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AFIT/GAE/ENY/06-J14
Abstract

This research effort focuses on developing methods to design efficient wind
correction algorithms to “piggy-back” on current off-the-shelf Unmanned Aerial Vehicle
(UAV) autopilots. Autonomous flight is certainly the near future for the aerospace
industry and there exists great interest in defining a system that can guide and control
small aircraft with high levels of accuracy. The primary systems required to command the
vehicles are already in place, but with only moderate abilities to adjust for dynamic
environments (i.e., wind effects), if at all. The goal of this research is to develop a
systematic procedure for implementing efficient and robust wind effects corrections to
existing autopilots used on small Unmanned Aerial Vehicles. The research will
investigate the feasibility of an external dynamic environment control algorithm as a
means of improving current, off-the-shelf autopilot technology relating to small UAVs.
The research then presents three main focuses. First, a determination of the estimated
winds utilizing the existing, on-board sensors. Second, the development of a wind
correction algorithm that incorporates simple mathematical principals to counter the 2-
Dimensional wind forces acting on the aircraft; and third, the integration of that wind
compensator into the on-board navigational system. This “piggy-back” algorithm must
assimilate smoothly with the current GPS technologies to provide acceptable and safe
flight path following. The design procedures developed were demonstrated in simulation
and with flight tests on the SIG Rascal 110 UAV. This report builds the framework from

which current wind correction research at AFIT and the ANT Center is based.
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ROBUST WIND CORRECTION ALGORITHM FOR OFF-THE-SHELF
UNMANNED AERIAL VEHICLE AUTOPILOTS

l. Introduction

1.1 — Motivation

The first one hundred years of flight brought about an incredible evolution
beginning with two, small town bicycle makers soaring just over 120 feet and progressing
to the global military and civil aerospace business of current times. This transformation
has thrust aviation into the forefront of the world’s daily operations and has positioned
the business as a necessity in the everyday world. While this “revolution” has been rapid
in historic terms and some have declared Aerospace as a mature business/technology, the
next one hundred years will undoubtedly bring a myriad of advances that will continue to
change how the world lives and operates. One of the most important developments of
current times is that of Unmanned Aerial Vehicles (UAVs). While they have been
envisaged as long as manned aircraft, the enabling technologies have only recently
matured enough to bring them to a state of operational reality. Thus, UAVs of all sizes
and capabilities are beginning to accomplish numerous missions impractical, or even
impossible, for manned aircraft.

Leading the drive for research and development in the UAV field are the U.S.
Department of Defense’s (DoD) efforts to provide a more efficient and capable force for
it’s military forces. Currently, UAVs operating as remotely piloted vehicles (RPV) are
utilized around the globe to provide intelligence, surveillance, and reconnaissance (ISR)
as well as for small scale offensive actions. The immediate success of those operations

has inspired the DoD to push further into the uncharted territory of complementing the



modern warfighter’s emergent needs with UAV technology. The next step is to provide
partially to fully autonomous UAV systems that have the ability to execute any peacetime
or combat missions in support of desired “Effects Based Operations” (EBO). Such UAV
operations not only have the potential to provide more fiscally attractive solutions to
EBO needs, but since it offers the potential to remove the human from the most
dangerous and dull aspects of the mission, UAVs offer the potential for dramatic
improvement in organizational concepts, civilian or military.

The Air Force Institute of Technology’s (AFIT) Advanced Navigation
Technology (ANT) Center has recognized the importance of research in the autonomous
UAYV domain with ongoing projects in guidance and control of small aircraft (for
definition of “small UAVs” see Roadmap, 2002:62). The ANT Center now has the
foundation for autonomous UAV study including analytic research, MATLAB
simulations, Hardware-In-The-Loop (HITL) Simulations, and flight test and
demonstration. This broad capability, established through previous theses (Jodeh, 2006),
allowed for the current research in this, and related theses. For this thesis, the primary
tool utilized for the autonomous control research in the ANT Center was an off-the-shelf
commercial autopilot provided by Cloud Cap Technologies, named the Piccolo II
(Vaglienti, 2005).

In recent years, developing, simulating, and flight testing robust autonomous
UAV:s has been the topic of interest at numerous civilian universities/institutions
throughout the country. However, when specifically dealing with small aircraft and
autonomous control (esp. with the Piccolo II) there are only a few establishments

conducting in-depth analysis, which includes the Autonomous Intelligent Networks and



Systems (AINS) Center for Collaborative Control of UAVs at the University of
California, Berkeley (Girard, 2002 and Frew, 2004), the GRASP Laboratory at the
University of Pennsylvania (Bayraktar, 2004), and the Aeronautics and Aerospace
Department at the Massachusetts Institute of Technology (King, 2004 and Tin, 2004).
These institutions have produced research which has advanced the control and
manipulation of single and multiple UAV systems (King, 2004), dramatically pushing the
envelope in this field. However, most of the previous research has, at best, glossed over
the primary focus of this thesis; specifically, the affects of wind on the flight paths of the
UAVs. The issue may have been mentioned, but prior research has not delved into the
implementation of a robust system that continuously updates any wind correction
parameters — a necessity for operational relevance.

The importance of this ability to strictly track a predetermined path becomes
evident when dealing with current implementation of UAVs in the modern combat zone.
Recent operations have shown the need for this technology to enable operations and
navigation in the “urban canyon” environment. This demand requires tight adherence of
point to point waypoint following. Moreover, urban buildings, streets, and the general
environment generate unique and highly variable wind patterns which present a particular
challenge for small, lightweight UAVs. The inherent strong up/down-drafts coupled with
horizontal gusts can easily force a UAV off course and into an obstacle. Detailed studies
on the topic can be found in (Cionco, 2004) and (Brown, 2003).

The research community generally characterizes the “wind effect” problem as an
easily correctable issue through basic math. While it is true that the math involved was

not drastically complicated, the difficulty lies in the implementation of these corrections



into the UAV autopilot systems — especially for the cost effective off-the-shelf systems.
Most current systems will correct for a “static” wind reading, possibly at some ground
station, and then employ this correction to the aircrafts control algorithm throughout the
entire flight. However, as mentioned, in the new urban flight environment this
methodology will not provide sufficient precision. Therefore, a continuously updating
wind correction feeding the aircraft’s control devices is not only desired, but required for

the intricate demands of modern day operations.

1.2 -- Problem Statement

The ultimate goal of this research is to provide AFIT, the ANT Center, and the
research sponsor, AFRL/VA, with a well-documented investigation into robust wind
correction algorithms for small UAVs. To meet the operational needs, these schemes
must continuously calculate the current wind corrections required and then update the
UAVs flight plan to accommodate the local and constantly variable winds so as to assure
the UAV remains on course or on target. The research platform supports UAVs flying in
a constant or variable wind environment using Cloud Cap Technology’s Piccolo II
autopilot system. This problem statement has two primary parts. First, produce an
adaptable algorithm for determining the current wind effects on the vehicle and the
required heading and airspeed to compensate for that wind. Second, produce sensible
approaches of implementing wind compensation algorithms on Commercial Off-the-
Shelf (COTS), waypoint guided autopilots without hardware or software modifications to
the autopilot or UAVs. In this thesis, the implementation will be demonstrated using a

Piccolo II autopilot and the corresponding Software Development Kit (SDK).



Furthermore, simulated and actual flight test results were conducted to validate the

algorithms.

1.3 -- Research Objectives

o Develop and document a wind velocity and direction determination scheme to be
utilized on small UAVs in autonomous flight mode.

. Develop and document an interface algorithm in order to implement
modifications to the flight path of the UAV to compensate for wind. The resulting
ground track should show an improvement in the waypoint targeting and/or track
following capabilities of the UAV.

o Demonstrate the performance of the algorithms through comparisons of
unmodified and modified flight plans using HITL simulations as well as actual

flight test data.

1.4 - Significance of Research

The significance of this research is to provide AFIT, the ANT Center, and
AFRL/VA with a basis for continuing work in the precise navigation field of UAV
technology. This research provides a robust manner in which to compensate for the
common issue of variable winds. The current autopilot system incorporates wind finding
calculations and adjustment techniques; however, the method used did not allow for a
real time update of the wind. Therefore, the adjustments did not correct for dynamics of
winds in the “urban canyon” or similar environments as efficiently as would be needed

for combat operations.



Providing the foundations for a two dimensional, continuously updating wind
correction algorithm allows for a starting point to delve into the more complex issues of
precise, three dimensional track and waypoint control for lightweight, autonomous
UAVs. This end goal is undoubtedly a few years in the future, but the reported research
overcame the initial steps to improve the current systems.

The capability for the United States to, at will, deploy autonomous UAVs in an
urban environment to conduct ISR or offensive operations will be indispensable to
achieving the goals of EBO. To efficiently carry out a desired mission mitigating the risk
of the loss of human life is the top level objective in this environment. The capacity to
accurately infiltrate an unknown urban environment with a UAV will certainly contribute
to those overarching objectives. This research will prove to be a significant step in that
maturation.

Moreover, the concurrent AFIT studies of multiple, autonomous UAV formation
flight (McCarthy, 2006) and UAV Autonomous Situational Awareness and Synthetic
Vision (Dugan, 2006) provide further insights to enhance the goals of AFIT and the ANT

Center.

1.5 — Methodology

The methodology varied for each of three research objectives. The calculations
for determining the current wind conditions were developed through a manipulation of
the difference in the GPS ground track and the actual aircraft magnetic heading. Utilizing
basic trigonometry and algebra a wind direction and velocity were solved for, providing

the current wind effects on the vehicle. Then, the new flight conditions, such as the



magnetometer heading and true airspeed (TAS), could be solved for. Additionally, these

calculations were completed at continual time intervals; therefore, providing updating

wind and correction estimates.

Once the wind-compensated values were known, there were three approaches for

relaying that information back to the autopilot.

1.

The more direct method of sending a new turn rate command coupled with the
new TAS command. The difference between the actual and desired headings
divided by a reasonable time step resulted in the turn rate command.

A second approach was to insert a new, updating waypoint which was placed
at the correct heading to result in the overall aircraft ground track, after the
effects of wind, to follow the original path to the original waypoint.

A unique approach to wind correction was employed by analyzing the ground
footprint location of a nose mounted sensor. Despite precise navigation by the
UAYV, a sensor would not survey a target, but rather some undesired position
offset from the target due to the difference in magnetic heading and the
ground track direction. In order to correct this problem, the aircraft’s flight

path would be modified in order to counteract the sensor offset.

Developing the interface that implemented the wind correction algorithms on the

Piccolo II autopilot involved using the Software Development Kit (SDK), provided by

the manufacturer, to generate a C++ program. The SDK gave the operator real-time

access to telemetry data from the autopilot. It also enables information to be sent back to

the autopilot in order to update a desired parameter. Because this Software Development



Kit was provided by the same company as the autopilot, the interfacing occurs relatively
smoothly whether this autopilot was in a HITL or in the airborne UAV.

The procedures for the HITL simulations and the actual flight testing were those
formulated by Capt. Nidal Jodeh in his research from 2005-2006 (Jodeh, 2006).
Essentially, the flight tests would first be run using the HITL simulator to ensure proper
flying attributes. Then, the test team would fly the UAVs on Area B test range at Wright
Patterson AFB, per the rules and regulations explained later.

With the algorithms effectively manipulating the flight path, the modified path
results were compared to the original results using a MATLAB script developed
previously (Jodeh, 2006) and then adapted by the author. This program output two
dimensional (also 3-D, if desired) plots of the aircraft’s true flight path, simulated or
actual, in relation to the desired waypoints and flight paths. From these figures, the

variations were easily analyzed.

1.6 — Thesis Preview

Chapter II details the equipment utilized including the aircraft components, the
avionics components, the autopilot, and the simulation components and provides a
background on the flight testing, as a whole. Chapter I1I methodically looks at the
equation build ups and the varying attempts at the implementation of the modified flight
parameters. Chapter I'V presents the results of the baseline tests, the HITL simulations, as
well as the actual flight tests. Chapter V summarizes the conclusions and

recommendations.



11. Background

2.1 — Overview

Chapter II provides background information on the specific equipment,
components, and the flight testing procedures utilized in the formulation of the wind
compensation algorithms. Thus, it supplies the reader the necessary information to
understand the remaining chapters. Initially, the airframe, engine, and propeller are
discussed. This is followed by a discussion of the avionics systems, including the
standard radio controller (RC), the autopilot, and the digital magnetometer. Next, the
Hardware-In-The-Loop (HITL) simulation setup is detailed along with the Software
Development Kit (SDK) interface. The chapter concludes with a description of the flight

testing setup, procedures, and the data telemetry collection and handling.

2.2 — Aircraft

2.2.1 - Airframe

The aircraft used for this research was the ANT Center’s Rascal 110 R/C aircraft
constructed by the SIG Manufacturing Company, Inc. This aircraft provided a rugged
platform with a relatively abundant amount of interior volume, stable flight
characteristics, and simple construction techniques. The Rascal 110 is a high wing, “tail
dragger” configuration that was delivered in an Almost-Ready-to-Fly (ARF)
configuration. Prior to delivery SIG constructed most of the fuselage and wing structures
out of thin plywood, balsa wood, aluminum, and fiberglass. The ANT Center then
completed final assembly of the components and modified the interior as needed. A key
modification was the addition of a 50 oz fuel tank, to provide a flight time of

approximately two hours. About 40 hours of work was required to complete the aircraft



in the desired configuration. Figure 1 shows a completed version of the ANT Center’s

Sig Rascal 110’s.

Figure 1. Two Completed Sig Rascal 110°s (Jodeh, 2006)

The manufacturer provided airfoil was a combination of two Eppler planforms.
The top airfoil surface is an Eppler 193, while the bottom is an Eppler 205, joined at the
chord lines. SIG also stated that the resultant section thickness was 11.5% of the root
chord with an aspect ratio of 6.875:1. However, through previous research, Air Force
Captain Nidal Jodeh found the aspect ratio to be 7.94 when assuming a semi-elliptical
planform as opposed to the rectangular assumption used by the manufacturer (Jodeh,
2006). Unfortunately, SIG Inc. did not provide any stability, performance, weight,
balance, or aerodynamic data with the Rascal 110. Capt. Jodeh determined most of those
values through his research (Jodeh, 2006). Figure 2 displays the wing planform view of

the Rascals.
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Figure 2. Sig Rascal Wing Planform View (Jodeh, 2006)

Table 1, below, outlines the pertinent aircraft data and parameters that

characterize the Sig Rascal 110.
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Table 1. Various Sig Rascal 110 Characteristics

SIG RASCAL PARAMETER VALUE
Wing Span 9.16 ft
Aspect Ratio 7.94 ft
Aircraft Mass (Empty Fuel Tank, Engine, 14.19 Ibf
Reciever)
Gross Takeoff Weight (GTOW) 18.74 1bf
Length (including Engine & Tails) 76 in
Payload ~10 Ibf
Normal Operating Airspeeds 12-30 m/s (true)

2.2.2 — Engine and Propeller

The SIG Rascal 110s used by the ANT Center are powered by FS-120S III four
cycle engine produced by O.S. Engines. The power plant came ready to use, including a
diaphragm fuel pump, matching carburetor, and a built in pressure regulator. The 1.218
cubic inch engine’s output was rated at 2.1 brake horsepower (bhp) at 12,000 revolutions
per minute (rpm). To translate the horsepower to thrust, the engine was combined with a
16x8 synthetic propeller from the APC Company. This 32.5 ounce power plant was
capable of pulling the Rascal at over 60 knots. Figure 3 and Figure 4 display the O.S.

engine and the APC propeller (O.S., 2003 and APC, 2006).
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Figure 3. O.S. FS-120S 111 Four Cycle Engine

Figure 4. APC 16x8 Nylon Propeller
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2.3 — Avionics
The avionics utilized by the ANT Center in the Rascal 110’s had three separate
components, the basic radio control (RC) system, the Piccolo II Autopilot System, and

the digital magnetometer.

2.3.1 — Radio Control System

The RC system was a Futaba 9CAP/9CAF 8 channel transmitter coupled with a
Futaba R149DP PCM 1024 receiver. High torque servos, also Futaba products,
translated the radio signals to movement in the control surfaces. Figure 5 is a photo of

the advanced Futaba transmitter (Futaba, 2006).

Figure 5. Futaba 9CAP/9CAF 8 Channel Transmitter
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2.3.2 — Piccolo 11 Autopilot

The Piccolo II autopilot system, which was the crux of this research project, was
purchased from Cloud Cap Technologies. This unit is well suited for incorporation into
small UAVs, providing a completely autonomous aircraft capable of navigating through a
flight plan of predefined or real time updated waypoints. The entire setup included the
autopilot, the ground station interface, the manual control box, the HITL components,
and software.

