Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Biological System Impedance Identification Using Stochastic
Estimation and Control

Enrique Mendezaceves

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Bioelectrical and Neuroengineering Commons

Recommended Citation

Mendezaceves, Enrique, "Biological System Impedance Identification Using Stochastic Estimation and
Control" (2006). Theses and Dissertations. 3497.
https://scholar.afit.edu/etd/3497

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.


https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/231?utm_source=scholar.afit.edu%2Fetd%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3497?utm_source=scholar.afit.edu%2Fetd%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

BIOLOGICAL SYSTEM IMPEDANCE IDENTIFICATION USING
STOCHASTIC ESTIMATION AND CONTROL

THESIS

Enrique Mendezaceves, Second Lieutenant, USAF

AFIT/GE/ENG/06-41

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United

States Government.



AFIT/GE/ENG /06-41

BIOLOGICAL SYSTEM IMPEDANCE IDENTIFICATION USING
STOCHASTIC ESTIMATION AND CONTROL

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Enrique Mendezaceves, B.S.E.E.
Second Lieutenant, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GE/ENG/06-41

BIOLOGICAL SYSTEM IMPEDANCE IDENTIFICATION USING
STOCHASTIC ESTIMATION AND CONTROL

Enrique Mendezaceves, B.S.EE,

Second Lieutenant, USAF

Approved:
Lol P (5 rer o6
L%l Juan R. Vasquez {Chairman) Date
Clllefh_pbe— 0 MAR o
PN
Dr. Saber Hussain {Member) Date
by /m L MAR O

Maj LaVern Starman {Member) Date



AFIT/GE/ENG /06-41

Abstract

In an effort to find a less invasive way of testing for different cell abnormalities
and finding more practical tests for different cellular mutations, this project makes use
of a well known technique called cellular impedance spectroscopy coupled with stochastic

estimation.

Impedance spectroscopy, the measurement of the complex resistance of a biological
body, is not a new technology; it has been around for many years and has been used to make
electrical representations of different biological systems. The problem with this procedure
is that the models cannot be used for system identification. Stochastic estimation can
complement a model produced by analysing the input/output characteristics of the cell
to account for modeling inadequacies produced by linear modeling of electrical impedance

spectroscopy alone.

In this thesis, biological cell samples were submitted to a sinusoidal voltage at a
different range of frequencies. The cell samples created an output which was used to
model the electrical behavior of the biological system. This electrical representation was
used to build a fixed-interval stochastic smoother. The stochastic smoother was then used
to estimate the output measurements of different cell samples and ultimately identify a

cell type based on the evaluation of the residuals produced.

Results showed that, given residual values, one could apply a binary logic windowing
technique that would show a difference in the cell samples tested thereby being able to

identify the cell sample in question.
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BIOLOGICAL SYSTEM IMPEDANCE IDENTIFICATION USING
STOCHASTIC ESTIMATION AND CONTROL

L. Introduction

Electrical Impedance Spectroscopy (EIS), a method of finding the electrical proper-
ties of materials, has been catalytic in some of the technologies used today. Many of the
technologies that required batteries in WWII were developed with EIS. The combination
of this measuring technique with an estimating algorithm (like Stochastic Estimation and
Control (SEC)), could become the next evolution in EIS. By applying an optimal estima-
tion algorithm and being able to account for the unknown processes in a material (like a
biological cell), identification through electrical means could be a possibility. The positive
consequences of being able to identify a cell in-vivo could be limitless. Soldiers could test
for internal bleeding with a device that does not break the skin. Tumors could be clas-
sified as cancerous or benign by applying a Micro Electro Mechanical Systems (MEMS)
probe into a live individual, completely bypassing the need for a myoscopy. The problem

addressed in this research is: How could one interface these two powerful fields of research?
1.1 Background

A brief background on EIS and SEC is reported in the following paragraphs. The
culmination of the chapter will entail the synthesis of these subjects to come up with a
method for the identification of specific cell types using smoothing algorithms and residual

monitoring.

1.1.1  Impedance Spectroscopy. Electrical impedance is the complex resistance
created by trying to pass current through a material. Just about every material on earth
will have some sort of interaction when a current is passed through it. This interaction, in
the vast majority of cases, will resist the flow of electrons. This resistance (or impedance,
if the resistance is complex or frequency dependent), limits the flow rate of electrically

charged particles when such particles are present in the system. Given the many different
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fundamental microscopic processes that take place in a cell, this impedance behavior is
often unique to one type of system depending on the size, shape, interface with the probing
material and composition of the material being tested. Scientists have been able to
exploit this knowledge to electrically characterize different compounds, both biological
and electrochemical. Since the shape and structure of many compounds are unique, its
stands to reason that the impedance (capacitive or inductive), of such materials would also
be unique and could possibly help in characterizing such a compound. This is the main

reason EIS was developed (2, 11).

EIS is a method for characterizing the electrical properties of a sample (3, 11, 23) .
The theory for such a measurement has been around for more than a century, but the actual
practice of using EIS measurements is relatively new. Computer and digital technologies
have made it easier to implement measurements over a vast frequency spectrum with rela-
tively good accuracy. One of the best qualities of an EIS measurement is its dynamic range
of implementation. Almost all chemical processes change the electrical conductivity of the
particle in question, which leaves a lot of leeway for test and measurement investigation.
It is the experience of many researchers that EIS provides a means for investigating almost
anything seen hystorologically in a microscope (2). EIS measurements can identify tissue
structures (such as size, shape, cell orientation, amount of liquid inside and outside of the
cell, and cell membrane structure), and uniquely characterize them between samples that
are of the same cell type, and also within samples that are of different cell type. This
allows different characterization of a regular cell and a modified cell of the same sort (i.e.,

between a cancerous and a healthy cell) (1, 7, 41).

The characterization of a cellular system via electrical methods allows for the mod-
eling of such a system in terms of control theory. This is based on the fact that the
measurements taken by EIS are dependent on an input and an output signal. Assuming
that the system is linear, a control system model for the cell can be approximated via

electrical components such as resistors, capacitors and inductors (2, 11).

1.1.2  System Measurements.  The creation of a cellular model based on electrical

components is based on the premise of model behavior. Given a specific input, a specific
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Black Box

Figure 1.1  Very basic mathematical system model. The input (u) goes into an unknown
system to produce the output (y). The perturbation (e), is described as noise
entering the system. The perturbation is usually modeled statistically (i.e.,
as random white noise).

output is created that can be characterized by some combination of circuit components.
There are many techniques for modeling the behavior of a system which will be discussed
in Chapter 2. Most of these techniques involve differential equations to represent the

complexity of the system.

The end result is that, based on a representative model (if not a perfect model, at
least one that reasonably depicts the behavior of relevant system modes), one can write
a mathematical equation for such a system. The mathematical model is very important,
it has to accurately represent relevant information for a biological system’s behavior over
certain boundaries (i.e., frequency boundaries). A basic "black box" depiction of a system

is represented in Figure 1.1 (21).

There are many ways to assess the network inside the black box. In some cases, it
may be accurate enough to manually determine the system model from input/output data
such as frequency domain magnitude and phase (Bode plot). In the vast majority of cases
though, one has to use different techniques, such as curve-fitting the frequency data to
minimize some error criterion. Depending on the system being studied and the algorithm

used, one can get a reasonably reliable assessment of the correct representative model (20).
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1.2 Problem Statement

Overall, EIS measurements have proven very useful to scientists and researchers.
Because of the fact that many different structures (chemical and biological) are based on
many different material and mechanical parameters (even the temperature of an object
can increase or decrease its conductivity and therefore its impedance), it is very easy to
individually identify a very specific specimen if care is taken to measure within specific
parameters. EIS is constantly being used in experimentations with cancer cells and based
on EIS measurements, many generalizations can be made.. For example, researchers now
know that a cancerous cell will increase in impedance. Researchers also know that an

irritated cell will allow more electricity through (or have less impedance) (1, 2, 6, 11).

