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Abstract 
 
 This research effort focuses on developing methods to design efficient wind 

correction algorithms to “piggy-back” on current off-the-shelf Unmanned Aerial Vehicle 

(UAV) autopilots. Autonomous flight is certainly the near future for the aerospace 

industry and there exists great interest in defining a system that can guide and control 

small aircraft with high levels of accuracy. The primary systems required to command the 

vehicles are already in place, but with only moderate abilities to adjust for dynamic 

environments (i.e., wind effects), if at all. The goal of this research is to develop a 

systematic procedure for implementing efficient and robust wind effects corrections to 

existing autopilots used on small Unmanned Aerial Vehicles. The research will 

investigate the feasibility of an external dynamic environment control algorithm as a 

means of improving current, off-the-shelf autopilot technology relating to small UAVs. 

The research then presents three main focuses. First, a determination of the estimated 

winds utilizing the existing, on-board sensors. Second, the development of a wind 

correction algorithm that incorporates simple mathematical principals to counter the 2-

Dimensional wind forces acting on the aircraft; and third, the integration of that wind 

compensator into the on-board navigational system. This “piggy-back” algorithm must 

assimilate smoothly with the current GPS technologies to provide acceptable and safe 

flight path following. The design procedures developed were demonstrated in simulation 

and with flight tests on the SIG Rascal 110 UAV.  This report builds the framework from 

which current wind correction research at AFIT and the ANT Center is based. 
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ROBUST WIND CORRECTION ALGORITHM FOR OFF-THE-SHELF 
UNMANNED AERIAL VEHICLE AUTOPILOTS 

 

I. Introduction 
 

1.1 – Motivation 
 

The first one hundred years of flight brought about an incredible evolution 

beginning with two, small town bicycle makers soaring just over 120 feet and progressing 

to the global military and civil aerospace business of current times. This transformation 

has thrust aviation into the forefront of the world’s daily operations and has positioned 

the business as a necessity in the everyday world. While this “revolution” has been rapid 

in historic terms and some have declared Aerospace as a mature business/technology, the 

next one hundred years will undoubtedly bring a myriad of advances that will continue to 

change how the world lives and operates. One of the most important developments of 

current times is that of Unmanned Aerial Vehicles (UAVs).  While they have been 

envisaged as long as manned aircraft, the enabling technologies have only recently 

matured enough to bring them to a state of operational reality.  Thus, UAVs of all sizes 

and capabilities are beginning to accomplish numerous missions impractical, or even 

impossible, for manned aircraft. 

Leading the drive for research and development in the UAV field are the U.S. 

Department of Defense’s (DoD) efforts to provide a more efficient and capable force for 

it’s military forces. Currently, UAVs operating as remotely piloted vehicles (RPV) are 

utilized around the globe to provide intelligence, surveillance, and reconnaissance (ISR) 

as well as for small scale offensive actions. The immediate success of those operations 

has inspired the DoD to push further into the uncharted territory of complementing the 
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modern warfighter’s emergent needs with UAV technology. The next step is to provide 

partially to fully autonomous UAV systems that have the ability to execute any peacetime 

or combat missions in support of desired “Effects Based Operations” (EBO).  Such UAV 

operations not only have the potential to provide more fiscally attractive solutions to 

EBO needs, but since it offers the potential to remove the human from the most 

dangerous and dull aspects of the mission, UAVs offer the potential for dramatic 

improvement in  organizational concepts, civilian or military. 

The Air Force Institute of Technology’s (AFIT) Advanced Navigation 

Technology (ANT) Center has recognized the importance of research in the autonomous 

UAV domain with ongoing projects in guidance and control of small aircraft (for 

definition of “small UAVs” see Roadmap, 2002:62). The ANT Center now has the 

foundation for autonomous UAV study including analytic research, MATLAB 

simulations, Hardware-In-The-Loop (HITL) Simulations, and flight test and 

demonstration. This broad capability, established through previous theses (Jodeh, 2006), 

allowed for the current research in this, and related theses.  For this thesis, the primary 

tool utilized for the autonomous control research in the ANT Center was an off-the-shelf 

commercial autopilot provided by Cloud Cap Technologies, named the Piccolo II 

(Vaglienti, 2005). 

In recent years, developing, simulating, and flight testing robust autonomous 

UAVs has been the topic of interest at numerous civilian universities/institutions 

throughout the country. However, when specifically dealing with small aircraft and 

autonomous control (esp. with the Piccolo II) there are only a few establishments 

conducting in-depth analysis, which includes the Autonomous Intelligent Networks and 
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Systems (AINS) Center for Collaborative Control of UAVs at the University of 

California, Berkeley (Girard, 2002 and Frew, 2004), the GRASP Laboratory at the 

University of Pennsylvania (Bayraktar, 2004), and the Aeronautics and Aerospace 

Department at the Massachusetts Institute of Technology (King, 2004 and Tin, 2004). 

These institutions have produced research which has advanced the control and 

manipulation of single and multiple UAV systems (King, 2004), dramatically pushing the 

envelope in this field. However, most of the previous research has, at best, glossed over 

the primary focus of this thesis; specifically, the affects of wind on the flight paths of the 

UAVs.  The issue may have been mentioned, but prior research has not delved into the 

implementation of a robust system that continuously updates any wind correction 

parameters – a necessity for operational relevance. 

The importance of this ability to strictly track a predetermined path becomes 

evident when dealing with current implementation of UAVs in the modern combat zone. 

Recent operations have shown the need for this technology to enable operations and 

navigation in the “urban canyon” environment.  This demand requires tight adherence of 

point to point waypoint following. Moreover, urban buildings, streets, and the general 

environment generate unique and highly variable wind patterns which present a particular 

challenge for small, lightweight UAVs.  The inherent strong up/down-drafts coupled with 

horizontal gusts can easily force a UAV off course and into an obstacle.  Detailed studies 

on the topic can be found in (Cionco, 2004) and (Brown, 2003). 

The research community generally characterizes the “wind effect” problem as an 

easily correctable issue through basic math. While it is true that the math involved was 

not drastically complicated, the difficulty lies in the implementation of these corrections 
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into the UAV autopilot systems – especially for the cost effective off-the-shelf systems. 

Most current systems will correct for a “static” wind reading, possibly at some ground 

station, and then employ this correction to the aircrafts control algorithm throughout the 

entire flight.  However, as mentioned, in the new urban flight environment this 

methodology will not provide sufficient precision. Therefore, a continuously updating 

wind correction feeding the aircraft’s control devices is not only desired, but required for 

the intricate demands of modern day operations. 

 

1.2 -- Problem Statement 
 

The ultimate goal of this research is to provide AFIT, the ANT Center, and the 

research sponsor, AFRL/VA, with a well-documented investigation into robust wind 

correction algorithms for small UAVs.  To meet the operational needs, these schemes 

must continuously calculate the current wind corrections required and then update the 

UAVs flight plan to accommodate the local and constantly variable winds so as to assure 

the UAV remains on course or on target. The research platform supports UAVs flying in 

a constant or variable wind environment using Cloud Cap Technology’s Piccolo II 

autopilot system. This problem statement has two primary parts. First, produce an 

adaptable algorithm for determining the current wind effects on the vehicle and the 

required heading and airspeed to compensate for that wind. Second, produce sensible 

approaches of implementing wind compensation algorithms on Commercial Off-the-

Shelf (COTS), waypoint guided autopilots without hardware or software modifications to 

the autopilot or UAVs.  In this thesis, the implementation will be demonstrated using a 

Piccolo II autopilot and the corresponding Software Development Kit (SDK).  
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Furthermore, simulated and actual flight test results were conducted to validate the 

algorithms. 

 

1.3 -- Research Objectives 
 
• Develop and document a wind velocity and direction determination scheme to be 

utilized on small UAVs in autonomous flight mode. 

• Develop and document an interface algorithm in order to implement 

modifications to the flight path of the UAV to compensate for wind. The resulting 

ground track should show an improvement in the waypoint targeting and/or track 

following capabilities of the UAV. 

• Demonstrate the performance of the algorithms through comparisons of 

unmodified and modified flight plans using HITL simulations as well as actual 

flight test data. 

 

1.4 – Significance of Research 
 

The significance of this research is to provide AFIT, the ANT Center, and 

AFRL/VA with a basis for continuing work in the precise navigation field of UAV 

technology.  This research provides a robust manner in which to compensate for the 

common issue of variable winds.  The current autopilot system incorporates wind finding 

calculations and adjustment techniques; however, the method used did not allow for a 

real time update of the wind.  Therefore, the adjustments did not correct for dynamics of 

winds in the “urban canyon” or similar environments as efficiently as would be needed 

for combat operations. 
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Providing the foundations for a two dimensional, continuously updating wind 

correction algorithm allows for a starting point to delve into the more complex issues of 

precise, three dimensional track and waypoint control for lightweight, autonomous 

UAVs.  This end goal is undoubtedly a few years in the future, but the reported research 

overcame the initial steps to improve the current systems. 

The capability for the United States to, at will, deploy autonomous UAVs in an 

urban environment to conduct ISR or offensive operations will be indispensable to 

achieving the goals of EBO. To efficiently carry out a desired mission mitigating the risk 

of the loss of human life is the top level objective in this environment.  The capacity to 

accurately infiltrate an unknown urban environment with a UAV will certainly contribute 

to those overarching objectives.  This research will prove to be a significant step in that 

maturation. 

Moreover, the concurrent AFIT studies of multiple, autonomous UAV formation 

flight (McCarthy, 2006) and UAV Autonomous Situational Awareness and Synthetic 

Vision (Dugan, 2006) provide further insights to enhance the goals of AFIT and the ANT 

Center. 

 

1.5 – Methodology 
 

The methodology varied for each of three research objectives.  The calculations 

for determining the current wind conditions were developed through a manipulation of 

the difference in the GPS ground track and the actual aircraft magnetic heading. Utilizing 

basic trigonometry and algebra a wind direction and velocity were solved for, providing 

the current wind effects on the vehicle.  Then, the new flight conditions, such as the 
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magnetometer heading and true airspeed (TAS), could be solved for. Additionally, these 

calculations were completed at continual time intervals; therefore, providing updating 

wind and correction estimates. 

Once the wind-compensated values were known, there were three approaches for 

relaying that information back to the autopilot.  

1. The more direct method of sending a new turn rate command coupled with the 

new TAS command. The difference between the actual and desired headings 

divided by a reasonable time step resulted in the turn rate command.  

2. A second approach was to insert a new, updating waypoint which was placed 

at the correct heading to result in the overall aircraft ground track, after the 

effects of wind, to follow the original path to the original waypoint.   

3. A unique approach to wind correction was employed by analyzing the ground 

footprint location of a nose mounted sensor.  Despite precise navigation by the 

UAV, a sensor would not survey a target, but rather some undesired position 

offset from the target due to the difference in magnetic heading and the 

ground track direction.  In order to correct this problem, the aircraft’s flight 

path would be modified in order to counteract the sensor offset. 

Developing the interface that implemented the wind correction algorithms on the 

Piccolo II autopilot involved using the Software Development Kit (SDK), provided by 

the manufacturer, to generate a C++ program.  The SDK gave the operator real-time 

access to telemetry data from the autopilot.  It also enables information to be sent back to 

the autopilot in order to update a desired parameter.  Because this Software Development 
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Kit was provided by the same company as the autopilot, the interfacing occurs relatively 

smoothly whether this autopilot was in a HITL or in the airborne UAV.  

The procedures for the HITL simulations and the actual flight testing were those 

formulated by Capt. Nidal Jodeh in his research from 2005-2006 (Jodeh, 2006).  

Essentially, the flight tests would first be run using the HITL simulator to ensure proper 

flying attributes. Then, the test team would fly the UAVs on Area B test range at Wright 

Patterson AFB, per the rules and regulations explained later. 

With the algorithms effectively manipulating the flight path, the modified path 

results were compared to the original results using a MATLAB script developed 

previously (Jodeh, 2006) and then adapted by the author. This program output two 

dimensional (also 3-D, if desired) plots of the aircraft’s true flight path, simulated or 

actual, in relation to the desired waypoints and flight paths. From these figures, the 

variations were easily analyzed. 

 

1.6 – Thesis Preview 
 

Chapter II details the equipment utilized including the aircraft components, the 

avionics components, the autopilot, and the simulation components and provides a 

background on the flight testing, as a whole. Chapter III methodically looks at the 

equation build ups and the varying attempts at the implementation of the modified flight 

parameters. Chapter IV presents the results of the baseline tests, the HITL simulations, as 

well as the actual flight tests. Chapter V summarizes the conclusions and 

recommendations. 
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II. Background 

2.1 – Overview 
 

Chapter II provides background information on the specific equipment, 

components, and the flight testing procedures utilized in the formulation of the wind 

compensation algorithms.  Thus, it supplies the reader the necessary information to 

understand the remaining chapters.  Initially, the airframe, engine, and propeller are 

discussed.  This is followed by a discussion of the avionics systems, including the 

standard radio controller (RC), the autopilot, and the digital magnetometer.  Next, the 

Hardware-In-The-Loop (HITL) simulation setup is detailed along with the Software 

Development Kit (SDK) interface.  The chapter concludes with a description of the flight 

testing setup, procedures, and the data telemetry collection and handling. 

2.2 – Aircraft 

2.2.1 – Airframe 
 

The aircraft used for this research was the ANT Center’s Rascal 110 R/C aircraft 

constructed by the SIG Manufacturing Company, Inc.  This aircraft provided a rugged 

platform with a relatively abundant amount of interior volume, stable flight 

characteristics, and simple construction techniques.  The Rascal 110 is a high wing, “tail 

dragger” configuration that was delivered in an Almost-Ready-to-Fly (ARF) 

configuration.  Prior to delivery SIG constructed most of the fuselage and wing structures 

out of thin plywood, balsa wood, aluminum, and fiberglass.  The ANT Center then 

completed final assembly of the components and modified the interior as needed.  A key 

modification was the addition of a 50 oz fuel tank, to provide a flight time of 

approximately two hours.  About 40 hours of work was required to complete the aircraft 
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in the desired configuration.  Figure 1 shows a completed version of the ANT Center’s 

Sig Rascal 110’s. 

 

Figure 1. Two Completed Sig Rascal 110’s (Jodeh, 2006) 
 

The manufacturer provided airfoil was a combination of two Eppler planforms. 

The top airfoil surface is an Eppler 193, while the bottom is an Eppler 205, joined at the 

chord lines.  SIG also stated that the resultant section thickness was 11.5% of the root 

chord with an aspect ratio of 6.875:1.  However, through previous research, Air Force 

Captain Nidal Jodeh found the aspect ratio to be 7.94 when assuming a semi-elliptical 

planform as opposed to the rectangular assumption used by the manufacturer (Jodeh, 

2006).  Unfortunately, SIG Inc. did not provide any stability, performance, weight, 

balance, or aerodynamic data with the Rascal 110.  Capt. Jodeh determined most of those 

values through his research (Jodeh, 2006).  Figure 2 displays the wing planform view of 

the Rascals. 
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Figure 2. Sig Rascal Wing Planform View (Jodeh, 2006) 
 
 
 
 Table 1, below, outlines the pertinent aircraft data and parameters that 

characterize the Sig Rascal 110. 
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Table 1. Various Sig Rascal 110 Characteristics 
SIG RASCAL PARAMETER VALUE 

Wing Span 9.16 ft 

Aspect Ratio 7.94 ft 

Aircraft Mass (Empty Fuel Tank, Engine, 

Reciever) 

14.19 lbf 

Gross Takeoff Weight (GTOW) 18.74 lbf 

Length (including Engine & Tails) 76 in 

Payload ~10 lbf 

Normal Operating Airspeeds 12-30 m/s (true) 

 

2.2.2 – Engine and Propeller 
 

The SIG Rascal 110s used by the ANT Center are powered by FS-120S III four 

cycle engine produced by O.S. Engines.  The power plant came ready to use, including a 

diaphragm fuel pump, matching carburetor, and a built in pressure regulator. The 1.218 

cubic inch engine’s output was rated at 2.1 brake horsepower (bhp) at 12,000 revolutions 

per minute (rpm).  To translate the horsepower to thrust, the engine was combined with a 

16x8 synthetic propeller from the APC Company.  This 32.5 ounce power plant was 

capable of pulling the Rascal at over 60 knots.  Figure 3 and Figure 4 display the O.S. 

engine and the APC propeller (O.S., 2003 and APC, 2006).  
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Figure 3. O.S. FS-120S III Four Cycle Engine 

 

 
 
 

 

Figure 4. APC 16x8 Nylon Propeller 
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2.3 – Avionics 
 

The avionics utilized by the ANT Center in the Rascal 110’s had three separate 

components, the basic radio control (RC) system, the Piccolo II Autopilot System, and 

the digital magnetometer. 

2.3.1 – Radio Control System 
 

The RC system was a Futaba 9CAP/9CAF 8 channel transmitter coupled with a 

Futaba R149DP PCM 1024 receiver.  High torque servos, also Futaba products, 

translated the radio signals to movement in the control surfaces.  Figure 5 is a photo of 

the advanced Futaba transmitter (Futaba, 2006). 

 

 

Figure 5. Futaba 9CAP/9CAF 8 Channel Transmitter 
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2.3.2 – Piccolo II Autopilot  
 

The Piccolo II autopilot system, which was the crux of this research project, was 

purchased from Cloud Cap Technologies.  This unit is well suited for incorporation into 

small UAVs, providing a completely autonomous aircraft capable of navigating through a 

flight plan of predefined or real time updated waypoints.  The entire setup included the 

autopilot, the ground station interface, the manual control box, the HITL components, 

and software. 

The autopilot box provided attitude data through three gyros and two double-axis 

accelerometers for rate and acceleration measurements of the aircraft.  The autopilot uses 

a Kalman filter to estimate attitude and gyro bias using a GPS-derived pseudo-attitude as 

the measurement correction (Vaglienti et al. 2005).  The pitot-based flight data, true 

airspeed (TAS), absolute altitude, and outside air temperature (OAT), were delivered via 

a dual ported 4kPa dynamic pressure sensor, and an absolute ported barometric pressure 

sensor, and a board temperature sensor (Vaglienti et al. 2005).  The Piccolo II autopilot 

utilized a 40 MHz Motorolla MPC555 PowerPC for all processing (Vaglienti, et al. 

2005).  Position data was provided through an imbedded GPS unit.  The wireless link 

used to transfer the command and control, telemetry, payload, differential GPS 

corrections, and pilot in the loop information was a 1W 900MHz and 1W 2.4GHz radio 

modem at up to 40 Kbaud of throughput (Vaglienti et al, 2005).  The GPS receiver was a 

16 channel receiver with 8192 simultaneous time-frequency search bins and a 4 Hz 

position update rate (u-Blox, 2005).  The physical, on-board unit was 2 inches wide by 

2.5 inches high and 5.25 inches deep, totaling 26.25 inches3 in volume.  The box was 

constructed of electromagnetically shielded carbon fiber.  Figure 6 illustrates the block 
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diagram of the complete avionics suite inside the Piccolo II system. Figure 7 is a picture 

of the Piccolo II on-board autopilot (Vaglienti, 2005). 

 

Figure 6. Piccolo II Block Diagram of Internal Components 
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Figure 7. Piccolo II Airborne Autopilot Unit 
 

The ground-based equipment required to interface and control the airborne unit 

include the Ground Station interface, a laptop computer, RC control box, and the UHF 

and GPS antennas.  The Ground Station software interface, known as the Operator 

Interface, ran on a laptop PC and was the primary command and control device.  The 

aircraft telemetry, GPS tracking, component statuses, and control surface gains were all 

available through the Operator Interface.  The RC control box ensured the pilot’s ability 

to take control of the aircraft at all times.  Essentially, it provided a direct pilot-in-the-

loop interface using the Piccolo II autopilot as the RC receiver.  Detailed procedures and 

instructions on the effective use of the Operator Interface was written and provided 

(online) as the Piccolo System User’s Guide Version 1.3.0 from Cloud Cap Technology, 

written by Vaglienti et al. (2005).  The RC box and the remaining electrical components 

required for this system were all collocated in the Ground Station.  Figure 8 presents the 

entire arrangement of the required ground equipment for the Piccolo II system (Vaglienti, 

2005). 
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Figure 8. Required Ground Equipment (minus the laptops) for the Piccolo II 
Autopilot System 

 

An important component used in the implementation of the Piccolo II autopilot 

was the Fail Safe Control Relay.  This enabled the UAV pilot to simply toggle between 

standard RC control and the Piccolo’s manual/autonomous control.  Additionally, the Fail 

Safe Control Relay switched from the autonomous mode to RC mode, and vice-versa, if 

the control signal strengths dropped below predetermined levels.  As an example, if the 

UAV was under autopilot control and the signal was lost, for any reason, the relay was 

activated and RC control was implemented (also, if under RC control and RC signals are 

lost, autonomous mode would be engaged).  The designers of the fail safe, William J. 

Schmoll and Richard Marker of Air Force Researh Labs Sensors Directorate (AFRL/SN), 

detail the system in the following:  

“The channel 8 output of receiver A goes to the monostable multivibrator 74C221 
trigger. The 15k ohm resistor, the 5k ohm potentiometer, and the 0.2 uF capacitor  
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form the external timing circuitry for the 74C221. The multivibrator is adjusted  
by the 5k ohm potentiometer for exactly 1.5 milliseconds. The channel 8 pulse  
al goes to the 74C175 flip-flop’s “D” input. When the monostable pulse ends  
(goes low) the output of the 74C175 is latched in the state of the channel 8 pulse.  
If the channel 8 pulse is longer than 1.5 msec then the 74C175 output will be high  
and if shorter than 1.5 msec then it will be low. The output of the 74C175 goes to 
the select inputs (pin 1) of the 74C157 data selector chips. If “Select A/B” is low,  
receiver A (R/C) is selected and if high the receiver B (autopilot) is selected.”  
(Jodeh, 2006) 
 

 
Figure 9 is a schematic of the Fail Safe Control Relay (Jodeh, 2006). 
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Figure 9. Fail Safe Control Relay Schematic  
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Figure 10 is the block diagram depicting the air and ground avionics and communication 
paths (Jodeh, 2006). 
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Figure 10. Complete Autonomous Flight Setup 
 
 

2.3.3 – Honeywell HMR2300 Digital Magnetometer 
 

 The key component added for this research was the Honeywell HMR2300 Smart 

Digital Magnetometer.  Whether simulated or actual, this device allowed the team to 

observe the magnetic heading of the aircraft.  This was essential in determining the 

UAV’s crab angle, which made it possible to continuously estimate the winds.  The GPS 

telemetry provided the ground track direction, while the magnetometer provided the true 

heading of the aircraft – the difference being that crab angle.  Measuring 4.2 x 1.5 x 

0.876 inches, the Honeywell unit was easily mounted in line with the Rascal’s nose in the 
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forward portion of the internal equipment bay.  Because Cloud Cap Technologies 

recommended this specific unit, clear directions were provided in the Piccolo User 

Manual to calibrate and integrate the magnetometer with the Operator Interface.  Figure 

11 is a photograph of the device as provided on the Honeywell website. 

