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Abstract 
 
 
 
 Current tracking and adaptive optics techniques cannot compensate for fast-

moving extended objects, which is important for ground-based telescopes providing 

space situational awareness.  To fill this need, a vector-projection maximum-likelihood 

wave-front sensing algorithm development and testing follows for this application.  A 

derivation and simplification of the Cramer-Rao Lower Bound for wave-front sensing 

using a laser guide star bounds the performance of these systems and guides 

implementation of a vastly optimized maximum-likelihood search algorithm.  A complete 

analysis of the bias, mean square error, and variance of the algorithm demonstrates 

exceptional performance of the new sensor.  A proof of concept implementation shows 

feasibility of deployment in modern adaptive optics systems.  The vector-projection 

maximum-likelihood sensor satisfies the need for tracking and wave-front sensing of 

extended objects using current adaptive optics hardware designs. 
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One More Roll 

 

We toast our faithful comrades now fallen from the sky 

And gently caught by God’s own hand to be with him on high. 

To dwell among the soaring clouds they knew so well before 

From dawn patrol and victory roll at heaven’s very door. 

And as we fly among them there we’re sure to hear their plea 

“Take care, my friend, watch your six, and do one more roll... just for me.” 

Gerald (Jerry) Coffee, Captain, USN (Ret.) 

Hanoi, 1968 
 
 
 
 
 



vi 

 
 
 

Acknowledgments 
 
 
 
 
 I would like to thank my Dad for his unending support without whom I would not 

be here today, and Michelle for her care and understanding as this thesis consumed the 

time and attention that she deserved.  This work would not have been possible without 

the guidance provided by my advisor, Dr. Stephen Cain, or the education provided by the 

committee members Dr. Richard Martin and Dr. Yong Kim. 

 
 
 
 
 
       Christopher C. Wood 
 
 
 
 
 
 
 
 
 
 
 
 



vii 

 
 

Table of Contents 
 
 

 Page 

Abstract ........................................................................................................................ iv 

Dedication......................................................................................................................v 

Acknowledgments........................................................................................................ vi 

Table of Contents........................................................................................................ vii 

List of Figures .............................................................................................................. xi 

List of Tables ............................................................................................................. xiii 

I. Introduction ............................................................................................................1 

1.1. Background and Motivation ...........................................................................1 
1.1.1. The Effects of Atmospheric Turbulence ..............................................1 
1.1.2. Adaptive Optics Solutions....................................................................4 
1.1.3. Problems and Need for Improvement in Wave-Front Sensing ............5 

1.2. Summary of Current Techniques ....................................................................7 
1.3. Contributions and Scope.................................................................................9 
1.4. Approach/Methodology ................................................................................10 

II. Background...........................................................................................................11 

2.1. Current Wave-Front Sensing Limitations.....................................................11 
2.2. Low Order Wave-Front Sensors ...................................................................11 

2.2.1. Shack-Hartmann Wave-Front Sensor.................................................11 
2.2.2. Shearing Interferometer......................................................................14 

2.3. Advanced Wave-Front Sensors.....................................................................15 
2.3.1. Curvature Wave-Front Sensor............................................................15 
2.3.2. Phase Diversity Wave-Front Sensor...................................................16 

2.4. Theoretical Maximum Likelihood WFS.......................................................18 
2.5. Comparison and Summary............................................................................18 
2.6. Possible Areas of Investigation.....................................................................20 

 
 
 



viii 

 Page 

III. Modeling...............................................................................................................21 

3.1. Image Modeling Parameters .........................................................................22 
3.1.1. Wavelength.........................................................................................22 
3.1.2. Sampling.............................................................................................23 
3.1.3. Image Size ..........................................................................................24 
3.1.4. Light-Level (Total Intensity)..............................................................26 
3.1.5. Background Intensity .........................................................................27 

3.2. Image Creation..............................................................................................28 
3.2.1. Two-Dimensional Gaussian (Simulated Laser Guide Star) ...............28 
3.2.2. Using Real Images or Real Data ........................................................29 
3.2.3. Image Projection / Vectorization........................................................33 

3.3. Image Shifting...............................................................................................35 
3.3.1. Shifting of a Known Function ............................................................35 
3.3.2. FFT / Sinc-Interpolation.....................................................................35 
3.3.3. Sub-Pixel Shift Step Size ...................................................................36 

3.4. Calculating Bias and Mean Absolute Bias (MAB).......................................36 
3.5. Noise Generation ..........................................................................................37 

3.5.1. Poisson and Bernoulli Random Variables..........................................37 
3.5.2. Effects of Projecting Images ..............................................................39 
3.5.3. Computing Noise Statistics ................................................................40 

3.6. Summary .......................................................................................................42 

IV. Analysis ................................................................................................................43 

4.1. Cramer-Rao Lower Bound (CRLB) for Tilt Estimates Obtained with LGS 43 
4.1.1. Relevant Statistics, Assumptions, and Setup .....................................43 
4.1.2. Derivation...........................................................................................45 
4.1.3. Simplification and Further Assumptions............................................58 
4.1.4. Benefits and Discussion .....................................................................66 

4.2. Maximum Likelihood Optimized Search Algorithm....................................66 
4.2.1. Relevant Statistics, Assumptions, and Setup .....................................66 
4.2.2. Properties of Log-Likelihood Leveraged ...........................................69 
4.2.3. Search Algorithm Definition ..............................................................70 
4.2.4. Computational Complexity Analysis and Comparison ......................74 
4.2.5. Possible Improvements.......................................................................78 
4.2.6. Limitations..........................................................................................78 

4.3. Implementation Strategy...............................................................................79 
4.3.1. System Layout .............................................................................................79 

4.3.2. VHDL Implementation.......................................................................80 
4.3.3. Extensions to Implementation ............................................................83 

4.4. Summary .......................................................................................................83 



ix 

 Page 

V. Results and Discussion .........................................................................................84 

5.1. LGS / 2D Gaussian - Modeling and Simulation Results ..............................84 
5.1.1. Effects of Image Projection................................................................85 
5.1.2. Detailed Bias ......................................................................................86 
5.1.3. Detailed MSE and VAR.....................................................................88 
5.1.4. Image Size Analysis ...........................................................................89 
5.1.5. Sampling Analysis..............................................................................90 
5.1.6. Background Intensity Analysis ..........................................................91 
5.1.7. Light-Level Analysis..........................................................................92 

5.2. Tracking Extended Object - Modeling and Simulation Results ...................93 
5.2.1. Image Size Analysis ...........................................................................94 
5.2.2. Sampling Analysis..............................................................................95 
5.2.3. Background Intensity Analysis ..........................................................96 
5.2.4. Light-Level / Total Intensity Analysis ...............................................96 

5.3. WFS Extended Object - Modeling and Simulation Results .........................97 
5.3.1. Image Size Analysis ...........................................................................97 
5.3.2. Sampling Analysis..............................................................................98 
5.3.3. Background Intensity Analysis ..........................................................99 
5.3.4. Light-Level / Total Intensity Analysis ...............................................99 

5.4. Implementation / VHDL Simulation Results..............................................101 
5.4.1. Targeted Device Resource Summary ...............................................101 
5.4.2. Test Bench Simulation Results.........................................................102 

5.5. Summary .....................................................................................................104 

VI. Conclusions.........................................................................................................105 

6.1. Key Contributions.......................................................................................105 
6.2. Lessons Learned .........................................................................................106 
6.3. Further Research .........................................................................................106 

Appendix A: Mathematica Verification of CRLB................................................108 

A.1. Setup of Formulas .......................................................................................108 
A.2. Computation of CRLB................................................................................109 
A.3. Simplification Setup and Solution ..............................................................110 

Appendix B: MATLAB Version of ML Algorithm .............................................111 

 
 
 



x 

 Page 

Appendix C: VHDL Version of Simplified ML Algorithm .................................115 

C.1. Log-Likelihood Computation Module........................................................115 
C.2. Main Search Module...................................................................................118 

Appendix D: Complete Parameterization of Bias and Noise Statistics ................130 

D.1. LGS Image Size Comparison......................................................................130 
D.2. LGS swat Characterization. ........................................................................131 
D.3. LGS mliwl Characterization........................................................................132 
D.4. LGS mliwc Characterization. ......................................................................133 
D.5. Tracking Hubble Image Size Comparison..................................................134 
D.6. Tracking Hubble mliwl Characterization (y dim). ......................................135 
D.7. Tracking Hubble mliwc Characterization (y dim).......................................136 
D.8. WFS Hubble Image Size Comparison. .......................................................137 
D.9. WFS Hubble swat Characterization............................................................138 
D.10. WFS Hubble mliwl Characterization.........................................................139 
D.11. WFS Hubble mliwc Characterization ........................................................140 

Bibliography ..............................................................................................................141 



xi 

 
 

List of Figures 
 
 

Figure Page 
 

1. Temperature Gradients and Turbulence Sources in the Atmosphere [13].........2 

2. Distorting of Wave-Front Moving Through Atmosphere [12] ..........................3 

3. Typical Adaptive Optics System Based on a Large Telescope [21]..................4 

4. Wave-Front Sensor Array [16] ........................................................................12 

5. Single Wave-Front Sensor Element [16] .........................................................12 

6. Shearing Interferometer Final Stage Operation [16] .......................................14 

7. Curvature Adaptive Optics Setup [1]...............................................................16 

8. Curvature Sensing Setup [1] ............................................................................16 

9. Typical Phase Diversity Hardware Setup [3] ..................................................17 

10. 2-D Gaussian and Vector Projections in x and y Planes..................................29 

11. Observed Image of 2-D Gaussian without Noise ............................................29 

12. Hubble for Wave-Front Sensing & Projections in x and y Planes...................32 

13. Observed Image of Hubble for Wave-Front Sensing without Noise...............32 

14. Hubble for Tracking and Projections in x and y Planes ..................................32 

15. Observed Image of Hubble for Tracking without Noise .................................32 

16. SNR v Light-Level...........................................................................................38 

17. CRLB Numerical and Analytical Solution ......................................................65 

18. Log-Likelihood for Gaussian in Noise ............................................................70 

19. Log-Likelihood for Shifted Gaussian in Background and Noise ....................70 



xii 

Figure Page 
 

20. Flow Diagram of Optimized Log-Likelihood Search Algorithm ....................72 

21. Illustration of Log-Linear Nature of ML Algorithm for LGS .........................77 

22. Moore State-Machine for Implementation ......................................................81 

23. Variance of Centroiding Algorithms and CRLB .............................................85 

24. Mean Square Error of Centroiding Algorithms ...............................................85 

25. Absolute Bias v Shift for LGS.........................................................................87 

26. Variance v Shift for LGS .................................................................................88 

27. Mean Absolute Error v Shift for LGS .............................................................88 

28. Mean Square Error v Image Size for LGS.......................................................90 

29. Mean Square Error v Sampling Rate for LGS.................................................91 

30. Mean Square Error v Background Intensity for LGS ......................................92 

31. Mean Square Error v Light-Level for LGS .....................................................93 

32. Mean Square Error v Image Size for Hubble Tracking ...................................94 

33. Mean Square Error v Sampling Rate for Hubble Tracking .............................95 

34. Mean Square Error v Background Intensity for Hubble Tracking ..................96 

35. Mean Square Error v Light Level for Hubble Tracking ..................................97 

36. Mean Square Error v Image Size for Hubble WFS .........................................98 

37. Mean Square Error v Sampling Rate for Hubble WFS....................................99 

38. Mean Square Error v Background Intensity for Hubble WFS.......................100 

39. Mean Square Error v Light-Level for Hubble WFS ......................................100 

40. Zoomed in View of First Portion of VHDL Simulation ................................103 

41. Full View of VHDL Simulation ....................................................................103



xiii 

 

 
List of Tables 

 
 

Table Page 

1. Performance Comparison for Common Wave-Front Sensors .........................19 

2. Additional Known Advantages and Disadvantages of Wave-Front Sensors ..19 

3. Image Modeling Parameters and Simulated Ranges .......................................22 

4. Algorithm complexity for Shack-Hartmann and SWAT Sensors....................75 

5. Algorithm complexity for Maximum-Likelihood Sensor Phase I ...................76 

6. Algorithm complexity for Maximum-Likelihood Sensor Phases II and III ....76 

7. Resources Required for Synthesis .................................................................101 

8. Preliminary Timing Analysis.........................................................................102 

 
 
 
 



 1

 
 
 

MULTI-DIMENSIONAL WAVE FRONT SENSING ALGORITHMS FOR 
EMBEDDED TRACKING AND ADAPTIVE OPTICS APPLICATIONS 

 
 
 

I. Introduction 
 
 

 Atmospheric turbulence affects clarity of anything in space viewed through large 

telescopes.  Machines that perform optical tracking of moving targets or provide high-

resolution imaging must correct for turbulence effects by detecting the distorted wave-

front caused by turbulence to prevent loss of tracking ability or image corruption [16].  

The capability to detect distortion in the wave-front, or relative position changes of an 

image, is often embedded or built into the wave-front sensor and processing algorithms 

as a part of the adaptive optics system [16].  Modern adaptive optics systems allow for 

wave-front correction with only guide stars and small, extended sources, sometimes 

requiring post-processing of gathered data [12].  A new maximum-likelihood wave-front 

sensing algorithm embedded in proven adaptive optics designs could enhance detection 

for non-ideal conditions and real-time operations [5].  What and where atmospheric 

turbulence is, how adaptive optics attempt to overcome the effects of this turbulence, and 

why these optics systems need improvement all become clear in the following sections. 

1.1. Background and Motivation 

1.1.1. The Effects of Atmospheric Turbulence 

 Many factors on earth, such as natural processes and terrain features, affect 

weather significantly; however, the main driver of turbulence is the sun’s uneven heating 
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of the earth’s surface.  The uneven heating causes convection currents and wind 

spawning circular currents, eddies, which trap varying temperatures throughout the 

atmosphere causing variations of the index of refraction thereby distorting the wave-

front.  Figure 1 shows the first two major layers, the troposphere and stratosphere, 

containing 99.9 % of the earth’s atmosphere, and whose turbulence is responsible for the 

majority of light distortions [13].  The figure also indicates an average temperature 

gradient; a few realistic sample temperature gradients as seen through different columns 

of air; and other sources of turbulence such as shearing winds, terrain, and natural 

processes feeding convection.  The results of these sources of turbulence can combine to 

distort a wave-front as it passes through different temperature gradients in the earth’s 

atmosphere. 

 
Figure 1.  Temperature Gradients and Turbulence Sources in the Atmosphere [13] 
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 A clearer view of how a wave-front distorts and how the wave-

front initially forms is available in Figure 2.  A point source, or a 

distant star, emits light, which travels outward from the star much as 

ripples travel outward from a pebble thrown in a pond.  When these 

“waves” are far away from the source, they appear as a straight line, 

forming a wave-front.  Researchers often model the propagating waves 

as a two-dimensional Fourier Transform.  Much like taking the Fourier 

Transform of a single point in time results in a straight line in the 

frequency domain, a point source in space transforms to a plane wave 

related to spatial frequency rather than temporal frequency [8].  The 

wave-front does not distort much as it passes through the stratosphere, 

as temperature variations seldom occur there; however, the troposphere 

severely distorts the wave-front due to the numerous opportunities for 

eddies to form and trap temperature variations.  The result is a 

corrupted wave-front that, when focused onto an imaging device 

produces a blurry and distorted image bearing little resemblance to the 

original object. 

 In addition to using phase screens to model the temperature 

variations and the relative refractive index changes directly at different 

altitudes, researchers use Zernike polynomials, or “Zernikes”, to 

characterize the distortions in the wave-front itself [16].  As opposed to a rectangular 

based set of polynomials, the Zernike polynomials describe a set of circular-based, two-

dimensional functions corresponding to the circular opening in a telescope or other 

Figure 2.  
Distorting of 
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Atmosphere 
[12] 

Stratospheric 
Turbulence 
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imaging device [16, 22].  These models are crucial to correcting the wave-front in an 

Adaptive Optics (AO) system. 

1.1.2. Adaptive Optics Solutions 

 Although there are many applications for adaptive optics in modern imaging 

systems, the basic structure as shown in Figure 3 for a general large telescope system 

remains relatively constant across the applications [16]. 

 

Figure 3.  Typical Adaptive Optics System Based on a Large Telescope [21] 
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A simple trace through the system reveals that light enters through the telescope lens with 

a distorted wave-front, and then reflects from an adaptive mirror, a mirror that can 

deform using mechanical actuators, which is initially flat as there is no information to 

correct the wave-front.  The light then continues to a fifty-fifty beam-splitter sending half 

of the light into a lens, which focuses the light onto a high-resolution imaging device, and 

the other half to the wave-front sensor.  The first portion of the wave-front sensor both 

optically and electrically detects measurable parameters of the wave-front, passing that 

information to an algorithmic portion of the wave-front sensor to estimate the parameters 

for later modeling.  Since the wave-front sensor is the heart of this system, this thesis 

concerns itself with the algorithmic portion of the wave-front sensor.  These estimates 

pass to the reconstructor in the control system, which builds a model of the wave-front 

and then applies that information to a known model for the adaptive mirror to attempt 

wave-front correction.  If the wave-front has a lag or dip in it causing the light to arrive 

later than expected, the mirror must have a corresponding bump to accelerate the light 

back to its appropriate phase to compensate for the distortion.  Once an initial estimate 

corrects the wave-front, additional wave-front sensing refines the current estimates and 

detects further changes, producing higher quality results for future images. 

1.1.3. Problems and Need for Improvement in Wave-Front Sensing 

 The applications for higher quality imaging span the gamut, from ground-based 

and space-based telescopes to military applications such as the Airborne Laser and even 

medical services such as measuring aberrations, or deformities, in an eye.  These 

applications drive the need for better quality imaging and improvements in wave-front 

sensing. 
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 As with any scientific research, improvements require a metric by which to 

measure results and draw conclusions.  To this end, knowing the structure for a Cramer-

Rao lower bound (CRLB) would provide, independent of the estimation technique, an 

analytical method to judge the efficacy of current and proposed wave-front sensing 

algorithms.  Once known, the Cramer-Rao lower bound can also guide research for 

improving current estimation techniques as well as developing new estimation 

approaches to manage more complex imaging scenarios. 

 A complex situation of interest is imaging of extended objects, or light sources 

that do not conform to the definition of a point source, such as a satellite in orbit, the 

surface roughness of the sun, a scud missile, or even a truck on a highway.  Tracking a 

satellite in orbit allows for space situational awareness, or imaging of foreign assets, 

without placing costly assets in space; however, it requires wave-front updates for this 

extended object, the satellite, at an incredible rate of 1,000 Hz or greater due to the speed 

in which the satellite moves.  A complication to the satellite-tracking scenario stems from 

the typical optical tracking system, which causes the image to fill the field of view and 

allows new information to enter the scene while tracking, defeating current fast-acting 

sensors.  The surface intensity variation, or roughness, of the sun is a unique problem in 

that the image gathered has extremely low-contrast features for tracking or correlation, 

disabling most modern wave-front sensors; but imaging of the sun is necessary to predict 

communication outages and solar weather in general.  The scud missile, truck, and other 

daytime AO applications represent a class of objects whose backgrounds, like the sun, 

are not black reducing the contrast, and require rapid wave-front updates for the dynamic 

turbulence between the object and imaging device.  Imaging extended objects, although 
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merely a collection of point sources with spatial reference to each other, is not the only 

type of imaging that current wave-front sensors can have poor performance. 

 Occasionally, atmospheric turbulence results in a tip-tilt, represented by Zernike 

polynomials two and three, beyond the physically measurable range of the sensor causing 

an unknown in the collection of estimated parameters and preventing the reconstructor 

from modeling the wave-front.  This unknown occurs when the tip or tilt is so great that 

the majority of the image moves off the detector leaving the algorithm a small amount of 

information to work with.  Modern sensors are not capable of controlling such a situation, 

and the entire adaptive optics system suffers when a single sensor cannot acquire an 

accurate estimate for the wave-front. 

 Although the optical and electrical properties of current sensors potentially 

support the previously mentioned improvements, the algorithms currently in use do not; 

therefore, an investigation of a vector-projection, maximum-likelihood-correlating wave-

front sensor guided by Cramer-Rao lower bounds and simulation experiments will 

proceed. 

1.2. Summary of Current Techniques 

 Several factors limit the performance of current adaptive optics techniques 

preventing the ability to track or perform wave-front sensing for fast-moving, extended 

objects, or low-contrast objects.  The largest contributor to these limitations is the wave-

front sensor, which provides the necessary information for the adaptive optics system to 

correct the wave-front deformities. 

