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Abstract 
 

An experiment on the effects of a pulsed DC plasma actuator on a separated flow 

in a low speed wind tunnel was conducted.  The actuator consisted of two asymmetric 

copper electrodes oriented normal to the flow separated by a dielectric barrier and 

mounted on a flat plate in the center of the tunnel.  A contoured insert was constructed 

and used to create an adverse pressure gradient in the test section comparable to a Pak-B 

low pressure turbine blade distribution.  Suction was applied from the upper wall to 

induce separation along the flat plate over the electrodes.  The DC power supply was kept 

constant at 8.5 kV and power was regulated through a high voltage fast transistor switch.  

The pulse width of the switch remained at 250 ns with the frequency ranging from 25 to 

100 Hz.  All studies were conducted at a Reynolds number of 30,000 to simulate takeoff 

and other low speed conditions.  It was found that the DC pulsed plasma actuator could 

reattach the flow but not consistently at these conditions.  Furthermore no evidence was 

found to indicate that coherent vortical structures are responsible for reenergizing the 

boundary layer and controlling separation. 
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AN EXPERIMENTAL STUDY OF PULSED DC DISCHARGE 
PLASMA FLOW CONTROL ACTUATORS 

 
 

I. Introduction 
 

In recent years, the increasing demands on the performance and efficiency of low 

pressure turbines have led to higher blade loading.  This increase generates larger adverse 

pressure gradients which can lead to a faster aerodynamic stall over the blade [1].  

Several techniques, such as dimples, ribs and vortex generator jets, have already been 

examined to determine the ability to control separation losses.  However, the key 

advantage of utilizing plasma actuators to prevent blade stall over these other methods is 

that the actuators can be operated only when needed and produce no additional parasitic 

effects.  This research effort is an attempt to characterize the effects of a DC discharge 

plasma flow control actuator on a separated boundary layer. 

1.1 Background 
 

The prediction of boundary layer separation has been studied in great detail for a 

number of years.  These studies however are complicated in the low pressure turbine due 

to the numerous conditions of flight that can exist.  At takeoff, the boundary layer is in 

general more turbulent, but at cruise conditions it may be transitional due to the change in 

density with altitude.  Further complicating the problem is that transition may be 

occurring before or after separation and the high free-stream turbulence levels that exist 

in a real engine environment.  Hultgren and Ashpis [1] found that the turbulence level 

and other free-stream unsteadiness greatly affect the size of the separation bubble and 

transition at low Reynolds numbers and if transition occurs earlier in the boundary layer, 
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separation can be completely eliminated.  A control mechanism to trigger early transition 

at cruise conditions is therefore desired that has minimum penalty at takeoff. 

 One of the first to demonstrate control of separated flows was Viets et al. [2], who 

introduced spanwise vortices near the wall of a stalled diffuser to cause boundary flow to 

re-attach.  Rivir et al. [3] compiled the results of the different methods of passive and 

active separation control for turbine blades.  These methods all introduce streamwise 

vortices that reenergize the boundary layer flow by adding momentum to the wall layer.  

The result is early transition and increased circulation.  One of the methods described is 

properly spacing dimples which in effect adds turbulence to baseline blading.  This 

moves the separation and transition rearward and therefore decreases the size and length 

of the separation bubble [3].  Dimples have been found to reattach separated flows at all 

Reynolds numbers investigated and are even effective if placed beyond the natural 

separation region.  The major disadvantage to dimples is that they are a permanent 

structural change.  In general, passive techniques, like dimples, are effective in separation 

control at low Reynolds numbers but induce greater losses at higher values due to 

increased drag.   

Steady and pulsed vortex generator jets have also proven to be effective at low 

Reynolds number by promoting rapid mixing and early transition.  These are identical to 

the vortex generator “tabs” found on aircraft wings to prevent flow separation.  The jets 

also create vortical structures that pull down energy from the higher velocity free stream 

to reenergize the boundary layer.  The advantage of the jets is that they can be used only 

when needed and will not create more losses at higher Reynolds numbers.  However, the 
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jets require internal plumbing and a net mass flow.  It is also possible that the jets could 

be destroyed in a hostile operating environment [4].   

 The deficiencies mentioned in the other techniques however do not exist in the 

application of plasma actuators.  In 1998, Roth, et al. [5] patented the One Atmosphere 

Uniform Glow Discharge Plasma (OAUGDP).  They showed that the spanwise electrode 

configurations produced a significant thrust due to mass transport and vortical structures 

induced by strong paraelectric electrohydrodynamic (EHD) body forces on the flow.  

Huang et al. [4] explains that the high voltage AC supplied to the electrodes caused the 

air above to weakly ionize.  The ionized air is electrically neutral on a global scale, but 

microscopically it is composed of positively charged ions and negatively charged 

electrons that were stripped from the atoms to form ions.  This state of matter is called 

plasma.  The plasma produces this body force vector, which can induce steady or 

unsteady velocity components.  Electrode configurations are designed to maximize the 

body force on the charged particles.  Van Dyken et al. [6] studied the effects of dielectric 

thickness, electrode type, input voltage and frequency, and the input waveform on the 

strength of the body force.  They found that a thicker dielectric was best due to its ability 

to sustain higher voltages prior to failure and a peak operating frequency existed that 

gave a maximum net force.  They also concluded that well-placed actuators could create 

a body force to decrease drag and increase the stall angle of an airfoil.   

Volino and Hultgren [7] demonstrated that plasma actuators would counter the 

effects of separation and keep the flow attached at Reynolds numbers (Re) from 50,000 

to 300,000 to simulate the range from cruise to takeoff conditions.  In this study, the flat 

plate was subjected to a pressure gradient corresponding to that on the suction side of the 
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Pak-B airfoil.  They found that at Re = 50k, the pressure coefficient profile (Cp) would 

indicate separation on the adverse pressure gradient portion of the test section.  When the 

actuator was turned on, the flow would remain attached and the measured Cp distribution 

would match that of theoretical profiles at higher Reynolds numbers.  In addition, Corke 

and Post [8] showed that the separation location was relatively insensitive to the different 

conditions at various Reynolds numbers.  For a cascade of Pak-B blades, this location 

was found to be at x/c = 0.72.  Huang et al. [4] further concluded and proved that since 

the separation location is relatively stable for all conditions, only one actuator placed 

slightly upstream of this location is needed.  An increased number of actuators would not 

create a significant change. 

 The majority of studies conducted in the past consist of the effects of alternating 

current (AC) on an array of electrodes oriented perpendicular to the free stream.  High 

frequency AC glow discharges were first used to provide transition control on 

axisymmetric bodies in supersonic flows by Corke et al. [9].  They also extended this 

method to a single unbounded airfoil and showed a significant increase in the maximum 

angle of attack.  Hung et al. [4] applied the technique to a Pak B LPT cascade and 

demonstrated reattachment of separated flow over a range of turbulence levels and low 

Reynolds numbers of 10,000 to 100,000.   

Enloe et al. [10] attempted to define the discharge cycle of AC applied actuators.  

The discharge follows a series of phases during each cycle of the AC applied voltage 

waveform: ignition, expansion, and quenching.  Ignition consists of a sudden series of 

microdischarge events forming dense plasma within a few millimeters of the edge of the 

exposed electrode.  The plasma consists of negative ions that are only maintained if the 
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magnitude of the applied voltage is continually increased.  It is not a uniform volume on 

top on the dielectric, but the microdischarges are occurring in rapid succession.  A 

potential difference must be kept between the exposed electrode and the dielectric 

material for the electrode to continue to emit electrons.  When the voltage supply is no 

longer increased or turned off, the plasma does not disappear immediately but slowly 

loses its energy through collisions with atmospheric particles.  This process is called 

quenching, which occurs when the voltage reaches an extremum.  Expansion is the sweep 

of the microdischarge, as the volume of plasma appears to expand above the actuator 

over time when voltage is first applied. 

