Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2006

An Investigation into Robust Wind Correction Algorithms for Off-
the Shelf Unmanned Aerial Vehicle Autopilots

Brent K. Robinson

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Aerospace Engineering Commons

Recommended Citation

Robinson, Brent K., "An Investigation into Robust Wind Correction Algorithms for Off-the Shelf Unmanned
Aerial Vehicle Autopilots" (2006). Theses and Dissertations. 3552.

https://scholar.afit.edu/etd/3552

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F3552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3552?utm_source=scholar.afit.edu%2Fetd%2F3552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AN INVESTIGATION INTO ROBUST WIND CORRECTION ALGORITHMS
FOR OFF-THE-SHELF UNMANNED AERIAL VEHICLE AUTOPILOTS

THESIS
Brent K. Robinson, Ensign, USN
AFIT/GAE/ENY/06-J14

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GAE/ENY/06-J14

AN INVESTIGATION INTO ROBUST WIND CORRECTION ALGORITHMS FOR
OFF-THE-SHELF UNMANNED AERIAL VEHICLE AUTOPILOTS

THESIS

Presented to the Faculty
Department of Aeronautics and Astronautics
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Brent K. Robinson, BS

Ensign, USN

June 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GAE/ENY/06-J14

ROBUST WIND CORRECTION ALGORITHM FOR OFF-THE-SHELF UNMANNED
AERIAL VEHICLE AUTOPILOTS

Brent K. Robinson, BS

Ensign, USN
Approved:
Paul Blue, Major, USAF (Chairman) date
Dr. John F. Racquet (Member) date

Dr. David R. Jacques (Member) date

AFIT/GAE/ENY/06-J14
Abstract

This research effort focuses on developing methods to design efficient wind
correction algorithms to “piggy-back” on current off-the-shelf Unmanned Aerial Vehicle
(UAV) autopilots. Autonomous flight is certainly the near future for the aerospace
industry and there exists great interest in defining a system that can guide and control
small aircraft with high levels of accuracy. The primary systems required to command the
vehicles are already in place, but with only moderate abilities to adjust for dynamic
environments (i.e., wind effects), if at all. The goal of this research is to develop a
systematic procedure for implementing efficient and robust wind effects corrections to
existing autopilots used on small Unmanned Aerial Vehicles. The research will
investigate the feasibility of an external dynamic environment control algorithm as a
means of improving current, off-the-shelf autopilot technology relating to small UAVs.
The research then presents three main focuses. First, a determination of the estimated
winds utilizing the existing, on-board sensors. Second, the development of a wind
correction algorithm that incorporates simple mathematical principals to counter the 2-
Dimensional wind forces acting on the aircraft; and third, the integration of that wind
compensator into the on-board navigational system. This “piggy-back” algorithm must
assimilate smoothly with the current GPS technologies to provide acceptable and safe
flight path following. The design procedures developed were demonstrated in simulation
and with flight tests on the SIG Rascal 110 UAV. This report builds the framework from

which current wind correction research at AFIT and the ANT Center is based.

v

Acknowledgements

I would like to express my sincerest appreciation to my faculty advisor, Major
Paul Blue, for his guidance and insight. His commitment to the success of his students
and their research provided a superb example of leadership from which I will attempt to
emulate throughout my career. [would like to thank Dr. John Raquet for running and
maintaining the professional and educational atmosphere of AFIT’s Advanced
Navigation Laboratory, without which the research would not have been possible. I
must also acknowledge a few others whose work was critical to the success of this
project. First to Athan Waldron, he put in the numerous hours of hands on labor required
to continually supply the ANT lab with the aircraft and all their components. His
meticulous understanding of the aircraft and the avionics allowed for a smooth
integration into the program. John McNees, our radio control aircraft expert and pilot,
guided the aircraft through any flight testing with unparalleled experience and wisdom.
Don Smith, the lab’s expert technician in everything mechanical and electrical. Don was
always there to answer the unanswerable and connect all the loose ends. Randy Plate,
who provided the initial work on Piccolo’s Software Development Kit. Steve
Rasmussen, from the Air Force Research Labs, provided timely and much needed
expertise in C++ programming. To Second Lieutenant Brett Pagel, also from the Air
Force Research Labs, who aided with previous autonomous UAV experience. Finally, to
my peers in the lab who could always be counted on to lighten the mood or provide a

necessary distraction.

Brent K. Robinson

Table of Contents

Page

AADSTTACT ...ttt ettt ettt e bt e et e bt et e e aeeenteenes v
Table Of CONENLS.....eetiriiiiiiiiieieeit ettt st st vi
LISt O FIZUIES ...eeiitiieiiie ettt ettt e st e e e aaee e saeeesseeenssaeensseeensaeeas viii
LSt OF TADIES ..ottt sttt s xiii
LSt OF TADIES ..ottt ettt e xiil
L INEEOAUCTION ..ttt sttt ettt et e b 1
L1 = IMIOTIVALION. ¢ttt ettt et ettt e bt e et e bt e et e e bt e snbeenseas 1
1.2 — Problem Statement.........cceevuiriirieienieieiie ettt 4
1.3 — ReSEATCh ODJECHIVES. ..cuutiiiiiieeiiieeiiee et ete et e et etee e st eesaeeessveeessseeesaeeenssaeenns 5
1.4 — Significance of RESEArchcoocuiviiiiiiiiiiiiie e 5
B, (5111 10T 0] (0 = SRR 6
1.6 — THESIS PIEVIEW ...cuiiiiiiiiiiiieieeecte ettt ettt 8

L B B 2ol 3 (0] 11 e A USSP 9
2.1 — OVEIVIEW ..ttt ettt ettt ettt ettt ettt et sbe et eat e sbe e bt et e saeeaeente e 9
2.2 = ATLCTAL ..ttt et sttt et 9
2.2.1 = ATITIAMIC ..ottt ettt st 9
2.2.2 — Engine and Propeller..........cooviiiiiiieiiieeieeciee ettt 12
2.3 — AVIOMICS .ttt ettt et sttt et h et ettt et b et st e bt et 14
2.3.1 — Radio Control SYSteM........cccvuiiiiiiieeiiie ettt eeesree s 14
2.3.2 — PiccOlo IT AULOPIIOL ..oeeiiiiieiieie ettt et 15
2.3.3 — Honeywell HMR2300 Digital Magnetometercccccueeevveeeiveencneeesieeeenneenn 20
2.4 — STMUIATION ...ttt sttt ettt s sbe et eaees 21
2.4.1 — Hardware in the Loop (HITL)ccooiiiiiiiiiieiiecee ettt 22
2.4.2 — Software Development Kit (SDK)........cocoiiiiiiiiiiiiiiee e 23
2.5 — FIIGIE T@SHINEeeeuiierieeiieeieeeieette et et e eve et e eeteetaessbeesseeesseesseessseesseessseensaessseans 24
2.5.1 —Overview Of FIIght Test......cceoiiriiiiiiiiiiieiecececeeeeeee e 24
2.5.2 — Flight Test RANEE......ccccieiiiiiiiiiiieiiecie ettt ettt ettt sae e siae b seseennaens 25
2.5.3 — Ground EQUIPMENT......ccceoriiiiiiiiiiiiiniienieeeeitesie ettt 27
2.5.4 — Criteria for Flight Test of UAVs at WPAFBccccooiiiiiiiiiiiieeeeee 28
2.5.5 — Wind Correction Implementationc.ccoeeveriinienenicneeneeieneeeseeseenenn 29
2.5.6 — Data Collection and Handlingccceeevuieriieniiiiieiiecieeie e 29
2.6 — Chapter SUIMMATYooterieriiniierieeteeeete ettt ettt ettt et e b sinesbeeeeeaees 31

vi

III. Development of the Wind Correction Approaches...........occueeevierieeniienieeniienieeieene 33
Bl OVETVIEW ..ttt ettt ettt ettt et s et e bt e sb b e et e e sabeenbeesabeebeesabeenbee e 33
3.2 —Real Time Wind EStiMatingccceeieriieniiieiiieieeieerie et 33
3.3 — Turn Rate Approach EQUAtIONScccceevuiiiiiieiiiieeiiee et 35
3.4 — Updating “Rabbit” Waypoint Approach.........c.cccecveeieeiienieeiiienieeieerie e 38
3.5 — Wind Corrected Sensor POINtINGccocvvieiiiieeiiieeiiieceeeeee et 40
3.6 — Wind Correction Implementationc.eeccveeriienieeniienieeiiesie e see e 43
3.6.1 — Real Time Wind EStIMatingccccveeeiuiiieiiieeeiieeciie et 43
3.6.2 — Implementing the Turn Rate & Updating “Rabbit” Waypoint.......................... 45
3.6.3 — Wind Corrected Sensor POINTINGcccvieeiiieiiiiieeiieceiie e 50
3.7 — Chapter SUMIMATYcccuiiiiiiiiieiieriie ettt ettt ettt e ebeesseesbeesaeeebeesseesnseesseeens 53

IV. HITL Test Results and ANalySiS.......cccueeiiiieeiiiieeeiieeriieesiieeeieeesveeesieeeenveesaveesnneeens 54
4.1 — OVEIVIEW ..utiiienieeitesitete ettt ettt ettt ettt sbe et sa et e et sat e bt e tesbeenbeentesaeenbeas 54
4.2 — Standard HITL Simulated Flight Tests with Real Time Wind Estimating........... 54
4.3 — HITL Simulation with Wind Correction............c.ceccueeeuierieeriienieeiiesieeieesie e 71
4.3.1 — Turn Rate & Updating “Rabbit” Waypoint Approaches.........c.cccceevvveerveeennnenn. 71
4.3.2 — Wind Corrected Sensor POINtINGccceeviiiiieriiiiiieiieeiceie e 72
4.4 —Flight Testing with Wind Correction............ccccveeriieeriieeriieesiee e eeveeeevee e 80
4.4.1 — Real Time Wind EStIMatingccccveeiiieniieiieiie ettt seee e 80
4.4.2 — Turn Rate & Updating “Rabbit” Waypoint Approaches.........c.cccceeevveerveeennenn. 80
4.4.3 — Wind Corrected Sensor POINtINGccceevireiierieeiiieieeieeie et 80
4.5 — Chapter CONCIUSIONScciiiiiiiiieiiieeeiee ettt e et e e st e e s e essaaeessaeeesaeeas 81

V. Conclusions and Recommendationscceerieerieiireniieeiienie e e 82
5.1 — CONCIUSIONS. ..ttt ettt ettt ettt et e bt e bt e eabeenaeeenee 82
5.2 — ReCOMMENAATIONS.......uviieiiieeiiieeiee et e et e e e iee e et e e et eesreeesbeeeseseeesaseeesnseeesseeens 84

Appendix A: Complete Set of Simulated Test Results...........ccoceevieriienieniiienieeieeee 86

Appendix B: Software Development Kit (SDK) C++ Codecooeevieiiniineinicnicnnenne. 124

Appendix C: MATLAB COde......ccuiiiuiiiiieiieeieeiteeee ettt ettt ve b eane e 145

Appendix D: Proposed Actual Flight Test Plansc.ccoocoeiiiiiiiiiiiieiieeeceee, 156

Appendix E: Flight Test ReSUILS.......c.ccociiiiiiiiiiiieiccieeeeee e 162

BIDLIOZIAPNY ... ettt 165

L T OSSPSR 167

vil

List of Figures

Page
Figure 1. Two Completed Sig Rascal 110°s (Jodeh, 2000)cccevieriieiieiieieeieeee e 10
Figure 2. Sig Rascal Wing Planform View (Jodeh, 2000)..........cccorieiiriiiinieieeee e 11
Figure 3. O.S. FS-120S III Four Cycle ENGINe.........c.cooiiiiiiiiiiiiiiiieeeeeeeee et 13
Figure 4. APC 16X8 NyIONn PrOPellercooiiiiiiiiiiieieeeee ettt 13
Figure 5. Futaba 9CAP/9CAF 8 Channel TranSMittercccueruerierierereeeieeeeiieieiee et see e 14
Figure 6. Piccolo II Block Diagram of Internal COmMpPONENtS.............ccvevveeiieienieniienieeieeee e seeseeesae e e 16
Figure 7. Piccolo 11 Airborne Autopilot Utcccievvireieiiieiierieeie ettt et be e eaeesae e e 17
Figure 8. Required Ground Equipment (minus the laptops) for the Piccolo II Autopilot System................ 18
Figure 9. Fail Safe Control Relay SChematiccccveiiriiiioieiierieceeeeseeee e 19
Figure 10. Complete Autonomous FIight SEtUPcceevvirieiieiieiiee e e 20
Figure 11. Honeywell HMR2300 Digital Magnetometer (Honeywell, 2004)cccoveeiiriinienienceene 21
Figure 12. Standard Hardware in the Loop Simulation Setupccoeeevieiieiiiiieiieieeee e 22
Figure 13. WPAFB, Area B Flight Test RANGEcccooiiiiiiiiieiee e 26
Figure 14. Ground Equipment and Test Team Conducting a Flight Test..........cccccooviiiiiiininiieeee 28
Figure 15. Top View of the UAV with the Adjustment Parameters Defined...........ccccoooeiiniiiiiiincncnne 42
Figure 16. Screen Capture of the Piccolo SDK Executable...........cccooiiiiiiiiieieieeeeee e 44
Figure 17. Standard UAV & Sensor Tracks for a Point-to-Point Flight Path............cccoceoiiiiinininnnnn 55
Figure 18. Various Flight Characteristics for the Standard Point-to-Point Flight.ccccoccevivininininnn. 56
Figure 19. Wind Estimations & Cross Track DiStance.c..ccevveruieriieriieiinienienieeieeieeneseeseeesseesseesnenens 57
Figure 20. Circular Orbit Flight Path with Constant Velocity and Windccccocevinnennnienicnicncnenn 59
Figure 21. Various Parameters of the Circular Orbit Flight Pathc.ccocoiniiiiiiieee 59
Figure 22. Estimated Wind Values for the Circular Orbit..........ccceevveeriiiiinienieiieieee e 60
Figure 23. Race Track Pattern with TAS=12m/s & Wind= 5m/8S........ccccceevirimrieiieiieeeeeereeeee e 62
Figure 24. Various Parameters for the Race Track Pattern at 12m/s and TC=250.........ccccccevvirienvenrenennne 62
Figure 25. Wind Estimations & Cross Track DiStance..........ccccueveeruieriierieeieeieniieeee e 63

viil

Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

Figure 50.

Page

Race Track Pattern at 20 m/s Track Conv.=250..........ccceeiieiirieiieieeeee et 64
Race Track Pattern at 30m/s with Track Conv.=250ccceiiiiiiiiiiiieeeee e 65
Race Track Pattern at 12 m/s with Track Conv.=150ccccoriiiiiiiiiiiiee e 67
Race Track Pattern at 12 m/s with Track Conv.=50cccoooiriiiiiieieeee e 68
Race Track Pattern at 20 m/s with Track Conv.=150cccooviririieiiininieneeeeee e 69
Race Track Pattern at 20 m/s with Track Conv.=50ccccoceriririieiinieniee e 70
Point to Point at 20 m/s - Adjusted fOr SENSOTcccvevvieciieiiiieiieie e 73
Race Track Pattern at 12 m/s - Adjusted Waypoints...........cceevereereriieneienieneesee e seeseeneeeeens 74
Race Track Pattern at 15 m/s - Adjusted Waypoints...........cceeeereererieeneiesiieneee e 76
Race Track Pattern at 20 m/s - Adjusted Waypoints...........cceeveereereriiinieneereee e 77
Race Track Pattern at 30 m/s - Adjusted Waypoints..........ccceeeeereereriienieneereere e 77
Point to Point at 20 m/s and 20% Lower AIttude...........cooeerieiierieiiee e 78
Point to Point at 20 m/s with 10 m/s Wind from the North.............coocoiiiiiiiniiiiee, 79
Standard UAV Short Point to Point at 12 m/s with Wind=5 m/Scccccereriiriininienieeeee 86
Various Parameters for Short Point to Point at 12 m/S........cccceviiiiiieieiieieeeec e 86
Real Time Wind Estimations for Short Point to Point at 12 m/s......cc.cccceeevirincncnienienieenenne, 87
Standard UAV Short Point to Point at 15 m/s with Wind=5 m/S.......ccccccceveniininninienininenne 87
Various Parameters for Short Point to Point at 15 m/S......ccccoceviiiniiiiiieniiiniccceceeen 88
Real Time Wind Estimations for Short Point to Point at 15 m/S.......cccceevveiercienienieieeieeieies 88
Standard UAV Short Point to Point at 20 m/s with Wind=5 m/s...........ccecvevieviriencerieiene, 89
Various Parameters for Short Point to Point at 20 m/S......c.ccecevirirerieienieiieninencneeeeceeeeeen 89
Real Time Wind Estimations for Short Point to Point at 20 m/S........ccceeevriiiienienieieeeeees 90
Standard UAV Short Point to Point at 30 m/s with Wind=>5 m/s..........ccecceviriiniiiieiieee 90
Various Parameters for Short Point to Point at 30 m/S.........ccoecveiieiiiiiieieeee e 91
Real Time Wind Estimations for Short Point to Point at 30 m/s.........cccceveiiiinciieeeeeee. 91

iX

Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.

Figure 75.

Page

Standard UAV Circular Orbit at 20 /Scc.eeeeieiiiiiniiniinenieenteeeeeeeetere et 92
Various Parameters for the Circular Orbit at 20 M/S......coecerveriierenireneinencneneeereeeereeenens 92
Real Time Wind Estimations for the Circular Orbit at 20 m/s.......c.ccccvevvevenenieicnennincencneens 93
Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250..........c.ccoecvrnencne. 94
Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250.................... 94
Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250.............. 95
Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250..........c.cccecvenuee. 95
Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250.................... 96
Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250............... 96
Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250..........ccccccceueeuennen. 97
Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250.................... 97
Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250............... 98
Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250..........c.cccuecvrnnce. 98
Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250.................... 99
Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250............... 99
Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=150...........cceceeueucn. 100
Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=150.................. 100
Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=150............. 101
Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=150.........ccccccceueuee 101
Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=150.................. 102
Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=150............. 102
Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=150..........cccccccocec. 103
Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=150.................. 103
Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=150............. 104
Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=150...........ccceceruncn. 104

Figure 76. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=150.................. 105
Figure 77. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=150.............. 105
Figure 78. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=50..........c.ccccerueeen.e. 106
Figure 79. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=50.................... 106
Figure 80. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=50............... 107
Figure 81. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=50...........c...coevenn... 107
Figure 82. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=50.................... 108
Figure 83. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=50............... 108
Figure 84. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=50.......c..ccccccceveunee. 109
Figure 85. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=50.................... 109
Figure 86. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=50 110
Figure 87. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=50...........c.ccceeeenee.. 110
Figure 88. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=50................... 111
Figure 89. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=50............... 111
Figure 90. Updated UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250.........c.cccceruenee.e. 112
Figure 91. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250.................. 112
Figure 92. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250............. 113
Figure 93. Updated UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250.........c.cccceecueuee.e. 113
Figure 94. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250.................. 114
Figure 95. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250............. 114
Figure 96. Updated UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250.........c.ccccccueueenee. 115
Figure 97. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250.................. 115
Figure 98. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250............. 116
Figure 99. Updated UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250..........c.ccceveue.. 116
Figure 100. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250................ 117

xi

Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.

Figure 110.

Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250........... 117
Updated Long Point to Point at 20 m/s with Wind=5 m/s and TC=250............c.cceceeverrrrreen. 118
Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & TC=250 118
Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & TC=250 119

Updated Long Point to Point at 20 m/s with Wind=5 m/s & Lower Alt..........cccccververreennnnne. 120
Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & Lower Alt............ 120
Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & Lower Alt 121

Updated UAV for Point to Point with Wind =10 from North............cccceeeieiiinienieieieeeen 122
Various Parameters for the Point to Point with Wind=10 m/s from the North 122
Real Time Wind Estimations for the Point to Point with the Wind=10 m/s from the North... 123

xii

List of Tables

Table 1. Various Sig Rascal 110 Characteristics...............

Table 2. Prominent Criteria for Flight Tests (Jodeh 2006)

Table 3. Available Telemetry through the Piccolo SDK....

xiil

ROBUST WIND CORRECTION ALGORITHM FOR OFF-THE-SHELF
UNMANNED AERIAL VEHICLE AUTOPILOTS

l. Introduction

1.1 — Motivation

The first one hundred years of flight brought about an incredible evolution
beginning with two, small town bicycle makers soaring just over 120 feet and progressing
to the global military and civil aerospace business of current times. This transformation
has thrust aviation into the forefront of the world’s daily operations and has positioned
the business as a necessity in the everyday world. While this “revolution” has been rapid
in historic terms and some have declared Aerospace as a mature business/technology, the
next one hundred years will undoubtedly bring a myriad of advances that will continue to
change how the world lives and operates. One of the most important developments of
current times is that of Unmanned Aerial Vehicles (UAVs). While they have been
envisaged as long as manned aircraft, the enabling technologies have only recently
matured enough to bring them to a state of operational reality. Thus, UAVs of all sizes
and capabilities are beginning to accomplish numerous missions impractical, or even
impossible, for manned aircraft.

Leading the drive for research and development in the UAV field are the U.S.
Department of Defense’s (DoD) efforts to provide a more efficient and capable force for
it’s military forces. Currently, UAVs operating as remotely piloted vehicles (RPV) are
utilized around the globe to provide intelligence, surveillance, and reconnaissance (ISR)
as well as for small scale offensive actions. The immediate success of those operations

has inspired the DoD to push further into the uncharted territory of complementing the

modern warfighter’s emergent needs with UAV technology. The next step is to provide
partially to fully autonomous UAV systems that have the ability to execute any peacetime
or combat missions in support of desired “Effects Based Operations” (EBO). Such UAV
operations not only have the potential to provide more fiscally attractive solutions to
EBO needs, but since it offers the potential to remove the human from the most
dangerous and dull aspects of the mission, UAVs offer the potential for dramatic
improvement in organizational concepts, civilian or military.

The Air Force Institute of Technology’s (AFIT) Advanced Navigation
Technology (ANT) Center has recognized the importance of research in the autonomous
UAYV domain with ongoing projects in guidance and control of small aircraft (for
definition of “small UAVs” see Roadmap, 2002:62). The ANT Center now has the
foundation for autonomous UAV study including analytic research, MATLAB
simulations, Hardware-In-The-Loop (HITL) Simulations, and flight test and
demonstration. This broad capability, established through previous theses (Jodeh, 2006),
allowed for the current research in this, and related theses. For this thesis, the primary
tool utilized for the autonomous control research in the ANT Center was an off-the-shelf
commercial autopilot provided by Cloud Cap Technologies, named the Piccolo II
(Vaglienti, 2005).

In recent years, developing, simulating, and flight testing robust autonomous
UAV:s has been the topic of interest at numerous civilian universities/institutions
throughout the country. However, when specifically dealing with small aircraft and
autonomous control (esp. with the Piccolo II) there are only a few establishments

conducting in-depth analysis, which includes the Autonomous Intelligent Networks and

Systems (AINS) Center for Collaborative Control of UAVs at the University of
California, Berkeley (Girard, 2002 and Frew, 2004), the GRASP Laboratory at the
University of Pennsylvania (Bayraktar, 2004), and the Aeronautics and Aerospace
Department at the Massachusetts Institute of Technology (King, 2004 and Tin, 2004).
These institutions have produced research which has advanced the control and
manipulation of single and multiple UAV systems (King, 2004), dramatically pushing the
envelope in this field. However, most of the previous research has, at best, glossed over
the primary focus of this thesis; specifically, the affects of wind on the flight paths of the
UAVs. The issue may have been mentioned, but prior research has not delved into the
implementation of a robust system that continuously updates any wind correction
parameters — a necessity for operational relevance.

The importance of this ability to strictly track a predetermined path becomes
evident when dealing with current implementation of UAVs in the modern combat zone.
Recent operations have shown the need for this technology to enable operations and
navigation in the “urban canyon” environment. This demand requires tight adherence of
point to point waypoint following. Moreover, urban buildings, streets, and the general
environment generate unique and highly variable wind patterns which present a particular
challenge for small, lightweight UAVs. The inherent strong up/down-drafts coupled with
horizontal gusts can easily force a UAV off course and into an obstacle. Detailed studies
on the topic can be found in (Cionco, 2004) and (Brown, 2003).

The research community generally characterizes the “wind effect” problem as an
easily correctable issue through basic math. While it is true that the math involved was

not drastically complicated, the difficulty lies in the implementation of these corrections

into the UAV autopilot systems — especially for the cost effective off-the-shelf systems.
Most current systems will correct for a “static” wind reading, possibly at some ground
station, and then employ this correction to the aircrafts control algorithm throughout the
entire flight. However, as mentioned, in the new urban flight environment this
methodology will not provide sufficient precision. Therefore, a continuously updating
wind correction feeding the aircraft’s control devices is not only desired, but required for

the intricate demands of modern day operations.

1.2 -- Problem Statement

The ultimate goal of this research is to provide AFIT, the ANT Center, and the
research sponsor, AFRL/VA, with a well-documented investigation into robust wind
correction algorithms for small UAVs. To meet the operational needs, these schemes
must continuously calculate the current wind corrections required and then update the
UAVs flight plan to accommodate the local and constantly variable winds so as to assure
the UAV remains on course or on target. The research platform supports UAVs flying in
a constant or variable wind environment using Cloud Cap Technology’s Piccolo II
autopilot system. This problem statement has two primary parts. First, produce an
adaptable algorithm for determining the current wind effects on the vehicle and the
required heading and airspeed to compensate for that wind. Second, produce sensible
approaches of implementing wind compensation algorithms on Commercial Off-the-
Shelf (COTS), waypoint guided autopilots without hardware or software modifications to
the autopilot or UAVs. In this thesis, the implementation will be demonstrated using a

Piccolo II autopilot and the corresponding Software Development Kit (SDK).

Furthermore, simulated and actual flight test results were conducted to validate the

algorithms.

1.3 -- Research Objectives

o Develop and document a wind velocity and direction determination scheme to be
utilized on small UAVs in autonomous flight mode.

. Develop and document an interface algorithm in order to implement
modifications to the flight path of the UAV to compensate for wind. The resulting
ground track should show an improvement in the waypoint targeting and/or track
following capabilities of the UAV.

o Demonstrate the performance of the algorithms through comparisons of
unmodified and modified flight plans using HITL simulations as well as actual

flight test data.

1.4 - Significance of Research

The significance of this research is to provide AFIT, the ANT Center, and
AFRL/VA with a basis for continuing work in the precise navigation field of UAV
technology. This research provides a robust manner in which to compensate for the
common issue of variable winds. The current autopilot system incorporates wind finding
calculations and adjustment techniques; however, the method used did not allow for a
real time update of the wind. Therefore, the adjustments did not correct for dynamics of
winds in the “urban canyon” or similar environments as efficiently as would be needed

for combat operations.

Providing the foundations for a two dimensional, continuously updating wind
correction algorithm allows for a starting point to delve into the more complex issues of
precise, three dimensional track and waypoint control for lightweight, autonomous
UAVs. This end goal is undoubtedly a few years in the future, but the reported research
overcame the initial steps to improve the current systems.

The capability for the United States to, at will, deploy autonomous UAVs in an
urban environment to conduct ISR or offensive operations will be indispensable to
achieving the goals of EBO. To efficiently carry out a desired mission mitigating the risk
of the loss of human life is the top level objective in this environment. The capacity to
accurately infiltrate an unknown urban environment with a UAV will certainly contribute
to those overarching objectives. This research will prove to be a significant step in that
maturation.

Moreover, the concurrent AFIT studies of multiple, autonomous UAV formation
flight (McCarthy, 2006) and UAV Autonomous Situational Awareness and Synthetic
Vision (Dugan, 2006) provide further insights to enhance the goals of AFIT and the ANT

Center.

1.5 — Methodology

The methodology varied for each of three research objectives. The calculations
for determining the current wind conditions were developed through a manipulation of
the difference in the GPS ground track and the actual aircraft magnetic heading. Utilizing
basic trigonometry and algebra a wind direction and velocity were solved for, providing

the current wind effects on the vehicle. Then, the new flight conditions, such as the

magnetometer heading and true airspeed (TAS), could be solved for. Additionally, these

calculations were completed at continual time intervals; therefore, providing updating

wind and correction estimates.

Once the wind-compensated values were known, there were three approaches for

relaying that information back to the autopilot.

1.

The more direct method of sending a new turn rate command coupled with the
new TAS command. The difference between the actual and desired headings
divided by a reasonable time step resulted in the turn rate command.

A second approach was to insert a new, updating waypoint which was placed
at the correct heading to result in the overall aircraft ground track, after the
effects of wind, to follow the original path to the original waypoint.

A unique approach to wind correction was employed by analyzing the ground
footprint location of a nose mounted sensor. Despite precise navigation by the
UAYV, a sensor would not survey a target, but rather some undesired position
offset from the target due to the difference in magnetic heading and the
ground track direction. In order to correct this problem, the aircraft’s flight

path would be modified in order to counteract the sensor offset.

Developing the interface that implemented the wind correction algorithms on the

Piccolo II autopilot involved using the Software Development Kit (SDK), provided by

the manufacturer, to generate a C++ program. The SDK gave the operator real-time

access to telemetry data from the autopilot. It also enables information to be sent back to

the autopilot in order to update a desired parameter. Because this Software Development

Kit was provided by the same company as the autopilot, the interfacing occurs relatively
smoothly whether this autopilot was in a HITL or in the airborne UAV.

The procedures for the HITL simulations and the actual flight testing were those
formulated by Capt. Nidal Jodeh in his research from 2005-2006 (Jodeh, 2006).
Essentially, the flight tests would first be run using the HITL simulator to ensure proper
flying attributes. Then, the test team would fly the UAVs on Area B test range at Wright
Patterson AFB, per the rules and regulations explained later.

With the algorithms effectively manipulating the flight path, the modified path
results were compared to the original results using a MATLAB script developed
previously (Jodeh, 2006) and then adapted by the author. This program output two
dimensional (also 3-D, if desired) plots of the aircraft’s true flight path, simulated or
actual, in relation to the desired waypoints and flight paths. From these figures, the

variations were easily analyzed.

