
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Application of Fuzzy State Aggregation and Policy Hill Climbing to Application of Fuzzy State Aggregation and Policy Hill Climbing to

Multi-Agent Systems in Stochastic Environments Multi-Agent Systems in Stochastic Environments

Dean C. Wardell

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Logic and Foundations Commons

Recommended Citation Recommended Citation
Wardell, Dean C., "Application of Fuzzy State Aggregation and Policy Hill Climbing to Multi-Agent Systems
in Stochastic Environments" (2006). Theses and Dissertations. 3508.
https://scholar.afit.edu/etd/3508

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F3508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/182?utm_source=scholar.afit.edu%2Fetd%2F3508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3508?utm_source=scholar.afit.edu%2Fetd%2F3508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Application of Fuzzy State Aggregation and Policy Hill
Climbing to Multi-Agent Systems in Stochastic

Environments

THESIS

Dean C. Wardell, Captain, USAF
AFIT/GE/ENG/06-55

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

 ii

AFIT/GE/ENG/06-55

APPLICATION OF FUZZY STATE AGGREGATION AND POLICY HILL
CLIMBING TO MULTI-AGENT SYSTEMS IN STOCHASTIC ENVIRONMENTS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Dean C. Wardell, MS

Captain, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

 iii

AFIT/GE/ENG/06-55

APPLICATION OF FUZZY STATE AGGREGATION AND POLICY HILL
CLIMBING TO MULTI-AGENT SYSTEMS IN STOCHASTIC ENVIRONMENTS

Dean C. Wardell, MS
Captain, USAF

 Approved:

 /signed/

 Gilbert L. Peterson (Chairman) date

 /signed/

 Scott R. Graham (Member) date

 /signed/

 Christopher B. Mayer (Member) date

AFIT/GE/ENG/06-55

 iv

Abstract

 Reinforcement learning is one of the more attractive machine learning technologies, due to its

unsupervised learning structure and ability to continually learn even as the operating environment changes.

Applying this learning to multiple cooperative software agents (a multi-agent system) not only allows each

individual agent to learn from its own experience, but also opens up the opportunity for the individual

agents to learn from the other agents in the system, thus accelerating the rate of learning. This research

presents the novel use of fuzzy state aggregation, as the means of function approximation, combined with

the fastest policy hill climbing methods of Win or Lose Fast (WoLF) and policy-dynamics based WoLF

(PD-WoLF). The combination of fast policy hill climbing and fuzzy state aggregation function

approximation is tested in two stochastic environments; Tileworld and the simulated robot soccer domain,

RoboCup. The Tileworld results demonstrate that a single agent using the combination of FSA and PHC

learns quicker and performs better than combined fuzzy state aggregation and Q-learning reinforcement

learning alone. Results from the multi-agent RoboCup domain again illustrate that the policy hill climbing

algorithms perform better than Q-learning alone in a multi-agent environment. The learning is further

enhanced by allowing the agents to share their experience through a weighted strategy sharing.

 v

Table of Contents

Abstract v

Table of Contents vi

List of Figures viii

List of Tables ix

I. Introduction 1

1.1 Overview 1
1.2 Background 2
1.3 Research Focus 3
1.4 Thesis Organization 4

II. Related Work 5

2.1 Q-Learning 5
2.2 Fuzzy Logic and Q-Learning in Multi-agent Architectures. 6
2.3 Fuzzy Logic in the RoboCup Domain 6
2.4 Fuzzy Logic Controllers and Q-Learning in the RoboCup Domain 8
2.5 State Aggregation and Generalization 9

2.5.1 Fuzzy State Aggregation 9
2.5.2 Combining State Aggregation with Q-learning 11

2.6 Policy Hill Climbing 12
2.6.1 Win or Lose Fast (WoLF-PHC) 13
2.6.3 Policy Dynamics Based Win or Lose Fast (PDWoLF) 13

2.7 Weighted Strategy Sharing 14
2.8 Robot Control Designs 15
2.9 Individual Agent Architecture 15

2.9.1 UM-PRS 16
2.9.2 CMUnited-98 16
2.9.3 Robotico universitat de Girona (RoGi) 17
2.9.4 MAPs 18
2.9.5 MICROB 20
2.9.6 GAMMA 22
2.9.7 Scerri 23

2.10 Multi-Agent Interaction 24
2.10.1 UM-PRS 24
2.10.2 CMUnited-98 24
2.10.3 RoGi 24
2.10.4 MAPs 25
2.10.5 MICROB [37] 25
2.10.6 GAMMA and Scerri 26

2.11 Learning & Decision Making 26
2.11.1 UM-PRS – Feedback and Opponent Modeling 26

 vi

2.11.2 CMUnited’s Layered Learning 27
2.11.3 ROGI – Fuzzy Inference 27
2.11.4 MICROB, GAMMA and Scerri 28
2.11.5 Other Examples 28

III. Implementation 30

3.1 Applying PHC to FSA 30
3.2 Combining WoLF-PHC and Fuzzy State Aggregation 33
3.3 Applying PDWoLF to the FSA 34
3.4 The Tile World Experimental Domain 34
3.5 Proposed Design Plan for a RoboCup Team Architecture 39

3.5.1 Multi-Agent Architecture 39
3.5.2 Single Agent Architecture 40

3.6 Weighted Strategy Sharing 49
3.7 Summary 49

IV. Experimental Results 51

4.1 Tileworld Experiment Results 51
4.2 RoboCup Experiment Results 55

4.2.1 Dissimilar Team Training 58
4.2.2 Results using Weighted Strategy Sharing 60

4.3 Summary 62

V. Conclusion and Future Work 63

5.1 The Research 63
5.2 Future Work 64

Bibliography 65

Vita 68

 vii

List of Figures

 Figure Page

 2.1. Membership Function for the Degree of Hotness and Degree of Coldness10

 2.2. A Functional Input/Output Model of the Team Member Agent Architecture..............................17

 2.3. Hierarchy of Behaviors in the CMUnited-98 Architecture ..17

 2.4. Coupling Graph of the Soccer Robot Game...21

 2.5. Influence Graph for the Soccer Robot Team..22

 3.1. Notional q-vector and policy vector for Temperature Agent..32

 3.2. Conceptual Image of the Simplified Tileworld Domain ..36

 3.3. Fuzzy Labels Used by the Agent..38

 3.4. Screenshot of RoboCup Game in Play ...39

 3.5. Architecture for RoboCup Agents..41

 3.6. Position FLC Output ..42

 3.7. Cone Used to Count Opponents Near a Teammate..43

 3.8. Fuzzy Labels Used by the Agent for Passing...44

 3.9. Agent Decides Direction to Dribble ...45

 3.10. Fuzzy Labels Used by the Agent for Dribbling..46

 3.11. Agent Considers Point (55, -6) for Goal Shot ..47

 3.12. Fuzzy Labels Used by the Agent for Shooting...47

 3.13. Decision and Control Flow for Agent Architecture ...48

 4.1. Results of PHC with FSA vs. Q-Learning with FSA ...52

 4.2. Results of PHC, WoLF and PD-WoLF..53

 4.3. Q-vector and Policy Vector Plotted Against the Three Fuzzy Labels..54

 4.4. Q-vector and Policy Vector Plotted against the Five Fuzzy Labels ...55

 4.5. Q-learning with FSA and PHC Performance with FSA vs. the Dummy Team56

 4.6. PHC with FSA Team Learning vs. TokyoTech Team and vs. Dummy Team57

 viii

 4.7. PHC with FSA Team Learns vs. TokyoTech and Dummy Team – Plays vs. Dummy Team59

 4.8. PHC with FSA Team Learns vs. Dummy Team – Plays vs. Dummy Team and TokyoTech60

 4.9. PHC with FSA Transitions With and Without WSS..61

List of Tables

 Table Page

 1. Basic Policy Hill Climbing Algorithm ..12

 2. Additional Functions Used in WoLF-PHC Algorithm..13

 3. Additional Functions Used in PD-WoLF-PHC Algorithm ...14

 ix

 x

APPLICATION OF FUZZY STATE AGGREGATION AND POLICY HILL

CLIMBING TO MULTI-AGENT SYSTEMS IN STOCHASTIC ENVIRONMENTS

I. Introduction

 1.1 Overview

 From swarms of unmanned aerial vehicles to teams of game playing robots, the ability for

multiple agents to learn and function in chaotic environments has been a challenge for researchers and

engineers. One of the challenging traits of stochastic environments is the ever-increasing state-space size.

Even with the higher speeds and memory capacity of today’s computers, the sheer volume of information a

control system must process and track, consisting of maintaining consistent state information, and action

and event outcomes, places severe limits on algorithm performance. Dealing with the enormous state-

spaces requires developing a smaller representation of the environment or a rapid search/learning algorithm

or both.

As we become more reliant upon technology to perform tasks deemed too dangerous or too

complicated for humans, the problems addressed by that technology are only becoming more difficult.

Large-scale planning and scheduling, robotic explosive disposal and Martian surface exploration are just

some examples of technology designed to operate in rapidly changing environments where human

interaction is either too expensive or simply impossible. These environments present a host of variables,

many of which are unpredictable, but which the software controller must handle and include in the decision

making process. It is not reasonable to expect systems to exhaustively search over millions of possible

states to determine the best solution, much less the next best step.

 1

 1.2 Background

 The first and most common approach to dealing with the large stochastic environment state-space

problem makes use of a function approximation of the domain’s policy. This approach is also referred to as

state generalization.

 State generalization architectures provide a means to limit the size of the state space and approximate

the learned policy. This approach has been presented in several previous efforts [1, 2, 3]. Rather than

attempting to maintain the entire state or state/action policy representation state, generalization provides an

intermediate approximation function that reduces the policy state space. The key elements in this procedure

are that the function approximation must be able to adequately approximate the true policy representation

and also reduce the state dimensionality to something more manageable. The state generalization procedure

used in this work is state aggregation which is a type of function approximation in which the states of a

domain are combined into groups with some common value estimate [1]. When a state is updated, the

entire group is updated. Two of the best known methods for state aggregation are tile coding [1] and

artificial neural networks [2].

Tile coding approximation generates several overlapping grids or tilings of the state space, such that

any given point in the state space will lie in exactly one tile in each tiling. Thus, the representation of a

point is represented by the set of tiles that it lies in. A variation on tile coding is Berenji and Vengerov’s [4,

5] use of fuzzy state aggregation (FSA) as a means of effectively limiting the state space in a Q-learning

experiment. Fuzzy state aggregation uses the concept of fuzzy sets to represent the environment with a

limited number of “fuzzy states”.

Artificial neural network (ANN) learning can be specified as a function approximation problem where

the goal is to learn an unknown function (or a good approximation of it) from a set of input–output pairs. A

variety of constructive neural-network learning algorithms have been proposed for solving the general

function approximation problem. These algorithms typically use a greedy strategy wherein each new

neuron added to the network is trained to minimize the residual error as much as possible. Thus, the

artificial neural network can be used to limit the state space size of large domains.

 2

 The second method for improving the results of reinforcement learning, such as Q-learning, is the

use of a separate policy table which tracks the probability of selecting an action from a given state. The off-

policy reinforcement learning algorithm, policy hill climbing (PHC), yields improved empirical results

over on-policy methods [1]. Bowling and Veloso [6] showed continued improvement over the standard

policy hill climbing by separating the PHC’s update value into two values, one which updates when

winning and one when losing, hence the name of Win or Lose Fast (WoLF) policy hill climbing algorithm.

When winning, the updates are more conservative (and therefore slower) in anticipation that the opponent

may change its losing policy. The updates when losing are more aggressive, and therefore faster. Banjeree

and Peng extend WoLF, introducing a policy dynamics based version of WoLF (PDWoLF), which

compares the change in policy from the previous time step with the change in policy from the current time

step, further improving results [7].

 In the case of multi-agent domains additional progress has been made by allowing the agents to

share information and the benefit of their experience via weighted strategy sharing (WSS) [8, 9]. Based on

the value of their learned information, each agent’s learning data is weighted and combined to provide each

agent the benefit of information gathered by other agents in the domain.

 1.3 Research Focus

 This research presents the novel application of fuzzy state aggregation combined with three

different policy hill-climbing algorithms described above, comparing the speed and efficacy of their

learning in the highly stochastic Tileworld [10].

 Tileworld is grid domain in which the agent tries to select the best reward opportunity while

avoiding penalty spots. These rewards and penalties randomly disappear and re-appear in the domain

making the environment very stochastic. The Tileworld tests are followed by experiments in the simulated

robot soccer domain RoboCup in which multiple soccer playing agents make up teams and play against

each other in a fairly realistic soccer simulation.

 Fuzzy state aggregation and policy hill climbing techniques have each been applied separately in

these domains, but not in combination. Based on the improved performance each has shown in past

research, using them in combination should result in further advances in performance.

 3

 These domains provide stochastic environments in which multiple interactive agents can learn and

operate. The simulators are readily accessible and enough research has been conducted using both

Tileworld and RoboCup that there is a well established baseline for measuring performance. The results of

this research demonstrate the improved performance of combining a policy hill climbing method with

fuzzy state aggregation in both the Tileworld model and the RoboCup domain.

 The results of the Tileworld experiment demonstrate the efficacy of combining fuzzy state

aggregation with each of three simple policy hill-climbing algorithms to accomplish learning in this

stochastic environment. This novel combination of FSA and PHC is applied to the RoboCup domain where

learning is further improved by applying a weighted strategy sharing method which allows all agents to

benefit from the experience of their team mates.

 1.4 Thesis Organization

 Chapter 2 of this thesis provides an overview of the various types of robot control, the different

approaches used in robot soccer and the different methods and algorithms used in reinforcement learning,

state generalization and weighted strategy sharing. Chapter 3 covers the implementation of combinations of

FSA with PHC learning. The Tileworld domain and its use as an environment for a single-agent

experiment are described. The specifics of how the team of robots operates in RoboCup along with the

specifics of their reinforcement learning method complete the chapter. The results of applying the three

variants of policy hill climbing to the Tileworld domain open Chapter 4. The results of applying the PHC

algorithm combined with FSA and WSS in the RoboCup domain comprise the rest of Chapter 4. Chapter 5

contains a discussion of the conclusions and recommended future research areas.