The problem with EIS measurements is that they account for too many parameters
of the cell. An example of this is that cells at different stages of growth (duplication,
maturity, confluence, or death), will exhibit different impedances. ~While this may be
the desired result in some experiments, it does not allow the tool to be used for cell
identification. The reason is that cells may be going through different natural processes that
may fundamentally alter their basic composition, thereby exhibiting different impedances.
This would make it difficult to identify a cell via EIS based on a model built from a
completely different cell that was of the same cell-type, but in a different growth stage. As
a result, scientists and researchers are restricted to making generalized statements about
impedance spectroscopy (i.e., smaller sized cells generally have a lower impedance than

bigger sized cells) (2, 41).

1.8 Research Focus

There are two primary goals of this study. The first is whether or not EIS measure-
ments at higher frequencies can produce a good and unique model for the characterization
of cells. Secondly, whether or not SEC could be exploited in the study of biological systems

if it is interfaced with EIS.

Given prior research efforts, and the study of industry standards, it is an accepted

practice to test biological systems (and some electrochemical ones as well), at low frequen-
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cies (most commercial tools test cells in the ImHz to 1MHz range) (6, 10, 11). Preliminary
results of this research indicate that more distinct magnitude and phase changes occurred
in the high frequency range. Based on this, it was decided that the biologically represen-

tative circuit models would be based on the responses of the higher frequency spectrums.

Once these frequency models are determined, the next part of this thesis involves
applying SEC to correctly estimate and identify a biological system. As mentioned before,
statistical modeling and electrical component modeling has been used to build models in the
biological community for some time (11). SEC is an extension of this statistical modeling,
revolving around the Kalman filter (an optimal estimation filter). The hypothesis of this

thesis is that SEC can be used to identify the cell-type from sampled data.

This research is mainly conducted to answer the question: "Can a biological system
be identified via SEC?" This is important, because if different biological systems can be
identified, then markers could be found for different processes within the system. Given
the flexibility of EIS, the next step after identifying different types of systems would be
to identify a specific process within the same system, such as the production of a specific
protein, or the early mutation of a cell. The possibility of future studies using this

technology could be limitless and beneficial both for the military and the civilian sectors.

1.4 Methodology

Initially EIS measurements will be taken with a signal generator and an oscilloscope.
The results of these measurements will be used to build a model based on a sample of cells.
The mathematical model created will be used to build a stochastic smoother (an evolution
of the Kalman filter). Statistical properties of the smoother, such as a noise term, will
be modified for more accurate estimation. Finally, the results of other samples (from the
same cell-types and different cell-types) will be run through the smoother. The smoother
will estimate the model behavior, known as the internal states of the model. Given a
proper combination of these states, we can form an estimate of the actual measurements.
The residuals (the difference between the estimated measurements and the actual mea-
surements) will be monitored. Based on the divergence between the actual measurements

and the filter estimate, the sample will be either identified as the same cell-type or a dif-
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ferent one. Specifically, if the residual is small this implies the models matches the newly
measured sample. A large residual indicates the model and the new sample are different.
The accuracy with which the filter correctly identifies a system of the same type will be

recorded and discussed.

1.5 Assumptions/Limitations

Assumption 1: One of the main limitations in this research is the assumed linearity
of the biological system over the observed frequency range (26). This assumption permits
the use of well understood system identification tools for linear systems. The process of
curve-fitting the frequency data will allow a minimization of a least squares error and thus
strive to estimate the nonlinear component of the system. Lastly, the stochastic theory is
significantly simplified if a nonlinear system is assumed to be linear. Nonlinear estimation

techniques exist, but are beyond the scope of this research (22).

Assumption 2: The model of the system is unique over the frequency range used in
the experiments. As mentioned before, the typical frequency range for testing is between
1mHz and 1MHz (11). The experimentation of this thesis revealed that more meaningful
measurements existed over a frequency range between 1MHz and 100MHz. While this
study accepts that meaningful EIS measurements are more commonly taken over a lower
frequency range, the range used for this experiment was chosen based on experimental
data. Limitations in existing equipment precluded data collections of frequencies above

100MHz.

Assumption 3: Lumped system properties are assumed adequate in modeling the
system. A lumped system implies that internal subsystems are adequately represented by
evenly distributed parameter values (11). The problem with this is that the vast majority
of biological systems’ electrical properties are not lumped, but distributed unevenly. This
leaves questions on whether or not the represented system is truly representative of the
system. An example of this is portrayed in Figure 1.2, where two separate circuits would
have the same response, but are internally different. It is the contention of this study that
the most relevant goal is to model the output as effectively as possible. Therefore, the

focus will be on input/output relationships of lumped linear systems.
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Figure 1.2  Comparison of two cellular representative circuits that have the same output.
Both Circuit A and Cirtuit B will perform the same function, but the dyelec-
tric properties are distributed differently. Note that circuit B components
are written in terms of Circuit A component values.

Assumption 4: The cellular system being tested is assumed to be time-invariant
and has a steady state response. This is a significant assumption given the unknown
effects an electrical stimulus has on the cell at high frequencies. It is known that cell
samples can stand high electrical magnitudes as some studies show that cells can survive
with electrical stimuli up to 46 volts (28). If the cells die during the test, then their
response would change in the middle of the experiment. This has serious implications
as it suggests that our method could not be used with live subjects. Secondly, it implies
that the dead cells would obviously have different electrical properties than live cells. In
assuming time-invariance, we essentially declare that the system response is independent of
when the stimulus is applied and thus the model characteristics are constant. A stead-state
response implies that the cells do not die or radically change their behavior when excited
by the stimulus. In order to validate this assumption, a series of 3-(4, 5-dymethylthiazol-
2-y1)-2, 5-dyphenyltetrazolium bromide tests to mitochondrial reactions (or MTT tests for
short), were conducted to determine if the cells remained alive after prolonged stimulation.

A more thorough discussion of MTT tests is given in Section 2.1.1.6.
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1.6 Thesis OQverview

Chapter 2 goes through a basic history and evolution of the theories presented in this
thesis. Basic concepts are discussed along with aspects of other research with EIS. This
chapter will also present the process of EIS measurements. Also, System Identification
(SID) will be introduced in the most basic manner. Finally, the basic ideas of SEC and

the smoothing algorithm will be presented.

Chapter 3 will delve in the theory and mathematical analysis used in this thesis. Its
main purpose is to present all the theories and postulations made. Some of the hardware

issues will also be discussed, given their pertinence to this thesis.

Chapter 4 will present the details of the experimentations that constitute the actu-
alization of the theories in Chapter 3. This chapter will discuss data collection methods
and solutions to different experimental difficulties that were encountered. This chapter
will be very specific in nature regarding the complete experimentation procedure and the
results. It will discuss methods of data acquisition of EIS measurement, methods used
for SID, implementation of the smoother for SEC and finally the results of the residual

monitoring.

Finally, Chapter 5 will summarize all the results acquired in Chapter 4. The chapter
will conclude with different recommendations for the improvement of the research. This

chapter will summarize the possible future avenues for research in this field.
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II. Literature Review

The main purpose of this chapter is to give some background information on the diverse
subjects this thesis covers. Publications concerning different measurement methods, in-
puts, and mathematical analyses will be discussed. The Electrical Impedance Spectroscopy

(EIS) section will conclude with a discussion on how this technology evolved.

A section of control system theory will be provided in order to describe how EIS can
be interfaced with Stochastic Estimation and Control (SEC). Next, there will be a section
discussing some of the theories behind SEC. Finally, there will be a brief discussion on

the stochastic smoother and residual monitoring.

