
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2006

An Investigation into Robust Wind Correction Algorithms for Off-An Investigation into Robust Wind Correction Algorithms for Off-

the Shelf Unmanned Aerial Vehicle Autopilots the Shelf Unmanned Aerial Vehicle Autopilots

Brent K. Robinson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aerospace Engineering Commons

Recommended Citation Recommended Citation
Robinson, Brent K., "An Investigation into Robust Wind Correction Algorithms for Off-the Shelf Unmanned
Aerial Vehicle Autopilots" (2006). Theses and Dissertations. 3552.
https://scholar.afit.edu/etd/3552

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F3552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3552?utm_source=scholar.afit.edu%2Fetd%2F3552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AN INVESTIGATION INTO ROBUST WIND CORRECTION ALGORITHMS
FOR OFF-THE-SHELF UNMANNED AERIAL VEHICLE AUTOPILOTS

THESIS

Brent K. Robinson, Ensign, USN
AFIT/GAE/ENY/06-J14

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GAE/ENY/06-J14

AN INVESTIGATION INTO ROBUST WIND CORRECTION ALGORITHMS FOR
OFF-THE-SHELF UNMANNED AERIAL VEHICLE AUTOPILOTS

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Brent K. Robinson, BS

Ensign, USN

June 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GAE/ENY/06-J14

ROBUST WIND CORRECTION ALGORITHM FOR OFF-THE-SHELF UNMANNED
AERIAL VEHICLE AUTOPILOTS

Brent K. Robinson, BS
Ensign, USN

Approved:

____________________________________ _________
Paul Blue, Major, USAF (Chairman) date

____________________________________ _________
Dr. John F. Racquet (Member) date

____________________________________ _________
Dr. David R. Jacques (Member) date

 iv

AFIT/GAE/ENY/06-J14

Abstract

 This research effort focuses on developing methods to design efficient wind

correction algorithms to “piggy-back” on current off-the-shelf Unmanned Aerial Vehicle

(UAV) autopilots. Autonomous flight is certainly the near future for the aerospace

industry and there exists great interest in defining a system that can guide and control

small aircraft with high levels of accuracy. The primary systems required to command the

vehicles are already in place, but with only moderate abilities to adjust for dynamic

environments (i.e., wind effects), if at all. The goal of this research is to develop a

systematic procedure for implementing efficient and robust wind effects corrections to

existing autopilots used on small Unmanned Aerial Vehicles. The research will

investigate the feasibility of an external dynamic environment control algorithm as a

means of improving current, off-the-shelf autopilot technology relating to small UAVs.

The research then presents three main focuses. First, a determination of the estimated

winds utilizing the existing, on-board sensors. Second, the development of a wind

correction algorithm that incorporates simple mathematical principals to counter the 2-

Dimensional wind forces acting on the aircraft; and third, the integration of that wind

compensator into the on-board navigational system. This “piggy-back” algorithm must

assimilate smoothly with the current GPS technologies to provide acceptable and safe

flight path following. The design procedures developed were demonstrated in simulation

and with flight tests on the SIG Rascal 110 UAV. This report builds the framework from

which current wind correction research at AFIT and the ANT Center is based.

 v

Acknowledgements

I would like to express my sincerest appreciation to my faculty advisor, Major

Paul Blue, for his guidance and insight. His commitment to the success of his students

and their research provided a superb example of leadership from which I will attempt to

emulate throughout my career. I would like to thank Dr. John Raquet for running and

maintaining the professional and educational atmosphere of AFIT’s Advanced

Navigation Laboratory, without which the research would not have been possible. I

must also acknowledge a few others whose work was critical to the success of this

project. First to Athan Waldron, he put in the numerous hours of hands on labor required

to continually supply the ANT lab with the aircraft and all their components. His

meticulous understanding of the aircraft and the avionics allowed for a smooth

integration into the program. John McNees, our radio control aircraft expert and pilot,

guided the aircraft through any flight testing with unparalleled experience and wisdom.

Don Smith, the lab’s expert technician in everything mechanical and electrical. Don was

always there to answer the unanswerable and connect all the loose ends. Randy Plate,

who provided the initial work on Piccolo’s Software Development Kit. Steve

Rasmussen, from the Air Force Research Labs, provided timely and much needed

expertise in C++ programming. To Second Lieutenant Brett Pagel, also from the Air

Force Research Labs, who aided with previous autonomous UAV experience. Finally, to

my peers in the lab who could always be counted on to lighten the mood or provide a

necessary distraction.

Brent K. Robinson

 vi

Table of Contents

Page

Abstract.. iv

Table of Contents... vi

List of Figures.. viii

List of Tables ... xiii

List of Tables ... xiii

I. Introduction ... 1

1.1 – Motivation...1
1.2 – Problem Statement..4
1.3 – Research Objectives..5
1.4 – Significance of Research ..5
1.5 – Methodology...6
1.6 – Thesis Preview..8

II. Background .. 9

2.1 – Overview...9
2.2 – Aircraft..9
2.2.1 – Airframe...9
2.2.2 – Engine and Propeller..12
2.3 – Avionics..14
2.3.1 – Radio Control System..14
2.3.2 – Piccolo II Autopilot ...15
2.3.3 – Honeywell HMR2300 Digital Magnetometer ...20
2.4 – Simulation...21
2.4.1 – Hardware in the Loop (HITL) ...22
2.4.2 – Software Development Kit (SDK)...23
2.5 – Flight Testing..24
2.5.1 – Overview of Flight Test...24
2.5.2 – Flight Test Range...25
2.5.3 – Ground Equipment...27
2.5.4 – Criteria for Flight Test of UAVs at WPAFB...28
2.5.5 – Wind Correction Implementation ..29
2.5.6 – Data Collection and Handling ...29
2.6 – Chapter Summary ...31

 vii

Page

III. Development of the Wind Correction Approaches... 33

3.1 – Overview...33
3.2 – Real Time Wind Estimating ...33
3.3 – Turn Rate Approach Equations ..35
3.4 – Updating “Rabbit” Waypoint Approach...38
3.5 – Wind Corrected Sensor Pointing ..40
3.6 – Wind Correction Implementation ...43
3.6.1 – Real Time Wind Estimating ..43
3.6.2 – Implementing the Turn Rate & Updating “Rabbit” Waypoint45
3.6.3 – Wind Corrected Sensor Pointing ...50
3.7 – Chapter Summary ...53

IV. HITL Test Results and Analysis... 54

4.1 – Overview...54
4.2 – Standard HITL Simulated Flight Tests with Real Time Wind Estimating...........54
4.3 – HITL Simulation with Wind Correction...71
4.3.1 – Turn Rate & Updating “Rabbit” Waypoint Approaches71
4.3.2 – Wind Corrected Sensor Pointing ...72
4.4 –Flight Testing with Wind Correction...80
4.4.1 – Real Time Wind Estimating ..80
4.4.2 – Turn Rate & Updating “Rabbit” Waypoint Approaches80
4.4.3 – Wind Corrected Sensor Pointing ...80
4.5 – Chapter Conclusions...81

V. Conclusions and Recommendations .. 82

5.1 – Conclusions...82
5.2 – Recommendations...84

Appendix A: Complete Set of Simulated Test Results... 86

Appendix B: Software Development Kit (SDK) C++ Code .. 124

Appendix C: MATLAB Code... 145

Appendix D: Proposed Actual Flight Test Plans .. 156

Appendix E: Flight Test Results... 162

Bibliography ... 165

Vita.. 167

 viii

List of Figures

 Page

Figure 1. Two Completed Sig Rascal 110’s (Jodeh, 2006) .. 10

Figure 2. Sig Rascal Wing Planform View (Jodeh, 2006).. 11

Figure 3. O.S. FS-120S III Four Cycle Engine... 13

Figure 4. APC 16x8 Nylon Propeller ... 13

Figure 5. Futaba 9CAP/9CAF 8 Channel Transmitter ... 14

Figure 6. Piccolo II Block Diagram of Internal Components ... 16

Figure 7. Piccolo II Airborne Autopilot Unit ... 17

Figure 8. Required Ground Equipment (minus the laptops) for the Piccolo II Autopilot System................ 18

Figure 9. Fail Safe Control Relay Schematic ... 19

Figure 10. Complete Autonomous Flight Setup ... 20

Figure 11. Honeywell HMR2300 Digital Magnetometer (Honeywell, 2004) .. 21

Figure 12. Standard Hardware in the Loop Simulation Setup .. 22

Figure 13. WPAFB, Area B Flight Test Range .. 26

Figure 14. Ground Equipment and Test Team Conducting a Flight Test... 28

Figure 15. Top View of the UAV with the Adjustment Parameters Defined ... 42

Figure 16. Screen Capture of the Piccolo SDK Executable.. 44

Figure 17. Standard UAV & Sensor Tracks for a Point-to-Point Flight Path... 55

Figure 18. Various Flight Characteristics for the Standard Point-to-Point Flight. 56

Figure 19. Wind Estimations & Cross Track Distance... 57

Figure 20. Circular Orbit Flight Path with Constant Velocity and Wind ... 59

Figure 21. Various Parameters of the Circular Orbit Flight Path ... 59

Figure 22. Estimated Wind Values for the Circular Orbit .. 60

Figure 23. Race Track Pattern with TAS=12m/s & Wind= 5m/s... 62

Figure 24. Various Parameters for the Race Track Pattern at 12m/s and TC=250....................................... 62

Figure 25. Wind Estimations & Cross Track Distance... 63

 ix

Page

Figure 26. Race Track Pattern at 20 m/s Track Conv.=250.. 64

Figure 27. Race Track Pattern at 30m/s with Track Conv.=250 .. 65

Figure 28. Race Track Pattern at 12 m/s with Track Conv.=150 ... 67

Figure 29. Race Track Pattern at 12 m/s with Track Conv.=50 ... 68

Figure 30. Race Track Pattern at 20 m/s with Track Conv.=150 ... 69

Figure 31. Race Track Pattern at 20 m/s with Track Conv.=50 ... 70

Figure 32. Point to Point at 20 m/s - Adjusted for Sensor .. 73

Figure 33. Race Track Pattern at 12 m/s - Adjusted Waypoints... 74

Figure 34. Race Track Pattern at 15 m/s - Adjusted Waypoints... 76

Figure 35. Race Track Pattern at 20 m/s - Adjusted Waypoints... 77

Figure 36. Race Track Pattern at 30 m/s - Adjusted Waypoints... 77

Figure 37. Point to Point at 20 m/s and 20% Lower Altitude... 78

Figure 38. Point to Point at 20 m/s with 10 m/s Wind from the North... 79

Figure 39. Standard UAV Short Point to Point at 12 m/s with Wind=5 m/s .. 86

Figure 40. Various Parameters for Short Point to Point at 12 m/s.. 86

Figure 41. Real Time Wind Estimations for Short Point to Point at 12 m/s... 87

Figure 42. Standard UAV Short Point to Point at 15 m/s with Wind=5 m/s .. 87

Figure 43. Various Parameters for Short Point to Point at 15 m/s.. 88

Figure 44. Real Time Wind Estimations for Short Point to Point at 15 m/s... 88

Figure 45. Standard UAV Short Point to Point at 20 m/s with Wind=5 m/s .. 89

Figure 46. Various Parameters for Short Point to Point at 20 m/s.. 89

Figure 47. Real Time Wind Estimations for Short Point to Point at 20 m/s... 90

Figure 48. Standard UAV Short Point to Point at 30 m/s with Wind=5 m/s .. 90

Figure 49. Various Parameters for Short Point to Point at 30 m/s.. 91

Figure 50. Real Time Wind Estimations for Short Point to Point at 30 m/s... 91

 x

Page

Figure 51. Standard UAV Circular Orbit at 20 m/s .. 92

Figure 52. Various Parameters for the Circular Orbit at 20 m/s ... 92

Figure 53. Real Time Wind Estimations for the Circular Orbit at 20 m/s .. 93

Figure 54. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250 94

Figure 55. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250 94

Figure 56. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250 95

Figure 57. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250 95

Figure 58. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250 96

Figure 59. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250 96

Figure 60. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250 97

Figure 61. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250 97

Figure 62. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250 98

Figure 63. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250 98

Figure 64. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250 99

Figure 65. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250 99

Figure 66. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=150 100

Figure 67. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=150 100

Figure 68. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=150 101

Figure 69. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=150 101

Figure 70. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=150 102

Figure 71. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=150 102

Figure 72. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=150 103

Figure 73. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=150 103

Figure 74. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=150 104

Figure 75. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=150 104

 xi

Page

Figure 76. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=150 105

Figure 77. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=150 105

Figure 78. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=50 106

Figure 79. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=50 106

Figure 80. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=50 107

Figure 81. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=50 107

Figure 82. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=50 108

Figure 83. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=50 108

Figure 84. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=50 109

Figure 85. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=50 109

Figure 86. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=50 110

Figure 87. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=50 110

Figure 88. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=50 111

Figure 89. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=50 111

Figure 90. Updated UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250........................... 112

Figure 91. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250 112

Figure 92. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250 113

Figure 93. Updated UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250........................... 113

Figure 94. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250 114

Figure 95. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250 114

Figure 96. Updated UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250........................... 115

Figure 97. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250 115

Figure 98. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250 116

Figure 99. Updated UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250........................... 116

Figure 100. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250 117

 xii

Page

Figure 101. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250 117

Figure 102. Updated Long Point to Point at 20 m/s with Wind=5 m/s and TC=250.................................. 118

Figure 103. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & TC=250 118

Figure 104. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & TC=250 119

Figure 105. Updated Long Point to Point at 20 m/s with Wind=5 m/s & Lower Alt 120

Figure 106. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & Lower Alt 120

Figure 107. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & Lower Alt 121

Figure 108. Updated UAV for Point to Point with Wind =10 from North ... 122

Figure 109. Various Parameters for the Point to Point with Wind=10 m/s from the North 122

Figure 110. Real Time Wind Estimations for the Point to Point with the Wind=10 m/s from the North... 123

 xiii

List of Tables

 Page

Table 1. Various Sig Rascal 110 Characteristics .. 12

Table 2. Prominent Criteria for Flight Tests (Jodeh 2006)... 29

Table 3. Available Telemetry through the Piccolo SDK .. 31

 1

ROBUST WIND CORRECTION ALGORITHM FOR OFF-THE-SHELF
UNMANNED AERIAL VEHICLE AUTOPILOTS

I. Introduction

1.1 – Motivation

The first one hundred years of flight brought about an incredible evolution

beginning with two, small town bicycle makers soaring just over 120 feet and progressing

to the global military and civil aerospace business of current times. This transformation

has thrust aviation into the forefront of the world’s daily operations and has positioned

the business as a necessity in the everyday world. While this “revolution” has been rapid

in historic terms and some have declared Aerospace as a mature business/technology, the

next one hundred years will undoubtedly bring a myriad of advances that will continue to

change how the world lives and operates. One of the most important developments of

current times is that of Unmanned Aerial Vehicles (UAVs). While they have been

envisaged as long as manned aircraft, the enabling technologies have only recently

matured enough to bring them to a state of operational reality. Thus, UAVs of all sizes

and capabilities are beginning to accomplish numerous missions impractical, or even

impossible, for manned aircraft.

Leading the drive for research and development in the UAV field are the U.S.

Department of Defense’s (DoD) efforts to provide a more efficient and capable force for

it’s military forces. Currently, UAVs operating as remotely piloted vehicles (RPV) are

utilized around the globe to provide intelligence, surveillance, and reconnaissance (ISR)

as well as for small scale offensive actions. The immediate success of those operations

has inspired the DoD to push further into the uncharted territory of complementing the

 2

modern warfighter’s emergent needs with UAV technology. The next step is to provide

partially to fully autonomous UAV systems that have the ability to execute any peacetime

or combat missions in support of desired “Effects Based Operations” (EBO). Such UAV

operations not only have the potential to provide more fiscally attractive solutions to

EBO needs, but since it offers the potential to remove the human from the most

dangerous and dull aspects of the mission, UAVs offer the potential for dramatic

improvement in organizational concepts, civilian or military.

The Air Force Institute of Technology’s (AFIT) Advanced Navigation

Technology (ANT) Center has recognized the importance of research in the autonomous

UAV domain with ongoing projects in guidance and control of small aircraft (for

definition of “small UAVs” see Roadmap, 2002:62). The ANT Center now has the

foundation for autonomous UAV study including analytic research, MATLAB

simulations, Hardware-In-The-Loop (HITL) Simulations, and flight test and

demonstration. This broad capability, established through previous theses (Jodeh, 2006),

allowed for the current research in this, and related theses. For this thesis, the primary

tool utilized for the autonomous control research in the ANT Center was an off-the-shelf

commercial autopilot provided by Cloud Cap Technologies, named the Piccolo II

(Vaglienti, 2005).

In recent years, developing, simulating, and flight testing robust autonomous

UAVs has been the topic of interest at numerous civilian universities/institutions

throughout the country. However, when specifically dealing with small aircraft and

autonomous control (esp. with the Piccolo II) there are only a few establishments

conducting in-depth analysis, which includes the Autonomous Intelligent Networks and

 3

Systems (AINS) Center for Collaborative Control of UAVs at the University of

California, Berkeley (Girard, 2002 and Frew, 2004), the GRASP Laboratory at the

University of Pennsylvania (Bayraktar, 2004), and the Aeronautics and Aerospace

Department at the Massachusetts Institute of Technology (King, 2004 and Tin, 2004).

These institutions have produced research which has advanced the control and

manipulation of single and multiple UAV systems (King, 2004), dramatically pushing the

envelope in this field. However, most of the previous research has, at best, glossed over

the primary focus of this thesis; specifically, the affects of wind on the flight paths of the

UAVs. The issue may have been mentioned, but prior research has not delved into the

implementation of a robust system that continuously updates any wind correction

parameters – a necessity for operational relevance.

The importance of this ability to strictly track a predetermined path becomes

evident when dealing with current implementation of UAVs in the modern combat zone.

Recent operations have shown the need for this technology to enable operations and

navigation in the “urban canyon” environment. This demand requires tight adherence of

point to point waypoint following. Moreover, urban buildings, streets, and the general

environment generate unique and highly variable wind patterns which present a particular

challenge for small, lightweight UAVs. The inherent strong up/down-drafts coupled with

horizontal gusts can easily force a UAV off course and into an obstacle. Detailed studies

on the topic can be found in (Cionco, 2004) and (Brown, 2003).

The research community generally characterizes the “wind effect” problem as an

easily correctable issue through basic math. While it is true that the math involved was

not drastically complicated, the difficulty lies in the implementation of these corrections

 4

into the UAV autopilot systems – especially for the cost effective off-the-shelf systems.

Most current systems will correct for a “static” wind reading, possibly at some ground

station, and then employ this correction to the aircrafts control algorithm throughout the

entire flight. However, as mentioned, in the new urban flight environment this

methodology will not provide sufficient precision. Therefore, a continuously updating

wind correction feeding the aircraft’s control devices is not only desired, but required for

the intricate demands of modern day operations.

1.2 -- Problem Statement

The ultimate goal of this research is to provide AFIT, the ANT Center, and the

research sponsor, AFRL/VA, with a well-documented investigation into robust wind

correction algorithms for small UAVs. To meet the operational needs, these schemes

must continuously calculate the current wind corrections required and then update the

UAVs flight plan to accommodate the local and constantly variable winds so as to assure

the UAV remains on course or on target. The research platform supports UAVs flying in

a constant or variable wind environment using Cloud Cap Technology’s Piccolo II

autopilot system. This problem statement has two primary parts. First, produce an

adaptable algorithm for determining the current wind effects on the vehicle and the

required heading and airspeed to compensate for that wind. Second, produce sensible

approaches of implementing wind compensation algorithms on Commercial Off-the-

Shelf (COTS), waypoint guided autopilots without hardware or software modifications to

the autopilot or UAVs. In this thesis, the implementation will be demonstrated using a

Piccolo II autopilot and the corresponding Software Development Kit (SDK).

 5

Furthermore, simulated and actual flight test results were conducted to validate the

algorithms.

1.3 -- Research Objectives

• Develop and document a wind velocity and direction determination scheme to be

utilized on small UAVs in autonomous flight mode.

• Develop and document an interface algorithm in order to implement

modifications to the flight path of the UAV to compensate for wind. The resulting

ground track should show an improvement in the waypoint targeting and/or track

following capabilities of the UAV.

• Demonstrate the performance of the algorithms through comparisons of

unmodified and modified flight plans using HITL simulations as well as actual

flight test data.

1.4 – Significance of Research

The significance of this research is to provide AFIT, the ANT Center, and

AFRL/VA with a basis for continuing work in the precise navigation field of UAV

technology. This research provides a robust manner in which to compensate for the

common issue of variable winds. The current autopilot system incorporates wind finding

calculations and adjustment techniques; however, the method used did not allow for a

real time update of the wind. Therefore, the adjustments did not correct for dynamics of

winds in the “urban canyon” or similar environments as efficiently as would be needed

for combat operations.

 6

Providing the foundations for a two dimensional, continuously updating wind

correction algorithm allows for a starting point to delve into the more complex issues of

precise, three dimensional track and waypoint control for lightweight, autonomous

UAVs. This end goal is undoubtedly a few years in the future, but the reported research

overcame the initial steps to improve the current systems.

The capability for the United States to, at will, deploy autonomous UAVs in an

urban environment to conduct ISR or offensive operations will be indispensable to

achieving the goals of EBO. To efficiently carry out a desired mission mitigating the risk

of the loss of human life is the top level objective in this environment. The capacity to

accurately infiltrate an unknown urban environment with a UAV will certainly contribute

to those overarching objectives. This research will prove to be a significant step in that

maturation.

Moreover, the concurrent AFIT studies of multiple, autonomous UAV formation

flight (McCarthy, 2006) and UAV Autonomous Situational Awareness and Synthetic

Vision (Dugan, 2006) provide further insights to enhance the goals of AFIT and the ANT

Center.

1.5 – Methodology

The methodology varied for each of three research objectives. The calculations

for determining the current wind conditions were developed through a manipulation of

the difference in the GPS ground track and the actual aircraft magnetic heading. Utilizing

basic trigonometry and algebra a wind direction and velocity were solved for, providing

the current wind effects on the vehicle. Then, the new flight conditions, such as the

 7

magnetometer heading and true airspeed (TAS), could be solved for. Additionally, these

calculations were completed at continual time intervals; therefore, providing updating

wind and correction estimates.

Once the wind-compensated values were known, there were three approaches for

relaying that information back to the autopilot.

1. The more direct method of sending a new turn rate command coupled with the

new TAS command. The difference between the actual and desired headings

divided by a reasonable time step resulted in the turn rate command.

2. A second approach was to insert a new, updating waypoint which was placed

at the correct heading to result in the overall aircraft ground track, after the

effects of wind, to follow the original path to the original waypoint.

3. A unique approach to wind correction was employed by analyzing the ground

footprint location of a nose mounted sensor. Despite precise navigation by the

UAV, a sensor would not survey a target, but rather some undesired position

offset from the target due to the difference in magnetic heading and the

ground track direction. In order to correct this problem, the aircraft’s flight

path would be modified in order to counteract the sensor offset.

Developing the interface that implemented the wind correction algorithms on the

Piccolo II autopilot involved using the Software Development Kit (SDK), provided by

the manufacturer, to generate a C++ program. The SDK gave the operator real-time

access to telemetry data from the autopilot. It also enables information to be sent back to

the autopilot in order to update a desired parameter. Because this Software Development

 8

Kit was provided by the same company as the autopilot, the interfacing occurs relatively

smoothly whether this autopilot was in a HITL or in the airborne UAV.

The procedures for the HITL simulations and the actual flight testing were those

formulated by Capt. Nidal Jodeh in his research from 2005-2006 (Jodeh, 2006).

Essentially, the flight tests would first be run using the HITL simulator to ensure proper

flying attributes. Then, the test team would fly the UAVs on Area B test range at Wright

Patterson AFB, per the rules and regulations explained later.

With the algorithms effectively manipulating the flight path, the modified path

results were compared to the original results using a MATLAB script developed

previously (Jodeh, 2006) and then adapted by the author. This program output two

dimensional (also 3-D, if desired) plots of the aircraft’s true flight path, simulated or

actual, in relation to the desired waypoints and flight paths. From these figures, the

variations were easily analyzed.

1.6 – Thesis Preview

Chapter II details the equipment utilized including the aircraft components, the

avionics components, the autopilot, and the simulation components and provides a

background on the flight testing, as a whole. Chapter III methodically looks at the

equation build ups and the varying attempts at the implementation of the modified flight

parameters. Chapter IV presents the results of the baseline tests, the HITL simulations, as

well as the actual flight tests. Chapter V summarizes the conclusions and

recommendations.

 9

II. Background

2.1 – Overview

Chapter II provides background information on the specific equipment,

components, and the flight testing procedures utilized in the formulation of the wind

compensation algorithms. Thus, it supplies the reader the necessary information to

understand the remaining chapters. Initially, the airframe, engine, and propeller are

discussed. This is followed by a discussion of the avionics systems, including the

standard radio controller (RC), the autopilot, and the digital magnetometer. Next, the

Hardware-In-The-Loop (HITL) simulation setup is detailed along with the Software

Development Kit (SDK) interface. The chapter concludes with a description of the flight

testing setup, procedures, and the data telemetry collection and handling.

2.2 – Aircraft

2.2.1 – Airframe

The aircraft used for this research was the ANT Center’s Rascal 110 R/C aircraft

constructed by the SIG Manufacturing Company, Inc. This aircraft provided a rugged

platform with a relatively abundant amount of interior volume, stable flight

characteristics, and simple construction techniques. The Rascal 110 is a high wing, “tail

dragger” configuration that was delivered in an Almost-Ready-to-Fly (ARF)

configuration. Prior to delivery SIG constructed most of the fuselage and wing structures

out of thin plywood, balsa wood, aluminum, and fiberglass. The ANT Center then

completed final assembly of the components and modified the interior as needed. A key

modification was the addition of a 50 oz fuel tank, to provide a flight time of

approximately two hours. About 40 hours of work was required to complete the aircraft

 10

in the desired configuration. Figure 1 shows a completed version of the ANT Center’s

Sig Rascal 110’s.

Figure 1. Two Completed Sig Rascal 110’s (Jodeh, 2006)

The manufacturer provided airfoil was a combination of two Eppler planforms.