 4

II. Related Work

 The research in this thesis touches on multiple domains, namely multi-agent systems,

reinforcement learning, fuzzy state aggregation and multi-agent learning. This chapter reviews the

extensive research accomplished in these fields, specifically:

• Reinforcement learning in its many forms has been widely researched. Since it is a key part this

research, a review of the work and progress made to date in Q-learning and policy hill climbing

provides the context for later sections of this paper.

• Separate, but equally important, are the various means of performing state generalization. The

fuzzy state aggregation used in this research is itself not new; however an understanding of the

research done in the past makes the application in this document more clear.

• By understanding the theories behind weighted strategy sharing, applying that technique to this

specific research becomes a logical next step in improving the learning of multiple agents.

• The work done in Robot soccer teams which provides a sound basis for the multi-agent

experiment conducted in this research effort using the RoboCup domain.

 2.1 Q-Learning

In the realm of reinforcement learning, Q-learning [11] is one of the simplest and most commonly used

methods. Q-learning assigns values to the actions, a, the agent can possibly take from a given state, s.

These state-action pairs are represented by the symbol Q(s,a), and are usually stored in a Q table. After the

algorithm selects an action, the Q table element containing that state-action pair is updated. The amount of

the update is based on the rewards received and the expected rewards as represented by the Q value of the

new possible actions a’ the agent can take from the new state, s’, according to the function:

[]),()','(max),(),(' asQasQrasQasQ a −++← γα (2.1)

where α is the learning rate (or step size), set between 0 and 1, which controls convergence, and γ is the

discount factor, set between 0 and 1, which affects the value placed on rewards r that can be earned later.

In Q-learning, the agent learns through continuous interaction with the environment, during which it

exploits what it has learned so far. At each step the algorithm searches for the next best step and is,

 5

therefore, referred to as a “greedy” algorithm. To ensure the agent is not missing more valuable state-action

pairs, it can also explore. In practice, this means that the current approximation Q is used to select an action

most of the time. However, in a small fraction of cases an action is selected randomly from the available

choices, so as to explore and evaluate unseen state/action pairs.

 2.2 Fuzzy Logic and Q-Learning in Multi-agent Architectures.

 Fuzzy logic has been used to represent continuous state spaces as discrete, thereby making it

possible to implement Q-learning in continuous state spaces. The combination of FLCs with Q-learning has

been proposed as Fuzzy Q-Learning (FQL) for many single robot applications [12, 13, 14].

 Gültekin and Arslan [15] present a modular-fuzzy cooperative algorithm for multi-agent systems

which takes advantage of a modular architecture, internal model of other agents, and fuzzy logic in multi-

agent systems. In this algorithm, the internal model provides an estimate of the agent’s own action and

evaluates other agents’ actions. To overcome the problem of dealing with an extremely large state space,

fuzzy logic is used in mapping from the input sets representing the state space of each learning module to

the output sets representing the action space. The authors used Q-learning to build a fuzzy rule base for

each learning module, but without providing any convergence proof.

 Kilic and Arslan [16] developed a “Minimax” fuzzy Q-learning for cooperative multi-agent

systems. In this system, the learning agent must observe other agents and use fuzzy state and goal

representations to update the fuzzy Q-values. This Minimax refers to min and max fuzzy operators and is

completely unrelated to the Minimax Q-learning described by Littman [17]. As with the system described

above, this Minimax fuzzy Q-learning is not guaranteed to converge on an optimal solution.

 2.3 Fuzzy Logic in the RoboCup Domain

 Looking specifically at the robot soccer domain, there are several examples of fuzzy logic

applications. First, applications of Fuzzy Logic Controllers (FLC) are discussed, followed by those fuzzy

behavior-based implementations to include learning components.

 One of the earliest applications of fuzzy logic in the RoboCup domain was the Zeng99 team [18].

The designers presented a Hierarchical Fuzzy Intelligent Control system (HiFIC) applied to the control of

 6

soccer agent behavior, planning and cooperative control. The HiFIC controller is a derivative of the three-

layered control model presented by Jens Rasmussen [19].

 The HiFIC consist of three levels: a lower layer to regulate primitive reaction control, a middle

layer to perform skill level behavior and the highest layer to make decision on strategic and tactical play

planning. Implementing this system revealed an information transfer problem between the different layers,

each of which has information on a different level of abstraction. Though it did not use any type of

reinforcement learning, this effort did serve as a test-bed for the implementation of a HiFIC in the robot

soccer domain

 In [20] Aguirre et al present a RoboCup team using fuzzy logic (but no learning) to select

behaviors for each agent. The goalie, forward (offensive) and rear (defensive) players each use a different

FLC to select between behaviors based on various state conditions. As an example, the goalie’s conditions

are the location of the ball, the proximity of opponents to the goal and the game score.

 Team Milan [21] uses a fuzzy cognitive model to integrate coordination, planning and reactive

behaviors in a team of cooperating robots. The authors use the representation of concepts as fuzzy

predicates, i.e., logical predicates that map real-valued variables into the truth interval [0..1].

 A team Milan robot is governed by a set of behavior modules, implemented as a set of fuzzy rules,

and supported by a fuzzy behavior management system. Fuzzy predicates in the antecedents of the rules are

evaluated to weight the actions proposed by the consequents. A set of conditions is associated with each

behavior. They are represented by fuzzy predicates whose truth value is taken as an evaluation of the

applicability of the behavior in the current state. If this applicability value is above a given threshold, the

rules of the behavior module are evaluated and the corresponding actions are proposed.

 Each action is associated with a weight computed as a fuzzy composition of the applicability and

the weight coming from the fuzzy rule evaluation. Generally, several behaviors are activated at a time,

there are many proposed actions. These are weighted by the WANT conditions, fuzzy predicates, associated

to each behavior, that state the opportunity to do the actions proposed by a behavioral module.

 In [22] Sng et al present a fuzzy logic based strategy which employs an arbiter that assigns a robot

to attack (shoot or pass) the ball. The fuzzy logic based strategy is implemented for a five-a-side robot

 7

soccer game. Role assignment is necessary to avoid collision between players going for the ball or no

player being assign such a role to attack the ball. Making this assignment purely on distance from the ball

is insufficient for the dynamic soccer environment. Since, the main objective of the game is to score goals;

so if a player is in a better position to secure a scoring chance, it must be given the opportunity. Parameters

used as inputs to the fuzzy arbiter for each robot are distanceToBall, orientation, shootAngle and

pathObstacle. Fuzzy logic rule based reasoning is used to decide which robot should ‘attack the ball’. The

teams described above do not use any reinforcement learning.

 2.4 Fuzzy Logic Controllers and Q-Learning in the RoboCup Domain

 When applying Fuzzy Q-Learning to the robot soccer domain it is often in the context of learning

one particular skill or behavior. Gu and Hu [23] (and with Specek [24]) present a fuzzy logic controller

(FLC) for the implementation of a ball chasing behavior for Sony Aibo robot. The FLC is refined using an

adaptive heuristic Critic (AHC) reinforcement learning. The actor part of AHC is a conventional FLC in

which the parameters of input membership functions are learned by an immediate internal reinforcement

signal. This internal reinforcement signal comes from a prediction of the evaluation value of a policy and

the external reinforcement signal. The evaluation value of a policy is learned by temporal difference (TD)

learning in the critic part that is also represented by a FLC. A genetic algorithm (GA) is employed for

learning internal reinforcement of the actor part.

 These same authors present a fuzzy classifier system (FCS) to teach the agent to chase the ball

[25] and to perform formation keeping [26], using wheeled robots. The FCS approach uses a learning

approach based on a Q-learning credit assignment strategy. This approach adopts an inverse measure of the

rule accuracy as a rule’s fitness value. Each rule maintains a q value, but it is not an estimate of

accumulated payoffs. It is only used for calculating the rule’s accuracy. This q value is updated by the Q-

learning mechanism. An on-line fuzzy Q-learning algorithm is used for the credit assignment. The max

operator in the standard Q-learning is not used since the rules that have maximum q values no longer

represent rules with the best payoffs. Finally the action selection mechanism employs a “niching” Genetic

Algorithm which selects actions (MOVE FORWARD, LFFT FORWARD, RIGHT FORWARD, LEFT

TURN, RIGHT TURN, or STOP)

 8

 In [27] Nakashima et al propose a fuzzy Q-learning method in which an agent determines its

action based on the inference result by a fuzzy rule based system. The authors apply the method to a soccer

agent that tries to learn to intercept a passed ball. The state space is represented by internal information that

the learning agent maintains such as the relative velocity and the relative position of the ball to itself. The

authors divide the state space into several fuzzy subspaces and define each fuzzy subspace by specifying

the fuzzy partition of each axis of the state space. The learning agent receives a reward if the distance

between the ball and the agent becomes smaller or if the agent catches up with the ball.

 Ammerlaan and Wright [28] address the question of whether systems based on fuzzy logic can

effectively adapt themselves to dynamic situations. To answer this question, they design and implement an

adaptive fuzzy logic agent for playing RoboCup soccer. The agent has a FLC for basic behaviors, but a

neural network allows the agent to adapt to the changes in the environment.

 Rapidly changing environments usually generate very large state spaces. While the learning

methods described here do provide a means for the agent to improve its performance, they do not address

the size of the state space in which the agent must operate. This is left to the function approximation

methods used in state aggregation and generalization.

 2.5 State Aggregation and Generalization

 State aggregation is a type of generalizing function approximation which allows machine learning to

learn in larger environments more quickly. State aggregation works by combining the states of a domain

into groups with some common value estimate [1]. When a state is updated, the entire group is updated.

The best known methods for state aggregation are tile coding (also known as sparse coarse coding) [1]

artificial neural networks [2], and fuzzy state aggregation [4, 5]. Since this thesis primarily uses fuzzy sets,

the following section describes fuzzy state aggregation in depth.

 2.5.1 Fuzzy State Aggregation

Fuzzy state aggregation uses Zadeh’s [29] concept of fuzzy sets to represent the environment with a

limited number of “fuzzy states”. Fuzzy sets are sets that allow elements to be partially in more than one

 9

set at a time. The degree to which an element is a member of a fuzzy set is measured on a scale between 0

and 1.

 For example, consider the outside ambient temperature [30]. Classical set theory can only classify

the temperature as hot or cold (i.e., either 1 or 0). It cannot interpret the temperature between 20 °F and

100 °F. In other words, the characteristic function for the classical logic for the above example is given by

⎪⎩

⎪
⎨
⎧

<

≥
=

coldasclassifiedFxiff
hotasclassifiedFxiff

x
o

o

Hot 500
501

)(μ

The boundary 50 °F is taken because classical logic cannot interpret intermediate values. On the other

hand, fuzzy logic solves the above problem with a membership function as given by

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>

≤≤
−

<

=

Fxif

FxFifx
Fxif

x

o

oo

o

Hot

1001

10020
80

20
200

)(μ

The above membership function is graphed in Figure 2.1, demonstrating that the degree of coldness is the

complement of the degree of hotness.

Figure 2.1: Membership Function for the Degree of Hotness and Degree of Coldness [30]

 Fuzzy state aggregation is a variation of Singh’s soft state aggregation [3], which uses probability

values as a measure of the extent to which the current state falls into the various aggregate (cluster) states.

 Like soft state aggregation, fuzzy state aggregation uses a fixed number (K) of aggregate states to

represent the environment and thus minimize the number states the learning algorithm must deal with.

 10

Rather than using probabilities, a crisp state (s) is represented by its degree of simultaneous membership in

each of the K fuzzy states. The total number of fuzzy states is determined by the number of fuzzy sets

(labels) used and the number of state variables.

 2.5.2 Combining State Aggregation with Q-learning

 In a domain with a large state-space, it is very memory inefficient to learn separate Q-values for each

state-action pair. Therefore, it is not uncommon to see Q-learning used in conjunction with some form of

state aggregation. When implementing Q-learning with such an architecture, the term Q(s,a,r) is used to

approximate Q(s,a.) Here r is a vector of the learned parameters. The fundamental parameter updating rule

for each time step t is [4]

),,(tttttt rasQrrr Δ+← αδ . (2.2)

Where α is the learning rate and δt is the Bellman error used for the look-up table in this corresponding

learning rule

ttt asQasQ αδ+←),(),(. (2.3)

In discounted Q-learning the Bellman error is calculated as follows

),(),(max)(1 asQasQtg ttat −+= +γδ . (2.4)

Where g(t) is the cost of taking the specific action and γ is the discount rate.

 In this work fuzzy state aggregation is the specific function approximation architecture. Using this

architecture, the Q-value of action a in state s is calculated using:

∑
=

=
K

k
k askqasQ

1
),()(),(μ (2.5)

Where q(k) is the Q-value of the kth fuzzy state and μk(s,a) is the degree of membership of state s to k with

respect to action a.

 Replacing ΔrtQ(st,a,rt) from equation (2.2) with μk(s,a), the equation to update q(k) becomes:

),()()(askqkq ktKk μαδ+←∀ ∈ (2.6)

 11

Otherwise, the Q-learning algorithm remains unchanged. Also note that in performing this update that all

of the fuzzy sets are updated based upon their degree of membership in the state representation not just the

most similar fuzzy set. The value of),(askμ determines how much weight is applied to that particular

update.

 2.6 Policy Hill Climbing

Policy Hill Climbing (PHC) is an extension of Q-learning. The algorithm, performs hill-climbing

(seeking the highest global reward) in the space of mixed policies. Q-values are maintained as an estimate

of the optimal policy. In addition to the Q-table (Q(s,a)), the algorithm maintains the current mixed policy

(π(s,a)). The PHC algorithm is shown in Table 1.

Table 1: Basic Policy Hill Climbing Algorithm
__

sa

sa

Aaa
sa

asa

sa

asasUpdate

A
aswhere

otherwise
asQaif

compute
asQupdateandsstatenextandrObserve

astoaccordingaactionselectsstatefrom
Loop

A
asandasQInitialize

Input

Δ+←

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

⎪⎩

⎪
⎨
⎧ ≠−

=Δ

←←

∈∈

∑
∈≠

),(),(

1
),,(min

)',(max

),('
),(,

.1),(0),(

].1,0(],1,0(

'

ππ

δπδ

δ

δ

π

π

δα

In PHC, the policy is improved by increasing the probability that it selects the highest valued action

according to a learning rate]1,0(∈δ . If 1=δ the algorithm is equivalent to Q-learning, since with

each step the policy moves to the greedy policy, always executing the highest valued next step rather than

pursuing the greatest overall reward.

