
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Multi-Dimensional Wave Front Sensing Algorithms for Embedded Multi-Dimensional Wave Front Sensing Algorithms for Embedded

Tracking and Adaptive Optics Applications Tracking and Adaptive Optics Applications

Christopher C. Wood

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Electrical and Electronics Commons, and the Optics Commons

Recommended Citation Recommended Citation
Wood, Christopher C., "Multi-Dimensional Wave Front Sensing Algorithms for Embedded Tracking and
Adaptive Optics Applications" (2006). Theses and Dissertations. 3510.
https://scholar.afit.edu/etd/3510

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholar.afit.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/204?utm_source=scholar.afit.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3510?utm_source=scholar.afit.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

MULTI-DIMENSIONAL WAVE FRONT
SENSING ALGORITHMS FOR EMBEDDED

TRACKING AND ADAPTIVE OPTICS
APPLICATIONS

THESIS

Christopher C. Wood, First Lieutenant, USAF
AFIT/GE/ENG/06-57

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GE/ENG/06-57

MULTI-DIMENSIONAL WAVE FRONT SENSING ALGORITHMS FOR
EMBEDDED TRACKING AND ADAPTIVE OPTICS APPLICATIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Christopher C. Wood, BS

First Lieutenant, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AFIT/GE/ENG/06-57

MULTI-DIMENSIONAL WAVE FRONT SENSING ALGORITHMS FOR
EMBEDDED TRACKING AND ADAPTIVE OPTICS APPLICATIONS

Christopher C. Wood, BS
First Lieutenant, USAF

 Approved:

 /signed/

 Dr. Stephen C. Cain (Chairman) date

 /signed/

 Dr. Richard K. Martin (Member) date

 /signed/

 Dr. Yong C. Kim (Member) date

iv

AFIT/GE/ENG/06-57

Abstract

 Current tracking and adaptive optics techniques cannot compensate for fast-

moving extended objects, which is important for ground-based telescopes providing

space situational awareness. To fill this need, a vector-projection maximum-likelihood

wave-front sensing algorithm development and testing follows for this application. A

derivation and simplification of the Cramer-Rao Lower Bound for wave-front sensing

using a laser guide star bounds the performance of these systems and guides

implementation of a vastly optimized maximum-likelihood search algorithm. A complete

analysis of the bias, mean square error, and variance of the algorithm demonstrates

exceptional performance of the new sensor. A proof of concept implementation shows

feasibility of deployment in modern adaptive optics systems. The vector-projection

maximum-likelihood sensor satisfies the need for tracking and wave-front sensing of

extended objects using current adaptive optics hardware designs.

v

One More Roll

We toast our faithful comrades now fallen from the sky

And gently caught by God’s own hand to be with him on high.

To dwell among the soaring clouds they knew so well before

From dawn patrol and victory roll at heaven’s very door.

And as we fly among them there we’re sure to hear their plea

“Take care, my friend, watch your six, and do one more roll... just for me.”

Gerald (Jerry) Coffee, Captain, USN (Ret.)

Hanoi, 1968

vi

Acknowledgments

 I would like to thank my Dad for his unending support without whom I would not

be here today, and Michelle for her care and understanding as this thesis consumed the

time and attention that she deserved. This work would not have been possible without

the guidance provided by my advisor, Dr. Stephen Cain, or the education provided by the

committee members Dr. Richard Martin and Dr. Yong Kim.

 Christopher C. Wood

vii

Table of Contents

 Page

Abstract .. iv

Dedication..v

Acknowledgments.. vi

Table of Contents.. vii

List of Figures .. xi

List of Tables ... xiii

I. Introduction ..1

1.1. Background and Motivation ...1
1.1.1. The Effects of Atmospheric Turbulence ..1
1.1.2. Adaptive Optics Solutions..4
1.1.3. Problems and Need for Improvement in Wave-Front Sensing5

1.2. Summary of Current Techniques ..7
1.3. Contributions and Scope...9
1.4. Approach/Methodology ..10

II. Background...11

2.1. Current Wave-Front Sensing Limitations...11
2.2. Low Order Wave-Front Sensors ...11

2.2.1. Shack-Hartmann Wave-Front Sensor...11
2.2.2. Shearing Interferometer..14

2.3. Advanced Wave-Front Sensors...15
2.3.1. Curvature Wave-Front Sensor..15
2.3.2. Phase Diversity Wave-Front Sensor...16

2.4. Theoretical Maximum Likelihood WFS...18
2.5. Comparison and Summary..18
2.6. Possible Areas of Investigation...20

viii

 Page

III. Modeling...21

3.1. Image Modeling Parameters ...22
3.1.1. Wavelength...22
3.1.2. Sampling...23
3.1.3. Image Size ..24
3.1.4. Light-Level (Total Intensity)..26
3.1.5. Background Intensity ...27

3.2. Image Creation..28
3.2.1. Two-Dimensional Gaussian (Simulated Laser Guide Star)28
3.2.2. Using Real Images or Real Data ..29
3.2.3. Image Projection / Vectorization..33

3.3. Image Shifting...35
3.3.1. Shifting of a Known Function ..35
3.3.2. FFT / Sinc-Interpolation...35
3.3.3. Sub-Pixel Shift Step Size ...36

3.4. Calculating Bias and Mean Absolute Bias (MAB).......................................36
3.5. Noise Generation ..37

3.5.1. Poisson and Bernoulli Random Variables..37
3.5.2. Effects of Projecting Images ..39
3.5.3. Computing Noise Statistics ..40

3.6. Summary ...42

IV. Analysis ..43

4.1. Cramer-Rao Lower Bound (CRLB) for Tilt Estimates Obtained with LGS 43
4.1.1. Relevant Statistics, Assumptions, and Setup43
4.1.2. Derivation...45
4.1.3. Simplification and Further Assumptions..58
4.1.4. Benefits and Discussion ...66

4.2. Maximum Likelihood Optimized Search Algorithm....................................66
4.2.1. Relevant Statistics, Assumptions, and Setup66
4.2.2. Properties of Log-Likelihood Leveraged ...69
4.2.3. Search Algorithm Definition ..70
4.2.4. Computational Complexity Analysis and Comparison74
4.2.5. Possible Improvements...78
4.2.6. Limitations..78

4.3. Implementation Strategy...79
4.3.1. System Layout ...79

4.3.2. VHDL Implementation...80
4.3.3. Extensions to Implementation ..83

4.4. Summary ...83

ix

 Page

V. Results and Discussion ...84

5.1. LGS / 2D Gaussian - Modeling and Simulation Results84
5.1.1. Effects of Image Projection..85
5.1.2. Detailed Bias ..86
5.1.3. Detailed MSE and VAR...88
5.1.4. Image Size Analysis ...89
5.1.5. Sampling Analysis..90
5.1.6. Background Intensity Analysis ..91
5.1.7. Light-Level Analysis..92

5.2. Tracking Extended Object - Modeling and Simulation Results93
5.2.1. Image Size Analysis ...94
5.2.2. Sampling Analysis..95
5.2.3. Background Intensity Analysis ..96
5.2.4. Light-Level / Total Intensity Analysis ...96

5.3. WFS Extended Object - Modeling and Simulation Results97
5.3.1. Image Size Analysis ...97
5.3.2. Sampling Analysis..98
5.3.3. Background Intensity Analysis ..99
5.3.4. Light-Level / Total Intensity Analysis ...99

5.4. Implementation / VHDL Simulation Results..101
5.4.1. Targeted Device Resource Summary ...101
5.4.2. Test Bench Simulation Results...102

5.5. Summary ...104

VI. Conclusions...105

6.1. Key Contributions...105
6.2. Lessons Learned ...106
6.3. Further Research ...106

Appendix A: Mathematica Verification of CRLB..108

A.1. Setup of Formulas ...108
A.2. Computation of CRLB..109
A.3. Simplification Setup and Solution ..110

Appendix B: MATLAB Version of ML Algorithm ...111

x

 Page

Appendix C: VHDL Version of Simplified ML Algorithm115

C.1. Log-Likelihood Computation Module..115
C.2. Main Search Module...118

Appendix D: Complete Parameterization of Bias and Noise Statistics130

D.1. LGS Image Size Comparison..130
D.2. LGS swat Characterization. ..131
D.3. LGS mliwl Characterization..132
D.4. LGS mliwc Characterization. ..133
D.5. Tracking Hubble Image Size Comparison..134
D.6. Tracking Hubble mliwl Characterization (y dim).135
D.7. Tracking Hubble mliwc Characterization (y dim).......................................136
D.8. WFS Hubble Image Size Comparison. ...137
D.9. WFS Hubble swat Characterization..138
D.10. WFS Hubble mliwl Characterization...139
D.11. WFS Hubble mliwc Characterization ..140

Bibliography ..141

xi

List of Figures

Figure Page

1. Temperature Gradients and Turbulence Sources in the Atmosphere [13].........2

2. Distorting of Wave-Front Moving Through Atmosphere [12]3

3. Typical Adaptive Optics System Based on a Large Telescope [21]..................4

4. Wave-Front Sensor Array [16] ..12

5. Single Wave-Front Sensor Element [16] ...12

6. Shearing Interferometer Final Stage Operation [16]14

7. Curvature Adaptive Optics Setup [1]...16

8. Curvature Sensing Setup [1] ..16

9. Typical Phase Diversity Hardware Setup [3] ..17

10. 2-D Gaussian and Vector Projections in x and y Planes..................................29

11. Observed Image of 2-D Gaussian without Noise ..29

12. Hubble for Wave-Front Sensing & Projections in x and y Planes...................32

13. Observed Image of Hubble for Wave-Front Sensing without Noise...............32

14. Hubble for Tracking and Projections in x and y Planes32

15. Observed Image of Hubble for Tracking without Noise32

16. SNR v Light-Level...38

17. CRLB Numerical and Analytical Solution ..65

18. Log-Likelihood for Gaussian in Noise ..70

19. Log-Likelihood for Shifted Gaussian in Background and Noise70

xii

Figure Page

20. Flow Diagram of Optimized Log-Likelihood Search Algorithm72

21. Illustration of Log-Linear Nature of ML Algorithm for LGS77

22. Moore State-Machine for Implementation ..81

23. Variance of Centroiding Algorithms and CRLB ...85

24. Mean Square Error of Centroiding Algorithms ...85

25. Absolute Bias v Shift for LGS...87

26. Variance v Shift for LGS ...88

27. Mean Absolute Error v Shift for LGS ...88

28. Mean Square Error v Image Size for LGS...90

29. Mean Square Error v Sampling Rate for LGS...91

30. Mean Square Error v Background Intensity for LGS92

31. Mean Square Error v Light-Level for LGS ...93

32. Mean Square Error v Image Size for Hubble Tracking94

33. Mean Square Error v Sampling Rate for Hubble Tracking95

34. Mean Square Error v Background Intensity for Hubble Tracking96

35. Mean Square Error v Light Level for Hubble Tracking97

36. Mean Square Error v Image Size for Hubble WFS ...98

37. Mean Square Error v Sampling Rate for Hubble WFS....................................99

38. Mean Square Error v Background Intensity for Hubble WFS.......................100

39. Mean Square Error v Light-Level for Hubble WFS100

40. Zoomed in View of First Portion of VHDL Simulation103

41. Full View of VHDL Simulation ..103

xiii

List of Tables

Table Page

1. Performance Comparison for Common Wave-Front Sensors19

2. Additional Known Advantages and Disadvantages of Wave-Front Sensors ..19

3. Image Modeling Parameters and Simulated Ranges22

4. Algorithm complexity for Shack-Hartmann and SWAT Sensors....................75

5. Algorithm complexity for Maximum-Likelihood Sensor Phase I76

6. Algorithm complexity for Maximum-Likelihood Sensor Phases II and III76

7. Resources Required for Synthesis ...101

8. Preliminary Timing Analysis...102

 1

MULTI-DIMENSIONAL WAVE FRONT SENSING ALGORITHMS FOR
EMBEDDED TRACKING AND ADAPTIVE OPTICS APPLICATIONS

I. Introduction

 Atmospheric turbulence affects clarity of anything in space viewed through large

telescopes. Machines that perform optical tracking of moving targets or provide high-

resolution imaging must correct for turbulence effects by detecting the distorted wave-

front caused by turbulence to prevent loss of tracking ability or image corruption [16].

The capability to detect distortion in the wave-front, or relative position changes of an

image, is often embedded or built into the wave-front sensor and processing algorithms

as a part of the adaptive optics system [16]. Modern adaptive optics systems allow for

wave-front correction with only guide stars and small, extended sources, sometimes

requiring post-processing of gathered data [12]. A new maximum-likelihood wave-front

sensing algorithm embedded in proven adaptive optics designs could enhance detection

for non-ideal conditions and real-time operations [5]. What and where atmospheric

turbulence is, how adaptive optics attempt to overcome the effects of this turbulence, and

why these optics systems need improvement all become clear in the following sections.

1.1. Background and Motivation

1.1.1. The Effects of Atmospheric Turbulence

 Many factors on earth, such as natural processes and terrain features, affect

weather significantly; however, the main driver of turbulence is the sun’s uneven heating

 2

of the earth’s surface. The uneven heating causes convection currents and wind

spawning circular currents, eddies, which trap varying temperatures throughout the

atmosphere causing variations of the index of refraction thereby distorting the wave-

front. Figure 1 shows the first two major layers, the troposphere and stratosphere,

containing 99.9 % of the earth’s atmosphere, and whose turbulence is responsible for the

majority of light distortions [13]. The figure also indicates an average temperature

gradient; a few realistic sample temperature gradients as seen through different columns

of air; and other sources of turbulence such as shearing winds, terrain, and natural

processes feeding convection. The results of these sources of turbulence can combine to

distort a wave-front as it passes through different temperature gradients in the earth’s

atmosphere.

Figure 1. Temperature Gradients and Turbulence Sources in the Atmosphere [13]

 3

 A clearer view of how a wave-front distorts and how the wave-

front initially forms is available in Figure 2. A point source, or a

distant star, emits light, which travels outward from the star much as

ripples travel outward from a pebble thrown in a pond. When these

“waves” are far away from the source, they appear as a straight line,

forming a wave-front. Researchers often model the propagating waves

as a two-dimensional Fourier Transform. Much like taking the Fourier

Transform of a single point in time results in a straight line in the

frequency domain, a point source in space transforms to a plane wave

related to spatial frequency rather than temporal frequency [8]. The

wave-front does not distort much as it passes through the stratosphere,

as temperature variations seldom occur there; however, the troposphere

severely distorts the wave-front due to the numerous opportunities for

eddies to form and trap temperature variations. The result is a

corrupted wave-front that, when focused onto an imaging device

produces a blurry and distorted image bearing little resemblance to the

original object.

 In addition to using phase screens to model the temperature

variations and the relative refractive index changes directly at different

altitudes, researchers use Zernike polynomials, or “Zernikes”, to

characterize the distortions in the wave-front itself [16]. As opposed to a rectangular

based set of polynomials, the Zernike polynomials describe a set of circular-based, two-

dimensional functions corresponding to the circular opening in a telescope or other

Figure 2.
Distorting of
Wave-Front

Moving
Through

Atmosphere
[12]

Stratospheric
Turbulence

Guide Star

Tr
op

os
ph

er
ic

Wave-Front

 4

imaging device [16, 22]. These models are crucial to correcting the wave-front in an

Adaptive Optics (AO) system.

1.1.2. Adaptive Optics Solutions

 Although there are many applications for adaptive optics in modern imaging

systems, the basic structure as shown in Figure 3 for a general large telescope system

remains relatively constant across the applications [16].

Figure 3. Typical Adaptive Optics System Based on a Large Telescope [21]

 5

A simple trace through the system reveals that light enters through the telescope lens with

a distorted wave-front, and then reflects from an adaptive mirror, a mirror that can

deform using mechanical actuators, which is initially flat as there is no information to

correct the wave-front. The light then continues to a fifty-fifty beam-splitter sending half

of the light into a lens, which focuses the light onto a high-resolution imaging device, and

the other half to the wave-front sensor. The first portion of the wave-front sensor both

optically and electrically detects measurable parameters of the wave-front, passing that

information to an algorithmic portion of the wave-front sensor to estimate the parameters

for later modeling. Since the wave-front sensor is the heart of this system, this thesis

concerns itself with the algorithmic portion of the wave-front sensor. These estimates

pass to the reconstructor in the control system, which builds a model of the wave-front

and then applies that information to a known model for the adaptive mirror to attempt

wave-front correction. If the wave-front has a lag or dip in it causing the light to arrive

later than expected, the mirror must have a corresponding bump to accelerate the light

back to its appropriate phase to compensate for the distortion. Once an initial estimate

corrects the wave-front, additional wave-front sensing refines the current estimates and

detects further changes, producing higher quality results for future images.

1.1.3. Problems and Need for Improvement in Wave-Front Sensing

 The applications for higher quality imaging span the gamut, from ground-based

and space-based telescopes to military applications such as the Airborne Laser and even

medical services such as measuring aberrations, or deformities, in an eye. These

applications drive the need for better quality imaging and improvements in wave-front

sensing.

 6

 As with any scientific research, improvements require a metric by which to

measure results and draw conclusions. To this end, knowing the structure for a Cramer-

Rao lower bound (CRLB) would provide, independent of the estimation technique, an

analytical method to judge the efficacy of current and proposed wave-front sensing

algorithms. Once known, the Cramer-Rao lower bound can also guide research for

improving current estimation techniques as well as developing new estimation

approaches to manage more complex imaging scenarios.

 A complex situation of interest is imaging of extended objects, or light sources

that do not conform to the definition of a point source, such as a satellite in orbit, the

surface roughness of the sun, a scud missile, or even a truck on a highway. Tracking a

satellite in orbit allows for space situational awareness, or imaging of foreign assets,

without placing costly assets in space; however, it requires wave-front updates for this

extended object, the satellite, at an incredible rate of 1,000 Hz or greater due to the speed

in which the satellite moves. A complication to the satellite-tracking scenario stems from

the typical optical tracking system, which causes the image to fill the field of view and

allows new information to enter the scene while tracking, defeating current fast-acting

sensors. The surface intensity variation, or roughness, of the sun is a unique problem in

that the image gathered has extremely low-contrast features for tracking or correlation,

disabling most modern wave-front sensors; but imaging of the sun is necessary to predict

communication outages and solar weather in general. The scud missile, truck, and other

daytime AO applications represent a class of objects whose backgrounds, like the sun,

are not black reducing the contrast, and require rapid wave-front updates for the dynamic

turbulence between the object and imaging device. Imaging extended objects, although

 7

merely a collection of point sources with spatial reference to each other, is not the only

type of imaging that current wave-front sensors can have poor performance.

 Occasionally, atmospheric turbulence results in a tip-tilt, represented by Zernike

polynomials two and three, beyond the physically measurable range of the sensor causing

an unknown in the collection of estimated parameters and preventing the reconstructor

from modeling the wave-front. This unknown occurs when the tip or tilt is so great that

the majority of the image moves off the detector leaving the algorithm a small amount of

information to work with. Modern sensors are not capable of controlling such a situation,

and the entire adaptive optics system suffers when a single sensor cannot acquire an

accurate estimate for the wave-front.

 Although the optical and electrical properties of current sensors potentially

support the previously mentioned improvements, the algorithms currently in use do not;

therefore, an investigation of a vector-projection, maximum-likelihood-correlating wave-

front sensor guided by Cramer-Rao lower bounds and simulation experiments will

proceed.

1.2. Summary of Current Techniques

 Several factors limit the performance of current adaptive optics techniques

preventing the ability to track or perform wave-front sensing for fast-moving, extended

objects, or low-contrast objects. The largest contributor to these limitations is the wave-

front sensor, which provides the necessary information for the adaptive optics system to

correct the wave-front deformities.

 There are two main categories of wave-front sensors, low-order wave-front

sensors and advanced wave-front sensors, both of which are capable of detecting wave-

 8

front distortions. The advanced wave-front sensors typically produce better performance

through higher order computations and more complex algorithms; however, most cannot

image an extended object and none are capable of the tracking application as closed loop

speeds are currently very low [6]. Current low-order wave-front sensors provide slightly

lower imaging performance, but operate at up to 1000 Hz, allowing for tracking and other

fast-moving imaging applications [16]. These simpler estimation techniques include

numerous wave-front sensors; however, only the easily implemented and fast-operating

Shack-Hartmann and Short-Wavelength Adaptive Techniques (SWAT) wave-front

sensors are common today [16]. Both of these sensors use a centroid-based algorithm to

estimate tip and tilt, and this algorithm can have extremely poor performance when

attempting wave-front sensing or tracking on an extended object [16]. The simplicity of

the centroid algorithm suggests that a more complex and statistically based algorithm

could surpass these sensors in performance, possibly retaining the operating speed while

tracking or performing wave-front sensing on extended objects.

 Research indicates the theoretical vector-projection maximum-likelihood wave-

front sensor can achieve the performance of a low-order wave-front sensor for tracking

and wave-front sensing of guide stars while providing suitable performance for imaging

extended objects [5]. This wave-front sensor uses the same hardware system as the

SWAT wave-front sensor; however, the algorithm is a maximum-likelihood estimation

technique, which provides correlation capability for an extended object while

maintaining performance for point sources [5]. Currently only limited simulated

statistical characterization of this sensor is available and the tracking application requires

a modern processor to implement this more complex algorithm [5].

 9

1.3. Contributions and Scope

 It is the goal of this research to quantify the efficacy of a vector-projection,

maximum-likelihood-correlating wave-front sensor for tracking extended objects based

on a satellite application, as well as a couple wave-front sensing applications, through

three facets [5].

 The first contribution is generalized model for the Cramer-Rao lower bound with

assumptions allowing for future applications provides the analytical basis for research.

The CRLB should be applicable to any type of wave-front sensor.

