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Abstract 

 

Ceramic-matrix composites (CMCs), capable of maintaining excellent strength and 

fracture toughness at high temperatures are prime candidate materials for aerospace 

turbine engine applications. In these applications, CMCs will be subjected to mechanical 

loading in complex environments. Before ceramic matrix composites can be used in high-

temperature aerospace engine applications, their structural integrity and long-term 

environmental durability must be assured. This research investigated compressive stress-

strain and compressive creep behavior of the N610/M/A at 900 and 1100 °C. The 

composite consists of a porous alumina matrix reinforced with NextelTM610 fibers coated 

with monazite in a symmetric cross-ply (0°/90°/0°/90°)s orientation.  The addition of 

monazite coating resulted in loss of compressive strength at both 900 and 1100 °C. 

Compressive creep behavior was examined at 900 and 1100°C for creep stresses ranging 

from 50 to 95 MPa.  At 900 °C both monazite containing and control specimens 

produced creep strains ≤ 0.05%. Conversely, at 1100 °C creep strains approaced 9%. 

Creep strain rates were on the order of 10-7 s-1. Creep run-out, defined as 100 h at creep 

stress, was achieved in all tests.  Composite microstructure, as well as damage and failure 

mechanisms were investigated. Furthermore, effects of variation in microstructure on 

mechanical response were examined. While differences in processing and consequently 

the composite microstructure did not have a significant effect on tensile response of the 

CMC, effects on the compressive properties were dramatic.  
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CHARACTERIZATION OF COMPRESSIVE CREEP BEHAVIOR OF 
 

 OXIDE/OXIDE COMPOSITE WITH MONAZITE COATING  
 

AT ELEVATED TEMPERATURE 
 

 

I. Introduction 

 

Records of composites date back to Biblical times when straw was used to reinforce 

clay bricks.  Since then man has been using forms of fiber and particle reinforced 

materials in all sorts of applications.  Today, composites can be found almost everywhere 

and in everything. 

The aerospace industry has benefited greatly from the development of composites.  

Aircraft have been outfitted with composite materials since the 1950s because their high 

strength-to-weight ratio, low life-cycle cost, and maintainability have made them ideal 

for use in aviation [12:4-9].  Today, more advanced composites are available, which 

continue to be ideal materials for the aerospace industry.  In fact, the B-2 stealth bomber 

was made almost entirely of composite materials [12:7]. 

The latest developments in composites rest in newer metal matrix, ceramic matrix, 

and carbon/carbon composites for high temperature applications.  These materials are of 

greatest interest to the aerospace industry, which requires not only their ability to 

withstand high temperatures, but their low weight and high strength properties as well.  In 

the 1990s, the use of these materials in oxidizing environments for long periods of time 
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prompted the development of a new type of ceramic matrix composite (CMC) that could 

withstand these conditions [39:1].  This new variety of CMCs is all-oxide CMCs.  All-

oxide CMCs, unlike non-oxide CMCs, are less likely to degrade at higher temperatures, 

making them more applicable for long term use in oxidizing environments.   

However, even further steps have been taken to enhance all-oxide CMCs so that they 

can perform at even higher temperatures, above 1250 °C.  The step taken has been the 

addition of a third phase or interphase known as fiber coating.  Until recently most 

coatings had a tendency to weaken the oxide fibers, but lanthanum phosphate (LaPO4) or 

monazite has proved compatible with oxide fibers [7,27]. 

The objective of this thesis was to investigate performance of an all-oxide CMC with 

monazite coating in compressive creep at high temperatures.  The monazite containing 

CMC was tested along with the control N610/alumina CMC to study the effects of fiber 

coating on compressive creep resistance.  The CMC was a symmetric cross-ply 

(0°/90°/0°/90°)s.  Initial focus of this investigation was on the off-axis tensile creep 

behavior of the same material at high temperatures.  Early findings revealed low ultimate 

tensile stress and suggested that studies into tensile creep of the CMC with ±45° fiber 

orientation would not be beneficial.  The study was then switched to investigate the 

compressive creep behavior of this material with 0°/90° fiber orientation. 
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II. Background 

 

This section will discuss the general make-up of ceramic matrix composites including 

fibers, matrix, and interfaces.  It will also include a discussion of all-oxide CMCs, various 

processes used to fabricate CMCs, and aerospace applications of CMCs.  Concluding this 

chapter will be remarks about the tensile versus compressive failure mechanisms, 

previous work conducted on similar CMCs, and the objective of this thesis. 

2.1 Ceramic Matrix Composites 
 

2.1.1 Fibers 

The main function of fiber in a composite is to serve as reinforcement.  Depending on 

length, fibers are classified as either continuous or discontinuous.  Discontinuous fibers, 

such as short fibers or whiskers, are no more than few millimeters in length.  Continuous 

fibers, also called filaments or monofilaments depending on their aspect ratio span the 

length of the material.  Continuous fibers are laid out in the material in what are called 

tows, which are simply bundles of continuous fibers.  Tows can vary in the number of 

fibers they contain.   

Ceramics fibers, like the ones used in this investigation, are ideal for high strength 

and high temperature applications.  Some fibers, such as NextelTM610 developed by the 

3M Corporation, are used because of their high strength at temperatures around 1000 °C 

[43:18].  They also exhibit a high modulus of elasticity and generally do not undergo 

environmental degradation [10:47]. 

Ceramic fibers fall under the category of a synthetic fiber.  Other synthetic fibers 

include metallic and polymeric fibers.  There are various types of ceramic fibers.  
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Zirconia (ZrO2), alumina (Al2O3), silica-based glasses, Boron (B), silicon carbide (SiC), 

Carbon (C), silicon nitride (Si3N4), and boron nitride (BN) are all examples of ceramic 

fibers.  Of the eight mentioned the latter five are non-oxide fibers.  Non-oxide fibers are 

more likely to undergo environmental degradation when exposed to oxidative 

environments, which compromises the strength of the fiber by changing its chemical 

make-up [39:2]. Until recently, ceramic fibers were not ideal for applications which 

required high strength and creep resistance, but fully crystalline fibers developed by the 

3M corporation known as NextelTM610, 650, and 720 demonstrated high strength and 

resistance to creep [40:2].  If the fiber is fully crystalline, it contains no silica or glassy 

phases.  These phases become viscous at high temperatures and affect creep resistance 

[1,40:6]   

Creating oxide fibers is generally accomplished using a sol-gel method, which 

consists of these basic steps:  formulate sol, concentrate to form a viscous gel, spin the 

precursor fiber, and calcine to obtain the oxide fiber [10:66].  Non-oxide fibers of the 

silicon carbide type are made by one of two methods.  They are made either by chemical 

vapor disposition (CVD) or from polymeric precursors.  The latter method was explored 

as an alternate route of making fibers in order to obtain finer and more flexible fibers than 

those created by CVD [10:78]. 

2.1.2 Matrix 

The matrix of a composite is the material that the fiber reinforces.  The matrix serves 

a couple of purposes. It provides a structure for the fibers and protection from the 

environment.  Steel reinforced concrete is a great example of this fiber/matrix 
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relationship.  Concrete, the matrix, provides both a solid structure and environmental 

protection for the steel bars that reinforce it.   

Ceramic fibers most commonly serve to reinforce ceramic matrices, but can be used 

to reinforce metal matrices as well. Ceramic materials such as alumina (Al2O3), silica 

(SiO2), mullite (3AL2O3-2SiO2), silicon carbide (SiC), boron nitride (BN), Carbon (C), 

and Boron (B) are all possible candidates for ceramic matrix materials.  Ceramic matrix 

materials like their fiber counterparts are chosen for their high strength, modulus of 

elasticity and ability to withstand very high temperatures  

Ceramic matrix materials, just as the fiber, can be designated as oxide or non-oxide.  

Alumina and silica are common oxides that are to some extent oxidation resistant.  

Common non-oxide ceramic matrix materials include boron carbide and silicon carbide.  

Just as with fiber selection, when the application exposes the material to high 

temperatures for long periods of time, it is important to choose a ceramic matrix that has 

been oxidized. 

Ceramic materials are known to be very brittle.  Why CMCs have become so 

appealing is that the introduction of continuous fiber reinforcement can make ceramics 

behave in a less brittle manner and make them more damage tolerant [4:565].  As the 

density of a ceramic increases so do its mechanical properties.  Unfortunately, testing has 

shown that in CMCs porosity in the matrix plays a vital role in crack deflection 

[28,43:15].  Figure 1 shows the two known crack deflection mechanisms for CMCs.  
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Figure 1.  “Schematics of the Damage Processes that Enable Damage Tolerance in a) 
Conventional Dense-Matrix Weak-Interface CMC and b) Porous Matrix CMCs Without 

Fiber Coatings” [43:15]. 
 
 

“A ‘weak’ interface between the matrix and fiber provides the path for crack deflection, 

thus allowing the crack to propagate along the fiber/matrix interface instead of through 

the fiber” [21:607].  Therefore it is actually detrimental to the CMCs mechanical 

properties if the matrix is dense.  It is known that porous fiber coatings provide a path for 

crack deflection [13,31] and in the same manner a porous matrix accomplishes the same 

[37:2].  In most cases when dealing with a porous matrix, the crack must actually 

originate from within the fiber itself [21:608] because the matrix lacks the strength to 

cause high enough stress concentrations on the fiber to cause failure [28:2622].  

2.1.3 Interphase 

Interphase, also known as a fiber coating, between matrix and fibers plays an 

extremely important role in the strength and toughness of a ceramic matrix composite.  
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However, coatings can degrade the strength of the fiber if the fiber and coating are not 

compatible.  The addition of this third phase has two main purposes, to “fail before the 

fiber fails, thereby removing matrix-imposed stress concentrations on the fiber” and to 

“allow some sliding along the fiber/matrix debond after deflection” [28:2606].  Coating 

can also serve to protect the fibers from the affects of oxidation.  There are two methods 

for dissipating a crack’s energy in a ceramic matrix composite: a weak matrix or a 

ceramic fiber coating.  A weak matrix, mentioned in the previous section, relies on 

porosity to deflect crack growth.  Ceramic fiber coatings rely on “mechanisms that permit 

the development of multiple matrix cracks, which in turn produce inelastic strain during 

tensile loading.  Furthermore, they provide a means for mechanically decoupling the 

fibers from one another and hence allow the fibers to fail in an uncorrelated manner” 

[43:15]. 

The most common types of ceramic fiber coatings used are C, BN, lanthanum 

phosphate (monazite, LaPO4), yttrium phosphate (YPO4), and cesium phosphate 

(CePO4).  The latter three are used for their oxidation resistant properties at high 

temperatures [28,29].  When choosing a coating for a CMC, it is important that it be 

“oxidation-resistant at high temperatures, thermally and chemically compatible with the 

fibers, and weakly bonded” [29:2] to the fibers. 