 12

 2.6.1 Win or Lose Fast (WoLF-PHC)

The WoLF-PHC [6] algorithm is a policy hill climber that uses variable learning rates instead of a

single learning rate (δ in Table 1). The algorithm requires two learning parameters δl and δw. where δl > δw

as shown in Table 2. The parameter that is used to update the policy depends on whether the agent thinks it

is currently winning or losing. This determination is made by comparing whether the current expected

value is greater than the current expected value of an average policy. If the current expected value is lower

(i.e., the agent is “losing”), then the larger learning rate δl is used, otherwise δw is used. The purpose of

using the variable learning rate is to increase the speed at which the algorithm reaches the optimum policy.

The functions in Table 2 are used to calculate δ for the WoLF-PHC algorithm, and are the only changes to

PHC in Table 1.

Table 2: Additional Functions for WoLF-PHC Algorithm
__

⎪⎩

⎪
⎨

⎧
>

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+←

∑ ∑
otherwise

asQasasQasif

sC
asasasas

l

A

a

A

a
w

δ

ππδ
δ

ππππ

),(),(),(),(

)(
),(),(),(),(

__

 2.6.3 Policy Dynamics Based Win or Lose Fast (PDWoLF)

 Like WoLF, PDWoLF [7] uses the variable learning rate parameters δl and δw. Where WoLF checks

itself against an average policy to determine if it is winning or losing, PD-WoLF uses the change in policy

from the previous time step Δ2(s,a) and the change in policy from the current time step Δ(s,a). If both

changes are in the same direction (both positive or both negative) the agent believes it is losing and selects

the larger learning rate δl as shown in Table 3.

 13

Table 3: Additional Functions Used in PDWoLF-PHC Algorithm
__

sasa

l

w

asandaswhere

otherwise
asasif

Δ←ΔΔ−Δ←Δ

⎩
⎨
⎧ <Δ×Δ

=

),(),,(

0),(),(

2

2

δ
δ

δ

__

 Cousin and Peterson [9] successfully demonstrate increased performance over WoLF by applying PD-

WoLF to a multi-agent hunter-prey domain. They further improve the learning performance by

implementing weighted strategy sharing along with the PD-WoLF PHC.

 2.7 Weighted Strategy Sharing

 First introduced by Ahmadabadi et al [8], Weighted Strategy Sharing (WSS) is a method in which

a group of n homogeneous agents learn in a particular environment using two modes: individual learning

and cooperative learning. Initially all agents learn individually, executing some number of learning trials

based on Q-learning. After a specified number of individual learning trials, the agents switch to the

cooperative learning mode.

 In this mode each agent assigns weights to the other agents based on that other agent’s expertness.

The agent then takes the weighted average of the Q-tables and uses that as its own new Q-table. Agent (i)

would calculate the new Q-table based on weighted values from the n other agents (j) as shown in equation

2.7.

)*(
1

old
j

n

j
ij

new
i QWQ ∑

=

← (2.7)

This new Q-table is then used as the starting point for subsequent learning.

 Thus far this chapter has reviewed the related research conducted in state generalization and

reinforcement learning. While interesting, these theories and algorithms require application in some

domain to be useful. The balance of this chapter reviews the related work performed robot controllers and

specifically robots designed for playing soccer, which is the domain of choice for this thesis.

 14

 2.8 Robot Control Designs

 Agents built for the RoboCup competition usually differ from other software agents. Instead of

sophisticated communications systems and strict pre-programmed steps, RoboCup agents must have the

ability to react to changing situations, make team oriented decisions in real-time and make difficult

decisions on uncertain information. This has resulted in a wide variety of team designs, ranging from

variations on the classic Belief-Desire-Intention (BDI) architecture to simple reactions and from explicit

team coordination protocols to hard-coded player positions.

 2.9 Individual Agent Architecture

 The focus of this section is on the balance between deliberation and reaction in the single-agent

architectures. In general, a deliberative agent is one in which plans and goals are explicitly represented,

requiring that the designer generally create some sort of plan domain which the agent then uses in

instantiating a full plan at runtime. In performing planning, a form of symbolic reasoning is usually used

and the building of the plan is a long and slow process.

In contrast, reactive agents do not explicitly represent goals, instead merely reacting blindly to the

current state of the environment. In creating reactive agents, the designer aims to create reactions such that

the overall observed behavior of the agent seems intelligent. The reality is the reactive agent either will or

will not respond to a given stimulus. A reactive agent is like the motion-activated light on many homes,

when the circuitry is triggered, the light comes on. There is no planning, deliberating or deciding – only

reaction. The casual observer may see this reaction and think there is some level of intelligence at work,

when, in fact, there is none. A reactive soccer-playing agent may be coded to respond to the presence of the

ball, opponents and teammates. Given the use of enough if – else statements, the agent may even function

in a way that appears intelligent, but lacks any element of intelligence.

The agents implemented for robot soccer are not at the extreme ends of this reactive - deliberative

spectrum. Rather, in true Aristotelian fashion, they are usually somewhere near the middle. The following

section reviews some robot soccer architectures beginning with the more deliberative designs of UM-PRS

and CMUnited. The middle ground is represented by the ROGI and MAPs teams and the more reactive

designs of MICROB, GAMMA and Scerri round out the review.

 15

 2.9.1 UM-PRS

One of the more clearly deliberative architectures is the University of Michigan’s Procedural Reasoning

System (UM-PRS) [31], which uses explicitly coded multi-agent plans on top of a reactive individual

control system.

 UM-PRS is based on the PRS architecture. Each agent has a database (world model), a set of

goals (aka plans or plays), knowledge areas (procedures for achieving goals) an intention structure (run-

time stack of the system) and an interpreter which controls the system. The interpreter looks at the

database, identifies the knowledge areas (actions) to apply and places them on the intention structure for

execution in pursuit of a goal.

 The authors do not specify the particular behaviors, but do indicate that when no plan/play is

applicable for the situation the interpreter falls back to a simple reactive behavior like running for the ball.

This allows the player's behavior to degrade gracefully when unexpected situations occur.

 2.9.2 CMUnited-98

 Like the UM-PRS design, Carnegie Mellon’s CMUnited-98 robot team [32] is a mixture of

deliberation and reaction. In this architecture, each agent maintains a concept of the world state, internal

state (e.g. agent’s role in a particular formation), internal behaviors (update internal state), external

behaviors (actions sent to actuators) and the locker room agreements as shown in Figure 2.2.

Locker-Room
Agreement

TEAM MEMBER
ARCHITECTURE

Internal
Behaviors

Internal
State

External
Behaviors

Interpreter
World
State Predictor

Real
World Action Primitives Sensor Information

Figure 2.2: A functional input/output model of the CMUnited team member agent architecture [32].

 16

 Locker room agreements are established off-line and define the teamwork structure and

communication protocols the team will use.

 The individual behaviors (ball interception, dribbling, kicking, goal tending, defending and

clearing) are in the basic level of the multi-layered hierarchy of behaviors illustrated in Figure 2.3.

Figure 2.3: Hierarchy of Behaviors in the CMUnited-98 Architecture [32]

 The Individual Behaviors are predictive, locally optimal skills. They use predicted world models

and predicted effects to determine the optimal behavior. Collaborative Behaviors are those which involve

other teammates, like passing the ball. The only behavior that is completely reactive (strategic positioning)

is a Team Behavior. Using attraction and repulsion the agents position themselves autonomously, and the

agent with the ball decides autonomously where to pass: no negotiation is involved, enabling the players to

act as quickly as possible.

 2.9.3 Robotico universitat de Girona (RoGi)

 Team RoGi [33] is built using agent-oriented programming (AOP) [34] vs. object-oriented

programming. Agent-oriented programming is a fairly new programming paradigm that supports a societal

view of computation. In AOP, objects known as agents interact to achieve individual goals. Agents exist in

a structure as complex as a global internet or one as simple as a module of a common program. Agents can

be autonomous entities, deciding their next step without the interference of a user, or they can be

controllable, serving as a mediary between the user and another agent.

 17

 At the lowest level each agent in the RoGi architecture “instinctively” decides on a private action.

This decision is based on the agent’s beliefs as calculated from its distance to the ball and distance to the

goal. Each agent then informs its team mates of its intentions. In those situations where two or more agents

have conflicting intentions (e.g. 2 agents intend to get the ball) one of the two will opt to change behaviors

to avoid the conflict. This decision is based on the “certainty” value each has associated with their

announced decision. The certainty value is obtained from a fuzzy inference calculation. This architecture

relies heavily on communication between teammates to declare intentions and make decisions on a

cooperative basis.

 At the individual agent level, this architecture provides private actions: shoot the ball (SHOOT),

get the ball (GET), move forward (FORW), and go backwards (BACK). It also supports communicative

actions: send a decision to a specified soccer player (INFORM), and request an action to another soccer

player (REQUEST).

 2.9.4 MAPs

 The Multi-Agent Planning system (MAPs) [35] consists of a high level planning algorithm that

analyzes game play and sends instructions to the command interpreters. The robots are then expected to

carry out the plan. The particular form of the instructions is not specified. This architecture uses potential

fields as a means of weighting options the planner must choose between. The algorithm has 3 steps;

1. Get new information - Update the world model based on sensor data.

2. Choose an Action – Based on the influence of agents and obstacles, as represented in the

potential field, select the next action. This action is chosen to minimize the interference between

agents. The action choice is built from the perspective of the team’s goal.

3. Find the Location for the Action – using potential fields and the type of action selected, the

individual agent will determine the best location for the action.

 The soccer robot example builds potential fields out of the elements described below. Each

element is designed to provide low values at attractive regions, and high values at unattractive regions. The

 18

elements are combined on a grid array that represents the physical environment such that coordinates are

easily extracted. Some elements cover the whole area, while others influence only part.

1. Base Field - The base field mask is a biased towards the goal of the system. When looking for

low valued coordinates, this has the effect of encouraging the agents to move towards areas of

interest. The opposition goal is at the base of the ramp and this representation encodes the desire

for the agents to carry out their directives towards it.

2. Object Regions - This is a field mask that represents an object’s presence in the working field.

This mask is relatively small in area and is placed wherever the objects are on the field. The

masks represent the objects’ locations, and regions around them considered to be their influence

zone. This can be used for robot locations or obstacles.

3. Robot’s Position - It may be desired to have the robots maintain responsibility in specific areas.

In the soccer robot system, this is used to keep players in their specific field positions (e.g., left

wing).

4. Distance From Current Position - This function is added to prevent the planner from selecting

coordinates on the boundaries of the potential field. It creates a field-wide virtual “dish”

encouraging the selected coordinates to be close to the current position of the object in question.

5. High Value Continuation - In some cases, the planner evaluates the field in a line-of-sight

manner similar to the clear path to object function described below. This is carried out by adding

the highest valued coordinate to all other coordinate values from the object to the boundary of the

field which has the effect of building a ‘shadow’ of high values where it is undesirable for the

agent to go.

6. Clear Path To Object - It is important for a robot navigating to positions in the environment to

have a clear view of certain objects otherwise their location can’t serve any purpose. This function

is represented in the potential field by making all occluded coordinates high values. From the

robot’s perspective the areas blocked by an obstacle (another player) are undesirable.

 Like Team ROGI, the MAPs architecture is implemented on a physical robot league which means

the system has access to a global view of the environment and is allowed to use off-board processing. For a

 19

given situation the planner generates a potential field, starting with a basic field biased towards the goal.

Other potential field elements are then add to this one resulting in a composition field which represents the

soccer ground, the positions of opponents and teammates as well as clear paths to desirable locations. The

potential field info is then passed to the agent.

 2.9.5 MICROB

 Perhaps one of the more interesting reactive architectures is the MICROB robotic soccer team

which is an implementation of the Cassiopeia programming method [36]. The goal of this design is to

demonstrate that a set of robots can achieve intelligent behavior without being provided with the general

solution of the problem. The designers focused on the emergence of “self-organized collective

phenomenon in societies of robots” [37], where each agent is provided with minimal individual capacities,

in terms of communication, interaction or cooperation.

 This design is made up of 4 basic behaviors; the authors have used them to compose the more

complex sequences of behaviors [38].

1. Shoot the ball (in the direction of the goal)

2. Take up their position (waiting for a pass)

3. Block an opponent's way

4. Defend their goal (against the opponents' attacks)

 The authors’ don’t point to any particular “learning”. Rather, they recognize that some behaviors

depend upon, or are influenced by, others. This led to the design of four different types of agents (roles).

At any given time, one agent may be filling any of the four roles. The determination of which role the

agent is filling is made by which roles the other agents are filling. To better visualize these complex

interactions, the coupling and influence graphs in Figure 2.4 and Figure 2.5 illustrate these relationships.

 20

Figure 2.4: Coupling Graph of the MICROB Soccer Robot Game [38]

The following dependencies have been identified (an arrow from A to B means that B potentially depends

on A):

d1. Blocking an opponent can help another robot to better place itself.

d2. Defending can help oneself or another robot to better place itself.

d3. It may be necessary to place oneself if another robot wants to shoot.

d4. Defending may allow agent to catch the ball of the opponent.

d5. Blocking can help oneself or another robot to shoot the ball.

d6. Shooting can help oneself or another robot to shoot (this is the pass).

d7. Defending depends on the other robots' defense strategy.

Figure 2.5: Influence Graph for the MICROB Soccer Robot Team [37]

 21

 The behaviors that allow the agents to dynamically organize themselves according to their mutual

influences are based on the contract net mechanism described in the multi-agent portion of this survey.

 2.9.6 GAMMA

 Moving further to the reactive side of the spectrum, Team GAMMA [39] uses a variation on the

subsumption architecture written in Gaea. Gaea is an “organic programming” language which allows the

creation of entire teams of agents. Each agent uses an extension to the subsumption architecture to choose

actions. The standard subsumption architecture has a number of layers that subsume or inhibit each other

whenever they are activated by sensors connected to the world [39]. The extension used in Gaea, called

dynamic subsumption architecture, is the combination of subsumption architecture and dynamic

environment change. Since subsumption architecture assumes fixed layers of functions, it is either difficult

or inefficient to implement multiple modes on top of it. It is straightforward in organic programming, using

context reflection. An agent may respond to a given input differently according to the mode (e.g. offense

vs. defense). The mode changes as a result of the agent’s action and plan, and according to the changes in

the situation (context).

