATLAB®™ dynamic optimization and flight simulator matched very closely. The small

differences in results were due to slight variations in pilot technique and the inability of flight

crews to fly the profile exactly as the MATLAB® analysis commanded. With modeling and

simulation complete, dynamic soaring flight test could finally begin.
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IV. Flight Test

Flight Test Overview

Flight Test, shown in Figure 64, were conducted over the northern portion of the Rogers
dry lakebed at Edwards AFB California. Dynamic soaring test flights were conducted under the
program title SENIOR ShWOOPIN (Shear Wind Observed Optimized Path Investigation for
NASA). SENIOR ShWOOPIN (Gordon, 2006) was the world’s first investigation into full size
sailplane dynamic soaring and represented the culmination of the mathematical analysis and

simulation conducted for this research.

Figure 64. L-23 and Tow plane Launch on a Test Sortie

By the conclusion of the SENIOR ShWOOPIN flight test program, one hundred thirty-

eight sorties in the L-23 (88 test sorties and 50 training/avionics validation flights) were
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performed. The test window for this project was 15 March to 18 May 2006. A total of 27 hours

of flight test were accomplished.

The core test team consisted of three flight test pilots, two FTEs, and one FTN. This test
team was supported by two NASA weather specialists, two NASA avionics and instrumentation
technicians, two NASA simulator technicians, two soaring operations advisors, and three tow

plane pilots. Members of this test team are shown in Figure 65.

Figure 65. SENIOR ShWOOPIN Test Team

The overall flight test objectives were four-fold:

1. Compare the energy gained or lost during the hairpin and anti-hairpin
maneuvers, both in a wind shear and without wind shear (baseline energy loss
case).

2. Determine if full size sailplanes could extract energy from horizontal wind
shears.

3. Evaluate the L-23 sailplane modeling and simulation data in comparison to flight
test data.

4. Qualitatively evaluate the utility of dynamic soaring as a practical maneuver for
full size sailplanes.
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These objectives were based on the mathematical analysis and simulations already
accomplished for this research and were designed to support the overall objective of this project
to prove or disprove the viability of dynamic soaring for full size sailplanes. All test objectives
were met.

Since this was the first project of its kind, the L-23 sailplane used by the SENIOR IDS
and HAVE BLADDER test teams needed to be modified into a specialized dynamic soaring
research aircraft. This aircraft featured unique avionics and instrumentation specifically
developed for this project. A complete description of this test aircraft is provided below in order

to illustrate its unique characteristics with respect to a stock model L-23 Super Blanik sailplane.

Test Aircraft Description

The L-23, shown in Figure 66, was designed and manufactured by LET Aeronautics
Works in the Czech Republic and was marketed in the United States by Blanik America,
Wenatchee, WA (LET, 1993). The two-place, tandem cockpit L-23 was owned by the USAF
TPS and made of an all metal structure. The rudder, elevator, and ailerons were fabric covered
(LET, 1993). The T-tail was fitted with a conventional elevator and pitch trim tab for pitch
control. The main landing gear on the test aircraft was pinned down and the cockpit gear handle
had been removed (Gordon, 2006:1). The L-23 glide ratio was 24:1 at approximately 48 KIAS
with the speed brake retracted and the landing gear extended (LET, 1993). The conventional
three axis flight control system was non-powered and fully reversible. Both cockpits were
equipped with a center mounted control stick and rudder pedals that actuated control surfaces

with a combination of control push rods and cables. The speed brakes were controlled by levers
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from either cockpit. The never exceed airspeed was 133 KIAS. Load factor limits were -2.5 to

+5.33 g at full gross weight (1124 pounds with two occupants) (LET, 1993).

Figure 66. L-23 Super Blanik Test Aircraft with Mobile Operations Center

The aircraft was modified with a data acquisition system (DAS) consisting of a five-hole
Pitot-static probe, an inertial measurement unit (IMU), two tablet PCs displaying real time
attitude, load factor, flight altitude, and E; information through the DynaSoar 3.0 software, a
digital readout of energy height from the total energy variometer probe (rear cockpit), and a
digital cockpit camera (Gordon, 2006:2). The total energy variometer was used as a backup to
measure the sailplane’s energy height. Although this instrument displayed correctly in the
cockpit, it was unable to output a correct data stream to the onboard DAS. As a result, it was not
used for data analysis. For background theory regarding the total energy variometer reference

Appendix D. Total Energy Probe Theory.
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Figure 67. Front (left) and Rear (right) Cockpit Displays Panels

The total weight of modification equipment was 22 pounds allowing for a maximum
combined weight of 396 pounds for crewmembers (Gordon, 2006:2). The DAS was completely
independent of the production Pitot-static system. The boom mounted five-hole Pitot-static
probe had a hemispherical tip, and measured total and differential pressure, provided airspeed,
altitude, angle of attack (), and angle of sideslip (f) signals (Gordon, 2006:2). The digital
camera was mounted behind the pilot station to record over the shoulder video. The software on
the tablet PC also provided the capability to playback recorded data post flight. The IMU was
installed in the baggage compartment behind the rear cockpit. The unit was a battery-powered
GS-111m produced by Athena Technologies, Inc, Warrenton, VA (Gordon, 2006:3). It
incorporated the sensor suite necessary to provide a full attitude, navigation, and air data solution

for use in vehicle flight-state measurement.

The GS-111m was equipped with accelerometers, angular rate sensors, and
magnetometers in all three axes, an internal GPS receiver, and air data sensors. A real-time,
multi-state Kalman filter was used to integrate the different sensors (Gordon, 2006:3). The

aircraft also had a VHF radio to communicate with other aircraft and ground stations. Refer to
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Appendix A Instrumentation and Display Sensors for more detailed information about aircraft

test instrumentation.

For the sake of dynamic soaring analysis, the performance of the L-23 under test was
considered production representative. Because of the unique nature of this research, and the
ambitious test objectives, new test operational procedures needed to be developed and executed
in a disciplined manner in order to collect the fidelity of dynamic soaring data required for this

thesis.
Test Procedures and Execution

Each test period started with an initial crew briefing, lakebed inspection, weather balloon
launch, operations setup, and instrumentation check (Gordon, 2006:7). Forecast wind soundings
were briefed to the crews to give a general idea as to where the strongest wind shear layer was
predicted. Wind shear data were collected periodically with weather balloons. Sonic Detection
and Ranging (SODAR) equipment was used to monitor thermal activity (Gordon, 2006:7). This
equipment is depicted in Figure 68.

The weather balloon sent raw data including wind direction, wind speed, geopotential
altitude, and temperature to a mobile ground station. Two weather technicians downloaded this
data and processed it to provide plots of pressure altitude against wind direction and speed. The
air temperature was required to determine if an inversion was present—typically a good
indication of a shear layer. Weather information was updated at least every 60 minutes, or more

frequently based on observed changes in atmospheric conditions.
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Figure 68. SODAR Equipment and Weather Balloon

Target altitudes based on wind shear conditions, were briefed to the crew immediately
prior to launch, or radioed to a crew already on tow. To ensure rapid communication of the
appropriate initial conditions for each DS FTT maneuver, a standardized format for transmitting
the initial conditions was developed and reported in the form of a “4-Line” brief. The 4-Line
consisted of 1) initial run in heading, 2) altitude targeted, 3) airspeed required, and 4) the wind
direction (Gordon, 2006:7).

While the weather information was being collected, the mobile operations center (see
background of Figure 66) was driven out to the lakebed and the glider and tow plane were
prepared for launch. During the glider rollout, the IMU, instrumentation suite, and the avionics
suite were powered on and aligned. Normal alignment took approximately 10 minutes. Ground
power from the mobile operations center was connected to the glider to extend battery life of the
avionics displays. Air traffic control facilities were notified that glider operations were
commencing. This activated the range operations area shown in Figure 69, restricting other

aircraft traffic from interfering with sailplane operations in the test area.
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Dynamic Soaring
Flight Test Area

Figure 69. Sailplane Operating Area (North Rogers dry lake)

A modified glider aircrew checklist was run by each crew flying the L-23 prior to each
tow. The checklist included standard glider checklist items as well as programming the
DynaSoar 3.0 displays. When these checks were complete, the glider aircrew signaled for
launch, and the glider was subsequently towed to an altitude approximately 1,000 feet above the
wind shear target altitude. This provided time for the aircrew to initiate a dive to stabilize at the
target airspeed, and, at aircrew discretion, practice the DS FTT prior to execution.

After each required test point was accomplished, the glider was recovered to the lakebed,
as shown in Figure 70, and the crew was either re-launched, or switched out. Qualitative
comments were captured immediately upon landing to provide insight into what indications were

present upon shear boundary entry and techniques to improve DS FTT execution.
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Figure 70. L-23 on Final Approach after a Successful Test Mission

Results and Analysis

Test point selection and data analysis were accomplished through the use of design of
experiments (DOE) (Gordon, 2006:9). The test points were selected to vary the controllable
factors of crew (pilot + engineer), initial entry airspeed, and hairpin or anti-hairpin maneuver.
Clearly, a variable not controlled by the test team was the wind shear. At the end of the project
135 data points were collected. A general linear model analysis was performed using DOE. The
critical factors identified in the calculated energy height were maneuver type (hairpin versus
anti-hairpin), wind shear magnitude, and entry airspeed. For more information on the DOE

employed in the course of this thesis see Appendix C. Design of Experiments Analysis.