1.6 — Thesis Preview

Chapter II details the equipment utilized including the aircraft components, the
avionics components, the autopilot, and the simulation components and provides a
background on the flight testing, as a whole. Chapter I1I methodically looks at the
equation build ups and the varying attempts at the implementation of the modified flight
parameters. Chapter I'V presents the results of the baseline tests, the HITL simulations, as
well as the actual flight tests. Chapter V summarizes the conclusions and

recommendations.

11. Background

2.1 — Overview

Chapter II provides background information on the specific equipment,
components, and the flight testing procedures utilized in the formulation of the wind
compensation algorithms. Thus, it supplies the reader the necessary information to
understand the remaining chapters. Initially, the airframe, engine, and propeller are
discussed. This is followed by a discussion of the avionics systems, including the
standard radio controller (RC), the autopilot, and the digital magnetometer. Next, the
Hardware-In-The-Loop (HITL) simulation setup is detailed along with the Software
Development Kit (SDK) interface. The chapter concludes with a description of the flight

testing setup, procedures, and the data telemetry collection and handling.

2.2 — Aircraft

2.2.1 - Airframe

The aircraft used for this research was the ANT Center’s Rascal 110 R/C aircraft
constructed by the SIG Manufacturing Company, Inc. This aircraft provided a rugged
platform with a relatively abundant amount of interior volume, stable flight
characteristics, and simple construction techniques. The Rascal 110 is a high wing, “tail
dragger” configuration that was delivered in an Almost-Ready-to-Fly (ARF)
configuration. Prior to delivery SIG constructed most of the fuselage and wing structures
out of thin plywood, balsa wood, aluminum, and fiberglass. The ANT Center then
completed final assembly of the components and modified the interior as needed. A key
modification was the addition of a 50 oz fuel tank, to provide a flight time of

approximately two hours. About 40 hours of work was required to complete the aircraft

in the desired configuration. Figure 1 shows a completed version of the ANT Center’s

Sig Rascal 110’s.

Figure 1. Two Completed Sig Rascal 110°s (Jodeh, 2006)

The manufacturer provided airfoil was a combination of two Eppler planforms.
The top airfoil surface is an Eppler 193, while the bottom is an Eppler 205, joined at the
chord lines. SIG also stated that the resultant section thickness was 11.5% of the root
chord with an aspect ratio of 6.875:1. However, through previous research, Air Force
Captain Nidal Jodeh found the aspect ratio to be 7.94 when assuming a semi-elliptical
planform as opposed to the rectangular assumption used by the manufacturer (Jodeh,
2006). Unfortunately, SIG Inc. did not provide any stability, performance, weight,
balance, or aerodynamic data with the Rascal 110. Capt. Jodeh determined most of those
values through his research (Jodeh, 2006). Figure 2 displays the wing planform view of

the Rascals.

10

Figure 2. Sig Rascal Wing Planform View (Jodeh, 2006)

Table 1, below, outlines the pertinent aircraft data and parameters that

characterize the Sig Rascal 110.

11

Table 1. Various Sig Rascal 110 Characteristics

SIG RASCAL PARAMETER VALUE
Wing Span 9.16 ft
Aspect Ratio 7.94 ft
Aircraft Mass (Empty Fuel Tank, Engine, 14.19 Ibf
Reciever)
Gross Takeoff Weight (GTOW) 18.74 1bf
Length (including Engine & Tails) 76 in
Payload ~10 Ibf
Normal Operating Airspeeds 12-30 m/s (true)

2.2.2 — Engine and Propeller

The SIG Rascal 110s used by the ANT Center are powered by FS-120S III four
cycle engine produced by O.S. Engines. The power plant came ready to use, including a
diaphragm fuel pump, matching carburetor, and a built in pressure regulator. The 1.218
cubic inch engine’s output was rated at 2.1 brake horsepower (bhp) at 12,000 revolutions
per minute (rpm). To translate the horsepower to thrust, the engine was combined with a
16x8 synthetic propeller from the APC Company. This 32.5 ounce power plant was
capable of pulling the Rascal at over 60 knots. Figure 3 and Figure 4 display the O.S.

engine and the APC propeller (O.S., 2003 and APC, 2006).

12

Figure 3. O.S. FS-120S 111 Four Cycle Engine

Figure 4. APC 16x8 Nylon Propeller

13

2.3 — Avionics
The avionics utilized by the ANT Center in the Rascal 110’s had three separate
components, the basic radio control (RC) system, the Piccolo II Autopilot System, and

the digital magnetometer.

2.3.1 — Radio Control System

The RC system was a Futaba 9CAP/9CAF 8 channel transmitter coupled with a
Futaba R149DP PCM 1024 receiver. High torque servos, also Futaba products,
translated the radio signals to movement in the control surfaces. Figure 5 is a photo of

the advanced Futaba transmitter (Futaba, 2006).

Figure 5. Futaba 9CAP/9CAF 8 Channel Transmitter

14

2.3.2 — Piccolo 11 Autopilot

The Piccolo II autopilot system, which was the crux of this research project, was
purchased from Cloud Cap Technologies. This unit is well suited for incorporation into
small UAVs, providing a completely autonomous aircraft capable of navigating through a
flight plan of predefined or real time updated waypoints. The entire setup included the
autopilot, the ground station interface, the manual control box, the HITL components,
and software.

The autopilot box provided attitude data through three gyros and two double-axis
accelerometers for rate and acceleration measurements of the aircraft. The autopilot uses
a Kalman filter to estimate attitude and gyro bias using a GPS-derived pseudo-attitude as
the measurement correction (Vaglienti et al. 2005). The pitot-based flight data, true
airspeed (TAS), absolute altitude, and outside air temperature (OAT), were delivered via
a dual ported 4kPa dynamic pressure sensor, and an absolute ported barometric pressure
sensor, and a board temperature sensor (Vaglienti et al. 2005). The Piccolo II autopilot
utilized a 40 MHz Motorolla MPC555 PowerPC for all processing (Vaglienti, et al.
2005). Position data was provided through an imbedded GPS unit. The wireless link
used to transfer the command and control, telemetry, payload, differential GPS
corrections, and pilot in the loop information was a IW 900MHz and 1W 2.4GHz radio
modem at up to 40 Kbaud of throughput (Vaglienti et al, 2005). The GPS receiver was a
16 channel receiver with 8192 simultaneous time-frequency search bins and a 4 Hz
position update rate (u-Blox, 2005). The physical, on-board unit was 2 inches wide by
2.5 inches high and 5.25 inches deep, totaling 26.25 inches’ in volume. The box was

constructed of electromagnetically shielded carbon fiber. Figure 6 illustrates the block

15

diagram of the complete avionics suite inside the Piccolo II system. Figure 7 is a picture

of the Piccolo II on-board autopilot (Vaglienti, 2005).

\ 44 pin fitered sub D .,’ \ 25 pin micro-D f
+ 4 2 RE23 vopart
CAN &
Banyun 00 T s
| srout & Uner Dafined TPU1
Inpurt --!-—-——-\
Protection CiN BE=]
Deadman =
|—> T e 4 Hz GPS
B xcah irE | g Daughter
nar dafine 1 [P ale g c
I Servo, Sora, MO, Tty a E Board
Refraih o | Includes
ooty Cusican Layaut for
nturface Future Internal
L 4 | \&- Magretormeter
b= 5erialiPPS =)
v — TP
= oo MPC555 y
40MHz Embedded Power
- 3 10blt ato D Inputs 63
& ¥ PC with 448K Flash, 26K M Ertmal mE. 12
.) SRAM and a host of BOM
I integrated peripherals — Port Upto 2
-monitory) - Miytes
'_rlinrmus E.u:: Burst
L SRAM
Sertal IGyrux”Gym‘f”GymZI
SPI

Dual Al 3l aeln
Ll Aol || Lol ||TBI11pI5|

I Amplflart and 2nd ordsr LFFL I

[
| MHX-910:2400

OEM Datalink Radio % Bt
i Daughitar I LoD EEPROM
I Roard 4KFa 115K Fa
L Arapaad Earom etric

Booir llimetey Cristz iertial Sensor Head
|
g Soars Piccolo II
oduls

Figure 6. Piccolo 11 Block Diagram of Internal Components

16

Figure 7. Piccolo Il Airborne Autopilot Unit

The ground-based equipment required to interface and control the airborne unit
include the Ground Station interface, a laptop computer, RC control box, and the UHF
and GPS antennas. The Ground Station software interface, known as the Operator
Interface, ran on a laptop PC and was the primary command and control device. The
aircraft telemetry, GPS tracking, component statuses, and control surface gains were all
available through the Operator Interface. The RC control box ensured the pilot’s ability
to take control of the aircraft at all times. Essentially, it provided a direct pilot-in-the-
loop interface using the Piccolo II autopilot as the RC receiver. Detailed procedures and
instructions on the effective use of the Operator Interface was written and provided
(online) as the Piccolo System User’s Guide Version 1.3.0 from Cloud Cap Technology,
written by Vaglienti et al. (2005). The RC box and the remaining electrical components
required for this system were all collocated in the Ground Station. Figure 8 presents the
entire arrangement of the required ground equipment for the Piccolo II system (Vaglienti,

2005).

17

Figure 8. Required Ground Equipment (minus the laptops) for the Piccolo 11
Autopilot System
An important component used in the implementation of the Piccolo II autopilot

was the Fail Safe Control Relay. This enabled the UAV pilot to simply toggle between
standard RC control and the Piccolo’s manual/autonomous control. Additionally, the Fail
Safe Control Relay switched from the autonomous mode to RC mode, and vice-versa, if
the control signal strengths dropped below predetermined levels. As an example, if the
UAYV was under autopilot control and the signal was lost, for any reason, the relay was
activated and RC control was implemented (also, if under RC control and RC signals are
lost, autonomous mode would be engaged). The designers of the fail safe, William J.
Schmoll and Richard Marker of Air Force Researh Labs Sensors Directorate (AFRL/SN),
detail the system in the following:

“The channel 8 output of receiver A goes to the monostable multivibrator 74C221
trigger. The 15k ohm resistor, the Sk ohm potentiometer, and the 0.2 uF capacitor

18

form the external timing circuitry for the 74C221. The multivibrator is adjusted
by the 5k ohm potentiometer for exactly 1.5 milliseconds. The channel 8 pulse

al goes to the 74C175 flip-flop’s “D” input. When the monostable pulse ends
(goes low) the output of the 74C175 is latched in the state of the channel 8 pulse.
If the channel 8 pulse is longer than 1.5 msec then the 74C175 output will be high
and if shorter than 1.5 msec then it will be low. The output of the 74C175 goes to
the select inputs (pin 1) of the 74C157 data selector chips. If “Select A/B” is low,
receiver A (R/C) is selected and if high the receiver B (autopilot) is selected.”
(Jodeh, 2006)

Figure 9 is a schematic of the Fail Safe Control Relay (Jodeh, 2006).

Vee Vee

; o A 5 Jumper
, O A2 2'5 ! 1E g P
O A3
Aln ‘0 TRGRE oL
3 BT 13 4 02
6 w13 7 03
7 g3 6 9 o

Selec 10
B4

Jumper = elvect e U =1
cc

2
A5
A6 551 T
X =
A7 — S
a4 4 06
BsI3 7 O7
B ® 9 0
B7 o 1 Sels O/BS
elect
B 3 1
Vce Sc1 ei::l:j AN /B3
Multiplexed Outj
Trigger
1
2 BT ® D | 4
Vee E 2[1Q
@)
IClr| —
|
Ton
4[1Q1 Clk | 9
0.2uF
14 8 8

1 0

Figure 9. Fail Safe Control Relay Schematic

19

Figure 10 is the block diagram depicting the air and ground avionics and communication
paths (Jodeh, 2006).

P =

Transmitter \
: RELAY SWITCH

R/C Receiver [~ <o > €—> R/CReceiver [€ 1€ >€ > SERVOS
Batteries - —
Fuselage Receiver -—¢ — - - -

Power Switch o’
A 4
1
1
1
.

- Piccolo Autopilot
Piccolo - Controller
AIRCRAFT Batteries <€ >

i [Y = Signal Path

= Power Path
Manual o _ _ o Grot_lnd o — —¢ OI Laptop >
Control Box Station

Figure 10. Complete Autonomous Flight Setup

2.3.3 — Honeywell HMR2300 Digital Magnetometer

The key component added for this research was the Honeywell HMR2300 Smart
Digital Magnetometer. Whether simulated or actual, this device allowed the team to
observe the magnetic heading of the aircraft. This was essential in determining the
UAV’s crab angle, which made it possible to continuously estimate the winds. The GPS
telemetry provided the ground track direction, while the magnetometer provided the true
heading of the aircraft — the difference being that crab angle. Measuring 4.2 x 1.5 x

0.876 inches, the Honeywell unit was easily mounted in line with the Rascal’s nose in the

20

forward portion of the internal equipment bay. Because Cloud Cap Technologies
recommended this specific unit, clear directions were provided in the Piccolo User
Manual to calibrate and integrate the magnetometer with the Operator Interface. Figure

11 is a photograph of the device as provided on the Honeywell website.

Figure 11. Honeywell HMR2300 Digital Magnetometer (Honeywell, 2004)

2.4 — Simulation

The primary means of preliminary evaluation for any flight testing is through a
complete system level simulation in which the highest fidelity model is desired, if not
required, to produce accurate results. From the simulation data, the researchers can then
make reasonable assumptions on how the test object will behave under real world

conditions. For this project, the proven method of Hardware-in-the-Loop (HITL)

21

simulation was utilized. Here, the actual device, the Piccolo II autopilot, was placed

directly in the simulation loop. Then, the autopilot interacted with the simulated aircraft

(produced on the provided Piccolo Simulator) as if airborne.

2.4.1 — Hardware in the Loop (HITL)

As mentioned above, the HITL simulation involved the interaction of multiple
simulated and/or real components, including the Piccolo Aircraft Simulator, the Piccolo
IT Autopilot, the Ground Station box, and the Operator Interface. (As a note, due to the
system operational requirements, two desktop and/or laptop computers were employed.)

Figure 12, below, presents a graphical representation of the Hardware in the Loop

Simulation setup in the ANT Center (Jodeh, 2006).

l_ UDP Metwork
[—
A

J,-[ﬂkl

ST T T T T T T —
i ———Actuator Data -—m C
) i =8 Flight Gear
| PI-f:COJD | CAMBus r 1 and Operator
Avionics i i)

Interface

Simulator
software

I
i
-1—{—5-ensor Data-f—

T — =l Serial

T - :!_:I+
1111 o~ —=—=—
Simulator PC Visualization PC

N

i Piccolo Ground

Station

Figure 12. Standard Hardware in the Loop Simulation Setup

The two computers designated for the HITL simulations in the ANT Center were COTS
and of average computing power. One of the HITL computers was used to run the
Operator Interface while the other was used to run the aircraft simulation. The Operator

Interface allowed the autopilot settings to be viewed and/or altered, as well as presenting

22

a bird’s eye view of the aircraft, simulated or actual, and its progression along the flight
plan track. The Ground Station box was connected to a serial port on the computer
running the Operator Interface. This connection provides the user with an interface to the
ground station so signals and telemetry could be relayed to the autopilot over a wireless
transmission. The GPS and UHF antennas were plugged into the Ground Station Box.
Next, the Piccolo II was connected to the computer running the aircraft simulation
provided by Cloud Cap through its main harness. The simulation then had the ability to
send the simulated aircraft sensor data to the autopilot unit so as to replicate actual
aircraft motion.

Additionally, the recommended (by Cloud Cap) flight visualization software
package, “Flight Gear,” was occasionally run on the Operator Interface computer as well.
This program enabled increased situational awareness compared to the top-down view
provided by the Operator Interface. Flight Gear provides three dimensional top, trail,
pilot, or wingman views. Yet, the purpose of the this research was to analyze, and then
better, the 2-Dimensional, cross-track wind flying capabilities of the UAVs; thus, for

most situations, the top view sufficed and the Flight Gear software was not employed.

2.4.2 — Software Development Kit (SDK)

Cloud Cap Technologies recognized that modifications to the Piccolo II was an
idea that many of its autopilot users might desire. Thus, they provided a Software
Development Kit (SDK), in the form of C++ code, to facilitate such modifications.
During the summer of 2005, AFIT employed Randall Plate, a local college student, as an

intern in the ANT Center. His primary goal was to experiment with the Piccolo SDK.

23

This work provided important insight regarding as how to efficiently perform
modifications to the Piccolo C++ code and the resultant effect on the autopilot. By the
end of his term, Mr. Platte was able to provide C++ code, with comments, that allowed
the user to interface with the autopilot in real time. Although the code was preliminary, it
established a foundation to build upon for many the current ANT Center UAV projects —
this one included.

As the Piccolo II operates, it actively creates and logs packets of information that
are transmitted to and from the ground station. The Software Development Kit enabled
the user to essentially intercept, modify, and then send back modified data packets. In
summary, this was how modifications were applied to an operational autopilot unit. In
this case, an initial function was coded to continuously estimated the wind as the aircraft
flew. Next, a series of functions implemented the desired corrections based on those
estimated wind velocities and directions. Finally, a group of functions were used to remit
the data back to the Piccolo II. The effects of those modifications were viewed, in real

time, through the Operator Interface.

2.5 — Flight Testing

2.5.1 — Overview of Flight Test

The flight testing of any aircraft is an absolute necessity to ensure that the
behavior and performance are within predetermined specifications regardless of whether

the system is totally new or simply modified. This project was no exception, and served

24

flight tests were conducted to validate the wind finding and correcting techniques as
applied to the proven SIG Rascal 110 outfitted with the Piccolo II autopilot.

A myriad of organizations have flown and proven the stability and performance of
the SIG Rascal, the autopilot, and the combination of the two. The ANT Center
completed this first step through Capt. Jodeh’s thesis research on the development of
autonomous UAYV system (Jodeh, 2006). This allowed for only a cursory check flight of
the aircraft which included basic airworthiness checks by means of “standard maneuvers”
in RC mode followed by a set of autonomous tracking maneuvers. With the enabling
parameters performing as expected, the test conductor and the UAV pilot began the
designated flight tests for that session. Upon completion of the experiment, the test
conductor stopped the Operator Interface program and captured the logged telemetry.
Once back in the lab, that set of data was processed and analyzed. Chapter V details the

specific flight tests and their objectives.

2.5.2 — Flight Test Range

Consistent with standard protocol for the testing of official government property,
this research testing was planned for and conducted on government land. All test flights
were planned to be flown on Area B of Wright Patterson Air Force Base (WPAFB) in
Dayton, Ohio, specifically, on and around the closed runway 27, located in the southwest
corner of Area B. This area is approximately 1.5 miles in length and one mile wide, with

a 400 foot above ground level (AGL) ceiling. The field elevation was 785 feet mean sea

25

level (MSL), making the ceiling for flight tests 1185 feet above MSL. This area was also
occupied by other facilities conducting autonomous UAYV flight tests.
Figure 13 is an aerial view of the Area B test site. The approximate boundaries of

the test area are outlined by the heavy, dashed-line trapezoid (Jodeh, 2006).

Figure 13. WPAFB, Area B Flight Test Range

26

2.5.3 — Ground Equipment

The test team’s ground equipment was consolidated in a 20- foot trailer, which
then took on the role of a test operations center. An external, gasoline powered generator
provided the AC electricity to power the computers, the Ground Station box, the battery
charging equipment, etc. The UHF and GPS antennae were attached to trailer’s roof as
was an orange windsock. Additional equipment, including folding chairs and tables,
small tool kit, two-way radio headsets, packed comfortably into the trailer. Similarly,
miscellaneous equipment including an RF meter, cones, fire extinguisher, spill kit, first
aid kit, video camera, battery testers, and a handheld GPS unit were staged and stored in
the trailer. Moreover, a 10-12 foot desk was mounted on the interior to facilitate
workstations for the Ground Station, computers, etc. As opposed to the desktop
computers utilized in the ANT Center’s HITL simulations, the “field” setup for flight test
exploited laptop computers. Figure 14 shows the open rear of the test trailer and the
normal test team which was comprised of four to five members, including the pilot
(contracted from Wyle Laboratories), the test conductor, and spotters/observers (Jodeh,

2006).

27

)

(R

Figure 14. Ground Equipment and Test Team Conducting a Flight Test

2.5.4 -- Criteria for Flight Test of UAVs at WPAFB

Due to proximity of the test range on Area B to other facilities, government and
civilian, certain flight test restrictions and safety of flight criteria were imposed. The
Configuration Control Board (CCB), Technical Review Board (TRB), and Safety Review
Board (SRB) were administered by AFIT and AFRL personnel, per the Air Force base
regulations to ensure safe operation within controlled airspace. Table 2 lists the

prominent criteria for flight testing in the Area B range.

28

Table 2. Prominent Criteria for Flight Tests (Jodeh 2006)
Winds Less than 30 mph
Temperature Greater than 40° F
Visibility Greater than 3 Miles
Cloud Ceiling Minimum 500 ft AGL
Airspace Ceiling Maximum 400 ft AGL
GPS Satellites 6 or more visible
Radio Frequency Interference Check
Safety Equipment and First Aid Kit
Pitch, Roll, and Yaw Rate Gyro Operations
Static and Dynamic Pressure Port Operation
WPAFB Control Tower Notification

2.5.5 - Wind Correction Implementation

Consistent with standard flight test protocol, the wind correction flight tests
conducted were planned in an order that gradually increased test complexity and
challenge. Similarly, testing was begun on a mildly breezy day and worked up to a day
when the winds were 35%-50% of the aircrafts velocity. This limit was deemed suitable
since it is generally accepted that small UAVs would not be able to effectively operate in

an environment with sustained winds of greater than 50% of its normal cruising speed.

2.5.6 — Data Collection and Handling

At the conclusion of a flight test, the Piccolo’s telemetry was logged, in ASCII
format, in the Operator Interface folder on the respective laptop. The software acquired
and stored 70 parameters that were continuously updated at a selected data rate. The two

data rates available were “Request Slow” at 1 Hz and “Request Fast” at 20 Hz. The rate

29

chosen by the test conductor was determined by the fidelity required. Additionally, the
individual telemetry files were only created when the Operator Interface was turned off.

Two methods were used to transform the flight data to usable plots and values.
First, the telemetry file was opened in Microsoft Excel, placing each of the 70 parameters
in its own column. At this point, the analyst would delete any unnecessary rows and
columns in order to reduce the file size. For example, a half an hour flight test at the
“Request Fast” rate would produce an Excel file with approximately 60,000 rows by 70
columns, or 4,200,000 data cells. Trimming the excess parameters could reduce the
number of data cells by as much as two-thirds. The modified Excel file was imported
into MATLAB and saved as a MATLAB “.mat” file. This new file was then uploaded
into a program which displayed two- and three-dimensional plots of the aircraft’s actual
track in relation to the desired. Additional plots to show various flight measurements and
wind values, created by the author, supplemented this program. The program is attached
in the Appendix C.

A second method of data acquisition was developed during the course of this
research. The SDK was manipulated such that it would output only the desired telemetry
in a Microsoft Notepad file. Then, similar to above, this file could be imported to either
Excel or directly into MATLAB to be exploited by the same plotting program discussed

above. Table 3 lists the 70 parameters available through the SDK.

30

Table 3. Available Telemetry through the Piccolo SDK

1. Clock [ms] 25. Static [Pa] 49. Surface7 [rad]
2. Year 26. Dynamic [Pa] 50. Surface8 [rad]
3. Month 27. P [rad/s] 51. Surface9 [rad]
4. Day 28. Q [rad/s] 52. P_Bias [rad/s]
5. Hours 29. R [rad/s] 53. Q Bias [rad/s]
6. Minutes 30. Xaccel [m/s/s] 54. R Bias [rad/s]
7. Seconds 31. Yaccel [m/s/s] 55. AP _Global

8. Latitude [rad] 32. Zaccel [m/s/s] 56. PDyn_Stat

9. Longitude [rad] 33. Roll [rad] 57. Alt_Stat

10. Height [m] 34. Pitch [rad] 58. Turn_Stat

11. Ground Speed [m/s] 35. Yaw [rad] 59. Flap_Stat

12. Direction [rad] 36. LeftRPM 60. Track Stat

13. Status 37. RightRPM 61. PDyn Cmd [Pa]
14. InputV [V] 38. WindSouth [m/s] 62. Alt Cmd [m]
15. InputC [A] 39. WindWest [m/s] 63. Turn_Cmd [rad/s]
16. FirstStageV [V] 40. WindError [m/s] 64. Flap Cmd [rad]
17. FiveDV [V] 41. RSSI 65. Track Cmd

18. FiveAV [V] 42. Surface0 [rad] 66. MagHdg [rad]
19. CPUV [V] 43. Surfacel [rad] 67. SonicAlt [m]
20. GPSV [V] 44. Surface?2 [rad] 68. AckRatio [%%]
21. BoxTemp [C] 45. Surface3 [rad] 69. ServoV [V]

22. Altitude [m] 46. Surface4 [rad] 70. ServoC [A]

23. TAS [m/s] 47. Surface5 [rad]

24. OAT [C] 48. Surface6 [rad]

2.6 — Chapter Summary

This chapter provided a review of the equipment utilized and the overarching
techniques applied to conduct this research program. The SIG Rascal 110 powered with
the O.S. FS120S-III carried the Piccolo II autopilot. The avionics package included a
sophisticated 8 channel transmitter and receiver produced by Futaba, the autopilot

components, and the fail safe relay. The flight tests were conducted on Area B of Wright

31

Patterson AFB in Dayton, Ohio and adhered to all of the rules and regulations outlined.

Additionally, flight data was analyzed using Microsoft software coupled with MATLAB.

32

I11. Development of the Wind Correction Approaches
3.1 - Overview
The overall impact on flight path trajectory effects due to wind on small UAVs
were best viewed from overhead. This perspective allowed for ground tracks, airborne
magnetic headings, correction angles, and relative distances to be determined using basic
trigonometry. The bulk of mathematics behind this research utilized manipulations of

sin/cosine theory, Pythagorean Theorem, and basic Dynamic Inversion.

3.2 — Real Time Wind Estimating

The first step was to determine the wind heading and velocity so the aircraft’s
heading, velocity, flight path, etc. could be adjusted to compensate for the wind. The
Piccolo II autopilot allowed the operators to not only view, but capture (via the SDK)
many of the variables required in this compensation. However, one limitation of the
Operator Interface was that the physical display only showed the resulting ground track
of the aircraft. The difference in the aircraft magnetic heading and the resulting ground
track produced an angle, known as the “crab” angle. Thus a separate scheme was
required to determine the crab angle.

The basic Piccolo IT autopilot only displayed wind estimates at intermittent
updates or when designated “Wind Interval Turns” were commanded. In real world
applications, it is rare for the winds aloft to be constant, especially so in an urban canyon
environment. Therefore, the need for a real time, updating wind estimate became
abundantly clear. Fortunately, Cloud Cap recognized issues such as this and provided

their SDK to allow modifications or additions to the autopilot’s functions. Thus, the

33

following equation methodology was implemented in the SDK using C++ programming
to provide a real time wind estimate.

Using a vector component break down, three aspects to the flight path of the
UAVs were identified. The aircraft itself had two velocity vectors: one based solely on
the airborne vehicle’s orientation and the other being the ground track. Each of these had
velocity magnitude and angle components. The presence of wind was then characterized
as the difference between the two aircraft velocity vectors. Equations 1 and 2 show that

the aircraft’s heading (6,,,;) and true airspeed (V;,s) plus the wind effects (V,, and @,)
will result in the overall ground track (V; and @,). Note, all angles, 0, were measured

clockwise from North = 0°.

Vias SI0(Oyae) +Vy sin(8,) =V sin(6;) (1)
Vras €08(Bypg) +Viy cos(6y) =V cos(6) (2)

Grouping all of the aircraft components on one side of these equations resulted in
Equations 3 and 4. These were used as the base equations to begin the manipulations for

solving the real time wind velocity and heading.

V,, sin(6,,) =V sin(6;) —V; s Sin(Gyac) (3)
Viy c0s(8y) =V c08(6;) —Vias €08(Gyyac) 4)

To simplify the equations, the substitutions shown in Equations 5, 6, 7, and 8
were made.

X =Vy (5)

y =cos(6,) (6)

a=V; cos(0;) —Vias €08(Oyac) (7)
b=V sin(6;) —Vias Sin(Gyag) (8)

34

Inserting the new variables, Equations 3 and 4 reduce to Equations 9 and 10.

a=(x)(y))

b=x1-Yy’ (10)

(Y3}

The next step was to simultaneously solve for “x” and “y.” These two equations with
two unknowns were easily solved using software such as MATLAB or by hand using

classical mathematics. Equations 11 and 12 are the results.

x=+a’ +b’ (11)

a2
= 12
y \ a2 +b? (12)

Finally, the original wind variables were reinserted, solving for the wind velocity and

wind heading.

V,, =va’ +b’ (13)
a2
a’+b?

) (14)

8, =cos™'(

3.3 — Turn Rate Approach Equations

Now that the wind variables were known the correction that needed to be applied
to the aircraft to adjust for the wind could be deduced. As will be shown, there is more
than one approach to implementing these corrections.

The most direct method utilized the mathematical principle of “Dynamic

Inversion” to solve for a new aircraft velocity, V;,s, , and heading, 6,,,5,, which could

then be commanded through the Piccolo II to compensate for the wind. The dynamic

35

inversion principle essentially backs out a desired command based on of a known output

variable. In this case, the output variables, V|, and g, , were solved for using the known

input quantities, which were extracted from the Piccolo’s telemetry. The desired ground
track, a known value, and the wind variables, known parameters, were combined to back
out the new inputs. Essentially, the end result is that the ground track was known and the
corresponding inputs which would provide that desired output were then reverse
engineered. The following procedure outlines this process.

Once again, Equations 1 and 2 were the baseline from which to start the
calculations. However, this time, the winds are known based on the previous section and
the aircraft’s true airspeed and magnetic heading values required (to be commanded) to
counteract the wind need to be solved for. These new values were denoted with an
underscore “2.”

Vias2 SI(Oyag,) +Vy sin(@,) =V sin(6;) (1)
Vias2 €08(Byac2) +Viy c0s(6) =Vg cos(6) (2)

The values being solved for were then isolated, resulting in Equations 15 and 16.