2.1 Owerview of Electrical Impedance Spectroscopy

The concept of impedance was first introduced in the 1880’s by Oliver Heavyside.
Shortly thereafter, A. E. Kennelly, and C. P. Steinmetz developed the vector diagrams and
complex representation of electrical impedance that are currently in use (11). Impedance
has become a very fundamental concept in electrical engineering. EIS is an electrical
measurement constituting resistance, capacitance and inductance. So, it is recognized that
EIS is just another type of electrical measurement. Impedance, Z = R + j X, where R is
the resistance or the real part of impedance, and X is the reactance or the complex part
of impedance is represented in Figure 2.1. Note that j = v/—1. In polar coordinates, one
can represent impedance as Z =| Z | e??. The magnitude is given by | Z |= VR2 + X2,

and 6 is the change in phase, or the phase angle; 8 = arctan(%).

The development of electricity as a medical means began in the 20th century, when
two doctors, Cerletti and Bini invented the Electroconvulsive Therapy machine (ECT).
The ECT is a machine that delivers about 100 volts of shock to schizophrenic patients
(31). Needless to say, this was more torture than treatment, but the focus here is the

development of a machine that took full-body impedance into account.

EIS on cellular samples began in earnest in 1925. EIS however, was not devel-
oped specifically for biology. There is an enormous amount of documentation concerning

non-catalytic energy conversion based on the electrochemical processes measured by EIS.
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Z=R+jX
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Figure 2.1  Plot of resistance and reactance; the real and imaginary part of impedance
in rectangular coordinates. Impedance is also plotted in polar coordinates
through its magnitude and phase.

This was done to create more efficient batteries during WWII. It was not until the late
1970’s that the technology was implemented to the extent it is now applied. The reason
for this new found implementation was due to improvements in automation technology.
The practice of taking thousands of measurements (in some cases), over a high range of
frequencies suddenly became more commonplace. Once the process was established, peo-
ple in the medical community were able to apply this technology to biological research.
An important study happened in 1979, when D. C. Salter, from the Slade Hospital in
Oxford England qualified electricity as a method of influencing cell activities and taking
measurements (35). D. C. Salter studied some of the electrical properties of the skin by
applying electricity through a probe system. He measured the impedance of the skin over

a frequency range.

2.1.1 FIS Measurements. The most general approach to taking EIS measure-
ments is to apply an electrical stimulus (either voltage or current) to a system, then observe
the response of the system (Figure 2.2). Time-invariance is initially assumed, but then
either confirmed or disproved based on the results. Also, a perfectly smooth interphase
between the probe material and the material being tested is assumed. Needless to say,
there are many point defects, chemical impurities, structure abnormalities and chemical

processes that influence the actual measurements taken. Assuming these outside per-
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Figure 2.2  Basic theory behind EIS measurements. An input is placed into the biological
sample and the output signal is recorded. Based on these two measurements,
an impedance measurement is produced.

turbations are negligible, the result of EIS measurements allows for the development of a

cellular model based on its electrical characteristics.

2.1.1.1 Advantages and Disadvantages of EIS Measurements.  Results from
EIS measurements can be readily correlated to many physical and chemical properties of
materials such as form-mass transport, material conductivity mapping, chemical reaction
rates, and material density. EIS can also predict the performance of chemical sensors
and is used in many studies involving cell membranes (2, 11). The fact that EIS can be
interpreted and modeled as bulk electrical components also allows for added flexibility in

terms of system analysis.

The main disadvantage of EIS revolves around the ambiguities of the representative
electrical system. Unfortunately, the dielectric properties of some materials are not lumped
in an area, but distributed throughout the system (unlike the lumped system properties of
electrical components). It has been found that a finite amount of summed constant ele-
ments could not fully predict a cellular system, but approximations become more accurate

once distributed impedance elements are used within a frequency range (11). This raises
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Figure 2.3  Basic mammal cell cross section (above picture) (14). Below is a circuit
representation of such cell. Extra cellular material is considered resistive.
The membrane of the cell has capacitive and resistive components. The intra
cellular material is resistive except for different specifice components (like the
nucleus) (2).

the question of how many components would be needed to properly represent the cellular

models’ properties.

2.1.1.2 Biological Measurements of Electrical Impedance Spectroscopy.  The
properties of the cell manifest themselves as different electrical phenomena. The cellular
membrane’s semipermeable properties allow for some, but not all, ions to pass through
the membrane. This property creates the capacitance and some of the resistance seen in
an EIS measurement. In addition, both the inside and outside of the cell (the nutrient
environment and the cytoplasm within), represent, purely resistive properties (see Figure
2.3). EIS is useful in measuring the resistive properties and thus identifying properties of

biological systems.
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Figure 2.4  Diagram of high frequency and low frequency signals passing through a cell
sample (27).

The impedance of such a cellular structure is also dependent on high frequencies.
Normally, low frequencies affect the extra-cellular environment (outside the cell), while
higher frequencies affect the intra cellular environment (inside the cell). Cell membranes
have a high capacitance, acting as high pass filters. This limits the propagation of lower
frequency currents to the outside of the membranes, or the extra-cellular medium. Higher
frequencies pass through the cell These attributes explain the high variations of impedance

over the frequency spectrum (please refer to Figure 2.4).

Another phenomenon that allows for a unique impedance spectrum is the process of
dispersion. While the theory of dispersion entails the molecular movement of cells given
a physical phenomena (i.e., electricity) it is beyond the scope of this paper. Dispersion
is seen where impedance is decreased at a given frequency (2). Figure 2.5 shows some
dispersive characteristics of a biological material. Shwan was the first to notice these dis-
persive characteristics in cells (2, 3). He identified three frequency regions where dispersion
occurred. According to Shwan, the dispersion in the medically relevant information about
the cell usually occurs in the [ region, constituting measurement of structural changes and
polarization of cell membranes and edema. The a region represents polarizations of ionic

clouds around the cell. The v dispersion reflects relaxation of water molecules.
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Figure 2.5 Diagram of dispersion denoting three different regions. These regions affect
measurements of different parts of the cell (2).

2.1.1.83 FEIS Measurement Methods.  EIS uses a very basic premise: Ohm’s

Law. In the simplest case; V = RI, or voltage, V, is directly proportional to the current,

1, by a factor of R, the resistance of the medium by which such current is transferred. In

the complex domain, the DC voltage v(t) becomes a time-dependent sinusoidal waveform
as in Equation (2.1):

v(t) = Vp sin(wt) (2.1)

Where 1} is the peak-to-peak voltage, w is the frequency in rads/s, and ¢ delineates time.

Likewise, i(t) becomes time-dependent:

i(t) = Ipsin(wt + 0) (2.2)

Where [y is the peak-to-peak current running trough the circuit, and 6 is the phase shift.

If a system has a purely resistive behavior, 8 = 0.

In the time domain, the voltage and current are related to the capacitive and induc-
tive elements via differential equations. For capacitive elements, current is defined as the

change in voltage over time taking into account the constant capacitance of the element:

i(t) = [du(t)/dt]C (2.3)



where C' is capacitance in Farads. Likewise, for inductive elements, voltage is the change

in current over time taking into account the constant inductive element:

u(t) = [di(t)/di] L (2.4)

where L is inductance in Henrys. For the most simple systems, solving for these differential
equations might not be a problem. The Fourier transform provides a means to transform
a mathematical system from the time domain to the frequency domain. The resulting

frequency domain relations are:

I(jw) = CuV (ju) (2.5
and .
) = 0% (2.6

Finally, using Equations (2.3)-(2.6), One can derive Equations (2.7) and (2.8) from Equa-
tions (2.1) and (2.2)
V(jw) = Vo (2.7)

I(jw) = I,mexp(67) (2.8)

Once transformed into the frequency domain, impedance can be solved for in a manner

resembling Ohm’s law for resistances:

Vijw)
Z(jw)

I(jw) = (2.9)

where Z(jw) is defined as the impedance function. For capacitive and inductive responses
Z(jw) is @ and L(jw), respectively. ~When using the Fourier transform, linearity,
causality and stationarity of the system have to be assumed. This directly implies that
EIS measurements are assumed to be continuos over time and that the outputs are a direct

result of the inputs.

