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Abstract 

 
 Reinforcement learning is one of the more attractive machine learning technologies, due to its 

unsupervised learning structure and ability to continually learn even as the operating environment changes. 

Applying this learning to multiple cooperative software agents (a multi-agent system) not only allows each 

individual agent to learn from its own experience, but also opens up the opportunity for the individual 

agents to learn from the other agents in the system, thus accelerating the rate of learning. This research 

presents the novel use of fuzzy state aggregation, as the means of function approximation, combined with 

the fastest policy hill climbing methods of Win or Lose Fast (WoLF) and policy-dynamics based WoLF 

(PD-WoLF). The combination of fast policy hill climbing and fuzzy state aggregation function 

approximation is tested in two stochastic environments; Tileworld and the simulated robot soccer domain, 

RoboCup. The Tileworld results demonstrate that a single agent using the combination of FSA and PHC 

learns quicker and performs better than combined fuzzy state aggregation and Q-learning reinforcement 

learning alone. Results from the multi-agent RoboCup domain again illustrate that the policy hill climbing 

algorithms perform better than Q-learning alone in a multi-agent environment. The learning is further 

enhanced by allowing the agents to share their experience through a weighted strategy sharing. 
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APPLICATION OF FUZZY STATE AGGREGATION AND POLICY HILL 

CLIMBING TO MULTI-AGENT SYSTEMS IN STOCHASTIC ENVIRONMENTS 

 
 

I.  Introduction 
 
 

   1.1 Overview   

 From swarms of unmanned aerial vehicles to teams of game playing robots, the ability for 

multiple agents to learn and function in chaotic environments has been a challenge for researchers and 

engineers. One of the challenging traits of stochastic environments is the ever-increasing state-space size. 

Even with the higher speeds and memory capacity of today’s computers, the sheer volume of information a 

control system must process and track, consisting of maintaining consistent state information, and action 

and event outcomes, places severe limits on algorithm performance. Dealing with the enormous state-

spaces requires developing a smaller representation of the environment or a rapid search/learning algorithm 

or both.  

As we become more reliant upon technology to perform tasks deemed too dangerous or too 

complicated for humans, the problems addressed by that technology are only becoming more difficult. 

Large-scale planning and scheduling, robotic explosive disposal and Martian surface exploration are just 

some examples of technology designed to operate in rapidly changing environments where human 

interaction is either too expensive or simply impossible. These environments present a host of variables, 

many of which are unpredictable, but which the software controller must handle and include in the decision 

making process. It is not reasonable to expect systems to exhaustively search over millions of possible 

states to determine the best solution, much less the next best step. 
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   1.2 Background 

 The first and most common approach to dealing with the large stochastic environment state-space 

problem makes use of a function approximation of the domain’s policy. This approach is also referred to as 

state generalization. 

 State generalization architectures provide a means to limit the size of the state space and approximate 

the learned policy. This approach has been presented in several previous efforts [1, 2, 3]. Rather than 

attempting to maintain the entire state or state/action policy representation state, generalization provides an 

intermediate approximation function that reduces the policy state space. The key elements in this procedure 

are that the function approximation must be able to adequately approximate the true policy representation 

and also reduce the state dimensionality to something more manageable. The state generalization procedure 

used in this work is state aggregation which is a type of function approximation in which the states of a 

domain are combined into groups with some common value estimate [1]. When a state is updated, the 

entire group is updated. Two of the best known methods for state aggregation are tile coding [1] and 

artificial neural networks [2]. 

Tile coding approximation generates several overlapping grids or tilings of the state space, such that 

any given point in the state space will lie in exactly one tile in each tiling. Thus, the representation of a 

point is represented by the set of tiles that it lies in. A variation on tile coding is Berenji and Vengerov’s [4, 

5] use of fuzzy state aggregation (FSA) as a means of effectively limiting the state space in a Q-learning 

experiment. Fuzzy state aggregation uses the concept of fuzzy sets to represent the environment with a 

limited number of “fuzzy states”. 

Artificial neural network (ANN) learning can be specified as a function approximation problem where 

the goal is to learn an unknown function (or a good approximation of it) from a set of input–output pairs. A 

variety of constructive neural-network learning algorithms have been proposed for solving the general 

function approximation problem. These algorithms typically use a greedy strategy wherein each new 

neuron added to the network is trained to minimize the residual error as much as possible. Thus, the 

artificial neural network can be used to limit the state space size of large domains.  
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 The second method for improving the results of reinforcement learning, such as Q-learning, is the 

use of a separate policy table which tracks the probability of selecting an action from a given state. The off-

policy reinforcement learning algorithm, policy hill climbing (PHC), yields improved empirical results 

over on-policy methods [1]. Bowling and Veloso [6] showed continued improvement over the standard 

policy hill climbing by separating the PHC’s update value into two values, one which updates when 

winning and one when losing, hence the name of Win or Lose Fast (WoLF) policy hill climbing algorithm. 

When winning, the updates are more conservative (and therefore slower) in anticipation that the opponent 

may change its losing policy. The updates when losing are more aggressive, and therefore faster. Banjeree 

and Peng extend WoLF, introducing a policy dynamics based version of WoLF (PDWoLF), which 

compares the change in policy from the previous time step with the change in policy from the current time 

step, further improving results [7]. 

 In the case of multi-agent domains additional progress has been made by allowing the agents to 

share information and the benefit of their experience via weighted strategy sharing (WSS) [8, 9]. Based on 

the value of their learned information, each agent’s learning data is weighted and combined to provide each 

agent the benefit of information gathered by other agents in the domain. 

   1.3 Research Focus 

 This research presents the novel application of fuzzy state aggregation combined with three 

different policy hill-climbing algorithms described above, comparing the speed and efficacy of their 

learning in the highly stochastic Tileworld [10].  

 Tileworld is grid domain in which the agent tries to select the best reward opportunity while 

avoiding penalty spots. These rewards and penalties randomly disappear and re-appear in the domain 

making the environment very stochastic. The Tileworld tests are followed by experiments in the simulated 

robot soccer domain RoboCup in which multiple soccer playing agents make up teams and play against 

each other in a fairly realistic soccer simulation. 

 Fuzzy state aggregation and policy hill climbing techniques have each been applied separately in 

these domains, but not in combination. Based on the improved performance each has shown in past 

research, using them in combination should result in further advances in performance.  
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 These domains provide stochastic environments in which multiple interactive agents can learn and 

operate. The simulators are readily accessible and enough research has been conducted using both 

Tileworld and RoboCup that there is a well established baseline for measuring performance. The results of 

this research demonstrate the improved performance of combining a policy hill climbing method with 

fuzzy state aggregation in both the Tileworld model and the RoboCup domain.  

 The results of the Tileworld experiment demonstrate the efficacy of combining fuzzy state 

aggregation with each of three simple policy hill-climbing algorithms to accomplish learning in this 

stochastic environment. This novel combination of FSA and PHC is applied to the RoboCup domain where 

learning is further improved by applying a weighted strategy sharing method which allows all agents to 

benefit from the experience of their team mates. 

   1.4 Thesis Organization   

 Chapter 2 of this thesis provides an overview of the various types of robot control, the different 

approaches used in robot soccer and the different methods and algorithms used in reinforcement learning, 

state generalization and weighted strategy sharing. Chapter 3 covers the implementation of combinations of 

FSA with PHC learning. The Tileworld domain and its use as an environment for a single-agent 

experiment are described. The specifics of how the team of robots operates in RoboCup along with the 

specifics of their reinforcement learning method complete the chapter. The results of applying the three 

variants of policy hill climbing to the Tileworld domain open Chapter 4. The results of applying the PHC 

algorithm combined with FSA and WSS in the RoboCup domain comprise the rest of Chapter 4. Chapter 5 

contains a discussion of the conclusions and recommended future research areas. 
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II.  Related Work 
 
 The research in this thesis touches on multiple domains, namely multi-agent systems, 

reinforcement learning, fuzzy state aggregation and multi-agent learning. This chapter reviews the 

extensive research accomplished in these fields, specifically: 

• Reinforcement learning in its many forms has been widely researched. Since it is a key part this 

research, a review of the work and progress made to date in Q-learning and policy hill climbing 

provides the context for later sections of this paper.  

• Separate, but equally important, are the various means of performing state generalization. The 

fuzzy state aggregation used in this research is itself not new; however an understanding of the 

research done in the past makes the application in this document more clear.  

• By understanding the theories behind weighted strategy sharing, applying that technique to this 

specific research becomes a logical next step in improving the learning of multiple agents. 

• The work done in Robot soccer teams which provides a sound basis for the multi-agent 

experiment conducted in this research effort using the RoboCup domain.  

   2.1 Q-Learning 

In the realm of reinforcement learning, Q-learning [11] is one of the simplest and most commonly used 

methods. Q-learning assigns values to the actions, a, the agent can possibly take from a given state, s. 

These state-action pairs are represented by the symbol Q(s,a), and are usually stored in a Q table. After the 

algorithm selects an action, the Q table element containing that state-action pair is updated. The amount of 

the update is based on the rewards received and the expected rewards as represented by the Q value of the 

new possible actions a’ the agent can take from the new state, s’, according to the function: 

[ ]),()','(max),(),( ' asQasQrasQasQ a −++← γα     (2.1) 

where α is the learning rate (or step size), set between 0 and 1, which controls convergence, and γ is the 

discount factor, set between 0 and 1, which affects the value placed on rewards r that can be earned later. 

In Q-learning, the agent learns through continuous interaction with the environment, during which it 

exploits what it has learned so far. At each step the algorithm searches for the next best step and is, 
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therefore, referred to as a “greedy” algorithm. To ensure the agent is not missing more valuable state-action 

pairs, it can also explore. In practice, this means that the current approximation Q is used to select an action 

most of the time. However, in a small fraction of cases an action is selected randomly from the available 

choices, so as to explore and evaluate unseen state/action pairs. 

   2.2 Fuzzy Logic and Q-Learning in Multi-agent Architectures. 

 Fuzzy logic has been used to represent continuous state spaces as discrete, thereby making it 

possible to implement Q-learning in continuous state spaces. The combination of FLCs with Q-learning has 

been proposed as Fuzzy Q-Learning (FQL) for many single robot applications [12, 13, 14].  

 Gültekin and Arslan [15] present a modular-fuzzy cooperative algorithm for multi-agent systems 

which takes advantage of a modular architecture, internal model of other agents, and fuzzy logic in multi-

agent systems. In this algorithm, the internal model provides an estimate of the agent’s own action and 

evaluates other agents’ actions. To overcome the problem of dealing with an extremely large state space, 

fuzzy logic is used in mapping from the input sets representing the state space of each learning module to 

the output sets representing the action space. The authors used Q-learning to build a fuzzy rule base for 

each learning module, but without providing any convergence proof. 