 

 

Figure 11. Honeywell HMR2300 Digital Magnetometer (Honeywell, 2004) 
 

  

 
 

2.4 – Simulation 
 
 The primary means of preliminary evaluation for any flight testing is through a 

complete system level simulation in which the highest fidelity model is desired, if not 

required, to produce accurate results.  From the simulation data, the researchers can then 

make reasonable assumptions on how the test object will behave under real world 

conditions.  For this project, the proven method of Hardware-in-the-Loop (HITL) 
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simulation was utilized. Here, the actual device, the Piccolo II autopilot, was placed 

directly in the simulation loop. Then, the autopilot interacted with the simulated aircraft 

(produced on the provided Piccolo Simulator) as if airborne. 

2.4.1 – Hardware in the Loop (HITL) 
 
 As mentioned above, the HITL simulation involved the interaction of multiple 

simulated and/or real components, including the Piccolo Aircraft Simulator, the Piccolo 

II Autopilot, the Ground Station box, and the Operator Interface. (As a note, due to the 

system operational requirements, two desktop and/or laptop computers were employed.)   

Figure 12, below, presents a graphical representation of the Hardware in the Loop 

Simulation setup in the ANT Center (Jodeh, 2006). 

 

Figure 12. Standard Hardware in the Loop Simulation Setup 
 

The two computers designated for the HITL simulations in the ANT Center were COTS 

and of average computing power.  One of the HITL computers was used to run the 

Operator Interface while the other was used to run the aircraft simulation.  The Operator 

Interface allowed the autopilot settings to be viewed and/or altered, as well as presenting 
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a bird’s eye view of the aircraft, simulated or actual, and its progression along the flight 

plan track.  The Ground Station box was connected to a serial port on the computer 

running the Operator Interface.  This connection provides the user with an interface to the 

ground station so signals and telemetry could be relayed to the autopilot over a wireless 

transmission.  The GPS and UHF antennas were plugged into the Ground Station Box.  

Next, the Piccolo II was connected to the computer running the aircraft simulation 

provided by Cloud Cap through its main harness.  The simulation then had the ability to 

send the simulated aircraft sensor data to the autopilot unit so as to replicate actual 

aircraft motion.   

 Additionally, the recommended (by Cloud Cap) flight visualization software 

package, “Flight Gear,” was occasionally run on the Operator Interface computer as well.  

This program enabled increased situational awareness compared to the top-down view 

provided by the Operator Interface.  Flight Gear provides three dimensional top, trail, 

pilot, or wingman views.  Yet, the purpose of the this research was to analyze, and then 

better, the 2-Dimensional, cross-track wind flying capabilities of the UAVs; thus, for 

most situations, the top view sufficed and the Flight Gear software was not employed.   

 
 

2.4.2 – Software Development Kit (SDK) 
 
 Cloud Cap Technologies recognized that modifications to the Piccolo II was an 

idea that many of its autopilot users might desire.  Thus, they provided a Software 

Development Kit (SDK), in the form of C++ code, to facilitate such modifications.  

During the summer of 2005, AFIT employed Randall Plate, a local college student, as an 

intern in the ANT Center.  His primary goal was to experiment with the Piccolo SDK.  
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This work provided important insight regarding as how to efficiently perform 

modifications to the Piccolo C++ code and the resultant effect on the autopilot.  By the 

end of his term, Mr. Platte was able to provide C++ code, with comments, that allowed 

the user to interface with the autopilot in real time.  Although the code was preliminary, it 

established a foundation to build upon for many the current ANT Center UAV projects – 

this one included. 

 As the Piccolo II operates, it actively creates and logs packets of information that 

are transmitted to and from the ground station.  The Software Development Kit enabled 

the user to essentially intercept, modify, and then send back modified data packets.  In 

summary, this was how modifications were applied to an operational autopilot unit.  In 

this case, an initial function was coded to continuously estimated the wind as the aircraft 

flew.  Next, a series of functions implemented the desired corrections based on those 

estimated wind velocities and directions.  Finally, a group of functions were used to remit 

the data back to the Piccolo II.  The effects of those modifications were viewed, in real 

time, through the Operator Interface. 

   

 
 

2.5 – Flight Testing 
 

2.5.1 – Overview of Flight Test 
 
 The flight testing of any aircraft is an absolute necessity to ensure that the 

behavior and performance are within predetermined specifications regardless of whether 

the system is totally new or simply modified.  This project was no exception, and served 
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flight tests were conducted to validate the wind finding and correcting techniques as 

applied to the proven SIG Rascal 110 outfitted with the Piccolo II autopilot. 

 A myriad of organizations have flown and proven the stability and performance of 

the SIG Rascal, the autopilot, and the combination of the two.  The ANT Center 

completed this first step through Capt. Jodeh’s thesis research on the development of 

autonomous UAV system (Jodeh, 2006).  This allowed for only a cursory check flight of 

the aircraft which included basic airworthiness checks by means of “standard maneuvers” 

in RC mode followed by a set of autonomous tracking maneuvers.  With the enabling 

parameters performing as expected, the test conductor and the UAV pilot began the 

designated flight tests for that session.  Upon completion of the experiment, the test 

conductor stopped the Operator Interface program and captured the logged telemetry. 

Once back in the lab, that set of data was processed and analyzed.  Chapter V details the 

specific flight tests and their objectives. 

 

 

 

2.5.2 – Flight Test Range 
 
 Consistent with standard protocol for the testing of official government property, 

this research testing was planned for and conducted on government land.  All test flights 

were planned to be flown on Area B of Wright Patterson Air Force Base (WPAFB) in 

Dayton, Ohio, specifically, on and around the closed runway 27, located in the southwest 

corner of Area B.  This area is approximately 1.5 miles in length and one mile wide, with 

a 400 foot above ground level (AGL) ceiling.  The field elevation was 785 feet mean sea 
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level (MSL), making the ceiling for flight tests 1185 feet above MSL.  This area was also 

occupied by other facilities conducting autonomous UAV flight tests.   

 Figure 13 is an aerial view of the Area B test site.  The approximate boundaries of 

the test area are outlined by the heavy, dashed-line trapezoid (Jodeh, 2006).  

 

 

 

Figure 13. WPAFB, Area B Flight Test Range 
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2.5.3 – Ground Equipment 
 
 The test team’s ground equipment was consolidated in a 20- foot trailer, which 

then took on the role of a test operations center.  An external, gasoline powered generator 

provided the AC electricity to power the computers, the Ground Station box, the battery 

charging equipment, etc. The UHF and GPS antennae were attached to trailer’s roof as 

was an orange windsock.  Additional equipment, including folding chairs and tables, 

small tool kit, two-way radio headsets, packed comfortably into the trailer.   Similarly, 

miscellaneous equipment including an RF meter, cones, fire extinguisher, spill kit, first 

aid kit, video camera, battery testers, and a handheld GPS unit were staged and stored in 

the trailer.  Moreover, a 10-12 foot desk was mounted on the interior to facilitate 

workstations for the Ground Station, computers, etc.  As opposed to the desktop 

computers utilized in the ANT Center’s HITL simulations, the “field” setup for flight test 

exploited laptop computers.  Figure 14 shows the open rear of the test trailer and the 

normal test team which was comprised of four to five members, including the pilot 

(contracted from Wyle Laboratories), the test conductor, and spotters/observers (Jodeh, 

2006).  
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Figure 14. Ground Equipment and Test Team Conducting a Flight Test 
 
 
 
 

2.5.4 -- Criteria for Flight Test of UAVs at WPAFB 
 
 Due to proximity of the test range on Area B to other facilities, government and 

civilian, certain flight test restrictions and safety of flight criteria were imposed.  The 

Configuration Control Board (CCB), Technical Review Board (TRB), and Safety Review 

Board (SRB) were administered by AFIT and AFRL personnel, per the Air Force base 

regulations to ensure safe operation within controlled airspace.  Table 2 lists the 

prominent criteria for flight testing in the Area B range. 
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Table 2. Prominent Criteria for Flight Tests (Jodeh 2006) 
Winds Less than 30 mph 

Temperature Greater than 40o F 
Visibility Greater than 3 Miles 

Cloud Ceiling Minimum 500 ft AGL 
Airspace Ceiling Maximum 400 ft AGL 

GPS Satellites 6 or more visible 
Radio Frequency Interference Check 
Safety Equipment and First Aid Kit 

Pitch, Roll, and Yaw Rate Gyro Operations 
Static and Dynamic Pressure Port Operation 

WPAFB Control Tower Notification 
 

 

2.5.5 – Wind Correction Implementation 
 
 Consistent with standard flight test protocol, the wind correction flight tests 

conducted were planned in an order that gradually increased test complexity and 

challenge. Similarly, testing was begun on a mildly breezy day and worked up to a day 

when the winds were 35%-50% of the aircrafts velocity.  This limit was deemed suitable 

since it is generally accepted that small UAVs would not be able to effectively operate in 

an environment with sustained winds of greater than 50% of its normal cruising speed. 

 

2.5.6 – Data Collection and Handling 
 
 At the conclusion of a flight test, the Piccolo’s telemetry was logged, in ASCII 

format, in the Operator Interface folder on the respective laptop.  The software acquired 

and stored 70 parameters that were continuously updated at a selected data rate.  The two 

data rates available were “Request Slow” at 1 Hz and “Request Fast” at 20 Hz.  The rate 
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chosen by the test conductor was determined by the fidelity required.  Additionally, the 

individual telemetry files were only created when the Operator Interface was turned off. 

 Two methods were used to transform the flight data to usable plots and values. 

First, the telemetry file was opened in Microsoft Excel, placing each of the 70 parameters 

in its own column.  At this point, the analyst would delete any unnecessary rows and 

columns in order to reduce the file size.  For example, a half an hour flight test at the 

“Request Fast” rate would produce an Excel file with approximately 60,000 rows by 70 

columns, or 4,200,000 data cells.  Trimming the excess parameters could reduce the 

number of data cells by as much as two-thirds.  The modified Excel file was imported 

into MATLAB and saved as a MATLAB “.mat” file.  This new file was then uploaded 

into a program which displayed two- and three-dimensional plots of the aircraft’s actual 

track in relation to the desired.  Additional plots to show various flight measurements and 

wind values, created by the author, supplemented this program.  The program is attached 

in the Appendix C. 

 A second method of data acquisition was developed during the course of this 

research.  The SDK was manipulated such that it would output only the desired telemetry 

in a Microsoft Notepad file. Then, similar to above, this file could be imported to either 

Excel or directly into MATLAB to be exploited by the same plotting program discussed 

above.  Table 3 lists the 70 parameters available through the SDK.   
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Table 3. Available Telemetry through the Piccolo SDK 
1. Clock [ms] 25. Static [Pa] 49. Surface7 [rad] 
2. Year 26. Dynamic [Pa] 50. Surface8 [rad] 
3. Month 27. P [rad/s] 51. Surface9 [rad] 
4. Day 28. Q [rad/s] 52. P_Bias [rad/s] 
5. Hours 29. R [rad/s] 53. Q_Bias [rad/s] 
6. Minutes 30. Xaccel [m/s/s] 54. R_Bias [rad/s] 
7. Seconds 31. Yaccel [m/s/s] 55. AP_Global 
8. Latitude [rad] 32. Zaccel [m/s/s] 56. PDyn_Stat 
9. Longitude [rad] 33. Roll [rad] 57. Alt_Stat 
10. Height [m] 34. Pitch [rad] 58. Turn_Stat 
11. Ground Speed [m/s] 35. Yaw [rad] 59. Flap_Stat 
12. Direction [rad] 36. LeftRPM 60. Track_Stat 
13. Status 37. RightRPM 61. PDyn_Cmd [Pa] 
14. InputV [V] 38. WindSouth [m/s] 62. Alt_Cmd [m] 
15. InputC [A] 39. WindWest [m/s] 63. Turn_Cmd [rad/s] 
16. FirstStageV [V] 40. WindError [m/s] 64. Flap_Cmd [rad] 
17. FiveDV [V] 41. RSSI 65. Track_Cmd 
18. FiveAV [V] 42. Surface0 [rad] 66. MagHdg [rad] 
19. CPUV [V] 43. Surface1 [rad] 67. SonicAlt [m] 
20. GPSV [V] 44. Surface2 [rad] 68. AckRatio [%%] 
21. BoxTemp [C] 45. Surface3 [rad] 69. ServoV [V] 
22. Altitude [m] 46. Surface4 [rad] 70. ServoC [A] 
23. TAS [m/s] 47. Surface5 [rad]  
24. OAT [C] 48. Surface6 [rad]  
 
 

2.6 – Chapter Summary 
 
 This chapter provided a review of the equipment utilized and the overarching 

techniques applied to conduct this research program.  The SIG Rascal 110 powered with 

the O.S. FS120S-III carried the Piccolo II autopilot.  The avionics package included a 

sophisticated 8 channel transmitter and receiver produced by Futaba, the autopilot 

components, and the fail safe relay.  The flight tests were conducted on Area B of Wright 
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Patterson AFB in Dayton, Ohio and adhered to all of the rules and regulations outlined.  

Additionally, flight data was analyzed using Microsoft software coupled with MATLAB. 
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III. Development of the Wind Correction Approaches 

3.1 – Overview 
 
 The overall impact on flight path trajectory effects due to wind on small UAVs 

were best viewed from overhead.  This perspective allowed for ground tracks, airborne 

magnetic headings, correction angles, and relative distances to be determined using basic 

trigonometry.  The bulk of mathematics behind this research utilized manipulations of 

sin/cosine theory, Pythagorean Theorem, and basic Dynamic Inversion.    

3.2 – Real Time Wind Estimating 
 

The first step was to determine the wind heading and velocity so the aircraft’s 

heading, velocity, flight path, etc. could be adjusted to compensate for the wind.  The 

Piccolo II autopilot allowed the operators to not only view, but capture (via the SDK) 

many of the variables required in this compensation.  However, one limitation of the 

Operator Interface was that the physical display only showed the resulting ground track 

of the aircraft. The difference in the aircraft magnetic heading and the resulting ground 

track produced an angle, known as the “crab” angle.  Thus a separate scheme was 

required to determine the crab angle.   

The basic Piccolo II autopilot only displayed wind estimates at intermittent 

updates or when designated “Wind Interval Turns” were commanded.  In real world 

applications, it is rare for the winds aloft to be constant, especially so in an urban canyon 

environment.  Therefore, the need for a real time, updating wind estimate became 

abundantly clear.  Fortunately, Cloud Cap recognized issues such as this and provided 

their SDK to allow modifications or additions to the autopilot’s functions.  Thus, the 
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following equation methodology was implemented in the SDK using C++ programming 

to provide a real time wind estimate. 

Using a vector component break down, three aspects to the flight path of the 

UAVs were identified. The aircraft itself had two velocity vectors: one based solely on 

the airborne vehicle’s orientation and the other being the ground track. Each of these had 

velocity magnitude and angle components.  The presence of wind was then characterized 

as the difference between the two aircraft velocity vectors. Equations 1 and 2 show that 

the aircraft’s heading ( MAGθ ) and true airspeed ( TASV ) plus the wind effects ( WV  and Wθ ) 

will result in the overall ground track ( GV  and Gθ ).  Note, all angles, θ, were measured 

clockwise from North = 0°. 

sin( ) sin( ) sin( )TAS MAG W W G GV V Vθ θ θ+ =                                   (1) 
cos( ) cos( ) cos( )TAS MAG W W G GV V Vθ θ θ+ =                                  (2) 

 

Grouping all of the aircraft components on one side of these equations resulted in 

Equations 3 and 4.  These were used as the base equations to begin the manipulations for 

solving the real time wind velocity and heading. 

 
 

sin( ) sin( ) sin( )W W G G TAS MAGV V Vθ θ θ= −                                 (3) 
cos( ) cos( ) cos( )W W G G TAS MAGV V Vθ θ θ= −                                (4) 

 
 To simplify the equations, the substitutions shown in Equations 5, 6, 7, and 8 
were made. 

 
Wx V=                                                                (5) 

cos( )Wy θ=                                                           (6) 
 

cos( ) cos( )G G TAS MAGa V Vθ θ= −                                          (7) 
sin( ) sin( )G G TAS MAGb V Vθ θ= −                                          (8) 
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 Inserting the new variables, Equations 3 and 4 reduce to Equations 9 and 10. 

 ( )( )a x y=                                                             (9) 
21b x y= −                                                      (10) 

 
The next step was to simultaneously solve for “x” and “y.”  These two equations with 

two unknowns were easily solved using software such as MATLAB or by hand using 

classical mathematics.  Equations 11 and 12 are the results. 

 
2 2x a b= +                                                      (11) 

2

2 2

ay
a b

=
+

                                                     (12) 

 
Finally, the original wind variables were reinserted, solving for the wind velocity and 

wind heading. 

2 2
WV a b= +                                                     (13) 

2
1

2 2cos ( )W
a

a b
θ −=

+
                                             (14) 

 

 

3.3 – Turn Rate Approach Equations 
 
 Now that the wind variables were known the correction that needed to be applied 

to the aircraft to adjust for the wind could be deduced.  As will be shown, there is more 

than one approach to implementing these corrections.   

The most direct method utilized the mathematical principle of “Dynamic 

Inversion” to solve for a new aircraft velocity, 2TASV , and heading, 2MAGθ , which could 

then be commanded through the Piccolo II to compensate for the wind.  The dynamic 
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inversion principle essentially backs out a desired command based on of a known output 

variable.  In this case, the output variables, WV  and Wθ , were solved for using the known 

input quantities, which were extracted from the Piccolo’s telemetry.  The desired ground 

track, a known value, and the wind variables, known parameters, were combined to back 

out the new inputs.  Essentially, the end result is that the ground track was known and the 

corresponding inputs which would provide that desired output were then reverse 

engineered.  The following procedure outlines this process. 

Once again, Equations 1 and 2 were the baseline from which to start the 

calculations.  However, this time, the winds are known based on the previous section and 

the aircraft’s true airspeed and magnetic heading values required (to be commanded) to 

counteract the wind need to be solved for.  These new values were denoted with an 

underscore “2.” 

2 2sin( ) sin( ) sin( )TAS MAG W W G GV V Vθ θ θ+ =                                 (1) 

2 2cos( ) cos( ) cos( )TAS MAG W W G GV V Vθ θ θ+ =                                (2) 
 
 

The values being solved for were then isolated, resulting in Equations 15 and 16. 

 
2 2sin( ) sin( ) sin( )TAS MAG G G W WV V Vθ θ θ= −                               (15) 

2 2cos( ) cos( ) cos( )TAS MAG G G W WV V Vθ θ θ= −                               (16) 
 
 

As in the case of the real time wind estimating, a similar change of variables was done to 

simplify the terms. 

2 2TASx V=                                                            (17) 

2 2cos( )MAGy θ=                                                       (18) 
 

sin( ) sin( )G G W Wd V Vθ θ= −                                            (19) 
cos( ) cos( )G G W Wc V Vθ θ= −                                            (20) 
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The reduced equations were represented by Equations 21 and 22, below. 

       2 2( )( )c x y=                                                           (21) 
2

2 1d x y= −                                                       (22) 
 

The solutions for the non-linear, simultaneous equations above were determined using 

MATLAB and hand calculations, just as before. 

 
2 2

2x c d= +                                                       (23) 
2

2 2 2

cy
c d

=
+

                                                      (24) 

 
Replacing x2 and y2 with the original variables, the new true airspeed and magnetic 

heading were solved using Equations 25 and 26.  This gives expressions for the true 

airspeed and magnetic heading as a function of the measured winds and desired ground 

track.  Thus, commanding the UAV to fly 2TASV and 2MAGθ will produce the desired ground 

track. 

2 2
2TASV c d= +                                                   (25) 

2 2cos( )MAG a yθ =                                                   (26) 
 

 Ideally, this approach of solving for the new aircraft heading and airspeed would 

provide the most direct manner in which to implement new aircraft control commands.  

Initially, it seemed straightforward to continuously input these two new values to the 

Piccolo II, creating an updating correction.  The new heading would be input as a turn 

rate, hence the name “Turn Rate Approach,” and the airspeed would be commanded as a 

dynamic pressure.  However, as will be detailed in section 3.6, the implementation of a 
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new airspeed and magnetic heading through the SDK created barriers that were beyond 

the scope of this thesis. 

 

3.4 – Updating “Rabbit” Waypoint Approach 
 

The second approach to wind effects correction was referred to as Updating 

“Rabbit” Waypoint Insertion.  The methodology took the real time wind values 

determined above and attempted to insert a new, updating waypoint that would be offset 

from the original.  The aircraft would then be commanded to fly to the adjusted waypoint; 

however, due to the wind drift it would never reach that point and instead end up at the 

original, targeted waypoint.  The process below provides the framework for the “Rabbit” 

waypoint placement approach. 

To begin with, the relative, horizontal distance, in meters, between the aircraft’s 

current position and the current waypoint was required.  The waypoints, as well as the 

aircraft’s position, were provided in Latitude/Longitude/Altitude (LLA) format.  

Therefore, both positions were first converted to East/North/Up (ENU) coordinates using 

the preexisting code in the SDK.  So, if D was defined as the straight line, ENU distance 

between the aircraft’s location and current waypoint.  Then inserting Equations 27 and 28 

into the Pythagorean Theorem, the horizontal distance was determined and presented as 

Equation 29. 