It is important that the fiber/matrix bond is weak in order to ensure a weak interface 

in a composite.  If the interface is strong, a crack can propagate through the 

fiber/coating/matrix interface and cause the material to fail.  Just as in the porous matrix, 

a weak interface promotes crack energy absorbing schemes within the matrix and fibers.  

The schemes proceed with debonding at the interface, followed by crack deflection, crack 
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bridging, fiber fracture, and then fiber pullout [10:147].  In CMCs with uncoated fiber, 

there is often very little or no fiber pullout because the fibers are bonded directly to the 

matrix and will fail with the matrix along that crack plane.  It has been known that mixed 

rare-earth and alkaline earth phosphates, tungstates, and vanadates all bond weakly to 

oxide fibers [14:584].  Pryocarbon (PyC) and BN are common coatings for non-oxide 

fibers [9:1179,28]. 

The application of fiber coatings is a difficult process and has become a large field of 

study.  Two common problems associated with fiber coatings are fiber bridging and poor 

fiber coverage (see Figure 2).  The former can lead to poor matrix infiltration into fiber 

bundles and the latter allows fiber and matrix to bond together making the composite 

more brittle [14:584,28:2624].  There are three gas-phase deposition techniques for 

applying coatings to ceramic fibers: CVD, physical vapor deposition (PVD), and 

combustion CVD.  Of the three, the latter two unfortunately do not work well when 

applying coatings to filaments, because they essentially rely on line-of-sight and therefore 

it is difficult to apply the coating to all the fibers [28:2623-24].  Using liquid-phase 

processes is a cost-effective option, but very little work has been done on applying 

ceramic coatings to ceramic fibers [28:2624]. One technique used is the sol-gel 

technique, which was used in this investigation to apply the coating to the fiber. In the 

course of this process the fiber is passed through a tank containing a sol and wound on a 

wheel, where sol-gel transition occurs. Finally the gel-coated fiber is subjected to 

controlled heating to densify the gel [10:24,10:126].  Some of the work that has been 

done applied vacuum enhanced dip-coating [29].  All of the above the processes are 
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expensive and difficult to execute properly and require highly sophisticated equipment 

and techniques. 

 

Figure 2.  Monazite Coating is the Bright Areas in the Pictures.  (a) Shows Fiber Bridging 
and (b) Shows Incomplete Fiber Coverage [14:584] 

 
2.1.4 All-Oxide CMCs. 

If a CMC is all-oxide, it implies that all the phases contained within the composite 

have been oxidized.  Non-oxides are classified by either containing no phases that are 

oxidized or a combination of oxidized and non-oxidized phases.  Until recently, most 

CMCs were based on SiC fibers in oxide or non-oxide matrices [9,40].  The problem with 

these CMCs is that when cracks occur within the matrix at high temperatures, over a 

period of time oxidants like water vapor and oxygen can proceed through them, which in 

turn causes degradation of the fibers [11:193,18,24].  Figure 3 shows how this process 

can take place. 
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Figure 3.  Schematic Representation of Oxidation Progression through Matrix Crack of 
CMC with Fiber Coating 

 
As seen in Figure 3a, the oxidants enter the crack and then products of the oxidation 

reduce the width of the crack as seen in Figure 3c.  Two things occur at this point.  The 

products either seal the crack preventing damage to the fiber/coating/matrix interface as 

seen in Figure 3b or as shown in Figure 3d the crack may not seal before the oxidant 

seeps into the coating and through to the fiber where it oxidizes the fiber.  For this exact 

reason, all-oxide CMCs have been developed for use in long-term, high-temperature 

environments. 
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All-oxide CMCs can be designed two different ways.  One design uses a weak 

interface, or fiber coating [28,30,36:214].  The second relies on porosity within the 

matrix to provide crack deflection [30,36:214,43].  For this investigation, a CMC with a 

weak interface was used.  The three oxidized phases were the alumina fiber, the alumina 

matrix, and the monazite fiber coating. 

2.1.5 Fabrication of CMCs 

Fabrication of the CMCs is the most critical step in the life of a CMC.  After carefully 

selecting the fiber and matrix, the fibers can be incorporated into the unconsolidated 

matrix followed by laying up of the fibers in the desired orientation.  These two steps can 

occur in reverse order depending upon the technique used.  Finally, the process ends with 

consolidating the matrix.  Coating the fiber is an additional step that can occur before or 

in-situ with consolidation. 

Choosing fiber, matrix, and coating (if desired) is a very critical step in the CMC 

fabrication process.  The application of the CMC will dictate which materials will be 

chosen.  However, the matrix and fiber materials must be thermally and chemically 

compatible.  If the matrix and fiber have different coefficients of thermal expansion, then 

heat up or cool down of the CMC produces residual stresses between fiber and matrix 

causing matrix cracking [22:554].  This type of matrix cracks is sometimes referred to as 

shrinkage cracks, which can be more exaggerated depending on the porosity of the 

matrix, dispersion of matrix material, orientation and form of fibers, and processing 

control and methodology.  However, some CMCs are specifically designed to contain a 

thermal mismatch.  For example, the Nextel 720 fiber laid up in an alumina-mullite 

matrix creates a thermal mismatch at room temperature, but at higher temperatures the 
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thermal mismatch between fibers and matrix is reduced and so are the residual stresses.  

Chemical incompatibility between fibers and matrix will tend to damage the fibers 

degrading their properties. 

Incorporation of the unconsolidated matrix into the fiber for ceramic matrix 

composites is done through various techniques. Only the most common techniques will 

be considered.  There is cold pressing followed by sintering, hot pressing and its 

variations, infiltration, in-situ chemical reactions, sol-gel, and many others.  Hot pressing 

is probably the most common technique used and is often used with the other processes, 

although it can be done as a single step.  Hot pressing simultaneously applies pressure 

and high temperatures to densify the matrix.  The result, if thermal compatibility exists 

between fiber and matrix, is a compact and a pore-free CMC [10:100].  Hot pressing was 

used to consolidate the matrix material in this investigation.  Often hot pressing is used 

with slurry infiltration, as it was in this investigation.  Slurry infiltration integrates the 

reinforcement phase into a slurry of the unconsolidated matrix, then the matrix is 

consolidated by hot pressing.  In-situ chemical reactions are another common method 

used to produce CMCs.  These techniques, like chemical vapor infiltration (CVI), are 

used to infiltrate fibrous preforms into a solid shape.  Sol-gel technique is great for 

producing multiphase matrix materials and reducing processing temperatures, but often is 

associated with large amounts of shrinkage [10:125].  When the matrix shrinks, the 

material exhibits significant matrix cracking.   

2.2 Aerospace Applications 
 

The aerospace field is an exciting area for the application of ceramic matrix 

composites.  Their desirable thermomechanical properties and strength to weight ratio 
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make CMCs prime candidates for aerospace components.  The aerospace industry is 

always looking for ways to increase efficiency of aircraft, reduce costs, achieve higher 

operating temperatures, and cut back on maintenance [10:399].   

The most applicable areas for CMCs in the aerospace field are components of turbine 

engines, space satellites and vehicles.  The need to increase operating temperatures within 

the engine in order to create an efficient combustion process has led scientists to consider 

monolithic ceramics [39:3].  However, the lack of structural integrity of monolithic 

ceramics has made CMCs a more viable choice for use in aero-engines [35:489].  All-

oxide CMCs are even more applicable in this area because of the environmental 

degradation that would occur at high temperatures produced by both nozzles and 

combustors of turbine engines.  In turbine engines, CMCs can be used for many parts.  

CMCs have been tested for use as blisks (bladed disks), nozzle flaps, exhaust nozzles, 

combustor, and turbine vane nozzles [35].  The ultimate goal for this material’s use in 

turbine engines is to operate at 1400 °C without cooling [6:17,36:214]. 

2.3 Tensile vs. Compressive Failure Mechanisms 
 

As with monolithic materials, ceramic matrix composites fail in different manners 

when exposed to different types of loading.  Composites fail when the phase with the 

lower ultimate strain does and in the case of CMCs that phase is commonly the matrix.  

Under tension CMCs, like other brittle-matrix composites, first develop multiple matrix 

cracks.  “These cracks create local stress distributions with high interfacial shear stresses 

and increased tensile stress in adjacent fibers” [12:90].  This is schematically shown in 

Figure 4. 
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Figure 4.  Schematic of Matrix Cracking and Local Stress Distributions in Composite  
under Longitudinal Tension  

 

 
However, in compression a reinforced fiber composite has a much different failure 

mechanism.  Compression introduces what is called microbuckling or kinking of the 

fibers within the matrix.  These form kink zones, which cause fracture planes in brittle 

fibers.  Figure 5 illustrates microbuckling and Figure 6 shows the possible shear failure 

mode for composites containing high fiber volume ratios.  Figure 7 shows the final mode 

of failure that a CMC can experience in compression, which can be referred to as 

transverse splitting.  In this mode of failure the matrix splits apart causing delamination. 
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Figure 5.  Schematic of Microbuckling, which Leads to Excessive Deformation in Ductile 
Fibers or Fracture Planes in Brittle Fibers 

 
 
 

 

Figure 6. Schematic of Shear Failure Mode of Unidirectional Composite Under 
Longitudinal Compression  
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Figure 7.  Schematic of Transverse of Splitting of Unidirectional Composite Under 

Longitudinal Compression 
 

 
2.4 Previous Work 
 

There has been a lot work done in the area of ceramic matrix composites since their 

inception.  Numerous studies investigated thermal and mechanical properties, interface, 

and fiber selection.  Work concerning the N610 and N720 fibers is very abundant.  

Currently, the N720 fiber is being looked at more seriously because of its superior creep 

resistance at high temperatures.  Interface design is of interest to a lot of researchers, 

because it is the primary mechanism for crack deflection in CMCs.  Some of the research 

efforts regarding interface have explored effects of coating deposition temperature [23], 

porosity [43], design for oxidation-resistant ceramic composites [28], the influence of 

fiber coating conditions on the mechanical properties [9], and fiber coating conditions 

effect on the mechanical properties of a CMC [29].   

There has been only a small amount of work regarding the specific materials explored 

in this report.  One report concerning N610 fiber engages in the examination 8-harness 

satin weave of N610 fibers infiltrated with a slurry of alumina/lanthanum phosphate that 

created a porous matrix composite [15].  It was found by Davis et al [15] that this oxide 
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composite exhibits “greater nonlinear response and notch insensitivity than other porous 

matrix composites” and this improvement in its properties is due to “weak bonding 

between the fibers and the LaPO4 phase, which allowed the extensive fiber pullout” [15].  