Rivir et al. [11] investigated the effects of short pulsed DC excitation on 

separation control.  This method allows a higher electric field strength to be obtained than 

from high frequency AC sources.  Whereas discharge impedance matching is 

accomplished through inductive and frequency matching for AC sources, it is resistively 

matched for the pulsed DC case.  For this experiment, this was accomplished using 

various parallel and series combinations of resistors, which produced voltages from 2 to 

11 kV with total circuit current up to 25 amps.  The DC source and the high speed switch 

used in this experiment produced a 22 nanosecond to 2 microsecond pulse width 

atmospheric discharge.  The results of this study claimed electrode peak power levels of 2 

– 40 kW and an increase of up to 250% in the local velocity for the near wall boundary 

layer at low free stream velocities [11].  Although the peak power used in DC pulsed 

actuators is much higher than AC, the time average power is lower due to the shorter on 

time of the switch required.  Over time, the DC pulsed plasma actuators are maintaining 

flow attachment at a fraction of the power required for AC control. 
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1.2 Objective 
 

This research project involved multiple objectives and goals.  First, some of the 

existing facilities and experimental setup at the AFRL laboratory needed to be 

redesigned, altered or newly manufactured.  This was necessary to produce results that 

were well characterized and repeatable.  Another one of the objectives therefore was to 

validate the new design before starting the testing.  This was accomplished mostly 

through a series of pressure measurements and wide field PIV and analysis.  A third 

objective was to acquire velocity field data for a pulsed DC plasma actuator and 

determine its effectiveness on flow reattachment.  Lastly, it was desired to find evidence 

to support or contradict the existence of coherent vortical structures as the mechanism in 

which pulsed DC plasma actuators control separation. 

1.3 Organization 

This paper will begin by first explaining the theory behind several of the different 

topics that needed to be understood in order to successfully conduct the experiment.  

Following this will be a description of the experimental setup and procedures utilized 

throughout the research.  Specialized equipment, such as the laser and camera for the PIV 

measurements, will be discussed in detail as well as new designs or modifications made 

to the existing facilities.  Validation data and results of the experiment will be examined 

followed by the conclusions drawn from these results.  Recommendations for future 

research and suggested improvements will also be discussed.  Lastly, appendices will be 

supplied containing supplementary data recorded and any additional information needed 

for the continuation of this research. 
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II. Theory 
 

The successful conduction of this experiment was predicated on having a working 

knowledge of all of the processes that were involved.  A brief explanation of all areas 

pertaining to the research effort is given below.  These explanations are by no means 

inclusive, and the sources referenced should be used to obtain more knowledge on the 

subject matter. 

2.1 Boundary Layers and Turbine Blades 
 
 The flow field can be divided into two regions: (1) viscous boundary layer 

adjacent to the airfoil or flat plate and (2) the essentially inviscid flow outside the 

boundary layer.  The velocity of the fluid increases from a value of zero at the wall to the 

free stream “frictionless” value outside the boundary layer [12].  For a flat plate, the 

boundary layer will begin as laminar on the front edge and farther downstream transition 

into a fully turbulent flow.  Viscous forces cause the boundary layer to grow as flow 

continues down the plate.  For airfoils, boundary layer growth is also due to the 

additional pressure forces at the edge of the boundary layer from the free stream flow 

[12]. 

 Turbine engines have numerous sets of blades: fan blades, low and high pressure 

compressor blades, and low and high pressure turbine blades.  In the turbine and 

compressor section, sets of stators exist to direct the flow into the rotor section, which 

consist of rotating disks of blades that resemble airfoils [13].  The rotors serve to power 

the compressor and other auxiliary systems.  Due to the losses from boundary layer 

growth, there is not enough energy for the flow to completely stay attached on the upper 

side of the blades.  At some location the velocity approaches zero and may begin to move 
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back on the airfoil resulting in circulation and a larger separation bubble.  The extent of 

separation is also proportional to the turning angle of the flow directed by the stators.  

Despite incurring greater losses, an increased angle is desirable in order to maximize the 

work produced by the rotors [13].  A method to control separation is desired that allows 

this large angle to be maintained.  A typical LPT arrangement is shown in Figure 1. 

 
Figure 1. LPT blade arrangement 

 
2.2 Dielectric Barrier Discharge 

 The dielectric strength of a material is the maximum electric field that it can 

withstand without breaking down.  At this point its insulating properties begin to fail.  In 

this experiment, dielectric material is used to provide a barrier to prevent arcing but at the 

same time allow current to flow in order to produce plasma.  The electrodes are aligned 

on either side of the dielectric material as shown in Figure 2.  An asymmetric 

configuration has been shown to work best in previous studies with the trailing edge of 

the upper electrode in the same plane as the leading edge of the lower one.  The plasma, 

described by Enloe et al. [10] as a surface configuration dielectric barrier discharge 

(DBD), adds momentum to the boundary layer and accelerates the flow near the wall 

above the electrodes.   
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Dielectric Buried electrode

Exposed electrode

Plasma discharge

Induced velocity

Dielectric Buried electrode

Exposed electrode

Plasma discharge

Induced velocity

 
Figure 2. DBD actuator layout 

 
Corke and Post [8] describe how an AC supplied single dielectric barrier 

discharge is self-limiting and stable at atmospheric pressures.  During half of the cycle, 

electrons move from the exposed electrode to the dielectric and build up until balance 

with the AC potential is achieved.  Plasma generation will then stop.  On the second half 

of the cycle, plasma reforms and the electrons that were deposited on the dielectric travel 

back to the exposed electrode [8].  This self-limiting characteristic is important as it 

prevents an excess of electrons that would cause an electric arc.  The dielectric constant 

of air is low and careful attention must be made to ensure an arc will not occur across the 

electrode leads that are not separation by the dielectric material. 

 The formation of the plasma from DC pulsed actuators occurs in distinct phases 

as described earlier for AC applied actuators.  The momentum that is added to the 

boundary layer comes from collisions between the ionized air and the other neutral 

molecules in the atmosphere.  This occurs during the ignition and expansion phases.  The 

difference in the phases for DC and AC is that the time scale is decreased greatly.  The 

applied voltage for DC is only on for the set amount of pulse time, which is usually on 

the order of nanoseconds.  Therefore the evidence of these phases has not been captured 

on current traces as it has been for AC applied actuators. 

 9



2.3 Particle Image Velocimetry 

 For Particle Image Velocimetry (PIV), two pictures are taken of the test section 

with a known delay time between the images.  The test section is illuminated by two 

quick pulses of light from a laser.  These two pulses are altered from a beam to a thin 

planar laser sheet using a set of optics focused on the area of interest.  The laser sheet 

actually illuminates the vaporized propylene glycol that is inserted upstream of the test 

area.  Sufficient seeding and laser power are needed to operate a PIV-based experiment 

effectively.  The two pulses of light must also be synchronized with the aperture of the 

high speed digital camera [14].  The images are then imported to a flow visualization 

software program.  The program maps the velocity vectors accordingly using the image 

pairs and the known time delay. 

 The flow visualization software used in conjunction with PIV will determine the 

distance each particle has traveled using correlation algorithms.  The accuracy of these 

correlations depends heavily on the seed particle density.  An ideal of a 10-pixel 

displacement between seeding particles is suggested for high correlations [14].  The 

maximum expected velocity of the flow field and the dynamic range must also be known 

with relative certainty to obtain proper PIV results.  The dynamic range is defined as the 

ratio of pixel resolution to pixel displacement for each time step.  If the dynamic range is 

not great enough, the time delay between laser pulses must be decreased, which results in 

a decrease in output power.  The dynamic range however can be increased through the 

use of adaptive correlations.  Adaptive correlations use an iterative process to determine 

velocity information resulting in more accurate vector maps as image size and dynamic 

range increase [14].  This method however is more susceptible to noise.  Specific 
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information on actual equipment and software used in this experiment will be presented 

in the following section.  Figure 3 shows a representative raw PIV image pair that has not 

undergone processing.  These images show how far the flow has propagated downstream 

by viewing the change in position of the area missing seeding in the center of the images. 

 
Figure 3. PIV image pair 
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III. Experimental Setup and Procedure 

 Multiple pieces of equipment were needed to make this experiment a success.  

The major components and the procedures used to acquire data are described in detail 

below. 

3.1 Wind Tunnel 

 The AFRL/PRTT low-speed wind tunnel was used for this research.  The wind 

tunnel operated from one of two compressors and was parallel to two other flow paths.  

The flow was directed by the position of two air controlled valves.  Temperature control 

was maintained using a heater and chiller capable of a range of 15ºC to 50ºC.  The 

present research was conducted at 80ºF (26.6ºC).  Although the cross section of the test 

section could vary slightly in the vertical direction, for purposes of this research it 

measured 36 cm wide by 23 cm tall.  A rectangular divergent duct is used to direct flow 

into the test section.  To maintain uniform flow, flow straighteners were placed in the 

cylindrical reservoir at the inlet of the tunnel.  Lastly, the inlet contained an opening for 

the insertion of seeding particles necessary in the use of PIV. 