 Kilic and Arslan [16] developed a “Minimax” fuzzy Q-learning for cooperative multi-agent 

systems. In this system, the learning agent must observe other agents and use fuzzy state and goal 

representations to update the fuzzy Q-values. This Minimax refers to min and max fuzzy operators and is 

completely unrelated to the Minimax Q-learning described by Littman [17]. As with the system described 

above, this Minimax fuzzy Q-learning is not guaranteed to converge on an optimal solution. 

   2.3 Fuzzy Logic in the RoboCup Domain 

 Looking specifically at the robot soccer domain, there are several examples of fuzzy logic 

applications. First, applications of Fuzzy Logic Controllers (FLC) are discussed, followed by those fuzzy 

behavior-based implementations to include learning components. 

 One of the earliest applications of fuzzy logic in the RoboCup domain was the Zeng99 team [18]. 

The designers presented a Hierarchical Fuzzy Intelligent Control system (HiFIC) applied to the control of 
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soccer agent behavior, planning and cooperative control. The HiFIC controller is a derivative of the three-

layered control model presented by Jens Rasmussen [19].  

 The HiFIC consist of three levels: a lower layer to regulate primitive reaction control, a middle 

layer to perform skill level behavior and the highest layer to make decision on strategic and tactical play 

planning. Implementing this system revealed an information transfer problem between the different layers, 

each of which has information on a different level of abstraction. Though it did not use any type of 

reinforcement learning, this effort did serve as a test-bed for the implementation of a HiFIC in the robot 

soccer domain 

 In [20] Aguirre et al present a RoboCup team using fuzzy logic (but no learning) to select 

behaviors for each agent. The goalie, forward (offensive) and rear (defensive) players each use a different 

FLC to select between behaviors based on various state conditions. As an example, the goalie’s conditions 

are the location of the ball, the proximity of opponents to the goal and the game score. 

 Team Milan [21] uses a fuzzy cognitive model to integrate coordination, planning and reactive 

behaviors in a team of cooperating robots. The authors use the representation of concepts as fuzzy 

predicates, i.e., logical predicates that map real-valued variables into the truth interval [0..1]. 

 A team Milan robot is governed by a set of behavior modules, implemented as a set of fuzzy rules, 

and supported by a fuzzy behavior management system. Fuzzy predicates in the antecedents of the rules are 

evaluated to weight the actions proposed by the consequents. A set of conditions is associated with each 

behavior. They are represented by fuzzy predicates whose truth value is taken as an evaluation of the 

applicability of the behavior in the current state. If this applicability value is above a given threshold, the 

rules of the behavior module are evaluated and the corresponding actions are proposed.  

 Each action is associated with a weight computed as a fuzzy composition of the applicability and 

the weight coming from the fuzzy rule evaluation. Generally, several behaviors are activated at a time, 

there are many proposed actions. These are weighted by the WANT conditions, fuzzy predicates, associated 

to each behavior, that state the opportunity to do the actions proposed by a behavioral module.  

 In [22] Sng et al present a fuzzy logic based strategy which employs an arbiter that assigns a robot 

to attack (shoot or pass) the ball. The fuzzy logic based strategy is implemented for a five-a-side robot 
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soccer game. Role assignment is necessary to avoid collision between players going for the ball or no 

player being assign such a role to attack the ball. Making this assignment purely on distance from the ball 

is insufficient for the dynamic soccer environment. Since, the main objective of the game is to score goals; 

so if a player is in a better position to secure a scoring chance, it must be given the opportunity. Parameters 

used as inputs to the fuzzy arbiter for each robot are distanceToBall, orientation, shootAngle and 

pathObstacle. Fuzzy logic rule based reasoning is used to decide which robot should ‘attack the ball’. The 

teams described above do not use any reinforcement learning. 

   2.4 Fuzzy Logic Controllers and Q-Learning in the RoboCup Domain 

 When applying Fuzzy Q-Learning to the robot soccer domain it is often in the context of learning 

one particular skill or behavior. Gu and Hu [23] (and with Specek [24]) present a fuzzy logic controller 

(FLC) for the implementation of a ball chasing behavior for Sony Aibo robot. The FLC is refined using an 

adaptive heuristic Critic (AHC) reinforcement learning. The actor part of AHC is a conventional FLC in 

which the parameters of input membership functions are learned by an immediate internal reinforcement 

signal. This internal reinforcement signal comes from a prediction of the evaluation value of a policy and 

the external reinforcement signal. The evaluation value of a policy is learned by temporal difference (TD) 

learning in the critic part that is also represented by a FLC. A genetic algorithm (GA) is employed for 

learning internal reinforcement of the actor part. 

 These same authors present a fuzzy classifier system (FCS) to teach the agent to chase the ball 

[25] and to perform formation keeping [26], using wheeled robots. The FCS approach uses a learning 

approach based on a Q-learning credit assignment strategy. This approach adopts an inverse measure of the 

rule accuracy as a rule’s fitness value. Each rule maintains a q value, but it is not an estimate of 

accumulated payoffs. It is only used for calculating the rule’s accuracy. This q value is updated by the Q-

learning mechanism. An on-line fuzzy Q-learning algorithm is used for the credit assignment. The max 

operator in the standard Q-learning is not used since the rules that have maximum q values no longer 

represent rules with the best payoffs. Finally the action selection mechanism employs a “niching” Genetic 

Algorithm which selects actions (MOVE FORWARD, LFFT FORWARD, RIGHT FORWARD, LEFT 

TURN, RIGHT TURN, or STOP) 
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 In [27] Nakashima et al propose a fuzzy Q-learning method in which an agent determines its 

action based on the inference result by a fuzzy rule based system. The authors apply the method to a soccer 

agent that tries to learn to intercept a passed ball. The state space is represented by internal information that 

the learning agent maintains such as the relative velocity and the relative position of the ball to itself. The 

authors divide the state space into several fuzzy subspaces and define each fuzzy subspace by specifying 

the fuzzy partition of each axis of the state space. The learning agent receives a reward if the distance 

between the ball and the agent becomes smaller or if the agent catches up with the ball. 

 Ammerlaan and Wright [28] address the question of whether systems based on fuzzy logic can 

effectively adapt themselves to dynamic situations. To answer this question, they design and implement an 

adaptive fuzzy logic agent for playing RoboCup soccer. The agent has a FLC for basic behaviors, but a 

neural network allows the agent to adapt to the changes in the environment. 

 Rapidly changing environments usually generate very large state spaces. While the learning 

methods described here do provide a means for the agent to improve its performance, they do not address 

the size of the state space in which the agent must operate. This is left to the function approximation 

methods used in state aggregation and generalization. 

   2.5 State Aggregation and Generalization 

 State aggregation is a type of generalizing function approximation which allows machine learning to 

learn in larger environments more quickly. State aggregation works by combining the states of a domain 

into groups with some common value estimate [1]. When a state is updated, the entire group is updated. 

The best known methods for state aggregation are tile coding (also known as sparse coarse coding) [1] 

artificial neural networks [2], and fuzzy state aggregation [4, 5]. Since this thesis primarily uses fuzzy sets, 

the following section describes fuzzy state aggregation in depth. 

     2.5.1 Fuzzy State Aggregation 

Fuzzy state aggregation uses Zadeh’s [29] concept of fuzzy sets to represent the environment with a 

limited number of “fuzzy states”. Fuzzy sets are sets that allow elements to be partially in more than one 
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set at a time. The degree to which an element is a member of a fuzzy set is measured on a scale between 0 

and 1.  

  For example, consider the outside ambient temperature [30]. Classical set theory can only classify 

the temperature as hot or cold (i.e., either 1 or 0). It cannot interpret the temperature between 20 °F and 

100 °F. In other words, the characteristic function for the classical logic for the above example is given by  
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The boundary 50 °F is taken because classical logic cannot interpret intermediate values. On the other 

hand, fuzzy logic solves the above problem with a membership function as given by  
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The above membership function is graphed in Figure 2.1, demonstrating that the degree of coldness is the 

complement of the degree of hotness.  

 

Figure 2.1: Membership Function for the Degree of Hotness and Degree of Coldness [30] 

 Fuzzy state aggregation is a variation of Singh’s soft state aggregation [3], which uses probability 

values as a measure of the extent to which the current state falls into the various aggregate (cluster) states.  

 Like soft state aggregation, fuzzy state aggregation uses a fixed number (K) of aggregate states to 

represent the environment and thus minimize the number states the learning algorithm must deal with. 
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Rather than using probabilities, a crisp state (s) is represented by its degree of simultaneous membership in 

each of the K fuzzy states. The total number of fuzzy states is determined by the number of fuzzy sets 

(labels) used and the number of state variables.  

     2.5.2 Combining State Aggregation with Q-learning 

 In a domain with a large state-space, it is very memory inefficient to learn separate Q-values for each 

state-action pair. Therefore, it is not uncommon to see Q-learning used in conjunction with some form of 

state aggregation. When implementing Q-learning with such an architecture, the term Q(s,a,r) is used to 

approximate Q(s,a.) Here r is a vector of the learned parameters. The fundamental parameter updating rule 

for each time step t is [4] 

),,( tttttt rasQrrr Δ+← αδ .    (2.2) 

Where α is the learning rate and δt is the Bellman error used for the look-up table in this corresponding 

learning rule 

ttt asQasQ αδ+← ),(),( .    (2.3) 

In discounted Q-learning the Bellman error is calculated as follows 

),(),(max)( 1 asQasQtg ttat −+= +γδ .   (2.4) 

Where g(t) is the cost of taking the specific action and γ is the discount rate.  

 In this work fuzzy state aggregation is the specific function approximation architecture. Using this 

architecture, the Q-value of action a in state s is calculated using: 

∑
=

=
K

k
k askqasQ

1
),()(),( μ     (2.5) 

Where q(k) is the Q-value of the kth fuzzy state and μk(s,a) is the degree of membership of state s to k with 

respect to action a.  

 Replacing ΔrtQ(st,a,rt) from equation (2.2) with μk(s,a), the equation to update q(k) becomes: 

),()()( askqkq ktKk μαδ+←∀ ∈     (2.6) 
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Otherwise, the Q-learning algorithm remains unchanged. Also note that in performing this update that all 

of the fuzzy sets are updated based upon their degree of membership in the state representation not just the 

most similar fuzzy set. The value of ),( askμ  determines how much weight is applied to that particular 

update. 

   2.6 Policy Hill Climbing 

Policy Hill Climbing (PHC) is an extension of Q-learning. The algorithm, performs hill-climbing 

(seeking the highest global reward) in the space of mixed policies. Q-values are maintained as an estimate 

of the optimal policy. In addition to the Q-table (Q(s,a)), the algorithm maintains the current mixed policy 

(π(s,a)). The PHC algorithm is shown in Table 1.  