 There are two main categories of wave-front sensors, low-order wave-front 

sensors and advanced wave-front sensors, both of which are capable of detecting wave-
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front distortions.  The advanced wave-front sensors typically produce better performance 

through higher order computations and more complex algorithms; however, most cannot 

image an extended object and none are capable of the tracking application as closed loop 

speeds are currently very low [6].  Current low-order wave-front sensors provide slightly 

lower imaging performance, but operate at up to 1000 Hz, allowing for tracking and other 

fast-moving imaging applications [16].  These simpler estimation techniques include 

numerous wave-front sensors; however, only the easily implemented and fast-operating 

Shack-Hartmann and Short-Wavelength Adaptive Techniques (SWAT) wave-front 

sensors are common today [16].  Both of these sensors use a centroid-based algorithm to 

estimate tip and tilt, and this algorithm can have extremely poor performance when 

attempting wave-front sensing or tracking on an extended object [16].  The simplicity of 

the centroid algorithm suggests that a more complex and statistically based algorithm 

could surpass these sensors in performance, possibly retaining the operating speed while 

tracking or performing wave-front sensing on extended objects. 

 Research indicates the theoretical vector-projection maximum-likelihood wave-

front sensor can achieve the performance of a low-order wave-front sensor for tracking 

and wave-front sensing of guide stars while providing suitable performance for imaging 

extended objects [5].  This wave-front sensor uses the same hardware system as the 

SWAT wave-front sensor; however, the algorithm is a maximum-likelihood estimation 

technique, which provides correlation capability for an extended object while 

maintaining performance for point sources [5].  Currently only limited simulated 

statistical characterization of this sensor is available and the tracking application requires 

a modern processor to implement this more complex algorithm [5]. 
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1.3. Contributions and Scope 

 It is the goal of this research to quantify the efficacy of a vector-projection, 

maximum-likelihood-correlating wave-front sensor for tracking extended objects based 

on a satellite application, as well as a couple wave-front sensing applications, through 

three facets [5]. 

 The first contribution is generalized model for the Cramer-Rao lower bound with 

assumptions allowing for future applications provides the analytical basis for research.  

The CRLB should be applicable to any type of wave-front sensor. 

 The second contribution is an algorithmic analysis to increase the temporal 

performance of the new complex maximum-likelihood algorithm to allow simulations 

that thoroughly characterize the noise-independent bias of the algorithm resulting in a 

third contribution as well as the noise statistics of mean squared error (MSE) and 

variance (VAR) for a fourth contribution.  The variance directly compares to the Cramer-

Rao lower bound to reveal limitations in the algorithm.  The search algorithm developed 

in this phase contributes to other applications requiring a fast and complete algorithm to 

perform the search of functions with special properties such as maximum-likelihood. 

 The fifth contribution is a proof of concept for a feasible method of developing 

this algorithm for embedded hardware implementation and a complete plan for 

implementation offers insight to researchers in the field looking for feasible solutions.  

The third criterion is complete when a single working implementation emerges; however, 

multiple revisions provide further utility. 
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 This three-faceted exploration secures a concrete approach to the research, 

development, and implementation of a vector-projection, maximum-likelihood-

correlating wave-front sensor. 

1.4. Approach/Methodology 

 The three-faceted investigation above, with the provided motivation, is a template 

that guides the organization of both the research and this document.  A thorough 

investigation of current techniques with appropriate discussion of relevant subjects 

provides the necessary foundation for research.  This leads to development of the 

tracking and wave-front sensing application environments for producing realistic 

simulations and allowing accurate characterization of the new algorithm.  Theoretical 

analysis develops the CRLB for wave-front tilt estimates, which provides input for 

development of a fast, compact, and complete search algorithm for discovering the peak 

likelihood.  From the validated algorithm extends a focused hardware implementation.  

The results of extensive simulations provide the bias, mean squared error, and variance 

statistics characterizing the algorithm for tracking and numerous wave-front sensing 

applications.  The research concludes with a synopsis and areas of further research, 

allowing for future contributions to the body of knowledge regarding tracking and wave-

front sensing. 
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II. Background 
 
 

2.1. Current Wave-Front Sensing Limitations 

 Modern imaging of extended objects requires either a stable point source in the 

field of view or complex optics and algorithms to detect the wave-front correctly across 

the lens of the telescope.  The extended source typically forces researchers, astronomers, 

and field users to find or create a guide star close to the extended object they wish to 

view.  The applications mentioned previously, particularly imaging large objects or 

tracking fast moving targets, are difficult or impossible to realize using nearby or 

artificial guide stars.  Wave-front sensing and tracking is possible due to the complex 

system mentioned in the introduction; however, the key components are the wave-front 

sensor and the algorithm to determine tip and tilt.  The following describes the typical 

tip-tilt only detectors and a few more complex wave-front detection methods, directly 

compares and summarizes the features of each sensor, and finally presents areas of 

potential research given this information. 

2.2. Low Order Wave-Front Sensors 

2.2.1. Shack-Hartmann Wave-Front Sensor 

 The most widely employed wave-front sensor uses the Hartmann test to estimate 

the linear, lower order Zernikes, two and three, and currently has the best overall real-

time performance [16].  Both the hardware structure and the algorithm to gather offset, or 

tip and tilt, information lead to a simple mathematical model stemming from the 

elementary nature of the sensor as described below [17]. 
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 Figure 4 illustrates a typical Shack-Hartmann sub-aperture array in one-

dimension and a single sub-aperture in Figure 5 indicates a linearly tilted wave-front and 

the corresponding offset in two-dimensions when focused [16].  The sub-apertures must 

be small enough to meet the Nyquist sampling criterion to ensure that the curved wave-

front is linear in the region measured by the sensor driving the overall number of sub-

apertures [8].  The Nyquist rule applies to any sub-aperture type system, as well as 

another generalized rule that imposes a requirement of approximately one adaptive optics 

channel, sub-aperture, per turbulence coherence radius r0 as a minimum, independent of 

the telescope size [14].  Larger numbers of sub-apertures implies smaller sizes; however, 

this larger number of sensors can introduce more noise into the system and decrease 

light, degrading overall system performance [5]. 

 

 

 

Figure 4.  Wave-Front Sensor Array [16] Figure 5.  Single Wave-Front Sensor 
Element [16] 
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These sub-apertures consist of a lenslet array, which focuses the light onto a charge 

coupled device (CCD) array for the individual wave-front sensors (WFS) [16].  The CCD 

readout, where the information collects, is the second opportunity for significant noise 

injection before the wave-front algorithm begins processing. 

 The algorithm driving a Shack-Hartmann wave-front sensor is a simple two-

dimensional centroiding algorithm [17].  Each intensity readout multiplies a linear 

position number, then average together, and finally the total power in the image divides 

the result for the centroid in one-dimension and then repeats for the next dimension.  This 

operation takes a minimal amount of time allowing greater than 100 Hz operation, and 

provides quality results for guide stars and moderately extended objects [12].  There is a 

lower bound on error for shot noise, or quantization noise; however, it is somewhat 

restrictive and only applies to the Shack-Hartmann wave-front sensor and guide stars 

[16].  The simplistic nature of this algorithm lends itself to improvement in accuracy as 

time permits such investigations. 

 One performance improvement for the Shack-Hartmann sensor came from 

research at MIT Lincoln Laboratory; the short wavelength adaptive techniques wave-

front sensor, which splits the incoming light to two lenslet arrays and two CCDs oriented 

at 90° to each other.  The performance improvement stems from allowing the CCD to 

gather all of the charge in the image into vector readout, or a projection, and then 

performing a one-dimensional centroiding algorithm for each orientation [2].  Although 

image projection allows for both faster readout and lower readout noise, it decreases the 

brightness of the original image, decreasing the signal to noise ratio (SNR) making an 

accurate estimate less likely. 
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2.2.2. Shearing Interferometer 

 A more complex wave-front sensor not typically considered outside of academia 

that strictly estimates Zernikes two and three is the lateral shearing interferometer [23].  

Although the physical implementation of a single shearing interferometer can be simple, 

the algorithm to retrieve a usable tip-tilt requires a high degree of effort, and the model 

for the wave-front sensor system clearly indicates the non-mathematical foundation of the 

apparatus and the amount of processing required to retrieve phase information [16]. 

 The physical apparatus splits the incoming light several times encompassing the 

entire wave-front of the sensor to perform filtering and polarization for different 

measurement techniques [16].  Once split, the beam splits again before shearing in 

orthogonal directions by a tunable amount, only to recombine with the non-sheared 

version and create an interference pattern as shown in Figure 6 [23].  This pattern has a 

direction relationship to the wave-front tilt, and a sinusoidal nature over time allowing 

researchers to correct the wave-front in a reasonable time frame [16]. 

 

Figure 6.  Shearing Interferometer Final Stage Operation [16] 
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 Decoding the phase from this interference pattern takes many forms; however, all 

algorithms lead to similar results with a modest time delay and correct operation for point 

sources [16].  The limitation to point sources stems from the expectation of a plane wave 

at the receiver.  Without a point source, the interference pattern includes noise from the 

shape of the extended object and corrupts the output waveform.  The lateral shearing 

interferometer is the most tunable wave-front sensor, but tuning is crucial to match the 

Shack-Hartmann sensor under ideal conditions. 

2.3. Advanced Wave-Front Sensors 

2.3.1. Curvature Wave-Front Sensor 

 A promising new wave-front sensor is the curvature wave-front sensor.  

Curvature sensing has additional requirements for the adaptive optics system by adding a 

secondary deformable mirror [1].  The hardware for this system relies on the Shack-

Hartmann or other low-order wave-front sensing detectors; however, the algorithm 

driving the higher order results, Zernikes four and above, takes the same information and 

performs a superior analysis at an elevated processing cost [1].  The key for this method 

is the requirement for an accurate tip-tilt sensor in order to perform correctly, thus 

requiring the best low-order Zernike sensor/estimator possible. 

 Aside from the addition of a deformable mirror shown in Figure 7, the first mirror 

corrects for tip-tilt and the second correct higher order Zernikes, the fundamental concept 

of sampling the image changes for a curvature wave-front sensor [1].  Sampling of in 

focus and out of focus images occurs simultaneously at a minimum of 1 kHz rate using a 

special parabolic mirror as in Figure 8. 
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Figure 7.  Curvature Adaptive Optics Setup 
[1] 

Figure 8.  Curvature Sensing Setup [1] 

 

The multi-phase sampling allows wave-front correction over the entire visible spectrum, 

and provides the flexibility to operate at lower frequencies as well; however, like the 

shearing interferometer it assumes a point source is the subject of the image [1].  The 

complexity of this system forces the researcher to justify the modest performance gain 

with the significant hassle required to install, setup, and maintain this system. 

2.3.2. Phase Diversity Wave-Front Sensor 

 Possibly the simplest structure of all wave-front sensors appears in the phase 

diversity wave-front sensor.  This type of sensor concentrates on superior algorithms as it 

is not capable of the basic autocorrelation algorithms generally used in wave-front 
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reconstruction using the other wave-front sensors [3].  The required maximum-likelihood 

techniques require tremendous processing power, as addressed on a smaller scale for the 

theoretical sensor, and typically apply to offline de-convolution of an image rather than 

real-time correction of wave-front aberrations [6]. 

 A beam splitter and a second imaging device at a greater focal length is all the 

additional hardware required for this sensor to estimate at least the first 21 Zernike 

polynomials [3].  Once estimated, the coefficients of the Zernike polynomials allow for 

de-convolution of the image with the atmosphere, allowing for imaging when guide stars 

are not available [10].  This process takes an inordinate amount of time, and is not 

capable of sustaining an adaptive optics system in real-time for fast-moving objects or 

rapidly changing turbulence; however, enough information is available for post-

processing methods.  Low contrast scenes are still difficult to image with this method as 

the SNR decreases significantly. 

 

Figure 9.  Typical Phase Diversity Hardware Setup [3] 
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2.4. Theoretical Maximum Likelihood WFS 

 A vector-projection maximum likelihood wave-front sensor builds upon the 

design of the Shack-Hartmann and extends the SWAT wave-front sensor requiring no 

major hardware changes from the SWAT design.  This hardware setup provides the same 

readout noise reduction as the SWAT sensor, while the algorithm used to detect tip and 

tilt surpasses centroiding in photon noise rejection, particularly for extended objects, at a 

cost of higher computation time [5]. 

 The hardware portion of this sensor adds an additional beam splitter just before 

the original Shack-Hartmann sensor exactly as the SWAT wave-front sensor does, with 

the split beam feeding an identical, but rotated 90°, array of sub-apertures and CCD 

elements.  The CCD structures mirror the SWAT device as well by using vector readouts 

of the images creating projections of the original image in two-dimensions.  The 

algorithm then uses these projections independently for the autocorrelation related 

maximum likelihood estimation of tip and tilt [5].  Characterization for the setup and 

some statistics already exist from a previous work; therefore, extension into the tracking 

and characterization for wave-front sensing should be simpler [5]. 

2.5. Comparison and Summary 

 Limitations in current adaptive optics technologies constrain the ability to 

perform ad-hoc imaging of fast-moving, extended, or low-contrast objects.  These 

limitations generally stem from the wave-front sensor, as it is the key component in an 

adaptive optics system.  Table 1 shows, using a scale of Excellent-Good-Marginal-Poor, 

Shack-Hartmann and curvature wave-front sensors have good performance for various 

object types and a respectable response time, easily allowing for common use today [1, 5, 
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16, 17].  The lateral shearing interferometer and phase diversity wave-front sensors have 

other advantages as seen in Table 2 that outweigh the detriments of such complex 

systems [3, 16, 23].  The theoretical maximum likelihood sensor provides excellent 

image tracking capabilities while maintaining a low complexity and high response time 

making it an ideal candidate for further research [5]. 

 

 

 

Table 1.  Performance Comparison for Common Wave-Front Sensors 

WFS Performance on Given Object Speed Complexity 
 Point Extended Low 

Contrast 
 Hardware Algorithm 

Shack-Hartmann Excellent Marginal Assumed 
Poor 

Excellent Low Low 

Shearing 
Interferometer 

Good Poor Poor Good Medium Medium 

Curvature 
 

Excellent Marginal Poor Marginal Medium High 

Phase 
Diversity 

Excellent Excellent Good Poor Low Very High 

Maximum 
Likelihood 

Theoretically 
Excellent 

Theoretically 
Good 

Assumed 
Marginal 

Good Low Medium 

 

Table 2.  Additional Known Advantages and Disadvantages of Wave-Front Sensors 

WFS Other Advantages Other Disadvantages 
Shack-Hartmann  Requires Small, High Contrast 

Object for Good Estimation 
Shearing 
Interferometer 

Very Adaptable to Current 
Environment 

Requires Extensive Tuning 

Curvature 
 

 Requires Tip-Tilt Estimation 
First for Edges of Wave-Front 

Phase Diversity Allows De-Convolution of Image Only Offline Operation 
Maximum 
Likelihood 

Possible Off-Edge Lock Capability; 
Multiple SW Realizations Possible 

Requires Estimate of the True 
Image 
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2.6. Possible Areas of Investigation 

 Before research beings to attempt a performance improvement, a benchmark for 

comparison is always a good idea.  To this end, a Cramer-Rao lower bound for wave-

front sensing should establish a solid baseline.  Additional applications for the maximum 

likelihood wave-front sensor are of interest, to include integration with phase diversity 

algorithms, near and off-edge performance of guide stars, and multi-spectral maximum 

likelihood analysis.  To make a feasible sensor, the algorithm must be capable of real-

time operations within a closed-loop system requiring algorithmic analysis and 

decomposition.  Taking this decomposition of implementable algorithms it should be 

possible to perform hardware simulations and analysis. 
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III. Modeling 
 
 

 Investigating new topics requires thorough modeling of the known environment 

to guide the research and provide adequate testing of results from these analyses and 

simulations.  This chapter of the thesis defines the programming and simulation software, 

the methods to generate realistic data within these programming environments, and the 

relevant facts surrounding these modeling techniques.  Verification and validation for 

expected performance of investigation results requires not only the modeling capability 

and understanding but also development platforms for software and hardware simulations 

and fabrication. 

 The majority of software validation and simulation uses MATLAB version 

7.0.4.365 (R14) Service Pack 2 with the Signal Processing Toolbox, executing both the 

simulated environment and sensor model under test.  However, some algebraic, 

differential, and statistical validation uses Mathematica version 5.2 for symbolic 

manipulation and verification of complex formulas.  Simulated hardware verification 

requires a different development environment and uses Altera’s Quartus II version 5.1 

Build 176 for both hardware modeling and testbench simulation.  These development 

platforms provide a broad yet firm foundation for design and assessment of image and 

signal processing technologies through both software and hardware elaboration and 

simulation capabilities. 
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 The objective in modeling images is to provide the most realistic and best-case 

scenarios for sensor characterization, while providing the sensors with enough 

information to exceed modern performance expectations. 

3.1. Image Modeling Parameters 

 As with any modeling, the parameters for modeling are often more important than 

the modeling itself, and the parameters controlling image creation listed in Table 3 are no 

exception. 

3.1.1. Wavelength 

 Since atmospherically induced optical tilt bends different wavelengths of light 

much like a prism, ideally a sensor should receive only one wavelength to perform 

estimation as an image further distorts when combining different wavelengths.  To avoid 

further distortion, all created images include the assumption that the wavelength is quasi-

monochromatic, including a range of 0.05 μm of wavelengths, and fixed both spatially 

and temporally. 

 

 

Table 3.  Image Modeling Parameters and Simulated Ranges 

Parameter Description Simulated Range 
Wavelength Wavelength of Light Received Quasi-Monochromatic and Fixed 
Sampling Nyquist or Higher Sampling Rate 1 to 2 times Nyquist 
Image Size Size in Pixels of Captured Image 8 to 64 Pixels Square 
Light Level Sum Total of Light at Receiver Guide Star: 100 to 1,000 Photons 

Extended Object: 6,000-20,000 Photons 
Background 
Intensity 

Additive Stray Light in Receiver 0 to 1 Photon per Pixel 
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While the useful information contained in other wavelengths should produce similar 

characteristic results, the tilt information from one additional wavelength will further 

correct wave-front error by characterizing the true path of light through the atmosphere, 

an effect not modeled or investigated.  Only genuine images with real data will define the 

actual frequency of light used for modeling as sampling requirements for real images 

require this information. 

3.1.2. Sampling 

 Once the light passes through the atmosphere and enters the telescope, it is 

necessary to sample the point spread function (PSF) appropriately according to the 

Nyquist sampling theorem to avoid aliasing of frequency content in the image [16].  

Starting from the cutoff frequency of the optical transfer function (OTF) of the lens 

shown in Equation 1, Nyquist sampling chooses the minimum sampling frequency to be 

at least twice this cutoff frequency [16].   

 
λ
Dfc =  (1) 

 
λ
Dff cs ⋅=⋅≥ 22  (2) 

where 

 fc = Telescope Optic Cutoff Frequency (radians-1) 

 fs = Sampling Frequency (radians-1) 

 D = Lens Diameter (meters) 

 λ = Light Wavelength (meters) 
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Given that the wavelength of light remains constant for this modeling, any adjustment 

required for Nyquist sampling will occur either by adjusting the sampling rate or the lens 

diameter.  For an image at a fixed distance from the telescope, Equation 2 combines with 

Equation 3, which assumes the small angle approximation, and then controls the 

wavelength and aperture diameter based on the actual angular coverage of a pixel. 

 
sfz

dx 1
==α  (3) 

where 

 α = Angular Coverage of Pixel (radians) 

 dx = Size of Pixel on Object (meters) 

 z = Distance to Object (meters) 

Over-sampling has the added benefit of aiding an interpolator for better estimation 

results, but it also decreases the light available to each pixel causing detrimental effects 

explained in Section 3.5.  Nyquist sampling theory does not address the resolution limits 

between objects in the image; therefore, the Rayleigh, Dawes, or Sparrow criteria do not 

contribute to modeling and completely ignored to provide an idealized characterization of 

the sensors [15].  Since the sampling frequency is twice the cutoff frequency as 

determined by the diffraction limited effect of a telescope opening, a shift of one Nyquist 

pixel is analogous to a slope in the frequency domain of π radians, or one-half of one 

wave of tilt, via the Fourier shift theorem [11]. 

3.1.3. Image Size 

 Determining the actual image size requires knowledge of the search area for 

wave-front tilt as well as the particular requirements of a wave-front sensor, and in an 
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effort to guide the search area, a quick derivation of the statistical nature of tilt follows.  