3.2 Test Section 

3.2.1 Center Plate. The mid tunnel test section was a modified version of that 

used by Balcer et al. [13].  A 1.27 cm thick by 69.85 cm long Plexiglas flat plate was 

mounted across the span of the tunnel.  The flat plate has an elliptical leading edge with 

an aspect ratio of 4:1.  In addition, the plate contained a movable flap on the trailing edge 

that could be set to various angles of deflection.  A two-foot-long sheet metal extension 

was placed on the trailing edge.  This increased length allowed for smaller angles of 

deflection to be utilized with the same amount of blockage produced.  This would alter 
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the velocity over the top of the flat plate without moving the inlet control valve and 

adding little turbulence.  A 1.8 mm cavity was cut into the Plexiglas flat plate in order to 

hold the plasma actuator.  The recessed portion was 45 cm long and 15 cm wide and 

began 12 cm from the leading edge of the flat plate. 

The flat plate was altered for this experiment to include 31 pressure taps in the 

streamwise direction.  The first pressure tap was located 3.81 cm downstream such that 

the elliptical edge of the flat plate was cleared.  A larger number of pressure taps were 

clustered at 61-85% of the chord where the throat and recess for the electrode is located.  

This also overlaps the expected position of separation.  The pressure taps clustered in the 

throat were separated in the streamwise direction by 0.64 cm and staggered diagonally to 

avoid a six degree wake from the proceeding pressure tap.  The same method was used 

for the other pressure taps but with a streamwise separation distance equal to one inch.  

The location of the pressure taps with respect to the left wall of the tunnel was 

determined to avoid the boundary layer.  The flat plate begins at approximately 1.32 m 

downstream from the inlet of the tunnel.  Turbulent boundary layer thickness was 

calculated at Re=30k and plotted to ensure all of the taps remained outside.  The second 

and third rows of the pressure taps are further away from the sidewall to remain outside 

the increasing boundary layer and therefore do not align with the first row.  Figure 4 and 

Figure 5 show the locations of the pressure taps with given dimensions and the calculated 

boundary layer thickness along the flat plate. 
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Figure 4. Pressure taps dimensions at leading edge and throat location 
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Figure 5. Calculated boundary layer and pressure tap locations along flat plate 
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3.2.2 Upper Wall Contour. A new method for modeling the Cp distribution of a 

Pak-B LPT blade over the flat plate was needed for this experiment.  Similar to setups 

used by Hultgren and Ashpis [1] and Volino and Hultgren [7], an insert was necessary 

that would constrict the flow above the flat plate.  This method was chosen as an 

alternative to studying an actual Pak-B cascade as characterizing boundary layer 

conditions and PIV along a flat plate can be accomplished with greater ease.  An equation 

was derived to determine the necessary height of the contour as a function of x/c given 

the known Cp distribution of a Pak-B LPT blade at a high Reynolds number.  Using the 

definition of the pressure coefficient and assuming incompressible isentropic flow in the 

test section, the height of the contour was found to be proportional to the height above the 

flat plate and inversely proportional to the square root of the given Cp distribution as 

shown in the following equation:  

( )[ ] 2
1

12
−≅ cxCHH p                                                         (1)                               

Where H1 is the height of the flat plate and H2 is the height of the contour above the flat 

plate.  This curve was then smoothed to produce a more gradual front end.  Once plotted, 

a treadline was created to calculate a large number of coordinates easily.  Figure 6 shows 

the final curve and treadline used in producing the new contour. 
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Figure 6. Contour curve and treadline 

  
A large number of coordinates was needed to create a smooth 3-D AutoCAD 

model of the contour from the above curve.  The model included two slots to the contour 

for the laser sheet and another one that can be used for suction.  The vacuum slot meets 

up with a hole on the top side of the contour, which is connected to a small divergent 

duct.  This divergent duct is attached to a 2 HP shop vac vacuum, which is needed to 

keep the flow attached along the surface of the contour.   Multiple cavities were also 

designed into the contour to decrease the overall weight and production time.  Both the 

entire contour piece and the divergent duct were created using stereolithography (STL) 

technology.  Stereolithography, also known as 3-D printing, uses an ultraviolet laser to 

harden the liquid photopolymer layer by layer until the model is complete.  The model is 

then typically washed in a solvent and then baked in an ultraviolet oven to cure the new 

object.  Figure 7 shows two pictures of the top view of the contour with the duct attached 

and cavities exposed and the other with the slots visible on the underside. 
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Figure 7. Upper and side view of contour 
 
A simple tail section was added by manufacturing a 34.29 cm long piece of 

Plexiglas that aligned perfectly with the end of the above contoured section.  A smoothed 

radius was added on the end and a large cavity was also removed from the topside to 

decrease the weight.  This piece was added so that end effects would not alter the flow 

significantly in the main test area.  The contour and tail end were held smooth against the 

upper wall using small Plexiglas blocks designed with slots to allow access to the 

threaded inserts designed in the two pieces.  One can be seen in Figure 7 that was 

particularly designed to avoid the laser sheet.  These blocks allowed for easy access into 

the main test section as the contour and tail end could be simply slid further down the 

tunnel.  Lastly an optical quality glass insert was manufactured that fit perfectly into the 

laser slot on the contoured section.  This addition was designed after some preliminary 

flow visualization revealed that the flow along the contour was being tripped by the 

leading edge of the laser slot.  The insert was designed by using the corresponding points 

from the treadline in Figure 6 that were omitted from contour to make the laser slot to 

ensure the surface remained smooth.  The insert was also necessary to prevent flow 

leakage and provide better flow visualization. 
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3.3 Pressure Measurement and Calibration 

The pressure taps were connected to a 48 port J9 scanivalve for quick accurate 

readings.  All 31 pressure taps were connected to determine the pressure distribution 

along the flat plate.  Every other channel in the throat is left open to atmosphere as 

increased accuracy is desired in this area.  This is done to clear out the proceeding 

pressure input sent to the pressure transducer and to ensure there is enough wait time in 

between the scanivalve readings.  Two Kiel probes are located at the inlet and exit of the 

tunnel.  The inlet probe is used to determine the total pressure of the flow and used in 

conjunction with the exit probe to find total mass flow in the tunnel.  The last scanivalve 

port is the static reading from a port along the side wall of the tunnel.  The numbers in 

Table 1 represent the pressure port location starting at the leading edge of the flat plate.  

These pressure locations will become crucial when validating the Cp distribution of a 

Pak-B turbine blade.  The scanivalve is connected to a scan control machine and a 

position display box that can be controlled automatically through the computer or 

manually by stepping through port to port. 

The pressure transducer used in this experiment is a low differential pressure 

sensor, GE LPM 5481 with a range of 0 to 0.4 in H20 and an accuracy of 0.25% FS [15].  

This gives an error of less than 1% in the throat for Re=100k.  Before and after pressure 

scans are taken, the transducer and the scanivalve were connected to a deadweight 

calibration tester.  The deadweight tester is a GE Ruska V1600/3D.  A deadweight tester 

works by determining the interaction of airflow with a non-cylindrical piston loaded with 

a known weight.  A pressure is supplied to the deadweight tester and regulated until the 

known weight begins to float above the piston.  The pressure measured is approximately 
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equal to known weight divided by the area of the cylinder.  The deadweight tester can 

also be used in a differential mode where two pistons can be loaded with weights.  The 

calibration pressure is then the difference between the two.  This allows for smaller 

pressures to be obtained by using weights that are close in magnitude. 

Table 1. Scanivalve channel connections 
  

Scanivalve 
port 

Destination /         
pressure port 

Scanivalve 
port 

Destination /         
pressure port 

0 Inlet probe 24 Atmosphere 
1 1 25 18 
2 2 26 Atmosphere 
3 3 27 19 
4 4 28 Atmosphere 
5 5 29 20 
6 6 30 Atmosphere 
7 7 31 21 
8 8 32 Atmosphere 
9 9 33 22 

10 10 34 Atmosphere 
11 11 35 23 
12 Atmosphere 36 Atmosphere 
13 12 37 24 
14 Atmosphere 38 25 
15 13 39 26 
16 Atmosphere 40 27 
17 14 41 28 
18 Atmosphere 42 29 
19 15 43 30 
20 Atmosphere 44 31 
21 16 45 Empty 
22 Atmosphere 46 Exit probe 
23 17 47 Static Port 

 
The weight on the piston forces air through an outlet aperture, which is then read 

and assigned a voltage by the pressure transducer.  A calibration curve was then plotted 

from the test weights and corresponding voltages and used to convert the voltage 

readings for the pressure traces.  The pressure transducer was always turned on for a 

couple of hours to stabilize before taking data as measurements could vary significantly 

with temperature.  Calibrations were taken at the beginning and end of the day with the 

deadweight tester connected directly to the pressure transducer and also connected 

indirectly to the pressure transducer through the scanivalve.  A pressurized nitrogen gas 
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bottle was used to supply clean air to the deadweight tester.  Figure 8 shows the 

scanivalve, display control boxes, deadweight tester, and the pressure transducer used for 

the pressure measurements. 