Table 1:  Basic Policy Hill Climbing Algorithm 
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In PHC, the policy is improved by increasing the probability that it selects the highest valued action 

according to a learning rate ]1,0(∈δ . If 1=δ  the algorithm is equivalent to Q-learning, since with 

each step the policy moves to the greedy policy, always executing the highest valued next step rather than 

pursuing the greatest overall reward. 
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    2.6.1 Win or Lose Fast (WoLF-PHC) 

The WoLF-PHC [6] algorithm is a policy hill climber that uses variable learning rates instead of a 

single learning rate (δ in Table 1). The algorithm requires two learning parameters δl and δw. where δl > δw 

as shown in Table 2. The parameter that is used to update the policy depends on whether the agent thinks it 

is currently winning or losing. This determination is made by comparing whether the current expected 

value is greater than the current expected value of an average policy. If the current expected value is lower 

(i.e., the agent is “losing”), then the larger learning rate δl is used, otherwise δw is used. The purpose of 

using the variable learning rate is to increase the speed at which the algorithm reaches the optimum policy. 

The functions in Table 2 are used to calculate δ for the WoLF-PHC algorithm, and are the only changes to 

PHC in Table 1. 

Table 2: Additional Functions for WoLF-PHC Algorithm 
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     2.6.3 Policy Dynamics Based Win or Lose Fast (PDWoLF) 

 Like WoLF, PDWoLF [7] uses the variable learning rate parameters δl and δw. Where WoLF checks 

itself against an average policy to determine if it is winning or losing, PD-WoLF uses the change in policy 

from the previous time step Δ2(s,a) and the change in policy from the current time step Δ(s,a). If both 

changes are in the same direction (both positive or both negative) the agent believes it is losing and selects 

the larger learning rate δl as shown in Table 3. 
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Table 3: Additional Functions Used in PDWoLF-PHC Algorithm 
______________________________________________ 
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 Cousin and Peterson [9] successfully demonstrate increased performance over WoLF by applying PD-

WoLF to a multi-agent hunter-prey domain. They further improve the learning performance by 

implementing weighted strategy sharing along with the PD-WoLF PHC. 

   2.7 Weighted Strategy Sharing 

 First introduced by Ahmadabadi et al [8], Weighted Strategy Sharing (WSS) is a method in which 

a group of n homogeneous agents learn in a particular environment using two modes: individual learning 

and cooperative learning. Initially all agents learn individually, executing some number of learning trials 

based on Q-learning. After a specified number of individual learning trials, the agents switch to the 

cooperative learning mode. 

 In this mode each agent assigns weights to the other agents based on that other agent’s expertness. 

The agent then takes the weighted average of the Q-tables and uses that as its own new Q-table. Agent (i) 

would calculate the new Q-table based on weighted values from the n other agents (j) as shown in equation 

2.7. 

)*(
1

old
j

n

j
ij

new
i QWQ ∑

=

←     (2.7) 

This new Q-table is then used as the starting point for subsequent learning. 

 Thus far this chapter has reviewed the related research conducted in state generalization and 

reinforcement learning. While interesting, these theories and algorithms require application in some 

domain to be useful. The balance of this chapter reviews the related work performed robot controllers and 

specifically robots designed for playing soccer, which is the domain of choice for this thesis. 
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   2.8 Robot Control Designs   

 Agents built for the RoboCup competition usually differ from other software agents. Instead of 

sophisticated communications systems and strict pre-programmed steps, RoboCup agents must have the 

ability to react to changing situations, make team oriented decisions in real-time and make difficult 

decisions on uncertain information. This has resulted in a wide variety of team designs, ranging from 

variations on the classic Belief-Desire-Intention (BDI) architecture to simple reactions and from explicit 

team coordination protocols to hard-coded player positions.  

   2.9 Individual Agent Architecture 

 The focus of this section is on the balance between deliberation and reaction in the single-agent 

architectures. In general, a deliberative agent is one in which plans and goals are explicitly represented, 

requiring that the designer generally create some sort of plan domain which the agent then uses in 

instantiating a full plan at runtime. In performing planning, a form of symbolic reasoning is usually used 

and the building of the plan is a long and slow process.  

In contrast, reactive agents do not explicitly represent goals, instead merely reacting blindly to the 

current state of the environment. In creating reactive agents, the designer aims to create reactions such that 

the overall observed behavior of the agent seems intelligent. The reality is the reactive agent either will or 

will not respond to a given stimulus. A reactive agent is like the motion-activated light on many homes, 

when the circuitry is triggered, the light comes on. There is no planning, deliberating or deciding – only 

reaction. The casual observer may see this reaction and think there is some level of intelligence at work, 

when, in fact, there is none. A reactive soccer-playing agent may be coded to respond to the presence of the 

ball, opponents and teammates. Given the use of enough if – else statements, the agent may even function 

in a way that appears intelligent, but lacks any element of intelligence.  

The agents implemented for robot soccer are not at the extreme ends of this reactive - deliberative 

spectrum. Rather, in true Aristotelian fashion, they are usually somewhere near the middle. The following 

section reviews some robot soccer architectures beginning with the more deliberative designs of UM-PRS 

and CMUnited. The middle ground is represented by the ROGI and MAPs teams and the more reactive 

designs of MICROB, GAMMA and Scerri round out the review. 
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     2.9.1 UM-PRS 

One of the more clearly deliberative architectures is the University of Michigan’s Procedural Reasoning 

System (UM-PRS) [31], which uses explicitly coded multi-agent plans on top of a reactive individual 

control system.  

 UM-PRS is based on the PRS architecture. Each agent has a database (world model), a set of 

goals (aka plans or plays), knowledge areas (procedures for achieving goals) an intention structure (run-

time stack of the system) and an interpreter which controls the system. The interpreter looks at the 

database, identifies the knowledge areas (actions) to apply and places them on the intention structure for 

execution in pursuit of a goal.  

 The authors do not specify the particular behaviors, but do indicate that when no plan/play is 

applicable for the situation the interpreter falls back to a simple reactive behavior like running for the ball. 

This allows the player's behavior to degrade gracefully when unexpected situations occur. 

     2.9.2 CMUnited-98 

 Like the UM-PRS design, Carnegie Mellon’s CMUnited-98 robot team [32] is a mixture of 

deliberation and reaction. In this architecture, each agent maintains a concept of the world state, internal 

state (e.g. agent’s role in a particular formation), internal behaviors (update internal state), external 

behaviors (actions sent to actuators) and the locker room agreements as shown in Figure 2.2.  

Locker-Room 
Agreement 

TEAM MEMBER 
ARCHITECTURE 

Internal 
Behaviors 

Internal 
State 

External 
Behaviors 

Interpreter 
World 
State Predictor 

Real 
World Action Primitives Sensor Information 

 

Figure 2.2: A functional input/output model of the CMUnited team member agent architecture [32]. 
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 Locker room agreements are established off-line and define the teamwork structure and 

communication protocols the team will use.  

 The individual behaviors (ball interception, dribbling, kicking, goal tending, defending and 

clearing) are in the basic level of the multi-layered hierarchy of behaviors illustrated in Figure 2.3. 

 

Figure 2.3: Hierarchy of Behaviors in the CMUnited-98 Architecture [32] 

 The Individual Behaviors are predictive, locally optimal skills. They use predicted world models 

and predicted effects to determine the optimal behavior. Collaborative Behaviors are those which involve 

other teammates, like passing the ball. The only behavior that is completely reactive (strategic positioning) 

is a Team Behavior. Using attraction and repulsion the agents position themselves autonomously, and the 

agent with the ball decides autonomously where to pass: no negotiation is involved, enabling the players to 

act as quickly as possible.  

     2.9.3 Robotico universitat de Girona (RoGi) 

 Team RoGi [33] is built using agent-oriented programming (AOP) [34] vs. object-oriented 

programming. Agent-oriented programming is a fairly new programming paradigm that supports a societal 

view of computation. In AOP, objects known as agents interact to achieve individual goals. Agents exist in 

a structure as complex as a global internet or one as simple as a module of a common program. Agents can 

be autonomous entities, deciding their next step without the interference of a user, or they can be 

controllable, serving as a mediary between the user and another agent.  
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 At the lowest level each agent in the RoGi architecture “instinctively” decides on a private action. 

This decision is based on the agent’s beliefs as calculated from its distance to the ball and distance to the 

goal. Each agent then informs its team mates of its intentions. In those situations where two or more agents 

have conflicting intentions (e.g. 2 agents intend to get the ball) one of the two will opt to change behaviors 

to avoid the conflict. This decision is based on the “certainty” value each has associated with their 

announced decision. The certainty value is obtained from a fuzzy inference calculation. This architecture 

relies heavily on communication between teammates to declare intentions and make decisions on a 

cooperative basis.  

 At the individual agent level, this architecture provides private actions: shoot the ball (SHOOT), 

get the ball (GET), move forward (FORW), and go backwards (BACK). It also supports communicative 

actions: send a decision to a specified soccer player (INFORM), and request an action to another soccer 

player (REQUEST). 

     2.9.4 MAPs 

 The Multi-Agent Planning system (MAPs) [35] consists of a high level planning algorithm that 

analyzes game play and sends instructions to the command interpreters. The robots are then expected to 

carry out the plan. The particular form of the instructions is not specified. This architecture uses potential 

fields as a means of weighting options the planner must choose between. The algorithm has 3 steps;  

1. Get new information - Update the world model based on sensor data. 

2. Choose an Action – Based on the influence of agents and obstacles, as represented in the 

potential field, select the next action. This action is chosen to minimize the interference between 

agents. The action choice is built from the perspective of the team’s goal. 

3. Find the Location for the Action – using potential fields and the type of action selected, the 

individual agent will determine the best location for the action. 

 The soccer robot example builds potential fields out of the elements described below. Each 

element is designed to provide low values at attractive regions, and high values at unattractive regions. The 
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elements are combined on a grid array that represents the physical environment such that coordinates are 

easily extracted. Some elements cover the whole area, while others influence only part. 

1. Base Field - The base field mask is a biased towards the goal of the system. When looking for 

low valued coordinates, this has the effect of encouraging the agents to move towards areas of 

interest. The opposition goal is at the base of the ramp and this representation encodes the desire 

for the agents to carry out their directives towards it. 

2. Object Regions - This is a field mask that represents an object’s presence in the working field. 

This mask is relatively small in area and is placed wherever the objects are on the field. The 

masks represent the objects’ locations, and regions around them considered to be their influence 

zone. This can be used for robot locations or obstacles. 

3. Robot’s Position - It may be desired to have the robots maintain responsibility in specific areas. 

In the soccer robot system, this is used to keep players in their specific field positions (e.g., left 

wing). 

4. Distance From Current Position - This function is added to prevent the planner from selecting 

coordinates on the boundaries of the potential field. It creates a field-wide virtual “dish” 

encouraging the selected coordinates to be close to the current position of the object in question.  