 The second contribution is an algorithmic analysis to increase the temporal

performance of the new complex maximum-likelihood algorithm to allow simulations

that thoroughly characterize the noise-independent bias of the algorithm resulting in a

third contribution as well as the noise statistics of mean squared error (MSE) and

variance (VAR) for a fourth contribution. The variance directly compares to the Cramer-

Rao lower bound to reveal limitations in the algorithm. The search algorithm developed

in this phase contributes to other applications requiring a fast and complete algorithm to

perform the search of functions with special properties such as maximum-likelihood.

 The fifth contribution is a proof of concept for a feasible method of developing

this algorithm for embedded hardware implementation and a complete plan for

implementation offers insight to researchers in the field looking for feasible solutions.

The third criterion is complete when a single working implementation emerges; however,

multiple revisions provide further utility.

 10

 This three-faceted exploration secures a concrete approach to the research,

development, and implementation of a vector-projection, maximum-likelihood-

correlating wave-front sensor.

1.4. Approach/Methodology

 The three-faceted investigation above, with the provided motivation, is a template

that guides the organization of both the research and this document. A thorough

investigation of current techniques with appropriate discussion of relevant subjects

provides the necessary foundation for research. This leads to development of the

tracking and wave-front sensing application environments for producing realistic

simulations and allowing accurate characterization of the new algorithm. Theoretical

analysis develops the CRLB for wave-front tilt estimates, which provides input for

development of a fast, compact, and complete search algorithm for discovering the peak

likelihood. From the validated algorithm extends a focused hardware implementation.

The results of extensive simulations provide the bias, mean squared error, and variance

statistics characterizing the algorithm for tracking and numerous wave-front sensing

applications. The research concludes with a synopsis and areas of further research,

allowing for future contributions to the body of knowledge regarding tracking and wave-

front sensing.

 11

II. Background

2.1. Current Wave-Front Sensing Limitations

 Modern imaging of extended objects requires either a stable point source in the

field of view or complex optics and algorithms to detect the wave-front correctly across

the lens of the telescope. The extended source typically forces researchers, astronomers,

and field users to find or create a guide star close to the extended object they wish to

view. The applications mentioned previously, particularly imaging large objects or

tracking fast moving targets, are difficult or impossible to realize using nearby or

artificial guide stars. Wave-front sensing and tracking is possible due to the complex

system mentioned in the introduction; however, the key components are the wave-front

sensor and the algorithm to determine tip and tilt. The following describes the typical

tip-tilt only detectors and a few more complex wave-front detection methods, directly

compares and summarizes the features of each sensor, and finally presents areas of

potential research given this information.

2.2. Low Order Wave-Front Sensors

2.2.1. Shack-Hartmann Wave-Front Sensor

 The most widely employed wave-front sensor uses the Hartmann test to estimate

the linear, lower order Zernikes, two and three, and currently has the best overall real-

time performance [16]. Both the hardware structure and the algorithm to gather offset, or

tip and tilt, information lead to a simple mathematical model stemming from the

elementary nature of the sensor as described below [17].

 12

 Figure 4 illustrates a typical Shack-Hartmann sub-aperture array in one-

dimension and a single sub-aperture in Figure 5 indicates a linearly tilted wave-front and

the corresponding offset in two-dimensions when focused [16]. The sub-apertures must

be small enough to meet the Nyquist sampling criterion to ensure that the curved wave-

front is linear in the region measured by the sensor driving the overall number of sub-

apertures [8]. The Nyquist rule applies to any sub-aperture type system, as well as

another generalized rule that imposes a requirement of approximately one adaptive optics

channel, sub-aperture, per turbulence coherence radius r0 as a minimum, independent of

the telescope size [14]. Larger numbers of sub-apertures implies smaller sizes; however,

this larger number of sensors can introduce more noise into the system and decrease

light, degrading overall system performance [5].

Figure 4. Wave-Front Sensor Array [16] Figure 5. Single Wave-Front Sensor
Element [16]

 13

These sub-apertures consist of a lenslet array, which focuses the light onto a charge

coupled device (CCD) array for the individual wave-front sensors (WFS) [16]. The CCD

readout, where the information collects, is the second opportunity for significant noise

injection before the wave-front algorithm begins processing.

 The algorithm driving a Shack-Hartmann wave-front sensor is a simple two-

dimensional centroiding algorithm [17]. Each intensity readout multiplies a linear

position number, then average together, and finally the total power in the image divides

the result for the centroid in one-dimension and then repeats for the next dimension. This

operation takes a minimal amount of time allowing greater than 100 Hz operation, and

provides quality results for guide stars and moderately extended objects [12]. There is a

lower bound on error for shot noise, or quantization noise; however, it is somewhat

restrictive and only applies to the Shack-Hartmann wave-front sensor and guide stars

[16]. The simplistic nature of this algorithm lends itself to improvement in accuracy as

time permits such investigations.

 One performance improvement for the Shack-Hartmann sensor came from

research at MIT Lincoln Laboratory; the short wavelength adaptive techniques wave-

front sensor, which splits the incoming light to two lenslet arrays and two CCDs oriented

at 90° to each other. The performance improvement stems from allowing the CCD to

gather all of the charge in the image into vector readout, or a projection, and then

performing a one-dimensional centroiding algorithm for each orientation [2]. Although

image projection allows for both faster readout and lower readout noise, it decreases the

brightness of the original image, decreasing the signal to noise ratio (SNR) making an

accurate estimate less likely.

 14

2.2.2. Shearing Interferometer

 A more complex wave-front sensor not typically considered outside of academia

that strictly estimates Zernikes two and three is the lateral shearing interferometer [23].

Although the physical implementation of a single shearing interferometer can be simple,

the algorithm to retrieve a usable tip-tilt requires a high degree of effort, and the model

for the wave-front sensor system clearly indicates the non-mathematical foundation of the

apparatus and the amount of processing required to retrieve phase information [16].

 The physical apparatus splits the incoming light several times encompassing the

entire wave-front of the sensor to perform filtering and polarization for different

measurement techniques [16]. Once split, the beam splits again before shearing in

orthogonal directions by a tunable amount, only to recombine with the non-sheared

version and create an interference pattern as shown in Figure 6 [23]. This pattern has a

direction relationship to the wave-front tilt, and a sinusoidal nature over time allowing

researchers to correct the wave-front in a reasonable time frame [16].

Figure 6. Shearing Interferometer Final Stage Operation [16]

 15

 Decoding the phase from this interference pattern takes many forms; however, all

algorithms lead to similar results with a modest time delay and correct operation for point

sources [16]. The limitation to point sources stems from the expectation of a plane wave

at the receiver. Without a point source, the interference pattern includes noise from the

shape of the extended object and corrupts the output waveform. The lateral shearing

interferometer is the most tunable wave-front sensor, but tuning is crucial to match the

Shack-Hartmann sensor under ideal conditions.

2.3. Advanced Wave-Front Sensors

2.3.1. Curvature Wave-Front Sensor

 A promising new wave-front sensor is the curvature wave-front sensor.

Curvature sensing has additional requirements for the adaptive optics system by adding a

secondary deformable mirror [1]. The hardware for this system relies on the Shack-

Hartmann or other low-order wave-front sensing detectors; however, the algorithm

driving the higher order results, Zernikes four and above, takes the same information and

performs a superior analysis at an elevated processing cost [1]. The key for this method

is the requirement for an accurate tip-tilt sensor in order to perform correctly, thus

requiring the best low-order Zernike sensor/estimator possible.

 Aside from the addition of a deformable mirror shown in Figure 7, the first mirror

corrects for tip-tilt and the second correct higher order Zernikes, the fundamental concept

of sampling the image changes for a curvature wave-front sensor [1]. Sampling of in

focus and out of focus images occurs simultaneously at a minimum of 1 kHz rate using a

special parabolic mirror as in Figure 8.

 16

Figure 7. Curvature Adaptive Optics Setup
[1]

Figure 8. Curvature Sensing Setup [1]

The multi-phase sampling allows wave-front correction over the entire visible spectrum,

and provides the flexibility to operate at lower frequencies as well; however, like the

shearing interferometer it assumes a point source is the subject of the image [1]. The

complexity of this system forces the researcher to justify the modest performance gain

with the significant hassle required to install, setup, and maintain this system.

2.3.2. Phase Diversity Wave-Front Sensor

 Possibly the simplest structure of all wave-front sensors appears in the phase

diversity wave-front sensor. This type of sensor concentrates on superior algorithms as it

is not capable of the basic autocorrelation algorithms generally used in wave-front

 17

reconstruction using the other wave-front sensors [3]. The required maximum-likelihood

techniques require tremendous processing power, as addressed on a smaller scale for the

theoretical sensor, and typically apply to offline de-convolution of an image rather than

real-time correction of wave-front aberrations [6].

 A beam splitter and a second imaging device at a greater focal length is all the

additional hardware required for this sensor to estimate at least the first 21 Zernike

polynomials [3]. Once estimated, the coefficients of the Zernike polynomials allow for

de-convolution of the image with the atmosphere, allowing for imaging when guide stars

are not available [10]. This process takes an inordinate amount of time, and is not

capable of sustaining an adaptive optics system in real-time for fast-moving objects or

rapidly changing turbulence; however, enough information is available for post-

processing methods. Low contrast scenes are still difficult to image with this method as

the SNR decreases significantly.

Figure 9. Typical Phase Diversity Hardware Setup [3]

 18

2.4. Theoretical Maximum Likelihood WFS

 A vector-projection maximum likelihood wave-front sensor builds upon the

design of the Shack-Hartmann and extends the SWAT wave-front sensor requiring no

major hardware changes from the SWAT design. This hardware setup provides the same

readout noise reduction as the SWAT sensor, while the algorithm used to detect tip and

tilt surpasses centroiding in photon noise rejection, particularly for extended objects, at a

cost of higher computation time [5].

 The hardware portion of this sensor adds an additional beam splitter just before

the original Shack-Hartmann sensor exactly as the SWAT wave-front sensor does, with

the split beam feeding an identical, but rotated 90°, array of sub-apertures and CCD

elements. The CCD structures mirror the SWAT device as well by using vector readouts

of the images creating projections of the original image in two-dimensions. The

algorithm then uses these projections independently for the autocorrelation related

maximum likelihood estimation of tip and tilt [5]. Characterization for the setup and

some statistics already exist from a previous work; therefore, extension into the tracking

and characterization for wave-front sensing should be simpler [5].

2.5. Comparison and Summary

 Limitations in current adaptive optics technologies constrain the ability to

perform ad-hoc imaging of fast-moving, extended, or low-contrast objects. These

limitations generally stem from the wave-front sensor, as it is the key component in an

adaptive optics system. Table 1 shows, using a scale of Excellent-Good-Marginal-Poor,

Shack-Hartmann and curvature wave-front sensors have good performance for various

object types and a respectable response time, easily allowing for common use today [1, 5,

 19

16, 17]. The lateral shearing interferometer and phase diversity wave-front sensors have

other advantages as seen in Table 2 that outweigh the detriments of such complex

systems [3, 16, 23]. The theoretical maximum likelihood sensor provides excellent

image tracking capabilities while maintaining a low complexity and high response time

making it an ideal candidate for further research [5].

Table 1. Performance Comparison for Common Wave-Front Sensors

WFS Performance on Given Object Speed Complexity
 Point Extended Low

Contrast
 Hardware Algorithm

Shack-Hartmann Excellent Marginal Assumed
Poor

Excellent Low Low

Shearing
Interferometer

Good Poor Poor Good Medium Medium

Curvature

Excellent Marginal Poor Marginal Medium High

Phase
Diversity

Excellent Excellent Good Poor Low Very High

Maximum
Likelihood

Theoretically
Excellent

Theoretically
Good

Assumed
Marginal

Good Low Medium

Table 2. Additional Known Advantages and Disadvantages of Wave-Front Sensors

WFS Other Advantages Other Disadvantages
Shack-Hartmann Requires Small, High Contrast

Object for Good Estimation
Shearing
Interferometer

Very Adaptable to Current
Environment

Requires Extensive Tuning

Curvature

 Requires Tip-Tilt Estimation
First for Edges of Wave-Front

Phase Diversity Allows De-Convolution of Image Only Offline Operation
Maximum
Likelihood

Possible Off-Edge Lock Capability;
Multiple SW Realizations Possible

Requires Estimate of the True
Image

 20

2.6. Possible Areas of Investigation

 Before research beings to attempt a performance improvement, a benchmark for

comparison is always a good idea. To this end, a Cramer-Rao lower bound for wave-

front sensing should establish a solid baseline. Additional applications for the maximum

likelihood wave-front sensor are of interest, to include integration with phase diversity

algorithms, near and off-edge performance of guide stars, and multi-spectral maximum

likelihood analysis. To make a feasible sensor, the algorithm must be capable of real-

time operations within a closed-loop system requiring algorithmic analysis and

decomposition. Taking this decomposition of implementable algorithms it should be

possible to perform hardware simulations and analysis.

 21

III. Modeling

 Investigating new topics requires thorough modeling of the known environment

to guide the research and provide adequate testing of results from these analyses and

simulations. This chapter of the thesis defines the programming and simulation software,

the methods to generate realistic data within these programming environments, and the

relevant facts surrounding these modeling techniques. Verification and validation for

expected performance of investigation results requires not only the modeling capability

and understanding but also development platforms for software and hardware simulations

and fabrication.

 The majority of software validation and simulation uses MATLAB version

7.0.4.365 (R14) Service Pack 2 with the Signal Processing Toolbox, executing both the

simulated environment and sensor model under test. However, some algebraic,

differential, and statistical validation uses Mathematica version 5.2 for symbolic

manipulation and verification of complex formulas. Simulated hardware verification

requires a different development environment and uses Altera’s Quartus II version 5.1

Build 176 for both hardware modeling and testbench simulation. These development

platforms provide a broad yet firm foundation for design and assessment of image and

signal processing technologies through both software and hardware elaboration and

simulation capabilities.

 22

 The objective in modeling images is to provide the most realistic and best-case

scenarios for sensor characterization, while providing the sensors with enough

information to exceed modern performance expectations.

3.1. Image Modeling Parameters

 As with any modeling, the parameters for modeling are often more important than

the modeling itself, and the parameters controlling image creation listed in Table 3 are no

exception.

3.1.1. Wavelength

 Since atmospherically induced optical tilt bends different wavelengths of light

much like a prism, ideally a sensor should receive only one wavelength to perform

estimation as an image further distorts when combining different wavelengths. To avoid

further distortion, all created images include the assumption that the wavelength is quasi-

monochromatic, including a range of 0.05 μm of wavelengths, and fixed both spatially

and temporally.

Table 3. Image Modeling Parameters and Simulated Ranges

Parameter Description Simulated Range
Wavelength Wavelength of Light Received Quasi-Monochromatic and Fixed
Sampling Nyquist or Higher Sampling Rate 1 to 2 times Nyquist
Image Size Size in Pixels of Captured Image 8 to 64 Pixels Square
Light Level Sum Total of Light at Receiver Guide Star: 100 to 1,000 Photons

Extended Object: 6,000-20,000 Photons
Background
Intensity

Additive Stray Light in Receiver 0 to 1 Photon per Pixel

 23

While the useful information contained in other wavelengths should produce similar

characteristic results, the tilt information from one additional wavelength will further

correct wave-front error by characterizing the true path of light through the atmosphere,

an effect not modeled or investigated. Only genuine images with real data will define the

actual frequency of light used for modeling as sampling requirements for real images

require this information.

3.1.2. Sampling

 Once the light passes through the atmosphere and enters the telescope, it is

necessary to sample the point spread function (PSF) appropriately according to the

Nyquist sampling theorem to avoid aliasing of frequency content in the image [16].

Starting from the cutoff frequency of the optical transfer function (OTF) of the lens

shown in Equation 1, Nyquist sampling chooses the minimum sampling frequency to be

at least twice this cutoff frequency [16].

λ
Dfc = (1)

λ
Dff cs ⋅=⋅≥ 22 (2)

where

 fc = Telescope Optic Cutoff Frequency (radians-1)

 fs = Sampling Frequency (radians-1)

 D = Lens Diameter (meters)

 λ = Light Wavelength (meters)

 24

Given that the wavelength of light remains constant for this modeling, any adjustment

required for Nyquist sampling will occur either by adjusting the sampling rate or the lens

diameter. For an image at a fixed distance from the telescope, Equation 2 combines with

Equation 3, which assumes the small angle approximation, and then controls the

wavelength and aperture diameter based on the actual angular coverage of a pixel.

sfz

dx 1
==α (3)

where

 α = Angular Coverage of Pixel (radians)

 dx = Size of Pixel on Object (meters)

 z = Distance to Object (meters)

Over-sampling has the added benefit of aiding an interpolator for better estimation

results, but it also decreases the light available to each pixel causing detrimental effects

explained in Section 3.5. Nyquist sampling theory does not address the resolution limits

between objects in the image; therefore, the Rayleigh, Dawes, or Sparrow criteria do not

contribute to modeling and completely ignored to provide an idealized characterization of

the sensors [15]. Since the sampling frequency is twice the cutoff frequency as

determined by the diffraction limited effect of a telescope opening, a shift of one Nyquist

pixel is analogous to a slope in the frequency domain of π radians, or one-half of one

wave of tilt, via the Fourier shift theorem [11].

3.1.3. Image Size

 Determining the actual image size requires knowledge of the search area for

wave-front tilt as well as the particular requirements of a wave-front sensor, and in an

 25

effort to guide the search area, a quick derivation of the statistical nature of tilt follows.

As often used in a Monte Carlo simulation when generating a phase screen, or layer of

turbulence causing tilt at a set altitude, the Cholesky factorization of the Zernike

polynomials’ covariance matrix multiplies a vector of zero-mean, unit variance Gaussian

random variables to create a set of statistically accurate Zernike coefficients [16]. The

tilt therefore remains Gaussian and originates from the low order elements of the

covariance matrix, captured in Equation 4 for Zernikes two and three [9].

 { }2
3
5

0

2 ,448.0 radians
r
D

tilt

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=σ (4)

where

 2
tiltσ = Variance of Tilt (radians2)

 D = Diameter of Aperture (meters)

 r0 = Fried Parameter (meters)

This formula yields variances, and subsequently standard deviations, less than one when

compared to a wave of tilt, which is 2π radians, for either a large telescope or a small

turbulence coherence radius creating large values of D/r0, allowing for computation of a

search window. An image supporting searches of plus or minus four waves of tilt would

provide a worst case of no less than 99.99 percent possible tilt coverage, requiring a

search space of plus or minus eight pixels [9]. Prior temporal analysis explains this

derivation in further detail and indicates that in a closed loop system, as an adaptive

optics system provides, values of tilt beyond one to two standard deviations are

 26

exceedingly unlikely unless the adaptive optics system loses lock requiring a greater

search space [4].

 Different sensors require various image sizes to allow for optimal performance,

and although telescopes often include four-by-four pixel images for Shack-Hartmann

sensors this image size severely limits the range of detection for tilt measurements, thus

the current most complex version of this sensor defines the lower bound of an eight-by-

eight pixel image as larger image sizes degrade read-out performance. The theoretical

Maximum Likelihood sensor relies on a minimum of twice the number of pixels to

correlate with compared to the desired search space for extended objects, and to achieve

this sixteen pixel search space, the theoretical sensor requires a minimum size of thirty-

two pixels. With the middle ground of image sizes fixed, the upper bound stems from a

forward-looking perspective with respect to greater turbulence and superior accuracy.

An important assumption as image sizes grow beyond approximately thirty-two by thirty-

two pixels is isoplanism of the observed wave-front, which may be true for a natural

guide star (NGS), is probably not accurate for a satellite in orbit, and most likely

incorrect for a laser guide star (LGS). It is also important to highlight that the

parameterization of image size, although somewhat dependent upon sampling, is

independent of light-level and background intensities.

3.1.4. Light-Level (Total Intensity)

 Another parameterized variable in image creation is the total intensity of the

image, or light-level, which the telescope controls based on the object imaged, the

amount of light split through the beam splitter to the wave-front sensor, and the

integration time of the sensor. To avoid temporal distortions caused by quickly changing

 27

turbulence, a short integration time is desirable; and for modeling purposes, all images

assume an ideal integration time of 100 μs [16]. Adaptive optics entails obtaining light

levels ranging from ten to sixty percent of the total light received by the telescope, with

the least amount of light required being the most desirable as the light for wave-front

sensing detracts from that available to the primary sensor. To show the performance of

all sensors in acceptable light levels and to demonstrate significant trends as light-levels

increase or decrease, this modeling uses a modest search range near the lowest light-

levels commonly used. It is interesting to note that, as clarified in Section 3.5, when light

level decreases the effective signal-to-noise ratio also decreases making a correct

estimate of the tilt less likely. This is only one way that the contrast ratio, or ratio

between the highest and lowest intensities in the image, changes, modifying the

background intensity also changes this hidden parameter.

3.1.5. Background Intensity

 The last considered parameter indicates the efficiency of the optical and electrical

components of an imaging system, and can significantly affect the results of certain

sensor models, which expect a black background to perform estimation. The background

light level typically cumulates from stray light in the imaging system as well as stray

electrons in the image capture device, causing a lower contrast ratio and subsequently a

lower SNR. A perfect imaging system could have a background light intensity of zero,

while a very poor system might aggregate an overwhelming background of one photon

per pixel or more for the light levels in the parameterization range. This background

effectively resides beneath the signal represented by an image, and can cause a smooth

function such as a Gaussian to change shape significantly.

 28

3.2. Image Creation

 To avoid unknown effects in simulation, image creation requires explicit

knowledge of the characteristics of an image with nearly precise knowledge of the

statistics expected from turbulence effects on that image allowing for modeling validation

and reliable simulations.

3.2.1. Two-Dimensional Gaussian (Simulated Laser Guide Star)

 The two-dimensional Gaussian represented by Equation 5 is possibly the simplest

image type to model, and genuinely represents the nature of an artificially generated laser

guide star, which can allow wave-front correction for extended objects. It is important to

note the assumption of independence and equality for the variance in both dimensions of

the Gaussian, which may not be correct for true hardware and atmospheric turbulence.