 
Figure 8. Pressure measurement equipment 

 
All voltages from the calibration tests and pressure traces were recorded using 

two LabVIEW programs.  The programs were set to a sample rate equal to 1000 and a 

sample time of 20 seconds giving 20,000 values to average for each scan location.  An 

additional 60 second settling time was also incorporated to create a delay in the readings.  

This time was chosen by determining how long it took for the atmosphere ports to be 

recorded as approximately equal.  The LabVIEW program provided raw data files which 

were then used in conjunction with Excel and MATLAB to determine the Cp distribution.  

This data will be presented later in the results section. 

3.4 High Voltage Supply and Switch 

 A Glassman high voltage supply was used to power the switch, which will in turn 

regulate the voltage and current sent to the electrode.  A lot of precaution was used when 

operating the high voltage supply.  Before even attempting to use the supply, a good earth 
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ground had to be made and before each run several locations were tested to ensure no 

potential existed.  The supply was able to produce an output voltage and current up to 12 

kV and 330 mA [16].  The supply had a digital display for the voltage output but a trend 

indicator also showed the voltage as a percentage of the full rated output in a ten element 

bar graph.  The supply was directly connected to the high voltage switch and both shared 

a common ground. 

 The first switch utilized was a Behlke HTS 151 fast high voltage transistor switch.  

The switch consists of a variety of MOSFETs turned on by a positive going signal of 3 to 

10 volts amplitude.  The on-time can be set as low as 150 ns with a delayed rise time of 

10 ns.  The switch can handle up to 10 kV and 30 A DC [17].  The HV switch was 

contained inside a high power metal case.  The metal case also held a 25k pF capacitor 

and three 100 kΩ resistors placed in parallel.  When the switch is not open, the capacitor 

stores the voltage from the HV supply.  Outside the case, a 1 kΩ resistor was placed in 

parallel to the electrode that serves as a bleed resistor for the current when the switch is 

open and the plasma is not formed.  A set of parallel resistors totaling 560 Ω was placed 

before the parallel legs in case of failure.  These resistors would ensure that the switch 

did not see a large current spike if the following parts of the circuit shorted.  Figure 9 

shows the high voltage switch and the other contents of the metal case. 

 
Figure 9. High voltage switch 
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A voltage probe was also connected across the resistors and electrode.  The probe 

measuring the voltage across the resistors is a North Star high voltage PVM-11.  It can 

sustain a maximum pulsed voltage of 12 kV and has an inherent resistance and 

capacitance of 50 MΩ and 15 pF [18].  A current coil was placed to measure the total 

current going to the electrode and 1 kΩ resistor.  Therefore the total applied power can be 

calculated.  The plasma produced also has some inherent resistance and capacitance, Rp 

and Cp.  The resistance of the plasma can be approximated if the current coil is moved to 

right before the electrode and compared to the total current.  The coil, Pearson current 

monitors model 4100, have an internal resistance of 50 Ω and an output of one volt per 

amp [19].  Figure 10 represents the described circuit diagram with boxes drawn for the 

voltage probes, current coil, and the electrode.  

 
Figure 10. Circuit diagram 

 
 The current coil and voltage probe are connected to a LeCroy 600 MHz 

oscilloscope.  The WaveRunner 64Xi series oscilloscopes are capable of up to 1010 

samples per second and data files are easily saved in Excel or MATLAB format.  A pulse 

generator is also connected to one of the channels of the scope.  The pulse generator used 

was a four channel digital model (DG535) by Standard Research Systems.  Both the 
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frequency and pulse width were set which determined the closed time of the switch and 

the time average power being sent to the electrode. 

The electrode was supplied 8.5 kV as this was found to sustain a discharge 

consistently.  The voltage is not just a square waveform as the switch contains some 

inherent capacitance and the external resistors create a RC circuit.  The voltage waveform 

instead has a gradual decay with has a time constant, τ, equal to the product of the 

circuit’s resistance and capacitance: 

.RC=τ                                                                (2) 

The switch has a minimum rise time of 180 ns.  Therefore to set the effective pulse width 

to 250 ns, the pulse generator would be programmed to 430 ns as the voltage and current 

trace do not begin to rise until 180 ns later due to the switch delay.  Initial current spikes 

are also characteristic of the switch.  These data points occurred on such a small time 

scale that they did not affect power calculations.  Current and voltage traces were taken 

on a LeCroy oscilloscope, which captured data files whenever triggered.  Power was 

calculated from the following equation: 

IVP = .                                                           (3) 

The current and voltage traces also contain inherent noise from cumulative inductance in 

different parts of the circuit and the equipment utilized.  Figure 11 shows sample images 

of a 430 ns pulse and the resulting current and voltage traces. 
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Figure 11. Current, voltage, and pulse traces for HTS 151 

 
 The figure also shows the double lobe present in both the voltage and current 

traces.  This is also characteristic of the Behlke 151 switch used.  Similar waveforms 

were found by Rivir et. al, [11] who utilized a similar high voltage transistor switch.  A 

series of voltage and current traces were averaged and used to find the instantaneous 

power shown in Figure 12.  The power trace exhibits the double lobe feature and the 

gradual decay like that of the voltage and current.  As shown in the graph, the power 

reaches peaks of approximately 15 kW.  Taking into account the effective pulse width of 

250 ns at a frequency of 100 Hz, the time average power is only about 0.4 W.   
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Figure 12. Instantaneous power trace for HTS 151 

 These high voltage fast transistor switches are relatively easy to use and their 

behavior is highly reproducible.  They however do have a limited unknown lifetime.  One 

by one, the MOSFETS began to fail until the switch’s behavior became inconsistent and 

unsafe.  For this reason, the switch was changed after only one run condition was 

performed at a frequency of a 100 Hz.  The replacement, a Behlke 181 switch, has 

essentially the same characteristics of the 151 model.  It however has a higher voltage 

and current rating of 18 kV and 60 amps.  The overall circuit diagram presented in Figure 

10 was kept the same except a 1 MΩ resistor was placed in parallel to the electrode 

instead of the 1 kΩ.  This was done in part to extend the life of switch.  Compared to the 

expected resistance of the plasma, the current does not want to travel through the 1 MΩ 

resistor and therefore it does not appear as a load in the circuit.  The 1 MΩ resistor 

chosen is inductive however.  This does ensure the resistor looks less like a load but 
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unfortunately introduces noise in the current and voltage traces.  The current coil and 

voltage probe were kept in the same position. 

 The 1 MΩ resistor also increases the time constant significantly and therefore the 

trail off of the voltage is greater for this setup.  The current, voltage and pulse traces for 

the HTS 181 switch are included in Figure 13.   
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Figure 13. Current, voltage, and pulse trace for HTS 181 

Figure 13 is not included with one time axis to show the detail of the trail off on the 

voltage trace.  If the graphs were aligned it would show there is less of a time delay for 

this switch.  The voltage and current become high about 160 ns after the trigger.  The 

pulse width was therefore set to 410 ns to create an effective pulse of 250 ns.  Showing 

the detail of the trail off also causes the peak of the voltage trace to be clipped.  The peak 

of the voltage waveform is similar to the first switch but does not exhibit the double lobe 

feature.  The voltage applied to the electrode for both switches was kept constant at 8.5 
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kV.  The current waveform unfortunately does not provide useful information as it has 

been affected significantly from the noise due to added inductance of the 1 MΩ resistor. 

3.5 Electrode Photofabrication 

 An FR4 copper clad fiberglass laminate circuit board was cut to fit the cavity on 

the flat plate.  The board is 62 mil thick with a coating thickness of 1 oz/ft2 and a 

dielectric strength of 28 V per micrometer.  The electrode photofabrication took place in 

the AFRL/PRTT Heat Flux Instrumentation Laboratory (Class 10,000 clean room).  The 

board was first laminated with a DuPont Riston FX 900 series photoresist 30 micron 

thick using a dry film laminator.  The photoresist was covered with a polyester film that 

protected the copper from oxidation and contamination. 

 An electrode pattern was created to optimize conditions for DC pulsed discharge 

by keeping the ends of the electrode as close as possible to minimize inductance.  This 

pattern was transferred as two negatives (one for both the top and bottom electrode) on 

acetate paper such that the darkened areas would not be exposed to the UV light.  The 

non darkened areas were the electrode shape and non crucial areas on the board.  These 

areas were included to decrease the amount of time spent on the next step of fabrication.  

Special attention was taken to ensure that the electrode design was flawless as any 

anomaly could become a hot spot susceptible to arcing.  Crosshairs were included on the 

negatives to align the circuit board in between the two easier. 