At present, there are machines that can automatically make EIS measurements.

A typical machine of this sort measures impedance somewhere in the range of 1mHz to



EndOhm-12
tissue culture \

insert electrodes

media \
e current
voltage

Figure 2.6  Typical probing method of the EndOhm-12. The sample well consists of
a cylinder with a 12 mm diameter. This device makes use of the 4-point
probe method. Current goes through the outside electrodes (which encircle
the point electrodes in the middle), while voltage differential is measured via
the point electrodes. This technique has the potential of reducing errors
produced by other media inside the sample well in the EIS machine (4).

1MHz, depending on the machine and the material being tested (11). The End-Ohm 12 by
World Precision Instruments, is a popular impedance spectroscopy machines (see Figure
2.6) (4, 19). In practice, the most common EIS measurements of biological material
are taken in the range of 1kHz to 1MHz (4, 10). Typical input magnitudes vary from
equipment to equipment and sometimes are produced with a signal generator. There have
been studies which used an amplitude of up to 46 volts without cell damage (28). There
is however a convention of
_RT T

Vo= =

or 25mV at 25°C' (R is the gas constant, T' is absolute temperature, F' are units of electric
charge in Faraday, k is the Boltzman constant, and e is the proton charge of the particle
being tested). It is theorized that at this voltage, the signal would become linear in nature
(11).

EIS can be measured in the time domain or the frequency domain. Time domain
measurements are not as common, and will not be covered because they are not used for
this research. For the frequency domain, the application of a sine wave as an input is
often the best way to produce a transfer function of the system. This practice was first

developed to determine the transfer function of a battery cell, and thus the reaction of the



mechanistic and kinetic parameters of the cell. J. R. Macdonald and J. A. Garber (17),

were among the first to use the transfer function of EIS for these purposes.

EIS Measurement by Audio Frequency Bridges. Before the invention
of digital computers, most EIS measurements were taken from analog signal inputs in
either the time or frequency domain. In the past, a reactively substituted Wheatstone
bridge was the best way to accomplish such measurements. This method of testing proved
to be very useful in the audio range (20-20000Hz) (29). Armstrong et al., wrote some
of the theory behind this technique which is well derived and documented, but no longer
used mainly due to their frequency limitations. The limitation of this EIS measurement
is that it is only valid in the audio frequencies. Nonlinearities cannot be calculated past
the 100 kHz frequency. At low frequencies, there is too much noise and the signal to noise

ratio is not big enough to provide useful measurements (29).

Many other variations of a bridge were implemented to achieve a higher range of
frequencies. These methods included Transformer Ratio Arm Bridges, Berberian-Cole
Bridges, the Wien Bridge and the autobalance bridge. The premise behind all these bridges
is to match the unknown impedance of the sample through bridge adjustment. Once
the impedances are matched, the measurement is derived from the electrical component

settings.

The Oscilloscope as an EIS Measuring Technique. EIS oscilloscope
measurements work on a simple premise. The magnitude of the impedance can be calcu-

lated by Equation (2.10):
_ R Vou(w) |

|Z| = Vi (Guw) | (2.10)

The real and imaginary part of the impedance can be calculated as
R =| Z | cos(0)

and

X =| Z | sin(6)



Figure 2.7  Typical oscilloscope readings. Blue denotes sinosoidal input. Red denotes
sinosoidal output.

respectively. Figure 2.7, denotes the different input and output waveforms.

2.1.1.4 FEIS Input Variations. While there have been many methods of
measuring EIS, the inputs to these methods have become standard over the years. There
are three main types of inputs. They are described in order of the least used to most

used.

Step Voltage. Step Function Transient Measurements (SFTM) is an
established EIS measurement method, although seldom used. This measurement takes

advantage of a regular step function.

v(t) =V, fort >0
and (2.11)
v(t)=0fort <0

This type of measurement focuses on the initial transient response. The transient response
is referred to as the indicial impedance. Disadvantages to this type of measurement are

that they need to be Fourier transformed and signal-to-noise ratio varies with different
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frequencies. The advantages to this measurement technique are that the method is fairly

easy to implement, and the transients vary depending on the magnitude of the input (11).

White Noise. Another type of measurement is the use of a random
signal with a voltage offset. This random signal acts as white noise over all frequencies.
The automation and digitization of testing is a requirement for this testing method. The
output is typically measured as Fourier-transformed current. Advantages to this type of
EIS measurement is that it allows for fast data collection. Also, given that white noise is
being used, it gives out a betters signal-to-noise ratio than the SFTM method. The main

disadvantage is that there is no such thing as true random white noise (11).

Sinusoid. This type of EIS measurement is the most common mea-
suring method. Impedance is measured by the input and output quotient, and the phase
shift. The input is characterized as a sinusoid voltage signal. This technique for EIS
is the one most frequently used. The instrumentation for this type of measurement is
readily available. Very good signal-to-noise ratio can be achieved with this type of mea-
surement, and the signals can be manipulated mathematically in both the time domain

and the frequency domain (11).

2.1.1.5 The Cole-Cole Model. A major milestone that allowed electrical
impedance to be developed in the cellular scenario was the Cole-Cole model (2, 11). This
model identified, via electrical components, distributed dielectric properties in biological
systems EIS was implemented in medical and biological studies once the Cole-Cole model

was used to estimate biological samples.

Bioimpedance within a frequency range is usually curve-fit to a Cole-Cole model.
The advantage of this model is that the model can be fitted to cellular-pertinent values,
such as the conductivity of the membrane, and the intra/extra- cellular resistivity. In the

Cole equation,the impedance Z is a frequency dependent function:

Ry — Roo
Z(f) = Roo + w (2.12)
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Here, f. is the center frequency (or characteristic frequency) of dispersion, R, is
the low frequency resistance, while R is the high frequency resistance, o represents the
heterogeneity of the system (0.0 < a < .5), 0.0 represents a very homogenous tissue. This
model is valid for only one dispersion (see Figure 2.5). There are some Cole-Cole models
that take all three dispersions into account, but these models are much harder to estimate

given the extent of the extra variables that need to be curve-fit (2).

2.1.2 Other Electrical Impedance Spectroscopy Avenues. While this study is
mainly concerned with basic EIS measurements, the actual technology has advanced past
basic measurements. While measurements all hold the same basic premise, the evolution
has mainly focused on the application of such devices. The application has mainly changed

in the size of the interface, or the type of interface used.

2.1.2.1 Phase Mapping. Phase Mapping makes use of EIS to produce
an image of the cell being studied. The image is produced by making simultaneous EIS
measurements at different parts of the cell. Given that each probe measurement will
produce slightly different measurements, an image will be made which is dependent on
the lump impedance found at each probe (1, 4, 37). In 2002, Todd E. Kerner et al. used
this technique to study the human breast in an effort to produce an alternative to the

mammogram (37).

2.1.2.2 Noninvasive Technique. While many members of the scientific
community have used probes that interphase with materials being tested, other people
have tried different noninvasive ways. The basic premise behind these types of systems is
that by introducing a current through a wire, there would be a natural electric field created.
If this wire were placed close to someone’s skin, then the eddy current from the skin would
cancel out some of the electrical field created in this wire, thereby canceling out some of
the current going through the wire. This change in current would then be measured to
identify changes in the skin layer. In 1998 Richard Petty et al., used this method for a
tissue schema (schema is a type of skin irritation) measurement (refer to Figure 2.8). Their

tests were conclusive but not completely accurate. In 2001, C. H. Riedel et al., tried to
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Figure 2.8  Basic diagram delineating a EIS measurement via a non-invasive technique.
The a current is passed through a coils which in turn produces an electro-
magnetic field. The eddy current of the epidermal layer (the skin), cancells
some of this field, thereby reducing the current in the system, the reduced
current is measured and analyzed (32).

validate this method to test impedance of the skin and produced more favorable results

(16, 32).