5. High Value Continuation - In some cases, the planner evaluates the field in a line-of-sight 

manner similar to the clear path to object function described below. This is carried out by adding 

the highest valued coordinate to all other coordinate values from the object to the boundary of the 

field which has the effect of building a ‘shadow’ of high values where it is undesirable for the 

agent to go. 

6. Clear Path To Object - It is important for a robot navigating to positions in the environment to 

have a clear view of certain objects otherwise their location can’t serve any purpose. This function 

is represented in the potential field by making all occluded coordinates high values. From the 

robot’s perspective the areas blocked by an obstacle (another player) are undesirable. 

 Like Team ROGI, the MAPs architecture is implemented on a physical robot league which means 

the system has access to a global view of the environment and is allowed to use off-board processing. For a 
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given situation the planner generates a potential field, starting with a basic field biased towards the goal. 

Other potential field elements are then add to this one resulting in a composition field which represents the 

soccer ground, the positions of opponents and teammates as well as clear paths to desirable locations. The 

potential field info is then passed to the agent.  

     2.9.5 MICROB 

 Perhaps one of the more interesting reactive architectures is the MICROB robotic soccer team 

which is an implementation of the Cassiopeia programming method [36]. The goal of this design is to 

demonstrate that a set of robots can achieve intelligent behavior without being provided with the general 

solution of the problem. The designers focused on the emergence of “self-organized collective 

phenomenon in societies of robots” [37], where each agent is provided with minimal individual capacities, 

in terms of communication, interaction or cooperation. 

 This design is made up of 4 basic behaviors; the authors have used them to compose the more 

complex sequences of behaviors [38]. 

1. Shoot the ball (in the direction of the goal)  

2. Take up their position (waiting for a pass)  

3. Block an opponent's way  

4. Defend their goal (against the opponents' attacks)  

 The authors’ don’t point to any particular “learning”. Rather, they recognize that some behaviors 

depend upon, or are influenced by, others. This led to the design of four different types of agents (roles). 

At any given time, one agent may be filling any of the four roles. The determination of which role the 

agent is filling is made by which roles the other agents are filling. To better visualize these complex 

interactions, the coupling and influence graphs in Figure 2.4 and Figure 2.5 illustrate these relationships. 

 20



 

Figure 2.4: Coupling Graph of the MICROB Soccer Robot Game [38] 

 

The following dependencies have been identified (an arrow from A to B means that B potentially depends 

on A): 

d1. Blocking an opponent can help another robot to better place itself. 

d2. Defending can help oneself or another robot to better place itself. 

d3. It may be necessary to place oneself if another robot wants to shoot. 

d4. Defending may allow agent to catch the ball of the opponent. 

d5. Blocking can help oneself or another robot to shoot the ball. 

d6. Shooting can help oneself or another robot to shoot (this is the pass). 

d7. Defending depends on the other robots' defense strategy. 

 

Figure 2.5: Influence Graph for the MICROB Soccer Robot Team [37] 
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 The behaviors that allow the agents to dynamically organize themselves according to their mutual 

influences are based on the contract net mechanism described in the multi-agent portion of this survey. 

     2.9.6 GAMMA 

 Moving further to the reactive side of the spectrum, Team GAMMA [39] uses a variation on the 

subsumption architecture written in Gaea. Gaea is an “organic programming” language which allows the 

creation of entire teams of agents. Each agent uses an extension to the subsumption architecture to choose 

actions. The standard subsumption architecture has a number of layers that subsume or inhibit each other 

whenever they are activated by sensors connected to the world [39]. The extension used in Gaea, called 

dynamic subsumption architecture, is the combination of subsumption architecture and dynamic 

environment change. Since subsumption architecture assumes fixed layers of functions, it is either difficult 

or inefficient to implement multiple modes on top of it. It is straightforward in organic programming, using 

context reflection. An agent may respond to a given input differently according to the mode (e.g. offense 

vs. defense). The mode changes as a result of the agent’s action and plan, and according to the changes in 

the situation (context). 

 In Gaea a single agent is programmed in a multi-agent manner. A player consists of the following 

processes (agents): 

1. Sensor Process: receives sensor information sent from the Soccer Server, analyzes it, and puts the 

results into the common cell. 

2. Command Process: sends control commands to the Soccer Server. It is designed to send one 

command every 100 milliseconds, because the RoboCup Soccer Server only accepts one 

command per 100 milliseconds. In other words, this process is a resource manager of sending 

control commands.  

3. Action Process: controls low-level modes of player's action by manipulating the environment of 

the command process.  

4. Object Detection Process: checks the path to the target for chasing or kicking, and changes the 

behavior by modifying the environment of the command process. if there are objects on the way,  
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5. Communication Process: controls high-level modes of player's action according to the message 

from the referee and teammates.  

The top level of each process is a loop that repeatedly calls "cycle(top)". It is defined in the "basic" cell that 

is shared by all processes. 

     2.9.7 Scerri 

 Paul Scerri [40] presented a multi-layered approach to robotic soccer. Each layer consists of three 

controlling processes; action selection, behavior instantiation and information extraction. Since all layers 

work in the same manner, the only difference is which layer is active at the moment. Each layer deals with 

a level of abstraction greater than the one below it. Only the lowest level interfaces with the outside world 

while the layers above it have their effect by setting behaviors in the levels below. For example, a low-

level “move-to-ball” behavior is given the ball’s precise location and sends the agent to it, while a high-

level “defend” behavior knows only that the ball is in the defensive half of the field and will implement 

lower level behaviors in response to that input. In this architecture a behavior is created dynamically, by 

instantiation, from a generic behavior and a parameter component. Each behavior acts independently of the 

other behaviors at that layer. The author did not provide a comprehensive list of all the behaviors, but cite 

some in examples. The behavior attack-down-wing is listed as an example of a high level behavior, while 

move-to-the-ball, move-to-the–wing and kick-goal are examples of low level behaviors.  

 Only the behavior chosen by the action selection process of a particular layer is executed by the 

system. This “best” behavior is chosen by its score, a sum of: 

• Applicability Value – score for how applicable a behavior is given the current state 

• Priority Value – score based on rank ordering of behaviors 

• Persistence Value – used as a tie breaker to prevent oscillations between different behaviors. 

 All of these scores are set by the designer. The intent is for the designer to set up situations, with a 

relatively small number of simple behaviors, where a wide range of different and complex behaviors will 

emerge. 
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   2.10 Multi-Agent Interaction 

 With an elementary understanding of the architecture implemented by each of these teams, and 

since RoboCup consists of multiple agents working together, it is useful to compare and contrast how each 

system deals with inter-agent activities (e.g. assigning roles and positions, calling plays, making plans, etc). 

     2.10.1 UM-PRS 

 The UM-PRS architecture treats roles as the first deliberative step above basic reactive behavior. 

The roles (such as goalie, defender, attacker etc) can be assigned by player number or by field position. 

The next step up is the use of formations. The authors acknowledge the use of formations, but do not 

discuss their specific implementation. With roles and formations established, the next step is to make and 

execute plans. Using relatively simple plans, the PRS architecture’s interpreter can draw upon state 

knowledge and current player positions to select and execute appropriate plans (goals). Those agents not 

involved in a plan will degenerate to reactive behavior, rather than be paralyzed, until a plan is invoked. 

Since each agent carries its own “copy” of the architecture, the agents use limited communications to 

update each others‘ databases and intention stacks. This communication in conjunction with sensor input 

from the environment is how individual agents coordinate with each other.  

     2.10.2 CMUnited-98 

 The CMU simulator team is based on flexible formations made up of flexible roles. Both are 

independent of the agent filling the particular role. There are predetermined conditions under which a 

particular formation may be used. Specific pre-planned plays are determined in the locker room 

agreements. Rather than rely on on-field communications, the agents have the pre-set, multi-agent, multi-

step plays (locker room agreements) in an internal play book and know to execute them when the 

preconditions are met. 

     2.10.3 RoGi  

 The agent-oriented design used by de la Rosa, et al, uses a step-by-step reasoning for inter agent 

coordination. After making an initial decision of an action to take for itself, the agent will communicate it 
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to its team mates. The agents also request information from all other agents to learn the proposed action 

and certainty for each team mate. In this cooperative mode conflicting intentions are worked out. The final 

decision is then communicated to the coach-agent. This coach-agent has global vision of the environment 

and uses a fusion procedure to determine and direct which agent should take the proposed action. It also 

will direct an agent to take a required action if none of the players have proposed it on their own. 

     2.10.4 MAPs 

 MAPs uses a less rigid approach to planning. Referred to as “plan-as-communication”, the agents 

are given a high level version of a plan and are free to alter it to better fit the situation.  

Conspicuous by its absence is any mention of team strategy or a coordinated plan. The choice of action and 

its location are determined by components of the environment as represented on the potential field. In other 

words, the MAPs architecture relies on the use of the common potential field to be the de facto means of 

coordinating multiple agent actions. The common potential field is a compilation of fields. The base field 

simply points towards the goal. This base field is modified with other fields depending on the game 

situation. As an example, an agent in possession of the ball use the base field combined with a field 

pointing toward other teammates and away from opponents to determine where, and how hard, to kick the 

ball.  

     2.10.5 MICROB [37] 

 In order to distribute the basic behaviors among the players within a team, agents enter into 

contracts with each other. Since only one agent can be the shooter at a given time, it must decide whether 

to allow another robot to shoot, and which robot is going to be the blocker. This kind of collaboration is 

implemented by a kind of contract-passing between the agents. Agents outside this "contract-net" 

automatically become the defenders. The authors did not provide details as to the values/utilities used in 

these contracts. 

 In an effort to reduce the communication between the agents, the authors have also implemented 

virtual agents that possess (and reason about) a very simple model of the other robots. Whenever an agent 
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has to make a decision, it can enter into contracts with these virtual agents, as if they were contract-based 

robots, and make decisions based on that interaction.  

     2.10.6 GAMMA and Scerri 

 Both team GAMMA and Paul Scerri’s multi-layered design use a subsumption architecture and 

rely on the “intelligent” decisions of individual agents to naturally result in a kind of coordinated multi-

agent effort. In simple English, neither design implements a deliberate means of planning or coordinating 

the actions of multiple agents. Instead they appear to follow the ideas of pre-Nash economic theory, which 

states that each individual acts in the manner most advantageous to himself results in the realization of the 

best results for the collective group. 

   2.11 Learning & Decision Making 

 Many existing machine learning (ML) techniques are applicable in multi-agent scenarios simply 

by duplicating the single-agent technique in each agent. However multi-agent learning is more concerned 

with learning issues that arise because of the multi-agent aspect of a given domain. As described by Weiss, 

multi-agent learning is “learning that is done by several agents and that becomes possible only because 

several agents are present” [41].  

 Among the teams considered thus far, only the most deliberative (UM-PRS and CMUnited) use 

machine learning. Most provide a means of making behavioral decisions, even if no learning is involved.  