 The negatives and the circuit board were then placed on the glass of the UV 

exposure device and vacuum sealed together.  The vacuum seal ensured that the negative 

patterns would have good contact with the board and prevent any shadow effects.  The 

negatives were placed on the circuit board such that when positioned in the tunnel the 
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electrodes would be approximately at the expected separation region along the flat plate.  

The top of the device was then rotated 180 degrees to place the board directly over the 

3000 W halide bulb.  The board was exposed and the process was repeated for the 

opposite side.  The UV light hardened the photoresist in the non darkened areas of the 

masks which serves as protection for the electrodes against the chemical bath in the next 

step of fabrication. 

 The first chemical bath is used to remove the unwanted laminate from the boards.  

This was done by constantly pouring a warm 1% solution of sodium carbonate on the 

board leaving the bare copper.  An etching solution of 1% sodium persulfate was then 

used to remove the unprotected copper from the substrate.  The board was placed in the 

solution bath and manually agitated to encourage the etching.  After the copper was 

etched away, the board was rinsed with distilled water and hung up to dry.  Black paint 

and a permanent marker were used to darken the area around the electrodes to decrease 

the reflection from the laser and the overall noise in the PIV images.  At this point the 

electrodes are still protected with the photoresist.  A small portion had to be manually 

etched off with acetone and Teflon-covered copper tape was soldered onto these spots.  

The tape was fed through the tunnel’s side wall and connected to the external resistors 

outside the high voltage switch. 

 The dimensions of the plasma emitting portion of the electrodes were 

approximately 11.43 cm long and 0.32 cm wide.  This results in an area of 362.4 mm2, 

which is similar in size to electrode used by Boxx [20].  The top and bottom electrode are 

separated by the thickness of the circuit board, 1.59 mm.  Figure 14 shows the completed 

electrode used during this experiment. 
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Figure 14. DC electrode design 

 
3.6 Particle Image Velocimetry 

3.6.1 Laser and Light Arm. For this research, the Pegasus-PIV diode-pumped 

Nd: YLF laser system was used.  This laser system is designed for high speed or time 

resolved PIV analyses.  The Pegasus-PIV features a dual-head design, which allows for 

one laser to be triggered independently of the other.  Each laser head can operate from 1 – 

100,000 pulses a second allowing camera frame rates up to 20,000 frames per second.  

The energy for each cavity at 527 nm is 10 mJ at 1 kHz as documented in the 

manufacturer’s performance specifications.  This however drops to around 1 mJ at the 

repetition rate of 10 kHz [21]. 

The laser light is directed into the test section through a laser arm manufactured 

by Dantec Dynamics, Inc.  After exiting the light arm, the beam is refocused and 

reshaped into a laser sheet using Dantec Dynamics modular light sheet optics.  The laser 

sheet is then shone through the laser slot built into the upper wall contour.  This slot is 

covered by a piece of optical quality glass that prevents air tunnel leakage but can be 

removed in case access to the test section is desired.  The laser sheet was focused in the 

middle of the plasma actuator in order for the light intensity to be great enough for the 
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camera to capture useful images.  Proper seeding was accomplished with a Rosco 4500 

fog machine using 1:1 mixture of propylene glycol and distilled water. 

3.6.2 High Speed Digital Camera and Timing.  Imaging was accomplished using 

a high speed, mega-pixel, light-sensitive Photron APX camera.  Its sensitivity to light 

allows for faster shutter speeds up to 4 μs with decreased blur.  The APX camera 

provides full 1024x1024 pixel resolution at 200,000 frames per second.  The camera can 

store up to 8 Gigabytes of data before downloading [22].  The camera is used in 

conjunction with two Nikon micro lenses.  The 105 m and the 200 mm lens are used for 

wide field and narrow field PIV respectively.  The wide field lens was used to 

characterize boundary conditions and the separation along the flat plate and upper 

contour.  The narrow field was utilized to capture the plasma discharge and the resulting 

effects on the flow.  The fields of views were determined from ruler images on the flat 

plate.  Figure 15 shows the camera and light arm in their final configuration. 

Camera

Laser arm and head

Upper contour

Flat plate

Camera

Laser arm and head

Upper contour

Flat plate
 

Figure 15. Camera and laser arm position 
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 It was necessary to synchronize the camera shutter and the firing of the laser.  The 

camera with a repetition rate of 600 Hz first received a 50 μs trigger from the Quantum 

Composer as the camera needs time to respond.  The shutter stays open for 500 μs (2000 

frames/second) until it needs time to transfer data to its memory and perform certain 

internal checks.  This happens again before another trigger is received from the Quantum 

Composer.  These are the two frames that make up an image pair.  The Quantum 

Composer is then used to trigger the first laser pulse on the end of the first frame and the 

next pulse on the beginning of the second.  The Quantum Composer also triggers the 

pulse generator that determines the pulse width and frequency sent to the high voltage 

switch.  The pulse generator is used instead of the Quantum Composer directly because it 

has better time resolution at the small values used to trigger plasma production. 

 The Quantum Composer however makes it possible to connect the repetition rate 

of the camera and plasma production together.  Using the divide-by-n function on the 

Quantum Composer enables the user to change the repetition rate to a factor of “n” of 

another frequency set on a different channel.  For example, with the camera’s repetition 

rate set at 600 Hz and “n” equal to six, the repetition rate of the plasma production is 

effectively set to 100 Hz.  This means that one discharge should be present for every six 

image pairs.  The amount and timing of discharge is predictable and controllable.  The 

Quantum Composer used during this experiment was a 9300 series pulse generator used 

on continuous mode.  It had a frequency range from 0.01 Hz to 10 kHz [23].  An 

oscilloscope was used to monitor the timing of the camera, laser, and plasma discharge 

together.  A diagram of the overall setup is included below in Figure 16. 
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Power Supply Switch 

Oscilloscope

Pulse Generator Laser

Camera Quantum Composer 
Figure 16. Overall setup diagram 

3.6.3 Flow Software. The image pairs were downloaded into the Dantec 

Dynamics Flow Manager software for preliminary processing.  Flow Manager is one 

program of five in the Flow Map system used primarily for processing and analyzing the 

flow field.  The APX camera and Pegasus laser settings first had to be set properly in the 

software with special attention in setting the timing between image pairs and the field of 

view.  The pixel dimensions were set to 17 μm x 17 μm.  Proper variable settings were 

necessary or correlations between image pairs would be erroneous.  The field of view for 

narrow field and wide field was set to 18.1 mm and 57.1 mm respectively.  Databases 

were setup to keep track of the recorded data then processed and validated with proper 

correlations.  In addition to Flow Manager, post-processing and data presentation were 

accomplished with Tecplot.  Data are exported from Flow Manager to Tecplot and 

custom graphs, contours, and animations can be made.  Tecplot is utilized for its greater 

visualization capabilities.  Flow Manager also exports data in a format that could be read 

by MATLAB, which was crucial for analysis. 

 32



3.7 Experimental Procedure 

 Each session began with focusing the image prior to collecting data and verifying 

the field of view through ruler shots.  The tunnel velocity and the amount of suction were 

determined previously through the validation runs.  These were set to operate at Re = 

30,000 with just enough pull to create separation along the flat plate.  Validation runs 

consisted of pressure measurements using the new taps in the flat plate and LabVIEW 

and wide field PIV analysis without the actuator turned on.  The pressure measurements 

also required calibrations to be taken using the dead weight tester through the scanivalve 

and pressure transducer.  The wind tunnel chiller and laser were always allowed to 

stabilize beforehand for at least an hour. 

The main experimental runs were always operated with caution since high voltage 

was involved.  After stabilization, the timing equipment was turned on and the correct 

settings were verified.  Before turning on the power supply, the connections in the circuit 

and the existence of any shorts were checked.  The fog machine was turned on and once 

the test section was filled with particles, the laser and camera were triggered.  3072 image 

pairs were acquired and stored to disk for each run.  The pulse, voltage, and current traces 

were monitored and stored on the Lecroy scope.  The process was repeated two other 

times to be able to draw conclusions at that run condition with accuracy.  The voltage 

setting and the effective pulse width were kept set at 8.5 kW and 250ns.  These settings 

were chosen to ensure a consistent and continuous discharge.  Four different forcing 

frequencies were examined: 25, 50, 75, and 100 Hz.  The 100 Hz case was taken with the 

first switch configuration whereas the other three were taken with the new setup.  

Changing the frequency of the pulse effectively alters the time average power sent to the 
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electrode as described earlier while keeping the voltage and current constant.  Table 2 is a 

summary of the run conditions.  As noted only the frequency of the switch being closed is 

altered.  Therefore for run conditions 1-4, the plasma is expected to form every 24th, 12th, 

8th, and 6th frame of the camera respectively. 

