
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Characterization and Design of High-Level VHDL I/Q Frequency Characterization and Design of High-Level VHDL I/Q Frequency

Downconverter via Special Sampling Scheme Downconverter via Special Sampling Scheme

Jesse P. Somann

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Digital Communications and Networking Commons, and the Signal Processing Commons

Recommended Citation Recommended Citation
Somann, Jesse P., "Characterization and Design of High-Level VHDL I/Q Frequency Downconverter via
Special Sampling Scheme" (2006). Theses and Dissertations. 3507.
https://scholar.afit.edu/etd/3507

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3507?utm_source=scholar.afit.edu%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CHARACTERIZATION AND DESIGN OF HIGH LEVEL VHDL I/Q

FREQUENCY DOWNCONVERTER VIA SPECIAL SAMPLING SCHEME

THESIS

JESSE P SOMANN, SECOND LIEUTENANT, USAF

AFIT/GE/ENG/06-53

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U. S.
Government.

AFIT/GE/ENG/06-53

CHARACTERIZATION AND DESIGN OF HIGH LEVEL VHDL I/Q FREQUENCY

DOWNCONVERTER VIA SPECIAL SAMPLING SCHEME

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jesse P. Somann

Second Lieutenant, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/06-53

CHARACTERIZATION AND DESIGN OF HIGH LEVEL VHDL I/Q FREQUENCY

DOWNCONVERTER VIA SPECIAL SAMPLING SCHEME

Jesse P Somann
Second Lieutenant, USAF

iv

Acknowledgements

I thank Dr. Yong Kim, my thesis advisor, for all his effort and guidance in support

of this research. The constant encouragement was very appreciated. I would also like to

send my sincere appreciation to Dr. Marty Emmert for the large amount of time and

effort he spent sharing his technical knowledge and guiding me through finer points of

this research. A thank you also to my sponsor, Dr. Greg Creech of the Air Force

Research Laboratory for the continued support in this endeavor.

I would also like to thank my classmates who supported and helped me

throughout the thesis class load, and research and writing process: Lt Chris Wood, Lt

Mark Martin, Maj Brad Christiansen, and many others.

 Jesse P. Somann

v

Table of Contents

ACKNOWLEDGEMENTS ... IV

TABLE OF CONTENTS .. V

TABLE OF FIGURES.. VII

TABLE OF TABLES... X

LIST OF ACRONYMS ..XI

ABSTRACT... XII

I. INTRODUCTION.. 13
1.1 GENERAL ISSUE... 13
1.2 SPECIFIC ISSUE .. 15
1.3 PROBLEM STATEMENT & SCOPE OF STUDY... 17
1.4 RESEARCH OBJECTIVES... 19
1.5 CHAPTER SUMMARY ... 22
1.6 REFERENCES ... 23

II. LITERATURE REVIEW .. 24
2.1 CHAPTER OVERVIEW... 24
2.2 THE VIDEO PROCESSING UNIT .. 24
2.3 I/Q DATA CHANNELS AND THE SPECIAL SAMPLING SCHEME 25
2.4 DIGITAL FILTERING... 31
2.5 ALTERNATE METHODS AND STUDIES OF I/Q DOWN-CONVERSION 39
2.6 SPURIOUS RESPONSES IN DIGITAL SAMPLING ... 46
2.7 SPURIOUS SIGNAL ANALYSIS .. 51
2.8 DESIGN FLOW OF DIGITAL SYNTHESIS .. 54
2.9 CHAPTER SUMMARY ... 63
2.10 REFERENCES ... 64

III. CHARACTERIZATION & METHODOLOGY 66
3.1 BIT PRECISION IN DIGITAL MODELING.. 66
3.2 MODELING I/Q DATA AND IMBALANCE .. 76
3.3 VARIABLE EFFECTS ON I/Q IMBALANCES.. 84
3.4 CHAPTER SUMMARY ... 94
3.5 REFERENCES ... 95

IV. SIMULATIONS & RESULTS ... 96
4.1 I/Q RESULTS AND IMBALANCE TRENDS .. 96
4.2 VHDL ‘REAL’ VALIDATION... 99
4.3 VHDL OPTIMIZATION AND RESULTS ... 104
4.4 SYNTHESIS TOOLS CIRCUIT GENERATION RESULTS 110
4.5 CHAPTER SUMMARY ... 120
4.6 REFERENCES ... 121

vi

V. ANALYSIS AND CONCLUSIONS .. 122

5.1 EXPLANATION OF THE PROBLEM ... 122
5.2 SUMMARY OF LITERATURE REVIEW.. 123
5.3 SSS CHARACTERIZATION: SIGNIFICANCE, LIMITATIONS, AND FURTHER

RESEARCH ... 123
5.4 HDL CODE DEVELOPMENT: SIGNIFICANCE, LIMITATIONS, AND FURTHER

RESEARCH ... 125
5.5 DESIGN SYNTHESIS: SIGNIFICANCE, LIMITATIONS, AND FURTHER RESEARCH

.. 126

APPENDIX A: TRUNCATION FUNCTION (MATLAB)........................... 128

APPENDIX B: SPECIAL SAMPLING SCHEME (MATLAB) 129

APPENDIX C: BIT-WIDTH OPTIMIZER (MATLAB).............................. 132

APPENDIX D: SAFE BIT-WIDTH VALUES TO USE 136

APPENDIX E: IQGEN (VHDL) ... 138

APPENDIX F: IQFIR_FILTAT.VHD (VHDL)... 140

APPENDIX G: IQFIR_FILTBT.VHD (VHDL) .. 143

APPENDIX H: IQOUTPUT.VHD (VHDL) ... 146

APPENDIX I: IQ_SSS_CONVERTER.VHD (VHDL)................................. 148

APPENDIX J: I/QGEN_DIG.VHD (VHDL) ... 150

APPENDIX K: IQFIR_FILTAT_DIG.VHD (VHDL) 152

APPENDIX L: IQOUTPUT_DIG.VHD (VHDL).. 156

APPENDIX M: TSUI_SSS_CONVERTER_DIG (VHDL) 158

APPENDIX N: SSS_PIPELINE_TEMPLATE.VHD (VHDL)..................... 160

APPENDIX O: SSS_SEQUENTIAL_TEMPLATE.VHD (VHDL)............. 185

APPENDIX P: COEFF_GEN.M (MATLAB).. 209

APPENDIX Q: SSS_GEN.PRL (PERL)... 211

APPENDIX R: TB_GEN.PRL (PERL) .. 216

VITA... 219

vii

Table of Figures

Figure 2.1: Block Diagram representation of a digital receiver unit like that in the
MoDRFS. ...25

Figure 2.2: Digital filters remove unwanted frequencies such as noise from the
upper trace to produce the filtered lower trace. ...33

Figure 2.3: A moving average filter takes samples, sums them, and divides them
by the number of samples. This is a seven-point moving average.33

Figure 2.4: A seven-point averager that applies equal weights to each coefficient
(blue), and varying weights to reduce ripple at the expense of a wider pass
band (red). ..35

Figure 2.5: To create a Kaiser filter, we must specify cutoff frequency, transition
frequency, and percent of ripple allowed [3]. ..38

Figure 2.6: Analog I/Q demodulation followed by A/D conversions [7].40
Figure 2.7: Sjostrom et al. digital filter block diagram [9]. ..45
Figure 2.8: Sjostrom et al. digital down converter chip layout [9].45
Figure 2.9: Plot of fi = 5 MHz, fs = 100 MHz, Ssize of 100 and non-quantized data....47
Figure 2.10: Plot of fi = 5 MHz, fs = 100 MHz, Ssize of 100 and quantized data.48
Figure 2.11: Difference between quantized (3-bits) and non-quantized data.48
Figure 2.12: Plot of fi = 2.5 MHz, fs = 100 MHz, Ssize of 200 quantized data

points..49
Figure 2.13: Plot of fi = 5 MHz, fs = 100 MHz, Ssize of 200 quantized data points.51
Figure 2.14: A polar (circular) representation of a signal with amplitude of 1.0

and a phase of 30 ..52
Figure 2.15: A polar (circular) representation of two signals with amplitudes of

1.0 and phases of 30 and 120 (90 out of phase). ..54
Figure 2.16: Evolution of gate delay contribution to interconnect delay, as feature

size decreases and die size expands [10]. ..56
Figure 2.17: Front-end physical design exploration flow into synthesis and virtual

prototyping tools. [10] ...60

Figure 3.1: Floating-point adder. Blue modules have large area and/or delay. [4] ..69
Figure 3.2: Floating-point multiplier. Blue modules have large area and/or delay.

[4] ...70
Figure 3.3: Adder design examples. [4]..71
Figure 3.4: Multiplier design examples. [4]...71
Figure 3.5: Parameter comparisons between versions of IDCTs. [4]72
Figure 3.6: Four-bit multiplication example [6]. ..75
Figure 3.7: Waveforms sampled at different signed, truncated bit-width

accuracies. ..76
Figure 3.8: 32-tap Kaiser window used for filter coefficients.78
Figure 3.9: FIR plots using a 32-tap Kaiser window. ...78
Figure 3.10: 14MHz signal sampled at 100MHz with SSS.79

viii

Figure 3.11: FFT plots of 14 MHz signal sampled at 100 MHz, 1024 times with
SSS. ..81

Figure 3.12: Amplitude and phase plots of 14 MHz signal sampled at 100 MHz,
1024 times with SSS. ...82

Figure 3.13: Amplitude and phase difference/imbalance plots of 14MHz signal
sampled at 100MHz, 1024 times with SSS..83

Figure 3.14: Frequency downconversion of 14 MHz signal sampled at 100 MHz,
1024 times with SSS. ...84

Figure 3.15: Filter length effect on imbalances of 14 MHz signal sampled at 100
MHz, 2048 times with SSS. ...85

Figure 3.16: Filter length effect on imbalances of 100 MHz signal sampled at 1
GHz, 2048 times with SSS...86

Figure 3.17: Sample size effect on imbalances of 14 MHz signal sampled at 100
MHz with SSS. Uses 32-tap filter...87

Figure 3.18: Sample size effect on imbalances of 100 MHz signal sampled at 1
GHz with SSS. Uses 32-tap filter. ..88

Figure 3.19: Filter coefficient bit-width effect on imbalances of 14 MHz signal
sampled at 100 MHz, 2048 times with SSS. Uses 32-tap filter.90

Figure 3.20: Filter coefficient bit-width effect on imbalances of 100 MHz signal
sampled at 1 GHz, 2048 times with SSS. Uses 32-tap filter...............................90

Figure 3.21: Signal input bit-width effect on imbalances of 14 MHz signal
sampled at 100 MHz, 2048 times with SSS. Uses 32-tap filter.91

Figure 3.22: Signal input bit-width effect on imbalances of 100 MHz signal
sampled at 1 GHz, 2048 times with SSS. Uses 32-tap filter...............................92

Figure 3.23: Output bit-width effect on imbalances of 14 MHz signal sampled at
100 MHz, 2048 times with SSS. Uses 32-tap filter. ...93

Figure 3.24: Output bit-width effect on imbalances of 100MHz signal sampled at
1Ghz, 2048 times with SSS. Uses 32-tap filter...94

Figure 4.1: Imbalances of input bit-width at fi = 14 MHz, fs = 100 MHz...................97
Figure 4.2: Imbalances of input bit-width at fi = 7 MHz, fs = 50 MHz.......................98
Figure 4.3: Imbalances of output bit-width at fi = 14 MHz, fs = 100 MHz.................98
Figure 4.4: Imbalances of output bit-width at fi = 7 MHz, fs = 50 MHz.....................99
Figure 4.5: Block diagram of SSS modules..100
Figure 4.6: Output of IQ_sss_converter.vhd using sample values of 14MHz

signal sampled at 100MHz. I and Q data channels are aligned.103
Figure 4.7: Block diagram of a pipelined FIR filter using multipliers, adders, and

registers. Number of levels equal number of coefficients minus one...............106
Figure 4.8: Block diagram of a pipelined FIR filter using multipliers, adders, and

registers. Number of levels is logarithmic to the number of coefficients.107
Figure 4.9: Block diagram of a sequential FIR filter using a clock unit, multiplier,

adder, mux and registers. Data Clocker cycles through all stored coefficients
before accepting a new Input value. ..108

ix

Figure 4.10: Circuit size results using Mentor Graphic’ Precision RTL tool with
Virtex II Pro (2VP2fg256) architecture. Frequency of 100 MHz.....................113

Figure 4.11: Circuit speed results using Mentor Graphic’ Precision RTL tool with
Virtex II Pro (2VP2fg256) architecture. Frequency of 100 MHz.....................113

Figure 4.12: Circuit size results using Cadence design synthesis flow for 0.25 um
technology..116

Figure 4.13: Circuit speed results using Cadence design synthesis flow for 0.25
um technology..116

Figure 4.14: Dynamic thermal power dissipation using Altera Quartus II
simulator for FPGAs--Stratix II EP2S15F672C5. ...119

Figure 4.15: Static thermal power dissipation using Altera Quartus II simulator
for FPGAs--Stratix II EP2S15F672C5. ...119

x

Table of Tables

Table 3.1: IEEE 753 floating-point representations. ..67
Table 3.2: SSS parameter list..80

Table 3.1: IEEE 753 floating-point representations. ..67
Table 3.2: SSS parameter list..80

Table 4.1: Input parameter combinations to be tested. ...111
Table 4.2: Synthesis results using Mentor Graphic’ Precision RTL tool with

Virtex II Pro (2VP2fg256) architecture. Frequency of 100 MHz.....................111
Table 4.3: Synthesis results using Cadence design synthesis flow for 0.25 um

technology..115
Table 4.4: Power results using Altera Quartus II simulator for FPGAs--Stratix II

EP2S15F672C5..118

xi

List of Acronyms

θ ... Phase
ΔΣ...Delta/Sigma
ADC ...Analog-to-Digital Converter
AFRL ...Air Force Research Labs
ASIC ... Application Specific Integrated Circuit
DAT ...Data Arrival Time
DDC ... Digital Down-Converter
DRC ... Design Rule Check
DoD.. Department of Defense
DSM..Deep Sub-Micron
EDA ..Electronic Design Automation
FFT... Fast Fourier Transform
FIR ...Finite Impulse Response
FPGA ...Field Programmable Gate Array
HDL .. Hardware Description Language
I/Q PVF... I and Q Programmable Video Filters
IDCT ... Inverse Discreet Cosine Transform
IF ... Intermediate Frequency
Im .. Imaginary
MoDRFS...Modular Digital RF System
MSB ..Most Significant Bit
R... Radius
RC ..Resistor-Capacitor
Re ... Real
RF... Radio Frequency
RTL...Resistor Transistor Logic
SoC.. System-on-Chip
SSS...Special Sampling Scheme
VDSM..Very Deep Sub-Micron
XBR ... X-Band Radar

xii

AFIT/GE/ENG/06-53

Abstract

This study explores the characterization and implementation of a Special

Sampling Scheme (SSS) for In-Phase and Quad-Phase (I/Q) downconversion utilizing

top-level, portable design strategies. The SSS is an under-developed signal sampling

methodology that can be used with military and industry receiver systems, specifically,

United States Air Force (USAF) video receiver systems. The SSS processes a digital

input signal-stream sampled at a specified sampling frequency, and downconverts it into

In-Phase (I) and Quad-Phase (Q) output signal-streams. Using the theory and application

of the SSS, there are three main objectives that will be accomplished: characterization of

the effects of input, output, and filter coefficient parameters on the I/Q imbalances using

the SSS; development and verification of abstract, top-level VHDL code of the I/Q SSS

for hardware implementation; and finally, development, verification, and analysis of

variation between synthesizable pipelined and sequential VHDL implementations of the

SSS for Field Programmable Gate Arrays (FPGA) and Application Specific Integrated

Circuits (ASIC).

13

CHARACTERIZATION AND DESIGN OF HIGH LEVEL VHDL I/Q

FREQUENCY DOWNCONVERTER VIA SPECIAL SAMPLING SCHEME

I. Introduction

1.1 General Issue

Electronic Warfare systems have become a major research issue for the

Department of Defense (DoD), and military research facilities such as the Air Force

Research Laboratory (AFRL). Billions of dollars are put into developing newer and

better systems of radar communication and processing. As we continue to advance in

technology, the speed and capabilities of digital communications continue to increase.

Through material advancements and with the help of some specialized methods of

sampling, digital receivers are beginning to compete with analog devices in quality of

signal reception.

Application Specific Integrated Circuits (ASICs) are ideal for their low

production costs for mass produced circuits (after high initial design costs) when high-

speed acceleration of a task is needed. However, ASICs force the circuit designer to

make critical decisions very early in the product life-cycle, at initial design time. One

may obtain very high speed by dedicating specialized logic elements, but losing the

flexibility to adapt the circuit operation later. Or, one may choose instead to design-in

some degree of generality for later adaptability by incorporating a specialized

"microcoded" instruction set or "reconfigurable” parameters. While not as flexible as a

14

general-purpose CPU, such an instruction set preserves (to a degree based on design

tradeoffs) the relatively higher speed of ASICs.

This adaptability comes at a cost, however. An ASIC circuit that is customized to

a specific task, such as signal processing or communication hardware, can be designed to

operate in a single cycle of the system clock by use of a pipeline design, and is thus very

fast relative to conventional microprocessors in which many cycles are required to

implement the same algorithm. When the generality of microcode is added to an ASIC

the designer is forced to 1) accept that some algorithms will need multiple clock cycles

(i.e., multiple instructions) to execute, thus slowing the microprocessor down, 2) use

more of the available chip area than before, reducing the speed otherwise obtained via

parallelism, and 3) predict at the start of product life-cycle the range of instructions

needed to implement all anticipated improvements in signal processing or communication

over the life of the product.

The more general the design, the more intrinsic ASIC speed is lost to the design.

Also, ASICs force the designer to select a rigid datapath bit-width intrinsic to the design.

If the datapath is too narrow, higher precision data must be double or multiple-clocked

through the device, slowing the data down. If the full datapath width is not needed for a

particular algorithm, space on the chip goes wasted: again, effectively slowing the system

down if compared to the FPGA approach, which fully utilizes each chip's logic resources

and in which path width is set dynamically.

Consequently, traditional ASICs are ideal for applications that are well-defined

and not expected to change during the field operation of the product. The recent history

of signal processing and communication, however, is characterized by rapid improvement

15

in the state-of-the-art, creating significant risk of early obsolescence for any ASIC based

accelerator, even if microcoded.

In addition, it generally takes a long period of time to design a circuit for a

specific radar application through conventional layout design for an ASIC. Significant

financial and labor costs are often spent in order to re-design, or make multiple circuit

designs that perform virtually identical functions of the original, but with slightly

different parameters. In general, to utilize a new technology, or to change input or output

parameters in a circuit, a layout must be done from scratch, often limiting the use of

existing components. These issues cause long turn-around times and in many cases,

wasted resources.

The purpose of this study is to provide a highly portable method of designing and

generating usable signal processing circuits for faster turn around time and highly

reduced cost. Specifically, the design method:

1: Will have a shorter turn-around time from design to fabrication.

2: Will be portable between fabrication technologies.

3: Can be targeted for use with FPGA or ASIC devices.

1.2 Specific Issue

Frequency is a large liability in digital communication applications. There is

always a frequency range that should be monitored, but in order to cover all frequency

values, a signal may need to be split into parallel channels, a process which is called

channelization. Frequency conversion can then be made to match the frequency of

interest to that of the Intermediate Frequency (IF) receiver. Due to effects of second

16

harmonics that can occur, an IF frequency bandwidth is usually kept within an octave

(meaning that the high end is twice the frequency of the low end).

One method for frequency conversion in digital communications is to split the

input signal into two channels (in-phase and quadrature) that are 90-degrees out of phase

from each other. This down conversion can simply be referred to as I and Q

channelization. A receiver that uses such a system is referred to as a superheterodyne

receiver. A superheterodyne receiver takes the incoming signal, mixes it with a local

oscillator to create the I and Q channels which are at a constant IF, and then will run

those signals through a faster demodulator to resurrect the original signal [1].

Advantages to using such a method in digital receivers include: the input signal

bandwidth can be doubled, amplitude measures of the signal are maintained, and the

channels can be used to determine instantaneous frequency with either the I or the Q [2].

One specific use for I/Q demodulation is for digital receiver systems. In 2000-

2004, the AFRL commissioned Raytheon to help develop an advanced digital receiver

and to demonstrate it’s feasibility for high-speed digital processing. The receiver was to

be in use in airborne radar and was to be extended to ground unit use as an X-band Radar

(XBR) system. Referred to as the Modular Digital RF System (MoDRFS), the system

included a receiver system with analog-to-digital conversion and I/Q preprocessor [3].

Raytheon demonstrated the feasibility of such a system with an FPGA implementation

that utilized an unknown algorithm.

Our concern is with the I/Q data conversion module (preprocessor) of such a

receiver. The purpose of the preprocessor is to decimate incoming digital data (at an IF),

form it into I and Q data streams, and buffer and format the streams for use by the radar

17

processing modules. In the MoDRFS, the video processor unit itself is the heart of the

receiver system as it receives 16-bit data steams from the delta/sigma (ΔΣ) Analog-to-

Digital Converter (ADC), delays those streams, filters the streams in two stages

(decimation filter and I and Q Programmable Video Filters (I/Q PVF)), and outputs the

resulting I/Q data. This type of application lends itself towards I/Q data processing [4].

I/Q formulation has many benefits in both military and industry applications.

First of all, the formulation can allow for sampling of a range of frequencies without a

need for complete redesign of an ASIC or FPGA. Only the sampling frequency of the

local oscillation needs to be changed.

In order for this process to be more valuable, design options are needed that do

not require significant time and effort to implement. A top-level design with parameters

that can be easily adjusted would prevent the need to create layouts from scratch,

therefore reducing time and costs. Also, a flow of design options for optimizing for size

versus speed would allow more flexibility in physical synthesis optimizations. More

options for synthesis will also result in a reduction of time and money spent by military

and industry on projects.

1.3 Problem Statement & Scope of Study

The problem to be solved is this: the characterization and implementation of a

SSS for I/Q downconversion utilizing top-level, portable design strategies. To keep the

overall design of a digital pre-processor module applicable, it must be able to be

implemented with any common industrial synthesis software package (Synopsys,

Cadence, Mentor Graphics, etc.). This need is due to the often changing contract

18

situations that occur within research and development labs. If AFRL were to switch to a

new company’s software, or uses a different software set from the same company, the

design needs to be portable to work with those changes. VHDL is a basic language used

by all such companies and therefore works to accomplish this requirement.

Such a design must also be done in a common and steady language, and in a basic

high-level implementation due to ever changing levels of technology. For example, in

the past, the highest (smallest) technology sizes were at the 0.5 µm and 0.25 µm ranges.

Currently, sizes of 0.18 µm, 0.09 µm, and even as small as 0.065 µm are starting to be

used. With these new sizes of technology come new parameter limitations due to size,

power, speed, and interference. New sets of design rules now need to be applied to the

same designs. Therefore an already laid out design cannot just be reduced by a 1-to-1

factor, but must be re-synthesized all together. With a high-level behavioral, or

optimized structural VHDL design, each module in a processor circuit can be re-

developed and synthesized in any major software package with limited effort and time.

For AFRL purposes, the I/Q channel demodulator must also be flexible in scope.

They want to be able to adjust input, output, and internal filtering parameters, without

significantly altering the quality of the I/Q data outputs. In order to accomplish this, we

need to adequately characterize and parameterize the data so as to accommodate changes

in parameters.

While there are many different methods of I/Q data sampling, most developed

methods involve analog mixers. Two approaches to I/Q data via digital circuitry exist:

the Hilbert transform, and a SSS. In the past, digital methods have not been reasonable to

use in radar applications due to limitations in the speed of digital circuitry. Recently

19

however, with the advancement of technologies, digital capabilities are starting to

compete with analog capabilities.

To create I/Q channels, we will be using a SSS that mixes the incoming signal and

runs the mixed samples through lowpass filters to filter out the high frequencies produced

by mixing. The SSS will be described in depth as we continue in the thesis. By

analyzing Matlab simulations of sampled data using this SSS, we can fully characterize

the effect of changing data parameters. The main concern of the changing parameters is

that of I/Q data imbalance in the output, including differences in amplitude between the

signals, and phase differences varying from the ideal 90 degrees between the I and Q

channels.

Our implementation will be based on a strictly hardware basis. Hardware does

not usually use complex mathematical types such as floating point values because of size

and speed requirements. Instead we will concentrate on binary fixed-point math. One

implication of this is that we must use only std_logic and std_logic_ vector input/outputs

for the VHDL I/Q data formation. Because of this, bit lengths and widths of input/output

signals and filter coefficients become very important.

1.4 Research Objectives

With the ever-evolving technology levels of today, we have a great need for

abstract, easily portable design module libraries. These libraries must be well defined

and verified. Thus, this study has three main objectives:

20

- Characterization of the effects of input/output and filter coefficient parameters

using the SSS

- Top-level VHDL code of I/Q SSS for hardware implementation

- Variation and verification of synthesis through industry design flow for ASICs

and FPGAs.

The characterization will be performed using Matlab functions and plots, and will

later be verified by VHDL simulation and hardware FPGA testing. The key here will be

to see how altering the input bits, coefficient bits, filter lengths, and even the output bits

will effect the I/Q data. With the Matlab functions, we will use a base case model, and

from there will alter the parameters and record the effects on I/Q amplitude differences

and phase variations. The end goal is to create a set of trends and figures that will allow a

designer to easily select design parameters that will meet their specific I/Q imbalance

limitations.

Once characterized, the Matlab code will be converted into a high-level VHDL

code using ‘real’ type variables (which utilizes the IEEE standard 64-bit floating point

number scheme). We will use this implementation to verify the exact process that was

characterized in Matlab using a VHDL simulation software such as Symphony and

ModelSim. Once verified, we will continue with digital implementation by creating a

new set of modules that use only ‘std_logic’ and ‘std_logic_vector’ types. These

modules will be fully synthesizable, easily adjustable (for bit parameters and filter

lengths) and will be implementable by an ASIC or FPGA. Using this code, we again

verify it’s operation with Matlab. Finally, we will implement a set of Perl scripts that can

21

be used to easily convert the desired parameters developed using the a Matlab process,

into synthesizable VHDL modules.

The final step will be to put the VHDL code through a synthesis design flow. We

will attempt to verify an optimized design by comparing three separate implementations,

each tested with various sets of parameters. The first will use a pipelined implementation

that should optimize speed. This should in effect, have the largest size, fastest data

conversion speed, and most power consumption. Next we will use a design to optimize

the size of the circuit by utilizing a sequential implementation. A sequential

methodology should have the smallest size, but a much larger data conversion speed.

Finally, we will test a top-level, abstract implementation that will allow the industry

synthesis software to use its own method to optimize the design.

22

1.5 Chapter Summary

This research project attempts to take an already-started AFRL effort, and further

it’s use by making the project into a flexible and modular design. This design will allow

a continued and varied use of a very under-developed sampling scheme towards a useful

implementation. This project will continue to improve the optimization and efficiency of

AFRL research by developing a new modular signal-processing component. The study

will also find cost saving alternatives to current design flow methodologies, allowing for

a possible reduction in license costs.

23

1.6 References

[1] Introduction to Naval Weapons Engineering: Tutorial. “Superheterodyne
Receivers.” 04 November 2005 http://www.fas.org/man/dod-
101/navy/docs/es310/superhet.htm .

[2] Tsui, James. Digital Techniques for Wideband Receivers. Artech House, 2001.

[3] Hong, T.K. and Bui, L.T. “Video Processor 2 (VP2) IC Functional

Requirements.” Technical Paper (Proprietary), Raytheon Systems Company.
1999.

[4] “Modular Digital Radio Frequency System (MoDRFS).” Final Report, Raytheon

Systems Company. Government Contract: F33615-98-2-1330. 19 May, 2004.

24

II. Literature Review

2.1 Chapter Overview

This chapter provides an overview of the research involved in understanding the

original AFRL video processor design plans. Information will also include research

involved in implementing and analyzing the Special Sampling Scheme (SSS) including

sampling and filtering, as well as that involved in creating a workable VHDL code and

synthesizing that code into an FPGA or ASIC implementation.

2.2 The Video Processing Unit

The MoDRFS implemented by Raytheon for AFRL gives motivation for the

development of basic I/Q sampling principles. It consists of elements including a high

power active array antenna, a multi-channel receiver system, and other control units. The

signals picked up by the antenna are transferred to the receiver unit as an X-band Radio

Frequency (RF). The receiver unit consists of two components: the receiver and the

preprocessor. A block diagram of the receiver unit is shown in Figure 2.1. The receiver

module takes the RF signal, translates it into an IF signal, and runs that signal through an

ADC. This digital signal is finally transferred to the preprocessor module where it is

decimated and formed into I and Q data channels [1].

25

Figure 2.1: Block Diagram representation of a digital receiver unit like that in the

MoDRFS.

2.3 I/Q Data Channels and The Special Sampling Scheme

In this section we will explore the basics behind the SSS method of digital

frequency downconversion that will be used to implement our circuit codes. To reiterate,

one method for frequency conversion in digital communications is to split the input

signal into two channels and can be referred to as I and Q channelization.

For example, if we start with a sinusoidal signal with amplitude A and frequency
fi:

() ()sin 2 iS t A f tπ= (2.1)

We can then generate our I and Q channels by using a local oscillator (sampling)

frequency fo and filtering out the high frequency component:

() ()cos 2 i oI t A f f tπ⎡ ⎤= −⎣ ⎦ (2.2)

() ()sin 2 i oQ t A f f tπ⎡ ⎤= −⎣ ⎦ (2.3)

26

If these two signals are added, a complex data signal can be formed (I as real, Q

imaginary, or vice versa).

Advantages to using such a method in digital receivers includes: the input signal

bandwidth can be doubled, amplitude measures of the signal are maintained, and the

channels can be used to determine instantaneous frequency with either the I or the Q [2].

One very common downfall to I and Q data are imbalances between the two.

More specifically, the two channels will not always have the same amplitudes and will

not always be perfectly 90 apart. Such an occurrence can negatively affect the dynamic

range of the receiver processing the signal. Imbalances are more common in analog

processing than they are in digital approaches. This is because in the digital techniques

for I/Q generation, one signal (I or Q) is taken with a single-channel downconverter, and

is then manipulated to create the out-of-phase channel. There are also digital correction

methods of I/Q channels that are presented in detail in Tsui’s book, page 276, and his

references [2], but they involve a number of complex formulas and equations. Such a

method can work for the back end of a system, but for hardware, it will be better to look

into avoiding such imbalances from the start as we will do in Chapter 3. A preferred

method will be to measure how changing bit-widths and binary math techniques in the

processing hardware, may affect digitally generated I and Q data and their balance.

 The real downfall to using a digital method is that slow processing speeds can

limit the bandwidth that can be covered to a minimum. For military purposes (electronic

warfare, monitoring, etc.) these bandwidths may be too low.

There are two methods to creating digital I/Q channels. One can either use a

Hilbert transform [2], or a SSS. The later is the approach this study will use.

27

In a SSS, let us assume an input signal

()sin 2i iV A f tπ θ= + (2.4)

With amplitude A, initial phase θ, and known input frequency fi. A sampling

period of ts is used, starting at t=0 and sampling at twice the Nyquist rate (2* fi) or 4* fi.

Therefore:

()1/ 4*s it f= (2.5)

The resulting signal is:

sin , cos , sin , cos , sin ...iV A A A A A etcθ θ θ θ θ= − − (2.6)

Here we see that odd and even terms are 90 out of phase and so we can say that

odd terms are in the I channel and even terms are in the Q channel:

sin , sin , sin ...
cos , cos , cos ...

I A A A
Q A A A

θ θ θ
θ θ θ

= −
= −

 (2.7)

While this is very intuitive and simplistic, it only works if the designer knows the

input signal frequency, which in military applications is not always the case. Therefore,

we must use a method that will work while knowing only our sampling frequency.

For a signal with an unknown frequency, ifV , let us look at the outputs when we

run the signal through a local oscillator with two out-of-phase mixers:

28

 () ()1 sin 2 cos 2if i oV f t f tπ θ π= +

() (){ }1 sin 2 sin 2
2 i o i of f t f f tπ θ π θ⎡ ⎤ ⎡ ⎤= − + + + +⎣ ⎦ ⎣ ⎦ (2.8)

 () ()2 sin 2 sin 2if i oV f t f tπ θ π= +

() (){ }1 cos 2 cos 2
2 i o i of f t f f tπ θ π θ⎡ ⎤ ⎡ ⎤= − + + + +⎣ ⎦ ⎣ ⎦ (2.9)

in which the oscillator frequency is known as fo, the input frequency (fi) is not known,

and the high-frequency component will be filtered out with a low pass filter. Then if we

start at zero phase and sample the output at t = 1/4 fo:

() () ()2 41 sin ,0, sin 2 ,0,sin 2 ,0...if i iV f t f tθ π θ π θ= − + + (2.10)

() ()1 32 0,sin 2 ,0, sin 2 ,0...if i iV f t f tπ θ π θ= + − + (2.11)

Combined into one data channel in time order:

() () () ()
()

1 2 3sin ,sin 2 , sin 2 , sin 2 ...

 sin 2
if i i i

i

V f t f t f t

f t

θ π θ π θ π θ

π θ

= + − + − +

= +
 (2.12)

which is where we started from in (2.4).

Now, say we use the Nyquist sampling theorem on a sampling frequency fs, which

tells us that the input bandwidth then is fs /2 at max. Because of this, our local oscillator

frequency must be fo = fs /4 to generate Equation (2.10) and Equation (2.11). Using this

however will produce a signal equivalent to that of Equation (2.8) and Equation (2.9).

Again, we need to filter out the high frequency term of these equations and thus will

implement a low pass filter with cutoff frequency of fs /2, matching the input frequency

limitation.