This investigation explores LaPO4 as a coating, but its nature to bond “weakly” to the 

fibers and/or matrix will be of much interest.   The only data collected regarding the 

CMC studied in this thesis was reported by Musil et al [34,38], who investigated the on-

axis monotonic tensile and tensile creep behavior of N610/monazite/alumina and 

N610/alumina composites.  The only other study reported in literature was conducted by 

Keller et al [27], who investigated the effectiveness of monazite coating by comparing  

response of N610/monazite/alumina and N610/alumina composites exposed to 

temperatures of 1100 °C and 1200 °C for varying lengths of time. Coated fiber 

composites showed smaller reduction in strength compared to the uncoated fiber CMCs 

exposed to 1200 °C for a short period of time [27].   

The following two sections will discuss the work done regarding CMCs in the two 

areas of interest, monotonic tensile and tensile creep off-axis behavior of CMCs and 

monotonic compressive and compressive creep on-axis behavior of CMCs.  

2.4.1 Off-Axis Behavior of CMCs 

 Off-axis behavior of materials is studied because it is rare that a material will only be 

subjected to on-axis forces.  There has been little to no work done on the off-axis tensile 

behavior of N610/monazite/alumina and N610/alumina prior to this investigation.  

However, there have been several investigations into the off-axis tensile behavior of 

CMCs reinforced with N610 and N720 fibers [4,5,8,21,28,30,43].  Results reported by 

Levi et al [30] on the tensile behavior of two-dimensional woven preforms of N610 in an 
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alumina-mullite matrix without interphase showed a decrease in modulus, increased 

strain at fracture, and a lower fracture strength at room temperature when compared with 

results produced by the same CMC with 0°/90° fiber orientation.  Two other studies of 

off-axis behavior explored a 12 layer uncoated plain weave and an 8 harness satin weave 

[4,8].  The former showed similar results to those seen for the N610 reinforced 

composite, but the latter reported that the 8 harness satin weave CMC exhibited similar 

moduli in both the 0°/90° and the ±45° fiber orientations.   

2.4.2 Compression  

 Preceding this investigation, monotonic compressive and compressive creep behavior 

of N610/monazite/alumina and N610/monazite/alumina composites had not been studied.  

As mentioned earlier, Musil et al [34,38] explored the tensile properties of this material.  

Some previous efforts regarding compressive properties of CMCs were concerned with 

behavior of in-situ single-crystal alumina/yttrium aluminum garnet eutectic composite 

with an on-axis fiber orientation [19] and behavior of SiC fiber reinforced mullite matrix 

composite [17].  Both studies were conducted at elevated temperatures.  Harada et al [19] 

and Deng [17] showed that creep strain rates decreased for fiber orientations in the 

direction of loading.  Harada et al (19:2221) reported that the ceramic exhibited a short 

primary creep stage common of compression creep. 

2.5 Thesis Objective 
 

The objective of this thesis is to explore the compressive creep behavior of the 

N610/monazite/alumina and N610/alumina composites at temperatures of 900 and  

1100 °C.  The effect of coating, stress levels, and temperature on the material response 

will be explored.  The initial objective of this thesis was to study the tensile creep 
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behavior of N610/monazite/alumina and N610/alumina with ±45° fiber orientation at  

900 °C.  However, early findings revealed very low ultimate tensile strength, implying 

low creep resistance for this fiber orientation. Consequently further investigation of the 

off-axis tensile creep was deemed unnecessary. 
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III. Material and Specimen 
 
 
 

This chapter will discuss the material and its specifications.  It will begin with the 

discussion of the fiber, matrix, and interphase materials used and conclude with the 

description of processing, specimen geometry, and specimen preparation.   

3.1 N610/Monazite/Alumina and N610/Alumina Composites 
 
 The materials under investigation, N610/monazite/alumina and N610/alumina 

composites, were both developed by the Materials and Manufacturing Directorate of the 

Air Force Research Lab, AFRL/MLLN, located on Wright-Patterson Air Force Base, 

Ohio.  

3.1.1 NextelTM610 Fiber.   

 The NextelTM610 ceramic fiber serves as the reinforcement for the materials under 

investigation.  It was developed along with the NextelTM720 fiber for load bearing 

applications.  Within the last few years, NextelTM650 was also introduced as a viable 

ceramic fiber.  These fibers can be used in metals, ceramics, and polymers.  The N610 

fiber is 99% alumina, which is an oxide of aluminum.  The fiber is a fine grained single-

phase composition of alumina.  However, since it is single-phase, strength does steadily 

decrease at temperatures above 1000 °C due to grain growth [1:8]  The addition of 

mullite in the NextelTM 720 fiber reduces grain boundary sliding at high temperatures, 

which in turn inhibits grain growth.  NextelTM 650 fiber also has better properties in creep 

because of the addition ZrO2 [40].  However, both types of fibers have a lower tensile 

strength than that of NextelTM 610 fiber [40].  The properties of the N610 ceramic fiber 

are summarized in Table 1.  
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Table 1.  NextelTM 610 Fiber Properties [1,2] 
 

 

 

3.1.2 Alumina Matrix 

 Alumina is the matrix material used in this investigation.  It has only one 

thermodynamically stable form, which is α-Al2O3.  Alumina can be toughened by 

zirconia particles [10:35].  Unfortunately, densifying takes place by sintering at 1500 °C.  

This process would damage the fibers by inducing grain growth.  Fine-grained alumina is 

good for use at low temperatures because both strength and toughness increase with 

decreasing grain size, but for the high temperatures seen in this investigation a larger 

grain size alumina was used in order to improve high-temperature properties.  

 As mentioned before, alumina is an oxide of aluminum and was chosen because of its 

resistance to oxidation.  Alumina has a density of 3.9 g/cc.  Its coefficient of thermal 

expansion ranges from 7 - 8 x 10-6/ °C.  The Young’s Modulus of alumina 380 GPa and 

its strength ranges from 300 to 900 MPa depending on grain size.  
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3.1.3 Monazite Coating. 

Monazite (LaPO4) was the fiber coating used in the CMC in this investigation.  In 

early efforts monazite fiber coatings degraded both NextelTM610 and NextelTM720 fibers.  

However, recently the appropriate slurry composition was found that retained the strength 

of the fibers after sintering [7,14].  Monazite is refractory, thermochemically stable with 

refractory oxides like alumina [32,33], bonds weakly to other oxides [25], and was 

demonstrated to be machineable [16].  Its melting point is over 2000 °C and it is already 

oxidized so it is stable in air and water-containing environments.  Other properties of 

monazite include a thermal expansion coefficient of 9.6 x 10-6/ °C and a density of 5.13 

g/cc.  Monazite can be applied as coating to fibers or formed in-situ between fiber and 

matrix during processing. 

 In this investigation, the former technique was used.  The monazite was applied to the 

N610 fiber using a sol-gel dip coating technique.  Although fiber bridging is often 

associated with liquid-phase precursors [28:2624], this method was used because of its 

low processing temperatures [7].  This way the fiber was not damaged during coating 

procedure.   

3.2 Specimen Development 
 

3.2.1 Material Processing 

All material used in this research was processed by AFRL/MLLN, Wright Patterson 

Air Force Base.  The following procedure was used to fabricate CMC panels for this 

investigation.  Note that the fabrication procedure is slightly different for the control and 

the coated fiber composites.  The N610 fiber to be coated was first desized at 1100 °C, 

then coated with LaPO4 using a sol-gel technique with a 20 g/l sol.  Coating speed was 
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approximately 5 cm/sec at a temperature of 1100 °C.  The coated fiber was then spooled 

onto a take-up wheel.  No sizing was applied over the coating. 

Two slurries were prepared.  The slurry prepared for the uncoated fiber composite 

was comprised of 15 vol.% alumina powder (AKP-53, Sumitomo Corp.) and 85 vol.% 

alumina sol (aluminum nitrate + deoionized water + citric acid + ethylene glycol).  The 

slurry for the coated fiber composite contained 12.5 vol.% alumina powder and 87.5 

vol.% sol.  The fibers were then drawn through their respective slurries and then wound 

onto a drum, forming a tape.  The wound tape was cut and stacked in 

[0°/90°/0°/90°/90°/0°/90°/0°] sequence as seen in Figure 8.  The composite stack was 

sealed in a vacuum bag and placed in an autoclave.  The sample was evacuated and then 

heated to approximately 85 °C.  This temperature was held for 1 h under 100 psig.  The 

sample was removed after it had cooled and allowed to air-dry overnight.  Next the 

sample was heat treated at 1200 °C in a box furnace for 5 h in air.     
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Figure 8.  Schematic of (0°/90°/0°/90°)s Fiber Orientation 

 

The specimens were cut from the panels using waterjet machining.  A sheet of 

aluminum was laid on top of each panel to prevent frayed edges on the specimens.  After 

the specimens were cut, they were cleaned in an ultrasonic bath.  Then the specimens 

were immersed in alcohol for about 15 minutes, to pull the moisture out of the specimens.  

The specimens were then removed from the alcohol and placed in an oven for 1 h at  

250 °C.  After the specimens cooled they were ready for testing. 

3.2.2 Panel Specifications 

 There were a total of 8 panels made.  Of those eight, five were 

N610/monazite/alumina and three were N610/alumina.  The tensile specimens were cut 

from three different panels.  The two monazite containing panels were labeled A1 and B1 
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and had fiber volume fractions of approximately 30.0% and 29.1%, respectively.  Fiber 

volume fractions were obtained by counting the number of filaments wound per the 

number of the revolutions.  The control panel, labeled C1, had a fiber volume fraction of 

35.0%.  The average densities of A1, B1, and C1 panels were 2.68, 2.55, and 2.73 g/cc, 

respectively.  For all panels, density was found by dividing weight over the volume of the 

specimens after they were cut from the panel. 

 The compressive specimens were cut from the five remaining panels.  The panels 

were referred to in this report as monazite panels M1, M2, and M3 and control panels N1 

and N2.  Panel specifications are given in Table 2.  All fiber volume fraction and density 

values were obtained in the same manner described above. 

 Specimens from the first three panels were labeled in the following manner: panel 

designation, fiber orientation, and number.  Therefore, specimen 2 from panel B1 with 

0°/90° fiber orientation would be marked as B1-0-2.  Specimens from the remaining 

panels were marked with panel number, but did not contain a reference to fiber 

orientation.  Specimen 6 from monazite panel M2 would be designated as M2-6.  Note 

that all specimens from panels 4-8 were cut with the 0°/90° fiber orientation. 