 In Gaea a single agent is programmed in a multi-agent manner. A player consists of the following

processes (agents):

1. Sensor Process: receives sensor information sent from the Soccer Server, analyzes it, and puts the

results into the common cell.

2. Command Process: sends control commands to the Soccer Server. It is designed to send one

command every 100 milliseconds, because the RoboCup Soccer Server only accepts one

command per 100 milliseconds. In other words, this process is a resource manager of sending

control commands.

3. Action Process: controls low-level modes of player's action by manipulating the environment of

the command process.

4. Object Detection Process: checks the path to the target for chasing or kicking, and changes the

behavior by modifying the environment of the command process. if there are objects on the way,

 22

5. Communication Process: controls high-level modes of player's action according to the message

from the referee and teammates.

The top level of each process is a loop that repeatedly calls "cycle(top)". It is defined in the "basic" cell that

is shared by all processes.

 2.9.7 Scerri

 Paul Scerri [40] presented a multi-layered approach to robotic soccer. Each layer consists of three

controlling processes; action selection, behavior instantiation and information extraction. Since all layers

work in the same manner, the only difference is which layer is active at the moment. Each layer deals with

a level of abstraction greater than the one below it. Only the lowest level interfaces with the outside world

while the layers above it have their effect by setting behaviors in the levels below. For example, a low-

level “move-to-ball” behavior is given the ball’s precise location and sends the agent to it, while a high-

level “defend” behavior knows only that the ball is in the defensive half of the field and will implement

lower level behaviors in response to that input. In this architecture a behavior is created dynamically, by

instantiation, from a generic behavior and a parameter component. Each behavior acts independently of the

other behaviors at that layer. The author did not provide a comprehensive list of all the behaviors, but cite

some in examples. The behavior attack-down-wing is listed as an example of a high level behavior, while

move-to-the-ball, move-to-the–wing and kick-goal are examples of low level behaviors.

 Only the behavior chosen by the action selection process of a particular layer is executed by the

system. This “best” behavior is chosen by its score, a sum of:

• Applicability Value – score for how applicable a behavior is given the current state

• Priority Value – score based on rank ordering of behaviors

• Persistence Value – used as a tie breaker to prevent oscillations between different behaviors.

 All of these scores are set by the designer. The intent is for the designer to set up situations, with a

relatively small number of simple behaviors, where a wide range of different and complex behaviors will

emerge.

 23

 2.10 Multi-Agent Interaction

 With an elementary understanding of the architecture implemented by each of these teams, and

since RoboCup consists of multiple agents working together, it is useful to compare and contrast how each

system deals with inter-agent activities (e.g. assigning roles and positions, calling plays, making plans, etc).

 2.10.1 UM-PRS

 The UM-PRS architecture treats roles as the first deliberative step above basic reactive behavior.

The roles (such as goalie, defender, attacker etc) can be assigned by player number or by field position.

The next step up is the use of formations. The authors acknowledge the use of formations, but do not

discuss their specific implementation. With roles and formations established, the next step is to make and

execute plans. Using relatively simple plans, the PRS architecture’s interpreter can draw upon state

knowledge and current player positions to select and execute appropriate plans (goals). Those agents not

involved in a plan will degenerate to reactive behavior, rather than be paralyzed, until a plan is invoked.

Since each agent carries its own “copy” of the architecture, the agents use limited communications to

update each others‘ databases and intention stacks. This communication in conjunction with sensor input

from the environment is how individual agents coordinate with each other.

 2.10.2 CMUnited-98

 The CMU simulator team is based on flexible formations made up of flexible roles. Both are

independent of the agent filling the particular role. There are predetermined conditions under which a

particular formation may be used. Specific pre-planned plays are determined in the locker room

agreements. Rather than rely on on-field communications, the agents have the pre-set, multi-agent, multi-

step plays (locker room agreements) in an internal play book and know to execute them when the

preconditions are met.

 2.10.3 RoGi

 The agent-oriented design used by de la Rosa, et al, uses a step-by-step reasoning for inter agent

coordination. After making an initial decision of an action to take for itself, the agent will communicate it

 24

to its team mates. The agents also request information from all other agents to learn the proposed action

and certainty for each team mate. In this cooperative mode conflicting intentions are worked out. The final

decision is then communicated to the coach-agent. This coach-agent has global vision of the environment

and uses a fusion procedure to determine and direct which agent should take the proposed action. It also

will direct an agent to take a required action if none of the players have proposed it on their own.

 2.10.4 MAPs

 MAPs uses a less rigid approach to planning. Referred to as “plan-as-communication”, the agents

are given a high level version of a plan and are free to alter it to better fit the situation.

Conspicuous by its absence is any mention of team strategy or a coordinated plan. The choice of action and

its location are determined by components of the environment as represented on the potential field. In other

words, the MAPs architecture relies on the use of the common potential field to be the de facto means of

coordinating multiple agent actions. The common potential field is a compilation of fields. The base field

simply points towards the goal. This base field is modified with other fields depending on the game

situation. As an example, an agent in possession of the ball use the base field combined with a field

pointing toward other teammates and away from opponents to determine where, and how hard, to kick the

ball.

 2.10.5 MICROB [37]

 In order to distribute the basic behaviors among the players within a team, agents enter into

contracts with each other. Since only one agent can be the shooter at a given time, it must decide whether

to allow another robot to shoot, and which robot is going to be the blocker. This kind of collaboration is

implemented by a kind of contract-passing between the agents. Agents outside this "contract-net"

automatically become the defenders. The authors did not provide details as to the values/utilities used in

these contracts.

 In an effort to reduce the communication between the agents, the authors have also implemented

virtual agents that possess (and reason about) a very simple model of the other robots. Whenever an agent

 25

has to make a decision, it can enter into contracts with these virtual agents, as if they were contract-based

robots, and make decisions based on that interaction.

 2.10.6 GAMMA and Scerri

 Both team GAMMA and Paul Scerri’s multi-layered design use a subsumption architecture and

rely on the “intelligent” decisions of individual agents to naturally result in a kind of coordinated multi-

agent effort. In simple English, neither design implements a deliberate means of planning or coordinating

the actions of multiple agents. Instead they appear to follow the ideas of pre-Nash economic theory, which

states that each individual acts in the manner most advantageous to himself results in the realization of the

best results for the collective group.

 2.11 Learning & Decision Making

 Many existing machine learning (ML) techniques are applicable in multi-agent scenarios simply

by duplicating the single-agent technique in each agent. However multi-agent learning is more concerned

with learning issues that arise because of the multi-agent aspect of a given domain. As described by Weiss,

multi-agent learning is “learning that is done by several agents and that becomes possible only because

several agents are present” [41].

 Among the teams considered thus far, only the most deliberative (UM-PRS and CMUnited) use

machine learning. Most provide a means of making behavioral decisions, even if no learning is involved.

 2.11.1 UM-PRS – Feedback and Opponent Modeling

 In UM-PRS, goals are broken down into sub goals, and contexts are used to find the most

appropriate action that achieves that goal or sub goal.

In some situations there are two or more actions which are equally appropriate for pursuit of a

goal or sub goal. In these situations, UM-PRS uses both satisfaction of contexts and priority values given

to actions and procedures to decide what to do. These priority values can be modified at runtime to allow

the agent to adapt by learning which action is preferable based on experience (by observing its outcome).

 Feedback is key to successful learning in this, or any other domain. Once the system gathers

feedback for an action, it is used to reorder the set of weights on alternative procedures which satisfy the

 26

same goal. The authors do not specify the exact type of feedback used in this system. The weights referred

to may be probabilities or a simple Q-learning. The authors do point out an advantage of using UMPRS as

a real-time architecture for RoboCup is that UM-PRS itself can be extended to automatically generate

Bayesian networks for plan recognition [42]. This allows for both improved agent collaboration and the

ability to model and predict the goals and actions of opponents.

 2.11.2 CMUnited’s Layered Learning

 Once the world model is successfully created, the agents must use it to respond effectively to the

environment. As described previously, internal behaviors update the internal state while external behaviors

produce executable actuator commands. Spanning both internal and external behaviors, layered learning

[43, 44] is CMU’s bottom-up hierarchical approach to client behaviors that allows for machine learning at

the various levels. The key points of the layered learning technique are as follows:

• A bottom up, hierarchical task decomposition is given.

• Machine learning exploits data to train and/or adapt. Learning occurs separately at each level.

• The output of learning in one layer feeds into the next layer.

 The type of learning used at each level depends upon the task characteristics. The authors have

used neural networks and decision trees to learn ball interception and passing respectively [43]. These

offline approaches are appropriate for opponent independent tasks trainable outside of game situations.

They also use online reinforcement learning approaches for behaviors that depend on the opponents [45].

 2.11.3 ROGI – Fuzzy Inference

 Though Team ROGI doesn’t use explicit machine learning, every agent has perception and

communication capabilities, as well as decision capabilities. Since all the micro-robots of this project have

the same technical specifications, various reactive models (behavior roles, such as, defense, attack, and

goal keeper) are programmed in.

 In the first step of the reasoning procedure, every soccer player decides a private action

instinctively. This decision depends on local environment configuration (Beliefs) defined by two

parameters: distance player-ball (DPB), and distance player-goal (DPG). The decision also has a degree of

certainty, derived from a fuzzy inference calculation. This calculation is based on the membership values

 27

of established fuzzy sets, no learning or adjusting of the membership values occurs. This is one of the few

robot soccer designs that implements fuzzy logic. The fuzzy logic controller and fuzzy state aggregation

used in this thesis are similar to the fuzzy inference calculator referenced here.

 2.11.4 MICROB, GAMMA and Scerri

 These more reactive architectures do not use machine learning. The decision making process for

selecting an action or behavior to be invoked was previously described in their respective architecture

descriptions.

 2.11.5 Other Examples

 In their survey of multi-agent architectures [46] Stone and Veloso make reference to some of the

systems described here as well as citing examples of the types of learning used by other systems which

could be applicable to the RoboCup domain, including local or global perspective, opponent modeling,

affecting other agents, roles, and communication content.

 Local or global perspective

 On the surface it may seem that having a global perspective would always be preferable to only a

local perspective. However, the global perspective also carries with it a greater volume of information

which may actually impede performance. This type of improved performance by agents with less

knowledge is sometimes referred to as “Ignorance is Bliss.”

 Modeling of Other Agents’ States

 Modeling of other agents can be used to allow better interaction between cooperative agents or to

allow competitive agents to better anticipate their opponent’s next action.

 Affecting others

 When communication is impossible, or at least very expensive, agents cannot interact with each

other directly. However, since they exist in the same environment, the agents affect each other indirectly in

several ways. One agent may change something in the environment and that change is perceived by another

agent which then acts differently because of the perceived change.

 28

 Roles

 When agents are organized into a team, each agent plays a separate role within the team. This

requires some form of role assignment. This assignment might be obvious if the agents are very specific

and can each only do one thing. However in some domains, the agents are flexible enough to fill one of

many roles.

 Communication Content

 One important consideration for communicating agents is what they should communicate. For

planning purposes, some agents may need to communicate goals while others can advance their learning by

communicating state information, much like the weighted strategy sharing used in this research.

 From the broad research areas of multi-agent robot architectures, reinforcement learning and

function approximation this chapter has reviewed particular soccer-playing robot systems, Q-learning,

policy hill climbing, information sharing and state generalization. Further narrowing the focus of this

thesis, the subsequent chapters address the specific implementations of fuzzy state aggregation combined

with PHC and weighted strategy sharing in the RoboCup domain along with the resultant performance in

learning.

 29

III. Implementation

 The use of state aggregation for function approximation with Q-learning is not a new or unusual

concept [1, 3]. Berenji and Vengerov [4, 5] advanced this work in their application of Q-learning and fuzzy

state aggregation. The Proof-of-Concept experiment is built upon their work, beginning with fuzzy state

aggregation and a basic Q-learning algorithm and extending that to the application of PHC algorithms.

With the state-space constrained to K total fuzzy states, three different variants of a Policy Hill Climbing

algorithm; standard PHC, Win or Lose Fast (WoLF) PHC and Policy Dynamics (PD) WoLF-PHC are

applied. The implementation of these algorithms uses two vectors representing the learned parameter data.

The q-vector q(k) as described in section 2.5.2 and a policy vector π(k) explained in section 3.1.

 The following section lays the theoretic groundwork for applying the policy hill climbing algorithms

to fuzzy state aggregation. This is followed by a detailed description of the Tile World domain and the

specific test methodology for single-agent learning. Section 3.5 discusses the particular application of PHC

and FSA to the RoboCup simulation domain and the specifics of using weighted strategy sharing with the

multi-agent architecture.

 3.1 Applying PHC to FSA

 The q-vector holds the expected reward over time which is iteratively updated using a common

temporal-difference formula. The π-vector holds the probabilities used to select an action from a given

state (the policy). The policy decision of which action to take next is then based on both the expected

reward value (q) and the policy value (π):

∑
=

=Π
K

k
k askqkas

1
),()()(),(μπ (3.1)

The vectors q(k) and π(k) are initialized as shown below:

20)(←kq and
AK

labelsfuzzyofk #)(←π (3.2)

 30

where A is the number of possible actions in the domain. The reason for initializing π(k) this way may not

be intuitively obvious. Since this particular implementation uses three fuzzy labels, the initial value of each

element of μk(s,a) is 1/3 before learning begins. The elements of π(k) are initialized so that

1),()(
1 1

=∑∑
= =

A

a

K

k
k ask μπ (3.3)

Normalizing it with a Boltzmann distribution to ensure equation 3.3 remains true, the π-vector is updated

as follows:

⎥⎦
⎤

⎢⎣
⎡Δ+←∀ ∈),()()(as

K
kk k

sa
Kk μππ (3.4)

with Δsa calculated as:

⎪⎩

⎪
⎨
⎧ ≠−

=Δ ∑
∈≠

otherwise
asQaif

Aaa
sa

asa

sa

'

)',(max
δ

δ
 (3.5)

where

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
= ∑

= 1
,),()(min

1 A
ask

K

k
ksa

δμπδ (3.6)

In this application δ is set in the range (0,1].