29

For demonstration purposes, let us say we have a signal coming in:

() (1), (2), (3), (4), (5), (6), (7), (8), (9)...X t x x x x x x x x x= (2.13)

which divided into 2 groups with zeros added and made out-of-phase makes:

() (1),0, (3),0, (5),0, (7)...
() 0, (2),0, (4),0, (6),0, (8)...

I t x x x x
Q t x x x x

= − −
= − −

 (2.14)

In which both must be run through a low pass filter with coefficients (impulse

response):

() (1), (2), (3), (4), (5), (6), (7), (8), (9)...h t h h h h h h h h h= (2.15)

that will result in convolution outputs YI and YQ :

() () ()
() () ()

YI t I t h t
YQ t Q t h t

= ⊗
= ⊗

 (2.16)

where a convolution is represented with a ⊗ symbol. This will give the results we

want. However, in hardware, it is better not to waste effort by calculating the zero terms

that result from the sinusoidal pattern in the data, but rather to manipulate the input data

in a different way.

With the above approach, the filter must do its job at the same rate as the input

data is being sampled. To reduce the operation speed of the filters, we can eliminate the

zero terms, and double the number of filters. This will cut the required filter operation

speed in half.

30

The reason we can accomplish this is that by using the definition of convolution

we find that the odd ordered YI (1), YI (3)… YQ(1), YQ(3)… use only odd terms of h(t),

and even ordered YI (2), YI (4)… YQ(2), YQ(4)… use only even terms of h(t) [2]. This is

due to the zeros in the original strings. Conveniently however, this sets us up to make a

common sense adjustment to the input data sampling.

The signal X(t) coming in as above, can now be sampled as:

1() (1), (5), (9)...
2() (2), (6), (10)...
3() (3), (7), (11)...
4() (4), (8), (12)...

X t x x x
X t x x x
X t x x x
X t x x x

=
=
=
=

 (2.17)

X3 and X4 can be inversed, and the signals X1 and X3, and X2 and X4 reformed

into:

() (1), (3), (5), (7)...
() (2), (4), (6), (8)...

r

i

X t x x x x
X t x x x x

= − −
= − −

 (2.18)

as in Equation (2.14) but without the zeros. Next a filter design must be made and the

filter coefficients calculated and separated into:

() (1), (3), (5), (7)...
() (2), (4), (6), (8)...

o

e

h t h h h h
h t h h h h

=
=

 (2.19)

Using these with Equation (2.18), four filters will be created to do the following

operations:

31

() () () (1), (2), (3)...
() () () (1), (2), (3)...
() () () (1), (2), (3)...
() () () (1), (2), (3)...

ro r o ro ro ro

re r e re re re

io i o io io io

ie i e ie ie ie

Y t X t h t Y Y Y
Y t X t h t Y Y Y
Y t X t h t Y Y Y
Y t X t h t Y Y Y

= ⊗ =
= ⊗ =
= ⊗ =
= ⊗ =

 (2.20)

Again we can manipulate the data and combine the filter outputs Yro and Yre, and

Yio and Yie:

() (1), (1), (2), (2), (3), (3)...

 (1), (2), (3), (4), (5), (6)...
() (1), (1), (2), (2), (3), (3)...

 (1), (2), (3), (4), (5), (6)...

r ro re ro re ro re

r r r r r r

i io ie io ie io ie

i i i i i i

Y t Y Y Y Y Y Y
Y Y Y Y Y Y

Y t Y Y Y Y Y Y
Y Y Y Y Y Y

=
=
=
=

 (2.21)

This is very close to what we are looking for from Equation (2.14), but YQ(1) as

has been figured in the above method, must be zero. The way Equation (2.21) is

implemented, it is not. Therefore we must add the zero to the first term of Yi(t), and shift

the rest of the values to make the final signals:

() () (1), (2), (3)...

 (1), (2), (3), (4)...
() 0, () 0, (1), (2), (3)...

 (1), (2), (3), (4)...

I r r r r

I I I I

Q i i i i

Q Q Q Q

Y t Y t Y Y Y
Y Y Y Y

Y t Y t Y Y Y

Y Y Y Y

= =
=
= =

=

 (2.22)

2.4 Digital Filtering

The SSS cannot be used unless a digital filter module is included in it’s

architecture. Therefore we must also understand the basic principles of digital filtering of

32

incoming data streams. Once we know how the filtering process works, we will be able

to implement an effective filter design module into the SSS circuit design.

A signal can be described as a combination of sine or cosine functions at specific

frequencies. By sampling the magnitude of the signal coming in at a certain interval of

time, one can create what is called a digital signal, or a set of such magnitudes set on a

time axis, that accurately represents the activity of the analog signal.

Certain frequencies of the signal can then be filtered out digitally by applying

transfer functions (mathematical formulas) to the data points. An example of this is

represented in Figure 2.2. A simple form of digital filter is referred to as a moving

averager: see Figure 2.3. This type of design simply takes the present point value, and

averages its amplitude with a set number of previous point values of the digital signal.

The most basic averager can be thought of as a ‘rectangular window’ in which all present

and past digital values are weighted the same in the average, or rather, are multiplied by

the same coefficient. ‘Rectangular’ comes from the appearance of a rectangle in the time

domain representation.

Such a filter is defined as an FIR or Finite Impulse Response filter. The formula

for the response of a length N FIR is expressed as:

1() ()
0

() ()Nj jk
k

H e k eθ θω− −
=

= ∑ (2.23)

where θ is phase, k is a certain sample of the signal, and ω represents the window

that is being used. When filtering with the windowing method, the term ω(k) can be

expressed depending on the shape of the window that is chosen for use. Such effects as

33

Gibbs phenomenon and weakened transition bands may occur, but should be able to be

dealt with by using an appropriate window [3].

Figure 2.2: Digital filters remove unwanted frequencies such as noise from the upper

trace to produce the filtered lower trace.

Figure 2.3: A moving average filter takes samples, sums them, and divides them by the

number of samples. This is a seven-point moving average.

34

A rectangular window is considered an ideal low pass filter, and as such, the

window has a formula of:

() 1, 0

 0, otherwise
k k Nω = ≤ ≤
=

 (2.24)

Such a filter will always have ripple, or artifact of abrupt window edges in

transform, at the transition band edges due to the sudden drop from unity to zero in the

time domain series. A smoother frequency response is created however, if we smooth out

this abrupt drop in the time domain.

Smoothing out the window edges however, also has the side effects of Figure 2.4

that in essence say: if we adjust the filter to lower side lobe amplitude, we increase main

lobe width, and if we decrease main lobe width we will also be increasing side lobe

amplitude.

There have been a number of equations that can be used to create smoother

windows for filtering with [3]. These include:

Bartlett (triangular):

() 2 / , 0 / 2
2 2 / , / 2

 0,

k k N k N
k N N k N

ω = ≤ ≤
= − ≤ ≤
= otherwise

 (2.25)

Hann:

()() 0.5 0.5cos 2 / , 0
 0, otherwise

k k N k Nω π= − ≤ ≤

=
 (2.26)

35

Hamming:

()() 0.54 0.46cos 2 / , 0
 0, otherwise

k k N k Nω π= − ≤ ≤

=
 (2.27)

Blackman:

() ()() 0.42 0.5cos 2 / 0.08cos 4 / , 0
 0, otherwise

k k N k N k Nω π π= − + ≤ ≤

=
 (2.28)

Figure 2.4: A seven-point averager that applies equal weights to each coefficient (blue),

and varying weights to reduce ripple at the expense of a wider pass band (red).

The parameters of the different window’s effects on the main lobe width and side

lobe amplitudes can be seen in Table 2.1.

36

Table 2.1: Filter window type parameters [6].
WINDOW TYPE Main lobe Width Side lobe Amp. (dB)
Rectangular 4 / Nπ -13.6
Hamming 8 / Nπ -41
Hann 8 / Nπ -31
Bartlett 8 / Nπ -25
Blackman 12 / Nπ -57

Kaiser:

Perhaps the best and most common windowing method however is that of a

Kaiser window [4]. Kaiser created a window that did not have a fixed shape, but rather a

function in which both main lobe width and side lobe amplitude can be optimized. It is

defined as:

() ()2
0 0() 1 / / , -

 0, otherwise

k I k N I N k Nω α α⎛ ⎞= − ≤ ≤⎜ ⎟
⎝ ⎠

=
 (2.29)

where I0 is the zero order modified Bessel function:

() ()
2

0
0

() 1 / 2 1/ !k

k
I kα α

∞

=

⎡ ⎤= + ⎣ ⎦∑ (2.30)

which can be termed as a power series:

() () () () () ()2 32 2 2 4 2
0 () 1 / 4 / 4 * / 4 * 1/ 2 /16 * / 4 * 1/ 3I α α α α α α⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦ (2.31)

The two parameters of this function affect the window in the following manner

[3,5]:

37

--Increasing N while keeping α constant will decrease main lobe width without a

large side lobe increase

--Adjusting α while keeping constant N will adjusted side lobe level without

greatly affecting the main lobe

In order to implement a Kaiser filter, we must first define the Kaiser parameters.

We need to specify the parameters of the filter including cutoff frequency (fc), transition

bandwidth (ft), and ripple (A) [6].

 -- ft must be a fraction of the sampling frequency (usually 2π) and must be less

than 0.5. If ft > 0.5, aliasing effects will occur .

 --ripple is a fraction of pass band amplitude that will not cause significant error

and is expressed as an attenuation in dB:

()1020logA ripple= − (2.32)

For example if ripple is 1% or 0.01

()1020log 0.01/1 40A dB= − = (2.33)

Once this is known, α can be found as [3]:

()
() ()

0.1102 8.7 , 50

0.5842 21 0.4 0.07886 21 , 21 50
0,

A A

A A A

α

α

α

= − ≥

= − + − < <

= 21 A ≤

 (2.34)

38

Finally, to get the number of terms (N) one must use an α value and transition

bandwidth (ft) in the following equation:

() ()7.95 / 28.72 tN A f≥ − (2.35)

Since this tends to give fractional results, the value N should be rounded up to the

nearest integer value. If a value of ()2 1N + is too long, ripple and ft values can be

adjusted [4]. A graphic value representation is shown in Figure 2.5.

Figure 2.5: To create a Kaiser filter, we must specify cutoff frequency, transition
frequency, and percent of ripple allowed [3].

39

The final step in calculating the Kaiser filter coefficients is to calculate:

(0) 2
() sin(2) /()* ()

c

c

c f
c k kf k kπ π ω

=
=

 (2.36)

where k is obviously ranging from 1 to N [6].

2.5 Alternate Methods and Studies of I/Q Down-Conversion

There have been, and are currently a number of research projects that have been

dedicated to creating I and Q down-converters. Before A/D converters became fast

enough to handle higher-bandwidth waveforms, the I/Q demodulation was done using an

analog system such as the one shown in Figure 2.6. Now that A/D converters that can

operate in the GHz range are emerging as a viable strategy however, Digital Down-

Converters (DDCs) have become the subject of much research and development. Due to

remaining digital limitations, some of these implementations have used methods that may

cause unnecessary size and power to be added to the circuit. A couple of the alternative

methods that are being used to create digital I/Q downconverters will be discussed.

40

Figure 2.6: Analog I/Q demodulation followed by A/D conversions [7].

Virtually all of the current DDC’s use a method of sampling that utilizes a Hilbert

transform. According to Tsui [2], a Hilbert transform that is applied to a function x(t) in

the time domain can be defined as:

1[()] () () ()H x t x t h t x t
tπ

= ⊗ = ⊗ (2.37)

where once again the ⊗ represents a convolution, and H[x(t)] represents a Hilbert

transform. A result of a Hilbert transform can also be found using an inverse Fourier

transform such as:

1[()] () () [() ()]H x t x t h t F X f H f−= ⊗ = (2.38)

41

The Fourier transform of h(t), which represents H(f) above, can be represented as:

 0

[()] () sgn()
 0

j f
F h t H f j f

j f
− >⎛ ⎞

≡ = = ⎜ ⎟<⎝ ⎠
 (2.39)

Equation (2.39) above leads us to conclude that a Hilbert transform only has an

imaginary part Hi, and therefore the real component Hr can be ignored. These equations

are expanded for better understanding in [2, Chap 8]. Also in [2, Chap 8], a simple

example is used to demonstrate the effect of a Hilbert transform. Taking an input signal

of:

() sin(2)ix t f tπ= (2.40)

which has a Fourier transform of:

() [() ()]
2 i i
jX f f f f fδ δ= + − − (2.41)

where ()δ is the dirac function at a specific frequency.

Since the Fourier transform of h(t) allows us to multiply Equation (2.40) by j

when f < 0 giving –0.5δ(f+fi), and by –j when f > 0 giving –0.5δ(f-fi), we can recognize

the result as the Fourier transform of –cos(2π fit). Comparing the resulting signal to the

original in Equation (2.39), we can then see that the result is an equivalent amplitude

signal that is 90 out of phase from the original. Therefore, the following relationships

can be inferred:

42

[sin(2)] cos(2)
[cos(2)] sin(2)

i i

i i

H f t f t
H f t f t

π π
π π

= −
=

 (2.42)

The above equation set gives a good example of an analog Hilbert application.

Since a discrete Fourier transform is periodic however, that fact will affect the discrete

Hilbert transform. Again, Tsui [2, Chap 8] gives us a good analysis of a discrete Hilbert

transform manipulation in which he takes into account the needed causality of digital

sampling. His Fourier series representation of the Hilbert transfer function, assuming a

sampling frequency fs is:

2

1
() sin(2)sj ft

i n s
n

H e b nftπ π
∞

=

=∑ (2.43)

where:

/ 2 2

/ 2

2 ()sin(2)

0 even
4 odd

s
s

s

f j ft
n i sf

s

b H e nft df
f

n

n
n

π π

π

−
=

=⎛ ⎞
⎜ ⎟= −⎜ ⎟=⎜ ⎟
⎝ ⎠

∫
 (2.44)

using Tsui’s derived relationship of:

()
2
n

s
bh nt = − (2.45)

and applying to equation (2.43) in a discrete, causal manner, we find that:

43

2

1
() 2 ()sin(2)sj nft

i s s
n

H e h nt nftπ π
∞

=

= − ∑ (2.46)

0 even
() 2 odd

0 even
() 2 odd

s

s

n
h nt

n
n

n
h nt

n
n

π

π

=⎛ ⎞
⎜ ⎟=
⎜ ⎟=⎜ ⎟
⎝ ⎠

=⎛ ⎞
⎜ ⎟− = −⎜ ⎟=⎜ ⎟
⎝ ⎠

 (2.47)

Finally, using the values from Equation (2.47), we can create a set of coefficients

for a Hilbert transform filter. Using a FIR with a rectangular window and 11-taps, or

coefficients, we get h(n) values corresponding to n values from –5 to +5. These values

and corresponding causal values are demonstrated in Table 2.2. We could also use an

additional window with coefficient values w(n) by multiplying w(n) to h(n) in the Hilbert

transform filter. Such windows as those highlighted in section 2.4 are often used to limit

frequency effects of using a simple rectangular window.

Table 2.2: Standard h(n) values of a Hilbert transform filter.
n

(non-causal)
-5 -4 -3 -2 -1 0 1 2 3 4 5

h(n) 2
5π
−

0 2
3π
− 0 2

π
− 0 2

π
0 2

3π
0 2

5π

New n
(causal)

0 1 2 3 4 5 6 7 8 9 10

Current research studies are being performed by students at Wright State

University (WSU) under the supervision of Dr Marty Emmert in collaboration with the

Air Force Institute of Technology (AFIT) and AFRL, to make use of both the SSS

44

method and the Hilbert transform. One such Hilbert transform project is a parallel of this

study in producing I and Q waveforms for radar processing by using high-speed serial

input data. Since both methods of I/Q digital data conversions are under-developed, this

collaboration will serve an integral part in the maturing and development of these

receiver technologies in the future [8].

Sjostrom et. al. also made prevalent use of a discrete Hilbert transform in the

design of a DDC chip for use with an S-band digital beamforming array antenna in 1996

[9]. Their aim was similar to this study in that they were trying to minimize size, power,

and data imbalances. They used a 12-bit ADC input in which they split in the time

domain and used a Hilbert filter to form I/Q channels. They then used decimation filters

to slow down the signal as shown in Figure 2.7. Their architecture concepts are very

flexible, but there was no abstract top-level HDL code supporting it. They also use a

channel equalizer to mechanically minimize the amplitude and phase differences between

I/Q channels. While this is a valid and adaptable method towards minimal channel

imbalances, which could be used in our design also, it adds another stage of complexity

and along with it, extra size and power consumption to the processor (upwards of 25% or

greater addition to the chip size). This size addition can be seen by looking at their chip

layout in Figure 2.8. Therefore we will not include a channel equalizer in this research.

45

Figure 2.7: Sjostrom et al. digital filter block diagram [9].

Figure 2.8: Sjostrom et al. digital down converter chip layout [9].

46

2.6 Spurious Responses in Digital Sampling

In this section, the specific sampling principle of a spurious response will be

outlined, which we will use in order to verify and classify the created and manipulated

data samples. Spurious responses are vital to this research as they will mark the points of

comparison between our I and Q channels of data. We will look at amplitude and phases

of these points to determine amplitude and phase imbalances between the channels.

In any given sampling of a periodic signal (sine or cosine), we have three main

components that will determine the locations of what are called spurious responses [8]:

the input signal frequency (fi), the sampling frequency (fs), and the sample size, or

number of samples taken (Ssize). These three components help to comprise what is called

a frequency spectral bin which is described in detail below.

Let us take for example a signal of frequency 5 MHz that is sampled 100 times, or

rather has a sampling frequency of 100 MHz. This data set will form a set of spectral

bins that will contain signal energy. The greatest concentration however will spike in the

bin corresponding to the input frequency. We can see in Figure 2.9 that when we take an

input signal of 5 MHz, sampled at 100 MHz, and sampled 100 times; running it through a

Fast Fourier Transform (FFT) gives 100 spectral bins with spurs at 6 and 96 (5+1 and

95+1, due to my specific Matlab charting technique, the plots are shifted slightly). Since

the input frequency exactly matches one of the sampled frequency bins, and the sample

data accuracy is close to exact, there are no side lobes in the plot. If we were sampling a

frequency such as 2.5 MHz or 8.4 MHz, it would not match exactly with a spectral bin

and would therefore form side lobes in the plot, creating many erroneous spurs. This

concept is demonstrated in Figure 2.12 for quantized data. Another interesting

47

consistency in a spectral bin plot is the symmetrical mirror effect that occurs. We can see

that points 2 to 51 are a mirror of those from 52 to 101. This will allow us to only need

analysis of one half of the plot for certain data.

Figure 2.9: Plot of fi = 5 MHz, fs = 100 MHz, Ssize of 100 and non-quantized data.

Now if we were to quantize the input data set to a binary from, and truncate it to a

signed form with 3 bits, we will get a new spectral bin with erroneous spurs. These slight

side lobe spurs are a result of the loss of accuracy in the data points due to the truncation.

Such a plot is shown in Figure 2.10. The error between time domain signals of Figure 2.9

and Figure 2.10 is shown in Figure 2.11. We can see that the errors repeat themselves

each cycle and will therefore continue to repeat if more samples are taken.

48

Figure 2.10: Plot of fi = 5 MHz, fs = 100 MHz, Ssize of 100 and quantized data.

Figure 2.11: Difference between quantized (3-bits) and non-quantized data.

49

When we take a sample as stated above in which the input frequency does not

match exactly to a spectral bin, we see much higher side lobes than if just using

truncation. In Figure 2.12, we again sample at 100 MHz with a 3-bit representation, but

this time we will use an input frequency of 2.5 MHz. Here we have side lobe spurs of a

significant amplitude and thus have to be careful in this case when analyzing data

samples. This affect can be especially important if reading data containing more than one

frequency component.

Figure 2.12: Plot of fi = 2.5 MHz, fs = 100 MHz, Ssize of 200 quantized data points.

50

To show what will happen if the number of samples is increased, we can run the

same sample as in Figure 2.10 with 6-bit quantized data, but this time use 200 samples as

in Figure 2.13. Here we see basically the same plots as in Figure 2.10; however, we have

used twice as many periods of the input wave, and therefore the spectral bin is also

proportionally halved in bin-width, and bin amplitudes are also proportionally increased.

In general, we can assume that the more spectral bins there are in the sample, the more

concentrated the spurious response will be. The frequency bin of the ideal spur can be

represented as:

max *size
i

s

SB f
f

= (2.48)

where Bmax is the bin number of the ideal maximum spur, Ssize is the sample size, fs is the

sampling frequency, and fi is the frequency of the input signal. In the Figure 2.13 we can

see that:

max
200 *5 10
100

B = = (2.49)

therefore the ideal spur bin should be located at about 10 (+1 for my scheme: = 11).

51

Figure 2.13: Plot of fi = 5 MHz, fs = 100 MHz, Ssize of 200 quantized data points.

An important detail in developing all plots in this research is that the input signal

must start at 81*10t −= and continue to 84 1*10t π −= + . This is required because if the

signal were to pass t = 0, computer errors due to the zero will greatly affect the quantized

data sample [2, Chap 6].

2.7 Spurious Signal Analysis

Now that we know how the spurious signals are derived, we need to apply the

concept in order to get useful information for classification of I/Q imbalances. Every

signal that is run through an FFT function, will contain both an imaginary (Im) and a real

52

(Re) component, and therefore every spectral bin will contain a Re and Im component.

Using this concept allows us to represent each spectral bin in a polar notation with a

radius (R) and angle (θ) [8]. A circle representation can be used to visually present this.

If we use the y-axis to represent the Im component and the x-axis to represent the Re

component, we can get points on a circle that will represent a radius measure from the

origin and an angle measure from the positive x-axis. For example, if we have a Re

component of value 0.8660254 and an Im component of value 0.5, it will be placed on

the circle representation as in Figure 2.14.

Figure 2.14: A polar (circular) representation of a signal with amplitude of 1.0 and a

phase of 30 .

We can see above that the values form a line on the circle and that if we use the

following equations, we can get the amplitude (or radius {R}), of the line and the phase

(or angle {θ}) of the data point:

53

2 2Re Im 1

Imarctan 30
Re

R

θ

= + =

= =
 (2.50)

Each spectral bin of an FFT signal will contain an amplitude and phase as above,

but to get the most accurate representation of the amplitude and phase of the entire signal,

we want to measure the components in the bin where the signal has it’s maximum spur.

This maximum spur can be found easily by comparing the amplitude of each bin. If side

lobe and erroneous spurs in the signal are kept to a minimum, this method is quite

efficient for calculating imbalances of the entire signal.

For our purposes, we can run an equivalent FFT function on each of the I and Q

data signals sampled from the original input signal. Thus by doing so, we will then have

an accurate polar model of each signal that will make finding imbalances between the

data trivial.

Because the I and Q channels should have the same frequency, the maximum spur

should occur at the same spot in each of their FFT outputs. The FFT data from each

channel should ideally have equal amplitudes and will be 90 out of phase (the I channel

most commonly leads the Q channel). By comparing the data at this spot for each

channel, we can clearly see the imbalances between channels. Figure 2.15 shows a

second channel on the same plot as the one in Figure 2.14. This is an ideal representation

as we see that the I channel and Q channel both have amplitudes of 1.0 and that the I

channel leads the Q channel by exactly 90 .

54

Figure 2.15: A polar (circular) representation of two signals with amplitudes of 1.0 and

phases of 30 and 120 (90 out of phase).

2.8 Design Flow of Digital Synthesis

In previous sections we have defined all of the background knowledge needed to

understand the SSS and how it will be characterized. That information will help us to

create the VHDL models of the SSS circuit, but it does not explain any way to validate

the design. In this section we will take an in depth look at the background required to

understand the design synthesis process, and optimization of Hardware Description

Languages (HDLs).

Modern day circuit design has led to a number of trends and patterns. Such

factors as ever-growing complexity and density, ever shrinking sizes, and always

growing need for custom design, have influenced the design process for ASICs,

55

microprocessors and Systems-on-Chip (SoCs) in many vital ways. The nano-scale of

modern design implementations brings about ever increasing problems of routing circuits

while still maintaining timing and congestion standards on the chip. Now that we have

met 130 nm technology and are heading into the 90 nm and even 60 nm era, second and

third order physical effects are posing difficult barriers that went unaccounted for in the

past [10].

The front-end of ASIC design now yields to the back-end as physical effects of

implementation are now slowing logical designs more significantly. Gate delays used to

be a major factor in circuit designs, but as can be seen in Figure 2.16, the largest slow

down today is due to interconnects and routing delays. Because of this, design iterations

and design flows are becoming absolutely vital to the implementation and optimization of

such circuits. Industry shows a great need for convenient and fast design models so that

the hand-off of tape-outs, or finalized design files to be sent to foundries, can be

accomplished with less design iteration. Government agencies such as the military on the

other hand are interested in building fully optimized designs that can compete with

industry standards. Algorithms that combine both logical circuit verification with that of

‘look-ahead’ synthesis checks (router, timing, power, etc.), are of great use to both

industry and government circuit engineers and designers.

56

Figure 2.16: Evolution of gate delay contribution to interconnect delay, as feature size

decreases and die size expands [10].

The most basic (classical) digital circuit design flows seem to involve two major

design steps, with a major verification/optimization step following each [11]. These

design steps are finalized with a final tape-out step. Each step and verification process

has its own challenges and variations, and involve a number of smaller processes of its

own. A description of each section of an ASIC circuit design flow is outlined as follows:

-Top Level Design: The first step in the development of a circuit, often termed

the ‘front end’ is the initial design and top-level implementation. Another way to look at

this step is as an architectural draft. This series of work is inclusive of the brainstorming

and requirement gathering steps, and the final top-level design outline. Decisions made

in this work include evaluating design feasibility, determining if the design will fit on a

57

specified die, and determining if it will meet the required timing and power constraints.

Once a plan has been made for the circuit, top-level block designs can be created using

pre-existing libraries of cells, or by creating custom cells with known or designer-created

macros [12].

At one point, this initial design step was accomplished at a low transistor level

known as ‘structural.’ However, with the ongoing and continuous nature of technology

to go smaller in size, but bigger and more complicated in scope (high density and number

of transistors—multimillion gate designs are common place), traditional low level models

no longer suffice as the computer resources are not available in most cases to handle such

designs.

Instead, designers have turned to the top-level, ‘behavioral’ design methods

known as Resistor-Transistor Logic (RTL) [10]. Industry and educational institute

standard HDLs such as VHDL and Verilog have put this logic to use. Using the

programming syntax in these languages, designers are able to easily program a

description of their device and then use a simulation or synthesis tool to extract that

description into an actual device cell. There are many industry standard cell (macro)

libraries available for use, or designers can choose to customize their own. Once a

‘behavioral’ design has been created by combining one or more series of macros it needs

to be verified and tested for functionality.

-Top Level Verification: Optimization within the top-level design comes from

using Electronic Design Automation (EDA) tools available to today’s designers. Industry

leaders in this design phase such as Synopsys, Cadence, and MentorGraphics all supply

58

designers with programs that allow combination of a controlled level of detail in design,

while still ensuring high-level viability in silicon.

Initially, a basic company package will have software to deal with VHDL or

Verilog programming and code. Through these a designer can write a code, and then

verifying it along the way to ensure it will compile, therefore avoiding some simple

syntax errors that can waste a designer’s time if not found early on. Coding softwares

also commonly include simulation runs that will allow verification of architectures of

simple blocks (such as a mux or adder) or of larger systems like calculators or clocked

units. Such software is vital in verifying the first designs for actual functionality.

The next part to optimizing the design comes in turning such ‘logical’ elements of

a VHDL design into physical cells that can be used in a fabrication. Again, this is

covered by industry programs that use Design Rule Checks (DRCs) and automatic routers

to automate this RTL-to-gates transition [10]. This is a process that will take the ‘logic’

and convert it using rules of the sized technology of the design, into metal wire layers, in

the most optimized way the program can. Most often, a large design will be made into

cells (mux, adders, etc.) that are combined for a final result. These cells are optimized to

be as small or efficient as possible. Cells can be automated (such as reuse of IP blocks),

or can be designed manually by a user with programs like Magic and Cellgen. It would

be most effective to take a whole design into a DRC and have it implemented into one

single routed design, but in the large systems being created today, such a method would

be much too complex to be handled by CPU overhead available.

For the reasons stated above, as well as for flexibility needs of designers to adjust

a design to certain optimizations (optimizing a design for speed, will result in a different

59

design than if altering for other factors such as size, power, or reliability), the approach

used currently is to start with a ‘cell’ design, and alter the way in which the cells

themselves are placed and routed to one another [13]. This is a vital step to a design

process in which a great number of iterations may occur. Placement optimization

software allows a user to do multiple runs of placements options such as ratio, rotation

and mirroring, and to then estimate a die size that will be needed. A great advantage to

iterating at this point is that blocks can be added or removed to create different variations

of the design, which can be run under cost analysis.

The large advantage to having an optimized front-end design is to give gate-level

physical tools the best possible starting point later on in the process. Such optimization

tools however cannot suffice for the physical gate-level because prototyping placement

tools have extra options such as ‘bleed out’ (where gates can extend out of their block

and into open areas of neighboring blocks) [10]. A good starting point for the physical

level placement is essential however for saving time in back-to-front iterations in design,

and can help bring much earlier timing closures. A good block diagram representation of

a front-end process is shown in Figure 2.17.

60

Figure 2.17: Front-end physical design exploration flow into synthesis and virtual

prototyping tools. [10]

-Physical Design: Once an initial design has been decided on in terms of rough

size and placement, it must be synthesized for test in a physical environment. This part

of the process is often referred to as the ‘back-end’ of the design process. This portion of

the design process usually does not result in large changes in the physical makeup of the

61

circuit, but it does make adjustments so that the design may be implemented with the

technology specified (dependent on size: submicron, Deep-Submicron (DSM), and Very-

Deep-Submicron (VDSM)).

As technologies go down in size, the impacts of electrical interconnects create

increasing difficulties in sustaining timing and routing consistency, as well as sustaining

power issues [14]. If timing closure cannot be achieved by the design as it is, it cannot be

successfully fabricated to working order. Therefore, the physical implementation of an

ASIC design is critically important to adjust until correct, otherwise an actual fabrication

of the design may prove dysfunctional.

-Physical Verification: Optimization within the back-end of a design starts with

extraction of the front-end design into a physical design-optimizing program. The goal of

this is to make up for inaccuracies of wire load models by implementing Resistor-

Capacitor (RC) effects. By accounting for these new parameters, designs can be

optimized with new models and non-necessary (detour) routes due to congestion within

the wiring can be avoided. Timing closure can then be accomplished in conjunction with

such physical effects as blockages, clock tree synthesis, scan chain re-ordering among

other low-level details not accounted for in the high-level design process [14]. This

being the case it is easy to see why front-end optimization is important to give a good

starting point, but is unable to give a sufficient final design.

The first and foremost element in back-end design is placement. It is critical

because it affects routability, reliability, and die area, and therefore has a huge impact on

a design meeting its timing specifications. Just a small change to the placement of design

62

elements to optimize one physical effect, can have a serious impact on the optimization

of others. A significant movement in place of elements will affect RC calculations that

are used to determine gate size and logic order. In DSM circuits, multiple objectives

such as routability, timing, and signal integrity can be designed around (with good

algorithms, more than one can be optimized at a time in a balanced effort) [14]. To

manage a complex design efficiently, a good tool needs to be able to identify true timing

paths, as false and looping paths will waste logical efforts, hide underlying timing

problems, and cause congestion.

As technology continues to shrink, effects of interconnect on delay will increase.

It is then important for a physical optimizer to detect so called ‘hot spots’ and modify the

wires to relieve congestion [14]. If congestion is kept, there will be discrepancies in

routing behavior and timing closure will be difficult due to created detour routes of wires.

False paths and detoured routes cause extra time to be spent on analysis.

There are a number of other results of wire interconnect in an ASIC design.

Pessimistic wire load models can cause excess buffers to be routed into the design and

create congested areas, as well as take up extra power and area. A second issue is that of

set-up and hold times. Varying gate size or adding appropriate buffers can fix violations

of set-up or hold times. A third very integral issue to be managed is signal integrity,

which may include crosstalk, noise, and power. There are a number of ways to handle all

of these elements [14].

63

2.9 Chapter Summary

In this chapter, we clarified the background information needed to understand the

various parts of creating a high-level VHDL I/Q modulator unit using the SSS. Such

factors as digital representations and filtering methods, along with actual methods of

sampling incoming digital data was reviewed. Also covered was the process of design

synthesis to tape-out of a working ASIC circuit.

64

2.10 References

[1] “Modular Digital Radio Frequency System (MoDRFS).” Final Report, Raytheon
Company. Government Contract: F33615-98-2-1330. 19 May, 2004.

[2] Tsui, James. Digital Techniques for Wideband Receivers. Artech House, 2001.

[3] Zelniker, Glenn. and Taylor, Fred J. Advanced Digital Signal Processing. New
York: Marcel Dekker, Inc, 1994.

[4] Lynn, Paul A. and Fuerst, Wolfgang. Introductory Digital Signal Processing

With Computer Application. John Wiley & Sons Ltd., 1994.

[5] Oppenheim, Alan V. and Schafer, Ronald W. Discreet-Time Signal Processing.

New Jersey: Prentice-Hall, Inc, 1999.

[6] Haussman, Werner. “Filter Your Data in Software.” Test & Measurement World.

12 October 2005 http://www.reed-
electronics.com/tmworld/index.asp?layout=articlePrint&articleID=CA202503.

[7] Shaw, Gary A. and Pohlig, Steven C. “I/Q Baseband Demodulation in the

RASSP SAR Benchmark.” M.I.T. Lincoln Laboratory. 08 November 2005
http://www.ll.mit.edu/llrassp/I/Qfilter/I/Qfilter.html.