Additionally, there is an extra parameter C to adjust the light level of the image, which

simply scales the complete picture and does not modify the Gaussian in any other respect.

Figure 10 and Figure 11 illustrate the true form of this image without noise for a three-

dimensional view, projection images in both axes, and a two-dimensional representation.

 () ()
()

2

22

2122, σπσ
yx

eCyxi
+−

−
= (5)

where

 i = Representation of 2-D Gaussian Image (photons)

 x, y = Pixel Locations in the Image (pixels, ∈ Integers)

 C = Total Intensity of Image (photons)

 σ = Standard Deviation (pixels, ∈ Positive Reals)

 Assuming σ = σx = σy and the Two Dimensions are Independent

 29

Figure 10. 2-D Gaussian and Vector
Projections in x and y Planes

Figure 11. Observed Image of 2-D
Gaussian without Noise

Aside from representing a smooth function from which over-sampling and interpolation

are simple, a further benefit of using this model is the ease of creating projections of the

image discussed later in Sub-Section 3.2.3. The Gaussian has an added advantage in that

it is also a close representation of a diffraction limited natural guide star once the image

shape adjusts to reflect the effects of noise, in which case a standard deviation of two

accurately represents both the NGS and LGS for modeling purposes [4].

3.2.2. Using Real Images or Real Data

 Use of real images requires more constraints than merely careful handling of

imprecision in the Fourier transform, these types of images require proper centering to

provide fair statistics, band-limiting to avoid aliasing, and down-sampling / up-sampling

to meet sampling requirements. Centering typically requires use of an existing algorithm,

such as the centroid, to adapt the image with either Fourier, or sinc, interpolation or

another robust method such as bi-cubic or cubic-spline interpolation. Although sinc

interpolation is ideal, this simulation uses MATLAB’s cubic-spline interpolation for this

 30

step in modeling to prevent additional unnecessary information appearing in the black

background needed for down-sampling and band-limiting operations of the image.

 An important parameter that drives modeling is the pixel size relative to the actual

size of the simulated object as defined by Equations 2 and 3. This modeling investigation

seeks to use the Hubble satellite for large apertures on the order of one meter and

subsequently a pixel size representing 20 cm [20]. Also of interest is a similar wave-

front sensing problem in which the aperture reduces to 10 cm, forcing a corresponding

change in pixel size to two meters. This pixel size determines the appropriate light-level

for tracking or wave-front sensing for a real object as summarized in Equation 6 [4].

 BR
h

t
z

D

AnPC
Visible

Sensor
pixelsun ⋅⋅⋅Δ⋅

⋅

⎟
⎠
⎞

⎜
⎝
⎛

⋅
Δ
Δ
⋅⋅⋅=

νπ

π

λ
λ 12

2

2

 (6)

where

 Apixel = Area that a Pixel Represents on Object (m2/pixel)

 D = Diameter of the Aperture Opening (m)

 n = Number of Pixels in Array (pixels)

 Psun = Power of Sun at Earth’s Surface ≈ 1000 (W/m2) [4]

 Δλ = Bandwidth of Light (Sensor ≈ 0.05x10-6, Visible ≈ 0.5x10-6) (m) [5]

 z = Distance to the Object ≈ 600x103 (m) [20]

 Δt = Integration time of Imaging Device ≈ 100x10-6 (s) [5]

 h = Planck’s Constant ≈ 6.626x10-34 (J s) [18]

 ν = Frequency of Light ≈ 6x1014 (Hz) [18]

 R = Reflectance ≈ 5 to 20 (%) [18]

 B = Light allocated by Beam-Splitter ≈ 10 (for WFS) (%) [5]

 31

This equation involves several variables including the ratio of the aperture and distance

to the object, integration time, photon energy, reflectance, and amount of light sent to the

sensor, most of which are constant [4]. This formula sets the light-level values seen in

Table 3 for the extended object scenario, and illustrates the light levels observed when

viewing the Hubble space satellite. However, even with correct light-level calculations, a

poor orientation of the image may result in low contrast for a particular dimension and a

simple rotation of the image will alleviate a reduction in performance for all models.

 To avoid aliasing while down-sampling, convolution in space with a sinc

function, or multiplication by a two-dimensional rect function in frequency representing

an ideal low-pass filter, removes high frequencies beyond the down-sampled image’s

bandwidth. If filtering did not occur, higher frequencies would alias to lower

frequencies, corrupting the image in the spatial domain; this aliasing is a type of image

corruption that up-sampling does not suffer. Down-sampling is straightforward for

Nyquist sampled cases; however, other images, other samplings, or up-sampling requires

sub-pixel information provided by an interpolator, and for speed in modeling this step

uses MATLAB’s bi-cubic interpolation after filtering.

 The optical transfer function of a telescope further band-limits the image

representing light passage through the particular optic in use and allowing for proper

diffraction limiting effects caused by a fixed aperture. Using a standard diffraction

limited OTF, with the factor to over-sample adjusting the aperture diameter directly, the

impulse response, or magnitude-squared of the Fourier transform, is the point spread

function, which is a two-dimensional Bessel function, or a perfect natural guide star [8].

Convolution of the image and PSF, or spatial frequency multiplication of the Fourier

 32

transform of the image and OTF, provides a properly band-limited image with the

characteristics of the current aperture appropriately included. Throughout the down-

sampling and band-limiting processes to create an image without noise for simulation, all

real and complex data from the Fourier transforms passes through every step to limit

errors due to imprecision in the Fourier transform. The images for wave-front sensing

and tracking are visible in Figures 12 through 15.

Figure 12. Hubble for Wave-Front Sensing
& Projections in x and y Planes

Figure 13. Observed Image of Hubble for
Wave-Front Sensing without Noise

Figure 14. Hubble for Tracking and
Projections in x and y Planes

Figure 15. Observed Image of Hubble for
Tracking without Noise

 33

It is important to note that unless the ideal low-pass filter is the same or larger size of an

up-sampled PSF, or zero-padded OTF, by the amount of down-sampling required, there

are minor errors near the edge of the original down-sampled image, which is acceptable

as long as the errors are outside of the window of interest used for simulation.

3.2.3. Image Projection / Vectorization

 A projection of an image is purely the summation of an image in one dimension

creating a vector representation of the image; and furthermore, this projection occurs

after any cropping of the original image to maintain appropriate light-levels [5]. From a

hardware viewpoint, this greatly increases the speed of image readout, which is the main

limiting factor in the speed of closed-loop operation; unfortunately, this decreases the

light-level by one-half as discussed in Sub-Section 3.5.2 [5].

 Unrelated to noise statistics, an image projection implies independence between

the two dimensions of an image, which is true for operations limited to projections of the

entire image in a constant background as seen below in Theorem 1. To extend the

applicability of this theorem, not only images wholly contained in a constant background

but also images in a relatively low background with minor fluctuations exhibit

dimensional independence; however, extended objects do not have dimensional

independence as new information enters and exits the scene. Although this implies a

requirement for joint estimation, the modeling here assumes dimensional independence

as this is theoretically sufficient for simulation in a closed-loop environment [5].

 34

Theorem 1

 A projected image is independent with respect to the shift parameter in the

orthogonal dimension as indicated by this formula:

 () ()∫
∞

∞−

−−=− dyyxixi yxx βββ ,

where

 i = Representation of 2-D Image (photons)

 x, y = Pixel Locations in the Image (pixels, ∈ Integers)

 βx, βy = Shift in x or y direction (pixels, ∈ Reals)

Proof

This first equation defines the starting point by demonstrating the two-dimensional

inverse Fourier transform of an image with shifts in the x and y directions [11].

 () () () ()∫ ∫
∞

∞−

∞

∞−

++−=−− yx
yfxfjffj

yxyx dfdfeeffIyxi yxyyxx πββπββ 22,,

 I = 2-D Fourier Transform of Image

 fx, fy = Locations in Frequency Domain (frequency, ∈ Integers)

Next is to integrate in the y dimension to produce a projection in the x dimension.

 () () () ()∫ ∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

++−
∞

∞−

=−− dydfdfeeffIdyyxi yx
yfxfjffj

yxyx
yxyyxx πββπββ 22,,

Separation of variables yields a smaller function integrated with respect to y.

 () () ()∫ ∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

+−
∞

∞−

=−− yx
yfjxfjffj

yxyx dfdfdyeeeffIdyyxi yxyyxx ππββπββ 222,,

The integral on the right-hand-side equals a delta function.

 35

 () () () ()∫ ∫∫
∞

∞−

∞

∞−

+−
∞

∞−

=−− yxy
xfjffj

yxyx dfdffeeffIdyyxi xyyxx δββ πββπ 22,,

Applying the sifting property of the delta function, this selects fy = 0 in the integral.

 () ()∫∫
∞

∞−

−
∞

∞−

=−− x
xfjfj

xyx dfeefIdyyxi xxx ππβββ 220,,

Since the right-hand-side is simply the inverse one-dimensional Fourier transform in the

fx direction with no dependence on the shift in the y direction, shifts in each dimension

are indeed independent, which the two-dimensional Gaussian demonstrates further as its

one-dimensional projection is simply a one-dimensional Gaussian.

Q.E.D.

3.3. Image Shifting

3.3.1. Shifting of a Known Function

 The requirements for shifting a known function restrict modeling only to the point

of requiring a shift of the function itself, which for a Gaussian is changing the mean of

the function. By including the requirement of a continuous function, sub-pixel shifts,

which are necessary to determine the true statistics of the model, are also straightforward.

3.3.2. FFT / Sinc-Interpolation

 For images not generated from a smooth function, modeling requires another

method for sub-pixel shifts, and the best method for sub-pixel shifting without knowledge

of a function is through interpolation, and for small images sinc interpolation is the ideal

method for accuracy. A good solution for implementing sinc interpolation is using the

Fourier transform and the relationship between shifts in the spatial domain and phase

 36

shifts in the spatial frequency domain, as found in almost any discrete-time Fourier

transform pair table, assuming circular shifts are acceptable or use of appropriate zero

padding avoids circular shifting [11].

3.3.3. Sub-Pixel Shift Step Size

 Although simulation step size typically determines smoothness of results, this

modeling method requires different step sizes to illustrate different statistics representing

the performance of the models appropriately. As a rule of thumb, the sub-pixel step size

should be one-quarter to one-tenth the pixel size as a minimum for smooth results and no

smaller than the interpolation search size used by the search algorithms and set by the

CRLB. Any smaller simulation step size would provide no further insight beyond

quantization error for bias calculations and no insight beyond noise error as indicated by

the CRLB for noise calculations.

3.4. Calculating Bias and Mean Absolute Bias (MAB)

 The error in the presence of no noise is difficult to remove and indicates the best

possible operating characteristics of a sensor as well as the level of tuning required by the

operator to achieve desirable statistics. To calculate bias, subtract the true shift value

from the estimated shift value as indicated in Equation 7; however, bias can be deceiving,

therefore it is better to compute absolute bias for comparison purposes.

 ββ −= NoNoisesAbsolueBia |̂ (7)

where

 AbsoluteBias = The Absolute Value of the Error in No Noise (pixels, ∈ Positive Reals)

 β|NoNoise = The Estimated Shift Value without Noise (pixels, ∈ Reals)

 β = The True Shift Value (pixels, ∈ Reals)

 37

To reduce the complexity of results, averaging the x and y dimensions is acceptable as

long as there is independence between these dimensions, otherwise unexpected results

may surface. The bias should hold some similar properties to the image, in that if the

image is symmetric the bias should be also, and if the image is higher contrast, the bias

should indicate a relatively larger change in some areas of the curve if such a change is

visible in the search window.

 The average bias over a given number of pixels is the mean absolute bias (MAB)

and provides a single number to describe operation of the sensor for a given region of the

window. Regions of interest for the above images include an average over plus-or-minus

four waves of tilt as this encompasses the entire window, and plus-or-minus one-half

wave of tilt as this represents well over fifty percent of tilts seen in a closed loop system

for reasonable values of D/r0 as discussed previously in Sub-Section 3.1.3.

3.5. Noise Generation

3.5.1. Poisson and Bernoulli Random Variables

 The statistics for light are intuitive from the packet perspective of light as each

photon interacts with objects such as a beam splitter or charge couple device (CCD) as a

Bernoulli random variable with a low rate of success. One way to approximate a Poisson

random variable is to sum many Bernoulli trials, each with a low rate of success, hence,

the overall statistics of light being approximately Poisson in nature [9]. Equation 8 is the

general form of a Poisson random variable, and is the basis of the statistics required for

modeling of noise for tracking and wave-front sensing. The expectation and variance

statistics for Poisson random variables indicate how the SNR increases as the light

intensity increases. Since the variance increases at the same rate as the mean, the

 38

standard deviation increases as the square-root of the mean, increasing the SNR in an

initially logarithmic, and then nearly linear fashion as indicated by Figure 16. Over-

sampling decreases the SNR on a per-pixel basis as the light splits between more pixels

decreasing the available light per pixel. Since light-level also dictates the quality of a

captured image, the lowest SNR possible for a wave-front sensor to operate properly is

the ideal operating light-level and what this modeling attempts to parameterize.

 () ()()() () ()

()
()yx yxi

yxd
yx

yxyx e
yxd

yxi
yxiyxdp ββββ

ββββ −−−−−
=−− ,

,

!,
,

,|,|, (8)

where

 d = The Observed Intensity (photons, ∈ Integers)

 i = The True Image Intensities (photons, ∈ Reals)

 x, y = Pixel Locations in the Image (pixels, ∈ Integers)

 βx, βy = Shift in x or y direction (pixels, ∈ Reals)

 E[d] = i The True Image Intensity is the Mean (photons, ∈ Reals)

 VAR[d] = i The True Image Intensity is the Variance (photons2, ∈ Positive Reals)

Figure 16. SNR v Light-Level

 39

3.5.2. Effects of Projecting Images

 With the exception of the Shack-Hartmann sensor model, all sensor models use

vector, or projection, images, which cause some interesting effects for the noise statistics

to compare properly between different sensors. Building on the assumption that each

pixel is independent, one can show that the sum of Poisson random variables is a new

Poisson random variable, with the new mean and variance being the sum of all means,

using either the probability generating function, as shown in Theorem 2, or indirect

convolution and knowledge of Taylor series expansions for an exponential.

Theorem 2

 The summation of Poisson random variables, or convolution of probability mass

functions, is another Poisson random variable with the new rate being the sum of the

rates of the summed random variables:

 () () ()()() () () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−→ ∑∑∑ yx

y
yx

y
xx

y
yxiyxdpxixdpyxd ββββββ ,|,|,||,

Proof

This first equation is merely the probability generating function redefined for the Poisson

random variable used in this modeling and simulation [9]; note, Equation 8 defines all

parameters except for z which is the transform variable.

 ()
()()1,

,)(−−−= zyxi
yxd

yxezG ββ

Since a summation of random variables is really a convolution, this becomes a product in

the z-domain as indicated below.

 40

 ()
()()∏∏ −−−=

y

zyxi

y
yxd

yxezG 1,
,)(ββ

Now using exponential properties, the product becomes a summation in the exponent,

and factoring out the (z-1) term puts the solution back into the original form.

 ()

() ()1,

,)(
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−∑

=∏
zyxi

y
yxd

y
yx

ezG
ββ

This summation indicates the new rate, mean, and variance are simply the sum of

intensities from the original image, providing an easy method of computing statistics for

projected image data.

Q.E.D.

In addition to keeping the Poisson statistical nature for a projected image the light level

decreases by half, which necessarily decreases the SNR as defined in the previous sub-

section. By modeling two separate images at half intensity, including noise, then

producing projection images for two-dimensions as well as summing both images

together to form one, all sensors receive the same noise statistics while some operate on

image projections and others operate on a complete image. This allows for accurate

computation and comparison of statistics for simulation and development purposes.

3.5.3. Computing Noise Statistics

 There are three main statistics for comparison between sensors when computing

with noisy data; however, they are not unique and only two of them are useful to the

developer and end user. The first two statistics are nearly the same, as one is simply the

square of the other before averaging: mean absolute error (MAE) and mean square error

 41

(MSE). To avoid confusion, the MSE used for modeling is the average square error and

not the estimation technique familiar to researchers using signal processing estimation

methods. To compute these statistics, refer to Equations 9 and 10, understanding that in a

similar manner to MAB these statistics are clearer when averaged over a range of shift

values such as one-half wave of tilt or four waves of tilt.

N

MAE Trials
Noise∑ −

=
ββ |

ˆ

 (9)

where

 MAE = Mean Absolute Error (pixels, ∈ Reals)

 Noise|̂β = The Estimated Shift Value in Noise (pixels, ∈ Reals)

 β = The True Shift Value (pixels, ∈ Reals)

 N = The Number of Trials (unitless, Preferred to be a Power of 2)

()

N
MSE Trials

Noise∑ −
=

2

|̂ ββ
 (10)

where

 MSE = Mean Square Error (pixels2, ∈ Positive Reals)

Of the two statistics, MSE captures a broader view as it is a middle ground or

combination of the MAB and VAR, as indicated by Equation 11, and is useful to see

which of the two statistics drives the resulting performance of the sensor [19].

 ()2BiasVARMSE +≈ (11)
where

 VAR = Variance (pixels2, ∈ Positive Reals)

 Bias = Absolute Bias as Defined in Equation 7 (pixels, ∈ Positive Reals)

 42

 Variance (VAR) as established in Equation 12 appears nearly the same as MSE

with two significant differences: 1) the sample mean is the subtrahend rather than the

true shift value, and 2) the divisor after summing the sample is one less than the total

number of trials making it an unbiased estimate of the variance. As a second order

statistic, VAR indicates how well a sensor can perform for a given noisy environment,

and is impossible to remove without changing the type of estimation or optical setup.

1

ˆ
ˆ

2

|

|

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=

∑
∑

N

N
VAR

Trials

Trials
Noise

Noise

β
β

 (12)

Although only qualitative bounds are available for average bias and error, it is possible to

provide an analytical bound for variance that defines the efficiency of an algorithm’s

ability to reject noise in various conditions. With the proper background and modeling

capabilities, this Cramer-Rao lower bound can provide insight into development of an

algorithm to improve tracking and wave-front sensing, while verifying simulation and

experimental results.

3.6. Summary

 Accurate modeling not only guides research to feasible solutions but also

provides a method to verify research results before actual implementation. For this

research effort, generation of images and the noise statistics that surround them is the key

to better understanding and estimation of wave-front parameters and tracking shifts.

 43

IV. Analysis

 Investigation in wave-front sensing requires thorough knowledge of the current

estimation techniques, environmental parameters, and modeling practices to provide

guidance, insight, and validation capabilities for research. The key areas for

investigation for this research include bounds on variance to quantify performance for

any wave-front sensor, search algorithm optimization for the maximum-likelihood wave-

front sensor to meet or exceed timing requirements, and an implementation proposal with

hardware realization of the sensor algorithm to demonstrate feasibility of this

implementation. Theory can provide excellent guidance for algorithm development and

hardware implementation if applied correctly, as this research attempts to do; and the

proper use of theoretical results can significantly shorten development time compared to

trail and error analysis.

4.1. Cramer-Rao Lower Bound (CRLB) for Tilt Estimates Obtained with LGS

4.1.1. Relevant Statistics, Assumptions, and Setup

 As the CRLB is a bound on variance, it requires statistical background and noise

information given a particular type of data and a proper foundation to provide meaningful

information. The basis of analysis resides with Equation 8 in Chapter III and the

assumption of a form of the laser guide star for the image as a two-dimensional Gaussian

represented by Equation 5; repeating both equations below provides clarity.

 44

 () ()()() () ()

()
()yx yxi

yxd
yx

yxyx e
yxd

yxi
yxiyxdp ββββ

ββββ −−−−−
=−− ,

,

!,
,

,|,|, (8)

where

 d = The Observed Intensity (photons, ∈ Integers)

 i = The True Image Intensities (photons, ∈ Reals)

 x, y = Pixel Locations in the Image (pixels, ∈ Integers)

 βx, βy = Shift in x or y direction (pixels, ∈ Reals)

 () ()
()

2

22

2122, σπσ
yx

eCyxi
+−

−
= (5)

where

 i = Representation of 2-D Gaussian Image (photons)

 x, y = Pixel Locations in the Image (pixels, ∈ Integers)

 C = Total Intensity of Image (photons)

 σ = Standard Deviation (pixels, ∈ Positive Reals)

 Assuming σ = σx = σy and the Two Dimensions are Independent

Assuming that the dimensions are independent, using the fact that the sum of Poisson

random variables is another Poisson random variable, and using the image projection

technique to remove one of the dimensions, Equations 8 and 5 become marginal with

respect to x in Equations 13 and 14 below.

 () ()()() () ()

()
()xxi

xd
x

xx e
xd

xixixdp ββββ −−−
=−

!
|| (13)

 () () 2

2

22
1

22 i

x

i eCxi σπσ
−

−
= (14)

 45

Assuming the pixels for a projected image are independent this results in the joint

probability mass function (PMF) representing the joint a priori density function in

Equation 15.

 () ()()() () ()

()
()∏∏ −−−

=−
x

xi
xd

x

x
xx

xe
xd

xixixdp ββββ
!

|| (15)

The random variables in this equation are the shift represented by βx and two unwanted

parameters C and σi, which are part of the assumed image form. However, this equation

does not account for windowing of either the data or initial image as the information

captured is finite in size, and the proposed maximum-likelihood sensor requires further

windowing to search over shifts and to prevent detrimental effects from new data

entering the scene [5]. To limit the product properly, a windowing function on both the

true image as well as the captured image simply bounds the limits for the product

function, and completes the probability information required to derive the CRLB for an

unbiased estimator.

4.1.2. Derivation

 As noted previously, estimation of the shift parameter is the goal; however, two

additional parameters require estimation as well and therefore a joint estimation approach

of these parameters and the CRLB serves as an accurate lower bound for Gaussian

images. To derive a CRLB requires computation of the elements that compose the Fisher

Information Matrix as defined in Equation 16, where the diagonal elements of the inverse

of this matrix are the CRLB for the respective parameters in Equation 17 [19].