Energy State Comparison

The energy gained or lost during the hairpin and anti-hairpin maneuvers were compared
using the no wind shear baseline energy loss condition as a reference. This objective required
the tracking of sailplane energy height during hairpin and anti-hairpin maneuver execution.
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Tracking energy height was accomplished using the Pitot-static method described earlier. Data
were compiled from MATLAB® plots generated and analyzed for each flight.

The trajectory data obtained from each flight test generally matched the results obtained
from the modified profile modeled in MATLAB® and flown in the APEX simulator. Due to the
volume of data and similarity to trajectory figures already described in detail in chapter III, a
sample of the complete set of data plots from a flight test sortie is shown in Appendix B. Sample
Flight Test Dynamic Soaring Results. Additional flight test data can be found in the SENIOR
ShWOOPIN report (Gordon, 2006).

According to dynamic soaring theory, executing a hairpin maneuver in a wind shear
should result in a final energy state higher than executing the baseline profile in no wind shear or
anti-hairpin maneuver in wind shear. Figure 71 illustrates common trends noted in the energy

height performance during flight test across the various dynamic soaring profiles.
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Data Basis: Dynamic Soaring Flight Test

T T Test A/C: L-23 Super Blanik N268BA
Configuration: Main Gear Down

! ! Entry Airspeed: 105 KIAS
! ! Crew: Maj Fails / Capt Eckberg

BOF - - - NG D : o _____\Y________] Data Source: Athena DAS / DynaSoar 3.0
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Figure 71. Example Flight Test Energy Height Performance (0.27 ft/s / ft Wind Shear)

Figure 71 illustrates that during the baseline DS FTT performed in no wind shear, the
Pitot-static £ and P, performance trends were better than those experienced than anti-hairpin
maneuvers, but worse than those from hairpin maneuvers. As expected, the baseline
performance was in between the hairpin and anti-hairpin. During the hairpin maneuver in wind
shear, the Pitot-static energy height was characterized by a shallow decrease or increase in
energy height until the aircraft reached the apex of the maneuver. The Pitot-static energy height
then decreased sharply as the aircraft accelerated in the descent with the tailwind back to the
entry altitude and heading. The P; trended to be either slightly above or slightly below zero for
the majority of the profile, reflecting the energy benefit realized by exploiting the horizontal
wind shear. During an anti-hairpin maneuver, the Pitot-static energy height decreased steadily

throughout the maneuver and final energy state was significantly lower than the hairpin. P
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trended negative throughout the entire maneuver due to the energy penalty of anti-hairpin
maneuvers from the wind shear.

Flight test data analysis involved averaging results across the test team. Maneuvers were
considered to have been conducted in a shear when the change in wind speed was greater than
1.5 ft/s / 100 ft (0.015 /second) [~0.9 knot/100 feet]. Any wind shear measured below 1 ft/s / ft
(0.01 /second) [~0.5 knot/100 feet] was considered a no wind shear condition. The maximum
wind shear noted throughout the test program was a shear of 0.04 /second [~2.5 knots/100 feet].
The data points collected during the test window are detailed in Appendix E. Flight Test
Results. Data points that were discarded from the averaging analysis method are described in

Appendix F. Rational for Discarded Data Figure 72 details the overall results obtained from

flight test.
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Data Basis: Dynamic Soaring Test

Test A/C: L-23 Super Blanik N268BA
Configuration: Main Gear Down

Average Wind Shear: 0.016/ s

250 + Data Source: Athena DAS / DynaSoar 3.0
Test Dates: 10 April - 18 May 2006
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Figure 72. Summary of Flight Test Results
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Overall, the flight test results were in accordance with dynamic soaring theory. The
energy loss when executing a hairpin maneuver was less than executing the DS FTT baseline
maneuver in a no shear condition, on the order of 5-15%. When executing an anti-hairpin
maneuver in a wind shear, energy losses were generally 15-20% more than the energy losses

from flying the hairpin maneuver in a wind shear.

The Existence of Dynamic Soaring for Full Size Sailplanes

The results presented above revealed that performing the hairpin maneuver in wind shear
resulted in less energy loss than performing the anti-hairpin maneuver in wind shear or the DS
FTT (baseline) in no shear. The differences in the final total energy states were directly related
to the presence of horizontal wind shear. This provided proof of concept that dynamic soaring
did exist for full size sailplanes.

Using design of experiments, analysis determined that the Pitot-static specific energy loss
was highly dependent on three variables, namely wind shear, entry airspeed, and aircrew flying
the maneuver. The flight test program was designed such that it had 99.9 % power to detect any
specific energy height differences greater than 10 feet. Analysis determined that there was a
linear dependence of energy loss on the wind shear or, stated more simply, that the sailplane
extracted energy from the wind shear. The DOE analysis showed greater than 99.9 %
confidence that energy changes in the hairpin, baseline, and anti-hairpin maneuvers were related

to wind shear. For further DOE explanation see Appendix C. Design of Experiments Analysis.
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Notable Case of Dynamic Soaring

Although not included in the formal data analysis due to a lack of precise weather balloon
data during the time of flight (reference Appendix F. Rational for Discarded Data ), the
SENIOR ShWOOPIN test team did execute a dynamic soaring hairpin profile in what was
believed to be an abnormally strong wind shear. The flight test crew reported strong turbulence
caused by localized wind shears. This wind shear turbulence, much greater than any experienced
during the flight test window, was generated by a fast moving cold weather front that passed
over Edwards AFB. Although an equipment malfunction prevented the launch of a weather
balloon at the time of flight, weather data taken from the NASA SODAR equipment, time
stamped approximately one hour after the flight occurred, indicated current wind shear
conditions exceeding 0.1 ft/s / ft. This wind shear was more than six times the average wind
shear encountered during the test program. Unfortunately, the strong winds generated by the
cold front engulfed the test area directly above the Rogers dry lakebed. This cold front generated
a large dust storm and made conditions unsafe for continued test flights after this sortie had

landed. The energy height data from this flight is shown in Figure 73.
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Data Basis: Dynamic Soaring Flight Test
Test A/C: L-23 Super Blanik N268BA

. . . Configuration: Main Gear Down

| | | Entry Airspeed: 95 KIAS

| | | Wind Shear:>0.10/s
) Crew: Capt Solomon/ Capt Ryan

Data Source: Athena DAS /DynaSoar 3.0
Test Date: 17 April 2006

Time (sec)

Figure 73. Special Case of Dynamic Soaring

This profile was very unique amongst all the other data flights since it resulted in a loss
of only 60 energy height feet. For the majority of the profile, the sailplane actually maintained a
neutral to positive energy state. This is extraordinary considering the lack of thermals or
orthographic lift. Similar results were obtained when this flight was recreated in the APEX flight

simulator with the estimated wind shear. This is shown in Figure 74.
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Data Basis: Dynamic Soaring Flight Test
Test A/C: L-23 Super Blanik N268BA
100 Configuration: Main Gear Down
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Figure 74. APEX Simulator Recreation of Strong Wind Shear Hairpin

This flight lends further evidence to the existence of dynamic soaring flight for full size
sailplanes. It also indicated the need for precise wind data and added credence to the extreme
strength of the wind shear required in order to experience near energy neutral profiles in this

particular sailplane. This was predicted by dynamic optimization shown in Figure 49.

Comparison of Modeling and Simulation Data Predictions with Flight Test Results

The MATLAB® modified profile and the APEX flight simulator were flown using a wind
shear of 0.015 ft/s / ft. This wind shear was chosen since it represented the average wind shear

experienced during actual flight test. This provided a realistic basis with which to compare
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modeling and simulation data against actual flight test. To ensure a sufficient data set, a total of
100 APEX flight simulator runs were documented across the airspeed band using both the
hairpin and anti-hairpin maneuvers. The Pitot-static energy height flight test data was averaged
across the test team results and compared to MATLAB and APEX simulator predictions.
Overall, the MATLAB® dynamic optimization and the APEX flight simulator provided very
reasonable predictions of actual flight test energy height data and served as excellent dynamic

soaring research tools.
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Figure 75. 85 Knot Entry MATLAB / APEX simulator / flight test comparison

For the 85 KIAS maneuvers, as shown in Figure 75, the MATLAB® model and APEX
simulator were in close agreement with each other. However, both tools predicted less energy

loss, on the order of 30-40 specific energy height feet, than was actually experienced. This was
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most likely due to the fact that the L-23 drag model was acquired using static techniques (i.e.
without the presence of large control surface deflections, sideslips, or otherwise aggressive
maneuvers). This model would, by definition, produce less drag than what could be expected
during an actual dynamic soaring maneuver. Nonetheless, the flight test data indicated that the
hairpin lost less energy as opposed to the anti hairpin as predicted by MATLAB® and the APEX

flight simulator. Figure 76 shows very similar trends as those described for Figure 75.
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Figure 76. 95 knot entry speed MATLAB / APEX simulator / flight test comparison

Again, the predictions showed the correct trend between the hairpin and anti-hairpin as
what was experienced in actual flight test. Once again, the predicted magnitude of the energy

heights was less than flight test. These trends are further emphasized by studying Figure 77.
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Figure 77. 105 Knot MATLAB / APEX simulator / flight test comparison

Overall, the APEX simulator and MATLAB®™ model were invaluable in studying
dynamic soaring. The model used for both MATLAB® and the APEX simulator assumed a more
optimistic drag polar than what the sailplane actually produced. This fact accounted for the
consistently smaller predicted energy height losses. The drag polar produced by the SENIOR
IDS flight test data were collected for trimmed flight conditions with negligible aileron and
rudder deflections. However, during the DS FTT maneuver, the ailerons and rudder were
continuously deflected and sideslips were encountered leading to more drag than in the trimmed
flight condition. Additionally, the wind shear used in MATLAB® and the APEX simulator was
linear with respect to altitude and was known exactly. However, the wind shear in the real world
was not always linear, and was not known with the same accuracy. These two factors accounted

for most of the differences between the flight test data and modeling and simulation data.
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Employment by Soaring Pilots

The dynamic soaring maneuver was evaluated from both a handling qualities and
practical employment standpoint. Overall from a handling qualities perspective, the maneuver
was relatively easy to fly compared to standard glider maneuvers, (i.e. steep turns, slow flight,
etc) that a typical soaring pilot would execute. On average, a 2.0 g pull was used to initiate the
DS FTT maneuvers at the 95 and 105 KIAS points and 1.5-1.8 g on the 85 KIAS points. The
stick and rudder forces and deflections during the maneuver were not objectionable. At no time
during the test flights was safe aircraft control in question.