Vs, SIN(Gy 6,) =V sin(b;) -V, sin(8,,) (15)
Vias2 €08(Byac,) =Yg cos(6;) -V, cos(4,,) (16)

As in the case of the real time wind estimating, a similar change of variables was done to

simplify the terms.
X, =Viass (17)
Y, = c08(Oyag,) (18)
d =V, sin(6;) -V, sin(6,,) (19)
¢ =V, cos(6;)—V,, cos(6,) (20)

36

The reduced equations were represented by Equations 21 and 22, below.

C:(Xz)(yz) (21)

d=x4/1-y (22)

The solutions for the non-linear, simultaneous equations above were determined using

MATLAB and hand calculations, just as before.

X, =~/¢% +d° (23)

CZ
= |—— 24
y2 C2+d2 ()

Replacing x; and y, with the original variables, the new true airspeed and magnetic
heading were solved using Equations 25 and 26. This gives expressions for the true
airspeed and magnetic heading as a function of the measured winds and desired ground

track. Thus, commanding the UAV to fly V,,s, and 6,,,, will produce the desired ground

track.

Vins2 =V ¢’ +d’ (25)

Oyac2 = acos(y,) (26)

Ideally, this approach of solving for the new aircraft heading and airspeed would
provide the most direct manner in which to implement new aircraft control commands.
Initially, it seemed straightforward to continuously input these two new values to the
Piccolo II, creating an updating correction. The new heading would be input as a turn
rate, hence the name “Turn Rate Approach,” and the airspeed would be commanded as a

dynamic pressure. However, as will be detailed in section 3.6, the implementation of a

37

new airspeed and magnetic heading through the SDK created barriers that were beyond

the scope of this thesis.

3.4 — Updating “Rabbit” Waypoint Approach

The second approach to wind effects correction was referred to as Updating
“Rabbit” Waypoint Insertion. The methodology took the real time wind values
determined above and attempted to insert a new, updating waypoint that would be offset
from the original. The aircraft would then be commanded to fly to the adjusted waypoint;
however, due to the wind drift it would never reach that point and instead end up at the
original, targeted waypoint. The process below provides the framework for the “Rabbit”
waypoint placement approach.

To begin with, the relative, horizontal distance, in meters, between the aircraft’s
current position and the current waypoint was required. The waypoints, as well as the
aircraft’s position, were provided in Latitude/Longitude/Altitude (LLA) format.
Therefore, both positions were first converted to East/North/Up (ENU) coordinates using
the preexisting code in the SDK. So, if D was defined as the straight line, ENU distance
between the aircraft’s location and current waypoint. Then inserting Equations 27 and 28
into the Pythagorean Theorem, the horizontal distance was determined and presented as

Equation 29.

A=ENU East-A/C ENU East-Wypt @7
B=ENU North—A/C — ENU North-Wypt (28)

D=+A>+B’ (29)

38

The overarching goal, or perhaps better stated as the “anti-goal,” of the “rabbit” was for
the UAV to continually chase the rabbit, but never actually catch it. To implement this
aspect the new waypoint was repeatedly placed at a distance greater than “D.” Next, the
bearing, or angle, (from the aircraft) of the new waypoint had to be determined. This
angle would not only depend on the real time wind velocity and direction, but also in
which Cartesian quadrant the aircraft was located with respect to the original waypoint.
The following set of equations progress through the operations required to not only find
the correct angle and distance of the “Rabbit,” but also place it using the correct ENU

coordinates.

If (6, >0 && 6, <90);

angle deg= 6, - 90; (30)
abscos = |D cos(angle_deg)| (31)
abssin = |Dsin(ang1e_deg)| (32)
ENU East_Newhypt — ENU_, A T abscos; (33)
ENU North—Newwypt — ENU orn_ac T abssin; (34)

If (6> 90 && 6, < 180)
angle deg= 6, - 90;
abscos = |D cos(angle_deg)|
abssin = |Dsin(angle_deg)|
ENU o newwypt = ENUgagq ac T+ abscos;

ENU

North-Newwypt — ENU (grn_n/c - abssin;

If (6,> 180 && 6,<270)
angle deg= 6, -270;
abscos = |D cos(angle_deg)|
abssin = |Dsin(angle_deg)|

39

ENU

ENUNorth—NewWypt = ENU North—A/C ~ abSSll’l;

East-NewWypt ENU ¢, a/c - abscos;

If (65> 270 && 6,<360)
angle deg= 6, - 270;
abscos = |D cos(angle_deg)|
abssin = |Dsin(angle_deg)|
ENU East—NewWypt
ENU North—Newwypt — ENU \orin_a/c T abssing

= ENU_,y ac - abscos;

These procedures should then place the new “rabbit” waypoint in the correct spot to ploy

the aircraft into adjusting for the real time wind.

3.5 -Wind Corrected Sensor Pointing

Assuming an efficient wind correction factor to the UAVs flight path, the aircraft
would neatly track any predetermined waypoint-to-waypoint course. However, another
wind related issue must be considered in order to provide a worthwhile attempt at real
time wind correcting. The UAVs being exploited in the hostile, urban canyon
environments are very small. Due to there size and payload restrictions any sensors,
video or otherwise, must be equally small in both volume and weight. For this reason,
most systems deployed on the aircraft do not have the ability to gimble the sensor head.
Thus, even if the ground track of the aircraft is properly corrected, the UAV’s nose will
still “crab” into the wind. Therefore, the sensors would not be pointing forward, along
the ground track, and would have the distinct possibility of not surveying the target, even

if the UAV flew directly toward or over it, jeopardizing mission success. Thus, another

40

approach is presented that focused the wind corrections on the pointing direction of the
on board sensors as opposed to the flight path of the UAV.

Viewing the UAV from the side, a right triangle can be constructed with the three
sides being, the line of sight (LoS) distance for the sensor, the current altitude of the
vehicle (Alt), and the horizontal distance the sensor projects (Horiz). Knowing the

current aircraft altitude via the SDK, and assuming the sensor mounting angle, O, »

from the horizontal is known, the line of sight distance was determined, as is shown in

Equation 36.

(LoS _ Dis)cos(by,,,) = Alt (35)

ensor

LoS Dis= __Alt (36)

C()S(lgsensor)
Now that the “LoS” and “Alt” variables were known, the horizontal distance that the

sensor projected was found using Equation 38. As a check, with a 6., of 45°, the

ensor

altitude and the horizontal distance should be the same value, and they are.

LoS Dis =+ Alt* + Horiz® (37)

Horiz = \/LoS _Dis® — Alt* (38)
Next, the bird’s eye view in Figure 15 must be taken into account in order to determine

the appropriate offset for the UAV to fly.

41

Projected Sensor
Footprint

Adjust 2

Horiz

A djust 1

T

Ground []
Track

Line

Figure 15. Top View of the UAV with the Adjustment Parameters Defined

The horizontal distance, “Horiz,” now became the hypotenuse in a new right triangle as
shown above. The other two sides of that triangle were the left/right (along the ground
track) and up/down (perpendicular to the ground track) distances from the UAV to the
sensor footprint. These two distances are the adjustments in the UAV’s position required
to put the sensor footprint at the current position of the UAV. These two values were

represented as Equations 40 and 41.

HCrab = eG - eMag (39)
Adjust 1= (Horiz)cos(d,.,) (40)
Adjust _ 2 =(Horiz)sin(6,,,,) (41)

42

Once these adjustments were known they would then be added/subtracted to the original
waypoint/target ENU location; thus, providing an offset flight path that allowed for the

sensors to survey the target, even under non-negligible wind conditions.

3.6 — Wind Correction Implementation

The implementation and integration of modifications onto an existing platform is
a challenge equal to the development of the modification itself. Without proper
integration, the entire project becomes purely academic. As with most real world
projects, this process proved to demand the bulk of the man-hours invested in the
research. On the other hand, the attempts at executing the wind corrections resulted in

the majority of the useful research.

3.6.1 — Real Time Wind Estimating

The incorporation of the real time, updating wind estimation was fairly
straightforward and successful. The Equations presented in section 3.2 were directly
input into the C++ code with minimal issues. Because the Piccolo’s telemetry packets
were only used to passively read off information, the wind determination scheme was put
into operation within a few days. Figure 16, below, is a screenshot example of the real

time, updating wind estimates of a simulated UAV flight.

43

18:28:6 .A80800
37775317 East: 424.557795
—84.115759 Horth: 1968.892854
Altitude <m> 349 .7399978 Up: —385.899775:32:11.2338688

AU Mag Heading 87.770004
Al TAS 21 . A1 A86A

UAU Ground Track ??.165111
AU Ground Speed 21.517639

WIND UVELOCITY <m~s> 5.287680
WIND DIRECTION 359 .7420084

Mew TAS 21 .A10808
Mew Mag Head 21.389999

Waupoint index i
Diztance to Wypt 1856 .833862

Adjustl B . aBBoaE
Adjust2 65549713
Crozzs Track 118 .6999297

Figure 16. Screen Capture of the Piccolo SDK Executable

For most laboratory tests, the simulated wind input was 5 meters per second directly from
the south. As will be shown, the results were within a reasonable precision (10%),
especially when considering the simulation program induced random gusts. One primary
concern with the wind finding code was the use of the arccosine math function used in
Equation 14. Unfortunately, this function does not properly account for the sign
conventions associated with the complete Cartesian coordinate system from 0° to 360°.
Because of cosine/sine characteristics, if the data point was in the second, third, or fourth
Cartesian-quadrants the appropriate applications of negative signs would not occur when
implementing “arccosine.” Fortunately, a two argument arctrangent function has been
developed for math programming, called “atan2,” which utilizes the proper sign
characteristics of the tangent function throughout all four Cartesian quadrants. Therefore,

Equation 14 was adapted to Equation 42, shown below.
b
@, =tan () [rad] (42)
a

44

Variables “a” and “b” were the same as those in Equations 9 and 10, respectively. In the
C++ code provided in Appendix B, this wind finding function is called
“WindCorrection.” With this modification, the wind velocity and heading became a real
time, viewable flight parameter that could be used to implement wind correction

commands to the Rascal 110.

3.6.2 — Implementing the Turn Rate & Updating “Rabbit” Waypoint
Approaches

Turn Rate Approach

A high proportion of time put into this thesis was spent attempting to implement
these two approaches at wind correction for the UAV’S flight path. Essentially, both of
the approaches attempted to modify the current UAV ground track to reduce its error in
relation to the predetermined waypoint-to-waypoint path.

The first, turn rate, was to modify the aircraft magnetic heading, using updating
turn rate commands, to directly affect the flight path. The basic idea was to directly
command the new heading and TAS values at each time step. There was a time delay
from when the wind affected the UAV to when the calculations and new parameters
could have been uploaded back to the aircraft. However, with the request fast mode
selected, this delay was under one second, which was considered negligible. This method
would have then provided a close to real time heading and velocity adjustment. The
obstacle then became sending the information back to the Piccolo II. Through this
research, it was determined that the Piccolo II autopilot is initially uploaded with a set of

waypoint data and then the system automatically attempts to fly the direct path

45

connecting subsequent waypoints. The system did not continuously send the waypoint
information. So, when a new turn rate command was pushed through the system, via
SDK, that command overruled all previous information and the aircraft only flew that
turn rate. As an example, if the UAV was flying from waypoint 1 towards waypoint 2 at
a heading of 270° and a command of 280° was required, the aircraft would be sent a turn
rate command until the heading changed by 10°. Yet, instead of being able to command
that 10° of turn and then returning to the predetermined flight plan, the operator would
then have to continuously send turn rate commands; essentially, negating any waypoint
tracking capabilities of the Piccolo II and attempting to fly the aircraft solely based off of
turn rates. Now, aircraft control purely through turn rates has been proven to be a viable,
and quite desirable, method. However, it was outside the intended scope of this thesis to
alter the primary control method of the autonomous flight, but this topic may provide a
worthy follow-on project as turn rate commanding carries with it numerous advantages.

Because of the known potential for progress in this area, the math and
programming schemes required were kept in the attached SDK code. The mathematical
background was formulated with the initial attempts at implementation represented. In
addition to the “WindCorrection” function, the turn rate commanding algorithm utilized
the “HeadingAdjust” and “AirspeedAdjust” functions. In “HeadingAdjust,” the
difference between the new, desired magnetic heading and the current magnetic heading
provided the necessary adjustment. Then, this differential was divided by a time factor so
that the turn rate command would not exceed a maximum rate of 20°/s. Finally, this rate
was sent to the autopilot. With a completed algorithm, this command would be

continuously updated, driving the aircraft to a correct heading.

46

As previously mentioned, a new TAS was determined from the “WindFinding”
function as well. These alternate airspeed commands were successfully transmitted via
the “AirspeedAdjust” function, located just below the “HeadingAdjust” function in the
SDK. The reason the airspeed could be continuously updated was that the Piccolo II
autopilot does not employ a time-based flight plan. The aircraft was only instructed to fly
to a certain latitude/longitude location, altitude, with a specific airspeed, as opposed to
intercepting a waypoint at a designated time interval. This allowed for the UAV to fly as
fast or slow as aerodynamically possibly and for the operator to modify this flight

parameter without interrupting the chosen flight plan.

“Rabbit™ Waypoint Approach

Once it became clear that the turn rate approach was out of the scope of this
research project, a second method of implementing real time wind correction was
pursued. The method involved inserting an “updating waypoint” that was precisely
placed such that if the UAV attempted to fly directly to this new waypoint it would
actually end up at the original, desired target because of the wind effects. The new
waypoint location would constantly be changing to counter variable winds and gusts.
Additionally, the UAV would never actually reach the new waypoint, hence the name
“rabbit.” This enabled the operator to designate a distance from the original waypoint at
which the “rabbit” function would be ceased, allowing the aircraft to initiate the
switching logic to continue to the next predetermined target. Once the UAV was tracking

the next waypoint, the “rabbit” would resume, repeating the process.

47

This approach afforded the desired result of a real time wind correction, but
without having to alter the primary means of autonomous control (waypoint guided
autopilot). Initially, the team was hopeful that this provided the solution. However, after
implementing the algorithm in the SDK and running HITL simulations, it was observed
that a key aspect of the Piccolo’s operation prevented the efficient implementation.
Cloud Cap’s device was actually more of a flight path (track) follower than a true
waypoint hunter. In a pure waypoint based system, the aircraft would designate where
the target was located and then point the aircraft’s nose directly at it, resulting in a
Zermelo (Bryson, 1975 and Bryant, 1998) shaped path if wind was present. If the device
had the capability to correct for wind, then a crab angle would be implemented and the
UAV would fly a relatively straight path as long as the wind was constant. However, this
is not exactly how the Piccolo II operated. It was established that the Piccolo 11
calculates a straight line path based on the position of the previous and next waypoints
(its relative position and the position of the target). It then implements its own ground
track algorithm in order to remain on that straight line path. Unfortunately, this algorithm
was not as precise as would have been desired so an attempt was made to implement the
above described wind correction artificially turning off the Picollo II’strack following
mode and exploit a pure waypoint tracking method. When transmitting a new waypoint
using the SDK, the operator was required to first set the waypoint location, and then send
a second signal to track that waypoint. Examples, pulled directly from the wind
correction code, of these C++ commands are provided below:

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69);

m_pComm->SendTrackCommandPacket(IDbrent6, 69, false);

48

The “SendWaypointPacket” command was fairly straightforward with its inputs being the
physical autopilot identification number, a structure with the waypoint latitude, longitude,
and altitude information, and then the desired waypoint number. The
“SendTrackCommandPacket,” which sent the command to actually track the new
waypoint, contained a twist with the “true/false” statement included as an input. The
provided SDK “html” help files stated that “The third parameter (true/false) indicates if
the vehicle should fly to the waypoint along the preceding track segment, or if it should
go directly to the waypoint, using its current position as the starting point.” Thus, setting
the parameter to “true” would command the UAV to go directly to the waypoint and a
“false” would command the UAV to track the along the previous track in order to reach
the new waypoint. At this point, the “true” setting appeared to be the solution, as the
aircraft would fly directly to the new waypoint undergoing the effects of the wind and
resulting at the original, desired location. However, after conducting tests with varying
wind and waypoint locations it was determined that the Piccolo II software still created a
direct path from the UAV’s current position to the new waypoint. So, the aircraft would
employ its own ground track control in order to remain along that straight line flight path
even though this was not clearly displayed through the Operator Interface. Unfortunately,
this prevented further development of the concept. Thus, it was determined that the team
could not “dumb down” the Piccolo II autopilot and have the aircraft fly a “Zermello”
type flight path using the SDK. This was not to say that it would not be possible.

The two approaches presented above, turn rate commanding and updating
“rabbit” waypoint, are believed to be completely valid methods for applying a robust

wind correction algorithm to the Piccolo II autopilot controller. The math behind the

49

corrections provided for solid theory. However, due to the factors described, the team
was not able to effectively implement these approaches. Without a working program to
effectively adjust the flight path of the Rascal aircraft for real time winds the results of

the research would have been paltry. Therefore, a completely new perspective was taken.

3.6.3 -- Wind Corrected Sensor Pointing

As aforementioned, if an aircraft is adjusting for wind or flying a straight line
ground track in the presence of wind, then a crab angle is required for accurate navigation
along a desired flight path. However, there exists a serious problem when these heading
modifications are put in place. If the sensor gathering the information is situated such
that it is pointed at a fixed angle off the nose of the aircraft and cannot gimble, there is a
strong possibility that the sensor would never survey the target even though the aircraft
flew precisely where it was supposed to. The small UAVs utilized in current operations
have very little payload capabilities and can only carry a small, lightweight sensor system
that will not be able to gimble. Thus, taking an alternate method to correct for wind, a set
of updating and offset waypoints were calculated and then inserted and tracked such that
the sensor was correctly pointed as discussed in section 3.5. In order to implement the
new waypoints, a few modifications to the equations in section 3.5 were required.

Specifically, an angle, 0;, was determined as the angle of the current track
segment between the previous and next waypoints. This is shown in Equation 43.

ENU
ENU

ENU North—CurrentWypt

ENU

North—PrevWypt) (43)

East—PrevWypt

6, =tan™'(

East—CurrentWypt

From this angle, it’s complement was determined using Equation 44.

50

Onr = (%)—abs(el) [rad] (44)

Equation 44 represented the transformation from the North=0° reference frame to the
East = 0° frame. This value was then the angle at which the new waypoint was to be
placed off of the original, assuming 0° was off the horizontal. The corresponding ENU
east and north distances away from the original waypoint were calculated using
Equations 45 and 46.

sin_from_next = —(Adjust _2)sin(6,,,) (45)
cos_from_next = —(Adjust _2)cos(b,,) (46)

The reason for the negative signs was that the offset for the new waypoint had to be
opposite in direction from the projected distances of the sensor. To then find the total

ENU coordinates of the new, updating waypoint, Equations 47 and 48 were utilized.

ENU =ENU gy wypr_gast +C0s_from_next 47)

New-Wypt—East

EN U New-Wypt—North = ENU Old _Wypt—North + Sil’l _from_next (48)

For the purpose of allowing this new point to be continuously updated, the C++
function was written such that the above process would be repeatedly conducted as long
as the UAV was within some distance, in meters, from the original target. The updating
process is “turned on” for each waypoint when the ground distance between the UAV and
the original waypoint was less than 400 meters and was “turned off” when the distance
between the UAV and the new, adjusted waypoint was less than 100 meters. This logic
to turning on and off the code was applied for two primary reasons. First, the “turn on”

parameter allowed for maximum time and distance that the aircraft would fly along the

51

predetermined track. It was reasoned that the most time spent on track was desirable
because of unknown factors off track. Additionally, the aircraft only needed to be
adjusted in the final approach to the target in order for the sensors to capture that target.
In a real world environment, to have the UAV fly off track for more time than was
necessary would be allowing the introduction of more problems (e.g. collisions with fixed
obstacles or detection by an enemy). At an altitude of 350 meters, which was where most
tests were conducted, the sensor would project 350 meters in front of the aircraft if
mounted at a 45°, which was the assumed angle for all testing in this thesis. Thus, the
400 meters criterion was chosen as the distance to begin the flight path modifications.
The second reason dealt with the “turn off” parameter. At the point where the UAV was
within a hundred meters of the new waypoint, the sensors would have already surveyed
their target due to the field of view of the sensor. So, to avoid the “rabbit” situation
described previously were the aircraft never actually reached the target, the code simply
commanded the system to proceed to the original waypoint at that 100 meter mark. The
SDK code accomplished this task by utilizing an “if/else” command on the
“SendTrackCommandPacket” signal. The complete function is included as part of the
SDK located in Appendix B.

As a note, all of the original flight plan waypoint information was “hard-coded”
into the SDK. This does not provide for the best coding technique, but was required
because the team was unable to capture the waypoint list and its corresponding data from
the Piccolo’s streams. However, “in the field” this may not be a complete disadvantage

because the waypoints could be placed directly over any targets and the resulting latitude

52

and longitude information should be known. The operator could then simply append the

code.

3.7 — Chapter Summary

This chapter provided a detailed look at the mathematics behind the three
different techniques of wind correction evaluated during this research. Although the
math and theory are believed to be solid, the implementation of that theory using the
Piccolo II autopilot presented themselves as the road blocks. The two most conventional
means at wind correction could not be implemented within the scope of this activity.
However, the third, and operationally more significant, sensor pointing wind correction

was successfully tackled and implemented.

53

IV. HITL Test Results and Analysis

4.1 - Overview

Chapter IV presents the results the research conducted during this thesis. Section
4.2 demonstrates the baseline ground track control capabilities of the Piccolo II autopilot
system, the real time wind estimations developed in the previous chapter, and the
corresponding ground position of the center of the sensor footprint. The three types of
flight paths evaluated were a straight line point-to-point, a circular orbit, and the common
racetrack pattern. Each of these was conducted with varying parameters. Section 4.3
displays the results of similar flight paths, but with flight path effects of the modified
SDK code. Corresponding results from actual flight testing are presented in Section 4.4.
The last section of the chapter (section 4.5) summarizes the results. As a note, it was

assumed that the sensor was placed at a 45° mounting angle.

4.2 — Standard HITL Simulated Flight Tests with Real Time Wind Estimating

The most basic and essential flying characteristic for an aircraft is the straight and
level flight path. Thus, the first simulation was a simple point-to-point flight path of
three waypoints in a straight line. The simulated wind was set to 5 m/s from the south,
almost a direct crosswind, while the UAVs commanded TAS was 20 m/s. These values
represented a realistic flight condition with a moderate wind. The plot of this test is

provided as Figure 17.

54

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)
2100 - -

2050 i S N Q-
2000 R TR |
1950 ‘ \\J ,,,,,,,,,
E | | |
£ 1900 B e T |
> | | |
B | | |
1850 J S B |
5 1 : | |
E | | | |
= 1800 - (R S SR |
1: | | | |
2 | | | |
1750 4 T ——e |
1700 R . (SRS A
; ; UAV Track ;
1650 | i i | Sensor Track ||
1 | | | —O—waypoint |
1600 w | w | ‘ |

0 500 1000 1500 2000 2500 3000

East from Datum [m]

Figure 17. Standard UAV & Sensor Tracks for a Point-to-Point Flight Path

As shown and consistent with the technical discussions in Chapter 3, it became evident
that despite precise ground track following, the sensor was tracking roughly 75 meters off
of the desired position. The “crab” into the northerly wind, which results from the
Piccolo II autopilot flying a straight ground track in the wind, caused the sensor footprint
to be a significant distance off course.

Figure 18 and Figure 19 present various flight parameters corresponding to the
previous graph. The speeds, altitude, magnetic heading, wind characteristics, and cross
track distance were extracted off from the Piccolo’s telemetry and then written to a data

log using the SDK. The first four plots were primarily output as a “sanity check” for the

55

flight. It was pre-determined that most irregularities would be evident through

observation and inspection of those four characteristics.

TAS [m/s]

Grnd Spd [m/s]

E |
< 340 | | | | |

1.29 1.3 1.31 1.32 1.33 1.34 1.35
§’ System Time [s] % 10*
‘; 400 T T T T T
£ | : | ‘ :
T 200 N -
% O | | | |
o 129 1.3 1.31 1.32 1.33 1.34 1.35
3
s System Time [s] x 10"

Figure 18. Various Flight Characteristics for the Standard Point-to-Point Flight.

56

N
o

Wind Velocity [m/s]

H

P o

N

©

H

w

[EEY

o bk --

[

=

w

N

H

N e

w

H

o -

N

=

w

a1

B

5, 400

(@]

£

< 200 ---fi- | | |

[} | | |

T ! | |

E 1 ‘ |

s 129 1.3 1.31 1.32 1.33 1.34 1.35
z System Time [s] x 10"
Z 500 T T T T T

a 1 1 1 1 1
oSNl s I i
= 1 1 1 1 1

2 =00 | | | | |

8 1.29 1.3 1.31 1.32 1.33 1.34 1.35

System Time [s] % 10*

Figure 19. Wind Estimations & Cross Track Distance.

The real time wind velocity and wind heading estimations were logged from the SDK
using the equations developed in Chapter 3. The wind characteristics in the HITL
simulation were commanded directly from the simulation input values and were therefore
considered constant (there was a turbulence setting, but this was kept at the “light” setting
for all tests). However, the results from the updating wind estimations in Figure 19 were
not always constant in either magnitude or heading. While these disturbances were not
initially expected, the majority of the data still provided information of sufficient quality
for a practical analysis. For instance, if the spikes were removed from the wind velocity
plot, the average wind velocity was about 5 m/s. An analysis indicated the cause of the

spikes. As the aircraft made large direction changes two issues arose: The first was that

57

the SDK calculations consistently lagged the actual aircraft position by one time
increment. The second problem played off the first - as large heading changes occurred,
the required “crab” angle would change at a significant rate. Because the code lagged
behind the true position, when the computer caught up with the position it appeared as a
large spike/step in that last transmission time period. Upon initial inspection, the wind
heading plots appear to vary widely, but in reality they follow the same trend as the wind
velocity plot. It is important to remember that a wind heading of 1° is essentially the
same as a heading of 359°, validating the results. The airspeed as a function of time plot
also displayed spikes. These were most likely due to significant heading changes as the
UAYV switched waypoints, and driven by rapid transitions from a head wind to a tail wind
condition. The Piccolo II system simply cannot react instantaneously to such rapid
changes and therefore there was an associated lag.

Figure 20, Figure 21, and Figure 22 depict the second test, which was a circular

orbit about a stationary point at constant velocity and with a constant wind.

58

250)

5 m/s from South, Track Conv. =

20m/s, Wind=

Standard UAV & Sensor Tracks (TAS

\\

UAV Track

1000 1100

2400 - - - -

2100 ---- 4~

[w] wnreq wouy yuoN

1500~~~ 4

1400

1900

1700 1800

1400 1500 1600

1200 1300

900

East from Datum [m]

Figure 20. Circular Orbit Flight Path with Constant Velocity and Wind

1.87 1875 188 188 1.89 1.895
System Time [s] x 10"

1.865

1.86

[s/w] sv1

1.895

1.89
x 10

1.885

1.88

]

S

[

1.865 1.87 1.875
System Time

1.86

1.855

Lo
«
-

[s/w] pds puio

6 1865 187 1875 188 1.885 189 1.895
System Time [s] x 10°

1.8

1.855

1.865 187 1875 188 1885 1.89 1.895
System Time [s] % 10°

1.86

1.855

<]
<
™

[w] yv

1.85

[6ap]

o

1.85

uipeaH Be

Figure 21. Various Parameters of the Circular Orbit Flight Path

59

20

10F -

T T
| |
| |
| |
e — — - — — — P
| |
| |

T T T

| | |

| | |

— + |

| | | | !

|

| | | | | |

| | | | | | | |
185 185 186 1865 187 1875 1.88 18385 1.89 1.895
System Time [s]

0
185 1855 186 1865 187 1875 188 1885 1.89 1.895
System Time [s] 4

501 -----

Cross Track Dis [m] Wind Heading [deg] Wind Velocity [m/s]
S
o

1.85 1.&455 1.186 1.%;65 187 1875 1.:88 1.885 1.;9 1.895
System Time [s]
Figure 22. Estimated Wind Values for the Circular Orbit
The circular orbit flight path was interesting in that it displayed the Piccolo’s bias when
dealing with winds. As the winds were heading from south to north, it was evident that
the UAV did much better when turning into the wind, i.e. incurring a headwind, as
opposed to a tailwind. This was understandable as the ground speed would decrease and
the aircraft would be able to better navigate at the slower speeds. The cross track
difference between the head and tail winds was only about 50 meters. Having observed
this, one must still recognize that Piccolo II manufacturer did a fairly good job
considering this was a low cost, small scale COTS system. Yet, there were two things to
consider when evaluating the overall performance. First, this was only a simulation, not
the true flight characteristics and, second, with increasing commanded TASs, the cross

track distance grew rapidly.

60

The following sets of plots depict the unmodified Piccolo II commanding the
UAV in a race track pattern. At first the aircraft’s velocity was the only parameter
varied. Following those initial conditions, variations in the “Track Convergence” gain
are presented. This gain drives the turn rate loop of the autopilot control software at the
square of the velocity. Through previous research (Jodeh, 2006) it was determined that a
Track Convergence gain of 250 appeared to be an optimal value for the Rascal 110 UAV.
It will be shown that through lowering this value, the aircraft will attempt to stay on, and
return to, the track with increasing aggressiveness. However, the faster convergence did
come with a loss of precision of altitude hold due to more aggressive turning and banking
of the UAV. Figure 23, Figure 24, and Figure 25 present the results of the standard
autopilot commanding the predetermined racetrack pattern at TAS=12m/s, with a wind of

5 m/s from the south, and Track Convergence (TC) =250.

61

= 250)

5 m/s from South, Track Conv.