 Because the intent is to use Δsa to update the entire summation

sa

K

k
k

K

k
k askask Δ+=∑∑

== 11
),()(),()(μπμπ (3.7)

for a given action (a), the division used in equation (3.4) is necessary to scale and weight Δsa correctly and

prevent it from causing disproportionate growth in the elements of π(k).

 To clarify, consider a very simple example using ambient air temperature. Assume an agent is learning

which of two possible directions to move to find the warmest state in its environment. The agent uses

temperature as a state variable when considering which direction to move (i.e. which action to take).

Assume also that the agent has the q-vector and π-vector depicted in figure 3.1, which shows a higher

 31

expected reward for moving to a High temperature fuzzy state than for moving to a Low temperature fuzzy

state:

 High Low

q()= 6.2 4.7

 High Low

π() 0.52 0.43

Figure 3.1: Notional q-vector and π-vector for Temperature Agent

 The agent considers its first possible action (a1) and finds that action would put it into a state with a

temperature of 45oF. The other possible action (a2) would put the agent into a state with a temperature of

70oF. Using the fuzzy labels in figure 2.1, calculating),(askμ for each action results in

37.0),(63.0),(
71.0),(29.0),(

22

11

==

==

asas
asas

LowHigh

LowHigh

μμ

μμ

The decision of which action to take is then based on the outcome of equation 3.1 using this information:

7789.2)37.0)(7.4)(43.0()63.0)(2.6)(52.0(),(
3699.2)71.0)(7.4)(43.0()29.0)(2.6)(52.0(),(

2

1

=+=Π
=+=Π

as
as

Based on these calculations, the agent would select a2. The q-vector is then updated using equation 2.6. For

this example, let α=0.1 and δt=0.85. The q-vector updates are then

72295.4)27.0)(85.0)(1.0(7.4)(
25355.6)63.0)(85.0)(1.0(2.6)(

=+=
=+=

Lq
Hq

The π-vector is updated using equations 3.6, 3.5 and 3.4 as follows:

4867.0
12

5.0),37.0)(43.0()63.0)(52.0(min =⎟
⎠
⎞

⎜
⎝
⎛

−
+=saδ

Since the action taken was the best possible action, Δsa is updated as

4561.0)71.0)(43.0()29.0)(52.0(=+=Δ sa

 32

And the policy vector itself is updated as

5144.0)37.0(
2

4561.043.0)(

6637.0)63.0(
2

4561.052.0)(

=⎥⎦
⎤

⎢⎣
⎡+←

=⎥⎦
⎤

⎢⎣
⎡+←

L

H

π

π

After applying a Boltzmann distribution to ensure equation to ensure equation 3.3 holds true, the policy

vector values are

4411.0)(
5692.0)(

=
=

L
H

π
π

 This same procedure applies regardless of the size of the policy and q vectors or the number of

possible actions. In the case of WoLF or PD-WoLF, the procedure is the same with some additional

calculations as described in sections 3.2 and 3.3.

 3.2 Combining WoLF-PHC and Fuzzy State Aggregation

 Unlike the standard PHC algorithm, the WoLF-PHC and PDWoLF-PHC both utilize a dynamic

learning rate to increase the speed of convergence over the standard PHC. The heart of this method is the

quick learning when losing, and cautious learning when winning. Ideally the learner will adapt quickly

when it is doing worse than expected. When it is doing better than expected it should be more cautious

since the opponent(s) may change their strategy. The key to this is finding a way to determine if the agent

is winning or losing [6]. Comparing the agent’s current policy with an estimated average policy is one way

of doing this.

 In this application the WoLF-PHC algorithm uses an additional vector to estimate the average policy

value. The average policy vector is initialized like the π-vector:

AK
labelsfuzzyofk #)(←π (3.8)

This vector is updated by

⎟
⎠
⎞

⎜
⎝
⎛ −

+←∀ ∈ C
kkkkKk
)()()()(ππππ (3.9)

 33

where C is a counting function used to track how many times the elements representing a state have been

updated. In this implementation all state elements for the selected action are updated simultaneously, so C

is simply the number of times the algorithm has looped.

 The delta selection for determining the learning rate in WoLF is then calculated as follows:

⎪⎩

⎪
⎨

⎧
>

= ∑ ∑∑∑
= = ==

otherwise

askqkaskqkif

l

K

k

K

k

A

a
kk

A

a
w

δ

μπμπδ
δ 1 1 11

),()()(),()()(
 (3.10)

where δl > δw and both fall within the range (0,1]. This value for δ is used to calculate Δsa as described in

equation (3.4) and is derived from the δ calculation of WoLF in equation (3.10).

 3.3 Applying PDWoLF to the FSA

 The PDWoLF-PHC also uses additional values to change the learning rate. Rather than using an

average policy table (or vector), PDWoLF uses the change in policy from the previous time step Δ(s,a)

with the change in policy from the current time step Δsa. These are initialized as

0),(←Δ as and (3.11) 0),(2 ←Δ as

Where ∆ and ∆2 are changing rates within the policy and are estimates of the slopes of the decision space.

These are respectively updated for the selected action as

.),(),(

),(),(),(

1

1

2

⎟
⎠

⎞
⎜
⎝

⎛ Δ
←Δ

Δ−⎟
⎠

⎞
⎜
⎝

⎛ Δ
←Δ

∑

∑

=

=

as
K

as

asas
K

as

k

K

k

sa

k

K

k

sa

μ

μ
 (3.12)

The delta selection then becomes

.
0),(),(2

⎩
⎨
⎧ <ΔΔ

=
otherwise

asasif

l

w

δ
δ

δ (3.13)

 3.4 The Tile World Experimental Domain

 The original Tile World introduced by Pollack and Ringuette [10] is a chessboard-like grid on

which there are agents, tiles, obstacles, and holes. The agent can move up, down, left, or right, one cell at a

 34

time. A tile is a unit square which slides when pushed by the agent, an entire row of tiles can be pushed by

the agent. An obstacle is a grid cell or group of cells which are immovable. A hole is a cell or group of grid

cells, each of which can be “filled in" by a tile when the tile is moved on top of the hole cell; the tile

disappear and the size of the hole cell diminishes If a hole becomes completely filled, the agent gets points

for filling it, and the hole disappears. The agent knows ahead of time how valuable the hole is; its overall

goal is to get as many points as possible by filling in holes.

 A Tileworld simulation takes place dynamically: it begins in a state which is randomly generated

by the simulator according to a set of parameters, and changes continually over time. Objects (holes, tiles,

and obstacles) appear and disappear at rates determined by parameters set by the experimenter, while at the

same time the agent moves around and pushes tiles into holes.

 The version of Tileworld implemented in this research is designed as a test-bed for machine learning

methods that are then transitioned to the very stochastic world of robot soccer. The intent is to approximate

the conditions under which a soccer player decides what to do with the ball when he has possession of it; to

whom should he pass it? Should he dribble it, and if so in which direction? Should he shoot for a goal?

These are the questions a human soccer player must answer instantaneously as must the soccer playing

agent in RoboCup. The simplified Tileworld domain for these experiments is based on the modified

Tileworld domain used by Berenji and Vengerov [4, 5]. The simplified Tileworld consists of agents,

reward spikes, and deformations. The agent must select which reward to pursue while avoiding the penalty

deformations that move about the board. Like the original Tileworld, the reward spikes and penalty

deformations have random, but finite life spans, but the agent gathers the reward by reaching the hole

rather than pushing a tile into it. The agent also has the option of moving in one of eight directions as

opposed to four in the original Tileworld. Figure 3.1 provides a conceptual picture of the modified

Tileworld domain.

 35

Figure 3.2: Conceptual Image of the Simplified Tileworld Domain

 The simplified Tileworld implementation consists of a 20 x 20 grid world containing five reward

opportunities and five deformations. The reward opportunities each have random value of 20 to 100 points

and a random life span of 5 to 15 time steps. Anytime the agent reaches a reward or the reward expires, it

disappears from the domain and another one is generated elsewhere on the board. Agent can move 1 step

each time step.

 Each deformation has a random penalty value of -5 to -20 points and, unlike the rewards, these

deformations occasionally drift. At each time step each deformation has a 10% chance of moving one

square in a random direction. Each deformation is also the center of a potential field that radiates out based

on the following equation:

()
.

1 2+
=

d
vP (3.14)

 36

Where v is the value of the deformation and d is the distance from the deformation. The cost of each square

in the domain is the sum of the effects of each potential field at that point. The environment is fully

observable in that the agent knows the location and value of each reward at all times as well as the location

and effect of the deformations.

 Each state in the domain is represented by four state variables:

1. Distance to the reward

2. Value of the reward

3. Estimated life expectancy of the reward

4. Roughness of path to the reward.

 The distance to the reward is calculated simply using the Pythagorean Theorem. The value of each

reward is randomly determined at the time it is generated. The estimated life expectancy of a reward (L) is

calculated by

L=m-t(r) (3.15)

where m is the mean life span (m=10 in this example) and t(r) is the number of time steps that reward r has

existed. The roughness of the path to the reward is calculated by constructing a rectangle with the agent

and the reward at opposite corners. The roughness is the average cost of all the squares in that rectangle.

 At each time step the agent must decide which of the reward opportunities to pursue. This decision is

based on the state variables described above.

 Once the decision is made, the agent moves one square towards that opportunity, the policy is updated

and the process repeats.

 Because the agent can move in any of eight directions (orthogonally or diagonally) there are always

three contiguous squares that the agent can choose from to move towards the selected reward. At each time

step the agent simply uses the square with the lowest cost.

 With each step, the agent garners a negative reward equivalent to the cost of the square it moves to.

The agent only receives a positive reward upon reaching a reward opportunity before it expires.

 The value of each of the state variables is described by the three fuzzy labels (Small, Medium and

Large). The shapes and specific values of these fuzzy labels are shown in figure 3.3.

 37

1

0

10 5 15

S M L

M
em

be
rs

hi
p

V
al

ue

Distance to Reward Labels

1

0

60 40 80

S M L

M
em

be
rs

hi
p

V
al

ue

Value of Reward Labels

1

0

2 -2 6

S M L

M
em

be
rs

hi
p

V
al

ue

Life Expectancy of Reward Labels

1

0

-5 -7 -3

S M L

M
em

be
rs

hi
p

V
al

ue

Roughness of Path Labels

Figure 3.3: Fuzzy Labels Used by the Agent

 For each of the state variables, the fuzzy labels are assigned so that they evenly divide the range of

possible values for the variable. The degree to which the agent is in one of the fuzzy states is the mean of

the degrees to which all the state variables belong to the corresponding labels in the fuzzy state. In this

experiment there are four state variables and three fuzzy labels resulting in 81 (34) total fuzzy states. For

comparison purposes, without fuzzy state aggregation, this same domain would have 210 possible distance

values, 80 possible reward values, 15 different life expectancy values and at least 1000 different roughness

values resulting in 2.52x109 possible states. By limiting the state variable values to only integer values

(which is not the case in our experiment) this number could be reduced to just over 320,000 states.

 At the beginning of each experiment the Q-values are all set to 20. This number is selected because it

is comparable to the maximum Q-values found at the end of the experiment and starting with this value

 38

results in some natural exploration in the earliest stages of learning. Because the entire q(k) vector and π(k)

vector are updated at each time step, learning occurs very quickly and no dedicated exploration is required.

 3.5 Proposed Design Plan for a RoboCup Team Architecture

 The RoboCup domain is a simulated soccer game played by two teams of 11 players each. To the

extent possible, all of the rules and strategies of a real soccer game are applicable to RoboCup games.

Figure 3.4 shows a screenshot of a RoboCup soccer game in progress.

Figure 3.4: Screenshot of RoboCup Game in Play.

 3.5.1 Multi-Agent Architecture

 The overarching design for the multi-agent system is a three-level design, composed of a planner,

a deliberator and an execution layer with no outside inputs to the control program during play (no Coach).

 39

 At the highest level, the planner uses current state information to project out the best course of

action to achieve the goal (such as scoring a goal). Since this is such a dynamic environment, and since the

program must be fully distributed across the agents, the deliberative creation of plays must be efficient and

comparatively simple, but more than just “find the next best step”. This may also include the use of pre-

determined plays and locker room agreements as on-field communications is minimal.

 In any case it is necessary for the agents to assume roles in the different formations and plays.

This is accomplished using a fuzzy logic based function that each agent calculates for itself and then

coordinate with other agents. As a notional example, in order for three agents to coordinate attacking the

ball (without running into each other) each calculates the value of their own position using their distance

and orientation to the ball and goal as inputs to the fuzzy logic unit. Depending on which is most efficient

either each agent makes the same calculation for the other two, or they simply communicate their results

with each other. In either case the agent with the highest position value leads the attack on the ball and the

others assume supporting roles in accordance with the play.

 As this is a decentralized control design, each individual agent (with exception of the goalie)

independently runs the same program as described below.

 3.5.2 Single Agent Architecture

 This section describes the code actually implemented as part of the overall multi-agent

architecture described in section 3.5.1.

 The interactions with the simulator/server and the fundamental agent actions (e.g. kick, dribble,

move, collision avoidance) are based on the source code provided by Peter Stone of CMU. It is a portion of

the program used by CMU’s 2002 RoboCup team and is freely distributed for research/educational

purposes as United2002-source.

 The principle philosophy behind the single-agent architecture is to develop simple behaviors

which when combined results in the emergence of more complex behaviors. As the more complex

behaviors are better refined, attention is then focused on executing pre-planned plays as described in

Section X. The architecture is modular in design, as shown in figure 3.5, and consists of:

 40

• A deliberator which, at this point, simply selects between the possible behaviors.

• A behavior module which consists of a Fuzzy Logic Controller (FLC) for controlling the default

positioning behavior and calls the fuzzy PHC programs that each calculate its best estimated

reward based on the current state.

• A reinforcement learning module which updates the Q-value and policy vectors for the individual

agent during the course of play.