 

Table 2.  Fiber Volume Fraction and Density of Panels Used for Compression Tests. 
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3.2.3 Specimen Geometry 

3.2.3.1 Tensile Specimens 
 

When referring to the specimens it is important to specify their various fiber 

orientations.  The specimens with ±45° fiber orientation were referred to as such or as 

“off-axis” specimens.  It was necessary to refer to the on-axis specimens in two ways 

because not all were oriented along the same direction in the panel and the fiber direction 

of the surface layer appeared to play a direct role in the strength of the material.  

Therefore, the specimens that had the surface layer with 0° fiber orientation were referred 

to as 0° specimens and those that had the surface layer with the 90° fiber orientation were 

referred to as 90° specimens.  Tensile specimens were cut to specifications in Figure 9.  

Standard dog-bone shape was used to promote failure in the gage section.   

 

Figure 9. Tensile Specimen 
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3.2.3.2 Compressive Specimens 
 

The specimens had to be no less than 126 mm in length to accommodate the oven for 

high-temperature testing.  Ideally, a shorter, wider specimen is wanted for compression 

testing, but a shorter specimen could not be used with the testing equipment involved.  A 

specimen width of 20 mm was chosen due to constraints imposed by the size of the oven.  

Figure 10 shows a compressive test specimen. 

 

 

Figure 10.  Compression Specimen  
 

 
3.2.4 Specimen Tabbing 

Due to the high pressure applied to the specimen by the grips, all specimens had to be 

tabbed to ensure that surface was not damaged by the grips.  Thin tabs of glass-

fiber/epoxy material were bonded at the ends to both sides of the specimen.  The tabs 

were cut to the width of the specimen.  The length of the tabs was determined by the 

length of the specimen to be gripped.  The tabs were glued to the specimens using M-

Bond 200, which consisted of two components: catalyst and glue.  First, the M-Bond 

catalyst was brushed onto the tabs and then 3 drops of the M-Bond glue was applied to 
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the tab surface.  Then pressure was applied to the tab for one minute to ensure a good 

bond.  Representations of a tabbed specimen can be seen in Figure 11. 

 

Figure 11.  Tabbed Compressive and Tensile Specimens, Respectively 
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IV. Experimental Set-Up and Testing Program 
 
 
 

This chapter provides detailed description of the equipment and the procedures that 

were used to investigate the behavior of both Nextel 610/Monazite/Aluminum and Nextel 

610/Aluminum composites. 

4.1 Test Equipment 
 

4.1.1 Testing System and Components 

The testing system consisted of five main parts: the servo hydraulic machine, the 

chiller, the high temperature equipment, the extensometer, and the digital controller with 

associated computer software.  The monotonic tension and compression tests, as well as 

the creep rupture tests, were performed using this equipment. 

Two servo hydraulic machines were used to test the material.  Both were 

manufactured by Material Testing Systems (MTS) Corporation.  The axial 810 Material 

Testing System with a 25 kN (5.5 kip) capacity was used to conduct the initial testing of 

the off-axis specimens and some of the initial compression work (see Figure 12).  

However, because of the piston size, the machine load capacity was limited to 13 kN (3 

kip), which was not sufficient to cause failure of a compression specimen.  Another 810 

Material Testing System, with a 100 kN (22 kip) capacity was used for the compression 

tests.  Both machines were equipped with hydraulic wedge grips that could apply 

pressures ranging from 0-20 MPa.   
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Figure 12.  25kN Servo Hydraulic Machine 

 

 The chiller was compromised of two units manufactured by NESLAB: the chiller and 

the controller.  The chiller was used to cool water to temperatures of 9.5 °C in order to 

cool the grips.  Figure 13 shows the chiller and the controller.  The two controller units 

are seen resting on top of the chiller. 

 

Figure 13.  Chiller and Controller 
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The chiller system provides cooled water to the hydraulic wedges to prevent them 

from overheating during high-temperature testing.  If the wedges overheat during testing 

the seals within the wedges could be destroyed, which would cause severe damage to the 

system.  In order to avoid this, the chiller pumped water through a 6.35 mm (0.25 in) 

outer diameter tubing, which ran through the grips as seen in Figure 14 below.  The 

chiller was filled with distilled water to prevent corrosion.  This system was used in all 

high-temperature tests. 

 

 

Figure 14.  Tubes for Cooling Water Connected to Hydraulic Wedge Grips 

 

The high-temperature equipment consisted of the oven, the temperature controller, 

and control thermocouples located in the oven.  The oven can be seen in Figure 15 during 

a test.  An interior view of an open oven half in Figure 16 shows the heating element and 

the control thermocouple.  The control thermocouples located in the oven are S-type 
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thermocouples, which provide closed-loop feedback to the temperature controller.  The 

oven was a single zone MTS 653 model.  The max operating temperature of the oven is 

1400 °C.  The temperature controller was a MTS 409.83 model, shown Figure 17.  

 

 

Figure 15.  Oven Glows at High Temperatures 

 

 

Figure 16.  Interior View of Oven Half 
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Figure 17. Temperature Controller 

 
 

The extensometer used to gather strain data during testing was an MTS axial high-

temperature extensometer, model 632.53E-14 shown in Figure 18.  The gage length of 

the extensometer is 12.7 mm (0.5 in).  The extensometer was able to handle high 

temperatures by using two alumina extension rods of 3.5 mm diameter and 151 mm in 

length.  The tips of the extension rods are cone-shaped in order to ensure firm contact 

with the specimen during testing.  During testing, the extensometer is mounted behind the 

heat shield seen in Figure 19. 
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Figure 18.  Extensometer Equipped with Alumina Rods 

 

 

 

Figure 19.  Extensometer Mounted Behind the Heat Shield  

 

As seen in Figure 19, the rods extend through two slots in the furnace to make contact 

with the specimen.  The heat shield and air cooling system prevent the extensometer from 

being damaged by overheating. 
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 The final component of the testing system is the TestStar IIs digital controller, which 

was used for both input signal generation and data acquisition.  The TestStar controller 

software controls the servo hydraulic machine and the temperature controller.  During 

tests, displacements, forces, strains, temperature, cycles, and time can be monitored and 

recorded.  Tests can be programmed using the Multipurpose Testware (MPT) software.  

Shown in Figure 20 is the basic test procedure developed for a high-temperature creep 

test. 

 

 

Figure 20.  Multipurpose Testware Procedure for Creep Testing at Elevated Temperatures 

 

The test procedure begins with a temperature ramp up and a dwell period to allow the 

specimen to thermally equilibrate and at the same time, data acquisition begins.  After the 

dwell period, the program proceeds to ramp up the load to reach the specified creep stress 

at a set stress rate and records the data.  Then the test program holds the load at a constant 

value while recording data. 
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4.1.2 Specimen Components 

In order to accomplish parts of the testing the actual specimens had to be outfitted 

with two pieces of equipment, namely the thermocouples and the anti-buckling brackets.   

In order to perform the temperature calibration, two S-type thermocouples were attached 

to the gage section on each face of the specimen using high temperature ceramic cement 

and safety wire.  It was extremely important to ensure good contact between the 

specimen surface and the tip of the thermocouple in order to obtain accurate temperature 

readings of the specimen surface.  The thermocouples were connected to an OMEGA 

HH202A portable two-channel temperature sensor for read-out.  The anti-buckling 

device, created for a use at room temperature consisted of two pieces of 7075-T6 

aluminum bolted together that covered the sides of the specimen as shown in Figure 21 

below. 

 

Figure 21. Specimen Equipped with Anti-Buckling Device 

 
 
4.2 Temperature Calibration 
 

To perform tests at 900 and 1100 °C, the oven and temperatures controller had to be 

calibrated.  The specimen equipped with 2 S-type thermocouples was mounted in the 

grips.  The thermocouples were connected to the OMEGA HH202A portable two-channel 
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temperature sensor for read-out.  Both ends of the specimen were gripped leaving the 

machine in force control mode.  The oven was closed around the specimen.   

Using the MPT software, the oven was raised to about 100 °C below target test 

temperature at 1°C/s.  Then the temperature of the oven was raised manually until the 

thermocouples on the specimen showed the desired test temperature.  The temperature 

was then allowed to dwell for a period of 1 h.  Small manual adjustments were made to 

ensure the specimen temperature was within ±10 degrees of the target test temperature.  

The set point of the temperature controller that produced the desired temperature of the 

specimen was recorded and used in the subsequent tests.  To achieve the specimen 

temperature of 900 °C the temperature controller setting was 889 °C for the heating 

system on the 25 kN testing machine and 880 °C for the heating system on the 100 kN 

testing machine.  A temperature controller setting of 1080 °C was required to achieve the 

specimen temperature of 1100 °C. 

4.3 Test Procedures 
 

Three different types of tests were carried out: monotonic tension and compression 

tests, and compression creep tests.  All three types of tests utilized the same equipment.  

In all tests, the specimen was mounted in the grips of the servo hydraulic machine.  First, 

the top of the specimen was gripped while in displacement control mode, then the load 

cell reading was zeroed out, and finally the bottom of the specimen was gripped while in 

force control mode.  This procedure ensured that specimen was not subjected to any 

tensile or compressive loads during gripping.  
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4.3.1 Monotonic Tension Tests 

The monotonic tension tests were performed on the N610/alumina and 

N610/monazite/alumina CMCs with both 0°/90° and ±45° fiber orientations.  The tests 

were conducted in displacement control mode at a rate of 0.05 mm/s at room temperature 

and at 900 °C.  The specimens were placed in the 25 kN servo-hydraulic machine with a 

grip pressure of approximately 8 MPa (1150 psi).  The following, Figure 22, shows a 

tensile specimen properly secured in the grips of the servo-hydraulic testing machine. 

 

 

Figure 22.  Tensile Specimen Secured in the Grips of the Servo-Hydraulic Machine 

 

For the high temperature tests, the oven was closed around the specimen and temperature 

was raised at the rate of 1 °C/s.  In order to allow the specimen to thermally equilibrate, a 
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30-minute dwell period was introduced once the test temperature was reached.  The same 

heat-up and dwell procedure was used in all tensile, compressive, and creep tests.  After 

the dwell period, the specimen was subjected to tension to failure.  Data collected during 

temperature ramp up and during the tension test included strain, force, displacement, 

displacement command, temperature, and time.  Displacement command was recorded to 

ascertain that the feedback was within the acceptable tolerance of the command signal.   

4.3.2 Monotonic Compression Tests 

The monotonic compression tests were performed on the N610/alumina and 

N610/monazite/alumina composites with the 0°/90° fiber orientation.  These tests were 

conducted in displacement control at a rate of 0.05 mm/s.  The grip pressure used in the 

compression tests was 8 MPa (1150 psi) for the 25 kN machine and 5 MPa (750 psi) for 

the 100 kN (22 kip) machine. 