The autopilot box provided attitude data through three gyros and two double-axis
accelerometers for rate and acceleration measurements of the aircraft. The autopilot uses
a Kalman filter to estimate attitude and gyro bias using a GPS-derived pseudo-attitude as
the measurement correction (Vaglienti et al. 2005). The pitot-based flight data, true
airspeed (TAS), absolute altitude, and outside air temperature (OAT), were delivered via
a dual ported 4kPa dynamic pressure sensor, and an absolute ported barometric pressure
sensor, and a board temperature sensor (Vaglienti et al. 2005). The Piccolo II autopilot
utilized a 40 MHz Motorolla MPC555 PowerPC for all processing (Vaglienti, et al.
2005). Position data was provided through an imbedded GPS unit. The wireless link
used to transfer the command and control, telemetry, payload, differential GPS
corrections, and pilot in the loop information was a IW 900MHz and 1W 2.4GHz radio
modem at up to 40 Kbaud of throughput (Vaglienti et al, 2005). The GPS receiver was a
16 channel receiver with 8192 simultaneous time-frequency search bins and a 4 Hz
position update rate (u-Blox, 2005). The physical, on-board unit was 2 inches wide by
2.5 inches high and 5.25 inches deep, totaling 26.25 inches’ in volume. The box was

constructed of electromagnetically shielded carbon fiber. Figure 6 illustrates the block
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diagram of the complete avionics suite inside the Piccolo II system. Figure 7 is a picture

of the Piccolo II on-board autopilot (Vaglienti, 2005).
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Figure 7. Piccolo Il Airborne Autopilot Unit

The ground-based equipment required to interface and control the airborne unit
include the Ground Station interface, a laptop computer, RC control box, and the UHF
and GPS antennas. The Ground Station software interface, known as the Operator
Interface, ran on a laptop PC and was the primary command and control device. The
aircraft telemetry, GPS tracking, component statuses, and control surface gains were all
available through the Operator Interface. The RC control box ensured the pilot’s ability
to take control of the aircraft at all times. Essentially, it provided a direct pilot-in-the-
loop interface using the Piccolo II autopilot as the RC receiver. Detailed procedures and
instructions on the effective use of the Operator Interface was written and provided
(online) as the Piccolo System User’s Guide Version 1.3.0 from Cloud Cap Technology,
written by Vaglienti et al. (2005). The RC box and the remaining electrical components
required for this system were all collocated in the Ground Station. Figure 8 presents the
entire arrangement of the required ground equipment for the Piccolo II system (Vaglienti,

2005).
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Figure 8. Required Ground Equipment (minus the laptops) for the Piccolo 11
Autopilot System
An important component used in the implementation of the Piccolo II autopilot

was the Fail Safe Control Relay. This enabled the UAV pilot to simply toggle between
standard RC control and the Piccolo’s manual/autonomous control. Additionally, the Fail
Safe Control Relay switched from the autonomous mode to RC mode, and vice-versa, if
the control signal strengths dropped below predetermined levels. As an example, if the
UAYV was under autopilot control and the signal was lost, for any reason, the relay was
activated and RC control was implemented (also, if under RC control and RC signals are
lost, autonomous mode would be engaged). The designers of the fail safe, William J.
Schmoll and Richard Marker of Air Force Researh Labs Sensors Directorate (AFRL/SN),
detail the system in the following:

“The channel 8 output of receiver A goes to the monostable multivibrator 74C221
trigger. The 15k ohm resistor, the Sk ohm potentiometer, and the 0.2 uF capacitor
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form the external timing circuitry for the 74C221. The multivibrator is adjusted
by the 5k ohm potentiometer for exactly 1.5 milliseconds. The channel 8 pulse

al goes to the 74C175 flip-flop’s “D” input. When the monostable pulse ends
(goes low) the output of the 74C175 is latched in the state of the channel 8 pulse.
If the channel 8 pulse is longer than 1.5 msec then the 74C175 output will be high
and if shorter than 1.5 msec then it will be low. The output of the 74C175 goes to
the select inputs (pin 1) of the 74C157 data selector chips. If “Select A/B” is low,
receiver A (R/C) is selected and if high the receiver B (autopilot) is selected.”
(Jodeh, 2006)

Figure 9 is a schematic of the Fail Safe Control Relay (Jodeh, 2006).
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Figure 10 is the block diagram depicting the air and ground avionics and communication
paths (Jodeh, 2006).
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Figure 10. Complete Autonomous Flight Setup

2.3.3 — Honeywell HMR2300 Digital Magnetometer

The key component added for this research was the Honeywell HMR2300 Smart
Digital Magnetometer. Whether simulated or actual, this device allowed the team to
observe the magnetic heading of the aircraft. This was essential in determining the
UAV’s crab angle, which made it possible to continuously estimate the winds. The GPS
telemetry provided the ground track direction, while the magnetometer provided the true
heading of the aircraft — the difference being that crab angle. Measuring 4.2 x 1.5 x

0.876 inches, the Honeywell unit was easily mounted in line with the Rascal’s nose in the
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forward portion of the internal equipment bay. Because Cloud Cap Technologies
recommended this specific unit, clear directions were provided in the Piccolo User
Manual to calibrate and integrate the magnetometer with the Operator Interface. Figure

11 is a photograph of the device as provided on the Honeywell website.

Figure 11. Honeywell HMR2300 Digital Magnetometer (Honeywell, 2004)

2.4 — Simulation

The primary means of preliminary evaluation for any flight testing is through a
complete system level simulation in which the highest fidelity model is desired, if not
required, to produce accurate results. From the simulation data, the researchers can then
make reasonable assumptions on how the test object will behave under real world

conditions. For this project, the proven method of Hardware-in-the-Loop (HITL)
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simulation was utilized. Here, the actual device, the Piccolo II autopilot, was placed

directly in the simulation loop. Then, the autopilot interacted with the simulated aircraft

(produced on the provided Piccolo Simulator) as if airborne.

2.4.1 — Hardware in the Loop (HITL)

As mentioned above, the HITL simulation involved the interaction of multiple
simulated and/or real components, including the Piccolo Aircraft Simulator, the Piccolo
IT Autopilot, the Ground Station box, and the Operator Interface. (As a note, due to the
system operational requirements, two desktop and/or laptop computers were employed.)

Figure 12, below, presents a graphical representation of the Hardware in the Loop

Simulation setup in the ANT Center (Jodeh, 2006).
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Figure 12. Standard Hardware in the Loop Simulation Setup

The two computers designated for the HITL simulations in the ANT Center were COTS
and of average computing power. One of the HITL computers was used to run the
Operator Interface while the other was used to run the aircraft simulation. The Operator

Interface allowed the autopilot settings to be viewed and/or altered, as well as presenting
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a bird’s eye view of the aircraft, simulated or actual, and its progression along the flight
plan track. The Ground Station box was connected to a serial port on the computer
running the Operator Interface. This connection provides the user with an interface to the
ground station so signals and telemetry could be relayed to the autopilot over a wireless
transmission. The GPS and UHF antennas were plugged into the Ground Station Box.
Next, the Piccolo II was connected to the computer running the aircraft simulation
provided by Cloud Cap through its main harness. The simulation then had the ability to
send the simulated aircraft sensor data to the autopilot unit so as to replicate actual
aircraft motion.

Additionally, the recommended (by Cloud Cap) flight visualization software
package, “Flight Gear,” was occasionally run on the Operator Interface computer as well.
This program enabled increased situational awareness compared to the top-down view
provided by the Operator Interface. Flight Gear provides three dimensional top, trail,
pilot, or wingman views. Yet, the purpose of the this research was to analyze, and then
better, the 2-Dimensional, cross-track wind flying capabilities of the UAVs; thus, for

most situations, the top view sufficed and the Flight Gear software was not employed.

2.4.2 — Software Development Kit (SDK)

Cloud Cap Technologies recognized that modifications to the Piccolo II was an
idea that many of its autopilot users might desire. Thus, they provided a Software
Development Kit (SDK), in the form of C++ code, to facilitate such modifications.
During the summer of 2005, AFIT employed Randall Plate, a local college student, as an

intern in the ANT Center. His primary goal was to experiment with the Piccolo SDK.
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This work provided important insight regarding as how to efficiently perform
modifications to the Piccolo C++ code and the resultant effect on the autopilot. By the
end of his term, Mr. Platte was able to provide C++ code, with comments, that allowed
the user to interface with the autopilot in real time. Although the code was preliminary, it
established a foundation to build upon for many the current ANT Center UAV projects —
this one included.

As the Piccolo II operates, it actively creates and logs packets of information that
are transmitted to and from the ground station. The Software Development Kit enabled
the user to essentially intercept, modify, and then send back modified data packets. In
summary, this was how modifications were applied to an operational autopilot unit. In
this case, an initial function was coded to continuously estimated the wind as the aircraft
flew. Next, a series of functions implemented the desired corrections based on those
estimated wind velocities and directions. Finally, a group of functions were used to remit
the data back to the Piccolo II. The effects of those modifications were viewed, in real

time, through the Operator Interface.

2.5 — Flight Testing

2.5.1 — Overview of Flight Test

The flight testing of any aircraft is an absolute necessity to ensure that the
behavior and performance are within predetermined specifications regardless of whether

the system is totally new or simply modified. This project was no exception, and served
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flight tests were conducted to validate the wind finding and correcting techniques as
applied to the proven SIG Rascal 110 outfitted with the Piccolo II autopilot.

A myriad of organizations have flown and proven the stability and performance of
the SIG Rascal, the autopilot, and the combination of the two. The ANT Center
completed this first step through Capt. Jodeh’s thesis research on the development of
autonomous UAYV system (Jodeh, 2006). This allowed for only a cursory check flight of
the aircraft which included basic airworthiness checks by means of “standard maneuvers”
in RC mode followed by a set of autonomous tracking maneuvers. With the enabling
parameters performing as expected, the test conductor and the UAV pilot began the
designated flight tests for that session. Upon completion of the experiment, the test
conductor stopped the Operator Interface program and captured the logged telemetry.
Once back in the lab, that set of data was processed and analyzed. Chapter V details the

specific flight tests and their objectives.

2.5.2 — Flight Test Range

Consistent with standard protocol for the testing of official government property,
this research testing was planned for and conducted on government land. All test flights
were planned to be flown on Area B of Wright Patterson Air Force Base (WPAFB) in
Dayton, Ohio, specifically, on and around the closed runway 27, located in the southwest
corner of Area B. This area is approximately 1.5 miles in length and one mile wide, with

a 400 foot above ground level (AGL) ceiling. The field elevation was 785 feet mean sea
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level (MSL), making the ceiling for flight tests 1185 feet above MSL. This area was also
occupied by other facilities conducting autonomous UAYV flight tests.
Figure 13 is an aerial view of the Area B test site. The approximate boundaries of

the test area are outlined by the heavy, dashed-line trapezoid (Jodeh, 2006).

Figure 13. WPAFB, Area B Flight Test Range
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2.5.3 — Ground Equipment

The test team’s ground equipment was consolidated in a 20- foot trailer, which
then took on the role of a test operations center. An external, gasoline powered generator
provided the AC electricity to power the computers, the Ground Station box, the battery
charging equipment, etc. The UHF and GPS antennae were attached to trailer’s roof as
was an orange windsock. Additional equipment, including folding chairs and tables,
small tool kit, two-way radio headsets, packed comfortably into the trailer. Similarly,
miscellaneous equipment including an RF meter, cones, fire extinguisher, spill kit, first
aid kit, video camera, battery testers, and a handheld GPS unit were staged and stored in
the trailer. Moreover, a 10-12 foot desk was mounted on the interior to facilitate
workstations for the Ground Station, computers, etc. As opposed to the desktop
computers utilized in the ANT Center’s HITL simulations, the “field” setup for flight test
exploited laptop computers. Figure 14 shows the open rear of the test trailer and the
normal test team which was comprised of four to five members, including the pilot
(contracted from Wyle Laboratories), the test conductor, and spotters/observers (Jodeh,

2006).
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Figure 14. Ground Equipment and Test Team Conducting a Flight Test

2.5.4 -- Criteria for Flight Test of UAVs at WPAFB

Due to proximity of the test range on Area B to other facilities, government and
civilian, certain flight test restrictions and safety of flight criteria were imposed. The
Configuration Control Board (CCB), Technical Review Board (TRB), and Safety Review
Board (SRB) were administered by AFIT and AFRL personnel, per the Air Force base
regulations to ensure safe operation within controlled airspace. Table 2 lists the

prominent criteria for flight testing in the Area B range.
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Table 2. Prominent Criteria for Flight Tests (Jodeh 2006)
Winds Less than 30 mph
Temperature Greater than 40° F
Visibility Greater than 3 Miles
Cloud Ceiling Minimum 500 ft AGL
Airspace Ceiling Maximum 400 ft AGL
GPS Satellites 6 or more visible
Radio Frequency Interference Check
Safety Equipment and First Aid Kit
Pitch, Roll, and Yaw Rate Gyro Operations
Static and Dynamic Pressure Port Operation
WPAFB Control Tower Notification

2.5.5 - Wind Correction Implementation

Consistent with standard flight test protocol, the wind correction flight tests
conducted were planned in an order that gradually increased test complexity and
challenge. Similarly, testing was begun on a mildly breezy day and worked up to a day
when the winds were 35%-50% of the aircrafts velocity. This limit was deemed suitable
since it is generally accepted that small UAVs would not be able to effectively operate in

an environment with sustained winds of greater than 50% of its normal cruising speed.

2.5.6 — Data Collection and Handling

At the conclusion of a flight test, the Piccolo’s telemetry was logged, in ASCII
format, in the Operator Interface folder on the respective laptop. The software acquired
and stored 70 parameters that were continuously updated at a selected data rate. The two

data rates available were “Request Slow” at 1 Hz and “Request Fast” at 20 Hz. The rate
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chosen by the test conductor was determined by the fidelity required. Additionally, the
individual telemetry files were only created when the Operator Interface was turned off.

Two methods were used to transform the flight data to usable plots and values.
First, the telemetry file was opened in Microsoft Excel, placing each of the 70 parameters
in its own column. At this point, the analyst would delete any unnecessary rows and
columns in order to reduce the file size. For example, a half an hour flight test at the
“Request Fast” rate would produce an Excel file with approximately 60,000 rows by 70
columns, or 4,200,000 data cells. Trimming the excess parameters could reduce the
number of data cells by as much as two-thirds. The modified Excel file was imported
into MATLAB and saved as a MATLAB “.mat” file. This new file was then uploaded
into a program which displayed two- and three-dimensional plots of the aircraft’s actual
track in relation to the desired. Additional plots to show various flight measurements and
wind values, created by the author, supplemented this program. The program is attached
in the Appendix C.

A second method of data acquisition was developed during the course of this
research. The SDK was manipulated such that it would output only the desired telemetry
in a Microsoft Notepad file. Then, similar to above, this file could be imported to either
Excel or directly into MATLAB to be exploited by the same plotting program discussed

above. Table 3 lists the 70 parameters available through the SDK.
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Table 3. Available Telemetry through the Piccolo SDK

1. Clock [ms] 25. Static [Pa] 49. Surface7 [rad]
2. Year 26. Dynamic [Pa] 50. Surface8 [rad]
3. Month 27. P [rad/s] 51. Surface9 [rad]
4. Day 28. Q [rad/s] 52. P_Bias [rad/s]
5. Hours 29. R [rad/s] 53. Q Bias [rad/s]
6. Minutes 30. Xaccel [m/s/s] 54. R Bias [rad/s]
7. Seconds 31. Yaccel [m/s/s] 55. AP _Global

8. Latitude [rad] 32. Zaccel [m/s/s] 56. PDyn_Stat

9. Longitude [rad] 33. Roll [rad] 57. Alt_Stat

10. Height [m] 34. Pitch [rad] 58. Turn_Stat

11. Ground Speed [m/s] 35. Yaw [rad] 59. Flap_Stat

12. Direction [rad] 36. LeftRPM 60. Track Stat

13. Status 37. RightRPM 61. PDyn Cmd [Pa]
14. InputV [V] 38. WindSouth [m/s] 62. Alt Cmd [m]
15. InputC [A] 39. WindWest [m/s] 63. Turn_Cmd [rad/s]
16. FirstStageV [V] 40. WindError [m/s] 64. Flap Cmd [rad]
17. FiveDV [V] 41. RSSI 65. Track Cmd

18. FiveAV [V] 42. Surface0 [rad] 66. MagHdg [rad]
19. CPUV [V] 43. Surfacel [rad] 67. SonicAlt [m]
20. GPSV [V] 44. Surface?2 [rad] 68. AckRatio [%%]
21. BoxTemp [C] 45. Surface3 [rad] 69. ServoV [V]

22. Altitude [m] 46. Surface4 [rad] 70. ServoC [A]

23. TAS [m/s] 47. Surface5 [rad]

24. OAT [C] 48. Surface6 [rad]

2.6 — Chapter Summary

This chapter provided a review of the equipment utilized and the overarching
techniques applied to conduct this research program. The SIG Rascal 110 powered with
the O.S. FS120S-III carried the Piccolo II autopilot. The avionics package included a
sophisticated 8 channel transmitter and receiver produced by Futaba, the autopilot

components, and the fail safe relay. The flight tests were conducted on Area B of Wright
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Patterson AFB in Dayton, Ohio and adhered to all of the rules and regulations outlined.

Additionally, flight data was analyzed using Microsoft software coupled with MATLAB.
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I11. Development of the Wind Correction Approaches
3.1 - Overview
The overall impact on flight path trajectory effects due to wind on small UAVs
were best viewed from overhead. This perspective allowed for ground tracks, airborne
magnetic headings, correction angles, and relative distances to be determined using basic
trigonometry. The bulk of mathematics behind this research utilized manipulations of

sin/cosine theory, Pythagorean Theorem, and basic Dynamic Inversion.

3.2 — Real Time Wind Estimating

The first step was to determine the wind heading and velocity so the aircraft’s
heading, velocity, flight path, etc. could be adjusted to compensate for the wind. The
Piccolo II autopilot allowed the operators to not only view, but capture (via the SDK)
many of the variables required in this compensation. However, one limitation of the
Operator Interface was that the physical display only showed the resulting ground track
of the aircraft. The difference in the aircraft magnetic heading and the resulting ground
track produced an angle, known as the “crab” angle. Thus a separate scheme was
required to determine the crab angle.

The basic Piccolo IT autopilot only displayed wind estimates at intermittent
updates or when designated “Wind Interval Turns” were commanded. In real world
applications, it is rare for the winds aloft to be constant, especially so in an urban canyon
environment. Therefore, the need for a real time, updating wind estimate became
abundantly clear. Fortunately, Cloud Cap recognized issues such as this and provided

their SDK to allow modifications or additions to the autopilot’s functions. Thus, the
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following equation methodology was implemented in the SDK using C++ programming
to provide a real time wind estimate.

Using a vector component break down, three aspects to the flight path of the
UAVs were identified. The aircraft itself had two velocity vectors: one based solely on
the airborne vehicle’s orientation and the other being the ground track. Each of these had
velocity magnitude and angle components. The presence of wind was then characterized
as the difference between the two aircraft velocity vectors. Equations 1 and 2 show that

the aircraft’s heading ( 6,,,; ) and true airspeed (V;,s ) plus the wind effects (V,, and @, )
will result in the overall ground track (V; and @, ). Note, all angles, 0, were measured

clockwise from North = 0°.

Vias SI0(Oyae ) +Vy sin(8, ) =V sin(6;) (1)
Vras €08(Bypg ) +Viy cos(6y) =V cos(6 ) (2)

Grouping all of the aircraft components on one side of these equations resulted in
Equations 3 and 4. These were used as the base equations to begin the manipulations for

solving the real time wind velocity and heading.

V,, sin(6,,) =V sin(6; ) —V; s Sin(Gyac) (3)
Viy c0s(8y ) =V c08(6; ) —Vias €08(Gyyac) 4)

To simplify the equations, the substitutions shown in Equations 5, 6, 7, and 8
were made.