• An offline Weighted Strategy Sharing routine which runs after each game updates the Q-value

and policy vectors for each agent based on the values provided from all other agents. The data is

saved and made available for the beginning of the next game

• The fundamental actions module constituted by the CMU software described previously in this

section.

Planner

Deliberator

Ball Possessor
Behaviors

Other
Behaviors

Basic Actions (CMU)

WSS

Reinforcement
Learning

Update

State Data

Changes

Teammate
Data

Figure 3.5: Architecture for RoboCup Agents

 The RoboCup simulator allows each agent/team member to submit a command at each 0.1 sec

time increment. This means in any given second of play, each team could be submitting up to 110

commands to the simulator. The challenge then is not only to select the best action for each agent, but to do

so as quickly as possible. As part of the “realism” of the game, each agent has a limited range of vision and

a player may not be able to identify the location of the ball or a particular player if the player’s view is

 41

obstructed or the object in question is too far away. This is useful because decisions are based only on

those pieces of information which the agent has ready access. For example, when deciding which teammate

to pass the ball to, the agent should not even consider those teammates outside his visual range or to whom

the agent does not have an unobstructed view. This allows the agent to limit the number of calculations

made at each decision point.

 At each iteration of the program the agent finds or estimates the position of the ball in Cartesian

coordinates on the field. Based on the agent’s relative position to the ball and which team is in possession

of the ball, the agent either acts on the ball or moves to a position determined by the positioning fuzzy logic

controller (FLC). For this positioning, the FLC uses as inputs the X position of the ball on the field and the

agent’s X position on the field as shown in figure 3.6.

Near our
Goal

Mid-Field Near their
Goal

Near our
Goal

More
Defensive

Less
Defensive

Neutral
Posture

Mid-Field Less
Defensive

Neutral
Posture

Less
Offensive

Near their
Goal

Neutral
Posture

Less
Offensive

More
Offensive

Ball Position

 A
ge

nt
 P

os
iti

on

Figure 3.6: Position FLC Output

 Each agent has a zone of responsibility on the field. The position determined by the FLC is

calculated and executed in reference to the center point of the agent’s zone of responsibility. As an

example, one agent has responsibility for the upper part of the field closest to its own goal. When the ball is

on the other end of the field and there are no opponents in this zone, the position FLC directs the agent to a

point on the forward part of its zone of responsibility. As the ball moves towards the agent’s side of the

field, the agent falls back towards the center of its zone. If an opponent moves into the agent’s zone the

agent moves to cover that opponent. As the ball approaches the agent’s goal the agent moves back to a

more defensive position closer to its own goal. By using a Fuzzy Logic Controller in this application, the

agent’s response to the ball and opponent players is smoother and more easily adjusted.

 42

 If the agent determines it is in a position to go after the ball (closest team player to the ball) the

positioning decision described previously is set aside to pursue the ball. Once the ball is close enough for

the agent to kick it, the agent must make other decisions; shoot for a goal, pass the ball or dribble it. This

decision is based on which of these actions has the highest expected reward for the current state of the

game. The expected reward for each action is calculated in the same manner as in the proof-of-concept Tile

World experiment discussed earlier.

 Passing the Ball - To calculate the expected reward for passing the ball, the agent with the ball

considers each teammate (except the goalie) that is visible and to which the agent has a clear line of sight.

For each teammate, the state variables the agent uses are

• How many opponents are around the teammate

• How far away is the teammate

• How much closer to, or further from, the opponent’s goal is that teammate

The number of Opponents around the teammate is calculated by projecting a 45o cone from the agent to the

teammate and counting the number of opponent players located inside that cone as illustrated in figure 3.7.

Teammate

Agent

Opponent

Opponent

45o

Figure 3.7: Cone used to count opponents near a teammate

 The distance to the teammate is a simple calculation using the Pythagorean Theorem and the

relative closeness to the opponent goal is the difference between the teammate’s X position and the agent’s

X position.

 43

 As in the tile world experiment, fuzzy state aggregation constrains the number of states in the

domain. There are three fuzzy labels (sets) for each state variable resulting in 33 or 27 total fuzzy states

used for passing the ball. Since the RoboCup domain is continuous, the actual number of states is

incalculable. The fuzzy labels used for each state variable are shown in figure 3.8.

1

0

2 0 4

S M L

M
em

be
rs

hi
p

V
al

ue

Number of Oppnents near Teammate

1

0

10 5 15

S M L

M
em

be
rs

hi
p

V
al

ue

Distance to Teammate

1

0

0 -15 15

S M L

M
em

be
rs

hi
p

V
al

ue

Teammate’s Relative Distance to Goal

Figure 3.8: Fuzzy Labels used for Passing

 There is a small reward for completing a forward pass (up to 20 points); while the cost of

completing a backwards pass is 5 to -15 points. The penalty for having a pass intercepted is -30 points.

This reward structure encourages forward passes, mildly discourages backward passes and strongly

discourages passing to a teammate in close proximity to opponents, as they likely lead to the ball being

intercepted.

 The agent first calculates the expected value for passing the ball to each teammate based on the

reward values stored in the q-vector and probability values stored in the current policy vector (see equation

 44

3.1). The teammate with the highest expected reward, based on that calculation is selected to receive the

pass.

 Dribble the Ball - In calculating the expected reward of dribbling the ball, the agent considers

dribbling in each of eight different directions. The eight directions are 45o apart in a complete circle around

the agent, beginning with the -Y direction. For each possible direction the agent uses two state variables

• Number of opponents in that direction

• Degrees away from a direct path to the goal

 The number of opponents in the direction is calculated by projecting a 45o cone to a point 10

meters away in that direction and counting the opponents within that cone. The second state variable value

is simply the difference between the direction in question and the angle to the goal as shown in figure 3.9.

Agent

Opponent

Opponent

Path to goal Agent chooses
this direction

Figure 3.9: Agent decides direction to dribble

Using fuzzy state aggregation with three fuzzy labels and these two state variables the domain consists of

nine (32) fuzzy states for dribbling the ball.

 The learning feedback for the decision process consists of the agent receiving a reward

proportional to the progress towards the goal resulting from that decision. Dribbling directly towards the

goal is worth 4.5 points down to 0 for dribbling at an angle perpendicular to the goal. Dribbling away from

the goal results in a proportionally negative cost (0 to -4.5 points) and losing possession of the ball costs

the agent 30 points. This reinforcement method encourages dribbling towards the goal, discourages

dribbling away from it and strongly discourages dribbling towards nearby opponents. The fuzzy labels

used for dribbling are shown in figure 3.10.

 45

1

0

2 0 4

S M L

M
em

be
rs

hi
p

V
al

ue

Number of Oppnents in Cone

1

0

90 45 135

S M L

M
em

be
rs

hi
p

V
al

ue

Angle Away from Goal

Figure 3.10: Fuzzy Labels used for Dribbling

 The agent calculates the expected value for dribbling the ball in each direction based on the

reward values stored in the q-vector and probability values stored in the current policy vector using

equation 3.1. The direction with the highest expected reward, based on that calculation is the direction the

agent selects.

 Shots on Goal - To calculate the expected reward of shooting the ball, the agent considers shooting

at each of seven different points in the goal. The seven points are all along the back of goal, starting at dead

center (55, 0) and working out 2 meters at a time. For each possible target point the agent uses three state

variables

• Number of opponents along the path to the target point

• Distance between the target point and the opposing goalie

• Distance to that point

 The number of opponents near the path to the target point is calculated by projecting a 15o cone

from the agent to the target point and counting the number of opponent players located inside that cone, as

shown in figure 3.11. The distance between the goalie and the target point is simply the difference in Y

value of the goalie’s location compared to the Y value of the target point. The distance to the target point is

a simple calculation using the Pythagorean Theorem.

 46

Agent

Opponent

Opposing
Goalie

15o

Opponent

Figure 3.11: Agent Considers Point (55, -6) for Goal Shot

 Using fuzzy state aggregation with three fuzzy labels and these two state variables the domain is

constrained to 27 (33) fuzzy states for shots on goal. The fuzzy labels used for shooting are shown in figure

3.12.

1

0

2 0 4

S M L

M
em

be
rs

hi
p

V
al

ue

Number of Oppnents near Path

1

0

105 15

S M L

M
em

be
rs

hi
p

V
al

ue

Distance to Goal

1

0

60 12

S M L

M
em

be
rs

hi
p

V
al

ue

Goalie’s Distance to Point

Figure 3.12: Fuzzy Labels used for Shooting

 47

 To reinforce the decision, the agent receives a high reward for scoring a goal (75 points) and a

penalty of -30 points if the opposing team takes possession of the ball. This reinforcement method

encourages shooting towards the points in the goal furthest away from the goalie and strongly discourages

shooting close to nearby opponents. It also encourages shooting from closer in than further out.

 The agent calculates the expected value for shooting the ball to each of the possible target point

based on the reward values stored in the q-vector and probability values stored in the current policy vector

(equation 3.1). The target point with the highest expected reward, based on that calculation is the point at

which the agent shoots the ball.

 Every time the agent has possession of the ball and must decide which action to take, the agent

compares the highest expected reward for each of the three possible actions and selects the one with the

highest overall expected reward. The decision and control flow is shown in Figure 3.13.

N

Yes

Is the ball kickable?

Am I closest
to the ball?

Select action
with highest

expected
reward

position
FLC

Fuzzy
Pass

Fuzzy
Dribble

Yes

N

go_to_ball

Fuzzy
Shoot

Yes

Does opponent
have the ball?

No

Figure 3.13: Decision and Control Flow for Agent Architecture

 48

 3.6 Weighted Strategy Sharing

 Because each agent runs this algorithm independently of its teammates, each agent learns a

different policy based on its individual experience. Weighted Strategy Sharing (WSS) allows the agents to

benefit from their teammates’ experiences develop more refined policies. The communication available

between agents during game play is limited in range, constrained in its content size and not completely

reliable. For all of these reasons, and the fact that RoboCup rules prohibit any inter-agent communication

outside the simulator, the WSS occurs off-line at the end of each game.

 At the conclusion of the game, each agent stores their respective Q vector and total reward for

each of the three activities using reinforcement learning (passing, dribbling and shooting). The WSS

algorithm accesses these files and creates a single updated vector using the “Learning From All” [8] weight

assignment mechanism in which agent j is weighted by agent i using the equation:

∑
=

= n

k
k

j
ji

e

e
W

1

 (3.16)

Where n is the total number of agents and ek is the amount of the expertness of agent k. The individual

expertness value for each agent is calculated using the absolute value of the algebraic sum of the

reinforcement signals (ri).

∑= ii re (3.17)

The updated Q vector is then calculated as follows:

∑
=

←
n

j

old
jij

new
i QWQ

1
)*((3.18)

This new single Q-vector is then used as the initial vector for the next game.

 3.7 Summary

 This chapter provides the detailed implementations of fuzzy state aggregation and ties that in with

Q-learning. The next section expanded the Q-learning to include three different versions of policy hill

climbing; standard PHC, WoLF and PD-WoLF. These methods are implemented in a variation of

Tileworld which was described in detail. The experiment progressed to a multi-agent implementation in the

 49

RoboCup simulator where weighted strategy sharing is also included. The results of these experiments are

described in chapter 4.

 50

IV. Experimental Results

 This chapter describes the results of the experiments presented in Chapter 3. Beginning with a

proof-of-concept Tileworld experiment, performance is measured by the average learning reinforcement

points earned at each time step. The learning performance of a Q-learning agent is compared to that of a

policy hill climbing (PHC) agent, both of which are using fuzzy state aggregation. This is followed by a

side-by-side comparison of the three different policy hill climbing variants.

 The second part of the chapter presents the results of similar experiments conducted in the

RoboCup domain. The Q-learning algorithm using FSA is compared to the PHC with FSA algorithm. The

teams using these algorithms play against a reactive “Dummy” team and against a 2004 RoboCup

tournament quarter-finalist team, TokyoTech 2004. Additionally, the learning performance of the PHC

with FSA team against the Dummy team is evaluated both with and without weighted strategy sharing,

 4.1 Tileworld Experiment Results

 Initial experiments consisted of running multiple games of 200 time-steps each. The q and π-vectors

were reinitialized at the beginning of each game and the same number of games was run for each

algorithm. In order to obtain useful results, it is necessary to perform a large number of games (1000-2000)

and average the results. The stochastic nature of the domain prevents finding meaningful results from a

small number of games.

 The parameter settings (see equation 2.1) are α=0.1, γ=0.3, and δ=0.5. Experience shows that the

ratio of γ/α=3 works well in most situations. Increasing the value of α only results in a larger magnitude of

Q values, but with no corresponding increase in performance. Figure 4.1 shows an evaluation of the

learning ability of an on-policy Q-learning algorithm using fuzzy state aggregation compared to the basic

off-policy hill climbing algorithm using fuzzy state aggregation.

 51

Figure 4.1: Results of PHC with FSA vs. Q-Learning with FSA

 The plots in Figure 4.1 show the average number of reinforcement points gathered every 10 time steps

in a 200 time step game. Experience shows no significant learning occurs in this domain after 200 steps.

These results are averaged over 2000 games. Not surprisingly, the policy hill climbing algorithm performs

better (learns a better policy) than the Q-learning algorithm even though both are using the exact same

fuzzy state aggregation method.

 Figure 4.2 shows a side-by-side comparison of the evaluated learning ability of the PHC, WoLF, and

PD-WoLF algorithms. These three algorithms are compared to determine if the variable learning rate in

WoLF and PD-WoLF improves performance. For these tests, the run time of each game is shortened to just

200 time steps from the initial testing as there is not a significant amount of learning after this point. The

following parameter settings are used for these algorithms: α=0.1, γ=0.3, δ=0.5, δw=0.2, and δl=0.8.

These values were chosen for δl and δw based on Bowling and Veloso’s [6] finding that δl/δw=4 is a good

 52

ratio for using WoLF in stochastic environments. As in the previous experiment, all three algorithms used

the same FSA method.

Figure 4.2: Results of PHC, WoLF and PDWoLF

 The experiments run indicate that all three PHC algorithms consistently provide similar results, even

after varying the values of the parameter settings. The reason for this is that generalizing the states using a

fuzzy state approximation vector (which reduces the Q and π table dimensionality) smoothes the landscape

of the policy table to an extent that the use of the variable learning rate has little or no effect. The variable

learning rate used with WoLF and PD-WoLF requires a more chaotic policy landscape to produce

improved results over the standard PHC.