As often used in a Monte Carlo simulation when generating a phase screen, or layer of 

turbulence causing tilt at a set altitude, the Cholesky factorization of the Zernike 

polynomials’ covariance matrix multiplies a vector of zero-mean, unit variance Gaussian 

random variables to create a set of statistically accurate Zernike coefficients [16].  The 

tilt therefore remains Gaussian and originates from the low order elements of the 

covariance matrix, captured in Equation 4 for Zernikes two and three [9]. 
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where 

 2
tiltσ  = Variance of Tilt (radians2) 

 D = Diameter of Aperture (meters) 

 r0 = Fried Parameter (meters) 

This formula yields variances, and subsequently standard deviations, less than one when 

compared to a wave of tilt, which is 2π radians, for either a large telescope or a small 

turbulence coherence radius creating large values of D/r0, allowing for computation of a 

search window.  An image supporting searches of plus or minus four waves of tilt would 

provide a worst case of no less than 99.99 percent possible tilt coverage, requiring a 

search space of plus or minus eight pixels [9].  Prior temporal analysis explains this 

derivation in further detail and indicates that in a closed loop system, as an adaptive 

optics system provides, values of tilt beyond one to two standard deviations are 
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exceedingly unlikely unless the adaptive optics system loses lock requiring a greater 

search space [4]. 

 Different sensors require various image sizes to allow for optimal performance, 

and although telescopes often include four-by-four pixel images for Shack-Hartmann 

sensors this image size severely limits the range of detection for tilt measurements, thus 

the current most complex version of this sensor defines the lower bound of an eight-by-

eight pixel image as larger image sizes degrade read-out performance.  The theoretical 

Maximum Likelihood sensor relies on a minimum of twice the number of pixels to 

correlate with compared to the desired search space for extended objects, and to achieve 

this sixteen pixel search space, the theoretical sensor requires a minimum size of thirty-

two pixels.  With the middle ground of image sizes fixed, the upper bound stems from a 

forward-looking perspective with respect to greater turbulence and superior accuracy.  

An important assumption as image sizes grow beyond approximately thirty-two by thirty-

two pixels is isoplanism of the observed wave-front, which may be true for a natural 

guide star (NGS), is probably not accurate for a satellite in orbit, and most likely 

incorrect for a laser guide star (LGS).  It is also important to highlight that the 

parameterization of image size, although somewhat dependent upon sampling, is 

independent of light-level and background intensities. 

3.1.4. Light-Level (Total Intensity) 

 Another parameterized variable in image creation is the total intensity of the 

image, or light-level, which the telescope controls based on the object imaged, the 

amount of light split through the beam splitter to the wave-front sensor, and the 

integration time of the sensor.  To avoid temporal distortions caused by quickly changing 
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turbulence, a short integration time is desirable; and for modeling purposes, all images 

assume an ideal integration time of 100 μs [16].  Adaptive optics entails obtaining light 

levels ranging from ten to sixty percent of the total light received by the telescope, with 

the least amount of light required being the most desirable as the light for wave-front 

sensing detracts from that available to the primary sensor.  To show the performance of 

all sensors in acceptable light levels and to demonstrate significant trends as light-levels 

increase or decrease, this modeling uses a modest search range near the lowest light-

levels commonly used.  It is interesting to note that, as clarified in Section 3.5, when light 

level decreases the effective signal-to-noise ratio also decreases making a correct 

estimate of the tilt less likely.  This is only one way that the contrast ratio, or ratio 

between the highest and lowest intensities in the image, changes, modifying the 

background intensity also changes this hidden parameter. 

3.1.5. Background Intensity 

 The last considered parameter indicates the efficiency of the optical and electrical 

components of an imaging system, and can significantly affect the results of certain 

sensor models, which expect a black background to perform estimation.  The background 

light level typically cumulates from stray light in the imaging system as well as stray 

electrons in the image capture device, causing a lower contrast ratio and subsequently a 

lower SNR.  A perfect imaging system could have a background light intensity of zero, 

while a very poor system might aggregate an overwhelming background of one photon 

per pixel or more for the light levels in the parameterization range.  This background 

effectively resides beneath the signal represented by an image, and can cause a smooth 

function such as a Gaussian to change shape significantly. 
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3.2. Image Creation 

 To avoid unknown effects in simulation, image creation requires explicit 

knowledge of the characteristics of an image with nearly precise knowledge of the 

statistics expected from turbulence effects on that image allowing for modeling validation 

and reliable simulations. 

3.2.1. Two-Dimensional Gaussian (Simulated Laser Guide Star) 

 The two-dimensional Gaussian represented by Equation 5 is possibly the simplest 

image type to model, and genuinely represents the nature of an artificially generated laser 

guide star, which can allow wave-front correction for extended objects.  It is important to 

note the assumption of independence and equality for the variance in both dimensions of 

the Gaussian, which may not be correct for true hardware and atmospheric turbulence.  

Additionally, there is an extra parameter C to adjust the light level of the image, which 

simply scales the complete picture and does not modify the Gaussian in any other respect.  

Figure 10 and Figure 11 illustrate the true form of this image without noise for a three-

dimensional view, projection images in both axes, and a two-dimensional representation. 

 ( ) ( )
( )
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where 

 i = Representation of 2-D Gaussian Image (photons) 

 x, y = Pixel Locations in the Image (pixels, ∈  Integers) 

 C = Total Intensity of Image (photons) 

 σ = Standard Deviation (pixels, ∈  Positive Reals) 

  Assuming σ = σx = σy and the Two Dimensions are Independent 
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Figure 10.  2-D Gaussian and Vector 
Projections in x and y Planes 

Figure 11.  Observed Image of 2-D 
Gaussian without Noise 

 

Aside from representing a smooth function from which over-sampling and interpolation 

are simple, a further benefit of using this model is the ease of creating projections of the 

image discussed later in Sub-Section 3.2.3.  The Gaussian has an added advantage in that 

it is also a close representation of a diffraction limited natural guide star once the image 

shape adjusts to reflect the effects of noise, in which case a standard deviation of two 

accurately represents both the NGS and LGS for modeling purposes [4]. 

3.2.2. Using Real Images or Real Data 

 Use of real images requires more constraints than merely careful handling of 

imprecision in the Fourier transform, these types of images require proper centering to 

provide fair statistics, band-limiting to avoid aliasing, and down-sampling / up-sampling 

to meet sampling requirements.  Centering typically requires use of an existing algorithm, 

such as the centroid, to adapt the image with either Fourier, or sinc, interpolation or 

another robust method such as bi-cubic or cubic-spline interpolation.  Although sinc 

interpolation is ideal, this simulation uses MATLAB’s cubic-spline interpolation for this 
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step in modeling to prevent additional unnecessary information appearing in the black 

background needed for down-sampling and band-limiting operations of the image. 

 An important parameter that drives modeling is the pixel size relative to the actual 

size of the simulated object as defined by Equations 2 and 3.  This modeling investigation 

seeks to use the Hubble satellite for large apertures on the order of one meter and 

subsequently a pixel size representing 20 cm [20].  Also of interest is a similar wave-

front sensing problem in which the aperture reduces to 10 cm, forcing a corresponding 

change in pixel size to two meters.  This pixel size determines the appropriate light-level 

for tracking or wave-front sensing for a real object as summarized in Equation 6 [4]. 
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where 

 Apixel = Area that a Pixel Represents on Object (m2/pixel) 

 D = Diameter of the Aperture Opening (m) 

 n = Number of Pixels in Array (pixels) 

 Psun = Power of Sun at Earth’s Surface ≈ 1000 (W/m2) [4] 

 Δλ = Bandwidth of Light (Sensor ≈ 0.05x10-6, Visible ≈ 0.5x10-6) (m) [5] 

 z = Distance to the Object ≈ 600x103 (m) [20] 

 Δt = Integration time of Imaging Device ≈ 100x10-6 (s) [5] 

 h = Planck’s Constant ≈ 6.626x10-34 (J s) [18] 

 ν = Frequency of Light ≈ 6x1014 (Hz) [18] 

 R = Reflectance ≈ 5 to 20 (%) [18] 

 B = Light allocated by Beam-Splitter ≈ 10 (for WFS) (%) [5] 
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This equation involves several variables including the ratio of the aperture and distance 

to the object, integration time, photon energy, reflectance, and amount of light sent to the 

sensor, most of which are constant [4].  This formula sets the light-level values seen in 

Table 3 for the extended object scenario, and illustrates the light levels observed when 

viewing the Hubble space satellite.  However, even with correct light-level calculations, a 

poor orientation of the image may result in low contrast for a particular dimension and a 

simple rotation of the image will alleviate a reduction in performance for all models. 

 To avoid aliasing while down-sampling, convolution in space with a sinc 

function, or multiplication by a two-dimensional rect function in frequency representing 

an ideal low-pass filter, removes high frequencies beyond the down-sampled image’s 

bandwidth.  If filtering did not occur, higher frequencies would alias to lower 

frequencies, corrupting the image in the spatial domain; this aliasing is a type of image 

corruption that up-sampling does not suffer.  Down-sampling is straightforward for 

Nyquist sampled cases; however, other images, other samplings, or up-sampling requires 

sub-pixel information provided by an interpolator, and for speed in modeling this step 

uses MATLAB’s bi-cubic interpolation after filtering. 

 The optical transfer function of a telescope further band-limits the image 

representing light passage through the particular optic in use and allowing for proper 

diffraction limiting effects caused by a fixed aperture.  Using a standard diffraction 

limited OTF, with the factor to over-sample adjusting the aperture diameter directly, the 

impulse response, or magnitude-squared of the Fourier transform, is the point spread 

function, which is a two-dimensional Bessel function, or a perfect natural guide star [8].  

Convolution of the image and PSF, or spatial frequency multiplication of the Fourier 
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transform of the image and OTF, provides a properly band-limited image with the 

characteristics of the current aperture appropriately included.  Throughout the down-

sampling and band-limiting processes to create an image without noise for simulation, all 

real and complex data from the Fourier transforms passes through every step to limit 

errors due to imprecision in the Fourier transform.  The images for wave-front sensing 

and tracking are visible in Figures 12 through 15. 

 

Figure 12.  Hubble for Wave-Front Sensing 
& Projections in x and y Planes 

Figure 13.  Observed Image of Hubble for 
Wave-Front Sensing without Noise 

 

 

Figure 14.  Hubble for Tracking and 
Projections in x and y Planes 

Figure 15.  Observed Image of Hubble for 
Tracking without Noise 
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It is important to note that unless the ideal low-pass filter is the same or larger size of an 

up-sampled PSF, or zero-padded OTF, by the amount of down-sampling required, there 

are minor errors near the edge of the original down-sampled image, which is acceptable 

as long as the errors are outside of the window of interest used for simulation. 

3.2.3. Image Projection / Vectorization 

 A projection of an image is purely the summation of an image in one dimension 

creating a vector representation of the image; and furthermore, this projection occurs 

after any cropping of the original image to maintain appropriate light-levels [5].  From a 

hardware viewpoint, this greatly increases the speed of image readout, which is the main 

limiting factor in the speed of closed-loop operation; unfortunately, this decreases the 

light-level by one-half as discussed in Sub-Section 3.5.2 [5]. 

 Unrelated to noise statistics, an image projection implies independence between 

the two dimensions of an image, which is true for operations limited to projections of the 

entire image in a constant background as seen below in Theorem 1.  To extend the 

applicability of this theorem, not only images wholly contained in a constant background 

but also images in a relatively low background with minor fluctuations exhibit 

dimensional independence; however, extended objects do not have dimensional 

independence as new information enters and exits the scene.  Although this implies a 

requirement for joint estimation, the modeling here assumes dimensional independence 

as this is theoretically sufficient for simulation in a closed-loop environment [5]. 
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Theorem 1 

 A projected image is independent with respect to the shift parameter in the 

orthogonal dimension as indicated by this formula: 

 ( ) ( )∫
∞

∞−

−−=− dyyxixi yxx βββ ,  

where 

 i = Representation of 2-D Image (photons) 

 x, y = Pixel Locations in the Image (pixels, ∈  Integers) 

 βx, βy = Shift in x or y direction (pixels, ∈  Reals) 

Proof 

This first equation defines the starting point by demonstrating the two-dimensional 

inverse Fourier transform of an image with shifts in the x and y directions [11]. 
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 I = 2-D Fourier Transform of Image 

 fx, fy = Locations in Frequency Domain (frequency, ∈  Integers) 

Next is to integrate in the y dimension to produce a projection in the x dimension. 

 ( ) ( ) ( ) ( )∫ ∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

++−
∞

∞−

=−− dydfdfeeffIdyyxi yx
yfxfjffj

yxyx
yxyyxx πββπββ 22,,  

Separation of variables yields a smaller function integrated with respect to y. 

 ( ) ( ) ( )∫ ∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

+−
∞

∞−

=−− yx
yfjxfjffj

yxyx dfdfdyeeeffIdyyxi yxyyxx ππββπββ 222,,  

The integral on the right-hand-side equals a delta function. 
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 ( ) ( ) ( ) ( )∫ ∫∫
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∞−

∞

∞−

+−
∞
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=−− yxy
xfjffj

yxyx dfdffeeffIdyyxi xyyxx δββ πββπ 22,,  

Applying the sifting property of the delta function, this selects fy = 0 in the integral. 

 ( ) ( )∫∫
∞

∞−

−
∞

∞−

=−− x
xfjfj

xyx dfeefIdyyxi xxx ππβββ 220,,  

Since the right-hand-side is simply the inverse one-dimensional Fourier transform in the 

fx direction with no dependence on the shift in the y direction, shifts in each dimension 

are indeed independent, which the two-dimensional Gaussian demonstrates further as its 

one-dimensional projection is simply a one-dimensional Gaussian. 

Q.E.D. 

 

3.3. Image Shifting 

3.3.1. Shifting of a Known Function 

 The requirements for shifting a known function restrict modeling only to the point 

of requiring a shift of the function itself, which for a Gaussian is changing the mean of 

the function.  By including the requirement of a continuous function, sub-pixel shifts, 

which are necessary to determine the true statistics of the model, are also straightforward. 

3.3.2. FFT / Sinc-Interpolation 

 For images not generated from a smooth function, modeling requires another 

method for sub-pixel shifts, and the best method for sub-pixel shifting without knowledge 

of a function is through interpolation, and for small images sinc interpolation is the ideal 

method for accuracy.  A good solution for implementing sinc interpolation is using the 

Fourier transform and the relationship between shifts in the spatial domain and phase 
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shifts in the spatial frequency domain, as found in almost any discrete-time Fourier 

transform pair table, assuming circular shifts are acceptable or use of appropriate zero 

padding avoids circular shifting [11]. 

3.3.3. Sub-Pixel Shift Step Size 

 Although simulation step size typically determines smoothness of results, this 

modeling method requires different step sizes to illustrate different statistics representing 

the performance of the models appropriately.  As a rule of thumb, the sub-pixel step size 

should be one-quarter to one-tenth the pixel size as a minimum for smooth results and no 

smaller than the interpolation search size used by the search algorithms and set by the 

CRLB.  Any smaller simulation step size would provide no further insight beyond 

quantization error for bias calculations and no insight beyond noise error as indicated by 

the CRLB for noise calculations. 

3.4. Calculating Bias and Mean Absolute Bias (MAB) 

 The error in the presence of no noise is difficult to remove and indicates the best 

possible operating characteristics of a sensor as well as the level of tuning required by the 

operator to achieve desirable statistics.  To calculate bias, subtract the true shift value 

from the estimated shift value as indicated in Equation 7; however, bias can be deceiving, 

therefore it is better to compute absolute bias for comparison purposes. 

 ββ −= NoNoisesAbsolueBia |̂  (7) 

where 

 AbsoluteBias = The Absolute Value of the Error in No Noise (pixels, ∈  Positive Reals) 

 β|NoNoise = The Estimated Shift Value without Noise (pixels, ∈  Reals) 

 β = The True Shift Value (pixels, ∈  Reals) 
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To reduce the complexity of results, averaging the x and y dimensions is acceptable as 

long as there is independence between these dimensions, otherwise unexpected results 

may surface.  The bias should hold some similar properties to the image, in that if the 

image is symmetric the bias should be also, and if the image is higher contrast, the bias 

should indicate a relatively larger change in some areas of the curve if such a change is 

visible in the search window. 

 The average bias over a given number of pixels is the mean absolute bias (MAB) 

and provides a single number to describe operation of the sensor for a given region of the 

window.  Regions of interest for the above images include an average over plus-or-minus 

four waves of tilt as this encompasses the entire window, and plus-or-minus one-half 

wave of tilt as this represents well over fifty percent of tilts seen in a closed loop system 

for reasonable values of D/r0 as discussed previously in Sub-Section 3.1.3. 

3.5. Noise Generation 

3.5.1. Poisson and Bernoulli Random Variables 

 The statistics for light are intuitive from the packet perspective of light as each 

photon interacts with objects such as a beam splitter or charge couple device (CCD) as a 

Bernoulli random variable with a low rate of success.  One way to approximate a Poisson 

random variable is to sum many Bernoulli trials, each with a low rate of success, hence, 

the overall statistics of light being approximately Poisson in nature [9].  Equation 8 is the 

general form of a Poisson random variable, and is the basis of the statistics required for 

modeling of noise for tracking and wave-front sensing.  The expectation and variance 

statistics for Poisson random variables indicate how the SNR increases as the light 

intensity increases.  Since the variance increases at the same rate as the mean, the 
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standard deviation increases as the square-root of the mean, increasing the SNR in an 

initially logarithmic, and then nearly linear fashion as indicated by Figure 16.  Over-

sampling decreases the SNR on a per-pixel basis as the light splits between more pixels 

decreasing the available light per pixel.  Since light-level also dictates the quality of a 

captured image, the lowest SNR possible for a wave-front sensor to operate properly is 

the ideal operating light-level and what this modeling attempts to parameterize. 

 ( ) ( )( )( ) ( ) ( )

( )
( )yx yxi

yxd
yx

yxyx e
yxd

yxi
yxiyxdp ββββ

ββββ −−−−−
=−− ,

,

!,
,

,|,|,  (8) 

where 

 d = The Observed Intensity (photons, ∈  Integers) 

 i = The True Image Intensities (photons, ∈  Reals) 

 x, y = Pixel Locations in the Image (pixels, ∈  Integers) 

 βx, βy = Shift in x or y direction (pixels, ∈  Reals) 

 E[d] = i The True Image Intensity is the Mean (photons, ∈  Reals) 

 VAR[d] = i The True Image Intensity is the Variance (photons2, ∈  Positive Reals) 

 

Figure 16.  SNR v Light-Level 
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3.5.2. Effects of Projecting Images 

 With the exception of the Shack-Hartmann sensor model, all sensor models use 

vector, or projection, images, which cause some interesting effects for the noise statistics 

to compare properly between different sensors.  Building on the assumption that each 

pixel is independent, one can show that the sum of Poisson random variables is a new 

Poisson random variable, with the new mean and variance being the sum of all means, 

using either the probability generating function, as shown in Theorem 2, or indirect 

convolution and knowledge of Taylor series expansions for an exponential. 

 

Theorem 2 

 The summation of Poisson random variables, or convolution of probability mass 

functions, is another Poisson random variable with the new rate being the sum of the 

rates of the summed random variables: 

 ( ) ( ) ( )( )( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−→ ∑∑∑ yx

y
yx

y
xx

y
yxiyxdpxixdpyxd ββββββ ,|,|,||,  

Proof 

This first equation is merely the probability generating function redefined for the Poisson 

random variable used in this modeling and simulation [9]; note, Equation 8 defines all 

parameters except for z which is the transform variable. 

 ( )
( )( )1,

, )( −−−= zyxi
yxd

yxezG ββ  

Since a summation of random variables is really a convolution, this becomes a product in 

the z-domain as indicated below. 
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( )( )∏∏ −−−=

y

zyxi

y
yxd

yxezG 1,
, )( ββ  

Now using exponential properties, the product becomes a summation in the exponent, 

and factoring out the (z-1) term puts the solution back into the original form. 

 ( )

( ) ( )1,

, )(
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−∑

=∏
zyxi

y
yxd

y
yx

ezG
ββ

 

This summation indicates the new rate, mean, and variance are simply the sum of 

intensities from the original image, providing an easy method of computing statistics for 

projected image data. 

Q.E.D. 

 

In addition to keeping the Poisson statistical nature for a projected image the light level 

decreases by half, which necessarily decreases the SNR as defined in the previous sub-

section.  By modeling two separate images at half intensity, including noise, then 

producing projection images for two-dimensions as well as summing both images 

together to form one, all sensors receive the same noise statistics while some operate on 

image projections and others operate on a complete image.  This allows for accurate 

computation and comparison of statistics for simulation and development purposes. 