12m/s, Wind=

Standard UAV & Sensor Tracks (TAS

o
o
N
N
o
o
o
N
| o
| o
| 2
|
|
|
, S
[©
| i
|
|
[o
| o
| | M._
| |
| |
| |
| { | | (=}
| I | | - : m
| | I T | | | | ; | -
| ! | | | | | | i |
| | | | | | | | ' |
| | | | | | | |) | o
|] | | | | | |) | S
[= o=/ [N =]
| ¥ | | | ; | —
| | | | | | |
I) I | | | |
| | | | | i | o
[FN S/ Y () e m e - — (R s o I e)
| | | | { | o
]	i				
					¥		
; !				hl .l hl 3			
t							
	i			!			
		i					
1 1 1 1 1 1 1 1 1 w
o o o o o o o o o o<
o o o o o o o o o o
™ N — o (o] [e] N~ (] Te] <
N N N N i i i — — -«

2400 - - - -

[w] wnyeq wouy yuoN

East from Datum [m]

5m/s

12m/s & Wind=

Figure 23. Race Track Pattern with TAS

< <
RU.A. 64
n o n o
— —
x x
™| ™
19 ©
n n
N (9}
4 © ©
n n
" 0 - 0
1o oL
) 6 o
S S
= =
£ S
o 2 o 2
_ .0 .0
0 > 0 >
(7] (7]
[} ()]
40 0
n n
0] [o0]
40 0
n n
N~ N~
| n L n
™M N -0 o O ow
1_1_1_5 AN o
[sjw]svl [s/w] pds puio

< <
— Q< 9 <
| n o | n O
| — | —
I < I <
| |
| |
| ™ l ™
Li-J© ©
! [Te} To)
o o
Lo ©
Te} To)
- 0 - 0
L 1 L o &
o @ o 9
E €
= [
e IS
2 2
L 19 % © %
0 > o >
[9)] n
[} (<)}
5o)
[Te} To)
0 ©
T 1o
Te} To)
N~ N~
L L
o e
Ln 45 ol
™ ™
[w]yvy [Bap] BuipesH Ben

=250

Figure 24. Various Parameters for the Race Track Pattern at 12m/s and TC

62

fffffff AT
i

Cross Track Dis [m] Wind Heading [deg] \yuq velocity [m/s]
N
o
o

5.57 5.58 5.59 5.6
System Time [s]
50 T T T T T T
| | | |
| | | |
0 77777 J\/ o | ’k B 8 . | _ Y|
‘ % | ‘ | /
| | |
| | | | | |
_50 | | | | | |
5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64
System Time [s] x 10"

Figure 25. Wind Estimations & Cross Track Distance

The sensor paths plot revealed that even at the slowest operating speed of 12m/s, the
sensor footprint would remain between 100 and 200 meters off of the ground track.
Fortunately, the physical aircraft tracked the desired path extremely well with maximum
cross track values of less than 50 meters. This appears sufficient for the urban canyon
flight regime. Again, the estimated real time wind values provided adequate depictions
of the current flight conditions.

The next series of tests were identical to those just described but with variations in
the true airspeed (TAS). In addition to the 12 m/s run, 15 m/s, 20 m/s, and 30 m/s

evaluations were conducted utilizing the same “race track” waypoint locations.

63

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)
2600 -----G-----“ "~ f— -

UAV Track
Sensor Track

2400

2200

2000

North from Datum [m]

1800

1600

1 1
00 600 800 1000 1200 1400 1600 1800 2000 2200
East from Datum [m]

Figure 26. Race Track Pattern at 20 m/s Track Conv.=250
As expected with the higher velocity, the small aircraft was less capable of precisely
holding the track as shown by the blue line in Figure 26. As a result, the sensor footprint
tracked further off course. Any close contacts with the waypoints and the sensor track
were purely coincidental and would not have occurred with differently spaced points.
With the track convergence gain set at 250, 20 m/s was about as fast as the UAV could
fly any semblance to the race track shape. As shown in Figure 27, at 30m/s an oval was
the best the aircraft could accomplish. However, if the race track had longer distances
between each waypoint the Rascal should have been able to fly an acceptable pattern. As
a baseline test, this provided strong evidence that with a relatively small pattern and a

nominal wind, the aircraft could not be relied upon fly a precise track.

64

Standard UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South, Track Conv. = 250)
2600

UAYV Track
Sensor Track

2400

2200

2000

North from Datum [m]

1800

1600

1400 j j
200 600 800 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 27. Race Track Pattern at 30m/s with Track Conv.=250

Because of the issues described above, the remainder of this document will focus
on the 12 m/s and 20 m/s cases. Additional results can be found in Appendix A. These
two airspeeds correspond to two crucial flight situations. The 12 m/s runs represented the
best results and the 20 m/s evaluations were consistent with a common actual flight
condition.

In an attempt to acquire improved results, the track convergence (TC) gain was
reduced to a setting of 150 and then to 50. The weighted importance of flying the straight
line track between two subsequent waypoints would be increased while the smoothness
of that track and possible altitude criteria would be lessened. The TC variation plots at

12 m/s will be presented first followed by the corresponding results at 20 m/s.

65

At 12 m/s, Figure 28 displays that the Piccolo II did a very good job at remaining
on track. However, an interesting side effect began to appear. With the lower gain value
for track convergence the aircraft appears to bounce between some designated cross track
bounds, similar to a bowling ball going down a lane with bumpers. This was shown by
the sensor position beginning to waiver left and right, especially along the longer straight
segments. Subsequent figures will bring this side effect into a clearer view. The cross
track distances for the respective 12 m/s runs decreased from a 40 meter maximum to
about a 25 meter maximum. For the urban canyon flight regime initially investigated for
this thesis, such a simple adjustment to the Piccolo II autopilot created a significant

increase in the track following performance.

66

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 150)

2400 - -----——-- T T T T T
2200 -~ ‘ O
E 20007~ Q- T - ‘
£ | 1
> | |
IS } :
21800 O I
S | ‘ |
< | | |
5 | | :
S 1600} ----- Tl R
1400 - UAV Track [~
Sensor Track |
—O—Waypoint i
1200 i w ‘
400 600 800 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 28. Race Track Pattern at 12 m/s with Track Conv.=150

Figure 29 was the 12 m/s run at a track convergence gain of 50. This time the blue line
representing the actual aircraft’s position can barely be seen as it is coincident with the
desired track for most of the flight. However, this “scanning” side effect became
excessive. The nose of the aircraft was continuously moving laterally in an attempt to
remain as close to the track as possible. Once again, any points at which the sensor
footprint and the targets were close were coincidental. This result would not be

acceptable for actual flight.

67

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 50)
2600 -----G-----“ "~ f— -

UAV Track
Sensor Track

2400

2200

2000

North from Datum [m]

1800

1600

1400
40 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 29. Race Track Pattern at 12 m/s with Track Conv.=50

The 20 m/s run with the track convergence set at 150, Figure 30, showed the
expected decrease in tracking ability when compared with the 12 m/s, but an
improvement over the respective 20 m/s run with the gain set at 250. The quicker
response to return to the track was the most notable change. Because the track holding
was improved, the sensor position better mirrored the track, but the offset was still
present due to the crabbing. The sensor track was also beginning to become jittery, but

not so drastic as to render the condition useless.

68

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 150)
2600 -----G-----“ "~ f— -

UAV Track
Sensor Track

2400

2200

2000

North from Datum [m]

1800

1600

1 1
00 600 800 1000 1200 1400 1600 1800 2000 2200
East from Datum [m]

1400
4

Figure 30. Race Track Pattern at 20 m/s with Track Conv.=150

With the track convergence reduced again to 50 in Figure 31, a slight improvement in the
UAV flight path was observed. However, that small improvement was outweighed by
the increased sensor waiving. It is important to notice that despite the decreased tracking
performance as compared to the 12 m/s run, the “induced scanning” was not nearly as
prevalent. The reason for this was that because of the higher velocity, the aircraft was not
as susceptible to the wind. With a wind of 25% percent of TAS as opposed to 41.66% as
with the previous runs, the UAV was able to better handle the aerodynamic forces as the
increased velocity would effectively increase the control powers of the rudder and

ailerons.

69

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 50)
2600 -----G-----“ "~ f— -

UAV Track
Sensor Track

2400

2200

2000

North from Datum [m]

1800

1600

1 1
00 600 800 1000 1200 1400 1600 1800 2000 2200
East from Datum [m]

1400
4

Figure 31. Race Track Pattern at 20 m/s with Track Conv.=50

The entire set of baseline tests provided insight into two key objectives of the
research; the real time wind finding results and the sensor pointing issues. The results of
the real time wind finding were considered a success. Despite a few points when the
wind velocity and/or direction would spike, the results were consistently accurate under
various operating conditions and flight paths. Utilizing the wind finding algorithm in the
SDK, a passive procedure was provided that allowed for simple means to view and then
log the wind data, along with numerous other telemetry variables. The results would be
best utilized as a situational awareness aid or to post process data for future test flights.

The full set of results is supplied in Appendix A.

70

The second set of pertinent data concerned the location that a nose mounted
sensor would actually be pointed when the UAV was in the presence of winds. From the
bird’s eye views of the SIG Rascal’s simulated flight path, it became clear that the
sensor’s footprint would not survey the desired target (waypoint). The tests conducted at
the slowest speeds did hold the track the best, but the aircraft required a crab angle to

accomplish that task; thus, resulting in a lack of coverage of the target by the sensor.

4.3 — HITL Simulation with Wind Correction

4.3.1 - Turn Rate & Updating “Rabbit” Waypoint Approaches

As previously mentioned, the turn rate and “rabbit” approaches of track following
improvement were not successfully implemented on the Piccolo II autopilot. However,
the time spent on researching these two possibilities did return some useful results. First,
turn rate commanding was, and still is, a feasible means for wind correction. In the long
run, this is probably going to be the best and most accurate means for wind correction on
small UAVs. Second, the “rabbit” waypoint chasing would be an acceptable means of
real time wind correction, with the added advantage of being easier to implement into the
Piccolo’s SDK or any waypoint guided autopilot. This “rabbit” chasing algorithm is
implemented in the C++ code provided in the appendix — and works for a single
waypoint. Accessing the “list of waypoints” from the SDK would enable full
implementation. Once this Piccolo II specific issue is resolved the rest of the correction

algorithm should be simulated in C++ code.

71

4.3.2 — Wind Corrected Sensor Pointing

Using the same predetermined flight paths as in section 4.2, a direct comparison
was made to determine the effectiveness of the implemented wind corrected sensor
pointing. This algorithm used the SDK to actively modify the flight path of the Rascal in
the HITL simulation in an effort to induce an offset that allowed the simulated on-board
sensor to survey the target. For the research, it was assumed that, operationally, a
waypoint would be set directly over any target.

Figure 32 depicts the same straight line path as in Figure 17, but this time the
SDK code was actively placing a new waypoint at a calculated, ENU distance away from
the original. The graph also connects the corresponding positions between the center of
the sensor footprint and the aircraft. Under the same flight conditions, the center of the
sensor footprint was, at best, 75 meters from the waypoint. As shown in Figure 32
below, this error was reduced to about 10-20 meters when the wind correction was
employed. For this flight condition, that was about a 75% reduction in error. The
updated waypoints clearly provided the necessary corrections so that the sensor could
inspect the target. Additionally, because the code was designed such that the aircraft
would remain on track as long as possible and then jump out to capture the target, there
were no radical direction changes which would have caused drastic elevation changes.
Just as with the results in section 4.2, the complete set of plots is attached in the

appendices.

72

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)
2800 -

— UAV Track
Sensor Track

2600

2400

2200

North from Datum [m]

2000

1800

1600 | |
-500 0 500 1000 1500 2000 2500 3000

East from Datum [m]

Figure 32. Point to Point at 20 m/s - Adjusted for Sensor

The straight line, point to point flight track was used as an initial proof of concept
and that the modifications could be implemented efficiently. The more important, and
realistic, test was to implement the code on the race track pattern. This would evaluate
whether or not the new waypoints would be placed correctly given a varying relative
wind. The track convergence gain was set to 250 for all of the simulated tests involving
the waypoint adjustments. The reason for this was that the “induced scanning” could

possibly introduce significant errors in the crab angle calculations. As a note, this gain

73

could have been increased in an attempt to smooth out the track, but this was not

evaluated.
Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)
L R el eelelatelels Teelelatets ‘
UAV Track ||
2400 Sensor Track |,
—()— Waypoint |
2300 | yp ‘ |
2200 ; e . - |
E ‘ | |
£ 2100 SRR EEEEEEEEEEEE S . R EEE 1
> | |
B » | |
2000 -/ A e R e |
S ‘ ; 1 |
9 | |
= 1900 i 4 AR J
1: I’ |
S 1 |
1800 A iy G TR B o lT AREE TR |
- i S
1600 ‘ | l | NS |
1500 1 1 1 1 | 1 1 1 j
400 600 800 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 33. Race Track Pattern at 12 m/s - Adjusted Waypoints

Figure 33 is a plot of the results from the race track pattern at 12m/s TAS and the
wind of 5 m/s from the south. The error distance between the sensor footprint and the
waypoints was decreased for most of the targets. However, the jittery sensor path was
unexpected. The scanning effect, which was attempted to be avoided by using the
convergence gain of 250, was observed. It was conjectured that this occurred because of
the continuously updating waypoints. At each time step the algorithm updates the

placement of the waypoint. So the waypoint will move slightly left/right, up/down. Thus,

74

with the waypoint moving slightly, the aircraft needed to adjust its heading at each time
step. This resulted in the “induced scanning” effect.

Starting with waypoint 0 at the bottom right of Figure 33 and counting clockwise,
the results of the wind correction for waypoints 1, 2, and 5 were quite favorable. These
three all had an error of less than 50 meters. Waypoints 0 and 6 had marginal results with
about 100 meters of error. Waypoints 3 and 4 did not have improved results when
compared to the standard Piccolo II. They were not any further away, but the scanning
effect would be undesirable. The tail wind condition encountered as the vehicle turned
towards waypoint 3 coupled with the small track segments proved to be too much for the
Rascal as it was not able to navigate the right hand turn while incorporating the sensor
pointing offset. Longer track segments would have resulted in much better results as the
aircraft would have steadied itself on track before attempting to implement any
modifications. The head wind condition produced closer distances as explained

previously.

75

Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)
2600 77777 L = - T = r-- - - TT - T 0T - - - - L - - - - = L

UAV Track
Sensor Track

:r - —O— Waypoint

2400 -

T

2200

2000

North from Datum [m]

1800

1600

1400 1 1 ‘
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

East from Datum [m]

Figure 34. Race Track Pattern at 15 m/s - Adjusted Waypoints

As the TAS was increased in Figure 34, Figure 35, and Figure 36, the results mirrored the
unmodified tests with a reduction in the wavering effect and a gradual reduction in track
following precision. The greatest improvement remained with waypoints 1, 2, and 5 as
they were still the longest track segments. In Figure 36, the resulting UAV track was
actually improved over the unmodified test at 30 m/s. Overall, the data for the race track
pattern were mixed. There were significant improvements in the sensor footprint error
for approximately half of the targets, with the other half having only a marginal or no
improvement. However, it was determined that if all track segments were of sufficient

length the results would have been more desirable throughout.

76

5 m/s from South)

20m/s, Wind=

Updated UAV & Sensor Tracks (TAS

2200 -~
2000 -
1800 - -

[w] wnyeg wouy yuoN

1600 - - -

1400

2200

2000

800

600

400

1200

1000

600

400

]

East from Datum [m

Figure 35. Race Track Pattern at 20 m/s - Adjusted Waypoints

5 m/s from South)

30m/s, Wind=

Updated UAV & Sensor Tracks (TAS

UAV Track
Sensor Track

+
|
|
|
|
|
|
T
|
|
|
|
|
|

2200 - - -
2000 -
1800 -~

[w] wnieg wouy yuoN

1400

2000 2200 2400

1400 1600 1800

0 1000 1200

80

600

400

East from Datum [m]

Figure 36. Race Track Pattern at 30 m/s - Adjusted Waypoints

77

Varied Environmental Conditions Tests

To ensure some level of robustness in the sensor pointing code, two additional
evaluations were conducted. The first varied the small UAVs altitude. Because the
correction distance was based upon the distance between the center of the sensor
footprint and the aircrafts location, varying the altitude would vary the forward, lead

distance of the sensor footprint. Figure 37 is the graphical representation of this test.

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, 20% Lower Alt)
2600 ---------- e e

UAV Track
2500 - Sensor Track

—O— Waypoint

2400

2300

2200

2100

North from Datum [m]

2000

1900

1800

1
500 1000 1500 2000 2500 3000
East from Datum [m]

1700
0

Figure 37. Point to Point at 20 m/s and 20% Lower Altitude
The Rascal’s lower altitude would mean that the sensor would not be projecting as far
ahead of the aircraft. For this reason, the required offset distance for the new, updating

waypoints should be less. Figure 37 clearly shows that the offset distances were less

78

drastic and as a result the sensor path actually comes closer to the targets. For this test,
the average miss distance was less than 20 meters. Based off these conclusions, it was
assumed that if the UAV’s altitude was increased that the new waypoint offset distance
would have been increased.

The second additional test returned the aircraft to the previous 350 meter altitude
criterion, but doubled the wind velocity to 10 m/s. Also, the direction of the wind was
switched 180° to a heading of due south. The outcome, as presented in Figure 38,
showed a reversal of offset direction in addition to an increase in the required offset
distance. These results displayed that the algorithm had the capability to make the

appropriate adjustments based on a current wind velocity and direction.

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=10 m/s from North)
2350 --------;------—-- e e

UAV Track | | |
2300 - Sensor Track |~~~ Co o oo . |

—O— Waypoint

2250

2200

2150

2100

2050

North from Datum [m]

2000

1950

1900

1850 j j
~500 0 500 1000 1500 2000 2500 3000

East from Datum [m]

Figure 38. Point to Point at 20 m/s with 10 m/s Wind from the North

79

Overall, the results of the active waypoint modification using the SDK interface were
pleasing. While the algorithm was not optimal nor completely robust, it definitely
improves the ability to put a sensor on a target using a small waypoint guided UAV

operating in wind.

4.4 —Flight Testing with Wind Correction

Due to extenuating circumstances, the test team was unable to conduct the actual
flight tests at the Area B test range. The tests were expected to be accomplished and
were thoroughly planned. Official test cards, provided in Appendix D, were produced
and reviewed. Unfortunately, the actual flight tests had to be postponed past the date of
the thesis defense. Therefore, it is recommended that before any future lab testing is
undertaken, a series of flight tests be conducted to validate the results obtained using the
wind correction in the HITL simulation.

4.4.1 — Real Time Wind Estimating
- See Appendix E -

4.4.2 - Turn Rate & Updating “Rabbit” Waypoint Approaches
- Flight Test Postponed -

4.4.3 — Wind Corrected Sensor Pointing
- Flight Test Postponed -

80

4.5 — Chapter Conclusions

Chapter IV presented the results of the SIG Rascal UAV flight tests performed in
the HITL simulation under the control of the standard Piccolo II autopilot as well as with
the wind correction implemented. A set of baseline flight tests were conducted to
determine the standard characteristics of the simulated aircraft flying in a windy
environment. The findings revealed that the track following characteristics of the Piccolo
IT were quite good under the presence of a wind, and that the relative importance of this
trait could be easily adjusted through the track convergence gain. The level of precision
flight illustrated by the autopilot actually led to the primary focus and contribution of this
thesis, the method of wind correction for sensor pointing. The crab angle induced by the
controller to keep the aircraft on track resulted in a fixed sensor, such as a video feed, to
survey areas well off track. To counter this effect, a wind correction was developed and
implemented in the SDK code, which successfully updated and placed new waypoints for
the UAV to track. These new waypoints adjusted the aircraft’s flight path enough to
allow the sensor footprint to cover the designated target. The wind correction worked
well for straight line tracks and for more intricate tracks when flying at lower speeds.
However, with higher speeds the simulated aircraft could not successfully adjust for the
wind and sensor pointing.

One additional point must be factored in. The plots of the sensor footprint only
represented the exact center of that footprint. In actuality, the footprint was hundreds of
meters in diameter due to the field of view. Thus, when the center of the sensor crosses
within 20, or even 50, meters, this was a desirable result. The sensor would then easily

be able to supply adequate coverage of the targets.

81

V. Conclusions and Recommendations

5.1 — Conclusions

The research accomplished in this thesis project provids a solid foundation for
future evaluation of small UAVs flying under the influence of winds. Initial baseline
tests were performed to discern the standard capabilities of the COTS Piccolo II autopilot
in conjunction with the SIG Rascal 110 aircraft. The physical component setup offered
realistic measurements and data which could easily be applied to an operational
environment. This investigation into wind compensation methods achieved several key
objectives:

1) Collected a baseline set of data which represents the wind compensation
capabilities of a COTS autopilot implemented in a true life setting.

2) Formulation and implementation of a real time update of the current wind
direction and velocity that the aircraft was encountering. Using the SDK interface, the
operator can now view and log the real time winds along the UAVs true flight path. The
output data were not completely without some outliers, but the overall result was
acceptable.

3) Formulation of three differing approaches for employing wind corrections for a
UAV. The first utilized a direct implementation of a new aircraft heading and airspeed
required, based on the wind estimation described above. The second method employed a
continuously updating unattainable “rabbit” waypoint that would mislead the aircraft into
reaching the desired original waypoint. The third technique took a completely different
approach to wind correction and adjusted the aircraft’s flight path based on the position

of a sensor footprint rather than the position of the UAV. It was determined that despite

82

an accurate flight path along the determined track, the nose of the UAV would not
necessarily be pointed straight ahead. For this reason, the sensor may not survey the
desired target and overall mission effectiveness would not be satisfied without a real time
modification to the original flight plan.

4) Demonstrated the interfacing ability of the SDK software to receive, process,
and then transmit new flight parameters to the on-board autopilot unit. Real time aircraft
telemetry, waypoint data, and track commands were all communicated to and from the
UAYV using the C++ program developed with the SDK.

The initial research plan focused on improvement in the precise track following
capabilities of small UAVs. The most challenging flight conditions were reconciled as a
precise track following mission that would be required in the “urban canyon”
environment. While recognizing that operationally deployed autonomous small UAV's
navigating amongst buildings, trees, etc. is a few years in the future, the research
presented on the turn rate and “rabbit” wind correction approaches provides a good basis
from which future studies should be conducted. However, the crux of this thesis
morphed into the active flight path modifications for precise sensor pointing. Research
showed that this topic has not been previously addressed, yet is more applicable to
current operational tasks for small UAVs than those mentioned above. Thus, while it was
important to provide a solid framework for the more conventional methods of wind
corrections, the sensor pointing problem was more pertinent and became the central
focus.

The overall results of the new research focus were promising as the UAV tracked

the predetermined flight paths very well under reasonable TAS and wind conditions.

83

However, at the higher speeds (>TAS=30 m/s, or with wind components of more than
50% of the TAS) the aircraft could not navigate accurately. These are considered
extreme cases in an operational environment. In the normal flight regimes the
incorporated wind corrections proved generally acceptable. More specifically, the sensor
pointing approach showed that an algorithm could be implemented which would
appreciably remove or reduce the sensor pointing errors. Undoubtedly, with subsequent
research, this algorithm could be developed to be extremely robust and effective across

the small UAV operational environment.

5.2 — Recommendations

The following recommendations incorporate improvements to the algorithms,
interfacing procedure, and flight testing program along with follow on research guidance
and suggestions.

o Incorporate actual flight tests to support the simulated data. Actual tests
were planned, but did not happen due to operating restrictions beyond the
control of the research team. This data will be particularly pertinent
because indications from previous research (Jodeh, 2006) suggests there
may be differences between simulated and actual flight performance.

o “Hard coding” information reduced the robustness of the current code.
“Soft code” as much information as possible into any computer program.

J Acquire a larger volume of test and evaluation airspace. The bounds set

out for the Area B test flight airspace was quite restrictive in both length

84

and altitude. In order to fully test and evaluate these UAVs a much larger
space is recommended.

Follow-on research should include: Implementation of both the turn rate
and “rabbit” approaches, solidifying the sensor pointing method, and
integration of related multiple research topics (e.g. formation flight,

situational awareness, etc.) using the Piccolo SDK.

85

Appendix A: Complete Set of Simulated Test Results

Baseline Tests
Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 250)

North from Datum [m]

2000

1950

1900

1850

1800

1750

1700

1650

1600 - - - -

| |
UAV Track |
|

Sensor Track

| | |
! ! —O— Waypoint !
| | T |

1550
600

Figure 39.

15—

|
1
L I
800 1000 1200 1400 1600 1800 2000 2200
East from Datum [m]

Standard UAV Short Point to Point at 12 m/s with Wind=5 m/s

TAS [m/s]

15

10} ---

,,,,,,,, S ST L _ p—————

Grnd Spd [m/s]

| | |
1.465 1.47 1.475 1.48 1.485 1.49 1.495
System Time [s] 4

Alt [m]

400

| | |
1.465 1.47 1.475 1.48 1.485 1.49 1.495
System Time [s] 4

200

0
1.46

Mag Heading [deg]

|
1.465 1.47 1.475 1.48 1.485 1.49 1.495
System Time [s] % 10"

Figure 40. Various Parameters for Short Point to Point at 12 m/s

86

1.47 1.475 1.485 1.49 1.495
System Time [s] x 10*

1.465

1.46

[6ap] BuipesH puiwm

3 3
, < , < -
I - 9 I - g
! x , <
I
I I
- 2
L i ! —
— I
T—)
. |
T I
— L 0
- [oe] <o)
== I <
- -
 —

— © 0 | o 0
=157 <133
— e | | —

E E
| = I [
I I
: mm ” mm
\\\\\\\ B »n »
I < S < S
—_—t L)]
|
I
| ~ ~
R — < <
- -
Ln n
[(e} (o]
[< ~
T — —
T
I I
I |
! (e} ! (o]
| < | <
o o O o o O
o o n Yol
S « '

[Bap] joA puipy (L] @2uelSIa yoeIL SsoID

Figure 41. Real Time Wind Estimations for Short Point to Point at 12 m/s

5 m/s from South, Track Conv. = 250)

15m/s, Wind=

Standard UAV & Sensor Tracks (TAS

2000 -

[w] wnyeq@ wouy yuoN

TT- AT T T oI -r- -
| | |
| | | W
o | x 8
-
| | | m = c
R Bl = O H
| ¥ | ,T w o
| | | > & >
| | | << © ..Wa
| | | t
| | | ,U n
= R R H
- R e i |
| | | I | |
| | | | |
| | | | I |
| | | | I |
! | | | | |
= - oA —— - ———
t | ' | | |
| I i | | | |
| T | | | |
| 1 i | | |
t | i | | |
. - S
| | | 0 | | |
| | | | | |
| | | | | |
| | | | i |
| | I | 1 I
I [T T
| | | | i | |
| | | |) |
| | | | i |
| | | | | |
| | | |) |
L [T o A
| | | | | |
| | | i | |
| | | | | |
| | i | | |
| T | | | |
= L T
| i | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
1 1 1 1 1 1 1 1 1
o o o o o o o o o o
o o LN o [Te] o Lo o n o
(o] (e} [ee] [e] N~ N~ O (] Te} Te}
- — — - — — - — — —

1600 1800 2000 2200

00

4
from Datum [m]

1

600 1000 1200

400

East

5m/s

Figure 42. Standard UAV Short Point to Point at 15 m/s with Wind

87

TAS [m/s]

Grnd Spd [m/s]

E
<
=
Q
S,
(@]
c
£
©
%‘) O 1 1 1 1
o 1.505 1.51 1.515 1.52 1.525 1.53
© .
s System Time [s] X 104
Figure 43. Various Parameters for Short Point to Point at 15 m/s
B
5 20 | | | |
jo)) | | | |
E | | | |
e
©
[}
I
e
£
=

0
1.505 1.51 1.515 1.52 1.525 1.53

System Time [s] % 10"

Cross Track Distance [m] \ind Vel [deg]

Figure 44. Real Time Wind Estimations for Short Point to Point at 15 m/s

88

5 m/s from South, Track Conv. = 250)

20m/s, Wind=

Standard UAV & Sensor Tracks (TAS

2100 - - - - -

1900 - - - - - &
1700 - - - - -

[w] wnyeq wouy yuoN

1600 - - - - -

1500

1200 1400 1600 1800 2000 2200

1000

600

400

East from Datum [m]

5m/s

Figure 45. Standard UAV Short Point to Point at 20 m/s with Wind

1.545 1.55 1.555 1.56

1.54

535

N O o %
N N A

[s/w] sv1

© © ©
o - O - o — O
— — — -
< < x <
[Te) 0 [Te)
[Te) [Te} [To)
ol L o
i i i
Lo n o
—_ 0 — N — 0 —
2, - L - L - L
Q () Q ()
E E E =
= = = =
IS IS IS IS
[} Q [3) [J)
® oo R 0
> < > < > < >
n 0 0 0 0 0 0
— i —
<t <t <t
o 0 o
— — —
Yo} 0 [Te)
-—— 3 93 3

[s/w] pds puin

[w] yv

[Bap] BuipesH Bew

Figure 46. Various Parameters for Short Point to Point at 20 m/s

89

1.55 1.555 1.56
x 10

1.545

1.54

[6ap] BuipeaH puim

System Time [s]

© (o]
, L < © <
, - o - o
| — —
x x
n
n
0
—
n
—_ 0 —
2, - £
(4] (4]
= £
[[
|
! £ £
,]]
I 0 o
| Lo
| < > < >
= W T e I) 0 n
i i

1.54

[Bap] [BA PUIM [w] aouelsiq yoelL SS0ID

Figure 47. Real Time Wind Estimations for Short Point to Point at 20 m/s

250)

5 m/s from South, Track Conv. =

30m/s, Wind=

Standard UAV & Sensor Tracks (TAS

UAV Track

Sensor Track

[w] wneq woiy yuoN

00 1600 1800 2000 2200

14

1200

1000

East from Datum [m]

5m/s

Figure 48. Standard UAV Short Point to Point at 30 m/s with Wind

90

v 35
E 30
)] | | | | | | | | |
|<£ 25

1.566 1.568 1.57 1572 1574 1576 1578 158 1.582 1.584 1.586
0 System Time [s] x 10*
E 40 T T T T T T \ \ \
e) | |
o i T,
0 | i
o 20 | | | | | | | | |
(% 1566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586

System Time [s] % 10"

E N
2 340 | | | | | | | | |

1566 1.568 1.57 1.572 1.574 1.576 1.578 1.58 1.582 1.584 1.586
= System Time [s 4
§, y [s] x 10
[o)) 400 [I I I I I I I I
£ |
E 200+ ---F | | B
% O | | | | | | | | |
2 1.566 1.568 1.57 1572 1574 1576 1578 158 1.582 1.584 1.586
= System Time [s] x 10*

Figure 49. Various Parameters for Short Point to Point at 30 m/s

Wind Heading [deq]

System Time [s] x 10°

| |

| |
O 1 1 1 1 ;
1.566 1.568 1.57 1572 1574 1576 1578 158 1.582 1.584 1.586
System Time [s] % 10