In 1988, Tonescu-Tirgoviste et al., studied the responses that the nervous system had
by indirectly and noninvasively measuring different electrical responses created by the body
to different stimuli (16). The electro dermal response to different stimuli was the focus of
the study. In 1995 Mark R. Prausnitz decided to test the impact of different pulsed voltages
through a cell. In his study, he found that the skin went through structural changes due to
high voltage pulsing (28). He characterized the changes that he saw as dramatic increases
in transdermal flux, and the effect enhanced the transport of macro molecules, enlarged

transport pathways, and increased skin permeability.

2.1.2.3 Micro Electro Mechanical Systems (MEMS). ~ MEMS started as a
natural evolution to Very Large Scale Integration (VLSI). Transistor structures were bulk
fabricated by metal deposition and etching. Once it was found that other structures could

be "machined" into micro mechanical devices, the world of MEMS evolved (5).

MEMS applications in the biomedical realm are becoming more and more diverse.
Some advantages to this technology include its small size, the strength of the material, its
electrical characteristics, and the fact that silicon, and other MEMS materials are benign

to some cells (18, 38).
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Bio MEMS. MEMS fabricated Poly-silicon have many advantages
when dealing with cellular objects as stated earlier. However, several disadvantages exist

to include:

Poly-silicon is expensive to use in microfabrication, considering that sometimes hun-

dreds of cell samples have to be processed.

Poly-silicon MEMS have to be grown and released in a clean room.

The conductivity of silicon is not ideal for fabricating MEMS probes (38), and

Traditional MEMS for biological purposes are not always bio compatible.

A bio compatible material is designed to exist and perform specific functions within
living organisms. While poly-silicon is benign to most organic systems, some living sys-
tems reject invading materials by synthesizing protein to build a permeable membrane
which prohibits nutrient intake. Two consequences of synthesizing protein; 1) The living
organism may wall itself off from oxygen and nutrients, thereby starving and asphyxiating
itself, and 2) may created inaccurate measurements due to protein synthesis around the

measurement instrument.

Currently, polymetric materials are being investigated since they are less expensive
and have shorter cycle times. In addition, these materials can be fabricated for specific
hardness, hydrophobicity, and surface bulk chemistries that can be adjusted for different
applications (38). In a study done by the University of Tokyo, PDMS (polydimethylsilox-
ane) was used to build a template on a glass substrate to grow PDMS micro-structures. As
stated in (38), glass substrate is coated with fluorocarbon and covered with a thin sacrifi-
cial layer, PDMS and CYTOP are spin coated on the substrate. A layer of photoresist is
spun and patterned by exposing to UV-light through a mask. Gold is then deposited and
patterned using a lift-off technique. After removal of the CYTOP by oxide ashing, a thin
layer of PDMS is deposited on top of the electrode by spin coating. Figure 2.9 illustrates

the fabrication process.

Probe Fabrications. In 2000, R. Ivanic et al., introduced a paper about

the system characterization of MEMS electrodes (30). The modeling of these electrodes
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encompassed the relative electromagnetic effect within the cell area. Ivanic made a direct
relation between the thickness of skin and the vector electromagnetic field created. These
measurements and formulas were simulated using circuit-dependent calculating software
and it was determined that, when dealing with MEMS probes, modeling of these structures
correctly is critical. This is due to the scale of the probes were approximately the size of
the actual cell. Probing of this cell in the micro-scale would have adverse effects on the
measurements because the probe may have certain reactances that hide the true response

of the cell.

A major drawback of using planar stimulating electrodes is the large current densities
produced near the edge of the electrode. Through experimentation, it is been shown
that a small recess at the tip of the electrode can minimize the large current densities.
Iridium coated electrodes are ideal for impedance measurements in cell research, but these
electrodes are subject to current irregularities which could damage the probes and the cells
being studied. A method for making sure this does not happen is to remove the excess

iridium coating with oxygen plasma (39).

Building a channel is another method for measuring cell impedance. This method
takes advantage of the ability to build air tight chambers with MEMS technologies. Some
of these systems make use of only two electrodes. This method only works for certain cell
sizes, since the chamber cannot be bigger than 10um wide and 4pm high. This size is ideal
for smaller types of cells, like red blood cells. This idea is primitive as the separating of a

cell and putting it into the chamber is difficult (13).

Atomic Force Mover (ATM). Using EIS at a microscopic scale is very
hard to accomplish. At the micro-scale one needs to isolate an individual sample for
testing. Even if one manages to isolate a cellular sample within the three dimensions (a
microscope can only allow for imaging in two dimensions), the correct force needs to be
applied to the cell so that the cell can be moved. This is difficult enough to accomplish,
yet researchers also have to keep in mind that too much force could kill the cell and that
cells come in different sizes (Please refer to Figure 2.10) (40). Examining the figure below,

the type of manipulation to use (contact, or non contact), as well as the environment of
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Figure 2.10  This diagram shows different manipulation techniques that need to be used
for different sized cells in different environments (40).

Vacuum

separation, depends on the size of the manipulating cell. Most animal cells are the around
20-150 pm (40). This means that the most efficient method of manipulation would take
place with contact manipulation using a light microscope while the biological organism is
in liquid. Regardless of the above fact, manipulation is still very difficult to accomplish
accurately. This is partly due to the fact that the tri-axial manipulators have to have a
movement of nanometers while the user interface has to work in the order of centimeters
(40). Still, other sources of errors are also due to alignment error, elastic and thermal

deformation, slide, and pressure sensor vibration.

The cutting edge technology in the manipulation of living cells is the Tele-Micro
robot (12). The two main parts are the cell interface that manipulate the particles and
the human interface that is used to operate the system. The cell interface has clamps and
three-dimensional movement on two arms. The human counterpart is a scaled replica of the
micro-counterpart. The operator can move the macro replica, which will identically move
the micro replica. It scales all movements down to a 1um resolution, and scales all forces
by the same resolution. This allows for the operator to “feel” the cell and any interactions
that happen at a microscopic level, allowing for nanometer accuracy (12). This device is

also equipped with a laser spectrometer. This allows for the accurate measurement of cells.

2.1.8 Cell Samples Being Tested. =~ While this section does not directly correlate

to EIS, completeness of this research would require a background on the cellular samples
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being used. E. B. Wilson, a renowned classic biologist said in 1925: “The key to every
biological problem must finally be sought in the cell.” (14) This was a significant insight
back in 1925, when the now antiquated light microscope was cutting edge technology. Its
technical limitations were not made apparent until the 1940’s, before then the cell was

merely viewed as a bag of enzymes, the protoplasm.

2.1.3.1 The HEL-30 Cell.  This type of cell is a keratinocyte cell line of a
rodent. They are mainly selected because they are epidermal cells, effectively simulating a
working model of skin cells. It was specifically chosen for its resistance to different stimuli,
such as resistance to temperature fluctuation as well as ultraviolet rays to some extent.
These cells have been immortalized. In nature, the vast majority of cells can be cultured
and grown, but then they die. With the right nutrients, they can be made to reproduce,
but only for a set number of generations. Immortalized cells can reproduce for an unlimited
umber of generations. HEL-30 cell samples are grown in Ham’s Nutrient Mixture F-12,
pH 7.25 with 5% FBS, and 1% antibiotic mixture of penicillin and streptomycin. In order
to grow, these cells need to be kept at a constant 37°C. An incubator with an atmosphere
consisting of 5% COs is used for this purpose. The cells are used when they are 90-95%
confluent, where 100% confluence is defined as a cell growth that covers the entire growth

surface (8, 34).