The top airfoil surface is an Eppler 193, while the bottom is an Eppler 205, joined at the

chord lines. SIG also stated that the resultant section thickness was 11.5% of the root

chord with an aspect ratio of 6.875:1. However, through previous research, Air Force

Captain Nidal Jodeh found the aspect ratio to be 7.94 when assuming a semi-elliptical

planform as opposed to the rectangular assumption used by the manufacturer (Jodeh,

2006). Unfortunately, SIG Inc. did not provide any stability, performance, weight,

balance, or aerodynamic data with the Rascal 110. Capt. Jodeh determined most of those

values through his research (Jodeh, 2006). Figure 2 displays the wing planform view of

the Rascals.

 11

Figure 2. Sig Rascal Wing Planform View (Jodeh, 2006)

 Table 1, below, outlines the pertinent aircraft data and parameters that

characterize the Sig Rascal 110.

 12

Table 1. Various Sig Rascal 110 Characteristics
SIG RASCAL PARAMETER VALUE

Wing Span 9.16 ft

Aspect Ratio 7.94 ft

Aircraft Mass (Empty Fuel Tank, Engine,

Reciever)

14.19 lbf

Gross Takeoff Weight (GTOW) 18.74 lbf

Length (including Engine & Tails) 76 in

Payload ~10 lbf

Normal Operating Airspeeds 12-30 m/s (true)

2.2.2 – Engine and Propeller

The SIG Rascal 110s used by the ANT Center are powered by FS-120S III four

cycle engine produced by O.S. Engines. The power plant came ready to use, including a

diaphragm fuel pump, matching carburetor, and a built in pressure regulator. The 1.218

cubic inch engine’s output was rated at 2.1 brake horsepower (bhp) at 12,000 revolutions

per minute (rpm). To translate the horsepower to thrust, the engine was combined with a

16x8 synthetic propeller from the APC Company. This 32.5 ounce power plant was

capable of pulling the Rascal at over 60 knots. Figure 3 and Figure 4 display the O.S.

engine and the APC propeller (O.S., 2003 and APC, 2006).

 13

Figure 3. O.S. FS-120S III Four Cycle Engine

Figure 4. APC 16x8 Nylon Propeller

 14

2.3 – Avionics

The avionics utilized by the ANT Center in the Rascal 110’s had three separate

components, the basic radio control (RC) system, the Piccolo II Autopilot System, and

the digital magnetometer.

2.3.1 – Radio Control System

The RC system was a Futaba 9CAP/9CAF 8 channel transmitter coupled with a

Futaba R149DP PCM 1024 receiver. High torque servos, also Futaba products,

translated the radio signals to movement in the control surfaces. Figure 5 is a photo of

the advanced Futaba transmitter (Futaba, 2006).

Figure 5. Futaba 9CAP/9CAF 8 Channel Transmitter

 15

2.3.2 – Piccolo II Autopilot

The Piccolo II autopilot system, which was the crux of this research project, was

purchased from Cloud Cap Technologies. This unit is well suited for incorporation into

small UAVs, providing a completely autonomous aircraft capable of navigating through a

flight plan of predefined or real time updated waypoints. The entire setup included the

autopilot, the ground station interface, the manual control box, the HITL components,

and software.

The autopilot box provided attitude data through three gyros and two double-axis

accelerometers for rate and acceleration measurements of the aircraft. The autopilot uses

a Kalman filter to estimate attitude and gyro bias using a GPS-derived pseudo-attitude as

the measurement correction (Vaglienti et al. 2005). The pitot-based flight data, true

airspeed (TAS), absolute altitude, and outside air temperature (OAT), were delivered via

a dual ported 4kPa dynamic pressure sensor, and an absolute ported barometric pressure

sensor, and a board temperature sensor (Vaglienti et al. 2005). The Piccolo II autopilot

utilized a 40 MHz Motorolla MPC555 PowerPC for all processing (Vaglienti, et al.

2005). Position data was provided through an imbedded GPS unit. The wireless link

used to transfer the command and control, telemetry, payload, differential GPS

corrections, and pilot in the loop information was a 1W 900MHz and 1W 2.4GHz radio

modem at up to 40 Kbaud of throughput (Vaglienti et al, 2005). The GPS receiver was a

16 channel receiver with 8192 simultaneous time-frequency search bins and a 4 Hz

position update rate (u-Blox, 2005). The physical, on-board unit was 2 inches wide by

2.5 inches high and 5.25 inches deep, totaling 26.25 inches3 in volume. The box was

constructed of electromagnetically shielded carbon fiber. Figure 6 illustrates the block

 16

diagram of the complete avionics suite inside the Piccolo II system. Figure 7 is a picture

of the Piccolo II on-board autopilot (Vaglienti, 2005).

Figure 6. Piccolo II Block Diagram of Internal Components

 17

Figure 7. Piccolo II Airborne Autopilot Unit

The ground-based equipment required to interface and control the airborne unit

include the Ground Station interface, a laptop computer, RC control box, and the UHF

and GPS antennas. The Ground Station software interface, known as the Operator

Interface, ran on a laptop PC and was the primary command and control device. The

aircraft telemetry, GPS tracking, component statuses, and control surface gains were all

available through the Operator Interface. The RC control box ensured the pilot’s ability

to take control of the aircraft at all times. Essentially, it provided a direct pilot-in-the-

loop interface using the Piccolo II autopilot as the RC receiver. Detailed procedures and

instructions on the effective use of the Operator Interface was written and provided

(online) as the Piccolo System User’s Guide Version 1.3.0 from Cloud Cap Technology,

written by Vaglienti et al. (2005). The RC box and the remaining electrical components

required for this system were all collocated in the Ground Station. Figure 8 presents the

entire arrangement of the required ground equipment for the Piccolo II system (Vaglienti,

2005).

 18

Figure 8. Required Ground Equipment (minus the laptops) for the Piccolo II
Autopilot System

An important component used in the implementation of the Piccolo II autopilot

was the Fail Safe Control Relay. This enabled the UAV pilot to simply toggle between

standard RC control and the Piccolo’s manual/autonomous control. Additionally, the Fail

Safe Control Relay switched from the autonomous mode to RC mode, and vice-versa, if

the control signal strengths dropped below predetermined levels. As an example, if the

UAV was under autopilot control and the signal was lost, for any reason, the relay was

activated and RC control was implemented (also, if under RC control and RC signals are

lost, autonomous mode would be engaged). The designers of the fail safe, William J.

Schmoll and Richard Marker of Air Force Researh Labs Sensors Directorate (AFRL/SN),

detail the system in the following:

“The channel 8 output of receiver A goes to the monostable multivibrator 74C221
trigger. The 15k ohm resistor, the 5k ohm potentiometer, and the 0.2 uF capacitor

 19

form the external timing circuitry for the 74C221. The multivibrator is adjusted
by the 5k ohm potentiometer for exactly 1.5 milliseconds. The channel 8 pulse
al goes to the 74C175 flip-flop’s “D” input. When the monostable pulse ends
(goes low) the output of the 74C175 is latched in the state of the channel 8 pulse.
If the channel 8 pulse is longer than 1.5 msec then the 74C175 output will be high
and if shorter than 1.5 msec then it will be low. The output of the 74C175 goes to
the select inputs (pin 1) of the 74C157 data selector chips. If “Select A/B” is low,
receiver A (R/C) is selected and if high the receiver B (autopilot) is selected.”
(Jodeh, 2006)

Figure 9 is a schematic of the Fail Safe Control Relay (Jodeh, 2006).

74C
221

74C
157

74C
157

1DB1

!Q1 Clk
0.2uF

15k

5k

1Q

1

2

3

4

5

6

7

Select

5

6

7

1

2

3

4

5

6

7

8 Select / B8

!E

A1

A2

A3

A4

B1

B2

B3

B4

A5

A6

A7

A8

B5

B6

B7

B8

Select A/B

Select A/B

B In

A In

 14

1

1

 4

 9

16

2

 1
!Clr

2

4

 15

 14

 1

 3Clr 1

8 8

74C
175

12

4

7

9

 2
 5

 11

 13

 3

 6

 10

 2

 5

 11

 14

 3

 6

 10

 13

4

7

9

12

Trigger

Vcc

Vcc

Vcc

Vcc

Multiplexed Outp

Vcc

!E

Vcc

1

2

3

4

15

16

15

16

Jumper

Jumper

Figure 9. Fail Safe Control Relay Schematic

 20

Figure 10 is the block diagram depicting the air and ground avionics and communication
paths (Jodeh, 2006).

R/C ReceiverR/C Receiver
Batteries

Piccolo Autopilot
ControllerPiccolo

Batteries

RELAY SWITCH

Fuselage Receiver
Power Switch

R/C
Transmitter

Ground
Station

SERVOS

AIRCRAFT

OI LaptopManual
Control Box

= Signal Path
= Power Path

Figure 10. Complete Autonomous Flight Setup

2.3.3 – Honeywell HMR2300 Digital Magnetometer

 The key component added for this research was the Honeywell HMR2300 Smart

Digital Magnetometer. Whether simulated or actual, this device allowed the team to

observe the magnetic heading of the aircraft. This was essential in determining the

UAV’s crab angle, which made it possible to continuously estimate the winds. The GPS

telemetry provided the ground track direction, while the magnetometer provided the true

heading of the aircraft – the difference being that crab angle. Measuring 4.2 x 1.5 x

0.876 inches, the Honeywell unit was easily mounted in line with the Rascal’s nose in the

 21

forward portion of the internal equipment bay. Because Cloud Cap Technologies

recommended this specific unit, clear directions were provided in the Piccolo User

Manual to calibrate and integrate the magnetometer with the Operator Interface. Figure

11 is a photograph of the device as provided on the Honeywell website.

Figure 11. Honeywell HMR2300 Digital Magnetometer (Honeywell, 2004)

2.4 – Simulation

 The primary means of preliminary evaluation for any flight testing is through a

complete system level simulation in which the highest fidelity model is desired, if not

required, to produce accurate results. From the simulation data, the researchers can then

make reasonable assumptions on how the test object will behave under real world

conditions. For this project, the proven method of Hardware-in-the-Loop (HITL)

 22

simulation was utilized. Here, the actual device, the Piccolo II autopilot, was placed

directly in the simulation loop. Then, the autopilot interacted with the simulated aircraft

(produced on the provided Piccolo Simulator) as if airborne.

2.4.1 – Hardware in the Loop (HITL)

 As mentioned above, the HITL simulation involved the interaction of multiple

simulated and/or real components, including the Piccolo Aircraft Simulator, the Piccolo

II Autopilot, the Ground Station box, and the Operator Interface. (As a note, due to the

system operational requirements, two desktop and/or laptop computers were employed.)

Figure 12, below, presents a graphical representation of the Hardware in the Loop

Simulation setup in the ANT Center (Jodeh, 2006).

Figure 12. Standard Hardware in the Loop Simulation Setup

The two computers designated for the HITL simulations in the ANT Center were COTS

and of average computing power. One of the HITL computers was used to run the

Operator Interface while the other was used to run the aircraft simulation. The Operator

Interface allowed the autopilot settings to be viewed and/or altered, as well as presenting

 23

a bird’s eye view of the aircraft, simulated or actual, and its progression along the flight

plan track. The Ground Station box was connected to a serial port on the computer

running the Operator Interface. This connection provides the user with an interface to the

ground station so signals and telemetry could be relayed to the autopilot over a wireless

transmission. The GPS and UHF antennas were plugged into the Ground Station Box.

Next, the Piccolo II was connected to the computer running the aircraft simulation

provided by Cloud Cap through its main harness. The simulation then had the ability to

send the simulated aircraft sensor data to the autopilot unit so as to replicate actual

aircraft motion.

 Additionally, the recommended (by Cloud Cap) flight visualization software

package, “Flight Gear,” was occasionally run on the Operator Interface computer as well.

This program enabled increased situational awareness compared to the top-down view

provided by the Operator Interface. Flight Gear provides three dimensional top, trail,

pilot, or wingman views. Yet, the purpose of the this research was to analyze, and then

better, the 2-Dimensional, cross-track wind flying capabilities of the UAVs; thus, for

most situations, the top view sufficed and the Flight Gear software was not employed.

2.4.2 – Software Development Kit (SDK)

 Cloud Cap Technologies recognized that modifications to the Piccolo II was an

idea that many of its autopilot users might desire. Thus, they provided a Software

Development Kit (SDK), in the form of C++ code, to facilitate such modifications.

During the summer of 2005, AFIT employed Randall Plate, a local college student, as an

intern in the ANT Center. His primary goal was to experiment with the Piccolo SDK.

 24

This work provided important insight regarding as how to efficiently perform

modifications to the Piccolo C++ code and the resultant effect on the autopilot. By the

end of his term, Mr. Platte was able to provide C++ code, with comments, that allowed

the user to interface with the autopilot in real time. Although the code was preliminary, it

established a foundation to build upon for many the current ANT Center UAV projects –

this one included.

 As the Piccolo II operates, it actively creates and logs packets of information that

are transmitted to and from the ground station. The Software Development Kit enabled

the user to essentially intercept, modify, and then send back modified data packets. In

summary, this was how modifications were applied to an operational autopilot unit. In

this case, an initial function was coded to continuously estimated the wind as the aircraft

flew. Next, a series of functions implemented the desired corrections based on those

estimated wind velocities and directions. Finally, a group of functions were used to remit

the data back to the Piccolo II. The effects of those modifications were viewed, in real

time, through the Operator Interface.

2.5 – Flight Testing

2.5.1 – Overview of Flight Test

 The flight testing of any aircraft is an absolute necessity to ensure that the

behavior and performance are within predetermined specifications regardless of whether

the system is totally new or simply modified. This project was no exception, and served

 25

flight tests were conducted to validate the wind finding and correcting techniques as

applied to the proven SIG Rascal 110 outfitted with the Piccolo II autopilot.

 A myriad of organizations have flown and proven the stability and performance of

the SIG Rascal, the autopilot, and the combination of the two. The ANT Center

completed this first step through Capt. Jodeh’s thesis research on the development of

autonomous UAV system (Jodeh, 2006). This allowed for only a cursory check flight of

the aircraft which included basic airworthiness checks by means of “standard maneuvers”

in RC mode followed by a set of autonomous tracking maneuvers. With the enabling

parameters performing as expected, the test conductor and the UAV pilot began the

designated flight tests for that session. Upon completion of the experiment, the test

conductor stopped the Operator Interface program and captured the logged telemetry.

Once back in the lab, that set of data was processed and analyzed. Chapter V details the

specific flight tests and their objectives.

2.5.2 – Flight Test Range

 Consistent with standard protocol for the testing of official government property,

this research testing was planned for and conducted on government land. All test flights

were planned to be flown on Area B of Wright Patterson Air Force Base (WPAFB) in

Dayton, Ohio, specifically, on and around the closed runway 27, located in the southwest

corner of Area B. This area is approximately 1.5 miles in length and one mile wide, with

a 400 foot above ground level (AGL) ceiling. The field elevation was 785 feet mean sea

 26

level (MSL), making the ceiling for flight tests 1185 feet above MSL. This area was also

occupied by other facilities conducting autonomous UAV flight tests.

 Figure 13 is an aerial view of the Area B test site. The approximate boundaries of

the test area are outlined by the heavy, dashed-line trapezoid (Jodeh, 2006).

Figure 13. WPAFB, Area B Flight Test Range

 27

2.5.3 – Ground Equipment

 The test team’s ground equipment was consolidated in a 20- foot trailer, which

then took on the role of a test operations center. An external, gasoline powered generator

provided the AC electricity to power the computers, the Ground Station box, the battery

charging equipment, etc. The UHF and GPS antennae were attached to trailer’s roof as

was an orange windsock. Additional equipment, including folding chairs and tables,

small tool kit, two-way radio headsets, packed comfortably into the trailer. Similarly,

miscellaneous equipment including an RF meter, cones, fire extinguisher, spill kit, first

aid kit, video camera, battery testers, and a handheld GPS unit were staged and stored in

the trailer. Moreover, a 10-12 foot desk was mounted on the interior to facilitate

workstations for the Ground Station, computers, etc. As opposed to the desktop

computers utilized in the ANT Center’s HITL simulations, the “field” setup for flight test

exploited laptop computers. Figure 14 shows the open rear of the test trailer and the

normal test team which was comprised of four to five members, including the pilot

(contracted from Wyle Laboratories), the test conductor, and spotters/observers (Jodeh,

2006).

 28

Figure 14. Ground Equipment and Test Team Conducting a Flight Test

2.5.4 -- Criteria for Flight Test of UAVs at WPAFB

 Due to proximity of the test range on Area B to other facilities, government and

civilian, certain flight test restrictions and safety of flight criteria were imposed. The

Configuration Control Board (CCB), Technical Review Board (TRB), and Safety Review

Board (SRB) were administered by AFIT and AFRL personnel, per the Air Force base

regulations to ensure safe operation within controlled airspace. Table 2 lists the

prominent criteria for flight testing in the Area B range.

 29

Table 2. Prominent Criteria for Flight Tests (Jodeh 2006)
Winds Less than 30 mph

Temperature Greater than 40o F
Visibility Greater than 3 Miles

Cloud Ceiling Minimum 500 ft AGL
Airspace Ceiling Maximum 400 ft AGL

GPS Satellites 6 or more visible
Radio Frequency Interference Check
Safety Equipment and First Aid Kit

Pitch, Roll, and Yaw Rate Gyro Operations
Static and Dynamic Pressure Port Operation

WPAFB Control Tower Notification

2.5.5 – Wind Correction Implementation

 Consistent with standard flight test protocol, the wind correction flight tests

conducted were planned in an order that gradually increased test complexity and

challenge. Similarly, testing was begun on a mildly breezy day and worked up to a day

when the winds were 35%-50% of the aircrafts velocity. This limit was deemed suitable

since it is generally accepted that small UAVs would not be able to effectively operate in

an environment with sustained winds of greater than 50% of its normal cruising speed.

2.5.6 – Data Collection and Handling

 At the conclusion of a flight test, the Piccolo’s telemetry was logged, in ASCII

format, in the Operator Interface folder on the respective laptop. The software acquired

and stored 70 parameters that were continuously updated at a selected data rate. The two

data rates available were “Request Slow” at 1 Hz and “Request Fast” at 20 Hz. The rate

 30

chosen by the test conductor was determined by the fidelity required. Additionally, the

individual telemetry files were only created when the Operator Interface was turned off.

 Two methods were used to transform the flight data to usable plots and values.

First, the telemetry file was opened in Microsoft Excel, placing each of the 70 parameters

in its own column. At this point, the analyst would delete any unnecessary rows and

columns in order to reduce the file size. For example, a half an hour flight test at the

“Request Fast” rate would produce an Excel file with approximately 60,000 rows by 70

columns, or 4,200,000 data cells. Trimming the excess parameters could reduce the

number of data cells by as much as two-thirds. The modified Excel file was imported

into MATLAB and saved as a MATLAB “.mat” file. This new file was then uploaded

into a program which displayed two- and three-dimensional plots of the aircraft’s actual

track in relation to the desired. Additional plots to show various flight measurements and

wind values, created by the author, supplemented this program. The program is attached

in the Appendix C.

 A second method of data acquisition was developed during the course of this

research. The SDK was manipulated such that it would output only the desired telemetry

in a Microsoft Notepad file. Then, similar to above, this file could be imported to either

Excel or directly into MATLAB to be exploited by the same plotting program discussed

above. Table 3 lists the 70 parameters available through the SDK.

 31

Table 3. Available Telemetry through the Piccolo SDK
1. Clock [ms] 25. Static [Pa] 49. Surface7 [rad]
2. Year 26. Dynamic [Pa] 50. Surface8 [rad]
3. Month 27. P [rad/s] 51. Surface9 [rad]
4. Day 28. Q [rad/s] 52. P_Bias [rad/s]
5. Hours 29. R [rad/s] 53. Q_Bias [rad/s]
6. Minutes 30. Xaccel [m/s/s] 54. R_Bias [rad/s]
7. Seconds 31. Yaccel [m/s/s] 55. AP_Global
8. Latitude [rad] 32. Zaccel [m/s/s] 56. PDyn_Stat
9. Longitude [rad] 33. Roll [rad] 57. Alt_Stat
10. Height [m] 34. Pitch [rad] 58. Turn_Stat
11. Ground Speed [m/s] 35. Yaw [rad] 59. Flap_Stat
12. Direction [rad] 36. LeftRPM 60. Track_Stat
13. Status 37. RightRPM 61. PDyn_Cmd [Pa]
14. InputV [V] 38. WindSouth [m/s] 62. Alt_Cmd [m]
15. InputC [A] 39. WindWest [m/s] 63. Turn_Cmd [rad/s]
16. FirstStageV [V] 40. WindError [m/s] 64. Flap_Cmd [rad]
17. FiveDV [V] 41. RSSI 65. Track_Cmd
18. FiveAV [V] 42. Surface0 [rad] 66. MagHdg [rad]
19. CPUV [V] 43. Surface1 [rad] 67. SonicAlt [m]
20. GPSV [V] 44. Surface2 [rad] 68. AckRatio [%%]
21. BoxTemp [C] 45. Surface3 [rad] 69. ServoV [V]
22. Altitude [m] 46. Surface4 [rad] 70. ServoC [A]
23. TAS [m/s] 47. Surface5 [rad]
24. OAT [C] 48. Surface6 [rad]

2.6 – Chapter Summary

 This chapter provided a review of the equipment utilized and the overarching

techniques applied to conduct this research program. The SIG Rascal 110 powered with

the O.S. FS120S-III carried the Piccolo II autopilot. The avionics package included a

sophisticated 8 channel transmitter and receiver produced by Futaba, the autopilot

components, and the fail safe relay. The flight tests were conducted on Area B of Wright

 32

Patterson AFB in Dayton, Ohio and adhered to all of the rules and regulations outlined.

Additionally, flight data was analyzed using Microsoft software coupled with MATLAB.

 33

III. Development of the Wind Correction Approaches

3.1 – Overview

 The overall impact on flight path trajectory effects due to wind on small UAVs

were best viewed from overhead. This perspective allowed for ground tracks, airborne

magnetic headings, correction angles, and relative distances to be determined using basic

trigonometry. The bulk of mathematics behind this research utilized manipulations of

sin/cosine theory, Pythagorean Theorem, and basic Dynamic Inversion.

3.2 – Real Time Wind Estimating

The first step was to determine the wind heading and velocity so the aircraft’s

heading, velocity, flight path, etc. could be adjusted to compensate for the wind. The

Piccolo II autopilot allowed the operators to not only view, but capture (via the SDK)

many of the variables required in this compensation. However, one limitation of the

Operator Interface was that the physical display only showed the resulting ground track

of the aircraft. The difference in the aircraft magnetic heading and the resulting ground

track produced an angle, known as the “crab” angle. Thus a separate scheme was

required to determine the crab angle.

The basic Piccolo II autopilot only displayed wind estimates at intermittent

updates or when designated “Wind Interval Turns” were commanded. In real world

applications, it is rare for the winds aloft to be constant, especially so in an urban canyon

environment. Therefore, the need for a real time, updating wind estimate became

abundantly clear. Fortunately, Cloud Cap recognized issues such as this and provided

their SDK to allow modifications or additions to the autopilot’s functions. Thus, the

 34

following equation methodology was implemented in the SDK using C++ programming

to provide a real time wind estimate.

Using a vector component break down, three aspects to the flight path of the

UAVs were identified. The aircraft itself had two velocity vectors: one based solely on

the airborne vehicle’s orientation and the other being the ground track. Each of these had

velocity magnitude and angle components. The presence of wind was then characterized

as the difference between the two aircraft velocity vectors. Equations 1 and 2 show that

the aircraft’s heading (MAGθ) and true airspeed (TASV) plus the wind effects (WV and Wθ)

will result in the overall ground track (GV and Gθ). Note, all angles, θ, were measured

clockwise from North = 0°.

sin() sin() sin()TAS MAG W W G GV V Vθ θ θ+ = (1)
cos() cos() cos()TAS MAG W W G GV V Vθ θ θ+ = (2)

Grouping all of the aircraft components on one side of these equations resulted in

Equations 3 and 4. These were used as the base equations to begin the manipulations for

solving the real time wind velocity and heading.

sin() sin() sin()W W G G TAS MAGV V Vθ θ θ= − (3)
cos() cos() cos()W W G G TAS MAGV V Vθ θ θ= − (4)

 To simplify the equations, the substitutions shown in Equations 5, 6, 7, and 8
were made.

Wx V= (5)

cos()Wy θ= (6)

cos() cos()G G TAS MAGa V Vθ θ= − (7)
sin() sin()G G TAS MAGb V Vθ θ= − (8)

 35

 Inserting the new variables, Equations 3 and 4 reduce to Equations 9 and 10.

 ()()a x y= (9)
21b x y= − (10)

The next step was to simultaneously solve for “x” and “y.” These two equations with

two unknowns were easily solved using software such as MATLAB or by hand using

classical mathematics. Equations 11 and 12 are the results.

2 2x a b= + (11)

2

2 2

ay
a b

=
+

 (12)

Finally, the original wind variables were reinserted, solving for the wind velocity and

wind heading.

2 2
WV a b= + (13)

2
1

2 2cos ()W
a

a b
θ −=

+
 (14)

3.3 – Turn Rate Approach Equations

 Now that the wind variables were known the correction that needed to be applied

to the aircraft to adjust for the wind could be deduced. As will be shown, there is more

than one approach to implementing these corrections.

The most direct method utilized the mathematical principle of “Dynamic

Inversion” to solve for a new aircraft velocity, 2TASV , and heading, 2MAGθ , which could

then be commanded through the Piccolo II to compensate for the wind. The dynamic

 36

inversion principle essentially backs out a desired command based on of a known output

variable. In this case, the output variables, WV and Wθ , were solved for using the known

input quantities, which were extracted from the Piccolo’s telemetry. The desired ground

track, a known value, and the wind variables, known parameters, were combined to back

out the new inputs. Essentially, the end result is that the ground track was known and the

corresponding inputs which would provide that desired output were then reverse

engineered. The following procedure outlines this process.

Once again, Equations 1 and 2 were the baseline from which to start the

calculations. However, this time, the winds are known based on the previous section and

the aircraft’s true airspeed and magnetic heading values required (to be commanded) to

counteract the wind need to be solved for. These new values were denoted with an

underscore “2.”

2 2sin() sin() sin()TAS MAG W W G GV V Vθ θ θ+ = (1)

2 2cos() cos() cos()TAS MAG W W G GV V Vθ θ θ+ = (2)

The values being solved for were then isolated, resulting in Equations 15 and 16.

2 2sin() sin() sin()TAS MAG G G W WV V Vθ θ θ= − (15)

2 2cos() cos() cos()TAS MAG G G W WV V Vθ θ θ= − (16)

As in the case of the real time wind estimating, a similar change of variables was done to

simplify the terms.