[8] Personal discussion with Col Marty Emmert of the USAF AFRL and Professor at

WSU. November 2005.

[9] Sjostrom, Ulf. and Carlsson, Magnus and Horlin, Magnus. “Design and

Implementation of a Digital Down Converter Chip.” The European Association
for Signal Image Processing. 04 November 2005
http://www.eurasip.org/content/Eusipco/1996/paper/i_7.pdf.

[10] Clee, Christopher and Lee, Suk. “The Effect of Nanometer Technology on ASIC

Handoff.” White Paper, Icinergy Software Company & Cadence Design Systems.
17 January 2006
http://www.cadence.com/whitepapers/icinergy_cadence_whitepaper_final.pdf.

[11] “Digital Custom Circuit RTL Model Development and Functional Verification.”

Technical Paper, Cadence Design Systems. 17 January 2006
http://www.cadence.co.in/whitepapers/equivalence_checking_WP.pdf.

[12] Personal discussion with Dr. Yong Kim, Professor at AFIT. August 2005.

65

[13] Idgunji, Sachin., et all. “Design Planning Strategies to Improve Physical Design
Flows—Floorplanning and Power Planning.” White Paper, Synopsys, Inc.
August 2003.

[14] Wilson, Jeff. “Achieving DSM Timing Closure with TeraPlace, a Physical

Optimization Solution.” White Paper, Mentor Graphics Corporation. 2000.

66

III. Characterization & Methodology

3.1 Bit Precision in Digital Modeling

This section, and the following sections of this chapter, will outline the principle

strategies to be used in the characterization and implementation of a SSS for I/Q

downconversion utilizing top-level, portable design strategies. This specific section will

review and demonstrate the importance of using binary representation in our

characterization models and will outline the representation options we have available.

Because decimal notation is not a hardware option, it is critical to define a number

representation before moving into characterizing signals and creating circuit designs.

Since Matlab, by default, uses a decimal system of representing numbers, the numbers

must be altered in order to create a binary representation of the numbers. Hardware

implementation must use simple math functions and limited bit-widths in order to obtain

high speed processing (normally due to ADC limitations). AFRL’s fastest ADC can

operate near 3 GHz; however as a result, it also is limited to only two bits in width which

makes it impractical for most uses [1].

One of the biggest debates in Digital Signal Processing (DSP) is whether to use a

floating-point representation, or a fixed-point representation in a design. Floating-point

operations in general, contain more logic levels than do fixed-point operations in an

ASIC or FPGA design. This usually results in a greater clock-cycle cost [2].

Historically, to get real-time performance, it has been required to primarily, if not

completely, use a fixed-point design. The trade-off to this however, is a greater loss in

numeric fidelity of the processed information over that of a floating-point operation.

67

There are two IEEE standards for Floating-Point precision of a signed number:

32-bit and 64-bit. This is called the IEEE 753 floating-point standard, and had been used

in computers and devices since 1980 [3, Chap 3]. The 32-bit binary floating-point

representation can be seen in Table 3.1 below, in which the first bit is the sign bit (‘0’ for

positive and ‘1’ for negative), the next eight bits make up the exponent value, and the last

23-bits, referred to as the mantissa are the fractional values. The 64-bit binary floating-

point representation (referred to as double precision) in Table 3.1 is the same format with

a sign of 1-bit again, an exponent of 11-bits, and fraction of 52-bits.

Table 3.1: IEEE 753 floating-point representations.

IEEE 753
Floating-point

Sign Exponent Fraction (Mantissa)

Standard 1-bit 8-bits 23-bits
Double 1-bit 11-bits 52-bits

When reading a floating-point value, one may convert to its decimal equivalent by

using the equation:

()(1) *(1)*2s Exponent Bias

valueD Fraction −= − + (3.1)

where s is the sign bit, and both the Fraction and Exponent are the decimal equivalents of

their binary values. The Bias is needed to correctly distinguish positive exponent values

from negative exponent values and had a value of 127 for single precision, and 1023 for

double precision. To demonstrate, let us use a binary number represented in single

precision:

68

1|10000001| 01000000000000000000000valueB =

using the floating-point terms we can extract:

1

10000001 129
01000.... 0.25

s
Exponent
Fraction

=
= =
= =

and therefore:

1 (129 127)

2

(1) *(1 0.25)*2

1*1.25*2
1.25*4
5.0

valueD −= − +

= −
= −
= −

Floating-point additions and multiplications require fairly involved algorithms to

solve equations. Most of the complexity of the operations involves steps to normalize the

inputs and the results to match each other’s fractional decimal point places. A full

explanation of the algorithms can be found in [3, pg197-205]. Hardware logic examples

of a floating-point adder and multiplier can be seen in Figure 3.1 and Figure 3.2

respectively.

In addition to the standard IEEE floating-point structures, lightweight floating-

point structures can be developed. The advantage of this is that unnecessary precision

can be cut out in exchange for smaller area and power, and in most cases, higher speed.

A lightweight structure generally follows the same setup as standard structures, but with

smaller exponent and mantissa widths. In addition, there are a number of different

rounding/truncation methods that can be used to compensate for possible overflow (when

69

a positive exponent becomes too large to fit in the exponent field) or underflow (when a

negative exponent becomes too large to fit in the exponent field) of an operation. In [4],

a lightweight floating-point system is developed that uses a ‘jamming’ rounding

technique and can support variable sizes from 3-bits (1 sign, 1 exp, 1 mantissa) to 32-bits

Figure 3.1: Floating-point adder. Blue modules have large area and/or delay.

[4]

(IEEE standard). Chen used a comparison between their 14-bit implementation to that of

the standard 32-bit floating-point, and that of an accuracy comparable 20-bit fixed-point

implementation of adders and multipliers. The results can be seen in Figure 3.3 and

Figure 3.4 respectively. To show a power comparison, they also tested an Inverse

Discrete Cosine Transform (IDCT) in each format of which the results can be seen in

Figure 3.5. By analyzing Chen’s results [4], we can see that while a lightweight floating-

70

point implementation is a great improvement on the standard IEEE format, it still lags the

size and delay aspects of fixed-point in most instances.

Figure 3.2: Floating-point multiplier. Blue modules have large area and/or

delay. [4]

While in the past, fixed-point DSPs held a stronger advantage in size, power, and

speed over floating-point DSPs, and floating-point had an advantage in ease of use, both

of these difference gaps have shrunk significantly. SOC integration and volume has

become more of a factor than the size of the DSP core itself. These issues should no

longer be a deciding factor in which DSP type to use. Instead, the designer must simply

judge the need for range and precision of the project. Fast, high volume sampling rates

such as those used for video applications are better off using a fixed-point approach. On

71

the other hand, applications that require a wide sampling range and not as much speed,

such as audio receivers, will likely be better off using a floating-point approach [5].

Figure 3.3: Adder design examples. [4]

Figure 3.4: Multiplier design examples. [4]

72

Figure 3.5: Parameter comparisons between versions of IDCTs. [4]

For our purposes, we are looking at a video receiver with small bit-width inputs

(likely 2-16 bits), coming at high frequencies. This equates to a lot of small data

samples. Since our largest concern is with the ability to process the data at such high

speeds, it would be excessive to use a floating-point representation on the input.

Therefore we will stick to a reduced fixed-point representation of the decimal

values of the input, output, and filter coefficients of the down-converter. By using a

fixed-point binary representation however, we would also need a very significant and

unrealistic number of bits to come near a high-precision decimal value. Take for

example the decimal: 765.8125. We can see the decimal value has seven significant

digits on each side of the decimal point. If we convert the number to binary however, we

end up with the value: 1011111101.1101. The decimal equivalent we can see now has

73

14 significant bits meaning we would need to use a 14-bit signal to represent it to an

exact precision.

At high speeds we are more likely to be using signals of somewhere from 2 to 8

bits on an input, maybe even up to 12 bits for a slower device. To use the value above in

an 8-bit fixed-point signal, we would need to either round it or truncate it. If using a

signed representation (as we will be doing) we may also need to add the first bit to

represent the sign (positive = ‘0’ or negative = ‘1’) of the value. The above number using

this method would then be truncated to: (0)1011111000.0000, as the last 7 bits would not

be able to be analyzed. Appendix 1 contains the Matlab function ‘trunk_down.m’ that

utilizes Matlab’s built-in ‘fi’ functions to convert a long precision value into a binary

equivalent based on fixed-point binary parameters [reference Matlab help]. The resulting

decimal equivalent of the above, truncated binary value is: 760, which has a 0.76% error

from the original decimal value. This may or may not be a significant error depending

on the application of the hardware.

Mathematical operations in fixed-point are much more direct than in floating-

point. The main difference between the two are that in fixed-point operations, it is often

necessary to increase the bit-width between the input and output. Take for example the

addition of two 4-bit 2’s compliment fixed-point values below:

10.10 = -1.5

+10.01 = -1.75

=100.11 = -3.25

74

We first of all can see how the decimal point stays in the same place throughout

the operation. Secondly we can see that while both inputs were only 4-bits wide, the

resulting sum must be 5-bits wide to accurately represent the value. If the Most

Significant Bit (MSB) were not included, the result would be 0.75 instead, which is

highly inaccurate. This same concept also applies to fixed-point multiplication, but on a

greater level. Let us use different values to demonstrate a multiplication:

01.00 = 1.00

*01.11 = 1.75
01 00

010 0
0100

0000
001.1100 = 1.75

We can see above that multiplication both increases the number of bits needed to

represent the number, and also causes a shift in the decimal place. The decimal shift is

not normally compensated for during the fixed-point operations, but is considered in the

back-end processing of the output. The multiplication of 2’s compliment numbers brings

the added complications of the sign of the result [1]. The general rule of output bit-

widths of signed fixed-point multiplications is:

1 2out in inBitwidth Bitwidth Bitwidth= + (3.2)

There have been many methodologies devised for both addition and

multiplication of signed fixed-point numbers. Adders such as the ‘Ripple Carry Adder’

75

and ‘Carry Look-Ahead’ adder are well documented for use in VLSI systems. There are

also a number of digital multiplier techniques. One such scheme is used by [6] to

optimize a serial FIR filter. Figure 3.6 gives an example of the scheme for two 4-bit

numbers in which the sign information of the result is contained in the partial products

Xi*Y3 and X3*Yi.

Figure 3.6: Four-bit multiplication example [6].

The accuracy issue of using a lesser number of bits to represent a signal can be

seen clearly in Figure 3.7 where the same input signal is represented with different bit-

width values.

The question then is what is an acceptable error for a specific application, and

what size bit-widths are required to preserve that error. For this research, Tsui’s SSS will

be used in which three parameters (input values, filter coefficient values, and output

values) must be translated to binary and truncated for hardware specifications. Therefore,

by using the truncation code in Appendix A in which we utilize the ‘fi’ function in

Matlab [7], we will test and classify the errors in data (I/Q imbalances) that are caused by

such truncation errors.

76

Figure 3.7: Waveforms sampled at different signed, truncated bit-width accuracies.

3.2 Modeling I/Q Data and Imbalance

Before we can begin designing a hardware version of the I/Q SSS, we must verify

its operation and usefulness for accurate signal sampling. To accomplish this we will

explore the methods to be used in characterizing the I/Q SSS, in specific, the

programming efforts made to characterize the data with Matlab will be explained. The

basic SSS and original Matlab strategy is presented in Chapter 2, and in detail in [8, Chap

8]. In order to characterize and model the behavior of the I and Q data channels, some

77

changes and many additions to the original code from Tsui were made. The code used to

obtain the data and analysis in this section is presented in Appendix B.

To keep consistent with the base case studied, we will assume that Tsui used the

input frequency of 14 MHz and sampling frequency of 100 MHz because this

combination illustrates the down-conversion of the input signal well. We will keep with

the combination before moving on to more application specific examples. In actuality,

any combination of input and sampling frequencies can be used with this sampling

scheme as long as the input frequency is kept to less than half the sampling frequency. If

the input is faster than this, harmonic effects will become significant. Through analysis,

it has also been found that using an input frequency that is exactly one fourth of the

sampling frequency will create unreadable results. This is due to the sampling being split

into fourths itself in the scheme.

The first manipulation of the sampled data in the SSS is to send it through a low-

pass filter to filter out the upper portion of the mixed (sampled) signal. In the base case,

we use a 32-tap Kaiser window for our filter coefficients. The Kaiser window is shown

in Figure 3.8 using Matlab’s window visualization tool [9]. Any number of filter types

could be used, but the Kaiser is the most versatile, so we will use it for our

characterizations. The corresponding filter coefficients used with a FIR, gives the plots

shown in Figure 3.9.

Once the filter is created and split, it is convolved with the split input samples,

creating the I and Q channels. The 14 MHz signal sampled at 100 MHz, and it’s

resulting I and Q channels (which are at about 11 MHz) are shown in Figure 3.10. The

plot shows the results of sampling the input signal 256 times. Two signals, spaced one

78

5 1 0 1 5 2 0 2 5 3 0
0

0 .2

0 .4

0 .6

0 .8

1

S a mp le s

Am
pl

itu
de

T ime d o ma in

0 0 .2 0 .4 0 .6 0 .8
-1 0 0

-8 0

-6 0

-4 0

-2 0

0

2 0

4 0

No rma liz e d Fre q u e n c y (×π r a d /s a mp le)

M
ag

ni
tu

de
 (d

B)

F r e q u e n c y d o ma in

Figure 3.8: 32-tap Kaiser window used for filter coefficients.

Figure 3.9: FIR plots using a 32-tap Kaiser window.

79

fourth of a period apart from each other, demonstrate the data channel split into I and Q.

This figure shows the two signals in the time domain.

Figure 3.10: 14MHz signal sampled at 100MHz with SSS.

To uniquely described the SSS process, refer to Table 3.2 below. The table lists

the parameters needed to successfully define an I/Q downconversion in the SSS.

In order to analyze a signal further into a useful form, we need to produce a

frequency representation of them by using a FFT [10]. By keeping the FFT the same

length as the number of samples taken we get an equal number of frequency samples.

For the case of the I and Q channels, we have more samples than we do for the original

signal. This occurs due to the filter convolutions. If a 32-tap filter is used, then we will

80

Table 3.2: SSS parameter list.

Parameter Description
Input Frequency (or Frequency
Range)

Frequency of the incoming signal/s

Sampling Frequency (or
Frequency Range)

Frequency of the point sampling of the incoming
signal/s

Filter Length # of coefficients used in the digital filters
Input Bit-Width # of bits used to represent input values
Coefficient Bit-Width # of bits used to represent coefficient values
Output Bit-Width # of bits used to represent output values
Maximum Amplitude
Imbalance

Allowable amplitude imbalance between I and Q data
channels

Maximum Phase Imbalance Allowable phase imbalance between I and Q data
channels

have 32 more samples in the resulting signal. For the most accurate frequency domain

representation, the first and last 16 samples will be disregarded from the I and Q

channels, as they simply represent the filter delay and runoff. Therefore, we will end up

with three frequency signals of equal number of samples: the original input signal, the

down-converted I channel, and the down-converted Q channel. Again, each sample will

have a real and an imaginary component. The output of the 14 MHz signal at 100 MHz,

sampled 1024 times can be seen in Figure 3.11. Notice the location of the spikes of the I

and Q plots are located at the same general locations. When we convert the real and

imaginary components of these samples into polar measures, we can get an amplitude and

phase plot like the one shown in Figure 3.12. Again, the spurs represent the majority of

the signal energy and therefore the points where the spurs occur can be used to determine

the amplitude and phase of each signal.

81

Figure 3.11: FFT plots of 14 MHz signal sampled at 100 MHz, 1024 times with SSS.

From Section 2.7, we know that if the sampling was perfect and ideal, that the I

and Q samples will have equal amplitudes and will be exactly 90 out of phase. Looking

at the location of the spurs in Figure 3.12 and their corresponding frequency values, and

looking at the comparison of their values in Figure 3.13, it is clear that the I and Q

channels have imbalances in both their expected amplitudes (0.02%) and phases

(0.128%). If these imbalances become too significant, the signal may become unusable.

82

Figure 3.12: Amplitude and phase plots of 14 MHz signal sampled at 100 MHz, 1024

times with SSS.

One final significant manipulation of the FFT signals can help us to verify the

frequency of the input and output signals. By taking the power content plot of the signal

FFT outputs, we will get a spike at the location of the signal’s frequency. If there are two

frequencies in the signal, there should be two spikes on the plot. By comparing the

power plot of the original signal to that of the I and Q channels, the measure of the down-

conversion can be identified. In Figure 3.14, the original signal (14 MHz) has its spike at

83

13.96 MHz and the I and Q channels have their spikes at 11.04 MHz, resulting in a down-

conversion of about 3 MHz.

Figure 3.13: Amplitude and phase difference/imbalance plots of 14MHz signal sampled

at 100MHz, 1024 times with SSS.

The down-conversion can be verified by subtracting the sampling scheme’s

resulting sampling frequency (fs/4), from that of the input frequency. In the case of

Figure 3.14, we take:

10013.96 13.96 25 11.04

4
MHzMHz MHz− = − = − .

84

Figure 3.14: Frequency downconversion of 14 MHz signal sampled at 100 MHz, 1024

times with SSS.

Since the frequency domain is symmetrical we can take the absolute value of the

result. This means that we will always have a frequency spike in the positive frequency

domain.

3.3 Variable Effects on I/Q Imbalances

An all hardware implementation of the SSS is required for use as an ASIC or

FPGA. As a result, we will look at five hardware dependent variables that may affect the

85

imbalance of the I and Q channel outputs: FIR filter length, sample size taken, input bit-

width, coefficient bit-width, and output channel bit-widths. Each will be explored and

characterized first before combining their effects.

The default filter length in Tsui’s original program is 32 tap, but this number can

be changed in exchange to get a slightly shorter or longer output delay. Through Figure

3.15 using the default case, the trend is for the phase imbalance to dip to a minimum

between 30 and 40 taps, and for the amplitude imbalance to increase as the taps are

increased. We also see that 32 taps gives a good balance between the two factors,

therefore using 32 taps would seem to be a suitable setting. In Figure 3.16, a faster

implementation of 100 MHz signal sampled at 1 GHz is tested to verify a faster use of the

Figure 3.15: Filter length effect on imbalances of 14 MHz signal sampled at 100 MHz,

2048 times with SSS.

86

sampling scheme. Here we see some similar but not exactly the same trends. Again

however, 32 taps seems to be a suitable setting.

The most important aspect to altering the filter length is not the trends themselves,

but rather the effect of the trends. In all but the very worst cases, the effect of using any

range of filter lengths only seems to affect the overall imbalances by less than 0.005%.

As will be seen after analyzing other factors, this is not an overly significant effect, and

therefore it will be assume that using the 32-tap filter is a reasonable option for any

implementation of the SSS.

Figure 3.16: Filter length effect on imbalances of 100 MHz signal sampled at 1 GHz,

2048 times with SSS.

The second variable, the sample size of a signal, is the number of samples taken

of the input signal at the sampling frequency. A general trend of FFT is to become more

87

accurate toward the ideal with the more samples that are taken [1]. In a true continuous

signal, the number of samples is also continuous and could therefore gravitate towards

infinity. To sample however, a certain string of these samples must be extracted and

therefore it will not be continuous, but will be a set sampling size.

Looking at the default case in Figure 3.17, the general trend outlined above is

verified for imbalances of the I/Q signals as well. We see that a small sampling size such

as 128 generates a much greater imbalance (both in amplitude and phase) in the data

channels than a larger sampling size. The imbalance trend is almost an inverse

exponential as it levels off to an almost linear slope at a sampling size of around 2000.

This trend is verified in the case of a 100 MHz signal sampled at 1 GHz as can be seen in

Figure 3.17: Sample size effect on imbalances of 14 MHz signal sampled at 100 MHz

with SSS. Uses 32-tap filter.

88

Figure 3.18. Again the slope is leveling off at around 2000 samples. This will be the

case for any legitimate signal/sample frequency combination.

Using the above trend of sampling size effect on channel imbalances, we can use

a common digital value such as 2048 as the sampling size for our tests as it will almost

always be a suitable value for imbalance evaluation.

Figure 3.18: Sample size effect on imbalances of 100 MHz signal sampled at 1 GHz

with SSS. Uses 32-tap filter.

The next three variables, the bit-widths of the signal values and filter coefficients,

are all altered in the same way. They can be represented non-ideally by a specified

number of bits. We need to analyze just how reducing these bit-widths will affect the

imbalance of the output I and Q channels. Each of these variables will produce a plot of

fairly sporadic imbalance values that will level off and eventually become constant as the

89

number of bits used is increased. In order to create a stable sampling system capable of

sampling a large range of frequencies, we must find a range of bit-widths that will give

consistently low imbalances in the I/Q channels. We especially want to find minimum

bit-widths in which adding extra bits will not improve the imbalances.

The value of the imbalances in the leveled off range of bit-widths will be used for

reference in plots. If a lower number of bits produce a better imbalance in the system

than the reference value, it will be considered acceptable. However, if it produces a

significantly higher imbalance value, it will be considered unacceptable. For our

purposes, we will consider a difference of 0.1% in either the phase or amplitude

imbalance to be significant.

The simplest of the three variables to characterize is the bit-width of the

coefficient values. We can first look at the default case in Figure 3.19, where we see very

stable and near constant values of imbalance which completely level off before 10 bits.

Stable bit-widths can be seen as being three bits or greater. It is clear that the maximum

imbalance does not vary much from the leveled off value and therefore we can assume

that the coefficient bit-width is not significant in this case (much less than 0.1%). We see

that the case of 100 MHz at 1 GHz in Figure 3.20 is a similar plot with the same

conclusions as the default case. Even in some of the worst-case frequency combinations

the maximum imbalance does not differ from the leveled off value by more than 0.1%.

We can therefore conclude that any bit-width used for the filter coefficients, three bits or

greater, may be used without significantly increasing the output imbalance. This will

allow us to adjust this parameter to meet the needs of the system.

90

Figure 3.19: Filter coefficient bit-width effect on imbalances of 14 MHz signal sampled

at 100 MHz, 2048 times with SSS. Uses 32-tap filter.

Figure 3.20: Filter coefficient bit-width effect on imbalances of 100 MHz signal

sampled at 1 GHz, 2048 times with SSS. Uses 32-tap filter.

91

The input and output bit-width effects on imbalances are not as consistent as the

coefficient bit-widths. Within the lower bit-width values we will see a large variance of

imbalances that change sporadically depending on the frequency values used. The

default case of 14 MHz sampled at 100 MHz for varying input bit-widths is shown in

Figure 3.21. There is a mid-value imbalance peak at 8-bits but we can see that it is not

more than 0.1% greater than the leveled-off value and so can be used. We can in fact use

any bit value down to 4-bits in this example for phase imbalance. The amplitude

Figure 3.21: Signal input bit-width effect on imbalances of 14 MHz signal sampled at

100 MHz, 2048 times with SSS. Uses 32-tap filter.

92

imbalance in this example however, shows a mid-value peak at 5-bits which is still above

the acceptable difference at 6-bits. Therefore for the amplitude imbalance in this case,

we need to use a bit-width above six in order to get consistent results. Figure 3.22 shows

an equivalent plot for the secondary case (100 MHz sampled at 1 GHz) in which only

widths above 8-bits can be used for phase imbalance and only above 6-bits for amplitude

imbalance.

Figure 3.22: Signal input bit-width effect on imbalances of 100 MHz signal sampled at

1 GHz, 2048 times with SSS. Uses 32-tap filter.

93

 Analogous plots to those outlined above are provided in Figure 3.23 and Figure

3.24 for varying output bit-widths. For the default case in Figure 3.23 the mid-value

imbalance peaks allow use of bit-widths anywhere above 3-bits for phase imbalance, but

only above 7-bits for amplitude imbalance. For the secondary case in Figure 3.24, the

use of bit-widths above 8-bits for phase imbalance, and above 7-bits for amplitude

imbalance are preferred for consistent results.

Figure 3.23: Output bit-width effect on imbalances of 14 MHz signal sampled at 100

MHz, 2048 times with SSS. Uses 32-tap filter.

94

Figure 3.24: Output bit-width effect on imbalances of 100MHz signal sampled at 1Ghz,

2048 times with SSS. Uses 32-tap filter.

3.4 Chapter Summary

In this chapter we took a close look at the elements used to actually sample and

characterize the SSS, in an attempt to verify the usefulness of an ASIC or FPGA

implementation of it. We looked at potential binary representation methods as well as the

FFT operation used to get useful data plots and results. Finally we took an in-depth look

at the effect that changing parameters (filter length, sampling size, coefficient bit-width,

input bit-width, and output bit-width) has on the I/Q imbalances of the SSS.

95

3.5 References

[1] Personal discussion with Col Marty Emmert of the USAF AFRL and Professor at
WSU. Dec, 2005.

[2] Barberis, Marc and Shah, Niraj. Migrating Signal Processing Applications From

Floating-Point to Fixed Point. Technical Paper, Catalytic Inc. Nov, 2004.
Gathered from www.catalyticinc.com on Jan, 2006.

[3] Patterson, David A. and Hennessy, John L. Computer Organization And Design.

3rd Ed. Morgan Kaufmann Publishers, August 2004.

[4] Chen, Tsuhan. Lightweight Arithmetic for Mobile Multimedia Devices.

PowerPoint Presentation. January 2006
http://amp.ece.cmu.edu/Publication/Tsuhan/20040309WOCC.pdf.

[5] Frantz, Gene and Simar, Ray. Comparing Fixed- and Floating-Point DSPs.

Technical Paper, Texas Instruments. 2004. Gathered from dsp.ti.com on Jan 04.

[6] Adaos, K. Alexiou, G. Kanopoulos, N. Development of Reusable Serial FIR

Filters With Reprogrammable Coefficients Designed For Serial Dataflow
Architectures. January 2006
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/7272/19698/00912953.pdf?ar
number=912953.

[7] MATLAB Fixed-Point Toolbox. “fi function.” Acquired from MATLAB help

options, 1994-2005 The MathWorks, Inc. 13 January 2006.

[8] Tsui, James. Digital Techniques for Wideband Receivers. Artech House, 2001.

[9] MATLAB Signal Processing Toolbox. “Kaiser Window.” Acquired from

MATLAB help options, 1994-2005 The MathWorks, Inc. 10 October 2005.

[10] MATLAB Function Reference. “Discreet Fourier Transform.” Acquired from

MATLAB help options, 1994-2005 The MathWorks, Inc. 10 October 2005.

96

IV. Simulations & Results

4.1 I/Q Results and Imbalance Trends

Since there is no consistent trend in the variation of the imbalances within the

lower bit-width of inputs and outputs, we can only guarantee consistently low imbalances

at various frequencies by using bit-width values greater than those that fluctuate (10-bits

and higher is suitable for all but the most extreme frequency combinations). A table is

provided in Appendix D that lists the safe bit-width values of a variety of frequency

combinations.

If the frequency combination to be used is of a specific value, individual cases can

be analyzed and an optimal combination of input, output, and coefficient bit-widths can

be determined. The Matlab code in Appendix C will take parameter limits (maximum

bit-widths and imbalances allowed) from the user and output a list of the optimal bit-

width combinations for either phase imbalance or amplitude imbalance. These two lists

can then be compared to find a combination that will work best for both phase and

amplitude integrity.

A very useful trend that was found when comparing frequency combinations was

that of matching imbalances when the frequencies were scaled proportionally. Any

scaling factor that is applied to both the input frequency and sampling frequency will

produce the same imbalances. This trend of proportionality is valid for imbalances

caused by both input and output bit-widths, so long as they are kept consistent for each

frequency combination. Figure 4.1 shows the imbalances caused by changing the bit-

widths of the input of a 14 MHz signal sampled at 100 MHz. In Figure 4.2 the two

97

frequencies have been scaled by ½, but as we can see, the values match those of Figure

4.1 exactly. The same pattern can be seen in Figure 4.3 and Figure 4.4, which show the

imbalances of changing the output bit-widths. This proportionality can be attributed to

the sampling points being adjusted consistently throughout the sampled signal. In other

words, if the frequencies are scaled proportionally, the sampling frequency will always

sample the input signal at the same point on it’s slopes.

Figure 4.1: Imbalances of input bit-width at fi = 14 MHz, fs = 100 MHz.

98

Figure 4.2: Imbalances of input bit-width at fi = 7 MHz, fs = 50 MHz.

Figure 4.3: Imbalances of output bit-width at fi = 14 MHz, fs = 100 MHz.

99

Figure 4.4: Imbalances of output bit-width at fi = 7 MHz, fs = 50 MHz.

The proportionality trend is extremely useful to us in this study as it allows us to

test the SSS with lower frequency methods such as an FPGA, before designing it to be

implemented for onto a high-speed ASIC. For example, if we were to design a digital

downconverter to sample a 1.25 GHz signal at 3 GHz, we could test the design with an

FPGA first by sampling a 125 MHz signal at 300 MHz.

4.2 VHDL ‘real’ validation

The first step to creating an abstract VHDL equivalent representation of the SSS

was to make a mathematical equivalent using floating-point (using the ‘real’ variable

type) variables in the VHDL library. The ‘real’ variable type uses double precision

100

floating-point math within the computer running the simulations, making the numbers as

close to exact values as possible. This however is neither practical, nor synthesizable for

a true hardware implementation (due to speed and size requirements), and therefore this

can only be used to test the concept.

Conceptually, the SSS can be represented by three different stages: data sample

splitting of the input signal, signal filtering of the split data streams, and recombination of

the filtered data streams. This process is demonstrated in Figure 4.5 below. All VHDL

code was developed from a skeleton example of input data steam control demonstrated

by Matlab’s Filter Design HDL Coder [1, 2].

Figure 4.5: Block diagram of SSS modules.

The first stage in the process contains only one module; the input data splitter.

The process is very simple and corresponds to Equation (2.17) and Equation (2.18) from

Section 2.2. The basis is that the input data stream is split into four separate streams as in

Equation (2.17):

101

1() (1), (5), (9)...
2() (2), (6), (10)...
3() (3), (7), (11)...
4() (4), (8), (12)...

X t x x x
X t x x x
X t x x x
X t x x x

=
=
=
=

 (4.1)

X3 and X4 can be inverted, and the signals X1 and X3, and X2 and X4 alternately

recombined into:

() (1), (3), (5), (7)...
() (2), (4), (6), (8)...

r

i

X t x x x x
X t x x x x

= − −
= − −

 (4.2)

This process is accomplished in Appendix B by using the ‘reshape’ function. In

VHDL however, we use a ‘case’ statement to track which variable we are currently on.

The VHDL implementation of IQgen.vhd, which utilizes ‘real’ variables, is given in

Appendix E.

The second stage of the SSS is the actual filtering stage and this is where most of

the speed, size and power of the design will be consumed. As was demonstrated in

Section 2.2, we need to filter each of the inputs (xr and xi) to this section by convolving

them with a set of coefficients. Instead of doing this in one filter however, we split the

coefficient into two separate filters: ‘filtat’ and ‘filtbt’. To create these filters, the

Matlab Filter Design HDL Coder was used to create an exact VHDL representation of the

Kaiser window FIR filter used in Appendix B. The code was then adjusted from the 32-

tap filter created by Matlab, into two 16-bit filters that utilize a ‘Generic’ parameter list

and use the ‘generate’ function as described in [3, 4] to cut down on coding length and

102

create a more abstract representation. The VHDL code for IQfir_filtat.vhd and

IQfir_filtbt.vhd is given in Appendix F and Appendix G, respectively.

The final stage of the scheme is to recombine the outputs of the four filters into

two output data signals: I and Q. This is a simple process of alternating every-other

value between ‘cnvlra’ and ‘cnvlrb’ for the I channel, and between ‘cnvlia’ and ‘cnvlib’

for the Q channel. Of special note is that a delay signal is used in order to make the first

Q channel value zero and shift each proceeding value one place over. This module is

given in IQoutput.vhd in Appendix H.

The overall design is tied together using a purely structural architecture that

represents Figure 4.5 exactly. This VHDL code (IQ_sss_converter.vhd) is given in

Appendix I. Testing this code on Symphony EDA Sonata 3.0 with our default signal case

of 14MHz signal sampled at 100MHz, we get outputs as shown in Figure 4.6. These

signals are exact representations of those in Figure 3.10, and as such, share the same

numerical values for each sample point.

With an accurate and working validation of the Matlab sampling scheme process.

We next turn our attention towards a purely binary representation that will implement

input, output, and signal values of only ‘std_logic’ or ‘std_logic_vector’ types, rather

than the ‘real’ type. This is needed in order to make the code synthesizable by industry

synthesis tools. The design structure is the same as in Figure 4.5, but the inside coding

and structures can be changed within each block element. Much as the ‘real’ code

representations were given in Appendices E through I, the binary equivalents are

presented as follows:

103

Appendix J: IQgen_dig.vhd

Appendix K: IQfir_filtat_dig.vhd (equivalent code used for filtbt)

Appendix L: IQoutput_dig.vhd

Appendix M: tsui_sss_converter_dig.vhd

Figure 4.6: Output of IQ_sss_converter.vhd using sample values of 14MHz signal

sampled at 100MHz. I and Q data channels are aligned.

When comparing the digital versions of the code to the ‘real’ or analog versions,

we can see that all ‘real’ types have been replaced and initialized appropriately. We also

begin to see a change in such operations as sign conversions in the IQdig files and

especially in arithmetic operations in the IQfir files.

104

4.3 VHDL optimization and results

The digital adjustments made at the end of Section 4.2 take us much closer to an

adjustable, synthesizable design, but there are still a number of aspects that need to be

dealt with. In the end, we want easily adjustable, fully synthesizable codes that can be

optimized for either size, speed, or somewhere in the middle. The most obvious starting

spot for such is in the coding of the most complicated block of the design, the filters, and

their inner arithmetic operations. The filters are where the great majority of size and

speed limitation take place in this design, and therefore are the vital components for

optimization. The codes developed in the previous section use a top-level algorithm that

could be interpreted many ways depending upon a compiler. This being the case, there is

no way to know for sure, how a synthesis tool is going to implement an operation such as

a simple addition or multiplication. Chances are, the implementation will not be

optimized for either size or speed, but will instead lie somewhere in-between. Therefore,

we need to develop specific architectures that will be close to optimal for size or speed so

that the user has the option to use either.