4.3.3 Creep Rupture Tests.   

All creep rupture tests were conducted on the 100 kN (22 kip) with grip pressure of 5 

MPa (750 psi).  The specimen was loaded to the desired creep stress (load) level at the 

rate of 2200 N/s, which corresponds to a stress rate of approximately 20 MPa/s.  The 

creep stress levels were chosen to be consistent with those used by Musil et al [34,38] in 

tensile creep tests.  In order to determine the creep load level for each specimen, the 

desired creep stress level was multiplied by the cross-sectional area of that particular 

specimen.  Creep run-out was set to 100 h.  Creep tests were interrupted after 50 h if the 

creep strain rates remained less than 10-9 s-1.   
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4.4 Post Failure Analysis 
 

4.4.1 Specimen Preparation 

 To obtain optical micrographs and scanning electron microscope (SEM) images 

presented in subsequent sections, the specimens had to be cut and sometimes 

permanently mounted in a resin mold for polishing of the cut surface.  A dicing saw was 

used to cut the specimens.  A water cooling system was used in order to keep the blade 

cool and eliminate the dust from cutting the specimen.  Specimens were cut to permit 

SEM observation of the fracture surfaces and to view cross-sections of certain specimens 

under both the optical microscope and the SEM. 

 The specimens prepared to view cross-sections required polishing.  To accomplish 

this, the specimens were mounted in a resin mold using the Simplimet 2000 

manufactured by Buehler.  The resin mold was conductive to allow better viewing with 

the SEM.  The molding process was set for a total of five minutes and thirty seconds.  

The mount was then removed and ready for polishing.  Figure 23 shows two mounts 

containing cross-sections of a specimen. 

 

 

Figure 23.  Pieces of Specimen Mounted in Conductive Resin 
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The polishing process consisted of five steps using grits of 240 (60 μm), 400 (30 μm), 

and 600 (15 μm).  The final polishing steps used diamond pastes of  0.10 and 0.05 μm.  

Between each of the grits, the specimen was placed in an ultra sonic bath in order to 

remove the many resin particles, which sometimes get embedded in the surfaces of the 

specimens.  Polishing was accomplished manually using the PowerPro 5000, 

manufactured by Buelher (see Figure 24). 

 

Figure 24.  Polishing machine 

 

4.4.2 Optical Microscopy. 

Optical microscopy was carried out using a Zeiss Stemi SV II Optical Microscope 

incorporating a Zeiss AxioCam HRc digital camera (see Figure 25).  The microscopy was 

performed at varying levels of magnification.  Settings were determined by the best 
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image that could be retrieved while capturing the information needed.  Due to constraints 

of the equipment some specimens had to be viewed in multiple photos.  This was caused 

by the length of delaminations and/or large fracture surfaces of some specimens. Figure 

26 and Figure 27, show the setups used for viewing the specimens. 

 

 

 

Figure 25.  Optical Microscope 
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Figure 26.  Side View of Specimen 

 

Note a set of markers denoted M, N, and P in Figure 26.  These markers represent the 

points where the views of the specimen needed to be pieced together to form a complete 

the picture.  Also seen is the dimension marker.  In some cases, not all the photos in a 

figure set contain scales. However, if there is a single scale in the figure set it applies to 

all images in a group. A scale was not included with each and every image to avoid 

crowding.  Figure 27, depicts halves of a failed specimen complete with dimensions, a 

marker ‘F’, and a dimension scale.  The marker ‘F’ indicates that fiber pullout can be 

seen in the optical micrograph.  The dimension scale shows the length of the damage 

zone ℓd. 
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Figure 27.  Surface View of Specimen 

 

4.4.3 Scanning Electron Microscope Analysis. 

A scanning electron microscope (SEM), seen in Figure 28, can produce high 

resolution images in three dimensions at high levels of magnification.  The SEM works 

by emitting a beam of electrons, which are focused by two successive condenser lenses 

into a beam with a spot size of approximately 5 nm [3].  Resolution is dependent on the 

spot size.  The focused primary electrons strike the surface of the sample and are 

scattered in a non-elastic manner.  Interactions in a region created by the scattered 

electrons, called an interaction volume, lead to the emission of electrons and produce an 

image [3]. 
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An SEM can have several different modes of operation.  Normal high vacuum mode 

was used with conductive samples.  In the case of non-conductive samples, the 

environmental scanning electron microscopy (ESEM) mode was employed.  ESEM 

operates in what is called a “wet” mode making non-conductive samples conductive.  If 

samples are non-conductive the electrons tend to charge the surface of the sample and 

make the image really bright and therefore hard to see.  To prevent the charging of the 

specimen surfaces, the specimens were either viewed in ESEM mode or coated with 

carbon.  Sometimes a piece of copper tape was secured to the sides of the specimen to 

further reduce charging of the specimen surface.  Some SEMs are equipped with a back-

scatter feature.  This feature was used to capture a view of the monazite coating. 

 

Figure 28.  Scanning Electron Microscope. 
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V. Results and Discussion 

 

This chapter will describe the results of the investigation conducted on the 

N610/monazite/alumina and N610/alumina specimens.  It will begin with a discussion of 

results of the initial investigation of the off-axis tensile behavior and present the reasons 

for redirecting the study to focus on the on-axis compression creep behavior.  Next, 

monotonic compression behavior of both the tensile and compression specimens is 

discussed, followed by discussion of composite microstructure.  This chapter concludes 

with the review of the effects of temperature and fiber coating on creep behavior, as well 

as, it analyzes problems encountered with some N610/monazite/alumina panels.  An in 

depth analysis, of the monotonic tensile/compressive behavior and microstructure is then 

reviewed. 

5.1 Fiber Volume Ratio Adjustment 
 

To accurately compare the test data obtained for specimens with different fiber 

volume fractions, a set fiber volume fraction was selected and then all stress calculations 

were normalized to that set fiber volume fraction according to the following equation:  

 

                                          Xadj=X*(Vf actual/Vf set)                               (1) 

 

where ‘X’ is the quantity being adjusted and Vf is fiber volume fraction. 

5.2 Monotonic Tension – ±45° Specimens 
 

The initial study focused on off-axis tensile creep behavior of 

N610/monazite/alumina and N610/alumina.  In addition to the ±45° specimens, the study 
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included testing of 0°/90° specimens, which were tested in tension to confirm that the 

behavior of the panel was consistent that observed earlier.  However, both the monazite 

coated and control specimens with the ±45° fiber orientation produced relatively low 

values of ultimate tensile strength.  Tensile stress-strain curves for specimens with 0°/90° 

and ±45° fiber orientations are shown in Figure 29.  Results presented on Figure 29 were 

adjusted to the fiber volume fraction of 29.1%.  Test results are also summarized in Table 

3 where elastic modulus, UTS, strain at UTS, are shown together with the failure stress 

and failure strain for each fiber orientation. 
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Figure 29.  Tensile Stress-Strain Curves for N610/Monazite/Alumina and N610/Alumina 
Ceramic Composites with 0°/90° and ±45° Fiber Orientation.  Data from References 

[34,38] are Also Shown. 
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It is seen that the UTS of the ±45° specimens was much lower than that of the 0°/90° 

specimens.  Kerans et al [28:2624] reported similar results for N610 in a porous matrix 

with  ±45° fiber orientation.  Table 3, shows the numerical results.  It should be noted that 

this table does not include the data from Musil et al [34,38]. 

 

Table 3.  Monotonic Properties of On-Axis and Off-Axis Specimens.  Vf Stands for Fiber 
Volume Fraction. 

 

 

 

The low UTS indicated that the off-axis creep behavior could only be investigated for 

low creep stress levels.  With such a low UTS, further investigation of the off-axis creep 

behavior would not be productive.   

5.3 Monotonic Compression – Dogbone-Shaped Specimens, 0°/90° Fiber Orientation 
 

Results of these tests are presented in Figure 30 and Table 4 and were obtained in 

compression-to-failure tests on N610/monazite/alumina dogbone-shaped specimens at 

900 °C.  Compressive stress-strain curves are shown in Figure 30 where the tensile stress-

strain curves are also included for comparison.  Results in Figure 30 reveal an absolute 

compressive strength that is almost 40 MPa lower than the UTS.  The low compressive 

strength values suggested that buckling may have been present and, in fact, be the cause 
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of early failure.  Examination of the microstructure of the specimen under an optical 

microscope confirmed that the specimen experienced buckling, which in turn caused low 

compressive strength (see Figure 31). 

 

 

Figure 30.  Monotonic Tensile/Compressive Behavior of On-Axis Dogbone-Shaped 
Specimens at 900 °C 

 

Table 4.  Tensile and Compressive Properties of N610/Monazite/Alumina at 900 °C 
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Figure 31.  N610/Monazite/Alumina Specimen Tested in Compression at 900 °C  Shows 
an Asymmetric Fracture Surface Suggesting Possible Buckling. 

 

The set of four images in Figure 31 represents the two sides of the specimen; Figure 

31a and Figure 31b show one side of the specimen and Figure 31c and Figure 31d the 

other side.  The asymmetric fracture of the specimen, consistent with buckling, is clearly 

seen in Figure 31.  To minimize the possibility of buckling, another compression test was 

conducted with an anti-buckling device.  This test was performed at room temperature, 

because the anti-buckling device could not withstand 900 °C.  A comparison tensile test 

was also carried out at room temperature.  Figure 32 shows the optical micrographs of the 

specimen tested in compression with the anti-buckling device.  The results of the room-

temperature tensile and compression tests are presented in Figure 33.  Values are shown 

in Table 5. 
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Figure 32.  Specimen Tested in Compression with Anti-Buckling Device 

 

 

Figure 33.  Tensile and Compressive Stress-Strain Curves for N610/Monazite/Alumina at 
23 °C.  Compression Test Employed Anti-Buckling Device. 
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Table 5.  Tensile and Compressive Properties of N610/Monazite/Alumina at 23 °C.  
Compression Test Employed Anti-Buckling Device. 

 

 

 

The room-temperature UTS value of ~105 MPa was consistent with that reported 

previously.  Musil et al [34,38] reported room-temperature UTS for the uncoated fiber 

composite.  However, Keller and Mah [26] reported a 48% increase in UTS for the 

coated fiber composite.  If this increase is applied directly to the UTS value reported by 

Musil et al [34,38] for the uncoated fiber composite of the coated fiber CMC can be 

predicted as 173 MPa.  Once the fiber volume fraction is adjusted, the UTS value of 98 

MPa is obtained.  However, of more importance was the compressive strength result.  

The use of the anti-buckling device resulted in a higher compressive strength confirming 

that buckling was the cause of low UCS values in previous tests.   

5.4 Monotonic Compression – Straight-Sided Specimens, 0°/90° Fiber Orientation 
 

The following section contains results of monotonic compression of both 

N610/monazite/alumina and N610/alumina straight-sided specimens at 900 and 1100 °C.  