 46

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂

∂
−=

ji

ad
ij AA

ADp
EJ

|ln |
2

 (16)

where

 J = Elements of the Fisher Information Matrix

 D = the Entire Vector d(x)

 A = the Parameters to Estimate (βx, σi, C)

 12ˆ −≥ JAσ (17)

where

 J = The Fisher Information Matrix

As this equation calls for the log of the joint likelihood, Equation 18 illustrates the log of

Equation 15, with further simplifications.

 () ()()()() () ()

()
()∑∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=− −−

x

xi
xd

x

x
xx

xe
xd

xi
xixdp ββ

ββ
!

ln||ln

 () ()() ()() ()()()∑ −−+−−=
x

xixd
x

xexdxi ββ ln!lnln

 () ()() ()() ()()∑ −−−−=
x

xx xixdxixd ββ !lnln (18)

To reflect the additional unwanted parameters, Equation 19 includes σi and C as

additional givens in the log-likelihood, where the true image conditioned on these

parameters represent the vector A in the Fisher Information Matrix and the observed

data represents D .

 () ()()()() () ()() ()() ()()∑∑ −−−−=−
x

xx
x

ixx xixdxixdCxixdp ββσββ !lnln,,||ln (19)

 47

An assumption that windowing equation 19 does not change the derivative allows

computation of partials without knowing the derivative of the window function; however,

this assumption is only a close approximation when the observed image’s intensity

decreases to zero at the edge of the window making the CRLB applicable for images with

a large black background or zero-shift estimation. This is the best-case operation of a

sensor, and still provides an accurate lower bound for performance of estimation

techniques. As the partial derivatives, logarithm, and partial derivatives of the log of the

Gaussian image form appear several times in the next derivation, Equations 20 through

26 summarize these results based on Equation 14.

 ()x
x

xi β
β

−
∂
∂ () ()

2
i

x
x

x
xi

σ
β

β
−

−= (20)

 ()x
i

xi β
σ

−
∂
∂ () () () ()

3

22

3

2 1

i

ix
x

ii

x
x

x
xi

x
xi

σ
σβ

β
σσ

β
β

−−
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−= (21)

 ()xxi
C

β−
∂
∂ ()

C
xi x

1β−= (22)

 ()()xxi β−ln () ()
2

2

2
1

2

2
2ln

i

x
i

x
C

σ
β

πσ
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

− (23)

 ()()x
x

xi β
β

−
∂
∂ ln

()
2
i

xx
σ
β−

= (24)

 ()()x
i

xi β
σ

−
∂
∂ ln

() ()
3

22

3

2 1

i

ix

ii

x xx
σ

σβ
σσ

β −−
=−

−
= (25)

 ()()xxi
C

β−
∂
∂ ln

C
1

= (26)

 48

Leveraging the information in Equations 20 through 26, the following equations compute

the first partials of the log-likelihood, which are also useful for maximum-likelihood

estimation of these parameters with the Gaussian image assumption.

 () ()()()()∑ −
∂
∂

x
ixx

x

Cxixdp ,,||ln σββ
β

 () ()() ()() ()()∑ −−−−
∂
∂

=
x

xx
x

xixdxixd ββ
β

!lnln

 () ()()() ()() ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−
∂
∂

−−
∂
∂

=
x

x
xx

x
x

xixdxixd β
ββ

β
β

!lnln

 () () () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
=

x i

x
x

i

x x
xi

x
xd 22 σ

β
β

σ
β

 (27)

 () ()()()()∑ −
∂
∂

x
ixx

i

Cxixdp ,,||ln σββ
σ

 () ()() ()() ()()∑ −−−−
∂
∂

=
x

xx
i

xixdxixd ββ
σ

!lnln

 () ()() ()() ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−
∂
∂

−−
∂
∂

=
x

x
ii

x
i

xixdxixd β
σσ

β
σ

!lnln

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−

−−
=

x i

ix
x

i

ix x
xi

x
xd 3

22

3

22

σ
σβ

β
σ

σβ
 (28)

 () ()()()()∑ −
∂
∂

x
ixx Cxixdp

C
,,||ln σββ

 () ()() ()() ()()∑ −−−−
∂
∂

=
x

xx xixdxixd
C

ββ !lnln

 () ()() ()() ()∑ ⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−
∂
∂

−−
∂
∂

=
x

xx xi
C

xd
C

xixd
C

ββ !lnln

 49

 () ()∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−=

x
x C

xi
C

xd 11 β (29)

Unfortunately, the Fisher Information Matrix requires the second partials with respect to

all estimated parameters; therefore, it is a square matrix and the elements of the matrix

should be symmetric about the diagonal as the order of the partial derivatives should be

reversible.

 () ()()()()∑ −
∂
∂

x
ixx

x

Cxixdp ,,||ln2

2

σββ
β

 () () () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
∂
∂

=
x i

x
x

i

x

x

x
xi

x
xd 22 σ

β
β

σ
β

β

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x
x

xi

x

x

x
xi

x
xd 22 σ

β
β

βσ
β

β

 () () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

−+−
∂
∂−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x

x
xx

xi

x

i

x

x

x
xixi

xx
xd 222 σ

β
β

ββ
βσ

β
σ
β

β

 () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−
−−−=

x i
x

i

x

i

x
x

i

xi
xx

xixd 2222

11
σ

β
σ
β

σ
β

β
σ

 () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−−=

x ii

x
x

i

x
xixd 24

2

2

11
σσ

β
β

σ
 (30)

 () ()()()()∑ −
∂∂
∂

x
ixx

ix

Cxixdp ,,||ln
2

σββ
σβ

 () () () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
∂
∂

=
x i

x
x

i

x

i

x
xi

x
xd 22 σ

β
β

σ
β

σ

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x
x

ii

x

i

x
xi

x
xd 22 σ

β
β

σσ
β

σ

 50

 () () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

−+−
∂
∂−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x

i
xx

ii

x

i

x

i

x
xixi

xx
xd 222 σ

β
σ

ββ
σσ

β
σ
β

σ

 () () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−−−
−−

−
−=

x i

x

i

x

i

ix
x

i

x xxx
xi

x
xd 323

22

3

22
σ

β
σ
β

σ
σβ

β
σ

β

 () () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−

−
−−

−
−=

x i

x

i

x

i

x
x

i

x xxx
xi

x
xd 335

3

3

22
σ

β
σ
β

σ
β

β
σ

β

 () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−−

−
−=

x i

x

i

x
x

i

x xx
xi

x
xd 35

3

3

32
σ
β

σ
β

β
σ

β
 (31)

 () ()()()()∑ −
∂∂

∂

x
ixx

x

Cxixdp
C

,,||ln
2

σββ
β

 () () () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
∂
∂

=
x i

x
x

i

x x
xi

x
xd

C 22 σ
β

β
σ
β

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x
x

i

x x
xi

C
x

xd
C 22 σ

β
β

σ
β

 () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−=

x i

x
x

x
C

xi 2

1
σ
β

β (32)

 () ()()()()∑ −
∂∂
∂

x
ixx

xi

Cxixdp ,,||ln
2

σββ
βσ

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−

−−
∂
∂

=
x i

ix
x

i

ix

x

x
xi

x
xd 3

22

3

22

σ
σβ

β
σ

σβ
β

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∂
∂

=
x i

ix
x

xi

ix

x

x
xi

x
xd 3

22

3

22

σ
σβ

β
βσ

σβ
β

 51

 Substituting () () ()
ii

x

i

ix
x

xxU
σσ

β
σ

σββ 1
3

2

3

22

−
−

=
−−

=

 () ()() () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+−
∂
∂

−
∂
∂

=
x

x
x

xx
x

xx
x

UxixiUUxd β
β

ββ
β

ββ
β

 And Computing () () ()
33

2 21

i

x

ixi

x

x
x

x

xxU
σ

β
σβσ

β
β

β
β

−
−=

∂
∂

−
−

∂
∂

=
∂
∂

 () () () () () ()∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−

−
−=

x i

x

i

x

ii

x
x

i

x xxx
xi

x
xd 323

2

3

212
σ

β
σ
β

σσ
β

β
σ

β

 () () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−

−
−−

−
−=

x i

x

i

x

i

x
x

i

x xxx
xi

x
xd 335

3

3

22
σ

β
σ
β

σ
β

β
σ

β

 () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−−

−
−=

x i

x

i

x
x

i

x xx
xi

x
xd 35

3

3

32
σ
β

σ
β

β
σ

β
 (33)

 () ()()()()∑ −
∂
∂

x
ixx

i

Cxixdp ,,||ln2

2

σββ
σ

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−

−−
∂
∂

=
x i

ix
x

i

ix

i

x
xi

x
xd 3

22

3

22

σ
σβ

β
σ

σβ
σ

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∂
∂

=
x i

ix
x

ii

ix

i

x
xi

x
xd 3

22

3

22

σ
σβ

β
σσ

σβ
σ

 Substituting () () ()
ii

x

i

ix
i

xxU
σσ

β
σ

σβσ 1
3

2

3

22

−
−

=
−−

=

 () ()() () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+−
∂
∂

−
∂
∂

=
x

i
i

xx
i

ii
i

UxixiUUxd σ
σ

ββ
σ

σσ
σ

 52

 () ()() () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−−
∂
∂

=
x

i
i

iixi
i

UUUxiUxd σ
σ

σσβσ
σ

 And Computing () () ()
4

2

23

2 311
i

x

iiii

x

i
i

i

xxU
σ
β

σσσσ
β

σ
σ

σ
−

−=
∂
∂

−
−

∂
∂

=
∂
∂

 () ()() () () ()∑
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−

∂
∂

=
x i

x

iii

x
xi

i

xx
xiUxd 4

2

2

2

3

2 311
σ
β

σσσ
β

βσ
σ

 () ()() () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−++

−
−

−
−−

∂
∂

=
x i

x

iii

x

i

x
xi

i

xxx
xiUxd 4

2

224

2

6

4 3112
σ
β

σσσ
β

σ
β

βσ
σ

 () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−

−
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

x ii

x

i

x
x

i

x

i

xx
xi

x
xd 24

2

6

4

4

2

2

2531
σσ

β
σ
β

β
σ
β

σ
 (34)

 () ()()()()∑ −
∂∂

∂

x
ixx

i

Cxixdp
C

,,||ln
2

σββ
σ

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−

−−
∂
∂

=
x i

ix
x

i

ix x
xi

x
xd

C 3

22

3

22

σ
σβ

β
σ

σβ

 () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∂
∂

=
x i

ix
x

i

ix x
xi

C
x

xd
C 3

22

3

22

σ
σβ

β
σ

σβ

 () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−=

x i

ix
x

x
C

xi 3

221
σ

σβ
β (35)

 () ()()()()∑ −
∂∂
∂

x
ixx

x

Cxixdp
C

,,||ln
2

σββ
β

 () ()∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−

∂
∂

=
x

x
x C

xi
C

xd 11 β
β

 () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

x
xx C

xi
C

xd 11 β
ββ

 53

 () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−=

x i

x
x

x
C

xi 2

1
σ
β

β (36)

 () ()()()()∑ −
∂∂
∂

x
ixx

i

Cxixdp
C

,,||ln
2

σββ
σ

 () ()∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−

∂
∂

=
x

x
i C

xi
C

xd 11 β
σ

 () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

x
ii C

xi
C

xd 11 β
σσ

 () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−=

x i

ix
x

x
C

xi 3

221
σ

σβ
β (37)

 () ()()()()∑ −
∂
∂

x
ixx Cxixdp

C
,,||ln2

2

σββ

 () ()∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−

∂
∂

=
x

x C
xi

C
xd

C
11 β

 () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

x C
xi

CC
xd

C
11 β

 () () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+−
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

xx CC
xixi

CCC
xd

C
111 ββ

 () () ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−−−=

x
xx C

xi
CC

xi
C

xd 22

1111 ββ

 ()∑ ⎟
⎠
⎞

⎜
⎝
⎛−=

x C
xd 2

1 (38)

Because the second partial derivatives are interchangeable in order, this will create a

symmetric Fisher Information Matrix as expected, further corroborating the results

above.

 54

The final step to complete the elements of the Fisher Information Matrix is to take the

negative expectation of each second partial derivative, recognizing that the only random

variable in Equation 19 is d(x), whose expectation is Equation 39.

 ()[] () ()
()

2

2

22
1

22 i

xx

ix eCxixdE σ
β

πσβ
−−

−
=−= (39)

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−= 2

1

|
2

11

|ln

A

ADp
EJ ad

 () ()()()()⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

−= ∑
x

ixx
x

CxixdpE ,,||ln2

2

σββ
β

 () () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−−−= ∑

x ii

x
x

i

x
xixdE 24

2

2

11
σσ

β
β

σ

 () () ()∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−⎥

⎦

⎤
⎢
⎣

⎡
−−=

x ii

x
x

i

x
xiExdE 24

2

2

11
σσ

β
β

σ

 () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−−−−=

x ii

x
x

i
x

x
xixi 24

2

2

11
σσ

β
β

σ
β

 () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−−=

x i

x
x

x
xi 4

2

σ
β

β

()()()

4

2

i

x
xx xxi

σ

ββ∑ −−
= (40)

To put the result in Equation 40 in perspective, if the parameters σi and C are given, then

the inverse of this would be the CRLB for the single parameter estimation; however, joint

estimation requires the rest of the terms as well.

 55

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂

∂
−==

21

|
2

2112

|ln

AA

ADp
EJJ ad

 () ()()()()⎥
⎦

⎤
⎢
⎣

⎡
−

∂∂
∂

−= ∑
x

ixx
ix

CxixdpE ,,||ln
2

σββ
σβ

 () () () () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−−

−
−−= ∑

x i

x

i

x
x

i

x xx
xi

x
xdE 35

3

3

32
σ
β

σ
β

β
σ

β

 () () () () ()∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−−⎥

⎦

⎤
⎢
⎣

⎡ −
−−=

x i

x

i

x
x

i

x xx
xiE

x
xdE 35

3

3

32
σ
β

σ
β

β
σ

β

 () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−−

−
−−−=

x i

x

i

x
x

i

x
x

xx
xi

x
xi 35

3

3

32
σ
β

σ
β

β
σ

β
β

 () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−=

x i

x

i

x
x

xx
xi 35

3

σ
β

σ
β

β

()() ()()()

5

22

i

x
ixxx xxxi

σ

σβββ∑ −−−−
= (41)

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂

∂
−==

31

|
2

3113

|ln

AA

ADp
EJJ ad

 () ()()()()⎥
⎦

⎤
⎢
⎣

⎡
−

∂∂
∂

−= ∑
x

ixx
x

Cxixdp
C

E ,,||ln
2

σββ
β

 () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−−= ∑

x i

x
x

x
C

xiE 2

1
σ
β

β

 There are no random variables; therefore, the expectation has no effect.

 56

()()()

2
i

x
xx

C

xxi

σ

ββ∑ −−
= (42)

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−= 2

2

|
2

22

|ln

A

ADp
EJ ad

 () ()()()()⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

−= ∑
x

ixx
i

CxixdpE ,,||ln2

2

σββ
σ

 () () () () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−

−
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−= ∑

x ii

x

i

x
x

i

x

i

xx
xi

x
xdE 24

2

6

4

4

2

2

2531
σσ

β
σ
β

β
σ
β

σ

 () () () () ()∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−

−
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−=

x ii

x

i

x
x

i

x

i

xx
xiE

x
xdE 24

2

6

4

4

2

2

2531
σσ

β
σ
β

β
σ
β

σ

 () () () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−

−
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−−=

x ii

x

i

x
x

i

x

i
x

xx
xi

x
xi 24

2

6

4

4

2

2

2531
σσ

β
σ
β

β
σ
β

σ
β

 () () ()∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−

−
−=

x ii

x

i

x
x

xx
xi 24

2

6

4 12
σσ

β
σ
β

β

() ()()()

6

222

i

x
ixx xxi

σ

σββ∑ −−−
= (43)

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂

∂
−==

32

|
2

3223

|ln

AA

ADp
EJJ ad

 () ()()()()⎥
⎦

⎤
⎢
⎣

⎡
−

∂∂
∂

−= ∑
x

ixx
i

Cxixdp
C

E ,,||ln
2

σββ
σ

 () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−−= ∑

x i

ix
x

x
C

xiE 3

221
σ

σβ
β

 57

 There are no random variables; therefore, the expectation has no effect.

() ()()()

3

22

i

x
ixx

C

xxi

σ

σββ∑ −−−
= (44)

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−= 2

3

|
2

33

|ln

A

ADp
EJ ad

 () ()()()()⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

−= ∑
x

ixx Cxixdp
C

E ,,||ln2

2

σββ

 () ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−= ∑

x C
xdE 2

1

 ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡−−=

x C
xdE 2

1

 ()∑ ⎟
⎠
⎞

⎜
⎝
⎛ −=

x
x C

xi 2

1β

()

2C

xi
x

x∑ −
=

β
 (45)

 To summarize these results, Equation 46 displays the entire Fisher Information

Matrix, and as Equation 17 illustrates, each diagonal element of the inverse of this matrix

is the CRLB for the respective estimated parameters. The off-diagonal elements of the

inverse Fisher Information Matrix represent the bounds on covariance terms determining

independence, or lack of independence, between the estimated parameters.

 58

()() ()() ()() ()()

()() ()() () ()() () ()()

()() () ()() ()

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑ −∑ −−−∑ −−

∑ −−−∑ −−−∑ −−−−

∑ −−∑ −−−−∑ −−

23

22

2

3

22

6

222

5

22

25

22

4

2

C

x xxi

iC

x ixxxxi

iC

x xxxxi

iC

x ixxxxi

i

x ixxxxi

i

x ixxxxxxi

iC

x xxxxi

i

x ixxxxxxi

i

x xxxxi

β

σ

σββ

σ

ββ

σ

σββ

σ

σββ

σ

σβββ

σ

ββ

σ

σβββ

σ

ββ

J (46)

This matrix is too complex to take the inverse of symbolically; however, assuming

independence between parameters, as some off-diagonal elements’ anti-symmetric nature

indicates, may allow easy inversion of the diagonal elements. Figure 17 in the next sub-

section illustrates the numerically calculated results for fixed parameters. Computing

results numerically indicates two main points: for aliased images, small images, and near

the edge of a fixed window, the bound appears incorrect; and a point solution for a zero-

shift estimate appears valid for the majority of the window.

4.1.3. Simplification and Further Assumptions

 It is possible to compute a zero-shift solution for the CRLB as the model is

accurate for this condition since a zero-shift produces minimal discontinuities due to

windowing in the derivative. Since the sampling of the Gaussian shape produces nearly

linear regions between each sample, the summations over the values of x emulate

integrals.

()()()

4

2

11
i

xx dxxxi
J

σ

ββ∫
∞

∞−

−−
≈

 ()
()

()∫
∞

∞−

−−
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−= dxxeC x

x

i
i

i

x

222
1

2
4

2

2

21 βπσ
σ

σ
β

 59

 Select the following variables for integration by parts (IBP) and pull the constants

out in front of the integral.

 ()xxU β−= , where dxdU =

 ()
()

dxexdV i

xx

x

2

2

2σ
β

β
−−

−= , where

()
2

2

22 i

xx

i eV σ
β

σ
−−

−=

() ()

() ()

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−−−= ∫

∞

∞−

−−
∞

∞−

−−−

dxeex
C

i

x

i

x x

i

x

ix
i

i 2

2

2

2

2222
4

2
1

22 σ
β

σ
β

σσβ
σ
πσ

 Attempting to evaluate the integral for U V yields ∞/∞; therefore, L’Hopital’s

Rule can still provide the limit as this function approaches ∞ in both directions.

()

() ∞
∞−

−
∞
∞

=
−

∞

∞−

−
2

2

2

2

i

xx
ix

e

x

σ
β

σβ

()

() () ()
2

2

2

2

2
2

2

2

2

i

x

i

x x

i

x

i
x

ix

exe
dx
d

x
dx
d

σ
β

σ
β

σ
β

σσβ
−−

−
=

−

() ()

0
22

2
2

2

2

2 =
∞⋅∞−

−
∞⋅∞

=
−

∞

∞−

−

ii
x

i

x

i

i

x

e
x

σσ

σ
β

σ

σ
β

() ()

∫
∞

∞−

−−−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= dxe

C
i

xx

i
i

i 2

2

22
4

2
1

22 σ
β

σ
σ
πσ

 60

 Rearranging this result produces a constant multiplied by the integral of a

Gaussian, which is just the constant.

 ()
()

∫
∞

∞−

−−
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= dxe

C
i

xx

i
i

i 2

2

22
1

2
4

2

2 σ
β

πσ
σ
σ

 2
i

C
σ

= (47)

()() ()()()

5

22

2112
i

ixxx dxxxxi
JJ

σ

σβββ∫
∞

∞−

−−−−
≈=

 () () ()()()∫
∞

∞−

−−−−= dxxxxi xixx
i

βσββ
σ

23
5

1

 ()()() ()()() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−−= ∫∫

∞

∞−

∞

∞−

dxxxidxxxi xxixx
i

ββσββ
σ

23
5

1

 () ()
()

()()
()

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−= ∫∫

∞

∞−

−−
−

∞

∞−

−−
− dxexdxex i

x

i

x x

ixi

x

ix
i

2

2

2

2

22
1

2222
1

23
5 221 σ

β
σ
β

πσβσπσβ
σ

() () ()

()

()
()

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−= ∫∫

∞

∞−

−−∞

∞−

−−−

dxexdxexx i

x

i

x x

xi

x

xx
i

i 2

2

2

2

2222
5

2
1

22 σ
β

σ
β

βσββ
σ
πσ

 Selecting the following variables for IBP for the left-most integral creates a

positive two times the integral on the right after one step of IBP, which combine to

produce a single positive integral as shown below.