500

o
T
|

|
00 L L L L L L : L L
1.566 1.568 1.57 1.572 1.574 1576 1578 158 1.582 1.584 1.586
System Time [s] % 10"

Cross Track Distance [M] \yind Vel [deg]

Figure 50. Real Time Wind Estimations for Short Point to Point at 30 m/s

91

250)

5 m/s from South, Track Conv. =

20m/s, Wind=

Standard UAV & Sensor Tracks (TAS

UAV Track

2100} - -
1900 - -5

[w] wnreq woyy yuoN

1800 1900

1000 1100 1200 1300 1400 1500 1600 1700

900

East from Datum [m]
Figure 51. Standard UAV Circular Orbit at 20 m/s

1.865 1.87 1875 1.88 1.885 1.89 1.895

1.86

[s/w] sv.L

o)
o))
40 840
=1 — 3
< <
o
- @«
—
7o)
Q
r @
—
©
- @
—
v 0 9
o - % o
E - £
= [
e IS
N~
> AR
0 (7]
T}
©
r «Q
—
©
- «Q
—
T}
L0
r @
—
7o)
| [0e)
O O O«
M Q&

[s/w] pds puo

|
|
[E—
|
|
|
|
|
ap—_
|
|
|
|
!

|
|
|
|
o
LN
[90]
[w] v

352

348

1855 186 185 1.87 1875 188 188 1.89 1.895

1.85

T}

o
40 840
=1 — 3
< x

o

@«

—

T}

59]

@

—

0

@

—
v 0 9
o) % o
E - £
F F
e IS

N~
s lBs
> AR
0 (7]

T}

©

«Q

—

©

«Q

—

T}

T}

@

—

[Bap] BuipesH Ben

Figure 52. Various Parameters for the Circular Orbit at 20 m/s

92

o) Ty) o)
o o} o
0 < X g 0~
= — 3 =
x x x
o o o
© © ©
— — —
o) T} o)
© © 0
© © ©
— — —
0 © 0
© © ©
— — —
0 @ w0 @ 0 o
B o) B o
- E - £ - E
= = =
£ = €
N~ N~ N~
@ 2 ® 3 @ 3
— = — = AR
0 (7] n
Lo T} T}
© © ©
© © ©
— — —
© © ©
© © ©
— — —
|
o , T} o
T} Ty} T}
© T © ©
—i | —i —i
|
|
o) | o o)
© , © ©
—i o o oo i
S o
< I3

[S/w] A0BA PUM 6501 pupears puiw [w] sig ¥oelL SS010

Figure 53. Real Time Wind Estimations for the Circular Orbit at 20 m/s

93

250)

5 m/s from South, Track Conv. =

12m/s, Wind=

Standard UAV & Sensor Tracks (TAS

|
|
|
|
|
|
|
T
|
|
|
|
|
|
b
|
|
|
|
|
:
1
1000

|
L
|
|
|
L
|
|
|
L
|
|
l
800

J
|
l
-
|
|
:
600

1400 1600 1800 2000 2200

East from Datum [m]

1200

|

|

|

|

I
o
o
—
N

000
900
1800 - - - -

[w] wnre@ wol) yuoN

1600 - -~

1500 - - - -

1400
400

=250

5m/sand TC

Figure 54. Standard UAV Race Track Pattern at 12 m/s with Wind

< <
r0.4 7 r0.4
1w o 1w o
— | —
x ! x
|
|
™ ™
H<© ©
To] To)
[N [
H@ ©
To) To)
o= o=
g 3o
n 9 Tol "}
£ £
= =
€ 1<
2 2
1© % © 5
o > 0 >
7] | 0
I
I
|
o)) o))
40 AL -4 W0
Te) ” Te)
|
|
|
© I ©
40 L L_J];o
To] , To)
|
|
|
~ I N~
| n | o]
™M N - o O o
RN e LY ISR 0
[s/w] svLl [s/w] pds puio

[w] v

< <
ﬁ0.4 7 ﬁ0.4
n o n o
— | —
x ” <
|
™ [™
© ©
Te} Te}
o o
© ©
n n
- 0 - 0
o 2 o 2
n o T]
£ £
= =
£ £
o 2 o 2
a7 R
0 > 0 >
n n
<2} [}
))
n n
o] o]
0o o
Te} Te}
N~ N~
))
Te} Te}

[Bap] BuipeaH Bep

Figure 55. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250

94

5.64
5.64

x 10
5.64

x 10
X 104

I

1
5.63

5.62
5.62
1
5.62

6
5.61

System Time [s]

5.6
System Time [s]

5.6

1
|
|
|
1
5.6
System Time [s]

5
|
|
|
I
|
|
1
5
1
5.59

5.58
5.58
i
|
|

50
OF - - - A
|
|
50 ‘
5.58

on

5.57

N~
) e}
o o

n S To]
<

[s/w] ANOOIBA PUIM (5501 Buipear puip (W] SIA %011 SS0ID

200 - -

=250

5m/s, & TC

Figure 56. Real Time Wind Estimations for the Race Track at 12 m/s, Wind

250)

5 m/s from South, Track Conv. =

15m/s, Wind=

Standard UAV & Sensor Tracks (TAS

1200 1400 1600 1800 2000 2200

1000

600

2600 - - - - -

2400 - - - - -

2200 - - -+~
2000 /- -
1800 -

[w] wnreq woiy yuoN

1400
400

East from Datum [m]

=250

5m/sand TC

Figure 57. Standard UAV Race Track Pattern at 15 m/s with Wind

95

|

1 1 1 1 1
5,645 ©5.65 5655 566 5665 567 5675 568 5685 5.69

TAS [m/s]

7 System Time [s] % 10"
é 30 I I I I I I I I
220 - L S | S A S
(%) I I |
- 10 L L L L L L
(% 5.645 565 5.655 566 5665 567 5675 568 5685 5.69
System Time [s] % 10"
—. 352
% 350 -~ ra oA T e e A e S O S
E 348 1 1 1 1 L | | |
5.645 565 5655 566 5665 567 5675 568 5685 5.69
E System Time [s] « 10°
o 400
= 200 g o
-% | | | |
% 0 L | L | | |
2 5.645 565 5655 566 5665 567 5675 568 5685 5.69
s System Time [s] X 104

Figure 58. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250

N
o

Wind Heading [deg]
[5=Y
o

|
0 : L |
5.645 565 5655 566 5665 567 5675 568 5685 5.69
System Time [s]

x 10
400 ; T T ; T
| | | | ‘ ‘ ‘ |
| | | | | |
200 -+ -===4-) — i R
| | | ‘ ‘ |
| | | |
O it L L L el
5.645 . . 5.66 5.665 5.67 5.675 5.68 5.685 5.69
System Time [s] x 10

i

l

-

| | | |

| | | | | |

| | | | | |

| | | | | | | |
5.645 5.65 5655 566 5665 567 5675 568 5685 5.69
System Time [s] % 10"

Cross Track Distance [m] \yind Vel [deg]

Figure 59. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250

96

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 250)
2600 --------—— e e

UAV Track
Sensor Track

|

|

|

1

|

1 =O— waypoint !
| |
|

|

|

|

|
|
|
:
2400F -~ —1—-—— -~ 4NN e [: ——————
|
|
|
|
|
|
I

m]

2200

2000

North from Datum [

1800

1600

| |
| |
| |
l l
| |
1400 : : :
400 600 800 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 60. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250

TAS [m/s]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73
System Time [s] 4

10
5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73
System Time [s] 4

Grnd Spd [m/s]
N
o
T
|
|
|

Alt [m]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73
System Time [s]

feqR SR [—
|
1

0
5.695 5.7 5.705 571 5.715 5.72 5.725 5.73
System Time [s] x 10°

Mag Heading [deg]
N
o
o
T

Figure 61. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250

97

™ ™ ™
~ o ~ o ~ o
B "o 0 To 0w To
— — —
x x x
o) Ire) re)
N N N
™~ ™~ ™~
n n n
N N N
™~ ™~ ™~
o] 0 0
) R R
~ ~ ~
6 g 6 g 6 g
E E E
g g g
| i i
~» ~ o ~®
5 > 5 > >
© ¢ © @ © ¢
0 To) To)
o o o
™~ ™~ ™~
n n n
R
|
™~ ————— ™ ™~
Lo | n [Te)
I
|
| |
| o) | 0 0
, 3 , 3 3
o [=) o - o o o :
3¢ — o o o o Lo
<5 Y

Bap] 6
[bsp] BuipeaH puim [6ap] I9A PUIM [w] souelsiq YorIL SS0ID

=250

5m/s, & TC

Figure 62. Real Time Wind Estimations for the Race Track at 20 m/s, Wind

= 250)

5 m/s from South, Track Conv.

30m/s, Wind=

Standard UAV & Sensor Tracks (TAS

1200 1400 1600 1800 2000 2200

1000

600

2600 - - -

2200} - - -~
000} - -~
1800} - -

N

[w] wnyeq wouy yuoN

1400
400

m]

[

East from Datum

=250

5m/sand TC

Figure 63. Standard UAV Race Track Pattern at 30 m/s with Wind

98

TAS [m/s]

L L
5.735 5.74 5.745 5.75 5.755 5.76
System Time [s] % 10"

Grnd Spd [m/s]

Alt [m]

5.735 5.74 5.745 5.75 5.755 5.76
System Time [s] N 104

o | |
5.735 5.74 5.745 5.75 5.755 5.76
System Time [s] % 10°

Mag Heading [deg]
N
o
o

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i

|

|

|

|

|

|

|

|

|

|

Figure 64. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250

5
o

Wind Heading [deg]

|
|
5
l
|
o 1 1
5.735 5.74 5.745 5.75 5.755 5.76

| |
_500 : 1 1 :
5.735 5.74 5.745 5.75 5.755 5.76

System Time [s] x 10"

Cross Track Distance [M] \yind Vel [deg]

Figure 65. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250

99

Standard UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South, Track Conv. = 150)
2400

2200

2000

1800

North from Datum [m]

1600

1400 UAV Track

Sensor Track
—O— Waypoint
1200 ‘ ‘

|

|

|

:

1
400 600 800 1000 1200 1400 1600 1800 2000 2200
East from Datum [m]

Figure 66. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=150

Z 14 T T T T T T
£ v it gt ol ‘ VI
2 1o | | | | | |
= 577 5.78 5.79 5.8 5. 81 5.82 5.83 5.84
@ System Time [s] ¥ 10
g 20 T T T T T
2100 —— e e N S
2 0 l l l l l l
(% 5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84
_ 352
£ 350
E 348 | | :
5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84
g System Time [s] « 10*
o 400 :
c |
S 200 EE (R
jq:) O | : |
= 5.77 5.78 5.79 5.8 5.81 5.82 5.83 5.84
s System Time [s] % 10"

Figure 67. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=150

100

I
|
|
|
l
L
5.83 5.84
X 104

I

|

|

|

|

1
5.82

I

|

)

|

|

1
5.81

I
|
|
!
|
1
5.8
System Time [s]

I

I

I

I

|

1
5.79

!
|
:
|
l
5.78

[6ap] BuipesH puim

3
T - < T
| o =] |
| — |
| x |
| |
, v}
L =) L=]
- o}
= [N
L 0 [N
E=———— 1y |
|
I
o=
s | __] __|
L n O
! E
T
e
L
| ——=2% % | —=—"__
o >
()
|
|
——(I
\H\\,\\\\J S]
I o I
T I
T
8
\W \\\\\\\ ~ L >
” 13 ,
| |
| |
| |
| N~ |
| ~ |
o o ow o o o
o] Ire) re)

5.8 5.81 5.82 5.83 5.84
System Time [s] % 10

5.79

5.78

[6ap] oA puipy [W] ddouelsIQ 9.1l SS0ID

5m/s, & TC=150

Figure 68. Real Time Wind Estimations for the Race Track at 12 m/s, Wind

150)

5 m/s from South, Track Conv. =

15m/s, Wind=

Standard UAV & Sensor Tracks (TAS

o
\\\ o
| N
I ~ N
| Q
| x ®
8 F E =4

=
'F 5 9 S
> 2 X N
c

g o 8

3 n 2 o

! o

r [¢6)

| i

I

I

! o

| o
©

—

o

o

<t

—

o

o

N

—

o

o

| | o
I I -
I I
I I
I I o
—+ —+ o
I I S9)
I I
I I
I I
| | (=]
T T T T T 1 T I T T m
I I i I I I I | I I
I I I | I I I | I I
I I I i | I I | I I
I I I I I | | I I I
L 1 1 1 1 1 1 1 1 1 m
O ©o ©Oo ©Oo O oo o o o o oY
o o o o o oo o o o o o
S M N 4 O o oo 0~ O 9 un @<
N N N N N A HdH " H H -

[w] wnreq woyy yuoN

East from Datum [m]

=150

5m/sand TC

Figure 69. Standard UAV Race Track Pattern at 15 m/s with Wind

101

TAS [m/s]

I

14 L L L L L L L L L
5.84 5845 585 5855 5.86 5.865 5.87 5875 588 5.885 5.89
System Time [s]

w x 10

é 30 I I I I I I I I I

220 - O M
(%) | | |

- 10 L L L L L

£ 584 5845 585 5855 586 5865 5.87 5.875 5.88 5885 5.89

© System Time [s] ¥ 10
—_ 352 I I I I I I I I I
£ 350/ -~ - R R SISV e TN
E 348 : 1 1 : | : | : :

584 5845 585 5855 586 5865 587 5875 588 5885 5.89

_g'} System Time [s] X 104
o 400 \ \ \ \ \ \ \ \ \
£ |
E 200 I | | | o 7: 77777 : 77777 o C
T 0 | | | | | | L L

2 584 5845 585 5855 586 5865 587 5875 588 5885 5.89
s System Time [s] X 104

Figure 70. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=150

[any
o

Wind Heading [deg]
(&)

|
|
|
o 1 1 1 1 1 1 1 L L
584 5845 585 5855 586 5865 587 5875 5.88 5885 5.89

System Time [s] % 10

N
o
o

N
o
o

|

|

|
o | | | | L
584 5845 585 5.855 5.86 5.865 5.87 5.875 5.88 5.885 5.89
System Time [s] % 10

=
o
o

o

|
| | |
| | |
O 1 1 1 1 1 1 1
584 5845 585 5855 586 5865 5.87 5875 5.88 5885 5.89

=
o

Cross Track Distance [M] wind Vel [deg]

System Time [s] % 10

Figure 71. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=150

102

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 150)
2600 ””” B LI ro-- -0~ [T~ - - - T - -~ |

UAV Track

|
|
|
! Sensor Track
|

2400

2200

2000

North from Datum [m]

1800

1600

1400 I
400 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 72. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=150

z 22 T T T T T T
é 20+
2 18 | | | | : |
F "59 5.905 5.91 5.915 5.92 5.925 5.93 5.935
7 System Time [s] % 10"
E
e}
7l
o
E 59 5.905 5.91 5.915 5.92 5.925 5.93 5.935
V]
System Time [s] % 10"
—_ 352 T T T T T T
£ 350F - - A - AAC T AT AT SO T A - - -
= |
< 348 | | |
5.9 5.905 5.91 5.915 5.92 5.925 5.93 5.935
S System Time [s] « 10"
kel
E 400 T T T T T T
< |
§ 200 i o 7\ 7777777777 | : 7777777
T 0 | | | | | |
o 59 5.905 5.91 5.915 5.92 5.925 5.93 5.935
IS
= System Time [s] % 10"

Figure 73. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=150

103

591 5.915 5.92 5.925 5.93 5.935

5.905

[6ap] BuipeaH puim

System Time [s]

0 0
[S2) <2}
% Y5 T @ s
n | nw
< ” <
[32) a2}
@ @
[To) [Te}
Te) Te)
IN [N
o o
[To) Te}
|
! — —
| N »n N n
9[9[
n @ o @
E E
F F
S IS
0 o 0
» n
SIS SHES
w N 0 N
I I
@ o
[To) Te}
7o) [Te)
o o
© @
[T9) [Te}
@ @
ow [Te}

[6p] 1A PUIM [w] aouelsiq yoelL SS0ID

=150

5m/s, & TC

Figure 74. Real Time Wind Estimations for the Race Track at 20 m/s, Wind

150)

5 m/s from South, Track Conv.

30m/s, Wind=

Standard UAV & Sensor Tracks (TAS

[w] wnreq woyj yuoN

1200 1400 1600 1800 2000 2200

1000

600

400

]

m

[

East from Datum

5 m/s and TC=150

Figure 75. Standard UAV Race Track Pattern at 30 m/s with Wind

104

TAS [m/s]

28 | | | |
5.94 5.945 5.95 5.955 5.96 5.965
7 System Time [s] % 10"
E
e}
Q.
n
o 20 | | | |
8 5.94 5.945 5.95 5.955 5.96 5.965
System Time [s] % 10°
— 355
% 350
2 345 | | | |
5.94 5.945 5.95 5.955 5.96 5.965
g System Time [s] « 10*
E
c
=
©
(5]
T 0
2 5.94 5.945 5.95 5.955 5.96 5.965
s System Time [s] X 104

Figure 76. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=150

N
o

Wind Heading [deg]
[
o

|
l
1 1 1
94 5.945 5.95 5.955 5.96 5.965

0
5.
System Time [s] X 104

o 400 \ \ \

Q

S

S 200p - A B i i A
=] ! |

c | | |

§ 0 | | | I
. 5.94 5.945 5.95 5.955 5.96 5.965
=)
= System Time [s] % 10"
8 500 T T T T

© | | | |
E | | | |

2 o . | R
X [| | |

Q | | | |

E | | | |

[_500 1 1 1 |

@ 5.94 5.945 5.95 5.955 5.96 5.965
o .

5 System Time [s] % 10"

Figure 77. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=150

105

= 50)

5 m/s from South, Track Conv.

12m/s, Wind=

Standard UAV & Sensor Tracks (TAS

1800 -

[w] wnyeq woiy yuoN

1600 -

1400

2200

2000

600

400

East from Datum [m]

=50

5m/sand TC

Figure 78. Standard UAV Race Track Pattern at 12 m/s with Wind

[{e] [{e]
— —

- <t - <

— o — o

— —

x x
n Ln
- —
— —
< <
= —
— —

NN ST

- O - O

S S

= E

5 &

8 3 N3

1> I >

A7) A7)
— —
— —
i i
— —
i i
(2] (2]
o 1 o
O O O Od

AN
[s/jw] svl [s/w] pds puio

© ©
14 14
14 Yo e Yo
| — | —
I < I <
| |
| |
! T} ! 0
FJE -4 -
| i i
|
< <
= —4<1 -~
—i —i
. o T
L 18 L o L
- @ - @
= =
[[
§ §
~ o~
L ERE IR - O
- 2 - 2
n n
— —
L ERE —
i i
| | —
i i
o o
= <
n O —
[Te) <
™ ™

[w] nv

[6ap] BuipesH Bew

=50

Figure 79. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC

106

1.12 1.13 1.14 1.15 1.16
System Time [s] % 10°

111

11

[6ap] BuipesH puim

© (e
— —
T P T S
| — O | - O
| — | —
| x | x
| |
| |
. To) 0
— P
— — —
1
T
! <
N —
! -
i
— 0w
20 S SRR IR
[0) - o
E £
E E
5 §
N
R 18
-«
= — 2 n
-« -
— R P
———— -«
= - d--_4 =
=+~ —
i i
| |
| |
! [e2] ! [e2]
| o | o
o o O o o O
o o — o 01
< N Te) E__.v

[Bap] I9A PUIM [w] sourysiq YorlL SSOID

=50

5m/s, & TC

Figure 80. Real Time Wind Estimations for the Race Track at 12 m/s, Wind

= 50)

5 m/s from South, Track Conv.

15m/s, Wind=

Standard UAV & Sensor Tracks (TAS

UAV Track
Sensor Track

|
+

1200 1400 1600 1800 2000 2200

1000

600

2600 - - - -

2200 - - -
2000 /- - -
1800 - - - -

[w] wnyeq woiy yuoN

1600 - - -

1400
400

East from Datum [m]

5 m/s and TC=50

Figure 81. Standard UAV Race Track Pattern at 15 m/s with Wind

107

TAS [m/s]

| | | |
1.16 1165 1.17 1175 118 1.185 1.19 1.195 1.2 1.205
System Time [s] x 10"

|

| | |
16 1165 117 1175 118 1185 1.19 1.195 1.2 1.205
System Time [s] % 10"

Grnd Spd [m/s]

E
< ‘
1.16 1165 1.17 1175 118 1.185 1.19 1.195 1.2 1.205
§ System Time [s] % 10°
(o))
c
=
© |
%’ 0 | |
2 1.16 1165 1.17 1175 118 1185 1.19 1.195 1.2 1.205
= System Time [s] % 10°

Figure 82. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=50

N
o

Wind Heading [deg]
=
o

0 |
116 1165 1.17 1175 1.18 1185 1.19 119 1.2 1.205

System Time [s] X 104

= 400 \ ‘
: (T |
—_ | |
T 1B]
ke | I
£ ! !

0 I |
f 1.16 1.165 1.17 1.1v5 1.18 1185 1.19 1. 195 1.2 1.205
E, System Time [s] 4
° x 10
8 500 T T T T T 1 1 T
8 | | | | | | N |
ﬂ | | | | | | | |
D L | | | | - | \7 y | N | N
% 0 | | | | | | | |
© l l l l l l l l
|l -500 I I I I I I I I
a 1.16 1.165 1.17 1.1v5 1.18 1.185 1.19 1.195 1.2 1.205
o .
5 System Time [s] X 104

Figure 83. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=50

108

Standard UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, Track Conv. = 50)
2600 -~ -=-~--=--f-====S===-=f--===--—-q-==== Fommammmmod

UAV Track
Sensor Track

| |
| |
1 1
| |
| |
2400 Lo s NN - - s b - | =O—waypoint |2
i | | |
| |
| |
| |
| |
I

|
l
2200 e (s - - e R
: |
|
|

2000 F---- - @y -1~

North from Datum [m]

|
|
|
|
1800 = - O———— e v
f f |
|
|
|

1600~~~ — - b N gy .

| I
| |
| |
| |
| |
1400 | | ‘
400 600 800 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 84. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=50

@
E
[9))] |
<< 18 I I I I I I I I I
F 1216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236
7 System Time [s] % 10"
E
-8_ _—d - —— -+ - = -
n
e}
g 1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236
System Time [s] % 10"
., 355
E 350
= |
< 345 :
1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236
g System Time [s] « 10°
; 400 T T T T T T T T T
S 200 - - -
% | | | | | |
:Clt) O | | | | | | | |
> 1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236
= System Time [s] % 10"

Figure 85. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=50

109

1.216 1.218 1.22 1.222 1.224 1226 1.228 123 1.232 1.234 1.236

[6ap] BuipesH puip

x 10

System Time [s]

2 1222 1224 1.226 1.228 1.23 1.232 1.234 1.236

1.2

x 10

System Time [s]

0
200 -
0

1.216 1.218

-100

1.216 1.218 1.22 1.222 1.224 1.226 1.228 1.23 1.232 1.234 1.236

X 104

System Time [s]

[Bap] [9A puIm [w] aoue)SIq ¥oRIL SS0ID

=50

5m/s, & TC

Figure 86. Real Time Wind Estimations for the Race Track at 20 m/s, Wind

= 50)

5 m/s from South, Track Conv.

30m/s, Wind=

Standard UAV & Sensor Tracks (TAS

UAV Track

Sensor Track

2200

2000

1400 1600 1800

1200

1000

400

2600 - - - -

2400 - - - -

2200 - - -

2000 - - - -

[w] wnyeq woiy yuoN

1600 - - -

1400 - -

1200
200

East from Datum [m]

=50

5m/sand TC

Figure 87. Standard UAV Race Track Pattern at 30 m/s with Wind

110

v 32

.g. 30 | —
wn | | | |

< 28 I I I I

F 1245 1.25 1.255 1.26 1.265 1.27
o)

E

©

o

n

he]

£

O]
— 355
% 350 - - F N - s A AN A\ -
2 345 1 | : L

1.245 1.25 1.255 1.26 1.265 1.27

§ System Time [s] % 10"
o 400
=
S 200 -
(5]
T 0

o 1.245 1.25 1.255 1.26 1.265 1.27
T
s System Time [s] X 104

Figure 88. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=50

N
o

Wind Heading [deg]
N
o

0 1
1.245 1.25 1.255 1.26 1.265 1.27
System Time [s] x 10"

a 400 T T T
% 7 I | |
s ‘ ol 1N} 1l
| B Lt e o * T o
o | | | |
c | | | |
§ 0 | I
1245 1.25 1.255 1.26 1.265 1.27
E
(O]
g 500
IS
k7
2 0
X | |
g | |
= -500 I I I I
a 1.245 1.25 1.255 1.26 1.265 1.27
O "
5 System Time [s] x 10"

Figure 89. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=50

111

MODIFIED FLIGHT PATH RESULTS

2500

2400

2300

2200

2100

2000

1900

North from Datum [m]

1800

1700

1600

Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)

UAV Track

Sensor Track

1500
400

Figure 90. Updated UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250

1
1000 1200 1400
East from Datum [m]

|
l
1
600 1600 1800 2000 2200

@ 15 \ \ \ \ \

g | | | | |

) | I | | l

< 10 | | | | |

= 200 300 400 500 600 700 800
= System Time [s]

E

e}

jo

n

e}

=

O
= 355 \ \ \ \ \
= 350
2 345 L L L L L

200 300 400 500 600 700 800

_g',’ System Time [s]
o 400
=
= 200F---c- =TT T - o - = = S
% 0 L L

= 200 300 400 500 600 700 800
= System Time [s]

Figure 91. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250

112

500 600 700 800
System Time [s]

400

300

[6ap] BuipeaH puim

[6p] [19A PUIM W] aouelsiqg yoelL ssoiD

o
I Q I
| [¢¢] I
| |
| |
| |
| |
| |
— o
I I (A
| ~ |
|
o
o S
©
@
£
o =
SE |+ |
=
! Q
—_ -
| S— WJ
= 1)]
T I
— o |
— e Na} Lo =T _
 — o
e —— o S - — -
[92]
— o
o
o oWN o o o
o o o o
N - 1__

600 700 800

00

5
System Time [s]

400

300

=250

5m/s, & TC

Figure 92. Real Time Wind Estimations for the Race Track at 12 m/s, Wind

5 m/s from South)

15m/s, Wind=

Updated UAV & Sensor Tracks (TAS

UAV Track

Sensor Track

2000 2200 2400

1400 1600 1800

0 1000 1200

80

600

400

2200 - -
000 -
1800 - - -

N

[w] wnieq wouy yuoN

1400

]

m

[

East from Datum

=250

5m/sand TC

Figure 93. Updated UAV Race Track Pattern at 15 m/s with Wind

113

v 18

E 16— L g g s
7] |

< 14 | | | | |

= 750 800 850 900 950 1000 1050 1100 1150 1200 1250
= System Time [s]

E 30 \ \ \ \ \ \ \ \ \

-8-20 77777 == = = 7 :7777‘\777777777T7777!77777\ 77777777777
(%) |

L o] lo | | | |

LED 750 800 850 900 950 1000 1050 1100 1150 1200 1250

System Time [s]

Alt [m]

|

1 1
750 800 850 900 950 1000 1050 1100 1150 1200 1250
System Time [s]

L
1100 1150 1200 1250

0 | | | |
750 800 850 900 950 1000 1050
System Time [s]

Mag Heading [deg]
N
o
o
|
|
|
|
0
|
|
|
|

|
|
|
|
|

Figure 94. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250

g
20— 717 T T
(@] | | | | | | | | |
% 10 | | | | | | | |
————— - ——=—- B e i e B —— - ==
8 | |
T |
'g I I I I I I I I I
S 750 800 850 900 950 1000 1050 1100 1150 1200 1250
System Time [s]
400 T T T T T T T
‘ L | O
200L---- 1 I | A

|
I
- -
I
I
I

|

|

|
O |
750 800 850 900 950 1000 1050 1100 1150 1200 1250
System Time [s]

200

| | |

1 1 1

| | | |
750 800 850 900 950 1000 1050 1100 1150 1200 1250
System Time [s]

Cross Track Distance [M] ind Vel [deg]

Figure 95. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250

114

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)
2600 ----7-----—-—-——"-————{-————G-—————"-———"—;-————S--———-

UAV Track
Sensor Track

|

|

|

l

—()— Waypoint L
T T |

|

|

|

|

2400

2200

2000

North from Datum [m]

1800

1600

| |
| |
: :
| |
1400 ! !
400 600 800 1000 1200 1400 1600 1800 2000 2200

East from Datum [m]

Figure 96. Updated UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250

TAS [m/s]

|
15 L L L :
1200 1250 1300 1350 1400 1450 1500 1550 1600
System Time [s]

|
3
10 ; |
1200 1250 1300 1350 1400 1450 1500 1550 1600
System Time [s]

Grnd Spd [m/s]
N
o

Alt [m]
w
a1
o

T
|
L L L
1200 1250 1300 1350 1400 1450 1500 1550 1600
System Time [s]

1 1
1350 1400 1450 1500 1550 1600
System Time [s]

O 1
1200 1250 1300

Mag Heading [deg]
N
o
o

Figure 97. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250

115

=250

1400

(@)
T
w3 e e e [
m 8 m W I ~ I I I I
| S | 3 | 3 = o ! ! ! !
| | | Lo 5 X m - | | | |
| | | Il o lgFE____1______ N B Lo
| | | e] 0N "= = B T f i i
| 2 , 3 3 = c ! = S a | | ! |
F4——q-—--— | V = > | | | |
4 , 4 4 = 2z o m ” ” ” ”
| o o I D 1 = 1 N
| = =
g |===3 g £ =
e 0 o & & o
=——— - T
— © £
o ! o o 3 2 |
| = ——— | O o < -
S5 , <5 S5 © o
= , AT) [£
) =)) <) S
o E =" o E o E e 1l
oOF |70 F o a4)
< < < <
— £ , — £ — £ ® =
[0} | Q Q R ~
2 Qe 2
n - 7] n = %]
) . o @) 5 S
re] 0 ry} L ©
™ ™ ™ —
— — — m ~
S S
g g g g g
g g g £ ?
k7] o3
L >
o o o o <
re] e re] c)
N | N N =
— | — — W w {
” 3) o | | | { |
, IS .m., | | | | |
m | m m —_— U | | i ! | |
oy g g oS S F | | ” ” ” |
[Bop] 6 ¥ 3 8 S S S S S
ap] BuipeaH puIp
[Bap] oA puIm [w] aouelSIq oelL SS0ID R & N A\ Q S =
o0
o [w] wnyeqg woly yuoN
[<5]
.
S
2
[