2.1.3.2 The PC-12 Cell. The PC-12 cell is a neuroendocrine cell. These
cells resemble nerve cells. This cell line has the capacity to produce dopamine and con-
tain functional dopamine metabolism pathways. The PC-12 cell line is derived from
rattus norvegicus pheochromocytoma (stock number CRL-1721 from the American Type
Tissue Culture (ATTC) organization). These cells are grown in RPMI-1640 media sup-
plemented with 5% fetal bovine serum and 10% horse serum (both heat inactivated), and
1% penicillin—streptomycin in a humidified atmosphere with 5% CO2 at 37°C cells. The
cells are cultured on rat-tail collagen coated flasks, plates, and slides. This cell line is used
for testing dopamine depletion. These cells are normally grown to 80% sample confluence

before being used (33).
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2.1.83.8 The MTT Test. Sometimes, one can look through a microscope
and immediately determine whether a cell is alive or dead. Sometimes, this cannot be
determined by visual analysis. In such cases, many researchers rely on a test which de-
termines whether or not mitochondria within the cell is functioning to the correct levels.
This determination is made by the MTT assay for mitochondrial function (Carmichael,
et al. 1987). Mitochondrial function, via the MTT assay is evaluated spectrophotomet-
rically by measuring the degree of mitochondrial reduction of the tetrazolium salt, 3-(4,
5-dymethylthiazol-2-y1)-2, 5-dyphenyltetrazolium bromide to formazan by succinic dehy-
drogenase (Carmichael et al., 1987). This salt is placed into a cell sample so that it
reacts as a catalyst with the mitochondria of the cells. After an incubation (typically 30
minutes), the sample is exposed to a light spectrum, and is evaluated based on the resulting
light spectrum. If the cellular sample has any mitochondrial activity, the resulting light
spectrum will be reddish in color. If there is no mitochondrial activity, then the cells are

dead and will give off a green spectrum (8, 33, 34).

2.2 Qwverview of Control Systems

James Watt was the first person to make a significant contribution in the field of Con-
trol System in the 1800’s. His contribution to the field was a centrifugal central governor
for the speed control of a steam engine. Nyquist also made a significant contribution by
making a simple mapping of closed-loop systems that used a steady state sinusoidal input
in 1932. Bode made a similar contribution in the 1940’s. He was able to build a plotting
technique of a system in the frequency domain. In the 1950’s, the root locus method was
developed by Evans. All these contribution lead to the study of stable control systems
that satisfied a set of performance requirements. In the two decades that followed (1960’s
to 1980’s), optimal control by deterministic and stochastic methods were fully studied,

which brings us to modern control theory (24).

2.2.1 Transfer Functions. — Mathematical models of dynamic systems are defined
as a set of equations that identify system behavior as accurately as possible. Most systems

can be portrayed as input/output characteristic relationships of components. These sys-
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tems are assumed as linear and time-invariant. They are mostly represented in differential
equation form. The driving function, or input, and the response function, or output, are

defined by the following variables:
aoy™ + ary™ Y + o 4 a1y + any = boz™ + biz™ Y 4o by 1@+ bz, (0> M)

Where y is the input, and z is the output (a and b are constants). Ogata (24) defines
transfer functions as the ratio of the Laplace transformed output to the Laplace trans-
formed input of a linear, time-invariant differential equation. The assumption is that all

initial conditions are zero. The transfer function can be defined mathematically as:

Y
Transfer Function = G(s) = 'L‘E[Ei;iﬁ] = 7 ((‘3

_ boz ™ + byx(™Y by g+ by
apy™ + a1y D + - a9+ any

(2.13)

The transfer function is extensively used in the analysis of many different control systems.
It is independent of the input. This allows it to be used to study system response by
providing different inputs. If the transfer function of a system is unknown, it can be
found by providing an input to the system and studying the output. A transfer function
can fully describe the dynamic characteristics of a system. The transfer function is also
independent of the physical system description, which means that electrical, mechanical,
physical or biological (as in our case) systems can be described by the same transfer

function.

2.2.2 Bode Plots. Bode Plots map the response of a transfer function over a
range of frequencies. The Bode plot consists of two graphs. The first graph is the plot of
the magnitude of the transfer function over a range of frequencies. The second part of a
Bode plot consists of a graph of the phase shift between the input signal and the output
signal versus frequency. Normally, the frequencies are plotted on a logarithmic scale. It

is also common practice to scale the magnitude in decibels (dB), while phase is plotted in
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Figure 2.11  The Bode plot of the transfer function depicted in Equation 2.14. It consists
of two graphs. The frequency is plotted loggarithmically. The magnitude
(top plot), is plotted in dB. The bottom plot is in degrees (y scale).

degrees. Please refer the Figure 2.11 for a visualization of a Bode Plot (26).

.9
59 +9s2 + 30s + 40

(2.14)

A Bode plot provides an easy way of evaluating simple transfer functions, like the one
shown in Figure 2.11. When the Bode plots get too complicated for visual estimation, one
must find different methods of determining the transfer function from the input and the
output. The algorithms used to evaluate a system’s transfer function are called System

Identification (SID).

2.2.83 System Identification.  Finding the transfer function of a system could be
a very complex task. Omne has to decide which variables and quantities are significant
and how they interrelate. Simple tests are sometimes made on the system to evaluate the
response. The two most common tests used in industry to identify a system are the step
response and the impulse response. The practice of describing a system by one of these

method is called transient analysis (24).
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To find a system with the step response (or transient response), a step function is
applied to the system, and the output is observed. For the impulse response, a pulse of
short duration is applied to the system. These two techniques are mainly used because,
if somewhat limited, they allow for quick insights of the input/output relationships, time
delays, and static gains of the system. One limitation is the inability to account for

equipment noise. The system may also be intolerant to a wide range of inputs (24).

There are many techniques presently used for the modeling of an unknown system.
Frequency analysis is a way to directly estimate the frequency response of a system. Within
frequency analysis, one could use a sinusoidal input and record the output. Once the
output is recorded, changes in magnitude and phase shift are recorded and used to estimate
the transfer function of the system. Frequency analysis is very easy to use, especially
with current technology that can generate thousands of measurements in seconds. The
requirements needed for frequency analysis is that the system has to be linear and possess
a steady-state response. This type of estimation is useful because it can help build a

transfer function pertaining to specific frequency ranges (24).

Disadvantages to the frequency analysis method of estimating are that the estimates
first come out as a magnitude and phase. While this gives a good Bode plot estimation of
the system, it does not directly provide the transfer function. A range of frequencies must
be used to get an accurate depiction of the output of the system. This may be sufficient
for some applications, but it is detrimental when the change of the input is detrimental
to the physical parameters of a real-world system. Also, the relevant frequencies may
not be attainable with present interfacing technology (for example, one needs to excite a

mechanical system for a response in the gigahertz range).

EIS measurements require an input and an output at different frequencies. Frequency
analysis may be used to build a transfer function that models the response of the cellular
samples. If a sinusoidal input is used (which is the most common input used), the output
could be recorded and used to build the magnitude and phase characteristics of the system,

and the subsequent transfer function.
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2.8  Owerview of Stochastic Estimation and Control

Because no one can predict the total behavior of a cell, it would be advantageous
for the estimation of a cellular system to have an added statistical perturbation that
would model some of the unknown processes not depicted in the system identified transfer
function. Using stochastic modeling of these unknown processes provided a theoretical
basis for handling these uncertainties. A common method applicable to linear systems

(such as those assumed in this thesis) is the use of a linear Kalman filter.

2.8.1 The Kalman Filter. A Kalman filter is an optimal recursive data processing
algorithm. The Kalman filter is optimal in the sense that it uses all available measurements
available to improve accuracy. A Kalman filter takes into account, the input, the output,
the system error sources, and measurement errors. In short, it makes use of all available
data to compute the optimal estimate of the system as shown in Figure 2.12 (22). The
algorithm of the Kalman filter is described in Chapter 3.

2.3.2  The Stochastic Smoother. The stochastic smoother is an evolution of the
Kalman filter. While it has been shown that the Kalman filter is the optimal estimation
tool in real time, there are other evolutions of the filter that could give better estimates
once all the measurements have been taken. These algorithms are not practical for most
applications of the Kalman filter. The Kalman filter is for the most part implemented
to estimate real time measurements for flight control and navigation. —The smoother

algorithms are therefore better suited for a post processing (22).