3.5.3. Computing Noise Statistics 

 There are three main statistics for comparison between sensors when computing 

with noisy data; however, they are not unique and only two of them are useful to the 

developer and end user.  The first two statistics are nearly the same, as one is simply the 

square of the other before averaging:  mean absolute error (MAE) and mean square error 
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(MSE).  To avoid confusion, the MSE used for modeling is the average square error and 

not the estimation technique familiar to researchers using signal processing estimation 

methods.  To compute these statistics, refer to Equations 9 and 10, understanding that in a 

similar manner to MAB these statistics are clearer when averaged over a range of shift 

values such as one-half wave of tilt or four waves of tilt. 

 
N

MAE Trials
Noise∑ −

=
ββ |

ˆ

 (9) 

where 

 MAE = Mean Absolute Error (pixels, ∈  Reals) 

 Noise|̂β  = The Estimated Shift Value in Noise (pixels, ∈  Reals) 

 β = The True Shift Value (pixels, ∈  Reals) 

 N = The Number of Trials (unitless, Preferred to be a Power of 2) 

 
( )

N
MSE Trials

Noise∑ −
=

2

|̂ ββ
 (10) 

where 

 MSE = Mean Square Error (pixels2, ∈  Positive Reals) 

Of the two statistics, MSE captures a broader view as it is a middle ground or 

combination of the MAB and VAR, as indicated by Equation 11, and is useful to see 

which of the two statistics drives the resulting performance of the sensor [19]. 

 ( )2BiasVARMSE +≈  (11) 
where 

 VAR = Variance (pixels2, ∈  Positive Reals) 

 Bias = Absolute Bias as Defined in Equation 7 (pixels, ∈  Positive Reals) 
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 Variance (VAR) as established in Equation 12 appears nearly the same as MSE 

with two significant differences:  1) the sample mean is the subtrahend rather than the 

true shift value, and 2) the divisor after summing the sample is one less than the total 

number of trials making it an unbiased estimate of the variance.  As a second order 

statistic, VAR indicates how well a sensor can perform for a given noisy environment, 

and is impossible to remove without changing the type of estimation or optical setup. 

 
1

ˆ
ˆ

2

|

|

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=

∑
∑

N

N
VAR

Trials

Trials
Noise

Noise

β
β

 (12) 

Although only qualitative bounds are available for average bias and error, it is possible to 

provide an analytical bound for variance that defines the efficiency of an algorithm’s 

ability to reject noise in various conditions.  With the proper background and modeling 

capabilities, this Cramer-Rao lower bound can provide insight into development of an 

algorithm to improve tracking and wave-front sensing, while verifying simulation and 

experimental results. 

3.6. Summary 

 Accurate modeling not only guides research to feasible solutions but also 

provides a method to verify research results before actual implementation.  For this 

research effort, generation of images and the noise statistics that surround them is the key 

to better understanding and estimation of wave-front parameters and tracking shifts. 
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IV. Analysis 
 
 

 Investigation in wave-front sensing requires thorough knowledge of the current 

estimation techniques, environmental parameters, and modeling practices to provide 

guidance, insight, and validation capabilities for research.  The key areas for 

investigation for this research include bounds on variance to quantify performance for 

any wave-front sensor, search algorithm optimization for the maximum-likelihood wave-

front sensor to meet or exceed timing requirements, and an implementation proposal with 

hardware realization of the sensor algorithm to demonstrate feasibility of this 

implementation.  Theory can provide excellent guidance for algorithm development and 

hardware implementation if applied correctly, as this research attempts to do; and the 

proper use of theoretical results can significantly shorten development time compared to 

trail and error analysis. 

4.1. Cramer-Rao Lower Bound (CRLB) for Tilt Estimates Obtained with LGS 

4.1.1. Relevant Statistics, Assumptions, and Setup 

 As the CRLB is a bound on variance, it requires statistical background and noise 

information given a particular type of data and a proper foundation to provide meaningful 

information.  The basis of analysis resides with Equation 8 in Chapter III and the 

assumption of a form of the laser guide star for the image as a two-dimensional Gaussian 

represented by Equation 5; repeating both equations below provides clarity. 
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yxyx e
yxd

yxi
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ββββ −−−−−
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!,
,

,|,|,  (8) 

where 

 d = The Observed Intensity (photons, ∈  Integers) 

 i = The True Image Intensities (photons, ∈  Reals) 

 x, y = Pixel Locations in the Image (pixels, ∈  Integers) 

 βx, βy = Shift in x or y direction (pixels, ∈  Reals) 

 ( ) ( )
( )

2

22

2122, σπσ
yx

eCyxi
+−

−
=  (5) 

where 

 i = Representation of 2-D Gaussian Image (photons) 

 x, y = Pixel Locations in the Image (pixels, ∈  Integers) 

 C = Total Intensity of Image (photons) 

 σ = Standard Deviation (pixels, ∈  Positive Reals) 

  Assuming σ = σx = σy and the Two Dimensions are Independent 

Assuming that the dimensions are independent, using the fact that the sum of Poisson 

random variables is another Poisson random variable, and using the image projection 

technique to remove one of the dimensions, Equations 8 and 5 become marginal with 

respect to x in Equations 13 and 14 below. 

 ( ) ( )( )( ) ( ) ( )

( )
( )xxi

xd
x

xx e
xd

xixixdp ββββ −−−
=−

!
||  (13) 

 ( ) ( ) 2

2
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22 i

x

i eCxi σπσ
−

−
=  (14) 
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Assuming the pixels for a projected image are independent this results in the joint 

probability mass function (PMF) representing the joint a priori density function in 

Equation 15. 

 ( ) ( )( )( ) ( ) ( )

( )
( )∏∏ −−−

=−
x

xi
xd

x

x
xx

xe
xd

xixixdp ββββ
!

||  (15) 

The random variables in this equation are the shift represented by βx and two unwanted 

parameters C and σi, which are part of the assumed image form.  However, this equation 

does not account for windowing of either the data or initial image as the information 

captured is finite in size, and the proposed maximum-likelihood sensor requires further 

windowing to search over shifts and to prevent detrimental effects from new data 

entering the scene [5].  To limit the product properly, a windowing function on both the 

true image as well as the captured image simply bounds the limits for the product 

function, and completes the probability information required to derive the CRLB for an 

unbiased estimator. 

4.1.2. Derivation 

 As noted previously, estimation of the shift parameter is the goal; however, two 

additional parameters require estimation as well and therefore a joint estimation approach 

of these parameters and the CRLB serves as an accurate lower bound for Gaussian 

images.  To derive a CRLB requires computation of the elements that compose the Fisher 

Information Matrix as defined in Equation 16, where the diagonal elements of the inverse 

of this matrix are the CRLB for the respective parameters in Equation 17 [19]. 
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 (16) 

where 

 J = Elements of the Fisher Information Matrix 

 D  = the Entire Vector d(x) 

 A  = the Parameters to Estimate (βx, σi, C) 

 12ˆ −≥ JAσ  (17) 

where 

 J = The Fisher Information Matrix 

As this equation calls for the log of the joint likelihood, Equation 18 illustrates the log of 

Equation 15, with further simplifications. 
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  ( ) ( )( ) ( )( ) ( )( )∑ −−−−=
x

xx xixdxixd ββ !lnln  (18) 

To reflect the additional unwanted parameters, Equation 19 includes σi and C as 

additional givens in the log-likelihood, where the true image conditioned on these 

parameters represent the vector A  in the Fisher Information Matrix and the observed 

data represents D . 
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An assumption that windowing equation 19 does not change the derivative allows 

computation of partials without knowing the derivative of the window function; however, 

this assumption is only a close approximation when the observed image’s intensity 

decreases to zero at the edge of the window making the CRLB applicable for images with 

a large black background or zero-shift estimation.  This is the best-case operation of a 

sensor, and still provides an accurate lower bound for performance of estimation 

techniques.  As the partial derivatives, logarithm, and partial derivatives of the log of the 

Gaussian image form appear several times in the next derivation, Equations 20 through 

26 summarize these results based on Equation 14. 
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Leveraging the information in Equations 20 through 26, the following equations compute 

the first partials of the log-likelihood, which are also useful for maximum-likelihood 

estimation of these parameters with the Gaussian image assumption. 
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Unfortunately, the Fisher Information Matrix requires the second partials with respect to 

all estimated parameters; therefore, it is a square matrix and the elements of the matrix 

should be symmetric about the diagonal as the order of the partial derivatives should be 

reversible. 

 ( ) ( )( )( )( )∑ −
∂
∂

x
ixx

x

Cxixdp ,,||ln2

2

σββ
β

 

  ( ) ( ) ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
∂
∂

=
x i

x
x

i

x

x

x
xi

x
xd 22 σ

β
β

σ
β

β
 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x
x

xi

x

x

x
xi

x
xd 22 σ

β
β

βσ
β

β
 

  ( ) ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

−+−
∂
∂−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x

x
xx

xi

x

i

x

x

x
xixi

xx
xd 222 σ

β
β

ββ
βσ

β
σ
β

β
 

  ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−
−−−=

x i
x

i

x

i

x
x

i

xi
xx

xixd 2222

11
σ

β
σ
β

σ
β

β
σ

 

  ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−−=

x ii

x
x

i

x
xixd 24

2

2

11
σσ

β
β

σ
 (30) 

 ( ) ( )( )( )( )∑ −
∂∂
∂

x
ixx

ix

Cxixdp ,,||ln
2

σββ
σβ

 

  ( ) ( ) ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
∂
∂

=
x i

x
x

i

x

i

x
xi

x
xd 22 σ

β
β

σ
β

σ
 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x
x

ii

x

i

x
xi

x
xd 22 σ

β
β

σσ
β

σ
 



 50

  ( ) ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

−+−
∂
∂−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x

i
xx

ii

x

i

x

i

x
xixi

xx
xd 222 σ

β
σ

ββ
σσ

β
σ
β

σ
 

  ( ) ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−−−
−−

−
−=

x i

x

i

x

i

ix
x

i

x xxx
xi

x
xd 323

22

3

22
σ

β
σ
β

σ
σβ

β
σ

β
 

  ( ) ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−

−
−−

−
−=

x i

x

i

x

i

x
x

i

x xxx
xi

x
xd 335

3

3

22
σ

β
σ
β

σ
β

β
σ

β
 

  ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−−

−
−=

x i

x

i

x
x

i

x xx
xi

x
xd 35

3

3

32
σ
β

σ
β

β
σ

β
 (31) 

 ( ) ( )( )( )( )∑ −
∂∂

∂

x
ixx

x

Cxixdp
C

,,||ln
2

σββ
β

 

  ( ) ( ) ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
∂
∂

=
x i

x
x

i

x x
xi

x
xd

C 22 σ
β

β
σ
β

 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
∂

=
x i

x
x

i

x x
xi

C
x

xd
C 22 σ

β
β

σ
β

 

  ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−=

x i

x
x

x
C

xi 2

1
σ
β

β  (32) 

 ( ) ( )( )( )( )∑ −
∂∂
∂

x
ixx

xi

Cxixdp ,,||ln
2

σββ
βσ

 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−

−−
∂
∂

=
x i

ix
x

i

ix

x

x
xi

x
xd 3

22

3

22

σ
σβ

β
σ

σβ
β

 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∂
∂

=
x i

ix
x

xi

ix

x

x
xi

x
xd 3

22

3

22

σ
σβ

β
βσ

σβ
β

 



 51

 Substituting ( ) ( ) ( )
ii

x

i

ix
x

xxU
σσ

β
σ

σββ 1
3

2

3

22

−
−

=
−−

=  

  ( ) ( )( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+−
∂
∂

−
∂
∂

=
x

x
x

xx
x

xx
x

UxixiUUxd β
β

ββ
β

ββ
β

 

 And Computing ( ) ( ) ( )
33

2 21

i

x

ixi

x

x
x

x

xxU
σ

β
σβσ

β
β

β
β

−
−=

∂
∂

−
−

∂
∂

=
∂
∂  

  ( ) ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−

−
−=

x i

x

i

x

ii

x
x

i

x xxx
xi

x
xd 323

2

3

212
σ

β
σ
β

σσ
β

β
σ

β
 

  ( ) ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−

−
−−

−
−=

x i

x

i

x

i

x
x

i

x xxx
xi

x
xd 335

3

3

22
σ

β
σ
β

σ
β

β
σ

β
 

  ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−−

−
−=

x i

x

i

x
x

i

x xx
xi

x
xd 35

3

3

32
σ
β

σ
β

β
σ

β
 (33) 

 ( ) ( )( )( )( )∑ −
∂
∂

x
ixx

i

Cxixdp ,,||ln2

2

σββ
σ

 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−

−−
∂
∂

=
x i

ix
x

i

ix

i

x
xi

x
xd 3

22

3

22

σ
σβ

β
σ

σβ
σ

 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∂
∂

=
x i

ix
x

ii

ix

i

x
xi

x
xd 3

22

3

22

σ
σβ

β
σσ

σβ
σ

 

 Substituting ( ) ( ) ( )
ii

x

i

ix
i

xxU
σσ

β
σ

σβσ 1
3

2

3

22

−
−

=
−−

=  

  ( ) ( )( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+−
∂
∂

−
∂
∂

=
x

i
i

xx
i

ii
i

UxixiUUxd σ
σ

ββ
σ

σσ
σ

 



 52

  ( ) ( )( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−−
∂
∂

=
x

i
i

iixi
i

UUUxiUxd σ
σ

σσβσ
σ

 

 And Computing ( ) ( ) ( )
4

2

23

2 311
i

x

iiii

x

i
i

i

xxU
σ
β

σσσσ
β

σ
σ

σ
−

−=
∂
∂

−
−

∂
∂

=
∂
∂  

  ( ) ( )( ) ( ) ( ) ( )∑
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−−

∂
∂

=
x i

x

iii

x
xi

i

xx
xiUxd 4

2

2

2

3

2 311
σ
β

σσσ
β

βσ
σ

 

  ( ) ( )( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−++

−
−

−
−−

∂
∂

=
x i

x

iii

x

i

x
xi

i

xxx
xiUxd 4

2

224

2

6

4 3112
σ
β

σσσ
β

σ
β

βσ
σ

 

  ( ) ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−

−
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

x ii

x

i

x
x

i

x

i

xx
xi

x
xd 24

2

6

4

4

2

2

2531
σσ

β
σ
β

β
σ
β

σ
 (34) 

 ( ) ( )( )( )( )∑ −
∂∂

∂

x
ixx

i

Cxixdp
C

,,||ln
2

σββ
σ

 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−

−−
∂
∂

=
x i

ix
x

i

ix x
xi

x
xd

C 3

22

3

22

σ
σβ

β
σ

σβ
 

  ( ) ( ) ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∂
∂

=
x i

ix
x

i

ix x
xi

C
x

xd
C 3

22

3

22

σ
σβ

β
σ

σβ
 

  ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−=

x i

ix
x

x
C

xi 3

221
σ

σβ
β  (35) 

 ( ) ( )( )( )( )∑ −
∂∂
∂

x
ixx

x

Cxixdp
C

,,||ln
2

σββ
β

 

  ( ) ( )∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−

∂
∂

=
x

x
x C

xi
C

xd 11 β
β

 

  ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

x
xx C

xi
C

xd 11 β
ββ

 



 53

  ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−=

x i

x
x

x
C

xi 2

1
σ
β

β  (36) 

 ( ) ( )( )( )( )∑ −
∂∂
∂

x
ixx

i

Cxixdp
C

,,||ln
2

σββ
σ

 

  ( ) ( )∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−

∂
∂

=
x

x
i C

xi
C

xd 11 β
σ

 

  ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

x
ii C

xi
C

xd 11 β
σσ

 

  ( ) ( )∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−=

x i

ix
x

x
C

xi 3

221
σ

σβ
β  (37) 

 ( ) ( )( )( )( )∑ −
∂
∂

x
ixx Cxixdp

C
,,||ln2

2

σββ  

  ( ) ( )∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−

∂
∂

=
x

x C
xi

C
xd

C
11 β  

  ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

x C
xi

CC
xd

C
11 β  

  ( ) ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+−
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
x

xx CC
xixi

CCC
xd

C
111 ββ  

  ( ) ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−−−=

x
xx C

xi
CC

xi
C

xd 22

1111 ββ  

  ( )∑ ⎟
⎠
⎞

⎜
⎝
⎛−=

x C
xd 2

1  (38) 

Because the second partial derivatives are interchangeable in order, this will create a 

symmetric Fisher Information Matrix as expected, further corroborating the results 

above. 
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The final step to complete the elements of the Fisher Information Matrix is to take the 
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To put the result in Equation 40 in perspective, if the parameters σi and C are given, then 

the inverse of this would be the CRLB for the single parameter estimation; however, joint 

estimation requires the rest of the terms as well. 
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 There are no random variables; therefore, the expectation has no effect. 
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 There are no random variables; therefore, the expectation has no effect. 
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 To summarize these results, Equation 46 displays the entire Fisher Information 

Matrix, and as Equation 17 illustrates, each diagonal element of the inverse of this matrix 

is the CRLB for the respective estimated parameters.  The off-diagonal elements of the 

inverse Fisher Information Matrix represent the bounds on covariance terms determining 

independence, or lack of independence, between the estimated parameters. 
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This matrix is too complex to take the inverse of symbolically; however, assuming 

independence between parameters, as some off-diagonal elements’ anti-symmetric nature 

indicates, may allow easy inversion of the diagonal elements.  Figure 17 in the next sub-

section illustrates the numerically calculated results for fixed parameters.  Computing 

results numerically indicates two main points:  for aliased images, small images, and near 

the edge of a fixed window, the bound appears incorrect; and a point solution for a zero-

shift estimate appears valid for the majority of the window. 

4.1.3. Simplification and Further Assumptions 

 It is possible to compute a zero-shift solution for the CRLB as the model is 

accurate for this condition since a zero-shift produces minimal discontinuities due to 

windowing in the derivative.  Since the sampling of the Gaussian shape produces nearly 

linear regions between each sample, the summations over the values of x emulate 

integrals. 
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 Select the following variables for integration by parts (IBP) and pull the constants 

out in front of the integral. 
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 Attempting to evaluate the integral for U V yields ∞/∞; therefore, L’Hopital’s 

Rule can still provide the limit as this function approaches ∞ in both directions. 
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 Rearranging this result produces a constant multiplied by the integral of a 

Gaussian, which is just the constant. 
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 Selecting the following variables for IBP for the left-most integral creates a 

positive two times the integral on the right after one step of IBP, which combine to 

produce a single positive integral as shown below. 
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 Rather than laboriously apply L’Hopital’s Rule three times to determine the limit 

of this fraction as it approaches ∞ in both directions, it is clear that the numerator will 

eventually be a constant and the denominator will remain an exponential dependent on x, 

again yielding 0 - 0. 
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 The right-hand integral is simply an integral of a constant multiplied by a 

Gaussian, which is the constant, whereas the center integral is identical to J11 and 

therefore equal to C σi
2.  The left-hand integral requires temporarily pulling the constants 

out front and integration by parts as shown below. 
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 Again, L’Hopital’s Rule indicates the first term approaches zero; however, re-

arranging the remaining integral reveals the same form as J11, again simplifying the 

integration process by providing the answer of C σi
2. 
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 Inserting these results into the original equation yields the following: 
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 The left-most integral is identical to the form found in J11; therefore, using the 

same solution and L’Hopital’s Rule calculation results in the following: 
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Equation 53 summarizes these results for the Fisher Information Matrix indicating that 

the magnitude of the true Fisher Information Matrix is less than or equal to this 

approximation to provide a true lower bound and that the parameters are uncorrelated, 

with the matrix inverse shown in Equation 54 providing an accurate approximation of the 

CRLB for all three parameters. 
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Figure 17 below indicates the match of these zero-shift solutions to the original 

numerically computed CRLB from Equation 46, which verifies the theoretical results, 

while Appendix A contains a Mathematica notebook to ensure every step is correct. 

 

Figure 17.  CRLB Numerical and Analytical Solution 
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Additionally, the last estimated parameter, C, directly stems from the variance of a 

Poisson random variable as summing all intensities in the vector produces this as the 

variance of the new Poisson random variable as described in the Section 3.5. 

4.1.4. Benefits and Discussion 

 The above theoretical bound on variance for shift estimation has two main areas 

of benefit due to the simplicity and completeness of the bound; first, the bound can guide 

researchers in implementation of estimation algorithms, and second, it can guide 

technicians towards reasonable light-levels and images for shift estimation.  The 

implementation benefits are two-fold in that estimation algorithms that search for sub-

pixel shifts need only search to the square root of the minimum variance given by the 

bound as noise error overrides any quantization error in the model.  The bound also 

provides an analytical method to validate the sensor model and simulation results by 

determining if the model is efficient in achieving the bound and providing another form 

of verification for modeling by allowing comparisons to this independent bound. 