2400
=250

2200
5m/sand TC

116

1000 1200 1400 1600 1800 2000
East from Datum [m]

600 800

400
Figure 99. Updated UAV Race Track Pattern at 30 m/s with Wind

TAS [m/s]

1 1
1550 1600 1650 1700 1750 1800

o
£
©
o
7]
- 20 .
(% 1550 1600 1650 1700 1750 1800
_, 355
% 350
< 345 ‘
1550 1600 1650 1700 1750 1800
g
S
> 400
=
S 200
()
T 0 :
=2 1550 1600 1650 1700 1750 1800
= System Time [s]

Figure 100. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250

N
o

Wind Heading [deg]

0
1550 1600 1650 1700 1750 1800

0
1550 1600 1650 1700 1750 1800

i

-500
1550 1600 1650 1700 1750 1800

System Time [s]

Cross Track Distance [M] wind Vel [deg]

Figure 101. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250

117

5 m/s from South)

20m/s, Wind=

Updated UAV & Sensor Tracks (TAS

UAV Track

Sensor Track

[w] wneq woiy yuoN

1800} - - - - - -~

1600

0

-500

East from Datum [m]

=250

5m/sand TC

Figure 102. Updated Long Point to Point at 20 m/s with Wind

1.35

1.34

1.32

1.3

[s/w] sv1

To}
< 00.4
o - O
— —
x x

<

@

-

™

™

-
“ “
g g
= N =
= ™
IS — £
(7] (7]
- -
n n
> >
n n

—

®

—

™

-

o))

1 N

O O Od

® Q& 37

[s/w] pds puio

1.35

1.34

1.33

1.32

1.31

[w] 1w

o)
o - "o
=1 , =1
x | x
|
|
|
<
®
-
I}
™
-
o, o,
g g
= o=
= ™
e — £
9] 9]
- -
0 0
> >
(%) (%)
-
™
-
™
-

[Bap] BuipeaH ben

=250

Figure 103. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & TC

118

1.35

x 10
1.35

x 10
1.35

x 10

1

|

|

|

|

1
1.34

3

1

|

|

|

|

l
1.34

1.33
1.33
1
1.33

1.32
System Time [s]
1
|
|
|
|
1
1.32
System Time [s]

1
|
|
JE S
|
|
L
1.32
System Time [s]

3
1
|
|
|
|
l
1.31

1.3
1.3
1.3

,
,
,
,
,
I o
L N
o o O
« —

29

OF---

o)
N
—

1

500

o
S
o

[s/w] AwoojpA puim [65p] BUIPESH PUIM [1 o) $S015

250

5m/s, & TC

119

Figure 104. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South, 20% Lower Alt)
2600 - == === == === == mmmmmmmm e m e

UAV Track
2500 + Sensor Track

—O— Waypoint
|

2400 1

2300} - - - - -

2200

2100

North from Datum [m]

2000

1900

1800

|

|

|

1700 :
0 500 1000 1500 2000 2500 3000

East from Datum [m]

Figure 105. Updated Long Point to Point at 20 m/s with Wind=5 m/s & Lower Alt

g 25 \ \ \ \ \
= 20 -~~~ ‘ e
) | | | | |
< 15 I I I I I
= "3400 3500 3600 3700 3800 3900 4000
= System Time [s]
E
©
o
n
Lo 10 L L L L L
(% 3400 3500 3600 3700 3800 3900 4000
System Time [s]
= 285 \ \ \ \ \
= 280 ; l
2 275 : L L | :
3400 3500 3600 3700 3800 3900 4000
g System Time [s]
‘o 400 \ \ \ \ \
£ 200 - - - - - - - — - R
g ‘ | |
% 0 L L L L L
= 3400 3500 3600 3700 3800 3900 4000
> System Time [s]

Figure 106. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & Lower Alt

120

o
E 20
> | | | | |
8 10p------mm- A R SRR R IR -
(] | | | | |
> !
T 0 1 1 1 1 1
S 3400 3500 3600 3700 3800 3900 4000
_ System Time [s]
8 400 ; ‘ ‘ ;
g WL |
o HIH 1 | “ “H ' | W‘
£ ‘ 1 1
20 1 ‘ 1
< 3400 3500 3600 3700 3800 3900 4000
= System Time [s]
n 900 | | | |
o 1 1 1 1 1
¥ ool S % VAN B
= | | | | |
3 500 1 1 1 1 1
8 3400 3500 3600 3700 3800 3900 4000

System Time [s]

Figure 107. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & Lower Alt

121

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=10 m/s from North)
2350--------------- e

L L | | |
UAV Track | | |
2300 - Sensor Track F~~ -~ |

—(O— waypoint

2250 -

2200

m]

2150

2100

2050

North from Datum [

2000

1950

1900

|
|
B
| |
| |
| |
1850 ‘ ‘ ‘
-500 0 500 1000 1500 2000 2500 3000

East from Datum [m]

Figure 108. Updated UAV for Point to Point with Wind =10 from North

TAS [m/s]

| | |
7100 7200 7300 7400 7500 7600 7700 7800
System Time [s]

| | | [
7100 7200 7300 7400 7500 7600 7700 7800
System Time [s]

Grnd Spd [m/s]
N
o

Alt [m]
w
a1
o
T
|
|
|
|
|
|
|
|
|

| | | 1
7100 7200 7300 7400 7500 7600 7700 7800
System Time [s]

0 1
7100 7200 7300 7400 7500 7600 7700 7800
System Time [s]

Mag Heading [deg]
N
o
o

|
|
|
|
|
|
T
|
|
|
|

Figure 109. Various Parameters for the Point to Point with Wind=10 m/s from the North

122

y [m/s]
N
(=]

7100 7200 7300 7400 7500 7600 7700 7800
System Time [s]

300

200

100 ‘ :
7100 7200 7300 7400 7500 7600 7700 7800

System Time [s]

100

forin 1l

Cross Track Dis [m] \ind Heading [deg] Wind Velocit

00
7100 7200 7300 7400 7500 7600 7700 7800
System Time [s]

Figure 110. Real Time Wind Estimations for the Point to Point with the Wind=10 m/s from the North

123

Appendix B: Software Development Kit (SDK) C++ Code

J L]

Test file for piccolo communication
Programmed by: Brent Robinson

Date: 9 May, 2006

**/

#include<iostream.h>
#include<conio.h>
#include<string>

#include "CommManager.h"
#include "Win32Serial.h"
#include<stdlib.h>
#include<windows.h>
#include"lla2enu.h"

using namespace std;

//Basepoint to use for all ENU coordinates...It's location is south and west of WPAFB
const double Base X = 503000;

const double Base Y = -4884700;

const double Base Z =4057800;

CCommManager* m_pComm = NULL;
Queue t* pQ =NULL;

//Used for converting the waypoint 1la data to ENU coords
ENUCoord PosENU;

ENUCoord newwpENU;

ENUCoord WayENU;

//To log the desired data in a .txt file
FILE * pFilel;

//function prototypes
void displayData(int i);

void BrentsWindCorrection(int i); //Real time wind estimation function

void SensorAdjustment(int i); //Wind Corrected Sensor Pointing

/Ivoid HeadingAdjust(int i); //Heading Adjustment function for the "turn rate approach"

/Ivoid AirspeedAdjust(int i); //Airspeed Adjustment function for the "turn rate approach”

/Ivoid WaypointTrackReturn(int 1); //Attempt at a function to turn off the turn rate commanding and return to normal
ops

/Ivoid WaypointFlyingnotTrackFlying(int 1); //Attempt at a function making the Piccolo a pure waypoint tracker instead

of a track follower
/Ivoid WaypointInfoFinding(int i, FPPoint_t& pntWaypoint); //Attempt at a function which accesses the waypoint lla data
/Ivoid UpdatingWaypointadjustingforWind(int i);//, int next); //Updating "Rabbit" approach

//data structure to hold telemetry packet data

typedef struct
{
double Longitude; //from LLA data: Telemtry packet
double Latitude; //from LLA data: Telemtry packet
double East; //calculated from LLA data using lla2enu class
double North; //calculated from LLA data using lla2enu class
double Up; /lcalculated from LLA data using 1la2enu class
float Altitude; //from LLA data: Telemtry packet
float Velocity; //from GPS.Speed: Telemetry packet
/l float Alpha //anlge between velocity and direction of nose of plane vertically

124

1

float Beta;

int Hours;

int Minutes;
float Seconds;

//angle between velocity and direction of nose of plane horizantally

//Brent added these
float Direction; //GPS Ground Track Direction
float TAS; //Aircraft TAS
double Lat; //Current aircraft Latitude
double Lon; //Current aircraft Longitude
float CrossTrack; /[Current Cross Track Distance
float AlongTrack; //Current Along Track Distance - Distance from the current waypoint
} telemetry;

//data structure to hold control packet data
typedef struct

} control;

float Heading;
float BankAngle;
float RollRate;
float PitchRate;
float YawRate;

float Aileron;
float Elevator;
float Throttle;
float Rudder;
int Hours;

int Minutes;
float Seconds;

//Brent added these
float MagHeading;
float Pdynamic;

//from Yaw reading: Control Data packet
//from Roll: Control Data packet

//from Roll Rate: Control Data packet
//from Pitch Rate: Control Data packet

//from Yaw Rate: Control Data packet

//Current aircraft magnetic heading
//Current dynamic pressure

// global variable used when the packets are decoded - allows for 10 networks
telemetry current_telemetry[10];
control current_control[10];

//Brent added these

FPPoint_t current waypoint[10]; //Attempt at setting up another "switch" group

Gains_t current_gains[10];

//Brent ADDED these
float V_w;

float Chi_w;

float Chi_w_deg;
float V_TASnew;
float density;

float Pdynamic_new;
float Chi_Magnew;
float Chi_Magnew_deg;
float turnrate;

float cmd_speed;

int count=0;

float e;

float f;

float Dis;

//float toofar;

//float angle deg;
//float angle;

//float abscos;

//float abssin;

float enu69east;

float enu69north;

//Attempt at setting up another "switch" group

double current_waypoint_Latitude;

125

double current_waypoint Longitude;
float current waypoint_Altitude;
Ulnt8 Waypoint_cmd[10];

Ulnt8 orig;

Ulnt8 orignext;

float Dis2;

float Horiz;
double Adjustl;
double pointOLat;
double pointOLon;
double Alt0;
double pointlLat;
double point1Lon;
double Altl;
double point2Lat;
double point2Lon;
double Alt2;
double point3Lat;
double point3Lon;
double Alt3;
double point4Lat;
double point4Lon;
double Alt4;
double pointSLat;
double point5SLon;
double Alt5;
double point6Lat;
double point6Lon;
double Alt6;

double enu60east;
double enu60north;
double enu60alt;
double enu61east;
double enu61north;
double enu61alt;
double enu62east;
double enu62north;
double enu62alt;
double enu63east;
double enu63north;
double enu63alt;
double enu64east;
double enu64north;
double enu64alt;
double enu65east;
double enu65north;
double enu65alt;
double enu66east;
double enu66north;
double enu66alt;

float EastonTrack;
float NorthonTrack;
float e2onTrack;
float f2onTrack;
float LOS Dis;

float Adjustla;
float Adjust2a;
float T;

float theta_one;
float €2;

float 2;

float star;
float sinfromNext;
float cosfromNext;

126

float theta m;
float delta_1;
float delta_2;

//clears the screen
void clrscr()

{
HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
COORD coord = {0, 0};
DWORD count;

CONSOLE_SCREEN BUFFER_INFO csbi;
GetConsoleScreenBufferInfo(hStdOut, &csbi);

FillConsoleOutputCharacter(hStdOut, ' ', csbi.dwSize.X * csbi.dwSize.Y, coord, &count);

SetConsoleCursorPosition(hStdOut, coord);

}

//as defined in "index.html": from SDK documentation
void NewNetwork(UInt16 NetworkID, void* Parameter)

{
H

/Nlooks for and gleans data from an autopilot packet sent from a network
void LookForAutopilotData(QType* pQ, int whosData)

{
static AutopilotPkt t APPkts[10];

Ulnt32 i, NumNets;
SInt32 ID;

//look at how many networks m_pComm can see
NumNets = m_pComm->GetNumNets();

for(i = 0; i < NumNets; i++)

{
// Don't display past 10 networks since we didn't include the space
if(i >= 10) break;

ID = m_pComm->GetIDFromIndex(i);

// Don't try to decode ground station packets
//if(ID < 1) continue;

/I Get the pointer to the receive queue for the autopilot stream. Note

// this pointer will persist as long as the network structure exists,

/I so we could just save the pointer and then we wouldn't have the

/I overhead of repeatedly calling this function

pQ = m_pComm->GetStreamRxBuffer((UInt16)ID, AUTOPILOT STREAM);

if(!pQ) continue;

/I Now check to see if a packet exists. Note!!! The raw packet
/I structure MUST persist between calls, and it MUST be unique to this
/I network.

if(LookForAutopilotPacket(pQ, &(APPkts[i])))
{
switch(APPkts[i].PktType)

{
case TELEMETRY:

UserData_t telemData;
DecodeTelemetryPacket(&(APPkts[i]), &(telemData));
//update telemtry struct

127

current_telemetry[i].Longitude = telemData.GPS.Longitude * 180.0 /
3.1415926;
current_telemetry[i].Latitude = telemData.GPS.Latitude * 180.0 / 3.1415926;
current_telemetry[i].Altitude = telemData.GPS.Altitude;
current_telemetry[i]. Velocity = telemData.GPS.Speed;
current_telemetry[i].Direction = telemData.GPS.Direction; //Brent added
current_telemetry[i].TAS = telemData.TAS; //Brent added
current_telemetry[i].CrossTrack = telemData.CrossTrack; //Brent added
current_telemetry[i]. AlongTrack = telemData. AlongTrack; //Brent added

//convert 1la data to enu
PosENU.1la2enu(current_telemetry[i].Latitude *3.1415926/180,
current_telemetry[i].Longitude
*3.1415926/180,
current_telemetry[i].Altitude,
Base X, Base Y, Base Z);

current_telemetry[i].East = PosENU.GetEast();
current_telemetry[i].North = PosENU.GetNorth();
current_telemetry[i].Up = PosENU.GetUp();

current_telemetry[i].Hours = telemData.GPS.hours;
current_telemetry[i].Minutes = telemData.GPS.minutes;
current_telemetry[i].Seconds = telemData.GPS.seconds;
//display the data

//Brent added...This is all the data that is written to a log file
fprintf(pFilel,"\n %i %i %i %f %f %f %t %t %f
%f %f %f %f 45 %f %f", ID,
current_control[i].Hours, current_control[i].Minutes,
current_control[i].Seconds,
current_telemetry[i].CrossTrack,

current_telemetry[i].Velocity,(current telemetry[i].Direction*(180/3.1415926)),
current_telemetry[i]. TAS,
current_control[i].MagHeading,
V. w,
Chi_w_deg,(current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading),

current_telemetry[i].Altitude,(current_telemetry[i].Altitude/cos((45*(3.1415926/180)))),sqrt(((current telemetry[i]. Altitud
e/cos((45%(3.1415926/180))))*(current_telemetry[i]. Altitude/cos((45*(3.1415926/180)))))-
(current_telemetry[i].Altitude*current_telemetry[i].Altitude)));

displayData(whosData);
break;

//Brent's attempt at accessing the waypoint lla data
case WAYPOINT:

{
//Waypoint_t wayData;
//UserData_t wayData; //Brent
FPPoint_t wayData; //THIS IS THE FIRST PLACE
/l wayData.Point.Lat = 0.0;
/! wayData.Point.Lon = 0.0;
/l wayData.Point. Alt = 0.0;

Ulnt8 This = 0;
//This = DecodeWaypointPacket(&(APPkts[i]), &(wayData)); //WHERE I
TRY TO GET THE WAYPOINT LAT/LONG

This = DecodeWaypointPacket(&(APPkts[i]), &(wayData)); //WHERE I
TRY TO GET THE WAYPOINT LAT/LONG
/* if (Waypoint_cmd[i] != 69 || Waypoint_cmd[i] != 70)
{
WaypointInfoFinding(i, wayData);

*/

128

// FPPoint_t Point;
VA Ulnt8 This = 0;
// This = DecodeWaypointPacket(&(m_APPkts[i]), &Point);

displayData(whosData);
break;

//Brent added...This allows a variable "Waypoint_cmd" that is the index of the current waypoint being tracked
case AUTOPILOT_COMMAND:
AutopilotCmd_t Cmd[3];
Waypoint_cmd[i] = DecodeAutopilotControlPacket(&(APPkts[i]), &Cmd[i]);
displayData(whosData);
break;

case CONTROL _DATA:
UserData_t controlData;
float gyroBias[3], controls[10];
DecodeControlDataPacket(&(APPkts[i]), &(controlData), gyroBias, controls);
//update telemetry struct
current_control[i].BankAngle = controlData.Euler[0] * 180/3.1415926;
current_control[i].Heading = controlData.Euler[2] * 180/3.1415926;

//Euler[0] = Rroll, Euler[1] = Pitch, Euler[2] = Yaw

current_control[i].RollRate = controlData.Gyro[0] * 180/3.1415926;
current_control[i].PitchRate = controlData.Gyro[1] * 180/3.1415926;
current_control[i].YawRate = controlData.Gyro[2] * 180/3.1415926;

current_control[i].Aileron = controls[0] * 180/3.1415926;
current_control[i].Elevator = controls[1] * 180/3.1415926;

current_control[i]. Throttle = controls[2];

current_control[i].Rudder = controls[3] * 180/3.1415926;

//convert GPS seconds into hours, minutes, and seconds

double hours = controlData.SystemTime / 3600000.0;
current_control[i].Hours = hours;

double mins = (hours - (double)current_control[i].Hours) * 60;
current_control[i].Minutes = mins;

current_control[i].Seconds = (mins - (double)current_control[i].Minutes) * 60;

//Brent added these
current_control[i].Pdynamic = controlData.Pdynamic;
current_control[i].MagHeading = controlData.MagHeading * 180/3.1415926;

displayData(whosData); //display the data
break;

-

}

}
}// LookForAutopilotData

//prints the telemetry, control, and obstacle avoidance data to screen
void displayData(int i)

//print current telemetry data
clrser();
printf("ID = %i", m_pComm->GetIDFromIndex(i));

printf("\nTelemetry Packet Data : %i", current_telemetry[i].Hours);
printf(":%i", current_telemetry[i].Minutes);
printf(":%f", current_telemetry[i].Seconds);

printf("\nLatitude (deg) : %f", current_telemetry[i].Latitude);
printf(" East: %t", current_telemetry[i].East);
printf("\nLongitude (deg) 1 %{", current_telemetry[i]. Longitude);
printf(" North: %f", current_telemetry[i].North);
printf("\nAltitude (m) 1 %f", current_telemetry[i]. Altitude);
printf(" Up: %", current_telemetry[i].Up);
printf("\nGround Speed : %", current_telemetry[i]. Velocity);

printf("\n\nControl Packet Data : %i", current_control[i].Hours);
printf(":%i", current_control[i].Minutes);

129

printf(":%f", current_control[i].Seconds);

printf("\nHeading : %f", current_control[i].Heading);
/! printf("\nBank Angle : %{", current_control[i].BankAngle);
// printf("\nRoll Rate : %f", current_control[i].RollRate);
// printf("\nPitch Rate : %", current_control[i].PitchRate);
/I printf("\nYaw Rate : %t", current_control[i].YawRate);

//Brent added to be displayed
printf("\nUAV TAS : %f", current_telemetry[i]. TAS);
printf("\n\nUAV GPS DIRECTION : %f", current_telemetry[i].Direction*180/3.14159);
printf("\nUAV MAG HEADING : %", current_control[i].MagHeading);
/l printf("\nBRENTS BETA 2 : %f", current_telemetry[i].Direction*180/3.14159-current_control[i].MagHeading);
printf("\nBrents WIND VELOCITY (m/s) : %f", V_w);
printf("\nBrents WIND DIRECTION : %f", Chi_w_deg);

printf("\nBrents NEW TAS 1 %f", V_TASnew);
printf("\nBrents NEW Mag Head : %f", Chi_Magnew_deg);
printf(" Brents pdyn : %f", current_control[i].Pdynamic);
printf(" Brents pdyn new : %f", Pdynamic_new);
/I printf("\nBrents density : %t", density);
printf("\nWaypoint index : %i", Waypoint_cmd[i]);
printf("\nAdjust1 1 %f", Adjustla);
printf("\nAdjust2 1 %t", Adjust2a);
printf("\nBrents Cross Track : %f", current_telemetry[i].CrossTrack);
/! printf("\n along track : %", current_telemetry[i]. AlongTrack);
printf("\nDistance to Wypt : %", Dis2);
/l printf("\nTURNRATE : %ft" turnrate);
/l printf("\nWaypoint Lon : %f", current_waypoint_Longitude);
/l printf("\nWaypoint Lat : %t", current_waypoint_Latitude);
/l printf("\nWaypoint Alt : %t", current_waypoint_Altitude);
/! printf("\nNew Waypoint Lat : %d", newwpENU.GetLat());
/l printf("\nNew Waypoint Lon : %d", newwpENU.GetLong());
/! printf("\ntheta_one : %{f" theta_one);
}//displayData

//This is the wind finding and subsequent new heading and airspeed function

void BrentsWindCorrection(int 1)

{

//These are the basic vector equations that correlate the UAVs track, heading, and winds

/I current_telemetry[i]. TAS*cos((current_control[i].MagHeading*(3.14159/180))) + V_w*cos(Chi_w) =
current_telemetry[i]. Velocity*cos(current_telemetry[i].Direction)

/I current_telemetry[i]. TAS*sin((current_control[i].MagHeading*(3.14159/180))) + V_w*sin(Chi_w) =
current_telemetry[i].Velocity*sin(current_telemetry[i].Direction)

//Wind Finding

float a = current _telemetry[i]. Velocity*cos(current_telemetry[i].Direction) -
current_telemetry[i]. TAS*cos((current_control[i].MagHeading*(3.14159/180)));

float b = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) -
current_telemetry[i]. TAS*sin((current_control[i].MagHeading*(3.14159/180)));

V_w = sqrt(((a*a) + (b*b));

//Chi_w = acos(sqrt(1-((b*b)/((a*a) + (b*D)))));
Chi_w = atan2(b,a);

if (Chi_w < 0.0)

{
Chi_w_deg = Chi_w * (180/3.14159)+360;
}
else
{
Chi_w_deg = Chi_w * (180/3.14159);
}

//New heading and airspeed calculations based off of the above wind values
float ¢ = current_telemetry[i]. Velocity*cos(current_telemetry[i].Direction) - V_w*cos(Chi_w);

130

float d = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) - V_w*sin(Chi_w);

V_TASnew = sqrt(((c*c) + (d*d)));

density = (2 * current_control[i].Pdynamic) / (current_telemetry[i]. TAS*current telemetry[i]. TAS);
Pdynamic_new = 0.5*density*(V_TASnew*V_TASnew);

Chi_Magnew = atan2(d,c);

if (current_telemetry[i].Direction*180/3.14159 >0 && current_telemetry[i].Direction*180/3.14159 <= 180)

Chi_Magnew_deg = Chi_Magnew * (180/3.14159);
i

else
Chi_Magnew_deg = Chi_Magnew * (180/3.14159) + 360;

}

/* // Attempt to send the autopilot new turn rate command based off the new heading desired.
void HeadingAdjust(int 1)
{

//float rate;

static AutopilotLoopCmd_t turnCom;

//AutopilotLoopCmd_t turnCom;

int IDbrent = m_pComm->GetIDFromIndex(i);

//These divisions were done so as to keep any commanded turn rates less than 20deg/sec
if (Chi_Magnew_deg - current_control[i].MagHeading > 0 && Chi_Magnew_deg - current_control[i].MagHeading <=

20)
{
turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/1;
else if (Chi_Magnew_deg - current_control[i].MagHeading > 20 && Chi_Magnew_deg - current_control[i].MagHeading
<=40)
{
turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/2;
¥
else if (Chi_Magnew_deg - current_control[i].MagHeading > 40 && Chi_Magnew_deg - current_control[i]. MagHeading
<=60)
{
turnrate = (Chi_Magnew_deg - current_control[i]. MagHeading)/3;
else if (Chi_Magnew_deg - current_control[i].MagHeading > 60 && Chi_Magnew_deg - current_control[i]. MagHeading
<=80)
{
turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/4;
/I rate = (Chi_Magnew_deg - current_control[i].MagHeading)/1;
turnCom.Loop=2; //command a turn rate
turnCom.Control=1; //turn ap_loop _cmd on
turnCom. Value=turnrate*(3.14159265359/180); //assign the commanded value
m_pComm->SendAutopilotLoopControlPacket(IDbrent, &(turnCom));
3

//Attempt to send a "return to normal tracking mode" after the turn rate heading was sent
/*void WaypointTrackReturn(int i)
{
int wayindex;
static AutopilotLoopCmd_t wayCom;
int IDbrent4 = m_pComm->GetIDFromIndex(i);
wayindex = Waypoint_cmd[i];
wayCom.Loop = 4;
wayCom.Control = 1; //Maybe "2"
wayCom.Value = wayindex;
m_pComm->SendAutopilotLoopControlPacket(IDbrent4, &(wayCom));//send the command

131

//Successful command to send the new desired airspeed calculated above
void AirspeedAdjust(int 1)

{
float cmd_speed;
static AutopilotLoopCmd_t speedCom;
int IDbrent2 = m_pComm->GetIDFromIndex(i);
cmd_speed = Pdynamic_new;
speedCom.Loop = 0; //command a dynamic pressure
speedCom.Control = 1; //turn ap_loop_cmd on
speedCom.Value = (cmd_speed); //assign the commanded value
m_pComm->SendAutopilotLoopControlPacket(IDbrent2, &(speedCom));//send the command
H

//Attempt at ployting the Piccolo into a pure waypoint tracker instead of following straight line tracks between points
/*void WaypointFlyingnotTrackFlying(int i)
{
int IDbrent7 = m_pComm->GetIDFromIndex(i);
m_pComm->SendTrackCommandPacket(IDbrent7, Waypoint_cmd[i], true);
}*/

// Trying to calculate then send updating waypoint that is placed at the correct heading to compensate for the wind so as to
// end up at the original desired waypoint...Related to the previous function

/*void WaypointInfoFinding(int i, FPPoint_t& pntWaypoint)//, int next)

{

int IDbrent5 = m_pComm->GetIDFromIndex(i);
//AutopilotPkt t WPPacket;

/! Waypoint_t origData;

// current_waypoint_Latitude = origData.Lat * (180/3.14159);
/I current_waypoint_Longitude = origData.Lon * (180/3.14159);
/! current_waypoint_Altitude = origData.Alt;

if(fabs(pntWaypoint.Point.Lat)*180/3.1415926 >0 && fabs(pntWaypoint.Point.Lat)*180/3.1415926 <90)
{

current_waypoint_Latitude = pntWaypoint.Point.Lat * (180/3.14159); //TRYING TO
READ OFF WAYPOINT LAT/LONG

current_waypoint_Longitude = pntWaypoint.Point.Lon * (180/3.14159);

current_waypoint_Altitude = pntWaypoint.Point.Alt;

/Itest

//current_waypoint_Latitude =39.773098;
//current_waypoint_Longitude = -84.111564;
//current_waypoint_Altitude = 350;

orig = Waypoint_cmd[i];
orignext = Waypoint_cmd[i]+1;

3

//Attempt to implement the UPDATING "RABBIT" WAYPOINT APPROACH to wind correction
/*void UpdatingWaypointadjustingforWind(int 1)
{

int IDbrent6 = m_pComm->GetIDFromIndex(i);

ENUCoord WayENU; //Converting current waypoint LAT/LONG to ENU
WayENU.lla2enu(current_ waypoint_Latitude * 3.1415926/180,
current_waypoint_Longitude * 3.1415926/180,
current_waypoint_Altitude,
Base X, Base Y, Base Z);

132

e = fabs(current_telemetry[i].East - WayENU.GetEast());
f = fabs(current_telemetry[i].North - WayENU.GetNorth());
Dis = sqrt((e*e)H(P*);
float toofar = Dis + 1000; //This is a distance that the a/c will never reach

/IThese are the adjustments to the ENU coords of the a/c to place the new waypoint
if (Dis >= 50)
{ //This is an attempt to place the new waypoint
if(Chi_Magnew_deg > 0 && Chi_Magnew_deg <=90)

float angle deg = Chi_Magnew deg-90;
float angle = angle deg * (3.1415926/180); //Check where the datum point is for ENU

float abscos = abs(toofar * cos(angle)); //if west and south of wpafb then signs are
okay for the enu99s
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() + abscos;
enu69north = PosENU.GetNorth() + abssin;
}
if(Chi_Magnew_deg > 90 && Chi_Magnew_deg <=180)
float angle deg = Chi_Magnew_deg-90;
float angle = angle deg * (3.1415926/180);
float abscos = abs(toofar * cos(angle));
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() + abscos;
enu69north = PosENU.GetNorth() - abssin;
}
if(Chi_Magnew_deg > 180 && Chi_Magnew_deg <=270)
{
float angle deg = Chi_Magnew_deg-270;
float angle = angle deg * (3.1415926/180);
float abscos = abs(toofar * cos(angle));
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() - abscos;
enu69north = PosENU.GetNorth() - abssin;
}
if(Chi_Magnew_deg > 270 && Chi_Magnew_ deg <=360)
{
float angle deg = Chi_Magnew_deg-270;
float angle = angle deg * (3.1415926/180);
float abscos = abs(toofar * cos(angle));
float abssin = abs(toofar * sin(angle));
enu69east = PosENU.GetEast() - abscos;
enu69north = PosENU.GetNorth() + abssin;
}
ENUCoord newwpENU; //Convert the new waypoint ENU to LLA
newwpENU.enu2lla(enu69east, enu69north, WayENU.GetUp(), Base X, Base Y,
Base 7);
FPPoint_t newWPInfo;
Waypoint_t newlocation;
/l AutopilotPkt t WPPacket;
/! newlocation.Lat=newwpENU.GetLat(); //Lat/Long of new waypoint from just
above
/! newlocation.Lon=newwpENU.GetLong(); //*180/3.1415926
/I newlocation. Alt=newwpENU.GetAlt();

newlocation.Lat=39.78*(3.1415926/180);
newlocation.Lon=-84.097096*(3.1415926/180);
newlocation.Alt=348;