 
/East A C East WyptA ENU ENU− −= −                                          (27) 

/North A C North WyptB ENU ENU− −= −                                         (28) 
 

2 2D A B= +                                                         (29) 
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The overarching goal, or perhaps better stated as the “anti-goal,” of the “rabbit” was for 

the UAV to continually chase the rabbit, but never actually catch it.   To implement this 

aspect the new waypoint was repeatedly placed at a distance greater than “D.”  Next, the 

bearing, or angle, (from the aircraft) of the new waypoint had to be determined.  This 

angle would not only depend on the real time wind velocity and direction, but also in 

which Cartesian quadrant the aircraft was located with respect to the original waypoint.  

The following set of equations progress through the operations required to not only find 

the correct angle and distance of the “Rabbit,” but also place it using the correct ENU 

coordinates. 

 
If ( Gθ  > 0 && Gθ ≤ 90);  

angle_deg = Gθ  - 90;                                                      (30) 
abscos = Dcos(angle_deg)                                          (31) 

abssin = Dsin(angle_deg)                                             (32) 

East NewWyptENU −   = /East A CENU −  + abscos;                       (33) 

North NewWyptENU −  = /North A CENU −  + abssin;                      (34) 
     

 
If ( Gθ > 90 && Gθ ≤ 180)  

angle_deg = Gθ  - 90; 
abscos = D cos(angle_deg)  

abssin = Dsin(angle_deg)  

East NewWyptENU −   = /East A CENU −  + abscos; 

North NewWyptENU −  = /North A CENU −  - abssin; 
 

     
If ( Gθ > 180 && Gθ ≤ 270)  

angle_deg = Gθ  - 270; 
abscos = D cos(angle_deg)  

abssin = Dsin(angle_deg)  
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East NewWyptENU −   = /East A CENU −  - abscos; 

North NewWyptENU −  = /North A CENU − - abssin; 
     

 
If ( Gθ > 270 && Gθ ≤ 360)   

angle_deg = Gθ  - 270; 
abscos = D cos(angle_deg)  

abssin = Dsin(angle_deg)  

East NewWyptENU −   = /East A CENU −   -  abscos; 

North NewWyptENU −  = /North A CENU − + abssin; 
 

These procedures should then place the new “rabbit” waypoint in the correct spot to ploy 

the aircraft into adjusting for the real time wind. 

 

3.5 – Wind Corrected Sensor Pointing 
 

Assuming an efficient wind correction factor to the UAVs flight path, the aircraft 

would neatly track any predetermined waypoint-to-waypoint course.  However, another 

wind related issue must be considered in order to provide a worthwhile attempt at real 

time wind correcting.  The UAVs being exploited in the hostile, urban canyon 

environments are very small.  Due to there size and payload restrictions any sensors, 

video or otherwise, must be equally small in both volume and weight.  For this reason, 

most systems deployed on the aircraft do not have the ability to gimble the sensor head.  

Thus, even if the ground track of the aircraft is properly corrected, the UAV’s nose will 

still  “crab” into the wind.  Therefore, the sensors would not be pointing forward, along 

the ground track, and would have the distinct possibility of not surveying the target, even 

if the UAV flew directly toward or over it, jeopardizing mission success.  Thus, another 
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approach is presented that focused the wind corrections on the pointing direction of the 

on board sensors as opposed to the flight path of the UAV. 

Viewing the UAV from the side, a right triangle can be constructed with the three 

sides being, the line of sight (LoS) distance for the sensor, the current altitude of the 

vehicle (Alt), and the horizontal distance the sensor projects (Horiz).  Knowing the 

current aircraft altitude via the SDK, and assuming the sensor mounting angle, Sensorθ , 

from the horizontal is known, the line of sight distance was determined, as is shown in 

Equation 36. 

 
( _ )cos( )SensorLoS Dis Altθ =                                            (35) 

 

_
cos( )Sensor

AltLoS Dis
θ

=                                               (36) 

 
Now that the “LoS” and “Alt” variables were known, the horizontal distance that the 

sensor projected was found using Equation 38.  As a check, with a Sensorθ  of 45°, the 

altitude and the horizontal distance should be the same value, and they are. 

 
2 2_LoS Dis Alt Horiz= +                                           (37) 

 
2 2_Horiz LoS Dis Alt= −                                             (38) 

 
Next, the bird’s eye view in Figure 15 must be taken into account in order to determine 

the appropriate offset for the UAV to fly. 
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Figure 15. Top View of the UAV with the Adjustment Parameters Defined 
 

The horizontal distance, “Horiz,” now became the hypotenuse in a new right triangle as 

shown above.  The other two sides of that triangle were the left/right (along the ground 

track) and up/down (perpendicular to the ground track) distances from the UAV to the 

sensor footprint.  These two distances are the adjustments in the UAV’s position required 

to put the sensor footprint at the current position of the UAV.  These two values were 

represented as Equations 40 and 41. 

Crab G Magθ θ θ= −                                                       (39) 
_1 ( )cos( )CrabAdjust Horiz θ=                                           (40) 
_ 2 ( )sin( )CrabAdjust Horiz θ=                                           (41) 

 

θCrab 
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Once these adjustments were known they would then be added/subtracted to the original 

waypoint/target ENU location; thus, providing an offset flight path that allowed for the 

sensors to survey the target, even under non-negligible wind conditions.   

 

3.6 – Wind Correction Implementation 
 
 The implementation and integration of modifications onto an existing platform is 

a challenge equal to the development of the modification itself.  Without proper 

integration, the entire project becomes purely academic. As with most real world 

projects, this process proved to demand the bulk of the man-hours invested in the 

research.  On the other hand, the attempts at executing the wind corrections resulted in 

the majority of the useful research.    

 3.6.1 – Real Time Wind Estimating 
 
 The incorporation of the real time, updating wind estimation was fairly 

straightforward and successful.  The Equations presented in section 3.2 were directly 

input into the C++ code with minimal issues.  Because the Piccolo’s telemetry packets 

were only used to passively read off information, the wind determination scheme was put 

into operation within a few days.  Figure 16, below, is a screenshot example of the real 

time, updating wind estimates of a simulated UAV flight.   
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Figure 16. Screen Capture of the Piccolo SDK Executable 
 

For most laboratory tests, the simulated wind input was 5 meters per second directly from 

the south.  As will be shown, the results were within a reasonable precision (10%), 

especially when considering the simulation program induced random gusts.  One primary 

concern with the wind finding code was the use of the arccosine math function used in 

Equation 14.  Unfortunately, this function does not properly account for the sign 

conventions associated with the complete Cartesian coordinate system from 0° to 360°.  

Because of cosine/sine characteristics, if the data point was in the second, third, or fourth 

Cartesian-quadrants the appropriate applications of negative signs would not occur when 

implementing “arccosine.”  Fortunately, a two argument arctrangent function has been 

developed for math programming, called “atan2,” which utilizes the proper sign 

characteristics of the tangent function throughout all four Cartesian quadrants.  Therefore, 

Equation 14 was adapted to Equation 42, shown below. 

1tan ( )W
b
a

θ −=  [rad]                                                  (42) 



 45

Variables “a” and “b” were the same as those in Equations 9 and 10, respectively.  In the 

C++ code provided in Appendix B, this wind finding function is called 

“WindCorrection.”  With this modification, the wind velocity and heading became a real 

time, viewable flight parameter that could be used to implement wind correction 

commands to the Rascal 110. 

  

 3.6.2 – Implementing the Turn Rate & Updating “Rabbit” Waypoint  
                                    Approaches 
 
Turn Rate Approach 

A high proportion of time put into this thesis was spent attempting to implement 

these two approaches at wind correction for the UAV’S flight path.  Essentially, both of 

the approaches attempted to modify the current UAV ground track to reduce its error in 

relation to the predetermined waypoint-to-waypoint path.   

The first, turn rate, was to modify the aircraft magnetic heading, using updating 

turn rate commands, to directly affect the flight path.  The basic idea was to directly 

command the new heading and TAS values at each time step.  There was a time delay 

from when the wind affected the UAV to when the calculations and new parameters 

could have been uploaded back to the aircraft.  However, with the request fast mode 

selected, this delay was under one second, which was considered negligible.  This method 

would have then provided a close to real time heading and velocity adjustment.  The 

obstacle then became sending the information back to the Piccolo II.  Through this 

research, it was determined that the Piccolo II autopilot is initially uploaded with a set of 

waypoint data and then the system automatically attempts to fly the direct path 
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connecting subsequent waypoints. The system did not continuously send the waypoint 

information.  So, when a new turn rate command was pushed through the system, via 

SDK, that command overruled all previous information and the aircraft only flew that 

turn rate.  As an example, if the UAV was flying from waypoint 1 towards waypoint 2 at 

a heading of 270° and a command of 280° was required, the aircraft would be sent a turn 

rate command until the heading changed by 10°.  Yet, instead of being able to command 

that 10° of turn and then returning to the predetermined flight plan, the operator would 

then have to continuously send turn rate commands; essentially, negating any waypoint 

tracking capabilities of the Piccolo II and attempting to fly the aircraft solely based off of 

turn rates.  Now, aircraft control purely through turn rates has been proven to be a viable, 

and quite desirable, method.  However, it was outside the intended scope of this thesis to 

alter the primary control method of the autonomous flight, but this topic may provide a 

worthy follow-on project as turn rate commanding carries with it numerous advantages.   

Because of the known potential for progress in this area, the math and 

programming schemes required were kept in the attached SDK code.  The mathematical 

background was formulated with the initial attempts at implementation represented.  In 

addition to the “WindCorrection” function, the turn rate commanding algorithm utilized 

the “HeadingAdjust” and “AirspeedAdjust” functions.  In “HeadingAdjust,” the 

difference between the new, desired magnetic heading and the current magnetic heading 

provided the necessary adjustment.  Then, this differential was divided by a time factor so 

that the turn rate command would not exceed a maximum rate of 20°/s.  Finally, this rate 

was sent to the autopilot.  With a completed algorithm, this command would be 

continuously updated, driving the aircraft to a correct heading.   
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As previously mentioned, a new TAS was determined from the “WindFinding” 

function as well.  These alternate airspeed commands were successfully transmitted via 

the “AirspeedAdjust” function, located just below the “HeadingAdjust” function in the 

SDK.  The reason the airspeed could be continuously updated was that the Piccolo II 

autopilot does not employ a time-based flight plan.  The aircraft was only instructed to fly 

to a certain latitude/longitude location, altitude, with a specific airspeed, as opposed to 

intercepting a waypoint at a designated time interval.  This allowed for the UAV to fly as 

fast or slow as aerodynamically possibly and for the operator to modify this flight 

parameter without interrupting the chosen flight plan. 

 

“Rabbit” Waypoint Approach 

 Once it became clear that the turn rate approach was out of the scope of this 

research project, a second method of implementing real time wind correction was 

pursued.  The method involved inserting an “updating waypoint” that was precisely 

placed such that if the UAV attempted to fly directly to this new waypoint it would 

actually end up at the original, desired target because of the wind effects.  The new 

waypoint location would constantly be changing to counter variable winds and gusts.  

Additionally, the UAV would never actually reach the new waypoint, hence the name 

“rabbit.”  This enabled the operator to designate a distance from the original waypoint at 

which the “rabbit” function would be ceased, allowing the aircraft to initiate the 

switching logic to continue to the next predetermined target.  Once the UAV was tracking 

the next waypoint, the “rabbit” would resume, repeating the process. 
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 This approach afforded the desired result of a real time wind correction, but 

without having to alter the primary means of autonomous control (waypoint guided 

autopilot).  Initially, the team was hopeful that this provided the solution. However, after 

implementing the algorithm in the SDK and running HITL simulations, it was observed 

that a key aspect of the Piccolo’s operation prevented the efficient implementation.  

Cloud Cap’s device was actually more of a flight path (track) follower than a true 

waypoint hunter.  In a pure waypoint based system, the aircraft would designate where 

the target was located and then point the aircraft’s nose directly at it, resulting in a 

Zermelo (Bryson, 1975 and Bryant, 1998) shaped path if wind was present.  If the device 

had the capability to correct for wind, then a crab angle would be implemented and the 

UAV would fly a relatively straight path as long as the wind was constant.  However, this 

is not exactly how the Piccolo II operated.  It was established that the Piccolo II 

calculates a straight line path based on the position of the previous and next waypoints 

(its relative position and the position of the target).  It then implements its own ground 

track algorithm in order to remain on that straight line path.  Unfortunately, this algorithm 

was not as precise as would have been desired so an attempt was made to implement the 

above described wind correction artificially turning off the Picollo II’strack following 

mode and exploit a pure waypoint tracking method.  When transmitting a new waypoint 

using the SDK, the operator was required to first set the waypoint location, and then send 

a second signal to track that waypoint.  Examples, pulled directly from the wind 

correction code, of these C++ commands are provided below: 

m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69); 

m_pComm->SendTrackCommandPacket(IDbrent6, 69, false); 
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The “SendWaypointPacket” command was fairly straightforward with its inputs being the 

physical autopilot identification number, a structure with the waypoint latitude, longitude, 

and altitude information, and then the desired waypoint number.  The 

“SendTrackCommandPacket,” which sent the command to actually track the new 

waypoint, contained a twist with the “true/false” statement included as an input.  The 

provided SDK “html” help files stated that “The third parameter (true/false) indicates if 

the vehicle should fly to the waypoint along the preceding track segment, or if it should 

go directly to the waypoint, using its current position as the starting point.”  Thus, setting 

the parameter to “true” would command the UAV to go directly to the waypoint and a 

“false” would command the UAV to track the along the previous track in order to reach 

the new waypoint.  At this point, the “true” setting appeared to be the solution, as the 

aircraft would fly directly to the new waypoint undergoing the effects of the wind and 

resulting at the original, desired location.  However, after conducting tests with varying 

wind and waypoint locations it was determined that the Piccolo II software still created a 

direct path from the UAV’s current position to the new waypoint.  So, the aircraft would 

employ its own ground track control in order to remain along that straight line flight path 

even though this was not clearly displayed through the Operator Interface. Unfortunately, 

this prevented further development of the concept.  Thus, it was determined that the team 

could not “dumb down” the Piccolo II autopilot and have the aircraft fly a “Zermello” 

type flight path using the SDK.  This was not to say that it would not be possible.   

The two approaches presented above, turn rate commanding and updating 

“rabbit” waypoint, are believed to be completely valid methods for applying a robust 

wind correction algorithm to the Piccolo II autopilot controller.  The math behind the 
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corrections provided for solid theory.  However, due to the factors described, the team 

was not able to effectively implement these approaches.  Without a working program to 

effectively adjust the flight path of the Rascal aircraft for real time winds the results of 

the research would have been paltry.  Therefore, a completely new perspective was taken. 

 

 3.6.3 -- Wind Corrected Sensor Pointing 
 
 As aforementioned, if an aircraft is adjusting for wind or flying a straight line 

ground track in the presence of wind, then a crab angle is required for accurate navigation 

along a desired flight path.  However, there exists a serious problem when these heading 

modifications are put in place.  If the sensor gathering the information is situated such 

that it is pointed at a fixed angle off the nose of the aircraft and cannot gimble, there is a 

strong possibility that the sensor would never survey the target even though the aircraft 

flew precisely where it was supposed to.  The small UAVs utilized in current operations 

have very little payload capabilities and can only carry a small, lightweight sensor system 

that will not be able to gimble.  Thus, taking an alternate method to correct for wind, a set 

of updating and offset waypoints were calculated and then inserted and tracked such that 

the sensor was correctly pointed as discussed in section 3.5.  In order to implement the 

new waypoints, a few modifications to the equations in section 3.5 were required.   

Specifically, an angle, θ1, was determined as the angle of the current track 

segment between the previous and next waypoints.  This is shown in Equation 43. 

Pr1
1

Pr

tan ( )North CurrentWypt North evWypt

East CurrentWypt East evWypt

ENU ENU
ENU ENU

θ − −−

− −

−
=

−
                       (43) 

 
From this angle, it’s complement was determined using Equation 44. 
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1( ) ( )
2Star absπθ θ= −  [rad]                                            (44) 

 
Equation 44 represented the transformation from the North=0° reference frame to the 

East = 0° frame.  This value was then the angle at which the new waypoint was to be 

placed off of the original, assuming 0° was off the horizontal.  The corresponding ENU 

east and north distances away from the original waypoint were calculated using 

Equations 45 and 46. 

sin_from_next ( _ 2)sin( )StarAdjust θ= −                                   (45) 

cos_from_next ( _ 2)cos( )StarAdjust θ= −                                  (46)  

 

The reason for the negative signs was that the offset for the new waypoint had to be 

opposite in direction from the projected distances of the sensor.  To then find the total 

ENU coordinates of the new, updating waypoint, Equations 47 and 48 were utilized. 

_ cos_from_nextNew Wypt East Old Wypt EastENU ENU− − −= +                      (47) 

_ sin _from_nextNew Wypt North Old Wypt NorthENU ENU− − −= +                     (48) 

 

For the purpose of allowing this new point to be continuously updated, the C++ 

function was written such that the above process would be repeatedly conducted as long 

as the UAV was within some distance, in meters, from the original target.  The updating 

process is “turned on” for each waypoint when the ground distance between the UAV and 

the original waypoint was less than 400 meters and was “turned off” when the distance 

between the UAV and the new, adjusted waypoint was less than 100 meters.  This logic 

to turning on and off the code was applied for two primary reasons.  First, the “turn on” 

parameter allowed for maximum time and distance that the aircraft would fly along the 
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predetermined track.  It was reasoned that the most time spent on track was desirable 

because of unknown factors off track.  Additionally, the aircraft only needed to be 

adjusted in the final approach to the target in order for the sensors to capture that target.  

In a real world environment, to have the UAV fly off track for more time than was 

necessary would be allowing the introduction of more problems (e.g. collisions with fixed 

obstacles or detection by an enemy).  At an altitude of 350 meters, which was where most 

tests were conducted, the sensor would project 350 meters in front of the aircraft if 

mounted at a 45°, which was the assumed angle for all testing in this thesis.  Thus, the 

400 meters criterion was chosen as the distance to begin the flight path modifications.  

The second reason dealt with the “turn off” parameter.  At the point where the UAV was 

within a hundred meters of the new waypoint, the sensors would have already surveyed 

their target due to the field of view of the sensor.  So, to avoid the “rabbit” situation 

described previously were the aircraft never actually reached the target, the code simply 

commanded the system to proceed to the original waypoint at that 100 meter mark.  The 

SDK code accomplished this task by utilizing an “if/else” command on the 

“SendTrackCommandPacket” signal.  The complete function is included as part of the 

SDK located in Appendix B.   

As a note, all of the original flight plan waypoint information was “hard-coded” 

into the SDK.  This does not provide for the best coding technique, but was required 

because the team was unable to capture the waypoint list and its corresponding data from 

the Piccolo’s streams.  However, “in the field” this may not be a complete disadvantage 

because the waypoints could be placed directly over any targets and the resulting latitude 
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and longitude information should be known. The operator could then simply append the 

code. 

 
 

3.7 – Chapter Summary 
 
 This chapter provided a detailed look at the mathematics behind the three 

different techniques of wind correction evaluated during this research.  Although the 

math and theory are believed to be solid, the implementation of that theory using the 

Piccolo II autopilot presented themselves as the road blocks.  The two most conventional 

means at wind correction could not be implemented within the scope of this activity.  

However, the third, and operationally more significant, sensor pointing wind correction 

was successfully tackled and implemented. 
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IV. HITL Test Results and Analysis  

4.1 – Overview 
 
 Chapter IV presents the results the research conducted during this thesis.  Section 

4.2 demonstrates the baseline ground track control capabilities of the Piccolo II autopilot 

system, the real time wind estimations developed in the previous chapter, and the 

corresponding ground position of the center of the sensor footprint.  The three types of 

flight paths evaluated were a straight line point-to-point, a circular orbit, and the common 

racetrack pattern.  Each of these was conducted with varying parameters.  Section 4.3 

displays the results of similar flight paths, but with flight path effects of the modified 

SDK code.  Corresponding results from actual flight testing are presented in Section 4.4.  

The last section of the chapter (section 4.5) summarizes the results.  As a note, it was 

assumed that the sensor was placed at a 45° mounting angle. 

 
 
 
 

4.2 – Standard HITL Simulated Flight Tests with Real Time Wind Estimating 
 
 The most basic and essential flying characteristic for an aircraft is the straight and 

level flight path.  Thus, the first simulation was a simple point-to-point flight path of 

three waypoints in a straight line.  The simulated wind was set to 5 m/s from the south, 

almost a direct crosswind, while the UAVs commanded TAS was 20 m/s.  These values 

represented a realistic flight condition with a moderate wind.  The plot of this test is 

provided as Figure 17.   
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Figure 17. Standard UAV & Sensor Tracks for a Point-to-Point Flight Path 
 
 
As shown and consistent with the technical discussions in Chapter 3, it became evident 

that despite precise ground track following, the sensor was tracking roughly 75 meters off 

of the desired position.  The “crab” into the northerly wind, which results from the 

Piccolo II autopilot flying a straight ground track in the wind, caused the sensor footprint 

to be a significant distance off course. 

 Figure 18 and Figure 19 present various flight parameters corresponding to the 

previous graph.  The speeds, altitude, magnetic heading, wind characteristics, and cross 

track distance were extracted off from the Piccolo’s telemetry and then written to a data 

log using the SDK.  The first four plots were primarily output as a “sanity check” for the 
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flight.  It was pre-determined that most irregularities would be evident through 

observation and inspection of those four characteristics. 
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Figure 18. Various Flight Characteristics for the Standard Point-to-Point Flight. 
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Figure 19. Wind Estimations & Cross Track Distance. 
 

The real time wind velocity and wind heading estimations were logged from the SDK 

using the equations developed in Chapter 3.  The wind characteristics in the HITL 

simulation were commanded directly from the simulation input values and were therefore 

considered constant (there was a turbulence setting, but this was kept at the “light” setting 

for all tests).  However, the results from the updating wind estimations in Figure 19 were 

not always constant in either magnitude or heading.  While these disturbances were not 

initially expected, the majority of the data still provided information of sufficient quality 

for a practical analysis.  For instance, if the spikes were removed from the wind velocity 

plot, the average wind velocity was about 5 m/s.  An analysis indicated the cause of the 

spikes.  As the aircraft made large direction changes two issues arose: The first was that 
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the SDK calculations consistently lagged the actual aircraft position by one time 

increment.  The second problem played off the first - as large heading changes occurred, 

the required “crab” angle would change at a significant rate.  Because the code lagged 

behind the true position, when the computer caught up with the position it appeared as a 

large spike/step in that last transmission time period.  Upon initial inspection, the wind 

heading plots appear to vary widely, but in reality they follow the same trend as the wind 

velocity plot.  It is important to remember that a wind heading of 1° is essentially the 

same as a heading of 359°, validating the results.  The airspeed as a function of time plot 

also displayed spikes.  These were most likely due to significant heading changes as the 

UAV switched waypoints, and driven by rapid transitions from a head wind to a tail wind 

condition.  The Piccolo II system simply cannot react instantaneously to such rapid 

changes and therefore there was an associated lag. 