Normal altitude gained during the maneuver ranged from 300-400 feet during the 105
KIAS points to 150-200 feet during the 85 KIAS points. During the test program, several data
points were flown at 200 feet AGL and 105 KIAS. Although workload slightly increased at the
lower altitudes due to ground rush, performance standards did not suffer and desired
performance was still attained. Likewise, control forces and deflections as well as aircraft

controllability was never in question at these lower altitudes.
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The difficulty of the maneuver to fly was assigned a Cooper-Harper rating based off of

the following criteria:

Desired: Maintain pitch and bank to within £5 degrees of entry, peak, and exit
parameters as discussed earlier in the test procedures section. Airspeed must have
been maintained within +5 knots of entry and peak airspeed parameters. At the
conclusion of the maneuver, the pilot must have rolled out within £10 degrees of

the initial heading.

Adequate: Maintain pitch and bank to within 10 degrees of entry, peak, and
exit parameters as discussed earlier in the test procedures section. Airspeed must
have been maintained within -5 to +10 knots of entry and peak airspeed
parameters. At the conclusion of the maneuver, the pilot must have rolled out

within £20 degrees of the initial heading.

Figure 78 illustrates the Cooper-Harper Ratings for each test pilot on the test team. The
project pilots had diverse flying backgrounds, but the Cooper-Harper Ratings were similar
among all the pilots. Pilot 1 was a C-130E pilot, pilot 2 was an F-15C pilot with a commercial
sailplane license, and pilot 3 was an AV-8B pilot. Pilots 1 and 3 had no previous glider
experience. A level I Cooper Harper rating was assigned by two of the test team pilots and a
level I was assigned by the remaining pilot on the test team (See Appendix G. Cooper-Harper
Rating Scale ). Desired performance was achieved by each team member. However, moderate

pilot compensation was required to attain desired performance because of the required precision
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of the maneuver. Overall, the DS FTT was executed with tolerable pilot workload primarily due
to the advanced avionics and maneuver quality assistance provided by the FTEs and the FTNs
from the rear cockpit. During the maneuver the FTE/N would call the altitude change from start
altitude so the pilot could remove it from his cross check. In addition, the FTE/N was the
primary safety monitor for terminating the maneuver due to a low energy state or descending

through minimum altitudes during DS FTT maneuvers.

Pilot 1: C-130E Pilot
Pilot 2: F-15C Pilot (Commercial Sailplane License)
Pilot 3: AV-8B Pilot

Cooper-Harper Rating

Pilot 1 Pilot 2 Pilot 3

Figure 78. Cooper-Harper Ratings

Overall, the ability to extract energy from horizontal wind shear did exist. However, the
data also indicated that the energy gained was relatively small. During the test window,
relatively light wind shear profiles were generated by the mild temperature inversion and

boundary layer effects experienced in the flight test area. The strongest wind shear encountered
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during the test window equated to an increase of 2.5 knots per 100 feet. Hence, little energy was
available to extract from the wind shear. Although more difficult to map precisely, stronger
wind shears can be generated when the wind is partially blocked by an obstacle. This situation
exists on the leeward side of mountain ridges and might provide the best opportunity to
experience dynamic soaring.

In addition, the L-23 drag penalties incurred due to aircraft design possibly outweighed
much of the energy benefit gained during the hairpin maneuvers. The test aircraft L-23 suffered
from high parasite drag due to the fixed landing gear, metal rivet construction, and imperfections
in the fit of major components (canopy, flight control surfaces, etc). Typical competition
sailplanes feature modern glass composite construction and sleek low drag designs. Gaps
between canopies and flight control surfaces are typically sealed with tape in order to present a
seamless surface to the wind. As a result, competition sailplanes can have lift to drag ratios in
excess of 60:1 vice the 24:1 glide ratio of the test aircraft. As a result, low drag sailplanes are
better suited for extracting energy via dynamic soaring techniques. A high performance glider,
with lower drag, and increased maneuverability, would possibly see an enhanced positive net
effect from the dynamic soaring maneuvers in wind shear.

The avionics, test instrumentation included in the glider, and weather support for these
flights were invaluable in order to fly accurate maneuvers. The attitude display allowed for
accurate and repeatable maneuvers in pitch and roll. In addition, the airspeed and altitude
readouts were clear and sensible. Likewise, the GPS moving map display coupled with the
hands on stick (HOS) activated ground track symbology maximized the precision to which the
DS FTT maneuvers could be flown. These avionics were unique to this aircraft and would not

be present in a typical production sailplane. Furthermore, atmospheric data were collected using
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dedicated weather balloons and mobile SODAR. A typical sailplane pilot would not have access
to these resources to accurately map the atmosphere around the sailplane. Strong shears can be
felt on tow in the form of turbulence, and temperature inversions can be indicated by low haze or
drifting columns of smoke or dust. However, these indications are ultimately only an
approximation made by the pilot in the cockpit real time. Hence, maneuver precision and energy
extraction from wind shear would suffer in a production sailplane with a typical soaring pilot.

The dynamic soaring maneuver was not difficult to fly given the special instrumentation
and crew coordination employed during flight testing for this research. However, level II ratings
were assigned due to the precision required in order to standardize data collection. Dynamic
soaring theory indicates that it is possible to extract energy from horizontal wind shear using
maneuvers other than the DS FTT used for this research. These maneuvers may require less
precision in order to be performed and may be able to be executed with a standard sailplane’s
instrumentation.

Finally, the data indicated that the dynamic soaring maneuver was more beneficial at the
high speed points from 95-105 KIAS. In order to obtain these entry speeds in the L-23 from a
start airspeed of 60 KIAS, 700-800 feet of altitude were lost during the dive. This is not a
realistic profile for a pilot who is trying to maximize glider energy state because it involved
sacrificing significant altitude. Since precise wind shear data would not be known, this dive
might ultimately result in a loss of energy that may not be recovered. Hence, from an energy
height standpoint, hairpin maneuvers in uncertain atmospheric conditions would be risky for a
soaring pilot to perform.

In summary, the dynamic soaring maneuver was a relatively mild maneuver that was easy

to fly, but the precision required for flight test data collection increased the workload
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significantly. Valid data were collected throughout testing that proved the theory of dynamic
soaring. However, in a production sailplane that lacks specialized instrumentation and detailed
atmospheric data, the risk to a sailplane’s energy state by performing dynamic soaring
maneuvers may be outweighed by the energy benefits gained by basic static soaring techniques,

such as thermal, ridge lift, etc.
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V. Conclusions and Recommendations

This research represented the first documented study into the viability of dynamic soaring
for full size sailplanes. The results from this research will have a direct impact on the design of
the next generation of airborne robotic space explorers as well as enhancing flight techniques
employed in the sport of soaring. Trajectory dynamic optimization was performed in addition to
numerous modeling and simulation trials in specially developed flight simulators. Custom built
dynamic soaring electronic flight displays were developed for this research in order to aid flight
crews in flying the correct trajectory and to facilitate data acquisition. This research and
development created a solid foundation for actual dynamic soaring flight test. As a result, the
results from dynamic soaring flight test proved to be very successful as all test points were flown
and all objectives were met.

Extensive mathematical modeling and simulation revealed some important dynamic
soaring conclusions that were used in the development of flight test techniques and data analysis
protocols. The first was that when encountering a wind shear, the sailplane must either climb
while facing a headwind or descend while traveling with a tailwind in order to realize an energy
benefit. Furthermore, so long as the entry speed into the maneuver was set beforehand, the
control inputs and resulting shape of the optimal dynamic soaring profile were relatively
unaffected by the strength of the wind shear. Once the shape of the hairpin dynamic soaring
profile was known, the anti-hairpin trajectory was its mirror image with respect to the prevailing
wind shear direction. These conclusions were important since it meant that the maneuvers were
trainable and repeatable to soaring pilots or programmable to an airborne robotic explorer
Analysis also indicated that the greatest exchange of energy with the wind shear occurred while

the sailplane was climbing or descending through the wind shear layers. The energy exchanged
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by the turn reversal at the peak of the maneuver was negligible in comparison. In general, higher
speeds increase the potential energy gaining performance of the sailplane from the wind shear,
but at the risk of incurring increased penalties from induced and parasite drag, increased over-g
potential, and downrange distance. Based on this conclusion, for the L-23 Super Blanik, entering
the dynamic soaring profile at approximately 95 KIAS represented a good compromise between
net energy benefit, operational limitations of the aircraft, and downrange distance achieved.
Lastly, on the scale of full sized sailplanes, dynamic soaring required strong wind shears and was
best achieved by using a blend of moderate to fast entry airspeeds with smooth control inputs to
avoid an over-g. Overall, this project proved that full size sailplanes could extract energy from
horizontal wind shears, although the utility of the energy extraction could be marginal depending
on the flight conditions and type of sailplane used. Recommendations for future dynamic

soaring research are provided in the next section.