 ()2xxU β−= , where ()dxxdU xβ−= 2

 ()
()

dxexdV i

xx

x

2

2

2σ
β

β
−−

−= , where

()
2

2

22 i

xx

i eV σ
β

σ
−−

−=

 61

() () ()

() ()

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+−−= ∫

∞

∞−

−−
∞

∞−

−−−

dxxeexx x

x

i

x

xx
i

i i

x

i

x

βσββ
σ
πσ σ

β
σ
β

2

2

2

2

2222
5

2
1

22

() ()

()
()

()

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+

−
= ∫

∞

∞−

−−
∞

∞−

−

−

dxex

e

x
i

x

i

x

x

xix
x

i

i 2

2

2

2

22

2

3

5

2
1

22 σ
β

σ
β

βσ
β

σ
πσ

 Rather than laboriously apply L’Hopital’s Rule three times to determine the limit

of this fraction as it approaches ∞ in both directions, it is clear that the numerator will

eventually be a constant and the denominator will remain an exponential dependent on x,

again yielding 0 - 0.

()

()
0066

2

2

2

3

−=
∞−

−
∞

⇒
∞
∞−

−
∞
∞

=
−

∞

∞−

−

i

xx
x

e

x

σ
β

β

() ()

()

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−= ∫

∞

∞−

−−−

dxex i

xx

xi
i

i 2

2

22
5

2
1

22 σ
β

βσ
σ
πσ

() ()

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=

∞

∞−

−−−
2

2

222
5

2
1

22
i

xx

ii
i

i e σ
β

σσ
σ
πσ

() ()()00
2 2

5

2
1

2

+−=
−

i
i

i σ
σ
πσ

 = 0 (48)

()()()

23113
i

xx

C

dxxxi
JJ

σ

ββ∫
∞

∞−

−−
≈=

 62

() ()

()

∫
∞

∞−

−−−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−= dxex

C
C

i

xx

x
i

i 2

2

2
2

2
1

22 σ
β

β
σ
πσ

() ()

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

∞

∞−

−−−
2

2

22
2

2
1

22
i

xx

i
i

i e
C

C σ
β

σ
σ
πσ

() ()00
2

2

2
1

2

+−=
−

i

i

C
C

σ
πσ

 = 0 (49)

() ()()()

6

222

22
i

ixx dxxxi
J

σ

σββ∫
∞

∞−

−−−
≈

 () () ()()()∫
∞

∞−

+−−−−= dxxxxi ixixx
i

4224
6 21 σβσββ

σ

 () ()() () ()() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−−−−= ∫∫∫

∞

∞−

∞

∞−

∞

∞−

dxxidxxixdxxix xixxixx
i

βσββσββ
σ

4224
6 21

 The right-hand integral is simply an integral of a constant multiplied by a

Gaussian, which is the constant, whereas the center integral is identical to J11 and

therefore equal to C σi
2. The left-hand integral requires temporarily pulling the constants

out front and integration by parts as shown below.

 ()3xxU β−= , where () dxxdU x
23 β−=

 ()
()

dxexdV i

xx

x

2

2

2σ
β

β
−−

−= , where

()
2

2

22 i

xx

i eV σ
β

σ
−−

−=

 () () ()()∫
∞

∞−

−−− dxxixx xxx βββ 3

 63

 () ()
() ()

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−−−−= ∫

∞

∞−

−−
∞

∞−

−−
− dxxeexC x

x

i

x

ixi
i

x

i

x

2222232
1

2 32
2

2

2

2

βσσβπσ σ
β

σ
β

 Again, L’Hopital’s Rule indicates the first term approaches zero; however, re-

arranging the remaining integral reveals the same form as J11, again simplifying the

integration process by providing the answer of C σi
2.

()

()
00

66 22

2

23

2

2 −=
∞−

−
∞

⇒
∞
∞−

−
∞
∞

=
−

∞

∞−

−

ii
x

ix

i

x

e

x σσσβ

σ
β

 () ()()
()

∫
∞

∞−

−−
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−= dxexxC i

xx

xxii

2

2

22
1

22 23 σ
β

ββπσσ

 () 422 33 iii CC σσσ ==

 Inserting these results into the original equation yields the following:

 ()444
6 231

iii
i

CC σσσ
σ

+−=

 2

2

i

C
σ

= (50)

() ()()()

3

22

3223
i

ixx

C

dxxxi
JJ

σ

σββ∫
∞

∞−

−−−
≈=

 ()() ()()∫
∞

∞−

−−−−= dxxixxi
C ixxx

i

22
3

1 σβββ
σ

 ()() ()() ()() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−−= ∫∫

∞

∞−

∞

∞−

dxxidxxixx
C xixxx

i

βσβββ
σ

2
3

1

 64

 The left-most integral is identical to the form found in J11; therefore, using the

same solution and L’Hopital’s Rule calculation results in the following:

 ()() ()() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ∫∫

∞

∞−

∞

∞−

dxxidxxi
C xixi

i

βσβσ
σ

22
3

1

 ()01
3
iCσ

=

 = 0 (51)

()

233 C

dxxi
J

x∫
∞

∞−

−
≈

β

 ()
()

∫
∞

∞−

−−
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= dxeC

C
i

xx

i

2

2

22
1

2
2 21 σ

β

πσ

 ()
()

∫
∞

∞−

−−
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= dxe

C
C

i

xx

i

2

2

22
1

2
2 2 σ

β

πσ

C
1

= (52)

Equation 53 summarizes these results for the Fisher Information Matrix indicating that

the magnitude of the true Fisher Information Matrix is less than or equal to this

approximation to provide a true lower bound and that the parameters are uncorrelated,

with the matrix inverse shown in Equation 54 providing an accurate approximation of the

CRLB for all three parameters.

 65

 J

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

C

C

C

i

i

100

020

00

2

2

σ

σ

 (53)

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

2
ˆ

2
ˆ

2
ˆ

00

00

00

 :

C

i

x

CRLB

σ

σ

σ

σ

β

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

C
C

C
i

i

00

0
2

0

00
2

2

σ

σ

 (54)

Figure 17 below indicates the match of these zero-shift solutions to the original

numerically computed CRLB from Equation 46, which verifies the theoretical results,

while Appendix A contains a Mathematica notebook to ensure every step is correct.

Figure 17. CRLB Numerical and Analytical Solution

 66

Additionally, the last estimated parameter, C, directly stems from the variance of a

Poisson random variable as summing all intensities in the vector produces this as the

variance of the new Poisson random variable as described in the Section 3.5.

4.1.4. Benefits and Discussion

 The above theoretical bound on variance for shift estimation has two main areas

of benefit due to the simplicity and completeness of the bound; first, the bound can guide

researchers in implementation of estimation algorithms, and second, it can guide

technicians towards reasonable light-levels and images for shift estimation. The

implementation benefits are two-fold in that estimation algorithms that search for sub-

pixel shifts need only search to the square root of the minimum variance given by the

bound as noise error overrides any quantization error in the model. The bound also

provides an analytical method to validate the sensor model and simulation results by

determining if the model is efficient in achieving the bound and providing another form

of verification for modeling by allowing comparisons to this independent bound.

4.2. Maximum Likelihood Optimized Search Algorithm

4.2.1. Relevant Statistics, Assumptions, and Setup

 Leveraging the noise statistics from Chapter III and the projection of an image

exhibiting these statistics at the beginning of this chapter, the maximum-likelihood (ML)

estimator uses the joint a priori distribution as shown in Equation 15 to determine what

the estimate should be according to the criterion in Equation 55.

 () ()()()∏ −=
x

xxMLx xixdp βββ ||maxargˆ (55)

 67

To minimize the computational complexity of performing numerous multiplications

during a search over values of βx, the same result is available from the natural log of

Equation 55 as indicated in Equation 56.

 () ()()()()∑ −=
x

xxMLx xixdp βββ ||lnmaxargˆ (56)

This maximum-likelihood approach differs from the maximum a posteriori (MAP)

estimation approach, which seeks to maximize the likelihood over the joint a posteriori

distribution found in Equation 57 by using either Bayes’ Rule or applying the Law of

Total Probability and the criterion found in Equation 58 [5].

 ()() ()() () ()()() ()()()
()()∏∏ −−

=−
x

xxxxx

x
xxx xdp

xipxixdpxdxip
'

' ||||,|| ββββββββ (57)

 ()() ()()∏ −=
x

xxxMAPx xdxip ',||maxargˆ ββββ (58)

Since this technique seeks to maximize the joint a posteriori distribution for a given

value of βx, the marginal with respect to the observed image is unnecessary, while using

the log of the a posteriori distribution and expanding further simplifies the search as

indicated by Equation 59.

 () ()()()() ()()()()∑∑ −+−=
x

xxx
x

xxMAPx xipxixdp '||ln||lnmaxargˆ ββββββ (59)

In the case that the right-hand term, or the prior probability of βx given the previous shift,

is uniform, the dependence on the prior withdraws causing the MAP and ML estimates to

become equal. As mentioned in the chapter on modeling, this prior distribution is

Gaussian in nature; however, the parameters required for this distribution are not

 68

available leaving the choice of assuming a uniform distribution, as previously performed

in literature [4, 5].

 The expansion of Equation 56 yields the log-likelihood for implementation and

the first part of the MAP estimator, should the prior information become available, as

specified by Equation 60.

() ()

()
()∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= −−

x

xi
xd

x
MLx

xe
xd

xi ββ
β

!
lnmaxargˆ

 () ()() ()() ()()()∑ −+−= −−

x

xixd
x xdexi x !lnlnlnmaxarg ββ

 () ()() () ()()()∑ −−−−=
x

xx xdxixixd !lnlnmaxarg ββ

 Since the final term does not depend on βx, the term drops out.

 () ()() ()()∑ −−−=
x

xx xixixd ββlnmaxarg (60)

 Ideally, the most efficient method for obtaining the shift estimate is through

taking the derivative of the above function, setting it to zero, solving for the nodes of the

function, and determining which node has the largest peak. It may be possible to derive a

closed-form solution for the derivative of the log-likelihood provided the derivative of

the original image i(x-βx) also has a closed form solution, which is both image and shift

specific. This typically is not possible; however, leveraging the unique properties of the

Fourier Transform and the interchangeability of derivatives and integrals with additional

assumptions may provide such a closed form solution for faster estimation.

 There are numerous alternative approaches to searching the log-likelihood

including using a known function for the true image to allow use of all of the data in the

 69

log-likelihood calculation. Although a known function could preclude the need to

window the data, simply adjusting the algorithm to accommodate both a fixed true image

size and a dynamic true image size allows a greater search area for smaller image sizes

and possibly better performance without modification to most software or hardware. An

additional assumption when working with actual data is regarding which projected image

to shift for searching over different search estimates, as it is possible to shift either the

true image or the observed data. Theory indicates that the random parameter is in the

original image, and therefore shifting of the true image is appropriate; however, it may be

interesting to characterize the noise rejection capabilities of shifting the observed data

also, as hardware interpolation is possible for this sub-pixel shift technique. This

research focuses on implementing a maximum-likelihood search approach using the joint

log-likelihood defined by Equation 60 in an efficient manner to temporally compete with

the Shack-Hartmann and SWAT wave-front sensors, as current research indicates a

statistical performance improvement with the ML sensor for extended objects [5].

4.2.2. Properties of Log-Likelihood Leveraged

 As observed from computing sample log-likelihoods using the modeling

techniques in Chapter III, there are several properties of the log-likelihood curve that

lend themselves to an optimized search algorithm. Figure 18 and Figure 19 illustrate the

log-likelihood curve for the laser guide star as described in the modeling chapter. The

most important attributes include the large main node, significantly smaller nodes and

distortion due to noise, and mild peaks at the end-points indicating performance in a

constant background.

 70

Figure 18. Log-Likelihood for Gaussian in
Noise

Figure 19. Log-Likelihood for Shifted
Gaussian in Background and Noise

The peak of the main node is the estimate, and a search algorithm that rejects the noise

and other characteristics of the log-likelihood could search in an efficient manner using

the concave-down properties of the main node. The peaks at the edge of the log-

likelihood window develop when the black background of the true image covers greater

than one-half of the search window making it more likely that the object has moved

completely out of view. These end-point peaks have the unique characteristic of being

slightly greater on the side of the log-likelihood curve that contains the main node for a

significant shift, also lending possible simplification to the search algorithm.

4.2.3. Search Algorithm Definition

 The goal of this search algorithm is to perform an efficient search of the concave-

down portion of the main node of the log-likelihood, while being robust enough to reject

interference from noise and other artifacts in the search window. A method that skips the

noise and artifacts by quickly finding the main node before performing finely stepped

search operations effectively meets these requirements and provides a robust solution for

 71

the search algorithm. By pre-computing the interpolated true image and its logarithm,

each sensor can use this data without wasting more computations allowing the optimized

algorithm to focus on searching the log-likelihood and ignoring the requirements of the

input data. The implemented search algorithm has two phases; the first grid search is

optional depending on the shape of the log-likelihood and the second implements an

optimal search algorithm requiring minimal memory storage for a known concave down

function as indicated by the program flow in Figure 20.

 There are two different ways to describe the main search algorithm using modern

search techniques; the first method stems from the Gradient Decent algorithm, while the

second method builds upon the algorithmic concept of a Binary Search Tree. From the

Gradient Decent perspective, which is the basis for development, this algorithm performs

Gradient Ascent by climbing the log-likelihood curve, where the step size and slope

determinations are the unique and key components of the algorithm. The step size uses

Bisection to determine the next point in the search, as it is easy to compute this

dynamically changing step size and reduces the complexity of the search significantly.

The slope determination ensures locating the peak by determining which direction to

climb when encountering a larger log-likelihood value with version 2 of the Select

Window Endpoints block choosing the new search region. The algorithm properly

assumes that the slope is toward the current largest value if the new log-likelihood of the

computed point is less than the current maximum and performs endpoint detection using

version 3 of the Select Window Endpoints block.

 72

Figure 20. Flow Diagram of Optimized Log-Likelihood Search Algorithm

Perform Grid
Search?

Yes Compute Grid
Point

Finished all
points in Grid?

No
No

Yes

Select Window
Endpoints version 1

Compute Center
Point of Window

Finished Shift
Search?

Input

Output
Yes Compute Slope at

Maximum

No

Select Window
Endpoints version 2

Is New LL
Bigger?

Compute Slope at
Maximum

Yes

No

Compute End
Points

Select Window
Endpoints version 3

Select Window
Sizes for Data &

 73

This slope determination allows the search to narrow the search region for the peak

quickly and completes the Gradient Decent algorithm. From the perspective of dividing

the problem into search regions, another view of the algorithm emerges in the form of a

Binary Search Tree, with the first node being the entire search window, this node’s

children being the left and right halves of the search window, and continuing until only

individual elements are the leaves of the tree. As the search progresses the algorithm

makes a decision at each node to guide which children to select and proceeds with a

depth-first search of the entire tree; and since these decisions are final, upon reaching a

leaf, the index of the leaf is the result of the search algorithm. This search algorithm has

the added advantage that it requires memory for only three index values, log-likelihood

values, and their attributes making it very feasible for implementation in a compact

embedded architecture for fast operation.

 The optional grid search allows the algorithm to proceed given the main node of

the log-likelihood cannot be found within the first three computations of the bisection-

based search algorithm. This search is simply a linear search across the window, with the

results guaranteeing a narrowed search region decided by version 1 of the Select Window

Endpoints block including only the main node of the log-likelihood curve. The nature of

this search requires one additional memory location to ensure proper capture of the

maximum log-likelihood and the window surrounding this maximum, but it remains

simple due to capturing the maximum while computing the new log-likelihood values

and performing only one slope detection when complete.

 These algorithms require knowledge of the size of the observed image, or data,

and true image arrays as well as the number of sub-pixel points interpolated between the

 74

points in the real data; however, they do not require knowledge of the type of interpolator

used, which Appendix B further confirms. The number of sub-pixel points between real

points is a direct result from the CRLB analysis, as selecting an interpolation allowing

searches smaller than the minimum standard deviation simply increases computation time

with no additional accuracy benefits. Using twice the light-levels suggested in the

chapter on modeling as well as the assumption of a standard deviation of two for a

Gaussian image results in a minimum standard deviation of error for shift estimation on

the order of 0.03 pixels. Interpolating by 25 points narrowly accommodates this value,

while 26 sufficiently surpasses this minimum error; therefore, a step size of the inverse of

27 represents an ideal interpolation level to allow for proper estimation of any type of

image while only requiring one additional log-likelihood computation. Since each sensor

requires only one true image as indicated in Section 4.3, a separate processor or module

optimized for interpolation could provide this information. Research indicates that linear

interpolation is good enough for estimation; however, a characterization of the

performance difference between linear and the best possible cubic-spline interpolator that

MATLAB includes is an interesting area of investigation included in this research [5].

4.2.4. Computational Complexity Analysis and Comparison

 Computational complexity research provides insight into how difficult or how

long an algorithm takes compared to another algorithm given the same inputs, and the

following analysis performs this comparison for the Shack-Hartmann, SWAT, non-

optimized Maximum-Likelihood, and optimized Maximum-Likelihood wave-front

sensors. This is a comparison of the software portion of the algorithm only; the delays

associated with hardware CCD readout and data transfer do not appear in these

 75

computations or comparisons and are important considerations outside of this discussion.

The standard notation of On(n) describes the computational complexity by indicating the

asymptotic nature of a function based on the subscripted variable. To clarify the

calculations, each sensor’s computational complexity stems from a single-dimension

estimate of the wave-front tilt, with significant constants indicated in the standard

notation with a ‘*’ for multiplication or ‘+’ for addition between the two independent

complexities. The Shack-Hartmann wave-front sensor requires software projection of the

image when computing the centroid; therefore, this excess computation time appears in

the number of additions required for an image as indicated by Table 4. The faster SWAT

wave-front sensor capitalizes on hardware projection of the image, which also decreases

the read-out time of the data, and shows a linear growth of both additions and

multiplications with image size. The far more complex maximum likelihood algorithm

breaks into three phases, with one optional phase, where the summation of these three

phases indicates the total complexity of the search algorithm. Assuming a fixed window

of one-half the image length, the complexity of the pre-compute phase and a non-

optimized search algorithm appears in Table 5, while Table 6 presents the complexity of

the optimized search algorithm for the optional grid search and gradient decent

algorithm.

Table 4. Algorithm complexity for Shack-Hartmann and SWAT Sensors

Sensor Shack-Hartmann SWAT
Type of
Operation

Complexity
n = image
length

On() Complexity
n = image
length

On()

Additions 2n2+n-2 On(n2) 2n-2 On(n)
Multiplications n On(n) n On(n)
Divisions 1 On(1) 1 On(1)

 76

Table 5. Algorithm complexity for Maximum-Likelihood Sensor Phase I

Operation Phase I Non-Optimized Search
 Complexity

n = image length
N = # to interpolate

On()(*,+)
ON()

Complexity
n = image length
N = # to interpolate

On()(*,+)
ON()

Logical Shift (n-1)(N-1) On(n)*
ON(N)

1 On(1)
ON(0)

Additions (n-1)(N-1) On(n)*
ON(N)

(n-1)((n/2)N+1)+(nN+2) On(n2)*
ON(N)

Multiplications 0 On(0)
ON(0)

(n/2)((n/2)N+1) On(n2)*
ON(N)

Natural Logs (n-1)N+1 On(n)*
ON(N)

0 On(0)
ON(0)

Divisions 0 On(0)
ON(0)

0 On(0)
ON(0)

Log-Likelihood
Computations

0 On(0)
ON(0)

(n/2)N+1 On(n)*
ON(N)

Table 6. Algorithm complexity for Maximum-Likelihood Sensor Phases II and III

 Where

 g’ = 1 if including the optional grid search, 0 otherwise

 g = the number of points in the optional search grid, or one

Operation Phase II Phase III
 Complexity

n = image length
g = # of Grid points
N = # to interpolate

On()(*,+)
ON()

Complexity
n = image length
g = # of Grid points
N = # to interpolate

On()(*,+)
ON()

Logical Shift 0 On(0)
ON(0)

1 On(1)
ON(0)

Additions 3(n/2)g On(n)
ON(0)

Best: (n+1)(2-2g’+log2((n/(2g))N))
Worst: (n+1)(2-2g’+2log2((n/(2g))N))

On(nlog(n))+
ON(log(N))

Multiplications (n/2)g On(n)
ON(0)

Best: (n/2)(2-2g’+log2((n/(2g))N))
Worst: (n/2)(2-2g’+2log2((n/(2g))N))

On(nlog(n))+
ON(log(N))

Natural Logs 0 On(0)
ON(0)

0 On(0)
ON(0)

Divisions 0 On(0)
ON(0)

0 On(0)
ON(0)

Log-Likelihood
Computations

G On(1)
ON(0)

Best: 2-2g’+log2((n/(2g))N)
Worst: 2-2g’+2log2((n/(2g))N)

On(log(n))+
ON(log(N))

 77

Figure 21. Illustration of Log-Linear Nature of ML Algorithm for LGS

To illustrate these results for varying image sizes, Figure 21 provides MATLAB

simulation results, using floating-point computations on an Athlon 2600+ processor, of

average time required for Shack-Hartmann sensor, cent on the plot, SWAT wave-front

sensor, and the optimized maximum-likelihood algorithm (mliw with linear and

MATLAB’s cubic-spline interpolation) for different image sizes. The pre-compute phase

requires the same computational complexity for that of SWAT estimation for additions

but subsequently includes the additional time for computing logarithms as well. The

non-optimized log-likelihood search algorithm clearly exceeds the computational

complexity of both centroiding sensors; however, the optimized algorithm is only slightly

more complex compared to the SWAT wave-front sensor. Provided the pre-compute

time occurs off-line or over the span of a few estimates, the optimized algorithm

performs well, with O(n log(n)) complexity, which is far superior to the non-optimized

search algorithm.