FPPoint_t newWPInfo2;
Waypoint_t newlocation2;

133

newlocation2.Lat=39.775495%(3.1415926/180);

newlocation2.Lon=-84.114660*(3.1415926/180);

newlocation2.Alt=348;

newWPInfo2.Point = newlocation2;

newWPInfo2 Next = 69;

newWPInfo2.PreTurn = 0;

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo2), 70);
//m_pComm->SendTrackCommandPacket(IDbrent6, 70, true);

new WPInfo.Point = newlocation; //Trying to send the new waypoint as
waypoint "99"

if (Waypoint_cmd[i] > 0)

{

newWPInfo.Next = 70;
}
newWPInfo.PreTurn = 0;

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69);
m_pComm->SendTrackCommandPacket(IDbrent6, 69, false); //send command to head to new

waypoint
/! third parameter indicates if the vehicle should fly to the waypoint along the
/I preceding track segment, or if it should go directly to the waypoint, using its
/l current position as the starting point. Set to TRUE to go directly to the waypoint.
¥
/I else
// {
1 FPPoint_t origWP;
/I Waypoint_t origlocation;
//
// origlocation.Lat = current_waypoint_Latitude;
/l origlocation.Lon = current waypoint_Longitude;
/! origlocation.Alt = current_waypoint_Altitude;
1
/l origWP.Point = origlocation;
/! origWP.Next = Waypoint_cmd[i]+1;
// origWP.PreTurn = 0;
/l m_pComm->SendWaypointPacket(IDbrent6, &(origWP), orig);
// m_pComm->SendTrackCommandPacket(IDbrent6, Waypoint cmd[i],true);
// }
3

//WIND CORRECTED SENSOR POINTING APPROACH TO WIND CORRECTION
void SensorAdjustment(int i)

{
int IDbrent8 = m_pComm->GetIDFromIndex(i);

//Assume camera is at 45 degree angle off of a/c nose....no gimble

//Manually input waypoint lats and longs via the "edit" button on Operator Interface
//They should be:
//Waypoint 0 --

point0Lon=-84.099500*(3.1415926/180);
Alt0=350; // [m]

/* //Waypoint 0 --
point0Lat=39.776000%(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
point0Lon=-84.117796*(3.1415926/180);
Alt0=350; // [m]

*/

//Waypoint 1 --

point1Lat=39.773530*(3.1415926/180);
point1Lon=-84.106384*(3.1415926/180);
Alt1=350; // [m]

134

/* //Waypoint 1 --
point1Lat=39.776000*(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
point1Lon=-84.103704%(3.1415926/180);
Alt1=350; // [m]

*/

//Waypoint 2 --

point2Lat=39.773700*(3.1415926/180);
point2Lon=-84.111550%(3.1415926/180);
Alt2=350; // [m]

/* //Waypoint 2 --
point2Lat=39.776000*(3.1415926/180); //FOR THE LOOOONG POINT TO POINT
point2Lon=-84.090613*(3.1415926/180);
Alt2=350; // [m]

*/

//Waypoint 3 --

point3Lat=39.775525*(3.1415926/180);
point3Lon=-84.112517*(3.1415926/180);
Alt3=350; // [m]

//Waypoint 4 --
point4Lat=39.777281%(3.1415926/180);
point4Lon=-84.111355%(3.1415926/180);
Alt4=350; // [m]

//Waypoint 5 --
point5Lat=39.776950%(3.1415926/180);
point5Lon=-84.099400%*(3.1415926/180);
Alt5=350; // [m]

//Waypoint 6 --
point6Lat=39.774950*(3.1415926/180);
point6Lon=-84.098450*(3.1415926/180);
Alt6=350; // [m]

ENUCoord PointOENU;
PointOENU.1la2enu(pointOLat, pointOLon, Alt0, Base_ X, Base Y, Base Z);

ENUCoord Point]1 ENU;
Point] ENU.lla2enu(point1Lat, point1Lon, Altl, Base X, Base Y, Base Z);

ENUCoord Point2ENU;
Point2ENU.lla2enu(point2Lat, point2Lon, Alt2, Base X, Base Y, Base Z);

ENUCoord Point3ENU;
Point3ENU.lla2enu(point3Lat, point3Lon, Alt3, Base X, Base Y, Base Z);

ENUCoord Point4ENU;
Point4ENU.1la2enu(point4Lat, point4Lon, Alt4, Base_X, Base Y, Base Z);

ENUCoord Point5ENU;
PointSENU.lla2enu(point5Lat, point5Lon, Alt5, Base X, Base Y, Base Z);

ENUCoord Point6ENU;,
Point6ENU.lla2enu(point6Lat, point6Lon, Alt6, Base X, Base Y, Base Z);

//WAYPOINT 0 CALCULATIONS
if (Waypoint_cmd[i] == 0 || Waypoint _cmd[i] == 60)

e2 = fabs(current_telemetry[i].East - PointOENU.GetEast());
f2 = fabs(current_telemetry[i].North - PointOENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*12));

if (Dis2 <= 200)

//if (Dis2 <= 500) //Change for looong pt to pt

{

theta_one = atan2((PointOENU.GetNorth()-Point6ENU.GetNorth()),(PointOENU.GetEast()-
Point6ENU.GetEast()));

135

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new

Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = Adjust2a*sin(star); //-Adjust2a*sin(star); works fairly well also...not quite sure which is better
cosfromNext = Adjust2a*cos(star);

enu60east = PointOENU.GetEast()+cosfromNext; //Changed for looong pt to pt...i switched the sin and cos

and then made sin negative

/*
*/
1
waypoint is desired
/l
}

enu60north = PointOENU.GetNorth()+sinfromNext;
enu60alt = PointOENU.GetUp();

// MAJ BLUES WAY
theta_ m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu60east = PointOENU.GetEast()-delta_1;
enu60north = PointOENU.GetNorth()-delta_2;
enu60alt = PointOENU.GetUp();

ENUCoord newPointENU;
newPointENU.enu2lla(enu60east, enu60north, enu60alt, Base X, Base_Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 1;
adjWPInfo.PreTurn = 1;

m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60); //If only the initial calculation for the

m_pComm->SendTrackCommandPacket(IDbrent8, 60, true); //i.e. you don't want it to update...use these

float e3 = fabs(current_telemetry[i].East - enu60east);

float 3 = fabs(current_telemetry[i].North - enu60north);

float Dis3 = sqrt((e3*e3)+(f3*13));

if (Dis3 >= 100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60);
m_pComm->SendTrackCommandPacket(IDbrent8, 60, true);

!

{
m_pComm->SendTrackCommandPacket(IDbrent8, 1, true);

!

else

-

//WAYPOINT 1 CALCULATIONS
else if (Waypoint_cmd[i] == 1 || Waypoint_cmd[i] == 61)

e2 = fabs(current_telemetry[i].East - Point]1 ENU.GetEast());
f2 = fabs(current_telemetry[i].North - Point] ENU.GetNorth());
Dis2 = sqrt((e2*e2)+(f2*2));

if (Dis2 <= 350)

136

//if (Dis2 <= 500) //Change for looong pt to pt

{

theta_one = atan2((Point] ENU.GetNorth()-PointOENU.GetNorth()),(Point] ENU.GetEast()-
PointOENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = Adjust2a*cos(star);

enu6least = Pointl ENU.GetEast()+cosfromNext;
enu6 Inorth = Point ENU.GetNorth()+sinfromNext;
enu6lalt = Pointl ENU.GetUp();

// MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta 1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu6least = Point] ENU.GetEast()-delta_1;
enu6 Inorth = Point] ENU.GetNorth()-delta_2;
enu6lalt = Point] ENU.GetUp();
*/
ENUCoord newPointENU;
newPointENU.enu2lla(enu61east, enu6 1north, enu6lalt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 2;
adjWPInfo.PreTurn = 1;

float €3 = fabs(current_telemetry[i].East - enu61least);
float 3 = fabs(current_telemetry[i].North - enu6lnorth);
float Dis3 = sqrt((e3*e3)+(f3*{3));

if (Dis3 >= 100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 61);
m_pComm->SendTrackCommandPacket(IDbrent8, 61, true);

i

{
m_pComm->SendTrackCommandPacket(IDbrent8, 2, true);

}

else

-

//WAYPOINT 2 CALCULATIONS
else if (Waypoint_cmd[i] == 2 || Waypoint_cmd[i] == 62)
{
e2 = fabs(current_telemetry[i].East - Point2ENU.GetEast());
f2 = fabs(current_telemetry[i].North - Point2ENU.GetNorth());
Dis2 = sqrt((e2*e2)+(f2*2));

if (Dis2 <= 300)

137

//if (Dis2 <=500) //Change for looong pt to pt

{

theta_one = atan2((Point2ENU.GetNorth()-Pointl ENU.GetNorth()),(Point2ENU.GetEast()-
Point ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = -Adjust2a*cos(star); //THIS AND Adjust2a*cos(star) WORK EQUALLY WELL!!!!

enu62east = Point2ENU.GetEast()+cosfromNext;
enu62north = Point2ENU.GetNorth()+sinfromNext;
enu62alt = Point2ENU.GetUp();

// MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta 1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu62east = Point2ENU.GetEast()-delta_1;
enu62north = Point2ENU.GetNorth()-delta_2;
enu62alt = Point2ENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu62east, enu62north, enu62alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;

adjWPInfo.Next = 3;

//ladjWPInfo.Next = 0; //Change for loooooong pt to pt
adjWPInfo.PreTurn = 1;

/I m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62);
// m_pComm->SendTrackCommandPacket(IDbrent8, 62, true);

float €3 = fabs(current_telemetry[i].East - enu62east);

float f3 = fabs(current_telemetry[i].North - enu62north);

float Dis3 = sqrt((e3*e3)+(f3*£3));

if (Dis3 >= 100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62);
m_pComm->SendTrackCommandPacket(IDbrent8, 62, true);

}
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 3, true);
}
}

//WAYPOINT 3 CALCULATIONS
else if (Waypoint_cmd[i] ==3 || Waypoint_cmd[i] == 63)

e2 = fabs(current_telemetry[i].East - Point3ENU.GetEast());

138

f2 = fabs(current_telemetry[i].North - Point3ENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*£2));

if (Dis2 <= 250)

{

theta_one = atan2((Point3ENU.GetNorth()-Point2ENU.GetNorth()),(Point3ENU.GetEast()-
Point2ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = Adjust2a*cos(star);

enu63east = Point3ENU.GetEast()+sinfromNext;
enu63north = Point3ENU.GetNorth()+cosfromNext;
enu63alt = Point3ENU.GetUp();

/* // MAJ BLUES WAY
theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu63east = Point3ENU.GetEast()-delta_1;
enu63north = Point3ENU.GetNorth()-delta_2;
*/ enu63alt = Point3ENU.GetUp();

ENUCoord newPointENU;
newPointENU.enu2lla(enu63east, enu63north, enu63alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 4;
adjWPInfo.PreTurn = 1;

/! m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63);
/! m_pComm->SendTrackCommandPacket(IDbrent8, 63, true);

float €3 = fabs(current_telemetry[i].East - enu63east);

float f3 = fabs(current_telemetry[i].North - enu63north);

float Dis3 = sqrt((e3*e3)+(f3*£3));

if (Dis3 >= 150)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63);
m_pComm->SendTrackCommandPacket(IDbrent8, 63, true);

}
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 4, true);
}
}

139

//WAYPOINT 4 CALCULATIONS
else if (Waypoint_cmd[i] ==4 || Waypoint_cmd[i] == 64)

e2 = fabs(current_telemetry[i].East - Point4ENU.GetEast());
f2 = fabs(current_telemetry[i].North - Point4dENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*2));

if (Dis2 <= 200)

{

theta one = atan2((Point4ENU.GetNorth()-Point3ENU.GetNorth()),(Point4dENU.GetEast()-
Point3ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = Adjust2a*sin(star);
cosfromNext = -Adjust2a*cos(star);

enub4east = Point4dENU.GetEast()+sinfromNext;
enu64north = PointdENU.GetNorth()+cosfromNext;
enu64alt = Point4ENU.GetUp();

/* // MAJ BLUES WAY
theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu64east = PointdENU.GetEast()-delta_1;
enu64north = Point4 ENU.GetNorth()-delta_2;
enu64alt = Point4dENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu64east, enu64north, enu64alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 5;
adjWPInfo.PreTurn = 1;

/! m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64);
/! m_pComm->SendTrackCommandPacket(IDbrent8, 64, true);

float e3 = fabs(current_telemetry[i].East - enu64east);
float 3 = fabs(current_telemetry[i].North - enu64north);
float Dis3 = sqrt((e3*e3)+(f3*13));

if (Dis3 >= 100)

{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64);
m_pComm->SendTrackCommandPacket(IDbrent8, 64, true);

¥
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 5, true);
}
}

140

//IWAYPOINT 5 CALCULATIONS
else if (Waypoint_cmd[i] ==5 || Waypoint_cmd[i] == 65)

e2 = fabs(current_telemetry[i].East - PointSENU.GetEast());
f2 = fabs(current_telemetry[i].North - PointSENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*12));

if (Dis2 <= 600)

{
theta_one = atan2((PointSENU.GetNorth()-PointdENU.GetNorth()),(PointSENU.GetEast()-
Point4ENU.GetEast()));

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = Adjust2a*cos(star);

enu65Seast = PointSENU.GetEast()+cosfromNext;
enu65north = PointSENU.GetNorth()+sinfromNext;
enu6Salt = PointSENU.GetUp();

/* // MAJ BLUES WAY
theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu6Seast = PointSENU.GetEast()-delta_1;
enu65Snorth = PointSENU.GetNorth()-delta_2;
enu65alt = PointSENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu65east, enu65north, enu65alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 6;
adjWPInfo.PreTurn = 0;

/l m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65);
// m_pComm->SendTrackCommandPacket(IDbrent8, 65, true);

float €3 = fabs(current_telemetry[i].East - enu65east);
float f3 = fabs(current_telemetry[i].North - enu65north);
float Dis3 = sqrt((e3*e3)+(f3*£3));
if (Dis3 >=100)
{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65);
m_pComm->SendTrackCommandPacket(IDbrent8, 65, true);
}

{
m_pComm->SendTrackCommandPacket(IDbrent8, 6, true);

}

else

141

//WAYPOINT 6 CALCULATIONS
else if (Waypoint_cmd[i] == 6 || Waypoint_cmd[i] == 66)
{

e2 = fabs(current_telemetry[i].East - PointoENU.GetEast());
f2 = fabs(current_telemetry[i].North - PointcENU.GetNorth());
Dis2 = sqrt((e2*e2)+(£2*£2));

if (Dis2 <=300)

{

theta_one = atan2((Point6 ENU.GetNorth()-PointSENU.GetNorth()),(Point6ENU.GetEast()-
PointSENU.GetEast()));

/* //THIS WAS AN OLD WAY OF DOING THE CALCULATIONS....Basically it attempted to map the a/c's current position to
where it would be
//if it were exactly on track....this way placed the new point based on the a/c's location as opposed to placing it based on
//the location of the current waypoint

/! double m = fabs(Point6ENU.GetNorth()-PointSENU.GetNorth());

/! double n = fabs(PointoENU.GetEast()-PointSENU.GetEast());

/l double Dis_wypts = sqrt((m*m)+(n*n));

/I T = Dis_wypts - current_telemetry[i].AlongTrack;

1/ double EastonTrack = Point4ENU.GetEast() + current_telemetry[i].AlongTrack*cos(theta_one);
/l double NorthonTrack = Point4ENU.GetNorth() + current_telemetry[i].AlongTrack*sin(theta_one);

if (theta_one*(180/3.1415926)>0 && theta _one*(180/3.1415926)<=90)
{
EastonTrack = PointSENU.GetEast() + T*sin(theta_one);
NorthonTrack = PointSENU.GetNorth() + T*cos(theta_one);

}
else if (theta_one*(180/3.1415926)>90 && theta_one*(180/3.1415926)<=180)
{
EastonTrack = PointSENU.GetEast() + T*cos(theta one);
NorthonTrack = PointSENU.GetNorth() + T*sin(theta_one);

}
else if (theta_one*(180/3.1415926)>-180 && theta_one*(180/3.1415926)<=-90)
{
EastonTrack = PointSENU.GetEast() + T*sin(theta_one);
NorthonTrack = PointSENU.GetNorth() + T*cos(theta_one);

}
else if (theta_one*(180/3.1415926)>-90 && theta_one*(180/3.1415926)<=0)
{

EastonTrack = PointSENU.GetEast() + T*cos(theta_one);

NorthonTrack = PointSENU.GetNorth() + T*sin(theta_one);
1
s

e2onTrack = fabs(EastonTrack - Point6ENU.GetEast());

//e2onTrack = fabs(EastonTrack - current_telemetry[i].East);

f2onTrack = fabs(NorthonTrack - Point6eENU.GetNorth());

//f2onTrack = fabs(NorthonTrack - current_telemetry[i].North);

double Dis_on_Track = sqrt((e2onTrack*e2onTrack)+(f2onTrack*f2onTrack));
//Dis_on_Track = Horiz2

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
//float LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180)));
//Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

//crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new

if ((current_telemetry[i].Direction*(180/3.1415926)-current_control[i]. MagHeading*(3.1415926/180)) >= 0)

{

Adjustla = Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));

142

Adjust2a = Dis_on_Track*sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));
}

else

{

Adjustla=Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));

Adjust2a = Dis_on_Track*-sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180)));

}
enu66east = PointoENU.GetEast() + Adjust2a/2;
enu66north = Point6ENU.GetNorth() + Adjustla/2;
enu66alt = PointoENU.GetUp();

*/

//Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV
LOS_Dis = current_telemetry[i].Altitude / cos((45%(3.1415926/180)));
Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i]. Altitude));

/lcrab angle is difference between ground track and Piccolo's mag heading...not my mag heading new
Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180));

star = 3.1415926-1.5708-fabs(theta_one);
sinfromNext = -Adjust2a*sin(star);
cosfromNext = -Adjust2a*cos(star);

enu66east = PointoENU.GetEast()+cosfromNext;
enu66north = Point6ENU.GetNorth()+sinfromNext;
enu66alt = PointoENU.GetUp();

// MAJ BLUES WAY
/* theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180);
delta_1 = Horiz*cos(theta_m);
delta_2 = Horiz*sin(theta_m);

enu66east = PointoENU.GetEast()-delta_1;
enu66north = PointoENU.GetNorth()-delta_2;
enu66alt = Point6ENU.GetUp();

*/

ENUCoord newPointENU;
newPointENU.enu2lla(enu66east, enu66north, enu66alt, Base X, Base Y, Base Z);

FPPoint_t adjWPInfo;
Waypoint_t adjWPlocation;

adjWPlocation.Lat = newPointENU.GetLat();
adjWPlocation.Lon = newPointENU.GetLong();
adjWPlocation.Alt = newPointENU.GetAlt();

adjWPInfo.Point = adjWPlocation;
adjWPInfo.Next = 0;
adjWPInfo.PreTurn = 0;

/! m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66);
/! m_pComm->SendTrackCommandPacket(IDbrent8, 66, true);

float e3 = fabs(current_telemetry[i].East - enu66east);
float 3 = fabs(current_telemetry[i].North - enu66north);
float Dis3 = sqrt((e3*e3)+(f3*13));

if (Dis3 >= 100)

{
m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66);
m_pComm->SendTrackCommandPacket(IDbrent8, 66, true);

¥
else
{
m_pComm->SendTrackCommandPacket(IDbrent8, 0, true);
}
}

143

int main()

{

//create CCommManager object to communicate with Piccolo
//129.92.5.112 is the IP address of the operator interface computer

m_pComm = new CCommManager(0, 57600, "1.1.1.3", 0);

//m_pComm = new CCommManager(0, 57600, "129.92.5.112:2000", 0);

//m_pComm = new CCommManager(1,"",2000);
//printf("\nHELLO WORLD");

//print out error and exit if m_pComm doesn't connect
if(m_pComm->GetLastError() != 0){

/!

}

printf("nHELLO WORLD");
printf("%s", m_pComm->GetLastError());
printf("\n");

return 1;

//set up network callback function
m_pComm->SetNewNetworkCallBack(NewNetwork, m_pComm);

pFilel = fopen ("BrentsLog.txt","w"); //Log file

//periodic loop to service the communications endpoints
int i =0, whosData = 0;

//Headers for each column in the log file
fprintf(pFilel," ID Hours Minutes Seconds Cross Track(m) Vg Ground Track Vtas Mag Heading

Estimated Wind Vel
Dis");

Estimated Wind Heading ~ Crab Angle Altitude Mounting Angle LoS Distance FootPrint Horizontal

char keypress = 0;
while(m_pComm && i==0)

{
/"

m_pComm->RunNetwork();
printf("\nHELLO WORLD3");

LookForAutopilotData(pQ, whosData);

//BRENTS FUNCTION CALLS
BrentsWindCorrection(i); //Wind Finding Funciton Call

count=count+1;

//WaypointFlyingnotTrackFlying(i); //Pure waypoint flying instead of track following function call

//Counter so only do this stuff every 15 time hacks.

if (count % 15 ==0)

1

{
SensorAdjustment(i); //Wind Corrected Sensor Pointing function call
/! UpdatingWaypointadjustingforWind(i);; /Rabbit function
HeadingAdjust(i); //For turn rate approach
/! AirspeedAdjust(i); //For turn rate approach
v
s
/I if (count % 60 == 0)
/A //Trying to manipulate when the function is called so I could send the new heading..
/I WaypointTrackReturn(i); //let the a/c adjust...then send it the return to waypoint tracking command
/l}

//get commands via keypress

int rate = 10;

144

if (kbhit()){
keypress = getch();

switch(keypress)

case 'X':
i=1;
printf("\n");
fclose (pFilel);
break;
case 'r': //command a certain turn rate- this was just used as a test
AutopilotLoopCmd_t loopCom;
loopCom.Loop = 2;
loopCom.Control = 1;
loopCom.Value = (rate*3.14159/180);

m_pComm->SendAutopilotLoopControlPacket(565, &(loopCom));

break;
case 'l":
/lprint telemetry data for first Network
whosData = 0;
break;
case 2"
//print telemetry data for second Network
whosData = 1;
break;
case '3":
//print telemetry data for third Network
whosData = 2;
break;
case '4":
//print telemetry data for fourth Network
whosData = 3;
break;
case'S":
//print telemetry data for fifth Network
whosData = 4;
break;
case '6':
//print telemetry data for sixth Network
whosData = 5;
break;
case'7":
/lprint telemetry data for seventh Network
whosData = 6;
break;
case '8":
//print telemetry data for eighth Network
whosData = 7;
break;
case '9":
//print telemetry data for ninth Network
whosData = 8;
break;
case '0":
/lprint telemetry data for tenth Network
whosData = 9;
break;
¥
}
//delay to create periodic call, as specified by "Index" in the SDK documentation
Sleep(10);
}
return 0;

Appendix C: MATLAB Code

145

SAMPLE MATLAB FOR THE TOP DOWN VIEWS FOR TEST 5 — All tests used the
same code simply with different data file calls.

%TEST 5 - Adjusted RACETRACK WITH TC=250

cle,close all
clear all

%Analysis of Hardware in the Loop Sim with Flight Test

if exist('Alt0x5SBm0x5D5250") == 0
load SimTests5datafileE.mat
disp('File Loading')

end

%Read in Raw flight data from ".mat" file, and build custom Arrays
[Clock] = [Clock0x5Bms0x5D/1000,Day,Hours,Minutes,Seconds];
[Autopilot] = [rad2deg(Lat0x5Brad0x5D),...

rad2deg(Lon0x5Brad0x5D),...

HeightOx5Bm0x5D*3.281,...

TASOx5BmO0x2Fs0x5D*3.281,...

Direction0x5Brad0x5D,,...

MagHdg0x5Brad0x5D];

[Heading] = [rad2deg(Direction0x5Brad0x5D)];
[Autopilot_Flight] = [Clock,Autopilot];

%Waypoint Locations

WP _latitude = [39.773292; 39.773530; 39.773700; 39.775525;...
39.777281; 39.776950;39.774950;39.773292];

WP_longitude = [-84.099500; -84.106389; -84.111550;...
-84.112517; -84.111355; -84.099400;-84.098450;-84.099500];

WP_Altitude = [1148;1148;1148;1148;1148;1148;1148;1148];

%%%%0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% %% %% %% %% %% % %%
%%%%%%%

%%%%%%%%%%%%%% %% %% %% %% % %% %% %% %% %% %% %% % %% % %% % %% % %% % %% % %% % %% % %% % %%
%%%%%%%

begin = 484; %Line # in 'Clock' array

end_at=10802;

% figure('Name',...

% 'HITL Simulation #1: TAS(12kts), Alt(1148ft), Winds(5s/Ow m/s)',...
% 'NumberTitle','on")

% hold on

% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,0),...
% -k

% axis equal

% xlabel ('Longitude (deg)")

% ylabel ('Latitude (deg)')

% title...

% ('HITL Autopilot Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)")
%

% plot(WP_longitude,WP_latitude,'"-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....

% 'MarkerSize',12);

% grid on

% axis equal

% legend({'UAV Flight Path','Desired Waypoints and FlightPath'});
% print -dmeta 'l HITL Autopilot Sim,2D,Actual'

% hold off

%PLOTTING WHERE THE SENSOR WOULD BE
BaseX = 503000;

146

BaseY = -4884700;

BaseZ = 4057800,

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

lla = [deg2rad(Autopilot Flight(begin:end_at,6)) deg2rad(Autopilot Flight(begin:end_at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust]1=(Autopilot_Flight(begin:end at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(11)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),"-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]")

ylabel('North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)")
legend("UAV Track','Sensor Track',’'Waypoint',1)

grid on

hold off

%Plot 3D Waypoint Orbit Track
figurel = figure('Name','HITL Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
axesl = axes(...
'CameraPosition',[-84.13 39.75 2007]....
'CameraUpVector',[0.1859 0.1775 1.915e+005]....
'Parent',figurel);
axis(axes1,[-84.12 -84.095 39.77 39.785 800 1500]);
title(axes1,'HITL Autopilot Simulation #1 with Flight Test: TAS(12m/s), Alt(1148ft)');
xlabel(axes1,'Longitude (deg)");
ylabel(axesl,'Latitude (deg)");
zlabel(axes1,'Altitude (ft)");
grid(axes1,'on");
hold(axes1,'all");
plot3(Autopilot_Flight(begin:end_at,7),... %LONGITUDE LINES
Autopilot Flight(begin:end_at,6),... %LATITUDE
Autopilot_Flight(begin:end_at,8),' Parent',axesl); %ALTITUDE
grid on
hold on
axis equal
plot3(WP_longitude, WP_latitude, WP_Altitude,-ro',... ~ %WAYPOINT PLOTS
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12);
axis square
legend]l = legend(axesl,...
{'UAV Flight Path','Desired Waypoints,Flight Path, and Altitude (1148 ft)'},...
'Position’,[0.2723 0.3165 0.6554 0.1]);
zlim([800 15007)

%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% %% % %%%% %% %% %% %% % %% %% %% %% %% %% % %
%%%%% %%
0/Z“/Z"/ZO/(;"/Z“/Z"/z%%%
%%%%%%%

begin = 12283; %Line # in 'Clock' array

end_at =20558;

%2-D PLOT FROM NIDAL

% figure('Name','HITL Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)',...
% 'NumberTitle','on’")

% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6))

147

% xlabel ('Longitude (deg)")
% ylabel ('Latitude (deg)')

% grid on

% axis equal

% hold on

% plot(WP_longitude,WP_latitude,'"-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....
% 'MarkerSize',12);

% axis equal
% print -dmeta '4 HITL Autopilot Sim,2D,Conv Lower'

%PLOTTING WHERE THE SENSOR WOULD BE

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

lla = [deg2rad(Autopilot Flight(begin:end_at,6)) deg2rad(Autopilot Flight(begin:end_at,7))
deg2rad(Autopilot Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjust]=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjustl;

figure(12)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),"-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]')

ylabel('"North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)')
legend('UAV Track','Sensor Track','Waypoint',1)

grid on

hold off

% 3-D PLOTTING FROM NIDAL
figure('Name','Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
plot3(Autopilot_Flight(begin:end_at,7),...

Autopilot_Flight(begin:end_at,6),...

Autopilot_Flight(begin:end_at,8));

grid on

hold on

plot3(WP_longitude, WP_latitude, WP_Altitude,'-ro',...
'LineWidth',2,...

'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63]....
'MarkerSize',12);

xlabel ('Longitude (deg)")

ylabel ('Latitude (deg)')

zlabel ('Altitude (ft)")

Zlim([800 1500])

%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% %% %% %% %% %% %% %% %% % %% % %% % %% % %%
%%%0%%%%%
%%% %% %% %% % %% % %% % %%
%%%%%%%%

begin =21279; %Line # in 'Clock' array

end_at =27453;

%?2-D PLOT FROM NIDAL

% figure('Name','HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)',...
% 'NumberTitle','on")

148

% plot(Autopilot_Flight(begin:end_at,7),Autopilot Flight(begin:end_at,6))
% xlabel ('Longitude (deg)")
% ylabel ('Latitude (deg)')

% grid on

% axis equal

% hold on

% plot(WP_longitude,WP_latitude,'-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....
% 'MarkerSize',12);

% axis equal
% print -dmeta '7 HITL Autopilot Sim,2D,TAS Conv Lower'

%PLOTTING WHERE THE SENSOR WOULD BE

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

1la = [deg2rad(Autopilot_Flight(begin:end at,6)) deg2rad(Autopilot Flight(begin:end_at,7))
deg2rad(Autopilot Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]));

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end_at,11));
adjustl=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjustl;

figure(13)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]")

ylabel('"North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)")
legend('UAV Track','Sensor Track','Waypoint',1)

grid on

hold off

%3-D PLOT FROM NIDAL
figure('Name',' HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
plot3(Autopilot_Flight(begin:end_at,7),...
Autopilot_Flight(begin:end_at,6),...
Autopilot_Flight(begin:end_at,8));
grid on
hold on
plot3(WP_longitude, WP _latitude, WP_Altitude,'-ro',...
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12);
xlabel ('Longitude (deg)")
ylabel ('Latitude (deg)')
zlabel ('Altitude (ft)")
zlim([800 15007)

%%% %% %% %% % %%
%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% % %% % %% %% %% %% %% %% % %% % %% % %% % %%
%%%%%%

begin = 27974; %Line # in 'Clock’ array

end at=32413;

%2-D PLOT FROM NIDAL
% figure('Name','HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)',...