Future Dynamic Soaring Research Recommendations

Future dynamic research projects should focus on addressing four recommendations

provided by this project. These recommendations are provided below in order of priority.

Table 7. Summary of Future Dynamic Soaring Research Recommendations

Priority Recommendation

Ji Conduct dynamic soaring research in the
stronger wind shears generated by
orthographic features

2 Conduct dynamic soaring research in high
performance sailplanes

3 Investigate alternate dynamic soaring
maneuvers that require less precision and
instrumentation

4 Build a dynamic maneuvering drag polar
model
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Rationale for Recommendations

Future dynamic soaring research should be conducted in the stronger wind shears
generated by orthographic features. Although this project successfully proved the theory of
dynamic soaring for full size sailplanes, the amount of energy benefit, from mathematical
predictions, flight simulator results, and actual flight test, was relatively small. The strongest
wind shear encountered during this test program equated to a 2.5 knot increase per 100 feet of
altitude gain. Hence, little energy was available to extract from the wind shear. It is very likely
that stronger wind shears than those encountered during this test program could be generated by
flying on the leeward side of mountain ridges when the winds are perpendicular to the ridge line.
Although these wind shear profiles would be harder to map due to the complexity of the flow
fields, this scenario represents the best opportunity to experience suitable dynamic soaring
conditions.

Future dynamic soaring research should also be conducted in high performance
sailplanes. The low aerodynamic performance of the L-23 sailplane mitigated much of the
energy gain realized by flying the hairpin maneuvers in the light wind shears present during the
test window. Data analysis and a comparison of the flight test with dynamic optimization results
and APEX simulator data indicated that more energy could be extracted from the atmosphere
with stronger wind shears and low drag profile sailplanes. Data analysis further indicated that
faster entry speeds were ideal for dynamic soaring since this allowed the sailplane to penetrate
higher through the wind shear. At these higher speeds, however, parasite drag dominates the

performance of the L-23 sailplane.
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Future research should also investigate alternate dynamic soaring maneuvers that require
less precision and instrumentation. Because of the ground breaking nature of this flight research
and the limitations of the environment and sailplane described above, accurate knowledge of
atmospheric wind shear conditions and precise control of the dynamic soaring maneuvers were
critical. Such precision was required in order to best position the sailplane to take advantage of
the wind shear and to ensure the repeatability of the maneuvers. This required advanced custom
built avionics and dedicated weather monitoring support. The required precision generated
additional workload for the aircrew since they had to constantly monitor the position and
strength of the wind shears and use the electronic displays to track the sailplane’s attitude and
flight condition within tight tolerances through the dynamic soaring flight test technique. Since
this project proved the basic existence of dynamic soaring for full size sailplanes, future research
should expand the practical knowledge base of this technique by discovering maneuvers that
require less instrumentation and precision to successfully extract energy from horizontal wind
shears. Maneuvers of this type would be much easier for a typical soaring pilot to perform in a
sailplane equipped with standard avionics.

Finally, future research should develop a dynamic maneuvering drag polar to aid in
modeling and simulation efforts. The MATLAB® dynamic optimization routine and APEX
flight simulator were excellent research tools to study the effects of dynamic soaring in various
wind shears. The model used for both tools, however, featured a non-maneuvering drag polar.
Although the predicted energy height results from modeling and simulation closely matched the
basic trends of flight data, the predicted energy losses were consistently less than flight test
energy losses. Essentially, the flight simulator predicted better dynamic soaring performance

than what was attained by the L-23.

134




10.

11.

12.

13.

Bibliography

Aviv, Yam-Shahor, et al. USAF TPS L-23 Super Blanik Aerodynamic Determination,
Evaluation, and Reporting Program, Test Management Project, AFFTC-TIM-05-08,
Edwards AFB, California, December 2005.

Bryson, A.E. Jr. Dynamic Optimization. Addison Wesley Longman, Inc., Menlo
Park, CA, 1999.

Borror, Sean, et al. USAF TPS L-23 Super Blanik Drag Polar and Preliminary
Investigation of Dynamic Soaring, Test Management Project, AFFTC-TIM-04-04, USAF
TPS, Edwards AFB CA, June 2004.

Boslough, Mark B.E. Autonomous dynamic soaring Platform for Distributed
Mobile Sensor Arrays, SAND2002-1896, Sandia National Laboratories, Albuquerque
NM, 2002.

Circling Hawk Paragliding. www.circlinghawk.com/crazybirds.html

Civil Air Patrol National Technology Center.
https://ntc.cap.af.mil/ops/DOT/school/NCPSC/GliderNCPSC/CAPF_5_glider/soaringtec

hniques.htm

Experimental Aircraft Association. http://www.eaa.org

FAA (U.S. Department of Transportation Federal Aviation Administration).
Airplane Flying Handbook. FAA-H-8083-3A, Oklahoma City OK, 2004.

Fiddlers Green. http://www.fiddlersgreen.net/index.php?pg=956

Gordon, Randel, et al. USAF TPS L-23 Shear Wind Observed Optimized Path
Investigation for NASA, Test Management Project, AFFTC-TIM-06-02, Edwards AFB
CA, June 2006.

Hoppi’s Segelflug-seiton.
http://www.alpenstreknsegelflug.de/texte/english/glidingvideos.htm

Invention Psychology.
http://invention.psychology.msstate.edu/i/Lilienthal/Lilienthal.html

Jackson, Michael R., Zhao, Yiyuan J., and Slattery, Rhonda A. Sensitivity of Trajectory
Prediction in Air Traffic Management. Journal of Guidance, Control, and Dynamics,
22(2), 219-228, 1999.

135




14.

15.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Bibliography (Cont.)

Larson, Reid A., Mears, Mark J, and Blue, Paul A. Path Planning for Unmanned Aerial
Vehicles to Goal States in Operational Environments. AIAA Infotech@Aerospace
Conference, Arlington, Virginia, September 2005.

Leonardo. http://www.leonardo.net/

LET. L-23 Super Blanik Sailplane Flight Manual. Do-1.23.1012.5, Czech Republic,
December 1993.

Lord Rayleigh. The Soaring of Birds, Nature, 27, 534-535, 1883.

Library of Congress. http://memory.loc.gov/ammem/wrighthtml/wrightphot.html

Lissaman, Peter. Wind Energy Extraction by Birds and Flight Vehicles. AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 2005.

Meriam, J. L., and Kraige, L. G. Engineering Mechanics, Volume 2, Dynamics, Second
Edition, John Wiley & Sons, Inc., New York, NY, 1986.

NASA Dryden Fight Research Center. http://www.dfrc.nasa.gov

Physics and Advanced Technologies.
http://www-pat.llnl.eov/Research/scattering/LordRayleigh.html

Reichmann, Helmut. Streckensegelflug, 1978. Reprinted as Cross Country Soaring by
the Soaring Society of America, 1978.

Short, Simine and US Soaring Teams. History of Gliding & Soaring, Soaring Society of
America, 2004.

Vintage Sailplanes. http://vintagesailplanes.de/REIHER.HTM

Zhao, Yiyuan J. Optimal Patterns of Glider Dynamic Soaring. Optimal Control
Applications and Methods, 25, 67-89, 2004.

136




Appendix A. Instrumentation and Displays Sensors

The instrumentation system installed on the L-23 consisted of an Inertial Measurement
Unit (IMU), an air data probe and transducers, control surface position transducers, analog-to-
digital converter, a temperature probe and two tablet PC displays. The IMU and analog-to-
digital converter were mounted on an adjustable plate and aligned with the centerline of the
aircraft. The centerline was defined by the rib running along the top surface of the aft fuselage.
The plate was then tilted to align it with the aircraft fuselage reference line. The fuselage
reference line was defined by two marks on the side of the glider at the forward and aft ends.
The plate was tilted left and right to align with the leading edge of the wing. Finally, a laser
sight was used to align the air data probe with the fuselage reference line and center it along the
aircraft centerline. All angular measurements were therefore referenced to a body axis
coordinate system whose x-axis was aligned with the fuselage reference line and a y-axis aligned

with the wing leading edge at the root.

Guidestar GS-111m

An Athena Controls Guidestar 111m (GS-111m) inertial measurement unit (IMU) served
as the central component in the instrumentation system. The GS-111m used accelerometers,
angular rate sensors, GPS, and a magnetometer to compute a full inertial attitude solution. Pitot-
static pressures from a nose-mounted 5-hole probe were measured by the GS-111m to determine
airspeed, altitude, angle-of-attack (AOA), and angle-of-sideslip (AOS). Pressure transducers on
the TPS GS-111m had a dynamic range of +26,221.9 Pascals for AOA and AOS, and 16,596
Pascals for dynamic pressure. Total air temperature was measured by a resistive temperature

detector (RTD) mounted under the right wing. The RTD voltage was sampled by a 14 bit
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analog-to-digital input on the GS-111m. Data were sampled and written to a 32 Megabyte
onboard memory chip for post-flight download. The GS-111m updated its navigation solution at
50 Hertz. The data sampling rate was software selectable with currently available rates of either
25 Hertz or 50 Hertz. The 50 Hertz sampling rate was used for this program. The GS-111m was
modified to accept a digital signal from an analog-to-digital converter that was wired to the
position transducers. This hardware modification consisted of a circuit board housed in a generic
black box that could be mounted anywhere in the proximity of the GS-111m and connected to
the GS-111m using an RS-232 serial cable. The interface control document can be obtained
from Athena Controls. A full description of the GS-111m can be obtained by contacting Athena

Controls.