 78

4.2.5. Possible Improvements

 Through investigation of the requirements and assumptions for the optimized

search algorithm to perform properly, a few improvements are possible given thorough

understanding of the algorithm and the data inputs required. This optimized algorithm

assumes that the interpolated and projected true image, the log of this projection, and the

observed data are available in memory for multiple accesses, with any pre-computation

completed before estimation begins. Overall performance improvement may be possible

by computing on-the-fly interpolation of the true image, which also requires on-the-fly

logarithms, allowing for a slightly decreased external storage space, greatly decreased

data access times, but more computations overall. If implemented, on-the-fly

interpolation could lead to automatic interpolation level, or sub-pixel step size, selection

that could further reduce the number of computations required for the search algorithm.

 Although this optimized search algorithm is computationally efficient for the

number of log-likelihood calculations performed, any other search or sort algorithm

capable of exploiting new hardware technologies and possibly breaking apart the log-

likelihood calculation itself may improve upon this search algorithm. For much larger

image sizes, and possibly joint estimation in two dimensions, an artificial intelligence

algorithm could provide faster results.

4.2.6. Limitations

 The pre-computation of the interpolation and logarithm of the true image could

significantly hinder the effectiveness of this wave-front sensing algorithm depending on

the nature of the observed image, as this true image requires updates to prevent changes

in light-level, orientation, and contrast from affecting the outcome of the log-likelihood.

 79

Additionally, the implemented version of the algorithm requires the image size be a

multiple of four, which reduces the possible array sizes for a given AO hardware setup.

4.3. Implementation Strategy

4.3.1. System Layout

 The benefit of a maximum-likelihood vector-correlating wave-front sensor is the

ability to perform tracking and wave-front sensing for AO using existing technologies

with hardware requirements that typical systems already meet. As long as the imaging

device meets or exceeds Nyquist sampling criteria, and the image provided contains

twice or greater the number of pixels needed for the search window with appropriate

light-level and contrast, nearly any imaging system can use this algorithm as a tracking or

wave-front sensor. Since an appropriate hardware layout exists (lens, array, CCD, etc)

for this modern wave-front sensor, this section focuses on the efficiency of the charge-

coupled device (CCD) array, the setup of the processing unit hardware, and method to

implement the maximum-likelihood estimation algorithm [5].

 The size of the image follows from the shift detection requirements; however,

exceeding this can greatly reduce the bias and overall error in estimates. Thus an image

larger than thirty-two by thirty-two pixels is the recommended size for tracking and

wave-front sensing of plus or minus four-waves of tilt, corresponding to a CCD array of

160 or greater pixels for an array of five-by-five wave-front sensors. An important

possibility to consider if timing constraints permit is multiplexing the x and y dimension

estimates in time, allowing for twice the light per dimension and requiring only once

CCD array instead of two. If the CCD array has a fast analog to digital converter, it

 80

could interpolate the data directly for searching of shifts in the observed image instead of

the true image, which offloads this requirement from the pre-compute phase.

 The basic setup remains the same except for the above-mentioned improvements

and the specification of a field programmable gate array (FPGA) programmed to execute

the pre-compute phase and search algorithm. The targeted architecture for this

application is an Altera Cyclone II FPGA, which is not the fastest or most complex

FPGA, but it includes some basic modules to aid in computation, a reasonable package

size, and a greatly reduced cost [7]. The development environment for this device is free

and allows the researcher to validate implemented algorithms in the targeted environment

with a simple and easy to use interface.

4.3.2. VHDL Implementation

 The approach to algorithm implementation in this Very High Speed Integrated

Circuit (VHSIC) Hardware Description Language (VHDL) follows a basic strategy to

break the problem into smaller parts and implement them one at a time, which requires an

extensible state-machine design with robust transitions and outputs. Abstraction is

critical to reduce repeated computations to manageable modules, prevent excessively

long code, and allow for easier debugging. The above algorithm reduces easily to the

Moore state-machine in Figure 22, allowing for robust transitions, controlled outputs, and

extensions to include further options. In the figure the symbol “!” indicates negation, the

states with a label followed by a colon occur in the indicated arrangement and the states

outlined in dashes are extensions to this diagram currently operating as direct

connections to the next labeled state in the diagram.

 81

Figure 22. Moore State-Machine for Implementation

The implementation uses 32 bit integer rather than floating-point computations to

increase speed and reduce complexity; therefore, to preserve accuracy of results the pixel

values of the true image and the log of such values simply scale up by the required

accuracy, typically four decimal places for the simulated light-levels, allowing correct

computation of the log-likelihood. The final output is also an integer value, which is a

linear index into the up-sampled true image vector and the estimated shift computes

directly from Equation 61.

Start:
Reset & Hold

Reset

Get Setup
Variables

Compute
Windows

!Enable

Retrieve Data
Image

PreCompute:
& Grid Search

Compute:
Search

Hold:
Set Output

Enable

!Finished

!Finished

Finished

!Finished

Finished

Finished

!Enable

!Finished

!Finished

Finished

Finished

Enable

 82

[]

S
N

IvuLResult

Shift
2

11 −
−−

= (61)

 Shift, Estimated Shift Value (pixels)

 Result, VHDL Module Result (array Position)

 IvuL, Up-Sampled True Image Length (photons)

 S, Amount Multiplied by Nyquist for Over-Sampling (unitless)

 [-1], Optional Subtraction for Indexing Starting at One

The PreCompute and Compute states both provide loop control for searching over the

log-likelihood values, and currently perform tasks in a clocked-combinatorial fashion;

however, these nodes could control additional state machines for further robust operation.

Not shown in the diagram is a separate module designed specifically to compute the log-

likelihood values providing its own loop control to step through the windowed images

and perform computations. This does not implement the interpolation or logarithmic

portion of the maximum-likelihood optimized algorithm; however, preliminary fitting

and timing results indicate that the entire algorithm requires less than four percent of the

logic blocks available in the FPGA, while operating at a conservative clock frequency of

33 MHz. This design performs a single log-likelihood computation every twenty clock

cycles, which drives a total computation time of less than 13.4 μs for a single estimate on

a 32 pixel image allowing for multiplexing of a single estimation algorithm for seventy-

five sensors at an update rate of 1,000 Hz. This speed analysis indicates more than

adequate temporal efficiency and basic simulation results appear in the next Chapter,

while the VHDL code implementing this phase of the algorithm is in Section 4.2.3.

 83

4.3.3. Extensions to Implementation

 Including the interpolation and logarithm in the FPGA would simplify the system

greatly by allowing a single information bus from the CCD to the FPGA, reducing the

number of pins required and lowering overhead. Additionally, converting the loop

control statements within the PreCompute and Compute states to small state machines

would further reduce the complexity of the VHDL code, providing extensibility and

versatility to the system.

4.4. Summary

 This Chapter provides the analyses for three major investigations in tracking and

wave-front sensing; development of a CRLB for any tracking or wave-front estimation

techniques, optimization of the known vector-projection maximum-likelihood algorithm,

and hardware implementation. To validate the new approaches and ensure actual results

match the expectations given by analysis and theory, numerous simulations and

parameterizations in the next chapter cover the performance of operation in different

environments.

 84

V. Results and Discussion

 This Chapter brings together the previous work to illustrate in an intuitive fashion

the performance, feasibility, and completeness of the research and analysis performed.

First presented are the detailed results of simulation for the two-dimensional Gaussian, or

LGS, which serve to narrow the range of interest before displaying aggregate results for

the tracking and other wave-front sensing applications. Also included are the synthesis

and simulation results for the VHDL implementation of the maximum-likelihood

optimized algorithm. As indicated in the Chapter on modeling, the simulation step size,

0.1 pixels, is larger than the search step size as set by the CRLB unless indicated different

for a particular plot. The total number of noisy trials selected for each realization is 100

trials-per-shift-per-dimension, with the statistics for each dimension averaged together,

unless indicated different for a unique data set.

5.1. LGS / 2D Gaussian - Modeling and Simulation Results

 The laser guide star is a unique case in that the analysis providing the CRLB uses

this type of image for the bound on variance for any estimator, and not only confirms the

design choice based on the CRLB but also provides evidence that the bound is indeed a

lower bound on variance for wave-front sensing. The parameters used for modeling the

Gaussian are a light-level, C, of 300 photons and a standard deviation, σi, of two pixels as

this is the approximate width of a diffraction limited PSF.

 85

5.1.1. Effects of Image Projection

 To provide estimates for two-dimensions, projection of the Gaussian image, and

any image, requires either an equally divided light-level or an equally divided time

interval, both of which can result in a reduced light-level and reduced SNR. Figure 23

and Figure 24 illustrate the effects of dividing the light between two sensors using the

whole image for the Shack-Hartmann wave-front sensor, or cent corresponding to the

first CRLB, and projected images at half intensity for the SWAT wave-front sensor

corresponding to the second CRLB. For small window sizes, the edge effects not

accounted for in the derivative for the CRLB appear by the sensors dipping beneath this

bound; however, the larger 16 pixel image illustrates this is a true lower bound for zero-

shift estimation and any shifts within approximately six pixels of either window edge.

This data represents performance results without a background, Bg; and this parameter

greatly affects the centroid algorithm as presented later in this chapter in Sub-Section

5.3.3.

Figure 23. Variance of Centroiding
Algorithms and CRLB

Figure 24. Mean Square Error of
Centroiding Algorithms

 86

Since the MSE is the bias squared plus the variance as indicated by Sub-Section 3.5.3,

the CRLB is still a lower bound on this statistic as well; therefore, MSE plots also

include the CRLB, with both plots computed over 10,000 trails-per-shift in each

dimension for this simulation. The MSE indicates that although the variance is half for

the Shack-Hartmann wave-front sensor, the bias remains constant regardless of light-

level, and this bias overwhelms the noise error, making the estimation performance of the

Shack-Hartmann and SWAT sensors equally poor for such a small image size.

 Given that the Shack-Hartmann wave-front sensor is not a projection-based

estimation technique, it is not feasible to search over plus-or-minus four waves of tilt in a

reasonable amount of time. The SWAT wave-front sensor is eight-times faster in reading

data for an eight pixel image, which only covers plus-or-minus 3.5 pixels or 1.75 waves

of tilt, eliminating the typical Shack-Hartmann centroiding wave-front sensor from

further discussion.

5.1.2. Detailed Bias

 As mentioned previously, the bias indicates the best-case operation of a sensor

and is difficult to remove; therefore, a minimal bias is ideal for any type of sensor.

Figure 25 displays the SWAT and maximum-likelihood wave-front sensors for the

minimum required image sizes to search plus-and-minus four waves of tilt. This

simulation uses a step size of 0.001 pixels to capture the quantization error caused by the

CRLB set search step size of approximately 0.008 pixels.

 87

Figure 25. Absolute Bias v Shift for LGS

The most important conclusions to draw stem from the clear improvement in bias of the

maximum-likelihood sensor, which windows the data and the true image before shifting

the image, over the SWAT wave-front sensor and the nearly order of magnitude

difference between the linear, subscript l, and cubic-spline, subscript c, interpolated

algorithms.

 The expected quantization noise of approximately 0.004 pixels due to the search

algorithm’s interpolation step size, which the CRLB set, is nearly perfect with the cubic-

spline interpolated algorithm. This graph indicates the unbiased nature of the maximum-

likelihood algorithm for shifts in the window, provided the search step size is arbitrarily

small while making use of an accurate interpolator, further illustrating that the CRLB is a

correct lower bound for this model in noise.

 88

5.1.3. Detailed MSE and VAR

 Also indicated previously, the variance illustrates the performance of the

algorithm in noise, and tuning of the sensor without changing the light statistics cannot

reduce or eliminate this error. The mean square error combines the variance with the bias

for an overall performance picture as shown in Figure 27, and the variance in Figure 26,

both of which have the CRLB with half the light intensity for the projected image sensors

and 10,000 trails-per-shift in each dimension.

 The key points to derive from these plots include the clear affect of bias shown in

the MSE, making some estimated shifts useless for the SWAT sensor, and the apparent

noise rejection efficiency of all sensors for relatively small shifts. The linear

interpolator’s error appears as a small ripple in both the MSE and the VAR, but nearly

matches the cubic-spline interpolator with respect to noise rejection.

Figure 26. Variance v Shift for LGS Figure 27. Mean Absolute Error v Shift for
LGS

 89

Although it does not affect a wave-front correcting AO system, it is important to note that

the maximum-likelihood sensor does not always return the edge of the window for shifts

significantly outside of the window, which is a direct result of more than half of the

object moving out of the field of view. Since MSE combines the variance and bias of a

sensor for a complete picture, further results only display the mean square error.

5.1.4. Image Size Analysis

 Image size determines the size of the window and the possibility of the object

moving out of the field of view, and although the minimum image sizes are perhaps good

enough for wave-front sensing, a search over larger images sizes, as in Figure 28 using

10,000 trials-per-shift-per-dimension, reveals better performance for all sensors. The

following results include averages over the previously displayed regions, with a solid line

on the graph indicating an average over plus-or-minus one-half wave of tilt while a dot-

dashed line indicates an average over plus-or-minus four-waves of tilt or the entire size of

the window, whichever is smaller. Included for reference for this plot only is the non-

windowing model that requires the functional form of the true image but allows better

performance with a smaller image size, serving to illustrate that a regular windowing

model approaches this performance with an image 16 pixels larger. The overall statistics

indicate an image size of 32 pixels is optimal for the non-windowing maximum-

likelihood sensor, mlnw with perfect interpolation and extrapolation using the Gaussian

form as indicated by a subscript p. An image size of 48 pixels allows the windowing

models that do not require explicit knowledge of the image outside of the window to

function with the same performance.

 90

Figure 28. Mean Square Error v Image Size for LGS

These image sizes are the recommended values provided the hardware and subsequent

readout speeds are complementary; however, simulation results present the minimum

image sizes to illustrate the differences and trends in the sensor models.

5.1.5. Sampling Analysis

 Over-sampling of an image aids an interpolator by providing actual data in-

between pixels; however, it increases the size of the CCD array and decreases the amount

of light per-pixel effectively reducing the SNR; therefore, this is beneficial only if the

decrease in bias is greater than the potential increase in variance. The average statistics

in Figure 29 indicate that over-sampling aids the linear interpolator somewhat and harms

the cubic-spline interpolator to a lesser extent, with the exception of the maximum-

likelihood data shifting, mldw, and swat sensors, which perform relatively worse.

 91

Figure 29. Mean Square Error v Sampling Rate for LGS

Although the corresponding decrease in SNR changes the variance only slightly, the

MSE indicates a nearly constant trend in error with the bias driving the results. These

results also indicate the best setup for optimal performance of these sensors is sampling

at or slightly beyond Nyquist, as the changes in overall error are relatively small.

5.1.6. Background Intensity Analysis

 Independent of image size; there can be stray light in the optics setup as well as

stray electrons in the CCD array itself, which the sensor sees as a background in the

image lowering the overall contrast and decreasing the SNR. The following results in

Figure 30 show the importance of minimizing the background for the centroid-based

sensor for estimation beyond one-half wave of tilt, and the poor performance of searching

by interpolating and shifting the observed data for the maximum-likelihood algorithm.

 92

Figure 30. Mean Square Error v Background Intensity for LGS

The windowing maximum-likelihood sensor that estimates the shift by shifting the image

has a good tolerance to background, although the growth rate of the MSE for this sensor

still appears to be a slow exponential, indicating higher background would disrupt the

performance of this sensor significantly as well. As the SWAT and mldw sensors do not

perform as well as the typical maximum-likelihood sensor, the discussion will no longer

include the centroiding sensor and simulations will not include the mldw sensor.

5.1.7. Light-Level Analysis

 The CRLB indicates that an efficient sensor could perform better given higher

light-levels, and Figure 31 shows the improved performance relationship for the

maximum-likelihood sensor for higher light-levels. As noise levels decrease below the

bias of the sensor, the bias drives the remaining error in the model

 93

Figure 31. Mean Square Error v Light-Level for LGS

The SWAT wave-front sensor noticeably demonstrates this trend over an average of four

waves of tilt. As light levels increase, eventually all models would suffer the same bias-

limiting effect; however, the maximum-likelihood sensors have the advantage that a finer

search step size driven by the CRLB allows them to remain efficient in noise for higher

light-levels.

5.2. Tracking Extended Object - Modeling and Simulation Results

 Possibly the most interesting simulation of this chapter is tracking an extended

object and these results exercise the extended object model as described in Sub-Section

3.2.2. There are two difficulties with extended objects; first, the object typically fills the

field of view, lowering the overall contrast of the image and second, as the object shifts

new information enters the field of view, which can cause a sensor’s performance to drop

 94

and bias to be asymmetric. The contrast ratio of the original Hubble image before proper

band-limiting is approximately four-to-one; therefore, these results should suffice for any

similar object with a similar telescope OTF and noise statistics. The performance graphs

include only the maximum-likelihood sensor as a centroid algorithm cannot cope with

new information entering the scene or an object with multiple peaks in the image.

Additionally, the dimensions are separate to illustrate the performance for a low-contrast

orientation and an orientation containing the full contrast of the object, which indicates

that proper tuning of the sensor or optics must occur before tracking is possible.

5.2.1. Image Size Analysis

 As opposed to Figure 30 for the LGS case, Figure 32 illustrates an increase in

required image size for acceptable tracking performance.

Figure 32. Mean Square Error v Image Size for Hubble Tracking

 95

This graph also indicates that the CRLB derived for the LGS using the same parameters

is indeed a lower bound for tracking with this particular image of the Hubble telescope as

2σi
2 / C = 1x10-3-pixels2. The subsequent simulation results show only the recommended

image size of 48-by-48 pixels, except for the sampling analysis to show a complete

sampling range.

5.2.2. Sampling Analysis

Figure 33 indicates that over-sampling does not affect the performance of the sensor.

Again, the recommendation is to sample at or slightly beyond Nyquist sampling criteria

to avoid aliasing of the true image.

Figure 33. Mean Square Error v Sampling Rate for Hubble Tracking

 96

5.2.3. Background Intensity Analysis

 As an extended object already has a background, addition of further background

light only reduces the contrast and produces small changes overall in the performance of

the maximum-likelihood sensors using either type of interpolation. Figure 34 illustrates

the reasonable tolerance to background in the y-dimension and the same tolerance, but

consistently poor performance for the low-contrast x-dimension.

5.2.4. Light-Level / Total Intensity Analysis

 Much like the laser guide star, the maximum-likelihood sensor performs better

with higher light-levels as shown in Figure 35; and the roughness of the curve here is due

to the limited number of trails for such a large bias and variance.

Figure 34. Mean Square Error v Background Intensity for Hubble Tracking

 97

Figure 35. Mean Square Error v Light Level for Hubble Tracking

5.3. WFS Extended Object - Modeling and Simulation Results

 Adaptive optics systems attempt to correct atmospherically induced wave-front

distortions for any object the researcher wishes to view; therefore, a simulation of a

wave-front sensing application on the Hubble provides further insight into the utility of

this sensor, and the possibility of tracking and imaging with the same telescope and

sensor setup.

5.3.1. Image Size Analysis

 Figure 36 again confirms that wave-front sensing over plus-or-minus four waves

of tilt is possible at the minimum image size, but the recommended image size for the

maximum-likelihood wave-front sensor remains a reasonable 48 pixels in length.

 98

Figure 36. Mean Square Error v Image Size for Hubble WFS

The maximum-likelihood wave-front sensors maintain good performance for larger

image sizes, while the centroiding algorithm’s performance decreases as the image size

increases due to the greater incorporation of the image’s natural background. This image

also indicates that the CRLB is a good approximation, given the parameter σi is an

approximation for the average image shape in both dimensions of the image.

5.3.2. Sampling Analysis

 This simulation results in Figure 37 indicate the same increase in performance

with respect to over-sampling for the linear interpolated sensor, and the same slight

decrease in performance for the centroiding and cubic-spline interpolated sensor.

 99

Figure 37. Mean Square Error v Sampling Rate for Hubble WFS

5.3.3. Background Intensity Analysis

 Despite the inherent background of the Hubble image, the maximum-likelihood

sensor continues to demonstrate strong tolerance to further background light in Figure 38,

with very reasonable mean squared error performance. The swat wave-front sensor

degrades at a slower rate than seen with the laser guide star due to the higher light level

of this object.

5.3.4. Light-Level / Total Intensity Analysis

 As the CRLB predicts, Figure 39 indicates all sensors benefit from the increased

light-levels; however, the increased light-level appears to aid the cubic-spline interpolator

slightly more than the linear interpolator due to the linear interpolator’s added error.

 100

Figure 38. Mean Square Error v Background Intensity for Hubble WFS

Figure 39. Mean Square Error v Light-Level for Hubble WFS

 101

These simulations illustrate excellent performance for the vector-projection maximum-

likelihood wave-front sensor as well as validate the sensor is efficient with respect to the

CRLB for larger image sizes. The CRLB also holds for other image types, given an

appropriate estimate of σi.

5.4. Implementation / VHDL Simulation Results

 The simulation results for VHDL represent the estimated speed of operation for

the hardware implementation of the sensor; however, these results do not fully test the

implementation and further validation should proceed before reliance on this realization

of the sensor.

5.4.1. Targeted Device Resource Summary

 The following results in Table 7 and Table 8 indicate the usage of the logic

elements in the FPGA and the maximum clock speed that the device could operate using

the Cyclone II EP2C70F89618 processor.

Table 7. Resources Required for Synthesis

Resource Number Used Number Available Percent Used

Logic Elements 2,447 68,416 < 4%

Registers 491

I/O Pins 228 622 37 %

Memory Bits 0 1,152,000 0 %

Embedded 9 bit
Multipliers

6 300 2 %

 102

Table 8. Preliminary Timing Analysis

Timing Type Value

Clock 53.79 MHz (18.59 ns)

Worst-Case Setup Time (tsu) 23.381 ns

Worst-Case Hold Time (th) -1.225 ns

Worst-Case Clock to Output (tco) 14.21 ns

Additionally, the preliminary estimated power consumption is a low 260 mW allowing

for reduced cooling requirements in an embedded environment. These results indicate

that a clock period of 30 ns is a safe value for setup and hold times while maintaining the

performance of the estimation algorithm, which results in a total compute time of less

than 13.4 μs, allowing for time-division multiplexing of one module for up to 75 different

wave-front sensors at an update rate of 1,000 Hz.