     2.11.1 UM-PRS – Feedback and Opponent Modeling  

 In UM-PRS, goals are broken down into sub goals, and contexts are used to find the most 

appropriate action that achieves that goal or sub goal.  

In some situations there are two or more actions which are equally appropriate for pursuit of a 

goal or sub goal. In these situations, UM-PRS uses both satisfaction of contexts and priority values given 

to actions and procedures to decide what to do. These priority values can be modified at runtime to allow 

the agent to adapt by learning which action is preferable based on experience (by observing its outcome). 

 Feedback is key to successful learning in this, or any other domain. Once the system gathers 

feedback for an action, it is used to reorder the set of weights on alternative procedures which satisfy the 
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same goal. The authors do not specify the exact type of feedback used in this system. The weights referred 

to may be probabilities or a simple Q-learning. The authors do point out an advantage of using UMPRS as 

a real-time architecture for RoboCup is that UM-PRS itself can be extended to automatically generate 

Bayesian networks for plan recognition [42]. This allows for both improved agent collaboration and the 

ability to model and predict the goals and actions of opponents.  

     2.11.2 CMUnited’s Layered Learning 

 Once the world model is successfully created, the agents must use it to respond effectively to the 

environment. As described previously, internal behaviors update the internal state while external behaviors 

produce executable actuator commands. Spanning both internal and external behaviors, layered learning 

[43, 44] is CMU’s bottom-up hierarchical approach to client behaviors that allows for machine learning at 

the various levels. The key points of the layered learning technique are as follows: 

• A bottom up, hierarchical task decomposition is given.  

• Machine learning exploits data to train and/or adapt. Learning occurs separately at each level.  

• The output of learning in one layer feeds into the next layer. 

 The type of learning used at each level depends upon the task characteristics. The authors have 

used neural networks and decision trees to learn ball interception and passing respectively [43]. These 

offline approaches are appropriate for opponent independent tasks trainable outside of game situations. 

They also use online reinforcement learning approaches for behaviors that depend on the opponents [45].  

     2.11.3 ROGI – Fuzzy Inference 

 Though Team ROGI doesn’t use explicit machine learning, every agent has perception and 

communication capabilities, as well as decision capabilities. Since all the micro-robots of this project have 

the same technical specifications, various reactive models (behavior roles, such as, defense, attack, and 

goal keeper) are programmed in. 

 In the first step of the reasoning procedure, every soccer player decides a private action 

instinctively. This decision depends on local environment configuration (Beliefs) defined by two 

parameters: distance player-ball (DPB), and distance player-goal (DPG). The decision also has a degree of 

certainty, derived from a fuzzy inference calculation. This calculation is based on the membership values 
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of established fuzzy sets, no learning or adjusting of the membership values occurs. This is one of the few 

robot soccer designs that implements fuzzy logic. The fuzzy logic controller and fuzzy state aggregation 

used in this thesis are similar to the fuzzy inference calculator referenced here.    

      2.11.4 MICROB, GAMMA and Scerri 

 These more reactive architectures do not use machine learning. The decision making process for 

selecting an action or behavior to be invoked was previously described in their respective architecture 

descriptions. 

     2.11.5 Other Examples 

 In their survey of multi-agent architectures [46] Stone and Veloso make reference to some of the 

systems described here as well as citing examples of the types of learning used by other systems which 

could be applicable to the RoboCup domain, including local or global perspective, opponent modeling, 

affecting other agents, roles, and communication content. 

     Local or global perspective 

 On the surface it may seem that having a global perspective would always be preferable to only a 

local perspective. However, the global perspective also carries with it a greater volume of information 

which may actually impede performance. This type of improved performance by agents with less 

knowledge is sometimes referred to as “Ignorance is Bliss.” 

     Modeling of Other Agents’ States 

 Modeling of other agents can be used to allow better interaction between cooperative agents or to 

allow competitive agents to better anticipate their opponent’s next action. 

     Affecting others 

 When communication is impossible, or at least very expensive, agents cannot interact with each 

other directly. However, since they exist in the same environment, the agents affect each other indirectly in 

several ways. One agent may change something in the environment and that change is perceived by another 

agent which then acts differently because of the perceived change. 
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     Roles 

 When agents are organized into a team, each agent plays a separate role within the team. This 

requires some form of role assignment. This assignment might be obvious if the agents are very specific 

and can each only do one thing. However in some domains, the agents are flexible enough to fill one of 

many roles.  

     Communication Content 

 One important consideration for communicating agents is what they should communicate. For 

planning purposes, some agents may need to communicate goals while others can advance their learning by 

communicating state information, much like the weighted strategy sharing used in this research. 

 From the broad research areas of multi-agent robot architectures, reinforcement learning and 

function approximation this chapter has reviewed particular soccer-playing robot systems, Q-learning, 

policy hill climbing, information sharing and state generalization. Further narrowing the focus of this 

thesis, the subsequent chapters address the specific implementations of fuzzy state aggregation combined 

with PHC and weighted strategy sharing in the RoboCup domain along with the resultant performance in 

learning. 
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III.  Implementation 

 
 The use of state aggregation for function approximation with Q-learning is not a new or unusual 

concept [1, 3]. Berenji and Vengerov [4, 5] advanced this work in their application of Q-learning and fuzzy 

state aggregation. The Proof-of-Concept experiment is built upon their work, beginning with fuzzy state 

aggregation and a basic Q-learning algorithm and extending that to the application of PHC algorithms. 

With the state-space constrained to K total fuzzy states, three different variants of a Policy Hill Climbing 

algorithm; standard PHC, Win or Lose Fast (WoLF) PHC and Policy Dynamics (PD) WoLF-PHC are 

applied. The implementation of these algorithms uses two vectors representing the learned parameter data. 

The q-vector q(k) as described in section 2.5.2 and a policy vector π(k) explained in section 3.1.  

 The following section lays the theoretic groundwork for applying the policy hill climbing algorithms 

to fuzzy state aggregation. This is followed by a detailed description of the Tile World domain and the 

specific test methodology for single-agent learning. Section 3.5 discusses the particular application of PHC 

and FSA to the RoboCup simulation domain and the specifics of using weighted strategy sharing with the 

multi-agent architecture. 

   3.1 Applying PHC to FSA 

 The q-vector holds the expected reward over time which is iteratively updated using a common 

temporal-difference formula. The π-vector holds the probabilities used to select an action from a given 

state (the policy). The policy decision of which action to take next is then based on both the expected 

reward value (q) and the policy value (π ): 

∑
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k
k askqkas

1
),()()(),( μπ    (3.1) 

The vectors q(k) and π(k) are initialized as shown below: 
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where A is the number of possible actions in the domain. The reason for initializing π(k) this way may not 

be intuitively obvious. Since this particular implementation uses three fuzzy labels, the initial value of each 

element of μk(s,a) is 1/3 before learning begins. The elements of π(k) are initialized so that  

1),()(
1 1
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k
k ask μπ      (3.3) 

Normalizing it with a Boltzmann distribution to ensure equation 3.3 remains true, the π-vector is updated 

as follows: 
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In this application δ is set in the range (0,1]. 

 Because the intent is to use Δsa to update the entire summation 
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for a given action (a), the division used in equation (3.4) is necessary to scale and weight Δsa correctly and 

prevent it from causing disproportionate growth in the elements of π(k). 

 To clarify, consider a very simple example using ambient air temperature. Assume an agent is learning 

which of two possible directions to move to find the warmest state in its environment. The agent uses 

temperature as a state variable when considering which direction to move (i.e. which action to take). 

Assume also that the agent has the q-vector and π-vector depicted in figure 3.1, which shows a higher 
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expected reward for moving to a High temperature fuzzy state than for moving to a Low temperature fuzzy 

state:  

 High Low 

q()= 6.2 4.7 

 

 High Low 

π() 0.52 0.43 

Figure 3.1: Notional q-vector and π-vector for Temperature Agent 

 The agent considers its first possible action (a1) and finds that action would put it into a state with a 

temperature of 45oF. The other possible action (a2) would put the agent into a state with a temperature of 

70oF. Using the fuzzy labels in figure 2.1, calculating ),( askμ  for each action results in 
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The decision of which action to take is then based on the outcome of equation 3.1 using this information: 
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Based on these calculations, the agent would select a2. The q-vector is then updated using equation 2.6. For 

this example, let α=0.1 and δt=0.85. The q-vector updates are then 
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The π-vector is updated using equations 3.6, 3.5 and 3.4 as follows: 
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Since the action taken was the best possible action, Δsa is updated as  
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And the policy vector itself is updated as 
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After applying a Boltzmann distribution to ensure equation to ensure equation 3.3 holds true, the policy 

vector values are  
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 This same procedure applies regardless of the size of the policy and q vectors or the number of 

possible actions. In the case of WoLF or PD-WoLF, the procedure is the same with some additional 

calculations as described in sections 3.2 and 3.3. 

   3.2 Combining WoLF-PHC and Fuzzy State Aggregation 

 Unlike the standard PHC algorithm, the WoLF-PHC and PDWoLF-PHC both utilize a dynamic 

learning rate to increase the speed of convergence over the standard PHC. The heart of this method is the 

quick learning when losing, and cautious learning when winning. Ideally the learner will adapt quickly 

when it is doing worse than expected. When it is doing better than expected it should be more cautious 

since the opponent(s) may change their strategy. The key to this is finding a way to determine if the agent 

is winning or losing [6]. Comparing the agent’s current policy with an estimated average policy is one way 

of doing this. 

 In this application the WoLF-PHC algorithm uses an additional vector to estimate the average policy 

value. The average policy vector is initialized like the π-vector: 
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This vector is updated by 
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where C is a counting function used to track how many times the elements representing a state have been 

updated. In this implementation all state elements for the selected action are updated simultaneously, so C 

is simply the number of times the algorithm has looped. 

 The delta selection for determining the learning rate in WoLF is then calculated as follows: 
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where δl > δw and both fall within the range (0,1]. This value for δ is used to calculate Δsa as described in 

equation (3.4) and is derived from the δ calculation of WoLF in equation (3.10).  

   3.3 Applying PDWoLF to the FSA 

 The PDWoLF-PHC also uses additional values to change the learning rate. Rather than using an 

average policy table (or vector), PDWoLF uses the change in policy from the previous time step Δ(s,a) 

with the change in policy from the current time step Δsa. These are initialized as 

0),( ←Δ as   and     (3.11) 0),(2 ←Δ as

Where ∆ and ∆2 are changing rates within the policy and are estimates of the slopes of the decision space. 