Air Data Probe

An air data probe purchased from Computer Instruments Corporation was used to
measure static pressure, total pressure, AOA, and AOS. The initial design called for a constant
0.75 inch outer diameter probe. This was modified by increasing the diameter of the aft end up
to 1.25 inches to provide sufficient wall thickness for attachment to the boom. The AOA and
AOS measurements were made using a pressure differential, total pressure, and a scale factor.
The probe had a scale factor of 4.526366 1/radian. During a previous project the air data probe

was calibrated using a trailing cone (reference 1).\

Resistive Temperature Detector
The RTD purchased from Computer Instruments Corporation was used to measure total

temperature. The platinum RTD had a nominal resistance of 500 Ohm and a scale factor of
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0.00385 Ohms/Ohm/degrees C. The RTD was powered by an Action Instruments Ultra Slimpak
G418-0001. A full description of this device may be obtained by contacting Computer
Instruments Corporation. The output voltage of the RTD was sampled by a 14 bit analog-to-
digital converter on the

GS-111m. During a previous project an ice bath calibration of the RTD connected to the GS-

111m resulted in the following relationship between RTD resistance and measured voltage:

R _RTD =474.0085 Ohm + 61.6398 Ohm/volt * Voltage (72)

A platinum RTD had a sensitivity curve with a slope of 0.00385 Ohms/Ohm/degrees C over the

temp range [-10 +50] degrees C. This gave a relationship between RTD resistance and

temperature:

T(°C) = -257.3989 C + 0.5148 C/Ohm * R_RTD (73)

Combining these equations gives a relationship between voltage measured by the IMU and total

air temperature:

T(°C) =(0.5148 * (474.0085 + (Voltage * 61.6398))) - 257.3989 (74)
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Surface Position Transducers

String potentiometers (5K Ohm) made by Space Age Technologies were mounted to
measure control surface deflections of the elevator, rudder, left and right aileron and elevator
trim tab cable. The potentiometers were mounted in front of the surfaces and connected to the
surface with a steel cable. Wiring to the potentiometers was run internally from the DAS pallet
to the mounting point for the potentiometer. During a previous project calibration curves were
created using a digital inclinometer to measure the angle of the control surface and plot it versus
the voltage output for the elevator, ailerons and trim tab. Calibration of the rudder was
accomplished by finding the center of rotation on the top of the rudder. A protractor was then
placed above this point and deflection angles were read using the seam of the rudder that

described the left-right plane of symmetry. All control surface calibration curves were linear.

GS-111m Interface

Interface to the GS-111m was made via five serial ports accessible through 51 pin
connectors. Each serial port was configured for RS-232 communication at 115.2
Kilobits/second. The slow data rate was chosen primarily to ensure reliable communication with
the Motion Computing tablet PC used for cockpit data display. Operationally, only ports 1-3

were used.
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Laptop PC Interface

Serial port 1 was used to interface with a laptop PC for IMU initialization. After
applying power to the IMU, an Athena Graphical User Interface (GUI) was used to set internal
IMU parameters and switch the IMU into the Air Mode. After initialization, the laptop was

disconnected prior to flight.

Tablet PC

Serial port 2 was used to communicate with a Motion Computing tablet PC. The tablet
PC displayed flight parameters in the cockpit (see Figure A-1) and had the capability to start and
stop data logging via a HOS controls. The tablet PC in the front cockpit was connected to the
GS-111m using a serial to USB connector cable. Data from the tablet PC in the front cockpit

were passed to the tablet PC in the rear cockpit via an Ethernet cable.

Point-to-Point Protocol Terminal

Serial port 3 was configured for a point-to-point protocol (PPP) connection to a PC. The
port speed was set by Athena Controls to be 115.2 Kilobits/second. The port was used to
download test data to a laptop using WS-FTP 6.0 software. The data were transferred simply to

empty the memory of the GS-111m for the next flight.

Data Acquisition
The list of parameters written to memory on the GS-111m was software programmable,
but required support from Athena to perform. Reconfiguring the GS-111m could be

accomplished with a simple spreadsheet based program which produced a configuration file that
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must be downloaded to the unit. A 50 Hertz recording rate was used. Data logged by the
Guidestar was saved in time and date tagged files using the convention:
INSmmmddhhmmssyyyy. The TPS customized data stream occupied frame 4 as listed in the
serial interface spec addendum and took 128 bytes. At 50 Hertz, data frame 4 consumed 3.125
Kilobytes/second. In addition to frame 4, the following frames were stored to onboard memory:
Frame 2 at 1 Hertz = 173 bytes/second, Frame 3 at 10 Hertz = 740 bytes/second, Frame 8 at 50

Hertz = 1650 bytes/second.

In addition to the data recorded on the GS-111m the tablet PC recorded data in .bin and
.csv file formats. File recording was controlled using the HOS control on the stick in the front
cockpit. The first time this button was pushed started recording data while simultaneously
zeroing the maneuver downrange and cross range distance and altitude. The next time the button
was pushed the file was stopped and logged to the tablet PC using the following naming
conventions: TPSmmddyyyy hh_ mm_ss.bin and TPScalecmmddyyyy hh_mm_ss.csv. Because
the tablet PC offered a simpler interface it was used as the primary data acquisition system, and
the GS-111m was only used as a backup data source in case the tablet PC failed to record (this

never happened).
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Appendix B. Sample Flight Test Dynamic soaring Results

The Athena data acquisition system recorded the sailplane inertial velocities
(North/East/Down), inertial positions (North Position/ East Position/Down Position), Euler rates
(P/Q/R), and Euler angles (6/®/y) through a blended GPS/INS navigation solution. A standard
coordinate transformation matrix was then used to convert inertial velocities to body fixed
velocities (U/V/W) assuming a flat non-rotating Earth reference frame. This assumption was
valid due to the slow speed of the sailplane, and the short time frame and size of the maneuver
with respect to the earth’s surface. Indicated airspeed was recorded from the test Pitot-static
boom via a calibrated transducer. Pitot-static and geometric energy heights were recorded on the
Tablet PC via algorithms pre-programmed into the DynaSoar 3.0 software avionics package. All
data was automatically logged individually per maneuver by date and time on the Tablet PC in
the form of a Microsoft Excel spreadsheet and a .bin file. The .bin file was used to replay the
sortie on the DynaSoar 3.0 display for post flight analysis. The excel spreadsheet was imported
into MATLAB® and filtered through a first order low-pass Butterworth filter in order to
eliminate high-frequency noise while still preserving the fidelity of the raw data. The resulting
data file was then plotted and archived for analysis. An example plot set of a typical dynamic

soaring maneuver is provided below reference
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Figure 79. Sample Plot of Pitot-static and Geometric Energy
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Figure 80. Sample Plot of Indicated Airspeed, Ground Speed, and Altitude

145




Entry Airspeed: 95 KIAS

Data Basis: Dynamic Soaring Flight Test
Test A/C: L-23 Super Blanik N268BA
Configuration: Main Gear Down

LS W ““““““““ S I Wind Shear: 0.015 /s
I I I Crew: Capt Solomon/ Capt Eckberg
—_ | | | Data Source: Athena DAS /DynaSoar 3.0
.m 100 --------------- ”\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\” \\\\\\\\\\\\\ Test Date: 24 April 2006
m | ” |
D B0 e T —
0 ﬁ ﬁ ﬁ ﬁ
0 5 10 15 20 25
10 | | | |
R R e -
2 ” : ” ”
10 S R R —TN TN .
> ” ” ” ,
20 B R —
) ﬁ ﬁ ﬁ ﬁ
woo 5 10 15 20 25

W (knots)

Time (sec)

Figure 81. Sample Plot of Body Fixed Velocities
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Figure 82. Sample Plot of Inertial Velocities
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Data Basis: Dynamic Soaring Flight Test
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Figure 83. Sample Plot of Euler Angle Rates
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Data Basis: Dynamic Soaring Flight Test
Test A/C: L-23 Super Blanik N268BA
Configuration: Main Gear Down
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Figure 84. Sample Plot of Euler Angles
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Figure 85. Sample Plot of Inertial Position Relative to Maneuver Point
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Appendix C. Design of Experiments Analysis

Design of experiments statistical analysis was used to determine interactions between all
the controllable and uncontrollable factors. The controllable factors were pilots, entry airspeed,
and maneuver type. The predominant uncontrollable factor was wind shear. The following table

shows the factors considered and their possible values.

Table 8. DOE Factors Considered

Factors Values
Pilots -1 (Pilot 1), 0 (Pilot 2), 1 (Pilot 3)
Entry Airspeed -1 (85 KIAS), 0 (95 KIAS), 1 (105 KIAS)
Maneuver Type -1 (Anti-hairpin), 1 (Hairpin)
Wind Shear Variable (-0.009/sec to 0.040/sec)

The following factors and interactions were considered for the model: wind shear, wind
shear squared, entry speed, entry speed squared, wind shear x entry speed, wind shear x entry
speed squared, wind shear squared x entry speed, and wind shear squared x entry speed squared.