 Figure 20, Figure 21, and Figure 22 depict the second test, which was a circular 

orbit about a stationary point at constant velocity and with a constant wind. 
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Figure 20. Circular Orbit Flight Path with Constant Velocity and Wind 
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Figure 21. Various Parameters of the Circular Orbit Flight Path 
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Figure 22. Estimated Wind Values for the Circular Orbit 
 
The circular orbit flight path was interesting in that it displayed the Piccolo’s bias when 

dealing with winds.  As the winds were heading from south to north, it was evident that 

the UAV did much better when turning into the wind, i.e. incurring a headwind, as 

opposed to a tailwind.  This was understandable as the ground speed would decrease and 

the aircraft would be able to better navigate at the slower speeds.  The cross track 

difference between the head and tail winds was only about 50 meters.  Having observed 

this, one must still recognize that Piccolo II manufacturer did a fairly good job 

considering this was a low cost, small scale COTS system.  Yet, there were two things to 

consider when evaluating the overall performance.  First, this was only a simulation, not 

the true flight characteristics and, second, with increasing commanded TASs, the cross 

track distance grew rapidly. 



 61

 The following sets of plots depict the unmodified Piccolo II commanding the 

UAV in a race track pattern.  At first the aircraft’s velocity was the only parameter 

varied.  Following those initial conditions, variations in the “Track Convergence” gain 

are presented.  This gain drives the turn rate loop of the autopilot control software at the 

square of the velocity.  Through previous research (Jodeh, 2006) it was determined that a 

Track Convergence gain of 250 appeared to be an optimal value for the Rascal 110 UAV.  

It will be shown that through lowering this value, the aircraft will attempt to stay on, and 

return to, the track with increasing aggressiveness.  However, the faster convergence did 

come with a loss of precision of altitude hold due to more aggressive turning and banking 

of the UAV.  Figure 23, Figure 24, and Figure 25 present the results of the standard 

autopilot commanding the predetermined racetrack pattern at TAS=12m/s, with a wind of 

5 m/s from the south, and Track Convergence (TC) =250. 
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Figure 23. Race Track Pattern with TAS=12m/s & Wind= 5m/s 

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

11
12
13

System Time [s]

TA
S

 [m
/s

]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0
10
20

System Time [s]G
rn

d 
S

pd
 [m

/s
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

348
350
352

System Time [s]

A
lt 

[m
]

5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

 

Figure 24. Various Parameters for the Race Track Pattern at 12m/s and TC=250 
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Figure 25. Wind Estimations & Cross Track Distance 
 
The sensor paths plot revealed that even at the slowest operating speed of 12m/s, the 

sensor footprint would remain between 100 and 200 meters off of the ground track.  

Fortunately, the physical aircraft tracked the desired path extremely well with maximum 

cross track values of less than 50 meters.  This appears sufficient for the urban canyon 

flight regime.  Again, the estimated real time wind values provided adequate depictions 

of the current flight conditions. 

 The next series of tests were identical to those just described but with variations in 

the true airspeed (TAS).  In addition to the 12 m/s run, 15 m/s, 20 m/s, and 30 m/s 

evaluations were conducted utilizing the same “race track” waypoint locations.   
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Figure 26. Race Track Pattern at 20 m/s Track Conv.=250 
 
As expected with the higher velocity, the small aircraft was less capable of precisely 

holding the track as shown by the blue line in Figure 26.  As a result, the sensor footprint 

tracked further off course.  Any close contacts with the waypoints and the sensor track 

were purely coincidental and would not have occurred with differently spaced points.  

With the track convergence gain set at 250, 20 m/s was about as fast as the UAV could 

fly any semblance to the race track shape.  As shown in Figure 27, at 30m/s an oval was 

the best the aircraft could accomplish.  However, if the race track had longer distances 

between each waypoint the Rascal should have been able to fly an acceptable pattern.  As 

a baseline test, this provided strong evidence that with a relatively small pattern and a 

nominal wind, the aircraft could not be relied upon fly a precise track. 
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Figure 27. Race Track Pattern at 30m/s with Track Conv.=250 
 

Because of the issues described above, the remainder of this document will focus 

on the 12 m/s and 20 m/s cases.  Additional results can be found in Appendix A.  These 

two airspeeds correspond to two crucial flight situations.  The 12 m/s runs represented the 

best results and the 20 m/s evaluations were consistent with a common actual flight 

condition.   

 In an attempt to acquire improved results, the track convergence (TC) gain was 

reduced to a setting of 150 and then to 50.  The weighted importance of flying the straight 

line track between two subsequent waypoints would be increased while the smoothness 

of that track and possible altitude criteria would be lessened.  The TC variation plots at 

12 m/s will be presented first followed by the corresponding results at 20 m/s.   
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At 12 m/s, Figure 28 displays that the Piccolo II did a very good job at remaining 

on track.  However, an interesting side effect began to appear.  With the lower gain value 

for track convergence the aircraft appears to bounce between some designated cross track 

bounds, similar to a bowling ball going down a lane with bumpers.  This was shown by 

the sensor position beginning to waiver left and right, especially along the longer straight 

segments.  Subsequent figures will bring this side effect into a clearer view.  The cross 

track distances for the respective 12 m/s runs decreased from a 40 meter maximum to 

about a 25 meter maximum.  For the urban canyon flight regime initially investigated for 

this thesis, such a simple adjustment to the Piccolo II autopilot created a significant 

increase in the track following performance. 
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Figure 28. Race Track Pattern at 12 m/s with Track Conv.=150 
 

Figure 29 was the 12 m/s run at a track convergence gain of 50.  This time the blue line 

representing the actual aircraft’s position can barely be seen as it is coincident with the 

desired track for most of the flight.  However, this “scanning” side effect became 

excessive.  The nose of the aircraft was continuously moving laterally in an attempt to 

remain as close to the track as possible.  Once again, any points at which the sensor 

footprint and the targets were close were coincidental.  This result would not be 

acceptable for actual flight. 
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Figure 29. Race Track Pattern at 12 m/s with Track Conv.=50 
 

The 20 m/s run with the track convergence set at 150, Figure 30, showed the 

expected decrease in tracking ability when compared with the 12 m/s, but an 

improvement over the respective 20 m/s run with the gain set at 250.  The quicker 

response to return to the track was the most notable change.  Because the track holding 

was improved, the sensor position better mirrored the track, but the offset was still 

present due to the crabbing.  The sensor track was also beginning to become jittery, but 

not so drastic as to render the condition useless. 
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Figure 30. Race Track Pattern at 20 m/s with Track Conv.=150 
 

With the track convergence reduced again to 50 in Figure 31, a slight improvement in the 

UAV flight path was observed.  However, that small improvement was outweighed by 

the increased sensor waiving.  It is important to notice that despite the decreased tracking 

performance as compared to the 12 m/s run, the “induced scanning” was not nearly as 

prevalent.  The reason for this was that because of the higher velocity, the aircraft was not 

as susceptible to the wind.  With a wind of 25% percent of TAS as opposed to 41.66% as 

with the previous runs, the UAV was able to better handle the aerodynamic forces as the 

increased velocity would effectively increase the control powers of the rudder and 

ailerons. 
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Figure 31. Race Track Pattern at 20 m/s with Track Conv.=50 
 

The entire set of baseline tests provided insight into two key objectives of the 

research; the real time wind finding results and the sensor pointing issues.  The results of 

the real time wind finding were considered a success.  Despite a few points when the 

wind velocity and/or direction would spike, the results were consistently accurate under 

various operating conditions and flight paths.  Utilizing the wind finding algorithm in the 

SDK, a passive procedure was provided that allowed for simple means to view and then 

log the wind data, along with numerous other telemetry variables.  The results would be 

best utilized as a situational awareness aid or to post process data for future test flights.  

The full set of results is supplied in Appendix A. 
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The second set of pertinent data concerned the location that a nose mounted 

sensor would actually be pointed when the UAV was in the presence of winds.  From the 

bird’s eye views of the SIG Rascal’s simulated flight path, it became clear that the 

sensor’s footprint would not survey the desired target (waypoint).  The tests conducted at 

the slowest speeds did hold the track the best, but the aircraft required a crab angle to 

accomplish that task; thus, resulting in a lack of coverage of the target by the sensor.  

 

4.3 – HITL Simulation with Wind Correction 

 4.3.1 – Turn Rate & Updating “Rabbit” Waypoint Approaches 
 
 As previously mentioned, the turn rate and “rabbit” approaches of track following 

improvement were not successfully implemented on the Piccolo II autopilot.  However, 

the time spent on researching these two possibilities did return some useful results.  First, 

turn rate commanding was, and still is, a feasible means for wind correction.  In the long 

run, this is probably going to be the best and most accurate means for wind correction on 

small UAVs.  Second, the “rabbit” waypoint chasing would be an acceptable means of 

real time wind correction, with the added advantage of being easier to implement into the 

Piccolo’s SDK or any waypoint guided autopilot.  This “rabbit” chasing algorithm is 

implemented in the C++ code provided in the appendix – and works for a single 

waypoint.  Accessing the “list of waypoints” from the SDK would enable full 

implementation.  Once this Piccolo II specific issue is resolved the rest of the correction 

algorithm should be simulated in C++ code.   
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4.3.2 – Wind Corrected Sensor Pointing 
 
 Using the same predetermined flight paths as in section 4.2, a direct comparison 

was made to determine the effectiveness of the implemented wind corrected sensor 

pointing.  This algorithm used the SDK to actively modify the flight path of the Rascal in 

the HITL simulation in an effort to induce an offset that allowed the simulated on-board 

sensor to survey the target.  For the research, it was assumed that, operationally, a 

waypoint would be set directly over any target.   

 Figure 32 depicts the same straight line path as in Figure 17, but this time the 

SDK code was actively placing a new waypoint at a calculated, ENU distance away from 

the original.  The graph also connects the corresponding positions between the center of 

the sensor footprint and the aircraft.  Under the same flight conditions, the center of the 

sensor footprint was, at best, 75 meters from the waypoint.  As shown in Figure 32 

below, this error was reduced to about 10-20 meters when the wind correction was 

employed.  For this flight condition, that was about a 75% reduction in error.  The 

updated waypoints clearly provided the necessary corrections so that the sensor could 

inspect the target.  Additionally, because the code was designed such that the aircraft 

would remain on track as long as possible and then jump out to capture the target, there 

were no radical direction changes which would have caused drastic elevation changes.  

Just as with the results in section 4.2, the complete set of plots is attached in the 

appendices. 
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Figure 32. Point to Point at 20 m/s - Adjusted for Sensor 
 

 The straight line, point to point flight track was used as an initial proof of concept 

and that the modifications could be implemented efficiently.  The more important, and 

realistic, test was to implement the code on the race track pattern.  This would evaluate 

whether or not the new waypoints would be placed correctly given a varying relative 

wind.  The track convergence gain was set to 250 for all of the simulated tests involving 

the waypoint adjustments.  The reason for this was that the “induced scanning” could 

possibly introduce significant errors in the crab angle calculations.  As a note, this gain 
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could have been increased in an attempt to smooth out the track, but this was not 

evaluated. 
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Figure 33. Race Track Pattern at 12 m/s - Adjusted Waypoints 
 

 Figure 33 is a plot of the results from the race track pattern at 12m/s TAS and the 

wind of 5 m/s from the south.  The error distance between the sensor footprint and the 

waypoints was decreased for most of the targets.  However, the jittery sensor path was 

unexpected.  The scanning effect, which was attempted to be avoided by using the 

convergence gain of 250, was observed.  It was conjectured that this occurred because of 

the continuously updating waypoints.  At each time step the algorithm updates the 

placement of the waypoint.  So the waypoint will move slightly left/right, up/down. Thus, 
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with the waypoint moving slightly, the aircraft needed to adjust its heading at each time 

step.  This resulted in the “induced scanning” effect. 

 Starting with waypoint 0 at the bottom right of Figure 33 and counting clockwise, 

the results of the wind correction for waypoints 1, 2, and 5 were quite favorable.  These 

three all had an error of less than 50 meters.  Waypoints 0 and 6 had marginal results with 

about 100 meters of error.  Waypoints 3 and 4 did not have improved results when 

compared to the standard Piccolo II.  They were not any further away, but the scanning 

effect would be undesirable.  The tail wind condition encountered as the vehicle turned 

towards waypoint 3 coupled with the small track segments proved to be too much for the 

Rascal as it was not able to navigate the right hand turn while incorporating the sensor 

pointing offset.  Longer track segments would have resulted in much better results as the 

aircraft would have steadied itself on track before attempting to implement any 

modifications.  The head wind condition produced closer distances as explained 

previously. 



 76

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
1400

1600

1800

2000

2200

2400

2600

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)

 

 
UAV Track
Sensor Track
Waypoint

 

Figure 34. Race Track Pattern at 15 m/s - Adjusted Waypoints 
 

As the TAS was increased in Figure 34, Figure 35, and Figure 36, the results mirrored the 

unmodified tests with a reduction in the wavering effect and a gradual reduction in track 

following precision.  The greatest improvement remained with waypoints 1, 2, and 5 as 

they were still the longest track segments.  In Figure 36, the resulting UAV track was 

actually improved over the unmodified test at 30 m/s.  Overall, the data for the race track 

pattern were mixed.  There were significant improvements in the sensor footprint error 

for approximately half of the targets, with the other half having only a marginal or no 

improvement.  However, it was determined that if all track segments were of sufficient 

length the results would have been more desirable throughout. 
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Figure 35. Race Track Pattern at 20 m/s - Adjusted Waypoints 
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Figure 36. Race Track Pattern at 30 m/s - Adjusted Waypoints 



 78

 
 
Varied Environmental Conditions Tests 
 
 To ensure some level of robustness in the sensor pointing code, two additional 

evaluations were conducted.  The first varied the small UAVs altitude.  Because the 

correction distance was based upon the distance between the center of the sensor 

footprint and the aircrafts location, varying the altitude would vary the forward, lead 

distance of the sensor footprint.  Figure 37 is the graphical representation of this test. 
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Figure 37. Point to Point at 20 m/s and 20% Lower Altitude 
 
The Rascal’s lower altitude would mean that the sensor would not be projecting as far 

ahead of the aircraft.  For this reason, the required offset distance for the new, updating 

waypoints should be less.  Figure 37 clearly shows that the offset distances were less 
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drastic and as a result the sensor path actually comes closer to the targets.  For this test, 

the average miss distance was less than 20 meters.  Based off these conclusions, it was 

assumed that if the UAV’s altitude was increased that the new waypoint offset distance 

would have been increased. 

 The second additional test returned the aircraft to the previous 350 meter altitude 

criterion, but doubled the wind velocity to 10 m/s.  Also, the direction of the wind was 

switched 180° to a heading of due south.  The outcome, as presented in Figure 38, 

showed a reversal of offset direction in addition to an increase in the required offset 

distance.  These results displayed that the algorithm had the capability to make the 

appropriate adjustments based on a current wind velocity and direction. 
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Figure 38. Point to Point at 20 m/s with 10 m/s Wind from the North 
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Overall, the results of the active waypoint modification using the SDK interface were 

pleasing.  While the algorithm was not optimal nor completely robust, it definitely 

improves the ability to put a sensor on a target using a small waypoint guided UAV 

operating in wind. 

 
 
 
 

4.4 –Flight Testing with Wind Correction 
 
 Due to extenuating circumstances, the test team was unable to conduct the actual 

flight tests at the Area B test range.  The tests were expected to be accomplished and 

were thoroughly planned.  Official test cards, provided in Appendix D, were produced 

and reviewed.  Unfortunately, the actual flight tests had to be postponed past the date of 

the thesis defense.  Therefore, it is recommended that before any future lab testing is 

undertaken, a series of flight tests be conducted to validate the results obtained using the 

wind correction in the HITL simulation. 

 4.4.1 – Real Time Wind Estimating 
  - See Appendix E - 

 4.4.2 – Turn Rate & Updating “Rabbit” Waypoint Approaches 
  - Flight Test Postponed - 

4.4.3 – Wind Corrected Sensor Pointing 
  - Flight Test Postponed - 
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4.5 – Chapter Conclusions 
 
 Chapter IV presented the results of the SIG Rascal UAV flight tests performed in 

the HITL simulation under the control of the standard Piccolo II autopilot as well as with 

the wind correction implemented.  A set of baseline flight tests were conducted to 

determine the standard characteristics of the simulated aircraft flying in a windy 

environment.  The findings revealed that the track following characteristics of the Piccolo 

II were quite good under the presence of a wind, and that the relative importance of this 

trait could be easily adjusted through the track convergence gain.  The level of precision 

flight illustrated by the autopilot actually led to the primary focus and contribution of this 

thesis, the method of wind correction for sensor pointing.  The crab angle induced by the 

controller to keep the aircraft on track resulted in a fixed sensor, such as a video feed, to 

survey areas well off track.  To counter this effect, a wind correction was developed and 

implemented in the SDK code, which successfully updated and placed new waypoints for 

the UAV to track.  These new waypoints adjusted the aircraft’s flight path enough to 

allow the sensor footprint to cover the designated target.  The wind correction worked 

well for straight line tracks and for more intricate tracks when flying at lower speeds.  

However, with higher speeds the simulated aircraft could not successfully adjust for the 

wind and sensor pointing.   

One additional point must be factored in.  The plots of the sensor footprint only 

represented the exact center of that footprint.  In actuality, the footprint was hundreds of 

meters in diameter due to the field of view.  Thus, when the center of the sensor crosses 

within 20, or even 50, meters, this was a desirable result.  The sensor would then easily 

be able to supply adequate coverage of the targets. 
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V. Conclusions and Recommendations 
 

5.1 – Conclusions 
 

The research accomplished in this thesis project provids a solid foundation for 

future evaluation of small UAVs flying under the influence of winds.  Initial baseline 

tests were performed to discern the standard capabilities of the COTS Piccolo II autopilot 

in conjunction with the SIG Rascal 110 aircraft.  The physical component setup offered 

realistic measurements and data which could easily be applied to an operational 

environment.  This investigation into wind compensation methods achieved several key 

objectives: 

1) Collected a baseline set of data which represents the wind compensation 

capabilities of a COTS autopilot implemented in a true life setting. 

2) Formulation and implementation of a real time update of the current wind 

direction and velocity that the aircraft was encountering.  Using the SDK interface, the 

operator can now view and log the real time winds along the UAVs true flight path.  The 

output data were not completely without some outliers, but the overall result was 

acceptable.  

3) Formulation of three differing approaches for employing wind corrections for a 

UAV.  The first utilized a direct implementation of a new aircraft heading and airspeed 

required, based on the wind estimation described above.  The second method employed a 

continuously updating unattainable “rabbit” waypoint that would mislead the aircraft into 

reaching the desired original waypoint.  The third technique took a completely different 

approach to wind correction and adjusted the aircraft’s flight path based on the position 

of a sensor footprint rather than the position of the UAV.  It was determined that despite 
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an accurate flight path along the determined track, the nose of the UAV would not 

necessarily be pointed straight ahead.  For this reason, the sensor may not survey the 

desired target and overall mission effectiveness would not be satisfied without a real time 

modification to the original flight plan. 

4) Demonstrated the interfacing ability of the SDK software to receive, process, 

and then transmit new flight parameters to the on-board autopilot unit.  Real time aircraft 

telemetry, waypoint data, and track commands were all communicated to and from the 

UAV using the C++ program developed with the SDK. 

The initial research plan focused on improvement in the precise track following 

capabilities of small UAVs. The most challenging flight conditions were reconciled as a 

precise track following mission that would be required in the “urban canyon” 

environment.  While recognizing that operationally deployed autonomous small UAVs 

navigating amongst buildings, trees, etc. is a few years in the future, the research 

presented on the turn rate and “rabbit” wind correction approaches provides a good basis 

from which future studies should be conducted.  However, the crux of this thesis 

morphed into the active flight path modifications for precise sensor pointing.  Research 

showed that this topic has not been previously addressed, yet is more applicable to 

current operational tasks for small UAVs than those mentioned above.  Thus, while it was 

important to provide a solid framework for the more conventional methods of wind 

corrections, the sensor pointing problem was more pertinent and became the central 

focus. 

The overall results of the new research focus were promising as the UAV tracked 

the predetermined flight paths very well under reasonable TAS and wind conditions.  
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However, at the higher speeds (>TAS=30 m/s, or with wind components of more than 

50% of the TAS) the aircraft could not navigate accurately.  These are considered 

extreme cases in an operational environment.  In the normal flight regimes the 

incorporated wind corrections proved generally acceptable.  More specifically, the sensor 

pointing approach showed that an algorithm could be implemented which would 

appreciably remove or reduce the sensor pointing errors.  Undoubtedly, with subsequent 

research, this algorithm could be developed to be extremely robust and effective across 

the small UAV operational environment.  

 

5.2 – Recommendations 
 
 The following recommendations incorporate improvements to the algorithms, 

interfacing procedure, and flight testing program along with follow on research guidance 

and suggestions. 

• Incorporate actual flight tests to support the simulated data.  Actual tests 

were planned, but did not happen due to operating restrictions beyond the 

control of the research team.  This data will be particularly pertinent 

because indications from previous research (Jodeh, 2006) suggests there 

may be differences between simulated and actual flight performance. 

• “Hard coding” information reduced the robustness of the current code.  

“Soft code” as much information as possible into any computer program.   

• Acquire a larger volume of test and evaluation airspace.  The bounds set 

out for the Area B test flight airspace was quite restrictive in both length 
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and altitude.  In order to fully test and evaluate these UAVs a much larger 

space is recommended. 