2 2TASx V= (17)

2 2cos()MAGy θ= (18)

sin() sin()G G W Wd V Vθ θ= − (19)
cos() cos()G G W Wc V Vθ θ= − (20)

 37

The reduced equations were represented by Equations 21 and 22, below.

 2 2()()c x y= (21)
2

2 1d x y= − (22)

The solutions for the non-linear, simultaneous equations above were determined using

MATLAB and hand calculations, just as before.

2 2

2x c d= + (23)
2

2 2 2

cy
c d

=
+

 (24)

Replacing x2 and y2 with the original variables, the new true airspeed and magnetic

heading were solved using Equations 25 and 26. This gives expressions for the true

airspeed and magnetic heading as a function of the measured winds and desired ground

track. Thus, commanding the UAV to fly 2TASV and 2MAGθ will produce the desired ground

track.

2 2
2TASV c d= + (25)

2 2cos()MAG a yθ = (26)

 Ideally, this approach of solving for the new aircraft heading and airspeed would

provide the most direct manner in which to implement new aircraft control commands.

Initially, it seemed straightforward to continuously input these two new values to the

Piccolo II, creating an updating correction. The new heading would be input as a turn

rate, hence the name “Turn Rate Approach,” and the airspeed would be commanded as a

dynamic pressure. However, as will be detailed in section 3.6, the implementation of a

 38

new airspeed and magnetic heading through the SDK created barriers that were beyond

the scope of this thesis.

3.4 – Updating “Rabbit” Waypoint Approach

The second approach to wind effects correction was referred to as Updating

“Rabbit” Waypoint Insertion. The methodology took the real time wind values

determined above and attempted to insert a new, updating waypoint that would be offset

from the original. The aircraft would then be commanded to fly to the adjusted waypoint;

however, due to the wind drift it would never reach that point and instead end up at the

original, targeted waypoint. The process below provides the framework for the “Rabbit”

waypoint placement approach.

To begin with, the relative, horizontal distance, in meters, between the aircraft’s

current position and the current waypoint was required. The waypoints, as well as the

aircraft’s position, were provided in Latitude/Longitude/Altitude (LLA) format.

Therefore, both positions were first converted to East/North/Up (ENU) coordinates using

the preexisting code in the SDK. So, if D was defined as the straight line, ENU distance

between the aircraft’s location and current waypoint. Then inserting Equations 27 and 28

into the Pythagorean Theorem, the horizontal distance was determined and presented as

Equation 29.

/East A C East WyptA ENU ENU− −= − (27)

/North A C North WyptB ENU ENU− −= − (28)

2 2D A B= + (29)

 39

The overarching goal, or perhaps better stated as the “anti-goal,” of the “rabbit” was for

the UAV to continually chase the rabbit, but never actually catch it. To implement this

aspect the new waypoint was repeatedly placed at a distance greater than “D.” Next, the

bearing, or angle, (from the aircraft) of the new waypoint had to be determined. This

angle would not only depend on the real time wind velocity and direction, but also in

which Cartesian quadrant the aircraft was located with respect to the original waypoint.

The following set of equations progress through the operations required to not only find

the correct angle and distance of the “Rabbit,” but also place it using the correct ENU

coordinates.

If (Gθ > 0 && Gθ ≤ 90);

angle_deg = Gθ - 90; (30)
abscos = Dcos(angle_deg) (31)

abssin = Dsin(angle_deg) (32)

East NewWyptENU − = /East A CENU − + abscos; (33)

North NewWyptENU − = /North A CENU − + abssin; (34)

If (Gθ > 90 && Gθ ≤ 180)

angle_deg = Gθ - 90;
abscos = D cos(angle_deg)

abssin = Dsin(angle_deg)

East NewWyptENU − = /East A CENU − + abscos;

North NewWyptENU − = /North A CENU − - abssin;

If (Gθ > 180 && Gθ ≤ 270)

angle_deg = Gθ - 270;
abscos = D cos(angle_deg)

abssin = Dsin(angle_deg)

 40

East NewWyptENU − = /East A CENU − - abscos;

North NewWyptENU − = /North A CENU − - abssin;

If (Gθ > 270 && Gθ ≤ 360)

angle_deg = Gθ - 270;
abscos = D cos(angle_deg)

abssin = Dsin(angle_deg)

East NewWyptENU − = /East A CENU − - abscos;

North NewWyptENU − = /North A CENU − + abssin;

These procedures should then place the new “rabbit” waypoint in the correct spot to ploy

the aircraft into adjusting for the real time wind.

3.5 – Wind Corrected Sensor Pointing

Assuming an efficient wind correction factor to the UAVs flight path, the aircraft

would neatly track any predetermined waypoint-to-waypoint course. However, another

wind related issue must be considered in order to provide a worthwhile attempt at real

time wind correcting. The UAVs being exploited in the hostile, urban canyon

environments are very small. Due to there size and payload restrictions any sensors,

video or otherwise, must be equally small in both volume and weight. For this reason,

most systems deployed on the aircraft do not have the ability to gimble the sensor head.

Thus, even if the ground track of the aircraft is properly corrected, the UAV’s nose will

still “crab” into the wind. Therefore, the sensors would not be pointing forward, along

the ground track, and would have the distinct possibility of not surveying the target, even

if the UAV flew directly toward or over it, jeopardizing mission success. Thus, another

 41

approach is presented that focused the wind corrections on the pointing direction of the

on board sensors as opposed to the flight path of the UAV.

Viewing the UAV from the side, a right triangle can be constructed with the three

sides being, the line of sight (LoS) distance for the sensor, the current altitude of the

vehicle (Alt), and the horizontal distance the sensor projects (Horiz). Knowing the

current aircraft altitude via the SDK, and assuming the sensor mounting angle, Sensorθ ,

from the horizontal is known, the line of sight distance was determined, as is shown in

Equation 36.

(_)cos()SensorLoS Dis Altθ = (35)

_
cos()Sensor

AltLoS Dis
θ

= (36)

Now that the “LoS” and “Alt” variables were known, the horizontal distance that the

sensor projected was found using Equation 38. As a check, with a Sensorθ of 45°, the

altitude and the horizontal distance should be the same value, and they are.

2 2_LoS Dis Alt Horiz= + (37)

2 2_Horiz LoS Dis Alt= − (38)

Next, the bird’s eye view in Figure 15 must be taken into account in order to determine

the appropriate offset for the UAV to fly.

 42

Figure 15. Top View of the UAV with the Adjustment Parameters Defined

The horizontal distance, “Horiz,” now became the hypotenuse in a new right triangle as

shown above. The other two sides of that triangle were the left/right (along the ground

track) and up/down (perpendicular to the ground track) distances from the UAV to the

sensor footprint. These two distances are the adjustments in the UAV’s position required

to put the sensor footprint at the current position of the UAV. These two values were

represented as Equations 40 and 41.

Crab G Magθ θ θ= − (39)
_1 ()cos()CrabAdjust Horiz θ= (40)
_ 2 ()sin()CrabAdjust Horiz θ= (41)

θCrab

 43

Once these adjustments were known they would then be added/subtracted to the original

waypoint/target ENU location; thus, providing an offset flight path that allowed for the

sensors to survey the target, even under non-negligible wind conditions.

3.6 – Wind Correction Implementation

 The implementation and integration of modifications onto an existing platform is

a challenge equal to the development of the modification itself. Without proper

integration, the entire project becomes purely academic. As with most real world

projects, this process proved to demand the bulk of the man-hours invested in the

research. On the other hand, the attempts at executing the wind corrections resulted in

the majority of the useful research.

 3.6.1 – Real Time Wind Estimating

 The incorporation of the real time, updating wind estimation was fairly

straightforward and successful. The Equations presented in section 3.2 were directly

input into the C++ code with minimal issues. Because the Piccolo’s telemetry packets

were only used to passively read off information, the wind determination scheme was put

into operation within a few days. Figure 16, below, is a screenshot example of the real

time, updating wind estimates of a simulated UAV flight.

 44

Figure 16. Screen Capture of the Piccolo SDK Executable

For most laboratory tests, the simulated wind input was 5 meters per second directly from

the south. As will be shown, the results were within a reasonable precision (10%),

especially when considering the simulation program induced random gusts. One primary

concern with the wind finding code was the use of the arccosine math function used in

Equation 14. Unfortunately, this function does not properly account for the sign

conventions associated with the complete Cartesian coordinate system from 0° to 360°.

Because of cosine/sine characteristics, if the data point was in the second, third, or fourth

Cartesian-quadrants the appropriate applications of negative signs would not occur when

implementing “arccosine.” Fortunately, a two argument arctrangent function has been

developed for math programming, called “atan2,” which utilizes the proper sign

characteristics of the tangent function throughout all four Cartesian quadrants. Therefore,

Equation 14 was adapted to Equation 42, shown below.

1tan ()W
b
a

θ −= [rad] (42)

 45

Variables “a” and “b” were the same as those in Equations 9 and 10, respectively. In the

C++ code provided in Appendix B, this wind finding function is called

“WindCorrection.” With this modification, the wind velocity and heading became a real

time, viewable flight parameter that could be used to implement wind correction

commands to the Rascal 110.

 3.6.2 – Implementing the Turn Rate & Updating “Rabbit” Waypoint
 Approaches

Turn Rate Approach

A high proportion of time put into this thesis was spent attempting to implement

these two approaches at wind correction for the UAV’S flight path. Essentially, both of

the approaches attempted to modify the current UAV ground track to reduce its error in

relation to the predetermined waypoint-to-waypoint path.

The first, turn rate, was to modify the aircraft magnetic heading, using updating

turn rate commands, to directly affect the flight path. The basic idea was to directly

command the new heading and TAS values at each time step. There was a time delay

from when the wind affected the UAV to when the calculations and new parameters

could have been uploaded back to the aircraft. However, with the request fast mode

selected, this delay was under one second, which was considered negligible. This method

would have then provided a close to real time heading and velocity adjustment. The

obstacle then became sending the information back to the Piccolo II. Through this

research, it was determined that the Piccolo II autopilot is initially uploaded with a set of

waypoint data and then the system automatically attempts to fly the direct path

 46

connecting subsequent waypoints. The system did not continuously send the waypoint

information. So, when a new turn rate command was pushed through the system, via

SDK, that command overruled all previous information and the aircraft only flew that

turn rate. As an example, if the UAV was flying from waypoint 1 towards waypoint 2 at

a heading of 270° and a command of 280° was required, the aircraft would be sent a turn

rate command until the heading changed by 10°. Yet, instead of being able to command

that 10° of turn and then returning to the predetermined flight plan, the operator would

then have to continuously send turn rate commands; essentially, negating any waypoint

tracking capabilities of the Piccolo II and attempting to fly the aircraft solely based off of

turn rates. Now, aircraft control purely through turn rates has been proven to be a viable,

and quite desirable, method. However, it was outside the intended scope of this thesis to

alter the primary control method of the autonomous flight, but this topic may provide a

worthy follow-on project as turn rate commanding carries with it numerous advantages.

Because of the known potential for progress in this area, the math and

programming schemes required were kept in the attached SDK code. The mathematical

background was formulated with the initial attempts at implementation represented. In

addition to the “WindCorrection” function, the turn rate commanding algorithm utilized

the “HeadingAdjust” and “AirspeedAdjust” functions. In “HeadingAdjust,” the

difference between the new, desired magnetic heading and the current magnetic heading

provided the necessary adjustment. Then, this differential was divided by a time factor so

that the turn rate command would not exceed a maximum rate of 20°/s. Finally, this rate

was sent to the autopilot. With a completed algorithm, this command would be

continuously updated, driving the aircraft to a correct heading.

 47

As previously mentioned, a new TAS was determined from the “WindFinding”

function as well. These alternate airspeed commands were successfully transmitted via

the “AirspeedAdjust” function, located just below the “HeadingAdjust” function in the

SDK. The reason the airspeed could be continuously updated was that the Piccolo II

autopilot does not employ a time-based flight plan. The aircraft was only instructed to fly

to a certain latitude/longitude location, altitude, with a specific airspeed, as opposed to

intercepting a waypoint at a designated time interval. This allowed for the UAV to fly as

fast or slow as aerodynamically possibly and for the operator to modify this flight

parameter without interrupting the chosen flight plan.

“Rabbit” Waypoint Approach

 Once it became clear that the turn rate approach was out of the scope of this

research project, a second method of implementing real time wind correction was

pursued. The method involved inserting an “updating waypoint” that was precisely

placed such that if the UAV attempted to fly directly to this new waypoint it would

actually end up at the original, desired target because of the wind effects. The new

waypoint location would constantly be changing to counter variable winds and gusts.

Additionally, the UAV would never actually reach the new waypoint, hence the name

“rabbit.” This enabled the operator to designate a distance from the original waypoint at

which the “rabbit” function would be ceased, allowing the aircraft to initiate the

switching logic to continue to the next predetermined target. Once the UAV was tracking

the next waypoint, the “rabbit” would resume, repeating the process.

 48

 This approach afforded the desired result of a real time wind correction, but

without having to alter the primary means of autonomous control (waypoint guided

autopilot). Initially, the team was hopeful that this provided the solution. However, after

implementing the algorithm in the SDK and running HITL simulations, it was observed

that a key aspect of the Piccolo’s operation prevented the efficient implementation.

Cloud Cap’s device was actually more of a flight path (track) follower than a true

waypoint hunter. In a pure waypoint based system, the aircraft would designate where

the target was located and then point the aircraft’s nose directly at it, resulting in a

Zermelo (Bryson, 1975 and Bryant, 1998) shaped path if wind was present. If the device

had the capability to correct for wind, then a crab angle would be implemented and the

UAV would fly a relatively straight path as long as the wind was constant. However, this

is not exactly how the Piccolo II operated. It was established that the Piccolo II

calculates a straight line path based on the position of the previous and next waypoints

(its relative position and the position of the target). It then implements its own ground

track algorithm in order to remain on that straight line path. Unfortunately, this algorithm

was not as precise as would have been desired so an attempt was made to implement the

above described wind correction artificially turning off the Picollo II’strack following

mode and exploit a pure waypoint tracking method. When transmitting a new waypoint

using the SDK, the operator was required to first set the waypoint location, and then send

a second signal to track that waypoint. Examples, pulled directly from the wind

correction code, of these C++ commands are provided below:

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69);

m_pComm->SendTrackCommandPacket(IDbrent6, 69, false);

 49

The “SendWaypointPacket” command was fairly straightforward with its inputs being the

physical autopilot identification number, a structure with the waypoint latitude, longitude,

and altitude information, and then the desired waypoint number. The

“SendTrackCommandPacket,” which sent the command to actually track the new

waypoint, contained a twist with the “true/false” statement included as an input. The

provided SDK “html” help files stated that “The third parameter (true/false) indicates if

the vehicle should fly to the waypoint along the preceding track segment, or if it should

go directly to the waypoint, using its current position as the starting point.” Thus, setting

the parameter to “true” would command the UAV to go directly to the waypoint and a

“false” would command the UAV to track the along the previous track in order to reach

the new waypoint. At this point, the “true” setting appeared to be the solution, as the

aircraft would fly directly to the new waypoint undergoing the effects of the wind and

resulting at the original, desired location. However, after conducting tests with varying

wind and waypoint locations it was determined that the Piccolo II software still created a

direct path from the UAV’s current position to the new waypoint. So, the aircraft would

employ its own ground track control in order to remain along that straight line flight path

even though this was not clearly displayed through the Operator Interface. Unfortunately,

this prevented further development of the concept. Thus, it was determined that the team

could not “dumb down” the Piccolo II autopilot and have the aircraft fly a “Zermello”

type flight path using the SDK. This was not to say that it would not be possible.

The two approaches presented above, turn rate commanding and updating

“rabbit” waypoint, are believed to be completely valid methods for applying a robust

wind correction algorithm to the Piccolo II autopilot controller. The math behind the

 50

corrections provided for solid theory. However, due to the factors described, the team

was not able to effectively implement these approaches. Without a working program to

effectively adjust the flight path of the Rascal aircraft for real time winds the results of

the research would have been paltry. Therefore, a completely new perspective was taken.

 3.6.3 -- Wind Corrected Sensor Pointing

 As aforementioned, if an aircraft is adjusting for wind or flying a straight line

ground track in the presence of wind, then a crab angle is required for accurate navigation

along a desired flight path. However, there exists a serious problem when these heading

modifications are put in place. If the sensor gathering the information is situated such

that it is pointed at a fixed angle off the nose of the aircraft and cannot gimble, there is a

strong possibility that the sensor would never survey the target even though the aircraft

flew precisely where it was supposed to. The small UAVs utilized in current operations

have very little payload capabilities and can only carry a small, lightweight sensor system

that will not be able to gimble. Thus, taking an alternate method to correct for wind, a set

of updating and offset waypoints were calculated and then inserted and tracked such that

the sensor was correctly pointed as discussed in section 3.5. In order to implement the

new waypoints, a few modifications to the equations in section 3.5 were required.

Specifically, an angle, θ1, was determined as the angle of the current track

segment between the previous and next waypoints. This is shown in Equation 43.

Pr1
1

Pr

tan ()North CurrentWypt North evWypt

East CurrentWypt East evWypt

ENU ENU
ENU ENU

θ − −−

− −

−
=

−
 (43)

From this angle, it’s complement was determined using Equation 44.

 51

1() ()
2Star absπθ θ= − [rad] (44)

Equation 44 represented the transformation from the North=0° reference frame to the

East = 0° frame. This value was then the angle at which the new waypoint was to be

placed off of the original, assuming 0° was off the horizontal. The corresponding ENU

east and north distances away from the original waypoint were calculated using

Equations 45 and 46.

sin_from_next (_ 2)sin()StarAdjust θ= − (45)

cos_from_next (_ 2)cos()StarAdjust θ= − (46)

The reason for the negative signs was that the offset for the new waypoint had to be

opposite in direction from the projected distances of the sensor. To then find the total

ENU coordinates of the new, updating waypoint, Equations 47 and 48 were utilized.

_ cos_from_nextNew Wypt East Old Wypt EastENU ENU− − −= + (47)

_ sin _from_nextNew Wypt North Old Wypt NorthENU ENU− − −= + (48)

For the purpose of allowing this new point to be continuously updated, the C++

function was written such that the above process would be repeatedly conducted as long

as the UAV was within some distance, in meters, from the original target. The updating

process is “turned on” for each waypoint when the ground distance between the UAV and

the original waypoint was less than 400 meters and was “turned off” when the distance

between the UAV and the new, adjusted waypoint was less than 100 meters. This logic

to turning on and off the code was applied for two primary reasons. First, the “turn on”

parameter allowed for maximum time and distance that the aircraft would fly along the

 52

predetermined track. It was reasoned that the most time spent on track was desirable

because of unknown factors off track. Additionally, the aircraft only needed to be

adjusted in the final approach to the target in order for the sensors to capture that target.

In a real world environment, to have the UAV fly off track for more time than was

necessary would be allowing the introduction of more problems (e.g. collisions with fixed

obstacles or detection by an enemy). At an altitude of 350 meters, which was where most

tests were conducted, the sensor would project 350 meters in front of the aircraft if

mounted at a 45°, which was the assumed angle for all testing in this thesis. Thus, the

400 meters criterion was chosen as the distance to begin the flight path modifications.

The second reason dealt with the “turn off” parameter. At the point where the UAV was

within a hundred meters of the new waypoint, the sensors would have already surveyed

their target due to the field of view of the sensor. So, to avoid the “rabbit” situation

described previously were the aircraft never actually reached the target, the code simply

commanded the system to proceed to the original waypoint at that 100 meter mark. The

SDK code accomplished this task by utilizing an “if/else” command on the

“SendTrackCommandPacket” signal. The complete function is included as part of the

SDK located in Appendix B.

As a note, all of the original flight plan waypoint information was “hard-coded”

into the SDK. This does not provide for the best coding technique, but was required

because the team was unable to capture the waypoint list and its corresponding data from

the Piccolo’s streams. However, “in the field” this may not be a complete disadvantage

because the waypoints could be placed directly over any targets and the resulting latitude

 53

and longitude information should be known. The operator could then simply append the

code.

3.7 – Chapter Summary

 This chapter provided a detailed look at the mathematics behind the three

different techniques of wind correction evaluated during this research. Although the

math and theory are believed to be solid, the implementation of that theory using the

Piccolo II autopilot presented themselves as the road blocks. The two most conventional

means at wind correction could not be implemented within the scope of this activity.

However, the third, and operationally more significant, sensor pointing wind correction

was successfully tackled and implemented.

 54

IV. HITL Test Results and Analysis

4.1 – Overview

 Chapter IV presents the results the research conducted during this thesis. Section

4.2 demonstrates the baseline ground track control capabilities of the Piccolo II autopilot

system, the real time wind estimations developed in the previous chapter, and the

corresponding ground position of the center of the sensor footprint. The three types of

flight paths evaluated were a straight line point-to-point, a circular orbit, and the common

racetrack pattern. Each of these was conducted with varying parameters. Section 4.3

displays the results of similar flight paths, but with flight path effects of the modified

SDK code. Corresponding results from actual flight testing are presented in Section 4.4.

The last section of the chapter (section 4.5) summarizes the results. As a note, it was

assumed that the sensor was placed at a 45° mounting angle.

4.2 – Standard HITL Simulated Flight Tests with Real Time Wind Estimating

 The most basic and essential flying characteristic for an aircraft is the straight and

level flight path. Thus, the first simulation was a simple point-to-point flight path of

three waypoints in a straight line. The simulated wind was set to 5 m/s from the south,

almost a direct crosswind, while the UAVs commanded TAS was 20 m/s. These values

represented a realistic flight condition with a moderate wind. The plot of this test is

provided as Figure 17.

 55

0 500 1000 1500 2000 2500 3000
1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 17. Standard UAV & Sensor Tracks for a Point-to-Point Flight Path

As shown and consistent with the technical discussions in Chapter 3, it became evident

that despite precise ground track following, the sensor was tracking roughly 75 meters off

of the desired position. The “crab” into the northerly wind, which results from the

Piccolo II autopilot flying a straight ground track in the wind, caused the sensor footprint

to be a significant distance off course.

 Figure 18 and Figure 19 present various flight parameters corresponding to the

previous graph. The speeds, altitude, magnetic heading, wind characteristics, and cross

track distance were extracted off from the Piccolo’s telemetry and then written to a data

log using the SDK. The first four plots were primarily output as a “sanity check” for the

 56

flight. It was pre-determined that most irregularities would be evident through

observation and inspection of those four characteristics.

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

15
20
25

System Time [s]

TA
S

 [m
/s

]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

340
350
360

System Time [s]

A
lt

[m
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 18. Various Flight Characteristics for the Standard Point-to-Point Flight.

 57

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

0

10

20

System Time [s]

W
in

d
V

el
oc

ity
 [m

/s
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 19. Wind Estimations & Cross Track Distance.

The real time wind velocity and wind heading estimations were logged from the SDK

using the equations developed in Chapter 3. The wind characteristics in the HITL

simulation were commanded directly from the simulation input values and were therefore

considered constant (there was a turbulence setting, but this was kept at the “light” setting

for all tests). However, the results from the updating wind estimations in Figure 19 were

not always constant in either magnitude or heading. While these disturbances were not

initially expected, the majority of the data still provided information of sufficient quality

for a practical analysis. For instance, if the spikes were removed from the wind velocity

plot, the average wind velocity was about 5 m/s. An analysis indicated the cause of the

spikes. As the aircraft made large direction changes two issues arose: The first was that

 58

the SDK calculations consistently lagged the actual aircraft position by one time

increment. The second problem played off the first - as large heading changes occurred,

the required “crab” angle would change at a significant rate. Because the code lagged

behind the true position, when the computer caught up with the position it appeared as a

large spike/step in that last transmission time period. Upon initial inspection, the wind

heading plots appear to vary widely, but in reality they follow the same trend as the wind

velocity plot. It is important to remember that a wind heading of 1° is essentially the

same as a heading of 359°, validating the results. The airspeed as a function of time plot

also displayed spikes. These were most likely due to significant heading changes as the

UAV switched waypoints, and driven by rapid transitions from a head wind to a tail wind

condition. The Piccolo II system simply cannot react instantaneously to such rapid

changes and therefore there was an associated lag.

 Figure 20, Figure 21, and Figure 22 depict the second test, which was a circular

orbit about a stationary point at constant velocity and with a constant wind.

 59

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 20. Circular Orbit Flight Path with Constant Velocity and Wind

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

14
15
16

System Time [s]

TA
S

 [m
/s

]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

348
350
352

System Time [s]

A
lt

[m
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 21. Various Parameters of the Circular Orbit Flight Path

 60

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0

10

20

System Time [s]W
in

d
V

el
oc

ity
 [m

/s
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0

50

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 22. Estimated Wind Values for the Circular Orbit

The circular orbit flight path was interesting in that it displayed the Piccolo’s bias when

dealing with winds. As the winds were heading from south to north, it was evident that

the UAV did much better when turning into the wind, i.e. incurring a headwind, as

opposed to a tailwind. This was understandable as the ground speed would decrease and

the aircraft would be able to better navigate at the slower speeds. The cross track

difference between the head and tail winds was only about 50 meters. Having observed

this, one must still recognize that Piccolo II manufacturer did a fairly good job

considering this was a low cost, small scale COTS system. Yet, there were two things to

consider when evaluating the overall performance. First, this was only a simulation, not

the true flight characteristics and, second, with increasing commanded TASs, the cross

track distance grew rapidly.

 61

 The following sets of plots depict the unmodified Piccolo II commanding the

UAV in a race track pattern. At first the aircraft’s velocity was the only parameter

varied. Following those initial conditions, variations in the “Track Convergence” gain

are presented. This gain drives the turn rate loop of the autopilot control software at the

square of the velocity. Through previous research (Jodeh, 2006) it was determined that a

Track Convergence gain of 250 appeared to be an optimal value for the Rascal 110 UAV.

It will be shown that through lowering this value, the aircraft will attempt to stay on, and

return to, the track with increasing aggressiveness. However, the faster convergence did

come with a loss of precision of altitude hold due to more aggressive turning and banking

of the UAV. Figure 23, Figure 24, and Figure 25 present the results of the standard

autopilot commanding the predetermined racetrack pattern at TAS=12m/s, with a wind of

5 m/s from the south, and Track Convergence (TC) =250.