After analyzing the effects and interactions of these factors four primary effects were
declared active by the DOE analysis. The magnitude of these effects is shown in Table C-2. The
pilot factor was treated as a block effect, which means the only effect of the pilot was to move
the model up or down, but not affect the slope. Pilots could not interact with other factors. Entry
airspeed was designed as a factor, but analyzed as a continuous variable (or covariate), as some
variation occurred in targeting the airspeeds. For the purposes of the DOE analysis an anti-
hairpin maneuver was considered the same as a hairpin maneuver in a negative wind shear (i.e.
wind speed decreasing with altitude). As maneuver type was used to apply a sign to the wind

sheer, it does not appear in the ANOVA table as an active effect.
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Table 9. Pitot-static Energy Model Statistics

Model Value -95% Confidence +95% Confidence F p-value
Mean -160.2 -166.9 -153.4 2213.1 0.0000
Wind Shear 557.3 336.5 778.1 25.0 0.0000
Speed -3.8 -4.3 -33 263.8 0.0000
Speed’ -0.09 -0.18 -0.003 4.2 0.0433
Pilot 1,3 8.6 3.7 13.6 13.8 0.0000
Pilot 2 -16.1 -22.2 -9.94 13.8 0.0000

The p-value indicates the alpha error (confidence equals 1 - a-error), which is the
probability of a false positive. That is, saying that something happened, when in actuality it
occurred by chance. So, in plain speak, there is a 1 in 20 chance that these dynamic soaring
maneuvers will show the entry speed squared impacts the difference in energy height lost when it
actually does not have an impact. Likewise, the F-ratio is an indication of confidence. As F-
ratio increases it becomes less likely that differences in the outcome of the test are due to chance.
If the factors have no effect then the F-ratio will be near a value of one. The confidence interval
indicates that 95 percent of the time the coefficients in the model should fall within the interval
given.

Regarding the term power that was mentioned in the body of the report, using an a-error
cut-off of 21 percent (i.e. the highest confidence term not included in the model had 21 percent
alpha error associated with it) the following chart could be produced. Power, which is defined as
1 - f-error, indicates how likely one is to miss a change in the response variable. Power
quantifies how likely it is there is a term in the model that creates a difference of some size. The
curve in Figure C-1 shows the f-error of this test. As shown below the test was capable of

detecting a 10 energy height feet change 99.9 percent of the time.
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Appendix D. Total Energy Probe Theory

(Adapted from notes by Mr. Joe Wurts, Lockheed-Martin Engineer and dynamic soaring expert.)

The total energy for an aircraft is defined as the sum of the kinetic energy, and the potential

energy due to altitude and gravity.
E= 12mV2+mgh (75)

Where m is the mass, V' is velocity, g is acceleration due to gravity, and /4 is the current altitude.

Dividing by mg allows us to define specific energy height (units in feet):

2
E=""1h (76)
y

The first term in this equation is the kinetic energy expressed in units of altitude, and is the
amount of energy gained when something drops from the specific total energy altitude to the

current altitude. The second term is simply the current altitude.

The change in static atmospheric pressure between the total energy height and the current height
can be defined as

Ap =—pgAh (77)
assuming that the change in air density between these two altitudes is small compared to the total
density (i.e., incompressible theory, which holds up quite well for sailplanes). Here pis air
density and A# is the difference in altitude between the total energy height and the current

altitude.
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Then from the second equation above, and assuming a constant total energy, it can be shown

that:
Ah = g (78)
Substituting A4 from Eq. (77) into Eq. (78) provides the definition of the change in static
pressure between the total energy height and the current height as:
Ap = —% V> (79)
From Bernoulli’s equation we know the dynamic pressure due to the flight velocity is:
q= )y o (80)

The g term is the difference between the total pressure and the static pressure measured by a

Pitot-static tube, assuming the ¢, on the total pressure is +1. By comparing Eq. (79) and Eq. (80)
the conclusion can be drawn that the change in static pressure between the total energy height
and the current height is the negative of the dynamic pressure. To obtain the total energy height
in terms of pressure, all one needs to do is find a measurement of negative dynamic pressure, i.c.

find a source for a ¢, of -1, and measure the pressure from this source.

The sailplane community long ago worked this out, and found that a suitable source of negative
dynamic pressure can be obtained on the back portion of a cylinder oriented perpendicular to the
airflow. An altimeter that is connected to the same line as a typical total energy variometer that
is mounted in a sailplane will show the total energy height as its displayed altitude. Neglecting
drag, the altitude shown on the altimeter would be the altitude that one could achieve if one

converted the flight speed back into altitude.
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Appendix E. Flight Test Results
The table below shows the data points collected during the course of the test window. The data

shaded in gray was not used in the data analysis because the wind data was questionable.
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Table 10. 80-90 KIAS Entry Speed Data Points

Entr

Halrpin or Entry altds wind Mnw Run Pliot- Eclt Eclt
an- Aripasd B o Ehear wend In Pliot- et [Geometde | Geometrs |alrepeed | alilida
[u:K) Time [L]1| Halrpin A ra [kI&8] | mEdalyity]  1¢1] [DirecHon [ Heading [ 1c &E1| Mac Ex AF1 Mat E1 [ELLE] {11
10-8prDE | 9013025 (A tkH3Ip EELTE] 20 2301 0.005 25 2128 41 0 £9 )l ET 2330
10-ApHDE | 9011023 Halpls [EE T ar A506 -0.010 225 011 -152 1] -123 1] ] 3563
108pDE | 9012016 Halp s EEL ] 20 J158 0.7 ex Oid -110 = -113 1] = J1ES
10-5prDE | 903023 Halp EELTE] S5 2172 0.005 25 02e -159 2 =171 1] =] 2188
2e-ApHE | 9:06E | A etEHaIpI Falk/Eckb: g ] eI 0.005 230 135 -124 [ -112 [ 71 2530
108pr-0e | 12:23:22 [0 vtEHIImI GondoyEckberg 26 Jrs0 0.7 ex 146 -1ET 1] -133 1| =] Jren o
2e-ApHE | 354010 | A tEHaIp Falkrsm h a5 2126 -0.004 21 3 -151 1] =148 1] =] 2738 =y
1-0pr-06 | 203139 (A atkHAIm Falk/ED ] 2E0% onoo2 25 120 -120 2 -152 kL =] 2610 %
2e-ApEDE | TS (A wtEHaIp Baase/Ryan o 2911 ono3 a0 26 =136 i =0 &1 71 2503 o
Z-0pHDE | 75452 | AwtEHAIEN [EETNAED g1 R 0010 340 231 145 T -114 1 [ 3320 m
262006 | 9:01:19 |8 etEHSIDI Falk/Eckbe g a5 =0 af] onoin 15 133 158 il 1S 1] =] G500
10-AprDGE | 12:09:23 Halpl GondowEckbeng ] 300 0.7 25 150 =177 1] =132 a =] 3330
FMFy-06 | T2Sar Halpl GondoaEckbeng 1] A0 1.5 0 145 241 1] =215 1] &1 A6
1-0pE | 31905 Halph Falk/ED a7 2603 o.ooo 25 193 -156 0 7 Xl o 2E05
2i-ApHE | TN Halpls [EELTET a5 [ onoa3 320 [E] [IE] E] -199 2 o 055
2i-ApEDE | 93530 Halpl BaaserEckbeng o IG26 onod 20 177 W3 3 =4 a T2 JE3I6
2-0pHE | 90360 Halp s BaarelEckberg a2 J0ea onos 20 J&0 158 1 =120 1] 1] J055
FMay-06 | 120048 Halpl GondowEckbeng ] S621 onos 23 314 =165 3 =115 X =] 5712
2-0pHDE | 04204 MO SHEAR BaaserEckben] 1) JEE L o.ooo 20 132 -169 0 -112 1] =) arozs
2i-0p-06 | 25043 WO SHEAR B3aresEckbe ] 1 =] 0noo 0 a0 =152 0 =15 1] =] 3104
Entry
Halrpin or Entry alids wnd Mnw Run Pliot- Eclt Eclt
an- aripasd B o Bhaar hind In Pliot- ate  [Geomaide | Geomatne |airepeed | Al1Lda
[n: ] Timea [L]| Halrpin LI e [FlLa8] |medalt)] (1d0) |Directon | Heading s dc &E1| Mace Ex AF1 Mat Ei [FIE ] [it1
2e-ApHDE | 10:3 43¢ | A etEHalpi BaaserEckbeng g A0k oni& 20 137 -7 10 =145 1] =] J435
FMay-D06 | 3738 |AwtkHalph [EEXETET o k=18 onie s 2N -129 1] =3 i0 o M1
2E0pHDE | 25003 | AatkHaIp Falk/Eckb: g a5 TDEL onois s 3e0 -4 1] -143 1] o Tor2 .
Td-ApD6 | T:55:32 | AwtkHalph FalkfEb 1] o onz2i 182 3s0 R 1] =135 [1] T3 3500 ﬁ
FMay-06 | 306154 | & etEHaIp GondoaEckbeng ] EENE [1E]] m3 211 178 1] =147 [1] [ EETE %
28-0pDE | 903051 Halp I FalkEckb: g 1) Jnae ooii 20 093 -132 1] ) 1] T2 3110 -
19-ApHDE | 15034 Halpl GondoaEckbeng a5 2600 oni2 B0 r 325 -160 1] =150 1] =] 2800 =
2e-ApHDE | 9585 Halpl Falk/Eckb: g o EETES oni3 [1=]3] 130 -153 E] -1ds [1] T2 5936 m
2-0pDE | 10:21:3 Halph BaaserEckben] a5 33 onois 20 143 -124 0 -100 1] T3 i T
2E-0p06 | B35 Halph FalkEckbs g ] a7 onis 135 130 =143 o =122 a T2 010 =
2-0pHE | 2054 Halph FalErs=m ih a5 2797 onoie 157 232 -134 0 43 1] o 2220 o
FMay-0e | 152 Halpl GondowEckberg a5 RS onoie A0 Os -161 1] -132 1] =] EETR o
3-May-De | 3235 Halph [EE-LGT] ] a5 J95E onoie A0S O -143 0 -132 1] T1 EE
2e-0pDE | B2 Halpls FalkEckbe 1) TmT onis mas 350 134 il =111 1] 12 TES
2E-ApEDE | 957G Halpl Falk/Eckb: g 1] TOS L onis [1=]n] 3&0 =181 1] =131 a =] 7063
T-0prDE | 301537 Halph Falk/ED 22 ars2 onia 25 120 -193 0 =150 S =] 3202
2i-0p06 | 723 Halph BaaresRy3an ] 332 onz2o 310 32 =145 o =i a = J3E
23-0pDE | 9029085 Halph Falk/Eckb: g 23 AT o030 30 020 -119 1] -103 1] T3 320
1d-ApDG | 3:258:40 Halpl FalkJEb L] arin -0.027 I35 3&0 N1 =11] 1] =133 a T3 JE53 i
2-0pHE | 72537 Halp EELTE] 24 2599 -0.022 24 202 -133 0 93 1] ET 2E1E m ﬂ
2-ApHDE | TIAZST | A etEHEIpI [EE T ] 2502 0.020 250 211 -109 10 -113 = 3] 2549 = I
2-0pDE | T Halp I EEA ] 1) 2930 .01& 10 27 -13& 3 -103 1] = 2998 w
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Table 11. 90-100 KIAS Entry Speed Data Points