4.2. Maximum Likelihood Optimized Search Algorithm 

4.2.1. Relevant Statistics, Assumptions, and Setup 

 Leveraging the noise statistics from Chapter III and the projection of an image 

exhibiting these statistics at the beginning of this chapter, the maximum-likelihood (ML) 

estimator uses the joint a priori distribution as shown in Equation 15 to determine what 

the estimate should be according to the criterion in Equation 55. 

 ( ) ( )( )( )∏ −=
x

xxMLx xixdp βββ ||maxargˆ  (55) 
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To minimize the computational complexity of performing numerous multiplications 

during a search over values of βx, the same result is available from the natural log of 

Equation 55 as indicated in Equation 56. 

 ( ) ( )( )( )( )∑ −=
x

xxMLx xixdp βββ ||lnmaxargˆ  (56) 

This maximum-likelihood approach differs from the maximum a posteriori (MAP) 

estimation approach, which seeks to maximize the likelihood over the joint a posteriori 

distribution found in Equation 57 by using either Bayes’ Rule or applying the Law of 

Total Probability and the criterion found in Equation 58 [5]. 

 ( )( ) ( )( ) ( ) ( )( )( ) ( )( )( )
( )( )∏∏ −−

=−
x

xxxxx

x
xxx xdp

xipxixdpxdxip
'

' ||||,|| ββββββββ  (57) 

 ( )( ) ( )( )∏ −=
x

xxxMAPx xdxip ',||maxargˆ ββββ  (58) 

Since this technique seeks to maximize the joint a posteriori distribution for a given 

value of βx, the marginal with respect to the observed image is unnecessary, while using 

the log of the a posteriori distribution and expanding further simplifies the search as 

indicated by Equation 59. 

 ( ) ( )( )( )( ) ( )( )( )( )∑∑ −+−=
x

xxx
x

xxMAPx xipxixdp '||ln||lnmaxargˆ ββββββ  (59) 

In the case that the right-hand term, or the prior probability of βx given the previous shift, 

is uniform, the dependence on the prior withdraws causing the MAP and ML estimates to 

become equal.  As mentioned in the chapter on modeling, this prior distribution is 

Gaussian in nature; however, the parameters required for this distribution are not 
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available leaving the choice of assuming a uniform distribution, as previously performed 

in literature [4, 5]. 

 The expansion of Equation 56 yields the log-likelihood for implementation and 

the first part of the MAP estimator, should the prior information become available, as 

specified by Equation 60. 
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  ( ) ( )( ) ( ) ( )( )( )∑ −−−−=
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xx xdxixixd !lnlnmaxarg ββ  

 Since the final term does not depend on βx, the term drops out. 

  ( ) ( )( ) ( )( )∑ −−−=
x

xx xixixd ββlnmaxarg  (60) 

 Ideally, the most efficient method for obtaining the shift estimate is through 

taking the derivative of the above function, setting it to zero, solving for the nodes of the 

function, and determining which node has the largest peak.  It may be possible to derive a 

closed-form solution for the derivative of the log-likelihood provided the derivative of 

the original image i(x-βx) also has a closed form solution, which is both image and shift 

specific.  This typically is not possible; however, leveraging the unique properties of the 

Fourier Transform and the interchangeability of derivatives and integrals with additional 

assumptions may provide such a closed form solution for faster estimation. 

 There are numerous alternative approaches to searching the log-likelihood 

including using a known function for the true image to allow use of all of the data in the 
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log-likelihood calculation.  Although a known function could preclude the need to 

window the data, simply adjusting the algorithm to accommodate both a fixed true image 

size and a dynamic true image size allows a greater search area for smaller image sizes 

and possibly better performance without modification to most software or hardware.  An 

additional assumption when working with actual data is regarding which projected image 

to shift for searching over different search estimates, as it is possible to shift either the 

true image or the observed data.  Theory indicates that the random parameter is in the 

original image, and therefore shifting of the true image is appropriate; however, it may be 

interesting to characterize the noise rejection capabilities of shifting the observed data 

also, as hardware interpolation is possible for this sub-pixel shift technique.  This 

research focuses on implementing a maximum-likelihood search approach using the joint 

log-likelihood defined by Equation 60 in an efficient manner to temporally compete with 

the Shack-Hartmann and SWAT wave-front sensors, as current research indicates a 

statistical performance improvement with the ML sensor for extended objects [5]. 

4.2.2. Properties of Log-Likelihood Leveraged 

 As observed from computing sample log-likelihoods using the modeling 

techniques in Chapter III, there are several properties of the log-likelihood curve that 

lend themselves to an optimized search algorithm.  Figure 18 and Figure 19 illustrate the 

log-likelihood curve for the laser guide star as described in the modeling chapter.  The 

most important attributes include the large main node, significantly smaller nodes and 

distortion due to noise, and mild peaks at the end-points indicating performance in a 

constant background. 
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Figure 18.  Log-Likelihood for Gaussian in 
Noise 

Figure 19.  Log-Likelihood for Shifted 
Gaussian in Background and Noise 

 

The peak of the main node is the estimate, and a search algorithm that rejects the noise 

and other characteristics of the log-likelihood could search in an efficient manner using 

the concave-down properties of the main node.  The peaks at the edge of the log-

likelihood window develop when the black background of the true image covers greater 

than one-half of the search window making it more likely that the object has moved 

completely out of view.  These end-point peaks have the unique characteristic of being 

slightly greater on the side of the log-likelihood curve that contains the main node for a 

significant shift, also lending possible simplification to the search algorithm. 

4.2.3. Search Algorithm Definition 

 The goal of this search algorithm is to perform an efficient search of the concave-

down portion of the main node of the log-likelihood, while being robust enough to reject 

interference from noise and other artifacts in the search window.  A method that skips the 

noise and artifacts by quickly finding the main node before performing finely stepped 

search operations effectively meets these requirements and provides a robust solution for 
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the search algorithm.  By pre-computing the interpolated true image and its logarithm, 

each sensor can use this data without wasting more computations allowing the optimized 

algorithm to focus on searching the log-likelihood and ignoring the requirements of the 

input data.  The implemented search algorithm has two phases; the first grid search is 

optional depending on the shape of the log-likelihood and the second implements an 

optimal search algorithm requiring minimal memory storage for a known concave down 

function as indicated by the program flow in Figure 20. 

 There are two different ways to describe the main search algorithm using modern 

search techniques; the first method stems from the Gradient Decent algorithm, while the 

second method builds upon the algorithmic concept of a Binary Search Tree.  From the 

Gradient Decent perspective, which is the basis for development, this algorithm performs 

Gradient Ascent by climbing the log-likelihood curve, where the step size and slope 

determinations are the unique and key components of the algorithm.  The step size uses 

Bisection to determine the next point in the search, as it is easy to compute this 

dynamically changing step size and reduces the complexity of the search significantly.  

The slope determination ensures locating the peak by determining which direction to 

climb when encountering a larger log-likelihood value with version 2 of the Select 

Window Endpoints block choosing the new search region.  The algorithm properly 

assumes that the slope is toward the current largest value if the new log-likelihood of the 

computed point is less than the current maximum and performs endpoint detection using 

version 3 of the Select Window Endpoints block. 
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Figure 20.  Flow Diagram of Optimized Log-Likelihood Search Algorithm 
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This slope determination allows the search to narrow the search region for the peak 

quickly and completes the Gradient Decent algorithm.  From the perspective of dividing 

the problem into search regions, another view of the algorithm emerges in the form of a 

Binary Search Tree, with the first node being the entire search window, this node’s 

children being the left and right halves of the search window, and continuing until only 

individual elements are the leaves of the tree.  As the search progresses the algorithm 

makes a decision at each node to guide which children to select and proceeds with a 

depth-first search of the entire tree; and since these decisions are final, upon reaching a 

leaf, the index of the leaf is the result of the search algorithm.  This search algorithm has 

the added advantage that it requires memory for only three index values, log-likelihood 

values, and their attributes making it very feasible for implementation in a compact 

embedded architecture for fast operation. 

 The optional grid search allows the algorithm to proceed given the main node of 

the log-likelihood cannot be found within the first three computations of the bisection-

based search algorithm.  This search is simply a linear search across the window, with the 

results guaranteeing a narrowed search region decided by version 1 of the Select Window 

Endpoints block including only the main node of the log-likelihood curve.  The nature of 

this search requires one additional memory location to ensure proper capture of the 

maximum log-likelihood and the window surrounding this maximum, but it remains 

simple due to capturing the maximum while computing the new log-likelihood values 

and performing only one slope detection when complete. 

 These algorithms require knowledge of the size of the observed image, or data, 

and true image arrays as well as the number of sub-pixel points interpolated between the 
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points in the real data; however, they do not require knowledge of the type of interpolator 

used, which Appendix B further confirms.  The number of sub-pixel points between real 

points is a direct result from the CRLB analysis, as selecting an interpolation allowing 

searches smaller than the minimum standard deviation simply increases computation time 

with no additional accuracy benefits.  Using twice the light-levels suggested in the 

chapter on modeling as well as the assumption of a standard deviation of two for a 

Gaussian image results in a minimum standard deviation of error for shift estimation on 

the order of 0.03 pixels.  Interpolating by 25 points narrowly accommodates this value, 

while 26 sufficiently surpasses this minimum error; therefore, a step size of the inverse of 

27 represents an ideal interpolation level to allow for proper estimation of any type of 

image while only requiring one additional log-likelihood computation.  Since each sensor 

requires only one true image as indicated in Section 4.3, a separate processor or module 

optimized for interpolation could provide this information.  Research indicates that linear 

interpolation is good enough for estimation; however, a characterization of the 

performance difference between linear and the best possible cubic-spline interpolator that 

MATLAB includes is an interesting area of investigation included in this research [5]. 

4.2.4. Computational Complexity Analysis and Comparison 

 Computational complexity research provides insight into how difficult or how 

long an algorithm takes compared to another algorithm given the same inputs, and the 

following analysis performs this comparison for the Shack-Hartmann, SWAT, non-

optimized Maximum-Likelihood, and optimized Maximum-Likelihood wave-front 

sensors.  This is a comparison of the software portion of the algorithm only; the delays 

associated with hardware CCD readout and data transfer do not appear in these 
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computations or comparisons and are important considerations outside of this discussion.  

The standard notation of On(n) describes the computational complexity by indicating the 

asymptotic nature of a function based on the subscripted variable.  To clarify the 

calculations, each sensor’s computational complexity stems from a single-dimension 

estimate of the wave-front tilt, with significant constants indicated in the standard 

notation with a ‘*’ for multiplication or ‘+’ for addition between the two independent 

complexities.  The Shack-Hartmann wave-front sensor requires software projection of the 

image when computing the centroid; therefore, this excess computation time appears in 

the number of additions required for an image as indicated by Table 4.  The faster SWAT 

wave-front sensor capitalizes on hardware projection of the image, which also decreases 

the read-out time of the data, and shows a linear growth of both additions and 

multiplications with image size.  The far more complex maximum likelihood algorithm 

breaks into three phases, with one optional phase, where the summation of these three 

phases indicates the total complexity of the search algorithm.  Assuming a fixed window 

of one-half the image length, the complexity of the pre-compute phase and a non-

optimized search algorithm appears in Table 5, while Table 6 presents the complexity of 

the optimized search algorithm for the optional grid search and gradient decent 

algorithm. 

Table 4.  Algorithm complexity for Shack-Hartmann and SWAT Sensors 

Sensor Shack-Hartmann SWAT 
Type of 
Operation 

Complexity 
n = image 
length 

On( ) Complexity 
n = image 
length 

On( ) 

Additions 2n2+n-2 On(n2) 2n-2 On(n) 
Multiplications n On(n) n On(n) 
Divisions 1 On(1) 1 On(1) 
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Table 5.  Algorithm complexity for Maximum-Likelihood Sensor Phase I 

Operation Phase I Non-Optimized Search 
 Complexity 

n = image length 
N = # to interpolate 

On()(*,+) 
ON() 

Complexity 
n = image length 
N = # to interpolate 

On()(*,+) 
ON() 

Logical Shift (n-1)(N-1) On(n)* 
ON(N) 

1 On(1) 
ON(0) 

Additions (n-1)(N-1) On(n)* 
ON(N) 

(n-1)((n/2)N+1)+(nN+2) On(n2)* 
ON(N) 

Multiplications 0 On(0) 
ON(0) 

(n/2)((n/2)N+1) On(n2)* 
ON(N) 

Natural Logs (n-1)N+1 On(n)* 
ON(N) 

0 On(0) 
ON(0) 

Divisions 0 On(0) 
ON(0) 

0 On(0) 
ON(0) 

Log-Likelihood 
Computations 

0 On(0) 
ON(0) 

(n/2)N+1 On(n)* 
ON(N) 

 

 

Table 6.  Algorithm complexity for Maximum-Likelihood Sensor Phases II and III 

 Where 

  g’ = 1 if including the optional grid search, 0 otherwise 

  g = the number of points in the optional search grid, or one 

Operation Phase II Phase III 
 Complexity 

n = image length 
g = # of Grid points 
N = # to interpolate 

On()(*,+) 
ON() 

Complexity 
n = image length 
g = # of Grid points 
N = # to interpolate 

On()(*,+) 
ON() 

Logical Shift 0 On(0) 
ON(0) 

1 On(1) 
ON(0) 

Additions 3(n/2)g On(n) 
ON(0) 

Best: (n+1)(2-2g’+log2((n/(2g))N)) 
Worst: (n+1)(2-2g’+2log2((n/(2g))N)) 

On(nlog(n))+ 
ON(log(N)) 

Multiplications (n/2)g On(n) 
ON(0) 

Best: (n/2)(2-2g’+log2( (n/(2g))N)) 
Worst: (n/2)(2-2g’+2log2((n/(2g))N)) 

On(nlog(n))+ 
ON(log(N)) 

Natural Logs 0 On(0) 
ON(0) 

0 On(0) 
ON(0) 

Divisions 0 On(0) 
ON(0) 

0 On(0) 
ON(0) 

Log-Likelihood 
Computations 

G On(1) 
ON(0) 

Best: 2-2g’+log2((n/(2g))N) 
Worst: 2-2g’+2log2((n/(2g))N) 

On(log(n))+ 
ON(log(N)) 
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Figure 21.  Illustration of Log-Linear Nature of ML Algorithm for LGS 

To illustrate these results for varying image sizes, Figure 21 provides MATLAB 

simulation results, using floating-point computations on an Athlon 2600+ processor, of 

average time required for Shack-Hartmann sensor, cent on the plot, SWAT wave-front 

sensor, and the optimized maximum-likelihood algorithm (mliw with linear and 

MATLAB’s cubic-spline interpolation) for different image sizes.  The pre-compute phase 

requires the same computational complexity for that of SWAT estimation for additions 

but subsequently includes the additional time for computing logarithms as well.  The 

non-optimized log-likelihood search algorithm clearly exceeds the computational 

complexity of both centroiding sensors; however, the optimized algorithm is only slightly 

more complex compared to the SWAT wave-front sensor.  Provided the pre-compute 

time occurs off-line or over the span of a few estimates, the optimized algorithm 

performs well, with O(n log(n)) complexity, which is far superior to the non-optimized 

search algorithm. 
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4.2.5. Possible Improvements 

 Through investigation of the requirements and assumptions for the optimized 

search algorithm to perform properly, a few improvements are possible given thorough 

understanding of the algorithm and the data inputs required.  This optimized algorithm 

assumes that the interpolated and projected true image, the log of this projection, and the 

observed data are available in memory for multiple accesses, with any pre-computation 

completed before estimation begins.  Overall performance improvement may be possible 

by computing on-the-fly interpolation of the true image, which also requires on-the-fly 

logarithms, allowing for a slightly decreased external storage space, greatly decreased 

data access times, but more computations overall.  If implemented, on-the-fly 

interpolation could lead to automatic interpolation level, or sub-pixel step size, selection 

that could further reduce the number of computations required for the search algorithm. 

 Although this optimized search algorithm is computationally efficient for the 

number of log-likelihood calculations performed, any other search or sort algorithm 

capable of exploiting new hardware technologies and possibly breaking apart the log-

likelihood calculation itself may improve upon this search algorithm.  For much larger 

image sizes, and possibly joint estimation in two dimensions, an artificial intelligence 

algorithm could provide faster results. 

4.2.6. Limitations 

 The pre-computation of the interpolation and logarithm of the true image could 

significantly hinder the effectiveness of this wave-front sensing algorithm depending on 

the nature of the observed image, as this true image requires updates to prevent changes 

in light-level, orientation, and contrast from affecting the outcome of the log-likelihood.  



 79

Additionally, the implemented version of the algorithm requires the image size be a 

multiple of four, which reduces the possible array sizes for a given AO hardware setup. 

4.3. Implementation Strategy 

4.3.1. System Layout 

 The benefit of a maximum-likelihood vector-correlating wave-front sensor is the 

ability to perform tracking and wave-front sensing for AO using existing technologies 

with hardware requirements that typical systems already meet.  As long as the imaging 

device meets or exceeds Nyquist sampling criteria, and the image provided contains 

twice or greater the number of pixels needed for the search window with appropriate 

light-level and contrast, nearly any imaging system can use this algorithm as a tracking or 

wave-front sensor.  Since an appropriate hardware layout exists (lens, array, CCD, etc) 

for this modern wave-front sensor, this section focuses on the efficiency of the charge-

coupled device (CCD) array, the setup of the processing unit hardware, and method to 

implement the maximum-likelihood estimation algorithm [5]. 

 The size of the image follows from the shift detection requirements; however, 

exceeding this can greatly reduce the bias and overall error in estimates.  Thus an image 

larger than thirty-two by thirty-two pixels is the recommended size for tracking and 

wave-front sensing of plus or minus four-waves of tilt, corresponding to a CCD array of 

160 or greater pixels for an array of five-by-five wave-front sensors.  An important 

possibility to consider if timing constraints permit is multiplexing the x and y dimension 

estimates in time, allowing for twice the light per dimension and requiring only once 

CCD array instead of two.  If the CCD array has a fast analog to digital converter, it 
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could interpolate the data directly for searching of shifts in the observed image instead of 

the true image, which offloads this requirement from the pre-compute phase. 

 The basic setup remains the same except for the above-mentioned improvements 

and the specification of a field programmable gate array (FPGA) programmed to execute 

the pre-compute phase and search algorithm.  The targeted architecture for this 

application is an Altera Cyclone II FPGA, which is not the fastest or most complex 

FPGA, but it includes some basic modules to aid in computation, a reasonable package 

size, and a greatly reduced cost [7].  The development environment for this device is free 

and allows the researcher to validate implemented algorithms in the targeted environment 

with a simple and easy to use interface. 

4.3.2. VHDL Implementation 

 The approach to algorithm implementation in this Very High Speed Integrated 

Circuit (VHSIC) Hardware Description Language (VHDL) follows a basic strategy to 

break the problem into smaller parts and implement them one at a time, which requires an 

extensible state-machine design with robust transitions and outputs.  Abstraction is 

critical to reduce repeated computations to manageable modules, prevent excessively 

long code, and allow for easier debugging.  The above algorithm reduces easily to the 

Moore state-machine in Figure 22, allowing for robust transitions, controlled outputs, and 

extensions to include further options.  In the figure the symbol “!” indicates negation, the 

states with a label followed by a colon occur in the indicated arrangement and the states 

outlined in dashes are extensions to this diagram currently operating as direct 

connections to the next labeled state in the diagram. 
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Figure 22.  Moore State-Machine for Implementation 

The implementation uses 32 bit integer rather than floating-point computations to 

increase speed and reduce complexity; therefore, to preserve accuracy of results the pixel 

values of the true image and the log of such values simply scale up by the required 

accuracy, typically four decimal places for the simulated light-levels, allowing correct 

computation of the log-likelihood.  The final output is also an integer value, which is a 

linear index into the up-sampled true image vector and the estimated shift computes 

directly from Equation 61. 
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[ ]

S
N

IvuLResult

Shift
2

11 −
−−

=  (61) 

 Shift, Estimated Shift Value (pixels) 

 Result, VHDL Module Result (array Position) 

 IvuL, Up-Sampled True Image Length (photons) 

 S, Amount Multiplied by Nyquist for Over-Sampling (unitless) 

 [-1], Optional Subtraction for Indexing Starting at One 

The PreCompute and Compute states both provide loop control for searching over the 

log-likelihood values, and currently perform tasks in a clocked-combinatorial fashion; 

however, these nodes could control additional state machines for further robust operation.  