These are respectively updated for the selected action as 
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The delta selection then becomes 
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   3.4 The Tile World Experimental Domain 

 The original Tile World introduced by Pollack and Ringuette [10] is a chessboard-like grid on 

which there are agents, tiles, obstacles, and holes. The agent can move up, down, left, or right, one cell at a 
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time. A tile is a unit square which slides when pushed by the agent, an entire row of tiles can be pushed by 

the agent. An obstacle is a grid cell or group of cells which are immovable. A hole is a cell or group of grid 

cells, each of which can be “filled in" by a tile when the tile is moved on top of the hole cell; the tile 

disappear and the size of the hole cell diminishes If a hole becomes completely filled, the agent gets points 

for filling it, and the hole disappears. The agent knows ahead of time how valuable the hole is; its overall 

goal is to get as many points as possible by filling in holes.  

 A Tileworld simulation takes place dynamically: it begins in a state which is randomly generated 

by the simulator according to a set of parameters, and changes continually over time. Objects (holes, tiles, 

and obstacles) appear and disappear at rates determined by parameters set by the experimenter, while at the 

same time the agent moves around and pushes tiles into holes. 

 The version of Tileworld implemented in this research is designed as a test-bed for machine learning 

methods that are then transitioned to the very stochastic world of robot soccer. The intent is to approximate 

the conditions under which a soccer player decides what to do with the ball when he has possession of it; to 

whom should he pass it? Should he dribble it, and if so in which direction? Should he shoot for a goal? 

These are the questions a human soccer player must answer instantaneously as must the soccer playing 

agent in RoboCup. The simplified Tileworld domain for these experiments is based on the modified 

Tileworld domain used by Berenji and Vengerov [4, 5]. The simplified Tileworld consists of agents, 

reward spikes, and deformations. The agent must select which reward to pursue while avoiding the penalty 

deformations that move about the board. Like the original Tileworld, the reward spikes and penalty 

deformations have random, but finite life spans, but the agent gathers the reward by reaching the hole 

rather than pushing a tile into it. The agent also has the option of moving in one of eight directions as 

opposed to four in the original Tileworld. Figure 3.1 provides a conceptual picture of the modified 

Tileworld domain.  
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Figure 3.2: Conceptual Image of the Simplified Tileworld Domain 

 The simplified Tileworld implementation consists of a 20 x 20 grid world containing five reward 

opportunities and five deformations. The reward opportunities each have random value of 20 to 100 points 

and a random life span of 5 to 15 time steps. Anytime the agent reaches a reward or the reward expires, it 

disappears from the domain and another one is generated elsewhere on the board. Agent can move 1 step 

each time step. 

 Each deformation has a random penalty value of -5 to -20 points and, unlike the rewards, these 

deformations occasionally drift. At each time step each deformation has a 10% chance of moving one 

square in a random direction. Each deformation is also the center of a potential field that radiates out based 

on the following equation:  
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1 2+
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d
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Where v is the value of the deformation and d is the distance from the deformation. The cost of each square 

in the domain is the sum of the effects of each potential field at that point. The environment is fully 

observable in that the agent knows the location and value of each reward at all times as well as the location 

and effect of the deformations. 

 Each state in the domain is represented by four state variables: 

1. Distance to the reward 

2. Value of the reward 

3. Estimated life expectancy of the reward  

4. Roughness of path to the reward. 

 The distance to the reward is calculated simply using the Pythagorean Theorem. The value of each 

reward is randomly determined at the time it is generated. The estimated life expectancy of a reward (L) is 

calculated by 

L=m-t(r)     (3.15) 

where m is the mean life span (m=10 in this example) and t(r) is the number of time steps that reward r has 

existed. The roughness of the path to the reward is calculated by constructing a rectangle with the agent 

and the reward at opposite corners. The roughness is the average cost of all the squares in that rectangle. 

 At each time step the agent must decide which of the reward opportunities to pursue. This decision is 

based on the state variables described above. 

 Once the decision is made, the agent moves one square towards that opportunity, the policy is updated 

and the process repeats.  

 Because the agent can move in any of eight directions (orthogonally or diagonally) there are always 

three contiguous squares that the agent can choose from to move towards the selected reward. At each time 

step the agent simply uses the square with the lowest cost. 

  With each step, the agent garners a negative reward equivalent to the cost of the square it moves to. 

The agent only receives a positive reward upon reaching a reward opportunity before it expires.  

 The value of each of the state variables is described by the three fuzzy labels (Small, Medium and 

Large). The shapes and specific values of these fuzzy labels are shown in figure 3.3.  
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Figure 3.3: Fuzzy Labels Used by the Agent 

 For each of the state variables, the fuzzy labels are assigned so that they evenly divide the range of 

possible values for the variable. The degree to which the agent is in one of the fuzzy states is the mean of 

the degrees to which all the state variables belong to the corresponding labels in the fuzzy state. In this 

experiment there are four state variables and three fuzzy labels resulting in 81 (34) total fuzzy states. For 

comparison purposes, without fuzzy state aggregation, this same domain would have 210 possible distance 

values, 80 possible reward values, 15 different life expectancy values and at least 1000 different roughness 

values resulting in 2.52x109 possible states. By limiting the state variable values to only integer values 

(which is not the case in our experiment) this number could be reduced to just over 320,000 states.  

 At the beginning of each experiment the Q-values are all set to 20. This number is selected because it 

is comparable to the maximum Q-values found at the end of the experiment and starting with this value 
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results in some natural exploration in the earliest stages of learning. Because the entire q(k) vector and π(k) 

vector are updated at each time step, learning occurs very quickly and no dedicated exploration is required. 

   3.5 Proposed Design Plan for a RoboCup Team Architecture 

 The RoboCup domain is a simulated soccer game played by two teams of 11 players each. To the 

extent possible, all of the rules and strategies of a real soccer game are applicable to RoboCup games. 

Figure 3.4 shows a screenshot of a RoboCup soccer game in progress. 

 

Figure 3.4: Screenshot of RoboCup Game in Play. 

 

     3.5.1 Multi-Agent Architecture 

 The overarching design for the multi-agent system is a three-level design, composed of a planner, 

a deliberator and an execution layer with no outside inputs to the control program during play (no Coach).  
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 At the highest level, the planner uses current state information to project out the best course of 

action to achieve the goal (such as scoring a goal). Since this is such a dynamic environment, and since the 

program must be fully distributed across the agents, the deliberative creation of plays must be efficient and 

comparatively simple, but more than just “find the next best step”. This may also include the use of pre-

determined plays and locker room agreements as on-field communications is minimal.  

 In any case it is necessary for the agents to assume roles in the different formations and plays. 

This is accomplished using a fuzzy logic based function that each agent calculates for itself and then 

coordinate with other agents. As a notional example, in order for three agents to coordinate attacking the 

ball (without running into each other) each calculates the value of their own position using their distance 

and orientation to the ball and goal as inputs to the fuzzy logic unit. Depending on which is most efficient 

either each agent makes the same calculation for the other two, or they simply communicate their results 

with each other. In either case the agent with the highest position value leads the attack on the ball and the 

others assume supporting roles in accordance with the play.  

 As this is a decentralized control design, each individual agent (with exception of the goalie) 

independently runs the same program as described below. 

     3.5.2 Single Agent Architecture 

 This section describes the code actually implemented as part of the overall multi-agent 

architecture described in section 3.5.1.  

 The interactions with the simulator/server and the fundamental agent actions (e.g. kick, dribble, 

move, collision avoidance) are based on the source code provided by Peter Stone of CMU. It is a portion of 

the program used by CMU’s 2002 RoboCup team and is freely distributed for research/educational 

purposes as United2002-source. 

 The principle philosophy behind the single-agent architecture is to develop simple behaviors 

which when combined results in the emergence of more complex behaviors. As the more complex 

behaviors are better refined, attention is then focused on executing pre-planned plays as described in 

Section X. The architecture is modular in design, as shown in figure 3.5, and consists of: 
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• A deliberator which, at this point, simply selects between the possible behaviors. 

• A behavior module which consists of a Fuzzy Logic Controller (FLC) for controlling the default 

positioning behavior and calls the fuzzy PHC programs that each calculate its best estimated 

reward based on the current state. 

• A reinforcement learning module which updates the Q-value and policy vectors for the individual 

agent during the course of play. 

• An offline Weighted Strategy Sharing routine which runs after each game updates the Q-value 

and policy vectors for each agent based on the values provided from all other agents. The data is 

saved and made available for the beginning of the next game 

• The fundamental actions module constituted by the CMU software described previously in this 

section. 
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Behaviors 

Other 
Behaviors 

Basic Actions (CMU) 

WSS 
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Update 

State Data 

Changes 

Teammate 
Data 

Figure 3.5: Architecture for RoboCup Agents 

 The RoboCup simulator allows each agent/team member to submit a command at each 0.1 sec 

time increment. This means in any given second of play, each team could be submitting up to 110 

commands to the simulator. The challenge then is not only to select the best action for each agent, but to do 

so as quickly as possible. As part of the “realism” of the game, each agent has a limited range of vision and 

a player may not be able to identify the location of the ball or a particular player if the player’s view is 
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obstructed or the object in question is too far away. This is useful because decisions are based only on 

those pieces of information which the agent has ready access. For example, when deciding which teammate 

to pass the ball to, the agent should not even consider those teammates outside his visual range or to whom 

the agent does not have an unobstructed view. This allows the agent to limit the number of calculations 

made at each decision point. 

 At each iteration of the program the agent finds or estimates the position of the ball in Cartesian 

coordinates on the field. Based on the agent’s relative position to the ball and which team is in possession 

of the ball, the agent either acts on the ball or moves to a position determined by the positioning fuzzy logic 

controller (FLC). For this positioning, the FLC uses as inputs the X position of the ball on the field and the 

agent’s X position on the field as shown in figure 3.6. 
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Figure 3.6: Position FLC Output 

 Each agent has a zone of responsibility on the field. The position determined by the FLC is 

calculated and executed in reference to the center point of the agent’s zone of responsibility. As an 

example, one agent has responsibility for the upper part of the field closest to its own goal. When the ball is 

on the other end of the field and there are no opponents in this zone, the position FLC directs the agent to a 

point on the forward part of its zone of responsibility. As the ball moves towards the agent’s side of the 

field, the agent falls back towards the center of its zone. If an opponent moves into the agent’s zone the 

agent moves to cover that opponent. As the ball approaches the agent’s goal the agent moves back to a 

more defensive position closer to its own goal. By using a Fuzzy Logic Controller in this application, the 

agent’s response to the ball and opponent players is smoother and more easily adjusted. 
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 If the agent determines it is in a position to go after the ball (closest team player to the ball) the 

positioning decision described previously is set aside to pursue the ball. Once the ball is close enough for 

the agent to kick it, the agent must make other decisions; shoot for a goal, pass the ball or dribble it. This 

decision is based on which of these actions has the highest expected reward for the current state of the 

game. The expected reward for each action is calculated in the same manner as in the proof-of-concept Tile 

World experiment discussed earlier.  

          Passing the Ball - To calculate the expected reward for passing the ball, the agent with the ball 

considers each teammate (except the goalie) that is visible and to which the agent has a clear line of sight. 