• Follow-on research should include: Implementation of both the turn rate 

and “rabbit” approaches, solidifying the sensor pointing method, and 

integration of related multiple research topics (e.g. formation flight, 

situational awareness, etc.) using the Piccolo SDK. 
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Appendix A: Complete Set of Simulated Test Results 
Baseline Tests 
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Figure 39. Standard UAV Short Point to Point at 12 m/s with Wind=5 m/s 
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Figure 40. Various Parameters for Short Point to Point at 12 m/s 
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Figure 41. Real Time Wind Estimations for Short Point to Point at 12 m/s 
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Figure 42. Standard UAV Short Point to Point at 15 m/s with Wind=5 m/s 
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Figure 43. Various Parameters for Short Point to Point at 15 m/s 
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Figure 44. Real Time Wind Estimations for Short Point to Point at 15 m/s 
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Figure 45. Standard UAV Short Point to Point at 20 m/s with Wind=5 m/s 
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Figure 46. Various Parameters for Short Point to Point at 20 m/s 
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Figure 47. Real Time Wind Estimations for Short Point to Point at 20 m/s 
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Figure 48. Standard UAV Short Point to Point at 30 m/s with Wind=5 m/s 
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Figure 49. Various Parameters for Short Point to Point at 30 m/s 
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Figure 50. Real Time Wind Estimations for Short Point to Point at 30 m/s 
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Figure 51. Standard UAV Circular Orbit at 20 m/s 
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Figure 52. Various Parameters for the Circular Orbit at 20 m/s 
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Figure 53. Real Time Wind Estimations for the Circular Orbit at 20 m/s 
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Figure 54. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250 
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Figure 55. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250 
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Figure 56.  Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250 
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Figure 57. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250 



 96

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

14
15
16

System Time [s]
TA

S
 [m

/s
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

10
20
30

System Time [s]G
rn

d 
S

pd
 [m

/s
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

348
350
352

System Time [s]

A
lt 

[m
]

5.645 5.65 5.655 5.66 5.665 5.67 5.675 5.68 5.685 5.69

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

 

Figure 58. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250 
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Figure 59. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250 
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Figure 60. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250 
 

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

18
20
22

System Time [s]

TA
S

 [m
/s

]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

10
20
30

System Time [s]G
rn

d 
S

pd
 [m

/s
]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

345
350
355

System Time [s]

A
lt 

[m
]

5.695 5.7 5.705 5.71 5.715 5.72 5.725 5.73

x 104

0
200
400

System Time [s]M
ag

 H
ea

di
ng

 [d
eg

]

 

Figure 61. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250 
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Figure 62. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250 
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Figure 63. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250 
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Figure 64. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250 
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Figure 65. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250 
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Figure 66. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=150 
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Figure 67. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=150 
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Figure 68. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=150 
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Figure 69. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=150 
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Figure 70. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=150 
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Figure 71. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=150 
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Figure 72. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=150 
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Figure 73. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=150 
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Figure 74. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=150 
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Figure 75. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=150 
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Figure 76. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=150 
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Figure 77. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=150 
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Figure 78. Standard UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=50 
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Figure 79. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=50 
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Figure 80. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=50 
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Figure 81. Standard UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=50 
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Figure 82. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=50 
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Figure 83. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=50 
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Figure 84. Standard UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=50 
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Figure 85. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=50 
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Figure 86. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=50 
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Figure 87. Standard UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=50 
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Figure 88. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=50 
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Figure 89. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=50 



 112

MODIFIED FLIGHT PATH RESULTS 

400 600 800 1000 1200 1400 1600 1800 2000 2200
1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)

 

 
UAV Track
Sensor Track
Waypoint

 

Figure 90. Updated UAV Race Track Pattern at 12 m/s with Wind=5 m/s and TC=250 
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Figure 91. Various Parameters for the Race Track Pattern at 12 m/s, Wind5 m/s, & TC=250 



 113

200 300 400 500 600 700 800
0

10

20

System Time [s]
W

in
d 

H
ea

di
ng

 [d
eg

]

200 300 400 500 600 700 800
0

200

400

System Time [s]

W
in

d 
V

el
 [d

eg
]

200 300 400 500 600 700 800
-100

0

100

System Time [s]C
ro

ss
 T

ra
ck

 D
is

ta
nc

e 
[m

]

 

Figure 92. Real Time Wind Estimations for the Race Track at 12 m/s, Wind=5 m/s, & TC=250 
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Figure 93. Updated UAV Race Track Pattern at 15 m/s with Wind=5 m/s and TC=250 
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Figure 94. Various Parameters for the Race Track Pattern at 15 m/s, Wind5 m/s, & TC=250 
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Figure 95. Real Time Wind Estimations for the Race Track at 15 m/s, Wind=5 m/s, & TC=250 
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Figure 96. Updated UAV Race Track Pattern at 20 m/s with Wind=5 m/s and TC=250 
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Figure 97. Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250 
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Figure 98. Real Time Wind Estimations for the Race Track at 20 m/s, Wind=5 m/s, & TC=250 
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Figure 99. Updated UAV Race Track Pattern at 30 m/s with Wind=5 m/s and TC=250 
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Figure 100. Various Parameters for the Race Track Pattern at 30 m/s, Wind5 m/s, & TC=250 
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Figure 101. Real Time Wind Estimations for the Race Track at 30 m/s, Wind=5 m/s, & TC=250 



 118

-500 0 500 1000 1500 2000 2500 3000
1600

1800

2000

2200

2400

2600

2800

East from Datum [m]

N
or

th
 fr

om
 D

at
um

 [m
]

Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)

 

 
UAV Track
Sensor Track
Waypoint

 

Figure 102. Updated Long Point to Point at 20 m/s with Wind=5 m/s and TC=250 
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Figure 103. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & TC=250 
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Figure 104. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & TC=250 
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Figure 105. Updated Long Point to Point at 20 m/s with Wind=5 m/s & Lower Alt 
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Figure 106. Various Parameters for the Long Point to Point at 20 m/s, Wind5 m/s, & Lower Alt 
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Figure 107. Real Time Wind Estimations for the Point to Point at 20 m/s, Wind=5 m/s, & Lower Alt 
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Figure 108. Updated UAV for Point to Point with Wind =10 from North 
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Figure 109. Various Parameters for the Point to Point with Wind=10 m/s from the North 
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Figure 110. Real Time Wind Estimations for the Point to Point with the Wind=10 m/s from the North 
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Appendix B: Software Development Kit (SDK) C++ Code 
 
/****************************************************************************** 
Test file for piccolo communication 
 
Programmed by: Brent Robinson 
 
Date: 9 May, 2006 
 
******************************************************************************/ 
 
#include<iostream.h> 
#include<conio.h> 
#include<string> 
#include "CommManager.h" 
#include "Win32Serial.h" 
#include<stdlib.h> 
#include<windows.h> 
#include"lla2enu.h" 
 
 
using namespace std; 
 
//Basepoint to use for all ENU coordinates...It's location is south and west of WPAFB 
const double Base_X = 503000; 
const double Base_Y = -4884700;       
const double Base_Z = 4057800; 
 
 
CCommManager* m_pComm = NULL; 
Queue_t* pQ = NULL; 
 
//Used for converting the waypoint lla data to ENU coords 
ENUCoord PosENU; 
ENUCoord newwpENU;      
ENUCoord WayENU; 
 
//To log the desired data in a .txt file 
FILE * pFile1;  
 
 
//function prototypes 
void displayData(int i); 
 
void BrentsWindCorrection(int i);                               //Real time wind estimation function 
void SensorAdjustment(int i);                                   //Wind Corrected Sensor Pointing 
//void HeadingAdjust(int i);                                    //Heading Adjustment function for the "turn rate approach" 
//void AirspeedAdjust(int i);                                   //Airspeed Adjustment function for the "turn rate approach" 
//void WaypointTrackReturn(int i);                              //Attempt at a function to turn off the turn rate commanding and return to normal 
ops 
//void WaypointFlyingnotTrackFlying(int i);                     //Attempt at a function making the Piccolo a pure waypoint tracker instead 
of a track follower 
//void WaypointInfoFinding(int i, FPPoint_t& pntWaypoint);      //Attempt at a function which accesses the waypoint lla data 
//void UpdatingWaypointadjustingforWind(int i);//, int next);   //Updating "Rabbit" approach 
 
 
 
 
//data structure to hold telemetry packet data 
typedef struct 
{  
 double Longitude;           //from LLA data: Telemtry packet 
 double Latitude;           //from LLA data: Telemtry packet 
 double East;            //calculated from LLA data using lla2enu class 
 double North;            //calculated from LLA data using lla2enu class 
 double Up;                //calculated from LLA data using lla2enu class 
 float Altitude;            //from LLA data: Telemtry packet 
 float Velocity;            //from GPS.Speed: Telemetry packet 
// float Alpha             //anlge between velocity and direction of nose of plane vertically 
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// float Beta;             //angle between velocity and direction of nose of plane horizantally 
 int Hours; 
 int Minutes; 
 float Seconds; 
 
    //Brent added these 
 float Direction;              //GPS Ground Track Direction           
 float TAS;                    //Aircraft TAS 
    double Lat;                   //Current aircraft Latitude 
 double Lon;                   //Current aircraft Longitude 
 float CrossTrack;             //Current Cross Track Distance 
 float AlongTrack;             //Current Along Track Distance - Distance from the current waypoint 
} telemetry; 
 
 
//data structure to hold control packet data 
typedef struct 
{ 
 float Heading;            //from Yaw reading: Control Data packet 
 float BankAngle;           //from Roll: Control Data packet 
 float RollRate;            //from Roll Rate: Control Data packet 
 float PitchRate;           //from Pitch Rate: Control Data packet 
 float YawRate;            //from Yaw Rate: Control Data packet 
  
 float Aileron; 
 float Elevator; 
 float Throttle; 
 float Rudder; 
 int Hours; 
 int Minutes; 
 float Seconds; 
 
 //Brent added these 
 float MagHeading;             //Current aircraft magnetic heading 
 float Pdynamic;               //Current dynamic pressure 
} control; 
 
 
// global variable used when the packets are decoded - allows for 10 networks 
telemetry current_telemetry[10]; 
control current_control[10]; 
 
//Brent added these 
FPPoint_t current_waypoint[10];   //Attempt at setting up another "switch" group 
Gains_t current_gains[10];        //Attempt at setting up another "switch" group         
 
 
//Brent ADDED these 
float V_w;           
float Chi_w; 
float Chi_w_deg; 
float V_TASnew; 
float density; 
float Pdynamic_new; 
float Chi_Magnew; 
float Chi_Magnew_deg; 
float turnrate; 
float cmd_speed; 
int count=0; 
float e; 
float f; 
float Dis; 
//float toofar; 
//float angle_deg; 
//float angle; 
//float abscos; 
//float abssin; 
float enu69east; 
float enu69north; 
double current_waypoint_Latitude; 
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double current_waypoint_Longitude; 
float current_waypoint_Altitude; 
UInt8 Waypoint_cmd[10]; 
UInt8 orig; 
UInt8 orignext; 
 
float Dis2; 
float Horiz; 
double Adjust1; 
double point0Lat;       
double point0Lon; 
double Alt0; 
double point1Lat;       
double point1Lon; 
double Alt1; 
double point2Lat;       
double point2Lon; 
double Alt2; 
double point3Lat;       
double point3Lon; 
double Alt3; 
double point4Lat;       
double point4Lon; 
double Alt4; 
double point5Lat;       
double point5Lon; 
double Alt5; 
double point6Lat;       
double point6Lon; 
double Alt6; 
 
double enu60east; 
double enu60north; 
double enu60alt; 
double enu61east; 
double enu61north; 
double enu61alt; 
double enu62east; 
double enu62north; 
double enu62alt; 
double enu63east; 
double enu63north; 
double enu63alt; 
double enu64east; 
double enu64north; 
double enu64alt; 
double enu65east; 
double enu65north; 
double enu65alt; 
double enu66east; 
double enu66north; 
double enu66alt; 
 
float EastonTrack; 
float NorthonTrack; 
float e2onTrack; 
float f2onTrack; 
float LOS_Dis; 
 
float Adjust1a; 
float Adjust2a; 
float T; 
float theta_one; 
float e2; 
float f2; 
 
float star; 
float sinfromNext; 
float cosfromNext; 
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float theta_m; 
float delta_1; 
float delta_2; 
 
 
 
 
//clears the screen 
void clrscr() 
{ 
  HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE); 
  COORD coord = {0, 0}; 
  DWORD count; 
 
  CONSOLE_SCREEN_BUFFER_INFO csbi; 
  GetConsoleScreenBufferInfo(hStdOut, &csbi); 
 
  FillConsoleOutputCharacter(hStdOut, ' ', csbi.dwSize.X * csbi.dwSize.Y, coord, &count); 
 
  SetConsoleCursorPosition(hStdOut, coord); 
} 
 
//as defined in "index.html": from SDK documentation 
void NewNetwork(UInt16 NetworkID, void* Parameter) 
{ 
 
} 
 
//looks for and gleans data from an autopilot packet sent from a network 
void LookForAutopilotData(QType* pQ, int whosData) 
{ 
    static AutopilotPkt_t APPkts[10];   
 
 UInt32 i, NumNets; 
 SInt32 ID; 
 
 //look at how many networks m_pComm can see 
 NumNets = m_pComm->GetNumNets(); 
 
 for(i = 0; i < NumNets; i++) 
 { 
  // Don't display past 10 networks since we didn't include the space 
  if(i >= 10) break; 
 
  ID = m_pComm->GetIDFromIndex(i); 
 
  // Don't try to decode ground station packets 
  //if(ID < 1) continue; 
 
  // Get the pointer to the receive queue for the autopilot stream.  Note 
  //   this pointer will persist as long as the network structure exists, 
  //   so we could just save the pointer and then we wouldn't have the 
  //   overhead of repeatedly calling this function 
  pQ = m_pComm->GetStreamRxBuffer((UInt16)ID, AUTOPILOT_STREAM); 
 
  if(!pQ) continue; 
 
  // Now check to see if a packet exists.  Note!!! The raw packet 
  //   structure MUST persist between calls, and it MUST be unique to this 
  //   network. 
  
 
  if(LookForAutopilotPacket(pQ, &(APPkts[i]))) 
  {    
   switch(APPkts[i].PktType) 
   { 
    case TELEMETRY: 
     UserData_t telemData;  
     DecodeTelemetryPacket(&(APPkts[i]), &(telemData)); 
     //update telemtry struct 
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     current_telemetry[i].Longitude = telemData.GPS.Longitude * 180.0 / 
3.1415926; 
     current_telemetry[i].Latitude = telemData.GPS.Latitude * 180.0 / 3.1415926; 
     current_telemetry[i].Altitude = telemData.GPS.Altitude; 
     current_telemetry[i].Velocity = telemData.GPS.Speed; 
        current_telemetry[i].Direction = telemData.GPS.Direction;       //Brent added 
                    current_telemetry[i].TAS = telemData.TAS;                       //Brent added 
     current_telemetry[i].CrossTrack = telemData.CrossTrack;         //Brent added 
     current_telemetry[i].AlongTrack = telemData.AlongTrack;         //Brent added 
 
 
      
     //convert lla data to enu 
     PosENU.lla2enu(current_telemetry[i].Latitude *3.1415926/180, 
           current_telemetry[i].Longitude 
*3.1415926/180, 
           current_telemetry[i].Altitude, 
           Base_X, Base_Y, Base_Z); 
 
     current_telemetry[i].East = PosENU.GetEast(); 
     current_telemetry[i].North = PosENU.GetNorth(); 
     current_telemetry[i].Up = PosENU.GetUp(); 
      
     current_telemetry[i].Hours = telemData.GPS.hours; 
     current_telemetry[i].Minutes = telemData.GPS.minutes; 
     current_telemetry[i].Seconds = telemData.GPS.seconds; 
     //display the data 
 
     //Brent added...This is all the data that is written to a log file 
     fprintf(pFile1,"\n  %i     %i      %i       %f     %f     %f     %f     %f      %f        
%f               %f            %f       %f         45            %f         %f", ID, 
       current_control[i].Hours, current_control[i].Minutes, 
       current_control[i].Seconds, 
current_telemetry[i].CrossTrack, 
      
 current_telemetry[i].Velocity,(current_telemetry[i].Direction*(180/3.1415926)), 
       current_telemetry[i].TAS, 
current_control[i].MagHeading, 
       V_w, 
Chi_w_deg,(current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading), 
      
 current_telemetry[i].Altitude,(current_telemetry[i].Altitude/cos((45*(3.1415926/180)))),sqrt(((current_telemetry[i].Altitud
e/cos((45*(3.1415926/180))))*(current_telemetry[i].Altitude/cos((45*(3.1415926/180)))))-
(current_telemetry[i].Altitude*current_telemetry[i].Altitude))); 
 
     displayData(whosData); 
     break; 
 
 
        //Brent's attempt at accessing the waypoint lla data 
    case WAYPOINT:        
     { 
      //Waypoint_t wayData; 
     //UserData_t wayData;                              //Brent 
     FPPoint_t wayData;                                 //THIS IS THE FIRST PLACE 
    // wayData.Point.Lat = 0.0; 
    // wayData.Point.Lon = 0.0; 
    // wayData.Point.Alt = 0.0; 
     UInt8 This = 0; 
     //This = DecodeWaypointPacket(&(APPkts[i]), &(wayData));    //WHERE I 
TRY TO GET THE WAYPOINT LAT/LONG 
     This = DecodeWaypointPacket(&(APPkts[i]), &(wayData));    //WHERE I 
TRY TO GET THE WAYPOINT LAT/LONG 
 
     /* if (Waypoint_cmd[i] != 69 || Waypoint_cmd[i] != 70) 
       { 
        WaypointInfoFinding(i, wayData); 
       } 
     */ 
 



 129

    // FPPoint_t Point; 
    // UInt8 This = 0; 
    // This = DecodeWaypointPacket(&(m_APPkts[i]), &Point); 
      
     } 
     displayData(whosData); 
     break; 
   
  //Brent added...This allows a variable "Waypoint_cmd" that is the index of the current waypoint being tracked 
    case AUTOPILOT_COMMAND:        
                    AutopilotCmd_t Cmd[3]; 
     Waypoint_cmd[i] = DecodeAutopilotControlPacket(&(APPkts[i]), &Cmd[i]); 
     displayData(whosData); 
     break;  
 
 
    case CONTROL_DATA: 
     UserData_t controlData; 
     float gyroBias[3], controls[10]; 
     DecodeControlDataPacket(&(APPkts[i]), &(controlData), gyroBias, controls); 
     //update telemetry struct 
     current_control[i].BankAngle = controlData.Euler[0] * 180/3.1415926; 
     current_control[i].Heading = controlData.Euler[2] * 180/3.1415926; 
      //Euler[0] = Rroll, Euler[1] = Pitch, Euler[2] = Yaw 
     current_control[i].RollRate = controlData.Gyro[0] * 180/3.1415926; 
     current_control[i].PitchRate = controlData.Gyro[1] * 180/3.1415926; 
     current_control[i].YawRate = controlData.Gyro[2] * 180/3.1415926; 
      
     current_control[i].Aileron = controls[0] * 180/3.1415926; 
     current_control[i].Elevator = controls[1] * 180/3.1415926; 
     current_control[i].Throttle = controls[2]; 
     current_control[i].Rudder = controls[3] * 180/3.1415926; 
     //convert GPS seconds into hours, minutes, and seconds 
     double hours = controlData.SystemTime / 3600000.0; 
     current_control[i].Hours = hours; 
     double mins = (hours - (double)current_control[i].Hours) * 60; 
     current_control[i].Minutes = mins; 
     current_control[i].Seconds = (mins - (double)current_control[i].Minutes) * 60; 
 
     //Brent added these 
                    current_control[i].Pdynamic = controlData.Pdynamic; 
                    current_control[i].MagHeading = controlData.MagHeading * 180/3.1415926;    
 
     displayData(whosData);   //display the data 
     break; 
   } 
  } 
 }   
}// LookForAutopilotData 
 
 
//prints the telemetry, control, and obstacle avoidance data to screen 
void displayData(int i) 
{ 
 //print current telemetry data 
 clrscr(); 
 printf("ID = %i", m_pComm->GetIDFromIndex(i)); 
  
 printf("\nTelemetry Packet Data  : %i", current_telemetry[i].Hours); 
 printf(":%i", current_telemetry[i].Minutes); 
 printf(":%f", current_telemetry[i].Seconds); 
 printf("\nLatitude (deg)         : %f", current_telemetry[i].Latitude); 
 printf("  East: %f", current_telemetry[i].East); 
 printf("\nLongitude (deg)        : %f", current_telemetry[i].Longitude); 
 printf("  North: %f", current_telemetry[i].North); 
 printf("\nAltitude (m)           : %f", current_telemetry[i].Altitude); 
 printf("  Up: %f", current_telemetry[i].Up); 
 printf("\nGround Speed           : %f", current_telemetry[i].Velocity); 
 printf("\n\nControl Packet Data  : %i", current_control[i].Hours); 
 printf(":%i", current_control[i].Minutes); 
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 printf(":%f", current_control[i].Seconds); 
 printf("\nHeading                : %f", current_control[i].Heading); 
// printf("\nBank Angle             : %f", current_control[i].BankAngle); 
// printf("\nRoll Rate              : %f", current_control[i].RollRate); 
// printf("\nPitch Rate             : %f", current_control[i].PitchRate); 
// printf("\nYaw Rate               : %f", current_control[i].YawRate); 
 
 
 
   //Brent added to be displayed 
    printf("\nUAV TAS                : %f", current_telemetry[i].TAS); 
 printf("\n\nUAV GPS DIRECTION    : %f", current_telemetry[i].Direction*180/3.14159); 
 printf("\nUAV MAG HEADING        : %f", current_control[i].MagHeading); 
// printf("\nBRENTS BETA 2          : %f", current_telemetry[i].Direction*180/3.14159-current_control[i].MagHeading); 
 printf("\nBrents WIND VELOCITY (m/s)  : %f", V_w); 
 printf("\nBrents WIND DIRECTION  : %f", Chi_w_deg); 
 printf("\nBrents NEW TAS         : %f", V_TASnew); 
 printf("\nBrents NEW Mag Head    : %f", Chi_Magnew_deg); 
 printf("  Brents pdyn      : %f", current_control[i].Pdynamic); 
 printf("  Brents pdyn new  : %f", Pdynamic_new); 
//  printf("\nBrents density         : %f", density); 
 printf("\nWaypoint index         : %i", Waypoint_cmd[i]); 
 printf("\nAdjust1                : %f", Adjust1a); 
 printf("\nAdjust2                : %f", Adjust2a); 
 printf("\nBrents Cross Track     : %f", current_telemetry[i].CrossTrack); 
// printf("\n along track           : %f", current_telemetry[i].AlongTrack); 
 printf("\nDistance to Wypt       : %f", Dis2); 
// printf("\nTURNRATE :               %f",turnrate); 
// printf("\nWaypoint Lon           : %f", current_waypoint_Longitude); 
// printf("\nWaypoint Lat           : %f", current_waypoint_Latitude); 
// printf("\nWaypoint Alt           : %f", current_waypoint_Altitude); 
// printf("\nNew Waypoint Lat       : %d", newwpENU.GetLat()); 
// printf("\nNew Waypoint Lon       : %d", newwpENU.GetLong()); 
// printf("\ntheta_one                      : %f",theta_one); 
 