 62

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 23. Race Track Pattern with TAS=12m/s & Wind= 5m/s

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

11
12
13

System Time [s]

TA
S

 [m
/s

]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0
10
20

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

348
350
352

System Time [s]

A
lt

[m
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 24. Various Parameters for the Race Track Pattern at 12m/s and TC=250

 63

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0

5

10

System Time [s]W
in

d
V

el
oc

ity
 [m

/s
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

-50

0

50

System Time [s]C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 25. Wind Estimations & Cross Track Distance

The sensor paths plot revealed that even at the slowest operating speed of 12m/s, the

sensor footprint would remain between 100 and 200 meters off of the ground track.

Fortunately, the physical aircraft tracked the desired path extremely well with maximum

cross track values of less than 50 meters. This appears sufficient for the urban canyon

flight regime. Again, the estimated real time wind values provided adequate depictions

of the current flight conditions.

 The next series of tests were identical to those just described but with variations in

the true airspeed (TAS). In addition to the 12 m/s run, 15 m/s, 20 m/s, and 30 m/s

evaluations were conducted utilizing the same “race track” waypoint locations.

 64

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 26. Race Track Pattern at 20 m/s Track Conv.=250

As expected with the higher velocity, the small aircraft was less capable of precisely

holding the track as shown by the blue line in Figure 26. As a result, the sensor footprint

tracked further off course. Any close contacts with the waypoints and the sensor track

were purely coincidental and would not have occurred with differently spaced points.

With the track convergence gain set at 250, 20 m/s was about as fast as the UAV could

fly any semblance to the race track shape. As shown in Figure 27, at 30m/s an oval was

the best the aircraft could accomplish. However, if the race track had longer distances

between each waypoint the Rascal should have been able to fly an acceptable pattern. As

a baseline test, this provided strong evidence that with a relatively small pattern and a

nominal wind, the aircraft could not be relied upon fly a precise track.

 65

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 27. Race Track Pattern at 30m/s with Track Conv.=250

Because of the issues described above, the remainder of this document will focus

on the 12 m/s and 20 m/s cases. Additional results can be found in Appendix A. These

two airspeeds correspond to two crucial flight situations. The 12 m/s runs represented the

best results and the 20 m/s evaluations were consistent with a common actual flight

condition.

 In an attempt to acquire improved results, the track convergence (TC) gain was

reduced to a setting of 150 and then to 50. The weighted importance of flying the straight

line track between two subsequent waypoints would be increased while the smoothness

of that track and possible altitude criteria would be lessened. The TC variation plots at

12 m/s will be presented first followed by the corresponding results at 20 m/s.

 66

At 12 m/s, Figure 28 displays that the Piccolo II did a very good job at remaining

on track. However, an interesting side effect began to appear. With the lower gain value

for track convergence the aircraft appears to bounce between some designated cross track

bounds, similar to a bowling ball going down a lane with bumpers. This was shown by

the sensor position beginning to waiver left and right, especially along the longer straight

segments. Subsequent figures will bring this side effect into a clearer view. The cross

track distances for the respective 12 m/s runs decreased from a 40 meter maximum to

about a 25 meter maximum. For the urban canyon flight regime initially investigated for

this thesis, such a simple adjustment to the Piccolo II autopilot created a significant

increase in the track following performance.

 67

400 600 800 1000 1200 1400 1600 1800 2000 2200
1200

1400

1600

1800

2000

2200

2400

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 150)

UAV Track
Sensor Track
Waypoint

Figure 28. Race Track Pattern at 12 m/s with Track Conv.=150

Figure 29 was the 12 m/s run at a track convergence gain of 50. This time the blue line

representing the actual aircraft’s position can barely be seen as it is coincident with the

desired track for most of the flight. However, this “scanning” side effect became

excessive. The nose of the aircraft was continuously moving laterally in an attempt to

remain as close to the track as possible. Once again, any points at which the sensor

footprint and the targets were close were coincidental. This result would not be

acceptable for actual flight.

 68

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 50)

UAV Track
Sensor Track
Waypoint

Figure 29. Race Track Pattern at 12 m/s with Track Conv.=50

The 20 m/s run with the track convergence set at 150, Figure 30, showed the

expected decrease in tracking ability when compared with the 12 m/s, but an

improvement over the respective 20 m/s run with the gain set at 250. The quicker

response to return to the track was the most notable change. Because the track holding

was improved, the sensor position better mirrored the track, but the offset was still

present due to the crabbing. The sensor track was also beginning to become jittery, but

not so drastic as to render the condition useless.

 69

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 150)

UAV Track
Sensor Track
Waypoint

Figure 30. Race Track Pattern at 20 m/s with Track Conv.=150

With the track convergence reduced again to 50 in Figure 31, a slight improvement in the

UAV flight path was observed. However, that small improvement was outweighed by

the increased sensor waiving. It is important to notice that despite the decreased tracking

performance as compared to the 12 m/s run, the “induced scanning” was not nearly as

prevalent. The reason for this was that because of the higher velocity, the aircraft was not

as susceptible to the wind. With a wind of 25% percent of TAS as opposed to 41.66% as

with the previous runs, the UAV was able to better handle the aerodynamic forces as the

increased velocity would effectively increase the control powers of the rudder and

ailerons.

 70

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 50)

UAV Track
Sensor Track
Waypoint

Figure 31. Race Track Pattern at 20 m/s with Track Conv.=50

The entire set of baseline tests provided insight into two key objectives of the

research; the real time wind finding results and the sensor pointing issues. The results of

the real time wind finding were considered a success. Despite a few points when the

wind velocity and/or direction would spike, the results were consistently accurate under

various operating conditions and flight paths. Utilizing the wind finding algorithm in the

SDK, a passive procedure was provided that allowed for simple means to view and then

log the wind data, along with numerous other telemetry variables. The results would be

best utilized as a situational awareness aid or to post process data for future test flights.

The full set of results is supplied in Appendix A.

 71

The second set of pertinent data concerned the location that a nose mounted

sensor would actually be pointed when the UAV was in the presence of winds. From the

bird’s eye views of the SIG Rascal’s simulated flight path, it became clear that the

sensor’s footprint would not survey the desired target (waypoint). The tests conducted at

the slowest speeds did hold the track the best, but the aircraft required a crab angle to

accomplish that task; thus, resulting in a lack of coverage of the target by the sensor.

4.3 – HITL Simulation with Wind Correction

 4.3.1 – Turn Rate & Updating “Rabbit” Waypoint Approaches

 As previously mentioned, the turn rate and “rabbit” approaches of track following

improvement were not successfully implemented on the Piccolo II autopilot. However,

the time spent on researching these two possibilities did return some useful results. First,

turn rate commanding was, and still is, a feasible means for wind correction. In the long

run, this is probably going to be the best and most accurate means for wind correction on

small UAVs. Second, the “rabbit” waypoint chasing would be an acceptable means of

real time wind correction, with the added advantage of being easier to implement into the

Piccolo’s SDK or any waypoint guided autopilot. This “rabbit” chasing algorithm is

implemented in the C++ code provided in the appendix – and works for a single

waypoint. Accessing the “list of waypoints” from the SDK would enable full

implementation. Once this Piccolo II specific issue is resolved the rest of the correction

algorithm should be simulated in C++ code.

 72

4.3.2 – Wind Corrected Sensor Pointing

 Using the same predetermined flight paths as in section 4.2, a direct comparison

was made to determine the effectiveness of the implemented wind corrected sensor

pointing. This algorithm used the SDK to actively modify the flight path of the Rascal in

the HITL simulation in an effort to induce an offset that allowed the simulated on-board

sensor to survey the target. For the research, it was assumed that, operationally, a

waypoint would be set directly over any target.

 Figure 32 depicts the same straight line path as in Figure 17, but this time the

SDK code was actively placing a new waypoint at a calculated, ENU distance away from

the original. The graph also connects the corresponding positions between the center of

the sensor footprint and the aircraft. Under the same flight conditions, the center of the

sensor footprint was, at best, 75 meters from the waypoint. As shown in Figure 32

below, this error was reduced to about 10-20 meters when the wind correction was

employed. For this flight condition, that was about a 75% reduction in error. The

updated waypoints clearly provided the necessary corrections so that the sensor could

inspect the target. Additionally, because the code was designed such that the aircraft

would remain on track as long as possible and then jump out to capture the target, there

were no radical direction changes which would have caused drastic elevation changes.

Just as with the results in section 4.2, the complete set of plots is attached in the

appendices.

 73

-500 0 500 1000 1500 2000 2500 3000
1600

1800

2000

2200

2400

2600

2800

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 32. Point to Point at 20 m/s - Adjusted for Sensor

 The straight line, point to point flight track was used as an initial proof of concept

and that the modifications could be implemented efficiently. The more important, and

realistic, test was to implement the code on the race track pattern. This would evaluate

whether or not the new waypoints would be placed correctly given a varying relative

wind. The track convergence gain was set to 250 for all of the simulated tests involving

the waypoint adjustments. The reason for this was that the “induced scanning” could

possibly introduce significant errors in the crab angle calculations. As a note, this gain

 74

could have been increased in an attempt to smooth out the track, but this was not

evaluated.

400 600 800 1000 1200 1400 1600 1800 2000 2200
1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 33. Race Track Pattern at 12 m/s - Adjusted Waypoints

 Figure 33 is a plot of the results from the race track pattern at 12m/s TAS and the

wind of 5 m/s from the south. The error distance between the sensor footprint and the

waypoints was decreased for most of the targets. However, the jittery sensor path was

unexpected. The scanning effect, which was attempted to be avoided by using the

convergence gain of 250, was observed. It was conjectured that this occurred because of

the continuously updating waypoints. At each time step the algorithm updates the

placement of the waypoint. So the waypoint will move slightly left/right, up/down. Thus,

0

6

1

2

3

4
5

 75

with the waypoint moving slightly, the aircraft needed to adjust its heading at each time

step. This resulted in the “induced scanning” effect.

 Starting with waypoint 0 at the bottom right of Figure 33 and counting clockwise,

the results of the wind correction for waypoints 1, 2, and 5 were quite favorable. These

three all had an error of less than 50 meters. Waypoints 0 and 6 had marginal results with

about 100 meters of error. Waypoints 3 and 4 did not have improved results when

compared to the standard Piccolo II. They were not any further away, but the scanning

effect would be undesirable. The tail wind condition encountered as the vehicle turned

towards waypoint 3 coupled with the small track segments proved to be too much for the

Rascal as it was not able to navigate the right hand turn while incorporating the sensor

pointing offset. Longer track segments would have resulted in much better results as the

aircraft would have steadied itself on track before attempting to implement any

modifications. The head wind condition produced closer distances as explained

previously.

 76

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 34. Race Track Pattern at 15 m/s - Adjusted Waypoints

As the TAS was increased in Figure 34, Figure 35, and Figure 36, the results mirrored the

unmodified tests with a reduction in the wavering effect and a gradual reduction in track

following precision. The greatest improvement remained with waypoints 1, 2, and 5 as

they were still the longest track segments. In Figure 36, the resulting UAV track was

actually improved over the unmodified test at 30 m/s. Overall, the data for the race track

pattern were mixed. There were significant improvements in the sensor footprint error

for approximately half of the targets, with the other half having only a marginal or no

improvement. However, it was determined that if all track segments were of sufficient

length the results would have been more desirable throughout.

 77

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 35. Race Track Pattern at 20 m/s - Adjusted Waypoints

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 36. Race Track Pattern at 30 m/s - Adjusted Waypoints

 78

Varied Environmental Conditions Tests

 To ensure some level of robustness in the sensor pointing code, two additional

evaluations were conducted. The first varied the small UAVs altitude. Because the

correction distance was based upon the distance between the center of the sensor

footprint and the aircrafts location, varying the altitude would vary the forward, lead

distance of the sensor footprint. Figure 37 is the graphical representation of this test.

0 500 1000 1500 2000 2500 3000
1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, 20% Lower Alt)

UAV Track
Sensor Track
Waypoint

Figure 37. Point to Point at 20 m/s and 20% Lower Altitude

The Rascal’s lower altitude would mean that the sensor would not be projecting as far

ahead of the aircraft. For this reason, the required offset distance for the new, updating

waypoints should be less. Figure 37 clearly shows that the offset distances were less

 79

drastic and as a result the sensor path actually comes closer to the targets. For this test,

the average miss distance was less than 20 meters. Based off these conclusions, it was

assumed that if the UAV’s altitude was increased that the new waypoint offset distance

would have been increased.

 The second additional test returned the aircraft to the previous 350 meter altitude

criterion, but doubled the wind velocity to 10 m/s. Also, the direction of the wind was

switched 180° to a heading of due south. The outcome, as presented in Figure 38,

showed a reversal of offset direction in addition to an increase in the required offset

distance. These results displayed that the algorithm had the capability to make the

appropriate adjustments based on a current wind velocity and direction.

-500 0 500 1000 1500 2000 2500 3000
1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=10 m/s from North)

UAV Track
Sensor Track
Waypoint

Figure 38. Point to Point at 20 m/s with 10 m/s Wind from the North

 80

Overall, the results of the active waypoint modification using the SDK interface were

pleasing. While the algorithm was not optimal nor completely robust, it definitely

improves the ability to put a sensor on a target using a small waypoint guided UAV

operating in wind.

4.4 –Flight Testing with Wind Correction

 Due to extenuating circumstances, the test team was unable to conduct the actual

flight tests at the Area B test range. The tests were expected to be accomplished and

were thoroughly planned. Official test cards, provided in Appendix D, were produced

and reviewed. Unfortunately, the actual flight tests had to be postponed past the date of

the thesis defense. Therefore, it is recommended that before any future lab testing is

undertaken, a series of flight tests be conducted to validate the results obtained using the

wind correction in the HITL simulation.

 4.4.1 – Real Time Wind Estimating
 - See Appendix E -

 4.4.2 – Turn Rate & Updating “Rabbit” Waypoint Approaches
 - Flight Test Postponed -

4.4.3 – Wind Corrected Sensor Pointing
 - Flight Test Postponed -

 81

4.5 – Chapter Conclusions

 Chapter IV presented the results of the SIG Rascal UAV flight tests performed in

the HITL simulation under the control of the standard Piccolo II autopilot as well as with

the wind correction implemented. A set of baseline flight tests were conducted to

determine the standard characteristics of the simulated aircraft flying in a windy

environment. The findings revealed that the track following characteristics of the Piccolo

II were quite good under the presence of a wind, and that the relative importance of this

trait could be easily adjusted through the track convergence gain. The level of precision

flight illustrated by the autopilot actually led to the primary focus and contribution of this

thesis, the method of wind correction for sensor pointing. The crab angle induced by the

controller to keep the aircraft on track resulted in a fixed sensor, such as a video feed, to

survey areas well off track. To counter this effect, a wind correction was developed and

implemented in the SDK code, which successfully updated and placed new waypoints for

the UAV to track. These new waypoints adjusted the aircraft’s flight path enough to

allow the sensor footprint to cover the designated target. The wind correction worked

well for straight line tracks and for more intricate tracks when flying at lower speeds.

However, with higher speeds the simulated aircraft could not successfully adjust for the

wind and sensor pointing.

One additional point must be factored in. The plots of the sensor footprint only

represented the exact center of that footprint. In actuality, the footprint was hundreds of

meters in diameter due to the field of view. Thus, when the center of the sensor crosses

within 20, or even 50, meters, this was a desirable result. The sensor would then easily

be able to supply adequate coverage of the targets.

 82

V. Conclusions and Recommendations

5.1 – Conclusions

The research accomplished in this thesis project provids a solid foundation for

future evaluation of small UAVs flying under the influence of winds. Initial baseline

tests were performed to discern the standard capabilities of the COTS Piccolo II autopilot

in conjunction with the SIG Rascal 110 aircraft. The physical component setup offered

realistic measurements and data which could easily be applied to an operational

environment. This investigation into wind compensation methods achieved several key

objectives:

1) Collected a baseline set of data which represents the wind compensation

capabilities of a COTS autopilot implemented in a true life setting.

2) Formulation and implementation of a real time update of the current wind

direction and velocity that the aircraft was encountering. Using the SDK interface, the

operator can now view and log the real time winds along the UAVs true flight path. The

output data were not completely without some outliers, but the overall result was

acceptable.

3) Formulation of three differing approaches for employing wind corrections for a

UAV. The first utilized a direct implementation of a new aircraft heading and airspeed

required, based on the wind estimation described above. The second method employed a

continuously updating unattainable “rabbit” waypoint that would mislead the aircraft into

reaching the desired original waypoint. The third technique took a completely different

approach to wind correction and adjusted the aircraft’s flight path based on the position

of a sensor footprint rather than the position of the UAV. It was determined that despite

 83

an accurate flight path along the determined track, the nose of the UAV would not

necessarily be pointed straight ahead. For this reason, the sensor may not survey the

desired target and overall mission effectiveness would not be satisfied without a real time

modification to the original flight plan.

4) Demonstrated the interfacing ability of the SDK software to receive, process,

and then transmit new flight parameters to the on-board autopilot unit. Real time aircraft

telemetry, waypoint data, and track commands were all communicated to and from the

UAV using the C++ program developed with the SDK.

The initial research plan focused on improvement in the precise track following

capabilities of small UAVs. The most challenging flight conditions were reconciled as a

precise track following mission that would be required in the “urban canyon”

environment. While recognizing that operationally deployed autonomous small UAVs

navigating amongst buildings, trees, etc. is a few years in the future, the research

presented on the turn rate and “rabbit” wind correction approaches provides a good basis

from which future studies should be conducted. However, the crux of this thesis

morphed into the active flight path modifications for precise sensor pointing. Research

showed that this topic has not been previously addressed, yet is more applicable to

current operational tasks for small UAVs than those mentioned above. Thus, while it was

important to provide a solid framework for the more conventional methods of wind

corrections, the sensor pointing problem was more pertinent and became the central

focus.

The overall results of the new research focus were promising as the UAV tracked

the predetermined flight paths very well under reasonable TAS and wind conditions.

 84

However, at the higher speeds (>TAS=30 m/s, or with wind components of more than

50% of the TAS) the aircraft could not navigate accurately. These are considered

extreme cases in an operational environment. In the normal flight regimes the

incorporated wind corrections proved generally acceptable. More specifically, the sensor

pointing approach showed that an algorithm could be implemented which would

appreciably remove or reduce the sensor pointing errors. Undoubtedly, with subsequent

research, this algorithm could be developed to be extremely robust and effective across

the small UAV operational environment.

5.2 – Recommendations

 The following recommendations incorporate improvements to the algorithms,

interfacing procedure, and flight testing program along with follow on research guidance

and suggestions.

• Incorporate actual flight tests to support the simulated data. Actual tests

were planned, but did not happen due to operating restrictions beyond the

control of the research team. This data will be particularly pertinent

because indications from previous research (Jodeh, 2006) suggests there

may be differences between simulated and actual flight performance.

• “Hard coding” information reduced the robustness of the current code.

“Soft code” as much information as possible into any computer program.

• Acquire a larger volume of test and evaluation airspace. The bounds set

out for the Area B test flight airspace was quite restrictive in both length

 85

and altitude. In order to fully test and evaluate these UAVs a much larger

space is recommended.

• Follow-on research should include: Implementation of both the turn rate

and “rabbit” approaches, solidifying the sensor pointing method, and

integration of related multiple research topics (e.g. formation flight,

situational awareness, etc.) using the Piccolo SDK.

 86

Appendix A: Complete Set of Simulated Test Results
Baseline Tests

600 800 1000 1200 1400 1600 1800 2000 2200
1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 39. Standard UAV Short Point to Point at 12 m/s with Wind=5 m/s

1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495

x 104

10

15

System Time [s]

TA
S

 [m
/s

]

1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495

x 104

5
10
15

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495

x 104

345
350
355

System Time [s]

A
lt

[m
]

1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 40. Various Parameters for Short Point to Point at 12 m/s

 87

1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495

x 10
4

0

5

10

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495

x 10
4

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495

x 10
4

-50

0

50

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 41. Real Time Wind Estimations for Short Point to Point at 12 m/s

400 600 800 1000 1200 1400 1600 1800 2000 2200
1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 42. Standard UAV Short Point to Point at 15 m/s with Wind=5 m/s

 88

1.505 1.51 1.515 1.52 1.525 1.53

x 104

14
16
18

System Time [s]
TA

S
 [m

/s
]

1.505 1.51 1.515 1.52 1.525 1.53

x 104

10
15
20

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.505 1.51 1.515 1.52 1.525 1.53

x 104

345
350
355

System Time [s]

A
lt

[m
]

1.505 1.51 1.515 1.52 1.525 1.53

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 43. Various Parameters for Short Point to Point at 15 m/s

1.505 1.51 1.515 1.52 1.525 1.53

x 104

0

10

20

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.505 1.51 1.515 1.52 1.525 1.53

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.505 1.51 1.515 1.52 1.525 1.53

x 104

-100

0

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 44. Real Time Wind Estimations for Short Point to Point at 15 m/s

 89

400 600 800 1000 1200 1400 1600 1800 2000 2200
1500

1600

1700

1800

1900

2000

2100

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 45. Standard UAV Short Point to Point at 20 m/s with Wind=5 m/s

1.535 1.54 1.545 1.55 1.555 1.56

x 104

18
20
22

System Time [s]

TA
S

 [m
/s

]

1.535 1.54 1.545 1.55 1.555 1.56

x 104

15
20
25

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.535 1.54 1.545 1.55 1.555 1.56

x 104

345
350
355

System Time [s]

A
lt

[m
]

1.535 1.54 1.545 1.55 1.555 1.56

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 46. Various Parameters for Short Point to Point at 20 m/s

 90

1.535 1.54 1.545 1.55 1.555 1.56

x 104

0

10

20

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

1.535 1.54 1.545 1.55 1.555 1.56

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.535 1.54 1.545 1.55 1.555 1.56

x 104

-200

0

200

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 47. Real Time Wind Estimations for Short Point to Point at 20 m/s

400 600 800 1000 1200 1400 1600 1800 2000 2200
1200

1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 48. Standard UAV Short Point to Point at 30 m/s with Wind=5 m/s

 91

1.566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

x 104

25
30
35

System Time [s]
TA

S
 [m

/s
]

1.566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

x 104

20
30
40

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

x 104

340
350
360

System Time [s]

A
lt

[m
]

1.566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 49. Various Parameters for Short Point to Point at 30 m/s

1.566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

x 104

0

20

40

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

x 104

-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 50. Real Time Wind Estimations for Short Point to Point at 30 m/s

 92

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 51. Standard UAV Circular Orbit at 20 m/s

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

14
15
16

System Time [s]

TA
S

 [m
/s

]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

348
350
352

System Time [s]

A
lt

[m
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 52. Various Parameters for the Circular Orbit at 20 m/s

 93

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0

10

20

System Time [s]

W
in

d
V

el
oc

ity
 [m

/s
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895

x 104

0

50

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 53. Real Time Wind Estimations for the Circular Orbit at 20 m/s

 94

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 54. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 10
4

11
12
13

System Time [s]

TA
S

 [m
/s

]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0
10
20

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 10
4

348
350
352

System Time [s]

A
lt

[m
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 55. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250

 95

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0

5

10

System Time [s]
W

in
d

V
el

oc
ity

 [m
/s

]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

-50

0

50

System Time [s]

C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 56. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 57. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250

 96

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

14
15
16

System Time [s]
TA

S
 [m

/s
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

348
350
352

System Time [s]

A
lt

[m
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 58. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

0

10

20

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

-100

0

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 59. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250

 97

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 60. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

18
20
22

System Time [s]

TA
S

 [m
/s

]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

345
350
355

System Time [s]

A
lt

[m
]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 61. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250

 98

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 10
4

0

10

20

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 10
4

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

-200

0

200

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 62. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South, Track Conv. = 250)

UAV Track
Sensor Track
Waypoint

Figure 63. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250

 99

5.735 5.74 5.745 5.75 5.755 5.76

x 104

28
30
32

System Time [s]
TA

S
 [m

/s
]

5.735 5.74 5.745 5.75 5.755 5.76

x 104

20
30
40

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.735 5.74 5.745 5.75 5.755 5.76

x 104

345
350
355

System Time [s]

A
lt

[m
]

5.735 5.74 5.745 5.75 5.755 5.76

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 64. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250

5.735 5.74 5.745 5.75 5.755 5.76

x 104

0

20

40

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

5.735 5.74 5.745 5.75 5.755 5.76

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

5.735 5.74 5.745 5.75 5.755 5.76

x 104

-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 65. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250

 100

400 600 800 1000 1200 1400 1600 1800 2000 2200
1200

1400

1600

1800

2000

2200

2400

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 150)

UAV Track
Sensor Track
Waypoint

Figure 66. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=150

5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84

x 104

10
12
14

System Time [s]

TA
S

 [m
/s

]

5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84

x 104

0
10
20

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84

x 104

348
350
352

System Time [s]

A
lt

[m
]

5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 67. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=150

 101

5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84

x 104

0

5

10

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84

x 104

-50

0

50

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 68. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=150

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South, Track Conv. = 150)

UAV Track
Sensor Track
Waypoint

Figure 69. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=150

 102

5.84 5.845 5.85 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89

x 104

14
16
18

System Time [s]
TA

S
 [m

/s
]

5.84 5.845 5.85 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89

x 104

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.84 5.845 5.85 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89

x 104

348
350
352

System Time [s]

A
lt

[m
]

5.84 5.845 5.85 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 70. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=150

5.84 5.845 5.85 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89

x 104

0

5

10

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

5.84 5.845 5.85 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

5.84 5.845 5.85 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89

x 104

-100

0

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 71. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=150

 103

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 150)

UAV Track
Sensor Track
Waypoint

Figure 72. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=150

5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935

x 10
4

18
20
22

System Time [s]

TA
S

 [m
/s

]

5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935

x 10
4

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935

x 10
4

348
350
352

System Time [s]

A
lt

[m
]

5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935

x 10
4

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 73. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=150

 104

5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935

x 10
4

0

10

20

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935

x 10
4

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935

x 10
4

-100

0

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 74. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=150

400 600 800 1000 1200 1400 1600 1800 2000 2200
1200

1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South, Track Conv. = 150)

UAV Track
Sensor Track
Waypoint

Figure 75. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=150

 105

5.94 5.945 5.95 5.955 5.96 5.965

x 104

28
30
32

System Time [s]

TA
S

 [m
/s

]

5.94 5.945 5.95 5.955 5.96 5.965

x 10
4

20
30
40

System Time [s]G
rn

d
S

pd
 [m

/s
]

5.94 5.945 5.95 5.955 5.96 5.965

x 104

345
350
355

System Time [s]

A
lt

[m
]