 Figure 4.3 shows the relatively smooth surface of the search area generated both by the Q values and

the policy values under this implementation of fuzzy state aggregation.

 53

Figure 4.3: Q-vector and Policy Vector Plotted against the three Fuzzy Labels

 In the interest of determining if this was indeed the case, the state space of the Tileworld domain is

increased by using five fuzzy labels rather than three. This expands the number of fuzzy states to 625 (54).

A close look at the surface using five fuzzy sets, shown in figure 4.4, indicates that while the search

surface is slightly more contoured, the FSA is still smoothing the surface to the point that neither WoLF

nor PD-WoLF has an advantage over the standard PHC algorithm.

 54

Figure 4.4: Q-vector and Policy Vector Plotted against the Five Fuzzy Labels

 Based on the results of this Tileworld experiment, there is sufficient evidence to indicate the PHC with

FSA will also perform well in the multi-agent domain of RoboCup. The WoLF and PD-WoLF are not

tested in the RoboCup experiment, since the fuzzy state aggregation so smoothes the search surface that the

more powerful WoLF and PD-WoLF algorithms are no more effective than the PHC algorithm. The

problem would likely be exacerbated by the fact that there are fewer fuzzy states used in each of the

learned activities in RoboCup than are used in Tileworld.

 4.2 RoboCup Experiment Results

 To obtain a quick snapshot of how well the algorithm works in the RoboCup soccer domain, the team

using FSA and a PHC play against a “Dummy” team. The Dummy team is simply an earlier version of the

experimental team which uses conventional if–else statements in selecting the action taken.

 55

 From the perspective of the learning agent, opponent players are treated as part of the environment.

The Dummy team generally performs poorly, but provides a good stochastic environment in which to

measure the performance of the experimental team. As in the Tileworld experiments, the parameter settings

are; α=0.1, γ=0.3, δ=0.5. Figure 4.4 shows the evaluation of the learning ability of the experimental team

using just Q-learning with FSA, and using PHC with FSA against the Dummy team.

Figure 4.5: Q-learning with FSA and PHC with FSA Performance vs. the Dummy Team

 As in the Tileworld experiment, these results are the average reinforcement points collected by the

team each time the agents had control of the ball. Each curve is a collective average over five runs of 10

games each. At the beginning of each run of 10 games the Q-vector and policy vector were reset to their

initialization values. In between each game within the run, each agent simply keeps their own q-vector

from the end of the previous game. The average lines plotted through the data points are based on the

average value of the team’s reward points at that time. To ease visual comparison between the lines, they

were smoothed using a bi-Laplace curve smoothing algorithm (7 iterations).

 56

 Consistent with results from the Tileworld experiment, the PHC algorithm demonstrates a better

learning ability over the Q-learning algorithm, despite the fact that both algorithms use the exact same FSA

method.

 For comparison purposes the experimental team also plays against a very accomplished team,

TokyoTech.

 The TokyoTech team plays well and provides a more challenging environment for the experimental

team to learn in. Figure 4.5 shows the reinforcement learning points garnered by the PHC team when

playing against the TokyoTech team as compared to playing against the Dummy team.

Figure 4.6: PHC with FSA Team Learning vs. TokyoTech Team and vs. Dummy Team

 It is not surprising that the PHC team accrues fewer reward points during a game when facing a

proficient team than it does against the Dummy team. Against a team that plays well, the agents have the

ball less often and frequently find the higher reward options are unavailable to them (dribbling or passing

backwards may be the only way to keep the ball). Additionally, the TokyoTech goalie is so good that the

 57

PHC team never scores a goal against them. This means the positive reinforcement for scoring a goal never

factors into the reinforcement for learning how to shoot at the goal.

 It should be noted that the goalie for Dummy team, Q-learning team, and PHC team are all identical. It

runs separate code from the learning agents and simply responds reactively to the presence of the ball. The

goalie for these experimental teams moves very slowly compared to the TokyoTech goalie and frequently

appears to ignore the ball when it comes close. As a result, game scores between the TokyoTech team and

the PHC team are usually in the area of 10 to 0 or 12 to 0. Against the Dummy team TokyoTech routinely

scores 20 unanswered goals in a 10 minute game. Adding improvements to the goalie would definitely

result in additional goals saved, as currently 80% of the shots taken on the goal score a point.

 4.2.1 Dissimilar Team Training

 The question of learning against one team then playing against another deserves investigation. In this

section there is an investigation of the learning performance of the experimental team (PHC w/FSA)

playing against the Dummy team after learning against the TokyoTech team. Those results are compared to

the results of the experimental team learning and playing against the Dummy team only.

 That section is followed by an experiment with how the PHC w/FSA team learns against TokyoTech

after learning against the Dummy team. These results are also compared to the results of the experimental

team learning and playing against the Dummy team only.

 For these experiments the data was gathered by averaging five runs of four games each. In the

dissimilar team training cases, the first two games of the four-game runs were played against one team (e.g.

the Dummy team), while the last two games of each four-game run were played against the other team (e.g.

TokyoTech).

 The plots in Figure 4.7 show the evaluated learning ability of the PHC w/FSA team learning against

TokyoTech and playing against the Dummy team.

 58

Figure 4.7: PHC with PHC Team Learns vs. TokyoTech and Dummy Team – Plays vs. Dummy Team.

 Despite learning more slowly against the better TokyoTech team, the experimental team still performs

well against the Dummy team. Any impact of learning against the harder team is compensated for early

into first game with the Dummy team.

 Figure 4.8 shows the evaluation of the experimental team’s learning against the Dummy team then

playing against the better TokyoTech team. This is compared to learning and playing against the Dummy

team only.

 59

Figure 4.8: PHC Team learns against Dummy team – Plays against Dummy team and TokyoTech.

 The results here are not unexpected. The PHC team accrues significantly fewer reinforcement learning

points when it is playing against the TokyoTech team.

 All of the experiments thus far have simply allowed the agents of the experimental team to maintain

and use their own policy and q vector from game to game within a run of games. The final experiments

investigate the impact allowing the agents to share information using weighted strategy sharing.

 4.2.2 Results using Weighted Strategy Sharing

 While the rate of learning in a single game is of interest, there is also value in demonstrating the effect

of maintaining the Q values learned previously for use in later games. Rather than starting each new game

“tabula rasa”, the agents each store the Q-vector from their last game and use that as the initial Q-vector for

the next game.

 60

 To further increase the rate at which the agents learn, weighted strategy sharing (WSS) is

implemented. This allows each agent to benefit from the experiences of its team mates. Ideally, WSS

would be implemented so the agents could share information while they played. The limited

communications channels available to the players in the RoboCup preclude this. Instead, WSS is

implemented at the end of the game to provide each agent with a new Q-vector for the next game based on

the inputs of the other team members.

 The results in Figure 4.9 are a comparison of the evaluated learning ability of the experimental team

with and without weighted strategy sharing.

Figure 4.9: PHC with FSA Games With and Without WSS.

 As anticipated, the experimental team shows an increased learning ability using WSS over the course

of these games.

 Clearly, the use of weighted strategy sharing increases the rate of learning over that of agents

independently learning at their own rate.

 61

 4.3 Summary

 The results presented here illustrate the benefit of off-policy learning (PHC) over the standard Q-

learning. The comparison between the various policy hill climbers implemented in Tileworld makes it clear

that the more powerful WoLF and PD-WoLF algorithms only produce improved results over the standard

PHC if the search surface is sufficiently contoured, a characteristic minimized by the application of fuzzy

state aggregation to the domain.

 The results of implementing FSA and PHC for multiple agents in RoboCup demonstrate the portability

of this method to other stochastic environments. The added benefit of weighted strategy sharing is also

readily visible.

 62

V. Conclusion and Future Work

 Reinforcement learning in a stochastic environment is at best complicated, even for a single learning

agent. Applying RL to a multi-agent system in such an environment simply compounds the difficulty. In

addition to the rapidly changing elements indigenous to the environment, the other agents themselves

become part of that environment and must be considered by each individual agent.

 Standard reinforcement learning techniques such as Q-learning can be effective in such an

environment unless the state space becomes too large. Even with a limited state space, on-policy learning

methods (such as Q-learning) usually don’t perform as well as off-policy learning methods such as policy

hill climbers.

 This chapter presents the research conclusions, significance, and recommended areas for future

research.

 5.1 The Research

 This research presents an unusual approach to a difficult problem. By applying Fuzzy State

Aggregation (FSA) to the environment, the state space is significantly constrained while still providing a

good representation of the environment to support learning. This work demonstrates the improvement of

combining FSA with each of three different PHC algorithms over standard Q-Learning. Both in terms of

speed to convergence and the convergence value itself. The resulting increase in performance clearly

shows the benefit of applying the off-policy hill climbing algorithm to the FSA in this highly stochastic

environment. Unlike the results of using the WoLF-PHC and PDWoLF-PHC algorithms in a crisp

environment, these two algorithms showed no improved performance over the common PHC algorithm.

 The application of this same combination to the RoboCup soccer simulator also shows results

consistent with those identified in the Tile world experiment. By constraining the state space and applying

the reinforcement learning to the three offensive behaviors (shooting, passing and dribbling) we

demonstrated the effectiveness of this method in a highly stochastic adversarial game setting. As a policy

 63

hill climber, this reinforcement learning method is not guaranteed to find the globally optimal solution. It

does, however, consistently find a good solution.

 While it is an interesting and entertaining pursuit, playing better robot soccer is not the only

application for this type of RL. A swarm of micro UAVs or UGVs could benefit greatly from this type of

on-the-fly decision making in response to rapidly changing environmental factors from avoiding threats to

re-routing communications to compensate for a team mate that has broken down or moved out of range.

 5.2 Future Work

 Areas of future expansion includes applying the combination of fast policy hill climbing with fuzzy

state aggregation to more complex domains in an effort to determine if the performance potential of the

different algorithms maps to the fuzzy set aggregation function approximation method. A Tileworld with

seven or nine fuzzy sets may provide a sufficiently contoured surface and result in the WoLF and PD-

WoLF algorithms learning more quickly than standard PHC.

 These is also potential benefit in learning the optimal fuzzy label values for each state variable as a

means of further improving performance. Rather than hard-coding the center points for the triangular fuzzy

sets, the agents can be programmed to learn and adjust those values to help bring performance closer to

optimal.

 In the soccer domain there is a great difference between learning well and playing well. In order to

develop a competitive team based on this research, further work must be done on ball handling and

extensive work is required to develop an effective goalie. Designing the agents to learn from, and

anticipate, opponent behavior would likely be an area of interest for machine learning researchers. Finally,

an over arching planner is required which will allow the agents to cooperate and create long term ‘plays’

and strategies required for an effective winning team.

 64

Bibliography

[1] R.S. Sutton and A.G. Barto. Reinforcement Learning: an Introduction, Cambridge, Mass, MIT Press,
1998.

[2] S. Lawrence, A.C. Tsoi, and A.D. Back. “Function Approximation with Neural Networks and Local
Methods: Bias, Variance and Smoothness”, In: P. Bartlett, A. Burkitt and R. Williamson (eds), Australian
Conference on Neural Networks, 16-21, Australian National University, Australian National University,
1996.

[3] S.P. Singh, T. Jaakkola, and M.I. Jordan. “Reinforcement Learning with Soft State Aggregation,” In
Advances in Neural Information Processing 7, 361-368, MIT Press, 1994.

[4] H.R. Berenji and D. Vengerov. “Cooperation and Coordination Between Fuzzy Reinforcement
Learning Agents in Continuous State Partially Observable Markov Decision Processes,” Proceedings of
1999 IEEE international Fuzzy Systems Conference, 621-627, Seoul, Korea, 1999.

[5] H.R. Berenji and D. Vengerov. “Advantages of Cooperation Between Reinforcement Learning Agents
in Difficult Stochastic Problems,” Proceedings of the 9th IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE '00), 871-876, San Antonio, Tx , 2000.

[6] M. Bowling and M. Veloso. “Multiagent Learning Using a Variable Learning Rate,” Artificial
Intelligence, 136, no. 2, 215–250, 2002.

[7] B. Banjeree and J. Peng. “Adaptive Policy Gradient in Multiagent Learning,” AAMAS ’03 International
joint conference on Autonomous Agent and Multi- Agent Systems, Melbourne, Australia, 2003.

[8] M.N. Ahmadabadi, M. Asadpur, S.H. Khodaabakhsh and E.Nakano. “Expertness Measuring in
Cooperative Learning,” Preceedings of IEEE/RSJ International Conference of Intelligent and Robot
Systems (IROS), 2000.

[9] K. Cousin & G.L. Peterson. “Cooperative Reinforcement Learning Using an Expert-Measuring
Weighted Strategy with WoLF,” Proceeding 481, Artificial Intelligence and Soft Computing - 2005

[10] M.E. Pollack and M. Ringuette. “Introducing the Tileworld: Experimentally Evaluating Agent
Architectures,” Eighth National Conference on Artificial Intelligence, Menlo Park, CA, 1990.

[11] C.J.C.H. Watkins. Learning From Delayed Rewards, Ph.D. dissertation, Cambridge University,
Cambridge, United Kingdom, 1989.

[12] H.R. Berenji and D.A. Vengerov, “Cooperation and Coordination Between Fuzzy Reinforcement
Learning Agents in Continuous State Partially Observable Markov Decision Processes,” Proceedings of
the 8th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’99), 2000.

[13] H. R. Berenji and D. A. Vengerov, “Advantages of cooperation between reinforcement learning
agents in difficult stochastic problems,” in Proceedings of the 9th IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE ’00), 2000.

[14] H. R. Berenji and D.A. Vengerov, Generalized Markov Decision Processes: Dynamic-Programming
and Reinforcement-Learning Algorithms, Technical Report IIS-00-10, Intelligent Inference Systems Corp.,
Sunnyvale, CA, October 2000.