}//displayData 
 
 
 
//This is the wind finding and subsequent new heading and airspeed function 
void BrentsWindCorrection(int i)    
{ 
//These are the basic vector equations that correlate the UAVs track, heading, and winds 
//  current_telemetry[i].TAS*cos((current_control[i].MagHeading*(3.14159/180))) + V_w*cos(Chi_w) = 
current_telemetry[i].Velocity*cos(current_telemetry[i].Direction) 
//  current_telemetry[i].TAS*sin((current_control[i].MagHeading*(3.14159/180))) + V_w*sin(Chi_w) = 
current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) 
 
 
//Wind Finding 
 float a = current_telemetry[i].Velocity*cos(current_telemetry[i].Direction) - 
current_telemetry[i].TAS*cos((current_control[i].MagHeading*(3.14159/180))); 
 float b = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) - 
current_telemetry[i].TAS*sin((current_control[i].MagHeading*(3.14159/180))); 
  
  V_w = sqrt(((a*a) + (b*b))); 
 //Chi_w = acos(sqrt(1-((b*b)/((a*a) + (b*b))))); 
 Chi_w = atan2(b,a); 
 if (Chi_w < 0.0) 
 { 
  Chi_w_deg = Chi_w * (180/3.14159)+360; 
 } 
 else 
 { 
  Chi_w_deg = Chi_w * (180/3.14159); 
 } 
 
 
//New heading and airspeed calculations based off of the above wind values 
 float c = current_telemetry[i].Velocity*cos(current_telemetry[i].Direction) - V_w*cos(Chi_w); 
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 float d = current_telemetry[i].Velocity*sin(current_telemetry[i].Direction) - V_w*sin(Chi_w); 
 
 V_TASnew = sqrt(((c*c) + (d*d))); 
 density = (2 * current_control[i].Pdynamic) / (current_telemetry[i].TAS*current_telemetry[i].TAS); 
 Pdynamic_new = 0.5*density*(V_TASnew*V_TASnew); 
 Chi_Magnew = atan2(d,c); 
 
 if (current_telemetry[i].Direction*180/3.14159 >0 && current_telemetry[i].Direction*180/3.14159 <= 180) 
  { 
  Chi_Magnew_deg = Chi_Magnew * (180/3.14159); 
  } 
 
 else  
  { 
   Chi_Magnew_deg = Chi_Magnew * (180/3.14159) + 360; 
  } 
} 
 
/* //Attempt to send the autopilot new turn rate command based off the new heading desired. 
void HeadingAdjust(int i)        
{                                                  
 //float rate; 
 static AutopilotLoopCmd_t turnCom; 
 //AutopilotLoopCmd_t turnCom; 
 int IDbrent = m_pComm->GetIDFromIndex(i); 
 
  //These divisions were done so as to keep any commanded turn rates less than 20deg/sec 
 if (Chi_Magnew_deg - current_control[i].MagHeading > 0  &&  Chi_Magnew_deg - current_control[i].MagHeading <= 
20) 
 { 
     turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/1; 
 } 
 else if (Chi_Magnew_deg - current_control[i].MagHeading > 20  &&  Chi_Magnew_deg - current_control[i].MagHeading 
<= 40) 
 { 
  turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/2; 
    } 
 else if (Chi_Magnew_deg - current_control[i].MagHeading > 40  &&  Chi_Magnew_deg - current_control[i].MagHeading 
<= 60) 
 { 
  turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/3; 
 } 
 else if (Chi_Magnew_deg - current_control[i].MagHeading > 60  &&  Chi_Magnew_deg - current_control[i].MagHeading 
<= 80) 
 { 
  turnrate = (Chi_Magnew_deg - current_control[i].MagHeading)/4; 
 }  
   //  rate = (Chi_Magnew_deg - current_control[i].MagHeading)/1; 
 
  turnCom.Loop=2;                              //command a turn rate 
  turnCom.Control=1;                           //turn ap_loop_cmd on 
  turnCom.Value=turnrate*(3.14159265359/180);  //assign the commanded value 
  m_pComm->SendAutopilotLoopControlPacket(IDbrent, &(turnCom)); 
}*/ 
 
 
 
//Attempt to send a "return to normal tracking mode" after the turn rate heading was sent 
/*void WaypointTrackReturn(int i) 
{                                       
 int wayindex;                  
 static AutopilotLoopCmd_t wayCom; 
 int IDbrent4 = m_pComm->GetIDFromIndex(i); 
  wayindex = Waypoint_cmd[i]; 
  wayCom.Loop = 4; 
  wayCom.Control = 1;  //Maybe "2" 
  wayCom.Value = wayindex; 
  m_pComm->SendAutopilotLoopControlPacket(IDbrent4, &(wayCom));//send the command 
} 
*/ 
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//Successful command to send the new desired airspeed calculated above 
void AirspeedAdjust(int i)          
{  
 float cmd_speed; 
 static AutopilotLoopCmd_t speedCom; 
 int IDbrent2 = m_pComm->GetIDFromIndex(i); 
 
  cmd_speed = Pdynamic_new;     
  speedCom.Loop = 0;                 //command a dynamic pressure 
  speedCom.Control = 1;                //turn ap_loop_cmd on 
  speedCom.Value = (cmd_speed);          //assign the commanded value 
  m_pComm->SendAutopilotLoopControlPacket(IDbrent2, &(speedCom));//send the command 
} 
 
 
//Attempt at ployting the Piccolo into a pure waypoint tracker instead of following straight line tracks between points 
/*void WaypointFlyingnotTrackFlying(int i) 
{ 
 int IDbrent7 = m_pComm->GetIDFromIndex(i); 
 m_pComm->SendTrackCommandPacket(IDbrent7, Waypoint_cmd[i], true); 
}*/ 
 
 
// Trying to calculate then send updating waypoint that is placed at the correct heading to compensate for the wind so as to 
// end up at the original desired waypoint...Related to the previous function 
/*void WaypointInfoFinding(int i, FPPoint_t& pntWaypoint)//, int next)   
{ 
 
 int IDbrent5 = m_pComm->GetIDFromIndex(i); 
   //AutopilotPkt_t WPPacket;   
     
   // Waypoint_t origData; 
   // current_waypoint_Latitude  = origData.Lat * (180/3.14159); 
   // current_waypoint_Longitude = origData.Lon * (180/3.14159); 
   // current_waypoint_Altitude  = origData.Alt; 
 if(fabs(pntWaypoint.Point.Lat)*180/3.1415926 >0 && fabs(pntWaypoint.Point.Lat)*180/3.1415926 <90)   
 { 
    current_waypoint_Latitude  = pntWaypoint.Point.Lat  * (180/3.14159);    //TRYING TO 
READ OFF WAYPOINT LAT/LONG  
    current_waypoint_Longitude = pntWaypoint.Point.Lon  * (180/3.14159);    
    current_waypoint_Altitude  = pntWaypoint.Point.Alt; 
    
 
     //test 
     //current_waypoint_Latitude  = 39.773098; 
     //current_waypoint_Longitude = -84.111564; 
     //current_waypoint_Altitude  = 350; 
 
  
     
     
    orig     = Waypoint_cmd[i]; 
    orignext = Waypoint_cmd[i]+1; 
 
 
 } 
}*/ 
 
 
//Attempt to implement the UPDATING "RABBIT" WAYPOINT APPROACH to wind correction    
/*void UpdatingWaypointadjustingforWind(int i) 
{ 
  int IDbrent6 = m_pComm->GetIDFromIndex(i); 
 
   ENUCoord WayENU;                           //Converting current waypoint LAT/LONG to ENU 
   WayENU.lla2enu(current_waypoint_Latitude * 3.1415926/180, 
         current_waypoint_Longitude * 3.1415926/180, 
         current_waypoint_Altitude, 
         Base_X, Base_Y, Base_Z); 
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      e = fabs(current_telemetry[i].East  - WayENU.GetEast());   
   f = fabs(current_telemetry[i].North - WayENU.GetNorth()); 
   Dis = sqrt((e*e)+(f*f)); 
   float toofar = Dis + 1000;                //This is a distance that the a/c will never reach 
 
         //These are the adjustments to the ENU coords of the a/c to place the new waypoint 
   if (Dis >= 50) 
   {                                                 //This is an attempt to place the new waypoint 
    if(Chi_Magnew_deg > 0 && Chi_Magnew_deg <=90) 
    {  
    float angle_deg = Chi_Magnew_deg-90; 
    float angle = angle_deg * (3.1415926/180);      //Check where the datum point is for ENU 
    float abscos = abs(toofar * cos(angle));        //if west and south of wpafb then signs are 
okay for the enu99s 
    float abssin = abs(toofar * sin(angle)); 
     enu69east = PosENU.GetEast() + abscos; 
     enu69north = PosENU.GetNorth() + abssin; 
    } 
    if(Chi_Magnew_deg > 90 && Chi_Magnew_deg <=180) 
    {  
    float angle_deg = Chi_Magnew_deg-90; 
    float angle = angle_deg * (3.1415926/180); 
    float abscos = abs(toofar * cos(angle)); 
    float abssin = abs(toofar * sin(angle)); 
     enu69east = PosENU.GetEast() + abscos; 
     enu69north = PosENU.GetNorth() - abssin; 
 
    } 
    if(Chi_Magnew_deg > 180 && Chi_Magnew_deg <=270) 
    {  
    float angle_deg = Chi_Magnew_deg-270; 
    float angle = angle_deg * (3.1415926/180); 
    float abscos = abs(toofar * cos(angle)); 
    float abssin = abs(toofar * sin(angle)); 
     enu69east = PosENU.GetEast() - abscos; 
     enu69north = PosENU.GetNorth() - abssin; 
    } 
    if(Chi_Magnew_deg > 270 && Chi_Magnew_deg <=360) 
    {  
    float angle_deg = Chi_Magnew_deg-270; 
    float angle = angle_deg * (3.1415926/180); 
    float abscos = abs(toofar * cos(angle)); 
    float abssin = abs(toofar * sin(angle)); 
     enu69east = PosENU.GetEast() - abscos; 
     enu69north = PosENU.GetNorth() + abssin; 
    } 
 
    ENUCoord newwpENU;                             //Convert the new waypoint ENU to LLA 
    newwpENU.enu2lla(enu69east, enu69north, WayENU.GetUp(), Base_X, Base_Y, 
Base_Z); 
     
    FPPoint_t newWPInfo; 
    Waypoint_t newlocation; 
   // AutopilotPkt_t WPPacket; 
 
   // newlocation.Lat=newwpENU.GetLat();             //Lat/Long of new waypoint from just 
above 
   // newlocation.Lon=newwpENU.GetLong();              //*180/3.1415926 
   // newlocation.Alt=newwpENU.GetAlt();              
     
    newlocation.Lat=39.78*(3.1415926/180); 
    newlocation.Lon=-84.097096*(3.1415926/180); 
    newlocation.Alt=348; 
 
 
    FPPoint_t newWPInfo2; 
    Waypoint_t newlocation2; 
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    newlocation2.Lat=39.775495*(3.1415926/180); 
    newlocation2.Lon=-84.114660*(3.1415926/180); 
    newlocation2.Alt=348; 
    newWPInfo2.Point = newlocation2; 
    newWPInfo2.Next = 69; 
    newWPInfo2.PreTurn = 0; 
    m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo2), 70); 
       //m_pComm->SendTrackCommandPacket(IDbrent6, 70, true); 
     
    newWPInfo.Point = newlocation;                 //Trying to send the new waypoint as 
waypoint "99" 
    if (Waypoint_cmd[i] > 0) 
    { 
    newWPInfo.Next = 70; 
    } 
    newWPInfo.PreTurn = 0; 
    m_pComm->SendWaypointPacket(IDbrent6, &(newWPInfo), 69); 
       m_pComm->SendTrackCommandPacket(IDbrent6, 69, false); //send command to head to new 
waypoint 
 
 // third parameter indicates if the vehicle should fly to the waypoint along the  
 //  preceding track segment, or if it should go directly to the waypoint, using its  
 // current position as the starting point. Set to TRUE to go directly to the waypoint.  
 
   } 
        //    else 
  // { 
  //  FPPoint_t origWP; 
  //  Waypoint_t origlocation; 
// 
  //  origlocation.Lat = current_waypoint_Latitude; 
  //  origlocation.Lon = current_waypoint_Longitude; 
  //  origlocation.Alt = current_waypoint_Altitude; 
// 
  //  origWP.Point = origlocation; 
  //  origWP.Next = Waypoint_cmd[i]+1; 
  //  origWP.PreTurn = 0; 
  //  m_pComm->SendWaypointPacket(IDbrent6, &(origWP), orig); 
  //  m_pComm->SendTrackCommandPacket(IDbrent6, Waypoint_cmd[i],true); 
  // } 
}*/ 
 
 
 
 
//WIND CORRECTED SENSOR POINTING APPROACH TO WIND CORRECTION 
void SensorAdjustment(int i) 
{ 
 int IDbrent8 = m_pComm->GetIDFromIndex(i); 
 
 //Assume camera is at 45 degree angle off of a/c nose....no gimble 
 
 
    //Manually input waypoint lats and longs via the "edit" button on Operator Interface 
 //They should be: 
 //Waypoint 0 --   
  point0Lat=39.773292*(3.1415926/180);   //PUT ALL IN RADIANS!!!!!        
  point0Lon=-84.099500*(3.1415926/180); 
  Alt0=350; // [m] 
 
/* //Waypoint 0 --   
  point0Lat=39.776000*(3.1415926/180);   //FOR THE LOOOONG POINT TO POINT       
  point0Lon=-84.117796*(3.1415926/180); 
  Alt0=350; // [m] 
*/ 
 //Waypoint 1 --   
  point1Lat=39.773530*(3.1415926/180);           
  point1Lon=-84.106384*(3.1415926/180); 
  Alt1=350; // [m] 
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/* //Waypoint 1 --   
  point1Lat=39.776000*(3.1415926/180);    //FOR THE LOOOONG POINT TO POINT         
  point1Lon=-84.103704*(3.1415926/180); 
  Alt1=350; // [m] 
*/ 
 //Waypoint 2 --   
  point2Lat=39.773700*(3.1415926/180);           
  point2Lon=-84.111550*(3.1415926/180); 
  Alt2=350; // [m] 
 
/* //Waypoint 2 --   
  point2Lat=39.776000*(3.1415926/180);     //FOR THE LOOOONG POINT TO POINT  
  point2Lon=-84.090613*(3.1415926/180); 
  Alt2=350; // [m] 
*/ 
   //Waypoint 3 --   
  point3Lat=39.775525*(3.1415926/180);           
  point3Lon=-84.112517*(3.1415926/180); 
  Alt3=350; // [m] 
 
   //Waypoint 4 --   
  point4Lat=39.777281*(3.1415926/180);           
  point4Lon=-84.111355*(3.1415926/180); 
  Alt4=350; // [m] 
 
   //Waypoint 5 --   
  point5Lat=39.776950*(3.1415926/180);           
  point5Lon=-84.099400*(3.1415926/180); 
  Alt5=350; // [m] 
 
   //Waypoint 6 --   
  point6Lat=39.774950*(3.1415926/180);           
  point6Lon=-84.098450*(3.1415926/180); 
  Alt6=350; // [m] 
     
 ENUCoord Point0ENU;                              
 Point0ENU.lla2enu(point0Lat, point0Lon, Alt0, Base_X, Base_Y, Base_Z); 
  
 ENUCoord Point1ENU;                              
 Point1ENU.lla2enu(point1Lat, point1Lon, Alt1, Base_X, Base_Y, Base_Z); 
  
 ENUCoord Point2ENU;                              
 Point2ENU.lla2enu(point2Lat, point2Lon, Alt2, Base_X, Base_Y, Base_Z); 
  
 ENUCoord Point3ENU;                              
 Point3ENU.lla2enu(point3Lat, point3Lon, Alt3, Base_X, Base_Y, Base_Z); 
  
 ENUCoord Point4ENU;                              
 Point4ENU.lla2enu(point4Lat, point4Lon, Alt4, Base_X, Base_Y, Base_Z); 
 
 ENUCoord Point5ENU;                              
 Point5ENU.lla2enu(point5Lat, point5Lon, Alt5, Base_X, Base_Y, Base_Z); 
 
 ENUCoord Point6ENU;                              
 Point6ENU.lla2enu(point6Lat, point6Lon, Alt6, Base_X, Base_Y, Base_Z); 
  
 
 
//WAYPOINT 0 CALCULATIONS 
 if (Waypoint_cmd[i] == 0  || Waypoint_cmd[i] == 60) 
 { 
  e2 = fabs(current_telemetry[i].East  - Point0ENU.GetEast());   
  f2 = fabs(current_telemetry[i].North - Point0ENU.GetNorth()); 
  Dis2 = sqrt((e2*e2)+(f2*f2)); 
 
  if (Dis2 <= 200) 
  //if (Dis2 <= 500)  //Change for looong pt to pt 
  { 
  theta_one = atan2((Point0ENU.GetNorth()-Point6ENU.GetNorth()),(Point0ENU.GetEast()-
Point6ENU.GetEast())); 
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  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
        Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180)); 
 
  star = 3.1415926-1.5708-fabs(theta_one); 
  sinfromNext  = Adjust2a*sin(star);   //-Adjust2a*sin(star);  works fairly well also...not quite sure which is better 
  cosfromNext = Adjust2a*cos(star); 
 
  enu60east  = Point0ENU.GetEast()+cosfromNext;   //Changed for looong pt to pt...i switched the sin and cos 
and then made sin negative 
  enu60north = Point0ENU.GetNorth()+sinfromNext; 
  enu60alt   = Point0ENU.GetUp(); 
 
  // MAJ BLUES WAY 
 /*  theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180); 
   delta_1 = Horiz*cos(theta_m); 
   delta_2 = Horiz*sin(theta_m); 
 
   enu60east  = Point0ENU.GetEast()-delta_1; 
   enu60north = Point0ENU.GetNorth()-delta_2; 
   enu60alt   = Point0ENU.GetUp(); 
*/ 
  ENUCoord newPointENU;                              
  newPointENU.enu2lla(enu60east, enu60north, enu60alt, Base_X, Base_Y, Base_Z); 
 
  FPPoint_t adjWPInfo; 
  Waypoint_t adjWPlocation; 
 
  adjWPlocation.Lat = newPointENU.GetLat(); 
  adjWPlocation.Lon = newPointENU.GetLong(); 
  adjWPlocation.Alt = newPointENU.GetAlt(); 
 
  adjWPInfo.Point = adjWPlocation; 
  adjWPInfo.Next = 1; 
  adjWPInfo.PreTurn = 1; 
 
 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60);  //If only the initial calculation for the 
waypoint is desired 
 // m_pComm->SendTrackCommandPacket(IDbrent8, 60, true);      //i.e. you don't want it to update...use these 
 
 
  float e3 = fabs(current_telemetry[i].East  - enu60east); 
  float f3 = fabs(current_telemetry[i].North  - enu60north); 
  float Dis3 = sqrt((e3*e3)+(f3*f3)); 
  if (Dis3 >= 100) 
   { 
   m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 60); 
   m_pComm->SendTrackCommandPacket(IDbrent8, 60, true); 
   } 
  else  
   { 
   m_pComm->SendTrackCommandPacket(IDbrent8, 1, true); 
   } 
  } 
 } 
 
 
 
//WAYPOINT 1 CALCULATIONS 
    else if (Waypoint_cmd[i] == 1  || Waypoint_cmd[i] == 61) 
 { 
  e2 = fabs(current_telemetry[i].East  - Point1ENU.GetEast());   
  f2 = fabs(current_telemetry[i].North - Point1ENU.GetNorth()); 
  Dis2 = sqrt((e2*e2)+(f2*f2)); 
 
  if (Dis2 <= 350)  
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  //if (Dis2 <= 500) //Change for looong pt to pt 
  { 
  theta_one = atan2((Point1ENU.GetNorth()-Point0ENU.GetNorth()),(Point1ENU.GetEast()-
Point0ENU.GetEast())); 
 
 
  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
        Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180)); 
 
  star = 3.1415926-1.5708-fabs(theta_one); 
  sinfromNext  = -Adjust2a*sin(star);    
  cosfromNext = Adjust2a*cos(star); 
 
  enu61east  = Point1ENU.GetEast()+cosfromNext; 
  enu61north = Point1ENU.GetNorth()+sinfromNext; 
  enu61alt   = Point1ENU.GetUp(); 
 
  // MAJ BLUES WAY 
/*   theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180); 
   delta_1 = Horiz*cos(theta_m); 
   delta_2 = Horiz*sin(theta_m); 
 
   enu61east = Point1ENU.GetEast()-delta_1; 
   enu61north = Point1ENU.GetNorth()-delta_2; 
   enu61alt = Point1ENU.GetUp(); 
*/ 
  ENUCoord newPointENU;                              
  newPointENU.enu2lla(enu61east, enu61north, enu61alt, Base_X, Base_Y, Base_Z); 
 