149

% 'NumberTitle','on")

% hold on

% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6))
% axis equal

% xlabel ('Longitude (deg)")

% ylabel ('Latitude (deg)')

% plot(WP_longitude,WP_latitude,'-r0',...

% 'LineWidth',2,...

% 'MarkerEdgeColor','k',...

% 'MarkerFaceColor',[.49 1 .63]....
% 'MarkerSize',12);

% axis equal

% grid on

% print -dmeta '10 HITL Autopilot Sim,2D,TASLow ConvUp,Larg Track'

%PLOTTING WHERE THE SENSOR WOULD BE

wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)];

lla = [deg2rad(Autopilot Flight(begin:end at,6)) deg2rad(Autopilot Flight(begin:end at,7))
deg2rad(Autopilot_Flight(begin:end_at,8))];

wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]);

enu = lla2enu(lla,[BaseX BaseY BaseZ]);

theta = (pi/2) - (Autopilot_Flight(begin:end at,11));
adjustl=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta); %Only good for 45 degree mounting angle
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta);

sensorposeast=enu(:,1) + adjust2;
sensorposnorth=enu(:,2)+ adjust1;

figure(14)

hold on

plot(enu(:,1), enu(:,2),'b")

plot(sensorposeast,sensorposnorth,'g')
plot(wyptenu(:,1),wyptenu(:,2),"-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12)
xlabel('East from Datum [m]")

ylabel('North from Datum [m]')

title('Updated UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South)")
legend('UAV Track','Sensor Track',’'Waypoint',1)

grid on

hold off

%3-D PLOT FROM NIDAL
figure('Name',' HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on")
plot3(Autopilot_Flight(begin:end_at,7),...
Autopilot_Flight(begin:end_at,6),...
Autopilot_Flight(begin:end_at,8));
grid on
hold on
plot3(WP_longitude, WP _latitude, WP_Altitude,'-ro',...
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12);
xlabel ('Longitude (deg)")
ylabel ('Latitude (deg)')
zlabel ('Altitude (ft)")
zlim([800 15007)

SAMPLE MATLAB FOR THE VARIOUS PARAMETERS AND WIND DATA PLOTS - All
tests used the same code simply with different data file calls.

150

%Brent Robinson
%Thesis
%Additional plots for each test

clear all
cle

if exist('data5') ==
load SimTests5datafile.mat
disp('File Loading")

end

begin=36;
end_at=2099;

Hours=data5(begin:end_at,2);
Min=dataS(begin:end_at,3);
Sec=data5(begin:end at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);

CT = data5(begin:end_at,5);

figure(1)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)

plot(x,y)

xlabel('System Time [s]')
ylabel('TAS [m/s]')

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')

grid on

%Plot - Altitude vs. time
y3=Alt;

subplot(4,1,3)

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]")

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('Mag Heading [deg]")
grid on

figure(2)

151

%Plot - Wind Velocity vs. time
y4=WindVel;

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]')
ylabel("Wind Velocity [m/s]")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel("Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
grid on

%%%%%%%%0%%:%%%%%%% %% %
%%%
%%%%%%0%%% %% %
%%%

begin=2399;
end_at=4051;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end _at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end_at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);

CT = data5(begin:end_at,5);

figure(3)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)

plot(x,y)

xlabel('System Time [s]')
ylabel('TAS [m/s]")

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]")

grid on

%Plot - Altitude vs. time

y3=Alt;
subplot(4,1,3)

152

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(4)

%Plot - Wind Velocity vs. time
y4=WindVel,

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]')
ylabel("Wind Velocity [m/s]")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel("Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]")
ylabel('Cross Track Distance [m]')
grid on

%6%%0%%%0%%0%6%%0%%%%%0%%%%%%%0%6%%%% %% %0%6%%%% % %% %%%%%%%%6%%%%%%%%%%%%% %% %%
%%%
96%%0%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%% %% %% % %% % %% %% %%%% % %% % %% %% % %% %%
%%%

begin=4199;
end_at=5431;

Hours=data5(begin:end_at,2);
Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = dataS(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end_at,13);
MagHeading = dataS(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end_at,11);

CT = data5(begin:end_at,5);

figure(5)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)

153

plot(x,y)

xlabel('System Time [s]')
ylabel('TAS [m/s]')

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]")

grid on

%Plot - Altitude vs. time
y3=Alt;

subplot(4,1,3)

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('Mag Heading [deg]')
grid on

figure(6)

%Plot - Wind Velocity vs. time
y4=WindVel,

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]")
ylabel('"Wind Velocity [m/s]'")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel('Wind Heading [deg]")
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')
grid on

%6%%0%%%0%%0%6%%%%%%%0%%%%%%%0%6%%%% %% %0%6%%%%%%%0%%%%%%%%6%%%%%%%%%%%%% %% %%
%%%
0/Z‘VZ‘%j%%%
%%%

begin=5539;
end_at=6423;

Hours=data5(begin:end_at,2);

Min=data5(begin:end_at,3);
Sec=data5(begin:end_at,4);

154

SysTime=(Hours.*3600)+(Min.*60)+Sec;

%SysTime = nameoffile(begin:end_at,);
TAS = data5(begin:end_at,8);

GS = data5(begin:end_at,6);

Alt = data5(begin:end at,13);
MagHeading = data5(begin:end_at,9);
WindVel = data5(begin:end_at,10);
WindDir = data5(begin:end at,11);

CT = data5(begin:end_at,5);

figure(7)

%Plot - Velocity vs. time
x=SysTime;

y=TAS;

subplot(4,1,1)

plot(x,y)

xlabel('System Time [s]")
ylabel('TAS [m/s]')

grid on

%Plot - Ground Velocity vs. time
y2=GS;

subplot(4,1,2)

plot(x,y2)

xlabel('System Time [s]')
ylabel('Grnd Spd [m/s]')

grid on

%Plot - Altitude vs. time
y3=Alt;

subplot(4,1,3)

plot(x,y3)
xlabel('System Time [s]')
ylabel('Alt [m]')

grid on

%Plot - Mag Heading vs. time
y3b=MagHeading;
subplot(4,1,4)

plot(x,y3b)

xlabel('System Time [s]')
ylabel('"Mag Heading [deg]')
grid on

figure(8)

%Plot - Wind Velocity vs. time
y4=WindVel;

subplot(3,1,1)

plot(x,y4)

xlabel('System Time [s]')
ylabel("Wind Velocity [m/s]")
grid on

%Plot - Wind Heading vs. time
y5=WindDir;

subplot(3,1,2)

plot(x,y5)

xlabel('System Time [s]')
ylabel("Wind Heading [deg]')
grid on

%Plot - Cross Track Distance vs. time
y6=CT;

subplot(3,1,3)

plot(x,y6)

xlabel('System Time [s]')
ylabel('Cross Track Distance [m]')

155

Proposed Actual Flight Test Plans

Appendix D

*(erep ay1 Buipiooal) Ajuo apod Buipui4 puipy 8yl uny 'z

sde| 831y} 10 OM] 10} orl) BY) PUBLIWOD ‘T
ONIATd LON 1OTId/d33NIONT 1S3L

31vnd3aav | a3dis3aa

1394vL

SAJVANVYLS JONVINHO4d3d

‘gouewWIONad Pajdadxa aINSuUd 0} SAINUIW MB} B 10} spowl

1jo)idione ui A)} 01 mojly “818|dwod ate sy28yd Jadoid uaym apouw lojidoine ol Youms 'z

W61y |9A3] pue yBrens urelurey T

oed) wiodAem

wiod 01 wi0d ajdwis e 10} duldSeq B YSI|qelSa 0} SonsialoeIeyd BuIMmo||0) Yol ay) arenjeas

SISVE NOILVNTIVAI

B} [9A9] PUE 2B} 1UI0d O} UI0d :UoNen[eAs pus
W61 [9A8] puE 0B} JUI0d 01 UI0d :Uolen[eAd Lels

uoirewns3 puip
ININDIS NOILVYNTIVAT

107Id
3YNA3I00Ud 1S3l
[ol14 - puIm 0
0z 0Se
aouabianuo)d (s»m)
(sjw) paads | (w) LIV AoelL VIN pumpesH| Jayreap VIN

SYILINVHVC AIIIVA

- TIM

0 :PUIMSS0ID ul--:19g
Wby 19n8] pue Wbrens 0 :BpH remu) ul--:s4 sod ‘9D

:uonisod femuj V/N "dv3oO al ST :M9D

Sd313NVHVYd a3xXId

d3dNNN NN

31va

1071d

Buiuuni apod Bunuiod 10SUas PajIa1I0d PUIM /M XIel] JUlod O} Jujod

NOILdIYOS3A MSVL

uoirewns3 puipm
3SVHd LHOI14

UO0I1981100 PUIA 0]0221d plepuels — julod 01 1ulod

MSVL

1
dl MSsvl

156

“(eyep ay) Buipiooal) Aluo 8pod Bulpuld puim ayl uny 'z

‘usened Jenaio |yl puewwo) T
ONIATH LON 1O1Id/433NIONT 1S31

31vnd3av | a3disaa

1394vL

SAJVANVYLS JONVINHO4d3d

‘gouewlopad pajdadxa aINsud 0} SAINUIW M3} e 10} Bpow
jojidione ul Aj4 01 moj|y "818|dwod are syd8yd Jadoid usym apow lojidoine ol Youms g

Wby 19A3] pue Jybress urejure T

"S1S9) pajenwis ay} pue A1}daWajal 0]0231d 3yl pue uofelS Jayleam ay) wolj palayyeh
SanfeA umou ayl yum paredwod aq 0} apod Bunewnsa puim ayj jo uoisioald ayr ayenea

SISVd NOILVNTIVAI

1yBIy [9A9] pue uiaed JejnalD :uonenpeAas pul
W61 [9A8] pue ulened Jenos) :uoneneas uels

uoReWns3 PUIM
LININOIS NOILYN VAT

1071d
J4NAd3ID0dd 1S3l
0S¢ - PuUIpm\ 0
0C 0se
aouablanuo) (s»y)
(sjw) peads | (w) 17V yoelL VIN pumpesH| Jayream VIN

SHILINVYHVC AIIFGVA

- TIM

0 :puUIMSS0ID ulr--:1g
1By [9A3] pue ybrens 0 :BpH reniu) ul--:s4 sod ‘9D

:uonisod [eniuj VIN :dv3O al ST :M9O

Sd31INVIVd a3axid

H39dANN NNY

31va

1071d

Buiuuni apod Buipuly puim sbumas jojidoine [ewsou /m uianed ojauID

NOILdIFYOS3A MSVL

uolrewns3 puip
3SVHd 1H9ITd

u01199110D PUIA 0]0221d plepuels — uianed o241

MSVL

[

dl syl

157

“(eyep ays Buipiodai) Ajuo apod Bulpuid puim 8y uny z

*A1100[3A yoes Te uianed yorl) adel ay) puewwo) ‘T
ONIATA LON LOTId/433ANIONT 1S3L

31vnd3aAv | a3disaa

1394Vl

SAYVANVYLS JONVYINHOdd3d

‘gouewWIoMad paloadxa aiNsua 0} SaINUIW M3} B 10} spow
jojidione ul A} 01 MOjly "819]dwod ale sy2ayd Jadoid uaym apouw jojidoine ojul Youms ‘g

1B} |9A8| pue ybress ureiure\ ‘T

"aulj@seq e ysijgeisa 0} Jap.o ul uieped

>0B1) 80BI B Ul 0]0921d 3y} J0 saniiqedes Buimojos 3oe ayi o uoisioald sy arenjens

SISVd NOILVNTIVAT

1611} |9A8] pue uianed yoel] adey :uolenfeAs pug
1611 19A8] pue uianed yoel] ddey :uoleneAd Uels

uoFewns puIm
LINIWOIS NOILYNTVAT

1011d
34NA3I00Yd 1S3L
‘ 052 - puIm 0
0g ‘02 05e
ST ‘2T 2ouabianuo) (s»)
(s/w) paads | (w) 11V yoel | VIN pumpesH| Jayres VIN
SYILINVHVC AIIFVA
- M
0 :pUIMSS0ID ul--:1g
By [9A8] pue ybrens 0 :BpH renul ur--:s4 sod ‘90
:uonisod [emiu| V/N :dv3o ql ST :MD

Sd313NvHvd a3Ixid

439INNN NNY

3lva

1071d

Bujuunt apod Buipuly puim 7 sbumss jopdoine fewlou /m uisned Xoel| adey

NOILdIYOS3A HSVL

uolrewns3 puipn
3SVHd LHOITd

UO0I1198110D PUIM 0]0221d plepuels — uianed 3oell asey e

ASVL dl MSv.l

158

"(e1ep ay) buipiodal

|UO SP0OJ bulpuld PUIM 841 UNY "€
A1o0jaA yoea 1e sde| omy Jaye ureb aosuablanuo) yoel] ay) abuey)d 'z

*AN00jaA yoea Te uianed yoel) el ay) puewwo) T
ONIATH LON 1O1Id/d33NIONT 1S31

31vnd3aav

d3dis3a

1394vL

SAYVANVYLS FONVINHO4d3d

"aouewlopad paroadxa aINsua 01 SANUIW M3} © 10} apow
jojidione ui Aj4 01 Mojy "819|dwod are sxyo8yd Jadoid usym apow jojidoine ojul Youms 'z

Wby [9A8| pue ybrens urelurei ‘T

'AVN 8y} Jo sanijiqeded Buimoj|o) xoel) pasealoul

ay) Ae(dsip 01 ureb aauabianuod el ay) AleA “aull@seq e ysijgeisa 0} 1apio ul uianed
>Jel} 8Jel B Ul 0]0921d 9y} Jo sanjiqeded Buimoj|o) yoes3 8y} jo uoisioaid ayy arenfeng

SISVd NOILVNTIVAI

By [9A8] pue wialed Xoel | 8dey :uolenfens puj
1yBIy [9A3] pue wianed yoel] adey uonenea ueis

uolrenens Buimol|04 Yoei] pue uoiewnss puip
ININOIS NOILVNTIVAT

10711d
34NA300dd 1S3L
. 052 - U 0
0E 0c 0s€e ‘05T ‘0S Pt
ST ‘2T aouablanuo) (s»)
(sjw) paads | (w) 11V yoeiL VIN puimpesH| Jayresm V/IN
SYILINVHYC AIIHVA
- 7IM
0 :puMssolId ul--:1g
Wb [9A8] pue Wbrens 0 :BpH remu| ur--:s4 sod ‘90
:uonisod |enu| V/N :dv3o al ST :M9

Sd313NVHvd a3xXId

439NN NNd

3lva

1071d

Buiuuny apo) Buipui4 puipn ® sures) xoel] Bulkrea /m ulaned yoel] aoey

NOILdIdOS3A ASVL

S198))3 92uabiaAuo) o]
3SVHd 1LHOI4

ures) aouabiaAuo) 3aell ayl Bulkiea — ulaned yoel] aosey %

MASVL dl Msvl

159

"(elep o] DUIPI0JS]) 8p0,) PUNUIOY JOSUSS Palosalio)) PUIM ol uny €

yoea Joy sde| omy Jaye Andojan ayl abueyd 'z

*AI00J8A yoea Je uianed yoel) 9.l By} pUBRWIWOD ‘T
ONIATd LON 1LOTId/433ANIONT 1LS3L

3ivnod3Iav

d3dis3a

139dvL

SAJVANVYLS FJONVINHO4H3d

aouewWIopad pa1oadxa aINsua 0} S3INUIW M} € 10} Spowl
jojid1one Ul Aj} 01 Mojy “818]dwod are sx2ayd Jadoid uaym apow jojidoine ojul Youms g

W6 |9A8] pue 1yBrens urelure T

1071d

34NA300dd 1S31

‘'sabueyd yred 1ybiyy

Aue |relap pue Bunuiod Josuas Joy 1snlpe 01 Aljige ,siuiodAem pa1dallod puim ay) alenjens

SISVd NOILVNTIVAT

‘ 052
0g ‘02 0se
ST CT aouabianuo)d
(s/w) peads | (w) 1V el

(s»)
V/IN puimpesH

puim

layreap\

0

VIN

SHILINVHVC AIIAVA

161 [9A8] pue ulaned yoel] aoeY :uonenieag pug
B [9A8] pue ulened yoel] aoey :uonenend el

uoI93110D PUIM
ININD3S NOILVYNIVAI

Wby 98] pue brens
‘uonisod [enu

0 :pUIMSS0ID
0 :BpH remul
V/IN :¥V3IO

ui -
up -
ql §sT

M

d

'S4 sod ‘9D
‘MO

SH3ILINVHVd a3IxXId

d3dWNN NNd

31va

107Id

Buiuuny apo) Bunuiod 10SUas pPaldalIo) puIp /m ulaned xoel] aoey

NOILdI4OS3A MSVL

BunuIod JOSUSS PaIBLI0D PUIM|

3ASVHd LHOI4

Bunuiod losuas 10} Bunsnlpy — uianed 3oell ajdey

MASVL

S

dl XSVl

160

*(eyep ay Buipi0d31) P02 BuUIOd J0SUBS PBIBLI0D PUIA Yl UNY 2

sde| 831y} Jo OM] 10} YOBI] 8Y) pUBLIWOD T

ONIATS LON 1OTId/433ANIONST 1S31

3lvnd3av | a3disaa

139dvL

SAJVANVYLS FJONVINHO4H3d

"aouewWIoad paloadxa aINsud 0] S3INUIW M) € 10} Spowl
jojid1one Ul Aj} 01 Mojy “818]dwod are sx2ayd Jadoid uaym apow jojidoine ojul Youms g

B |9A8] pue 1yBrens urelure|y ‘T

's)insal pare|nwis ay}

Se ||om se T 1S9 WOl 8soy) yum aredwo) ‘s)nsal uonoaliod Bunuiod Josuss ayj arenjens

SISVd NOILVNTIVAT

0S¢
(04 0S¢
aouabianuo)d
(s/w) paads | (w) L7V yoelL

VIN

(s»)
puimpesH

1071d
34NA300dd 1S31
puim 0
Isyream VIN

SHILINVHVC AIIAVA

W61 [9A8] pue okl UI0d 0} UI0d :uonenfeAs pu3
WG [9A8] pue 39e.} WI0d 01 WUI0d :uonenend Uels

uoI93110D PUIM
ININD3S NOILVYNIVAI

Wby 98] pue brens
‘uonisod [enu

0 :pUIMSS0ID
0 :BpH remul
V/IN :¥V3IO

- TIM
ur--:1g
ur--:s4 sod ‘99
al ST :MD

SH3ILINVHVd a3IxXId

d3dWNN NNd

31va

107Id

Buiuuni apoa Bunuiod J0SUSS PadaLI0d PUIM /M YJel] JUI0d 0} Ulod
NOILdIHOS3A MSV.L

uonoa1I0D PUIAA
ISVHd LHOIT4

Bunulod 10Suas u011981100 PUIM — 1Ul0d 01 JUlod 9

MASVL dl XSVl

161

Appendix E: Flight Test Results

The following set of flight test results were gathered post-defense in order to
obtain initial effects of the wind correction algorithm in a real world situation. Two tests
are shown. First, a straight and level flight path and then second a circular orbit. The
aircraft was flown in RC mode with the wind finding code running. The results for both
tests were disappointing. However, the poor results were not due to the algorithm, but
rather a malfunction with the Piccolo II’s true airspeed reading on board the aircraft. Due
to the inaccurate TAS values, the wind velocity and direction results were completely
unreliable. In the first test, the TAS quickly drops to zero and remains there throughout
the flight. Obviously the UAV had a positive TAS at all time, thus displaying the error in
the Piccolo’s readout of the TAS. However, it is interesting to note that the wind
estimating algorithm was still operating correctly as the estimated winds were precisely
the difference between ground track and flight path. With TAS=0 m/s, the algorithm
estimated the wind to be the same as the ground speed, as shown in Figures 111 and 112.
The TAS results for the circular orbit test, Figure 113, were non-zero, but still inaccurate

and unreliable, producing poor results for the wind estimations found in Figure 114.

162

g | | | | | | | |
£ 100 m e T
< 0 ‘ 1 1 1 A 1 1 1
2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
- System Time [s]
E 40 : : : : : : : :
I) N B Lo R [
(%]) |
s 0 ! ! ! !
(% 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
System Time [s]
__ 260
£ 240 | |
< 20 | | | | | | | |
2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
2 System Time [s]
o
=) 400 ; T ; ; T ; ; T
£ [| | |] i |
% 200777 e [[[H
) | | | | | | |
T O L L L L L L L
= 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
= System Time [s]
Figure 111. Straight and Level Flight Test Results
w
£ 40 ‘
> |
'S 20}- :
6 |
> l
'g | | | | | I
= 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
_ System Time [s]
[=2]
i 400
D
£
S 200 ----
(]
T
2 o0
= 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280
z System Time [s]
o 200 ‘ :
a l l
S of- l |
S | | | | | | |
= | | | | | | |
wn | | | | | | |
(2] _200 1 1 L L L L L L
8 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280

System Time [s]

Figure 112. Straight and Level Flight Test Wind Estimations

163

N
o

2 | | | | | | | |
E ol S S L I S R "]
%] : | | : | | :
< 0 | | | | | | |
F 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
- System Time [s]
£ 30
2 20 : i !
%] | | | | |
- ! ! ! ! ! !
(% 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
System Time [s]
__ 360
£ 340 ‘ | |
z 320 L L : L : L L L
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
2 System Time [s]
o
z 400 | | | | | :
£ | [| | | I
T 200 - T | e it e - - - —
) | | | |
T O L L L L
2 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
= System Time [s]
Figure 113. Circular Orbit Flight Test Results
o
€ 40 ‘
= |
3 20 i . -
S S : :
'8 0 : : I I : I I :
= 1920 1930 1940 1950 1960 1970 1980 1990 2000 20
_ System Time [s]
(@]
g 400 T T T T T T T T
o l l l l l l
S 2000 - : l l : 1 ‘ il
8 | |
T | |
E 0 : I : : I
= 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
= System Time [s]
[a) | |
X | |
% 0 | |
= l l l l ‘
17,) | | | | | | | |
(%2} .500 1 1 | | | L | |
8 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

System Time [s]

Figure 114. Circular Orbit Flight Test Wind Estimations

164

Bibliography

“APC 16x8 Pattern Propeller.” Retrieved on April 9, 2006 from
www?2.towerhobbies.com/ cgi-bin/wti0002p?&M=APC. 2006

Bayraktar, S., Fainekos, G.E., Pappas, G.J. Hybrid Modeling and Experimental
Coorperative Control of Multiple Unmanned Aerial Vehicles. Technical Report.
Department of Computer and Information Science, University of Pennsylvannia, PA.
December 2004.

Brown, M.J. et. al. “Joint Urban 2003 Street Canyon Experiment.” Joint Urban 2003
Field Study and Urban Mesonets, Seattle, WA. January 2004.

Bryant, R.L. “Zermello Navigation.” Instructor Lecture. Department of Mathematics,
Duke University, NC. May 1998.

Bryson, A.E., Ho, Y. Applied Optimal Control — Optimization, Estimation, and Control.
New York, New York. Hemisphere Publishing Corporation, 1975.

Cionco, R.M., Luces, S.A. “Near Surface Winds from an Enhanced Micro-Mesoscale
Simulation System.” The Fifth Conference on Urban Environment, Vancouver, BC,
August 2004.

Dugan, J. Situational Awareness and Synthetic Vision for Unmanned Aerial Vehicle
Flight Testing. MS Thesis. AFIT/GAE/ENY/06-J2. School of Engineering and
Management, Air Force Institute of Technology (AFIT), Wright Patterson AFB, OH.
June 2006.

Frew, E., Xiao, X., Spry, S., McGee, T., Kim, Z., Tisdale, J., Sengupta, R., Hendrick,
K.J. “Flight Demonstrations of Self-directed Collaborative Navigation of Small
Unmanned Aircraft.” Proceedings of the 2004 IEEE Aerospace Conference, Big Sky,
MT, March 2004.

“Futaba - 9CA/CH Computer Systems.” Retrieved on April 9, 2006 from
http://www.futaba-rc.com/radios/futj85.html. 2006.

Girard, A. R., Hedrick, J.K. “Formation Control of Multiple Vehicles Using Dynamic
Surface Control and Hybrid Systems.” International Journal of Control, 2003. Vol.
76. November 2002.

165

Jodeh, N. Development of Autonomous Unmanned Aerial Vehicle Research Platform:
Modeling, Simulating, and Flight Testing. MS Thesis. Department of Aeronautics and
Astronautics, Air Force Institute of Technology, OH. March 2006.

King, E. Distributed Coordination and Control Experiments on a Multi-UAV Testbed.
MS Thesis. Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, MA. September 2004.

Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J.K., Zennaro, M., Sengupta, R.
Strategies of Path-Planning for a UAV to Track a Ground Vehicle. Departments of
Mechanical and Civil and Environmental Engineering, University of California,
Berkeley, CA. May, 2003.

McCarthy, P. Characterization of UAV Performance and Development of a Formation
Flight Controller for Multiple Small UAVs. MS Thesis. AFIT/GAE/ENY/06-J2.
School of Engineering and Management, Air Force Institute of Technology (AFIT),
Wright Patterson AFB, OH. June, 2006.

Office of the Secretary of Defense. Unmanned Aerial Vehicles Roadmap 2002-2027.
Washington: HQ DOD, December, 2002.

“OS 4 Stroke Engines.” Retrieved on April 9, 2006 from http://www.ehirobo.com. 2003.

“Smart Digital Magnetometer.” Retrieved on April 19, 2006 from
http://www.ssec.honeywell.com/magnetic/datasheets/hmr2300.pdf. 2004.

Tin, C. Robust Multi-UAV Planning in Dynamic and Uncertain Environments. MS
Thesis. Department of Mechanical Engineering, Massachusetts Institute of
Technology, MA. September, 2004.

U-Blox AG, Switzerland. Retrieved on December 10, 2005, from
http://www.u-blox.com/products/tim_Ip.html

Vaglienti, B., Hoag, R., Niculescu, M. Piccolo System Users Guide. Hood River OR.
Cloud Cap Technology. 18 April 2005.

Vaglienti, B., Niculescu, M. Hardware in the Loop Simulator for the Piccolo Avionics.
Hood River OR. Cloud Cap Technology. 18 April 200

166

Vita
Ensign Brent K. Robinson graduated from Palos Verdes Peninsula High School in
Rancho Palos Verdes, California. He entered undergraduate studies at the United States
Naval Academy in Annapolis, Maryland where he graduated with a Bachelor of Science
degree in Aerospace Engineering, with a concentration in Aeronautical Engineering, in
May 2005. He was commissioned as an Ensign in the United States Navy on May 27,

2005.

He was directly assigned to Wright Patterson Air Force Base in Dayton, Ohio for
graduate studies at the Air Force Institute of Technology. Upon his graduation with a
Master’s degree in Aeronautical Engineering, he will be assigned to Naval Air Station,

Pensacola, Florida for initial pilot training.

167

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
06-13-06 Master’s Thesis June 2005 — June 2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

An Investigation Into Robust Wind Correction Algorithms for

Off-The-Shelf Unmanned Aerial Vehicle Autopilots °b- GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Robinson, Brent K., Ensign, USN 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER
Graduate School of Engineering and Management (AFIT/EN) AFIT/GAE/ENY/06-J14

2950 Hobson Way, Building 640
WPAFB OH 45433-8865

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
AFRL/VAA ACRONYM(S)

TH
2210 8" ST., WPAFB, OH, 45433 11 SPONSOR/MONITOR'S
Lt Col Lawrence Leny REPORT NUMBER(S)

(937) 255-6500
AFIT Proposal #2003-120, AFIT JON # 05-186

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT The research effort focuses on developing methods to design efficient wind correction algorithms to “piggy-
back” on current off-the-shelf Unmanned Aerial Vehicle (UAV) autopilots. Autonomous flight is certainly the near future for the
aerospace industry and there exists great interest in defining a system that can guide and control aircraft with high levels of
accuracy. The primary systems required to command the vehicles are already in place, but with only moderate abilities to adjust
for dynamic environments (i.e. wind effects), if at all. The goal of this research is to develop a systematic procedure for
implementing efficient and robust wind effects corrections to existing autopilots. The research will investigate the feasibility of
an external dynamic environment control algorithm as a means of improving current, off-the-shelf autopilot technology relating
to small UAVs. The research then presents three main focuses. First, a determination of the estimated winds utilizing the
existing, on-board sensors. Second, the development of code that incorporates simple mathematical principals to counter the 2-
Dimensional wind forces acting on the aircraft; and third, the integration of that code into the on-board navigational system. This
“piggy-back” algorithm must assimilate smoothly with the current GPS technologies to provide acceptable and safe flight path
following. The design procedures developed were demonstrated in simulation and with flight tests on the SiG Rascal 110 UAV.
This report builds the framework from which future wind correction research at AFIT and the ANT Center are based.

15. SUBJECT TERMS
UAYV, Autonomous UAV, Wind, Wind Correction, UAV Flight Testing, Piccolo, Piccolo SDK, SIG Rascal

16. SECURITY CLASSIFICATION 17. LIMITATION | 18. 19a. NAME OF RESPONSIBLE PERSON
OF: OF NUMBER Paul A. Blue, Maj, USAF _ AFIT/ENY
a. REPORT b. c. THIS ABSTRACT OF PAGES [19b. TELEPHONE NUMBER (Include area code)
ABSTRACT PAGE
u 182 (937) 255-6565 x4714
U u uu (paul.blue@afit.edu)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

168

	An Investigation into Robust Wind Correction Algorithms for Off-the Shelf Unmanned Aerial Vehicle Autopilots
	Recommended Citation

	Microsoft Word - AFIT-GAE-ENY-06-J14b.doc