Not shown in the diagram is a separate module designed specifically to compute the log-

likelihood values providing its own loop control to step through the windowed images 

and perform computations.  This does not implement the interpolation or logarithmic 

portion of the maximum-likelihood optimized algorithm; however, preliminary fitting 

and timing results indicate that the entire algorithm requires less than four percent of the 

logic blocks available in the FPGA, while operating at a conservative clock frequency of 

33 MHz.  This design performs a single log-likelihood computation every twenty clock 

cycles, which drives a total computation time of less than 13.4 μs for a single estimate on 

a 32 pixel image allowing for multiplexing of a single estimation algorithm for seventy-

five sensors at an update rate of 1,000 Hz.  This speed analysis indicates more than 

adequate temporal efficiency and basic simulation results appear in the next Chapter, 

while the VHDL code implementing this phase of the algorithm is in Section 4.2.3. 
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4.3.3. Extensions to Implementation 

 Including the interpolation and logarithm in the FPGA would simplify the system 

greatly by allowing a single information bus from the CCD to the FPGA, reducing the 

number of pins required and lowering overhead.  Additionally, converting the loop 

control statements within the PreCompute and Compute states to small state machines 

would further reduce the complexity of the VHDL code, providing extensibility and 

versatility to the system. 

4.4. Summary 

 This Chapter provides the analyses for three major investigations in tracking and 

wave-front sensing; development of a CRLB for any tracking or wave-front estimation 

techniques, optimization of the known vector-projection maximum-likelihood algorithm, 

and hardware implementation.  To validate the new approaches and ensure actual results 

match the expectations given by analysis and theory, numerous simulations and 

parameterizations in the next chapter cover the performance of operation in different 

environments. 
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V. Results and Discussion 
 
 

 This Chapter brings together the previous work to illustrate in an intuitive fashion 

the performance, feasibility, and completeness of the research and analysis performed.  

First presented are the detailed results of simulation for the two-dimensional Gaussian, or 

LGS, which serve to narrow the range of interest before displaying aggregate results for 

the tracking and other wave-front sensing applications.  Also included are the synthesis 

and simulation results for the VHDL implementation of the maximum-likelihood 

optimized algorithm.  As indicated in the Chapter on modeling, the simulation step size, 

0.1 pixels, is larger than the search step size as set by the CRLB unless indicated different 

for a particular plot.  The total number of noisy trials selected for each realization is 100 

trials-per-shift-per-dimension, with the statistics for each dimension averaged together, 

unless indicated different for a unique data set. 

5.1. LGS / 2D Gaussian - Modeling and Simulation Results 

 The laser guide star is a unique case in that the analysis providing the CRLB uses 

this type of image for the bound on variance for any estimator, and not only confirms the 

design choice based on the CRLB but also provides evidence that the bound is indeed a 

lower bound on variance for wave-front sensing.  The parameters used for modeling the 

Gaussian are a light-level, C, of 300 photons and a standard deviation, σi, of two pixels as 

this is the approximate width of a diffraction limited PSF. 
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5.1.1. Effects of Image Projection 

 To provide estimates for two-dimensions, projection of the Gaussian image, and 

any image, requires either an equally divided light-level or an equally divided time 

interval, both of which can result in a reduced light-level and reduced SNR.  Figure 23 

and Figure 24 illustrate the effects of dividing the light between two sensors using the 

whole image for the Shack-Hartmann wave-front sensor, or cent corresponding to the 

first CRLB, and projected images at half intensity for the SWAT wave-front sensor 

corresponding to the second CRLB.  For small window sizes, the edge effects not 

accounted for in the derivative for the CRLB appear by the sensors dipping beneath this 

bound; however, the larger 16 pixel image illustrates this is a true lower bound for zero-

shift estimation and any shifts within approximately six pixels of either window edge.  

This data represents performance results without a background, Bg; and this parameter 

greatly affects the centroid algorithm as presented later in this chapter in Sub-Section 

5.3.3. 

 

Figure 23.  Variance of Centroiding 
Algorithms and CRLB 

Figure 24.  Mean Square Error of 
Centroiding Algorithms 
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Since the MSE is the bias squared plus the variance as indicated by Sub-Section 3.5.3, 

the CRLB is still a lower bound on this statistic as well; therefore, MSE plots also 

include the CRLB, with both plots computed over 10,000 trails-per-shift in each 

dimension for this simulation.  The MSE indicates that although the variance is half for 

the Shack-Hartmann wave-front sensor, the bias remains constant regardless of light-

level, and this bias overwhelms the noise error, making the estimation performance of the 

Shack-Hartmann and SWAT sensors equally poor for such a small image size. 

 Given that the Shack-Hartmann wave-front sensor is not a projection-based 

estimation technique, it is not feasible to search over plus-or-minus four waves of tilt in a 

reasonable amount of time.  The SWAT wave-front sensor is eight-times faster in reading 

data for an eight pixel image, which only covers plus-or-minus 3.5 pixels or 1.75 waves 

of tilt, eliminating the typical Shack-Hartmann centroiding wave-front sensor from 

further discussion. 

5.1.2. Detailed Bias 

 As mentioned previously, the bias indicates the best-case operation of a sensor 

and is difficult to remove; therefore, a minimal bias is ideal for any type of sensor.  

Figure 25 displays the SWAT and maximum-likelihood wave-front sensors for the 

minimum required image sizes to search plus-and-minus four waves of tilt.  This 

simulation uses a step size of 0.001 pixels to capture the quantization error caused by the 

CRLB set search step size of approximately 0.008 pixels. 
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Figure 25.  Absolute Bias v Shift for LGS 

The most important conclusions to draw stem from the clear improvement in bias of the 

maximum-likelihood sensor, which windows the data and the true image before shifting 

the image, over the SWAT wave-front sensor and the nearly order of magnitude 

difference between the linear, subscript l, and cubic-spline, subscript c, interpolated 

algorithms. 

 The expected quantization noise of approximately 0.004 pixels due to the search 

algorithm’s interpolation step size, which the CRLB set, is nearly perfect with the cubic-

spline interpolated algorithm.  This graph indicates the unbiased nature of the maximum-

likelihood algorithm for shifts in the window, provided the search step size is arbitrarily 

small while making use of an accurate interpolator, further illustrating that the CRLB is a 

correct lower bound for this model in noise. 
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5.1.3. Detailed MSE and VAR 

 Also indicated previously, the variance illustrates the performance of the 

algorithm in noise, and tuning of the sensor without changing the light statistics cannot 

reduce or eliminate this error.  The mean square error combines the variance with the bias 

for an overall performance picture as shown in Figure 27, and the variance in Figure 26, 

both of which have the CRLB with half the light intensity for the projected image sensors 

and 10,000 trails-per-shift in each dimension. 

 The key points to derive from these plots include the clear affect of bias shown in 

the MSE, making some estimated shifts useless for the SWAT sensor, and the apparent 

noise rejection efficiency of all sensors for relatively small shifts.  The linear 

interpolator’s error appears as a small ripple in both the MSE and the VAR, but nearly 

matches the cubic-spline interpolator with respect to noise rejection. 

 

 

Figure 26.  Variance v Shift for LGS Figure 27.  Mean Absolute Error v Shift for 
LGS 
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Although it does not affect a wave-front correcting AO system, it is important to note that 

the maximum-likelihood sensor does not always return the edge of the window for shifts 

significantly outside of the window, which is a direct result of more than half of the 

object moving out of the field of view.  Since MSE combines the variance and bias of a 

sensor for a complete picture, further results only display the mean square error. 

5.1.4. Image Size Analysis 

 Image size determines the size of the window and the possibility of the object 

moving out of the field of view, and although the minimum image sizes are perhaps good 

enough for wave-front sensing, a search over larger images sizes, as in Figure 28 using 

10,000 trials-per-shift-per-dimension, reveals better performance for all sensors.  The 

following results include averages over the previously displayed regions, with a solid line 

on the graph indicating an average over plus-or-minus one-half wave of tilt while a dot-

dashed line indicates an average over plus-or-minus four-waves of tilt or the entire size of 

the window, whichever is smaller.  Included for reference for this plot only is the non-

windowing model that requires the functional form of the true image but allows better 

performance with a smaller image size, serving to illustrate that a regular windowing 

model approaches this performance with an image 16 pixels larger.  The overall statistics 

indicate an image size of 32 pixels is optimal for the non-windowing maximum-

likelihood sensor, mlnw with perfect interpolation and extrapolation using the Gaussian 

form as indicated by a subscript p.  An image size of 48 pixels allows the windowing 

models that do not require explicit knowledge of the image outside of the window to 

function with the same performance. 
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Figure 28.  Mean Square Error v Image Size for LGS 

These image sizes are the recommended values provided the hardware and subsequent 

readout speeds are complementary; however, simulation results present the minimum 

image sizes to illustrate the differences and trends in the sensor models. 

5.1.5. Sampling Analysis 

 Over-sampling of an image aids an interpolator by providing actual data in-

between pixels; however, it increases the size of the CCD array and decreases the amount 

of light per-pixel effectively reducing the SNR; therefore, this is beneficial only if the 

decrease in bias is greater than the potential increase in variance.  The average statistics 

in Figure 29 indicate that over-sampling aids the linear interpolator somewhat and harms 

the cubic-spline interpolator to a lesser extent, with the exception of the maximum-

likelihood data shifting, mldw, and swat sensors, which perform relatively worse. 
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Figure 29.  Mean Square Error v Sampling Rate for LGS 

Although the corresponding decrease in SNR changes the variance only slightly, the 

MSE indicates a nearly constant trend in error with the bias driving the results.  These 

results also indicate the best setup for optimal performance of these sensors is sampling 

at or slightly beyond Nyquist, as the changes in overall error are relatively small. 

5.1.6. Background Intensity Analysis 

 Independent of image size; there can be stray light in the optics setup as well as 

stray electrons in the CCD array itself, which the sensor sees as a background in the 

image lowering the overall contrast and decreasing the SNR.  The following results in 

Figure 30 show the importance of minimizing the background for the centroid-based 

sensor for estimation beyond one-half wave of tilt, and the poor performance of searching 

by interpolating and shifting the observed data for the maximum-likelihood algorithm. 
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Figure 30.  Mean Square Error v Background Intensity for LGS 

The windowing maximum-likelihood sensor that estimates the shift by shifting the image 

has a good tolerance to background, although the growth rate of the MSE for this sensor 

still appears to be a slow exponential, indicating higher background would disrupt the 

performance of this sensor significantly as well.  As the SWAT and mldw sensors do not 

perform as well as the typical maximum-likelihood sensor, the discussion will no longer 

include the centroiding sensor and simulations will not include the mldw sensor. 

5.1.7. Light-Level Analysis 

 The CRLB indicates that an efficient sensor could perform better given higher 

light-levels, and Figure 31 shows the improved performance relationship for the 

maximum-likelihood sensor for higher light-levels.  As noise levels decrease below the 

bias of the sensor, the bias drives the remaining error in the model 
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Figure 31.  Mean Square Error v Light-Level for LGS 

The SWAT wave-front sensor noticeably demonstrates this trend over an average of four 

waves of tilt.  As light levels increase, eventually all models would suffer the same bias-

limiting effect; however, the maximum-likelihood sensors have the advantage that a finer 

search step size driven by the CRLB allows them to remain efficient in noise for higher 

light-levels. 

5.2. Tracking Extended Object - Modeling and Simulation Results 

 Possibly the most interesting simulation of this chapter is tracking an extended 

object and these results exercise the extended object model as described in Sub-Section 

3.2.2.  There are two difficulties with extended objects; first, the object typically fills the 

field of view, lowering the overall contrast of the image and second, as the object shifts 

new information enters the field of view, which can cause a sensor’s performance to drop 
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and bias to be asymmetric.  The contrast ratio of the original Hubble image before proper 

band-limiting is approximately four-to-one; therefore, these results should suffice for any 

similar object with a similar telescope OTF and noise statistics.  The performance graphs 

include only the maximum-likelihood sensor as a centroid algorithm cannot cope with 

new information entering the scene or an object with multiple peaks in the image.  

Additionally, the dimensions are separate to illustrate the performance for a low-contrast 

orientation and an orientation containing the full contrast of the object, which indicates 

that proper tuning of the sensor or optics must occur before tracking is possible. 

5.2.1. Image Size Analysis 

 As opposed to Figure 30 for the LGS case, Figure 32 illustrates an increase in 

required image size for acceptable tracking performance. 

 

Figure 32.  Mean Square Error v Image Size for Hubble Tracking 



 95

This graph also indicates that the CRLB derived for the LGS using the same parameters 

is indeed a lower bound for tracking with this particular image of the Hubble telescope as 

2σi
2 / C = 1x10-3-pixels2.  The subsequent simulation results show only the recommended 

image size of 48-by-48 pixels, except for the sampling analysis to show a complete 

sampling range. 

5.2.2. Sampling Analysis 

Figure 33 indicates that over-sampling does not affect the performance of the sensor.  

Again, the recommendation is to sample at or slightly beyond Nyquist sampling criteria 

to avoid aliasing of the true image. 

 

 

Figure 33.  Mean Square Error v Sampling Rate for Hubble Tracking 
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5.2.3. Background Intensity Analysis 

 As an extended object already has a background, addition of further background 

light only reduces the contrast and produces small changes overall in the performance of 

the maximum-likelihood sensors using either type of interpolation.  Figure 34 illustrates 

the reasonable tolerance to background in the y-dimension and the same tolerance, but 

consistently poor performance for the low-contrast x-dimension. 

5.2.4. Light-Level / Total Intensity Analysis 

 Much like the laser guide star, the maximum-likelihood sensor performs better 

with higher light-levels as shown in Figure 35; and the roughness of the curve here is due 

to the limited number of trails for such a large bias and variance. 

 

 
Figure 34.  Mean Square Error v Background Intensity for Hubble Tracking 
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Figure 35.  Mean Square Error v Light Level for Hubble Tracking 

5.3. WFS Extended Object - Modeling and Simulation Results 

 Adaptive optics systems attempt to correct atmospherically induced wave-front 

distortions for any object the researcher wishes to view; therefore, a simulation of a 

wave-front sensing application on the Hubble provides further insight into the utility of 

this sensor, and the possibility of tracking and imaging with the same telescope and 

sensor setup. 

5.3.1. Image Size Analysis 

 Figure 36 again confirms that wave-front sensing over plus-or-minus four waves 

of tilt is possible at the minimum image size, but the recommended image size for the 

maximum-likelihood wave-front sensor remains a reasonable 48 pixels in length. 
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Figure 36.  Mean Square Error v Image Size for Hubble WFS 

 

The maximum-likelihood wave-front sensors maintain good performance for larger 

image sizes, while the centroiding algorithm’s performance decreases as the image size 

increases due to the greater incorporation of the image’s natural background.  This image 

also indicates that the CRLB is a good approximation, given the parameter σi is an 

approximation for the average image shape in both dimensions of the image. 

5.3.2. Sampling Analysis 

 This simulation results in Figure 37 indicate the same increase in performance 

with respect to over-sampling for the linear interpolated sensor, and the same slight 

decrease in performance for the centroiding and cubic-spline interpolated sensor. 
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Figure 37.  Mean Square Error v Sampling Rate for Hubble WFS 

 

5.3.3. Background Intensity Analysis 

 Despite the inherent background of the Hubble image, the maximum-likelihood 

sensor continues to demonstrate strong tolerance to further background light in Figure 38, 

with very reasonable mean squared error performance.  The swat wave-front sensor 

degrades at a slower rate than seen with the laser guide star due to the higher light level 

of this object. 

5.3.4. Light-Level / Total Intensity Analysis 

 As the CRLB predicts, Figure 39 indicates all sensors benefit from the increased 

light-levels; however, the increased light-level appears to aid the cubic-spline interpolator 

slightly more than the linear interpolator due to the linear interpolator’s added error. 
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Figure 38.  Mean Square Error v Background Intensity for Hubble WFS 

 
Figure 39.  Mean Square Error v Light-Level for Hubble WFS 
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These simulations illustrate excellent performance for the vector-projection maximum-

likelihood wave-front sensor as well as validate the sensor is efficient with respect to the 

CRLB for larger image sizes.  The CRLB also holds for other image types, given an 

appropriate estimate of σi. 

5.4. Implementation / VHDL Simulation Results 

 The simulation results for VHDL represent the estimated speed of operation for 

the hardware implementation of the sensor; however, these results do not fully test the 

implementation and further validation should proceed before reliance on this realization 

of the sensor. 

5.4.1. Targeted Device Resource Summary 

 The following results in Table 7 and Table 8 indicate the usage of the logic 

elements in the FPGA and the maximum clock speed that the device could operate using 

the Cyclone II EP2C70F89618 processor. 

 

Table 7.  Resources Required for Synthesis 

Resource Number Used Number Available Percent Used 

Logic Elements 2,447 68,416 < 4% 

Registers 491   

I/O Pins 228 622 37 % 

Memory Bits 0 1,152,000 0 % 

Embedded 9 bit 
Multipliers 

6 300 2 % 
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Table 8.  Preliminary Timing Analysis 

Timing Type Value 

Clock 53.79 MHz (18.59 ns) 

Worst-Case Setup Time (tsu) 23.381 ns 

Worst-Case Hold Time (th) -1.225 ns 

Worst-Case Clock to Output (tco) 14.21 ns 

 

Additionally, the preliminary estimated power consumption is a low 260 mW allowing 

for reduced cooling requirements in an embedded environment.  These results indicate 

that a clock period of 30 ns is a safe value for setup and hold times while maintaining the 

performance of the estimation algorithm, which results in a total compute time of less 

than 13.4 μs, allowing for time-division multiplexing of one module for up to 75 different 

wave-front sensors at an update rate of 1,000 Hz. 

5.4.2. Test Bench Simulation Results 

 This simulation serves to indicate the total time required to complete one log-

likelihood search for a 32-by-32 pixel image, and does not indicate complete accuracy or 

validate the implementation outside of the simple, non-realistic test case presented, as it 

has only 44.8 % test coverage.  Figure 40 indicates the form of an individual log-

likelihood computation and is a zoomed view of the beginning of Figure 41, which shows 

the overall computation for a nearly worst case of 23 log-likelihood computations. 
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Figure 40.  Zoomed in View of First Portion of VHDL Simulation 

 

 

 

 

Figure 41.  Full View of VHDL Simulation 

 These results indicate the total required operating time as well as proper operation 

for the simplistic test case presented.  Complete algorithmic flow testing and addressing 

verification are follow-on research areas in a complete implementation. 

 

 

Log Likelihood 
Computations 

Forced to Check the 
Slope Always 

Total Compute Time = 221 Clock Cycles 
(Forced to be Almost Worst Case)

1 Log Likelihood 
Calculation = 16 Clks

Correct Outputs Given 
Simulated Inputs 

Overhead Between LL 
Calculations = 4 Clks 
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5.5. Summary 

 The three main areas of research results presented in this chapter conclude nearly 

half of the developmental life cycle of a project including theoretical research, 

algorithmic development, and hardware implementation, with the remaining portion of 

the life cycle including at a minimum hardware realization, testing, and maintenance.  As 

an additional benefit, further simulation results parameterizing the sensors over a wider 

range appear in Appendix D.  The analysis for the CRLB provides implementation and 

validation benefits, while the developed log-likelihood search algorithm and 

implementation provide a solid foundation and proof of concept for implementation. 
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VI. Conclusions 
 
 

 From the results and discussion, it is clear that the vector-projection maximum-

likelihood wave-front and tracking sensor is quite versatile and feasible to implement.  

This research intended to and succeeded in providing definitive results for 

characterization and implementation of the maximum-likelihood sensor through the use 

of applied theory, robust modeling, and sound implementation techniques.  Combined 

with the power of a fast search algorithm, maximum-likelihood could become the new 

standard in embedded estimation techniques. 

6.1. Key Contributions 

 Not only did this research develop a Cramer-Rao lower bound for any wave-front 

sensing or tracking application but it further reduced this complex theoretical model to a 

simple point solution providing an easy method to predict and validate real-life results.  

The results of the bias analysis provides targeted implementation information as well as 

the noise statistics which further solidified the utility of this sensor by indicating the 

greater efficiency compared to the centroiding algorithms currently in use.  The 

optimized search algorithm with noise rejection capability designed for a concave-down 

log-likelihood is useful for any maximum-likelihood application with a similar 

likelihood, log-likelihood, or other type of curve to seek a maximum or minimum over.  