The first optimization will compensate for speed. The easiest way to increase the

speed of a design is to utilize a design strategy known as ‘pipelining.’ A pipelined design

uses memory registers that can hold a signal for a clock period before moving the value

on to the next gate. Such registers will cause a delay from the first input to the first

output, but once the first output is accomplished, there can be a new output on every

clock cycle. It can be thought of as the information moving through pipes or wired of the

circuit, hence the name ‘pipelining.’

105

The only limiting factor to the pipelining speed is in the slowest operating unit,

such as an adder for example. Just as the flow of water flow through a pipe can only go

as fast as it does through the narrowest part of the pipe, information can only be passed

through a circuit at a clock period corresponding to the slowest unit of the circuit. Since

a new output in a fully pipelined design can be accomplished in each clock cycle, it can

potentially run as fast as the fastest clock period, and is therefore optimized for speed [5,

Chap 6]. This strategy does, however, cause the design to be larger than a non-pipelined

one because each signal must also have a corresponding register unit to store its value. A

block diagram of a common pipelined FIR filter is shown in Figure 4.7. A second block

diagram of the pipelined FIR filter that we use in our design (as it is better optimized for

speed and has a shorter delay) can be seen in Figure 4.8. Notice that at each ‘level’ of

processing, there is a column of registers that will hold the value of the previous clock

cycle’s operations. Each level will cause a one-clock cycle delay from the first input to

the first output.

To create a pipelined design in VHDL, a register component (module) must be

created and added to the digital design of Section 4.2. All entities are combined and put

into one VHDL file to create a near-fully pipelined template that is presented in

Appendix N. In order to make the design even more pipelined, registers are also added to

the multiplier entity. It can be noticed that the registers and adders in the multiplier entity

are created using a ‘generate’ function to reduce coding and make the design more

abstract. Generic variables are also used to add abstraction to the entities, and generic

maps are utilized in component calls so that only one set of generics at the very top-level

106

Figure 4.7: Block diagram of a pipelined FIR filter using multipliers, adders, and

registers. Number of levels equal number of coefficients minus one.

entity (tsui_sss_converter_struct2_pipeline_dig) must be edited to change a design

parameter. Such changes as these make it much easier to create a Perl script that will

automatically generate usable VHDL SSS circuits.

A fully sequential design lies on the other end of the size vs. speed tradeoff. In a

sequential design, state machines such as shifters and MUXs are used to keep track of

which stage of the operation is being done, and to reuse the circuit components more than

once in each operation. For example, if we were to do the same process as in Figure 4.7

using a sequential design, we could eliminate all of the operation elements except for one

multiplier and one adder. Instead of using three separate adders for the three required

additions, we would instead use only one adder, but use it three times. Instead of using

107

Figure 4.8: Block diagram of a pipelined FIR filter using multipliers, adders, and

registers. Number of levels is logarithmic to the number of coefficients.

three adders and one clock-cycle of time, we would use one adder and three clock-cycles

of time before moving on to the next set of values. Therefore, we would serve to greatly

reduce the size of the physical circuit, but at the same time would greatly increase the

time needed to accomplish the filtering. A block diagram of the sequential FIR filter

used in our design is given below in Figure 4.9.

The Data Clocker unit has the filter coefficient values stored in it and will cycle

through each of them before accepting a new Input value. Therefore, the entire circuit

must cycle through its operations a number of times equal to the number of coefficients

used in the filter, and hence the circuit will take that many clock cycles to complete the

filtering for each input. The Sum register holds the value of the previously added

numbers so that the total can again be added to on the next clock cycle. The Mux_sel

108

register holds a signal that tells the mux to use all zeros on the first addition of each cycle

as it will be using a fresh input.

Figure 4.9: Block diagram of a sequential FIR filter using a clock unit, multiplier, adder,
mux and registers. Data Clocker cycles through all stored coefficients before accepting a

new Input value.

Creating a VHDL model of a structural, sequential design can become very

complicated due to timing issues. A near-fully sequential template for the SSS is

presented in Appendix O. The filter unit shown above must itself, use a number of clock

cycles equal to the number of coefficients it has, plus one (for the registers). The Data

Clocker keeps track of this cycle and sends out a ‘ready’ signal each time that is used as a

clock by all other clocked devices in the filter’s module. In the VHDL sequential

template, a sequential multiplier is also implemented that requires a number of clock

cycles equal to that of the maximum bit-width of its two inputs (plus one again for the

registers). Therefore the generic variable ‘extension’ used in Appendix O corresponds to

109

the total number of clock cycles needed to execute its operations on each input value.

This value can be found with the equation:

_ _(max[] +1)*(1)bit width bit width lengthextension in coeff filt= + (4.3)

As in the pipelined VHDL code, the sequential template also uses the ‘generate’

function in some of it’s components, as well as generics for variables and generic ports to

tie everything to the top-level element (tsui_sss_converter_struct2_sequ_dig).

Now that we have VHDL templates for both a pipelined and a sequential SSS

design, we need to be able to easily adjust them for new input, output, and coefficient bit-

widths, and for new filter designs. Corresponding test bench templates were also created

in order to automatically design test files for the SSS circuits. To accomplish this task,

both Matlab and Perl programs will be used.

The first step is to use the ‘coeff_gen.m’ file that is presented in Appendix P

(developed with help from [6]), in Matlab to create an output text file containing the

desired filter information. Upon running the coeff_gen.m file, the user will be prompted

to enter the desired filter length to be used in the SSS, as well as the total desired

coefficient bit-width and the fractional bit-width (number of bits to the right of the

decimal point). The user will also be prompted to input a testing input and sampling

frequency, and an input bit-width value in order to create a list of formatted input values

for use with a test bench. Matlab will then create an output file ‘filter_coeff.txt’ that

contains the filter length, coefficient bit-width, and formatted lists of the coefficients to

110

be input directly into the VHDL templates. It will also create an output file ‘tb_input.txt’

that contains a formatted input list.

Once we have the ‘filter_coeff.txt’ file, we can combine it with our VHDL SSS

template files to use as input to the Perl script ‘gen_sss.prl’ presented in Appendix Q

(developed with help from [7]). In the command line for the Perl script, the user must

define an output file name for the output ‘.stats’ file, as well as the desired input bit-

width, output bit-width, and desired VHDL design outputs (pipelined, sequential,

abstract). Using the input information, the Perl script will replace the formatted word

strings in the VHDL template files, with the correct numerical or bit-string values, or

coefficient lists. New, formatted VHDL files will be created that can be used directly by

simulation and synthesis tools to create layouts and tape-outs of the SSS design. The

output ‘.stats’ file will contain filter length and bit-width information of the design the

user created.

To utilize the ‘tb_input.txt’ file, a second Perl script ‘gen_tb.prl’ was developed in

parallel to ‘gen_sss.prl’. This script uses the same basic process to create a usable VHDL

test bench file for each VHDL SSS design that is created. ‘tb_input.txt’ is presented in

Appendix R. This script only required the user to enter the input and output bit-widths in

order to generate the test bench circuits.

4.4 Synthesis tools circuit generation results

In this final section, the results of running the SSSs designed in this chapter

through various professional circuit synthesis tools are presented. This will verify the use

111

of the developed code in industry synthesis tools, for use with both FPGA and ASIC.

Area, speed, and power measurements will be analyzed. Four different input

combinations will be considered as are illustrated in Table 4.1.

The first synthesis we will use to verify the VHDL designs is Mentor Graphics’

Precision Synthesis for FPGAs. As the software name states, this program is to

synthesize FPGA implementations. The software will take a specified FPGA model, and

place and route the implemented code according to the limitations of that specific FPGA.

Using the Virtex II Pro option, the results are listed in Table 4.2. Graphical

representations of the size and speed results are presented in Figure 4.10 and Figure 4.11,

respectively.

Table 4.1: Input parameter combinations to be tested.

Table 4.2: Synthesis results using Mentor Graphic’ Precision RTL tool with Virtex II
Pro (2VP2fg256) architecture. Frequency of 100 MHz.

Design
Implementation

Design
Combination

Latency Speed Size

 Data Arrival Samples / Second Accumulated

112

Time (ns) Instances

Pipelined 1 12.88 91,925,846 1,523
 2 17.42 79,590,676 9,055
 3 28.76 69,132,388 40,803
 4 18.55 80,111,087 15,131

Sequential 1 8.89 132,336 1,613
 2 8.89 94,525 2,234
 3 8.68 52,130 3,710
 4 8.68 49,873 3,537

Abstract 1 5.68 17,605,633 787
 2 4.83 14,788,524 5,207
 3 6.37 6,037,918 21,123
 4 5.84 14,677,103 8,563

The results are given in terms of the software parameters. The speed, or Data

Arrival Time (DAT), corresponds to the clock frequency of about 100MHz and is

therefore given in nano seconds. Area on the other hand is not a direct physical

measurement, but is rather a count of the number of instances required to implement the

code. These instances include physical digital devices such as D-flip/flops, latches,

MUXs, and external gates.

By analyzing the results from Table 4.2 we can see a number of trends that help

us to verify that our code in indeed working. First, notice that for each implementation

(pipelined, sequential, and abstract), the size of the design increases as the parameters of

the design are increased (use the design combination numbers 1-4 as reference). As

expected, the pipelined design increases in size much faster than the sequential because it

implements new components for each additional stage of processing, where as the

113

Figure 4.10: Circuit size results using Mentor Graphic’ Precision RTL tool with Virtex

II Pro (2VP2fg256) architecture. Frequency of 100 MHz.

Figure 4.11: Circuit speed results using Mentor Graphic’ Precision RTL tool with Virtex

II Pro (2VP2fg256) architecture. Frequency of 100 MHz.

114

sequential will reuse the components. The abstract implementation seems to show a good

combination of pipelining and sequencing as it’s values tend to fall in between those of

the two prior implementations.

Analyzing the latency results also gives expected results. The pipelined DAT is

increased as more levels are added to the parameters, where as the DAT of the sequential

implementations remain very similar. This is because the circuit is not increased in

length for the sequential, but rather, just runs through the same sequence numerous times.

To a casual observer, the pipelined design may seem slower, as it has a larger latency

than the sequential, but while the pipelined design takes longer for a result to appear at

the back end, once it does, it will have a new value each clock cycle. This can be seen in

the speed results where the pipelined design is greater than two magnitudes faster than

the sequential design. The sequential will produce a result quicker, but the ‘correct’

result will not appear until a number of cycles of the entire circuit have been

accomplished. Again, the abstract implementation seems to show a partial use of

sequential processes as it had the smallest DATs. The abstract version of the circuit, as

expected, displays speed values between that of the pipelined and sequential.

The second synthesis we will use to verify the VHDL designs is using the

Cadence Design Flow software bundle. The software package was used under the Wright

State University license and included such programs functions as: mapping,

constraining, floorplanning, power mapping, placement, clocktree design, optimized

placement, and multiple routings. This synthesis is designed for ASIC circuits with 0.25

um technology. Results are presented in Table 4.3, and are given in the same format as

115

those in Table 4.2. Graphical representations of the size and speed results of the Cadence

synthesis are presented in Figure 4.12 and Figure 4.13, respectively.

Table 4.3: Synthesis results using Cadence design synthesis flow for 0.25 um

technology.
Design
Implementation

Design
Combination

Latency Speed Size

 Data Arrival
Time (ns)

Samples / Second Cell Area
(um2)

Pipelined 1 9.69 124,882,922 155,344
 2 10.92 128,228,143 405,840
 3 13.38 134,918,585 1,994,901
 4 11.32 132,555,673 818,851

Sequential 1 2.11 556,513 21,948
 2 2.35 357,742 30,056
 3 3.44 131,690 50,471
 4 3.10 139,825 45,048

Abstract 1 3.45 29,078,220 43,703
 2 3.50 20,395,676 91,091
 3 5.11 7,534,091 350,667
 4 3.67 23,369,946 171,434

The same trends are present for the Cadence synthesis for ASIC, as were for the

MentorGraphics for FPGA. The size in this instance is measured in micro meters

squared rather than in simple logic instances, but same size trends apply here. As the

parameter sizes increase, so do the circuit sized. Again the pipelined design increased

much faster in size than does the sequential, with the abstract version falling at valued in-

between the pipelined and sequential designs.

116

Figure 4.12: Circuit size results using Cadence design synthesis flow for 0.25 um

technology.

Figure 4.13: Circuit speed results using Cadence design synthesis flow for 0.25 um

technology.

117

Latency measures show the pipelined circuit with the greatest initial DAT,

followed by that of the abstract circuit, and the sequential circuit respectively. As in the

case of the MentorGraphics synthesis, this can be deceiving if the latency is considered as

the circuit's speed. This does not mean that the pipelined is the slowest circuit, it simply

means that the pipelined circuit takes longer for the initial data to get from the input to

the output.

The Cadence speed results again verify the expected results. The pipelined circuit

is over two magnitudes faster than that of the sequential circuit, with the abstract circuit

speed falling in-between that of the pipelined and sequential.

The final synthesis that was run was a power test using the web version of

Altera’s Quartus II simulator designed for FPGAs. For the simulation in this test, the

Stratix II FPGA device option was utilized and the inputs to the circuit were randomly

selected to simulate the unpredictable nature of sampled data in a real device. Both

dynamic thermal power and static thermal power levels were measured. The numbers are

given in Table 4.4. Graphical representations of the power results are presented in Figure

4.14 for dynamic values and Figure 4.15 for static values.

Before analyzing the power results, it is important to recognize that the largest

pipelined parameter combination was not synthesizable using this FPGA type because it

was too big to fit on the device. This is further support for the utilization of several

design options. Such a situation could also occur when designing an ASIC if the required

chip area is too small for the circuit to be synthesized onto.

118

Table 4.4: Power results using Altera Quartus II simulator for FPGAs--Stratix II
EP2S15F672C5.

Design
Implementation

Design
Combination

Thermal Power
Dissipation

Thermal Power
Dissipation

 Dynamic (mW) Static (mW)

Pipelined 1 74.30 325.17
 2 124.28 328.14
 3 Na Na
 4 148.05 329.08

Sequential 1 12.65 324.69
 2 11.63 325.27
 3 9.10 326.80
 4 11.60 325.56

Abstract 1 53.08 324.68
 2 126.52 327.30
 3 254.70 340.43
 4 135.41 328.23

Thermal power dissipation represents the power used in order to use the elements

in a design. Therefore, the power dissipation value should correspond in a parallel

manner to that of the size of the circuit being implemented. Looking at Figure 4.14, the

power trend matches that of the size trend in the previous synthesis results. As the

parameter sizes increase, so do the power results within each circuit design. The

pipelined design has the greatest power utilization, while the sequential has the smallest.

The abstract, as is expected, has a utilization less than the pipelined, but greater than the

sequential.

The static thermal power dissipation is caused by the leakage of current through

the gates on the FPGA and through the input and output pins. Since a specific FPGA will

contain the same number of gates regardless of the circuit designed onto it, this

119

Figure 4.14: Dynamic thermal power dissipation using Altera Quartus II simulator for

FPGAs--Stratix II EP2S15F672C5.

Figure 4.15: Static thermal power dissipation using Altera Quartus II simulator for

FPGAs--Stratix II EP2S15F672C5.

120

value should not be altered greatly by different design implementation. As can be seen in

Figure 4.15, all static reading are very close in magnitude. They vary slightly due to

increasing parameter values which will cause greater numbers of input and output pins in

larger designs.

4.5 Chapter Summary

In this chapter results were presented of all three research objectives. The chapter

started by analyzing the significant trends of I/Q imbalances when varying input

parameters. Such trends as safe input bit-width values and frequency proportionality can

be useful in designing SSS circuits with minimal imbalances.

Next the coding process was reviewed to develop and implement the SSS into

useful, abstract Matlab, VHDL, and Perl files. Using the code developed, a designer can

easily change parameters such as filter lengths and bit-widths to accommodate imbalance

trends.

Finally, an analysis of the results of running VHDL files using specific design

parameters, and specific optimization levels (pipelined, sequential, and abstract) through

professional synthesis softwares was done. The trends found from these syntheses were

identified and discussed.

121

4.6 References

[1] Filter Design HDL Coder. “What is the Filter Design HDL coder?” Acquired
from MATLAB help options, 1994-2005 The MathWorks, Inc. 10 October 2005.

[2] Filter Design HDL Coder. “FDATool Plug-in—the GUI.” Acquired from

MATLAB help options, 1994-2005 The MathWorks, Inc. 10 October 2005.

[3] Armstrong, James A. and Gray, Gail. VHDL Design—Representation and

Synthesis. 2nd Ed. Prentice-Hall, Inc, 2000.

[4] Perry, Douglas L. VHDL—Programming by Example. 4th Ed. The McGraw-Hill

Companies, Inc. 2002.

[5] Patterson, David A. and Hennessy, John L. Computer Organization And Design.

3rd Ed. Morgan Kaufmann Publishers, August 2004.

[6] MATLAB Function Reference. “fprintf.” Acquired from MATLAB help

options, 1994-2005 The MathWorks, Inc. 02 February 2006.

[7] http://www.htmlite.com/. Various references used. 09 February 2006.

122

V. Analysis and Conclusions

5.1 Explanation of the Problem

The problem to be solved was to accomplish the characterization and

implementation of a SSS for I/Q downconversion utilizing top-level, portable design

strategies. AFRL has a great use for receiver systems that can utilize both I/Q

downconversions, and digital signals. Such a system could also benefit any number of

other government or industry designers. This has not been possible in the past due to the

speed limitations of using digital hardware. Recently, digital technology has increasing

potential in speed and size, making digital I/Q sampling downconversion a legitimate

option.

One specific method of digital I/Q downconversion is that of the SSS presented in

this research. In order to make such a design useful however, the imbalance of the I and

Q data streams needs to be acceptable. Since this sampling method is not well-developed

or documented yet, classification of the effects of input parameters on such imbalances is

vital knowledge to have.

With acceptable parameter knowledge, effective designs for SSS circuits can be

developed using abstract HDL and Matlab codes. Scripts can be used to make the design

process easier on the user. These designs can then be used with professional design

synthesis software programs to create physical circuit representations. Each of these

objectives was successfully completed in this research and are summarized in the

following sections.

123

5.2 Summary of Literature Review

A review of a variety of book, paper, and internet sources was done in order to

investigate and verify the methods and current technologies that support this research.

The basis behind the SSS for digital downconversion presented by James Tsui was

reviewed in detail along with digital filtering methods. An alternative method of I/Q

digital downcoversion (using the Hilbert transform) was also explored and the differences

between these alternatives and the SSS discussed. Using Matlab tutorials and through

personal discussions with industry professionals, methods of modeling data imbalances

were verified and presented as well. Finally, a comprehensive study of the ASIC/FPGA

design and synthesis process was conducted to give insight on the significance of an

abstract design model, and show the need for optimization within a hardware design.

This studies’ design process of the SSS digital downconverter stems from basic principles

presented in this literature review.

5.3 SSS Characterization: Significance, Limitations, and Further Research

The first step towards meeting the design objectives of this research was to

significantly characterize parameter effects of hardware on the SSS. By analyzing the

SSS scheme using Matlab simulations and data manipulation, it was found that the effect

of certain parameters on amplitude and phase imbalances of the I/Q data streams varies.

124

- Filter length has a limited effect on imbalances. In all but the very worst

cases, the effect of using any range of filter lengths only seems to affect the

overall imbalances by less than 0.005%.

- Sampling size has an increasingly lower effect on imbalances as it increases.

In a real system, the sampling size theoretically nears infinity, so it should be

a null factor.

- Coefficient bit-width has a consistent effect on imbalances, therefore

variances in it will should have a limited effect on overall imbalances.

- Input bit-widths have a very sporadic effect on imbalances when they are

small. This effect varies greatly with different input/sampling frequency

combinations. Imbalance values level off once the bit-width reaches a certain

size. Bit-width variations above the leveled off value should have a limited

effect on overall imbalances. See Appendix D for leveled off values.

- Output bit-widths present the same characteristics as the input bit-widths.

The largest effect on I/Q imbalances stems from variations in input and output bit-

widths. Small bit-width values can cause very significant imbalances to occur, therefore

limiting the usefulness of the SSS. Since these imbalances will vary depending on the

input and sampling frequency, a design that will be used to sample multiple frequencies,

or will use multiple sampling frequencies will need to either use bit-widths above all

leveled off values of Appendix D, or will need to include an imbalance correction module

at the back end. Either option will lend towards limiting the size and speed of the circuit.

A unit that will be used at a pre-specified input and sampling frequency, can potentially

125

be designed to use a smaller input/output combination that will have acceptable

imbalances without the use of a correction module.

This initial classification research lends itself toward a couple further research

options. The first option would be to further analyze the effect of ‘combined’ parameter

change effects on I/Q imbalances, and to develop a system or algorithm to further

optimize the designs for a range of input/sampling frequencies. A second option would

be to explore methods of digital imbalance correction, and integrate it into SSS scheme

design.

5.4 HDL Code Development: Significance, Limitations, and Further Research

Once the SSS was characterized, the second step of this study was to develop a

portable, top-level set of hardware codes. Utilizing several software programs,

development of a usable, abstract design methodology for implementing the SSS into

VHDL codes was accomplished. Matlab proved to be a useful tool in developing filter

designs and organizing filter coefficients for use in the VHDL code. VHDL syntax

operations such as the ‘generate’ command made it possible to create multiple modules

as needed for specified design variables, and the ‘generic’ variable type declarations

within VHDL made it possible to pass top-level parameters such as bit-widths down to

lower level modules of the design. Finally, Perl scripting let us put the Matlab process

together with the VHDL template codes to make a user friendly interface to create

custom SSS designs and cooresponding test benches with near minimal effort.

126

There are a number of directions that could be pursued to further this design

process. The most obvious way to advance the process would be to mature the Perl code.

Currently, a user is required to run both a matlab script, and then use the output with

VHDL templates and a Perl script to get a final SSS VHDL design. There is potential for

this process to be matured to run the Matlab automatically from the Perl script, and even

to divide the VHDL SSS templates into modular component templates so that they can be

more flexibly constructed in an automatic process in Perl. A second possible extension

of this design is to increase the breadth of the optimization effort by including more

template options. This ‘slider-bar’ approach would allow a user to pipeline different

levels (two-stage pipeline, three-stage pipeline, etc.) of the design in order to manipulate

the size versus speed trade offs to fit requirements in both specifications.

One final extension research project that could improve the bit-width optimization

of the SSS system would be a system or algorithm to optimize a filter length with respect

to coefficient bit-widths. For example, a filter of length 32 will have coefficient values

that are too small at each end to be represented by a 6-bit signed representation. This will

result in unnecessary ‘zero’ valued coefficients. Therefore in this case it would be better

to drop the coefficient to reduce the size of the circuit, or to re-calculate the coefficients

to a shorter filter length.

5.5 Design Synthesis: Significance, Limitations, and Further Research

A final step to this research was to validate the VHDL code for synthesis on

multiple platforms of professional software. Successful synthesis runs were made on

127

various tools including MentorGraphics’ Precision RTL, MentorGraphics’ Leonardo

Spectrum, and the Cadence Synthesis Suit.

The design synthesis of the SSS design code developed in this research revealed

some trends as to the extent of the effect of using pipelined designs, sequential designs,

and top-level abstract (behavioral) designs on the size, speed, and power of the circuit.

Common trends include that the size of a design increases as the parameter size increases,

while the speed decreases with a parameter size increase. Also found, was that synthesis

differed from software to software, and with different technology goals (ASIC vs.

FPGA). Pipelined designs acted as expected by have larger physical architectures than

sequential designs, but also displaying longer initial DATs. Abstract implementations

either took the same form at the pipelined, or showed a combination of pipelined and

sequential implementations.

Continued research on design optimized synthesis of the SSS method could

consist of mixing and matching different professional software tools in an attempt to find

better optimization. Extended analysis of which circuit parameters (filter size, input bit-

width, output bit-width, coefficient bit-width) have the largest affect on size, speed, and

power parameters could improve optimization before even running professional tools.

128

Appendix A: Truncation Function (MATLAB)

%***** Matlab function for Jesse P Somann thesis *****
%***** last edited 28 Jan 06 *****
%***** Air Force Institute of Technology *****

% This function takes a number(or array) of set precision, and translates
% it to a truncated binary equivalent -- user can set binary precision.

function [funct_out] = trunk_down(input, pos_dec_in, neg_dec_in)

fpt = fi(input, 1, pos_dec_in + neg_dec_in, neg_dec_in);

funct_out = double(fpt);

129

Appendix B: Special Sampling Scheme (MATLAB)

%***** Matlab Code for Jesse P Somann thesis *****
%***** Original by James Tsui--last edited 29 Nov 05 *****
%***** Air Force Institute of Technology *****

%df8_16.m I/QBK generates I and Q channels from fs/2
clear
format long;

n1 = 1024; % number of samples to be taken
n = [0:n1-1];
f = input('enter input frequency in MHz = ');
sf = input('enter input frequency in MHz, must be at least twice f = ');
% fb = input ('enter input of second frequency for dual setup as above or 0
% if none = ');
fb = 0*10^6;

%form sine wave
x = sin(2*pi*(f*10^6)*((1/sf)*1e-6)*n+.01)+sin(2*pi*fb*1e-8*n+.01);

% truncated values
x_2 = trunk_down(x,1,1);
x_3 = trunk_down(x,1,2);
x_4 = trunk_down(x,1,3);
x_6 = trunk_down(x,1,5);
x_8 = trunk_down(x,1,7);
x_12 = trunk_down(x,1,11);
figure(2);
plot(n,x,n,x_2,n,x_3,n,x_4,n,x_6,n,x_8,n,x_12);
axis([20 50 -1.1 1.1])

%************* generate I and Q channels***********
xx = reshape(x,4,n1/4);
xrm = [xx(1,1:n1/4); -xx(3,1:n1/4)];
xim = [xx(2,1:n1/4); -xx(4,1:n1/4)];
xr = reshape(xrm,1,n1/2);
xi = 1*reshape(xim,1,n1/2);

%********** create a low pass filter *************
dbst = 70;
betat = .1102*(dbst-8.7); % if dbst is > 50
%betat = .5842*(dbst-21)^0.4+.07886*(dbst-21); % if 50 >= dbst >= 21
%betat = 0; % if dbst is < 21
windowt = kaiser(32,betat);
figure(2);
wvtool(windowt)
hkt = fir1(31,0.5, windowt);
figure(3);
freqz(hkt,1,512)
filtab = reshape(hkt,2,16);
filtat = filtab(1,1:16);
filtbt = filtab(2,1:16);

%********* filtering **************************
cnvlra = conv(filtat,xr);
cnvlrb = conv(filtbt,xr);
cnvlia = conv(filtat,xi);

130

cnvlib = conv(filtbt,xi);
I1 = [cnvlra; cnvlrb];
It = reshape(I1,1,2*length(cnvlra));
Q1 = [cnvlia; cnvlib];
Qt1 = reshape(Q1,1,2*length(cnvlra));
Qt = [0 Qt1(1:n1+30-1)]; %add 0 as the first point

%*** Channel Anaylsis *****(R = amplitude of fft, theta = angle of fft)
Y = fft(x,n1); R = abs(Y); theta = angle(Y);
YI = fft(It(15:n1-15),n1); RI = abs(YI); thetaI = angle(YI);
YQ = fft(Qt(15:n1-15),n1); RQ = abs(YQ); thetaQ = angle(YQ);

%***Channel Comparisons***
R_diff = RI - RQ;
R_imbalance = (R_diff)./RI.*100;
theta_diff = (thetaI-thetaQ)./pi.*180;
theta_imbalance = (90 - theta_diff)./90.*100;

%*** Power/Frequency ***** (Power signals of fft, should spike at main
frequency
Py = Y.* conj(Y) / n1;
PyI = YI.* conj(YI) / n1;
PyQ = YQ.* conj(YQ) / n1;

%*** Finds the spot of amplitude spur of fft ****
[max_amp,max_x] = max(RI(round(n1/100):n1/2)); %rounds off first values
max_x = max_x + round(n1/100) - 1; %compensates for rounding

f = 100*(0:n1/2)/n1;

%************* plot I/Q Channels ************
figure(5);
subplot(3,2,1)
plot(1:n1,real(YI))
title('Real I Channel')
subplot(3,2,2)
plot(1:n1,imag(YI))
title('Imaginary I Channel')
subplot(3,2,3)
plot(1:n1,real(YQ))
title('Real Q Channel')
subplot(3,2,4)
plot(1:n1,imag(YQ))
title('Imaginary Q Channel')
subplot(3,2,5)
plot(1:n1,real(Y))
title('Real Original Channel')
subplot(3,2,6)
plot(1:n1,imag(Y))
title('Imaginary Original Channel')

%************* plot I/Q Power Bins ************
figure(6);
subplot(3,1,1)
plot(f,PyI(1:(n1/2+1)))
% axis([0 600 0 30])
title('Frequency content of I Channel')
xlabel('frequency (MHz)')
subplot(3,1,2)
plot(f,PyQ(1:(n1/2+1)))
% axis([0 600 0 30])

131

title('Frequency content of Q Channel')
xlabel('frequency (MHz)')
subplot(3,1,3)
plot(f,Py(1:(n1/2+1)))
title('Frequency content of Original Signal')
xlabel('frequency (MHz)')

%************* plot I/Q Characteristics ************
figure(7);
subplot(3,2,1)
stem(1:n1,RI)
title('Amplitude I Channel')
subplot(3,2,2)
plot(1:n1,thetaI)
title('Angle I Channel')
subplot(3,2,3)
stem(1:n1,RQ)
title('Amplitude Q Channel')
subplot(3,2,4)
plot(1:n1,thetaQ)
title('Angle Q Channel')
subplot(3,2,5)
stem(1:n1,R)
title('Amplitude Original Channel')
subplot(3,2,6)
plot(1:n1,theta)
title('Angle Original Channel')

%************* plot I/Q Imbalances ************
figure(8);
subplot(2,2,1)
plot(1:n1,theta_diff);
title('I/Q Phase Difference (Degrees)')
subplot(2,2,2)
plot(1:n1,R_diff)
title('I/Q Amplitude Difference')
subplot(2,2,3)
plot(1:n1,theta_imbalance);
title('I/Q Phase Imbalance (%)')
subplot(2,2,4)
plot(1:n1,R_imbalance)
title('I/Q Amplitude Imbalance (%)')

%************** plot the results ***************
figure(1);
subplot(2,1,1)
plot(n,x);
subplot(2,1,2)
plot(1:n1+30,Qt, 1:n1+30,It)
axis([0 n1+50 -1 1])
xlabel('Time sample')
ylabel('Outputs of I Q channels')

132

Appendix C: Bit-Width Optimizer (MATLAB)

%***** Matlab Code for Jesse P Somann thesis *****
%***** Original by James Tsui--last edited 29 Nov 05 *****
%***** Air Force Institute of Technology *****

%df8_16.m I/QBK generates I and Q channels from fs/2
clear
format long;

n1 = 2048; % number of samples to be taken
n = [0:n1-1];
% f = f_in; % input frequency from function call
% sf = sf_in; % sampling frequency from function call
f = input('enter input frequency in MHz = ');
sf = input('enter input frequency in MHz, must be at least twice f = ');
% fb = input ('enter input of second frequency for dual setup as above or 0
% if none = ');
fb = 0*10^6;

x = sin(2*pi*(f*10^6)*((1/sf)*1e-6)*n+.01)+sin(2*pi*fb*1e-8*n+.01); %form
sine wave
% figure(1);
% plot(n,x);

list = 5;

for set = 1:1:list
 amp_diff_opt(set) = 100;
 amp_diff_opt_phase(set) = 100;
 phase_diff_opt(set) = 100;
 phase_diff_opt_amp(set) = 100;
 max_bit_in_opt(set) = 100;
 max_bit_coeff_opt(set) = 100;
 max_bit_out_opt(set) = 100;
 max_bit_in_opt_p(set) = 100;
 max_bit_coeff_opt_p(set) = 100;
 max_bit_out_opt_p(set) = 100;
end

max_bit_in = input('enter maximum input bit width = ');
max_bit_coeff = input('enter maximum coefficient bit width = ');
max_bit_out = input('enter maximum output bit width = ');

max_amp_imb = input('enter maximum amplitude imbalance allowable in % = ');
max_phase_imb = input('enter maximum phase imbalance allowable in % = ');

for cnt_in = 2:1:max_bit_in %loops throught input bit widths
1:max_bit
 for cnt_coeff = 2:1:max_bit_coeff %loops throught coefficient bit
widths 1:max_bit
 for cnt_out = 2:1:max_bit_out %loops throught output bit widths
1:max_bit

 x_trunk = trunk_down(x,1,cnt_in-1); %trunkate the input bit
width

 % figure(2);

133

 % plot(n,x,n,x_2,n,x_3,n,x_4,n,x_6,n,x_8,n,x_12);
 % axis([20 40 -1.1 1.1])

 %************* generate I and Q channels***********
 xx = reshape(x_trunk,4,n1/4);
 xrm = [xx(1,1:n1/4); -xx(3,1:n1/4)];
 xim = [xx(2,1:n1/4); -xx(4,1:n1/4)];
 xr = reshape(xrm,1,n1/2);
 xi = 1*reshape(xim,1,n1/2);