5.94 5.945 5.95 5.955 5.96 5.965

x 10
4

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 76. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=150

5.94 5.945 5.95 5.955 5.96 5.965

x 104

0

10

20

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

5.94 5.945 5.95 5.955 5.96 5.965

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

5.94 5.945 5.95 5.955 5.96 5.965

x 104

-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 77. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=150

 106

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 50)

UAV Track
Sensor Track
Waypoint

Figure 78. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=50

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 104

10
15
20

System Time [s]

TA
S

 [m
/s

]

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 104

0
10
20

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 104

345
350
355

System Time [s]

A
lt

[m
]

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 79. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=50

 107

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 104

0

10

20

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 10
4

-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 80. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=50

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South, Track Conv. = 50)

UAV Track
Sensor Track
Waypoint

Figure 81. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=50

 108

1.16 1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2 1.205

x 10
4

10
20
30

System Time [s]

TA
S

 [m
/s

]

1.16 1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2 1.205

x 104

0
20
40

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.16 1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2 1.205

x 104

345
350
355

System Time [s]

A
lt

[m
]

1.16 1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2 1.205

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 82. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=50

1.16 1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2 1.205

x 10
4

0

10

20

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.16 1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2 1.205

x 10
4

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.16 1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2 1.205

x 104

-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 83. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=50

 109

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 50)

UAV Track
Sensor Track
Waypoint

Figure 84. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=50

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

x 104

18
20
22

System Time [s]

TA
S

 [m
/s

]

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

x 10
4

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

x 104

345
350
355

System Time [s]

A
lt

[m
]

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 85. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=50

 110

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

x 104

0

10

20

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

x 104

-100

0

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 86. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=50

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
1200

1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Standard UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South, Track Conv. = 50)

UAV Track
Sensor Track
Waypoint

Figure 87. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=50

 111

1.245 1.25 1.255 1.26 1.265 1.27

x 104

28
30
32

System Time [s]

TA
S

 [m
/s

]

1.245 1.25 1.255 1.26 1.265 1.27

x 10
4

20
30
40

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.245 1.25 1.255 1.26 1.265 1.27

x 104

345
350
355

System Time [s]

A
lt

[m
]

1.245 1.25 1.255 1.26 1.265 1.27

x 10
4

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 88. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=50

1.245 1.25 1.255 1.26 1.265 1.27

x 104

0

20

40

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.245 1.25 1.255 1.26 1.265 1.27

x 104

0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1.245 1.25 1.255 1.26 1.265 1.27

x 104

-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 89. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=50

 112

MODIFIED FLIGHT PATH RESULTS

400 600 800 1000 1200 1400 1600 1800 2000 2200
1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 90. Updated UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250

200 300 400 500 600 700 800
10

15

System Time [s]

TA
S

 [m
/s

]

200 300 400 500 600 700 800
0

10

20

System Time [s]G
rn

d
S

pd
 [m

/s
]

200 300 400 500 600 700 800
345

350

355

System Time [s]

A
lt

[m
]

200 300 400 500 600 700 800
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 91. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250

 113

200 300 400 500 600 700 800
0

10

20

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

200 300 400 500 600 700 800
0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

200 300 400 500 600 700 800
-100

0

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 92. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 93. Updated UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250

 114

750 800 850 900 950 1000 1050 1100 1150 1200 1250
14

16

18

System Time [s]
TA

S
 [m

/s
]

750 800 850 900 950 1000 1050 1100 1150 1200 1250
10

20

30

System Time [s]G
rn

d
S

pd
 [m

/s
]

750 800 850 900 950 1000 1050 1100 1150 1200 1250
345

350

355

System Time [s]

A
lt

[m
]

750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 94. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250

750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

10

20

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

750 800 850 900 950 1000 1050 1100 1150 1200 1250
-200

0

200

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 95. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250

 115

400 600 800 1000 1200 1400 1600 1800 2000 2200
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 96. Updated UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250

1200 1250 1300 1350 1400 1450 1500 1550 1600
15

20

25

System Time [s]

TA
S

 [m
/s

]

1200 1250 1300 1350 1400 1450 1500 1550 1600
10

20

30

System Time [s]G
rn

d
S

pd
 [m

/s
]

1200 1250 1300 1350 1400 1450 1500 1550 1600
345

350

355

System Time [s]

A
lt

[m
]

1200 1250 1300 1350 1400 1450 1500 1550 1600
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 97. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250

 116

1200 1250 1300 1350 1400 1450 1500 1550 1600
0

10

20

System Time [s]
W

in
d

H
ea

di
ng

 [d
eg

]

1200 1250 1300 1350 1400 1450 1500 1550 1600
0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1200 1250 1300 1350 1400 1450 1500 1550 1600
-200

0

200

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 98. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 99. Updated UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250

 117

1550 1600 1650 1700 1750 1800
28

30

32

System Time [s]
TA

S
 [m

/s
]

1550 1600 1650 1700 1750 1800
20

30

40

System Time [s]G
rn

d
S

pd
 [m

/s
]

1550 1600 1650 1700 1750 1800
345

350

355

System Time [s]

A
lt

[m
]

1550 1600 1650 1700 1750 1800
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 100. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250

1550 1600 1650 1700 1750 1800
0

20

40

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1550 1600 1650 1700 1750 1800
0

200

400

System Time [s]

W
in

d
V

el
 [d

eg
]

1550 1600 1650 1700 1750 1800
-500

0

500

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e
[m

]

Figure 101. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250

 118

-500 0 500 1000 1500 2000 2500 3000
1600

1800

2000

2200

2400

2600

2800

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)

UAV Track
Sensor Track
Waypoint

Figure 102. Updated Long Point to Point at 20 m/s with Wind=5 m/s and TC=250

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

15
20
25

System Time [s]

TA
S

 [m
/s

]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

10
20
30

System Time [s]G
rn

d
S

pd
 [m

/s
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

340
350
360

System Time [s]

A
lt

[m
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 103. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & TC=250

 119

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

0

10

20

System Time [s]W
in

d
V

el
oc

ity
 [m

/s
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1.29 1.3 1.31 1.32 1.33 1.34 1.35

x 104

-500

0

500

System Time [s]

C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 104. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & TC=250

 120

0 500 1000 1500 2000 2500 3000
1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, 20% Lower Alt)

UAV Track
Sensor Track
Waypoint

Figure 105. Updated Long Point to Point at 20 m/s with Wind=5 m/s & Lower Alt

3400 3500 3600 3700 3800 3900 4000
15

20

25

System Time [s]

TA
S

 [m
/s

]

3400 3500 3600 3700 3800 3900 4000
10

20

30

System Time [s]G
rn

d
S

pd
 [m

/s
]

3400 3500 3600 3700 3800 3900 4000
275

280

285

System Time [s]

A
lt

[m
]

3400 3500 3600 3700 3800 3900 4000
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 106. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & Lower Alt

 121

3400 3500 3600 3700 3800 3900 4000
0

10

20

System Time [s]

W
in

d
V

el
oc

ity
 [m

/s
]

3400 3500 3600 3700 3800 3900 4000
0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

3400 3500 3600 3700 3800 3900 4000
-500

0

500

System Time [s]

C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 107. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & Lower Alt

 122

-500 0 500 1000 1500 2000 2500 3000
1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=10 m/s from North)

UAV Track
Sensor Track
Waypoint

Figure 108. Updated UAV for Point to Point with Wind =10 from North

7100 7200 7300 7400 7500 7600 7700 7800
15

20

25

System Time [s]

TA
S

 [m
/s

]

7100 7200 7300 7400 7500 7600 7700 7800
10

20

30

System Time [s]G
rn

d
S

pd
 [m

/s
]

7100 7200 7300 7400 7500 7600 7700 7800
345

350

355

System Time [s]

A
lt

[m
]

7100 7200 7300 7400 7500 7600 7700 7800
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 109. Various Parameters for the Point to Point with Wind=10 m/s from the North

 123

7100 7200 7300 7400 7500 7600 7700 7800
0

10

20

System Time [s]

W
in

d
V

el
oc

ity
 [m

/s
]

7100 7200 7300 7400 7500 7600 7700 7800
100

200

300

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

7100 7200 7300 7400 7500 7600 7700 7800
-100

0

100

System Time [s]

C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 110. Real Time Wind Estimations for the Point to Point with the Wind=10 m/s from the North

 124

Appendix B: Software Development Kit (SDK) C++ Code

/**
Test file for piccolo communication

Programmed by: Brent Robinson

Date: 9 May, 2006

**/

#include<iostream.h>
#include<conio.h>
#include<string>
#include "CommManager.h"
#include "Win32Serial.h"
#include<stdlib.h>
#include<windows.h>
#include"lla2enu.h"

using namespace std;

//Basepoint to use for all ENU coordinates...It's location is south and west of WPAFB
const double Base_X = 503000;
const double Base_Y = -4884700;
const double Base_Z = 4057800;

CCommManager* m_pComm = NULL;
Queue_t* pQ = NULL;

//Used for converting the waypoint lla data to ENU coords
ENUCoord PosENU;
ENUCoord newwpENU;
ENUCoord WayENU;

//To log the desired data in a .txt file
FILE * pFile1;

//function prototypes
void displayData(int i);

void BrentsWindCorrection(int i); //Real time wind estimation function
void SensorAdjustment(int i); //Wind Corrected Sensor Pointing
//void HeadingAdjust(int i); //Heading Adjustment function for the "turn rate approach"
//void AirspeedAdjust(int i); //Airspeed Adjustment function for the "turn rate approach"
//void WaypointTrackReturn(int i); //Attempt at a function to turn off the turn rate commanding and return to normal
ops
//void WaypointFlyingnotTrackFlying(int i); //Attempt at a function making the Piccolo a pure waypoint tracker instead
of a track follower
//void WaypointInfoFinding(int i, FPPoint_t& pntWaypoint); //Attempt at a function which accesses the waypoint lla data
//void UpdatingWaypointadjustingforWind(int i);//, int next); //Updating "Rabbit" approach

//data structure to hold telemetry packet data
typedef struct
{
 double Longitude; //from LLA data: Telemtry packet
 double Latitude; //from LLA data: Telemtry packet
 double East; //calculated from LLA data using lla2enu class
 double North; //calculated from LLA data using lla2enu class
 double Up; //calculated from LLA data using lla2enu class
 float Altitude; //from LLA data: Telemtry packet
 float Velocity; //from GPS.Speed: Telemetry packet
// float Alpha //anlge between velocity and direction of nose of plane vertically

 125

// float Beta; //angle between velocity and direction of nose of plane horizantally
 int Hours;
 int Minutes;
 float Seconds;

 //Brent added these
 float Direction; //GPS Ground Track Direction
 float TAS; //Aircraft TAS
 double Lat; //Current aircraft Latitude
 double Lon; //Current aircraft Longitude
 float CrossTrack; //Current Cross Track Distance
 float AlongTrack; //Current Along Track Distance - Distance from the current waypoint
} telemetry;

//data structure to hold control packet data
typedef struct
{
 float Heading; //from Yaw reading: Control Data packet
 float BankAngle; //from Roll: Control Data packet
 float RollRate; //from Roll Rate: Control Data packet
 float PitchRate; //from Pitch Rate: Control Data packet
 float YawRate; //from Yaw Rate: Control Data packet

 float Aileron;
 float Elevator;
 float Throttle;
 float Rudder;
 int Hours;
 int Minutes;
 float Seconds;

 //Brent added these
 float MagHeading; //Current aircraft magnetic heading
 float Pdynamic; //Current dynamic pressure
} control;

// global variable used when the packets are decoded - allows for 10 networks
telemetry current_telemetry[10];
control current_control[10];

//Brent added these
FPPoint_t current_waypoint[10]; //Attempt at setting up another "switch" group
Gains_t current_gains[10]; //Attempt at setting up another "switch" group

//Brent ADDED these
float V_w;
float Chi_w;
float Chi_w_deg;
float V_TASnew;
float density;
float Pdynamic_new;
float Chi_Magnew;
float Chi_Magnew_deg;
float turnrate;
float cmd_speed;
int count=0;
float e;
float f;
float Dis;
//float toofar;
//float angle_deg;
//float angle;
//float abscos;
//float abssin;
float enu69east;
float enu69north;
double current_waypoint_Latitude;

 126

double current_waypoint_Longitude;
float current_waypoint_Altitude;
UInt8 Waypoint_cmd[10];
UInt8 orig;
UInt8 orignext;

float Dis2;
float Horiz;
double Adjust1;
double point0Lat;
double point0Lon;
double Alt0;
double point1Lat;
double point1Lon;
double Alt1;
double point2Lat;
double point2Lon;
double Alt2;
double point3Lat;
double point3Lon;
double Alt3;
double point4Lat;
double point4Lon;
double Alt4;
double point5Lat;
double point5Lon;
double Alt5;
double point6Lat;
double point6Lon;
double Alt6;

double enu60east;
double enu60north;
double enu60alt;
double enu61east;
double enu61north;
double enu61alt;
double enu62east;
double enu62north;
double enu62alt;
double enu63east;
double enu63north;
double enu63alt;
double enu64east;
double enu64north;
double enu64alt;
double enu65east;
double enu65north;
double enu65alt;
double enu66east;
double enu66north;
double enu66alt;

float EastonTrack;
float NorthonTrack;
float e2onTrack;
float f2onTrack;
float LOS_Dis;

float Adjust1a;
float Adjust2a;
float T;
float theta_one;
float e2;
float f2;

float star;
float sinfromNext;
float cosfromNext;

 127

float theta_m;
float delta_1;
float delta_2;

//clears the screen
void clrscr()
{
 HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
 COORD coord = {0, 0};
 DWORD count;

 CONSOLE_SCREEN_BUFFER_INFO csbi;
 GetConsoleScreenBufferInfo(hStdOut, &csbi);

 FillConsoleOutputCharacter(hStdOut, ' ', csbi.dwSize.X * csbi.dwSize.Y, coord, &count);

 SetConsoleCursorPosition(hStdOut, coord);
}

//as defined in "index.html": from SDK documentation
void NewNetwork(UInt16 NetworkID, void* Parameter)
{

}

//looks for and gleans data from an autopilot packet sent from a network
void LookForAutopilotData(QType* pQ, int whosData)
{
 static AutopilotPkt_t APPkts[10];

 UInt32 i, NumNets;
 SInt32 ID;

 //look at how many networks m_pComm can see
 NumNets = m_pComm->GetNumNets();

 for(i = 0; i < NumNets; i++)
 {
 // Don't display past 10 networks since we didn't include the space
 if(i >= 10) break;

 ID = m_pComm->GetIDFromIndex(i);

 // Don't try to decode ground station packets
 //if(ID < 1) continue;

 // Get the pointer to the receive queue for the autopilot stream. Note
 // this pointer will persist as long as the network structure exists,
 // so we could just save the pointer and then we wouldn't have the
 // overhead of repeatedly calling this function
 pQ = m_pComm->GetStreamRxBuffer((UInt16)ID, AUTOPILOT_STREAM);

 if(!pQ) continue;

 // Now check to see if a packet exists. Note!!! The raw packet
 // structure MUST persist between calls, and it MUST be unique to this
 // network.

 if(LookForAutopilotPacket(pQ, &(APPkts[i])))
 {
 switch(APPkts[i].PktType)
 {
 case TELEMETRY:
 UserData_t telemData;
 DecodeTelemetryPacket(&(APPkts[i]), &(telemData));
 //update telemtry struct

 128

 current_telemetry[i].Longitude = telemData.GPS.Longitude * 180.0 /
3.1415926;
 current_telemetry[i].Latitude = telemData.GPS.Latitude * 180.0 / 3.1415926;
 current_telemetry[i].Altitude = telemData.GPS.Altitude;
 current_telemetry[i].Velocity = telemData.GPS.Speed;
 current_telemetry[i].Direction = telemData.GPS.Direction; //Brent added
 current_telemetry[i].TAS = telemData.TAS; //Brent added
 current_telemetry[i].CrossTrack = telemData.CrossTrack; //Brent added
 current_telemetry[i].AlongTrack = telemData.AlongTrack; //Brent added

 //convert lla data to enu
 PosENU.lla2enu(current_telemetry[i].Latitude *3.1415926/180,
 current_telemetry[i].Longitude
*3.1415926/180,
 current_telemetry[i].Altitude,
 Base_X, Base_Y, Base_Z);

 current_telemetry[i].East = PosENU.GetEast();
 current_telemetry[i].North = PosENU.GetNorth();
 current_telemetry[i].Up = PosENU.GetUp();

 current_telemetry[i].Hours = telemData.GPS.hours;
 current_telemetry[i].Minutes = telemData.GPS.minutes;
 current_telemetry[i].Seconds = telemData.GPS.seconds;
 //display the data

 //Brent added...This is all the data that is written to a log file
 fprintf(pFile1,"\n %i %i %i %f %f %f %f %f %f
%f %f %f %f 45 %f %f", ID,
 current_control[i].Hours, current_control[i].Minutes,
 current_control[i].Seconds,
current_telemetry[i].CrossTrack,

 current_telemetry[i].Velocity,(current_telemetry[i].Direction*(180/3.1415926)),
 current_telemetry[i].TAS,
current_control[i].MagHeading,
 V_w,
Chi_w_deg,(current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading),

 current_telemetry[i].Altitude,(current_telemetry[i].Altitude/cos((45*(3.1415926/180)))),sqrt(((current_telemetry[i].Altitud
e/cos((45*(3.1415926/180))))*(current_telemetry[i].Altitude/cos((45*(3.1415926/180)))))-
(current_telemetry[i].Altitude*current_telemetry[i].Altitude)));

 displayData(whosData);
 break;

 //Brent's attempt at accessing the waypoint lla data
 case WAYPOINT:
 {
 //Waypoint_t wayData;
 //UserData_t wayData; //Brent
 FPPoint_t wayData; //THIS IS THE FIRST PLACE
 // wayData.Point.Lat = 0.0;
 // wayData.Point.Lon = 0.0;
 // wayData.Point.Alt = 0.0;
 UInt8 This = 0;
 //This = DecodeWaypointPacket(&(APPkts[i]), &(wayData)); //WHERE I
TRY TO GET THE WAYPOINT LAT/LONG
 This = DecodeWaypointPacket(&(APPkts[i]), &(wayData)); //WHERE I
TRY TO GET THE WAYPOINT LAT/LONG

 /* if (Waypoint_cmd[i] != 69 || Waypoint_cmd[i] != 70)
 {
 WaypointInfoFinding(i, wayData);
 }
 */

 129

 // FPPoint_t Point;
 // UInt8 This = 0;
 // This = DecodeWaypointPacket(&(m_APPkts[i]), &Point);

 }
 displayData(whosData);
 break;

 //Brent added...This allows a variable "Waypoint_cmd" that is the index of the current waypoint being tracked
 case AUTOPILOT_COMMAND:
 AutopilotCmd_t Cmd[3];
 Waypoint_cmd[i] = DecodeAutopilotControlPacket(&(APPkts[i]), &Cmd[i]);
 displayData(whosData);
 break;

 case CONTROL_DATA:
 UserData_t controlData;
 float gyroBias[3], controls[10];
 DecodeControlDataPacket(&(APPkts[i]), &(controlData), gyroBias, controls);
 //update telemetry struct
 current_control[i].BankAngle = controlData.Euler[0] * 180/3.1415926;
 current_control[i].Heading = controlData.Euler[2] * 180/3.1415926;
 //Euler[0] = Rroll, Euler[1] = Pitch, Euler[2] = Yaw
 current_control[i].RollRate = controlData.Gyro[0] * 180/3.1415926;
 current_control[i].PitchRate = controlData.Gyro[1] * 180/3.1415926;
 current_control[i].YawRate = controlData.Gyro[2] * 180/3.1415926;

 current_control[i].Aileron = controls[0] * 180/3.1415926;
 current_control[i].Elevator = controls[1] * 180/3.1415926;
 current_control[i].Throttle = controls[2];
 current_control[i].Rudder = controls[3] * 180/3.1415926;
 //convert GPS seconds into hours, minutes, and seconds
 double hours = controlData.SystemTime / 3600000.0;
 current_control[i].Hours = hours;
 double mins = (hours - (double)current_control[i].Hours) * 60;
 current_control[i].Minutes = mins;
 current_control[i].Seconds = (mins - (double)current_control[i].Minutes) * 60;

 //Brent added these
 current_control[i].Pdynamic = controlData.Pdynamic;
 current_control[i].MagHeading = controlData.MagHeading * 180/3.1415926;

 displayData(whosData); //display the data
 break;
 }
 }
 }
}// LookForAutopilotData

//prints the telemetry, control, and obstacle avoidance data to screen
void displayData(int i)
{
 //print current telemetry data
 clrscr();
 printf("ID = %i", m_pComm->GetIDFromIndex(i));

 printf("\nTelemetry Packet Data : %i", current_telemetry[i].Hours);
 printf(":%i", current_telemetry[i].Minutes);
 printf(":%f", current_telemetry[i].Seconds);
 printf("\nLatitude (deg) : %f", current_telemetry[i].Latitude);
 printf(" East: %f", current_telemetry[i].East);
 printf("\nLongitude (deg) : %f", current_telemetry[i].Longitude);
 printf(" North: %f", current_telemetry[i].North);
 printf("\nAltitude (m) : %f", current_telemetry[i].Altitude);
 printf(" Up: %f", current_telemetry[i].Up);
 printf("\nGround Speed : %f", current_telemetry[i].Velocity);
 printf("\n\nControl Packet Data : %i", current_control[i].Hours);
 printf(":%i", current_control[i].Minutes);

 130

 printf(":%f", current_control[i].Seconds);
 printf("\nHeading : %f", current_control[i].Heading);
// printf("\nBank Angle : %f", current_control[i].BankAngle);
// printf("\nRoll Rate : %f", current_control[i].RollRate);
// printf("\nPitch Rate : %f", current_control[i].PitchRate);
// printf("\nYaw Rate : %f", current_control[i].YawRate);

 //Brent added to be displayed
 printf("\nUAV TAS : %f", current_telemetry[i].TAS);
 printf("\n\nUAV GPS DIRECTION : %f", current_telemetry[i].Direction*180/3.14159);
 printf("\nUAV MAG HEADING : %f", current_control[i].MagHeading);
// printf("\nBRENTS BETA 2 : %f", current_telemetry[i].Direction*180/3.14159-current_control[i].MagHeading);
 printf("\nBrents WIND VELOCITY (m/s) : %f", V_w);
 printf("\nBrents WIND DIRECTION : %f", Chi_w_deg);
 printf("\nBrents NEW TAS : %f", V_TASnew);
 printf("\nBrents NEW Mag Head : %f", Chi_Magnew_deg);
 printf(" Brents pdyn : %f", current_control[i].Pdynamic);
 printf(" Brents pdyn new : %f", Pdynamic_new);
// printf("\nBrents density : %f", density);
 printf("\nWaypoint index : %i", Waypoint_cmd[i]);
 printf("\nAdjust1 : %f", Adjust1a);
 printf("\nAdjust2 : %f", Adjust2a);
 printf("\nBrents Cross Track : %f", current_telemetry[i].CrossTrack);
// printf("\n along track : %f", current_telemetry[i].AlongTrack);
 printf("\nDistance to Wypt : %f", Dis2);
// printf("\nTURNRATE : %f",turnrate);
// printf("\nWaypoint Lon : %f", current_waypoint_Longitude);
// printf("\nWaypoint Lat : %f", current_waypoint_Latitude);
// printf("\nWaypoint Alt : %f", current_waypoint_Altitude);
// printf("\nNew Waypoint Lat : %d", newwpENU.GetLat());
// printf("\nNew Waypoint Lon : %d", newwpENU.GetLong());
// printf("\ntheta_one : %f",theta_one);

}//displayData

//This is the wind finding and subsequent new heading and airspeed function
void BrentsWindCorrection(int i)
{
//These are the basic vector equations that correlate the UAVs track, heading, and winds
// current_telemetry[i].TAS*cos((current_control[i].MagHeading*(3.14159/180))) + V_w*cos(Chi_w) =
current_telemetry[i].Velocity*cos(current_telemetry[i].Direction)
// current_telemetry[i].TAS*sin((current_control[i].MagHeading*(3.14159/180))) + V_w*sin(Chi_w) =
current_telemetry[i].Velocity*sin(current_telemetry[i].Direction)

//Wind Finding
 float a = current_telemetry[i].Velocity*cos(current_telemetry[i].Direction) -
current_telemetry[i].TAS*cos((current_control[i].MagHeading*(3.14159/180)));
 float b = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) -
current_telemetry[i].TAS*sin((current_control[i].MagHeading*(3.14159/180)));

 V_w = sqrt(((a*a) + (b*b)));
 //Chi_w = acos(sqrt(1-((b*b)/((a*a) + (b*b)))));
 Chi_w = atan2(b,a);
 if (Chi_w < 0.0)
 {
 Chi_w_deg = Chi_w * (180/3.14159)+360;
 }
 else
 {
 Chi_w_deg = Chi_w * (180/3.14159);
 }

//New heading and airspeed calculations based off of the above wind values
 float c = current_telemetry[i].Velocity*cos(current_telemetry[i].Direction) - V_w*cos(Chi_w);

 131

 float d = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) - V_w*sin(Chi_w);

 V_TASnew = sqrt(((c*c) + (d*d)));
 density = (2 * current_control[i].Pdynamic) / (current_telemetry[i].TAS*current_telemetry[i].TAS);
 Pdynamic_new = 0.5*density*(V_TASnew*V_TASnew);
 Chi_Magnew = atan2(d,c);

 if (current_telemetry[i].Direction*180/3.14159 >0 && current_telemetry[i].Direction*180/3.14159 <= 180)
 {
 Chi_Magnew_deg = Chi_Magnew * (180/3.14159);
 }

 else
 {
 Chi_Magnew_deg = Chi_Magnew * (180/3.14159) + 360;
 }
}

/* //Attempt to send the autopilot new turn rate command based off the new heading desired.
void HeadingAdjust(int i)
{
 //float rate;
 static AutopilotLoopCmd_t turnCom;
 //AutopilotLoopCmd_t turnCom;
 int IDbrent = m_pComm->GetIDFromIndex(i);