Table 2. Test Matrix 
Run 

condition 
Camera trigger 

(Hz) 
Pulse width 

(ns) 
Voltage 

(kV) 
Switch trigger 

(Hz) 
1 600 250 8.5 25 
2 600 250 8.5 50 
3 600 250 8.5 75 
4 600 250 8.5 100 
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IV. Results and Analysis 

 The results section will describe how the three remaining objectives were 

completed.  This includes validation for the new experimental setup, data on the effect of 

a pulsed DC plasma actuator on separation, and the analysis to determine whether 

evidence exists that coherent structures are the cause for reattachment.  Although two 

switches were used with different characteristic waveforms, data from both will be 

presented as the resulting conclusions are valuable.  Only representative figures however 

will be included in this section with supplemental data provided in the appendices.  

4.1 Tunnel Validation 

 A series of tests were performed to validate the new setup and determine the 

settings under which the experiment would be conducted.  This was in large part a trial 

and error process where only representative data were recorded and processed to justify 

the decisions made. 

 4.1.1 Cp Distributions.  The contour along the upper wall was designed and 

manufactured to mimic the pressure distribution along a Pak-B turbine blade.  This 

method was chosen rather than studying an actual turbine cascade, because boundary 

conditions could be analyzed and imaged easier.  A great deal of public literature exists 

on the Cp distribution found for ideal and experimental turbine blades.  In addition to 

compiling results on different methods of active and passive control, Rivir, et al. [3] also 

compared the theoretical and experimental data on pressure distributions of a Pak-B 

turbine blade.  The pressure distribution calculated using the Vane Blade Interaction 

(VBI) code is often used to compare the two data sets.  Rivir et al. [3] makes note of the 

inadequacies of the computational model in predicting separation onset and transition 
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after separation occurs.  The VBI code Cp distribution at Re=100k, the experimental data 

collected in this paper for Re=25k, and the run condition for this experiment are shown in 

Figure 17.  

 
Figure 17.  Vacuum condition compared to Pak-B profile 

 
 The inadequacies in the VBI code can be seen with the missed location of the loss 

“knee” and how the measurements still change very gradually after separation compared 

to the experimental data.  The loss knee is indicative of the beginning of the separation 

bubble.  As shown, the Cp distribution for this experiment lies in between the 

experimental curve and the one produced by the VBI code.  For the run condition in this 

experiment, labeled closed valve, the separation inflection point can be seen at 

approximately 0.65c, which is around the recorded location for separation on a Pak-B 

blade.  After this point, the graph begins to drop off as losses during transition are 

occurring.  It does appear that end effects exist in the experimental data, but the general 
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shape of a Pak-B distribution is accomplished and the results are repeatable.  This result 

was necessary to be able to compare the results to existing literature and data that also 

modeled the Pak-B pressure distribution.  The run condition for this experiment is labeled 

closed valve to distinguish the different settings under which pressure scans were 

conducted.  Certain settings had to be altered to achieve the Cp distribution presented 

above in Figure 17. 

 The two major settings that could be altered were the deflection angle of the tail 

end of the flat plate and the amount of vacuum pulled.  As mentioned previously, a piece 

of sheet metal was added to the end of the flat plate to alter the amount of blockage 

gradually below the main test section without inducing major turbulence.  The tail end 

could be raised up and down by a threaded rod on the outside of the tunnel.  The amount 

of vacuum pulled could be altered through two valves, one controlling the amount of air 

passage through the vacuum tubing and the other allocating the amount of air outside the 

tunnel that is removed.  Changing the deflection angle and vacuum setting was a trial and 

error process that was first tested for repeatability to ensure none of the pressure ports 

had a leak and all of the equipment was working properly. 

 Besides producing the general shape and magnitude of a Pak-B pressure 

distribution, it was desired to operate at a low Reynolds number of 30,000 and have a 

velocity ratio of the inlet to exit equal to 1.64.  A low Reynolds number was chosen to 

simulate take-off and other low speed conditions, where separation is likely to occur on a 

turbine blade and the use of plasma actuators would be applicable.  The desired velocity 

ratio was chosen to imitate actual conditions found in experiments with the Pak-B blades 

and was accomplished by altering the tail deflection angle.  The trial and error process of 
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finding the correct vacuum setting was repeated until all of these goals were minimally 

compromised.  Not all of the data were recorded when the vacuum was applied as it was 

clear that too much or too little flow was being pulled.  Figure 18 shows the pressure 

distribution taken at three vacuum settings: no vacuum applied, vacuum with closed 

valve, and vacuum with open valve.  The difference between the open and closed valve 

settings is that the open valve is also pulling air from the test cell and thus less from the 

tunnel. 

 
Figure 18.  Pressure distribution for various vacuum settings 

 
 The separation knee is not as evident at the other vacuum settings and the curves 

do not obtain the same magnitude as the closed valve vacuum case.  With no vacuum 

setting applied, separation on the flat plate was not consistent and the flow along the 

upper contour was not attached.  With the open valve setting, it was still not obvious that 
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separation was occurring.  Preliminary flow visualization and PIV presented in the next 

section were used to further justify the amount of vacuum needed along the flat plate. 

 4.1.2 Flow Characterization. The Cp distribution is good for comparison to public 

literature but is limited in what it can tell about instantaneous flow quality, uniformity, 

and characteristics.  In order to obtain and document greater physical insight into the 

nature of the flow field in the test section, wide field planar laser scattering techniques 

were applied, including flow visualization and PIV.  Flow visualization refers to visually 

using the camera images to determine the flow conditions.  This technique is useful but a 

more quantitative method is necessary.  PIV refers to the analysis conducted on the 

images to verify the visual conclusions made.  Through both methods, the uniformity and 

stability of the flow was characterized and the run conditions chosen were further 

justified.  Figure 19 is a representative wide field flow visualization image at the chosen 

closed valve run condition.  Reflections from the laser on the electrodes, flat plate, and 

upper contour can all be seen.  PIV images were often processed with an attempt to 

minimize these effects and the area where the laser sheet cutoff was neglected.  The 

images were also rotated around the y-axis so that the processed plots have the flow 

going from left to right. 
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Figure 19. Wide field characterization setup 

 
 Streamline analysis was conducted to ensure only a slight upward velocity was 

being induced by the vacuum while maintaining flow attachment along the upper 

contour.  Figure 20 presents two streamline images that show the slight difference that 

was needed with having the vacuum on.  The top streamlines show how the flow goes 

along the contour instead of with the free stream.  For both the no vacuum and vacuum 

case, there is a slight upward velocity from just the expanding test section. 
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Figure 20. Comparison of no vacuum and vacuum streamlines 

 
The streamline images cannot however show much detail for the boundary layer and 

separation region along the flat plate.  In Figures 21 and 22, velocity contour maps with 

vectors overlaid on top are included for the vacuum and closed valve vacuum condition.  

These images further validate that the flow is moving along the contour more with the 

vacuum on.  More importantly, the magnitude and direction of the free stream velocity 

vectors are not being altered significantly.  The color scale above is the velocity in m/s.  

The free stream velocity is approximately 2.5 m/s.  The green color on the top and lower 

part of the contour shows roughly where the flat plate and contour are in the image. 
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Figure 21. Velocity contour for no vacuum condition 

The arrows along the upper part of Figure 21 remain relatively straight compared 

to the shape of the contour at this location indicating separation.  The small boundary 

layer along the flat plate and flow visualization images also indicate that separation has 

not occurred in this no vacuum condition along the plate.  The same color scale was 

chosen for the closed valve condition to compare the boundary layer thickness along the 

flat plate and upper wall.  Along the contour, the velocity vectors are canted more 

upwards and the boundary layer is thinner.  Comparing the contour plots with flow 

visualization images, the closed valve condition consistently kept the flow separated 

along the flat plate.  Boundary layer profile plots further justify the vacuum setting by 

showing the change in boundary layer thickness along the flat plate and the uniformity of 
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the flow in the main test section.  Appendix A includes streamline and contour plots for 

the open valve vacuum condition for comparison. 
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Figure 22. Contour plot for closed valve vacuum condition 

 
The boundary layer plots were made by first exporting the data from Flow 

Manager to text files.  The text files were a large matrix consisting of information on the 

position and velocity of each vector in the flow field.  The plots are a graph of the U-

velocity as a function of y-location averaged over ten different columns in the image.  