 %********** create a low pass filter *************
 dbst = 70;
 betat = .1102*(dbst-8.7); % if dbst is > 50
 %betat = .5842*(dbst-21)^0.4+.07886*(dbst-21); % if 50 >= dbst >=
21
 %betat = 0; % if dbst is < 21
 windowt = kaiser(32,betat); %use constant value for kaiser
window (32)
 % figure(2);
 % wvtool(windowt)
 hkt = fir1(31,0.5, windowt); %fir filter command for kaiser
window
 hkt_trunk = trunk_down(hkt,1,cnt_coeff-1); %trunkate the coeff
bit width
 % figure(3);
 % freqz(hkt,1,512)
 filtab = reshape(hkt_trunk,2,16); %remix & shape filter
coefficients
 filtat = filtab(1,1:16);
 filtbt = filtab(2,1:16);

 %********* filtering **************************
 cnvlra = conv(filtat,xr);
 cnvlrb = conv(filtbt,xr);
 cnvlia = conv(filtat,xi);
 cnvlib = conv(filtbt,xi);
 I1 = [cnvlra; cnvlrb];
 It = reshape(I1,1,2*length(cnvlra));
 Q1 = [cnvlia; cnvlib];
 Qt1 = reshape(Q1,1,2*length(cnvlra));
 Qt = [0 Qt1(1:n1+30-1)]; %add 0 as the first point
 It_trunk = trunk_down(It,1,cnt_out-1); %trunkate the I bit width
 Qt_trunk = trunk_down(Qt,1,cnt_out-1); %trunkate the Q bit width

 %*** Channel Anaylsis *****(R = amplitude of fft, theta = angle of
fft)
 Y = fft(x,n1); R = abs(Y); theta = angle(Y);
 YI = fft(It_trunk(15:527),n1); RI = abs(YI); thetaI = angle(YI);
 YQ = fft(Qt_trunk(15:527),n1); RQ = abs(YQ); thetaQ = angle(YQ);

 %*** Channel Comparisons ***
 R_diff = RI - RQ;
 R_imbalance = (R_diff)./RI.*100;
 theta_diff = (thetaI-thetaQ)./pi.*180;
 theta_imbalance = (90 - abs(theta_diff))./90.*100;

 %*** Power/Frequency ***** (Power signals of fft, should spike at
main
 % frequency
 Py = Y.* conj(Y) / n1;
 PyI = YI.* conj(YI) / n1;

134

 PyQ = YQ.* conj(YQ) / n1;

 %*** Finds the spot of amplitude spur of fft ****
 [max_amp,max_x] = max(RI(round(n1/100):n1/2)); %rounds off first
values
 max_x = max_x + round(n1/100) - 1; %compensates for
rounding

 %*** Create array of imbalance measurements ***
 RI_var_this = abs(RI(max_x));
 R_diff_var_this = abs(R_diff(max_x));
 if R_diff_var_this == 0
 R_imbalance_var_this = 0;
 else
 R_imbalance_var_this = abs(R_imbalance(max_x));
 end
 if abs(theta_diff(max_x)) > 250
%newly added*****
 theta_diff_var_this = abs(theta_diff(max_x)) - 180;
 theta_imbalance_var_this = abs((90 -
abs(theta_diff_var_this))./90.*100);
 else
 theta_diff_var_this = theta_diff(max_x);
 theta_imbalance_var_this = abs(theta_imbalance(max_x));
 end

 done_amp = 0; done_ang = 0;
 for set2 = 1:1:list
 if R_imbalance_var_this > 0 && R_imbalance_var_this <
max_amp_imb && theta_imbalance_var_this < max_phase_imb && R_imbalance_var_this
< amp_diff_opt(set2) && done_amp == 0
 for set3 = list:-1:set2+1
 amp_diff_opt(set3) = amp_diff_opt(set3-1);
 amp_diff_opt_phase(set3) = amp_diff_opt_phase(set3-1);
 max_bit_in_opt(set3) = max_bit_in_opt(set3-1);
 max_bit_coeff_opt(set3) = max_bit_coeff_opt(set3-1);
 max_bit_out_opt(set3) = max_bit_out_opt(set3-1);
 end
 amp_diff_opt(set2) = R_imbalance_var_this;
 amp_diff_opt_phase(set2) = theta_imbalance_var_this;
 max_bit_in_opt(set2) = cnt_in;
 max_bit_coeff_opt(set2) = cnt_coeff;
 max_bit_out_opt(set2) = cnt_out;
 done_amp = 1;
 end

 if theta_imbalance_var_this > 0 && R_imbalance_var_this <
max_amp_imb && theta_imbalance_var_this < max_phase_imb &&
theta_imbalance_var_this < phase_diff_opt(set2) && done_ang == 0
 for set3 = list:-1:set2+1
 phase_diff_opt(set3) = phase_diff_opt(set3-1);
 phase_diff_opt_amp(set3) = phase_diff_opt_amp(set3-1);
 max_bit_in_opt_p(set3) = max_bit_in_opt_p(set3-1);
 max_bit_coeff_opt_p(set3) = max_bit_coeff_opt_p(set3-
1);
 max_bit_out_opt_p(set3) = max_bit_out_opt_p(set3-1);
 end
 phase_diff_opt(set2) = theta_imbalance_var_this;
 phase_diff_opt_amp(set2) = R_imbalance_var_this;
 max_bit_in_opt_p(set2) = cnt_in;
 max_bit_coeff_opt_p(set2) = cnt_coeff;

135

 max_bit_out_opt_p(set2) = cnt_out;
 done_ang = 1;
 end
 end

 end
 end
end

name1 = [' Optimized amp -- ' 'input width -- ' 'coefficient width -- '
'output width -- ' 'Cooresponding phase']
list1 = [amp_diff_opt' max_bit_in_opt' max_bit_coeff_opt' max_bit_out_opt'
amp_diff_opt_phase']

name2 = [' Optimized phase -- ' 'input width -- ' 'coefficient width --
' 'output width -- ' 'Cooresponding amp']
list2 = [phase_diff_opt' max_bit_in_opt_p' max_bit_coeff_opt_p'
max_bit_out_opt_p' phase_diff_opt_amp']

136

Appendix D: Safe Bit-width Values to Use

Input
Frequency
(fi) in
MHz

Sampling
Frequency
(fs) in
MHz

Input Bit-
Width
for Phase
Imbalance

Input Bit-
Width
for
Amplitude
Imbalance

Output Bit-
Width
for Phase
Imbalance

Output Bit-
Width
for
Amplitude
Imbalance

Coeff. Bit-
Width
for Phase
Imbalance

Coeff. Bit-
Width
for
Amplitude
Imbalance

10 1000 6 5 7 6 3 3
20 1000 6 9 7 7 3 3
30 1000 5 6 7 7 3 3
40 1000 3 4 3 3 3 3
50 1000 8 6 9 8 3 3
60 1000 6 7 8 7 3 3
70 1000 5 6 8 9 3 3
80 1000 3 3 4 3 3 3
90 1000 5 6 7 9 3 3
100 1000 9 8 9 7 3 3
110 1000 5 5 7 9 3 3
120 1000 4 3 2 3 3 3
130 1000 5 6 8 9 3 3
140 1000 4 7 4 8 3 3
150 1000 8 10 7 10 3 3
160 1000 2 5 5 6 3 3
170 1000 5 6 7 9 3 3
180 1000 4 9 6 8 3 3
190 1000 5 5 6 9 3 3
200 1000 2 3 3 5 3 3
210 1000 5 6 7 9 3 3
220 1000 4 9 4 7 3 3
230 1000 2 5 6 9 3 3
240 1000 2 5 2 6 3 3
250 1000 7 7 8 8 3 3
260 1000 6 7 4 7 3 3
270 1000 5 5 7 7 3 3
280 1000 2 4 3 3 3 3
290 1000 5 6 6 7 3 3
300 1000 9 9 9 9 3 3
310 1000 5 5 7 9 3 3
320 1000 3 3 3 4 3 3
330 1000 5 6 6 7 3 3
340 1000 6 9 6 8 3 3
350 1000 6 10 8 10 3 3

137

360 1000 3 5 3 3 3 3
370 1000 5 6 6 7 3 3
380 1000 6 9 6 7 3 3
390 1000 5 5 7 9 3 3
400 1000 2 2 3 6 3 3
410 1000 5 6 6 9 3 3
420 1000 6 9 6 8 3 3
430 1000 5 6 7 9 3 3
440 1000 4 2 4 4 3 3
450 1000 6 9 10 8 3 3
460 1000 6 9 7 8 3 3
470 1000 5 6 8 7 3 3
480 1000 2 4 3 6 3 3
490 1000 5 5 7 6 3 3
498 1000 5 5 7 9 3 3
> 498
502<

1000 Large
imbalance

Large
imbalance

Large
imbalance

Large
imbalance

Large
imbalance

Large
imbalance

1250 3000 7 6 10 10 3 3

138

Appendix E: IQgen (VHDL)

-- ---
-- Module: I/Qgen
-- Generated by Jesse P Somann
-- Started on 11 Oct 05
-- Finished on __
-- Purpose: to split the input data into a real (I) and
-- imaginary (Q) stream initiative to be convolved
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

ENTITY I/Qgen IS
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN real; -- double
 dataI_out : OUT real; -- double
 dataQ_out : OUT real
);

END I/Qgen;

--
--Module Architecture: I/Qgen
--
ARCHITECTURE rtl OF I/Qgen IS

-- Local Functions
-- Signals
 SIGNAL output_registerI : real := 0.0; -- double
 SIGNAL output_registerQ : real := 0.0; -- double

 SIGNAL counter4 : std_logic_vector(1 downto 0);
 SIGNAL inverted : real := 0.0;

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

 IF reset = '1' THEN
 output_registerI <= 0.0000000000000000E+000;
 output_registerQ <= 0.0000000000000000E+000;
 counter4 <= "00";

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 CASE counter4 is
 when "00" =>
 output_registerI <= data_in;
 when "01" =>

139

 output_registerQ <= data_in;
 when "10" =>
 output_registerI <= data_in * (-1.0);
 when "11" =>
 output_registerQ <= data_in * (-1.0);
 when others =>
 output_registerI <= 0.0;
 output_registerQ <= 0.0;
 END CASE;
 counter4 <= counter4 + "01";

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

140

Appendix F: IQfir_filtat.vhd (VHDL)

-- Module: I/Qfir_filtat
-- Original genertion by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Edit and Update by Lt Jesse Somann: 2006-01-20
-- ---
-- HDL Code Generation Options:
--
-- TargetLanguage: VHDL
-- Name: I/Qfir_filtat
-- TargetDirectory: C:\Documents and Settings\Owner\Desktop\AFIT
classes\Thesis\Matlab\hdlsrc
-- LoopUnrolling: On
-- InlineConfigurations: Off
-- SafeZeroConcat: Off
-- TestBenchName: I/Qfir_filtat_tb
-- TestBenchStimulus: impulse step ramp chirp noise
--
-- Filter Settings:
--
-- Discrete-Time FIR Filter (real)
-- -------------------------------
-- Filter Structure : Direct-Form FIR
-- Filter Length : 16
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;

ENTITY I/Qfir_filtat IS

 GENERIC(max_flength : natural := 16);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN real; -- double
 filter_out : OUT real -- double
);

END I/Qfir_filtat;

--
--Module Architecture: I/Qfir_filtat
--
ARCHITECTURE rtl OF I/Qfir_filtat IS
 -- Local Functions

 -- Type Definitions
 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF real; -- double
 TYPE coeff_pipeline_type IS ARRAY (NATURAL range <>) OF real; -- double

 -- Constants
 CONSTANT coeff : coeff_pipeline_type(1 TO max_flength) := (
 -0.00010799174582,
 0.00078642308446,

141

 -0.00261076151615,
 0.00649806802572,
 -0.01384614786056,
 0.02731224181000,
 -0.05475666574790,
 0.14572862668091,
 0.44870434767338,
 -0.08298074413630,
 0.03826155991708,
 -0.01954294245257,
 0.00962094760445,
 -0.00422447784966,
 0.00150611930873,
 -0.00034860279577); -- double

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO
max_flength-1) := (others => 0.0); -- double
 SIGNAL product : delay_pipeline_type(1 TO max_flength) :=
(others => 0.0); -- double
 SIGNAL sum : delay_pipeline_type(1 TO max_flength-1)
:= (others => 0.0); -- double

 SIGNAL output_register : real := 0.0; -- double

BEGIN

 -- Block Statements
 Delay_Pipeline_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline(0 TO (max_flength-1)) <= (OTHERS =>
0.0000000000000000E+000);
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 delay_pipeline(0) <= filter_in;
 delay_pipeline(1 TO (max_flength-1)) <= delay_pipeline(0 TO
(max_flength-2));
 END IF;
 END IF;
 END PROCESS Delay_Pipeline_process;

 product_sum: for cnt in max_flength downto 0 generate
 product_process: if (cnt > 0) generate
 product(cnt) <= delay_pipeline(cnt-1) * coeff(cnt);
 end generate product_process;

 sum_first: if (cnt = 1) generate
 sum(cnt) <= product(cnt) + product(cnt+1);
 end generate sum_first;

 sum_process: if (cnt > 1 and cnt < max_flength) generate
 sum(cnt) <= sum(cnt-1) + product(cnt+1);
 end generate sum_process;
 end generate product_sum;

142

 Output_Register_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 output_register <= 0.0000000000000000E+000;
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 output_register <= sum(max_flength - 1);
 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 filter_out <= output_register;

END rtl;

143

Appendix G: IQfir_filtbt.vhd (VHDL)

-- ---
-- Module: I/Qfir_filtbt
-- Original genertion by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Edit and Update by Lt Jesse Somann: 2006-01-20
-- ---
-- HDL Code Generation Options:
--
-- TargetLanguage: VHDL
-- Name: I/Qfir_filtbt
-- TargetDirectory: C:\Documents and Settings\Owner\Desktop\AFIT
classes\Thesis\Matlab\hdlsrc
-- LoopUnrolling: On
-- InlineConfigurations: Off
-- SafeZeroConcat: Off
-- TestBenchName: I/Qfir_filtbt_tb
-- TestBenchStimulus: impulse step ramp chirp noise
--
-- Filter Settings:
--
-- Discrete-Time FIR Filter (real)
-- -------------------------------
-- Filter Structure : Direct-Form FIR
-- Filter Length : 16
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;

ENTITY I/Qfir_filtbt IS

 GENERIC(max_flength : natural := 16);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN real; -- double
 filter_out : OUT real -- double
);

END I/Qfir_filtbt;

--
--Module Architecture: I/Qfir_filtbt
--
ARCHITECTURE rtl OF I/Qfir_filtbt IS
 -- Local Functions
 -- Type Definitions

 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF real; -- double
 TYPE coeff_pipeline_type IS ARRAY (NATURAL range <>) OF real; -- double

 -- Constants
 CONSTANT coeff : coeff_pipeline_type(1 TO max_flength) := (
 -0.00034860279577,
 0.00150611930873,

144

 -0.00422447784966,
 0.00962094760445,
 -0.01954294245257,
 0.03826155991708,
 -0.08298074413630,
 0.44870434767338,
 0.14572862668091,
 -0.05475666574790,
 0.02731224181000,
 -0.01384614786056,
 0.00649806802572,
 -0.00261076151615,
 0.00078642308446,
 -0.00010799174582); -- double

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO
max_flength-1) := (others => 0.0); -- double
 SIGNAL product : delay_pipeline_type(1 TO max_flength) :=
(others => 0.0); -- double
 SIGNAL sum : delay_pipeline_type(1 TO max_flength-1)
:= (others => 0.0); -- double

 SIGNAL output_register : real := 0.0; -- double

BEGIN

 -- Block Statements
 Delay_Pipeline_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline(0 TO (max_flength-1)) <= (OTHERS =>
0.0000000000000000E+000);
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 delay_pipeline(0) <= filter_in;
 delay_pipeline(1 TO (max_flength-1)) <= delay_pipeline(0 TO
(max_flength-2));
 END IF;
 END IF;
 END PROCESS Delay_Pipeline_process;

 product_sum: for cnt in max_flength downto 0 generate
 product_process: if (cnt > 0) generate
 product(cnt) <= delay_pipeline(cnt-1) * coeff(cnt);
 end generate product_process;

 sum_first: if (cnt = 1) generate
 sum(cnt) <= product(cnt) + product(cnt+1);
 end generate sum_first;

 sum_process: if (cnt > 1 and cnt < max_flength) generate
 sum(cnt) <= sum(cnt-1) + product(cnt+1);
 end generate sum_process;
 end generate product_sum;

-- product_process : PROCESS (clk, reset)

145

-- variable counter : integer;
-- BEGIN
-- for counter in max_flength downto 1 loop
-- product(counter) <= delay_pipeline(counter-1) * coeff(counter);
-- end loop;
-- END PROCESS product_process;
--
-- sum_process : PROCESS (clk, reset)
-- variable counter : integer;
-- BEGIN
-- sum(1) <= product(1) + product(2);
-- for counter in 2 to (max_flength - 1) loop
-- sum(counter) <= sum(counter-1) + product(counter+1);
-- end loop;
-- END PROCESS sum_process;

 Output_Register_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 output_register <= 0.0000000000000000E+000;
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 output_register <= sum(max_flength - 1);
 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 filter_out <= output_register;

END rtl;

146

Appendix H: IQoutput.vhd (VHDL)

-- Module: I/Qoutput
-- Generated by Jesse P Somann
-- Started on 11 Oct 05
-- Finished on __
-- Purpose: To reform the output from 4 filters into I and Q data
-- streams
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

ENTITY I/Qoutput IS
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in_cnvlra : IN real; -- double
 data_in_cnvlrb : IN real; -- double
 data_in_cnvlia : IN real; -- double
 data_in_cnvlib : IN real; -- double
 dataI_out : OUT real; -- double
 dataQ_out : OUT real
);

END I/Qoutput;

--
--Module Architecture: testfir
--
ARCHITECTURE rtl OF I/Qoutput IS
 -- Local Functions

 SIGNAL cnvli_delayed : real := 0.0;

 SIGNAL output_registerI : real := 0.0; -- double
 SIGNAL output_registerQ : real := 0.0; -- double

 SIGNAL counter2 : std_logic;
 SIGNAL q_zero : std_logic;
 SIGNAL clk2 : std_logic;

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

 IF reset = '1' THEN
 output_registerI <= 0.0000000000000000E+000;
 output_registerQ <= 0.0000000000000000E+000;
 q_zero <= '0';
 counter2 <= '0';

 ELSIF clk'event AND clk = '1' THEN

147

 IF clk_enable = '1' AND q_zero = '0' THEN
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= 0.0000000000000000E+000;
 cnvli_delayed <= data_in_cnvlib;
 counter2 <= '1';
 q_zero <= '1';

 ELSIF clk_enable = '1' THEN
 CASE counter2 is
 when '0' =>
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= cnvli_delayed;
 cnvli_delayed <= data_in_cnvlib;
 when '1' =>
 output_registerI <= data_in_cnvlra;
 output_registerQ <= cnvli_delayed;
 cnvli_delayed <= data_in_cnvlia;
 when others =>
 output_registerI <= 0.0;
 output_registerQ <= 0.0;
 END CASE;

 IF counter2 = '0' THEN
 counter2 <= '1'; END IF;
 IF counter2 = '1' THEN
 counter2 <= '0'; END IF;

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

148

Appendix I: IQ_sss_converter.vhd (VHDL)

-- ---
-- Module: I/Q_sss_converter ('real' variables)
-- Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: To convert input data stream into I/Q data streams
-- ---
library ieee;
use ieee.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity I/Q _sss_converter is
 PORT(clk_in : IN std_logic;
 clk_x2_in : IN std_logic;
 clk_enable_in : IN std_logic;
 reset_in : IN std_logic;
 x_in : IN real; -- double
 It_out : OUT real; -- double
 Qt_out : OUT real -- double
);
end I/Q _sss_converter;

--
--Module Architecture: I/Q _sss_converter
--
architecture structure of I/Q _sss_converter is

component I/Qgen
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN real; -- double
 dataI_out : OUT real; -- double
 dataQ_out : OUT real
);
end component;

component I/Qfir_filtat
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN real; -- double
 filter_out : OUT real -- double
);
end component;

component I/Qfir_filtbt
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN real; -- double
 filter_out : OUT real -- double
);
end component;

component I/Qoutput
 PORT(clk : IN std_logic;

149

 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in_cnvlra : IN real; -- double
 data_in_cnvlrb : IN real; -- double
 data_in_cnvlia : IN real; -- double
 data_in_cnvlib : IN real; -- double
 dataI_out : OUT real; -- double
 dataQ_out : OUT real
);
end component;

signal xr, xi, cnvlra, cnvlrb, cnvlia, cnvlib: real;

begin
 g1: I/Qgen port map (data_in=>x_in, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>xr, dataQ_out=>xi);
 g2: I/Qfir_filtat port map (filter_in=>xr, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlra);
 g3: I/Qfir_filtat port map (filter_in=>xi, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlia);
 g4: I/Qfir_filtbt port map (filter_in=>xr, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlrb);
 g5: I/Qfir_filtbt port map (filter_in=>xi, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlib);
 g6: I/Qoutput port map (data_in_cnvlra=>cnvlra, data_in_cnvlrb=>cnvlrb,
data_in_cnvlia=>cnvlia, data_in_cnvlib=>cnvlib, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>It_out,
dataQ_out=>Qt_out);

end structure;

150

Appendix J: I/Qgen_dig.vhd (VHDL)

-- ---
-- Module: I/Qgen_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Nov 06
-- Purpose: to split the input data into a real (I) and
-- imaginary (Q) stream initiative to be convolved
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

ENTITY I/Qgen_dig IS

 GENERIC(bit_width : natural := 6);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN std_logic_vector (bit_width-
1 downto 0);
 dataI_out : OUT std_logic_vector (bit_width-
1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width-1
downto 0)
);
END I/Qgen_dig;

--
--Module Architecture: I/Qgen_dig
--
ARCHITECTURE rtl OF I/Qgen_dig IS
 -- Local Functions

 -- Signals
 SIGNAL output_registerI : std_logic_vector (bit_width-1
downto 0) := "000000";
 SIGNAL output_registerQ : std_logic_vector (bit_width-1
downto 0) := "000000";

 SIGNAL counter4 : std_logic_vector (1 downto 0);
 SIGNAL inverted : std_logic_vector (bit_width-1 downto 0)
:= "000000";

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

 IF reset = '1' THEN
 output_registerI <= "000000";
 output_registerQ <= "000000";
 counter4 <= "00";

 ELSIF clk'event AND clk = '1' THEN

151

 IF clk_enable = '1' THEN

 CASE counter4 is
 when "00" =>
 output_registerI <= data_in;
 when "01" =>
 output_registerQ <= data_in;
 when "10" =>
 output_registerI <= (not(data_in)) + '1';
 when "11" =>
 output_registerQ <= (not(data_in)) + '1';
 when others =>
 output_registerI <= "000000";
 output_registerQ <= "000000";
 END CASE;
 counter4 <= counter4 + "01";

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

152

Appendix K: IQfir_filtat_dig.vhd (VHDL)

-- ---
-- Module: I/Qfir_filtat_dig
-- Original: Generated by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Low pass filter for steaming data input.
-- ---
-- Filter Settings:
--
-- Discrete-Time FIR Filter (real)
-- -------------------------------
-- Filter Structure : Direct-Form FIR
-- Filter Length : 16
-- Stable : Yes
-- Linear Phase : Yes (Type 2)
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;

ENTITY I/Qfir_filtat_dig IS

 GENERIC(max_flength : natural := 16;
 bit_width_in : natural := 6;
 bit_width_coeff : natural := 6;
 bit_width_out : natural := 16);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);

END I/Qfir_filtat_dig;

--
--Module Architecture: I/Qfir_filtat_dig
--
ARCHITECTURE rtl OF I/Qfir_filtat_dig IS
 -- Local Functions
 -- Type Definitions

 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in-1 downto 0); -- double
 TYPE coeff_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_coeff-1 downto 0); -- double
 TYPE product_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in + bit_width_coeff-1 downto 0); -- double
 TYPE sum_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
((bit_width_out-1) downto 0); -- double

 -- Constants
 CONSTANT coeff : coeff_pipeline_type(1 TO max_flength) := (

153

 "000000",
 "000000",
 "000000",
 "000000",
 "000000",
 "000001",
 "111110",
 "000101",
 "001110",
 "111101",
 "000001",
 "111111",
 "000000",
 "000000",
 "000000",
 "000000");

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO
max_flength-1) := (others => "000000"); -- double
 SIGNAL product : product_pipeline_type(1 TO max_flength) :=
(others => "000000000000"); -- double
 SIGNAL sum : sum_pipeline_type(1 TO max_flength-1)
:= (others => "0000000000000000"); -- double

 SIGNAL output_register : std_logic_vector (bit_width_out-1
downto 0) := "0000000000000000";

BEGIN
 -- Block Statements
 Delay_Pipeline_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline(0 TO (max_flength-1)) <= (OTHERS => "000000");
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 delay_pipeline(0) <= filter_in;
 delay_pipeline(1 TO (max_flength-1)) <= delay_pipeline(0 TO
(max_flength-2));
 END IF;
 END IF;
 END PROCESS Delay_Pipeline_process;

 product_sum: for cnt in max_flength downto 0 generate

 product_process: if (cnt > 0) generate
 P : PROCESS (delay_pipeline(cnt-1))
 variable a_int: SIGNED ((bit_width_in-1)
downto 0);
 variable b_int: SIGNED ((bit_width_coeff-
1) downto 0);
 variable pdt_int: SIGNED ((bit_width_in +
bit_width_coeff-1) downto 0);
 BEGIN
 a_int := SIGNED (delay_pipeline(cnt-1));
 b_int := SIGNED (coeff(cnt));
 pdt_int := a_int * b_int;
 product(cnt) <= STD_LOGIC_VECTOR(pdt_int);
 END PROCESS P;
 end generate product_process;

154

 sum_first: if (cnt = 1) generate
 S1 : PROCESS (product(cnt),product(cnt+1))
 variable a_int: SIGNED ((bit_width_out-1)
downto 0);
 variable b_int: SIGNED ((bit_width_out-1)
downto 0);
 variable pdt_int: SIGNED ((bit_width_out-1)
downto 0);
 BEGIN
 a_int := "0000" & (SIGNED (product(cnt)));
 b_int := "0000" & (SIGNED (product(cnt+1)));
 for pad in 0 to (bit_width_out - bit_width_in -
bit_width_coeff - 1) loop
 a_int(bit_width_in + bit_width_coeff + pad) :=
a_int(bit_width_in + bit_width_coeff-1);
 b_int(bit_width_in + bit_width_coeff + pad) :=
b_int(bit_width_in + bit_width_coeff-1);
 end loop;
 pdt_int := (a_int + b_int);
 sum(cnt) <= STD_LOGIC_VECTOR(pdt_int);
 END PROCESS S1;
 end generate sum_first;

 sum_process: if (cnt > 1 and cnt < max_flength) generate
 S : PROCESS (sum(cnt-1),product(cnt+1))
 variable a_int: SIGNED ((bit_width_out-1)
downto 0);
 variable b_int: SIGNED ((bit_width_out-1)
downto 0);
 variable pdt_int: SIGNED ((bit_width_out-1)
downto 0);
 BEGIN
 a_int := (SIGNED (sum(cnt-1)));
 b_int := "0000" & (SIGNED (product(cnt+1)));
 for pad in 0 to (bit_width_out - bit_width_in -
bit_width_coeff - 1) loop
 b_int(bit_width_in + bit_width_coeff + pad) :=
b_int(bit_width_in + bit_width_coeff-1);
 end loop;
 pdt_int := (a_int + b_int);
 sum(cnt) <= STD_LOGIC_VECTOR(pdt_int);
 END PROCESS S;
 end generate sum_process;
 end generate product_sum;

 Output_Register_process : PROCESS (clk, reset)

 variable full: SIGNED ((bit_width_out - 1)
downto 0);
-- variable trunk: SIGNED ((bit_width_out-1) downto 0);

 BEGIN
 IF reset = '1' THEN
 output_register <= "0000000000000000";

 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 full := SIGNED(sum(max_flength - 1));

155

-- trunk := full((bit_width_in + bit_width_coeff + max_flength - 1)
downto (bit_width_in + bit_width_coeff + max_flength - 1 - bit_width_out + 1));
 output_register <= STD_LOGIC_VECTOR(full);
 END IF;
 END IF;

 END PROCESS Output_Register_process;

 -- Assignment Statements
 filter_out <= output_register;

END rtl;

156

Appendix L: IQoutput_dig.vhd (VHDL)

-- ---
-- Module: I/Qoutput_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Nov 06
-- Purpose: To reform the output from 4 filters into I and Q data
-- streams
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
--USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;
--use ieee.std_logic_unsigned.all;

ENTITY I/Qoutput_dig IS

 GENERIC(bit_width : natural := 16);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in_cnvlra : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlrb : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlia : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlib : IN std_logic_vector (bit_width-
1 downto 0);
 dataI_out : OUT std_logic_vector (bit_width-
1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width-1
downto 0)
);

END I/Qoutput_dig;

--
--Module Architecture: I/Qoutput_dig
--
ARCHITECTURE rtl OF I/Qoutput_dig IS
 -- Local Functions

 SIGNAL cnvli_delayed : std_logic_vector (bit_width-1
downto 0) := "0000000000000000";
 SIGNAL output_registerI : std_logic_vector (bit_width-1
downto 0) := "0000000000000000";
 SIGNAL output_registerQ : std_logic_vector (bit_width-1
downto 0) := "0000000000000000";

 SIGNAL counter2 : std_logic;
 SIGNAL q_zero : std_logic;
 SIGNAL clk2 : std_logic;

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

157

 IF reset = '1' THEN
 output_registerI <= "0000000000000000";
 output_registerQ <= "0000000000000000";
 q_zero <= '0';
 counter2 <= '0';

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' AND q_zero = '0' THEN
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= "0000000000000000";
 cnvli_delayed <= data_in_cnvlib;
 counter2 <= '1';
 q_zero <= '1';

 ELSIF clk_enable = '1' THEN
 CASE counter2 is
 when '0' =>
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= cnvli_delayed;
 cnvli_delayed <= data_in_cnvlib;
 when '1' =>
 output_registerI <= data_in_cnvlra;
 output_registerQ <= cnvli_delayed;
 cnvli_delayed <= data_in_cnvlia;
 when others =>
 output_registerI <= "0000000000000000";
 output_registerQ <= "0000000000000000";
 END CASE;

 IF counter2 = '0' THEN
 counter2 <= '1'; END IF;
 IF counter2 = '1' THEN
 counter2 <= '0'; END IF;

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

158

Appendix M: tsui_sss_converter_dig (VHDL)

-- ---
-- Module: tsui_sss_converter_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: To convert input data stream into I/Q data streams
-- ---
library ieee;
use ieee.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;

entity tsui_sss_converter_dig is
 GENERIC(bit_width_in : natural := 6;
 bit_width_out : natural := 16);

 PORT(clk_in : IN std_logic;
 clk_x2_in : IN std_logic;
 clk_enable_in : IN std_logic;
 reset_in : IN std_logic;
 x_in : IN std_logic_vector (bit_width_in-
1 downto 0);
 It_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 Qt_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);
end tsui_sss_converter_dig;
--
--Module Architecture: tsui_sss_converter_dig
--
architecture structure of tsui_sss_converter_dig is

component I/Qgen_dig
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 dataI_out : OUT std_logic_vector
(bit_width_in-1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width_in-1
downto 0)
);
end component;

component I/Qfir_filtat_dig
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);
end component;

component I/Qfir_filtbt_dig
 PORT(clk : IN std_logic;

159

 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);
end component;

component I/Qoutput_dig
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in_cnvlra : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlrb : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlia : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlib : IN std_logic_vector
(bit_width_out-1 downto 0);
 dataI_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width_out-1
downto 0)
);
end component;

signal xr, xi: std_logic_vector (bit_width_in-1
downto 0);
signal cnvlra, cnvlrb, cnvlia, cnvlib: std_logic_vector (bit_width_out-1
downto 0);

begin
 g1: I/Qgen_dig port map (data_in=>x_in, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>xr, dataQ_out=>xi);
 g2: I/Qfir_filtat_dig port map (filter_in=>xr, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlra);
 g3: I/Qfir_filtat_dig port map (filter_in=>xi, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlia);
 g4: I/Qfir_filtbt_dig port map (filter_in=>xr, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlrb);
 g5: I/Qfir_filtbt_dig port map (filter_in=>xi, clk=>clk_x2_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlib);
 g6: I/Qoutput_dig port map (data_in_cnvlra=>cnvlra,
data_in_cnvlrb=>cnvlrb, data_in_cnvlia=>cnvlia, data_in_cnvlib=>cnvlib,
clk=>clk_in, clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>It_out,
dataQ_out=>Qt_out);

end structure;

160

Appendix N: sss_pipeline_template.vhd (VHDL)

-- ---
-- Design: sss_pipeline (varied)
-- To generate: tsui_sss_converter_struct_pipeline_dig
-- Original:
-- Re-Generated by Jesse P Somann
-- Last edited: 06 Feb 06
-- Purpose: I/Q data conversion
-- ---

-- ---
-- ---
-- Register
-- ---
-- ---
----http://www.csee.umbc.edu/help/VHDL/samples/reg_g.vhdl

library ieee;
use ieee.std_logic_1164.all;
entity reg is
 generic(left : natural); -- top bit
 port (clk : in std_logic;
 input : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
end entity reg;

architecture behavior of reg is
begin -- behavior
 reg: process(clk)
 begin
 if clk='1' then -- rising edge
 output <= input;
 end if;
 end process reg;
end architecture behavior;

-- ---
-- ---
-- Unsigned Adder
-- ---
-- ---

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY add_unsigned IS
 GENERIC(bit_width_in : natural;
 bit_width_out : natural);
 PORT (
 a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0)
);
END add_unsigned;