X =Vy (5)

y =cos(6,) (6)

a=V; cos(0;) —Vias €08(Oyac) (7)
b=V sin(6;) —Vias Sin(Gyag) (8)
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Inserting the new variables, Equations 3 and 4 reduce to Equations 9 and 10.

a=(x)(y) )

b=x1-Yy’ (10)

(Y3}

The next step was to simultaneously solve for “x” and “y.” These two equations with
two unknowns were easily solved using software such as MATLAB or by hand using

classical mathematics. Equations 11 and 12 are the results.

x=+a’ +b’ (11)

a2
= 12
y \ a2 +b? (12)

Finally, the original wind variables were reinserted, solving for the wind velocity and

wind heading.

V,, =va’ +b’ (13)
a2
a’+b?

) (14)

8, =cos™'(

3.3 — Turn Rate Approach Equations

Now that the wind variables were known the correction that needed to be applied
to the aircraft to adjust for the wind could be deduced. As will be shown, there is more
than one approach to implementing these corrections.

The most direct method utilized the mathematical principle of “Dynamic

Inversion” to solve for a new aircraft velocity, V;,s, , and heading, 6,,,5,, which could

then be commanded through the Piccolo II to compensate for the wind. The dynamic
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inversion principle essentially backs out a desired command based on of a known output

variable. In this case, the output variables, V|, and g, , were solved for using the known

input quantities, which were extracted from the Piccolo’s telemetry. The desired ground
track, a known value, and the wind variables, known parameters, were combined to back
out the new inputs. Essentially, the end result is that the ground track was known and the
corresponding inputs which would provide that desired output were then reverse
engineered. The following procedure outlines this process.

Once again, Equations 1 and 2 were the baseline from which to start the
calculations. However, this time, the winds are known based on the previous section and
the aircraft’s true airspeed and magnetic heading values required (to be commanded) to
counteract the wind need to be solved for. These new values were denoted with an
underscore “2.”

Vias2 SI(Oyag,) +Vy sin(@, ) =V sin(6;) (1)
Vias2 €08(Byac2 ) +Viy c0s(6) =Vg cos(6) (2)

The values being solved for were then isolated, resulting in Equations 15 and 16.

Vs, SIN(Gy 6, ) =V sin(b;) -V, sin(8,, ) (15)
Vias2 €08(Byac,) =Yg cos(6;) -V, cos(4,,) (16)

As in the case of the real time wind estimating, a similar change of variables was done to

simplify the terms.
X, =Viass (17)
Y, = c08(Oyag,) (18)
d =V, sin(6;) -V, sin(6,,) (19)
¢ =V, cos(6;)—V,, cos(6,) (20)
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The reduced equations were represented by Equations 21 and 22, below.

C:(Xz)(yz) (21)

d=x4/1-y (22)

The solutions for the non-linear, simultaneous equations above were determined using

MATLAB and hand calculations, just as before.

X, =~/¢% +d° (23)

CZ
= |—— 24
y2 C2+d2 ( )

Replacing x; and y, with the original variables, the new true airspeed and magnetic
heading were solved using Equations 25 and 26. This gives expressions for the true
airspeed and magnetic heading as a function of the measured winds and desired ground

track. Thus, commanding the UAV to fly V,,s, and 6,,,, will produce the desired ground

track.

Vins2 =V ¢’ +d’ (25)

Oyac2 = acos(y,) (26)

Ideally, this approach of solving for the new aircraft heading and airspeed would
provide the most direct manner in which to implement new aircraft control commands.
Initially, it seemed straightforward to continuously input these two new values to the
Piccolo II, creating an updating correction. The new heading would be input as a turn
rate, hence the name “Turn Rate Approach,” and the airspeed would be commanded as a

dynamic pressure. However, as will be detailed in section 3.6, the implementation of a
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new airspeed and magnetic heading through the SDK created barriers that were beyond

the scope of this thesis.

3.4 — Updating “Rabbit” Waypoint Approach

The second approach to wind effects correction was referred to as Updating
“Rabbit” Waypoint Insertion. The methodology took the real time wind values
determined above and attempted to insert a new, updating waypoint that would be offset
from the original. The aircraft would then be commanded to fly to the adjusted waypoint;
however, due to the wind drift it would never reach that point and instead end up at the
original, targeted waypoint. The process below provides the framework for the “Rabbit”
waypoint placement approach.

To begin with, the relative, horizontal distance, in meters, between the aircraft’s
current position and the current waypoint was required. The waypoints, as well as the
aircraft’s position, were provided in Latitude/Longitude/Altitude (LLA) format.
Therefore, both positions were first converted to East/North/Up (ENU) coordinates using
the preexisting code in the SDK. So, if D was defined as the straight line, ENU distance
between the aircraft’s location and current waypoint. Then inserting Equations 27 and 28
into the Pythagorean Theorem, the horizontal distance was determined and presented as

Equation 29.

A=ENU East-A/C ENU East-Wypt @7
B=ENU North—A/C — ENU North-Wypt (28)

D=+A>+B’ (29)
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The overarching goal, or perhaps better stated as the “anti-goal,” of the “rabbit” was for
the UAV to continually chase the rabbit, but never actually catch it. To implement this
aspect the new waypoint was repeatedly placed at a distance greater than “D.” Next, the
bearing, or angle, (from the aircraft) of the new waypoint had to be determined. This
angle would not only depend on the real time wind velocity and direction, but also in
which Cartesian quadrant the aircraft was located with respect to the original waypoint.
The following set of equations progress through the operations required to not only find
the correct angle and distance of the “Rabbit,” but also place it using the correct ENU

coordinates.

If (6, >0 && 6, <90);

angle deg= 6, - 90; (30)
abscos = |D cos(angle_deg)| (31)
abssin = |Dsin(ang1e_deg)| (32)
ENU East_Newhypt — ENU_, A T abscos; (33)
ENU North—Newwypt — ENU orn_ac T abssin; (34)

If (6> 90 && 6, < 180)
angle deg= 6, - 90;
abscos = |D cos(angle_deg)|
abssin = |Dsin(angle_deg)|
ENU o newwypt = ENUgagq ac T+ abscos;

ENU

North-Newwypt — ENU (grn_n/c - abssin;

If (6,> 180 && 6,<270)
angle deg= 6, -270;
abscos = |D cos(angle_deg)|
abssin = |Dsin(angle_deg)|
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ENU

ENUNorth—NewWypt = ENU North—A/C ~ abSSll’l;

East-NewWypt ENU ¢, a/c - abscos;

If (65> 270 && 6,<360)
angle deg= 6, - 270;
abscos = |D cos(angle_deg)|
abssin = |Dsin(angle_deg)|
ENU East—NewWypt
ENU North—Newwypt — ENU \orin_a/c T abssing

= ENU_,y ac - abscos;

These procedures should then place the new “rabbit” waypoint in the correct spot to ploy

the aircraft into adjusting for the real time wind.

3.5 -Wind Corrected Sensor Pointing

Assuming an efficient wind correction factor to the UAVs flight path, the aircraft
would neatly track any predetermined waypoint-to-waypoint course. However, another
wind related issue must be considered in order to provide a worthwhile attempt at real
time wind correcting. The UAVs being exploited in the hostile, urban canyon
environments are very small. Due to there size and payload restrictions any sensors,
video or otherwise, must be equally small in both volume and weight. For this reason,
most systems deployed on the aircraft do not have the ability to gimble the sensor head.
Thus, even if the ground track of the aircraft is properly corrected, the UAV’s nose will
still “crab” into the wind. Therefore, the sensors would not be pointing forward, along
the ground track, and would have the distinct possibility of not surveying the target, even

if the UAV flew directly toward or over it, jeopardizing mission success. Thus, another
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approach is presented that focused the wind corrections on the pointing direction of the
on board sensors as opposed to the flight path of the UAV.

Viewing the UAV from the side, a right triangle can be constructed with the three
sides being, the line of sight (LoS) distance for the sensor, the current altitude of the
vehicle (Alt), and the horizontal distance the sensor projects (Horiz). Knowing the

current aircraft altitude via the SDK, and assuming the sensor mounting angle, O, »

from the horizontal is known, the line of sight distance was determined, as is shown in

Equation 36.

(LoS _ Dis)cos(by,,, ) = Alt (35)

ensor

LoS Dis= __Alt (36)

C()S(lgsensor )
Now that the “LoS” and “Alt” variables were known, the horizontal distance that the

sensor projected was found using Equation 38. As a check, with a 6., of 45°, the

ensor

altitude and the horizontal distance should be the same value, and they are.

LoS Dis =+ Alt* + Horiz® (37)

Horiz = \/LoS _Dis® — Alt* (38)
Next, the bird’s eye view in Figure 15 must be taken into account in order to determine

the appropriate offset for the UAV to fly.
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Figure 15. Top View of the UAV with the Adjustment Parameters Defined

The horizontal distance, “Horiz,” now became the hypotenuse in a new right triangle as
shown above. The other two sides of that triangle were the left/right (along the ground
track) and up/down (perpendicular to the ground track) distances from the UAV to the
sensor footprint. These two distances are the adjustments in the UAV’s position required
to put the sensor footprint at the current position of the UAV. These two values were

represented as Equations 40 and 41.

HCrab = eG - eMag (39)
Adjust 1= (Horiz)cos(d,.,) (40)
Adjust _ 2 =(Horiz)sin(6,,,,) (41)
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Once these adjustments were known they would then be added/subtracted to the original
waypoint/target ENU location; thus, providing an offset flight path that allowed for the

sensors to survey the target, even under non-negligible wind conditions.

3.6 — Wind Correction Implementation

The implementation and integration of modifications onto an existing platform is
a challenge equal to the development of the modification itself. Without proper
integration, the entire project becomes purely academic. As with most real world
projects, this process proved to demand the bulk of the man-hours invested in the
research. On the other hand, the attempts at executing the wind corrections resulted in

the majority of the useful research.

3.6.1 — Real Time Wind Estimating

The incorporation of the real time, updating wind estimation was fairly
straightforward and successful. The Equations presented in section 3.2 were directly
input into the C++ code with minimal issues. Because the Piccolo’s telemetry packets
were only used to passively read off information, the wind determination scheme was put
into operation within a few days. Figure 16, below, is a screenshot example of the real

time, updating wind estimates of a simulated UAV flight.

43



18:28:6 .A80800
37775317 East: 424.557795
—84.115759 Horth: 1968.892854
Altitude <m> 349 .7399978 Up: —385.899775:32:11.2338688

AU Mag Heading 87.770004
Al TAS 21 . A1 A86A

UAU Ground Track ??.165111
AU Ground Speed 21.517639

WIND UVELOCITY <m~s> 5.287680
WIND DIRECTION 359 .7420084

Mew TAS 21 .A10808
Mew Mag Head 21.389999

Waupoint index i
Diztance to Wypt 1856 .833862

Adjustl B . aBBoaE
Adjust2 65549713
Crozzs Track 118 .6999297

Figure 16. Screen Capture of the Piccolo SDK Executable

For most laboratory tests, the simulated wind input was 5 meters per second directly from
the south. As will be shown, the results were within a reasonable precision (10%),
especially when considering the simulation program induced random gusts. One primary
concern with the wind finding code was the use of the arccosine math function used in
Equation 14. Unfortunately, this function does not properly account for the sign
conventions associated with the complete Cartesian coordinate system from 0° to 360°.
Because of cosine/sine characteristics, if the data point was in the second, third, or fourth
Cartesian-quadrants the appropriate applications of negative signs would not occur when
implementing “arccosine.” Fortunately, a two argument arctrangent function has been
developed for math programming, called “atan2,” which utilizes the proper sign
characteristics of the tangent function throughout all four Cartesian quadrants. Therefore,

Equation 14 was adapted to Equation 42, shown below.
b
@, =tan () [rad] (42)
a
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Variables “a” and “b” were the same as those in Equations 9 and 10, respectively. In the
C++ code provided in Appendix B, this wind finding function is called
“WindCorrection.” With this modification, the wind velocity and heading became a real
time, viewable flight parameter that could be used to implement wind correction

commands to the Rascal 110.

3.6.2 — Implementing the Turn Rate & Updating “Rabbit” Waypoint
Approaches

Turn Rate Approach

A high proportion of time put into this thesis was spent attempting to implement
these two approaches at wind correction for the UAV’S flight path. Essentially, both of
the approaches attempted to modify the current UAV ground track to reduce its error in
relation to the predetermined waypoint-to-waypoint path.

The first, turn rate, was to modify the aircraft magnetic heading, using updating
turn rate commands, to directly affect the flight path. The basic idea was to directly
command the new heading and TAS values at each time step. There was a time delay
from when the wind affected the UAV to when the calculations and new parameters
could have been uploaded back to the aircraft. However, with the request fast mode
selected, this delay was under one second, which was considered negligible. This method
would have then provided a close to real time heading and velocity adjustment. The
obstacle then became sending the information back to the Piccolo II. Through this
research, it was determined that the Piccolo II autopilot is initially uploaded with a set of

waypoint data and then the system automatically attempts to fly the direct path
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connecting subsequent waypoints. The system did not continuously send the waypoint
information. So, when a new turn rate command was pushed through the system, via
SDK, that command overruled all previous information and the aircraft only flew that
turn rate. As an example, if the UAV was flying from waypoint 1 towards waypoint 2 at
a heading of 270° and a command of 280° was required, the aircraft would be sent a turn
rate command until the heading changed by 10°. Yet, instead of being able to command
that 10° of turn and then returning to the predetermined flight plan, the operator would
then have to continuously send turn rate commands; essentially, negating any waypoint
tracking capabilities of the Piccolo II and attempting to fly the aircraft solely based off of
turn rates. Now, aircraft control purely through turn rates has been proven to be a viable,
and quite desirable, method. However, it was outside the intended scope of this thesis to
alter the primary control method of the autonomous flight, but this topic may provide a
worthy follow-on project as turn rate commanding carries with it numerous advantages.

Because of the known potential for progress in this area, the math and
programming schemes required were kept in the attached SDK code. The mathematical
background was formulated with the initial attempts at implementation represented. In
addition to the “WindCorrection” function, the turn rate commanding algorithm utilized
the “HeadingAdjust” and “AirspeedAdjust” functions. In “HeadingAdjust,” the
difference between the new, desired magnetic heading and the current magnetic heading
provided the necessary adjustment. Then, this differential was divided by a time factor so
that the turn rate command would not exceed a maximum rate of 20°/s. Finally, this rate
was sent to the autopilot. With a completed algorithm, this command would be

continuously updated, driving the aircraft to a correct heading.
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As previously mentioned, a new TAS was determined from the “WindFinding”
function as well. These alternate airspeed commands were successfully transmitted via
the “AirspeedAdjust” function, located just below the “HeadingAdjust” function in the
SDK. The reason the airspeed could be continuously updated was that the Piccolo II
autopilot does not employ a time-based flight plan. The aircraft was only instructed to fly
to a certain latitude/longitude location, altitude, with a specific airspeed, as opposed to
intercepting a waypoint at a designated time interval. This allowed for the UAV to fly as
fast or slow as aerodynamically possibly and for the operator to modify this flight

parameter without interrupting the chosen flight plan.

“Rabbit™ Waypoint Approach

Once it became clear that the turn rate approach was out of the scope of this
research project, a second method of implementing real time wind correction was
pursued. The method involved inserting an “updating waypoint” that was precisely
placed such that if the UAV attempted to fly directly to this new waypoint it would
actually end up at the original, desired target because of the wind effects. The new
waypoint location would constantly be changing to counter variable winds and gusts.
Additionally, the UAV would never actually reach the new waypoint, hence the name
“rabbit.” This enabled the operator to designate a distance from the original waypoint at
which the “rabbit” function would be ceased, allowing the aircraft to initiate the
switching logic to continue to the next predetermined target. Once the UAV was tracking

the next waypoint, the “rabbit” would resume, repeating the process.
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This approach afforded the desired result of a real time wind correction, but
without having to alter the primary means of autonomous control (waypoint guided
autopilot). Initially, the team was hopeful that this provided the solution. However, after
implementing the algorithm in the SDK and running HITL simulations, it was observed
that a key aspect of the Piccolo’s operation prevented the efficient implementation.
Cloud Cap’s device was actually more of a flight path (track) follower than a true
waypoint hunter. In a pure waypoint based system, the aircraft would designate where
the target was located and then point the aircraft’s nose directly at it, resulting in a
Zermelo (Bryson, 1975 and Bryant, 1998) shaped path if wind was present. If the device
had the capability to correct for wind, then a crab angle would be implemented and the
UAV would fly a relatively straight path as long as the wind was constant. However, this
is not exactly how the Piccolo II operated. It was established that the Piccolo 11
calculates a straight line path based on the position of the previous and next waypoints
(its relative position and the position of the target). It then implements its own ground
track algorithm in order to remain on that straight line path. Unfortunately, this algorithm
was not as precise as would have been desired so an attempt was made to implement the
above described wind correction artificially turning off the Picollo II’strack following
mode and exploit a pure waypoint tracking method. When transmitting a new waypoint
using the SDK, the operator was required to first set the waypoint location, and then send
a second signal to track that waypoint. Examples, pulled directly from the wind
correction code, of these C++ commands are provided below:

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69);

m_pComm->SendTrackCommandPacket(IDbrent6, 69, false);
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The “SendWaypointPacket” command was fairly straightforward with its inputs being the
physical autopilot identification number, a structure with the waypoint latitude, longitude,
and altitude information, and then the desired waypoint number. The
“SendTrackCommandPacket,” which sent the command to actually track the new
waypoint, contained a twist with the “true/false” statement included as an input. The
provided SDK “html” help files stated that “The third parameter (true/false) indicates if
the vehicle should fly to the waypoint along the preceding track segment, or if it should
go directly to the waypoint, using its current position as the starting point.” Thus, setting
the parameter to “true” would command the UAV to go directly to the waypoint and a
“false” would command the UAV to track the along the previous track in order to reach
the new waypoint. At this point, the “true” setting appeared to be the solution, as the
aircraft would fly directly to the new waypoint undergoing the effects of the wind and
resulting at the original, desired location. However, after conducting tests with varying
wind and waypoint locations it was determined that the Piccolo II software still created a
direct path from the UAV’s current position to the new waypoint. So, the aircraft would
employ its own ground track control in order to remain along that straight line flight path
even though this was not clearly displayed through the Operator Interface. Unfortunately,
this prevented further development of the concept. Thus, it was determined that the team
could not “dumb down” the Piccolo II autopilot and have the aircraft fly a “Zermello”
type flight path using the SDK. This was not to say that it would not be possible.