The basic premise behind a smoothing filter is to run two Kalman filters in conjunc-
tion with each other The first filter runs forward from time ¢y to tfjne. The second
filter is set to run backwards from tf;nq to fo. Finally, once all values have been esti-
mated by both filters, the estimates are combined in the most optimal manner. This
achieves a higher measurement accuracy than each Kalman filter by itself. The drawback
to this filter is that it is difficult to use in a real time implementation. A typical smoother

implementation is portrayed in Figure 2.13 (22).
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This is the typical application of a Kalman filter. It takes all measurements
into account, including erros, to come up with the best estimate of the
system state. This estimate is then updated by actual system measurements
to get a better overall ouput (22).
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Typical smoother representation in conjunction with Kalman filter repre-
sentation. P(t1) is the covariance of the forward Kalman filter. P, (t})
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into a smoother, the covariance P(t;/ty) is significantly reduced, providing
more confidence in the estimate (22).
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2.8.8 Residual Monitoring. Residuals are defined by Dr. Peter S. Maybeck as:
"The difference between the current measurement value z;, and the best prediction of its
value before the measurement is actually taken" (22). In other words, it is a measure
of the accuracy of the estimate the filter produced as compared to the measurement it-
self. Residual monitoring is a way to validate the adequacy of a system. If the residual
measurements of a system in question are constantly low, then there is a good confidence
that the filter being used adequately estimates the correct response of the system. Equa-
tions and theory on residual monitoring will be presented in the next chapter following a

mathematical discussion of the Kalman filter and the stochastic smoother.

2.4 Synthesis

The theories above will all be combined into a method of cell identification. Initially
EIS measurements will be taken of HEL 30 cell samples. A sinusoidal input will be applied
and the output will be recorded. The assumption will be made that the system is lin-
ear, time-invariant and adequately represents the steady-state response. A mathematical
model based on the input/output magnitude and phase shift will be produced via frequency
analysis. This mathematical model will be used to build a smoother. The smoother will
estimate measurements based on other cell samples. Based on residual monitoring, the
process may or may not adequately identify a specific cell type from the samples taken of
both cells. If the process is successful, future experiments will test the adequacy of the

research
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III. Theory

Since Electrical Impedance Spectroscopy (EIS) and Stochastic Estimation and Control
(SEC) have never been integrated before, a brief introduction of the experimental procedure

will be presented regarding the synthesis of the two subjects.

This experiment begins by acquiring cell sample data (refer to the red section in
Figure 3.1) via EIS. Cell samples from two different cell-types will be obtained for the

following purposes:

e To develop an input that provides the most readable, definable outputs of the cell

samples.

e To develop a model that accurately estimates the electrical behavior of a cell-type

over a frequency range.
e As independent data to be used in the validation of the cell behavior model.

The model that estimates the electrical response of a cell-type will be built via System
Identification (SID) theory (refer to the yellow section in Figure 3.1). The model will be
built on the input-output relationship of the samples. The model will be built in the
form of a transfer function. This transfer function will then be changed into a state-space

model representation with the same behavioral characteristics.

The stochastic smoother will be created from the characteristic matrices of the state-
space model (refer to the yellow section of Figure 3.1). The remainder of the cell sample
data will then be sent through the smoother to generate estimates of the system states.
The data from two different cell-types will be sent through the smoother. The first cell
sample data tested will be from the same cell-type used to design the smoother. The second
cell sample data tested will be from a different cell-type. The results of this process will
be analyzed through residual monitoring (the process of analyzing the difference between

the smoother estimated output and the measured data output of the samples).

It is the postulation of this research that the residuals associated with the same

cell-type data will be distinguishable from the residuals for the different cell-type data.
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Diagram denoting the theoretical experimental process used in this thesis.
The red section denotes the aquisition of measurements of live cell samples
via EIS. The green section denotes the System Identification (SID) process
to produce a model. The yellow section shows the creation of the stochastic
smoother based on the identified system characteristics and the subsequent
use of the filter with an unrelated cell sample. The yellow section also points
to the residual monitoring of the stochastic smoother. Finally, the blue
section shows a decision being made based on the aformentioned process.



If so, decision logic will be employed to identify each cell sample through its electrical

characteristics (refer to the blue section of Figure 3.1).

3.1 Collection of Sampled Data

The main focus of this part of the experimental process is to obtain values that will
be used in the estimation of a transfer function from the input and output data. As
explained in Chapter 2.1.1.3, electrical impedance spectroscopy gives the basic theory that
accounts for the change in magnitude and phase of the input and the output in a cell
sample. The process of dispersion also accounts for different input/output relationships

at different frequencies (11).

Based on the input and output data and assuming the system is linear and time-
invariant, a transfer function can be created. By using Fourier transformations (as it was
shown in Chapter 2.2.1), one can write the transfer function relationship of Equation (3.1),

(20).

Y(s) =G(s)U(s) (3.1)

Where Y (s) is the Fourier transformed input function, U(s) is the Fourier transformed
output function and G(s) is the transfer function that describes the linear system. In the
frequency domain, complex functions can be analyzed with simple algebra, so Equation

(3.1) becomes (11):

Y(s)

S =)

which describes the transfer function G(s) based on an input and output relationship.
Using this relationship is simple if the input and output functions are known. Most of the
time, however, only sampled values are obtained from the data. If the only available data

is composed of sampled values, the following approximation can be used (20):

N

Y(s)=1t» y(kt)e I** (3.2)

k=1



and

N
U(s) =t > u(kt)e " (3.3)
k=1

Where y(kt) and u(kt) are sampled values, k = 1,2, ...., N, and ¢ is the sampling interval
(20). Although this method will approximate a transfer function, it has many inherent
disadvantages. This form of analysis gives arbitrary accuracy only if pure sinusoids are
used as the input of the system. If the input is not a pure sinusoid (as inputs rarely are)
then the estimate has an error equal to the noise to signal ratio %, where V(s) is the

Fourier transform of the disturbance over the interval of the samples (20, 21). V(s) is

more fully derived in Section 3.2.2 Equations (3.18) and (3.20).

3.2 System Identification (SID)

Based on the discussion in the previous section, a better model identification algo-
rithm needs to be used in order to properly build a model of the cell sample that will
accurately estimate the cell sample’s electrical properties. Based on the fact that there
is very little known about the cell system, there is no a priory knowledge of the system
behavior. In cases such as these, a Linear, Ready-made Model (LRM) may be used to

characterize the system (20).

3.2.1 The Linear, Ready-made Model (LRM).  LRM’s, or black-box models are
models that have been found to work with multiple applications. These models are only
used as vehicles to describe the input and output relationships since they have no direct

physical relation to interpret the actual system being modeled (21).

LRM’s are used when there is no physical insight into the actual system being mod-
eled. The lack of insight into the properties of a system could be due to reactions of the
system that are too complex, or the construction of the system is unknown. In such cases,
models that have a wide range of applications are used. Most of these models are linear

in nature (20, 21).



In LRMs, the general form is a discrete-time model as in Equation (3.4) (20):

y(t) = n(t) +w(t) (3.4)

where y(t) is a sampled measurement, w(t) is defined as the noise in the system, and n(t) is
the noise-free measurement. This equation is used as most unknown systems are modeled
based on their input and output, which are for the most part sampled. We can represent
n(t) as:

n(t) = G(s, 0)u(t) (3.5)

where G(s, ) is a Fourier transformed rational function in terms of s, which denotes the
frequency domain and 6 represents the unknown parameters of the system. Likewise, w(t)
can be written as:

w(t) = H(s,0)e(t) (3.6)
where e (t) is white noise, and H (s, 0) is a Fourier transformed rational function in terms
of s and 6.

Now, G(s,6) and H(s,0) can be defined as:

G(S 0) _ B(S) . blsfnk + bgsfnkfl 4+ bnbsfnkfanrl (3 7)
’ B A(S) B 1 + a13—1 + -4 anas—na .