5.4.2. Test Bench Simulation Results

 This simulation serves to indicate the total time required to complete one log-

likelihood search for a 32-by-32 pixel image, and does not indicate complete accuracy or

validate the implementation outside of the simple, non-realistic test case presented, as it

has only 44.8 % test coverage. Figure 40 indicates the form of an individual log-

likelihood computation and is a zoomed view of the beginning of Figure 41, which shows

the overall computation for a nearly worst case of 23 log-likelihood computations.

 103

Figure 40. Zoomed in View of First Portion of VHDL Simulation

Figure 41. Full View of VHDL Simulation

 These results indicate the total required operating time as well as proper operation

for the simplistic test case presented. Complete algorithmic flow testing and addressing

verification are follow-on research areas in a complete implementation.

Log Likelihood
Computations

Forced to Check the
Slope Always

Total Compute Time = 221 Clock Cycles
(Forced to be Almost Worst Case)

1 Log Likelihood
Calculation = 16 Clks

Correct Outputs Given
Simulated Inputs

Overhead Between LL
Calculations = 4 Clks

 104

5.5. Summary

 The three main areas of research results presented in this chapter conclude nearly

half of the developmental life cycle of a project including theoretical research,

algorithmic development, and hardware implementation, with the remaining portion of

the life cycle including at a minimum hardware realization, testing, and maintenance. As

an additional benefit, further simulation results parameterizing the sensors over a wider

range appear in Appendix D. The analysis for the CRLB provides implementation and

validation benefits, while the developed log-likelihood search algorithm and

implementation provide a solid foundation and proof of concept for implementation.

 105

VI. Conclusions

 From the results and discussion, it is clear that the vector-projection maximum-

likelihood wave-front and tracking sensor is quite versatile and feasible to implement.

This research intended to and succeeded in providing definitive results for

characterization and implementation of the maximum-likelihood sensor through the use

of applied theory, robust modeling, and sound implementation techniques. Combined

with the power of a fast search algorithm, maximum-likelihood could become the new

standard in embedded estimation techniques.

6.1. Key Contributions

 Not only did this research develop a Cramer-Rao lower bound for any wave-front

sensing or tracking application but it further reduced this complex theoretical model to a

simple point solution providing an easy method to predict and validate real-life results.

The results of the bias analysis provides targeted implementation information as well as

the noise statistics which further solidified the utility of this sensor by indicating the

greater efficiency compared to the centroiding algorithms currently in use. The

optimized search algorithm with noise rejection capability designed for a concave-down

log-likelihood is useful for any maximum-likelihood application with a similar

likelihood, log-likelihood, or other type of curve to seek a maximum or minimum over.

Finally, the development method and implementation of this optimized algorithm in

hardware reduces the life-cycle time greatly for current use, while providing a road map

for future implementations of other complex search algorithms or embedded software.

 106

6.2. Lessons Learned

 Several difficult areas of this research could have been simpler if more time and

care had focused on proper modeling of the environment for statistical analysis and

simulation. It is impossible to determine if an algorithm or implementation is correct if

the information sent to the element of research is not correct, as only unexpected results

occur. In addition, reliance on modern simulation tools often led to further problems as

the implementation of these tools is not always clear and may provide inaccurate results

in limited circumstances. Outside of these areas of difficulty, the research went quite

smoothly by capitalizing on the background and understanding provided by a thorough

education.

6.3. Further Research

 As with any research there are many areas in which improvements, extensions,

and developments are available; therefore, this section concludes with the possible

follow-on work associated with the areas of research investigated.

 The Cramer-Rao lower bound only includes the intensity of light as a parameter,

ignoring contrast, which is the single largest contributor to reduced performance for an

extended object. The realization of an inclusion or relation to contrast would provide

even greater utility to the simplistic yet effective zero-shift minimum variance

calculation. Additionally, the CCD estimates each pixel in an image during the capture

process; therefore, a more accurate bound would jointly estimate the current parameters

with each pixel intensity.

 The vector-projection maximum-likelihood tracking and wave-front sensor has

numerous areas of investigation, only some of which stem directly from this research. It

 107

may be possible to compute a closed-form derivative for any image, allowing for single-

step computation for ML estimation. With the ability to dynamically search the log-

likelihood, it would be very possible to perform on-the-fly interpolation and possibly

even automatic interpolation level adjustment based on the results of the optimized

search algorithm. Another important area of investigation is the use of this search

algorithm for joint estimation in two-dimensions, either using vector-projection or the

entire image, or other techniques such as phase diversity estimation. An enhancement to

the tracking application would be the inclusion of automatic light-level normalization

between estimations, which would provide greater accuracy and better performance.

 The embedded implementation should match the performance of a simulation

algorithm; however, further state-machine analysis would simplify the hardware layout

and provide a more robust solution. Further testing and development of this algorithm to

validate the design could allow for immediate implementation. Finally, implementation

of the required interpolation and logarithmic functions would increase the overall

productivity of an embedded system and simplify the data transfer requirements between

different systems greatly.

 Even without the above extensions, maximum-likelihood has a promising future

in the arenas of tracking and wave-front sensing applications.

 108

Appendix A: Mathematica Verification of CRLB

A.1. Setup of Formulas

 109

A.2. Computation of CRLB

 110

A.3. Simplification Setup and Solution

 111

Appendix B: MATLAB Version of ML Algorithm

% Maximum Likelihood Estimate Using Optional Grid & Gradient Decent
Search
% function a = mliwb (Dv,Ivi,lIvi,N,aMax,Grd)
% Dv - Data Vector
% Ivi - Image Vector (Interpolated)
% lIvi - Log of Interpolated Image Vector
% N - Interpolation Points Used
% aMax - Maximum Search Area = +/- aMax
% Grd - Step Size for Grid Search 0 < Grd < length(Dv) to Perform

function a = mliwb (Dv,Ivi,lIvi,N,aMax,Grd)

Grd = floor(Grd*N)/N; % Ensure Grid Conforms to vecs
step = 1/N; % Interpolations Step Size

DvL = length(Dv); % Data Vector Length
DvuL = (DvL-1)*N+1; % Upsampled Data Vector Length
IvuL = length(Ivi); % Interpolated Image Vector Len
IvL = (IvuL-1)/N+1; % Image Vector Length
if IvL < DvL % Check for incorrect input vectors
 a = NaN;
 return;
elseif IvL <= 2*DvL % Get Maximum Window Size
 sLim = (IvL/2-1)/2;
else
 sLim = (DvL-1)/2;
end;
wLim = sLim - (DvL - 2*sLim+1 - 1)/2; % Get Minimum Window Size
if aMax > sLim % check aMax is Less than Maximum Window
 aMax = sLim;
 Sl = 2*sLim - aMax;
elseif aMax < wLim % Check aMax is Greater than Minimum Window
 Sl = sLim;
else
 Sl = 2*sLim - aMax;
end;
iSg= (IvL-1)/2;
iSs= (iSg-Sl+1-1)*N+1; % start index for smaller image
iSe= (iSg+Sl+1-1)*N+1; % end index for smaller image
dSg= (DvL-1)/2;
dSs= dSg-Sl+1; % start index for smaller data
dSe= dSg+Sl+1; % end index for smaller data
sSs= (iSg-aMax+1-1)*N+1; % start index for minimum Shift (in window)
sSe= (iSg+aMax+1-1)*N+1; % end index for maximum Shift (in window)

if Grd == 0 || Grd*N > sSe-sSs % Determine if Grid Search is Required
 noGrid = true;
else
 noGrid = false;
end;

taL = zeros(1,IvuL); % Allocate Memory (overkill)

 112

if noGrid % Just Compute Endpoints (no Grid)
 for idx = [sSs sSe] % Get LL Values for Endpoints
 taL(idx) = sum(Dv(dSs:dSe).*...
 lIvi((iSs:N:iSe)+(IvuL-1)/2-(idx-1))...
 -Ivi((iSs:N:iSe)+(IvuL-1)/2-(idx-1)),2); % Shifts Image
 end;
 if taL(sSs) < taL(sSe) % Right-Side is Bigger
 max = sSe;
 sdx = 2;
 else % Left-Side is Bigger
 max = sSs;
 sdx = 1;
 end;
 idx = sSs+floor((sSe-sSs)/2); % Compute Next Search Point
else % Perform Grid Search
 init = sSs:Grd*N:sSe; max = sSs;
 if mod(sSe-sSs,Grd*N) ~= 0 % Add Last Point if Necessary
 init = [init sSe];
 end;
 for idx = init % Quick search for points on peak
 taL(idx) = sum(Dv(dSs:dSe).*...
 lIvi((iSs:N:iSe)+(IvuL-1)/2-(idx-1))...
 -Ivi((iSs:N:iSe)+(IvuL-1)/2-(idx-1)),2);
 if taL(idx) > taL(max) % Replace Maximum if Necessary
 max = idx;
 end;
 end;
 if max == sSs % If Max is Left-Side
 taL(max+1) = sum(Dv(dSs:dSe).*... % Get Next Value
 lIvi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1))...
 -Ivi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1)),2); % Shifts Image
 if taL(max) < taL(max+1) % Right-Side Bigger
 sSs = max+1;
 if max+Grd*N <= sSe % Decide if EndPoint
 sSe = max+Grd*N;
 else
 sSe = sSe;
 end;
 sdx = 1;
 idx = sSs+floor((sSe-sSs)/2); % Compute Next Search Point
 else % Left-Side is Peak
 idx = -1; % Finish
 end;
 elseif max == sSe % If Max is Right-Side
 taL(max-1) = sum(Dv(dSs:dSe).*... % Get Previous Value
 lIvi((iSs:N:iSe)+(IvuL-1)/2-(max-1-1))...
 -Ivi((iSs:N:iSe)+(IvuL-1)/2-(max-1-1)),2); % Shifts Image
 if taL(max) < taL(max-1) % Left-Side Bigger
 if mod(sSe-sSs,Grd*N) == 0 % Determine Previous Point
 sSs = max-Grd*N;
 else
 sSs = max-mod(sSe-sSs,Grd*N);
 end;
 sSe = max-1;
 sdx = 2;
 idx = sSs+floor((sSe-sSs)/2); % Compute Next Search Point
 else % Right-Side is Peak

 113

 idx = -1; % Finish
 end;
 else % Max is in Middle
 taL(max+1) = sum(Dv(dSs:dSe).*... % Get Next Value
 lIvi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1))...
 -Ivi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1)),2); % Shifts Image
 if taL(max) < taL(max+1) % Right-Side is Bigger
 sSs = max+1;
 if max+Grd*N <= sSe % Decide if EndPoint
 sSe = max+Grd*N;
 else
 sSe = sSe;
 end;
 sdx = 1;
 idx = sSs+floor((sSe-sSs)/2); % Compute Next Search Point
 else % Left Side is Bigger
 sSs = max-Grd*N;
 sSe = max;
 sdx = 2;
 idx = sSs+floor((sSe-sSs)/2); % Compute Next Search Point
 end;
 end;
end;

while idx > 0 % Check for Complete Condition
 if idx <= sSs || idx >= sSe % Check to See if we're Done
 idx = -1; % Finish
 else
 taL(idx)=sum(Dv(dSs:dSe).*... % Compute Next LL Value
 lIvi((iSs:N:iSe)+(IvuL-1)/2-(idx-1))...
 -Ivi((iSs:N:iSe)+(IvuL-1)/2-(idx-1)),2); % Shift Image

 if taL(idx) > taL(max) % New Value Bigger than Old Max
 if idx+1 < sSe % Get Next Value
 taL(idx+1)=sum(Dv(dSs:dSe).*...
 lIvi((iSs:N:iSe)+(IvuL-1)/2-((idx-1)+1))...
 -Ivi((iSs:N:iSe)+(IvuL-1)/2-((idx-1)+1)),2);
 end;
 dir = taL(idx) < taL(idx+1); % Store Sign of Slope
 if dir % Store Correct Index
 idx = idx+1;
 end;
 max = idx; % Store New Max
 if ~dir % Shutter Right (Peak Left)
% sSs = sSs;
 sSe = idx;
 sdx = 2;
 else % Shutter Left (Peak Right)
 sSs = idx;
% sSe = sSe;
 sdx = 1;
 end;
 else % Slope is Toward Current Max
% max = max;
 if sdx == 1 % Shutter Right (Peak Left)
% sSs = sSs;
 sSe = idx;
% sdx = 1;

 114

 else % Shutter Left (Peak Right)
 sSs = idx;
% sSe = sSe;
% sdx = 2;
 end;
 end;
 idx = sSs+floor((sSe-sSs)/2); % Compute Next Search Point
 end;
end;

a = (max-1-(IvuL-1)/2)/N; % Convert to Shift Value (FloatingPoint)

115

C.1. Log-Likelihood Computation Module

LIBRARY ieee ; -- Standard Includes
USE ieee.std_logic_1164.all ;
USE IEEE.std_logic_arith.all;
USE IEEE.std_logic_signed.all;

ENTITY LL IS
 GENERIC
 (
 N : INTEGER := 128; -- Number of Points Interpolated
-- DvL : INTEGER := 32; -- Length of Data
-- IvL : INTEGER := 32; -- Length of Image
-- DvuL : INTEGER := 3969; -- Length of Data (in UpSampled Terms)
 IvuL : INTEGER := 3969; -- Length of Image (in UpSampled Terms)
-- iSg : INTEGER := 15.5; -- Pixel Range of Half of Image
 iSs : INTEGER := 1024; -- Start of Window for Image (in UpSampled Terms)
-- iSe : INTEGER := 2944; -- End of Window for Image (in UpSampled Terms)
-- dSg : INTEGER := 15.5; -- Pixel Range of Half of Data
 dSs : INTEGER := 8; -- Start of Window for Data
 dSe : INTEGER := 23; -- End of Window for Data
-- sSs : INTEGER := 1024; -- First Possible Search (in UpSampled Terms)
-- sSe : INTEGER := 2944; -- Last Possible Search (in UpSampled Terms)
 BitDepth : INTEGER := 32 -- Number of Bits for Address and Data
);
 PORT
 (
 Clock, Enable, Reset: IN STD_LOGIC; -- Standard Signals
 Shift : IN INTEGER; -- Shift Value
 Data : IN INTEGER; -- Data Value
 Image : IN INTEGER; -- Image Value
 lImage : IN INTEGER; -- Log of Image Value
 DataAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Address for Data
 ImageAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Address for Image
 lImageAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Address for Log of Image (= ImageAddr)
 Result : OUT INTEGER; -- Log-Likelihood Result
 Valid : OUT BOOLEAN -- = TRUE When Finished

A
ppendix C

: V
H

D
L

 V
ersion of Sim

plified M
L

 A
lgorithm

116

);
END LL;

ARCHITECTURE extmem OF LL IS
BEGIN
 loglikelihood: -- Computes one Log-Likelihood
 PROCESS (Clock, Reset)
 VARIABLE Idx : INTEGER := 0; -- Loop Variable
 VARIABLE Ans : INTEGER := 0; -- Accumulates Answer
 BEGIN
 IF Reset = '1' THEN -- Reset Calculator
 Valid <= FALSE;
 Result <= -1; -- Displays All 1's to Indicate Incorrect Answer
 Ans := -1; -- "
 DataAddr <= (OTHERS => '1'); -- Displays All 1's to Indicate Incorrect Address
 ImageAddr <= (OTHERS => '1'); -- "
 lImageAddr <= (OTHERS => '1'); -- "
 Idx := 0; -- Resets Counter for Use
 ELSIF Rising_Edge(Clock) THEN -- Run For Loop on Clock
 IF Enable = '1' Then -- Compute Only if Enabled
 IF (Idx + dSs) > dSe + 1 THEN -- End State, Holds Current Result
 Valid <= TRUE;
 Result <= Ans; -- Outputs Answer
 Ans := Ans;
 DataAddr <= (OTHERS => '1'); -- Displays All 1's to Indicate Incorrect Address
 ImageAddr <= (OTHERS => '1'); -- "
 lImageAddr <= (OTHERS => '1'); -- "
 Idx := Idx; -- Stays in "Hold" state
 ELSE -- Continue Computing Log-Likelihood
 IF Idx = 0 THEN -- If the Computation Just Started
 Valid <= FALSE;
 Result <= -1; -- Displays All 1's to Indicate Incorrect Answer
 Ans := 0; -- Resets Ans for Accumulation Use
 DataAddr <= CONV_STD_LOGIC_VECTOR(dSs + idx,BitDepth);
 ImageAddr <= CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth);
 lImageAddr <= CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth);
 Idx := Idx + 1; -- Increment for Next Clock Cycle
 ELSE -- If in Middle of Computation
 Ans := Ans + Data * lImage - Image; -- ***** Compute and Add Current Value to Ans *****
 IF (Idx + dSs) > dSe THEN -- If the Current Value is the End

117

 Valid <= TRUE;
 Result <= Ans; -- Early Output of Answer (Saves 1 Clock Cycle)
 DataAddr <= (OTHERS => '1'); -- Displays All 1's to Indicate Incorrect Address
 ImageAddr <= (OTHERS => '1'); -- "
 lImageAddr <= (OTHERS => '1'); -- "
 ELSE -- Continues Computation
 Valid <= FALSE;
 Result <= -1; -- Displays All 1's to Indicate Incorrect Answer
 DataAddr <= CONV_STD_LOGIC_VECTOR(dSs + idx,BitDepth);
 ImageAddr <= CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth);
 lImageAddr <= CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth);
 END IF;
 Idx := Idx + 1; -- Increment for Next Clock Cycle
 END IF;
 END IF;
 ELSE -- Reset Calculator for Next Computation
 Valid <= FALSE;
 Result <= -1; -- Displays All 1's to Indicate Incorrect Answer
 Ans := -1; -- "
 DataAddr <= (OTHERS => '1'); -- Displays All 1's to Indicate Incorrect Address
 ImageAddr <= (OTHERS => '1'); -- "
 lImageAddr <= (OTHERS => '1'); -- "
 Idx := 0; -- Resets Counter for ReUse
 END IF;
 END IF;
 END PROCESS loglikelihood;
END extmem;

118

C.2. Main Search Module

LIBRARY ieee ; -- Standard Includes
USE ieee.std_logic_1164.all ;
USE IEEE.std_logic_arith.all;
USE IEEE.std_logic_signed.all;

ENTITY MLIW IS
 GENERIC
 (
 N : INTEGER := 128; -- Number of Points Interpolated
-- DvL : INTEGER := 32; -- Length of Data
-- IvL : INTEGER := 32; -- Length of Image
-- DvuL : INTEGER := 3969; -- Length of Data (in UpSampled Terms)
 IvuL : INTEGER := 3969; -- Length of Image (in UpSampled Terms)
-- iSg : INTEGER := 15.5; -- Pixel Range of Half of Image
 iSs : INTEGER := 1024; -- Start of Window for Image (in UpSampled Terms)
-- iSe : INTEGER := 2944; -- End of Window for Image (in UpSampled Terms)
-- dSg : INTEGER := 15.5; -- Pixel Range of Half of Data
 dSs : INTEGER := 8; -- Start of Window for Data
 dSe : INTEGER := 23; -- End of Window for Data
 sSs : INTEGER := 1024; -- First Possible Search (in UpSampled Terms)
 sSe : INTEGER := 2944; -- Last Possible Search (in UpSampled Terms)
 Step : INTEGER := 960; -- Step Size for Grid Search
 Grid : BOOLEAN := FALSE; -- Determines if Grid Search Happens
 BitDepth : INTEGER := 32 -- Number of Bits for Address and Data
);
 PORT
 (
 Clock, Enable, Reset: IN STD_LOGIC; -- Standard Signals
 Data : IN STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Data Value
 Image : IN STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Image Value (Multiplied by N or more)
 lImage : IN STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Log of Image Value (Multiplied by N+)
 DataAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Address for Data
 ImageAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Address for Image
 lImageAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Address for Log of Image (= ImageAddr)
 Result : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); -- Result: Shift = (Result-1-(IvuL-1)/2)/N
 Valid : OUT STD_LOGIC -- = TRUE When Finished
);

119

END MLIW;

ARCHITECTURE extmem OF MLIW IS
 COMPONENT LL
 GENERIC
 (
 N : INTEGER := 128;
 -- DvL : INTEGER := 32;
 -- IvL : INTEGER := 32;
 -- DvuL : INTEGER := 3969;
 IvuL : INTEGER := 3969;
 -- iSg : INTEGER := 15.5;
 iSs : INTEGER := 1024;
 -- iSe : INTEGER := 2944;
 -- dSg : INTEGER := 15.5;
 dSs : INTEGER := 8;
 dSe : INTEGER := 23;
 -- sSs : INTEGER := 1024;
 -- sSe : INTEGER := 2944;
 BitDepth : INTEGER := 32
);
 PORT
 (
 Clock, Enable, Reset: IN STD_LOGIC;
 Shift : IN INTEGER;
 Data : IN INTEGER;
 Image : IN INTEGER;
 lImage : IN INTEGER;
 DataAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);
 ImageAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);
 lImageAddr : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);
 Result : OUT INTEGER;
 Valid : OUT BOOLEAN
);
 END COMPONENT;

 TYPE STATE_TYPE IS (Start, PreCompute, Compute, Hold); -- Extensible State Type
 TYPE INT_ARRAY_TYPE IS ARRAY (3 DOWNTO 0) OF INTEGER; -- INTEGER Array Type
 SIGNAL State : STATE_TYPE; -- State Machine Variable
 SIGNAL Answer : INTEGER; -- Placeholder Result (for Moore Machine)

120

 SIGNAL Complete: BOOLEAN; -- Internal State Transition Variable
 SIGNAL lEnable : STD_LOGIC; -- Enable for Log-Likelihood Calculator
 SIGNAL lReset : STD_LOGIC; -- Reset for "
 SIGNAL lIdx : INTEGER; -- Shift for "
 SIGNAL lResult : INTEGER; -- Result from "
 SIGNAL lValid : BOOLEAN; -- Validity from "