ARCHITECTURE rtl OF add_unsigned IS

161

BEGIN

 S : PROCESS (a,b)
 variable a_int:
 STD_LOGIC_VECTOR((bit_width_in-1) downto 0);
 variable b_int:
 STD_LOGIC_VECTOR((bit_width_in-1) downto 0);
 variable pdt_int:
 STD_LOGIC_VECTOR((bit_width_out-1) downto 0);
 BEGIN
 --use a for loop using the variable
 a_int := (a);
 b_int := (b);
 pdt_int := (a_int + b_int);
 result <= STD_LOGIC_VECTOR(pdt_int);
 END PROCESS S;

END rtl;

-- ---
-- ---
-- Lookahead Adder for first signed addition
-- ---
-- ---

-- ---
-- Module: add_signed_lookahead_first (behavioral)
-- Original: http://www.altera.com/support/examples/vhdl/v_cl_addr.html
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Signed carry lookahead adder, adjustable bit-widths
-- ---
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY add_signed_lookahead_first IS
 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_width : natural);
 PORT (
 a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0)
);

END add_signed_lookahead_first;

ARCHITECTURE behavioral OF add_signed_lookahead_first IS

SIGNAL a_pad : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL b_pad : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL h_sum : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_generate : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;

162

SIGNAL carry_propagate : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_in_internal : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 1)
 := bit_string_cii;

BEGIN

 PAD:PROCESS (a,b)
 variable a_int: STD_LOGIC_VECTOR((bit_width_out - 1)
downto 0);
 variable b_int: STD_LOGIC_VECTOR((bit_width_out - 1)
downto 0);
 BEGIN
 a_int := pad_string & (a);
 b_int := pad_string & (b);
 for pad in 0 to (pad_width-1) loop
 a_int((bit_width_in) + pad) := a_int(bit_width_in - 1);
 b_int((bit_width_in) + pad) := b_int(bit_width_in - 1);
 end loop;
 a_pad <= STD_LOGIC_VECTOR(a_int);
 b_pad <= STD_LOGIC_VECTOR(b_int);
 END PROCESS PAD;

 h_sum <= a_pad XOR b_pad;
 carry_generate <= a_pad AND b_pad;
 carry_propagate <= a_pad OR b_pad;

 PROCESS (carry_generate,carry_propagate,carry_in_internal)
 BEGIN
 carry_in_internal(1) <= carry_generate(0);
 inst: FOR i IN 1 TO (bit_width_out-2) LOOP
 carry_in_internal(i+1) <= carry_generate(i) OR
(carry_propagate(i) AND carry_in_internal(i));
 END LOOP;
-- result(bit_width_out-1) <= carry_generate(bit_width_in-1) OR
(carry_propagate(bit_width_in-1) AND carry_in_internal(bit_width_in-1));
 END PROCESS;

 result(0) <= h_sum(0);
 result((bit_width_out-1) DOWNTO 1) <= h_sum((bit_width_out-1) DOWNTO 1) XOR
carry_in_internal((bit_width_out-1) DOWNTO 1);
END behavioral;

-- ---
-- ---
-- Lookahead Adder for subsequent signed additions
-- ---
-- ---

-- ---
-- Module: add_signed_lookahead (behavioral)
-- Original: http://www.altera.com/support/examples/vhdl/v_cl_addr.html
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Signed carry lookahead adder, adjustable bit-widths
-- ---
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY add_signed_lookahead IS

163

 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector);
 PORT (
 a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0)
);

END add_signed_lookahead;

ARCHITECTURE behavioral OF add_signed_lookahead IS

SIGNAL a_pad : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL b_pad : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL h_sum : STD_LOGIC_VECTOR((bit_width_in-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_generate : STD_LOGIC_VECTOR((bit_width_in-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_propagate : STD_LOGIC_VECTOR((bit_width_in-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_in_internal : STD_LOGIC_VECTOR((bit_width_in-1) DOWNTO 1)
 := bit_string_cii;

BEGIN

 PAD:PROCESS (a,b)
 variable a_int: STD_LOGIC_VECTOR((bit_width_out - 1)
downto 0);
 variable b_int: STD_LOGIC_VECTOR((bit_width_out - 1)
downto 0);
 BEGIN
 a_int := (a);
 b_int := (b);
 a_int(bit_width_in - 1) := a_int(bit_width_in - 2);
 b_int(bit_width_in - 1) := b_int(bit_width_in - 2);
 a_pad <= STD_LOGIC_VECTOR(a_int);
 b_pad <= STD_LOGIC_VECTOR(b_int);
 END PROCESS PAD;

 h_sum <= a_pad XOR b_pad;
 carry_generate <= a_pad AND b_pad;
 carry_propagate <= a_pad OR b_pad;

 PROCESS (carry_generate,carry_propagate,carry_in_internal)
 BEGIN
 carry_in_internal(1) <= carry_generate(0);
 inst: FOR i IN 1 TO (bit_width_in-2) LOOP
 carry_in_internal(i+1) <= carry_generate(i) OR
(carry_propagate(i) AND carry_in_internal(i));
 END LOOP;
-- result(bit_width_out-1) <= carry_generate(bit_width_in-1) OR
(carry_propagate(bit_width_in-1) AND carry_in_internal(bit_width_in-1));
 END PROCESS;

 result(0) <= h_sum(0);
 result((bit_width_out-1) DOWNTO 1) <= h_sum((bit_width_out-1) DOWNTO 1) XOR
carry_in_internal((bit_width_out-1) DOWNTO 1);

164

END behavioral;

-- ---
-- ---
-- Multiplier using custom method for signed 2's compliment (pipelined)
-- ---
-- ---

-- ---
-- Module: mult_signed_custom_pipeline (behavioral)
-- Original: http://www.altera.com/support/examples/vhdl/v_cl_addr.html
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Signed carry lookahead adder, adjustable bit-widths
-- ---
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ENTITY mult_signed_custom_pipeline IS
 GENERIC(bit_width_in1 : natural; --in1 <= in2
 bit_width_in2 : natural;
 bit_width_out : natural;
 bit_width_out_fin : natural;
 bit_string_in1 : std_logic_vector;
 bit_string_in2 : std_logic_vector;
 bit_string_out : std_logic_vector;
 pad_string : std_logic_vector);
 PORT (
 clk: IN std_logic;
 clk_enable: in std_logic;
 reset: in std_logic;
 a: IN STD_LOGIC_VECTOR ((bit_width_in1-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in2-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out_fin-1) DOWNTO
0));

END mult_signed_custom_pipeline;

ARCHITECTURE behavioral OF mult_signed_custom_pipeline IS

--components
 component add_unsigned
 GENERIC(bit_width_in : natural;
 bit_width_out : natural);
 PORT(a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
 end component;

 component reg
 generic(left : natural); -- top bit
 port (clk : in std_logic;
 input : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
 end component;

--types

165

TYPE sums_type IS ARRAY (NATURAL range <>) OF std_logic_vector (bit_width_out-1
downto 0);
TYPE delay_type IS ARRAY (NATURAL range <>) OF std_logic_vector (bit_width_in1-
1 downto 0);

--signals
SIGNAL delay_pipeline_a : delay_type(0 TO bit_width_in1-1) := (others
=> bit_string_in1);
SIGNAL delay_pipeline_b : delay_type(0 TO bit_width_in1-1) := (others
=> bit_string_in1);
SIGNAL sums : sums_type(0 TO bit_width_in1-1) := (others
=> bit_string_in & bit_string_in);
SIGNAL added : sums_type(0 TO bit_width_in1-1) :=
(others => bit_string_in & bit_string_in);
SIGNAL added_reg : sums_type(0 TO bit_width_in1-1) := (others
=> bit_string_in & bit_string_in);
SIGNAL a_pad : STD_LOGIC_VECTOR((bit_width_in1-1) DOWNTO 0)
 := bit_string_in1;
SIGNAL b_pad : STD_LOGIC_VECTOR((bit_width_in1-1) DOWNTO 0)
 := bit_string_in1;
SIGNAL out_reg : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string_in1 & bit_string_in1;

BEGIN

 PAD:PROCESS (a,b)
 variable a_int: STD_LOGIC_VECTOR((bit_width_in1 - 1)
downto 0);
 variable b_int: STD_LOGIC_VECTOR((bit_width_in1 - 1) downto
0);
 BEGIN
 if (bit_width_in1 - bit_width_in2) > 0 then
 a_int := (a);
 b_int := pad_string & (b);
 for pad in 0 to ((bit_width_in1 - bit_width_in2) - 1) loop
 b_int((bit_width_in2) + pad) := b_int(bit_width_in2 - 1);
 end loop;
 else
 a_int:= (a);
 b_int:= (b);
 end if;
 a_pad <= STD_LOGIC_VECTOR(a_int);
 b_pad <= STD_LOGIC_VECTOR(b_int);
 END PROCESS PAD;

 --

 Delay_Pipeline_process : PROCESS (clk, reset, a_pad, b_pad)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline_a(0 TO (bit_width_in1-1)) <= (OTHERS => bit_string_in1);
 delay_pipeline_b(0 TO (bit_width_in1-1)) <= (OTHERS => bit_string_in1);
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 delay_pipeline_a(0) <= a_pad;
 delay_pipeline_b(0) <= b_pad;
 delay_pipeline_a(1 TO (bit_width_in1-1)) <= delay_pipeline_a(0 TO
(bit_width_in1-2));
 delay_pipeline_b(1 TO (bit_width_in1-1)) <= delay_pipeline_b(0 TO
(bit_width_in1-2));
 END IF;

166

 END IF;
 END PROCESS Delay_Pipeline_process;

 --

 intermediates: for cnt in (bit_width_in1 - 1) downto 0 generate

 first: if (cnt = 0) generate
 fi:FOR i IN 0 TO (bit_width_in1-2) generate
 sums(cnt)(i) <= delay_pipeline_a(cnt)(cnt) AND
delay_pipeline_b(cnt)(i);
 END generate fi;
 sums(cnt)(bit_width_in1-1) <= delay_pipeline_a(cnt)(cnt) NAND
delay_pipeline_b(cnt)(bit_width_in1-1);
 sums(cnt)(bit_width_in1) <= '1';
 P: add_unsigned generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out)
 port map(a=>added(cnt), b=>sums(cnt),
result=>added_reg(cnt));
 Pr: reg generic map (left=>(bit_width_out-1))
 port map(clk=>clk, input=>added_reg(cnt),
output=>added(cnt+1));
 end generate first;

 middle: if (cnt > 0 and cnt < (bit_width_in1 - 1)) generate
 mi:FOR i IN cnt TO (bit_width_in1 - 2 + cnt) generate
 sums(cnt)(i) <= delay_pipeline_a(cnt)(cnt) AND
delay_pipeline_b(cnt)(i-cnt);
 END generate mi;
 sums(cnt)(bit_width_in1 - 1 + cnt) <= delay_pipeline_a(cnt)(cnt)
NAND delay_pipeline_b(cnt)(bit_width_in1-1);
 P: add_unsigned generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out)
 port map(a=>added(cnt), b=>sums(cnt),
result=>added_reg(cnt));
 Pr: reg generic map (left=>(bit_width_out-1))
 port map(clk=>clk, input=>added_reg(cnt),
output=>added(cnt+1));
 end generate middle;

 last: if (cnt = (bit_width_in1 - 1)) generate
 la:FOR i IN cnt TO (bit_width_in1 - 2 + cnt) generate
 sums(cnt)(i) <= delay_pipeline_a(cnt)(cnt) NAND
delay_pipeline_b(cnt)(i-cnt);
 END generate la;
 sums(cnt)(bit_width_in1 - 1 + cnt) <= delay_pipeline_a(cnt)(cnt)
AND delay_pipeline_b(cnt)(bit_width_in1-1);
 sums(cnt)(bit_width_out-1) <= '1';
 P: add_unsigned generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out)
 port map(a=>added(cnt), b=>sums(cnt),
result=>added_reg(cnt));
 end generate last;

 end generate intermediates;

 Output_Register_process : PROCESS (clk, reset, added_reg)
 BEGIN
 IF reset = '1' THEN

167

 out_reg <= bit_string_in1 & bit_string_in1;
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 out_reg <= added_reg(bit_width_in1 - 1);
 END IF;
 END IF;
 END PROCESS Output_Register_process;
 result <= out_reg((bit_width_out_fin-1) DOWNTO 0);

END behavioral;

-- ---
-- ---
-- Input Data Splitter for incoming data stream
-- ---
-- ---

-- ---
-- Module: I/Qgen_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Nov 06
-- Purpose: to split the input data into a real (I) and
-- imaginary (Q) stream initiative to be convolved
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

ENTITY I/Qgen_dig IS

 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN std_logic_vector (bit_width-
1 downto 0);
 dataI_out : OUT std_logic_vector (bit_width-
1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width-1
downto 0)
);
END I/Qgen_dig;

--
--Module Architecture: I/Qgen_dig
--
ARCHITECTURE rtl OF I/Qgen_dig IS
 -- Local Functions

 -- Signals
 SIGNAL output_registerI : std_logic_vector (bit_width-1
downto 0) := bit_string;
 SIGNAL output_registerQ : std_logic_vector (bit_width-1
downto 0) := bit_string;

168

 SIGNAL counter4 : std_logic_vector (1 downto 0);
 SIGNAL inverted : std_logic_vector (bit_width-1 downto 0)
:= bit_string;

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

 IF reset = '1' THEN
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 counter4 <= "00";

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 CASE counter4 is
 when "00" =>
 output_registerI <= data_in;
 when "01" =>
 output_registerQ <= data_in;
 when "10" =>
 output_registerI <= (not(data_in)) + '1';
 when "11" =>
 output_registerQ <= (not(data_in)) + '1';
 when others =>
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 END CASE;
 counter4 <= counter4 + "01";

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

-- ---
-- ---
-- Filter 'a', low pass, pipelined
-- ---
-- ---

-- ---
-- Module: I/Qfir_filtat_dig_struct2_pipeline
-- Original: Generated by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Re-Generated by Jesse P Somann
-- Last edited: 06 Feb 06
-- Purpose: Low pass filter for steaming data input.
-- ---
-- Filter Settings:
--
-- Discrete-Time FIR Filter (real)

169

-- -------------------------------
-- Filter Structure : Direct-Form FIR
-- Filter Length : 16
-- Stable : Yes
-- Linear Phase : Yes (Type 2)
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;

ENTITY I/Qfir_filtat_dig_struct2_pipeline IS

 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_width_mult_pad : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_add : std_logic_vector);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);

END I/Qfir_filtat_dig_struct2_pipeline;

--
--Module Architecture: I/Qfir_filtat_dig_struct2_pipeline
--
ARCHITECTURE rtl OF I/Qfir_filtat_dig_struct2_pipeline IS
 -- Local Functions

 -- Components
 component add_signed_lookahead_first
 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_width : natural);
 PORT(a: IN STD_LOGIC_VECTOR ((bit_width_in - 1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in - 1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
 end component;

 component add_signed_lookahead
 GENERIC(bit_width_in : natural;

170

 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector);
 PORT(a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
 end component;

 component mult_signed_custom_pipeline
 generic(bit_width_in1 : natural; --in1 <= in2
 bit_width_in2 : natural;
 bit_width_out : natural;
 bit_width_out_fin : natural;
 bit_string_in1 : std_logic_vector;
 bit_string_in2 : std_logic_vector;
 bit_string_out : std_logic_vector;
 pad_string : std_logic_vector);
 PORT(clk: IN std_logic;
 clk_enable: in std_logic;
 reset: in std_logic;
 a: IN STD_LOGIC_VECTOR ((bit_width_in1 - 1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in2 - 1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out_fin - 1) DOWNTO 0));
 end component;

 component reg
 generic(left : natural); -- top bit
 port (clk : in std_logic;
 input : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
 end component;

 -- Type Definitions
 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in-1 downto 0); -- double
 TYPE coeff_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_coeff-1 downto 0); -- double
 TYPE product_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in + bit_width_coeff-1 downto 0); -- double
 TYPE sum_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
((bit_width_out-1) downto 0); -- double

 -- Constants
 CONSTANT coeff : coeff_pipeline_type(1 TO max_flength) := (
 --cofat--

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO
max_flength-1) := (others => bit_string_in);
 SIGNAL product : product_pipeline_type(1 TO max_flength) :=
(others => bit_string_in_coeff);
 SIGNAL sum : sum_pipeline_type(1 TO max_flength-1)
:= (others => bit_string_out);
 SIGNAL product_reg : product_pipeline_type(1 TO
max_flength) := (others => bit_string_in_coeff);
 SIGNAL sum_reg : sum_pipeline_type(1 TO max_flength-1) :=
(others => bit_string_out);

 SIGNAL output_register : std_logic_vector (bit_width_out-1
downto 0) := bit_string_out;

171

 SIGNAL clk2 : std_logic := '0';

BEGIN

 -- Block Statements
 clk2_process : PROCESS (clk, reset)
 variable switch: STD_LOGIC := '1';
 BEGIN
 IF clk'event AND clk = '1' AND switch = '1' THEN
 IF clk_enable = '1' THEN
 clk2 <= NOT clk2;
 switch := '0';
 END IF;
 END IF;
 IF clk'event AND clk = '1' AND switch = '0' THEN
 IF clk_enable = '1' THEN
 switch := '1';
 END IF;
 END IF;
 END PROCESS clk2_process;

 Delay_Pipeline_process : PROCESS (clk2, reset)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline(0 TO (max_flength-1)) <= (OTHERS => bit_string_in);
 ELSIF clk2'event AND clk2 = '1' THEN
 IF clk_enable = '1' THEN
 delay_pipeline(0) <= filter_in;
 delay_pipeline(1 TO (max_flength-1)) <= delay_pipeline(0 TO
(max_flength-2));
 END IF;
 END IF;
 END PROCESS Delay_Pipeline_process;

 product_sum: for cnt in max_flength downto 0 generate

 product_process: if (cnt > 0) generate
 greater1: IF (bit_width_in >= bit_width_coeff) generate
 P: mult_signed_custom_pipeline generic map
(bit_width_in1=>bit_width_in, bit_width_in2=>bit_width_coeff,
bit_width_out=>(bit_width_in + bit_width_coeff + bit_width_mult_pad),
bit_width_out_fin=>(bit_width_in + bit_width_coeff),
bit_string_in1=>bit_string_in, bit_string_in2=>bit_string_coeff,
bit_string_out=>bit_string_in_coeff, pad_string=>pad_string)
 port map(clk=>clk,
clk_enable=>clk_enable, reset=>reset, a=>delay_pipeline(cnt-1), b=>coeff(cnt),
result=>product(cnt));
 END generate greater1;
 greater2: IF (bit_width_in < bit_width_coeff) generate
 P: mult_signed_custom_pipeline generic map
(bit_width_in1=>bit_width_coeff, bit_width_in2=>bit_width_in,
bit_width_out=>(bit_width_in + bit_width_coeff + bit_width_mult_pad),
bit_width_out_fin=>(bit_width_in + bit_width_coeff),

172

bit_string_in1=>bit_string_coeff, bit_string_in2=>bit_string_in,
bit_string_out=>bit_string_in_coeff, pad_string=>pad_string)
 port map(clk=>clk,
clk_enable=>clk_enable, reset=>reset, a=>coeff(cnt), b=>delay_pipeline(cnt-1),
result=>product(cnt));
 END generate greater2;
 Pr: reg generic map (left=>(bit_width_in + bit_width_coeff -
1))
 port map(clk=>clk, input=>product(cnt),
output=>product_reg(cnt));
 end generate product_process;

 sum_tree1: if (cnt > 0 and cnt <= max_flength/2 and levels>=1) generate
 P: add_signed_lookahead_first generic map
(bit_width_in=>(bit_width_in + bit_width_coeff), bit_width_out=>bit_width_out,
bit_string=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string_add, pad_width=>levels)
 port map(a=>product(cnt*2),
b=>product(cnt*2 - 1), result=>sum(cnt));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt), output=>sum_reg(cnt));
 end generate sum_tree1;

 sum_tree2: if (cnt > 0 and cnt <= max_flength/4 and levels>=2) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum(cnt*2), b=>sum(cnt*2 - 1),
result=>sum(cnt + max_flength/2));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + max_flength/2),
output=>sum_reg(cnt + max_flength/2));
 end generate sum_tree2;

 sum_tree3: if (cnt > 0 and cnt <= max_flength/8 and levels>=3) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum(max_flength/2 + cnt*2),
b=>sum(max_flength/2 + cnt*2 - 1), result=>sum(cnt + (max_flength/4)*3));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/4)*3),
output=>sum_reg(cnt + (max_flength/4)*3));
 end generate sum_tree3;

 sum_tree4: if (cnt > 0 and cnt <= max_flength/16 and levels>=4) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/4)*3 + cnt*2),
b=>sum((max_flength/4)*3 + cnt*2 - 1), result=>sum(cnt + (max_flength/8)*7));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/8)*7),
output=>sum_reg(cnt + (max_flength/8)*7));
 end generate sum_tree4;

173

 sum_tree5: if (cnt > 0 and cnt <= max_flength/32 and levels>=5) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/8)*7 + cnt*2),
b=>sum((max_flength/8)*7 + cnt*2 - 1), result=>sum(cnt + (max_flength/16)*15));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/16)*15),
output=>sum_reg(cnt + (max_flength/16)*15));
 end generate sum_tree5;

 sum_tree6: if (cnt > 0 and cnt <= max_flength/64 and levels>=6) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/16)*15 + cnt*2),
b=>sum((max_flength/16)*15 + cnt*2 - 1), result=>sum(cnt +
(max_flength/32)*31));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/32)*31),
output=>sum_reg(cnt + (max_flength/32)*31));
 end generate sum_tree6;

 sum_tree7: if (cnt > 0 and cnt <= max_flength/128 and levels>=7) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/32)*31 + cnt*2),
b=>sum((max_flength/32)*31 + cnt*2 - 1), result=>sum(cnt +
(max_flength/64)*63));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/64)*63),
output=>sum_reg(cnt + (max_flength/64)*63));
 end generate sum_tree7;

 end generate product_sum;

 Output_Register_process : PROCESS (clk2, reset)

 variable full: STD_LOGIC_VECTOR ((bit_width_out
- 1) downto 0);
-- variable trunk: STD_LOGIC_VECTOR ((bit_width_out - 1)
downto 0);

 BEGIN
 IF reset = '1' THEN
 output_register <= bit_string_out;

 ELSIF clk2'event AND clk2 = '1' THEN
 IF clk_enable = '1' THEN
 full := STD_LOGIC_VECTOR(sum(max_flength - 1));
-- trunk := full((bit_width_in + bit_width_coeff + max_flength - 1)
downto (bit_width_in + bit_width_coeff + max_flength - 1 - bit_width_out + 1));
 output_register <= STD_LOGIC_VECTOR(full);
 END IF;

174

 END IF;

 END PROCESS Output_Register_process;

 -- Assignment Statements
 filter_out <= output_register;

END rtl;

-- ---
-- ---
-- Filter 'b', low pass, pipelined
-- ---
-- ---

-- ---
-- Module: I/Qfir_filtbt_dig_struct2_pipeline
-- Original: Generated by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Low pass filter for steaming data input.
-- ---
-- Filter Settings:
--
-- Discrete-Time FIR Filter (real)
-- -------------------------------
-- Filter Structure : Direct-Form FIR
-- Filter Length : 16
-- Stable : Yes
-- Linear Phase : Yes (Type 2)
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;

ENTITY I/Qfir_filtbt_dig_struct2_pipeline IS

 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_width_mult_pad : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_add : std_logic_vector);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0)

175

);

END I/Qfir_filtbt_dig_struct2_pipeline;

--
--Module Architecture: I/Qfir_filtbt_dig_struct2_pipeline
--
ARCHITECTURE rtl OF I/Qfir_filtbt_dig_struct2_pipeline IS
 -- Local Functions

 -- Components
 component add_signed_lookahead_first
 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_width : natural);
 PORT(a: IN STD_LOGIC_VECTOR ((bit_width_in - 1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in - 1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
 end component;

 component add_signed_lookahead
 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector);
 PORT(a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
 end component;

 component mult_signed_custom_pipeline
 generic(bit_width_in1 : natural; --in1 <= in2
 bit_width_in2 : natural;
 bit_width_out : natural;
 bit_width_out_fin : natural;
 bit_string_in1 : std_logic_vector;
 bit_string_in2 : std_logic_vector;
 bit_string_out : std_logic_vector;
 pad_string : std_logic_vector);
 PORT(clk: IN std_logic;
 clk_enable: in std_logic;
 reset: in std_logic;
 a: IN STD_LOGIC_VECTOR ((bit_width_in1 - 1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in2 - 1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out_fin - 1) DOWNTO 0));
 end component;

 component reg
 generic(left : natural); -- top bit
 port (clk : in std_logic;
 input : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
 end component;

 -- Type Definitions
 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in-1 downto 0); -- double

176

 TYPE coeff_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_coeff-1 downto 0); -- double
 TYPE product_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in + bit_width_coeff-1 downto 0); -- double
 TYPE sum_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
((bit_width_out-1) downto 0); -- double

 -- Constants
 CONSTANT coeff : coeff_pipeline_type(1 TO max_flength) := (
 --cofbt--

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO
max_flength-1) := (others => bit_string_in);
 SIGNAL product : product_pipeline_type(1 TO max_flength) :=
(others => bit_string_in_coeff);
 SIGNAL sum : sum_pipeline_type(1 TO max_flength-1)
:= (others => bit_string_out);
 SIGNAL product_reg : product_pipeline_type(1 TO
max_flength) := (others => bit_string_in_coeff);
 SIGNAL sum_reg : sum_pipeline_type(1 TO max_flength-1) :=
(others => bit_string_out);

 SIGNAL output_register : std_logic_vector (bit_width_out-1
downto 0) := bit_string_out;

 SIGNAL clk2 : std_logic := '0';

BEGIN

 -- Block Statements
 clk2_process : PROCESS (clk, reset)
 variable switch: STD_LOGIC := '1';
 BEGIN
 IF clk'event AND clk = '1' AND switch = '1' THEN
 IF clk_enable = '1' THEN
 clk2 <= NOT clk2;
 switch := '0';
 END IF;
 END IF;
 IF clk'event AND clk = '1' AND switch = '0' THEN
 IF clk_enable = '1' THEN
 switch := '1';
 END IF;
 END IF;
 END PROCESS clk2_process;

 Delay_Pipeline_process : PROCESS (clk2, reset)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline(0 TO (max_flength-1)) <= (OTHERS => bit_string_in);
 ELSIF clk2'event AND clk2 = '1' THEN
 IF clk_enable = '1' THEN
 delay_pipeline(0) <= filter_in;
 delay_pipeline(1 TO (max_flength-1)) <= delay_pipeline(0 TO
(max_flength-2));
 END IF;

177

 END IF;
 END PROCESS Delay_Pipeline_process;

 product_sum: for cnt in max_flength downto 0 generate

 product_process: if (cnt > 0) generate
 greater1: IF (bit_width_in >= bit_width_coeff) generate
 P: mult_signed_custom_pipeline generic map
(bit_width_in1=>bit_width_in, bit_width_in2=>bit_width_coeff,
bit_width_out=>(bit_width_in + bit_width_coeff + bit_width_mult_pad),
bit_width_out_fin=>(bit_width_in + bit_width_coeff),
bit_string_in1=>bit_string_in, bit_string_in2=>bit_string_coeff,
bit_string_out=>bit_string_in_coeff, pad_string=>pad_string)
 port map(clk=>clk,
clk_enable=>clk_enable, reset=>reset, a=>delay_pipeline(cnt-1), b=>coeff(cnt),
result=>product(cnt));
 END generate greater1;
 greater2: IF (bit_width_in < bit_width_coeff) generate
 P: mult_signed_custom_pipeline generic map
(bit_width_in1=>bit_width_coeff, bit_width_in2=>bit_width_in,
bit_width_out=>(bit_width_in + bit_width_coeff + bit_width_mult_pad),
bit_width_out_fin=>(bit_width_in + bit_width_coeff),
bit_string_in1=>bit_string_coeff, bit_string_in2=>bit_string_in,
bit_string_out=>bit_string_in_coeff, pad_string=>pad_string)
 port map(clk=>clk,
clk_enable=>clk_enable, reset=>reset, a=>coeff(cnt), b=>delay_pipeline(cnt-1),
result=>product(cnt));
 END generate greater2;
 Pr: reg generic map (left=>(bit_width_in + bit_width_coeff -
1))
 port map(clk=>clk, input=>product(cnt),
output=>product_reg(cnt));
 end generate product_process;

 sum_tree1: if (cnt > 0 and cnt <= max_flength/2 and levels>=1) generate
 P: add_signed_lookahead_first generic map
(bit_width_in=>(bit_width_in + bit_width_coeff), bit_width_out=>bit_width_out,
bit_string=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string_add, pad_width=>levels)
 port map(a=>product(cnt*2),
b=>product(cnt*2 - 1), result=>sum(cnt));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt), output=>sum_reg(cnt));
 end generate sum_tree1;

 sum_tree2: if (cnt > 0 and cnt <= max_flength/4 and levels>=2) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum(cnt*2), b=>sum(cnt*2 - 1),
result=>sum(cnt + max_flength/2));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + max_flength/2),
output=>sum_reg(cnt + max_flength/2));
 end generate sum_tree2;

178

 sum_tree3: if (cnt > 0 and cnt <= max_flength/8 and levels>=3) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum(max_flength/2 + cnt*2),
b=>sum(max_flength/2 + cnt*2 - 1), result=>sum(cnt + (max_flength/4)*3));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/4)*3),
output=>sum_reg(cnt + (max_flength/4)*3));
 end generate sum_tree3;

 sum_tree4: if (cnt > 0 and cnt <= max_flength/16 and levels>=4) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/4)*3 + cnt*2),
b=>sum((max_flength/4)*3 + cnt*2 - 1), result=>sum(cnt + (max_flength/8)*7));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/8)*7),
output=>sum_reg(cnt + (max_flength/8)*7));
 end generate sum_tree4;

 sum_tree5: if (cnt > 0 and cnt <= max_flength/32 and levels>=5) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/8)*7 + cnt*2),
b=>sum((max_flength/8)*7 + cnt*2 - 1), result=>sum(cnt + (max_flength/16)*15));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/16)*15),
output=>sum_reg(cnt + (max_flength/16)*15));
 end generate sum_tree5;

 sum_tree6: if (cnt > 0 and cnt <= max_flength/64 and levels>=6) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/16)*15 + cnt*2),
b=>sum((max_flength/16)*15 + cnt*2 - 1), result=>sum(cnt +
(max_flength/32)*31));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/32)*31),
output=>sum_reg(cnt + (max_flength/32)*31));
 end generate sum_tree6;

 sum_tree7: if (cnt > 0 and cnt <= max_flength/128 and levels>=7) generate
 P: add_signed_lookahead generic map (bit_width_in=>bit_width_out,
bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii)
 port map(a=>sum((max_flength/32)*31 + cnt*2),
b=>sum((max_flength/32)*31 + cnt*2 - 1), result=>sum(cnt +
(max_flength/64)*63));
 Pr: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk, input=>sum(cnt + (max_flength/64)*63),
output=>sum_reg(cnt + (max_flength/64)*63));

179

 end generate sum_tree7;

 end generate product_sum;

 Output_Register_process : PROCESS (clk2, reset)

 variable full: STD_LOGIC_VECTOR ((bit_width_out
- 1) downto 0);
-- variable trunk: STD_LOGIC_VECTOR ((bit_width_out - 1)
downto 0);

 BEGIN
 IF reset = '1' THEN
 output_register <= bit_string_out;

 ELSIF clk2'event AND clk2 = '1' THEN
 IF clk_enable = '1' THEN
 full := STD_LOGIC_VECTOR(sum(max_flength - 1));
-- trunk := full((bit_width_in + bit_width_coeff + max_flength - 1)
downto (bit_width_in + bit_width_coeff + max_flength - 1 - bit_width_out + 1));
 output_register <= STD_LOGIC_VECTOR(full);
 END IF;
 END IF;

 END PROCESS Output_Register_process;

 -- Assignment Statements
 filter_out <= output_register;

END rtl;

-- ---
-- ---
-- Recombination Unit for making final I and Q channels
-- ---
-- ---

-- ---
-- Module: I/Qoutput_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Nov 06
-- Purpose: To reform the output from 4 filters into I and Q data
-- streams
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
--USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;
--use ieee.std_logic_unsigned.all;

ENTITY I/Qoutput_dig IS

 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);

180

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in_cnvlra : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlrb : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlia : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlib : IN std_logic_vector (bit_width-
1 downto 0);
 dataI_out : OUT std_logic_vector (bit_width-
1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width-1
downto 0)
);

END I/Qoutput_dig;

--
--Module Architecture: I/Qoutput_dig
--
ARCHITECTURE rtl OF I/Qoutput_dig IS
 -- Local Functions

 SIGNAL cnvli_delayed : std_logic_vector (bit_width-1
downto 0) := bit_string;
 SIGNAL output_registerI : std_logic_vector (bit_width-1
downto 0) := bit_string;
 SIGNAL output_registerQ : std_logic_vector (bit_width-1
downto 0) := bit_string;

 SIGNAL counter2 : std_logic;
 SIGNAL q_zero : std_logic;
 SIGNAL clk2 : std_logic;

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

 IF reset = '1' THEN
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 q_zero <= '0';
 counter2 <= '0';

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' AND q_zero = '0' THEN
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= bit_string;
 cnvli_delayed <= data_in_cnvlib;
 counter2 <= '1';
 q_zero <= '1';

 ELSIF clk_enable = '1' THEN
 CASE counter2 is
 when '0' =>
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= cnvli_delayed;

181

 cnvli_delayed <= data_in_cnvlib;
 when '1' =>
 output_registerI <= data_in_cnvlra;
 output_registerQ <= cnvli_delayed;
 cnvli_delayed <= data_in_cnvlia;
 when others =>
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 END CASE;