Finally, the development method and implementation of this optimized algorithm in 

hardware reduces the life-cycle time greatly for current use, while providing a road map 

for future implementations of other complex search algorithms or embedded software. 
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6.2. Lessons Learned 

 Several difficult areas of this research could have been simpler if more time and 

care had focused on proper modeling of the environment for statistical analysis and 

simulation.  It is impossible to determine if an algorithm or implementation is correct if 

the information sent to the element of research is not correct, as only unexpected results 

occur.  In addition, reliance on modern simulation tools often led to further problems as 

the implementation of these tools is not always clear and may provide inaccurate results 

in limited circumstances.  Outside of these areas of difficulty, the research went quite 

smoothly by capitalizing on the background and understanding provided by a thorough 

education. 

6.3. Further Research 

 As with any research there are many areas in which improvements, extensions, 

and developments are available; therefore, this section concludes with the possible 

follow-on work associated with the areas of research investigated. 

 The Cramer-Rao lower bound only includes the intensity of light as a parameter, 

ignoring contrast, which is the single largest contributor to reduced performance for an 

extended object.  The realization of an inclusion or relation to contrast would provide 

even greater utility to the simplistic yet effective zero-shift minimum variance 

calculation.  Additionally, the CCD estimates each pixel in an image during the capture 

process; therefore, a more accurate bound would jointly estimate the current parameters 

with each pixel intensity. 

 The vector-projection maximum-likelihood tracking and wave-front sensor has 

numerous areas of investigation, only some of which stem directly from this research.  It 
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may be possible to compute a closed-form derivative for any image, allowing for single-

step computation for ML estimation.  With the ability to dynamically search the log-

likelihood, it would be very possible to perform on-the-fly interpolation and possibly 

even automatic interpolation level adjustment based on the results of the optimized 

search algorithm.  Another important area of investigation is the use of this search 

algorithm for joint estimation in two-dimensions, either using vector-projection or the 

entire image, or other techniques such as phase diversity estimation.  An enhancement to 

the tracking application would be the inclusion of automatic light-level normalization 

between estimations, which would provide greater accuracy and better performance. 

 The embedded implementation should match the performance of a simulation 

algorithm; however, further state-machine analysis would simplify the hardware layout 

and provide a more robust solution.  Further testing and development of this algorithm to 

validate the design could allow for immediate implementation.  Finally, implementation 

of the required interpolation and logarithmic functions would increase the overall 

productivity of an embedded system and simplify the data transfer requirements between 

different systems greatly. 

 Even without the above extensions, maximum-likelihood has a promising future 

in the arenas of tracking and wave-front sensing applications. 
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Appendix A: Mathematica Verification of CRLB 

 
A.1. Setup of Formulas 
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A.2. Computation of CRLB 
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A.3. Simplification Setup and Solution 
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Appendix B:  MATLAB Version of ML Algorithm 

 
% Maximum Likelihood Estimate Using Optional Grid & Gradient Decent 
Search 
% function a = mliwb (Dv,Ivi,lIvi,N,aMax,Grd) 
% Dv    - Data Vector 
% Ivi   - Image Vector (Interpolated) 
% lIvi  - Log of Interpolated Image Vector 
% N     - Interpolation Points Used 
% aMax  - Maximum Search Area = +/- aMax 
% Grd   - Step Size for Grid Search 0 < Grd < length(Dv) to Perform 
  
function a = mliwb (Dv,Ivi,lIvi,N,aMax,Grd) 
  
Grd = floor(Grd*N)/N;                   % Ensure Grid Conforms to vecs 
step = 1/N;                             % Interpolations Step Size 
  
DvL  = length(Dv);                      % Data Vector Length 
DvuL = (DvL-1)*N+1;                     % Upsampled Data Vector Length 
IvuL = length(Ivi);                     % Interpolated Image Vector Len 
IvL = (IvuL-1)/N+1;                     % Image Vector Length 
if IvL < DvL            % Check for incorrect input vectors 
    a = NaN; 
    return; 
elseif IvL <= 2*DvL     % Get Maximum Window Size 
    sLim = (IvL/2-1)/2; 
else 
    sLim = (DvL-1)/2; 
end; 
wLim = sLim - (DvL - 2*sLim+1 - 1)/2;   % Get Minimum Window Size 
if aMax > sLim          % check aMax is Less than Maximum Window 
    aMax = sLim; 
    Sl = 2*sLim - aMax; 
elseif aMax < wLim      % Check aMax is Greater than Minimum Window 
    Sl = sLim; 
else 
    Sl = 2*sLim - aMax; 
end; 
iSg= (IvL-1)/2; 
iSs= (iSg-Sl+1-1)*N+1;      % start index for smaller image 
iSe= (iSg+Sl+1-1)*N+1;      % end index for smaller image 
dSg= (DvL-1)/2; 
dSs= dSg-Sl+1;              % start index for smaller data 
dSe= dSg+Sl+1;              % end index for smaller data 
sSs= (iSg-aMax+1-1)*N+1;    % start index for minimum Shift (in window) 
sSe= (iSg+aMax+1-1)*N+1;    % end index for maximum Shift (in window) 
  
if Grd == 0 || Grd*N > sSe-sSs  % Determine if Grid Search is Required 
    noGrid = true; 
else 
    noGrid = false; 
end; 
  
taL = zeros(1,IvuL);            % Allocate Memory (overkill) 
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if noGrid                       % Just Compute Endpoints (no Grid) 
    for idx = [sSs sSe]             % Get LL Values for Endpoints 
        taL(idx) = sum(Dv(dSs:dSe).*... 
            lIvi((iSs:N:iSe)+(IvuL-1)/2-(idx-1))... 
            -Ivi((iSs:N:iSe)+(IvuL-1)/2-(idx-1)),2);  % Shifts Image 
    end; 
    if taL(sSs) < taL(sSe)          % Right-Side is Bigger 
        max = sSe; 
        sdx = 2; 
    else                            % Left-Side is Bigger 
        max = sSs; 
        sdx = 1; 
    end; 
    idx = sSs+floor((sSe-sSs)/2);   % Compute Next Search Point 
else                            % Perform Grid Search 
    init = sSs:Grd*N:sSe; max = sSs; 
    if mod(sSe-sSs,Grd*N) ~= 0      % Add Last Point if Necessary 
        init = [init sSe]; 
    end; 
    for idx = init                  % Quick search for points on peak 
        taL(idx) = sum(Dv(dSs:dSe).*... 
            lIvi((iSs:N:iSe)+(IvuL-1)/2-(idx-1))... 
            -Ivi((iSs:N:iSe)+(IvuL-1)/2-(idx-1)),2); 
        if taL(idx) > taL(max)          % Replace Maximum if Necessary 
            max = idx; 
        end; 
    end; 
    if max == sSs                   % If Max is Left-Side 
        taL(max+1) = sum(Dv(dSs:dSe).*...   % Get Next Value 
              lIvi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1))... 
              -Ivi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1)),2);  % Shifts Image 
        if taL(max) < taL(max+1)        % Right-Side Bigger 
            sSs = max+1; 
            if max+Grd*N <= sSe             % Decide if EndPoint 
                sSe = max+Grd*N; 
            else 
                sSe = sSe; 
            end; 
            sdx = 1; 
            idx = sSs+floor((sSe-sSs)/2);   % Compute Next Search Point 
        else                            % Left-Side is Peak 
            idx = -1;                       % Finish 
        end; 
    elseif max == sSe               % If Max is Right-Side 
        taL(max-1) = sum(Dv(dSs:dSe).*...   % Get Previous Value 
              lIvi((iSs:N:iSe)+(IvuL-1)/2-(max-1-1))... 
              -Ivi((iSs:N:iSe)+(IvuL-1)/2-(max-1-1)),2);  % Shifts Image 
        if taL(max) < taL(max-1)        % Left-Side Bigger 
            if mod(sSe-sSs,Grd*N) == 0      % Determine Previous Point 
                sSs = max-Grd*N; 
            else 
                sSs = max-mod(sSe-sSs,Grd*N); 
            end; 
            sSe = max-1; 
            sdx = 2; 
            idx = sSs+floor((sSe-sSs)/2);   % Compute Next Search Point 
        else                            % Right-Side is Peak 
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            idx = -1;                       % Finish 
        end; 
    else                            % Max is in Middle 
        taL(max+1) = sum(Dv(dSs:dSe).*...   % Get Next Value 
              lIvi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1))... 
              -Ivi((iSs:N:iSe)+(IvuL-1)/2-(max+1-1)),2);  % Shifts Image 
        if taL(max) < taL(max+1)        % Right-Side is Bigger 
            sSs = max+1; 
            if max+Grd*N <= sSe             % Decide if EndPoint 
                sSe = max+Grd*N; 
            else 
                sSe = sSe; 
            end; 
            sdx = 1; 
            idx = sSs+floor((sSe-sSs)/2);   % Compute Next Search Point 
        else                            % Left Side is Bigger 
            sSs = max-Grd*N; 
            sSe = max; 
            sdx = 2; 
            idx = sSs+floor((sSe-sSs)/2);   % Compute Next Search Point 
        end; 
    end; 
end; 
  
while idx > 0                   % Check for Complete Condition 
    if idx <= sSs || idx >= sSe     % Check to See if we're Done 
        idx = -1;                       % Finish 
    else 
        taL(idx)=sum(Dv(dSs:dSe).*...   % Compute Next LL Value 
            lIvi((iSs:N:iSe)+(IvuL-1)/2-(idx-1))... 
            -Ivi((iSs:N:iSe)+(IvuL-1)/2-(idx-1)),2);  % Shift Image 
  
        if taL(idx) > taL(max)          % New Value Bigger than Old Max 
            if idx+1 < sSe                  % Get Next Value 
                taL(idx+1)=sum(Dv(dSs:dSe).*... 
                    lIvi((iSs:N:iSe)+(IvuL-1)/2-((idx-1)+1))... 
                    -Ivi((iSs:N:iSe)+(IvuL-1)/2-((idx-1)+1)),2); 
            end; 
            dir = taL(idx) < taL(idx+1);    % Store Sign of Slope 
            if dir                              % Store Correct Index 
                idx = idx+1; 
            end; 
            max = idx;                      % Store New Max 
            if ~dir                         % Shutter Right (Peak Left) 
%                 sSs = sSs; 
                sSe = idx; 
                sdx = 2; 
            else                            % Shutter Left (Peak Right) 
                sSs = idx; 
%                 sSe = sSe; 
                sdx = 1; 
            end; 
        else                            % Slope is Toward Current Max 
%             max = max; 
            if sdx == 1                     % Shutter Right (Peak Left) 
%                 sSs = sSs; 
                sSe = idx; 
%                 sdx = 1; 



 114

            else                            % Shutter Left (Peak Right) 
                sSs = idx; 
%                 sSe = sSe; 
%                 sdx = 2; 
            end; 
        end; 
        idx = sSs+floor((sSe-sSs)/2);   % Compute Next Search Point 
    end; 
end; 
  
a = (max-1-(IvuL-1)/2)/N;       % Convert to Shift Value (FloatingPoint) 
 
 



 

115

 

C.1. Log-Likelihood Computation Module 

LIBRARY ieee ;                              -- Standard Includes 
USE ieee.std_logic_1164.all ; 
USE IEEE.std_logic_arith.all; 
USE IEEE.std_logic_signed.all; 
 
ENTITY LL IS 
  GENERIC 
  ( 
    N           : INTEGER := 128;         -- Number of Points Interpolated 
--  DvL         : INTEGER := 32;          -- Length of Data 
--  IvL         : INTEGER := 32;          -- Length of Image 
--  DvuL        : INTEGER := 3969;        -- Length of Data (in UpSampled Terms) 
    IvuL        : INTEGER := 3969;        -- Length of Image (in UpSampled Terms) 
--  iSg         : INTEGER := 15.5;        -- Pixel Range of Half of Image 
    iSs         : INTEGER := 1024;        -- Start of Window for Image (in UpSampled Terms) 
--  iSe         : INTEGER := 2944;        -- End of Window for Image (in UpSampled Terms) 
--  dSg         : INTEGER := 15.5;        -- Pixel Range of Half of Data 
    dSs         : INTEGER := 8;           -- Start of Window for Data 
    dSe         : INTEGER := 23;          -- End of Window for Data 
--  sSs         : INTEGER := 1024;        -- First Possible Search (in UpSampled Terms) 
--  sSe         : INTEGER := 2944;        -- Last Possible Search (in UpSampled Terms) 
    BitDepth    : INTEGER :=  32          -- Number of Bits for Address and Data 
  ); 
  PORT 
  ( 
    Clock, Enable, Reset: IN  STD_LOGIC;                        -- Standard Signals 
    Shift       : IN  INTEGER;                                  -- Shift Value 
    Data        : IN  INTEGER;                                  -- Data Value 
    Image       : IN  INTEGER;                                  -- Image Value 
    lImage      : IN  INTEGER;                                  -- Log of Image Value 
    DataAddr    : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);    -- Address for Data 
    ImageAddr   : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);    -- Address for Image 
    lImageAddr  : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);    -- Address for Log of Image (= ImageAddr) 
    Result      : OUT INTEGER;                                  -- Log-Likelihood Result 
    Valid       : OUT BOOLEAN                                   -- = TRUE When Finished 
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  ); 
END LL; 
 
ARCHITECTURE extmem OF LL IS 
BEGIN 
  loglikelihood:                  -- Computes one Log-Likelihood 
  PROCESS (Clock, Reset) 
    VARIABLE  Idx : INTEGER := 0; -- Loop Variable 
    VARIABLE  Ans : INTEGER := 0; -- Accumulates Answer 
  BEGIN 
    IF Reset = '1' THEN               -- Reset Calculator 
      Valid   <=  FALSE; 
      Result    <=  -1;                 -- Displays All 1's to Indicate Incorrect Answer 
      Ans     :=  -1;                   -- " 
      DataAddr  <=  (OTHERS => '1');    -- Displays All 1's to Indicate Incorrect Address 
      ImageAddr <=  (OTHERS => '1');    -- " 
      lImageAddr  <=  (OTHERS => '1');  -- " 
      Idx     :=  0;                    -- Resets Counter for Use 
    ELSIF Rising_Edge(Clock) THEN       -- Run For Loop on Clock 
      IF Enable = '1' Then                -- Compute Only if Enabled 
        IF (Idx + dSs) > dSe + 1 THEN       -- End State, Holds Current Result 
          Valid   <=  TRUE; 
          Result    <=  Ans;                  -- Outputs Answer 
          Ans     :=  Ans; 
          DataAddr  <=  (OTHERS => '1');      -- Displays All 1's to Indicate Incorrect Address 
          ImageAddr <=  (OTHERS => '1');      -- " 
          lImageAddr  <=  (OTHERS => '1');    -- " 
          Idx     :=  Idx;                    -- Stays in "Hold" state 
        ELSE                                -- Continue Computing Log-Likelihood 
          IF Idx = 0 THEN                   -- If the Computation Just Started 
            Valid   <=  FALSE; 
            Result    <=  -1;                 -- Displays All 1's to Indicate Incorrect Answer 
            Ans     :=  0;                    -- Resets Ans for Accumulation Use 
            DataAddr  <=  CONV_STD_LOGIC_VECTOR(dSs + idx,BitDepth); 
            ImageAddr <=  CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth); 
            lImageAddr  <=  CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth); 
            Idx     :=  Idx + 1;              -- Increment for Next Clock Cycle 
          ELSE                              -- If in Middle of Computation 
            Ans :=  Ans + Data * lImage - Image;    -- ***** Compute and Add Current Value to Ans ***** 
            IF (Idx + dSs) > dSe THEN         -- If the Current Value is the End 
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              Valid   <=  TRUE; 
              Result    <=  Ans;                -- Early Output of Answer (Saves 1 Clock Cycle) 
              DataAddr  <=  (OTHERS => '1');    -- Displays All 1's to Indicate Incorrect Address 
              ImageAddr <=  (OTHERS => '1');    -- " 
              lImageAddr  <=  (OTHERS => '1');  -- " 
            ELSE                              -- Continues Computation 
              Valid   <=  FALSE; 
              Result    <=  -1;                 -- Displays All 1's to Indicate Incorrect Answer 
              DataAddr  <=  CONV_STD_LOGIC_VECTOR(dSs + idx,BitDepth); 
              ImageAddr <=  CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth); 
              lImageAddr  <=  CONV_STD_LOGIC_VECTOR(iSs + idx*N + (IvuL-1)/2 - (Shift - 1),BitDepth); 
            END IF; 
            Idx     :=  Idx + 1;              -- Increment for Next Clock Cycle 
          END IF; 
        END IF; 
      ELSE                                -- Reset Calculator for Next Computation 
        Valid   <=  FALSE; 
        Result    <=  -1;                   -- Displays All 1's to Indicate Incorrect Answer 
        Ans     :=  -1;                     -- " 
        DataAddr  <=  (OTHERS => '1');      -- Displays All 1's to Indicate Incorrect Address 
        ImageAddr <=  (OTHERS => '1');      -- " 
        lImageAddr  <=  (OTHERS => '1');    -- " 
        Idx     :=  0;                      -- Resets Counter for ReUse 
      END IF; 
    END IF; 
  END PROCESS loglikelihood; 
END extmem; 
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C.2. Main Search Module 

LIBRARY ieee ;                                -- Standard Includes 
USE ieee.std_logic_1164.all ; 
USE IEEE.std_logic_arith.all; 
USE IEEE.std_logic_signed.all; 
 
ENTITY MLIW IS 
  GENERIC 
  ( 
    N           : INTEGER := 128;             -- Number of Points Interpolated 
--  DvL         : INTEGER := 32;              -- Length of Data 
--  IvL         : INTEGER := 32;              -- Length of Image 
--  DvuL        : INTEGER := 3969;            -- Length of Data (in UpSampled Terms) 
    IvuL        : INTEGER := 3969;            -- Length of Image (in UpSampled Terms) 
--  iSg         : INTEGER := 15.5;            -- Pixel Range of Half of Image 
    iSs         : INTEGER := 1024;            -- Start of Window for Image (in UpSampled Terms) 
--  iSe         : INTEGER := 2944;            -- End of Window for Image (in UpSampled Terms) 
--  dSg         : INTEGER := 15.5;            -- Pixel Range of Half of Data 
    dSs         : INTEGER := 8;               -- Start of Window for Data 
    dSe         : INTEGER := 23;              -- End of Window for Data 
    sSs         : INTEGER := 1024;            -- First Possible Search (in UpSampled Terms) 
    sSe         : INTEGER := 2944;            -- Last Possible Search (in UpSampled Terms) 
    Step        : INTEGER := 960;             -- Step Size for Grid Search 
    Grid        : BOOLEAN := FALSE;           -- Determines if Grid Search Happens 
    BitDepth    : INTEGER :=  32              -- Number of Bits for Address and Data 
  ); 
  PORT 
  ( 
    Clock, Enable, Reset: IN  STD_LOGIC;                      -- Standard Signals 
    Data        : IN  STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);  -- Data Value 
    Image       : IN  STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);  -- Image Value (Multiplied by N or more) 
    lImage      : IN  STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);  -- Log of Image Value (Multiplied by N+) 
    DataAddr    : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);  -- Address for Data 
    ImageAddr   : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);  -- Address for Image 
    lImageAddr  : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);  -- Address for Log of Image (= ImageAddr) 
    Result      : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0);  -- Result: Shift = (Result-1-(IvuL-1)/2)/N 
    Valid       : OUT STD_LOGIC                               -- = TRUE When Finished 
  ); 
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END MLIW; 
 
ARCHITECTURE extmem OF MLIW IS 
  COMPONENT LL 
    GENERIC 
    ( 
      N           : INTEGER := 128; 
  --  DvL         : INTEGER := 32; 
  --  IvL         : INTEGER := 32; 
  --  DvuL        : INTEGER := 3969; 
      IvuL        : INTEGER := 3969; 
  --  iSg         : INTEGER := 15.5; 
      iSs         : INTEGER := 1024; 
  --  iSe         : INTEGER := 2944; 
  --  dSg         : INTEGER := 15.5; 
      dSs         : INTEGER := 8; 
      dSe         : INTEGER := 23; 
  --  sSs         : INTEGER := 1024; 
  --  sSe         : INTEGER := 2944; 
      BitDepth    : INTEGER :=  32 
    ); 
    PORT 
    ( 
      Clock, Enable, Reset: IN  STD_LOGIC; 
      Shift       : IN  INTEGER; 
      Data        : IN  INTEGER; 
      Image       : IN  INTEGER; 
      lImage      : IN  INTEGER; 
      DataAddr    : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); 
      ImageAddr   : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); 
      lImageAddr  : OUT STD_LOGIC_VECTOR(BitDepth-1 DOWNTO 0); 
      Result      : OUT INTEGER; 
      Valid       : OUT BOOLEAN 
    ); 
  END COMPONENT; 
 