Therefore the profile does not represent any real location in the flow but the graphs are 

useful to examine their general shape.  The U-velocity is normalized with the free stream 

velocity and the y-location is normalized with 99% of the average boundary layer 

thickness, δ.99, which is approximately 6 mm.  Figure 23 is a boundary layer profile plot 

for the closed valve vacuum case.  
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Figure 23. Boundary layer plot for closed valve vacuum condition 

 
As shown the profile plot includes noise from the flat plate and therefore not much detail 

is shown close to the wall.  The same plots will be included later in this section for the 

narrow field lens for the actuator on and off.  In these plots it is clearer that separation is 

occurring on the flat plate as the boundary layer reverses direction.   

 Figure 24 is a graph of the boundary layer plots for the no vacuum condition 

graphed with the closed valve case presented in Figure 23.  Plotting these on both the 

same graph gives an indication of how little the flow within the main test section was 

altered.  Also, flow along the flat plate appears to become separated for the vacuum 

profile in comparison to the other.  This can be seen more clearly by zooming on the 

graph but noise from the flat plate still does not allow much detail to be shown.  The 

validation graphs are important in characterizing the flow conditions and justifying 

certain settings, but they are also useful in determining day to day repeatability.  
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Figure 24. Comparison of boundary layer plots for vacuum settings 

 
4.2 Plasma Effect on Separation Location 

 Flow visualization was first used in determining if the actuator was having any 

effect on the flow.  With the narrow field camera lens, it became clear that flow was 

separated along the flat plate.  For the baseline case, seeding was consistent except for the 

separation region right above the actuator.  In this location, seeding particles could be 

seen rotating or were sometimes stagnant, also indicative of separation.  In all cases when 

the actuator was turned on, the flow would reattach for a certain amount of time and then 

would appear to be ineffective.  Through just flow visualization it seemed the separation 

location was only moved to the end of the bottom electrode.  It however was impossible 

to verify this as the plasma appeared to be vaporizing the seeding particles directly 

behind the bottom electrode.  Figure 25 shows two representative flow visualization 

images with the actuator off and on respectively.  The baseline case PIV analysis was 
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done using the vector statistics of all the image pairs whereas analysis for the actuator on 

had to be accomplished with select images in which reattachment was occurring.  This 

was the case because the vector statistics for when the actuator was turned on would 

average both the images where the plasma seemed ineffective with the ones that appeared 

to be changing the separation location. 
Actuator off Actuator on 

 

Flow direction 

Figure 25. Comparison of flow visualization images 
 
 The PIV streamline analysis also reveals the apparent change in separation 

location.  Figure 26 shows the two streamline images with the axis flipped such that the 

flow is going from left to right.  The general location of the electrodes is shown as a 

black box at the bottom of the figure.  The streamlines appear to show that the plasma is 

pulling down on the boundary layer before the actuator location but does not appear to 

affect the flow aft of the electrodes.  It cannot be stated with certainty however that the 

streamlines shown for the flow aft of the actuator are accurate.  Due to the lack of seeding 

in this location, a large percentage of the vectors in this region were considered invalid.  

The streamline analysis however does show that the plasma does not have much effect on 

the free stream when it is compared to the baseline case.  The image presented in the 
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figure is for the 50 Hz case, but there was no apparent change in the streamline analysis 

for the other conditions.  

 

Actuator off Actuator on Flow direction

Figure 26. Comparison of streamline analysis 
 
Profile plots can also be used to compare the plasma effect on the flow with the 

baseline condition.  As the same method used for validation, Figure 27 is a graph of the 

normalized streamwise velocity profiles for both the cases of the actuator on and off at 25 

Hz averaged over ten different columns of the images.  The images processed for these 

profiles however are with the narrow field camera lens and therefore more detail is shown 

closer to the wall.  There are still laser reflections from the actuator and therefore there is 

not distinguishable difference between the two profiles close to the flat plate due to this 

additional noise.  The profile plots show more the order of magnitude the plasma has on 

altering the boundary layer.  Again this trend was consistent for all run conditions. 
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Figure 27. Comparison of profiles for baseline and with plasma 

The velocity field contours also reveal the effect the plasma is having on the 

boundary layer.  Figure 28 compares the two velocity contours for the baseline and 

actuator on at 100 Hz on the left and right respectively.  The same scale above the two 

contours is used to compare the differences.  There is a definite change in boundary layer 

thickness and there appears to be a slight inflection in the velocity contour around the 

actuator location.  Although it was clear through this preliminary flow visualization and 

analysis the actuator was having an effect on the boundary layer and separation location, 

reattachment was not consistent.  Further analysis is required to determine if the 

frequency of these separation and reattachment events is indicative of the existence of 

organized vortical structures created by the plasma.  Appendix B includes streamline 

figures, boundary layer profile plots and the velocity vector contours at the other 

frequencies not presented for comparison. 
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Actuator off Actuator on 

Figure 28. Comparison of velocity field for baseline and with plasma 

4.3 Velocity Contours 

One of the objectives of this research project was to find evidence to support or 

contradict the existence of coherent vortical structures as the mechanism in which pulsed 

DC plasma actuators control separation.  As shown in the previous section, the actuator 

appeared to move the separation location only a part of the time.  It did not appear 

through flow visualization that these separation/attachment events were occurring at the 

frequency of the switch.  It was therefore desired to systematically determine if some 

characteristic frequency did exist.  If this were the case, it would support the existence of 

vortical structures propagating behind the actuators creating reattachment.  These 

coherent structures have been found to reenergize the boundary layer and reattach the 

flow in an organized predictable manner for AC plasma discharge actuators. 

 If vortical structures existed, their propagation downstream would also cause the 

above free stream to fluctuate with the frequency of their occurrence.  Some rising and 
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falling of the flow behind and above the actuator would exist as the structure proceeded 

downstream.  It was therefore desired to examine a particular area of the flow over time.  

The method chosen to accomplish this was to define a velocity contour that responded to 

the actuator.  The velocity contour is the locations where each column of the image 

reaches a chosen percentage of the free stream velocity.  The seventy percent contour is 

shown in Figure 29 for both the baseline and actuator on condition at 100 Hz.  As 

expected, the actuator effectively increases the velocity closer to the flat plate.     
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Actuator off Actuator on 

Figure 29. 70% velocity contour 
 
The imaging software could be used to animate through each image to reveal how the 

velocity contour is changing over time.  Other velocity contour values were examined but 

70% was chosen for the remaining analysis.  The other contours displayed the same 

behavior with the difference being the magnitude of the y-location.  Very low contour 

values however would display larger fluctuations when analyzing the separated images.  

Figure 30 is an average of the 70% contour over a series of images for both the baseline 

and actuator on conditions.  Appendix C includes the 70% contour averages for the other 

frequencies and a sample of the other velocity contours that were examined. 
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Figure 30. Comparison of average 70% contour 

 
 Velocity vector data was exported from the processing software to be analyzed 

with MATLAB.  At first, MATLAB was used to graph particular columns of the contours 

for a series of images.  The contour percentage, column numbers, and the set of images 

could be easily altered within the script.  The individual columns were first examined to 

determine if the fluctuations seen through the flow visualization was in fact real and 

consistent throughout the images.  Figures 31 and 32 are graphs of the seventy percent 

contour at three different column locations over 500 images for the baseline and 100 Hz 

actuator on case respectively.  Different sets of images were also examined to ensure 

results were similar.  As shown the different column numbers only change in magnitude 

as expected from boundary layer thickness increasing further downstream.  Some noise 

exists in the figures as seeding varies from image to image affecting the vector 

information being analyzed.  As shown, a natural fluctuation exists in the tunnel without 

the actuator being turned on and therefore it was necessary to compare all analysis to the 

baseline condition. 
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Figure 31. Baseline contour analysis 
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Figure 32. Actuator on contour analysis 
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 It is difficult to determine a characteristic frequency from the graphs above or if 

one even exists.  Efforts were focused on examining one column at a time.  MATLAB 

was used to perform a FFT on the data and create a power spectrum.  Figure 33 is a 

power spectrum for five different series of images for the baseline condition at Column 

40.  Each series consisted of 512 different images.  The image numbers were changed to 

time by using the camera trigger of 600 Hz.  The power spectrum provides a relative 

intensity for the frequencies that dominate the flow.  As shown, the power spectrum 

reveals a strong zero frequency tendency as the fluctuations do not have a strong control 

over time on the characteristics of the flow.  There does appear however to be other 

dominate frequencies at around 10 and 20 Hz. 
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Figure 33. Baseline power spectrum (Column 40) 

 53



These secondary frequencies can be seen more clearly when the averages of the different 

series are plotted.  Figure 34 is the average of the five different series presented in Figure 

33.  Power spectrums at other representative column numbers are included in Appendix 

B.  All of the column numbers chosen were located behind the bottom electrode. 
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Figure 34. Average baseline power spectrum (Column 40) 