For each teammate, the state variables the agent uses are  

• How many opponents are around the teammate 

• How far away is the teammate 

• How much closer to, or further from, the opponent’s goal is that teammate 

The number of Opponents around the teammate is calculated by projecting a 45o cone from the agent to the 

teammate and counting the number of opponent players located inside that cone as illustrated in figure 3.7. 

 

Teammate 

Agent 

Opponent 

Opponent 

45o

Figure 3.7: Cone used to count opponents near a teammate 

 The distance to the teammate is a simple calculation using the Pythagorean Theorem and the 

relative closeness to the opponent goal is the difference between the teammate’s X position and the agent’s 

X position. 
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 As in the tile world experiment, fuzzy state aggregation constrains the number of states in the 

domain. There are three fuzzy labels (sets) for each state variable resulting in 33 or 27 total fuzzy states 

used for passing the ball. Since the RoboCup domain is continuous, the actual number of states is 

incalculable. The fuzzy labels used for each state variable are shown in figure 3.8. 
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Figure 3.8: Fuzzy Labels used for Passing 

 There is a small reward for completing a forward pass (up to 20 points); while the cost of 

completing a backwards pass is 5 to -15 points. The penalty for having a pass intercepted is -30 points. 

This reward structure encourages forward passes, mildly discourages backward passes and strongly 

discourages passing to a teammate in close proximity to opponents, as they likely lead to the ball being 

intercepted.  

 The agent first calculates the expected value for passing the ball to each teammate based on the 

reward values stored in the q-vector and probability values stored in the current policy vector (see equation 
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3.1). The teammate with the highest expected reward, based on that calculation is selected to receive the 

pass. 

          Dribble the Ball - In calculating the expected reward of dribbling the ball, the agent considers 

dribbling in each of eight different directions. The eight directions are 45o apart in a complete circle around 

the agent, beginning with the -Y direction. For each possible direction the agent uses two state variables 

• Number of opponents in that direction 

• Degrees away from a direct path to the goal 

 The number of opponents in the direction is calculated by projecting a 45o cone to a point 10 

meters away in that direction and counting the opponents within that cone. The second state variable value 

is simply the difference between the direction in question and the angle to the goal as shown in figure 3.9. 

 

Agent 

Opponent 

Opponent 

Path to goal Agent chooses 
this direction 

Figure 3.9: Agent decides direction to dribble 

Using fuzzy state aggregation with three fuzzy labels and these two state variables the domain consists of 

nine (32) fuzzy states for dribbling the ball. 

 The learning feedback for the decision process consists of the agent receiving a reward 

proportional to the progress towards the goal resulting from that decision. Dribbling directly towards the 

goal is worth 4.5 points down to 0 for dribbling at an angle perpendicular to the goal. Dribbling away from 

the goal results in a proportionally negative cost (0 to -4.5 points) and losing possession of the ball costs 

the agent 30 points. This reinforcement method encourages dribbling towards the goal, discourages 

dribbling away from it and strongly discourages dribbling towards nearby opponents. The fuzzy labels 

used for dribbling are shown in figure 3.10. 

 45



 

1 

0 

2 0 4 

S M L 

M
em

be
rs

hi
p 

V
al

ue
 

Number of Oppnents in Cone 

1 

0 

90 45 135 

S M L 

M
em

be
rs

hi
p 

V
al

ue
 

Angle Away from Goal 

Figure 3.10: Fuzzy Labels used for Dribbling 

 The agent calculates the expected value for dribbling the ball in each direction based on the 

reward values stored in the q-vector and probability values stored in the current policy vector using 

equation 3.1. The direction with the highest expected reward, based on that calculation is the direction the 

agent selects. 

          Shots on Goal - To calculate the expected reward of shooting the ball, the agent considers shooting 

at each of seven different points in the goal. The seven points are all along the back of goal, starting at dead 

center (55, 0) and working out 2 meters at a time. For each possible target point the agent uses three state 

variables 

• Number of opponents along the path to the target point 

• Distance between the target point and the opposing goalie 

• Distance to that point 

 The number of opponents near the path to the target point is calculated by projecting a 15o cone 

from the agent to the target point and counting the number of opponent players located inside that cone, as 

shown in figure 3.11. The distance between the goalie and the target point is simply the difference in Y 

value of the goalie’s location compared to the Y value of the target point. The distance to the target point is 

a simple calculation using the Pythagorean Theorem. 
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Figure 3.11: Agent Considers Point (55, -6) for Goal Shot 

 Using fuzzy state aggregation with three fuzzy labels and these two state variables the domain is 

constrained to 27 (33) fuzzy states for shots on goal. The fuzzy labels used for shooting are shown in figure 

3.12. 
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Figure 3.12: Fuzzy Labels used for Shooting 
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 To reinforce the decision, the agent receives a high reward for scoring a goal (75 points) and a 

penalty of -30 points if the opposing team takes possession of the ball. This reinforcement method 

encourages shooting towards the points in the goal furthest away from the goalie and strongly discourages 

shooting close to nearby opponents. It also encourages shooting from closer in than further out. 

 The agent calculates the expected value for shooting the ball to each of the possible target point 

based on the reward values stored in the q-vector and probability values stored in the current policy vector 

(equation 3.1). The target point with the highest expected reward, based on that calculation is the point at 

which the agent shoots the ball. 

 Every time the agent has possession of the ball and must decide which action to take, the agent 

compares the highest expected reward for each of the three possible actions and selects the one with the 

highest overall expected reward. The decision and control flow is shown in Figure 3.13. 
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Figure 3.13: Decision and Control Flow for Agent Architecture 
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   3.6 Weighted Strategy Sharing 

 Because each agent runs this algorithm independently of its teammates, each agent learns a 

different policy based on its individual experience. Weighted Strategy Sharing (WSS) allows the agents to 

benefit from their teammates’ experiences develop more refined policies. The communication available 

between agents during game play is limited in range, constrained in its content size and not completely 

reliable. For all of these reasons, and the fact that RoboCup rules prohibit any inter-agent communication 

outside the simulator, the WSS occurs off-line at the end of each game. 

 At the conclusion of the game, each agent stores their respective Q vector and total reward for 

each of the three activities using reinforcement learning (passing, dribbling and shooting). The WSS 

algorithm accesses these files and creates a single updated vector using the “Learning From All” [8] weight 

assignment mechanism in which agent j is weighted by agent i using the equation: 

∑
=

= n

k
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j
ji

e

e
W

1

      (3.16) 

Where n is the total number of agents and ek is the amount of the expertness of agent k. The individual 

expertness value for each agent is calculated using the absolute value of the algebraic sum of the 

reinforcement signals (ri). 

∑= ii re      (3.17) 

The updated Q vector is then calculated as follows: 

∑
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This new single Q-vector is then used as the initial vector for the next game. 

   3.7 Summary 

 This chapter provides the detailed implementations of fuzzy state aggregation and ties that in with 

Q-learning. The next section expanded the Q-learning to include three different versions of policy hill 

climbing; standard PHC, WoLF and PD-WoLF. These methods are implemented in a variation of 

Tileworld which was described in detail. The experiment progressed to a multi-agent implementation in the 
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RoboCup simulator where weighted strategy sharing is also included. The results of these experiments are 

described in chapter 4. 
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IV.  Experimental Results 
 
 This chapter describes the results of the experiments presented in Chapter 3. Beginning with a 

proof-of-concept Tileworld experiment, performance is measured by the average learning reinforcement 

points earned at each time step. The learning performance of a Q-learning agent is compared to that of a 

policy hill climbing (PHC) agent, both of which are using fuzzy state aggregation. This is followed by a 

side-by-side comparison of the three different policy hill climbing variants.  

 The second part of the chapter presents the results of similar experiments conducted in the 

RoboCup domain. The Q-learning algorithm using FSA is compared to the PHC with FSA algorithm. The 

teams using these algorithms play against a reactive “Dummy” team and against a 2004 RoboCup 

tournament quarter-finalist team, TokyoTech 2004. Additionally, the learning performance of the PHC 

with FSA team against the Dummy team is evaluated both with and without weighted strategy sharing,  

   4.1 Tileworld Experiment Results 

 Initial experiments consisted of running multiple games of 200 time-steps each. The q and π-vectors 

were reinitialized at the beginning of each game and the same number of games was run for each 

algorithm. In order to obtain useful results, it is necessary to perform a large number of games (1000-2000) 

and average the results. The stochastic nature of the domain prevents finding meaningful results from a 

small number of games. 

 The parameter settings (see equation 2.1) are α=0.1, γ=0.3, and δ=0.5. Experience shows that the 

ratio of γ/α=3 works well in most situations. Increasing the value of α only results in a larger magnitude of 

Q values, but with no corresponding increase in performance. Figure 4.1 shows an evaluation of the 

learning ability of an on-policy Q-learning algorithm using fuzzy state aggregation compared to the basic 

off-policy hill climbing algorithm using fuzzy state aggregation.  
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Figure 4.1: Results of PHC with FSA vs. Q-Learning with FSA 

 The plots in Figure 4.1 show the average number of reinforcement points gathered every 10 time steps 

in a 200 time step game. Experience shows no significant learning occurs in this domain after 200 steps. 

These results are averaged over 2000 games. Not surprisingly, the policy hill climbing algorithm performs 

better (learns a better policy) than the Q-learning algorithm even though both are using the exact same 

fuzzy state aggregation method. 

 Figure 4.2 shows a side-by-side comparison of the evaluated learning ability of the PHC, WoLF, and 

PD-WoLF algorithms. These three algorithms are compared to determine if the variable learning rate in 

WoLF and PD-WoLF improves performance. For these tests, the run time of each game is shortened to just 

200 time steps from the initial testing as there is not a significant amount of learning after this point. The 

following parameter settings are used for these algorithms: α=0.1, γ=0.3, δ=0.5, δw=0.2, and δl=0.8. 

These values were chosen for δl and δw based on Bowling and Veloso’s [6] finding that δl/δw=4 is a good 
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ratio for using WoLF in stochastic environments. As in the previous experiment, all three algorithms used 

the same FSA method. 

 

Figure 4.2: Results of PHC, WoLF and PDWoLF 

 The experiments run indicate that all three PHC algorithms consistently provide similar results, even 

after varying the values of the parameter settings. The reason for this is that generalizing the states using a 

fuzzy state approximation vector (which reduces the Q and π  table dimensionality) smoothes the landscape 

of the policy table to an extent that the use of the variable learning rate has little or no effect. The variable 

learning rate used with WoLF and PD-WoLF requires a more chaotic policy landscape to produce 

improved results over the standard PHC.  

 Figure 4.3 shows the relatively smooth surface of the search area generated both by the Q values and 

the policy values under this implementation of fuzzy state aggregation. 
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Figure 4.3: Q-vector and Policy Vector Plotted against the three Fuzzy Labels 

 In the interest of determining if this was indeed the case, the state space of the Tileworld domain is 

increased by using five fuzzy labels rather than three. This expands the number of fuzzy states to 625 (54). 