The two approaches presented above, turn rate commanding and updating
“rabbit” waypoint, are believed to be completely valid methods for applying a robust

wind correction algorithm to the Piccolo II autopilot controller. The math behind the
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corrections provided for solid theory. However, due to the factors described, the team
was not able to effectively implement these approaches. Without a working program to
effectively adjust the flight path of the Rascal aircraft for real time winds the results of

the research would have been paltry. Therefore, a completely new perspective was taken.

3.6.3 -- Wind Corrected Sensor Pointing

As aforementioned, if an aircraft is adjusting for wind or flying a straight line
ground track in the presence of wind, then a crab angle is required for accurate navigation
along a desired flight path. However, there exists a serious problem when these heading
modifications are put in place. If the sensor gathering the information is situated such
that it is pointed at a fixed angle off the nose of the aircraft and cannot gimble, there is a
strong possibility that the sensor would never survey the target even though the aircraft
flew precisely where it was supposed to. The small UAVs utilized in current operations
have very little payload capabilities and can only carry a small, lightweight sensor system
that will not be able to gimble. Thus, taking an alternate method to correct for wind, a set
of updating and offset waypoints were calculated and then inserted and tracked such that
the sensor was correctly pointed as discussed in section 3.5. In order to implement the
new waypoints, a few modifications to the equations in section 3.5 were required.

Specifically, an angle, 0;, was determined as the angle of the current track
segment between the previous and next waypoints. This is shown in Equation 43.

ENU
ENU

ENU North—CurrentWypt

ENU

North—PrevWypt ) (43)

East—PrevWypt

6, =tan™'(

East—CurrentWypt

From this angle, it’s complement was determined using Equation 44.
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Onr = (%)—abs(el) [rad] (44)

Equation 44 represented the transformation from the North=0° reference frame to the
East = 0° frame. This value was then the angle at which the new waypoint was to be
placed off of the original, assuming 0° was off the horizontal. The corresponding ENU
east and north distances away from the original waypoint were calculated using
Equations 45 and 46.

sin_from_next = —(Adjust _2)sin(6,,, ) (45)
cos_from_next = —(Adjust _2)cos(b,,) (46)

The reason for the negative signs was that the offset for the new waypoint had to be
opposite in direction from the projected distances of the sensor. To then find the total

ENU coordinates of the new, updating waypoint, Equations 47 and 48 were utilized.

ENU =ENU gy wypr_gast +C0s_from_next 47)

New-Wypt—East

EN U New-Wypt—North = ENU Old _Wypt—North + Sil’l _from_next (48)

For the purpose of allowing this new point to be continuously updated, the C++
function was written such that the above process would be repeatedly conducted as long
as the UAV was within some distance, in meters, from the original target. The updating
process is “turned on” for each waypoint when the ground distance between the UAV and
the original waypoint was less than 400 meters and was “turned off” when the distance
between the UAV and the new, adjusted waypoint was less than 100 meters. This logic
to turning on and off the code was applied for two primary reasons. First, the “turn on”

parameter allowed for maximum time and distance that the aircraft would fly along the
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predetermined track. It was reasoned that the most time spent on track was desirable
because of unknown factors off track. Additionally, the aircraft only needed to be
adjusted in the final approach to the target in order for the sensors to capture that target.
In a real world environment, to have the UAV fly off track for more time than was
necessary would be allowing the introduction of more problems (e.g. collisions with fixed
obstacles or detection by an enemy). At an altitude of 350 meters, which was where most
tests were conducted, the sensor would project 350 meters in front of the aircraft if
mounted at a 45°, which was the assumed angle for all testing in this thesis. Thus, the
400 meters criterion was chosen as the distance to begin the flight path modifications.
The second reason dealt with the “turn off” parameter. At the point where the UAV was
within a hundred meters of the new waypoint, the sensors would have already surveyed
their target due to the field of view of the sensor. So, to avoid the “rabbit” situation
described previously were the aircraft never actually reached the target, the code simply
commanded the system to proceed to the original waypoint at that 100 meter mark. The
SDK code accomplished this task by utilizing an “if/else” command on the
“SendTrackCommandPacket” signal. The complete function is included as part of the
SDK located in Appendix B.

As a note, all of the original flight plan waypoint information was “hard-coded”
into the SDK. This does not provide for the best coding technique, but was required
because the team was unable to capture the waypoint list and its corresponding data from
the Piccolo’s streams. However, “in the field” this may not be a complete disadvantage

because the waypoints could be placed directly over any targets and the resulting latitude
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and longitude information should be known. The operator could then simply append the

code.

3.7 — Chapter Summary

This chapter provided a detailed look at the mathematics behind the three
different techniques of wind correction evaluated during this research. Although the
math and theory are believed to be solid, the implementation of that theory using the
Piccolo II autopilot presented themselves as the road blocks. The two most conventional
means at wind correction could not be implemented within the scope of this activity.
However, the third, and operationally more significant, sensor pointing wind correction

was successfully tackled and implemented.
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IV. HITL Test Results and Analysis

4.1 - Overview

Chapter IV presents the results the research conducted during this thesis. Section
4.2 demonstrates the baseline ground track control capabilities of the Piccolo II autopilot
system, the real time wind estimations developed in the previous chapter, and the
corresponding ground position of the center of the sensor footprint. The three types of
flight paths evaluated were a straight line point-to-point, a circular orbit, and the common
racetrack pattern. Each of these was conducted with varying parameters. Section 4.3
displays the results of similar flight paths, but with flight path effects of the modified
SDK code. Corresponding results from actual flight testing are presented in Section 4.4.
The last section of the chapter (section 4.5) summarizes the results. As a note, it was

assumed that the sensor was placed at a 45° mounting angle.

4.2 — Standard HITL Simulated Flight Tests with Real Time Wind Estimating

The most basic and essential flying characteristic for an aircraft is the straight and
level flight path. Thus, the first simulation was a simple point-to-point flight path of
three waypoints in a straight line. The simulated wind was set to 5 m/s from the south,
almost a direct crosswind, while the UAVs commanded TAS was 20 m/s. These values
represented a realistic flight condition with a moderate wind. The plot of this test is

provided as Figure 17.
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Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)
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Figure 17. Standard UAV & Sensor Tracks for a Point-to-Point Flight Path

As shown and consistent with the technical discussions in Chapter 3, it became evident
that despite precise ground track following, the sensor was tracking roughly 75 meters off
of the desired position. The “crab” into the northerly wind, which results from the
Piccolo II autopilot flying a straight ground track in the wind, caused the sensor footprint
to be a significant distance off course.

Figure 18 and Figure 19 present various flight parameters corresponding to the
previous graph. The speeds, altitude, magnetic heading, wind characteristics, and cross
track distance were extracted off from the Piccolo’s telemetry and then written to a data

log using the SDK. The first four plots were primarily output as a “sanity check” for the
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flight. It was pre-determined that most irregularities would be evident through

observation and inspection of those four characteristics.
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Figure 18. Various Flight Characteristics for the Standard Point-to-Point Flight.
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Figure 19. Wind Estimations & Cross Track Distance.

The real time wind velocity and wind heading estimations were logged from the SDK
using the equations developed in Chapter 3. The wind characteristics in the HITL
simulation were commanded directly from the simulation input values and were therefore
considered constant (there was a turbulence setting, but this was kept at the “light” setting
for all tests). However, the results from the updating wind estimations in Figure 19 were
not always constant in either magnitude or heading. While these disturbances were not
initially expected, the majority of the data still provided information of sufficient quality
for a practical analysis. For instance, if the spikes were removed from the wind velocity
plot, the average wind velocity was about 5 m/s. An analysis indicated the cause of the

spikes. As the aircraft made large direction changes two issues arose: The first was that
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the SDK calculations consistently lagged the actual aircraft position by one time
increment. The second problem played off the first - as large heading changes occurred,
the required “crab” angle would change at a significant rate. Because the code lagged
behind the true position, when the computer caught up with the position it appeared as a
large spike/step in that last transmission time period. Upon initial inspection, the wind
heading plots appear to vary widely, but in reality they follow the same trend as the wind
velocity plot. It is important to remember that a wind heading of 1° is essentially the
same as a heading of 359°, validating the results. The airspeed as a function of time plot
also displayed spikes. These were most likely due to significant heading changes as the
UAYV switched waypoints, and driven by rapid transitions from a head wind to a tail wind
condition. The Piccolo II system simply cannot react instantaneously to such rapid
changes and therefore there was an associated lag.

Figure 20, Figure 21, and Figure 22 depict the second test, which was a circular

orbit about a stationary point at constant velocity and with a constant wind.
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Figure 22. Estimated Wind Values for the Circular Orbit
The circular orbit flight path was interesting in that it displayed the Piccolo’s bias when
dealing with winds. As the winds were heading from south to north, it was evident that
the UAV did much better when turning into the wind, i.e. incurring a headwind, as
opposed to a tailwind. This was understandable as the ground speed would decrease and
the aircraft would be able to better navigate at the slower speeds. The cross track
difference between the head and tail winds was only about 50 meters. Having observed
this, one must still recognize that Piccolo II manufacturer did a fairly good job
considering this was a low cost, small scale COTS system. Yet, there were two things to
consider when evaluating the overall performance. First, this was only a simulation, not
the true flight characteristics and, second, with increasing commanded TASs, the cross

track distance grew rapidly.
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The following sets of plots depict the unmodified Piccolo II commanding the
UAV in a race track pattern. At first the aircraft’s velocity was the only parameter
varied. Following those initial conditions, variations in the “Track Convergence” gain
are presented. This gain drives the turn rate loop of the autopilot control software at the
square of the velocity. Through previous research (Jodeh, 2006) it was determined that a
Track Convergence gain of 250 appeared to be an optimal value for the Rascal 110 UAV.
It will be shown that through lowering this value, the aircraft will attempt to stay on, and
return to, the track with increasing aggressiveness. However, the faster convergence did
come with a loss of precision of altitude hold due to more aggressive turning and banking
of the UAV. Figure 23, Figure 24, and Figure 25 present the results of the standard
autopilot commanding the predetermined racetrack pattern at TAS=12m/s, with a wind of

5 m/s from the south, and Track Convergence (TC) =250.
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Figure 25. Wind Estimations & Cross Track Distance

The sensor paths plot revealed that even at the slowest operating speed of 12m/s, the
sensor footprint would remain between 100 and 200 meters off of the ground track.
Fortunately, the physical aircraft tracked the desired path extremely well with maximum
cross track values of less than 50 meters. This appears sufficient for the urban canyon
flight regime. Again, the estimated real time wind values provided adequate depictions
of the current flight conditions.

The next series of tests were identical to those just described but with variations in
the true airspeed (TAS). In addition to the 12 m/s run, 15 m/s, 20 m/s, and 30 m/s

evaluations were conducted utilizing the same “race track” waypoint locations.
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Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)
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Figure 26. Race Track Pattern at 20 m/s Track Conv.=250
As expected with the higher velocity, the small aircraft was less capable of precisely
holding the track as shown by the blue line in Figure 26. As a result, the sensor footprint
tracked further off course. Any close contacts with the waypoints and the sensor track
were purely coincidental and would not have occurred with differently spaced points.
With the track convergence gain set at 250, 20 m/s was about as fast as the UAV could
fly any semblance to the race track shape. As shown in Figure 27, at 30m/s an oval was
the best the aircraft could accomplish. However, if the race track had longer distances
between each waypoint the Rascal should have been able to fly an acceptable pattern. As
a baseline test, this provided strong evidence that with a relatively small pattern and a

nominal wind, the aircraft could not be relied upon fly a precise track.
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Standard UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South, Track Conv. = 250)
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Figure 27. Race Track Pattern at 30m/s with Track Conv.=250

Because of the issues described above, the remainder of this document will focus
on the 12 m/s and 20 m/s cases. Additional results can be found in Appendix A. These
two airspeeds correspond to two crucial flight situations. The 12 m/s runs represented the
best results and the 20 m/s evaluations were consistent with a common actual flight
condition.

In an attempt to acquire improved results, the track convergence (TC) gain was
reduced to a setting of 150 and then to 50. The weighted importance of flying the straight
line track between two subsequent waypoints would be increased while the smoothness
of that track and possible altitude criteria would be lessened. The TC variation plots at

12 m/s will be presented first followed by the corresponding results at 20 m/s.
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At 12 m/s, Figure 28 displays that the Piccolo II did a very good job at remaining
on track. However, an interesting side effect began to appear. With the lower gain value
for track convergence the aircraft appears to bounce between some designated cross track
bounds, similar to a bowling ball going down a lane with bumpers. This was shown by
the sensor position beginning to waiver left and right, especially along the longer straight
segments. Subsequent figures will bring this side effect into a clearer view. The cross
track distances for the respective 12 m/s runs decreased from a 40 meter maximum to
about a 25 meter maximum. For the urban canyon flight regime initially investigated for
this thesis, such a simple adjustment to the Piccolo II autopilot created a significant

increase in the track following performance.
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Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 150)
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Figure 28. Race Track Pattern at 12 m/s with Track Conv.=150

Figure 29 was the 12 m/s run at a track convergence gain of 50. This time the blue line
representing the actual aircraft’s position can barely be seen as it is coincident with the
desired track for most of the flight. However, this “scanning” side effect became
excessive. The nose of the aircraft was continuously moving laterally in an attempt to
remain as close to the track as possible. Once again, any points at which the sensor
footprint and the targets were close were coincidental. This result would not be

acceptable for actual flight.
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Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 50)
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Figure 29. Race Track Pattern at 12 m/s with Track Conv.=50

The 20 m/s run with the track convergence set at 150, Figure 30, showed the
expected decrease in tracking ability when compared with the 12 m/s, but an
improvement over the respective 20 m/s run with the gain set at 250. The quicker
response to return to the track was the most notable change. Because the track holding
was improved, the sensor position better mirrored the track, but the offset was still
present due to the crabbing. The sensor track was also beginning to become jittery, but

not so drastic as to render the condition useless.

68



Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 150)
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Figure 30. Race Track Pattern at 20 m/s with Track Conv.=150

With the track convergence reduced again to 50 in Figure 31, a slight improvement in the
UAV flight path was observed. However, that small improvement was outweighed by
the increased sensor waiving. It is important to notice that despite the decreased tracking
performance as compared to the 12 m/s run, the “induced scanning” was not nearly as
prevalent. The reason for this was that because of the higher velocity, the aircraft was not
as susceptible to the wind. With a wind of 25% percent of TAS as opposed to 41.66% as
with the previous runs, the UAV was able to better handle the aerodynamic forces as the
increased velocity would effectively increase the control powers of the rudder and

ailerons.
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Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 50)
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Figure 31. Race Track Pattern at 20 m/s with Track Conv.=50

The entire set of baseline tests provided insight into two key objectives of the
research; the real time wind finding results and the sensor pointing issues. The results of
the real time wind finding were considered a success. Despite a few points when the
wind velocity and/or direction would spike, the results were consistently accurate under
various operating conditions and flight paths. Utilizing the wind finding algorithm in the
SDK, a passive procedure was provided that allowed for simple means to view and then
log the wind data, along with numerous other telemetry variables. The results would be
best utilized as a situational awareness aid or to post process data for future test flights.

The full set of results is supplied in Appendix A.

70



The second set of pertinent data concerned the location that a nose mounted
sensor would actually be pointed when the UAV was in the presence of winds. From the
bird’s eye views of the SIG Rascal’s simulated flight path, it became clear that the
sensor’s footprint would not survey the desired target (waypoint). The tests conducted at
the slowest speeds did hold the track the best, but the aircraft required a crab angle to

accomplish that task; thus, resulting in a lack of coverage of the target by the sensor.

4.3 — HITL Simulation with Wind Correction

4.3.1 - Turn Rate & Updating “Rabbit” Waypoint Approaches

As previously mentioned, the turn rate and “rabbit” approaches of track following
improvement were not successfully implemented on the Piccolo II autopilot. However,
the time spent on researching these two possibilities did return some useful results. First,
turn rate commanding was, and still is, a feasible means for wind correction. In the long
run, this is probably going to be the best and most accurate means for wind correction on
small UAVs. Second, the “rabbit” waypoint chasing would be an acceptable means of
real time wind correction, with the added advantage of being easier to implement into the
Piccolo’s SDK or any waypoint guided autopilot. This “rabbit” chasing algorithm is
implemented in the C++ code provided in the appendix — and works for a single
waypoint. Accessing the “list of waypoints” from the SDK would enable full
implementation. Once this Piccolo II specific issue is resolved the rest of the correction

algorithm should be simulated in C++ code.
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4.3.2 — Wind Corrected Sensor Pointing

Using the same predetermined flight paths as in section 4.2, a direct comparison
was made to determine the effectiveness of the implemented wind corrected sensor
pointing. This algorithm used the SDK to actively modify the flight path of the Rascal in
the HITL simulation in an effort to induce an offset that allowed the simulated on-board
sensor to survey the target. For the research, it was assumed that, operationally, a
waypoint would be set directly over any target.

Figure 32 depicts the same straight line path as in Figure 17, but this time the
SDK code was actively placing a new waypoint at a calculated, ENU distance away from
the original. The graph also connects the corresponding positions between the center of
the sensor footprint and the aircraft. Under the same flight conditions, the center of the
sensor footprint was, at best, 75 meters from the waypoint. As shown in Figure 32
below, this error was reduced to about 10-20 meters when the wind correction was
employed. For this flight condition, that was about a 75% reduction in error. The
updated waypoints clearly provided the necessary corrections so that the sensor could
inspect the target. Additionally, because the code was designed such that the aircraft
would remain on track as long as possible and then jump out to capture the target, there
were no radical direction changes which would have caused drastic elevation changes.
Just as with the results in section 4.2, the complete set of plots is attached in the

appendices.
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Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)
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Figure 32. Point to Point at 20 m/s - Adjusted for Sensor

The straight line, point to point flight track was used as an initial proof of concept
and that the modifications could be implemented efficiently. The more important, and
realistic, test was to implement the code on the race track pattern. This would evaluate
whether or not the new waypoints would be placed correctly given a varying relative
wind. The track convergence gain was set to 250 for all of the simulated tests involving
the waypoint adjustments. The reason for this was that the “induced scanning” could

possibly introduce significant errors in the crab angle calculations. As a note, this gain
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could have been increased in an attempt to smooth out the track, but this was not

evaluated.
Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)
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Figure 33. Race Track Pattern at 12 m/s - Adjusted Waypoints

Figure 33 is a plot of the results from the race track pattern at 12m/s TAS and the
wind of 5 m/s from the south. The error distance between the sensor footprint and the
waypoints was decreased for most of the targets. However, the jittery sensor path was
unexpected. The scanning effect, which was attempted to be avoided by using the
convergence gain of 250, was observed. It was conjectured that this occurred because of
the continuously updating waypoints. At each time step the algorithm updates the

placement of the waypoint. So the waypoint will move slightly left/right, up/down. Thus,
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with the waypoint moving slightly, the aircraft needed to adjust its heading at each time
step. This resulted in the “induced scanning” effect.