 The same script was run for the different series of images for the actuator turned 

on.  The graphs were examined to determine if any other extraneous frequencies existed 

compared to the baseline condition.  It was desired to determine if the plasma was 

causing the velocity contour to respond in a different matter due to the development of 

vortical structures.  Figure 35 is one of the representative runs at 100 Hz graphed with the 

baseline condition.  Three runs were taken for each condition to determine if there was 

any day to day variation.  Similar to the baseline condition, a large zero frequency 

component was present.  In general the actuator followed the trend of the baseline 
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condition as far as which frequencies dominate and only differed in the relative power of 

these frequencies.   
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Figure 35. Comparison of average power spectrums 

Figure 36 is a zoomed in image of Figure 35 to reveal more the overlap of the two 

graphs.  This further supports the conclusion that no extraneous frequencies exist for 

when the actuator is turned on.  Other series of images and different runs were examined 

in detail to ensure this was always the case.  The plasma does not appear to significantly 

affect the flow above the actuator in a repeatable organized manner.  It does not appear to 

create any fluctuations that overpower the existing variations in the flow.  Appendix D 

contains average power spectrums for the other frequency cases and at two other column 

locations.  The different run conditions varied the relative strength of the frequencies 

found but did not introduce any additional frequencies. 
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Figure 36. Zoomed comparison of average power spectrums 

 

 56



V. Conclusions and Recommendations 
 

5.1 Research Objectives 
 
 The first objective of this research project was to improve the existing 

AFRL/PRTT facilities and experimental setup.  Previous studies there focused on AC 

plasma actuators and therefore the different pieces of equipment first needed to be 

changed and tested.  The HV switch was redesigned as well as the contour along the 

upper wall to create the pressure distribution similar to a Pak-B turbine blade.  A more 

permanent structure that could also be easily removed for access into the main test 

section was manufactured.  Also the previous method of taking pressure measurements 

needed to be refined.  Pressure taps were put along the flat plate and clustered at the 

throat to more accurately determine the Cp distribution.  An extension on the flat plate 

and upper contour were created to reduce the amount of turbulence and end effects in the 

test section while being able to control the amount of flow below the flat plate.  Lastly, a 

glass insert was designed to improve image quality. 

 The second objective was to validate and document the new experimental setup.  

The results showed the pressure distribution was very similar to a Pak-B with suction 

used to create separation on the flat plate.  The flat plate therefore simulated the surface 

of Pak-B blade at a low Reynolds number.  PIV and preliminary analysis revealed 

relatively uniform flow within the main test section.  All characterization was 

documented in detail to ensure this experiment would be repeatable.  The third objective 

was to collect data on a pulsed DC plasma actuator for four different forcing frequencies.  

The voltage and current for these cases were all similar but the time average power was 

altered by changing the frequency.  For all cases, the plasma was effective in reattaching 
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the separated flow along the flat plate and decreasing the size of the boundary layer for a 

portion of the time.  Changing the frequency did not appear to have any effect on the 

duration of these reattachment events but rather only the number of occurrences 

throughout the data set. 

 The last objective focused on determining if some frequency was being induced 

by these reattachment events.  If a frequency existed behind and right above the actuator 

this would indicate some organized structure.  Vortices have been produced in AC studies 

and have been found to propagate downstream originating at the actuator.  Velocity 

contours were studied to compare the power spectrum with the actuator on and off.  No 

additional frequencies were found at any run condition.  The plasma does not appear to 

create any fluctuations that overpower the existing natural frequencies of the flow.  

Therefore no evidence was found that coherent structures were responsible for 

controlling separation at these conditions. 

5.2 Research Improvements 
 
 The following recommendations are included to further validate the conclusions 

found from this experiment and offer suggestions for carrying on this study.  First, it is 

suggested that this experiment and all following studies be conducted with solid seeding.  

This experiment utilized seeding from a fog machine which was simply vaporized by the 

thermal effects of the plasma.  No imaging directly behind the actuators was therefore 

useful and the resulting analysis had to be tailored due to this fact.  Changing the seeding 

entails major changes to the setup as a new insert and collection pool would be necessary 

and safety procedures would need to be determined.  Another method of correcting this 

issue would be to insert smoke right before the actuator on the flat plate.  This alteration 
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would have to be made with care also to ensure the flow is not tripped by this additional 

slot. 

 Continuous studies can include determining if there is a point in which altering 

the frequency of the switch has no further effect on controlling separation.  Perhaps a 

frequency exists that keeps the flow attached the entire time.  Also the effects of changing 

the pulse width and voltage setting could be examined.  Lastly, this experiment could be 

repeated with various combinations of non-inductive external resistors keeping in mind 

the limits of the switch. 
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Appendix A: Open Valve Vacuum Plots 
 

In addition to the vacuum condition chosen, the open valve vacuum was 

examined and analyzed in detail.  This condition differed only slightly from the closed 

valve vacuum in that the vacuum also pulled air from the test cell.  It therefore did not 

provide as much suction for the tunnel.  These graphs are included to supplement the 

previously presented figures and to further justify the chosen vacuum setting. 

 

 
Figure 37. Open valve streamlines 
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Figure 38. Open valve velocity contours 
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Figure 39. Open valve boundary layer profile plot 
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Appendix B: Supplemental Data for Various Frequencies 
 

 The data presented below is for the other frequencies investigated but were not 

presented in the main results.  The following plots include: streamline analysis for 25, 75, 

and 100 Hz, boundary layer profiles for 50, 75, and 100 Hz, and velocity vector maps for 

25, 50, and 75 Hz.  All of the data below is similar to that presented in the results section 

and therefore no additional conclusions were drawn from this information.  The data is 

rather for thoroughness and additional support for the conclusions made. 

 

 

 
Figure 40. Streamline analysis for 25 Hz 
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Figure 41. Streamline analysis for 75 Hz 

 

 

 
Figure 42. Streamline analysis for 100 Hz 
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Figure 43. Boundary layer profile plot for 50 Hz 
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Figure 44. Boundary layer profile plot for 75 Hz 
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Figure 45. Boundary layer profile plot for 100 Hz 
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Figure 46. Velocity vector contours for 25 Hz 
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Figure 47. Velocity vector contours for 50 Hz 
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Figure 48. Velocity vector contours for 75 Hz 
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Appendix C: Average Velocity Contours 

 This appendix includes the average 70% velocity contours for the other 

frequencies.  All of the velocity contours for the actuator on were an average of images 

that effectively moved the separation point behind the bottom electrode.  In all cases, the 

plasma effectively decreases the size of the boundary layer compared to the baseline 

condition.  Also included are representative contours at 50%, 60%, 80%, and 90% of the 

free stream velocity at 75 Hz. 
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Figure 49.  70% velocity contour at 25 Hz 
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Figure 50. 70% velocity contour at 50 Hz 
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Figure 51. 70% velocity contour at 75 Hz 
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Figure 52. 50% velocity contour 
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Figure 53. 60% velocity contour 
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Figure 54. 80% velocity contour 
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Figure 55. 90% velocity contour 
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Appendix D: Supplemental Power Spectrum Plots 

 This section is included to show the thoroughness in the objective of finding 

evidence of a characteristic frequency at the seventy percent free stream velocity contour.  

Similar graphs were analyzed at different contours but will not be presented here as 

results were practically identical.  As discussed previously in the results section, only the 

magnitude of these graphs changed and the general shape remained constant.  The graphs 

following are the average power spectrums found at three different columns provided in 

addition to the figures presented in the main results.  Representative image sets for the 

baseline and the four different run conditions are included.  These graphs support the 

conclusion that no extraneous frequency exists for the actuator on case compared to the 

baseline condition. 
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Figure 56. Average baseline power spectrum (Column 35) 
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Figure 57. Average power spectrum at 25 Hz (Column 35) 
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Figure 58. Average power spectrum at 50 Hz (Column 35) 
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Figure 59. Average power spectrum at 75 Hz (Column 35) 
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Figure 60. Average power spectrum at 100 Hz (Column 35) 
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Figure 61. Average baseline power spectrum (Column 40) 
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Figure 62. Average power spectrum at 25 Hz (Column 40) 
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Figure 63. Average power spectrum at 50 Hz (Column 40) 
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Figure 64. Average power spectrum at 75 Hz (Column 40) 
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Figure 65. Average power spectrum at 100 Hz (Column 40) 
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Figure 66. Average baseline power spectrum (Column 45) 
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Figure 67. Average power spectrum at 25 Hz (Column 45) 
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Figure 68. Average power spectrum at 50 Hz (Column 45) 
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Figure 69. Average power spectrum at 75 Hz (Column 45) 
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Figure 70. Average power spectrum at 100 Hz (Column 45) 
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