  TYPE    STATE_TYPE    IS  (Start, PreCompute, Compute, Hold); -- Extensible State Type 
  TYPE    INT_ARRAY_TYPE  IS ARRAY (3 DOWNTO 0) OF INTEGER;     -- INTEGER Array Type 
  SIGNAL    State   : STATE_TYPE;                               -- State Machine Variable 
  SIGNAL    Answer  : INTEGER;                                  -- Placeholder Result (for Moore Machine) 
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  SIGNAL    Complete: BOOLEAN;                                  -- Internal State Transition Variable 
  SIGNAL    lEnable : STD_LOGIC;                                -- Enable for Log-Likelihood Calculator 
  SIGNAL    lReset  : STD_LOGIC;                                -- Reset for " 
  SIGNAL    lIdx    : INTEGER;                                  -- Shift for " 
  SIGNAL    lResult : INTEGER;                                  -- Result from " 
  SIGNAL    lValid  : BOOLEAN;                                  -- Validity from " 
 
BEGIN 
  LL1 : LL 
  GENERIC MAP 
  ( 
    N           =>  N, 
--  DvL         =>  DvL, 
--  IvL         =>  IvL, 
--  DvuL        =>  DvuL, 
    IvuL        =>  IvuL, 
--  iSg         =>  iSg, 
    iSs         =>  iSs, 
--  iSe         =>  iSe, 
--  dSg         =>  dSg, 
    dSs         =>  dSs, 
    dSe         =>  dSe, 
--  sSs         =>  sSs, 
--  sSe         =>  sSe, 
    BitDepth    =>  BitDepth 
  )  
  PORT MAP 
  ( 
    Clock => Clock, Enable => lEnable, Reset => lReset, 
    Shift   => lIdx, 
    Data    => CONV_INTEGER(Data), 
    Image   => CONV_INTEGER(Image), 
    lImage    => CONV_INTEGER(lImage), 
    DataAddr  => DataAddr, 
    ImageAddr => ImageAddr, 
    lImageAddr  => lImageAddr, 
    Valid   => lValid, 
    Result    => lResult 
  ); 
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  statemachine:                           -- Moore State Machine to Control Calcuation 
  PROCESS (Clock, Reset) 
  BEGIN 
    IF Reset = '1' THEN                     -- Reset State: Mealy Includes Hold Here 
      State       <=  Start;                  -- Moves Immediately to Start State 
    ELSIF Rising_Edge(Clock) THEN 
      CASE State IS 
        WHEN Start    =>                    -- Start State: Prepares for Calculation 
          IF Enable = '1' THEN                -- Waits until Enable to Move to PreCompute 
            State <=  PreCompute; 
          END IF; 
        WHEN PreCompute =>                  -- PreCompute: Computes EndPoints or Grid Search 
          IF Complete THEN                    -- Waits until Complete to Move to Compute 
            State <=  Compute; 
          END IF; 
        WHEN Compute  =>                    -- Compute: Performs Gradient-Decent Search 
          IF Complete THEN                    -- Waits until Complete to Move to Hold 
            State <=  Hold; 
          END IF; 
        WHEN Hold   =>                      -- Hold: Outputs Answer, Prepares for Calculation 
          IF Enable = '1' THEN                -- Waits until Enable to Move to PreCompute 
            State <=  PreCompute; 
          END IF; 
        WHEN OTHERS   =>                    -- Should NEVER Happen 
          State   <=  Start; 
      END CASE; 
    END IF; 
  END PROCESS statemachine; 
 
  validout:                                 -- Moore Output of Valid 
  WITH State SELECT 
  Valid <=  '1' WHEN  Hold,                   -- Only in Hold State 
        '0' WHEN  OTHERS; 
  resultout:                                -- Moore Output of Result 
  WITH State SELECT 
  Result  <=  CONV_STD_LOGIC_VECTOR(Answer,BitDepth)  WHEN  Hold, -- Only in Hold State 
        (OTHERS => '1')             WHEN  OTHERS;                 -- Displays 1's for Incorrect Answer 
 
  binarysearch:                 -- Performs Grid and Binary Searches 
  PROCESS (Clock, Reset, lValid) 
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    VARIABLE  Idx   : INTEGER := 0;               -- Index for Next Shift 
    VARIABLE  NeedR : BOOLEAN := FALSE;           -- Need Right Value in Grid Search 
    VARIABLE  NeedS : BOOLEAN := FALSE;           -- Need Slope 
    VARIABLE  LLVals  : INT_ARRAY_TYPE;           -- LL Values 
    VARIABLE  LLIdxs  : INT_ARRAY_TYPE;           -- LL Indexes 
    VARIABLE  LLMax : INTEGER;                    -- Current Max LL Index 
  BEGIN 
    IF Reset = '1' THEN           -- Resets All Signals 
      Idx     :=  0; 
      NeedR   :=  FALSE; 
      NeedS   :=  FALSE; 
      LLVals    :=  (OTHERS => 0); 
      LLIdxs    :=  (OTHERS => 0); 
      LLMax   :=  0; 
      Complete  <=  FALSE; 
      Answer    <=  0; 
      lEnable   <=  '0'; 
      lReset    <=  '1'; 
      lIdx    <=  Idx; 
    ELSIF Rising_Edge(Clock) THEN -- Performs Operations 
      CASE State IS 
        WHEN Start  =>              -- Clear Everything to Begin 
          Idx     :=  sSs; 
          NeedR   :=  FALSE; 
          NeedS   :=  FALSE; 
          LLVals    :=  (OTHERS => 0); 
          LLIdxs    :=  (OTHERS => 0); 
          LLMax   :=  0; 
          Complete  <=  FALSE; 
          Answer    <=  0; 
          lEnable   <=  '0'; 
          lReset    <=  '0'; 
          lIdx    <=  Idx; 
        WHEN PreCompute =>          -- Computes EndPoints or Grid Search 
          IF NOT Complete THEN        -- Wait for Loop to Complete 
            IF NOT lValid THEN          -- Wait for LL Calc to Complete 
              Idx     :=  Idx; 
              NeedR   :=  NeedR; 
              NeedS   :=  NeedS; 
              LLVals    :=  LLVals; 
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              LLIdxs    :=  LLIdxs; 
              LLMax   :=  LLMax; 
              Complete  <=  FALSE; 
              lEnable   <=  '1'; 
            ELSIF lEnable = '1' THEN  -- End of 1 LL computation 
              IF NOT NeedS THEN         -- Don't Need the Slope 
                IF Idx = sSs THEN         -- Just store if it's first 
                  IF NOT Grid THEN          -- Select Next Point 
                    Idx   := sSe; 
                  ELSE 
                    Idx   :=  Idx + Step; 
                  END IF; 
                  NeedR   :=  TRUE; 
                  NeedS   :=  FALSE; 
                  LLVals    :=  (OTHERS => lResult); 
                  LLIdxs    :=  (OTHERS => sSs); 
                  LLMax   :=  0; 
                  Complete  <=  FALSE; 
                  lEnable   <=  '0';        -- Clear the LL Calculator 
                ELSE                      -- Not First Point 
                  IF LLVals(LLMax) < lResult THEN -- Result is Bigger 
                    LLVals(3 DOWNTO 0)      :=  (0 => LLVals(3),  1 => lResult, 
                                     2 => LLVals(2),  3 => lResult); 
                    LLIdxs(3 DOWNTO 0)      :=  (0 => LLIdxs(3),  1 => Idx, 
                                     2 => LLIdxs(2),  3 => Idx); 
                    LLMax           :=  1; 
                    IF Idx + Step <= sSe THEN 
                      NeedR         :=  TRUE; 
                    ELSE 
                      NeedR         :=  FALSE; 
                    END IF; 
                  ELSE                      -- Result is Smaller 
                    IF NeedR THEN 
                      IF LLMax = 0 THEN 
                        LLVals(3 DOWNTO 0)  :=  (0 => LLVals(0),  1 => lResult, 
                                     2 => LLVals(2),  3 => lResult); 
                        LLIdxs(3 DOWNTO 0)  :=  (0 => LLIdxs(0),  1 => Idx, 
                                     2 => LLIdxs(2),  3 => Idx); 
                      ELSE 
                        LLVals(3 DOWNTO 0)  :=  (0 => LLVals(0),  1 => LLVals(1), 
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                                     2 => lResult,    3 => lResult); 
                        LLIdxs(3 DOWNTO 0)  :=  (0 => LLIdxs(0),  1 => LLIdxs(1), 
                                     2 => Idx,      3 => Idx); 
                      END IF; 
                    ELSE 
                      LLVals(3 DOWNTO 0)    :=  (0 => LLVals(0),  1 => LLVals(1), 
                                     2 => LLVals(2),  3 => lResult); 
                      LLIdxs(3 DOWNTO 0)    :=  (0 => LLIdxs(0),  1 => LLIdxs(1), 
                                     2 => LLIdxs(2),  3 => Idx); 
                    END IF; 
                    NeedR           :=  FALSE; 
                    LLMax           :=  LLMax; 
                  END IF; 
                  IF NOT Grid THEN        -- Complete the EndPoints 
                    NeedS           :=  FALSE; 
                    Complete          <=  TRUE; 
                  ELSE                    -- Continue with Grid Search 
                    IF Idx >= sSe THEN      -- Setup for Slope Calc 
                      IF LLIdxs(LLMax) = sSe THEN 
                        Idx         :=  LLIdxs(LLMax)-1; 
                      ELSE 
                        Idx         :=  LLIdxs(LLMax)+1; 
                      END IF; 
                      NeedS         :=  TRUE; 
                    ELSE                    -- Compute Next Point 
                      Idx           :=  Idx + Step; 
                      NeedS         :=  FALSE; 
                    END IF; 
                    Complete          <=  FALSE; 
                  END IF; 
                  lEnable             <=  '0'; 
                END IF; 
              ELSE                      -- Decide Window on Slope 
                NeedR         :=  FALSE; 
                NeedS         :=  FALSE; 
                IF LLIdxs(LLMax) = sSs THEN -- Start of Window 
                  IF LLVals(LLMax) < lResult THEN 
                    Idx         :=  Idx; 
                    LLVals(1 DOWNTO 0)  :=  (0 => lResult,      1 => LLVals(1)); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(LLMax)+1,  1 => LLIdxs(1)); 
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                    LLMax       :=  0; 
                  ELSE 
                    Idx         :=  -1; 
                    LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => LLVals(1)); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => LLIdxs(1)); 
                    LLMax       :=  LLMax; 
                  END IF; 
                ELSIF LLIdxs(LLMax) = sSe THEN  -- End of Window 
                  IF LLVals(LLMax) < lResult THEN 
                    Idx         :=  Idx; 
                    LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => lResult); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => LLIdxs(LLMax)-1); 
                    LLMax       :=  1; 
                  ELSE 
                    Idx         :=  -1; 
                    LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => LLVals(1)); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => LLIdxs(1)); 
                    LLMax       :=  LLMax; 
                  END IF; 
                ELSE                      -- Middle of Window 
                  Idx           :=  Idx; 
                  IF LLVals(LLMax) < lResult THEN 
                    LLVals(1 DOWNTO 0)  :=  (0 => lResult,      1 => LLVals(2)); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(LLMax)+1,  1 => LLIdxs(2)); 
                    LLMax       :=  0; 
                  ELSE 
                    LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => LLVals(1)); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => LLIdxs(1)); 
                    LLMax       :=  1; 
                  END IF; 
                END IF; 
                LLVals(3 DOWNTO 2)    :=  LLVals(3 DOWNTO 2); 
                LLIdxs(3 DOWNTO 2)    :=  LLIdxs(3 DOWNTO 2); 
                Complete  <=  TRUE; 
                lEnable   <=  '0'; 
              END IF; 
            ELSE                        -- Wait for LL Calc to Clear 
              Idx     :=  Idx; 
              NeedR   :=  NeedR; 
              NeedS   :=  NeedS; 
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              LLVals    :=  LLVals; 
              LLIdxs    :=  LLIdxs; 
              LLMax   :=  LLMax; 
              Complete  <=  FALSE; 
              lEnable   <=  lEnable; 
            END IF; 
          ELSE                        -- Leaving State - Setup for Compute 
            IF  Idx = -1 THEN 
              Idx   :=  Idx; 
            ELSE 
              Idx   :=  (LLIdxs(0)+LLIdxs(1))/2; 
            END IF; 
            NeedR   :=  FALSE; 
            NeedS   :=  FALSE; 
            LLVals    :=  LLVals; 
            LLIdxs    :=  LLIdxs; 
            LLMax   :=  LLMax; 
            Complete  <=  FALSE; 
            lEnable   <=  '0'; 
          END IF; 
          Answer    <=  0; 
          lReset    <=  '0'; 
          lIdx    <=  Idx; 
 
        WHEN Compute  =>            -- Performs Full Search 
          IF NOT Complete THEN        -- Wait for Loop to Complete 
            IF NOT lValid THEN          -- Wait for LL Calc to Complete 
              Idx     :=  Idx; 
              NeedS   :=  NeedS; 
              LLVals    :=  LLVals; 
              LLIdxs    :=  LLIdxs; 
              LLMax   :=  LLMax; 
              IF Idx = -1 THEN 
                Complete  <=  TRUE; 
                lEnable   <=  '0'; 
              ELSE 
                Complete  <=  FALSE; 
                lEnable   <=  '1'; 
              END IF; 
            ELSIF lEnable = '1' THEN    -- End of 1 LL computation 
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              IF NOT NeedS THEN           -- Do Pre-Slope Computations 
                IF LLVals(LLMax) < lResult THEN -- Result is Bigger 
                  LLVals(2) :=  lResult; 
                  LLIdxs(2) :=  Idx; 
                  IF Idx + 1 < LLIdxs(1) THEN   -- Setup for Slope Calc 
                    NeedS       :=  TRUE; 
                    LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => LLVals(1)); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => LLIdxs(1)); 
                    LLMax       :=  LLMax; 
                    Idx         :=  Idx + 1; 
                  ELSE                          -- To Left, Shutter Right 
                    NeedS       :=  FALSE; 
                    LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => lResult); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => Idx); 
                    LLMax       :=  1; 
                    Idx         :=  (LLIdxs(0)+Idx)/2; 
                  END IF; 
                ELSE                          -- Result is Smaller 
                  NeedS         :=  FALSE; 
                  LLVals(2) :=  LLVals(2); 
                  LLIdxs(2) :=  LLIdxs(2); 
                  IF LLMax = 0 THEN             -- To Left, Shutter Right 
                    LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => lResult); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => Idx); 
                    Idx         :=  (LLIdxs(0)+Idx)/2; 
                  ELSE                          -- To Right, Shutter Left 
                    LLVals(1 DOWNTO 0)  :=  (0 => lResult,  1 => LLVals(1)); 
                    LLIdxs(1 DOWNTO 0)  :=  (0 => Idx,    1 => LLIdxs(1)); 
                    Idx         :=  (Idx+LLIdxs(1))/2; 
                  END IF; 
                  LLMax         :=  LLMax; 
                END IF; 
                lEnable   <=  '0';            -- Clear LL Calculator 
              ELSE                          -- Do Post-Slope Computations 
                NeedS   :=  FALSE; 
                IF LLVals(2) < lResult THEN   -- To Right, Shutter Left 
                  LLVals(1 DOWNTO 0)  :=  (0 => lResult,  1 => LLVals(1)); 
                  LLIdxs(1 DOWNTO 0)  :=  (0 => Idx,    1 => LLIdxs(1)); 
                  LLMax       :=  0; 
                  Idx         :=  (Idx+LLIdxs(1))/2; 
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                ELSE                          -- To Left, Shutter Right 
                  LLVals(1 DOWNTO 0)  :=  (0 => LLVals(0), 1 => LLVals(2)); 
                  LLIdxs(1 DOWNTO 0)  :=  (0 => LLIdxs(0), 1 => LLIdxs(2)); 
                  LLMax       :=  1; 
                  Idx         :=  (LLIdxs(0)+LLIdxs(2))/2; 
                END IF; 
                LLVals(2) :=  LLVals(2); 
                LLIdxs(2) :=  LLIdxs(2); 
              END IF; 
              LLVals(3) :=  LLVals(3); 
              LLIdxs(3) :=  LLIdxs(3); 
              IF Idx > LLIdxs(0) AND Idx < LLIdxs(1) THEN -- Continue Search 
                Complete  <=  FALSE; 
              ELSE                          -- End of Search 
                Complete  <=  TRUE; 
              END IF; 
                lEnable   <=  '0'; 
            ELSE                        -- Wait for LL Calculator to Clear 
              Idx     :=  Idx; 
              NeedS   :=  NeedS; 
              LLVals    :=  LLVals; 
              LLIdxs    :=  LLIdxs; 
              LLMax   :=  LLMax; 
              Complete  <=  FALSE; 
              lEnable   <=  lEnable; 
            END IF; 
          ELSE                        -- Leaving State - Setup for Hold 
            Idx     :=  Idx; 
            NeedS   :=  FALSE; 
            LLVals    :=  LLVals; 
            LLIdxs    :=  LLIdxs; 
            LLMax   :=  LLMax; 
            Complete  <=  FALSE; 
            lEnable   <=  '0'; 
          END IF; 
          NeedR   :=  FALSE; 
          Answer    <=  0; 
          lReset    <=  '0'; 
          lIdx    <=  Idx; 
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        WHEN Hold =>                -- Hold Output Answer 
          Idx     :=  0; 
          NeedR   :=  FALSE; 
          NeedS   :=  FALSE; 
          LLVals    :=  LLVals; 
          LLIdxs    :=  LLIdxs; 
          LLMax   :=  LLMax; 
          Complete  <=  FALSE; 
          Answer    <=  LLIdxs(LLMax); 
          lEnable   <=  '0'; 
          lReset    <=  '0'; 
          lIdx    <=  Idx; 
 
        WHEN OTHERS =>        -- Should Never Happen 
          Idx     :=  0; 
          NeedR   :=  FALSE; 
          NeedS   :=  FALSE; 
          LLVals    :=  LLVals; 
          LLIdxs    :=  LLIdxs; 
          LLMax   :=  LLMax; 
          Complete  <=  Complete; 
          Answer    <=  Answer; 
          lEnable   <=  '0'; 
          lReset    <=  '0'; 
          lIdx    <=  Idx; 
      END CASE; 
    END IF; 
  END PROCESS binarysearch; 
 
END extmem; 
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Appendix D: Complete Parameterization of Bias and Noise Statistics 

 
D.1. LGS Image Size Comparison 

Parameters:  C = 300, σi = 2, Bg = 0, 1xNyquist 

Minimum Sizes   Recommended Sizes 
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D.2. LGS swat Characterization. 

Parameters:  Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist 
Sampling (S) = 1, Unless Otherwise Noted. 
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D.3. LGS mliwl Characterization. 

Parameters:  Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist 
Sampling (S) = 1, Unless Otherwise Noted. 

 



 
 

133

D.4. LGS mliwc Characterization. 

Parameters:  Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist 
Sampling (S) = 1, Unless Otherwise Noted. 
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D.5. Tracking Hubble Image Size Comparison. 

Parameters:  C=8000, σi≈2, Bg=0, 1xNyquist 

Minimum Sizes   Recommended Sizes 
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D.6. Tracking Hubble mliwl Characterization (y dim). 

Parameters:  Image Size (L), Intensity (C) = 8000, σi= 2, Background (Bg) = 0, & 
Nyquist Sampling (S) = 1, Unless Otherwise Noted. 
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D.7. Tracking Hubble mliwc Characterization (y dim). 

Parameters:  Image Size (L), Intensity (C) = 300, σi = 2, Background (Bg) = 0, & Nyquist 
Sampling (S) = 1, Unless Otherwise Noted. 
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D.8. WFS Hubble Image Size Comparison. 

Parameters:  C=300, σi≈2, Bg=0, 1xNyquist 

Minimum Sizes   Recommended Sizes 
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D.9. WFS Hubble swat Characterization 

Parameters:  Image Size (L), Intensity (C) = 8000, σi = 2, Background (Bg) = 0, & 
Nyquist Sampling (S) = 1, Unless Otherwise Noted. 
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D.10. WFS Hubble mliwl Characterization 

Parameters:  Image Size (L), Intensity (C) = 8000, σi = 2, Background (Bg) = 0, & 
Nyquist Sampling (S) = 1, Unless Otherwise Noted. 
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D.11. WFS Hubble mliwc Characterization 

Parameters:  Image Size (L), Intensity (C) = 8000, σi = 2, Background (Bg) = 0, & 
Nyquist Sampling (S) = 1, Unless Otherwise Noted. 
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