Starting with waypoint 0 at the bottom right of Figure 33 and counting clockwise,
the results of the wind correction for waypoints 1, 2, and 5 were quite favorable. These
three all had an error of less than 50 meters. Waypoints 0 and 6 had marginal results with
about 100 meters of error. Waypoints 3 and 4 did not have improved results when
compared to the standard Piccolo II. They were not any further away, but the scanning
effect would be undesirable. The tail wind condition encountered as the vehicle turned
towards waypoint 3 coupled with the small track segments proved to be too much for the
Rascal as it was not able to navigate the right hand turn while incorporating the sensor
pointing offset. Longer track segments would have resulted in much better results as the
aircraft would have steadied itself on track before attempting to implement any
modifications. The head wind condition produced closer distances as explained

previously.
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Figure 34. Race Track Pattern at 15 m/s - Adjusted Waypoints

As the TAS was increased in Figure 34, Figure 35, and Figure 36, the results mirrored the
unmodified tests with a reduction in the wavering effect and a gradual reduction in track
following precision. The greatest improvement remained with waypoints 1, 2, and 5 as
they were still the longest track segments. In Figure 36, the resulting UAV track was
actually improved over the unmodified test at 30 m/s. Overall, the data for the race track
pattern were mixed. There were significant improvements in the sensor footprint error
for approximately half of the targets, with the other half having only a marginal or no
improvement. However, it was determined that if all track segments were of sufficient

length the results would have been more desirable throughout.
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Varied Environmental Conditions Tests

To ensure some level of robustness in the sensor pointing code, two additional
evaluations were conducted. The first varied the small UAVs altitude. Because the
correction distance was based upon the distance between the center of the sensor
footprint and the aircrafts location, varying the altitude would vary the forward, lead

distance of the sensor footprint. Figure 37 is the graphical representation of this test.
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Figure 37. Point to Point at 20 m/s and 20% Lower Altitude
The Rascal’s lower altitude would mean that the sensor would not be projecting as far
ahead of the aircraft. For this reason, the required offset distance for the new, updating

waypoints should be less. Figure 37 clearly shows that the offset distances were less
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drastic and as a result the sensor path actually comes closer to the targets. For this test,
the average miss distance was less than 20 meters. Based off these conclusions, it was
assumed that if the UAV’s altitude was increased that the new waypoint offset distance
would have been increased.

The second additional test returned the aircraft to the previous 350 meter altitude
criterion, but doubled the wind velocity to 10 m/s. Also, the direction of the wind was
switched 180° to a heading of due south. The outcome, as presented in Figure 38,
showed a reversal of offset direction in addition to an increase in the required offset
distance. These results displayed that the algorithm had the capability to make the

appropriate adjustments based on a current wind velocity and direction.
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Overall, the results of the active waypoint modification using the SDK interface were
pleasing. While the algorithm was not optimal nor completely robust, it definitely
improves the ability to put a sensor on a target using a small waypoint guided UAV

operating in wind.

4.4 —Flight Testing with Wind Correction

Due to extenuating circumstances, the test team was unable to conduct the actual
flight tests at the Area B test range. The tests were expected to be accomplished and
were thoroughly planned. Official test cards, provided in Appendix D, were produced
and reviewed. Unfortunately, the actual flight tests had to be postponed past the date of
the thesis defense. Therefore, it is recommended that before any future lab testing is
undertaken, a series of flight tests be conducted to validate the results obtained using the
wind correction in the HITL simulation.

4.4.1 — Real Time Wind Estimating
- See Appendix E -

4.4.2 - Turn Rate & Updating “Rabbit” Waypoint Approaches
- Flight Test Postponed -

4.4.3 — Wind Corrected Sensor Pointing
- Flight Test Postponed -
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4.5 — Chapter Conclusions

Chapter IV presented the results of the SIG Rascal UAV flight tests performed in
the HITL simulation under the control of the standard Piccolo II autopilot as well as with
the wind correction implemented. A set of baseline flight tests were conducted to
determine the standard characteristics of the simulated aircraft flying in a windy
environment. The findings revealed that the track following characteristics of the Piccolo
IT were quite good under the presence of a wind, and that the relative importance of this
trait could be easily adjusted through the track convergence gain. The level of precision
flight illustrated by the autopilot actually led to the primary focus and contribution of this
thesis, the method of wind correction for sensor pointing. The crab angle induced by the
controller to keep the aircraft on track resulted in a fixed sensor, such as a video feed, to
survey areas well off track. To counter this effect, a wind correction was developed and
implemented in the SDK code, which successfully updated and placed new waypoints for
the UAV to track. These new waypoints adjusted the aircraft’s flight path enough to
allow the sensor footprint to cover the designated target. The wind correction worked
well for straight line tracks and for more intricate tracks when flying at lower speeds.
However, with higher speeds the simulated aircraft could not successfully adjust for the
wind and sensor pointing.

One additional point must be factored in. The plots of the sensor footprint only
represented the exact center of that footprint. In actuality, the footprint was hundreds of
meters in diameter due to the field of view. Thus, when the center of the sensor crosses
within 20, or even 50, meters, this was a desirable result. The sensor would then easily

be able to supply adequate coverage of the targets.
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V. Conclusions and Recommendations

5.1 — Conclusions

The research accomplished in this thesis project provids a solid foundation for
future evaluation of small UAVs flying under the influence of winds. Initial baseline
tests were performed to discern the standard capabilities of the COTS Piccolo II autopilot
in conjunction with the SIG Rascal 110 aircraft. The physical component setup offered
realistic measurements and data which could easily be applied to an operational
environment. This investigation into wind compensation methods achieved several key
objectives:

1) Collected a baseline set of data which represents the wind compensation
capabilities of a COTS autopilot implemented in a true life setting.

2) Formulation and implementation of a real time update of the current wind
direction and velocity that the aircraft was encountering. Using the SDK interface, the
operator can now view and log the real time winds along the UAVs true flight path. The
output data were not completely without some outliers, but the overall result was
acceptable.

3) Formulation of three differing approaches for employing wind corrections for a
UAV. The first utilized a direct implementation of a new aircraft heading and airspeed
required, based on the wind estimation described above. The second method employed a
continuously updating unattainable “rabbit” waypoint that would mislead the aircraft into
reaching the desired original waypoint. The third technique took a completely different
approach to wind correction and adjusted the aircraft’s flight path based on the position

of a sensor footprint rather than the position of the UAV. It was determined that despite
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an accurate flight path along the determined track, the nose of the UAV would not
necessarily be pointed straight ahead. For this reason, the sensor may not survey the
desired target and overall mission effectiveness would not be satisfied without a real time
modification to the original flight plan.

4) Demonstrated the interfacing ability of the SDK software to receive, process,
and then transmit new flight parameters to the on-board autopilot unit. Real time aircraft
telemetry, waypoint data, and track commands were all communicated to and from the
UAYV using the C++ program developed with the SDK.

The initial research plan focused on improvement in the precise track following
capabilities of small UAVs. The most challenging flight conditions were reconciled as a
precise track following mission that would be required in the “urban canyon”
environment. While recognizing that operationally deployed autonomous small UAV's
navigating amongst buildings, trees, etc. is a few years in the future, the research
presented on the turn rate and “rabbit” wind correction approaches provides a good basis
from which future studies should be conducted. However, the crux of this thesis
morphed into the active flight path modifications for precise sensor pointing. Research
showed that this topic has not been previously addressed, yet is more applicable to
current operational tasks for small UAVs than those mentioned above. Thus, while it was
important to provide a solid framework for the more conventional methods of wind
corrections, the sensor pointing problem was more pertinent and became the central
focus.

The overall results of the new research focus were promising as the UAV tracked

the predetermined flight paths very well under reasonable TAS and wind conditions.

83



However, at the higher speeds (>TAS=30 m/s, or with wind components of more than
50% of the TAS) the aircraft could not navigate accurately. These are considered
extreme cases in an operational environment. In the normal flight regimes the
incorporated wind corrections proved generally acceptable. More specifically, the sensor
pointing approach showed that an algorithm could be implemented which would
appreciably remove or reduce the sensor pointing errors. Undoubtedly, with subsequent
research, this algorithm could be developed to be extremely robust and effective across

the small UAV operational environment.

5.2 — Recommendations

The following recommendations incorporate improvements to the algorithms,
interfacing procedure, and flight testing program along with follow on research guidance
and suggestions.

o Incorporate actual flight tests to support the simulated data. Actual tests
were planned, but did not happen due to operating restrictions beyond the
control of the research team. This data will be particularly pertinent
because indications from previous research (Jodeh, 2006) suggests there
may be differences between simulated and actual flight performance.

o “Hard coding” information reduced the robustness of the current code.
“Soft code” as much information as possible into any computer program.

J Acquire a larger volume of test and evaluation airspace. The bounds set

out for the Area B test flight airspace was quite restrictive in both length
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and altitude. In order to fully test and evaluate these UAVs a much larger
space is recommended.

Follow-on research should include: Implementation of both the turn rate
and “rabbit” approaches, solidifying the sensor pointing method, and
integration of related multiple research topics (e.g. formation flight,

situational awareness, etc.) using the Piccolo SDK.
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Appendix A: Complete Set of Simulated Test Results
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Figure 58. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250
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Figure 59. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250
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Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)
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Figure 60. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250
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Figure 61. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250
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Figure 62. Real Time Wind Estimations for the Race Track at 20 m/s, Wind
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Figure 63. Standard UAV Race Track Pattern at 30 m/s with Wind
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Figure 64. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250
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Figure 65. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250
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Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 150)
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Figure 66. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=150
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Figure 67. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=150
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Figure 68. Real Time Wind Estimations for the Race Track at 12 m/s, Wind
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Figure 69. Standard UAV Race Track Pattern at 15 m/s with Wind
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Figure 70. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=150
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Figure 71. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=150
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Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 150)
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Figure 72. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=150

z 22 T T T T T T
é 20+
2 18 | | | | : |
F "59 5.905 5.91 5.915 5.92 5.925 5.93 5.935
7 System Time [s] % 10"
E
e}
7l
o
E 59 5.905 5.91 5.915 5.92 5.925 5.93 5.935
V]
System Time [s] % 10"
—_ 352 T T T T T T
£ 350F - - A - AAC T AT AT SO T A - - -
= |
< 348 | | |
5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935
S System Time [s] « 10"
kel
E 400 T T T T T T
< |
§ 200 i o 7\ 7777777777 | : 7777777
T 0 | | | | | |
o 59 5.905 5.91 5.915 5.92 5.925 5.93 5.935
IS
= System Time [s] % 10"

Figure 73. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=150
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Figure 74. Real Time Wind Estimations for the Race Track at 20 m/s, Wind
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Figure 75. Standard UAV Race Track Pattern at 30 m/s with Wind
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Figure 76. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=150
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Figure 77. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=150
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Figure 78. Standard UAV Race Track Pattern at 12 m/s with Wind
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Figure 79. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC
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Figure 80. Real Time Wind Estimations for the Race Track at 12 m/s, Wind
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Figure 81. Standard UAV Race Track Pattern at 15 m/s with Wind
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Figure 82. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=50
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Figure 83. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=50
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Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 50)
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Figure 84. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=50
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Figure 85. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=50
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Figure 86. Real Time Wind Estimations for the Race Track at 20 m/s, Wind
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Figure 87. Standard UAV Race Track Pattern at 30 m/s with Wind
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Figure 88. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=50
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Figure 89. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=50
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Figure 90. Updated UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250

1
1000 1200 1400
East from Datum [m]

|
l
1
600 1600 1800 2000 2200

@ 15 \ \ \ \ \

g | | | | |

) | I | | l

< 10 | | | | |

= 200 300 400 500 600 700 800
= System Time [s]

E

e}

jo

n

e}

=

O
= 355 \ \ \ \ \
= 350
2 345 L L L L L

200 300 400 500 600 700 800

_g',’ System Time [s]
o 400
=
= 200F---c- =TT T - o - = = S
% 0 L L

= 200 300 400 500 600 700 800
= System Time [s]
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Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, 20% Lower Alt)
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Figure 106. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & Lower Alt

120



o
E 20
> | | | | |
8 10p------mm- A R SRR R IR -
(] | | | | |
> !
T 0 1 1 1 1 1
S 3400 3500 3600 3700 3800 3900 4000
_ System Time [s]
8 400 ; ‘ ‘ ;
g WL |
o HIH 1 | “ “H ' | W‘
£ ‘ 1 1
20 1 ‘ 1
< 3400 3500 3600 3700 3800 3900 4000
= System Time [s]
n 900 | | | |
o 1 1 1 1 1
¥ ool S % VAN B
= | | | | |
3 500 1 1 1 1 1
8 3400 3500 3600 3700 3800 3900 4000

System Time [s]

Figure 107. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & Lower Alt

121



Updated UAV & Sensor Tracks (TAS=20m/s, Wind=10 m/s from North)
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Figure 109. Various Parameters for the Point to Point with Wind=10 m/s from the North
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Appendix B: Software Development Kit (SDK) C++ Code

J L]

Test file for piccolo communication
Programmed by: Brent Robinson

Date: 9 May, 2006

******************************************************************************/

#include<iostream.h>
#include<conio.h>
#include<string>

#include "CommManager.h"
#include "Win32Serial.h"
#include<stdlib.h>
#include<windows.h>
#include"lla2enu.h"

using namespace std;

//Basepoint to use for all ENU coordinates...It's location is south and west of WPAFB
const double Base X = 503000;

const double Base Y = -4884700;

const double Base Z =4057800;

CCommManager* m_pComm = NULL;
Queue t* pQ =NULL;

//Used for converting the waypoint 1la data to ENU coords
ENUCoord PosENU;

ENUCoord newwpENU;

ENUCoord WayENU;

//To log the desired data in a .txt file
FILE * pFilel;

//function prototypes
void displayData(int i);

void BrentsWindCorrection(int i); //Real time wind estimation function

void SensorAdjustment(int i); //Wind Corrected Sensor Pointing

/Ivoid HeadingAdjust(int i); //Heading Adjustment function for the "turn rate approach"

/Ivoid AirspeedAdjust(int i); //Airspeed Adjustment function for the "turn rate approach”

/Ivoid WaypointTrackReturn(int 1); //Attempt at a function to turn off the turn rate commanding and return to normal
ops

/Ivoid WaypointFlyingnotTrackFlying(int 1); //Attempt at a function making the Piccolo a pure waypoint tracker instead

of a track follower
/Ivoid WaypointInfoFinding(int i, FPPoint_t& pntWaypoint);  //Attempt at a function which accesses the waypoint lla data
/Ivoid UpdatingWaypointadjustingforWind(int i);//, int next); //Updating "Rabbit" approach

//data structure to hold telemetry packet data

typedef struct
{
double Longitude; //from LLA data: Telemtry packet
double Latitude; //from LLA data: Telemtry packet
double East; //calculated from LLA data using lla2enu class
double North; //calculated from LLA data using lla2enu class
double Up; /lcalculated from LLA data using 1la2enu class
float Altitude; //from LLA data: Telemtry packet
float Velocity; //from GPS.Speed: Telemetry packet
/l float Alpha //anlge between velocity and direction of nose of plane vertically
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1

float Beta;

int Hours;

int Minutes;
float Seconds;

//angle between velocity and direction of nose of plane horizantally

//Brent added these
float Direction; //GPS Ground Track Direction
float TAS; //Aircraft TAS
double Lat; //Current aircraft Latitude
double Lon; //Current aircraft Longitude
float CrossTrack; /[Current Cross Track Distance
float AlongTrack; //Current Along Track Distance - Distance from the current waypoint
} telemetry;

//data structure to hold control packet data
typedef struct

} control;

float Heading;
float BankAngle;
float RollRate;
float PitchRate;
float YawRate;

float Aileron;
float Elevator;
float Throttle;
float Rudder;
int Hours;

int Minutes;
float Seconds;

//Brent added these
float MagHeading;
float Pdynamic;

//from Yaw reading: Control Data packet
//from Roll: Control Data packet

//from Roll Rate: Control Data packet
//from Pitch Rate: Control Data packet

//from Yaw Rate: Control Data packet

//Current aircraft magnetic heading
//Current dynamic pressure

// global variable used when the packets are decoded - allows for 10 networks
telemetry current_telemetry[10];
control current_control[10];

//Brent added these

FPPoint_t current waypoint[10]; //Attempt at setting up another "switch" group

Gains_t current_gains[10];

//Brent ADDED these
float V_w;

float Chi_w;

float Chi_w_deg;
float V_TASnew;
float density;

float Pdynamic_new;
float Chi_Magnew;
float Chi_Magnew_deg;
float turnrate;

float cmd_speed;

int count=0;

float e;

float f;

float Dis;

//float toofar;

//float angle deg;
//float angle;

//float abscos;

//float abssin;

float enu69east;

float enu69north;

//Attempt at setting up another "switch" group

double current_waypoint_Latitude;
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double current_waypoint Longitude;
float current waypoint_Altitude;
Ulnt8 Waypoint_cmd[10];

Ulnt8 orig;