 //These divisions were done so as to keep any commanded turn rates less than 20deg/sec
 if (Chi_Magnew_deg - current_control[i].MagHeading > 0 && Chi_Magnew_deg - current_control[i].MagHeading <=
20)
 {
 turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/1;
 }
 else if (Chi_Magnew_deg - current_control[i].MagHeading > 20 && Chi_Magnew_deg - current_control[i].MagHeading
<= 40)
 {
 turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/2;
 }
 else if (Chi_Magnew_deg - current_control[i].MagHeading > 40 && Chi_Magnew_deg - current_control[i].MagHeading
<= 60)
 {
 turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/3;
 }
 else if (Chi_Magnew_deg - current_control[i].MagHeading > 60 && Chi_Magnew_deg - current_control[i].MagHeading
<= 80)
 {
 turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/4;
 }
 // rate = (Chi_Magnew_deg - current_control[i].MagHeading)/1;

 turnCom.Loop=2; //command a turn rate
 turnCom.Control=1; //turn ap_loop_cmd on
 turnCom.Value=turnrate*(3.14159265359/180); //assign the commanded value
 m_pComm->SendAutopilotLoopControlPacket(IDbrent, &(turnCom));
}*/

//Attempt to send a "return to normal tracking mode" after the turn rate heading was sent
/*void WaypointTrackReturn(int i)
{
 int wayindex;
 static AutopilotLoopCmd_t wayCom;
 int IDbrent4 = m_pComm->GetIDFromIndex(i);
 wayindex = Waypoint_cmd[i];
 wayCom.Loop = 4;
 wayCom.Control = 1; //Maybe "2"
 wayCom.Value = wayindex;
 m_pComm->SendAutopilotLoopControlPacket(IDbrent4, &(wayCom));//send the command
}
*/

 132

//Successful command to send the new desired airspeed calculated above
void AirspeedAdjust(int i)
{
 float cmd_speed;
 static AutopilotLoopCmd_t speedCom;
 int IDbrent2 = m_pComm->GetIDFromIndex(i);

 cmd_speed = Pdynamic_new;
 speedCom.Loop = 0; //command a dynamic pressure
 speedCom.Control = 1; //turn ap_loop_cmd on
 speedCom.Value = (cmd_speed); //assign the commanded value
 m_pComm->SendAutopilotLoopControlPacket(IDbrent2, &(speedCom));//send the command
}

//Attempt at ployting the Piccolo into a pure waypoint tracker instead of following straight line tracks between points
/*void WaypointFlyingnotTrackFlying(int i)
{
 int IDbrent7 = m_pComm->GetIDFromIndex(i);
 m_pComm->SendTrackCommandPacket(IDbrent7, Waypoint_cmd[i], true);
}*/

// Trying to calculate then send updating waypoint that is placed at the correct heading to compensate for the wind so as to
// end up at the original desired waypoint...Related to the previous function
/*void WaypointInfoFinding(int i, FPPoint_t& pntWaypoint)//, int next)
{

 int IDbrent5 = m_pComm->GetIDFromIndex(i);
 //AutopilotPkt_t WPPacket;

 // Waypoint_t origData;
 // current_waypoint_Latitude = origData.Lat * (180/3.14159);
 // current_waypoint_Longitude = origData.Lon * (180/3.14159);
 // current_waypoint_Altitude = origData.Alt;
 if(fabs(pntWaypoint.Point.Lat)*180/3.1415926 >0 && fabs(pntWaypoint.Point.Lat)*180/3.1415926 <90)
 {
 current_waypoint_Latitude = pntWaypoint.Point.Lat * (180/3.14159); //TRYING TO
READ OFF WAYPOINT LAT/LONG
 current_waypoint_Longitude = pntWaypoint.Point.Lon * (180/3.14159);
 current_waypoint_Altitude = pntWaypoint.Point.Alt;

 //test
 //current_waypoint_Latitude = 39.773098;
 //current_waypoint_Longitude = -84.111564;
 //current_waypoint_Altitude = 350;

 orig = Waypoint_cmd[i];
 orignext = Waypoint_cmd[i]+1;

 }
}*/

//Attempt to implement the UPDATING "RABBIT" WAYPOINT APPROACH to wind correction
/*void UpdatingWaypointadjustingforWind(int i)
{
 int IDbrent6 = m_pComm->GetIDFromIndex(i);

 ENUCoord WayENU; //Converting current waypoint LAT/LONG to ENU
 WayENU.lla2enu(current_waypoint_Latitude * 3.1415926/180,
 current_waypoint_Longitude * 3.1415926/180,
 current_waypoint_Altitude,
 Base_X, Base_Y, Base_Z);

 133

 e = fabs(current_telemetry[i].East - WayENU.GetEast());
 f = fabs(current_telemetry[i].North - WayENU.GetNorth());
 Dis = sqrt((e*e)+(f*f));
 float toofar = Dis + 1000; //This is a distance that the a/c will never reach

 //These are the adjustments to the ENU coords of the a/c to place the new waypoint
 if (Dis >= 50)
 { //This is an attempt to place the new waypoint
 if(Chi_Magnew_deg > 0 && Chi_Magnew_deg <=90)
 {
 float angle_deg = Chi_Magnew_deg-90;
 float angle = angle_deg * (3.1415926/180); //Check where the datum point is for ENU
 float abscos = abs(toofar * cos(angle)); //if west and south of wpafb then signs are
okay for the enu99s
 float abssin = abs(toofar * sin(angle));
 enu69east = PosENU.GetEast() + abscos;
 enu69north = PosENU.GetNorth() + abssin;
 }
 if(Chi_Magnew_deg > 90 && Chi_Magnew_deg <=180)
 {
 float angle_deg = Chi_Magnew_deg-90;
 float angle = angle_deg * (3.1415926/180);
 float abscos = abs(toofar * cos(angle));
 float abssin = abs(toofar * sin(angle));
 enu69east = PosENU.GetEast() + abscos;
 enu69north = PosENU.GetNorth() - abssin;

 }
 if(Chi_Magnew_deg > 180 && Chi_Magnew_deg <=270)
 {
 float angle_deg = Chi_Magnew_deg-270;
 float angle = angle_deg * (3.1415926/180);
 float abscos = abs(toofar * cos(angle));
 float abssin = abs(toofar * sin(angle));
 enu69east = PosENU.GetEast() - abscos;
 enu69north = PosENU.GetNorth() - abssin;
 }
 if(Chi_Magnew_deg > 270 && Chi_Magnew_deg <=360)
 {
 float angle_deg = Chi_Magnew_deg-270;
 float angle = angle_deg * (3.1415926/180);
 float abscos = abs(toofar * cos(angle));
 float abssin = abs(toofar * sin(angle));
 enu69east = PosENU.GetEast() - abscos;
 enu69north = PosENU.GetNorth() + abssin;
 }

 ENUCoord newwpENU; //Convert the new waypoint ENU to LLA
 newwpENU.enu2lla(enu69east, enu69north, WayENU.GetUp(), Base_X, Base_Y,
Base_Z);

 FPPoint_t newWPInfo;
 Waypoint_t newlocation;
 // AutopilotPkt_t WPPacket;

 // newlocation.Lat=newwpENU.GetLat(); //Lat/Long of new waypoint from just
above
 // newlocation.Lon=newwpENU.GetLong(); //*180/3.1415926
 // newlocation.Alt=newwpENU.GetAlt();

 newlocation.Lat=39.78*(3.1415926/180);
 newlocation.Lon=-84.097096*(3.1415926/180);
 newlocation.Alt=348;

 FPPoint_t newWPInfo2;
 Waypoint_t newlocation2;

 134

 newlocation2.Lat=39.775495*(3.1415926/180);
 newlocation2.Lon=-84.114660*(3.1415926/180);
 newlocation2.Alt=348;
 newWPInfo2.Point = newlocation2;
 newWPInfo2.Next = 69;
 newWPInfo2.PreTurn = 0;
 m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo2), 70);
 //m_pComm->SendTrackCommandPacket(IDbrent6, 70, true);

 newWPInfo.Point = newlocation; //Trying to send the new waypoint as
waypoint "99"
 if (Waypoint_cmd[i] > 0)
 {
 newWPInfo.Next = 70;
 }
 newWPInfo.PreTurn = 0;
 m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69);
 m_pComm->SendTrackCommandPacket(IDbrent6, 69, false); //send command to head to new
waypoint

 // third parameter indicates if the vehicle should fly to the waypoint along the
 // preceding track segment, or if it should go directly to the waypoint, using its
 // current position as the starting point. Set to TRUE to go directly to the waypoint.

 }
 // else
 // {
 // FPPoint_t origWP;
 // Waypoint_t origlocation;
//
 // origlocation.Lat = current_waypoint_Latitude;
 // origlocation.Lon = current_waypoint_Longitude;
 // origlocation.Alt = current_waypoint_Altitude;
//
 // origWP.Point = origlocation;
 // origWP.Next = Waypoint_cmd[i]+1;
 // origWP.PreTurn = 0;
 // m_pComm->SendWaypointPacket(IDbrent6, &(origWP), orig);
 // m_pComm->SendTrackCommandPacket(IDbrent6, Waypoint_cmd[i],true);
 // }
}*/

//WIND CORRECTED SENSOR POINTING APPROACH TO WIND CORRECTION
void SensorAdjustment(int i)
{
 int IDbrent8 = m_pComm->GetIDFromIndex(i);

 //Assume camera is at 45 degree angle off of a/c nose....no gimble

 //Manually input waypoint lats and longs via the "edit" button on Operator Interface
 //They should be:
 //Waypoint 0 --
 point0Lat=39.773292*(3.1415926/180); //PUT ALL IN RADIANS!!!!!
 point0Lon=-84.099500*(3.1415926/180);
 Alt0=350; // [m]

/* //Waypoint 0 --
 point0Lat=39.776000*(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
 point0Lon=-84.117796*(3.1415926/180);
 Alt0=350; // [m]
*/
 //Waypoint 1 --
 point1Lat=39.773530*(3.1415926/180);
 point1Lon=-84.106384*(3.1415926/180);
 Alt1=350; // [m]

 135

/* //Waypoint 1 --
 point1Lat=39.776000*(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
 point1Lon=-84.103704*(3.1415926/180);
 Alt1=350; // [m]
*/
 //Waypoint 2 --
 point2Lat=39.773700*(3.1415926/180);
 point2Lon=-84.111550*(3.1415926/180);
 Alt2=350; // [m]

/* //Waypoint 2 --
 point2Lat=39.776000*(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
 point2Lon=-84.090613*(3.1415926/180);
 Alt2=350; // [m]
*/
 //Waypoint 3 --
 point3Lat=39.775525*(3.1415926/180);
 point3Lon=-84.112517*(3.1415926/180);
 Alt3=350; // [m]

 //Waypoint 4 --
 point4Lat=39.777281*(3.1415926/180);
 point4Lon=-84.111355*(3.1415926/180);
 Alt4=350; // [m]

 //Waypoint 5 --
 point5Lat=39.776950*(3.1415926/180);
 point5Lon=-84.099400*(3.1415926/180);
 Alt5=350; // [m]

 //Waypoint 6 --
 point6Lat=39.774950*(3.1415926/180);
 point6Lon=-84.098450*(3.1415926/180);
 Alt6=350; // [m]

 ENUCoord Point0ENU;
 Point0ENU.lla2enu(point0Lat, point0Lon, Alt0, Base_X, Base_Y, Base_Z);

 ENUCoord Point1ENU;
 Point1ENU.lla2enu(point1Lat, point1Lon, Alt1, Base_X, Base_Y, Base_Z);

 ENUCoord Point2ENU;
 Point2ENU.lla2enu(point2Lat, point2Lon, Alt2, Base_X, Base_Y, Base_Z);

 ENUCoord Point3ENU;
 Point3ENU.lla2enu(point3Lat, point3Lon, Alt3, Base_X, Base_Y, Base_Z);

 ENUCoord Point4ENU;
 Point4ENU.lla2enu(point4Lat, point4Lon, Alt4, Base_X, Base_Y, Base_Z);

 ENUCoord Point5ENU;
 Point5ENU.lla2enu(point5Lat, point5Lon, Alt5, Base_X, Base_Y, Base_Z);

 ENUCoord Point6ENU;
 Point6ENU.lla2enu(point6Lat, point6Lon, Alt6, Base_X, Base_Y, Base_Z);

//WAYPOINT 0 CALCULATIONS
 if (Waypoint_cmd[i] == 0 || Waypoint_cmd[i] == 60)
 {
 e2 = fabs(current_telemetry[i].East - Point0ENU.GetEast());
 f2 = fabs(current_telemetry[i].North - Point0ENU.GetNorth());
 Dis2 = sqrt((e2*e2)+(f2*f2));

 if (Dis2 <= 200)
 //if (Dis2 <= 500) //Change for looong pt to pt
 {
 theta_one = atan2((Point0ENU.GetNorth()-Point6ENU.GetNorth()),(Point0ENU.GetEast()-
Point6ENU.GetEast()));

 136

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

 star = 3.1415926-1.5708-fabs(theta_one);
 sinfromNext = Adjust2a*sin(star); //-Adjust2a*sin(star); works fairly well also...not quite sure which is better
 cosfromNext = Adjust2a*cos(star);

 enu60east = Point0ENU.GetEast()+cosfromNext; //Changed for looong pt to pt...i switched the sin and cos
and then made sin negative
 enu60north = Point0ENU.GetNorth()+sinfromNext;
 enu60alt = Point0ENU.GetUp();

 // MAJ BLUES WAY
 /* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
 delta_1 = Horiz*cos(theta_m);
 delta_2 = Horiz*sin(theta_m);

 enu60east = Point0ENU.GetEast()-delta_1;
 enu60north = Point0ENU.GetNorth()-delta_2;
 enu60alt = Point0ENU.GetUp();
*/
 ENUCoord newPointENU;
 newPointENU.enu2lla(enu60east, enu60north, enu60alt, Base_X, Base_Y, Base_Z);

 FPPoint_t adjWPInfo;
 Waypoint_t adjWPlocation;

 adjWPlocation.Lat = newPointENU.GetLat();
 adjWPlocation.Lon = newPointENU.GetLong();
 adjWPlocation.Alt = newPointENU.GetAlt();

 adjWPInfo.Point = adjWPlocation;
 adjWPInfo.Next = 1;
 adjWPInfo.PreTurn = 1;

 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60); //If only the initial calculation for the
waypoint is desired
 // m_pComm->SendTrackCommandPacket(IDbrent8, 60, true); //i.e. you don't want it to update...use these

 float e3 = fabs(current_telemetry[i].East - enu60east);
 float f3 = fabs(current_telemetry[i].North - enu60north);
 float Dis3 = sqrt((e3*e3)+(f3*f3));
 if (Dis3 >= 100)
 {
 m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60);
 m_pComm->SendTrackCommandPacket(IDbrent8, 60, true);
 }
 else
 {
 m_pComm->SendTrackCommandPacket(IDbrent8, 1, true);
 }
 }
 }

//WAYPOINT 1 CALCULATIONS
 else if (Waypoint_cmd[i] == 1 || Waypoint_cmd[i] == 61)
 {
 e2 = fabs(current_telemetry[i].East - Point1ENU.GetEast());
 f2 = fabs(current_telemetry[i].North - Point1ENU.GetNorth());
 Dis2 = sqrt((e2*e2)+(f2*f2));

 if (Dis2 <= 350)

 137

 //if (Dis2 <= 500) //Change for looong pt to pt
 {
 theta_one = atan2((Point1ENU.GetNorth()-Point0ENU.GetNorth()),(Point1ENU.GetEast()-
Point0ENU.GetEast()));

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

 star = 3.1415926-1.5708-fabs(theta_one);
 sinfromNext = -Adjust2a*sin(star);
 cosfromNext = Adjust2a*cos(star);

 enu61east = Point1ENU.GetEast()+cosfromNext;
 enu61north = Point1ENU.GetNorth()+sinfromNext;
 enu61alt = Point1ENU.GetUp();

 // MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
 delta_1 = Horiz*cos(theta_m);
 delta_2 = Horiz*sin(theta_m);

 enu61east = Point1ENU.GetEast()-delta_1;
 enu61north = Point1ENU.GetNorth()-delta_2;
 enu61alt = Point1ENU.GetUp();
*/
 ENUCoord newPointENU;
 newPointENU.enu2lla(enu61east, enu61north, enu61alt, Base_X, Base_Y, Base_Z);

 FPPoint_t adjWPInfo;
 Waypoint_t adjWPlocation;

 adjWPlocation.Lat = newPointENU.GetLat();
 adjWPlocation.Lon = newPointENU.GetLong();
 adjWPlocation.Alt = newPointENU.GetAlt();

 adjWPInfo.Point = adjWPlocation;
 adjWPInfo.Next = 2;
 adjWPInfo.PreTurn = 1;

 float e3 = fabs(current_telemetry[i].East - enu61east);
 float f3 = fabs(current_telemetry[i].North - enu61north);
 float Dis3 = sqrt((e3*e3)+(f3*f3));

 if (Dis3 >= 100)
 {
 m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 61);
 m_pComm->SendTrackCommandPacket(IDbrent8, 61, true);
 }
 else
 {
 m_pComm->SendTrackCommandPacket(IDbrent8, 2, true);
 }
 }
 }

//WAYPOINT 2 CALCULATIONS
 else if (Waypoint_cmd[i] == 2 || Waypoint_cmd[i] == 62)
 {
 e2 = fabs(current_telemetry[i].East - Point2ENU.GetEast());
 f2 = fabs(current_telemetry[i].North - Point2ENU.GetNorth());
 Dis2 = sqrt((e2*e2)+(f2*f2));

 if (Dis2 <= 300)

 138

 //if (Dis2 <= 500) //Change for looong pt to pt
 {
 theta_one = atan2((Point2ENU.GetNorth()-Point1ENU.GetNorth()),(Point2ENU.GetEast()-
Point1ENU.GetEast()));

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

 star = 3.1415926-1.5708-fabs(theta_one);
 sinfromNext = -Adjust2a*sin(star);
 cosfromNext = -Adjust2a*cos(star); //THIS AND Adjust2a*cos(star) WORK EQUALLY WELL!!!!

 enu62east = Point2ENU.GetEast()+cosfromNext;
 enu62north = Point2ENU.GetNorth()+sinfromNext;
 enu62alt = Point2ENU.GetUp();

 // MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
 delta_1 = Horiz*cos(theta_m);
 delta_2 = Horiz*sin(theta_m);

 enu62east = Point2ENU.GetEast()-delta_1;
 enu62north = Point2ENU.GetNorth()-delta_2;
 enu62alt = Point2ENU.GetUp();
*/

 ENUCoord newPointENU;
 newPointENU.enu2lla(enu62east, enu62north, enu62alt, Base_X, Base_Y, Base_Z);

 FPPoint_t adjWPInfo;
 Waypoint_t adjWPlocation;

 adjWPlocation.Lat = newPointENU.GetLat();
 adjWPlocation.Lon = newPointENU.GetLong();
 adjWPlocation.Alt = newPointENU.GetAlt();

 adjWPInfo.Point = adjWPlocation;
 adjWPInfo.Next = 3;
 //adjWPInfo.Next = 0; //Change for loooooong pt to pt
 adjWPInfo.PreTurn = 1;

 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62);
 // m_pComm->SendTrackCommandPacket(IDbrent8, 62, true);

 float e3 = fabs(current_telemetry[i].East - enu62east);
 float f3 = fabs(current_telemetry[i].North - enu62north);
 float Dis3 = sqrt((e3*e3)+(f3*f3));
 if (Dis3 >= 100)
 {
 m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62);
 m_pComm->SendTrackCommandPacket(IDbrent8, 62, true);
 }
 else
 {
 m_pComm->SendTrackCommandPacket(IDbrent8, 3, true);
 }
 }
 }

//WAYPOINT 3 CALCULATIONS
 else if (Waypoint_cmd[i] == 3 || Waypoint_cmd[i] == 63)
 {
 e2 = fabs(current_telemetry[i].East - Point3ENU.GetEast());

 139

 f2 = fabs(current_telemetry[i].North - Point3ENU.GetNorth());
 Dis2 = sqrt((e2*e2)+(f2*f2));

 if (Dis2 <= 250)
 {
 theta_one = atan2((Point3ENU.GetNorth()-Point2ENU.GetNorth()),(Point3ENU.GetEast()-
Point2ENU.GetEast()));

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

 star = 3.1415926-1.5708-fabs(theta_one);
 sinfromNext = -Adjust2a*sin(star);
 cosfromNext = Adjust2a*cos(star);

 enu63east = Point3ENU.GetEast()+sinfromNext;
 enu63north = Point3ENU.GetNorth()+cosfromNext;
 enu63alt = Point3ENU.GetUp();

/* // MAJ BLUES WAY
 theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
 delta_1 = Horiz*cos(theta_m);
 delta_2 = Horiz*sin(theta_m);

 enu63east = Point3ENU.GetEast()-delta_1;
 enu63north = Point3ENU.GetNorth()-delta_2;
 */ enu63alt = Point3ENU.GetUp();

 ENUCoord newPointENU;
 newPointENU.enu2lla(enu63east, enu63north, enu63alt, Base_X, Base_Y, Base_Z);

 FPPoint_t adjWPInfo;
 Waypoint_t adjWPlocation;

 adjWPlocation.Lat = newPointENU.GetLat();
 adjWPlocation.Lon = newPointENU.GetLong();
 adjWPlocation.Alt = newPointENU.GetAlt();

 adjWPInfo.Point = adjWPlocation;
 adjWPInfo.Next = 4;
 adjWPInfo.PreTurn = 1;

 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63);
 // m_pComm->SendTrackCommandPacket(IDbrent8, 63, true);

 float e3 = fabs(current_telemetry[i].East - enu63east);
 float f3 = fabs(current_telemetry[i].North - enu63north);
 float Dis3 = sqrt((e3*e3)+(f3*f3));
 if (Dis3 >= 150)
 {
 m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63);
 m_pComm->SendTrackCommandPacket(IDbrent8, 63, true);
 }
 else
 {
 m_pComm->SendTrackCommandPacket(IDbrent8, 4, true);
 }
 }
 }

 140

//WAYPOINT 4 CALCULATIONS
 else if (Waypoint_cmd[i] == 4 || Waypoint_cmd[i] == 64)
 {
 e2 = fabs(current_telemetry[i].East - Point4ENU.GetEast());
 f2 = fabs(current_telemetry[i].North - Point4ENU.GetNorth());
 Dis2 = sqrt((e2*e2)+(f2*f2));

 if (Dis2 <= 200)
 {
 theta_one = atan2((Point4ENU.GetNorth()-Point3ENU.GetNorth()),(Point4ENU.GetEast()-
Point3ENU.GetEast()));

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

 star = 3.1415926-1.5708-fabs(theta_one);
 sinfromNext = Adjust2a*sin(star);
 cosfromNext = -Adjust2a*cos(star);

 enu64east = Point4ENU.GetEast()+sinfromNext;
 enu64north = Point4ENU.GetNorth()+cosfromNext;
 enu64alt = Point4ENU.GetUp();

/* // MAJ BLUES WAY
 theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
 delta_1 = Horiz*cos(theta_m);
 delta_2 = Horiz*sin(theta_m);

 enu64east = Point4ENU.GetEast()-delta_1;
 enu64north = Point4ENU.GetNorth()-delta_2;
 enu64alt = Point4ENU.GetUp();
*/

 ENUCoord newPointENU;
 newPointENU.enu2lla(enu64east, enu64north, enu64alt, Base_X, Base_Y, Base_Z);

 FPPoint_t adjWPInfo;
 Waypoint_t adjWPlocation;

 adjWPlocation.Lat = newPointENU.GetLat();
 adjWPlocation.Lon = newPointENU.GetLong();
 adjWPlocation.Alt = newPointENU.GetAlt();

 adjWPInfo.Point = adjWPlocation;
 adjWPInfo.Next = 5;
 adjWPInfo.PreTurn = 1;

 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64);
 // m_pComm->SendTrackCommandPacket(IDbrent8, 64, true);

 float e3 = fabs(current_telemetry[i].East - enu64east);
 float f3 = fabs(current_telemetry[i].North - enu64north);
 float Dis3 = sqrt((e3*e3)+(f3*f3));
 if (Dis3 >= 100)
 {
 m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64);
 m_pComm->SendTrackCommandPacket(IDbrent8, 64, true);
 }
 else
 {
 m_pComm->SendTrackCommandPacket(IDbrent8, 5, true);
 }
 }

 141

 }

//WAYPOINT 5 CALCULATIONS
 else if (Waypoint_cmd[i] == 5 || Waypoint_cmd[i] == 65)
 {
 e2 = fabs(current_telemetry[i].East - Point5ENU.GetEast());
 f2 = fabs(current_telemetry[i].North - Point5ENU.GetNorth());
 Dis2 = sqrt((e2*e2)+(f2*f2));

 if (Dis2 <= 600)
 {
 theta_one = atan2((Point5ENU.GetNorth()-Point4ENU.GetNorth()),(Point5ENU.GetEast()-
Point4ENU.GetEast()));

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

 star = 3.1415926-1.5708-fabs(theta_one);
 sinfromNext = -Adjust2a*sin(star);
 cosfromNext = Adjust2a*cos(star);

 enu65east = Point5ENU.GetEast()+cosfromNext;
 enu65north = Point5ENU.GetNorth()+sinfromNext;
 enu65alt = Point5ENU.GetUp();

/* // MAJ BLUES WAY
 theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
 delta_1 = Horiz*cos(theta_m);
 delta_2 = Horiz*sin(theta_m);

 enu65east = Point5ENU.GetEast()-delta_1;
 enu65north = Point5ENU.GetNorth()-delta_2;
 enu65alt = Point5ENU.GetUp();
 */

 ENUCoord newPointENU;
 newPointENU.enu2lla(enu65east, enu65north, enu65alt, Base_X, Base_Y, Base_Z);

 FPPoint_t adjWPInfo;
 Waypoint_t adjWPlocation;

 adjWPlocation.Lat = newPointENU.GetLat();
 adjWPlocation.Lon = newPointENU.GetLong();
 adjWPlocation.Alt = newPointENU.GetAlt();

 adjWPInfo.Point = adjWPlocation;
 adjWPInfo.Next = 6;
 adjWPInfo.PreTurn = 0;

 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65);
 // m_pComm->SendTrackCommandPacket(IDbrent8, 65, true);

 float e3 = fabs(current_telemetry[i].East - enu65east);
 float f3 = fabs(current_telemetry[i].North - enu65north);
 float Dis3 = sqrt((e3*e3)+(f3*f3));
 if (Dis3 >= 100)
 {
 m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65);
 m_pComm->SendTrackCommandPacket(IDbrent8, 65, true);
 }
 else
 {
 m_pComm->SendTrackCommandPacket(IDbrent8, 6, true);
 }