These tests were conducted to ensure that the new specimen (shown in Figure 10), 

straight-sided and of greater width, would withstand buckling.  
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A total of six compression tests to failure were carried out at 900 and 1100 °C; 3 tests 

on N610/monazite/alumina specimens and 3 tests on control specimens.  Results obtained 

for both N610/monazite/alumina and N610/alumina CMCs are shown in Figure 34.  Note 

the significantly lower UCS of specimen N1-6.  This specimen was cut in the direction 

perpendicular to that used in cutting other specimens from this panel.  The surface layers 

of this specimen had 90° fiber orientation, while other specimens had surface layers with 

the 0° fiber orientation.   
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Figure 34.  Compression Stress-Strain Curves for N610/Monazite/Alumina and 
N610/Alumina at 900 °C  

 

 
The surface layers with the 90° fiber orientation appeared to have compromised the 

compressive strength of the specimen. The second test at 900 °C produced a much higher 

UCS.  Note that the surface layers of this specimen had 0° fiber orientation.  Two tests 
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were conducted at 900 °C because the first test represented by the black line in Figure 34 

exhibited signs of buckling.  The asymmetric fracture is noticeable in the optical 

micrographs Figure 35 and Figure 36.  However, as confirmed by the second test at 900 

°C, this did not affect the UCS of the specimen.  The second test did not show any 

apparent signs of buckling and produced similar compressive strength values.  Monotonic 

compressive properties of both monazite-containing and control specimens can be seen in 

Table 6. 

 

Table 6.  Compressive Properties of Straight-Sided N610/Monazite/Alumina and 
N610/Alumina Specimens at 900 and 1100 °C 

 

 

 

 54



 

 

Figure 35.  Side 1 of N610/Monazite/Alumina Specimen Asymmetric Fracture Suggests 
Buckling 

 

 

Figure 36. Side 2 of N610/Monazite/Alumina Specimen Asymmetric Fracture Suggests 
Buckling 
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5.5 Microscopy 
 

This section presents the optical micrographs of all specimens discussed above.  It 

will compare and contrast fracture appearance of various N610/monazite/alumina and 

N610/alumina specimens focusing on fiber pullout, delamination, and damage zone size. 

5.5.1 Specimens Tested in Tension 

Figure 37 and Figure 38, show one half of a N610/monazite/alumina ±45° tensile 

specimen and N610/alumina ±45° tensile specimen, respectively.  Both were tested in 

tension at 900 °C. 

 

 

Figure 37.  N610/Monazite/Alumina Specimens with ±45° Fiber Orientation Tested in 
Monotonic Tension at 900 °C 
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Figure 38. N610/Alumina Specimens with ±45° Fiber Orientation Tested in Monotonic 
Tension at 900 °C 

 

Both samples showed fracture along the fiber direction as expected.  Damage zones were 

more pronounced in the monazite-containing sample, which also showed visible signs of 

fiber pullout.  Relatively little delamination was observed in the control specimen.  It 

appears that the control specimen failed in a brittle manner along the fiber direction.  The 

more severe delamination and fiber pullout evident in the monazite-containing sample 

suggested a delayed failure.  However, as seen in Figure 29 and in Table 3, the control 

specimen exhibited higher strength than the monazite-containing specimens.  While the 

contribution of the fibers to the tensile strength of the composite with ±45° fiber 

orientation is not always readily predicted, it is recognized that the tensile behavior of the 

±45° cross-ply is not fiber-dominated and relies considerably more on matrix for strength 

then the 0°/90° cross-ply.  This may explain why the control specimen with ±45° fiber 
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orientation exhibited higher strength than ±45° monazite-containing specimen.  Monazite 

isolates the fiber from the matrix creating a weak fiber/matrix interface, which lessens the 

fiber contribution to the composites tensile strength in a given lay-up.  Conversely, in a 

control specimen the fiber is bonded directly to the matrix and is therefore able to 

contribute to the composite’s tensile strength. 

Figure 39 shows half of a N610/monazite/alumina specimen with 0°/90° fiber 

orientation tested in tension at 900 °C.  The fiber pullout is apparent in Figure 39(c) and 

(d).  This fiber orientation exhibits a lot more fiber pullout than the ±45° specimen.  No 

clear evidence of delamination is seen in Figure 39(c) and (d). 

 

 

Figure 39.  N610/Monazite/Alumina Specimen with 0°/90° Fiber Orientation Tested in 
Tension at 900 °C 
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5.5.2 Specimens Tested in Compression 

The damage zones produced in compression were more exaggerated, furthermore the 

delamination was more pronounced.  Figure 40 shows a N610/monazite/alumina 

dogbone-shaped specimen tested in compression at 900 °C without aid of the anti-

buckling device. 

 

 

Figure 40.  Dogbone-Shaped N610/Monazite/Alumina Specimen with 0°/90° Fiber 
Orientation Tested in Compression at 900 °C without the Anti-Buckling Device 

 

Surface views in Figure 40(a) and (b), show relatively small damage zones (damage 

zones are marked with ovals).  However, a side-view of the specimen, presented in 

Figure 41, shows the full extent of the damage.  Note that marker ‘M’ identifies the same 

location in the specimen.  Thus, Figure 41(a) and (b) together present a full view of the 

damage zone on the specimen side.  Similarly Figure 41(c) and (d) give a full view of the 

damage zone on the opposite side of the specimen.  The dimension lines in Figure 41(a), 

(b), (c), and (d) bracket the damage zones. 
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Figure 41.  Dogbone-Shaped N610/Monazite/Alumina Specimen with 0°/90° Fiber 
Orientation Tested in Compression at 900 °C without the Anti-Buckling Device 

 

The damage zones shown in Figure 41(a) and (b) extend for ~34 mm while the damage 

zone shown in Figure 41(c) and (d) is ~36 mm long.  It is noteworthy that the specimen 

tested in compression at room temperature with an anti-buckling device exhibits a similar 

amount of damage on the surfaces of the specimen (damage enclosed by gray ovals in 

Figure 42(c) and (d)).  However, the side-views of the specimen, shown in Figure 42(a) 

and (b), exhibit significantly less delamination and shorter damage zones.  The damage 

zones shown in Figure 42(a) and (b) were approximately 18 mm and 20 mm long, 

respectively.  Both the anti-buckling device and the lower temperature may be the cause 

of the limited delamination and shorter damage zones. 
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Figure 42.  Dogbone-Shaped N610/Monazite/Alumina Specimen with 0°/90° Fiber 
Orientation Tested in Compression with the Anti-Buckling Device at 23 °C. 

 

 

Images of the straight-sided 0°/90° specimens of both N610/monazite/alumina and 

N610/alumina tested in compression at 900 and 1100 °C are shown in Figure 44 through 

Figure 48.  
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Figure 43.  Straight-Sided N610/Monazite/Alumina 0°/90° Specimen Tested in 
Compression at 900 °C 

 

 

Figure 44.  Side Views of a Straight-Sided N610/Monazite/Alumina 0°/90° Specimen 
Tested in Compression at 900 °C 
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Shown in Figure 43 is a straight-sided 0°/90° N610/monazite/alumina specimen tested at 

900 °C in compression.  Figure 43(a) and (b) show one half of the failed specimen and 

Figure 43(c) and (d), the other half.  The damage zones in both halves are approximately 

33 mm in length.  The fiber pullout is readily seen in both halves of the specimen. The 

side views of this specimen, shown in Figure 44, reveal the step wise topography of the 

specimen fracture.  Again both the fiber pullout and the extensive delamination are 

readily seen in these images.  In the connected image of Figure 44(a), (b), and (c) the 

damage zone extends for about 70 mm.  The other half of the specimen (see Figure 44(d) 

and (e)) exhibited a much shorter damage zone of approximately 37 mm.  

At 1100 °C, the straight-sided specimen produced shorter damage zones, yet fiber 

pullout and extensive delamination were still evident (see  Figure 45 and Figure 46). 

 

Figure 45.  Straight-Sided N610/Monazite/Alumina 0°/90° Specimen Tested in 
Compression at 1100 °C 
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Figure 46.  Side Views of the Straight-Sided N610/Monazite/Alumina 0°/90° Specimen 
Tested in Compression at 1100 °C 

 

Side views of the specimen seen in Figure 46 reveal damage zones between 36 and 42 

mm in length.  Note that the micrographs of the monazite-containing specimens tested at 

900 °C are similar to those produced at 1100 °C.  

It is instructive to compare the damage zones and delamination patterns produced in 

the control and monazite-containing specimens.  Figure 47 shows a N610/alumina 

specimen tested in compression at 900°.  Virtually no fiber pullout is seen. 
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Figure 47.  Straight-Sided N610/Alumina 0°/90° Specimen Tested  
in Compression at 900 °C 

 

Figure 47(a) and (c) show the same half of the specimen.  Both views reveal the same 

short damage zone.  No cracks or delamination are seen along the side of the specimen.  

The damage zone was approximately 6 mm in length.  The damage zones seen in Figure 

47(b) and (d) were approximately 7.31 and 15 mm, respectively.  These damage zones 

are substantially shorter to those seen in the monazite-containing specimen at both 900 

and 1100 °C.  In the absence of monazite, the specimen acts more like a monolithic 

ceramic than a composite.   

At 1100 °C, N610/alumina specimens produced fracture topography that was closer 

to that produced by N610/monazite/alumina specimens tested in compression at both 900 
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and 1100 °C.  As seen in Figure 48, the control specimen tested at 1100 °C exhibited 

more delamination, more jagged fracture topography, and larger damage zones than the 

control specimen tested at 900 °C. 

 

 

Figure 48.  Straight-Sided N610/Alumina 0°/90° Specimen Tested in Compression at 
1100 °C 

 

The damage zones shown in Figure 48(a) and (b) were about 27 and 16 mm, respectively.  

The damages zones seen in the side views in Figure 48(c) and (d) were of the same length 

as those in Figure 48(a) and (b) because delamination did not extend past the damage on 

the surface of the specimen. The fracture topography obtained at 1100 °C was less planar 

than that obtained at 900 °C. 
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5.6 Compressive Creep Behavior 
 

This section discusses the compression creep tests conducted on 

N610/monazite/alumina and N610/alumina specimens at 900 and 1100 °C.  It will begin 

with a discussion of the effects of applied stress and temperature on creep response 

followed by an examination of creep strain rates at various stress levels.  Next, the 

compressive creep behavior will be compared to the tensile creep results reported by 

Musil et al [34,38].  Retained properties of the material are examined for specimens that 

achieved a run-out in compressive creep.  Finally, microstructure of the composite is 

examined thoroughly and discussed in detail.     