Entr

Entry Alttuds wind Mnvr Run- Plot Etlt Erlt
Halrpin or Alripasd Bara §haar wind In FIot iate | Geometre | Geometdc | Alrepesd | Ade
ek |[Tme (L) [ant-Halrpin Alroraw [(kI&8) | mertal )| i/1) [ Cirection | Heading [vatic AEx| Mac En AEI Mat En (K5 ()
10-2pHE | 92304 [ StHHaImh Baaze Ryan ELT J1B6 1.7 235 05 =213 G =25 1 T2 3235
10-eprDE | 95385 [SrtHHalph Baaze Fyan R 20 {1.m:? 225 2 =253 1} -161 i T2 105
0-epHE | 201l Halp Baaze Ryan a3 EI 4.7 233 213 -163 0 -1 ) 3 ALY
10-2prHE | 12:22: 21 [SetHHaIph | GordowfEck beng £l 220 1.7 235 3 -153 12 -170 2 T4 00
10-2prDG | 12:21:12 [SetHHalph | GordonfEck beng L =00 .07 235 160 -133 23 -1 17 T4 1310 o
21-ppHE | 10:53F [ SitHHalph G ordonfRyay a1 25 4.0 2i0 EE | =215 5 -132 1 5 3120 o
-epHE | 91330 [ S tHHEImh FalkefEckbe g £l il ooot 1 052 =167 0 =131 i} 30 1513 z %
3-May-06 | 9:33:05 | AvtHHalph Baase /Ryan 95 L onoos i 21 -166 £l -1 X T8 g i
2-nprDE | 3063 | AtHHalph Bagse Ryan a4 a0 ooio il 2R -0 3 -153 0 T 3F0
1-epHE | 355048 [ SitHHaImh B3z efEm £l Jr i o010 235 J% -114 0 -167 1 6 JTET
21-apHDE | 120 16 Halph Gondor/Eck beng 95 =00 .07 235 152 1 1T -191 1 Ti 1550
10-sprE | 120821 Halp Gondor/Eck beng a5 F0o0 .07 25 s =217 1 -165 0 T 300
21-nprDE | 10:15:50 Halm v G ordon/Ryas a2 030 0001 240 1x -180 18 -173 i T 3040
E-hpHE | 5FE3 Halph Falk/Eckbe g £l 523 oooi 1 1= -166 3 -5 3 T 513
24-0prDE | T:40:10 Halp v Baaze ‘Rydn a3 X0e ooio il 23 -146 0 -1 i il 3523
T-epHE | TS T Halp Baaze fFyan 93 32 0.0oos A0 160 =31 0 =287 1 51 L1
Entr
Entry Alttuds wind Mnvr Run- Plot Etlt Erlt
Halrpin or Alripasd Bara §haar wind In FIot iate | Geometre | Geometdc | Alrepesd | Ade
ek [Tms (L) [ant-Halrpin Alrcraw {KI&8) | Intertialitt] | i/1) [ Cirection | Heading [iatic &Es| Mac En AEI Mat Ei (K105 ()
F-nprD | 91612 | AtHHaIph Falk/Eckbe g ai 160 o011 30 213 =27 3 -2 i 12 3157
J-May-06 | 72017 | AwtHHalph | Gordos/Eckbeng 95 0 onoii | 34 -X6 1} =206 1 T1 JE2T
1-0pHE | 9:21:042 [ SitHHaImh B33z efE £l J55E oot 235 13 =167 0 -1.13 13 T 5T 8
B-epHE | TIEsI0 [ ArtHHEImh Falkes Ry an £l JLiG onoig ma 10 -130 0 -1T1 1 Ti Jigi o
1i-nprDE | SIS | AvtHHalph B3z e/Eh 93 A1 onoie 235 143 -130 £l -135 17 T1 2911 <L
-epHE | 9014 F [ S tHHaImh FalkefEckbe g a5 15 0023 3 031 =237 0 =23 1 Ti LS %
B-epHE | 91153 [StHH3Imh FalkfEckbe g 95 07 0030 0 211 =Ai T -167 1} Ik 3520 w
F-aprDE | ToAIT | AwtHHalph Falk/Ryan 95 gia 003n m3 251 =113 3 =221 3 T8 o2 _FI-
IT-oprDe | T304 | AtHHaIph Baaze /Ryai a2 262 0o3n 2 3% -X8 1 =165 113 61 3Es b
iT-oprde | TS0 Halmp v Baaze Ryai a1 291 00219 =7 i =4 o6 -4 0 50 2650 m
IT-aprDe | 9338014 Halp GodowErn L 200 oozt 2 15 -3 1 -182 2 T 2120 =
IT-aprDE | 95714 Halp GodowErn a3 x40 oot il 14 13 1 =161 X 15 2700 ]
F-epHDE | 9:01:12 Halp FalksEckbe g ail 3262 ooii Ja0 21 -132 1} -2 i T4 3x0 i
3-Mayle | oM Halp Baase Ryan ] el ooi2 i 0 -183 1 -1 [1 T3 [EiE]
F-npdE | TS Halp v Gondor/Eck beng a3 q2E ooi3 320 318 13 0 -162 i 12 SO
1-gprHDE | T Halp FalkesFyan £l 314 ooii i 0% 1 3 -1 1 T4 JSE
14-nprE | 5900 Halp v Base’Em a3 X113 0029 5 19 -X2 0 -152 3] 11 2538
1-0pHE | 9024031 Halp B33z efE £l | ooz2i 235 160 =22 0 -135 =21 k] 2169
B-eprHDE | 39907 Halp Falke/Eckbe g £l igis 0023 m3 Ol -1L6 10 -1 ) 30 L0GS
Z-npre | 92 Halp v Falk/Eckbe g L x02 o030 X0 212 -158 0 -13 i g2 3620
H-ppHE | T Halp Falkes Ry an a7 L] ooia 010 251 =12 0 -160 1 T8 L1939
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Table 12. 100-110 KIAS Entry Speed Data Points

Halmin or Eniv Bt aittude wWind Aot Akt Bt
and- oirmeed | Earo Interbal Bhear wind Mnur Run-| chino dain Geomeirio Geometio | Wrpeed Enlt
Date Time (L1| Halmin olrore.: (Kl o) [1y] i) Direodon |in Heading AEc Man Ec AEc Mai Ec (Klol  [aldude (T