Ulnt8 orignext;

float Dis2;

float Horiz;
double Adjustl;
double pointOLat;
double pointOLon;
double Alt0;
double pointlLat;
double point1Lon;
double Altl;
double point2Lat;
double point2Lon;
double Alt2;
double point3Lat;
double point3Lon;
double Alt3;
double point4Lat;
double point4Lon;
double Alt4;
double pointSLat;
double point5SLon;
double Alt5;
double point6Lat;
double point6Lon;
double Alt6;

double enu60east;
double enu60north;
double enu60alt;
double enu61east;
double enu61north;
double enu61alt;
double enu62east;
double enu62north;
double enu62alt;
double enu63east;
double enu63north;
double enu63alt;
double enu64east;
double enu64north;
double enu64alt;
double enu65east;
double enu65north;
double enu65alt;
double enu66east;
double enu66north;
double enu66alt;

float EastonTrack;
float NorthonTrack;
float e2onTrack;
float f2onTrack;
float LOS Dis;

float Adjustla;
float Adjust2a;
float T;

float theta_one;
float €2;

float 2;

float star;
float sinfromNext;
float cosfromNext;
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float theta m;
float delta_1;
float delta_2;

//clears the screen
void clrscr()

{
HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
COORD coord = {0, 0};
DWORD count;

CONSOLE_SCREEN BUFFER_INFO csbi;
GetConsoleScreenBufferInfo(hStdOut, &csbi);

FillConsoleOutputCharacter(hStdOut, ' ', csbi.dwSize.X * csbi.dwSize.Y, coord, &count);

SetConsoleCursorPosition(hStdOut, coord);

}

//as defined in "index.html": from SDK documentation
void NewNetwork(UInt16 NetworkID, void* Parameter)

{
H

/Nlooks for and gleans data from an autopilot packet sent from a network
void LookForAutopilotData(QType* pQ, int whosData)

{
static AutopilotPkt t APPkts[10];

Ulnt32 i, NumNets;
SInt32 ID;

//look at how many networks m_pComm can see
NumNets = m_pComm->GetNumNets();

for(i = 0; i < NumNets; i++)

{
// Don't display past 10 networks since we didn't include the space
if(i >= 10) break;

ID = m_pComm->GetIDFromIndex(i);

// Don't try to decode ground station packets
//if(ID < 1) continue;

/I Get the pointer to the receive queue for the autopilot stream. Note

// this pointer will persist as long as the network structure exists,

/I so we could just save the pointer and then we wouldn't have the

/I overhead of repeatedly calling this function

pQ = m_pComm->GetStreamRxBuffer((UInt16)ID, AUTOPILOT STREAM);

if(!pQ) continue;

/I Now check to see if a packet exists. Note!!! The raw packet
/I structure MUST persist between calls, and it MUST be unique to this
/I network.

if(LookForAutopilotPacket(pQ, &(APPkts[i])))
{
switch(APPkts[i].PktType)

{
case TELEMETRY:

UserData_t telemData;
DecodeTelemetryPacket(&(APPkts[i]), &(telemData));
//update telemtry struct
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current_telemetry[i].Longitude = telemData.GPS.Longitude * 180.0 /
3.1415926;
current_telemetry[i].Latitude = telemData.GPS.Latitude * 180.0 / 3.1415926;
current_telemetry[i].Altitude = telemData.GPS.Altitude;
current_telemetry[i]. Velocity = telemData.GPS.Speed;
current_telemetry[i].Direction = telemData.GPS.Direction;  //Brent added
current_telemetry[i].TAS = telemData.TAS; //Brent added
current_telemetry[i].CrossTrack = telemData.CrossTrack; //Brent added
current_telemetry[i]. AlongTrack = telemData. AlongTrack; //Brent added

//convert 1la data to enu
PosENU.1la2enu(current_telemetry[i].Latitude *3.1415926/180,
current_telemetry[i].Longitude
*3.1415926/180,
current_telemetry[i].Altitude,
Base X, Base Y, Base Z);

current_telemetry[i].East = PosENU.GetEast();
current_telemetry[i].North = PosENU.GetNorth();
current_telemetry[i].Up = PosENU.GetUp();

current_telemetry[i].Hours = telemData.GPS.hours;
current_telemetry[i].Minutes = telemData.GPS.minutes;
current_telemetry[i].Seconds = telemData.GPS.seconds;
//display the data

//Brent added...This is all the data that is written to a log file
fprintf(pFilel,"\n %i %i %i  %f %f %f %t %t %f
%f %f %f %f 45 %f %f", ID,
current_control[i].Hours, current_control[i].Minutes,
current_control[i].Seconds,
current_telemetry[i].CrossTrack,

current_telemetry[i].Velocity,(current telemetry[i].Direction*(180/3.1415926)),
current_telemetry[i]. TAS,
current_control[i].MagHeading,
V. w,
Chi_w_deg,(current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading),

current_telemetry[i].Altitude,(current_telemetry[i].Altitude/cos((45*(3.1415926/180)))),sqrt(((current telemetry[i]. Altitud
e/cos((45%(3.1415926/180))))*(current_telemetry[i]. Altitude/cos((45*(3.1415926/180)))))-
(current_telemetry[i].Altitude*current_telemetry[i].Altitude)));

displayData(whosData);
break;

//Brent's attempt at accessing the waypoint lla data
case WAYPOINT:

{
//Waypoint_t wayData;
//UserData_t wayData; //Brent
FPPoint_t wayData; //THIS IS THE FIRST PLACE
/l wayData.Point.Lat = 0.0;
/! wayData.Point.Lon = 0.0;
/l wayData.Point. Alt = 0.0;

Ulnt8 This = 0;
//This = DecodeWaypointPacket(&(APPkts[i]), &(wayData)); //WHERE I
TRY TO GET THE WAYPOINT LAT/LONG

This = DecodeWaypointPacket(&(APPkts[i]), &(wayData)); //WHERE I
TRY TO GET THE WAYPOINT LAT/LONG
/* if (Waypoint_cmd[i] != 69 || Waypoint_cmd[i] != 70)
{
WaypointInfoFinding(i, wayData);

*/
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// FPPoint_t Point;
VA Ulnt8 This = 0;
// This = DecodeWaypointPacket(&(m_APPkts[i]), &Point);

displayData(whosData);
break;

//Brent added...This allows a variable "Waypoint_cmd" that is the index of the current waypoint being tracked
case AUTOPILOT_COMMAND:
AutopilotCmd_t Cmd[3];
Waypoint_cmd[i] = DecodeAutopilotControlPacket(&(APPkts[i]), &Cmd[i]);
displayData(whosData);
break;

case CONTROL _DATA:
UserData_t controlData;
float gyroBias[3], controls[10];
DecodeControlDataPacket(&(APPkts[i]), &(controlData), gyroBias, controls);
//update telemetry struct
current_control[i].BankAngle = controlData.Euler[0] * 180/3.1415926;
current_control[i].Heading = controlData.Euler[2] * 180/3.1415926;

//Euler[0] = Rroll, Euler[1] = Pitch, Euler[2] = Yaw

current_control[i].RollRate = controlData.Gyro[0] * 180/3.1415926;
current_control[i].PitchRate = controlData.Gyro[1] * 180/3.1415926;
current_control[i].YawRate = controlData.Gyro[2] * 180/3.1415926;

current_control[i].Aileron = controls[0] * 180/3.1415926;
current_control[i].Elevator = controls[1] * 180/3.1415926;

current_control[i]. Throttle = controls[2];

current_control[i].Rudder = controls[3] * 180/3.1415926;

//convert GPS seconds into hours, minutes, and seconds

double hours = controlData.SystemTime / 3600000.0;
current_control[i].Hours = hours;

double mins = (hours - (double)current_control[i].Hours) * 60;
current_control[i].Minutes = mins;

current_control[i].Seconds = (mins - (double)current_control[i].Minutes) * 60;

//Brent added these
current_control[i].Pdynamic = controlData.Pdynamic;
current_control[i].MagHeading = controlData.MagHeading * 180/3.1415926;

displayData(whosData); //display the data
break;

-

}

}
}// LookForAutopilotData

//prints the telemetry, control, and obstacle avoidance data to screen
void displayData(int i)

//print current telemetry data
clrser();
printf("ID = %i", m_pComm->GetIDFromIndex(i));

printf("\nTelemetry Packet Data : %i", current_telemetry[i].Hours);
printf(":%i", current_telemetry[i].Minutes);
printf(":%f", current_telemetry[i].Seconds);

printf("\nLatitude (deg) : %f", current_telemetry[i].Latitude);
printf(" East: %t", current_telemetry[i].East);
printf("\nLongitude (deg) 1 %{", current_telemetry[i]. Longitude);
printf(" North: %f", current_telemetry[i].North);
printf("\nAltitude (m) 1 %f", current_telemetry[i]. Altitude);
printf(" Up: %", current_telemetry[i].Up);
printf("\nGround Speed : %", current_telemetry[i]. Velocity);

printf("\n\nControl Packet Data : %i", current_control[i].Hours);
printf(":%i", current_control[i].Minutes);
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printf(":%f", current_control[i].Seconds);

printf("\nHeading : %f", current_control[i].Heading);
/! printf("\nBank Angle : %{", current_control[i].BankAngle);
// printf("\nRoll Rate : %f", current_control[i].RollRate);
// printf("\nPitch Rate : %", current_control[i].PitchRate);
/I printf("\nYaw Rate : %t", current_control[i].YawRate);

//Brent added to be displayed
printf("\nUAV TAS : %f", current_telemetry[i]. TAS);
printf("\n\nUAV GPS DIRECTION : %f", current_telemetry[i].Direction*180/3.14159);
printf("\nUAV MAG HEADING : %", current_control[i].MagHeading);
/l printf("\nBRENTS BETA 2 : %f", current_telemetry[i].Direction*180/3.14159-current_control[i].MagHeading);
printf("\nBrents WIND VELOCITY (m/s) : %f", V_w);
printf("\nBrents WIND DIRECTION : %f", Chi_w_deg);

printf("\nBrents NEW TAS 1 %f", V_TASnew);
printf("\nBrents NEW Mag Head : %f", Chi_Magnew_deg);
printf(" Brents pdyn  : %f", current_control[i].Pdynamic);
printf(" Brents pdyn new : %f", Pdynamic_new);
/I printf("\nBrents density : %t", density);
printf("\nWaypoint index : %i", Waypoint_cmd[i]);
printf("\nAdjust1 1 %f", Adjustla);
printf("\nAdjust2 1 %t", Adjust2a);
printf("\nBrents Cross Track : %f", current_telemetry[i].CrossTrack);
/! printf("\n along track : %", current_telemetry[i]. AlongTrack);
printf("\nDistance to Wypt : %", Dis2);
/l printf("\nTURNRATE : %ft" turnrate);
/l printf("\nWaypoint Lon : %f", current_waypoint_Longitude);
/l printf("\nWaypoint Lat : %t", current_waypoint_Latitude);
/l printf("\nWaypoint Alt : %t", current_waypoint_Altitude);
/! printf("\nNew Waypoint Lat  : %d", newwpENU.GetLat());
/l printf("\nNew Waypoint Lon : %d", newwpENU.GetLong());
/! printf("\ntheta_one : %{f" theta_one);
}//displayData

//This is the wind finding and subsequent new heading and airspeed function

void BrentsWindCorrection(int 1)

{

//These are the basic vector equations that correlate the UAVs track, heading, and winds

/I current_telemetry[i]. TAS*cos((current_control[i].MagHeading*(3.14159/180))) + V_w*cos(Chi_w) =
current_telemetry[i]. Velocity*cos(current_telemetry[i].Direction)

/I current_telemetry[i]. TAS*sin((current_control[i].MagHeading*(3.14159/180))) + V_w*sin(Chi_w) =
current_telemetry[i].Velocity*sin(current_telemetry[i].Direction)

//Wind Finding

float a = current _telemetry[i]. Velocity*cos(current_telemetry[i].Direction) -
current_telemetry[i]. TAS*cos((current_control[i].MagHeading*(3.14159/180)));

float b = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) -
current_telemetry[i]. TAS*sin((current_control[i].MagHeading*(3.14159/180)));

V_w = sqrt(((a*a) + (b*b));

//Chi_w = acos(sqrt(1-((b*b)/((a*a) + (b*D)))));
Chi_w = atan2(b,a);

if (Chi_w < 0.0)

{
Chi_w_deg = Chi_w * (180/3.14159)+360;
}
else
{
Chi_w_deg = Chi_w * (180/3.14159);
}

//New heading and airspeed calculations based off of the above wind values
float ¢ = current_telemetry[i]. Velocity*cos(current_telemetry[i].Direction) - V_w*cos(Chi_w);
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float d = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) - V_w*sin(Chi_w);

V_TASnew = sqrt(((c*c) + (d*d)));

density = (2 * current_control[i].Pdynamic) / (current_telemetry[i]. TAS*current telemetry[i]. TAS);
Pdynamic_new = 0.5*density*(V_TASnew*V_TASnew);

Chi_Magnew = atan2(d,c);

if (current_telemetry[i].Direction*180/3.14159 >0 && current_telemetry[i].Direction*180/3.14159 <= 180)

Chi_Magnew_deg = Chi_Magnew * (180/3.14159);
i

else
Chi_Magnew_deg = Chi_Magnew * (180/3.14159) + 360;

}

/* // Attempt to send the autopilot new turn rate command based off the new heading desired.
void HeadingAdjust(int 1)
{

//float rate;

static AutopilotLoopCmd_t turnCom;

//AutopilotLoopCmd_t turnCom;

int IDbrent = m_pComm->GetIDFromIndex(i);

//These divisions were done so as to keep any commanded turn rates less than 20deg/sec
if (Chi_Magnew_deg - current_control[i].MagHeading > 0 && Chi_Magnew_deg - current_control[i].MagHeading <=

20)
{
turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/1;
else if (Chi_Magnew_deg - current_control[i].MagHeading > 20 && Chi_Magnew_deg - current_control[i].MagHeading
<=40)
{
turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/2;
¥
else if (Chi_Magnew_deg - current_control[i].MagHeading > 40 && Chi_Magnew_deg - current_control[i]. MagHeading
<=60)
{
turnrate = (Chi_Magnew_deg - current_control[i]. MagHeading)/3;
else if (Chi_Magnew_deg - current_control[i].MagHeading > 60 && Chi_Magnew_deg - current_control[i]. MagHeading
<=80)
{
turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/4;
/I rate = (Chi_Magnew_deg - current_control[i].MagHeading)/1;
turnCom.Loop=2; //command a turn rate
turnCom.Control=1; //turn ap_loop _cmd on
turnCom. Value=turnrate*(3.14159265359/180); //assign the commanded value
m_pComm->SendAutopilotLoopControlPacket(IDbrent, &(turnCom));
3

//Attempt to send a "return to normal tracking mode" after the turn rate heading was sent
/*void WaypointTrackReturn(int i)
{
int wayindex;
static AutopilotLoopCmd_t wayCom;
int IDbrent4 = m_pComm->GetIDFromIndex(i);
wayindex = Waypoint_cmd[i];
wayCom.Loop = 4;
wayCom.Control = 1; //Maybe "2"
wayCom.Value = wayindex;
m_pComm->SendAutopilotLoopControlPacket(IDbrent4, &(wayCom));//send the command
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//Successful command to send the new desired airspeed calculated above
void AirspeedAdjust(int 1)

{
float cmd_speed;
static AutopilotLoopCmd_t speedCom;
int IDbrent2 = m_pComm->GetIDFromIndex(i);
cmd_speed = Pdynamic_new;
speedCom.Loop = 0; //command a dynamic pressure
speedCom.Control = 1; //turn ap_loop_cmd on
speedCom.Value = (cmd_speed); //assign the commanded value
m_pComm->SendAutopilotLoopControlPacket(IDbrent2, &(speedCom));//send the command
H

//Attempt at ployting the Piccolo into a pure waypoint tracker instead of following straight line tracks between points
/*void WaypointFlyingnotTrackFlying(int i)
{
int IDbrent7 = m_pComm->GetIDFromIndex(i);
m_pComm->SendTrackCommandPacket(IDbrent7, Waypoint_cmd[i], true);
}*/

// Trying to calculate then send updating waypoint that is placed at the correct heading to compensate for the wind so as to
// end up at the original desired waypoint...Related to the previous function

/*void WaypointInfoFinding(int i, FPPoint_t& pntWaypoint)//, int next)

{

int IDbrent5 = m_pComm->GetIDFromIndex(i);
//AutopilotPkt t WPPacket;

/! Waypoint_t origData;

// current_waypoint_Latitude = origData.Lat * (180/3.14159);
/I current_waypoint_Longitude = origData.Lon * (180/3.14159);
/! current_waypoint_Altitude = origData.Alt;

if(fabs(pntWaypoint.Point.Lat)*180/3.1415926 >0 && fabs(pntWaypoint.Point.Lat)*180/3.1415926 <90)
{

current_waypoint_Latitude = pntWaypoint.Point.Lat * (180/3.14159); //TRYING TO
READ OFF WAYPOINT LAT/LONG

current_waypoint_Longitude = pntWaypoint.Point.Lon * (180/3.14159);

current_waypoint_Altitude = pntWaypoint.Point.Alt;

/Itest

//current_waypoint_Latitude =39.773098;
//current_waypoint_Longitude = -84.111564;
//current_waypoint_Altitude = 350;

orig = Waypoint_cmd[i];
orignext = Waypoint_cmd[i]+1;

3

//Attempt to implement the UPDATING "RABBIT" WAYPOINT APPROACH to wind correction
/*void UpdatingWaypointadjustingforWind(int 1)
{

int IDbrent6 = m_pComm->GetIDFromIndex(i);

ENUCoord WayENU; //Converting current waypoint LAT/LONG to ENU
WayENU.lla2enu(current_ waypoint_Latitude * 3.1415926/180,
current_waypoint_Longitude * 3.1415926/180,
current_waypoint_Altitude,
Base X, Base Y, Base Z);
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e = fabs(current_telemetry[i].East - WayENU.GetEast());
f = fabs(current_telemetry[i].North - WayENU.GetNorth());
Dis = sqrt((e*e)H(P*);
float toofar = Dis + 1000; //This is a distance that the a/c will never reach