5.6.1 Effect of Stress Level and Temperature 

 Compression creep tests were conducted at 1100 °C at stress levels of 50, 60, and 75 

MPa.  These stress levels were chosen as comparable to those used in prior investigation 

of tensile creep [34,38].  Musil conducted tensile creep tests at 1100 °C at the stress 

levels of 40, 80, 100, and 120 MPa.  These stress values were adjusted for the fiber 

volume fraction of the monazite-containing specimens used in compression tests to yield 

50, 60, and 75 MPa.  Results of compressive creep tests are presented in Figure 49 , 

where creep strain is plotted as a function of time.  Note the y-axis shows percent strain 

in absolute (ABS) value. 
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Figure 49.  Compressive Creep Strain as a Function of Time for N610/Monazite/Alumina 
and N610/Alumina Composites at 1100 °C 

 

Specimens tested at all stress levels exhibited extensive amounts of creep.  The 

N610/monazite/alumina CMC accumulated more creep strain at all stress levels than the 

control composite.  Creep strains accumulated at 50 MPa represent an exception.  At this 

stress level the uncoated fiber composite accumulated slightly more creep strain than the 

monazite-containing CMC.  This anomaly may be due to data scatter.  While subjected to 

compressive creep, control specimens with a strong fiber-matrix bond respond more like 

a monolithic ceramic producing smaller creep strain.  Conversely, the weak fiber-matrix 

interface in the monazite-containing CMC effectively isolates the fibers, leaving the 

matrix to bear the compressive load, while the fibers are microbuckling (or kinking).  

Without the reinforcement from the fibers, the matrix responds by progressive cracking 

and larger creep strains. 
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 Tests conducted at 900 °C revealed that temperature had a major effect on the creep 

response of these composites.  As in the case of 1100 °C tests, creep stress levels were 

chosen to be consistent with those used in tensile creep testing conducted by Musil et al 

[34,38] at 900 °C.  Musil et al [34,38] conducted tensile creep tests at stress levels of 80, 

120, 130, 140, and 150 MPa.  These stress levels were adjusted for fiber volume fraction 

of compression specimens to yield 50, 75, 80, 90, and 95 MPa.  Control specimens were 

subjected to creep at 50, 75, and 95 MPa.  One monazite-containing specimen was tested 

in creep at 50 MPa.  Results are presented in Figure 50.  

 

Figure 50.  Compressive Creep Strain as a Function of Time for N610/Monazite/Alumina 
and N610/Alumina Composites at 900 °C 

 

As seen in Figure 50, all tests accumulated only small amounts of strain.  All creep 

strains were no greater than ~0.05%.  Tests were terminated after 50 h because of 

minimal creep strain accumulations and very small creep strain rates. 
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While no additional N610/monazite/alumina specimens were available for 

compressive creep testing at 900 °C, the results could be anticipated.  Considering the 

small creep strain produced in all 900 °C tests, it can be conjectured that the monazite-

containing samples would accumulate only very low creep strains at 900 °C, regardless 

of the applied stress level.  

5.6.2 Creep Strain Rate as a Function of Applied Stress  

Figure 51, shows creep strain rate as a function of applied stress at 1100 °C.   
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Figure 51.  Compressive Creep Strain Rates as a Function of Applied Stress for 
N610/Monazite/Alumina and N610/Alumina Composites at 1100 °C 

 

Creep strain rates for both N610/monazite/alumina and N610/alumina composites were 

almost the same at each stress level and increased only slightly with increasing stress.  
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Creep strain rates at 1100 °C ranged between 2.36-9.83x10-8 s-1.  Creep strain rates 

produced in compressive creep tests at 900 °C, were less than 10-10 s-1.  Creep strain rates 

were obtained by determining the slope of the steady-state portion of each compressive 

creep curve.  

5.6.3 Compressive Versus Tensile Creep Behavior 

A direct comparison of tensile to compressive creep behavior could not be done 

because of the different failure mechanisms associated with each.  While fibers do not 

play as vital a role in the strength of the composite material under compression as they do 

in tension, the results reported by Deng [17] revealed for a SiC fiber-reinforced ceramic 

matrix composite that specimens with a 0° fiber orientation accumulated less 

compressive creep strain, had lower creep strain rates at a given stress level, and longer 

creep lives.  Therefore some indirect comparisons can be made between the results 

presented here and those reported by Musil et al [34,38].  Tensile and compressive creep 

curves for N610/monazite/alumina composite are shown in Figure 52(a) and (b), 

respectively. 
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Figure 52.  Creep Curves for N610/Monazite/Alumina Composite at 1100 °C: (a) 
Compressive Creep and (b) Tensile Creep [34,38]  

 

Note that specimens subjected to tensile creep at 1100 °C and creep stresses greater than 

or equal to 80 MPa ruptured after less than 1 h.  Only the 40 MPa tensile creep test 

survived approximately 14 h.  Conversely, all specimens subjected to compressive creep 

achieved a run-out (defined as 100 h), while accumulating large compressive creep 

strains.  Monazite-containing specimens accumulated lower tensile creep strains than the 

control CMC, while the exact opposite was observed in compressive creep at 1100 °C.  

Yet all specimens tested in tensile and compressive creep at 900 °C accumulated small 

strains.  In the case of both tensile creep [34,38] and compressive creep, percent strain 

accumulation was limited to 0.05. 

5.6.4 Retained Properties 

 Compression tests to failure were performed at 1100 °C on monazite-containing 

specimens that achieved run-out in 65 and 75 MPa creep tests at 1100 °C.  A monazite-

 72



 

containing specimen that achieved run-out in a 50 MPa creep test at 1100 °C was 

subjected to a tensile test to failure at 900 °C.  Results of compression tests to failure are 

shown in Figure 53 together with the compressive stress-strain curve obtained for a virgin 

specimen.  Retained compressive strength and stiffness of the specimens, which achieved 

creep run-out, are summarized in Table 7.  It is seen that prior creep had no appreciable 

effect on compressive strength.  Conversely, pre-crept specimens exhibited higher 

stiffness values.   
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Figure 53.  Effects of Prior Compressive Creep at 1100 °C on Compressive Stress-Strain 
Behavior of N610/Monazite/Alumina Ceramic Composite 
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Table 7.  Retained Properties of N610/Monazite/Alumina Specimens Subjected to Prior 
Creep at 1100 °C 

 

 

As seen in Figure 54, the tensile test at 900 °C conducted on the specimen pre-crept at 

50 MPa at 1100 °C also showed a significant increase in stiffness.  The retained modulus 

was 68 GPa for this test, which was significantly higher than modulus value for the virgin 

material produced in this study (52 GPa) or that reported by Musil et al [34,38] (54 GPa).  

The pre-crept specimen also exhibited increased tensile strength.   
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Figure 54.  Effects of Prior Compressive Creep at 1100 °C on Tensile Stress-Strain 
Behavior of N610/Monazite/Alumina Ceramic Composite 

 
5.7 Microstructural Analysis of N610/Monazite/Alumina Panel M2 
 
 The following is an in-depth analysis of monazite-containing panel M2.  The 

noticeably lower strength produced by specimens from this panel compared to strength 

values obtained for specimens from panel M1 caused much concern over processing.  

This discussion will begin with examination of the monotonic compression test results 

obtained for specimens from panel M2, followed by a detailed analysis of panel 

microstructure, and an analysis of the tensile properties exhibited by specimens from 

panel M2. 
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5.7.1 Stress-Strain Behavior. 

Specimens from panel M2 were initially intended for compressive creep tests at  

900 °C at varying stress levels, but only a 50 MPa creep test was successfully completed.  

Three additional specimens from panel M2 all failed during load-up.  Two were intended 

for creep tests at 75 and 80 MPa.  Specimens from panel M3 were subjected to the creep 

tests, but also failed during load-up.  Figure 55, shows the stress-strain curves for 

specimens from panels M2 and M3.  It is seen that specimens from these two panels 

produced similar values of stiffness and strength. 
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Figure 55.  Compressive Stress-Strain Curves for N610/Monazite/Alumina Specimens 
from Panels M2 and M3 at 900 °C 

 

 
Note that specimen M3-2 was tested in displacement control with displacement rate of 

0.05 mm/s, while all other specimens were tested in load control at the rate of 2200 N/s, 

which corresponds to stress rates in the 18-32 MPa/s range.  Table 8, presents 
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compressive properties of N610/monazite/alumina obtained in the course of this 

investigation. 

 

Table 8.  Compressive Properties of N610/Monazite/Alumina Ceramic Composites 

 

 
Results in Table 8, demonstrate that while similar stiffness values were obtained for all 

panels, panels M2 and M3 produced considerably lower strength values than panel M1. 

5.7.2 Panel M1 and Panel M2 Composite Microstructure. 

 Unusually low strength values obtained for panels M2 and M3 suggested that 

composite microstructure may be different from that of panel M1.  This directed the 

investigation to the microstructure of panel M2.  Microstructure of panel M1 was also 

examined for purposes of comparison. 

 Analysis of the microstructure began with examination of cross-sectional views of the 

virgin and tested specimens from panels M1 and M2.  The two different cross-sectional 

views examined (schematically shown in Figure 56), will be referred to as parallel and 

perpendicular.  The sections retrieved from the tested material were cut close to the area 
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of fracture, but also far enough away so that it exhibited no signs of damage visible to the 

naked eye.   

 

Figure 56.  Schematic of Specimen Showing the Type of Cuts made to  
View Cross-Sections 

 

Note the specimens examined here were not necessarily subjected to the same test 

history.  Specimens from panel M1 were tested in compressive creep at 65 MPa at  

1100 °C.  Specimens from panel M2 failed in monotonic compression (i.e. during load-

up to an intended creep stress) at 900 °C.   

 After viewing the cross-sections under optical microscope, an obvious difference in 

microstructure was detected.  In both the virgin and tested cross-sections of panel M2, 

thick bands of matrix were clearly visible between the fibrous layers (see Figure 57).  

These rich bands of matrix were also apparent in panel M3.  Backscatter SEM images of 

cross-sections of panel M2 also show the matrix-rich regions as well as large areas void 

of matrix (see Figure 58).  Panel M1 (see Figure 59) showed some matrix rich areas, 

however no matrix layers were observed akin to those seen in panels M2 and M3.   

 78



 

 

Figure 57.  Parallel Cross-Sectional View of Virgin Specimen from Panel M2 
 

 
Figure 58.  Backscatter SEM Image of Cross-Section of Panel M2 Showing Matrix-Rich 
Areas and Large Regions Void of Matrix Material in the 90° Fiber Layer.  Bright White 

Areas on Both Fiber Layers are Monazite Coating. 
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Figure 59. Parallel Cross-Sectional View of Virgin Specimen from Panel M1 
 

 

The matrix-rich regions in panels M2 and M3 suggest a process control problem. 