 65

[15] I. Gültekin and A. Arslan, “Modular-Fuzzy Cooperative Algorithm for Multi-Agent Systems,”
Advances in Information Systems, Second International Conference, ADVIS 2002, Izmir, Turkey, October
23-25, 2002,

[16] A. Kilic and A. Arslan. “Minimax Fuzzy Q-learning in Cooperative Multi-Agent Systems,” Advances
in Information Systems, Second International Conference, ADVIS 2002, Izmir, Turkey, October 23-25,
2002.

[17] M. L. Littman. “Markov Games as a Framework for Multiagent Learning,” Proceedings of the
Eleventh International Conference on Machine Learning, 157–163, San Francisco, California, 1994.

[18] T. Kawarabayashi, J. Nishino, T. Morishita, T. Kubo, H. Shimora, M. Mashimo, K. Hiroshima & H.
Ogura. “Zeng99 in RoboCup-99,” RoboCup-99 Team Description: Simulation League, 1999

[19] J. Rasmussen. “Skills, Rules, and Knowledge: Signals, Signs and Symbols, and Other Distinctions in
Human Performance Models,” IEEE Transactions on Systems, Man and Cybernetics. 13, No. 3, 257-266,
1983.

[20] E. Agirre, J. C. Gámez & A. González. “A Multi-agent System Based on Fuzzy Logic Applied to
RoboCup’s Environment,” Mathware & Soft Computing 8, 153-178, 2001

[21] A. Bonarini, F. Marchese, M. Matteucci, M. Restelli, and D. Sorrenti. “Planning and Reaction in
Milan Robocup Team,” Proceedings of the International RoboCup Symposium 2003

[22] H.L. Sng, G. S. Gupta and C.H. Messom. “Strategy for Collaboration in Robot Soccer,” The First
IEEE International Workshop on Electronic Design, Test and Applications (DELTA '02) 347, 2002.

[23] D. Gu and H. Hu. “Reinforcement Learning of Fuzzy Logic Controllers for Quadruped Walking
Robots,” Proceedings of the 15th IFAC World Congress, Barcelona, Spain, July 21-26, 2002.

[24] D. Gu, H. Hu & L. Spacek. “Learning Fuzzy Logic Controller for Reactive Robot Behaviours,”
International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, July 20-24,
2003.

[25] D. Gu and H. Hu. “Accuracy Based Fuzzy Q-Learning for Robot Behaviours,” Proceedings of IEEE
International Conference on Fuzzy Systems, Budapest, Hungary, 25-29 July 2004

[26] D. Gu and H. Hu. “Fuzzy Multi-Agent Cooperative Q-learning,” Proceedings of IEEE International
Conference on Information Acquisition, 193-197, Hong Kong, China, 27 June - 3 July, 2005.

[27] T. Nakashima, M. Udo, and H. Ishibuchi. “Acquiring the Positioning Skill in a Soccer Game using a
Fuzzy Q-Learning,” Proceedings of 2003 IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 1488-1491, July 16-20, Kobe, Japan, 2003.

[28] J. Ammerlaan & D. Wright. “Adaptive Cooperative Fuzzy Logic Controller,” Computer Science 2004
Proceedings of the ACS Conferences in Research and Practice in Information Technology (CRPIT) 26,
2004.

[29] L.A. Zadeh. “Fuzzy Sets,” Journal of Information and Control 8, 338-353, 1965.

[30] S.N. Pant and K. E. Holbert. Fuzzy Logic in Decision Making and Signal Processing,
http://ceaspub.eas.asu.edu/PowerZone/FuzzyLogic/chapter%202/frame2.htm, March 2004.

 66

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/delta/&toc=comp/proceedings/delta/2002/1453/00/1453toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/delta/&toc=comp/proceedings/delta/2002/1453/00/1453toc.xml

[31] T.F. Bersano-Begey, P. G. Kenny and E.H. Durfee. “Agent Teamwork, Adaptive Learning and
Adversarial Planning in RoboCup using a PRS Architecture,” RoboCup-97: The First Robot World Cup
Soccer Games and Conferences. Springer Verlag, Heidelberg, Germany, 1998.

[32] P. Stone, M. Veloso and P. Riley. “The CMUnited-98: RoboCup-98 Simulator World Champion
Team,” In RoboCup-97: Robot Soccer World Cup I, 389–398. Hiroaki Kitano, editor, Springer Verlag,
Berlin, 1998.

[33] J.L. de la Rosa, A. Oller, J. Vehi, and J. Puyol. ”Soccer Team Based on Agent-Oriented
Programming,” Robotics and Autonomous Systems, 21(2):161–176, October 1997.

[34] D. Parks. Agent Oriented Programming Languages: a Practical Evaluation,
www.cs.berkeley.edu/~davidp/cs263/, December, 1997.

[35] A. Tews and G. Wyeth. “Multi-Robot Coordination in the Robot Soccer Environment,” Proceedings
of the Australian Conference on Robotics and Automation (ACRA '99), 90-95, Brisbane, Australia, March
30 - April 1, 1999.

[36] A. Drogoul and A. Collinot. “Applying an Agent-Oriented Methodology to the Design of Artificial
Organizations: A Case Study in Robotic Soccer,” Autonomous Agents and Multi-Agent Systems, 1(1):113–
129, 1998.

[37] A. Drogoul, MICROB, http://www-poleia.lip6.fr/~drogoul/projects/microb/microb.en.html

[38] A. Collinot, A. Drogoul and P. Benhamou. “Agent Oriented Design of a Soccer Robot Team,”
Proceedings of ICMAS’96.

[39] I. Noda. “Team GAMMA: Agent Programming on Gaea,” RoboCup-97: Robot Soccer World Cup I,
500–507, Hiroaki Kitano, editor, Springer Verlag, Berlin, 1998.

[40] P. Scerri. “A Multi-Layered Behavior Based System for Controlling RoboCup Agents,”RoboCup-97:
Robot Soccer World Cup I, Hiroaki Kitano, editor, 467–474. Springer Verlag, Berlin, 1998.

[41] G. Weiß. “Distributed Reinforcement Learning,” Robotics and Autonomous Systems, 15:135–142,
1995.

[42] M.J. Huber & E.H. Durfee. „Deciding When to Commit to Action During Observation-Based
Coordination,” Proceedings of the First International Conference on Multi-Agent Systems, 163–170,
Menlo Park, California, June 1995.

[43] P. Stone & M. Veloso. “A Layered Approach to Learning Client Behaviors in the RoboCup Soccer
Server,” Applied Artificial Intelligence, 12:165–188, 1998.

[44] P. Stone. Layered Learning in Multiagent Systems. Ph.D. dissertation, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, 1998. Technical Report CMU-CS-98187.

[45] P. Stone & M. Veloso. “Team Partitioned, Opaque Transition Reinforcement Learning,” Proceedings
of the Second International Conference on Autonomous Agents, 206–212, 1999.

[46] P. Stone & M. Veloso. “Multiagent Systems: A Survey from a Machine Learning Perspective,”
Autonomous Robotics 8, no. 3, July, 2000.

 67

Vita

 Captain Wardell enlisted in the Air Force in September 1985. After basic training, he remained at
Lackland Air Force Base in San Antonio, Texas, to study Russian at the Defense Language Institute (DLI).
Upon completion of that 47-week course, he moved to Goodfellow Air Force Base in San Angelo, Texas
for the Cryptologic Linguist Course.

 In June 1987, he reported to his first assignment at Detachment 4, 691st Electronic Security Wing
in Stuttgart, Germany, where he served as a tactical intelligence collection specialist. There he worked with
members of 207th Military Intelligence Brigade, US Army VII Corps, supporting the Guardrail platform.
When Iraqi forces invaded Kuwait, Captain Wardell and nine other members of his detachment deployed
with VII Corps to Al Qaysumah, Saudi Arabia, for Operations Desert Shield, Desert Storm and Desert
Calm.

 He returned to Goodfellow Air Force Base in June 1991, to teach the Cryptologic Linguist Course
for incoming Russian Linguists. While serving as an instructor there, he was accepted into the Airman’s
Education and Commissioning Program (AECP).

 In January 1994, Captain Wardell was assigned to Wright State University, Dayton, Ohio to earn
a Bachelor of Science Degree in Electrical Engineering. While attending school, he was inducted into the
engineering honor society Tau Beta Pi. Captain Wardell graduated Magna Cum Laude and received his
commission through the Officer Training School at Maxwell Air Force Base, Alabama.

 After OTS he was assigned as a Target Identification Research Engineer for the Sensors
Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio in December 1996.
There he concentrated his work in the area of automatic target recognition of moving ground targets. While
there, he also served as the Assistant Executive Officer for the Sensors Directorate of the Research Lab.

 In December 1998, Captain Wardell was assigned to Technical Engineering, 341st Space Wing,
Malmstrom Air Force Base, Montana. There he served as a Missile System Engineer and as the Officer in
Charge of Technical Engineering. While there he also completed a Masters of Science degree in
International Relations.

 Captain Wardell returned to Wright-Patterson Air Force Base, Ohio in November 2001 to serve as
a Senior Intelligence Support Engineer in the Advanced Programs Division of the National Air and Space
Intelligence Center. It was during this assignment that he was selected for AFIT.

 He started classes in June 2004 for a Masters of Science in Electrical Engineering (Software
Engineering). After graduation Captain Wardell will be assigned to the Air Force Technical Application
Center (AFTAC) at Patrick Air Force Base, Florida.

 68

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
23-03-2006

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Jun 2004– Mar 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 Application of Fuzzy State Aggregation and Policy Hill Climbing to Multi-Agent Systems in
Stochastic Environments

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Wardell, Dean C., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/06-55

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/SNAT AFRL/SNRN
 Attn: Robert Williams, PhD. Attn: Mikel M. Miller, PhD.
 Bldg 620 Bldg 620
 2241 Avionics Circle 2241 Avionics Circle
 WPAFB, OH 45433-7333 WPAFB, OH 45433-7333
 DSN: 785-6427 ext. 4389 DSN: 785-6127 ext. 4274
 E-mail: robert.williams@wpafb.af.mil E-mail: mikel.miller@wpafb.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Reinforcement learning is one of the more attractive machine learning technologies, due to its unsupervised learning structure and ability to continually learn
even as the operating environment changes. Applying this learning to multiple cooperative software agents (a multi-agent system) not only allows each
individual agent to learn from its own experience, but also opens up the opportunity for the individual agents to learn from the other agents in the system, thus
accelerating the rate of learning.
This research presents the novel use of fuzzy state aggregation, as the means of function approximation, combined with the policy hill climbing methods of
Win or Lose Fast (WoLF) and policy-dynamics based WoLF (PD-WoLF). The combination of fast policy hill climbing and fuzzy state aggregation function
approximation is tested in two stochastic environments; Tileworld and the robot soccer domain, RoboCup. The Tileworld results demonstrate that a single
agent using the combination of FSA and PHC learns quicker and performs better than combined fuzzy state aggregation and Q-learning lone. Results from the
RoboCup domain again illustrate that the policy hill climbing algorithms perform better than Q-learning alone in a multi-agent environment. The learning is
further enhanced by allowing the agents to share their experience through a weighted strategy sharing.

15. SUBJECT TERMS
 Multi-Agent Architecture, Fuzzy Logic, Machine Learning, Reinforcement Learning, Policy Hill Climbing, State Aggregation,
 Win or Lose Fast (WoLF), Stochastic Environment, Weighted Strategy Sharing
16. SECURITY CLASSIFICATION
OF: UNCLASSIFIED

19a. NAME OF RESPONSIBLE PERSON
Gilbert L. Peterson AFIT/ENG

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
79 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636, ext 4281; e-mail: Gilbert.Peterson@afit.edu

 69

	Application of Fuzzy State Aggregation and Policy Hill Climbing to Multi-Agent Systems in Stochastic Environments
	Recommended Citation

	Abstract
	I. Introduction
	 1.1 Overview
	 1.2 Background
	 1.3 Research Focus
	 1.4 Thesis Organization

	II. Related Work
	 2.1 Q-Learning
	 2.2 Fuzzy Logic and Q-Learning in Multi-agent Architectures.
	 2.3 Fuzzy Logic in the RoboCup Domain
	 2.4 Fuzzy Logic Controllers and Q-Learning in the RoboCup Domain
	 2.5 State Aggregation and Generalization
	 2.5.1 Fuzzy State Aggregation
	 2.5.2 Combining State Aggregation with Q-learning

	 2.6 Policy Hill Climbing
	 2.6.1 Win or Lose Fast (WoLF-PHC)
	 2.6.3 Policy Dynamics Based Win or Lose Fast (PDWoLF)

	 2.7 Weighted Strategy Sharing
	 2.8 Robot Control Designs
	 2.9 Individual Agent Architecture
	 2.9.1 UM-PRS
	 2.9.2 CMUnited-98
	 2.9.3 Robotico universitat de Girona (RoGi)
	 2.9.4 MAPs
	 2.9.5 MICROB
	 2.9.6 GAMMA
	 2.9.7 Scerri

	 2.10 Multi-Agent Interaction
	 2.10.1 UM-PRS
	 2.10.2 CMUnited-98
	 2.10.3 RoGi
	 2.10.4 MAPs
	 2.10.5 MICROB [37]
	 2.10.6 GAMMA and Scerri

	 2.11 Learning & Decision Making
	 2.11.1 UM-PRS – Feedback and Opponent Modeling
	 2.11.2 CMUnited’s Layered Learning
	 2.11.3 ROGI – Fuzzy Inference
	 2.11.4 MICROB, GAMMA and Scerri
	 2.11.5 Other Examples

	III. Implementation
	 3.1 Applying PHC to FSA
	 3.2 Combining WoLF-PHC and Fuzzy State Aggregation
	 3.3 Applying PDWoLF to the FSA
	 3.4 The Tile World Experimental Domain
	 3.5 Proposed Design Plan for a RoboCup Team Architecture
	 3.5.1 Multi-Agent Architecture
	 3.5.2 Single Agent Architecture

	 3.6 Weighted Strategy Sharing
	 3.7 Summary

	IV. Experimental Results
	 4.1 Tileworld Experiment Results
	 4.2 RoboCup Experiment Results
	 4.2.1 Dissimilar Team Training
	 4.2.2 Results using Weighted Strategy Sharing

	 4.3 Summary

	V. Conclusion and Future Work
	 5.1 The Research
	 5.2 Future Work

	Bibliography