  FPPoint_t adjWPInfo; 
  Waypoint_t adjWPlocation; 
 
  adjWPlocation.Lat = newPointENU.GetLat(); 
  adjWPlocation.Lon = newPointENU.GetLong(); 
  adjWPlocation.Alt = newPointENU.GetAlt(); 
 
  adjWPInfo.Point = adjWPlocation; 
  adjWPInfo.Next = 2; 
  adjWPInfo.PreTurn = 1; 
 
  float e3 = fabs(current_telemetry[i].East  - enu61east); 
  float f3 = fabs(current_telemetry[i].North  - enu61north); 
  float Dis3 = sqrt((e3*e3)+(f3*f3)); 
 
  if (Dis3 >= 100) 
   { 
   m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 61); 
   m_pComm->SendTrackCommandPacket(IDbrent8, 61, true); 
   } 
  else  
   { 
   m_pComm->SendTrackCommandPacket(IDbrent8, 2, true); 
   } 
  } 
 } 
 
 
 
//WAYPOINT 2 CALCULATIONS 
 else if (Waypoint_cmd[i] == 2 || Waypoint_cmd[i] == 62) 
 { 
  e2 = fabs(current_telemetry[i].East  - Point2ENU.GetEast());   
  f2 = fabs(current_telemetry[i].North - Point2ENU.GetNorth()); 
  Dis2 = sqrt((e2*e2)+(f2*f2)); 
 
  if (Dis2 <= 300)  
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  //if (Dis2 <= 500)   //Change for looong pt to pt 
  { 
  theta_one = atan2((Point2ENU.GetNorth()-Point1ENU.GetNorth()),(Point2ENU.GetEast()-
Point1ENU.GetEast())); 
 
 
  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
        Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180)); 
 
  star = 3.1415926-1.5708-fabs(theta_one); 
  sinfromNext  = -Adjust2a*sin(star);    
  cosfromNext = -Adjust2a*cos(star);      //THIS AND Adjust2a*cos(star) WORK EQUALLY WELL!!!! 
 
  enu62east  = Point2ENU.GetEast()+cosfromNext; 
  enu62north = Point2ENU.GetNorth()+sinfromNext; 
  enu62alt   = Point2ENU.GetUp(); 
 
    // MAJ BLUES WAY 
/*   theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180); 
   delta_1 = Horiz*cos(theta_m); 
   delta_2 = Horiz*sin(theta_m); 
 
   enu62east = Point2ENU.GetEast()-delta_1; 
   enu62north = Point2ENU.GetNorth()-delta_2; 
   enu62alt = Point2ENU.GetUp(); 
*/ 
 
  ENUCoord newPointENU;                              
  newPointENU.enu2lla(enu62east, enu62north, enu62alt, Base_X, Base_Y, Base_Z); 
 
  FPPoint_t adjWPInfo; 
  Waypoint_t adjWPlocation; 
 
  adjWPlocation.Lat = newPointENU.GetLat(); 
  adjWPlocation.Lon = newPointENU.GetLong(); 
  adjWPlocation.Alt = newPointENU.GetAlt(); 
 
  adjWPInfo.Point = adjWPlocation; 
  adjWPInfo.Next = 3;    
  //adjWPInfo.Next = 0;    //Change for loooooong pt to pt 
  adjWPInfo.PreTurn = 1; 
 
 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62); 
 // m_pComm->SendTrackCommandPacket(IDbrent8, 62, true); 
 
  float e3 = fabs(current_telemetry[i].East  - enu62east); 
  float f3 = fabs(current_telemetry[i].North  - enu62north); 
  float Dis3 = sqrt((e3*e3)+(f3*f3)); 
  if (Dis3 >= 100) 
   { 
   m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 62); 
   m_pComm->SendTrackCommandPacket(IDbrent8, 62, true); 
   } 
  else  
   { 
   m_pComm->SendTrackCommandPacket(IDbrent8, 3, true); 
   } 
  } 
 } 
 
 
 
//WAYPOINT 3 CALCULATIONS 
 else if (Waypoint_cmd[i] == 3  ||  Waypoint_cmd[i] == 63) 
 { 
  e2 = fabs(current_telemetry[i].East  - Point3ENU.GetEast());   
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  f2 = fabs(current_telemetry[i].North - Point3ENU.GetNorth()); 
  Dis2 = sqrt((e2*e2)+(f2*f2)); 
 
  if (Dis2 <= 250)  
  { 
  theta_one = atan2((Point3ENU.GetNorth()-Point2ENU.GetNorth()),(Point3ENU.GetEast()-
Point2ENU.GetEast())); 
   
    
 
 
 
  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
        Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180)); 
 
  star = 3.1415926-1.5708-fabs(theta_one); 
  sinfromNext  = -Adjust2a*sin(star);    
  cosfromNext = Adjust2a*cos(star);       
 
  enu63east  = Point3ENU.GetEast()+sinfromNext; 
  enu63north = Point3ENU.GetNorth()+cosfromNext; 
  enu63alt   = Point3ENU.GetUp(); 
 
/*  // MAJ BLUES WAY 
   theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180); 
   delta_1 = Horiz*cos(theta_m); 
   delta_2 = Horiz*sin(theta_m); 
 
   enu63east = Point3ENU.GetEast()-delta_1; 
   enu63north = Point3ENU.GetNorth()-delta_2; 
 */  enu63alt = Point3ENU.GetUp(); 
 
 
  ENUCoord newPointENU;                              
  newPointENU.enu2lla(enu63east, enu63north, enu63alt, Base_X, Base_Y, Base_Z); 
 
  FPPoint_t adjWPInfo; 
  Waypoint_t adjWPlocation; 
 
  adjWPlocation.Lat = newPointENU.GetLat(); 
  adjWPlocation.Lon = newPointENU.GetLong(); 
  adjWPlocation.Alt = newPointENU.GetAlt(); 
 
  adjWPInfo.Point = adjWPlocation; 
  adjWPInfo.Next = 4; 
  adjWPInfo.PreTurn = 1; 
 
 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63); 
 // m_pComm->SendTrackCommandPacket(IDbrent8, 63, true); 
 
 
  float e3 = fabs(current_telemetry[i].East  - enu63east); 
  float f3 = fabs(current_telemetry[i].North  - enu63north); 
  float Dis3 = sqrt((e3*e3)+(f3*f3)); 
  if (Dis3 >= 150) 
   { 
   m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 63); 
   m_pComm->SendTrackCommandPacket(IDbrent8, 63, true); 
   } 
  else  
   { 
   m_pComm->SendTrackCommandPacket(IDbrent8, 4, true); 
   } 
  } 
 } 
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//WAYPOINT 4 CALCULATIONS 
 else if (Waypoint_cmd[i] == 4  ||  Waypoint_cmd[i] == 64) 
 { 
  e2 = fabs(current_telemetry[i].East  - Point4ENU.GetEast());   
  f2 = fabs(current_telemetry[i].North - Point4ENU.GetNorth()); 
  Dis2 = sqrt((e2*e2)+(f2*f2)); 
 
  if (Dis2 <= 200)  
  { 
  theta_one = atan2((Point4ENU.GetNorth()-Point3ENU.GetNorth()),(Point4ENU.GetEast()-
Point3ENU.GetEast())); 
 
 
  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
        Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180)); 
 
  star = 3.1415926-1.5708-fabs(theta_one); 
  sinfromNext  = Adjust2a*sin(star);    
  cosfromNext = -Adjust2a*cos(star);       
 
  enu64east  = Point4ENU.GetEast()+sinfromNext; 
  enu64north = Point4ENU.GetNorth()+cosfromNext; 
  enu64alt   = Point4ENU.GetUp(); 
 
/*    // MAJ BLUES WAY 
   theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180); 
   delta_1 = Horiz*cos(theta_m); 
   delta_2 = Horiz*sin(theta_m); 
 
   enu64east = Point4ENU.GetEast()-delta_1; 
   enu64north = Point4ENU.GetNorth()-delta_2; 
   enu64alt = Point4ENU.GetUp(); 
*/ 
 
  ENUCoord newPointENU;                              
  newPointENU.enu2lla(enu64east, enu64north, enu64alt, Base_X, Base_Y, Base_Z); 
 
  FPPoint_t adjWPInfo; 
  Waypoint_t adjWPlocation; 
 
  adjWPlocation.Lat = newPointENU.GetLat(); 
  adjWPlocation.Lon = newPointENU.GetLong(); 
  adjWPlocation.Alt = newPointENU.GetAlt(); 
 
  adjWPInfo.Point = adjWPlocation; 
  adjWPInfo.Next = 5; 
  adjWPInfo.PreTurn = 1; 
 
 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64); 
 // m_pComm->SendTrackCommandPacket(IDbrent8, 64, true); 
 
  float e3 = fabs(current_telemetry[i].East  - enu64east); 
  float f3 = fabs(current_telemetry[i].North  - enu64north); 
  float Dis3 = sqrt((e3*e3)+(f3*f3)); 
  if (Dis3 >= 100) 
   { 
   m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 64); 
   m_pComm->SendTrackCommandPacket(IDbrent8, 64, true); 
   } 
  else  
   { 
   m_pComm->SendTrackCommandPacket(IDbrent8, 5, true); 
   } 
  } 
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 } 
 
 
//WAYPOINT 5 CALCULATIONS 
 else if (Waypoint_cmd[i] == 5  ||  Waypoint_cmd[i] == 65) 
 { 
  e2 = fabs(current_telemetry[i].East  - Point5ENU.GetEast());   
  f2 = fabs(current_telemetry[i].North - Point5ENU.GetNorth()); 
  Dis2 = sqrt((e2*e2)+(f2*f2)); 
 
  if (Dis2 <= 600)  
  { 
  theta_one = atan2((Point5ENU.GetNorth()-Point4ENU.GetNorth()),(Point5ENU.GetEast()-
Point4ENU.GetEast())); 
   
  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
        Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180)); 
 
  star = 3.1415926-1.5708-fabs(theta_one); 
  sinfromNext  = -Adjust2a*sin(star); 
  cosfromNext = Adjust2a*cos(star); 
 
  enu65east  = Point5ENU.GetEast()+cosfromNext; 
  enu65north = Point5ENU.GetNorth()+sinfromNext; 
  enu65alt   = Point5ENU.GetUp(); 
 
 
/*  // MAJ BLUES WAY 
   theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180); 
   delta_1 = Horiz*cos(theta_m); 
   delta_2 = Horiz*sin(theta_m); 
 
   enu65east = Point5ENU.GetEast()-delta_1; 
   enu65north = Point5ENU.GetNorth()-delta_2; 
   enu65alt = Point5ENU.GetUp(); 
 */     
 
  ENUCoord newPointENU;                              
  newPointENU.enu2lla(enu65east, enu65north, enu65alt, Base_X, Base_Y, Base_Z); 
 
  FPPoint_t adjWPInfo; 
  Waypoint_t adjWPlocation; 
 
  adjWPlocation.Lat = newPointENU.GetLat(); 
  adjWPlocation.Lon = newPointENU.GetLong(); 
  adjWPlocation.Alt = newPointENU.GetAlt(); 
 
  adjWPInfo.Point = adjWPlocation; 
  adjWPInfo.Next = 6; 
  adjWPInfo.PreTurn = 0; 
 
 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65); 
 // m_pComm->SendTrackCommandPacket(IDbrent8, 65, true); 
 
   float e3 = fabs(current_telemetry[i].East  - enu65east); 
  float f3 = fabs(current_telemetry[i].North  - enu65north); 
  float Dis3 = sqrt((e3*e3)+(f3*f3)); 
  if (Dis3 >= 100) 
   { 
   m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 65); 
   m_pComm->SendTrackCommandPacket(IDbrent8, 65, true); 
   } 
  else  
   { 
   m_pComm->SendTrackCommandPacket(IDbrent8, 6, true); 
   } 
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  } 
 } 
 
 
 
//WAYPOINT 6 CALCULATIONS  
 else if (Waypoint_cmd[i] == 6  ||  Waypoint_cmd[i] == 66) 
 { 
  e2 = fabs(current_telemetry[i].East  - Point6ENU.GetEast());   
  f2 = fabs(current_telemetry[i].North - Point6ENU.GetNorth()); 
  Dis2 = sqrt((e2*e2)+(f2*f2)); 
 
  if (Dis2 <= 300)  
  { 
  theta_one = atan2((Point6ENU.GetNorth()-Point5ENU.GetNorth()),(Point6ENU.GetEast()-
Point5ENU.GetEast())); 
   
 
 
/* //THIS WAS AN OLD WAY OF DOING THE CALCULATIONS....Basically it attempted to map the a/c's current position to 
where it would be 
       //if it were exactly on track....this way placed the new point based on the a/c's location as opposed to placing it based on  
       //the location of the current waypoint 
 
 
 // double m = fabs(Point6ENU.GetNorth()-Point5ENU.GetNorth()); 
 // double n = fabs(Point6ENU.GetEast()-Point5ENU.GetEast()); 
 // double Dis_wypts = sqrt((m*m)+(n*n)); 
 // T = Dis_wypts - current_telemetry[i].AlongTrack; 
 // double EastonTrack  = Point4ENU.GetEast() + current_telemetry[i].AlongTrack*cos(theta_one); 
 // double NorthonTrack = Point4ENU.GetNorth() + current_telemetry[i].AlongTrack*sin(theta_one); 
 
  if (theta_one*(180/3.1415926)>0 && theta_one*(180/3.1415926)<=90) 
  { 
   EastonTrack  = Point5ENU.GetEast() + T*sin(theta_one); 
   NorthonTrack = Point5ENU.GetNorth() + T*cos(theta_one); 
  } 
  else if (theta_one*(180/3.1415926)>90 && theta_one*(180/3.1415926)<=180) 
  { 
   EastonTrack  = Point5ENU.GetEast() + T*cos(theta_one); 
   NorthonTrack = Point5ENU.GetNorth() + T*sin(theta_one); 
  } 
  else if (theta_one*(180/3.1415926)>-180 && theta_one*(180/3.1415926)<=-90) 
  { 
   EastonTrack  = Point5ENU.GetEast() + T*sin(theta_one); 
   NorthonTrack = Point5ENU.GetNorth() + T*cos(theta_one); 
  } 
  else if (theta_one*(180/3.1415926)>-90 && theta_one*(180/3.1415926)<=0) 
  { 
   EastonTrack  = Point5ENU.GetEast() + T*cos(theta_one); 
   NorthonTrack = Point5ENU.GetNorth() + T*sin(theta_one); 
  } 
 
  e2onTrack = fabs(EastonTrack  - Point6ENU.GetEast()); 
  //e2onTrack = fabs(EastonTrack  - current_telemetry[i].East); 
  f2onTrack = fabs(NorthonTrack - Point6ENU.GetNorth()); 
  //f2onTrack = fabs(NorthonTrack - current_telemetry[i].North); 
  double Dis_on_Track = sqrt((e2onTrack*e2onTrack)+(f2onTrack*f2onTrack)); 
  //Dis_on_Track = Horiz2 
 
 
  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  //float LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  //Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
  if ((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading*(3.1415926/180)) >= 0) 
  { 
  Adjust1a = Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180))); 
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  Adjust2a = Dis_on_Track*sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180))); 
  } 
  else 
  { 
  Adjust1a = Dis_on_Track*cos((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180))); 
  Adjust2a = Dis_on_Track*-sin((current_telemetry[i].Direction*(180/3.1415926)-
current_control[i].MagHeading*(3.1415926/180))); 
  } 
  enu66east  = Point6ENU.GetEast() + Adjust2a/2; 
  enu66north = Point6ENU.GetNorth() + Adjust1a/2; 
  enu66alt   = Point6ENU.GetUp(); 
*/ 
   
  //Assume camera is at 45 degree angle off of a/c....no gimble...60 deg FOV 
  LOS_Dis = current_telemetry[i].Altitude / cos((45*(3.1415926/180))); 
  Horiz = sqrt((LOS_Dis*LOS_Dis) - (current_telemetry[i].Altitude*current_telemetry[i].Altitude)); 
 
  //crab angle is difference between ground track and Piccolo's mag heading...not my mag heading new 
        Adjust2a = Horiz*sin((current_telemetry[i].Direction*(180/3.1415926)-current_control[i].MagHeading)*(3.1415926/180)); 
 
  star = 3.1415926-1.5708-fabs(theta_one); 
  sinfromNext  = -Adjust2a*sin(star); 
  cosfromNext = -Adjust2a*cos(star); 
 
  enu66east  = Point6ENU.GetEast()+cosfromNext; 
  enu66north = Point6ENU.GetNorth()+sinfromNext; 
  enu66alt   = Point6ENU.GetUp(); 
 
    // MAJ BLUES WAY 
/*   theta_m = (90 - current_control[i].MagHeading)*(3.1415926/180); 
   delta_1 = Horiz*cos(theta_m); 
   delta_2 = Horiz*sin(theta_m); 
 
   enu66east = Point6ENU.GetEast()-delta_1; 
   enu66north = Point6ENU.GetNorth()-delta_2; 
   enu66alt = Point6ENU.GetUp(); 
*/ 
 
  ENUCoord newPointENU;                              
  newPointENU.enu2lla(enu66east, enu66north, enu66alt, Base_X, Base_Y, Base_Z); 
 
  FPPoint_t adjWPInfo; 
  Waypoint_t adjWPlocation; 
 
  adjWPlocation.Lat = newPointENU.GetLat(); 
  adjWPlocation.Lon = newPointENU.GetLong(); 
  adjWPlocation.Alt = newPointENU.GetAlt(); 
 
  adjWPInfo.Point = adjWPlocation; 
  adjWPInfo.Next = 0; 
  adjWPInfo.PreTurn = 0; 
 
 // m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66); 
 // m_pComm->SendTrackCommandPacket(IDbrent8, 66, true); 
 
  float e3 = fabs(current_telemetry[i].East  - enu66east); 
  float f3 = fabs(current_telemetry[i].North  - enu66north); 
  float Dis3 = sqrt((e3*e3)+(f3*f3)); 
  if (Dis3 >= 100) 
   { 
   m_pComm->SendWaypointPacket(IDbrent8, &(adjWPInfo), 66); 
   m_pComm->SendTrackCommandPacket(IDbrent8, 66, true); 
   } 
  else  
   { 
   m_pComm->SendTrackCommandPacket(IDbrent8, 0, true); 
   } 
  } 
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 } 
} 
 
 
int main() 
{ 
 //create CCommManager object to communicate with Piccolo 
 // 129.92.5.112 is the IP address of the operator interface computer 
 
  m_pComm = new CCommManager(0, 57600, "1.1.1.3", 0); 
 //m_pComm = new CCommManager(0, 57600, "129.92.5.112:2000", 0);  
 
 
 //m_pComm = new CCommManager(1,"",2000);   
 //printf("\nHELLO WORLD"); 
 //print out error and exit if m_pComm doesn't connect 
 if(m_pComm->GetLastError() != 0){ 
 // printf("\nHELLO WORLD"); 
  printf("%s", m_pComm->GetLastError()); 
  printf("\n"); 
  return 1;  
 } 
 
 //set up network callback function 
 m_pComm->SetNewNetworkCallBack(NewNetwork, m_pComm); 
 
 
 pFile1 = fopen ("BrentsLog.txt","w");  //Log file 
 
 //periodic loop to service the communications endpoints 
 int i = 0, whosData = 0; 
 
    //Headers for each column in the log file 
 fprintf(pFile1," ID    Hours    Minutes    Seconds    Cross Track(m)    Vg        Ground Track     Vtas        Mag Heading    
Estimated Wind Vel    Estimated Wind Heading       Crab Angle      Altitude     Mounting Angle   LoS Distance   FootPrint Horizontal 
Dis"); 
 
 
 char keypress = 0; 
 while(m_pComm && i == 0) 
 { 
  m_pComm->RunNetwork(); 
 //  printf("\nHELLO WORLD3"); 
   
  LookForAutopilotData(pQ, whosData); 
 
 
//BRENTS FUNCTION CALLS 
        BrentsWindCorrection(i);                  //Wind Finding Funciton Call 
  //WaypointFlyingnotTrackFlying(i);        //Pure waypoint flying instead of track following function call 
 
        count=count+1;                            //Counter so only do this stuff every 15 time hacks. 
     if (count % 15 == 0) 
  { 
   SensorAdjustment(i);                  //Wind Corrected Sensor Pointing function call 
 
 
  // UpdatingWaypointadjustingforWind(i);; //Rabbit function 
     // HeadingAdjust(i);                     //For turn rate approach 
  // AirspeedAdjust(i);                    //For turn rate approach 
  } 
  //  if (count % 60 == 0) 
  //  {                                    //Trying to manipulate when the function is called so I could send the new heading.. 
  //  WaypointTrackReturn(i);              //let the a/c adjust...then send it the return to waypoint tracking command    
  //  } 
 
 
 
 //get commands via keypress 
  int rate = 10; 
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  if (kbhit()){ 
   keypress = getch(); 
    
   switch(keypress) 
   { 
    case 'x': 
     i = 1; 
     printf("\n"); 
     fclose (pFile1); 
     break; 
    case 'r': //command a certain turn rate- this was just used as a test 
     AutopilotLoopCmd_t loopCom; 
     loopCom.Loop = 2; 
     loopCom.Control = 1; 
     loopCom.Value = (rate*3.14159/180); 
 
     m_pComm->SendAutopilotLoopControlPacket(565, &(loopCom)); 
     break; 
    case '1': 
     //print telemetry data for first Network 
     whosData = 0; 
     break; 
    case '2': 
     //print telemetry data for second Network 
     whosData = 1; 
     break; 
    case '3': 
     //print telemetry data for third Network 
     whosData = 2; 
     break; 
    case '4': 
     //print telemetry data for fourth Network 
     whosData = 3; 
     break; 
    case '5': 
     //print telemetry data for fifth Network 
     whosData = 4; 
     break; 
    case '6': 
     //print telemetry data for sixth Network 
     whosData = 5; 
     break; 
    case '7': 
     //print telemetry data for seventh Network 
     whosData = 6; 
     break; 
    case '8': 
     //print telemetry data for eighth Network 
     whosData = 7; 
     break; 
    case '9': 
     //print telemetry data for ninth Network 
     whosData = 8; 
     break; 
    case '0': 
     //print telemetry data for tenth Network 
     whosData = 9; 
     break; 
   } 
  } 
  //delay to create periodic call, as specified by "Index" in the SDK documentation 
  Sleep(10);  
 } 
 return 0; 
} 

Appendix C: MATLAB Code 
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SAMPLE MATLAB FOR THE TOP DOWN VIEWS FOR TEST 5 – All tests used the 
same code simply with different data file calls. 
 