 142

 }
 }

//WAYPOINT 6 CALCULATIONS
 else if (Waypoint_cmd[i] == 6 || Waypoint_cmd[i] == 66)
 {
 e2 = fabs(current_telemetry[i].East - Point6ENU.GetEast());
 f2 = fabs(current_telemetry[i].North - Point6ENU.GetNorth());
 Dis2 = sqrt((e2*e2)+(f2*f2));

 if (Dis2 <= 300)
 {
 theta_one = atan2((Point6ENU.GetNorth()-Point5ENU.GetNorth()),(Point6ENU.GetEast()-
Point5ENU.GetEast()));

/* //THIS WAS AN OLD WAY OF DOING THE CALCULATIONS....Basically it attempted to map the a/c's current position to
where it would be
 //if it were exactly on track....this way placed the new point based on the a/c's location as opposed to placing it based on
 //the location of the current waypoint

 // double m = fabs(Point6ENU.GetNorth()-Point5ENU.GetNorth());
 // double n = fabs(Point6ENU.GetEast()-Point5ENU.GetEast());
 // double Dis_wypts = sqrt((m*m)+(n*n));
 // T = Dis_wypts - current_telemetry[i].AlongTrack;
 // double EastonTrack = Point4ENU.GetEast() + current_telemetry[i].AlongTrack*cos(theta_one);
 // double NorthonTrack = Point4ENU.GetNorth() + current_telemetry[i].AlongTrack*sin(theta_one);

 if (theta_one*(180/3.1415926)>0 && theta_one*(180/3.1415926)<=90)
 {
 EastonTrack = Point5ENU.GetEast() + T*sin(theta_one);
 NorthonTrack = Point5ENU.GetNorth() + T*cos(theta_one);
 }
 else if (theta_one*(180/3.1415926)>90 && theta_one*(180/3.1415926)<=180)
 {
 EastonTrack = Point5ENU.GetEast() + T*cos(theta_one);
 NorthonTrack = Point5ENU.GetNorth() + T*sin(theta_one);
 }
 else if (theta_one*(180/3.1415926)>-180 && theta_one*(180/3.1415926)<=-90)
 {
 EastonTrack = Point5ENU.GetEast() + T*sin(theta_one);
 NorthonTrack = Point5ENU.GetNorth() + T*cos(theta_one);
 }
 else if (theta_one*(180/3.1415926)>-90 && theta_one*(180/3.1415926)<=0)
 {
 EastonTrack = Point5ENU.GetEast() + T*cos(theta_one);
 NorthonTrack = Point5ENU.GetNorth() + T*sin(theta_one);
 }

 e2onTrack = fabs(EastonTrack - Point6ENU.GetEast());
 //e2onTrack = fabs(EastonTrack - current_telemetry[i].East);
 f2onTrack = fabs(NorthonTrack - Point6ENU.GetNorth());
 //f2onTrack = fabs(NorthonTrack - current_telemetry[i].North);
 double Dis_on_Track = sqrt((e2onTrack*e2onTrack)+(f2onTrack*f2onTrack));
 //Dis_on_Track = Horiz2

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 //float LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 //Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 if ((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading*(3.1415926/180)) >= 0)
 {
 Adjust1a = Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));

 143

 Adjust2a = Dis_on_Track*sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));
 }
 else
 {
 Adjust1a = Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));
 Adjust2a = Dis_on_Track*-sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));
 }
 enu66east = Point6ENU.GetEast() + Adjust2a/2;
 enu66north = Point6ENU.GetNorth() + Adjust1a/2;
 enu66alt = Point6ENU.GetUp();
*/

 //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
 LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
 Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

 //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
 Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

 star = 3.1415926-1.5708-fabs(theta_one);
 sinfromNext = -Adjust2a*sin(star);
 cosfromNext = -Adjust2a*cos(star);

 enu66east = Point6ENU.GetEast()+cosfromNext;
 enu66north = Point6ENU.GetNorth()+sinfromNext;
 enu66alt = Point6ENU.GetUp();

 // MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
 delta_1 = Horiz*cos(theta_m);
 delta_2 = Horiz*sin(theta_m);

 enu66east = Point6ENU.GetEast()-delta_1;
 enu66north = Point6ENU.GetNorth()-delta_2;
 enu66alt = Point6ENU.GetUp();
*/

 ENUCoord newPointENU;
 newPointENU.enu2lla(enu66east, enu66north, enu66alt, Base_X, Base_Y, Base_Z);

 FPPoint_t adjWPInfo;
 Waypoint_t adjWPlocation;

 adjWPlocation.Lat = newPointENU.GetLat();
 adjWPlocation.Lon = newPointENU.GetLong();
 adjWPlocation.Alt = newPointENU.GetAlt();

 adjWPInfo.Point = adjWPlocation;
 adjWPInfo.Next = 0;
 adjWPInfo.PreTurn = 0;

 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66);
 // m_pComm->SendTrackCommandPacket(IDbrent8, 66, true);

 float e3 = fabs(current_telemetry[i].East - enu66east);
 float f3 = fabs(current_telemetry[i].North - enu66north);
 float Dis3 = sqrt((e3*e3)+(f3*f3));
 if (Dis3 >= 100)
 {
 m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66);
 m_pComm->SendTrackCommandPacket(IDbrent8, 66, true);
 }
 else
 {
 m_pComm->SendTrackCommandPacket(IDbrent8, 0, true);
 }
 }

 144

 }
}

int main()
{
 //create CCommManager object to communicate with Piccolo
 // 129.92.5.112 is the IP address of the operator interface computer

 m_pComm = new CCommManager(0, 57600, "1.1.1.3", 0);
 //m_pComm = new CCommManager(0, 57600, "129.92.5.112:2000", 0);

 //m_pComm = new CCommManager(1,"",2000);
 //printf("\nHELLO WORLD");
 //print out error and exit if m_pComm doesn't connect
 if(m_pComm->GetLastError() != 0){
 // printf("\nHELLO WORLD");
 printf("%s", m_pComm->GetLastError());
 printf("\n");
 return 1;
 }

 //set up network callback function
 m_pComm->SetNewNetworkCallBack(NewNetwork, m_pComm);

 pFile1 = fopen ("BrentsLog.txt","w"); //Log file

 //periodic loop to service the communications endpoints
 int i = 0, whosData = 0;

 //Headers for each column in the log file
 fprintf(pFile1," ID Hours Minutes Seconds Cross Track(m) Vg Ground Track Vtas Mag Heading
Estimated Wind Vel Estimated Wind Heading Crab Angle Altitude Mounting Angle LoS Distance FootPrint Horizontal
Dis");

 char keypress = 0;
 while(m_pComm && i == 0)
 {
 m_pComm->RunNetwork();
 // printf("\nHELLO WORLD3");

 LookForAutopilotData(pQ, whosData);

//BRENTS FUNCTION CALLS
 BrentsWindCorrection(i); //Wind Finding Funciton Call
 //WaypointFlyingnotTrackFlying(i); //Pure waypoint flying instead of track following function call

 count=count+1; //Counter so only do this stuff every 15 time hacks.
 if (count % 15 == 0)
 {
 SensorAdjustment(i); //Wind Corrected Sensor Pointing function call

 // UpdatingWaypointadjustingforWind(i);; //Rabbit function
 // HeadingAdjust(i); //For turn rate approach
 // AirspeedAdjust(i); //For turn rate approach
 }
 // if (count % 60 == 0)
 // { //Trying to manipulate when the function is called so I could send the new heading..
 // WaypointTrackReturn(i); //let the a/c adjust...then send it the return to waypoint tracking command
 // }

 //get commands via keypress
 int rate = 10;

 145

 if (kbhit()){
 keypress = getch();

 switch(keypress)
 {
 case 'x':
 i = 1;
 printf("\n");
 fclose (pFile1);
 break;
 case 'r': //command a certain turn rate- this was just used as a test
 AutopilotLoopCmd_t loopCom;
 loopCom.Loop = 2;
 loopCom.Control = 1;
 loopCom.Value = (rate*3.14159/180);

 m_pComm->SendAutopilotLoopControlPacket(565, &(loopCom));
 break;
 case '1':
 //print telemetry data for first Network
 whosData = 0;
 break;
 case '2':
 //print telemetry data for second Network
 whosData = 1;
 break;
 case '3':
 //print telemetry data for third Network
 whosData = 2;
 break;
 case '4':
 //print telemetry data for fourth Network
 whosData = 3;
 break;
 case '5':
 //print telemetry data for fifth Network
 whosData = 4;
 break;
 case '6':
 //print telemetry data for sixth Network
 whosData = 5;
 break;
 case '7':
 //print telemetry data for seventh Network
 whosData = 6;
 break;
 case '8':
 //print telemetry data for eighth Network
 whosData = 7;
 break;
 case '9':
 //print telemetry data for ninth Network
 whosData = 8;
 break;
 case '0':
 //print telemetry data for tenth Network
 whosData = 9;
 break;
 }
 }
 //delay to create periodic call, as specified by "Index" in the SDK documentation
 Sleep(10);
 }
 return 0;
}

Appendix C: MATLAB Code

 146

SAMPLE MATLAB FOR THE TOP DOWN VIEWS FOR TEST 5 – All tests used the
same code simply with different data file calls.

%TEST 5 - Adjusted RACETRACK WITH TC=250

clc,close all
clear all

%Analysis of Hardware in the Loop Sim with Flight Test

if exist('Alt0x5Bm0x5D5250') == 0
 load SimTests5datafileE.mat
 disp('File Loading')
end

%Read in Raw flight data from ".mat" file, and build custom Arrays
[Clock] = [Clock0x5Bms0x5D/1000,Day,Hours,Minutes,Seconds];
[Autopilot] = [rad2deg(Lat0x5Brad0x5D),...
 rad2deg(Lon0x5Brad0x5D),...
 Height0x5Bm0x5D*3.281,...
 TAS0x5Bm0x2Fs0x5D*3.281,...
 Direction0x5Brad0x5D,...
 MagHdg0x5Brad0x5D];

[Heading] = [rad2deg(Direction0x5Brad0x5D)];

[Autopilot_Flight] = [Clock,Autopilot];

%Waypoint Locations
WP_latitude = [39.773292; 39.773530; 39.773700; 39.775525;...
 39.777281; 39.776950;39.774950;39.773292];
WP_longitude = [-84.099500; -84.106389; -84.111550;...
 -84.112517; -84.111355; -84.099400;-84.098450;-84.099500];

WP_Altitude = [1148;1148;1148;1148;1148;1148;1148;1148];

%%
%%%%%%%
%%
%%%%%%%
begin = 484; %Line # in 'Clock' array
end_at = 10802;

% figure('Name',...
% 'HITL Simulation #1: TAS(12kts), Alt(1148ft), Winds(5s/0w m/s)',...
% 'NumberTitle','on')
% hold on
% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6),...
% '--k')
% axis equal
% xlabel ('Longitude (deg)')
% ylabel ('Latitude (deg)')
% title...
% ('HITL Autopilot Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)')
%
% plot(WP_longitude,WP_latitude,'-ro',...
% 'LineWidth',2,...
% 'MarkerEdgeColor','k',...
% 'MarkerFaceColor',[.49 1 .63],...
% 'MarkerSize',12);
% grid on
% axis equal
% legend({'UAV Flight Path','Desired Waypoints and FlightPath'});
% print -dmeta '1 HITL Autopilot Sim,2D,Actual'
% hold off

%PLOTTING WHERE THE SENSOR WOULD BE
BaseX = 503000;

 147

BaseY = -4884700;
BaseZ = 4057800;
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);
enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(11)
hold on
plot(enu(:,1), enu(:,2),'b')
plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]')
ylabel('North from Datum [m]')
title('Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)')
legend('UAV Track','Sensor Track','Waypoint',1)
grid on
hold off

%Plot 3D Waypoint Orbit Track
figure1 = figure('Name','HITL Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on')
axes1 = axes(...
 'CameraPosition',[-84.13 39.75 2007],...
 'CameraUpVector',[0.1859 0.1775 1.915e+005],...
 'Parent',figure1);
axis(axes1,[-84.12 -84.095 39.77 39.785 800 1500]);
title(axes1,'HITL Autopilot Simulation #1 with Flight Test: TAS(12m/s), Alt(1148ft)');
xlabel(axes1,'Longitude (deg)');
ylabel(axes1,'Latitude (deg)');
zlabel(axes1,'Altitude (ft)');
grid(axes1,'on');
hold(axes1,'all');
plot3(Autopilot_Flight(begin:end_at,7),... %LONGITUDE LINES
 Autopilot_Flight(begin:end_at,6),... %LATITUDE
 Autopilot_Flight(begin:end_at,8),'Parent',axes1); %ALTITUDE
grid on
hold on
axis equal
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',... %WAYPOINT PLOTS
 'LineWidth',2,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',12);
axis square
legend1 = legend(axes1,...
{'UAV Flight Path','Desired Waypoints,Flight Path, and Altitude (1148 ft)'},...
'Position',[0.2723 0.3165 0.6554 0.1]);
zlim([800 1500])

%%
%%%%%%%
%%
%%%%%%%
begin = 12283; %Line # in 'Clock' array
end_at = 20558;

%2-D PLOT FROM NIDAL
% figure('Name','HITL Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)',...
% 'NumberTitle','on')
% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6))

 148

% xlabel ('Longitude (deg)')
% ylabel ('Latitude (deg)')
% grid on
% axis equal
% hold on
% plot(WP_longitude,WP_latitude,'-ro',...
% 'LineWidth',2,...
% 'MarkerEdgeColor','k',...
% 'MarkerFaceColor',[.49 1 .63],...
% 'MarkerSize',12);
% axis equal
% print -dmeta '4 HITL Autopilot Sim,2D,Conv Lower'

%PLOTTING WHERE THE SENSOR WOULD BE
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);
enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(12)
hold on
plot(enu(:,1), enu(:,2),'b')
plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]')
ylabel('North from Datum [m]')
title('Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)')
legend('UAV Track','Sensor Track','Waypoint',1)
grid on
hold off

% 3-D PLOTTING FROM NIDAL
figure('Name','Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on')
plot3(Autopilot_Flight(begin:end_at,7),...
 Autopilot_Flight(begin:end_at,6),...
 Autopilot_Flight(begin:end_at,8));
grid on
hold on
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',...
 'LineWidth',2,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',12);
xlabel ('Longitude (deg)')
ylabel ('Latitude (deg)')
zlabel ('Altitude (ft)')
zlim([800 1500])

%%
%%%%%%%%
%%
%%%%%%%%
begin = 21279; %Line # in 'Clock' array
end_at = 27453;

%2-D PLOT FROM NIDAL
% figure('Name','HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)',...
% 'NumberTitle','on')

 149

% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6))
% xlabel ('Longitude (deg)')
% ylabel ('Latitude (deg)')
% grid on
% axis equal
% hold on
% plot(WP_longitude,WP_latitude,'-ro',...
% 'LineWidth',2,...
% 'MarkerEdgeColor','k',...
% 'MarkerFaceColor',[.49 1 .63],...
% 'MarkerSize',12);
% axis equal
% print -dmeta '7 HITL Autopilot Sim,2D,TAS Conv Lower'

%PLOTTING WHERE THE SENSOR WOULD BE
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);
enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(13)
hold on
plot(enu(:,1), enu(:,2),'b')
plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]')
ylabel('North from Datum [m]')
title('Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)')
legend('UAV Track','Sensor Track','Waypoint',1)
grid on
hold off

%3-D PLOT FROM NIDAL
figure('Name','HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on')
plot3(Autopilot_Flight(begin:end_at,7),...
 Autopilot_Flight(begin:end_at,6),...
 Autopilot_Flight(begin:end_at,8));
grid on
hold on
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',...
 'LineWidth',2,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',12);
xlabel ('Longitude (deg)')
ylabel ('Latitude (deg)')
zlabel ('Altitude (ft)')
zlim([800 1500])

%%
%%%%%%
%%
%%%%%%
begin = 27974; %Line # in 'Clock' array
end_at = 32413;

%2-D PLOT FROM NIDAL
% figure('Name','HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)',...

 150

% 'NumberTitle','on')
% hold on
% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6))
% axis equal
% xlabel ('Longitude (deg)')
% ylabel ('Latitude (deg)')
% plot(WP_longitude,WP_latitude,'-ro',...
% 'LineWidth',2,...
% 'MarkerEdgeColor','k',...
% 'MarkerFaceColor',[.49 1 .63],...
% 'MarkerSize',12);
% axis equal
% grid on
% print -dmeta '10 HITL Autopilot Sim,2D,TASLow ConvUp,Larg Track'

%PLOTTING WHERE THE SENSOR WOULD BE
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);
enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(14)
hold on
plot(enu(:,1), enu(:,2),'b')
plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]')
ylabel('North from Datum [m]')
title('Updated UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South)')
legend('UAV Track','Sensor Track','Waypoint',1)
grid on
hold off

%3-D PLOT FROM NIDAL
figure('Name','HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on')
plot3(Autopilot_Flight(begin:end_at,7),...
 Autopilot_Flight(begin:end_at,6),...
 Autopilot_Flight(begin:end_at,8));
grid on
hold on
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',...
 'LineWidth',2,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',12);
xlabel ('Longitude (deg)')
ylabel ('Latitude (deg)')
zlabel ('Altitude (ft)')
zlim([800 1500])

SAMPLE MATLAB FOR THE VARIOUS PARAMETERS AND WIND DATA PLOTS - All
tests used the same code simply with different data file calls.

 151

%Brent Robinson
%Thesis
%Additional plots for each test

clear all
clc

if exist('data5') == 0
 load SimTests5datafile.mat
 disp('File Loading')
end

begin=36;
end_at=2099;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);
GS = data5(begin:end_at,6);
Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);
CT = data5(begin:end_at,5);

figure(1)
%Plot - Velocity vs. time
x=SysTime;
y=TAS;
subplot(4,1,1)
plot(x,y)
xlabel('System Time [s]')
ylabel('TAS [m/s]')
grid on

%Plot - Ground Velocity vs. time
y2=GS;
subplot(4,1,2)
plot(x,y2)
xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')
grid on

%Plot - Altitude vs. time
y3=Alt;
subplot(4,1,3)
plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')
grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)
plot(x,y3b)
xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(2)

 152

%Plot - Wind Velocity vs. time
y4=WindVel;
subplot(3,1,1)
plot(x,y4)
xlabel('System Time [s]')
ylabel('Wind Velocity [m/s]')
grid on

%Plot - Wind Heading vs. time
y5=WindDir;
subplot(3,1,2)
plot(x,y5)
xlabel('System Time [s]')
ylabel('Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;
subplot(3,1,3)
plot(x,y6)
xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
grid on

%%
%%%
%%
%%%

begin=2399;
end_at=4051;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);
GS = data5(begin:end_at,6);
Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);
CT = data5(begin:end_at,5);

figure(3)
%Plot - Velocity vs. time
x=SysTime;
y=TAS;
subplot(4,1,1)
plot(x,y)
xlabel('System Time [s]')
ylabel('TAS [m/s]')
grid on

%Plot - Ground Velocity vs. time
y2=GS;
subplot(4,1,2)
plot(x,y2)
xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')
grid on

%Plot - Altitude vs. time
y3=Alt;
subplot(4,1,3)

 153

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')
grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)
plot(x,y3b)
xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(4)
%Plot - Wind Velocity vs. time
y4=WindVel;
subplot(3,1,1)
plot(x,y4)
xlabel('System Time [s]')
ylabel('Wind Velocity [m/s]')
grid on

%Plot - Wind Heading vs. time
y5=WindDir;
subplot(3,1,2)
plot(x,y5)
xlabel('System Time [s]')
ylabel('Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;
subplot(3,1,3)
plot(x,y6)
xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
grid on

%%
%%%
%%
%%%

begin=4199;
end_at=5431;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);
GS = data5(begin:end_at,6);
Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);
CT = data5(begin:end_at,5);

figure(5)
%Plot - Velocity vs. time
x=SysTime;
y=TAS;
subplot(4,1,1)

 154

plot(x,y)
xlabel('System Time [s]')
ylabel('TAS [m/s]')
grid on

%Plot - Ground Velocity vs. time
y2=GS;
subplot(4,1,2)
plot(x,y2)
xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')
grid on

%Plot - Altitude vs. time
y3=Alt;
subplot(4,1,3)
plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')
grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)
plot(x,y3b)
xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(6)
%Plot - Wind Velocity vs. time
y4=WindVel;
subplot(3,1,1)
plot(x,y4)
xlabel('System Time [s]')
ylabel('Wind Velocity [m/s]')
grid on

%Plot - Wind Heading vs. time
y5=WindDir;
subplot(3,1,2)
plot(x,y5)
xlabel('System Time [s]')
ylabel('Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;
subplot(3,1,3)
plot(x,y6)
xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
grid on

%%
%%%
%%
%%%

begin=5539;
end_at=6423;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);

 155

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);
GS = data5(begin:end_at,6);
Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);
CT = data5(begin:end_at,5);

figure(7)
%Plot - Velocity vs. time
x=SysTime;
y=TAS;
subplot(4,1,1)
plot(x,y)
xlabel('System Time [s]')
ylabel('TAS [m/s]')
grid on

%Plot - Ground Velocity vs. time
y2=GS;
subplot(4,1,2)
plot(x,y2)
xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')
grid on

%Plot - Altitude vs. time
y3=Alt;
subplot(4,1,3)
plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')
grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)
plot(x,y3b)
xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(8)
%Plot - Wind Velocity vs. time
y4=WindVel;
subplot(3,1,1)
plot(x,y4)
xlabel('System Time [s]')
ylabel('Wind Velocity [m/s]')
grid on

%Plot - Wind Heading vs. time
y5=WindDir;
subplot(3,1,2)
plot(x,y5)
xlabel('System Time [s]')
ylabel('Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;
subplot(3,1,3)
plot(x,y6)
xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')

 156

Appendix D: Proposed Actual Flight Test Plans

Po
in

t t
o

Po
in

t –
St

an
da

rd
 P

ic
co

lo
 W

in
d

C
or

re
ct

io
n

1TA
SK

 ID
TA

SK

FI
XE

D
 P

AR
AM

ET
ER

S

VA
R

IE
D

 P
AR

AM
ET

ER
S

FL
IG

H
T

PH
AS

E
TA

SK
 D

ES
C

R
IP

TI
O

N

TE
ST

 P
R

O
C

ED
U

R
E

P
IL

O
T

TE
ST

 E
N

G
IN

EE
R

/P
IL

O
T

N
O

T
FL

YI
N

G

W
in

d
E

st
im

at
io

n

G
W

:
C

.G
. p

os
 F

S
:

B
L:

W
L:

15
 lb

--
in

--
in

--

PI
LO

T
D

A
TE

R
U

N
 N

U
M

B
ER

G
E

A
R

:
In

iti
al

 H
dg

:
C

ro
ss

w
in

d:

N
/A

0 0

1.
 M

ai
nt

ai
n

st
ra

ig
ht

 a
nd

 le
ve

l f
lig

ht

2.
 S

w
itc

h
in

to
 a

ut
op

ilo
t m

od
e

w
he

n
pr

op
er

 c
he

ck
s

ar
e

co
m

pl
et

e.
 A

llo
w

 to
 fl

y
in

 a
uo

tp
ilo

t
m

od
e

fo
r a

 fe
w

 m
in

ut
es

 to
 e

ns
ur

e
ex

pe
ct

ed
 p

er
fo

rm
an

ce
.

P
oi

nt
 to

 P
oi

nt
 tr

ac
k

w
/ w

in
d

co
rr

ec
te

d
se

ns
or

 p
oi

nt
in

g
co

de
 ru

nn
in

g

EV
AL

U
AT

IO
N

 S
EG

M
EN

T
W

in
d

Es
tim

at
io

n

E
va

lu
at

e
th

e
tra

ck
 fo

llo
w

in
g

ch
ar

ac
te

ris
tic

s
to

 e
st

ab
lis

h
a

ba
se

lin
e

fo
r a

 s
im

pl
e

po
in

t t
o

po
in

t
w

ay
po

in
t t

ra
ck

.

EV
AL

U
AT

IO
N

 B
AS

IS

PE
R

FO
R

M
AN

C
E

ST
A

N
D

AR
D

S
TA

R
G

ET
D

ES
IR

ED
AD

EQ
U

AT
E

N
/A

H
ea

dw
in

d
(k

ts
)

N
/A

W
ea

th
er

0
W

in
d

--

In
iti

al
 P

os
iti

on
:

S
tra

ig
ht

 a
nd

 le
ve

l f
lig

ht
S

ta
rt

E
va

lu
at

io
n:

 P
oi

nt
 to

 P
oi

nt
 tr

ac
k

an
d

le
ve

l f
lig

ht
E

nd
 E

va
lu

at
io

n:
 P

oi
nt

 to
 P

oi
nt

 tr
ac

k
an

d
le

ve
l f

lig
ht

Tr
ac

k
C

on
ve

rg
en

ce

25
0

A
LT

 (m
)

35
0

S
pe

ed
 (m

/s
)

20

1.
 C

om
m

an
d

th
e

tra
ck

 fo
r t

w
o

or
 th

re
e

la
ps

2.
 R

un
 th

e
W

in
d

Fi
nd

in
g

co
de

 o
nl

y
(re

co
rd

in
g

th
e

da
ta

).

 157

C
irc

le
 P

at
te

rn
 –

St
an

da
rd

 P
ic

co
lo

 W
in

d
C

or
re

ct
io

n
2TA

SK
 ID

TA
SK

FI
XE

D
 P

AR
AM

ET
ER

S

VA
R

IE
D

 P
AR

AM
ET

ER
S

FL
IG

H
T

PH
AS

E
TA

SK
 D

ES
C

R
IP

TI
O

N

TE
ST

 P
R

O
C

ED
U

R
E

P
IL

O
T

TE
ST

 E
N

G
IN

EE
R

/P
IL

O
T

N
O

T
FL

YI
N

G

W
in

d
E

st
im

at
io

n

G
W

:
C

.G
. p

os
 F

S
:

B
L:

W
L:

15
 lb

--
in

--
in

--

PI
LO

T
D

A
TE

R
U

N
 N

U
M

B
ER

G
E

A
R

:
In

iti
al

 H
dg

:
C

ro
ss

w
in

d:

N
/A

0 0

1.
 M

ai
nt

ai
n

st
ra

ig
ht

 a
nd

 le
ve

l f
lig

ht

2.
 S

w
itc

h
in

to
 a

ut
op

ilo
t m

od
e

w
he

n
pr

op
er

 c
he

ck
s

ar
e

co
m

pl
et

e.
 A

llo
w

 to
 fl

y
in

 a
uo

tp
ilo

t
m

od
e

fo
r a

 fe
w

 m
in

ut
es

 to
 e

ns
ur

e
ex

pe
ct

ed
 p

er
fo

rm
an

ce
.