A close look at the surface using five fuzzy sets, shown in figure 4.4, indicates that while the search 

surface is slightly more contoured, the FSA is still smoothing the surface to the point that neither WoLF 

nor PD-WoLF has an advantage over the standard PHC algorithm. 
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Figure 4.4: Q-vector and Policy Vector Plotted against the Five Fuzzy Labels 

 Based on the results of this Tileworld experiment, there is sufficient evidence to indicate the PHC with 

FSA will also perform well in the multi-agent domain of RoboCup. The WoLF and PD-WoLF are not 

tested in the RoboCup experiment, since the fuzzy state aggregation so smoothes the search surface that the 

more powerful WoLF and PD-WoLF algorithms are no more effective than the PHC algorithm. The 

problem would likely be exacerbated by the fact that there are fewer fuzzy states used in each of the 

learned activities in RoboCup than are used in Tileworld. 

   4.2 RoboCup Experiment Results 

 To obtain a quick snapshot of how well the algorithm works in the RoboCup soccer domain, the team 

using FSA and a PHC play against a “Dummy” team. The Dummy team is simply an earlier version of the 

experimental team which uses conventional if–else statements in selecting the action taken.  
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 From the perspective of the learning agent, opponent players are treated as part of the environment. 

The Dummy team generally performs poorly, but provides a good stochastic environment in which to 

measure the performance of the experimental team. As in the Tileworld experiments, the parameter settings 

are; α=0.1, γ=0.3, δ=0.5. Figure 4.4 shows the evaluation of the learning ability of the experimental team 

using just Q-learning with FSA, and using PHC with FSA against the Dummy team. 

 

Figure 4.5: Q-learning with FSA and PHC with FSA Performance vs. the Dummy Team 

 As in the Tileworld experiment, these results are the average reinforcement points collected by the 

team each time the agents had control of the ball. Each curve is a collective average over five runs of 10 

games each. At the beginning of each run of 10 games the Q-vector and policy vector were reset to their 

initialization values. In between each game within the run, each agent simply keeps their own q-vector 

from the end of the previous game. The average lines plotted through the data points are based on the 

average value of the team’s reward points at that time. To ease visual comparison between the lines, they 

were smoothed using a bi-Laplace curve smoothing algorithm (7 iterations). 
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 Consistent with results from the Tileworld experiment, the PHC algorithm demonstrates a better 

learning ability over the Q-learning algorithm, despite the fact that both algorithms use the exact same FSA 

method.  

 For comparison purposes the experimental team also plays against a very accomplished team, 

TokyoTech.  

 The TokyoTech team plays well and provides a more challenging environment for the experimental 

team to learn in. Figure 4.5 shows the reinforcement learning points garnered by the PHC team when 

playing against the TokyoTech team as compared to playing against the Dummy team.  

 

Figure 4.6: PHC with FSA Team Learning vs. TokyoTech Team and vs. Dummy Team 

 It is not surprising that the PHC team accrues fewer reward points during a game when facing a 

proficient team than it does against the Dummy team. Against a team that plays well, the agents have the 

ball less often and frequently find the higher reward options are unavailable to them (dribbling or passing 

backwards may be the only way to keep the ball). Additionally, the TokyoTech goalie is so good that the 
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PHC team never scores a goal against them. This means the positive reinforcement for scoring a goal never 

factors into the reinforcement for learning how to shoot at the goal. 

 It should be noted that the goalie for Dummy team, Q-learning team, and PHC team are all identical. It 

runs separate code from the learning agents and simply responds reactively to the presence of the ball. The 

goalie for these experimental teams moves very slowly compared to the TokyoTech goalie and frequently 

appears to ignore the ball when it comes close. As a result, game scores between the TokyoTech team and 

the PHC team are usually in the area of 10 to 0 or 12 to 0. Against the Dummy team TokyoTech routinely 

scores 20 unanswered goals in a 10 minute game. Adding improvements to the goalie would definitely 

result in additional goals saved, as currently 80% of the shots taken on the goal score a point. 

     4.2.1 Dissimilar Team Training 

 The question of learning against one team then playing against another deserves investigation. In this 

section there is an investigation of the learning performance of the experimental team (PHC w/FSA) 

playing against the Dummy team after learning against the TokyoTech team. Those results are compared to 

the results of the experimental team learning and playing against the Dummy team only.  

 That section is followed by an experiment with how the PHC w/FSA team learns against TokyoTech 

after learning against the Dummy team. These results are also compared to the results of the experimental 

team learning and playing against the Dummy team only.  

 For these experiments the data was gathered by averaging five runs of four games each. In the 

dissimilar team training cases, the first two games of the four-game runs were played against one team (e.g. 

the Dummy team), while the last two games of each four-game run were played against the other team (e.g. 

TokyoTech). 

 The plots in Figure 4.7 show the evaluated learning ability of the PHC w/FSA team learning against 

TokyoTech and playing against the Dummy team. 
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Figure 4.7: PHC with PHC Team Learns vs. TokyoTech and Dummy Team – Plays vs. Dummy Team. 

 Despite learning more slowly against the better TokyoTech team, the experimental team still performs 

well against the Dummy team. Any impact of learning against the harder team is compensated for early 

into first game with the Dummy team.  

 Figure 4.8 shows the evaluation of the experimental team’s learning against the Dummy team then 

playing against the better TokyoTech team. This is compared to learning and playing against the Dummy 

team only. 
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Figure 4.8: PHC Team learns against Dummy team – Plays against Dummy team and TokyoTech. 

 The results here are not unexpected. The PHC team accrues significantly fewer reinforcement learning 

points when it is playing against the TokyoTech team. 

 All of the experiments thus far have simply allowed the agents of the experimental team to maintain 

and use their own policy and q vector from game to game within a run of games. The final experiments 

investigate the impact allowing the agents to share information using weighted strategy sharing. 

     4.2.2 Results using Weighted Strategy Sharing 

 While the rate of learning in a single game is of interest, there is also value in demonstrating the effect 

of maintaining the Q values learned previously for use in later games. Rather than starting each new game 

“tabula rasa”, the agents each store the Q-vector from their last game and use that as the initial Q-vector for 

the next game.  
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 To further increase the rate at which the agents learn, weighted strategy sharing (WSS) is 

implemented. This allows each agent to benefit from the experiences of its team mates. Ideally, WSS 

would be implemented so the agents could share information while they played. The limited 

communications channels available to the players in the RoboCup preclude this. Instead, WSS is 

implemented at the end of the game to provide each agent with a new Q-vector for the next game based on 

the inputs of the other team members. 

 The results in Figure 4.9 are a comparison of the evaluated learning ability of the experimental team 

with and without weighted strategy sharing. 

 

Figure 4.9: PHC with FSA Games With and Without WSS. 

 As anticipated, the experimental team shows an increased learning ability using WSS over the course 

of these games.  

 Clearly, the use of weighted strategy sharing increases the rate of learning over that of agents 

independently learning at their own rate. 
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   4.3 Summary 

 The results presented here illustrate the benefit of off-policy learning (PHC) over the standard Q-

learning. The comparison between the various policy hill climbers implemented in Tileworld makes it clear 

that the more powerful WoLF and PD-WoLF algorithms only produce improved results over the standard 

PHC if the search surface is sufficiently contoured, a characteristic minimized by the application of fuzzy 

state aggregation to the domain. 

 The results of implementing FSA and PHC for multiple agents in RoboCup demonstrate the portability 

of this method to other stochastic environments. The added benefit of weighted strategy sharing is also 

readily visible. 
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V.  Conclusion and Future Work 
 
 

 Reinforcement learning in a stochastic environment is at best complicated, even for a single learning 

agent. Applying RL to a multi-agent system in such an environment simply compounds the difficulty. In 

addition to the rapidly changing elements indigenous to the environment, the other agents themselves 

become part of that environment and must be considered by each individual agent. 

 Standard reinforcement learning techniques such as Q-learning can be effective in such an 

environment unless the state space becomes too large. Even with a limited state space, on-policy learning 

methods (such as Q-learning) usually don’t perform as well as off-policy learning methods such as policy 

hill climbers. 

 This chapter presents the research conclusions, significance, and recommended areas for future 

research. 

   5.1 The Research 

 This research presents an unusual approach to a difficult problem. By applying Fuzzy State 

Aggregation (FSA) to the environment, the state space is significantly constrained while still providing a 

good representation of the environment to support learning. This work demonstrates the improvement of 

combining FSA with each of three different PHC algorithms over standard Q-Learning. Both in terms of 

speed to convergence and the convergence value itself. The resulting increase in performance clearly 

shows the benefit of applying the off-policy hill climbing algorithm to the FSA in this highly stochastic 

environment. Unlike the results of using the WoLF-PHC and PDWoLF-PHC algorithms in a crisp 

environment, these two algorithms showed no improved performance over the common PHC algorithm. 

 The application of this same combination to the RoboCup soccer simulator also shows results 

consistent with those identified in the Tile world experiment. By constraining the state space and applying 

the reinforcement learning to the three offensive behaviors (shooting, passing and dribbling) we 

demonstrated the effectiveness of this method in a highly stochastic adversarial game setting. As a policy 

 63



hill climber, this reinforcement learning method is not guaranteed to find the globally optimal solution. It 

does, however, consistently find a good solution.  

 While it is an interesting and entertaining pursuit, playing better robot soccer is not the only 

application for this type of RL. A swarm of micro UAVs or UGVs could benefit greatly from this type of 

on-the-fly decision making in response to rapidly changing environmental factors from avoiding threats to 

re-routing communications to compensate for a team mate that has broken down or moved out of range.  

   5.2 Future Work 

 Areas of future expansion includes applying the combination of fast policy hill climbing with fuzzy 

state aggregation to more complex domains in an effort to determine if the performance potential of the 

different algorithms maps to the fuzzy set aggregation function approximation method. A Tileworld with 

seven or nine fuzzy sets may provide a sufficiently contoured surface and result in the WoLF and PD-

WoLF algorithms learning more quickly than standard PHC. 

 These is also potential benefit in learning the optimal fuzzy label values for each state variable as a 

means of further improving performance. Rather than hard-coding the center points for the triangular fuzzy 

sets, the agents can be programmed to learn and adjust those values to help bring performance closer to 

optimal.  

 In the soccer domain there is a great difference between learning well and playing well. In order to 

develop a competitive team based on this research, further work must be done on ball handling and 

extensive work is required to develop an effective goalie. Designing the agents to learn from, and 

anticipate, opponent behavior would likely be an area of interest for machine learning researchers. Finally, 

an over arching planner is required which will allow the agents to cooperate and create long term ‘plays’ 

and strategies required for an effective winning team. 
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