/IThese are the adjustments to the ENU coords of the a/c to place the new waypoint
if (Dis >= 50)
{ //This is an attempt to place the new waypoint
if(Chi_Magnew_deg > 0 && Chi_Magnew_deg <=90)

float angle deg = Chi_Magnew deg-90;
float angle = angle deg * (3.1415926/180);  //Check where the datum point is for ENU

float abscos = abs(toofar * cos(angle)); //if west and south of wpafb then signs are
okay for the enu99s
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() + abscos;
enu69north = PosENU.GetNorth() + abssin;
}
if(Chi_Magnew_deg > 90 && Chi_Magnew_deg <=180)
float angle deg = Chi_Magnew_deg-90;
float angle = angle deg * (3.1415926/180);
float abscos = abs(toofar * cos(angle));
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() + abscos;
enu69north = PosENU.GetNorth() - abssin;
}
if(Chi_Magnew_deg > 180 && Chi_Magnew_deg <=270)
{
float angle deg = Chi_Magnew_deg-270;
float angle = angle deg * (3.1415926/180);
float abscos = abs(toofar * cos(angle));
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() - abscos;
enu69north = PosENU.GetNorth() - abssin;
}
if(Chi_Magnew_deg > 270 && Chi_Magnew_ deg <=360)
{
float angle deg = Chi_Magnew_deg-270;
float angle = angle deg * (3.1415926/180);
float abscos = abs(toofar * cos(angle));
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() - abscos;
enu69north = PosENU.GetNorth() + abssin;
}
ENUCoord newwpENU; //Convert the new waypoint ENU to LLA
newwpENU.enu2lla(enu69east, enu69north, WayENU.GetUp(), Base X, Base Y,
Base 7);
FPPoint_t newWPInfo;
Waypoint_t newlocation;
/l AutopilotPkt t WPPacket;
/! newlocation.Lat=newwpENU.GetLat(); //Lat/Long of new waypoint from just
above
/! newlocation.Lon=newwpENU.GetLong(); //*180/3.1415926
/I newlocation. Alt=newwpENU.GetAlt();

newlocation.Lat=39.78*(3.1415926/180);
newlocation.Lon=-84.097096*(3.1415926/180);
newlocation.Alt=348;

FPPoint_t newWPInfo2;
Waypoint_t newlocation2;
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newlocation2.Lat=39.775495%(3.1415926/180);

newlocation2.Lon=-84.114660*(3.1415926/180);

newlocation2.Alt=348;

newWPInfo2.Point = newlocation2;

newWPInfo2 Next = 69;

newWPInfo2.PreTurn = 0;

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo2), 70);
//m_pComm->SendTrackCommandPacket(IDbrent6, 70, true);

new WPInfo.Point = newlocation; //Trying to send the new waypoint as
waypoint "99"

if (Waypoint_cmd[i] > 0)

{

newWPInfo.Next = 70;
}
newWPInfo.PreTurn = 0;

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69);
m_pComm->SendTrackCommandPacket(IDbrent6, 69, false); //send command to head to new

waypoint
/! third parameter indicates if the vehicle should fly to the waypoint along the
/I preceding track segment, or if it should go directly to the waypoint, using its
/l current position as the starting point. Set to TRUE to go directly to the waypoint.
¥
/I else
// {
1 FPPoint_t origWP;
/I Waypoint_t origlocation;
//
// origlocation.Lat = current_waypoint_Latitude;
/l origlocation.Lon = current waypoint_Longitude;
/! origlocation.Alt = current_waypoint_Altitude;
1
/l origWP.Point = origlocation;
/! origWP.Next = Waypoint_cmd[i]+1;
// origWP.PreTurn = 0;
/l m_pComm->SendWaypointPacket(IDbrent6, &(origWP), orig);
// m_pComm->SendTrackCommandPacket(IDbrent6, Waypoint cmd[i],true);
// }
3

//WIND CORRECTED SENSOR POINTING APPROACH TO WIND CORRECTION
void SensorAdjustment(int i)

{
int IDbrent8 = m_pComm->GetIDFromIndex(i);

//Assume camera is at 45 degree angle off of a/c nose....no gimble

//Manually input waypoint lats and longs via the "edit" button on Operator Interface
//They should be:
//Waypoint 0 --

point0Lon=-84.099500*(3.1415926/180);
Alt0=350; // [m]

/* //Waypoint 0 --
point0Lat=39.776000%(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
point0Lon=-84.117796*(3.1415926/180);
Alt0=350; // [m]

*/

//Waypoint 1 --

point1Lat=39.773530*(3.1415926/180);
point1Lon=-84.106384*(3.1415926/180);
Alt1=350; // [m]
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/* //Waypoint 1 --
point1Lat=39.776000*(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
point1Lon=-84.103704%(3.1415926/180);
Alt1=350; // [m]

*/

//Waypoint 2 --

point2Lat=39.773700*(3.1415926/180);
point2Lon=-84.111550%(3.1415926/180);
Alt2=350; // [m]

/* //Waypoint 2 --
point2Lat=39.776000*(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
point2Lon=-84.090613*(3.1415926/180);
Alt2=350; // [m]

*/

//Waypoint 3 --

point3Lat=39.775525*(3.1415926/180);
point3Lon=-84.112517*(3.1415926/180);
Alt3=350; // [m]

//Waypoint 4 --
point4Lat=39.777281%(3.1415926/180);
point4Lon=-84.111355%(3.1415926/180);
Alt4=350; // [m]

//Waypoint 5 --
point5Lat=39.776950%(3.1415926/180);
point5Lon=-84.099400%*(3.1415926/180);
Alt5=350; // [m]

//Waypoint 6 --
point6Lat=39.774950*(3.1415926/180);
point6Lon=-84.098450*(3.1415926/180);
Alt6=350; // [m]

ENUCoord PointOENU;
PointOENU.1la2enu(pointOLat, pointOLon, Alt0, Base_ X, Base Y, Base Z);

ENUCoord Point]1 ENU;
Point] ENU.lla2enu(point1Lat, point1Lon, Altl, Base X, Base Y, Base Z);

ENUCoord Point2ENU;
Point2ENU.lla2enu(point2Lat, point2Lon, Alt2, Base X, Base Y, Base Z);

ENUCoord Point3ENU;
Point3ENU.lla2enu(point3Lat, point3Lon, Alt3, Base X, Base Y, Base Z);

ENUCoord Point4ENU;
Point4ENU.1la2enu(point4Lat, point4Lon, Alt4, Base_X, Base Y, Base Z);

ENUCoord Point5ENU;
PointSENU.lla2enu(point5Lat, point5Lon, Alt5, Base X, Base Y, Base Z);

ENUCoord Point6ENU;,
Point6ENU.lla2enu(point6Lat, point6Lon, Alt6, Base X, Base Y, Base Z);

//WAYPOINT 0 CALCULATIONS
if (Waypoint_cmd[i] == 0 || Waypoint _cmd[i] == 60)

e2 = fabs(current_telemetry[i].East - PointOENU.GetEast());
f2 = fabs(current_telemetry[i].North - PointOENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*12));

if (Dis2 <= 200)

//if (Dis2 <= 500) //Change for looong pt to pt

{

theta_one = atan2((PointOENU.GetNorth()-Point6ENU.GetNorth()),(PointOENU.GetEast()-
Point6ENU.GetEast()));
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//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new

Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = Adjust2a*sin(star); //-Adjust2a*sin(star); works fairly well also...not quite sure which is better
cosfromNext = Adjust2a*cos(star);

enu60east = PointOENU.GetEast()+cosfromNext; //Changed for looong pt to pt...i switched the sin and cos

and then made sin negative

/*
*/
1
waypoint is desired
/l
}

enu60north = PointOENU.GetNorth()+sinfromNext;
enu60alt = PointOENU.GetUp();

// MAJ BLUES WAY
theta_ m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu60east = PointOENU.GetEast()-delta_1;
enu60north = PointOENU.GetNorth()-delta_2;
enu60alt = PointOENU.GetUp();

ENUCoord newPointENU;
newPointENU.enu2lla(enu60east, enu60north, enu60alt, Base X, Base_Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 1;
adjWPInfo.PreTurn = 1;

m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60); //If only the initial calculation for the

m_pComm->SendTrackCommandPacket(IDbrent8, 60, true);  //i.e. you don't want it to update...use these

float e3 = fabs(current_telemetry[i].East - enu60east);

float 3 = fabs(current_telemetry[i].North - enu60north);

float Dis3 = sqrt((e3*e3)+(f3*13));

if (Dis3 >= 100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60);
m_pComm->SendTrackCommandPacket(IDbrent8, 60, true);

!

{
m_pComm->SendTrackCommandPacket(IDbrent8, 1, true);

!

else

-

//WAYPOINT 1 CALCULATIONS
else if (Waypoint_cmd[i] == 1 || Waypoint_cmd[i] == 61)

e2 = fabs(current_telemetry[i].East - Point]1 ENU.GetEast());
f2 = fabs(current_telemetry[i].North - Point] ENU.GetNorth());
Dis2 = sqrt((e2*e2)+(f2*2));

if (Dis2 <= 350)

136



//if (Dis2 <= 500) //Change for looong pt to pt

{

theta_one = atan2((Point] ENU.GetNorth()-PointOENU.GetNorth()),(Point] ENU.GetEast()-
PointOENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = Adjust2a*cos(star);

enu6least = Pointl ENU.GetEast()+cosfromNext;
enu6 Inorth = Point ENU.GetNorth()+sinfromNext;
enu6lalt = Pointl ENU.GetUp();

// MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta 1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu6least = Point] ENU.GetEast()-delta_1;
enu6 Inorth = Point] ENU.GetNorth()-delta_2;
enu6lalt = Point] ENU.GetUp();
*/
ENUCoord newPointENU;
newPointENU.enu2lla(enu61east, enu6 1north, enu6lalt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 2;
adjWPInfo.PreTurn = 1;

float €3 = fabs(current_telemetry[i].East - enu61least);
float 3 = fabs(current_telemetry[i].North - enu6lnorth);
float Dis3 = sqrt((e3*e3)+(f3*{3));

if (Dis3 >= 100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 61);
m_pComm->SendTrackCommandPacket(IDbrent8, 61, true);

i

{
m_pComm->SendTrackCommandPacket(IDbrent8, 2, true);

}

else

-

//WAYPOINT 2 CALCULATIONS
else if (Waypoint_cmd[i] == 2 || Waypoint_cmd[i] == 62)
{
e2 = fabs(current_telemetry[i].East - Point2ENU.GetEast());
f2 = fabs(current_telemetry[i].North - Point2ENU.GetNorth());
Dis2 = sqrt((e2*e2)+(f2*2));

if (Dis2 <= 300)
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//if (Dis2 <=500) //Change for looong pt to pt

{

theta_one = atan2((Point2ENU.GetNorth()-Pointl ENU.GetNorth()),(Point2ENU.GetEast()-
Point ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = -Adjust2a*cos(star);  //THIS AND Adjust2a*cos(star) WORK EQUALLY WELL!!!!

enu62east = Point2ENU.GetEast()+cosfromNext;
enu62north = Point2ENU.GetNorth()+sinfromNext;
enu62alt = Point2ENU.GetUp();

// MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta 1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu62east = Point2ENU.GetEast()-delta_1;
enu62north = Point2ENU.GetNorth()-delta_2;
enu62alt = Point2ENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu62east, enu62north, enu62alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;

adjWPInfo.Next = 3;

//ladjWPInfo.Next = 0; //Change for loooooong pt to pt
adjWPInfo.PreTurn = 1;

/I m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62);
// m_pComm->SendTrackCommandPacket(IDbrent8, 62, true);

float €3 = fabs(current_telemetry[i].East - enu62east);

float f3 = fabs(current_telemetry[i].North - enu62north);

float Dis3 = sqrt((e3*e3)+(f3*£3));

if (Dis3 >= 100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62);
m_pComm->SendTrackCommandPacket(IDbrent8, 62, true);

}
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 3, true);
}
}

//WAYPOINT 3 CALCULATIONS
else if (Waypoint_cmd[i] ==3 || Waypoint_cmd[i] == 63)

e2 = fabs(current_telemetry[i].East - Point3ENU.GetEast());
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f2 = fabs(current_telemetry[i].North - Point3ENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*£2));

if (Dis2 <= 250)

{

theta_one = atan2((Point3ENU.GetNorth()-Point2ENU.GetNorth()),(Point3ENU.GetEast()-
Point2ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = Adjust2a*cos(star);

enu63east = Point3ENU.GetEast()+sinfromNext;
enu63north = Point3ENU.GetNorth()+cosfromNext;
enu63alt = Point3ENU.GetUp();

/* // MAJ BLUES WAY
theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu63east = Point3ENU.GetEast()-delta_1;
enu63north = Point3ENU.GetNorth()-delta_2;
*/ enu63alt = Point3ENU.GetUp();

ENUCoord newPointENU;
newPointENU.enu2lla(enu63east, enu63north, enu63alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 4;
adjWPInfo.PreTurn = 1;

/! m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63);
/! m_pComm->SendTrackCommandPacket(IDbrent8, 63, true);

float €3 = fabs(current_telemetry[i].East - enu63east);

float f3 = fabs(current_telemetry[i].North - enu63north);

float Dis3 = sqrt((e3*e3)+(f3*£3));

if (Dis3 >= 150)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63);
m_pComm->SendTrackCommandPacket(IDbrent8, 63, true);

}
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 4, true);
}
}
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//WAYPOINT 4 CALCULATIONS
else if (Waypoint_cmd[i] ==4 || Waypoint_cmd[i] == 64)

e2 = fabs(current_telemetry[i].East - Point4ENU.GetEast());
f2 = fabs(current_telemetry[i].North - Point4dENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*2));

if (Dis2 <= 200)

{

theta one = atan2((Point4ENU.GetNorth()-Point3ENU.GetNorth()),(Point4dENU.GetEast()-
Point3ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = Adjust2a*sin(star);
cosfromNext = -Adjust2a*cos(star);

enub4east = Point4dENU.GetEast()+sinfromNext;
enu64north = PointdENU.GetNorth()+cosfromNext;
enu64alt = Point4ENU.GetUp();

/* // MAJ BLUES WAY
theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu64east = PointdENU.GetEast()-delta_1;
enu64north = Point4 ENU.GetNorth()-delta_2;
enu64alt = Point4dENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu64east, enu64north, enu64alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 5;
adjWPInfo.PreTurn = 1;

/! m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64);
/! m_pComm->SendTrackCommandPacket(IDbrent8, 64, true);

float e3 = fabs(current_telemetry[i].East - enu64east);
float 3 = fabs(current_telemetry[i].North - enu64north);
float Dis3 = sqrt((e3*e3)+(f3*13));

if (Dis3 >= 100)

{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64);
m_pComm->SendTrackCommandPacket(IDbrent8, 64, true);

¥
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 5, true);
}
}
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//IWAYPOINT 5 CALCULATIONS
else if (Waypoint_cmd[i] ==5 || Waypoint_cmd[i] == 65)

e2 = fabs(current_telemetry[i].East - PointSENU.GetEast());
f2 = fabs(current_telemetry[i].North - PointSENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*12));

if (Dis2 <= 600)

{
theta_one = atan2((PointSENU.GetNorth()-PointdENU.GetNorth()),(PointSENU.GetEast()-
Point4ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = Adjust2a*cos(star);

enu65Seast = PointSENU.GetEast()+cosfromNext;
enu65north = PointSENU.GetNorth()+sinfromNext;
enu6Salt = PointSENU.GetUp();

/* // MAJ BLUES WAY
theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu6Seast = PointSENU.GetEast()-delta_1;
enu65Snorth = PointSENU.GetNorth()-delta_2;
enu65alt = PointSENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu65east, enu65north, enu65alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 6;
adjWPInfo.PreTurn = 0;

/l m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65);
// m_pComm->SendTrackCommandPacket(IDbrent8, 65, true);

float €3 = fabs(current_telemetry[i].East - enu65east);
float f3 = fabs(current_telemetry[i].North - enu65north);
float Dis3 = sqrt((e3*e3)+(f3*£3));
if (Dis3 >=100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65);
m_pComm->SendTrackCommandPacket(IDbrent8, 65, true);
}

{
m_pComm->SendTrackCommandPacket(IDbrent8, 6, true);

}

else
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//WAYPOINT 6 CALCULATIONS
else if (Waypoint_cmd[i] == 6 || Waypoint_cmd[i] == 66)
{

e2 = fabs(current_telemetry[i].East - PointoENU.GetEast());
f2 = fabs(current_telemetry[i].North - PointcENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*£2));

if (Dis2 <=300)

{

theta_one = atan2((Point6 ENU.GetNorth()-PointSENU.GetNorth()),(Point6ENU.GetEast()-
PointSENU.GetEast()));

/* //THIS WAS AN OLD WAY OF DOING THE CALCULATIONS....Basically it attempted to map the a/c's current position to
where it would be
//if it were exactly on track....this way placed the new point based on the a/c's location as opposed to placing it based on
//the location of the current waypoint

/! double m = fabs(Point6ENU.GetNorth()-PointSENU.GetNorth());

/! double n = fabs(PointoENU.GetEast()-PointSENU.GetEast());

/l double Dis_wypts = sqrt((m*m)+(n*n));

/I T = Dis_wypts - current_telemetry[i].AlongTrack;

1/ double EastonTrack = Point4ENU.GetEast() + current_telemetry[i].AlongTrack*cos(theta_one);
/l double NorthonTrack = Point4ENU.GetNorth() + current_telemetry[i].AlongTrack*sin(theta_one);

if (theta_one*(180/3.1415926)>0 && theta _one*(180/3.1415926)<=90)
{
EastonTrack = PointSENU.GetEast() + T*sin(theta_one);
NorthonTrack = PointSENU.GetNorth() + T*cos(theta_one);

}
else if (theta_one*(180/3.1415926)>90 && theta_one*(180/3.1415926)<=180)
{
EastonTrack = PointSENU.GetEast() + T*cos(theta one);
NorthonTrack = PointSENU.GetNorth() + T*sin(theta_one);

}
else if (theta_one*(180/3.1415926)>-180 && theta_one*(180/3.1415926)<=-90)
{
EastonTrack = PointSENU.GetEast() + T*sin(theta_one);
NorthonTrack = PointSENU.GetNorth() + T*cos(theta_one);

}
else if (theta_one*(180/3.1415926)>-90 && theta_one*(180/3.1415926)<=0)
{

EastonTrack = PointSENU.GetEast() + T*cos(theta_one);

NorthonTrack = PointSENU.GetNorth() + T*sin(theta_one);
1
s

e2onTrack = fabs(EastonTrack - Point6ENU.GetEast());

//e2onTrack = fabs(EastonTrack - current_telemetry[i].East);

f2onTrack = fabs(NorthonTrack - Point6eENU.GetNorth());

//f2onTrack = fabs(NorthonTrack - current_telemetry[i].North);

double Dis_on_Track = sqrt((e2onTrack*e2onTrack)+(f2onTrack*f2onTrack));
//Dis_on_Track = Horiz2

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
//float LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
//Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

//crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new

if ((current_telemetry[i].Direction*(180/3.1415926)-current_control[i]. MagHeading*(3.1415926/180)) >= 0)

{

Adjustla = Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));
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Adjust2a = Dis_on_Track*sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));
}

else

{

Adjustla=Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));

Adjust2a = Dis_on_Track*-sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));

}
enu66east = PointoENU.GetEast() + Adjust2a/2;
enu66north = Point6ENU.GetNorth() + Adjustla/2;
enu66alt = PointoENU.GetUp();

*/

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = -Adjust2a*cos(star);

enu66east = PointoENU.GetEast()+cosfromNext;
enu66north = Point6ENU.GetNorth()+sinfromNext;
enu66alt = PointoENU.GetUp();

// MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu66east = PointoENU.GetEast()-delta_1;
enu66north = PointoENU.GetNorth()-delta_2;
enu66alt = Point6ENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu66east, enu66north, enu66alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 0;
adjWPInfo.PreTurn = 0;

/! m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66);
/! m_pComm->SendTrackCommandPacket(IDbrent8, 66, true);

float e3 = fabs(current_telemetry[i].East - enu66east);
float 3 = fabs(current_telemetry[i].North - enu66north);
float Dis3 = sqrt((e3*e3)+(f3*13));

if (Dis3 >= 100)

{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66);
m_pComm->SendTrackCommandPacket(IDbrent8, 66, true);

¥
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 0, true);
}
}
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int main()

{

//create CCommManager object to communicate with Piccolo
//129.92.5.112 is the IP address of the operator interface computer

m_pComm = new CCommManager(0, 57600, "1.1.1.3", 0);

//m_pComm = new CCommManager(0, 57600, "129.92.5.112:2000", 0);

//m_pComm = new CCommManager(1,"",2000);
//printf("\nHELLO WORLD");

//print out error and exit if m_pComm doesn't connect
if(m_pComm->GetLastError() != 0){

/!