C
irc

le
 p

at
te

rn
 w

/ n
or

m
al

 a
ut

op
ilo

t s
et

tin
gs

 &
 w

in
d

fin
di

ng
 c

od
e

ru
nn

in
g

EV
AL

U
AT

IO
N

 S
EG

M
EN

T
W

in
d

Es
tim

at
io

n

E
va

lu
at

e
th

e
pr

ec
is

io
n

of
 th

e
w

in
d

es
tim

at
in

g
co

de
 to

 b
e

co
m

pa
re

d
w

ith
 th

e
kn

ow
n

va
lu

es

ga
th

er
ed

 fr
om

 th
e

w
ea

th
er

 s
ta

tio
n

an
d

th
e

P
ic

co
lo

 te
le

m
et

ry
 a

nd
 th

e
si

m
ul

at
ed

 te
st

s.

EV
AL

U
AT

IO
N

 B
AS

IS

PE
R

FO
R

M
AN

C
E

ST
A

N
D

AR
D

S
TA

R
G

ET
D

ES
IR

ED
AD

EQ
U

AT
E

N
/A

H
ea

dw
in

d
(k

ts
)

N
/A

W
ea

th
er

0
W

in
d

--

In
iti

al
 P

os
iti

on
:

S
tra

ig
ht

 a
nd

 le
ve

l f
lig

ht
S

ta
rt

E
va

lu
at

io
n:

 C
irc

ul
ar

 p
at

te
rn

 a
nd

 le
ve

l f
lig

ht
E

nd
 E

va
lu

at
io

n:
 C

irc
ul

ar
 p

at
te

rn
 a

nd
 le

ve
l f

lig
ht

Tr
ac

k
C

on
ve

rg
en

ce

25
0

A
LT

 (m
)

35
0

S
pe

ed
 (m

/s
)

20

1.
 C

om
m

an
d

th
e

ci
rc

ul
ar

 p
at

te
rn

.

2.
 R

un
 th

e
W

in
d

Fi
nd

in
g

C
od

e
on

ly
 (r

ec
or

di
ng

 th
e

da
ta

).

 158

R
ac

e
Tr

ac
k

Pa
tte

rn
 –

St
an

da
rd

 P
ic

co
lo

 W
in

d
C

or
re

ct
io

n
3TA

SK
 ID

TA
SK

FI
XE

D
 P

AR
AM

ET
ER

S

VA
R

IE
D

 P
AR

AM
ET

ER
S

FL
IG

H
T

PH
AS

E
TA

SK
 D

ES
C

R
IP

TI
O

N

TE
ST

 P
R

O
C

ED
U

R
E

P
IL

O
T

TE
ST

 E
N

G
IN

EE
R

/P
IL

O
T

N
O

T
FL

YI
N

G

W
in

d
E

st
im

at
io

n

G
W

:
C

.G
. p

os
 F

S
:

B
L:

W
L:

15
 lb

--
in

--
in

--

PI
LO

T
D

A
TE

R
U

N
 N

U
M

B
ER

G
E

A
R

:
In

iti
al

 H
dg

:
C

ro
ss

w
in

d:

N
/A

0 0

1.
 M

ai
nt

ai
n

st
ra

ig
ht

 a
nd

 le
ve

l f
lig

ht

2.
 S

w
itc

h
in

to
 a

ut
op

ilo
t m

od
e

w
he

n
pr

op
er

 c
he

ck
s

ar
e

co
m

pl
et

e.
 A

llo
w

 to
 fl

y
in

 a
uo

tp
ilo

t
m

od
e

fo
r a

 fe
w

 m
in

ut
es

 to
 e

ns
ur

e
ex

pe
ct

ed
 p

er
fo

rm
an

ce
.

R
ac

e
Tr

ac
k

pa
tte

rn
 w

/ n
or

m
al

 a
ut

op
ilo

t s
et

tin
gs

 &
 w

in
d

fin
di

ng
 c

od
e

ru
nn

in
g

EV
AL

U
AT

IO
N

 S
EG

M
EN

T
W

in
d

Es
tim

at
io

n

E
va

lu
at

e
th

e
pr

ec
is

io
n

of
 th

e
tra

ck
 fo

llo
w

in
g

ca
pa

bi
lit

ie
s

of
 th

e
P

ic
co

lo
 in

 a
 ra

ce
 tr

ac
k

pa
tte

rn
 in

 o
rd

er
 to

 e
st

ab
lis

h
a

ba
se

lin
e.

EV
AL

U
AT

IO
N

 B
AS

IS

PE
R

FO
R

M
AN

C
E

ST
A

N
D

AR
D

S
TA

R
G

ET
D

ES
IR

ED
AD

EQ
U

AT
E

N
/A

H
ea

dw
in

d
(k

ts
)

N
/A

W
ea

th
er

0
W

in
d

--

In
iti

al
 P

os
iti

on
:

S
tra

ig
ht

 a
nd

 le
ve

l f
lig

ht
S

ta
rt

E
va

lu
at

io
n:

 R
ac

e
Tr

ac
k

pa
tte

rn
 a

nd
 le

ve
l f

lig
ht

E
nd

 E
va

lu
at

io
n:

 R
ac

e
Tr

ac
k

pa
tte

rn
 a

nd
 le

ve
l f

lig
ht

Tr
ac

k
C

on
ve

rg
en

ce

25
0

A
LT

 (m
)

35
0

S
pe

ed
 (m

/s
)

12
, 1

5
20

, 3
0

1.
 C

om
m

an
d

th
e

ra
ce

 tr
ac

k
pa

tte
rn

 a
t e

ac
h

ve
lo

ci
ty

.

2.
 R

un
 th

e
W

in
d

Fi
nd

in
g

C
od

e
on

ly
 (r

ec
or

di
ng

 th
e

da
ta

).

 159

R
ac

e
Tr

ac
k

Pa
tte

rn
 –

Va
ry

in
g

th
e

Tr
ac

k
C

on
ve

rg
en

ce
 G

ai
n

4TA
SK

 ID
TA

SK

FI
XE

D
 P

AR
AM

ET
ER

S

VA
R

IE
D

 P
AR

AM
ET

ER
S

FL
IG

H
T

PH
AS

E
TA

SK
 D

ES
C

R
IP

TI
O

N

TE
ST

 P
R

O
C

ED
U

R
E

P
IL

O
T

TE
ST

 E
N

G
IN

EE
R

/P
IL

O
T

N
O

T
FL

YI
N

G

Tr
ac

k
C

on
ve

rg
en

ce
 E

ffe
ct

s

G
W

:
C

.G
. p

os
 F

S
:

B
L:

W
L:

15
 lb

--
in

--
in

--

PI
LO

T
D

A
TE

R
U

N
 N

U
M

B
ER

G
E

A
R

:
In

iti
al

 H
dg

:
C

ro
ss

w
in

d:

N
/A

0 0

1.
 M

ai
nt

ai
n

st
ra

ig
ht

 a
nd

 le
ve

l f
lig

ht

2.
 S

w
itc

h
in

to
 a

ut
op

ilo
t m

od
e

w
he

n
pr

op
er

 c
he

ck
s

ar
e

co
m

pl
et

e.
 A

llo
w

 to
 fl

y
in

 a
uo

tp
ilo

t
m

od
e

fo
r a

 fe
w

 m
in

ut
es

 to
 e

ns
ur

e
ex

pe
ct

ed
 p

er
fo

rm
an

ce
.

R
ac

e
Tr

ac
k

pa
tte

rn
 w

/ V
ar

yi
ng

 T
ra

ck
 G

ai
ns

 &
 W

in
d

Fi
nd

in
g

C
od

e
R

un
ni

ng

EV
AL

U
AT

IO
N

 S
EG

M
EN

T
W

in
d

Es
tim

at
io

n
an

d
Tr

ac
k

Fo
llo

w
in

g
E

va
lu

at
io

n

E
va

lu
at

e
th

e
pr

ec
is

io
n

of
 th

e
tra

ck
 fo

llo
w

in
g

ca
pa

bi
lit

ie
s

of
 th

e
P

ic
co

lo
 in

 a
 ra

ce
 tr

ac
k

pa
tte

rn
 in

 o
rd

er
 to

 e
st

ab
lis

h
a

ba
se

lin
e.

 V
ar

y
th

e
tra

ck
 c

on
ve

rg
en

ce
 g

ai
n

to
 d

is
pl

ay
 th

e
in

cr
ea

se
d

tra
ck

 fo
llo

w
in

g
ca

pa
bi

lit
ie

s
of

 th
e

U
A

V
.

EV
AL

U
AT

IO
N

 B
AS

IS

PE
R

FO
R

M
AN

C
E

ST
A

N
D

AR
D

S
TA

R
G

ET
D

ES
IR

ED
AD

EQ
U

AT
E

N
/A

H
ea

dw
in

d
(k

ts
)

N
/A

W
ea

th
er

0
W

in
d

--

In
iti

al
 P

os
iti

on
:

S
tra

ig
ht

 a
nd

 le
ve

l f
lig

ht
S

ta
rt

E
va

lu
at

io
n:

 R
ac

e
Tr

ac
k

pa
tte

rn
 a

nd
 le

ve
l f

lig
ht

E
nd

 E
va

lu
at

io
n:

 R
ac

e
Tr

ac
k

pa
tte

rn
 a

nd
 le

ve
l f

lig
ht

Tr
ac

k
C

on
ve

rg
en

ce
50

, 1
50

,
25

0

A
LT

 (m
)

35
0

S
pe

ed
 (m

/s
)

12
, 1

5
20

, 3
0

1.
 C

om
m

an
d

th
e

ra
ce

 tr
ac

k
pa

tte
rn

 a
t e

ac
h

ve
lo

ci
ty

.

2.
 C

ha
ng

e
th

e
Tr

ac
k

C
on

ve
rg

en
ce

 g
ai

n
af

te
r t

w
o

la
ps

 a
t e

ac
h

ve
lo

ci
ty

3.
 R

un
 th

e
W

in
d

Fi
nd

in
g

C
od

e
on

ly
 (r

ec
or

di
ng

 th
e

da
ta

).

 160

R
ac

e
Tr

ac
k

Pa
tte

rn
 –

A
dj

us
tin

g
fo

r S
en

so
r P

oi
nt

in
g

5TA
SK

 ID
TA

SK

FI
XE

D
 P

AR
AM

ET
ER

S

VA
R

IE
D

 P
AR

AM
ET

ER
S

FL
IG

H
T

PH
AS

E
TA

SK
 D

ES
C

R
IP

TI
O

N

TE
ST

 P
R

O
C

ED
U

R
E

P
IL

O
T

TE
ST

 E
N

G
IN

EE
R

/P
IL

O
T

N
O

T
FL

YI
N

G

W
in

d
C

or
re

ct
ed

 S
en

so
r P

oi
nt

in
g

G
W

:
C

.G
. p

os
 F

S
:

B
L:

W
L:

15
 lb

--
in

--
in

--

PI
LO

T
D

A
TE

R
U

N
 N

U
M

B
ER

G
E

A
R

:
In

iti
al

 H
dg

:
C

ro
ss

w
in

d:

N
/A

0 0

1.
M

ai
nt

ai
n

st
ra

ig
ht

 a
nd

 le
ve

l f
lig

ht

2.
 S

w
itc

h
in

to
 a

ut
op

ilo
t m

od
e

w
he

n
pr

op
er

 c
he

ck
s

ar
e

co
m

pl
et

e.
 A

llo
w

 to
 fl

y
in

 a
uo

tp
ilo

t
m

od
e

fo
r a

 fe
w

 m
in

ut
es

 to
 e

ns
ur

e
ex

pe
ct

ed
 p

er
fo

rm
an

ce

R
ac

e
Tr

ac
k

pa
tte

rn
 w

/ W
in

d
C

or
re

ct
ed

 S
en

so
r P

oi
nt

in
g

C
od

e
R

un
ni

ng

EV
AL

U
AT

IO
N

 S
EG

M
EN

T
W

in
d

C
or

re
ct

io
n

E
va

lu
at

e
th

e
w

in
d

co
rre

ct
ed

 w
ay

po
in

ts
’a

bi
lit

y
to

 a
dj

us
t f

or
 s

en
so

r p
oi

nt
in

g
an

d
de

ta
il

an
y

fli
gh

t p
at

h
ch

an
ge

s.

EV
AL

U
AT

IO
N

 B
AS

IS

PE
R

FO
R

M
AN

C
E

ST
A

N
D

AR
D

S
TA

R
G

ET
D

ES
IR

ED
AD

EQ
U

AT
E

N
/A

H
ea

dw
in

d
(k

ts
)

N
/A

W
ea

th
er

0
W

in
d

--

In
iti

al
 P

os
iti

on
:

S
tra

ig
ht

 a
nd

 le
ve

l f
lig

ht
S

ta
rt

E
va

lu
at

io
n:

 R
ac

e
Tr

ac
k

pa
tte

rn
 a

nd
 le

ve
l f

lig
ht

E
nd

 E
va

lu
at

io
n:

 R
ac

e
Tr

ac
k

pa
tte

rn
 a

nd
 le

ve
l f

lig
ht

Tr
ac

k
C

on
ve

rg
en

ce

25
0

A
LT

 (m
)

35
0

S
pe

ed
 (m

/s
)

12
, 1

5
20

, 3
0

1.
 C

om
m

an
d

th
e

ra
ce

 tr
ac

k
pa

tte
rn

 a
t e

ac
h

ve
lo

ci
ty

.

2.
 C

ha
ng

e
th

e
ve

lo
ci

ty
 a

fte
r t

w
o

la
ps

 fo
r e

ac
h

3.
 R

un
 th

e
W

in
d

C
or

re
ct

ed
 S

en
so

r P
oi

nt
in

g
C

od
e

(re
co

rd
in

g
th

e
da

ta
).

 161

Po
in

t t
o

Po
in

t –
W

in
d

C
or

re
ct

io
n

Se
ns

or
 P

oi
nt

in
g

6TA
SK

 ID
TA

SK

FI
XE

D
 P

AR
AM

ET
ER

S

VA
R

IE
D

 P
AR

AM
ET

ER
S

FL
IG

H
T

PH
AS

E
TA

SK
 D

ES
C

R
IP

TI
O

N

TE
ST

 P
R

O
C

ED
U

R
E

P
IL

O
T

TE
ST

 E
N

G
IN

EE
R

/P
IL

O
T

N
O

T
FL

YI
N

G

W
in

d
C

or
re

ct
io

n

G
W

:
C

.G
. p

os
 F

S
:

B
L:

W
L:

15
 lb

--
in

--
in

--

PI
LO

T
D

A
TE

R
U

N
 N

U
M

B
ER

G
E

A
R

:
In

iti
al

 H
dg

:
C

ro
ss

w
in

d:

N
/A

0 0

1.
 M

ai
nt

ai
n

st
ra

ig
ht

 a
nd

 le
ve

l f
lig

ht

2.
 S

w
itc

h
in

to
 a

ut
op

ilo
t m

od
e

w
he

n
pr

op
er

 c
he

ck
s

ar
e

co
m

pl
et

e.
 A

llo
w

 to
 fl

y
in

 a
uo

tp
ilo

t
m

od
e

fo
r a

 fe
w

 m
in

ut
es

 to
 e

ns
ur

e
ex

pe
ct

ed
 p

er
fo

rm
an

ce
.

P
oi

nt
 to

 P
oi

nt
 tr

ac
k

w
/ w

in
d

co
rr

ec
te

d
se

ns
or

 p
oi

nt
in

g
co

de
 ru

nn
in

g

EV
AL

U
AT

IO
N

 S
EG

M
EN

T
W

in
d

C
or

re
ct

io
n

E
va

lu
at

e
th

e
se

ns
or

 p
oi

nt
in

g
co

rre
ct

io
n

re
su

lts
. C

om
pa

re
 w

ith
 th

os
e

fro
m

 T
es

t 1
 a

s
w

el
l a

s
th

e
si

m
ul

at
ed

 re
su

lts
.

EV
AL

U
AT

IO
N

 B
AS

IS

PE
R

FO
R

M
AN

C
E

ST
A

N
D

AR
D

S
TA

R
G

ET
D

ES
IR

ED
AD

EQ
U

AT
E

N
/A

H
ea

dw
in

d
(k

ts
)

N
/A

W
ea

th
er

0
W

in
d

--

In
iti

al
 P

os
iti

on
:

S
tra

ig
ht

 a
nd

 le
ve

l f
lig

ht
S

ta
rt

E
va

lu
at

io
n:

 P
oi

nt
 to

 P
oi

nt
 tr

ac
k

an
d

le
ve

l f
lig

ht
E

nd
 E

va
lu

at
io

n:
 P

oi
nt

 to
 P

oi
nt

 tr
ac

k
an

d
le

ve
l f

lig
ht

Tr
ac

k
C

on
ve

rg
en

ce

25
0

A
LT

 (m
)

35
0

S
pe

ed
 (m

/s
)

20

1.
 C

om
m

an
d

th
e

tra
ck

 fo
r t

w
o

or
 th

re
e

la
ps

2.
 R

un
 th

e
W

in
d

C
or

re
ct

ed
 S

en
so

r P
oi

nt
in

g
co

de
 (r

ec
or

di
ng

 th
e

da
ta

).

 162

Appendix E: Flight Test Results

 The following set of flight test results were gathered post-defense in order to

obtain initial effects of the wind correction algorithm in a real world situation. Two tests

are shown. First, a straight and level flight path and then second a circular orbit. The

aircraft was flown in RC mode with the wind finding code running. The results for both

tests were disappointing. However, the poor results were not due to the algorithm, but

rather a malfunction with the Piccolo II’s true airspeed reading on board the aircraft. Due

to the inaccurate TAS values, the wind velocity and direction results were completely

unreliable. In the first test, the TAS quickly drops to zero and remains there throughout

the flight. Obviously the UAV had a positive TAS at all time, thus displaying the error in

the Piccolo’s readout of the TAS. However, it is interesting to note that the wind

estimating algorithm was still operating correctly as the estimated winds were precisely

the difference between ground track and flight path. With TAS=0 m/s, the algorithm

estimated the wind to be the same as the ground speed, as shown in Figures 111 and 112.

The TAS results for the circular orbit test, Figure 113, were non-zero, but still inaccurate

and unreliable, producing poor results for the wind estimations found in Figure 114.

 163

2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
0

10

20

System Time [s]
TA

S
 [m

/s
]

2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
0

20

40

System Time [s]G
rn

d
S

pd
 [m

/s
]

2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
220

240

260

System Time [s]

A
lt

[m
]

2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 111. Straight and Level Flight Test Results

2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
0

20

40

System Time [s]

W
in

d
V

el
oc

ity
 [m

/s
]

2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
-200

0

200

System Time [s]

C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 112. Straight and Level Flight Test Wind Estimations

 164

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0

20

40

System Time [s]
TA

S
 [m

/s
]

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
10

20

30

System Time [s]G
rn

d
S

pd
 [m

/s
]

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
320

340

360

System Time [s]

A
lt

[m
]

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0

200

400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

Figure 113. Circular Orbit Flight Test Results

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0

20

40

System Time [s]

W
in

d
V

el
oc

ity
 [m

/s
]

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0

200

400

System Time [s]

W
in

d
H

ea
di

ng
 [d

eg
]

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
-500

0

500

System Time [s]

C
ro

ss
 T

ra
ck

 D
is

 [m
]

Figure 114. Circular Orbit Flight Test Wind Estimations

 165

Bibliography

“APC 16x8 Pattern Propeller.” Retrieved on April 9, 2006 from

www2.towerhobbies.com/ cgi-bin/wti0002p?&M=APC. 2006

Bayraktar, S., Fainekos, G.E., Pappas, G.J. Hybrid Modeling and Experimental
Coorperative Control of Multiple Unmanned Aerial Vehicles. Technical Report.
Department of Computer and Information Science, University of Pennsylvannia, PA.
December 2004.

Brown, M.J. et. al. “Joint Urban 2003 Street Canyon Experiment.” Joint Urban 2003
Field Study and Urban Mesonets, Seattle, WA. January 2004.

Bryant, R.L. “Zermello Navigation.” Instructor Lecture. Department of Mathematics,
Duke University, NC. May 1998.

Bryson, A.E., Ho, Y. Applied Optimal Control – Optimization, Estimation, and Control.
New York, New York. Hemisphere Publishing Corporation, 1975.

Cionco, R.M., Luces, S.A. “Near Surface Winds from an Enhanced Micro-Mesoscale
Simulation System.” The Fifth Conference on Urban Environment, Vancouver, BC,
August 2004.

Dugan, J. Situational Awareness and Synthetic Vision for Unmanned Aerial Vehicle
Flight Testing. MS Thesis. AFIT/GAE/ENY/06-J2. School of Engineering and
Management, Air Force Institute of Technology (AFIT), Wright Patterson AFB, OH.
June 2006.

Frew, E., Xiao, X., Spry, S., McGee, T., Kim, Z., Tisdale, J., Sengupta, R., Hendrick,
K.J. “Flight Demonstrations of Self-directed Collaborative Navigation of Small
Unmanned Aircraft.” Proceedings of the 2004 IEEE Aerospace Conference, Big Sky,
MT, March 2004.

“Futaba - 9CA/CH Computer Systems.” Retrieved on April 9, 2006 from
http://www.futaba-rc.com/radios/futj85.html. 2006.

Girard, A. R., Hedrick, J.K. “Formation Control of Multiple Vehicles Using Dynamic
Surface Control and Hybrid Systems.” International Journal of Control, 2003. Vol.
76. November 2002.

 166

Jodeh, N. Development of Autonomous Unmanned Aerial Vehicle Research Platform:
Modeling, Simulating, and Flight Testing. MS Thesis. Department of Aeronautics and
Astronautics, Air Force Institute of Technology, OH. March 2006.

King, E. Distributed Coordination and Control Experiments on a Multi-UAV Testbed.
MS Thesis. Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, MA. September 2004.

Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J.K., Zennaro, M., Sengupta, R.
Strategies of Path-Planning for a UAV to Track a Ground Vehicle. Departments of
Mechanical and Civil and Environmental Engineering, University of California,
Berkeley, CA. May, 2003.

McCarthy, P. Characterization of UAV Performance and Development of a Formation
Flight Controller for Multiple Small UAVs. MS Thesis. AFIT/GAE/ENY/06-J2.
School of Engineering and Management, Air Force Institute of Technology (AFIT),
Wright Patterson AFB, OH. June, 2006.

Office of the Secretary of Defense. Unmanned Aerial Vehicles Roadmap 2002-2027.
Washington: HQ DOD, December, 2002.

“OS 4 Stroke Engines.” Retrieved on April 9, 2006 from http://www.ehirobo.com. 2003.

“Smart Digital Magnetometer.” Retrieved on April 19, 2006 from
http://www.ssec.honeywell.com/magnetic/datasheets/hmr2300.pdf. 2004.

Tin, C. Robust Multi-UAV Planning in Dynamic and Uncertain Environments. MS
Thesis. Department of Mechanical Engineering, Massachusetts Institute of
Technology, MA. September, 2004.

U-Blox AG, Switzerland. Retrieved on December 10, 2005, from
http://www.u-blox.com/products/tim_lp.html

Vaglienti, B., Hoag, R., Niculescu, M. Piccolo System Users Guide. Hood River OR.
Cloud Cap Technology. 18 April 2005.

Vaglienti, B., Niculescu, M. Hardware in the Loop Simulator for the Piccolo Avionics.
Hood River OR. Cloud Cap Technology. 18 April 200

 167

Vita

 Ensign Brent K. Robinson graduated from Palos Verdes Peninsula High School in

Rancho Palos Verdes, California. He entered undergraduate studies at the United States

Naval Academy in Annapolis, Maryland where he graduated with a Bachelor of Science

degree in Aerospace Engineering, with a concentration in Aeronautical Engineering, in

May 2005. He was commissioned as an Ensign in the United States Navy on May 27,

2005.

 He was directly assigned to Wright Patterson Air Force Base in Dayton, Ohio for

graduate studies at the Air Force Institute of Technology. Upon his graduation with a

Master’s degree in Aeronautical Engineering, he will be assigned to Naval Air Station,

Pensacola, Florida for initial pilot training.

 168

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

06-13-06
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

June 2005 – June 2006
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
An Investigation Into Robust Wind Correction Algorithms for

Off-The-Shelf Unmanned Aerial Vehicle Autopilots
 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Robinson, Brent K., Ensign, USN

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GAE/ENY/06-J14

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/VAA
2210 8TH ST., WPAFB, OH, 45433
Lt Col Lawrence Leny
 (937) 255-6500
AFIT Proposal #2003-120, AFIT JON # 05-186

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT The research effort focuses on developing methods to design efficient wind correction algorithms to “piggy-
back” on current off-the-shelf Unmanned Aerial Vehicle (UAV) autopilots. Autonomous flight is certainly the near future for the
aerospace industry and there exists great interest in defining a system that can guide and control aircraft with high levels of
accuracy. The primary systems required to command the vehicles are already in place, but with only moderate abilities to adjust
for dynamic environments (i.e. wind effects), if at all. The goal of this research is to develop a systematic procedure for
implementing efficient and robust wind effects corrections to existing autopilots. The research will investigate the feasibility of
an external dynamic environment control algorithm as a means of improving current, off-the-shelf autopilot technology relating
to small UAVs. The research then presents three main focuses. First, a determination of the estimated winds utilizing the
existing, on-board sensors. Second, the development of code that incorporates simple mathematical principals to counter the 2-
Dimensional wind forces acting on the aircraft; and third, the integration of that code into the on-board navigational system. This
“piggy-back” algorithm must assimilate smoothly with the current GPS technologies to provide acceptable and safe flight path
following. The design procedures developed were demonstrated in simulation and with flight tests on the SiG Rascal 110 UAV.
This report builds the framework from which future wind correction research at AFIT and the ANT Center are based.

15. SUBJECT TERMS
 UAV, Autonomous UAV, Wind, Wind Correction, UAV Flight Testing, Piccolo, Piccolo SDK, SIG Rascal
16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Paul A. Blue, Maj, USAF AFIT/ENY

a. REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

182
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 x4714
(paul.blue@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	An Investigation into Robust Wind Correction Algorithms for Off-the Shelf Unmanned Aerial Vehicle Autopilots
	Recommended Citation

	Microsoft Word - AFIT-GAE-ENY-06-J14b.doc