Furthermore, the matrix-rich layers appeared to be the cause of early failures and low 

strength observed for panels M2 and M3.   

Confirmation that the matrix-rich areas caused early failures in panels M2 and M3 

was received by examining optical micrographs and backscatter SEM images of the 

specimen fracture surfaces. 

The fracture surfaces of specimens from panels M1, M2, and M3 displayed different 

failure mechanisms. Figure 60 shows the fracture surface of a specimen from panel M1.  

The cracks in this panel initiate between the laminae then propagate at ~45° angle 

through the 90° fiber layer, where they finally self-arrest.  Figure 61 shows a magnified 

view of the specimen shown in Figure 60.  Three separate cracks can be seen initiating 

between the laminae, which then move along an inconsistent, angled path through the 90° 

fiber layer, and finally arrest.  Also note the absence of matrix-rich areas. 
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Figure 60.  Propagation of Crack through a Specimen from Panel M1 
 

 

 

Figure 61.  Magnified View of a Fracture Surface from Panel M1 Showing Cracks 
Initiating and Self-arresting in 90° fiber layers 

 

A much different failure mechanism was apparent in the specimens from panel M2 

(see Figure 62).  The cracks propagated directly through the 90° fiber layers.  Cracks 

were continuous unlike the cracks observed in panel M1 and propagated for some time 

before dissipating their energy.  The cracks in specimens appear to dissipate little energy 
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as they grow through the 90° fiber layer, furthermore little to no crack deflection is seen.  

Figure 63 presents a magnified view of cracks in panel M2.  A backscatter SEM image of 

the same fracture surface from panel M2 shows the crack and large areas devoid of 

matrix material (see Figure 64). 

 

 

Figure 62.  Crack Propagation through Fibrous 90° Layers of a Specimen from Panel M2. 
 

 

Figure 63.  Magnified View of a Fracture Surface from Panel M2 Showing Cracks 
Propagating through 90° Fiber Layers.  No Crack Deflection is Observed. 
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Figure 64.  Backscatter SEM Image of Fracture Surface Shown in Figure 62. 
 

Backscatter SEM images of crack fronts propagating through panels M1 and M2 

highlight these different failure mechanisms and provide further confirmation that 

specimens from panel M2 had lower strength due to different microstructure.  Figure 65 

shows backscatter SEM images of representative crack propagation in specimens from 

panel M1 and panel M2.  Figure 65(a) shows crack propagation in specimens from panel 

M1, while Figure 65(b) and (c) show crack propagation in panel M2.  The cracks in 

specimens from panel M1 follow the monazite layer as expected; the weak fiber-matrix 

interface provides for crack deflection.  Cracks in specimens from panel M2 either 

propagated through a thick matrix layer or proceeded through the areas of fibrous layers 

that were devoid of matrix material. 
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Figure 65.  Backscatter SEM Images of Representative Crack Propagation in specimens 
from Panel M1 (a) and Panel M2 (b and c) 

 

5.7.3 Montonic Tensile Behavior 

Tensile behavior is a fiber dominated process.  For that reason, tensile tests were 

conducted on specimens from panels M2 and M3 in order to ensure fibers were not 

degraded during processing.  Fiber degradation could be ruled out if the panel exhibited 

tensile strength and stiffness consistent with those observed earlier.   

Tensile tests were conducted at 900 °C on two virgin specimens from panel M3 and 

one virgin specimen from panel M2.  Results are presented in Figure 66. 
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Figure 66.  Tensile Stress-Strain Curves for N610/Monazite/Alumina Panels M2 and M3 
at 900 °C 

 

Note that the fiber volume fractions of panels M2 and M3 were approximately the same.  

All three tests experienced failure in the grip section.  Failures in the grip section usually 

suggest that the ultimate strength was compromised.  However, modulus value remains 

unaffected.  The panels most likely experienced grip failure because the pressure applied 

by the wedge grips caused early cracks to form in the specimen before testing began.  

This assumption is reasonable, considering the low compressive strength of panels M2 

and M3.    

The tensile test conducted on a specimen from panel M2 did not provide sufficient 

data to accurately determine the elastic modulus.  No other specimens from panel M2 

could be tested, due to their excessive thickness the remaining specimens could not fit in 
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the testing machine.  The two specimens from panel M3 produced the modulus values of 

52 and 61 GPa.  Recall that earlier tensile tests produced a modulus of 52 GPa.  

Furthermore, Musil et al [34,38] reported a very similar modulus of 54 GPa.  This 

evidence suggests that the fibers were not degraded and did not compromise the strength 

of the specimens from panels M2 and M3. 

5.8 Composite Microstructure 
 

Further microstructural analysis focused on specimens that had achieved a creep run-

out at 1100 °C and were subsequently tested in compression to failure.  

5.8.1 Fracture Surfaces 

The following fracture surfaces were produced in compression tests to failure 

conducted on specimens that had achieved run-out in creep at 1100 °C.  The fracture 

surfaces of the two pre-crept specimens exhibited some variation. Prior creep to have had 

little affect on the fracture surfaces.  The fracture surfaces of the specimen pre-crept at 75 

MPa at 1100 °C are shown in Figure 67.  As is the case with all the monazite-containing 

specimens, the fiber pullout is apparent in Figure 68.  The side views of the specimen 

seen Figure 68 reveal shear mode of failure (note that the fracture is oriented at an angle 

of 45° to the specimen axis).  
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Figure 67.  Fracture surfaces of N610/Monazite/Alumina Specimen Tested in 
Compression-to-Failure at 1100 °C after having achieved a Creep Run-Out at 75 MPa at 

1100 °C 
 

 

Figure 68. Side View of Fracture Surfaces of a N610/Monazite/Alumina Specimen 
Tested in Compression-to-Failure at 1100 °C after having achieved a Creep Run-Out at 

75 MPa at 1100 °C 
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 The N610/monazite/alumina specimen pre-crept at 65 MPa at 1100 °C did not show 

distinct layering after failing in monotonic compression, but produced damage of 

approximately the same length as those produced by the specimens pre-crept at 75 MPa 

at 1100 °C shown in Figure 69 and Figure 70.  The N610/monazite/alumina specimens 

subjected to prior creep produced damage zones that were different from those produced 

by a virgin specimen.  The damage zones visible on the side of the specimen were about 

18mm to 26mm shorter. 

 

 

Figure 69.  Fracture surfaces of N610/Monazite/Alumina Specimen Tested in 
Compression-t-Failure at 1100 °C after having achieved a Creep Run-Out at 65 MPa at 

1100 °C 
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Figure 70. Side View of Fracture Surfaces of a N610/Monazite/Alumina Specimen 
Tested in Compression-to-Failure at 1100 °C after having achieved a Creep Run-Out at 

65 MPa at 1100 °C 
 
 

5.8.2 Microstructure of N610/Alumina Composite 

 The cross-sections of a N610/alumina specimen tested in compressive creep at  

1100 °C were examined in order to determine whether the large accumulated creep 

strains were accompanied by extensive internal damage.  Specimen cross-sections were 

cut in the manner shown in Figure 71.  The sections were placed in a mold so that parallel 

cross-section (shaded area in Figure 71) could be observed under optical microscope.  A 

sample of virgin material of the same orientation was added to the mold for comparison. 
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Figure 71.  Schematic of Sections Removed from Specimen for Analysis 
 

 
 Results are presented in Figure 72, where the virgin material is on the far left, 

followed by sections 1, 2, 3, and 4 from the tested specimen.  Figure 72 reveals no 

apparent difference in microstructure of any of the sections.  The matrix cracks seen in 

Figure 72 are shrinkage cracks that occur during the sintering process.  No differences in 

microstructure could be detected using the optical microscope at higher magnifications.  

 

 

Figure 72.  Micrograph of N610/Alumina Ceramic Composite.  Virgin Material is on the 
Far Left Followed by Sections of the Specimen Tested in Compressive Creep at 1100 °C. 
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VI. Observations and Conclusions 
 
 

6.1 Observations 
 
 In a structural application, a material rarely experiences loads along the axial 

direction only.  The off-axis tensile behavior of both N610/monazite/alumina and 

N610/alumina composites does not demonstrate high tensile strength required for most 

applications.  The absence of coating appears to improve the off-axis tensile strength.  

The off-axis tensile creep resistance at elevated temperatures is anticipated to be 

undesirable, but may improve if fibers, such as N650 or N720, were used [40:1151].    

The NextelTM610 alumina composite exhibited high compressive strength at 900 and 

1100 °C.  However, when subjected to compressive creep at 1100 °C, the CMC 

accumulated high creep strain over a 100 h period.  More creep-resistant fibers may be 

beneficial to future applications.  NextelTM650, a rare-earth doped alumina fiber, has been 

shown to have 100 times lower creep rate [41].  The addition of mullite to the 

NextelTM720 alumina fiber provides it with superior creep resistance at temperatures 

above 1100 °C [20,37,42].  N650 and/or N720 may perform better at 1100 °C under the 

same compressive creep conditions.  N610 fiber is better suited for tensile or compressive 

creep at 900 °C. 

Process control is critical to the fabrication of CMCs.  Although all panels were 

supposedly processed in the same manner, the microstructural investigation revealed that 

the processing of the monazite-containing panels was different.  Apparent differences in 

microstructure caused early failures in compression.  Poor infiltration of the matrix 
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material into the fibrous layers may have been caused by either fiber bridging due to the 

application of fiber coating or by high viscosity of the matrix slurry. 

6.2 Conclusions 
 
 Results of the montonic compression tests, as well as the results of compressive creep 

tests conducted at varying stress levels at 900 and 1100 °C revealed no significant effects 

of monazite coating in the mechanical response of the composite.  In the case of tension, 

the addition of monazite resulted in considerable increase in tensile strength as well as in 

improved creep resistance [34,38].  Conversely, when subjected to monotonic 

compression and to compressive creep, response of the monazite-containing composite 

was similar to that of the control CMC.  Fiber coating appears to be more beneficial for 

the tensile strength of a composite material than for its compressive strength.  Fracture 

surfaces of the monazite-containing specimens show extensive fiber pullout and more 

distinctive planes of fracture suggesting delayed failure, which is one advantage offered 

by the monazite fiber coating under compression.   

 This investigation further confirmed the importance of processing in the life of a 

CMC.  Microstructural investigation revealed that, the matrix material tended to collect 

between the laminae, which can either lead to fracture through the matrix rich regions 

themselves because they provide a weak path between the laminae or to fracture through 

the weak path within a poorly infiltrated 90° fiber layer.  Unlike in the case of panel M1, 

cracks in panels M2 and M3 were not deflected and did not self-arrest.   
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