 IF counter2 = '0' THEN
 counter2 <= '1'; END IF;
 IF counter2 = '1' THEN
 counter2 <= '0'; END IF;

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

-- ---
-- ---
-- Toplevel Structural Setup
-- ---
-- ---

-- ---
-- Module: tsui_sss_converter_struct2
-- Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: To convert input data stream into I/Q data streams
-- ---
library ieee;
use ieee.std_logic_1164.all;

entity tsui_sss_converter_struct2_pipeline_dig is
 GENERIC(max_flength : natural := --mfl--;
 levels : natural := --lvs--;
 bit_width_in : natural := --bwi--;
 bit_width_coeff : natural := --bwc--;
 bit_width_mult_pad : natural := --bwmp--;
 bit_width_out : natural := --bwo--;
 bit_string_in : std_logic_vector (--bsin-- downto 0) := -
-bsi--; --"000000"
 bit_string_coeff : std_logic_vector (--bscn-- downto
0) := --bsc--;
 bit_string_in_coeff : std_logic_vector (--bsicn-- downto
0) := --bsic--;
 bit_string_out : std_logic_vector (--bson-- downto 0) := -
-bso--;
 bit_string_cii : std_logic_vector (--ciin-- downto 1) := -
-cii--;
 --psm-- --pad_string_mult

182

 pad_string_add : std_logic_vector (--psan-- downto 0) := -
-psa--);
 PORT(clk_in : IN std_logic;
 clk_enable_in : IN std_logic;
 reset_in : IN std_logic;
 x_in : IN std_logic_vector (bit_width_in-
1 downto 0);
 It_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 Qt_out : OUT std_logic_vector
(bit_width_out-1 downto 0));
end tsui_sss_converter_struct2_pipeline_dig;

--
--Module Architecture: tsui_sss_converter_struct2_pipeline_dig
--
architecture structure of tsui_sss_converter_struct2_pipeline_dig is

component I/Qgen_dig
 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 dataI_out : OUT std_logic_vector
(bit_width_in-1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width_in-1
downto 0)
);
end component;

component I/Qfir_filtat_dig_struct2_pipeline
 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_width_mult_pad : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_add : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);
end component;

component I/Qfir_filtbt_dig_struct2_pipeline
 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;

183

 bit_width_coeff : natural;
 bit_width_mult_pad : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_add : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);
end component;

component I/Qoutput_dig
 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in_cnvlra : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlrb : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlia : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlib : IN std_logic_vector
(bit_width_out-1 downto 0);
 dataI_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width_out-1
downto 0)
);
end component;

signal xr, xi: std_logic_vector (bit_width_in-1
downto 0);
signal cnvlra, cnvlrb, cnvlia, cnvlib: std_logic_vector (bit_width_out-1
downto 0);

begin

 g1: I/Qgen_dig generic map (bit_width=>bit_width_in,
bit_string=>bit_string_in)
 port map (data_in=>x_in, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>xr, dataQ_out=>xi);
 g2: I/Qfir_filtat_dig_struct2_pipeline generic map
(max_flength=>max_flength, levels=>levels, bit_width_in=>bit_width_in,
bit_width_coeff=>bit_width_coeff, bit_width_mult_pad=>bit_width_mult_pad,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string, pad_string_add=>pad_string_add)
 port map (filter_in=>xr, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlra);

184

 g3: I/Qfir_filtat_dig_struct2_pipeline generic map
(max_flength=>max_flength, levels=>levels, bit_width_in=>bit_width_in,
bit_width_coeff=>bit_width_coeff, bit_width_mult_pad=>bit_width_mult_pad,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string, pad_string_add=>pad_string_add)
 port map (filter_in=>xi, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlia);
 g4: I/Qfir_filtbt_dig_struct2_pipeline generic map
(max_flength=>max_flength, levels=>levels, bit_width_in=>bit_width_in,
bit_width_coeff=>bit_width_coeff, bit_width_mult_pad=>bit_width_mult_pad,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string, pad_string_add=>pad_string_add)
 port map (filter_in=>xr, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlrb);
 g5: I/Qfir_filtbt_dig_struct2_pipeline generic map
(max_flength=>max_flength, levels=>levels, bit_width_in=>bit_width_in,
bit_width_coeff=>bit_width_coeff, bit_width_mult_pad=>bit_width_mult_pad,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string, pad_string_add=>pad_string_add)
 port map (filter_in=>xi, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlib);
 g6: I/Qoutput_dig generic map (bit_width=>bit_width_out,
bit_string=>bit_string_out)
 port map (data_in_cnvlra=>cnvlra, data_in_cnvlrb=>cnvlrb,
data_in_cnvlia=>cnvlia, data_in_cnvlib=>cnvlib, clk=>clk_in,
clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>It_out,
dataQ_out=>Qt_out);

end structure;

185

Appendix O: sss_sequential_template.vhd (VHDL)

-- ---
-- Design: sss_sequ (varied)
-- To generate: tsui_sss_converter_struct_pipeline_dig
-- Original:
-- Re-Generated by Jesse P Somann
-- Last edited: 06 Feb 06
-- Purpose: I/Q data conversion
-- ---

-- ---
-- ---
-- Register1
-- ---
-- ---

----http://www.csee.umbc.edu/help/VHDL/samples/reg_g.vhdl

library ieee;
use ieee.std_logic_1164.all;
entity reg1 is
 port (clk : in std_logic;
 input : in std_logic;
 output : out std_logic);
end entity reg1;

architecture behavior of reg1 is
begin -- behavior
 reg: process(clk)
 begin
 if clk='1' then -- rising edge
 output <= input;
 end if;
 end process reg;
end architecture behavior;

-- ---
-- ---
-- Register
-- ---
-- ---

----http://www.csee.umbc.edu/help/VHDL/samples/reg_g.vhdl

library ieee;
use ieee.std_logic_1164.all;
entity reg is
 generic(left : natural); -- top bit
 port (clk : in std_logic;
 input : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
end entity reg;

architecture behavior of reg is
begin -- behavior
 reg: process(clk)
 begin
 if clk='1' then -- rising edge
 output <= input;

186

 end if;
 end process reg;
end architecture behavior;

-- ---
-- ---
-- Mux 2-way
-- ---
-- ---

library ieee;
use ieee.std_logic_1164.all;
entity sel2 is
 generic(left : natural); -- top bit
 port (sel : in std_logic;
 input0 : in std_logic_vector (left downto 0);
 input1 : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
end entity sel2;

architecture behavior of sel2 is
begin -- behavior
 sel_2: process(sel, input0, input1)
 begin
 if sel='0' then
 output <= input0;
 else
 output <= input1;
 end if;
 end process sel_2;
end architecture behavior;

-- ---
-- ---
-- Lookahead Adder for signed addition
-- ---
-- ---

-- ---
-- Module: add_signed_lookahead_first (behavioral)
-- Original: http://www.altera.com/support/examples/vhdl/v_cl_addr.html
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Signed carry lookahead adder, adjustable bit-widths
-- ---
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY add_signed_lookahead_first IS
 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_width : natural);
 PORT (
 a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
END add_signed_lookahead_first;

187

ARCHITECTURE behavioral OF add_signed_lookahead_first IS

SIGNAL a_pad : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL b_pad : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL h_sum : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_generate : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_propagate : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 0)
 := bit_string;
SIGNAL carry_in_internal : STD_LOGIC_VECTOR((bit_width_out-1) DOWNTO 1)
 := bit_string_cii;

BEGIN

 PAD:PROCESS (a,b)
 variable a_int: STD_LOGIC_VECTOR((bit_width_out - 1)
downto 0);
 variable b_int: STD_LOGIC_VECTOR((bit_width_out - 1)
downto 0);
 BEGIN
 a_int := pad_string & (a);
 b_int := (b);
 for pad in 0 to (pad_width-1) loop
 a_int((bit_width_in) + pad) := a_int(bit_width_in - 1);
 end loop;
 a_pad <= STD_LOGIC_VECTOR(a_int);
 b_pad <= STD_LOGIC_VECTOR(b_int);
 END PROCESS PAD;

 h_sum <= a_pad XOR b_pad;
 carry_generate <= a_pad AND b_pad;
 carry_propagate <= a_pad OR b_pad;

 PROCESS (carry_generate,carry_propagate,carry_in_internal)
 BEGIN
 carry_in_internal(1) <= carry_generate(0);
 inst: FOR i IN 1 TO (bit_width_out-2) LOOP
 carry_in_internal(i+1) <= carry_generate(i) OR
(carry_propagate(i) AND carry_in_internal(i));
 END LOOP;
-- result(bit_width_out-1) <= carry_generate(bit_width_in-1) OR
(carry_propagate(bit_width_in-1) AND carry_in_internal(bit_width_in-1));
 END PROCESS;

 result(0) <= h_sum(0);
 result((bit_width_out-1) DOWNTO 1) <= h_sum((bit_width_out-1) DOWNTO 1) XOR
carry_in_internal((bit_width_out-1) DOWNTO 1);
END behavioral;

-- ---
-- ---
-- Input data formation (coeff and input) for filter filtat
-- ---
-- ---

-- ---
-- Module: filtat_data

188

-- Original: Generated by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Low pass filter for steaming data input.
-- ---

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;

ENTITY filtat_data IS

 GENERIC(max_flength : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 pipeline_data : OUT std_logic_vector
(bit_width_in-1 downto 0);
 coeff_data : OUT std_logic_vector (bit_width_coeff-
1 downto 0);
 ready : OUT std_logic);

END filtat_data;
--
--Module Architecture: filtat_data
--
ARCHITECTURE rtl OF filtat_data IS
 -- Local Functions

 -- Type Definitions
 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in-1 downto 0);
 TYPE coeff_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_coeff-1 downto 0);

 -- Constants
 CONSTANT coeff : coeff_pipeline_type(1 TO max_flength) := (
 --cofat--

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO
max_flength-1);-- := (others => bit_string_in);
 SIGNAL pipeline_input : std_logic_vector (bit_width_in-1
downto 0);-- := bit_string_in;
 SIGNAL coeff_input : std_logic_vector (bit_width_coeff-1
downto 0);-- := bit_string_coeff;

BEGIN

 -- Block Statements
 Delay_Pipeline_process : PROCESS (clk, reset)

189

 variable cnt: integer range 0 to max_flength + 1;
 variable ready_check : std_logic;
 variable extra : std_logic;

 BEGIN

 IF reset = '1' THEN
 delay_pipeline(0 TO (max_flength-1)) <= (OTHERS => bit_string_in);
 pipeline_data <= bit_string_in;
 coeff_data <= bit_string_coeff;
 cnt := max_flength + 1;
 ready_check := '0';
 ready <= '0';
 extra := '0';

 ELSIF (rising_edge(clk)) then
 IF clk_enable = '1' THEN

 IF cnt > 1 THEN
 pipeline_data <= delay_pipeline(max_flength - cnt + 1);
 coeff_data <= coeff(max_flength - cnt + 2);
 cnt := cnt - 1;
 END IF;

 IF cnt = 1 THEN
 cnt := cnt - 1;
 END IF;

 IF cnt = 0 and ready_check = '1' THEN
 pipeline_data <= bit_string_in;
 coeff_data <= bit_string_coeff;
 cnt := max_flength + 1;
 ready_check := '0';
 ready <= '0';
 END IF;

 IF cnt = 0 and ready_check = '0'then
 ready_check := '1';
 ready <= '1';
 delay_pipeline(0) <= filter_in;
 delay_pipeline(1 TO (max_flength-1)) <= delay_pipeline(0 TO
(max_flength-2));
 END IF;

 end if;
 end if;
 END PROCESS Delay_Pipeline_process;
END rtl;

-- ---
-- ---
-- Input data formation (coeff and input) for filter filtbt
-- ---
-- ---

-- ---
-- Module: filtbt_data
-- Original: Generated by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Low pass filter for steaming data input.

190

-- ---

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;

ENTITY filtbt_data IS

 GENERIC(max_flength : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 pipeline_data : OUT std_logic_vector
(bit_width_in-1 downto 0);
 coeff_data : OUT std_logic_vector (bit_width_coeff-
1 downto 0);
 ready : OUT std_logic);

END filtbt_data;
--
--Module Architecture: filtbt_data
--
ARCHITECTURE rtl OF filtbt_data IS
 -- Local Functions

 -- Type Definitions
 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_in-1 downto 0);
 TYPE coeff_pipeline_type IS ARRAY (NATURAL range <>) OF std_logic_vector
(bit_width_coeff-1 downto 0);

 -- Constants
 CONSTANT coeff : coeff_pipeline_type(1 TO max_flength) := (
 --cofbt--

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO
max_flength-1);-- := (others => bit_string_in);
 SIGNAL pipeline_input : std_logic_vector (bit_width_in-1
downto 0);-- := bit_string_in;
 SIGNAL coeff_input : std_logic_vector (bit_width_coeff-1
downto 0);-- := bit_string_coeff;

BEGIN

 -- Block Statements
 Delay_Pipeline_process : PROCESS (clk, reset)

 variable cnt: integer range 0 to max_flength + 1;
 variable ready_check : std_logic;
 variable extra : std_logic;

191

 BEGIN

 IF reset = '1' THEN
 delay_pipeline(0 TO (max_flength-1)) <= (OTHERS => bit_string_in);
 pipeline_data <= bit_string_in;
 coeff_data <= bit_string_coeff;
 cnt := max_flength + 1;
 ready_check := '0';
 ready <= '0';
 extra := '0';

 ELSIF (rising_edge(clk)) then
 IF clk_enable = '1' THEN

 IF cnt > 1 THEN
 pipeline_data <= delay_pipeline(max_flength - cnt + 1);
 coeff_data <= coeff(max_flength - cnt + 2);
 cnt := cnt - 1;
 END IF;

 IF cnt = 1 THEN
 cnt := cnt - 1;
 END IF;

 IF cnt = 0 and ready_check = '1' THEN
 pipeline_data <= bit_string_in;
 coeff_data <= bit_string_coeff;
 cnt := max_flength + 1;
 ready_check := '0';
 ready <= '0';
 END IF;

 IF cnt = 0 and ready_check = '0'then
 ready_check := '1';
 ready <= '1';
 delay_pipeline(0) <= filter_in;
 delay_pipeline(1 TO (max_flength-1)) <= delay_pipeline(0 TO
(max_flength-2));
 END IF;

 end if;
 end if;
 END PROCESS Delay_Pipeline_process;
END rtl;

-- ---
-- ---
-- Booth multiplier in sequential form.
-- ---
-- ---

-- ---
-- Module: mult_booth (behavioral--sequential)
-- Original: Mark Zwolinski
-- : Department of Electronics and Computer Science
-- : University of Southampton
-- : Southampton SO17 1BJ, UK
-- : mz@ecs.soton.ac.uk

192

-- Re-Generated by Jesse P Somann
-- Last edited: 7 Feb 06
-- Purpose: Signed sequential multiplier
-- ---

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

entity mult_booth is
 GENERIC(bit_width_in1 : natural; --in1 <= in2
 bit_width_in2 : natural;
 bit_width_out : natural;
 bit_width_out_fin : natural;
 bit_string_in : std_logic_vector;
 bit_string_out : std_logic_vector;
 pad_string : std_logic_vector);
 PORT (
 clk: IN std_logic;
 clk_enable: in std_logic;
 reset: in std_logic;
 a: IN STD_LOGIC_VECTOR ((bit_width_in1-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in2-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out_fin-1) DOWNTO
0);
 ready: OUT std_logic);
end mult_booth;

architecture rtl of mult_booth is

SIGNAL a_pad : STD_LOGIC_VECTOR((bit_width_in1-1) DOWNTO 0)
 := bit_string_in;
SIGNAL b_pad : STD_LOGIC_VECTOR((bit_width_in1-1) DOWNTO 0)
 := bit_string_in;

begin

 PAD:PROCESS (a,b)
 variable a_int: STD_LOGIC_VECTOR((bit_width_in1 - 1)
downto 0);
 variable b_int: STD_LOGIC_VECTOR((bit_width_in1 - 1) downto
0);
 BEGIN
 if (bit_width_in1 - bit_width_in2) > 0 then
 a_int := (a);
 b_int := pad_string & (b);
 for pad in 0 to ((bit_width_in1 - bit_width_in2) - 1) loop
 b_int((bit_width_in2) + pad) := b_int(bit_width_in2 - 1);
 end loop;
 else
 a_int:= (a);
 b_int:= (b);
 end if;
 a_pad <= STD_LOGIC_VECTOR(a_int);
 b_pad <= STD_LOGIC_VECTOR(b_int);
 END PROCESS PAD;

 Main:process (clk)
 variable count : integer range 0 to bit_width_in1;

193

 variable pa : std_logic_vector((bit_width_in1 + bit_width_in1) downto 0);
 variable a_1 : std_logic;
 variable ready_check : std_logic;
 alias p : std_logic_vector(bit_width_in1 downto 0) is pa((bit_width_in1 +
bit_width_in1) downto bit_width_in1);
 begin
 if (rising_edge(clk)) then
 IF clk_enable = '1' THEN

 if reset = '1' then
 p := (others => '0');
 pa(bit_width_in1-1 downto 0) := (a_pad);
 a_1 := '0';
 count := bit_width_in1;
 ready_check := '0';
 ready <= '0';
 elsif count > 0 then
 case std_logic_vector'(pa(0), a_1) is
 when "01" =>
 p := p + (b_pad);
 when "10" =>
 p := p - (b_pad);
 when others => null;
 end case;
 a_1 := pa(0);
 pa((bit_width_in1 + bit_width_in1)-1 downto 0) := pa((bit_width_in1 +
bit_width_in1) downto 1);
 count := count - 1;
 end if;

 if count = 0 then
 ready <= '1';
 result <= std_logic_vector(pa(bit_width_in1 + bit_width_in2-1 downto
0));
 end if;

 end if;
 end if;
 end process Main;

end rtl;

-- ---
-- ---
-- Input Data Splitter for incoming data stream
-- ---
-- ---

-- ---
-- Module: I/Qgen_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Nov 06
-- Purpose: to split the input data into a real (I) and
-- imaginary (Q) stream initiative to be convolved
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

194

ENTITY I/Qgen_dig IS

 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN std_logic_vector (bit_width-
1 downto 0);
 dataI_out : OUT std_logic_vector (bit_width-
1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width-1
downto 0)
);
END I/Qgen_dig;
--
--Module Architecture: I/Qgen_dig
--
ARCHITECTURE rtl OF I/Qgen_dig IS
 -- Local Functions

 -- Signals
 SIGNAL output_registerI : std_logic_vector (bit_width-1
downto 0) := bit_string;
 SIGNAL output_registerQ : std_logic_vector (bit_width-1
downto 0) := bit_string;

 SIGNAL counter4 : std_logic_vector (1 downto 0);
 SIGNAL inverted : std_logic_vector (bit_width-1 downto 0)
:= bit_string;

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

 IF reset = '1' THEN
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 counter4 <= "00";

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 CASE counter4 is
 when "00" =>
 output_registerI <= data_in;
 when "01" =>
 output_registerQ <= data_in;
 when "10" =>
 output_registerI <= (not(data_in)) + '1';
 when "11" =>
 output_registerQ <= (not(data_in)) + '1';
 when others =>
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 END CASE;
 counter4 <= counter4 + "01";

195

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

-- ---
-- ---
-- Filter 'a', low pass, sequential
-- ---
-- ---

-- ---
-- Module: I/Qfir_filtat_dig_struct2_sequ
-- Original: Generated by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Low pass filter for steaming data input.
-- ---
-- This design is sequential and will take (bit_with_in(max)+1)*(max_flength+1)
clock cycles:
-- for example.... input = 6 bit and filter length of 16 gives 7*17= 119
cycles/operation
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
--USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;

ENTITY I/Qfir_filtat_dig_struct_sequ IS

 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_mult : std_logic_vector;
 pad_width : natural);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 ready : OUT std_logic);

196

END I/Qfir_filtat_dig_struct_sequ;
--
--Module Architecture: I/Qfir_filtat_dig_struct_sequ
--
ARCHITECTURE rtl OF I/Qfir_filtat_dig_struct_sequ IS
 -- Local Functions

 -- Components
 component filtat_data
 GENERIC(max_flength : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 pipeline_data : OUT std_logic_vector
(bit_width_in-1 downto 0);
 coeff_data : OUT std_logic_vector
(bit_width_coeff-1 downto 0);
 ready : OUT std_logic
);
 end component;

 component add_signed_lookahead_first
 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_width : natural);
 PORT (
 a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
 end component;

 component mult_booth
 GENERIC(bit_width_in1 : natural; --in1 <= in2
 bit_width_in2 : natural;
 bit_width_out : natural;
 bit_width_out_fin : natural;
 bit_string_in : std_logic_vector;
 bit_string_out : std_logic_vector;
 pad_string : std_logic_vector);
 PORT (clk: IN std_logic;
 clk_enable: in std_logic;
 reset: in std_logic;
 a: IN STD_LOGIC_VECTOR ((bit_width_in1-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in2-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out_fin-1) DOWNTO
0);
 ready: OUT std_logic);
 end component;

 component sel2
 generic(left : natural); -- top bit
 port (sel : in std_logic;

197

 input0 : in std_logic_vector (left-1 downto 0);
 input1 : in std_logic_vector (left-1 downto 0);
 output : out std_logic_vector (left-1 downto 0));
 end component;

 component reg
 generic(left : natural); -- top bit
 port (clk : in std_logic;
 input : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
 end component;

 component reg1
 port (clk : in std_logic;
 input : in std_logic;
 output : out std_logic);
 end component;

 -- Signals
 SIGNAL pipeline : std_logic_vector (bit_width_in-1
downto 0);-- := bit_string_in;
 SIGNAL coeff : std_logic_vector (bit_width_coeff-1
downto 0);-- := bit_string_coeff;

 SIGNAL product : std_logic_vector (bit_width_in +
bit_width_coeff - 1 downto 0);-- := bit_string_in_coeff;
 SIGNAL sum : std_logic_vector (bit_width_out-1
downto 0);-- := bit_string_out;
 SIGNAL sum_mux : std_logic_vector (bit_width_out-1
downto 0);-- := bit_string_out;
 SIGNAL sum_reg : std_logic_vector (bit_width_out-1 downto
0);-- := bit_string_out;

 SIGNAL mux_sel : std_logic;
 SIGNAL mux_sel_reg : std_logic;

 SIGNAL mult_ready : std_logic;
 SIGNAL mult_reset : std_logic;

 SIGNAL clk_long : std_logic;

 SIGNAL output_register : std_logic_vector (bit_width_out-1
downto 0);-- := bit_string_out;

BEGIN

 clk_ext:process (clk)
 variable count : integer range 0 to bit_width_in + 1;
 begin
 if (rising_edge(clk)) then
 IF clk_enable = '1' THEN
 if reset = '1' then
 count := bit_width_in + 1;
 clk_long <= '1';
 elsif count > 0 then
 clk_long <= '0';
 count := count - 1;
 end if;

 if count = 0 then

198

 count := bit_width_in + 1;
 clk_long <= '1';
 end if;
 end if;
 end if;
 end process clk_ext;

 clocked_data: filtat_data generic map(max_flength=>max_flength,
bit_width_in=>bit_width_in, bit_width_coeff=>bit_width_coeff,
bit_string_in=>bit_string_in, bit_string_coeff=>bit_string_coeff)
 port map(clk=>clk_long, clk_enable=>clk_enable,
reset=>reset, filter_in=>filter_in, pipeline_data=>pipeline, coeff_data=>coeff,
ready=>mux_sel);

 mult_op_1: IF (bit_width_in >= bit_width_coeff) generate
 multiplier1: mult_booth generic map (bit_width_in1=>bit_width_in,
bit_width_in2=>bit_width_coeff, bit_width_out=>(bit_width_in + bit_width_in),
bit_width_out_fin=>(bit_width_in + bit_width_coeff),
bit_string_in=>bit_string_in, bit_string_out=>bit_string_in_coeff,
pad_string=>pad_string_mult)
 port map (clk=>clk, clk_enable=>clk_enable,
reset=>mult_reset, a=>pipeline, b=>coeff, result=>product, ready=>mult_ready);
 END generate mult_op_1;
 mult_op_2: IF (bit_width_in < bit_width_coeff) generate
 multiplier2: mult_booth generic map
(bit_width_in1=>bit_width_coeff, bit_width_in2=>bit_width_in,
bit_width_out=>(bit_width_in + bit_width_in), bit_width_out_fin=>(bit_width_in
+ bit_width_coeff), bit_string_in=>bit_string_coeff,
bit_string_out=>bit_string_in_coeff, pad_string=>pad_string_mult)
 port map (clk=>clk, clk_enable=>clk_enable,
reset=>mult_reset, a=>coeff, b=>pipeline, result=>product, ready=>mult_ready);
 END generate mult_op_2;

 add_reg: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk_long, input=>sum, output=>sum_reg);

 ready_reg: reg1 port map(clk=>clk_long, input=>mux_sel,
output=>mux_sel_reg);

 add_in_select: sel2 generic map (left=>(bit_width_out - 1))
 port map(sel=>mux_sel_reg, input0=>sum_reg,
input1=>bit_string_out, output=>sum_mux);

 adder: add_signed_lookahead_first generic map (bit_width_in=>(bit_width_in +
bit_width_coeff), bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii, pad_string=>pad_string, pad_width=>pad_width)
 port map(a=>product, b=>sum_mux, result=>sum);

 mult_rdy: PROCESS (reset, mult_ready)
 BEGIN
 if reset = '1' or mult_ready = '1' then
 mult_reset <= '1';
 else
 mult_reset <= '0';
 end if;
 END PROCESS mult_rdy;

199

 filt_out: PROCESS (mux_sel_reg)
 BEGIN
 if mux_sel_reg = '1' then
 filter_out <= sum;
 end if;
 END PROCESS filt_out;

END rtl;

-- ---
-- ---
-- Filter 'b', low pass, sequential
-- ---
-- ---

-- ---
-- Module: I/Qfir_filtbt_dig_struct2_sequ
-- Original: Generated by MATLAB(R) 7.0.4 and the Filter Design HDL Coder 1.2.
-- Re-Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: Low pass filter for steaming data input.
-- ---
-- This design is sequential and will take (bit_with_in(max)+1)*(max_flength+1)
clock cycles:
-- for example.... input = 6 bit and filter length of 16 gives 7*17= 119
cycles/operation
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
--USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;

ENTITY I/Qfir_filtbt_dig_struct_sequ IS

 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_mult : std_logic_vector;
 pad_width : natural);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 ready : OUT std_logic);

END I/Qfir_filtbt_dig_struct_sequ;

200

--
--Module Architecture: I/Qfir_filtbt_dig_struct_sequ
--
ARCHITECTURE rtl OF I/Qfir_filtbt_dig_struct_sequ IS
 -- Local Functions

 -- Components
 component filtbt_data
 GENERIC(max_flength : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 pipeline_data : OUT std_logic_vector
(bit_width_in-1 downto 0);
 coeff_data : OUT std_logic_vector
(bit_width_coeff-1 downto 0);
 ready : OUT std_logic
);
 end component;

 component add_signed_lookahead_first
 GENERIC(bit_width_in : natural;
 bit_width_out : natural;
 bit_string : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_width : natural);
 PORT (
 a: IN STD_LOGIC_VECTOR ((bit_width_in-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out-1) DOWNTO 0));
 end component;

 component mult_booth
 GENERIC(bit_width_in1 : natural; --in1 <= in2
 bit_width_in2 : natural;
 bit_width_out : natural;
 bit_width_out_fin : natural;
 bit_string_in : std_logic_vector;
 bit_string_out : std_logic_vector;
 pad_string : std_logic_vector);
 PORT (clk: IN std_logic;
 clk_enable: in std_logic;
 reset: in std_logic;
 a: IN STD_LOGIC_VECTOR ((bit_width_in1-1) DOWNTO 0);
 b: IN STD_LOGIC_VECTOR ((bit_width_in2-1) DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR ((bit_width_out_fin-1) DOWNTO
0);
 ready: OUT std_logic);
 end component;

 component sel2
 generic(left : natural); -- top bit
 port (sel : in std_logic;
 input0 : in std_logic_vector (left-1 downto 0);

201

 input1 : in std_logic_vector (left-1 downto 0);
 output : out std_logic_vector (left-1 downto 0));
 end component;

 component reg
 generic(left : natural); -- top bit
 port (clk : in std_logic;
 input : in std_logic_vector (left downto 0);
 output : out std_logic_vector (left downto 0));
 end component;

 component reg1
 port (clk : in std_logic;
 input : in std_logic;
 output : out std_logic);
 end component;

 -- Signals
 SIGNAL pipeline : std_logic_vector (bit_width_in-1
downto 0);-- := bit_string_in;
 SIGNAL coeff : std_logic_vector (bit_width_coeff-1
downto 0);-- := bit_string_coeff;

 SIGNAL product : std_logic_vector (bit_width_in +
bit_width_coeff - 1 downto 0);-- := bit_string_in_coeff;
 SIGNAL sum : std_logic_vector (bit_width_out-1
downto 0);-- := bit_string_out;
 SIGNAL sum_mux : std_logic_vector (bit_width_out-1
downto 0);-- := bit_string_out;
 SIGNAL sum_reg : std_logic_vector (bit_width_out-1 downto
0);-- := bit_string_out;

 SIGNAL mux_sel : std_logic;
 SIGNAL mux_sel_reg : std_logic;

 SIGNAL mult_ready : std_logic;
 SIGNAL mult_reset : std_logic;

 SIGNAL clk_long : std_logic;

 SIGNAL output_register : std_logic_vector (bit_width_out-1
downto 0);-- := bit_string_out;

BEGIN

 clk_ext:process (clk)
 variable count : integer range 0 to bit_width_in + 1;
 begin
 if (rising_edge(clk)) then
 IF clk_enable = '1' THEN
 if reset = '1' then
 count := bit_width_in + 1;
 clk_long <= '1';
 elsif count > 0 then
 clk_long <= '0';
 count := count - 1;
 end if;

 if count = 0 then
 count := bit_width_in + 1;

202

 clk_long <= '1';
 end if;
 end if;
 end if;
 end process clk_ext;

 clocked_data: filtbt_data generic map(max_flength=>max_flength,
bit_width_in=>bit_width_in, bit_width_coeff=>bit_width_coeff,
bit_string_in=>bit_string_in, bit_string_coeff=>bit_string_coeff)
 port map(clk=>clk_long, clk_enable=>clk_enable,
reset=>reset, filter_in=>filter_in, pipeline_data=>pipeline, coeff_data=>coeff,
ready=>mux_sel);

 mult_op_1: IF (bit_width_in >= bit_width_coeff) generate
 multiplier1: mult_booth generic map (bit_width_in1=>bit_width_in,
bit_width_in2=>bit_width_coeff, bit_width_out=>(bit_width_in + bit_width_in),
bit_width_out_fin=>(bit_width_in + bit_width_coeff),
bit_string_in=>bit_string_in, bit_string_out=>bit_string_in_coeff,
pad_string=>pad_string_mult)
 port map (clk=>clk, clk_enable=>clk_enable,
reset=>mult_reset, a=>pipeline, b=>coeff, result=>product, ready=>mult_ready);
 END generate mult_op_1;
 mult_op_2: IF (bit_width_in < bit_width_coeff) generate
 multiplier2: mult_booth generic map
(bit_width_in1=>bit_width_coeff, bit_width_in2=>bit_width_in,
bit_width_out=>(bit_width_in + bit_width_in), bit_width_out_fin=>(bit_width_in
+ bit_width_coeff), bit_string_in=>bit_string_coeff,
bit_string_out=>bit_string_in_coeff, pad_string=>pad_string_mult)
 port map (clk=>clk, clk_enable=>clk_enable,
reset=>mult_reset, a=>coeff, b=>pipeline, result=>product, ready=>mult_ready);
 END generate mult_op_2;

 add_reg: reg generic map (left=>(bit_width_out -1))
 port map(clk=>clk_long, input=>sum, output=>sum_reg);

 ready_reg: reg1 port map(clk=>clk_long, input=>mux_sel,
output=>mux_sel_reg);

 add_in_select: sel2 generic map (left=>(bit_width_out - 1))
 port map(sel=>mux_sel_reg, input0=>sum_reg,
input1=>bit_string_out, output=>sum_mux);

 adder: add_signed_lookahead_first generic map (bit_width_in=>(bit_width_in +
bit_width_coeff), bit_width_out=>bit_width_out, bit_string=>bit_string_out,
bit_string_cii=>bit_string_cii, pad_string=>pad_string, pad_width=>pad_width)
 port map(a=>product, b=>sum_mux, result=>sum);

 mult_rdy: PROCESS (reset, mult_ready)
 BEGIN
 if reset = '1' or mult_ready = '1' then
 mult_reset <= '1';
 else
 mult_reset <= '0';
 end if;
 END PROCESS mult_rdy;

203

 filt_out: PROCESS (mux_sel_reg)
 BEGIN
 if mux_sel_reg = '1' then
 filter_out <= sum;
 end if;
 END PROCESS filt_out;

END rtl;

-- ---
-- ---
-- Recombination Unit for making final I and Q channels
-- ---
-- ---

-- ---
-- Module: I/Qoutput_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Nov 06
-- Purpose: To reform the output from 4 filters into I and Q data
-- streams
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
--USE IEEE.numeric_std.ALL;
--use ieee.std_logic_arith.all;
--USE ieee.std_logic_signed.all;
--use ieee.std_logic_unsigned.all;

ENTITY I/Qoutput_dig IS

 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);

 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in_cnvlra : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlrb : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlia : IN std_logic_vector (bit_width-
1 downto 0);
 data_in_cnvlib : IN std_logic_vector (bit_width-
1 downto 0);
 dataI_out : OUT std_logic_vector (bit_width-
1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width-1
downto 0)
);

END I/Qoutput_dig;
--
--Module Architecture: I/Qoutput_dig
--
ARCHITECTURE rtl OF I/Qoutput_dig IS
 -- Local Functions