ZE-Apr-Da | 8:3305 |[Anl-Harpin FabEckhem 105 arz 0.011 270 1= -5 [1] -126 [1] [x] ddla
Za-Apr-Da | 9142325 |Anl-HArpinl Base/Eckbem 10+ 205 0.012 251 =0 -251 E] -231 1] 22 +430
ZeApr-Da | 75007 |Anl-Harpin FabEckhem 10+ (=== 1] 0.012 oss 120 -254 1] -153 1] 24 ans
Z21-Apr-Da | B:17:47 |[Anl-Harpin B=msed Ryan 10+ 154 0.015 2m 311 -254 1] 221 1] 24 riral
Z4-Apr-Da | 7:5330 |Anl-Harpin B=msed Ryan plox] qm 0.01s 33 o7 -Z41 1] -152 1] 21 ErR
Z=-har T:+3:12 |Anl-HArpin Fallsi Ry an 1 L] 0.015 o10 ZE% -=0 o] =125 3 =0 2D
18-Apr-05 | 5:35:12 |AnlFHArpin Fal==mllh 101 218 0.1 17 13+ e o] =171 Z 13 3158
Za-Apr-0Da | 51857 [Anl-Harpin Falz=mllh f[ar] = 0.o03 ED) £ ] o 215 [1] 25 55
21-Apr-Da | 2:0+4%52 [Anl-HaArpin Falz=mlln 10+ atl 0.043 201 15 2acd [1] ] 12 25 ;12
ZeApr-Da | :00:17 |Anl-Harpin FabEckhem 10+ a2dl 0.0+ osa 3 x| 1] 215 1] 24 axi
15-Apr-0a | 2: 503 |[Anl-HArpin B=msed Ryan 10+ 152 0.0 a5 142 -2ad 1] 215 1] [x] 3130
ZEApr-Ds | S:5203 |Anl-HArpin F Al fEckbe g 10+ 1505 0.0 Oss 121 -8 o] ] 0 =3 THIS
Z4Apr-Ds | E:5135 |Anl-HArpin Fal==mllh 1 a3 0.0 Jos = =7 o] =153 0 13 HO5
M=y D5 | 50152 Hamin B=mzef Ryan 10+ XI5 0.011 270 ] ] o] =173 0 13 {110
ZE-Apr-Da | 75730 Hamin Fall=i Ry an 05 555 0.011 Oz5 =T 5 1] FAE] 1] 22 ==k
Zi-Apr-0a | T:ZE2:a0 Hamin Fall='Fomger 105 i ] 0.013 Z10  na] -5 s] -Z[E 1] T e k]
22-Apr-0a | 201211 Hamin Falls By an 1 Ecfyl 0.01+ EL- i -15% o] -152 0 2+ =0
Z1-Apr-Ds | 3127 Hamin B=mzef Ryan 10+ 135 0.012 23 315 -5 ar =178 £l =0 i1
Za-Apr-0Da | 50411 Hamin Falz=mllh =] = a] 0.1 = £ -151 3 -183 [1] 1l Tk
18-Apr-0a | 5:2+08 Hamin Falz==mllh plox] I225 0.021 17 147 - s] -1az 1] [x] I=27
18-Apr-0a | 215505 Hamin odon’Eckbem 10+ 20 0.03 =0 140 na ] -Z02 1] 22 Eri
21-Apr-Da | 75416 Hamin Falz=mlln 105 a5 0.03 201 12 -Z247 ] -2 1] 25 2358
ZeApr-05 | BiEES . Hamin Fabk Eckhe g 102 a2 0.0+ [ES 33 =210 3 -172 [1] =25 a2l
ZeApr-D5 | 2: 3354 Hamin FalbkEckhe g 10+ a2as 0.0+ O&s 177 -1a0 s] =171 1] 2T a7
15-Apr-0a | 5:D33 Hamin B=mzed Ryan 10+ EIEE] 0.0 a5 137 =217 [1] -1al 17 28 127
ZeApr-Da | 8:3133 Hamin FabEckhem 105 xn 0.0 oss 3 -248 12 =201 1] 24 T4a8
ZeApr-05 | 58537 Hamin Fabk Eckhe g [ox] 1520 0.0 [Ex] 124 =124 12 -1 42 B ] TE35
Ze-Apr-D5 | 2:3209 Hamin Falz=mllh jlox] s 0.m= 305 Sy -1 s] =140 1] =25 ET 5
ZE-Apr-Da | 75235 Hamin Fallzi Ry an 10+ ea 0.2 E[1] =T -214 + -188 [1] Ll =+
ZE-Apr-Da | 7247 Hamin Fallzi Ry an 105 542 0.0a o10 28 -243 1] -181 2 25 #6551

Halrpin or Eniy Eniry alttude wind Aot ALt et
and- oirpeed | Baro Interbal Bhear YWind Mnur Run-| clio dain Geomeirio Gpometdo | Arpeed Enlt
Date Time (L1]| Halmin olrore [LAR: 1] [aa] (S 1] Direodon |in Heading AEc Man Es AEG Mai Ec (Klog)  |addide (]
10kApr-0a | 511022 Hamin B=mzed Byan 101 {aor am2 225 ran 1] -2 ] -175 1] 21 ==k
21-Apr-05 | 10:44+:33 |AnlkHarpin Sordond By a0 101 el i 291 140 -5 ] 255 1] = = rarde]
Ze-Apr-05 | 2:5305 |Anl-Harpin Falz=mllh 10+ =0 0.1 122 == =221 s] -3 1] =25 TES5
Iy D5 | S:0527 |AnlkHarpin) S odon'Eckh erg jlox] AT 15 0.005 315 00 =15 s] 23 ] = 120
Z4-Apr-Da | 1033:14+ |[Anl-HArpinl Base/Eckbem 10+ e 0.005 240 g -252 1] 237 1] 28 =] o
1S-AprDS | 748321 |AniEHArpin O omon'Edkh g jlox] 1] 0.0 = 1] 140 =] u] 24T 1] 15 a0 ar
FUx 05 | 92425 |Anl-HArpin BamzedRyan 10+ E-Lry 0.o= zro =3 =Z12 T Erdury 1] =0 =iz %
ZeApr-05 | T:4235 [Anl-Harpin Fabk Eckhe g 10+ a1 0.010 145 33 =223 1] 212 [1] =25 a14+3 o
FMa D5 | 2:u5001 |[Anl-Harpin B==zel Ryan 10+ ATTE 0.010 315 1 x] =254 s] 212 1] =25 TaT ]
Z1-Apr-05 | 103525 Hamin Sordond By a0 1= =M ami 28] 150 -2 s] 282 1] = =30 =
Z4-Apr-Da | 2:4033 Hamin Falz=mlln [ox] a5 0.001 1828 x5 e [1] -1 [1] 22 3105
Z4-Apr-Da | 23335 Hamin Baxse /Eckhem plox] 2159 0.00 Eri] =1 na 21 -23% 1] [ +188
My Da | 75105 Hamin aomon’Eckhem 105 Wb 0.005 315 047 -2=8 1] 257 1] = w23
18-Apr-05 | 7:.00 33 Hamin o on'3-m an 1 3140 0.0 a1 145 -251 + =Z1% 0 T2 3170
My D5 | 25720 Hamin B=mzef Ryan 10+ W= 0.0 25 =T -2 o] =154 0 =0 2T
Za-Apr-05 | 10028 Hamin Baxse (Eckbem 05 =1 0.0e 240 I= -218 12 211 [1] = Ire0
My Da | 7303 Hamin aomon’Eckhem plox] 278 0.010 Jm 140 -Zrd 1] 257 1] 7 a5
21-Apr 1012 44 Hamin Cordond BY & 10+ G110 1my 170 = -da 1] -225 0 T2 a150 ®
ZeApr-0s | 50532 Hamin F Al fEckbe m jlox] = 1013 225 =1 ] o] =170 0 =] 3117 m ﬂ
ZEApr-0s | 237 35 Hamin F Al fEckbe m 105 T+ 1013 225 15 = o] =13 0 =] 121 = M

SIGHIFICA NT SHELR
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Appendix F. Rational for Discarded Data Sets

Several data points from two different days were discarded from both analysis
methods because the wind data from these two days were either suspect or not collected
in a timely manner. For instance, most of the data points flown by pilot 1 at 95 KIAS
occurred on 10 April 2006, which happened to coincide with minimal weather data
collection. Specifically, only one weather balloon was launched, and furthermore, the
weather data was collected about 2 hours after the data flights were completed. Not
only did this prevent the team from targeting shear layers during the flights, but it called
into question the accuracy of the wind data attributed to these test points. This

emphasizes the need for timely weather data collected at short time intervals.

Additional data points were removed from the data analysis for flights on 17
April 2006. These data points were removed because the wind data gathered during the
test points were questionable. The data were not gathered using the NASA weather
balloons due to a system malfunction. Instead data collected from an Edwards AFB
balloon launched prior to the flights was used as the weather reference. However, the
wind speeds shown by the balloon did not match the winds experienced by the test team
or the wind calls from the control tower. The disparity was likely due to a weather
system that was moving through the local area during the testing, which caused
localized wind shears. All three of the test points that occurred during a single sortie on
this day showed up as significant outliers. Of particular note is that, a hairpin maneuver

flown during this sortie resulted in a loss of only 15 feet of energy height. During this
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maneuver the aircrew clearly experienced the existence of a strong shear layer (much
stronger than any shear layers felt throughout the rest of the program). (The aircrew
generally noted shear layer entry throughout the test program by the existence of
turbulence, which could be felt in the seat of the pants.) However, the wind data from

the USAF balloon did not show this shear layer.

This sortie provided a good indication that not only does the phenomenon of
dynamic soaring exist, but the effect of the phenomenon increases with increasing wind
shear strength. Additionally, the data from 17 April indicate the need for precise and

accurate wind data collection capabilities.

These data from 10 and 17 April 2006 are shaded in gray in the tables in

Appendix E. Flight Test Results .
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Appendix G. Cooper-Harper Rating Scale

@cellent

Highly Desirable

Pilot compensation not a factor
for desired performance

-/

Good
Negligible Deficiencies

Pilot compensation not a factor
for desired performance

Fair — Some Mildly
anleasant Deficiencies

Minimal pilot compensation required
for desired performance

G/Iinor but Annoying
Deficiencies

Desired performance requires moderate
pilot compensation

-n/kw

Satisfactory
/0o Improvemen

Moderately Objectionable
Deficiencies

Adequate performance requires
considerable pilot compensation

wn

Very Objectionable but
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