%TEST 5 - Adjusted RACETRACK WITH TC=250 
 
clc,close all 
clear all 
 
%Analysis of Hardware in the Loop Sim with Flight Test  
 
if exist('Alt0x5Bm0x5D5250') == 0 
    load SimTests5datafileE.mat 
    disp('File Loading') 
end 
 
%Read in Raw flight data from ".mat" file, and build custom Arrays 
[Clock] = [Clock0x5Bms0x5D/1000,Day,Hours,Minutes,Seconds]; 
[Autopilot] = [rad2deg(Lat0x5Brad0x5D),... 
    rad2deg(Lon0x5Brad0x5D),... 
    Height0x5Bm0x5D*3.281,... 
    TAS0x5Bm0x2Fs0x5D*3.281,... 
    Direction0x5Brad0x5D,... 
    MagHdg0x5Brad0x5D]; 
 
[Heading] = [rad2deg(Direction0x5Brad0x5D)]; 
 
[Autopilot_Flight] = [Clock,Autopilot]; 
 
%Waypoint Locations 
WP_latitude = [39.773292; 39.773530; 39.773700; 39.775525;... 
    39.777281; 39.776950;39.774950;39.773292]; 
WP_longitude = [-84.099500; -84.106389; -84.111550;... 
    -84.112517; -84.111355; -84.099400;-84.098450;-84.099500]; 
 
WP_Altitude = [1148;1148;1148;1148;1148;1148;1148;1148]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
begin = 484;  %Line # in 'Clock' array 
end_at = 10802; 
 
% figure('Name',... 
%     'HITL Simulation #1: TAS(12kts), Alt(1148ft), Winds(5s/0w m/s)',... 
%     'NumberTitle','on') 
% hold on 
% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6),... 
%     '--k') 
% axis equal 
% xlabel ('Longitude (deg)') 
% ylabel  ('Latitude (deg)') 
% title... 
%     ('HITL Autopilot Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)') 
%  
% plot(WP_longitude,WP_latitude,'-ro',... 
%                 'LineWidth',2,... 
%                 'MarkerEdgeColor','k',... 
%                 'MarkerFaceColor',[.49 1 .63],... 
%                 'MarkerSize',12); 
% grid on 
% axis equal 
% legend({'UAV Flight Path','Desired Waypoints and FlightPath'}); 
% print -dmeta '1 HITL Autopilot Sim,2D,Actual'    
% hold off 
 
%PLOTTING WHERE THE SENSOR WOULD BE 
BaseX = 503000; 
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BaseY = -4884700; 
BaseZ = 4057800; 
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)]; 
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7)) 
deg2rad(Autopilot_Flight(begin:end_at,8))]; 
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]); 
enu     = lla2enu(lla,[BaseX BaseY BaseZ]); 
 
theta = (pi/2) - (Autopilot_Flight(begin:end_at,11)); 
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta);  %Only good for 45 degree mounting angle 
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta); 
 
sensorposeast=enu(:,1) + adjust2; 
sensorposnorth=enu(:,2)+ adjust1; 
 
figure(11) 
hold on 
plot(enu(:,1), enu(:,2),'b') 
plot(sensorposeast,sensorposnorth,'g') 
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12) 
xlabel('East from Datum [m]') 
ylabel('North from Datum [m]') 
title('Updated UAV & Sensor Tracks (TAS=12m/s, Wind=5 m/s from South)') 
legend('UAV Track','Sensor Track','Waypoint',1) 
grid on 
hold off 
 
 
%Plot 3D Waypoint Orbit Track 
figure1 = figure('Name','HITL Simulation #1: TAS(12m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on') 
axes1 = axes(... 
  'CameraPosition',[-84.13 39.75 2007],... 
  'CameraUpVector',[0.1859 0.1775 1.915e+005],... 
  'Parent',figure1); 
axis(axes1,[-84.12 -84.095 39.77 39.785 800 1500]); 
title(axes1,'HITL Autopilot Simulation #1 with Flight Test: TAS(12m/s), Alt(1148ft)'); 
xlabel(axes1,'Longitude (deg)'); 
ylabel(axes1,'Latitude (deg)'); 
zlabel(axes1,'Altitude (ft)'); 
grid(axes1,'on'); 
hold(axes1,'all'); 
plot3(Autopilot_Flight(begin:end_at,7),...  %LONGITUDE  LINES 
    Autopilot_Flight(begin:end_at,6),...    %LATITUDE 
    Autopilot_Flight(begin:end_at,8),'Parent',axes1);    %ALTITUDE 
grid on 
hold on 
axis equal 
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',...     %WAYPOINT PLOTS 
                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
axis square 
legend1 = legend(axes1,... 
{'UAV Flight Path','Desired Waypoints,Flight Path, and Altitude (1148 ft)'},... 
'Position',[0.2723 0.3165 0.6554 0.1]); 
zlim([800 1500]) 
           
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
begin = 12283;  %Line # in 'Clock' array 
end_at = 20558; 
 
%2-D PLOT FROM NIDAL 
% figure('Name','HITL Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)',... 
%     'NumberTitle','on') 
% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6)) 
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% xlabel ('Longitude (deg)') 
% ylabel  ('Latitude (deg)') 
% grid on 
% axis equal 
% hold on 
% plot(WP_longitude,WP_latitude,'-ro',... 
%                 'LineWidth',2,... 
%                 'MarkerEdgeColor','k',... 
%                 'MarkerFaceColor',[.49 1 .63],... 
%                 'MarkerSize',12); 
% axis equal 
% print -dmeta '4 HITL Autopilot Sim,2D,Conv Lower' 
 
 
%PLOTTING WHERE THE SENSOR WOULD BE 
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)]; 
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7)) 
deg2rad(Autopilot_Flight(begin:end_at,8))]; 
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]); 
enu     = lla2enu(lla,[BaseX BaseY BaseZ]); 
 
theta = (pi/2) - (Autopilot_Flight(begin:end_at,11)); 
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta);  %Only good for 45 degree mounting angle 
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta); 
 
sensorposeast=enu(:,1) + adjust2; 
sensorposnorth=enu(:,2)+ adjust1; 
 
figure(12) 
hold on 
plot(enu(:,1), enu(:,2),'b') 
plot(sensorposeast,sensorposnorth,'g') 
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12) 
xlabel('East from Datum [m]') 
ylabel('North from Datum [m]') 
title('Updated UAV & Sensor Tracks (TAS=15m/s, Wind=5 m/s from South)') 
legend('UAV Track','Sensor Track','Waypoint',1) 
grid on 
hold off 
 
 
 
% 3-D PLOTTING FROM NIDAL 
figure('Name','Simulation #1: TAS(15m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on') 
plot3(Autopilot_Flight(begin:end_at,7),... 
    Autopilot_Flight(begin:end_at,6),... 
    Autopilot_Flight(begin:end_at,8)); 
grid on 
hold on 
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',... 
                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
xlabel ('Longitude (deg)') 
ylabel  ('Latitude (deg)') 
zlabel ('Altitude (ft)') 
zlim([800 1500]) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
begin = 21279;  %Line # in 'Clock' array 
end_at = 27453; 
 
%2-D PLOT FROM NIDAL 
% figure('Name','HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)',... 
%     'NumberTitle','on') 
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% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6)) 
% xlabel ('Longitude (deg)') 
% ylabel  ('Latitude (deg)') 
% grid on 
% axis equal 
% hold on 
% plot(WP_longitude,WP_latitude,'-ro',... 
%                 'LineWidth',2,... 
%                 'MarkerEdgeColor','k',... 
%                 'MarkerFaceColor',[.49 1 .63],... 
%                 'MarkerSize',12); 
% axis equal 
% print -dmeta '7 HITL Autopilot Sim,2D,TAS Conv Lower' 
             
 
%PLOTTING WHERE THE SENSOR WOULD BE 
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)]; 
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7)) 
deg2rad(Autopilot_Flight(begin:end_at,8))]; 
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]); 
enu     = lla2enu(lla,[BaseX BaseY BaseZ]); 
 
theta = (pi/2) - (Autopilot_Flight(begin:end_at,11)); 
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta);  %Only good for 45 degree mounting angle 
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta); 
 
sensorposeast=enu(:,1) + adjust2; 
sensorposnorth=enu(:,2)+ adjust1; 
 
figure(13) 
hold on 
plot(enu(:,1), enu(:,2),'b') 
plot(sensorposeast,sensorposnorth,'g') 
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12) 
xlabel('East from Datum [m]') 
ylabel('North from Datum [m]') 
title('Updated UAV & Sensor Tracks (TAS=20m/s, Wind=5 m/s from South)') 
legend('UAV Track','Sensor Track','Waypoint',1) 
grid on 
hold off 
 
 
 
%3-D PLOT FROM NIDAL         
figure('Name','HITL Simulation #1: TAS(20m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on') 
plot3(Autopilot_Flight(begin:end_at,7),... 
    Autopilot_Flight(begin:end_at,6),... 
    Autopilot_Flight(begin:end_at,8)); 
grid on 
hold on 
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',... 
                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
xlabel ('Longitude (deg)') 
ylabel  ('Latitude (deg)') 
zlabel ('Altitude (ft)') 
zlim([800 1500]) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
begin = 27974; %Line # in 'Clock' array 
end_at = 32413; 
 
%2-D PLOT FROM NIDAL 
% figure('Name','HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)',... 
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%     'NumberTitle','on') 
% hold on 
% plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6)) 
% axis equal 
% xlabel ('Longitude (deg)') 
% ylabel  ('Latitude (deg)') 
% plot(WP_longitude,WP_latitude,'-ro',... 
%                 'LineWidth',2,... 
%                 'MarkerEdgeColor','k',... 
%                 'MarkerFaceColor',[.49 1 .63],... 
%                 'MarkerSize',12); 
% axis equal 
% grid on 
% print -dmeta '10 HITL Autopilot Sim,2D,TASLow ConvUp,Larg Track' 
 
 
%PLOTTING WHERE THE SENSOR WOULD BE 
wp_lla = [deg2rad(WP_latitude) deg2rad(WP_longitude) deg2rad(WP_Altitude)]; 
lla = [deg2rad(Autopilot_Flight(begin:end_at,6)) deg2rad(Autopilot_Flight(begin:end_at,7)) 
deg2rad(Autopilot_Flight(begin:end_at,8))]; 
wyptenu = lla2enu(wp_lla,[BaseX BaseY BaseZ]); 
enu     = lla2enu(lla,[BaseX BaseY BaseZ]); 
 
theta = (pi/2) - (Autopilot_Flight(begin:end_at,11)); 
adjust1=(Autopilot_Flight(begin:end_at,8)./3.281).*sin(theta);  %Only good for 45 degree mounting angle 
adjust2=(Autopilot_Flight(begin:end_at,8)./3.281).*cos(theta); 
 
sensorposeast=enu(:,1) + adjust2; 
sensorposnorth=enu(:,2)+ adjust1; 
 
figure(14) 
hold on 
plot(enu(:,1), enu(:,2),'b') 
plot(sensorposeast,sensorposnorth,'g') 
plot(wyptenu(:,1),wyptenu(:,2),'-ro','LineWidth',2,'MarkerFaceColor',[.49 1 .63], 'MarkerSize',12) 
xlabel('East from Datum [m]') 
ylabel('North from Datum [m]') 
title('Updated UAV & Sensor Tracks (TAS=30m/s, Wind=5 m/s from South)') 
legend('UAV Track','Sensor Track','Waypoint',1) 
grid on 
hold off 
 
 
%3-D PLOT FROM NIDAL 
figure('Name','HITL Simulation #1: TAS(30m/s), Alt(1148ft), Winds(5s/0w m/s)','NumberTitle','on') 
plot3(Autopilot_Flight(begin:end_at,7),... 
    Autopilot_Flight(begin:end_at,6),... 
    Autopilot_Flight(begin:end_at,8)); 
grid on 
hold on 
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',... 
                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
xlabel ('Longitude (deg)') 
ylabel  ('Latitude (deg)') 
zlabel ('Altitude (ft)') 
zlim([800 1500]) 
 
 
 
 
 
SAMPLE MATLAB FOR THE VARIOUS PARAMETERS AND WIND DATA PLOTS - All 
tests used the same code simply with different data file calls. 
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%Brent Robinson 
%Thesis 
%Additional plots for each test 
 
clear all 
clc 
 
if exist('data5') == 0 
    load SimTests5datafile.mat 
    disp('File Loading') 
end 
 
begin=36; 
end_at=2099; 
 
Hours=data5(begin:end_at,2); 
Min=data5(begin:end_at,3); 
Sec=data5(begin:end_at,4); 
 
SysTime=(Hours.*3600)+(Min.*60)+Sec; 
 
%SysTime = nameoffile(begin:end_at,); 
TAS = data5(begin:end_at,8); 
GS = data5(begin:end_at,6); 
Alt = data5(begin:end_at,13); 
MagHeading = data5(begin:end_at,9); 
WindVel = data5(begin:end_at,10); 
WindDir = data5(begin:end_at,11); 
CT = data5(begin:end_at,5); 
 
 
figure(1) 
%Plot - Velocity vs. time 
x=SysTime; 
y=TAS; 
subplot(4,1,1) 
plot(x,y) 
xlabel('System Time [s]') 
ylabel('TAS [m/s]') 
grid on 
 
%Plot - Ground Velocity vs. time 
y2=GS; 
subplot(4,1,2) 
plot(x,y2) 
xlabel('System Time [s]') 
ylabel('Grnd Spd [m/s]') 
grid on 
 
%Plot - Altitude vs. time 
y3=Alt; 
subplot(4,1,3) 
plot(x,y3) 
xlabel('System Time [s]') 
ylabel('Alt [m]') 
grid on 
 
%Plot - Mag Heading vs. time 
y3b=MagHeading; 
subplot(4,1,4) 
plot(x,y3b) 
xlabel('System Time [s]') 
ylabel('Mag Heading [deg]') 
grid on 
 
 
 
figure(2) 
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%Plot - Wind Velocity vs. time 
y4=WindVel; 
subplot(3,1,1) 
plot(x,y4) 
xlabel('System Time [s]') 
ylabel('Wind Velocity [m/s]') 
grid on 
 
%Plot - Wind Heading vs. time 
y5=WindDir; 
subplot(3,1,2) 
plot(x,y5) 
xlabel('System Time [s]') 
ylabel('Wind Heading [deg]') 
grid on 
 
%Plot - Cross Track Distance vs. time 
y6=CT; 
subplot(3,1,3) 
plot(x,y6) 
xlabel('System Time [s]') 
ylabel('Cross Track Distance [m]') 
grid on 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
begin=2399; 
end_at=4051; 
 
Hours=data5(begin:end_at,2); 
Min=data5(begin:end_at,3); 
Sec=data5(begin:end_at,4); 
 
SysTime=(Hours.*3600)+(Min.*60)+Sec; 
 
%SysTime = nameoffile(begin:end_at,); 
TAS = data5(begin:end_at,8); 
GS = data5(begin:end_at,6); 
Alt = data5(begin:end_at,13); 
MagHeading = data5(begin:end_at,9); 
WindVel = data5(begin:end_at,10); 
WindDir = data5(begin:end_at,11); 
CT = data5(begin:end_at,5); 
 
 
figure(3) 
%Plot - Velocity vs. time 
x=SysTime; 
y=TAS; 
subplot(4,1,1) 
plot(x,y) 
xlabel('System Time [s]') 
ylabel('TAS [m/s]') 
grid on 
 
%Plot - Ground Velocity vs. time 
y2=GS; 
subplot(4,1,2) 
plot(x,y2) 
xlabel('System Time [s]') 
ylabel('Grnd Spd [m/s]') 
grid on 
 
%Plot - Altitude vs. time 
y3=Alt; 
subplot(4,1,3) 
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plot(x,y3) 
xlabel('System Time [s]') 
ylabel('Alt [m]') 
grid on 
 
%Plot - Mag Heading vs. time 
y3b=MagHeading; 
subplot(4,1,4) 
plot(x,y3b) 
xlabel('System Time [s]') 
ylabel('Mag Heading [deg]') 
grid on 
 
 
 
figure(4) 
%Plot - Wind Velocity vs. time 
y4=WindVel; 
subplot(3,1,1) 
plot(x,y4) 
xlabel('System Time [s]') 
ylabel('Wind Velocity [m/s]') 
grid on 
 
%Plot - Wind Heading vs. time 
y5=WindDir; 
subplot(3,1,2) 
plot(x,y5) 
xlabel('System Time [s]') 
ylabel('Wind Heading [deg]') 
grid on 
 
%Plot - Cross Track Distance vs. time 
y6=CT; 
subplot(3,1,3) 
plot(x,y6) 
xlabel('System Time [s]') 
ylabel('Cross Track Distance [m]') 
grid on 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
begin=4199; 
end_at=5431; 
 
Hours=data5(begin:end_at,2); 
Min=data5(begin:end_at,3); 
Sec=data5(begin:end_at,4); 
 
SysTime=(Hours.*3600)+(Min.*60)+Sec; 
 
%SysTime = nameoffile(begin:end_at,); 
TAS = data5(begin:end_at,8); 
GS = data5(begin:end_at,6); 
Alt = data5(begin:end_at,13); 
MagHeading = data5(begin:end_at,9); 
WindVel = data5(begin:end_at,10); 
WindDir = data5(begin:end_at,11); 
CT = data5(begin:end_at,5); 
 
 
figure(5) 
%Plot - Velocity vs. time 
x=SysTime; 
y=TAS; 
subplot(4,1,1) 
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plot(x,y) 
xlabel('System Time [s]') 
ylabel('TAS [m/s]') 
grid on 
 
%Plot - Ground Velocity vs. time 
y2=GS; 
subplot(4,1,2) 
plot(x,y2) 
xlabel('System Time [s]') 
ylabel('Grnd Spd [m/s]') 
grid on 
 
%Plot - Altitude vs. time 
y3=Alt; 
subplot(4,1,3) 
plot(x,y3) 
xlabel('System Time [s]') 
ylabel('Alt [m]') 
grid on 
 
%Plot - Mag Heading vs. time 
y3b=MagHeading; 
subplot(4,1,4) 
plot(x,y3b) 
xlabel('System Time [s]') 
ylabel('Mag Heading [deg]') 
grid on 
 
 
 
figure(6) 
%Plot - Wind Velocity vs. time 
y4=WindVel; 
subplot(3,1,1) 
plot(x,y4) 
xlabel('System Time [s]') 
ylabel('Wind Velocity [m/s]') 
grid on 
 
%Plot - Wind Heading vs. time 
y5=WindDir; 
subplot(3,1,2) 
plot(x,y5) 
xlabel('System Time [s]') 
ylabel('Wind Heading [deg]') 
grid on 
 
%Plot - Cross Track Distance vs. time 
y6=CT; 
subplot(3,1,3) 
plot(x,y6) 
xlabel('System Time [s]') 
ylabel('Cross Track Distance [m]') 
grid on 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
begin=5539; 
end_at=6423; 
 
Hours=data5(begin:end_at,2); 
Min=data5(begin:end_at,3); 
Sec=data5(begin:end_at,4); 
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SysTime=(Hours.*3600)+(Min.*60)+Sec; 
 
%SysTime = nameoffile(begin:end_at,); 
TAS = data5(begin:end_at,8); 
GS = data5(begin:end_at,6); 
Alt = data5(begin:end_at,13); 
MagHeading = data5(begin:end_at,9); 
WindVel = data5(begin:end_at,10); 
WindDir = data5(begin:end_at,11); 
CT = data5(begin:end_at,5); 
 
figure(7) 
%Plot - Velocity vs. time 
x=SysTime; 
y=TAS; 
subplot(4,1,1) 
plot(x,y) 
xlabel('System Time [s]') 
ylabel('TAS [m/s]') 
grid on 
 
%Plot - Ground Velocity vs. time 
y2=GS; 
subplot(4,1,2) 
plot(x,y2) 
xlabel('System Time [s]') 
ylabel('Grnd Spd [m/s]') 
grid on 
 
%Plot - Altitude vs. time 
y3=Alt; 
subplot(4,1,3) 
plot(x,y3) 
xlabel('System Time [s]') 
ylabel('Alt [m]') 
grid on 
 
%Plot - Mag Heading vs. time 
y3b=MagHeading; 
subplot(4,1,4) 
plot(x,y3b) 
xlabel('System Time [s]') 
ylabel('Mag Heading [deg]') 
grid on 
 
 
figure(8) 
%Plot - Wind Velocity vs. time 
y4=WindVel; 
subplot(3,1,1) 
plot(x,y4) 
xlabel('System Time [s]') 
ylabel('Wind Velocity [m/s]') 
grid on 
 
%Plot - Wind Heading vs. time 
y5=WindDir; 
subplot(3,1,2) 
plot(x,y5) 
xlabel('System Time [s]') 
ylabel('Wind Heading [deg]') 
grid on 
 
%Plot - Cross Track Distance vs. time 
y6=CT; 
subplot(3,1,3) 
plot(x,y6) 
xlabel('System Time [s]') 
ylabel('Cross Track Distance [m]') 
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Appendix D: Proposed Actual Flight Test Plans 
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Appendix E: Flight Test Results 
 
 The following set of flight test results were gathered post-defense in order to 

obtain initial effects of the wind correction algorithm in a real world situation.  Two tests 

are shown.  First, a straight and level flight path and then second a circular orbit.  The 

aircraft was flown in RC mode with the wind finding code running.  The results for both 

tests were disappointing.  However, the poor results were not due to the algorithm, but 

rather a malfunction with the Piccolo II’s true airspeed reading on board the aircraft.  Due 

to the inaccurate TAS values, the wind velocity and direction results were completely 

unreliable.  In the first test, the TAS quickly drops to zero and remains there throughout 

the flight.  Obviously the UAV had a positive TAS at all time, thus displaying the error in 

the Piccolo’s readout of the TAS.  However, it is interesting to note that the wind 

estimating algorithm was still operating correctly as the estimated winds were precisely 

the difference between ground track and flight path.  With TAS=0 m/s, the algorithm 

estimated the wind to be the same as the ground speed, as shown in Figures 111 and 112.  

The TAS results for the circular orbit test, Figure 113, were non-zero, but still inaccurate 

and unreliable, producing poor results for the wind estimations found in Figure 114. 
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Figure 111.  Straight and Level Flight Test Results 
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Figure 112. Straight and Level Flight Test Wind Estimations 
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Figure 113. Circular Orbit Flight Test Results 
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Figure 114. Circular Orbit Flight Test Wind Estimations
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