}

printf("nHELLO WORLD");
printf("%s", m_pComm->GetLastError());
printf("\n");

return 1;

//set up network callback function
m_pComm->SetNewNetworkCallBack(NewNetwork, m_pComm);

pFilel = fopen ("BrentsLog.txt","w"); //Log file

//periodic loop to service the communications endpoints
int i =0, whosData = 0;

//Headers for each column in the log file
fprintf(pFilel," ID Hours Minutes Seconds Cross Track(m) Vg Ground Track  Vtas Mag Heading

Estimated Wind Vel
Dis");

Estimated Wind Heading ~ Crab Angle  Altitude Mounting Angle LoS Distance FootPrint Horizontal

char keypress = 0;
while(m_pComm && i==0)

{
/"

m_pComm->RunNetwork();
printf("\nHELLO WORLD3");

LookForAutopilotData(pQ, whosData);

//BRENTS FUNCTION CALLS
BrentsWindCorrection(i); //Wind Finding Funciton Call

count=count+1;

//WaypointFlyingnotTrackFlying(i); //Pure waypoint flying instead of track following function call

//Counter so only do this stuff every 15 time hacks.

if (count % 15 ==0)

1

{
SensorAdjustment(i); //Wind Corrected Sensor Pointing function call
/! UpdatingWaypointadjustingforWind(i);; /Rabbit function
HeadingAdjust(i); //For turn rate approach
/! AirspeedAdjust(i); //For turn rate approach
v
s
/I if (count % 60 == 0)
/A //Trying to manipulate when the function is called so I could send the new heading..
/I WaypointTrackReturn(i); //let the a/c adjust...then send it the return to waypoint tracking command
/l}

//get commands via keypress

int rate = 10;
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if (kbhit()){
keypress = getch();

switch(keypress)

case 'X':
i=1;
printf("\n");
fclose (pFilel);
break;
case 'r': //command a certain turn rate- this was just used as a test
AutopilotLoopCmd_t loopCom;
loopCom.Loop = 2;
loopCom.Control = 1;
loopCom.Value = (rate*3.14159/180);

m_pComm->SendAutopilotLoopControlPacket(565, &(loopCom));

break;
case 'l":
/lprint telemetry data for first Network
whosData = 0;
break;
case 2"
//print telemetry data for second Network
whosData = 1;
break;
case '3":
//print telemetry data for third Network
whosData = 2;
break;
case '4":
//print telemetry data for fourth Network
whosData = 3;
break;
case'S":
//print telemetry data for fifth Network
whosData = 4;
break;
case '6':
//print telemetry data for sixth Network
whosData = 5;
break;
case'7":
/lprint telemetry data for seventh Network
whosData = 6;
break;
case '8":
//print telemetry data for eighth Network
whosData = 7;
break;
case '9":
//print telemetry data for ninth Network
whosData = 8;
break;
case '0":
/lprint telemetry data for tenth Network
whosData = 9;
break;
¥
}
//delay to create periodic call, as specified by "Index" in the SDK documentation
Sleep(10);
}
return 0;

Appendix C: MATLAB Code
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SAMPLE MATLAB FOR THE TOP DOWN VIEWS FOR TEST 5 — All tests used the
same code simply with different data file calls.

%TEST 5 - Adjusted RACETRACK WITH TC=250

cle,close all
clear all

%Analysis of Hardware in the Loop Sim with Flight Test

if exist('Alt0x5SBm0x5D5250") == 0
load SimTests5datafileE.mat
disp('File Loading')

end

%Read in Raw flight data from ".mat" file, and build custom Arrays
[Clock] = [Clock0x5Bms0x5D/1000,Day,Hours,Minutes,Seconds];
[Autopilot] = [rad2deg(Lat0x5Brad0x5D),...

rad2deg(Lon0x5Brad0x5D),...

HeightOx5Bm0x5D*3.281,...

TASOx5BmO0x2Fs0x5D*3.281,...

Direction0x5Brad0x5D,,...

MagHdg0x5Brad0x5D];

[Heading] = [rad2deg(Direction0x5Brad0x5D)];
[Autopilot_Flight] = [Clock,Autopilot];

%Waypoint Locations

WP _latitude = [39.773292; 39.773530; 39.773700; 39.775525;...
39.777281; 39.776950;39.774950;39.773292];

WP_longitude = [-84.099500; -84.106389; -84.111550;...
-84.112517; -84.111355; -84.099400;-84.098450;-84.099500];

WP_Altitude = [1148;1148;1148;1148;1148;1148;1148;1148];

%%%%0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% %% %% %% %% %% % %%
%%%%%%%

%%%%%%%%%%%%%% %% %% %% %% % %% %% %% %% %% %% %% % %% % %% % %% % %% % %% % %% % %% % %% % %%
%%%%%%%

begin = 484; %Line # in 'Clock' array

end_at=10802;

% figure('Name',...

% 'HITL Simulation #1: TAS(12kts), Alt(1148ft), Winds(5s/Ow m/s)',...
% 'NumberTitle','on")

% hold on

% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,0),...
% -k

% axis equal

% xlabel ('Longitude (deg)")

% ylabel ('Latitude (deg)')

% title...

%  ('HITL Autopilot Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)")
%

% plot(WP_longitude,WP_latitude,'"-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....

% 'MarkerSize',12);

% grid on

% axis equal

% legend({'UAV Flight Path','Desired Waypoints and FlightPath'});
% print -dmeta 'l HITL Autopilot Sim,2D,Actual'

% hold off

%PLOTTING WHERE THE SENSOR WOULD BE
BaseX = 503000;
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BaseY = -4884700;

BaseZ = 4057800,

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

lla = [deg2rad(Autopilot Flight(begin:end_at,6)) deg2rad(Autopilot Flight(begin:end_at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust]1=(Autopilot_Flight(begin:end at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(11)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),"-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]")

ylabel('North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)")
legend("UAV Track','Sensor Track',’'Waypoint',1)

grid on

hold off

%Plot 3D Waypoint Orbit Track
figurel = figure('Name','HITL Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
axesl = axes(...
'CameraPosition',[-84.13 39.75 2007]....
'CameraUpVector',[0.1859 0.1775 1.915e+005]....
'Parent',figurel);
axis(axes1,[-84.12 -84.095 39.77 39.785 800 1500]);
title(axes1,'HITL Autopilot Simulation #1 with Flight Test: TAS(12m/s), Alt(1148ft)');
xlabel(axes1,'Longitude (deg)");
ylabel(axesl,'Latitude (deg)");
zlabel(axes1,'Altitude (ft)");
grid(axes1,'on");
hold(axes1,'all");
plot3(Autopilot_Flight(begin:end_at,7),... %LONGITUDE LINES
Autopilot Flight(begin:end_at,6),... %LATITUDE
Autopilot_Flight(begin:end_at,8),' Parent',axesl); %ALTITUDE
grid on
hold on
axis equal
plot3(WP_longitude, WP_latitude, WP_Altitude,-ro',... ~ %WAYPOINT PLOTS
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12);
axis square
legend]l = legend(axesl,...
{'UAV Flight Path','Desired Waypoints,Flight Path, and Altitude (1148 ft)'},...
'Position’,[0.2723 0.3165 0.6554 0.1]);
zlim([800 15007)

%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% %% % %%%% %% %% %% %% % %% %% %% %% %% %% % %
%%%%% %%
0/Z“/Z"/ZO/(;"/Z“/Z"/z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%

begin = 12283; %Line # in 'Clock' array

end_at =20558;

%2-D PLOT FROM NIDAL

% figure('Name','HITL Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)',...
%  'NumberTitle','on’")

% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6))
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% xlabel ('Longitude (deg)")
% ylabel ('Latitude (deg)')

% grid on

% axis equal

% hold on

% plot(WP_longitude,WP_latitude,'"-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....
% 'MarkerSize',12);

% axis equal
% print -dmeta '4 HITL Autopilot Sim,2D,Conv Lower'

%PLOTTING WHERE THE SENSOR WOULD BE

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

lla = [deg2rad(Autopilot Flight(begin:end_at,6)) deg2rad(Autopilot Flight(begin:end_at,7))
deg2rad(Autopilot Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust]=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjustl;

figure(12)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),"-ro','LineWidth',2,'MarkerFaceColor',[ .49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]')

ylabel('"North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)')
legend('UAV Track','Sensor Track','Waypoint',1)

grid on

hold off

% 3-D PLOTTING FROM NIDAL
figure('Name','Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
plot3(Autopilot_Flight(begin:end_at,7),...

Autopilot_Flight(begin:end_at,6),...

Autopilot_Flight(begin:end_at,8));

grid on

hold on

plot3(WP_longitude, WP_latitude, WP_Altitude,'-ro',...
'LineWidth',2,...

'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63]....
'MarkerSize',12);

xlabel ('Longitude (deg)")

ylabel ('Latitude (deg)')

zlabel ('Altitude (ft)")

Zlim([800 1500])

%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% %% %% %% %% %% %% %% %% % %% % %% % %% % %%
%%%0%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% % %% % %% % %%
%%%%%%%%

begin =21279; %Line # in 'Clock' array

end_at =27453;

%?2-D PLOT FROM NIDAL

% figure('Name','HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)',...
%  'NumberTitle','on")
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% plot(Autopilot_Flight(begin:end_at,7),Autopilot Flight(begin:end_at,6))
% xlabel ('Longitude (deg)")
% ylabel ('Latitude (deg)')

% grid on

% axis equal

% hold on

% plot(WP_longitude,WP_latitude,'-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....
% 'MarkerSize',12);

% axis equal
% print -dmeta '7 HITL Autopilot Sim,2D,TAS Conv Lower'

%PLOTTING WHERE THE SENSOR WOULD BE

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

1la = [deg2rad(Autopilot_Flight(begin:end at,6)) deg2rad(Autopilot Flight(begin:end_at,7))
deg2rad(Autopilot Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]));

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjustl=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjustl;

figure(13)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),-ro','LineWidth',2,'MarkerFaceColor',[ .49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]")

ylabel('"North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)")
legend('UAV Track','Sensor Track','Waypoint',1)

grid on

hold off

%3-D PLOT FROM NIDAL
figure('Name',' HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
plot3(Autopilot_Flight(begin:end_at,7),...
Autopilot_Flight(begin:end_at,6),...
Autopilot_Flight(begin:end_at,8));
grid on
hold on
plot3(WP_longitude, WP _latitude, WP_Altitude,'-ro',...
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12);
xlabel ('Longitude (deg)")
ylabel ('Latitude (deg)')
zlabel ('Altitude (ft)")
zlim([800 15007)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% % %%
%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% % %% % %% %% %% %% %% %% % %% % %% % %% % %%
%%%%%%

begin = 27974; %Line # in 'Clock’ array

end at=32413;

%2-D PLOT FROM NIDAL
% figure('Name','HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)',...
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% 'NumberTitle','on")

% hold on

% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6))
% axis equal

% xlabel ('Longitude (deg)")

% ylabel ('Latitude (deg)')

% plot(WP_longitude,WP_latitude,'-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....
% 'MarkerSize',12);

% axis equal

% grid on

% print -dmeta '10 HITL Autopilot Sim,2D,TASLow ConvUp,Larg Track'

%PLOTTING WHERE THE SENSOR WOULD BE

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

lla = [deg2rad(Autopilot Flight(begin:end at,6)) deg2rad(Autopilot Flight(begin:end at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end at,11));
adjustl=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(14)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),"-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]")

ylabel('North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South)")
legend('UAV Track','Sensor Track',’'Waypoint',1)

grid on

hold off

%3-D PLOT FROM NIDAL
figure('Name',' HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
plot3(Autopilot_Flight(begin:end_at,7),...
Autopilot_Flight(begin:end_at,6),...
Autopilot_Flight(begin:end_at,8));
grid on
hold on
plot3(WP_longitude, WP _latitude, WP_Altitude,'-ro',...
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12);
xlabel ('Longitude (deg)")
ylabel ('Latitude (deg)')
zlabel ('Altitude (ft)")
zlim([800 15007)

SAMPLE MATLAB FOR THE VARIOUS PARAMETERS AND WIND DATA PLOTS - All
tests used the same code simply with different data file calls.
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%Brent Robinson
%Thesis
%Additional plots for each test

clear all
cle

if exist('data5') ==
load SimTests5datafile.mat
disp('File Loading")

end

begin=36;
end_at=2099;

Hours=data5(begin:end_at,2);
Min=dataS(begin:end_at,3);
Sec=data5(begin:end at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);

CT = data5(begin:end_at,5);

figure(1)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)

plot(x,y)

xlabel('System Time [s]')
ylabel('TAS [m/s]')

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')

grid on

%Plot - Altitude vs. time
y3=Alt;

subplot(4,1,3)

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]")

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('Mag Heading [deg]")
grid on

figure(2)
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%Plot - Wind Velocity vs. time
y4=WindVel;

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]')
ylabel("Wind Velocity [m/s]")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel("Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
grid on

%%%%%%%%0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%:%%%%%%% %% %
%%%
%%%%%%0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %
%%%

begin=2399;
end_at=4051;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end _at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);

CT = data5(begin:end_at,5);

figure(3)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)

plot(x,y)

xlabel('System Time [s]')
ylabel('TAS [m/s]")

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]")

grid on

%Plot - Altitude vs. time

y3=Alt;
subplot(4,1,3)
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plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(4)

%Plot - Wind Velocity vs. time
y4=WindVel,

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]')
ylabel("Wind Velocity [m/s]")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel("Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]")
ylabel('Cross Track Distance [m]')
grid on

%6%%0%%%0%%0%6%%0%%%%%0%%%%%%%0%6%%%% %% %0%6%%%% % %% %%%%%%%%6%%%%%%%%%%%%% %% %%
%%%
96%%0%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%% %% %% % %% % %% %% %%%% % %% % %% %% % %% %%
%%%

begin=4199;
end_at=5431;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = dataS(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end_at,13);
MagHeading = dataS(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);

CT = data5(begin:end_at,5);

figure(5)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)
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plot(x,y)

xlabel('System Time [s]')
ylabel('TAS [m/s]')

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]")

grid on

%Plot - Altitude vs. time
y3=Alt;

subplot(4,1,3)

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(6)

%Plot - Wind Velocity vs. time
y4=WindVel,

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]")
ylabel('"Wind Velocity [m/s]'")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel('Wind Heading [deg]")
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
grid on

%6%%0%%%0%%0%6%%%%%%%0%%%%%%%0%6%%%% %% %0%6%%%%%%%0%%%%%%%%6%%%%%%%%%%%%% %% %%
%%%
0/Z‘VZ‘%j%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

begin=5539;
end_at=6423;

Hours=data5(begin:end_at,2);

Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);
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SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end at,11);

CT = data5(begin:end_at,5);

figure(7)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)

plot(x,y)

xlabel('System Time [s]")
ylabel('TAS [m/s]')

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')

grid on

%Plot - Altitude vs. time
y3=Alt;

subplot(4,1,3)

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('"Mag Heading [deg]')
grid on

figure(8)

%Plot - Wind Velocity vs. time
y4=WindVel;

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]')
ylabel("Wind Velocity [m/s]")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel("Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
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Proposed Actual Flight Test Plans

Appendix D
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Appendix E: Flight Test Results

The following set of flight test results were gathered post-defense in order to
obtain initial effects of the wind correction algorithm in a real world situation. Two tests
are shown. First, a straight and level flight path and then second a circular orbit. The
aircraft was flown in RC mode with the wind finding code running. The results for both
tests were disappointing. However, the poor results were not due to the algorithm, but
rather a malfunction with the Piccolo II’s true airspeed reading on board the aircraft. Due
to the inaccurate TAS values, the wind velocity and direction results were completely
unreliable. In the first test, the TAS quickly drops to zero and remains there throughout
the flight. Obviously the UAV had a positive TAS at all time, thus displaying the error in
the Piccolo’s readout of the TAS. However, it is interesting to note that the wind
estimating algorithm was still operating correctly as the estimated winds were precisely
the difference between ground track and flight path. With TAS=0 m/s, the algorithm
estimated the wind to be the same as the ground speed, as shown in Figures 111 and 112.
The TAS results for the circular orbit test, Figure 113, were non-zero, but still inaccurate

and unreliable, producing poor results for the wind estimations found in Figure 114.
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Figure 112. Straight and Level Flight Test Wind Estimations
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Figure 114. Circular Orbit Flight Test Wind Estimations
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