 SIGNAL cnvli_delayed : std_logic_vector (bit_width-1
downto 0) := bit_string;

204

 SIGNAL output_registerI : std_logic_vector (bit_width-1
downto 0) := bit_string;
 SIGNAL output_registerQ : std_logic_vector (bit_width-1
downto 0) := bit_string;

 SIGNAL counter2 : std_logic;
 SIGNAL q_zero : std_logic;
 SIGNAL clk2 : std_logic;

BEGIN

 Output_Register_process : PROCESS (clk, reset)
 BEGIN

 IF reset = '1' THEN
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 q_zero <= '0';
 counter2 <= '0';

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' AND q_zero = '0' THEN
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= bit_string;
 cnvli_delayed <= data_in_cnvlib;
 counter2 <= '1';
 q_zero <= '1';

 ELSIF clk_enable = '1' THEN
 CASE counter2 is
 when '0' =>
 output_registerI <= data_in_cnvlrb;
 output_registerQ <= cnvli_delayed;
 cnvli_delayed <= data_in_cnvlib;
 when '1' =>
 output_registerI <= data_in_cnvlra;
 output_registerQ <= cnvli_delayed;
 cnvli_delayed <= data_in_cnvlia;
 when others =>
 output_registerI <= bit_string;
 output_registerQ <= bit_string;
 END CASE;

 IF counter2 = '0' THEN
 counter2 <= '1'; END IF;
 IF counter2 = '1' THEN
 counter2 <= '0'; END IF;

 END IF;
 END IF;
 END PROCESS Output_Register_process;

 -- Assignment Statements
 dataI_out <= output_registerI;
 dataQ_out <= output_registerQ;

END rtl;

205

-- ---
-- ---
-- Toplevel Structural Setup
-- ---
-- ---

-- ---
-- Module: tsui_sss_converter_struct2_sequ_dig
-- Generated by Jesse P Somann
-- Last edited: 30 Jan 06
-- Purpose: To convert input data stream into I/Q data streams
-- ---
library ieee;
use ieee.std_logic_1164.all;

entity tsui_sss_converter_struct2_sequ_dig is
 GENERIC(max_flength : natural := --mfl--;
 levels : natural := --lvs--;
 bit_width_in : natural := --bwi--;
 bit_width_coeff : natural := --bwc--;
 bit_width_mult_pad : natural := --bwmp--;
 bit_width_out : natural := --bwo--;
 bit_string_in : std_logic_vector (--bsin-- downto 0) := -
-bsi--; --"000000"
 bit_string_coeff : std_logic_vector (--bscn-- downto
0) := --bsc--;
 bit_string_in_coeff : std_logic_vector (--bsicn-- downto
0) := --bsic--;
 bit_string_out : std_logic_vector (--bson-- downto 0) := -
-bso--;
 bit_string_cii : std_logic_vector (--ciin-- downto 1) := -
-cii--;
 --psm-- --pad_string_mult
 pad_string_add : std_logic_vector (--psan-- downto 0) := -
-psa--;
 extension : natural := --ext--);
 PORT(clk_in : IN std_logic;
 clk_enable_in : IN std_logic;
 reset_in : IN std_logic;
 x_in : IN std_logic_vector (bit_width_in-
1 downto 0);
 It_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 Qt_out : OUT std_logic_vector
(bit_width_out-1 downto 0)
);
end tsui_sss_converter_struct2_sequ_dig;

--
--Module Architecture: tsui_sss_converter_struct2_sequ_dig
--
architecture structure of tsui_sss_converter_struct2_sequ_dig is

component I/Qgen_dig
 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 data_in : IN std_logic_vector
(bit_width_in-1 downto 0);

206

 dataI_out : OUT std_logic_vector
(bit_width_in-1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width_in-1
downto 0)
);
end component;

component I/Qfir_filtat_dig_struct_sequ
 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_mult : std_logic_vector;
 pad_width : natural);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 ready : OUT std_logic);
end component;

component I/Qfir_filtbt_dig_struct_sequ
 GENERIC(max_flength : natural;
 levels : natural;
 bit_width_in : natural;
 bit_width_coeff : natural;
 bit_width_out : natural;
 bit_string_in : std_logic_vector;
 bit_string_coeff : std_logic_vector;
 bit_string_in_coeff : std_logic_vector;
 bit_string_out : std_logic_vector;
 bit_string_cii : std_logic_vector;
 pad_string : std_logic_vector;
 pad_string_mult : std_logic_vector;
 pad_width : natural);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;
 filter_in : IN std_logic_vector
(bit_width_in-1 downto 0);
 filter_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 ready : OUT std_logic);
end component;

component I/Qoutput_dig
 GENERIC(bit_width : natural;
 bit_string : std_logic_vector);
 PORT(clk : IN std_logic;
 clk_enable : IN std_logic;
 reset : IN std_logic;

207

 data_in_cnvlra : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlrb : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlia : IN std_logic_vector
(bit_width_out-1 downto 0);
 data_in_cnvlib : IN std_logic_vector
(bit_width_out-1 downto 0);
 dataI_out : OUT std_logic_vector
(bit_width_out-1 downto 0);
 dataQ_out : OUT std_logic_vector (bit_width_out-1
downto 0)
);
end component;

signal xr, xi: std_logic_vector (bit_width_in-1
downto 0);
signal cnvlra, cnvlrb, cnvlia, cnvlib: std_logic_vector (bit_width_out-1
downto 0);
SIGNAL clk_long : std_logic := '0';
SIGNAL clk2 : std_logic := '0';

begin

 clk2_process : PROCESS (clk_in)
 variable switch: STD_LOGIC := '1';
 BEGIN
 IF clk_in'event AND clk_in = '1' AND switch = '1' THEN
 IF clk_enable_in = '1' THEN
 clk2 <= NOT clk2;
 switch := '0';
 END IF;
 END IF;
 IF clk_in'event AND clk_in = '1' AND switch = '0' THEN
 IF clk_enable_in = '1' THEN
 switch := '1';
 END IF;
 END IF;
 END PROCESS clk2_process;

 clk_ext:process (clk_in)
 variable count : integer range 0 to (extension + 1);
 begin
 if (rising_edge(clk_in)) then
 IF clk_enable_in = '1' THEN
 if reset_in = '1' then
 count := extension + 1;
 clk_long <= '1';
 elsif count > 0 then
 clk_long <= '0';
 count := count - 1;
 end if;

 if count = 0 then
 count := extension + 1;
 clk_long <= '1';
 end if;
 end if;
 end if;
 end process clk_ext;

208

 g1: I/Qgen_dig generic map (bit_width=>bit_width_in,
bit_string=>bit_string_in)
 port map (data_in=>x_in, clk=>clk_long,
clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>xi, dataQ_out=>xr);
 g2: I/Qfir_filtat_dig_struct_sequ generic map (max_flength=>max_flength,
levels=>levels, bit_width_in=>bit_width_in, bit_width_coeff=>bit_width_coeff,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string_add, pad_string_mult=>pad_string_mult,
pad_width=>levels)
 port map (filter_in=>xr, clk=>clk2,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlra);
 g3: I/Qfir_filtat_dig_struct_sequ generic map (max_flength=>max_flength,
levels=>levels, bit_width_in=>bit_width_in, bit_width_coeff=>bit_width_coeff,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string_add, pad_string_mult=>pad_string_mult,
pad_width=>levels)
 port map (filter_in=>xi, clk=>clk2,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlia);
 g4: I/Qfir_filtbt_dig_struct_sequ generic map (max_flength=>max_flength,
levels=>levels, bit_width_in=>bit_width_in, bit_width_coeff=>bit_width_coeff,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string_add, pad_string_mult=>pad_string_mult,
pad_width=>levels)
 port map (filter_in=>xr, clk=>clk2,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlrb);
 g5: I/Qfir_filtbt_dig_struct_sequ generic map (max_flength=>max_flength,
levels=>levels, bit_width_in=>bit_width_in, bit_width_coeff=>bit_width_coeff,
bit_width_out=>bit_width_out, bit_string_in=>bit_string_in,
bit_string_coeff=>bit_string_coeff, bit_string_in_coeff=>bit_string_in_coeff,
bit_string_out=>bit_string_out, bit_string_cii=>bit_string_cii,
pad_string=>pad_string_add, pad_string_mult=>pad_string_mult,
pad_width=>levels)
 port map (filter_in=>xi, clk=>clk2,
clk_enable=>clk_enable_in, reset=>reset_in, filter_out=>cnvlib);
 g6: I/Qoutput_dig generic map (bit_width=>bit_width_out,
bit_string=>bit_string_out)
 port map (data_in_cnvlra=>cnvlra, data_in_cnvlrb=>cnvlrb,
data_in_cnvlia=>cnvlia, data_in_cnvlib=>cnvlib, clk=>clk_long,
clk_enable=>clk_enable_in, reset=>reset_in, dataI_out=>Qt_out,
dataQ_out=>It_out);

end structure;

209

Appendix P: coeff_gen.m (Matlab)

% program to output formatted .txt files for Perl script use
clear;
format long;

%---------- FILTER PARAMETERS & GENERATION--(Kaiser) -----------------
dbst = 70;

if (dbst > 50)
 betat = .1102*(dbst-8.7); % if dbst is > 50
elseif ((50 >= dbst) & (dbst >= 21))
 betat = .5842*(dbst-21)^0.4+.07886*(dbst-21); % if 50 >= dbst >= 21
else
 betat = 0; % if dbst is < 21
end;

% filter_length = 32;
filter_length = input('enter filter_length (even integer) = ');

windowt = kaiser(filter_length,betat);
% figure(1);
% wvtool(windowt)

total_bits = input('enter total coefficient bit_width = ');
fraction_bits = input('enter number of fractional coeff. bits = ');
% total_bits = 6;
% fraction_bits = 5;

hkt = fir1(filter_length-1, 0.5, windowt);

fi_hkt = fi(hkt, 1, total_bits, fraction_bits);

filtab = reshape(fi_hkt, 2, filter_length/2);
filtat = filtab(1,1:(filter_length/2));
filtbt = filtab(2,1:(filter_length/2));

%print out results into formatted text file
fid_coeff = fopen('filter_coeff.txt', 'wt');

fprintf(fid_coeff, '%i\n\n', filter_length/2);
fprintf(fid_coeff, '%i\n\n', total_bits);

for cnt = 1:1:((filter_length/2)-1)
 fprintf(fid_coeff, '"%s",\n',bin(filtat(cnt)));
end
fprintf(fid_coeff, '"%s");\n',bin(filtat(filter_length/2)));

fprintf(fid_coeff, '\n');

for cnt = 1:1:((filter_length/2)-1)
 fprintf(fid_coeff, '"%s",\n',bin(filtbt(cnt)));
end
fprintf(fid_coeff, '"%s");',bin(filtbt(filter_length/2)));

fclose(fid_coeff);

210

%---------- INPUT DATA SIGNAL--FOR TESTBENCHES -----------------

n1 = 256; % number of samples to be taken
n = [0:n1-1];
f = input('enter input frequency in MHz = ');
sf = input('enter sampling frequency in MHz, must be at least twice f = ');
%f = 14;
%sf = 100;
%form sine wave
x = sin(2*pi*(f*10^6)*((1/sf)*1e-6)*n+.01);

total_bits_in = input('enter total input bit_width = ');
fraction_bits_in = input('enter number of fractional input bits = ');
% total_bits_in = 6;
% fraction_bits_in = 4;

fi_x = fi(x,1,total_bits_in,fraction_bits_in);

fid_input = fopen('tb_input.txt', 'wt');
for cnt = 1:1:n1-1
 fprintf(fid_input, '"%s",\n',bin(fi_x(cnt)));
end
fprintf(fid_input, '"%s");\n',bin(fi_x(n1)));
fclose(fid_input);

211

Appendix Q: sss_gen.prl (Perl)

#!/usr/sbin/perl -w

#use 5.004;
#use strict; # enforce declarations and quoting
#use CGI qw(:standard); # import shortcuts
#use Fcntl qw(:flock); # imports LOCK_EX, LOCK_SH, LOCK_NB

my(
 $MATLAB_IN, # name of filter coefficient .m input file
 $STAT_NAME, # name input by user for stat file
 $STAT_OUT, # name of out puts stats file
 $PIPE_IN, # name of pipelined vhdl input file
 $PIPE_OUT, # name of pipelined vhdl output file
 $SEQU_IN, # name of sequential vhdl input file
 $SEQU_OUT, # name of sequential vhdl output file
 $ABST_IN, # name of abstract vhdl input file
 $ABST_OUT, # name of abstract vhdl output file

 @stats, # array to keep track of stats in

 @filt_info, # array to hold info of input Matlab txt file
 @cofat, #coefficient list for filtat for input to templates
 @cofbt, #coefficient list for filtbt for input to templates
 @pipe_in, #array holding pipeline template
 $pipe_in_l, #length of the array
 @sequ_in, #array holding sequential template
 $sequ_in_l, #length of the array
 @abst_in, #array holding abstract template
 $abst_in_l, #length of the array
 $filt_leng, # filter length (half of total filter length)
 $bw_in, # bit width of the input
 $bw_coeff, # bit width of the coefficients
 $bw_out, # bit width of the output

 # variables for input to template files
 $mfl, $lvs, $bwi, $bwc, $bwmp, $bwo, $bsi, $bsc, $bsic, $bso, $cii, $psm,
$psa, $ext,

 $i, # a counter variable for for loops
 $fill, # a fill element for reading coeff input file
 $first,

);

usage: gen_sss.prl [matlab_file] [output_file] [-i] [bit_width_in] [-o]
[bit_with_out] [-s] [-p] [-a]
$TITLE = "Replace template VHDL files with parameterized versions";
This program will replace generic varibles in the templates with user defined
values for filter length and bit_widths.
operation: "gen_sss.prl

print ("\nEnter the name of the Original Fault File : ");

Put input templates into info arrays
open the input files for read (preserving old contents)
$PIPE_IN = "sss_pipeline_template.vhd";
chomp($PIPE_IN); #get rid of pesky \n

212

open(IN_PIPE, "< $PIPE_IN") || die("cannot open $PIPE_IN: $!");
@pipe_in=<IN_PIPE>;
close(IN_PIPE);

$SEQU_IN = "sss_sequential_template.vhd";
chomp($SEQU_IN); #get rid of pesky \n
open(IN_SEQU, "< $SEQU_IN") || die("cannot open $SEQU_IN: $!");
@sequ_in=<IN_SEQU>;
close(IN_SEQU);

#$ABST_IN = "sss_abstract_template.vhd";
#chomp($ABST_IN); #get rid of pesky \n
#open(IN_ABST, "< $ABST_IN") || die("cannot open $ABST_IN: $!");
#@abst_in=<IN_ABST>;
#close(IN_ABST);

Read in first agument as input file and put into info array
$MATLAB_IN = $ARGV[0];
chomp($MATLAB_IN); #get rid of pesky \n
open(IN_MATLAB, "< $MATLAB_IN") || die("cannot open $MATLAB_IN: $!");
$filt_leng=<IN_MATLAB>;
$fill=<IN_MATLAB>;
$bw_coeff=<IN_MATLAB>;
$fill=<IN_MATLAB>;
@filt_info=<IN_MATLAB>;
close(IN_MATLAB);

Split the filt_info array into two separate coefficient arrays
for($i=0;$i<$filt_leng;$i++){
 $cofat[$i] = $filt_info[$i];
 $cofbt[$i] = $filt_info[$filt_leng + $i + 1];
}
print @cofat;
print @cofbt;

Read in second argument as name for output stat file
$STAT_NAME = $ARGV[1];
chomp($STAT_NAME); #get rid of pesky \n

Read in thrid and fourth arguments and assign as bit-width values
my $argck2 = $ARGV[2];
chomp($argck2);
if ($argck2 = -i)
{$bw_in = $ARGV[3];}
#$bw_in = $ARGV[3];
#chomp($bw_in);
elsif ($argck2 = -o)
{$bw_out = $ARGV[3];}

#my $argck4 = $ARGV[4];
#chomp($argck4);
#if ($argck4 = -o)
#{$bw_out = $ARGV[5];}
#elsif ($argck4 = -i)
#{$bw_in = $ARGV[5];}
$bw_out = $ARGV[5];
chomp($bw_out);

Assign insertable variables

213

$mfl = $filt_leng;

$i = $filt_leng; $lvs = 1;
while($i > 2){
 $i = $i/2;
 $lvs++;}

$bwi = $bw_in;
$bwc = $bw_coeff;
$bwmp = abs($bw_in - $bw_coeff);
#$bwo = $bw_out;
$bwo = $bwi + $bwc + $lvs;

$bsi = '"';
for($i=0;$i<$bwi;$i++){
 $bsi = $bsi . '0';
} $bsi = $bsi . '"';

$bsc = '"';
for($i=0;$i<$bwc;$i++){
 $bsc = $bsc . '0';
} $bsc = $bsc . '"';

$bsic = '"';
for($i=0;$i<($bwi+$bwc);$i++){
 $bsic = $bsic . '0';
} $bsic = $bsic . '"';

$bso = '"';
for($i=0;$i<$bwo;$i++){
 $bso = $bso . '0';
} $bso = $bso . '"';

$cii = '"';
for($i=0;$i<($bwo-1);$i++){
 $cii = $cii . '0';
} $cii = $cii . '"';

if($bwmp == 0)
{$psm = "pad_string_mult : std_logic := '0';";}
elsif($bwmp == 1)
{$psm = "pad_string_mult : std_logic := '0';";}
else
{$psm = "pad_string_mult : std_logic_vector(";
 $psm = $psm . ($bwmp-1);
 $psm = $psm . " downto 0) := ";
 $psm = $psm . '"';
 for($i=0;$i<$bwmp;$i++){
 $psm = $psm . '0';
 } $psm = $psm . '"';
}

if($lvs == 1)
{$psa = '0';}
else
{$psa = '"';
 for($i=0;$i<$lvs;$i++){
 $psa = $psa . '0';
 } $psa = $psa . '"';
}

214

if($bwi >= $bwc)
{$ext = (($mfl+1)*($bwi+1));}
else
{$ext = (($mfl+1)*($bwc+1));}

Give values to template variables
$pipe_in_l = @pipe_in;
for($i=0;$i<$pipe_in_l;$i++){
 $pipe_in[$i] =~ s/--mfl--/$mfl/g;
 $pipe_in[$i] =~ s/--lvs--/$lvs/g;
 $pipe_in[$i] =~ s/--bwi--/$bwi/g;
 $pipe_in[$i] =~ s/--bwc--/$bwc/g;
 $pipe_in[$i] =~ s/--bwmp--/$bwmp/g;
 $pipe_in[$i] =~ s/--bwo--/$bwo/g;
 $pipe_in[$i] =~ s/--bsi--/$bsi/g;
 $pipe_in[$i] =~ s/--bsin--/$bwi-1/ge;
 $pipe_in[$i] =~ s/--bsc--/$bsc/g;
 $pipe_in[$i] =~ s/--bscn--/$bwc-1/ge;
 $pipe_in[$i] =~ s/--bsic--/$bsic/g;
 $pipe_in[$i] =~ s/--bsicn--/$bwi+$bwc-1/ge;
 $pipe_in[$i] =~ s/--bso--/$bso/g;
 $pipe_in[$i] =~ s/--bson--/$bwo-1/ge;
 $pipe_in[$i] =~ s/--cii--/$cii/g;
 $pipe_in[$i] =~ s/--ciin--/$bwo-1/ge;
 $pipe_in[$i] =~ s/--psm--/$psm/g;
 $pipe_in[$i] =~ s/--psa--/$psa/g;
 $pipe_in[$i] =~ s/--psan--/$lvs-1/ge;
 $pipe_in[$i] =~ s/--ext--/$ext/g;

 $pipe_in[$i] =~ s/--cofat--/@cofat/g;
 $pipe_in[$i] =~ s/--cofbt--/@cofbt/g;
}

$sequ_in_l = @sequ_in;
for($i=0;$i<$sequ_in_l;$i++){
 $sequ_in[$i] =~ s/--mfl--/$mfl/g;
 $sequ_in[$i] =~ s/--lvs--/$lvs/g;
 $sequ_in[$i] =~ s/--bwi--/$bwi/g;
 $sequ_in[$i] =~ s/--bwc--/$bwc/g;
 $sequ_in[$i] =~ s/--bwmp--/$bwmp/g;
 $sequ_in[$i] =~ s/--bwo--/$bwo/g;
 $sequ_in[$i] =~ s/--bsi--/$bsi/g;
 $sequ_in[$i] =~ s/--bsin--/$bwi-1/ge;
 $sequ_in[$i] =~ s/--bsc--/$bsc/g;
 $sequ_in[$i] =~ s/--bscn--/$bwc-1/ge;
 $sequ_in[$i] =~ s/--bsic--/$bsic/g;
 $sequ_in[$i] =~ s/--bsicn--/$bwi+$bwc-1/ge;
 $sequ_in[$i] =~ s/--bso--/$bso/g;
 $sequ_in[$i] =~ s/--bson--/$bwo-1/ge;
 $sequ_in[$i] =~ s/--cii--/$cii/g;
 $sequ_in[$i] =~ s/--ciin--/$bwo-1/ge;
 $sequ_in[$i] =~ s/--psm--/$psm/g;
 $sequ_in[$i] =~ s/--psa--/$psa/g;
 $sequ_in[$i] =~ s/--psan--/$lvs-1/ge;
 $sequ_in[$i] =~ s/--ext--/$ext/g;

 $sequ_in[$i] =~ s/--cofat--/@cofat/g;
 $sequ_in[$i] =~ s/--cofbt--/@cofbt/g;
}

215

Create Stats Text
my $full_fl = $filt_leng*2;
@stats = "Special Sampling Scheme I/Q Downconverter\nFilter Length =
$full_fl\nInput Bit-Width = $bw_in\nCoefficient Bit-Width = $bw_coeff\nOutput
Bit-Width = $bw_out\n";

Print Out all output files
$STAT_OUT = $STAT_NAME . ".stat";
open($OUT_STAT, "> $STAT_OUT") || die("cannot create $STAT_OUT: $!");
print $OUT_STAT @stats;
close($OUT_STAT);

$PIPE_OUT = 'sss_pipeline.vhd';
open($OUT_PIPE, "> $PIPE_OUT") || die("cannot create $PIPE_OUT: $!");
print $OUT_PIPE @pipe_in;
close($OUT_PIPE);

$SEQU_OUT = 'sss_sequential.vhd';
open($OUT_SEQU, "> $SEQU_OUT") || die("cannot create $SEQU_OUT: $!");
print $OUT_SEQU @sequ_in;
close($OUT_SEQU);

#$ABST_OUT = 'sss_abstract.vhd';
#open($OUT_ABST, "> $ABST_OUT") || die("cannot create $ABST_OUT: $!");
#print $OUT_ABST @abst_in;
#close($OUT_ABST);

216

Appendix R: tb_gen.prl (Perl)

#!/usr/sbin/perl -w

#use 5.004;
#use strict; # enforce declarations and quoting
#use CGI qw(:standard); # import shortcuts
#use Fcntl qw(:flock); # imports LOCK_EX, LOCK_SH, LOCK_NB

my(
 $MATLAB_IN, # name of filter coefficient .m input file
 $PIPE_IN, # name of pipelined vhdl input file
 $PIPE_OUT, # name of pipelined vhdl output file
 $SEQU_IN, # name of sequential vhdl input file
 $SEQU_OUT, # name of sequential vhdl output file
 $ABST_IN, # name of abstract vhdl input file
 $ABST_OUT, # name of abstract vhdl output file

 @input_info, # array to hold info of input Matlab txt file
 @pipe_in, #array holding pipeline template
 $pipe_in_l, #length of the array
 @sequ_in, #array holding sequential template
 $sequ_in_l, #length of the array
 @abst_in, #array holding abstract template
 $abst_in_l, #length of the array
 $bw_in, # bit width of the input
 $bw_out, # bit width of the output

 # variables for input to template files
 $bwi, $bwo, $ext,

 $i, # a counter variable for for loops
 $first,

);

usage: gen_tb.prl [matlab_file] [-i] [bit_width_in] [-o] [bit_with_out] [-s]
[-p] [-a]
$TITLE = "Replace template VHDL files with parameterized versions";
This program will replace generic varibles in the templates with user defined
values for filter length and bit_widths.
operation: "gen_tb.prl

print ("\nEnter the name of the Original Fault File : ");

Put input templates into info arrays
open the input files for read (preserving old contents)
$PIPE_IN = "tb_pipeline_template.vhd";
chomp($PIPE_IN); #get rid of pesky \n
open(IN_PIPE, "< $PIPE_IN") || die("cannot open $PIPE_IN: $!");
@pipe_in=<IN_PIPE>;
close(IN_PIPE);

$SEQU_IN = "tb_sequential_template.vhd";
chomp($SEQU_IN); #get rid of pesky \n
open(IN_SEQU, "< $SEQU_IN") || die("cannot open $SEQU_IN: $!");
@sequ_in=<IN_SEQU>;
close(IN_SEQU);

217

$ABST_IN = "tb_abstract_template.vhd";
chomp($ABST_IN); #get rid of pesky \n
open(IN_ABST, "< $ABST_IN") || die("cannot open $ABST_IN: $!");
@abst_in=<IN_ABST>;
close(IN_ABST);

Read in first agument as input file and put into info array
$MATLAB_IN = $ARGV[0];
chomp($MATLAB_IN); #get rid of pesky \n
open(IN_MATLAB, "< $MATLAB_IN") || die("cannot open $MATLAB_IN: $!");
@input_info=<IN_MATLAB>;
close(IN_MATLAB);

Read in thrid and fourth arguments and assign as bit-width values
my $argck1 = $ARGV[1];
chomp($argck1);
if ($argck1 = -i)
{$bw_in = $ARGV[2];}
#$bw_in = $ARGV[2];
#chomp($bw_in);
elsif ($argck1 = -o)
{$bw_out = $ARGV[2];}

#my $argck3 = $ARGV[3];
#chomp($argck3);
#if ($argck3 = -o)
#{$bw_out = $ARGV[4];}
#elsif ($argck3 = -i)
#{$bw_in = $ARGV[4];}
$bw_out = $ARGV[4];
chomp($bw_out);

Assign insertable variables
$bwi = $bw_in;
$bwo = $bw_out;
#$bwo = $bwi + $bwc + $lvs;

#if($bwi >= $bwc)
#{$ext = (($mfl+1)*($bwi+1));}
#else
#{$ext = (($mfl+1)*($bwc+1));}

Give values to template variables
$pipe_in_l = @pipe_in;
for($i=0;$i<$pipe_in_l;$i++){
 $pipe_in[$i] =~ s/--bwi--/$bwi/g;
 $pipe_in[$i] =~ s/--bwo--/$bwo/g;
 $pipe_in[$i] =~ s/--bsin--/$bwi-1/ge;
 $pipe_in[$i] =~ s/--bson--/$bwo-1/ge;

 $pipe_in[$i] =~ s/--input--/@input_info/g;
}

$abst_in_l = @abst_in;
for($i=0;$i<$abst_in_l;$i++){
 $abst_in[$i] =~ s/--bwi--/$bwi/g;
 $abst_in[$i] =~ s/--bwo--/$bwo/g;
 $abst_in[$i] =~ s/--bsin--/$bwi-1/ge;
 $abst_in[$i] =~ s/--bson--/$bwo-1/ge;

218

 $abst_in[$i] =~ s/--input--/@input_info/g;
}

$sequ_in_l = @sequ_in;
for($i=0;$i<$sequ_in_l;$i++){
 $sequ_in[$i] =~ s/--bwi--/$bwi/g;
 $sequ_in[$i] =~ s/--bwo--/$bwo/g;
 $sequ_in[$i] =~ s/--bsin--/$bwi-1/ge;
 $sequ_in[$i] =~ s/--bson--/$bwo-1/ge;

 $sequ_in[$i] =~ s/--input--/@input_info/g;
}

$PIPE_OUT = 'tb_pipeline.vhd';
open($OUT_PIPE, "> $PIPE_OUT") || die("cannot create $PIPE_OUT: $!");
print $OUT_PIPE @pipe_in;
close($OUT_PIPE);

$SEQU_OUT = 'tb_sequential.vhd';
open($OUT_SEQU, "> $SEQU_OUT") || die("cannot create $SEQU_OUT: $!");
print $OUT_SEQU @sequ_in;
close($OUT_SEQU);

$ABST_OUT = 'tb_abstract.vhd';
open($OUT_ABST, "> $ABST_OUT") || die("cannot create $ABST_OUT: $!");
print $OUT_ABST @abst_in;
close($OUT_ABST);

219

Vita

Lieutenant Jesse Somann graduated from Hartford Union High School in

Hartford, WI in 2000. He attended Rose-Hulman Institute of Technology under an

AFROTC scholarship as and Electrical Engineering student. He graduated with a BS in

Electrical Engineering and a minor in Geography, with honors and was commissioned in

May, 2004.

Lt. Somann’s first assignment is here at the Air Force Institute of Technology to

complete a Master’s Degree in Electrical Engineering. He will graduate in March of

2006 and will take a follow on assignment here at Wright-Patterson AFB as a

developmental engineer with the Air Force Research Labs

220

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-
0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-
YYYY)

23-03-2006

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Aug 2004-Mar 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER
2005-088

4. TITLE AND SUBTITLE

CHARACTERIZATION AND DESIGN OF HIGH-LEVEL VHDL I/Q FREQUENCY
DOWNCONVERTER VIA SPECIAL SAMPLING SCHEME

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Somann, Jesse P., Second Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way Bldg 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/06-53

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/SNDI
 ATTN: Dr. Gregory Creech
 2241 Avionics Cir.
 WPAFB, OH 45433
 Comm:937-255-4831 ext:3486 DSN: 785-4831 ext:3486 Email: Gregory.Creech@wpafb.af.mil

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This study explores the characterization and implementation of a Special Sampling Scheme (SSS) for In-Phase and Quad-Phase

(I/Q) downconversion utilizing top-level, portable design strategies. The SSS is an under-developed signal sampling methodology that can
be used with military and industry receiver systems, specifically, United States Air Force (USAF) video receiver systems. The SSS
processes a digital input signal-stream sampled at a specified sampling frequency, and downconverts it into In-Phase (I) and Quad-Phase
(Q) output signal-streams. Using the theory and application of the SSS, there are three main objectives that will be accomplished:
characterization of the effects of input, output, and filter coefficient parameters on the I/Q imbalances using the SSS; development and
verification of abstract, top-level VHDL code of the I/Q SSS for hardware implementation; and finally, development, verification, and
analysis of variation between synthesizable pipelined and sequential VHDL implementations of the SSS for Field Programmable Gate
Arrays (FPGA) and Application Specific Integrated Circuits (ASIC).

15. SUBJECT TERMS

I/Q Downconversion, VHDL, Special Sampling Scheme, Abstract, Characterization

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Yong C. Kim, PhD (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

221

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 ext 4620; email: yong.kim@afit.edu

Standard Form 298

(Rev. 8/98)

	Characterization and Design of High-Level VHDL I/Q Frequency Downconverter via Special Sampling Scheme
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Acknowledgements
	 Table of Contents
	 Table of Figures
	 Table of Tables
	 List of Acronyms
	Abstract
	I. Introduction
	1.1 General Issue
	1.2 Specific Issue
	1.3 Problem Statement & Scope of Study
	1.4 Research Objectives
	 1.5 Chapter Summary
	 1.6 References

	 II. Literature Review
	2.1 Chapter Overview
	2.2 The Video Processing Unit
	2.3 I/Q Data Channels and The Special Sampling Scheme
	2.4 Digital Filtering
	2.5 Alternate Methods and Studies of I/Q Down-Conversion
	2.6 Spurious Responses in Digital Sampling
	2.7 Spurious Signal Analysis
	2.8 Design Flow of Digital Synthesis
	2.9 Chapter Summary
	 2.10 References

	 III. Characterization & Methodology
	3.1 Bit Precision in Digital Modeling
	3.2 Modeling I/Q Data and Imbalance
	3.3 Variable Effects on I/Q Imbalances
	3.4 Chapter Summary
	 3.5 References

	 IV. Simulations & Results
	4.1 I/Q Results and Imbalance Trends
	4.2 VHDL ‘real’ validation
	4.3 VHDL optimization and results
	4.4 Synthesis tools circuit generation results
	4.5 Chapter Summary
	 4.6 References

	 V. Analysis and Conclusions
	5.1 Explanation of the Problem
	5.2 Summary of Literature Review
	5.3 SSS Characterization: Significance, Limitations, and Further Research
	5.4 HDL Code Development: Significance, Limitations, and Further Research
	5.5 Design Synthesis: Significance, Limitations, and Further Research

	 Appendix A: Truncation Function (MATLAB)
	 Appendix B: Special Sampling Scheme (MATLAB)
	 Appendix C: Bit-Width Optimizer (MATLAB)
	 Appendix D: Safe Bit-width Values to Use
	 Appendix E: IQgen (VHDL)
	 Appendix F: IQfir_filtat.vhd (VHDL)
	 Appendix G: IQfir_filtbt.vhd (VHDL)
	 Appendix H: IQoutput.vhd (VHDL)
	 Appendix I: IQ_sss_converter.vhd (VHDL)
	 Appendix J: I/Qgen_dig.vhd (VHDL)
	 Appendix K: IQfir_filtat_dig.vhd (VHDL)
	 Appendix L: IQoutput_dig.vhd (VHDL)
	 Appendix M: tsui_sss_converter_dig (VHDL)
	 Appendix N: sss_pipeline_template.vhd (VHDL)
	 Appendix O: sss_sequential_template.vhd (VHDL)
	 Appendix P: coeff_gen.m (Matlab)
	 Appendix Q: sss_gen.prl (Perl)
	 Appendix R: tb_gen.prl (Perl)
	Vita