BEGIN
 LL1 : LL
 GENERIC MAP
 (
 N => N,
-- DvL => DvL,
-- IvL => IvL,
-- DvuL => DvuL,
 IvuL => IvuL,
-- iSg => iSg,
 iSs => iSs,
-- iSe => iSe,
-- dSg => dSg,
 dSs => dSs,
 dSe => dSe,
-- sSs => sSs,
-- sSe => sSe,
 BitDepth => BitDepth
)
 PORT MAP
 (
 Clock => Clock, Enable => lEnable, Reset => lReset,
 Shift => lIdx,
 Data => CONV_INTEGER(Data),
 Image => CONV_INTEGER(Image),
 lImage => CONV_INTEGER(lImage),
 DataAddr => DataAddr,
 ImageAddr => ImageAddr,
 lImageAddr => lImageAddr,
 Valid => lValid,
 Result => lResult
);

121

 statemachine: -- Moore State Machine to Control Calcuation
 PROCESS (Clock, Reset)
 BEGIN
 IF Reset = '1' THEN -- Reset State: Mealy Includes Hold Here
 State <= Start; -- Moves Immediately to Start State
 ELSIF Rising_Edge(Clock) THEN
 CASE State IS
 WHEN Start => -- Start State: Prepares for Calculation
 IF Enable = '1' THEN -- Waits until Enable to Move to PreCompute
 State <= PreCompute;
 END IF;
 WHEN PreCompute => -- PreCompute: Computes EndPoints or Grid Search
 IF Complete THEN -- Waits until Complete to Move to Compute
 State <= Compute;
 END IF;
 WHEN Compute => -- Compute: Performs Gradient-Decent Search
 IF Complete THEN -- Waits until Complete to Move to Hold
 State <= Hold;
 END IF;
 WHEN Hold => -- Hold: Outputs Answer, Prepares for Calculation
 IF Enable = '1' THEN -- Waits until Enable to Move to PreCompute
 State <= PreCompute;
 END IF;
 WHEN OTHERS => -- Should NEVER Happen
 State <= Start;
 END CASE;
 END IF;
 END PROCESS statemachine;

 validout: -- Moore Output of Valid
 WITH State SELECT
 Valid <= '1' WHEN Hold, -- Only in Hold State
 '0' WHEN OTHERS;
 resultout: -- Moore Output of Result
 WITH State SELECT
 Result <= CONV_STD_LOGIC_VECTOR(Answer,BitDepth) WHEN Hold, -- Only in Hold State
 (OTHERS => '1') WHEN OTHERS; -- Displays 1's for Incorrect Answer

 binarysearch: -- Performs Grid and Binary Searches
 PROCESS (Clock, Reset, lValid)

122

 VARIABLE Idx : INTEGER := 0; -- Index for Next Shift
 VARIABLE NeedR : BOOLEAN := FALSE; -- Need Right Value in Grid Search
 VARIABLE NeedS : BOOLEAN := FALSE; -- Need Slope
 VARIABLE LLVals : INT_ARRAY_TYPE; -- LL Values
 VARIABLE LLIdxs : INT_ARRAY_TYPE; -- LL Indexes
 VARIABLE LLMax : INTEGER; -- Current Max LL Index
 BEGIN
 IF Reset = '1' THEN -- Resets All Signals
 Idx := 0;
 NeedR := FALSE;
 NeedS := FALSE;
 LLVals := (OTHERS => 0);
 LLIdxs := (OTHERS => 0);
 LLMax := 0;
 Complete <= FALSE;
 Answer <= 0;
 lEnable <= '0';
 lReset <= '1';
 lIdx <= Idx;
 ELSIF Rising_Edge(Clock) THEN -- Performs Operations
 CASE State IS
 WHEN Start => -- Clear Everything to Begin
 Idx := sSs;
 NeedR := FALSE;
 NeedS := FALSE;
 LLVals := (OTHERS => 0);
 LLIdxs := (OTHERS => 0);
 LLMax := 0;
 Complete <= FALSE;
 Answer <= 0;
 lEnable <= '0';
 lReset <= '0';
 lIdx <= Idx;
 WHEN PreCompute => -- Computes EndPoints or Grid Search
 IF NOT Complete THEN -- Wait for Loop to Complete
 IF NOT lValid THEN -- Wait for LL Calc to Complete
 Idx := Idx;
 NeedR := NeedR;
 NeedS := NeedS;
 LLVals := LLVals;

123

 LLIdxs := LLIdxs;
 LLMax := LLMax;
 Complete <= FALSE;
 lEnable <= '1';
 ELSIF lEnable = '1' THEN -- End of 1 LL computation
 IF NOT NeedS THEN -- Don't Need the Slope
 IF Idx = sSs THEN -- Just store if it's first
 IF NOT Grid THEN -- Select Next Point
 Idx := sSe;
 ELSE
 Idx := Idx + Step;
 END IF;
 NeedR := TRUE;
 NeedS := FALSE;
 LLVals := (OTHERS => lResult);
 LLIdxs := (OTHERS => sSs);
 LLMax := 0;
 Complete <= FALSE;
 lEnable <= '0'; -- Clear the LL Calculator
 ELSE -- Not First Point
 IF LLVals(LLMax) < lResult THEN -- Result is Bigger
 LLVals(3 DOWNTO 0) := (0 => LLVals(3), 1 => lResult,
 2 => LLVals(2), 3 => lResult);
 LLIdxs(3 DOWNTO 0) := (0 => LLIdxs(3), 1 => Idx,
 2 => LLIdxs(2), 3 => Idx);
 LLMax := 1;
 IF Idx + Step <= sSe THEN
 NeedR := TRUE;
 ELSE
 NeedR := FALSE;
 END IF;
 ELSE -- Result is Smaller
 IF NeedR THEN
 IF LLMax = 0 THEN
 LLVals(3 DOWNTO 0) := (0 => LLVals(0), 1 => lResult,
 2 => LLVals(2), 3 => lResult);
 LLIdxs(3 DOWNTO 0) := (0 => LLIdxs(0), 1 => Idx,
 2 => LLIdxs(2), 3 => Idx);
 ELSE
 LLVals(3 DOWNTO 0) := (0 => LLVals(0), 1 => LLVals(1),

124

 2 => lResult, 3 => lResult);
 LLIdxs(3 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(1),
 2 => Idx, 3 => Idx);
 END IF;
 ELSE
 LLVals(3 DOWNTO 0) := (0 => LLVals(0), 1 => LLVals(1),
 2 => LLVals(2), 3 => lResult);
 LLIdxs(3 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(1),
 2 => LLIdxs(2), 3 => Idx);
 END IF;
 NeedR := FALSE;
 LLMax := LLMax;
 END IF;
 IF NOT Grid THEN -- Complete the EndPoints
 NeedS := FALSE;
 Complete <= TRUE;
 ELSE -- Continue with Grid Search
 IF Idx >= sSe THEN -- Setup for Slope Calc
 IF LLIdxs(LLMax) = sSe THEN
 Idx := LLIdxs(LLMax)-1;
 ELSE
 Idx := LLIdxs(LLMax)+1;
 END IF;
 NeedS := TRUE;
 ELSE -- Compute Next Point
 Idx := Idx + Step;
 NeedS := FALSE;
 END IF;
 Complete <= FALSE;
 END IF;
 lEnable <= '0';
 END IF;
 ELSE -- Decide Window on Slope
 NeedR := FALSE;
 NeedS := FALSE;
 IF LLIdxs(LLMax) = sSs THEN -- Start of Window
 IF LLVals(LLMax) < lResult THEN
 Idx := Idx;
 LLVals(1 DOWNTO 0) := (0 => lResult, 1 => LLVals(1));
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(LLMax)+1, 1 => LLIdxs(1));

125

 LLMax := 0;
 ELSE
 Idx := -1;
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => LLVals(1));
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(1));
 LLMax := LLMax;
 END IF;
 ELSIF LLIdxs(LLMax) = sSe THEN -- End of Window
 IF LLVals(LLMax) < lResult THEN
 Idx := Idx;
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => lResult);
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(LLMax)-1);
 LLMax := 1;
 ELSE
 Idx := -1;
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => LLVals(1));
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(1));
 LLMax := LLMax;
 END IF;
 ELSE -- Middle of Window
 Idx := Idx;
 IF LLVals(LLMax) < lResult THEN
 LLVals(1 DOWNTO 0) := (0 => lResult, 1 => LLVals(2));
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(LLMax)+1, 1 => LLIdxs(2));
 LLMax := 0;
 ELSE
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => LLVals(1));
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(1));
 LLMax := 1;
 END IF;
 END IF;
 LLVals(3 DOWNTO 2) := LLVals(3 DOWNTO 2);
 LLIdxs(3 DOWNTO 2) := LLIdxs(3 DOWNTO 2);
 Complete <= TRUE;
 lEnable <= '0';
 END IF;
 ELSE -- Wait for LL Calc to Clear
 Idx := Idx;
 NeedR := NeedR;
 NeedS := NeedS;

126

 LLVals := LLVals;
 LLIdxs := LLIdxs;
 LLMax := LLMax;
 Complete <= FALSE;
 lEnable <= lEnable;
 END IF;
 ELSE -- Leaving State - Setup for Compute
 IF Idx = -1 THEN
 Idx := Idx;
 ELSE
 Idx := (LLIdxs(0)+LLIdxs(1))/2;
 END IF;
 NeedR := FALSE;
 NeedS := FALSE;
 LLVals := LLVals;
 LLIdxs := LLIdxs;
 LLMax := LLMax;
 Complete <= FALSE;
 lEnable <= '0';
 END IF;
 Answer <= 0;
 lReset <= '0';
 lIdx <= Idx;

 WHEN Compute => -- Performs Full Search
 IF NOT Complete THEN -- Wait for Loop to Complete
 IF NOT lValid THEN -- Wait for LL Calc to Complete
 Idx := Idx;
 NeedS := NeedS;
 LLVals := LLVals;
 LLIdxs := LLIdxs;
 LLMax := LLMax;
 IF Idx = -1 THEN
 Complete <= TRUE;
 lEnable <= '0';
 ELSE
 Complete <= FALSE;
 lEnable <= '1';
 END IF;
 ELSIF lEnable = '1' THEN -- End of 1 LL computation

127

 IF NOT NeedS THEN -- Do Pre-Slope Computations
 IF LLVals(LLMax) < lResult THEN -- Result is Bigger
 LLVals(2) := lResult;
 LLIdxs(2) := Idx;
 IF Idx + 1 < LLIdxs(1) THEN -- Setup for Slope Calc
 NeedS := TRUE;
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => LLVals(1));
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(1));
 LLMax := LLMax;
 Idx := Idx + 1;
 ELSE -- To Left, Shutter Right
 NeedS := FALSE;
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => lResult);
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => Idx);
 LLMax := 1;
 Idx := (LLIdxs(0)+Idx)/2;
 END IF;
 ELSE -- Result is Smaller
 NeedS := FALSE;
 LLVals(2) := LLVals(2);
 LLIdxs(2) := LLIdxs(2);
 IF LLMax = 0 THEN -- To Left, Shutter Right
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => lResult);
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => Idx);
 Idx := (LLIdxs(0)+Idx)/2;
 ELSE -- To Right, Shutter Left
 LLVals(1 DOWNTO 0) := (0 => lResult, 1 => LLVals(1));
 LLIdxs(1 DOWNTO 0) := (0 => Idx, 1 => LLIdxs(1));
 Idx := (Idx+LLIdxs(1))/2;
 END IF;
 LLMax := LLMax;
 END IF;
 lEnable <= '0'; -- Clear LL Calculator
 ELSE -- Do Post-Slope Computations
 NeedS := FALSE;
 IF LLVals(2) < lResult THEN -- To Right, Shutter Left
 LLVals(1 DOWNTO 0) := (0 => lResult, 1 => LLVals(1));
 LLIdxs(1 DOWNTO 0) := (0 => Idx, 1 => LLIdxs(1));
 LLMax := 0;
 Idx := (Idx+LLIdxs(1))/2;

128

 ELSE -- To Left, Shutter Right
 LLVals(1 DOWNTO 0) := (0 => LLVals(0), 1 => LLVals(2));
 LLIdxs(1 DOWNTO 0) := (0 => LLIdxs(0), 1 => LLIdxs(2));
 LLMax := 1;
 Idx := (LLIdxs(0)+LLIdxs(2))/2;
 END IF;
 LLVals(2) := LLVals(2);
 LLIdxs(2) := LLIdxs(2);
 END IF;
 LLVals(3) := LLVals(3);
 LLIdxs(3) := LLIdxs(3);
 IF Idx > LLIdxs(0) AND Idx < LLIdxs(1) THEN -- Continue Search
 Complete <= FALSE;
 ELSE -- End of Search
 Complete <= TRUE;
 END IF;
 lEnable <= '0';
 ELSE -- Wait for LL Calculator to Clear
 Idx := Idx;
 NeedS := NeedS;
 LLVals := LLVals;
 LLIdxs := LLIdxs;
 LLMax := LLMax;
 Complete <= FALSE;
 lEnable <= lEnable;
 END IF;
 ELSE -- Leaving State - Setup for Hold
 Idx := Idx;
 NeedS := FALSE;
 LLVals := LLVals;
 LLIdxs := LLIdxs;
 LLMax := LLMax;
 Complete <= FALSE;
 lEnable <= '0';
 END IF;
 NeedR := FALSE;
 Answer <= 0;
 lReset <= '0';
 lIdx <= Idx;

129

 WHEN Hold => -- Hold Output Answer
 Idx := 0;
 NeedR := FALSE;
 NeedS := FALSE;
 LLVals := LLVals;
 LLIdxs := LLIdxs;
 LLMax := LLMax;
 Complete <= FALSE;
 Answer <= LLIdxs(LLMax);
 lEnable <= '0';
 lReset <= '0';
 lIdx <= Idx;

 WHEN OTHERS => -- Should Never Happen
 Idx := 0;
 NeedR := FALSE;
 NeedS := FALSE;
 LLVals := LLVals;
 LLIdxs := LLIdxs;
 LLMax := LLMax;
 Complete <= Complete;
 Answer <= Answer;
 lEnable <= '0';
 lReset <= '0';
 lIdx <= Idx;
 END CASE;
 END IF;
 END PROCESS binarysearch;

END extmem;

130

Appendix D: Complete Parameterization of Bias and Noise Statistics

D.1. LGS Image Size Comparison

Parameters: C = 300, σi = 2, Bg = 0, 1xNyquist

Minimum Sizes Recommended Sizes

131

D.2. LGS swat Characterization.

Parameters: Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist
Sampling (S) = 1, Unless Otherwise Noted.

132

D.3. LGS mliwl Characterization.

Parameters: Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist
Sampling (S) = 1, Unless Otherwise Noted.

133

D.4. LGS mliwc Characterization.

Parameters: Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist
Sampling (S) = 1, Unless Otherwise Noted.

134

D.5. Tracking Hubble Image Size Comparison.

Parameters: C=8000, σi≈2, Bg=0, 1xNyquist

Minimum Sizes Recommended Sizes

135

D.6. Tracking Hubble mliwl Characterization (y dim).

Parameters: Image Size (L), Intensity (C) = 8000, σi= 2, Background (Bg) = 0, &
Nyquist Sampling (S) = 1, Unless Otherwise Noted.

136

D.7. Tracking Hubble mliwc Characterization (y dim).

Parameters: Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist
Sampling (S) = 1, Unless Otherwise Noted.

137

D.8. WFS Hubble Image Size Comparison.

Parameters: C=300, σi≈2, Bg=0, 1xNyquist

Minimum Sizes Recommended Sizes

138

D.9. WFS Hubble swat Characterization

Parameters: Image Size (L), Intensity (C) = 8000, σi = 2, Background (Bg) = 0, &
Nyquist Sampling (S) = 1, Unless Otherwise Noted.

139

D.10. WFS Hubble mliwl Characterization

Parameters: Image Size (L), Intensity (C) = 8000, σi = 2, Background (Bg) = 0, &
Nyquist Sampling (S) = 1, Unless Otherwise Noted.

140

D.11. WFS Hubble mliwc Characterization

Parameters: Image Size (L), Intensity (C) = 8000, σi = 2, Background (Bg) = 0, &
Nyquist Sampling (S) = 1, Unless Otherwise Noted.

141

Bibliography

1. Baletic, James W. “A new CCD designed for curvature wavefront sensing,” Optical
Detectors for Astronomy II: State –of-the-Art at the Turn of the Millenium, 4: 283
(1999).

2. Barclay, H. T. “The SWAT wavefront sensor,” Lincoln Lab. J. 5(1): 115 (1992).

3. Blanc, Amandine. “Marginal estimation of aberrations and image restoration by use
of phase diversity,” J. Opt. Soc. Am. A, 20(6): 1035-1045 (June 2003).

4. Cain, S. and M. M. Hayat, “Exploiting the Temporal Statistics of Atmospheric Tilt
for Improved Short Exposure Imaging,” Proceedings of the 2001 Conference on
Signal Recovery and Synthesis. Albuquerque NM: November, 2001.

5. Cain, Stephen C. “Design of an image projection correlating wavefront sensor for
adaptive optics,” Opt. Eng. 43(7): 1670-1681 (July 2004).

6. Cain, Stephen C. Personal Correspondence. Jul 04 - Feb 06.

7. “Devices - Altera eStore,” Online. 20 January 2006
http://www.altera.com/buy/devices/buy-devices.html

8. Goodman, J. W. Introduction to Fourier Optics. New York: McGraw-Hill, 1968.

9. Leon-Garcia, Alberto. Probability and Random Processes for Electrical
Engineering (2nd Edition). Reading MA: Addison Wesley, 1994.

10. Lofdahl, Mats G. “Fast Phase Diversity Wavefront Sensing for Mirror Control,”
Adaptive Optical System Technologies, Proc. SPIE 3353 (March 1998)

11. Oppenheim, Alan V. and Ronald W. Schafer. Discrete-Time Signal Processing (2nd
Edition). Upper Saddle River NJ: Prentice Hall, 1999.

12. Pennington, Timothy L. Performance Comparison of Shearing Interferometer and
Hartmann Wave Front Sensors. MS Thesis, AFIT/GE/ENG/93D-31. School of
Engineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1993 (ADA274031).

13. Pidwirny, Michael, Fundamentals of Physical Geography. Online. 10 September
2005 http://www.physicalgeography.net/fundamentals/7b.html

142

14. Primmerman, Charles A. “Atmospheric Adaptive Optics Technology,” Lasers and
Electro-Optics Society Annual Meeting, 1992. LEOS ’92, Conference Proceeding.
612 (16-19 November 1992)

15. “The Resolution of a Telescope – Dawes, Rayleigh and Sparrow,” The Astroscopic
Labs, Online. Internet. 10 Nov 2004.
http://www.licha.de/astro_mtf_telescope_resolution.php

16. Roggemann, Michael C. Imaging Through Turbulence. Boston MA: CRC Press,
1996.

17. Rousset, G. “Wavefront Sensing,” Adaptive Optics for Astonomy. C423 of NATO
Advanced Study Institude Series 115-137 (1994)

18. Saleh, Bahaa E. A. and Malvin Carl Teich. Fundamentals of Photonics. New York:
Wiley, 1991.

19. Van Trees, Harry L., Detection, Estimation, and Modulation Theory. New York:
John Wiley & Sons, Inc., 2001.

20. Tyahla, Lori ed. “The Hubble Project - Overview,” NASA. Online. 11 Jan 2005.
http://hubble.nasa.gov/overview/intro.php

21. Wiberg, D. M. “A Spatial Non-Dynamic LQG Controller: Part I, Application to
Adaptive Optics,” Online. www.ucolick.org/~wiberg/ieeepart1.pdf
(Submitted to IEEE for review 24 February 2004)

22. Weisstein, Eric W., “Zernike Polynomial.” From MathWorld—A Wolfram Web
Resource. Online. 10 September 2005
http://mathworld.wolfram.com/ZernikePolynomial.html

23. Wyant, J. C. “Use of an AC Heterodyne Lateral Shear Interferometer with Real-
Time Wavefront Correction Systems,” Appl. Opt., 14: 2622-2626 (1975)

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
23-03-2006

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Aug 2004-Mar 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Multi-Dimensional Wave Front Sensing Algorithms for Embedded Tracking and Adaptive Optics
Applications
 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Wood, Christopher C., First Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way Bldg 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/06-57

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/DESA
 ATTN: Dr. Victor L. Gamiz
 3550 Aberdeen Ave SE, Bldg 422
 Kirtland AFB, NM 87117-5776
 Comm: 505-846-4846 DSN: 246-4846 Email: Victor.Gamiz@Kirtland.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 Current tracking and adaptive optics techniques cannot compensate for fast-moving extended
objects, which is important for ground-based telescopes providing space situational awareness. To fill
this need, a vector-projection maximum-likelihood wave-front sensing algorithm development and testing
follows for this application. A derivation and simplification of the Cramer-Rao Lower Bound for wave-
front sensing using a laser guide star bounds the performance of these systems and guides implementation
of a vastly optimized maximum-likelihood search algorithm. A complete analysis of the bias, mean
square error, and variance of the algorithm demonstrates exceptional performance of the new sensor. A
proof of concept implementation shows feasibility of deployment in modern adaptive optics systems.
The vector-projection maximum-likelihood sensor satisfies the need for tracking and wave-front sensing
of extended objects using current adaptive optics hardware designs.

15. SUBJECT TERMS

Tracking, Adaptive Optics, Cramer-Rao Lower Bound, Maximum-Likelihood Estimation, FPGA

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Stephen C. Cain, PhD (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 157 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636 ext 4281; email: stephen.cain@afit.edu

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

	Multi-Dimensional Wave Front Sensing Algorithms for Embedded Tracking and Adaptive Optics Applications
	Recommended Citation

	Microsoft Word - Thesis Linkage.doc