C(s) 1
Als)  14as™ 4+ aps™

H(s,0) = (3.8)

and the sampled measurement output y(¢) can now be summarized as:

y(t) = G(s,0)u(t) + H(s,0)e(t) (3.9)

Thus y(t) can now be described by a set of two transfer functions with structural parameters
na, nb, and nk denoting the orders of the various polynomials which make up these transfer
functions. These parameters denote the number of poles and the zeros of the transfer
functions. When the number of poles and zeros have been chosen, the equations can be

curve-fitted to the 6 vector coefficient parameters a; and b;.
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Figure 3.2  Block diagram representing the ARX model. A represents the Auto Regres-
sion portion of the model, B denotes an extra input, and e denotes noise
entering the system.

Finally, using Equation (3.9) and multiplying the function y(¢) by A(s) gives Equation

(3.10):
A(s)y(t) = B(s)u(t) + e(t) (3.10)

This ready-made model is called the Auto Regression eXtra input (ARX) model. The
A(s)y(t) denotes the auto-regression of the system model. The B(s)u(t) denotes the extra
input. A block diagram of the ARX model is pictured in Figure 3.2 (20).

3.2.2  Parameter Prediction. It is possible to predict the output y(t) based on
measurements of u(7") and y(T"), where 7' <t — 1 (20). The prediction for the ARX case
uses old values of the output (details to follow), and the prediction can be calculated by

dividing the model in Equation (3.9) with the transfer function H (s, 0):

H™(s,0)y(t) = H (s,0)G(s, 0)u(t) + H (s,0)e(t) (3.11)

or

y(t) =[1— H (s,0)]y(t) + H ' (s,0)G(s,0)u(t) + H '(s,0)e(t) (3.12)

Further mathematical analysis of [1 — H (s, 8)] results in the following:

)~ Ol 1 (3:13)

— . —Qpgs (3.14)
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Combining Equations (3.13) and (3.14) reveals that [1 — H (s, )]y(¢) is made up entirely
of previous values of y(¢t). The entire right side of Equation (3.12) is known except
for component e(t), which has already been established as unpredictable (20). So the

prediction of values for the ARX model can be obtained from Equation (3.11) by deleting

e(t):

Gt 0) = [1— H (s,0)]y(t) + H (s,0)G(s, 0)u(t) (3.15)

Where (¢ | §) denotes the predicted value of y(t) at T = t—1. Furthermore, H (s, 0)G(s,0)

reduces to:
H7Y(5,0)G(s,0) = b1s™™ + bys ™1 ... s kmbHL (3.16)
Expansion of Equation (3.15) using (3.16)gives the following prediction equation:
9(t]0) =—ary(t —1) — .... — anay(t — na)
+b1u(t —nk) + ... + bppu(t — nk —nb+1) (3.17)
Using the following expression for the prediction error (20):

e(t,0) =y(t) —9(t | 0) (3.18)

one can determine the parameter vector 6 such that this error is minimized. One method

is to minimize the variance of the prediction error using:

Oy = arg main Vi (0) (3.19)
where
1 N
_ 2
[/N(H) = 7N tgl g (t, 9) (3.20)
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A transfer function of a proper form is obtained from the estimated parameter

resulting in:
bos™ + bys™ L4 by 15+ by
aps” +ais" 4+ -+ ap_1s+ap

G(s) =

Once a transfer function is obtained, it is important to change it to a state-space model

so it can be implemented in a stochastic smoother.

The transfer function G(s) can now be represented via linear system theory as (25):

x(t) = F(O)x(t)+B(t)u(t) (3.21)

y = H(t)x(t) (3.22)

While Equation (3.21) is the depiction of the perfect model, practicality denotes the fact
that neither the measurements or the model will be perfect. This may be due to inaccuracy
of sensors, noise within the signals, or the simplicity of the model (11, 20). Within the

model itself are often characterized as stochastic noise, I'(¢)w(¢) to get:

x(t) = F(t)x(t) + Bt)u(t) + T(t)w(t) (3.23)

Expanding on this concept, the measurement will also have added noise v(t) to get:

Z(ti) = H(ti)X(ti) + V(ti) (324)

where t; denotes discreet time measurements (i = 1,2,...,n)

3.8 Stochastic Estimation and Control (SEC)

The theory behind Stochastic Estimation and Control revolves around optimal esti-
mation of a system modeled with stochastic processes. The stochastic filter uses the tools
of probability to more accurately predict the incoming measurement. While many sto-
chastic filters have been developed, this research is only concerned with two: the Kalman

filter (KF) and the Fixed Interval Smoother (FIS).



3.3.1 The Kalman Filter (KF).  The linear Kalman filter is an optimal recursive
data processing algorithm (22). This tool is used when deterministic analysis is not
sufficient to estimate the state variables. It assumes a linear dynamics model driven by
white Gaussian noise of known statistics (22). The KF uses a Bayesian approach to
incorporate noise corrupted measurements. It makes use of all available measurements,
regardless of their accuracy, to come up with the best estimate of the system state. The
KF makes uses of a time propagation cycle and a measurement cycle when discrete-time

measurements are available. A complete derivation of the Kalman filter is given in (22).

3.8.1.1 State and Measurement Model Equations.  The system dynamics of

a KF assume linearity. The model is depicted in state-space form as (22):

x(t) = F(H)x(t) + B(t)u(t) + T(t)w(t) (3.25)

where:
x(t) = the system state vector
F(t) = the state dynamics matrix
B(t) = the control input matrix
u(t) = the control input
I'(t) = the noise input matrix
w(t) = the dynamics driving noise vector

For the purposes of this research there are no control inputs, so the B and u terms
will be dropped from any subsequent equations. The discrete-time representation of the

Equation (3.25) is given by:

(1) = B(tger: t)x(ti) + [ /t | (11D (1)dB(r) (3.26)

Where (3 is a vector valued Brownian motion process of diffusion Q(¢) and ®(t;11;¢;) is the
state transition matrix from ¢; to t;41 and, assuming a time invariant F matrix, is given

by:



(I'(thrl; ti) = (I'(At) = BFAt where At = tiJr]_ — tl' (327)

Equivalently, the discrete time model can be described as
X(ti+1) = ‘I’(tzq_l; tz')X(ti) -+ B(ti)u(ti) + Fd(ti)wd(ti) (3.28)

where

walts) = / " B(t0 T (3.29)

ti

This is defined as the discrete-time white Gaussian dynamics driving noise, with

statistics (22):

E{wat)} = 0 (3.30)

B {wat)wi(t)} = Qult) (331)
= [ et nmmanr e (e 63

E{wy(t)wy(t;)} = o,ltﬁétj (3.33)

The measurement output depicted as:

Z(ti) = H(ti)X(ti) + V(ti) (334)

Where z(t;) is defined as the measurement taken. H(t;)x(¢;) is defined as the true noise-free
measurement and v(¢;) is the noise added given imperfect measurements. The statistics

of the measurement corruption noise are described by (22):

E{v(t)} = 0 (3.35)
> {V(ti)vT(tj)} _ R(tz) for t; = L‘j 7 (3.36)
0 for t; 75 tj
Also,
E {wd(ti)vT(tj)} =0 for all t; and ¢; (3.37)
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which means that the driving noise w,(¢;) and the measurement corruption noise v(t;) are

assumed independent of each other.

3.8.1.2 Kalman Filter Equations. Kalman filters are typically propagated

forward in time from t;_; to t; where the superscript ' indicates state vales prior to

measurement incorporation. Whereas t:r denotes the time after a measurement update

n=+n

as indicated by the superscript. Initial conditions used in the first propagation are

described by %(t9) and P(ty), where P(tp) is the initial covariance and X(tp) is the initial

-~n

state estimate. Also, the "™ " notation on the state vector represents an estimate of x(t)

(22). The propagation cycle is described by the following equations:

x(t;) = @(titi-)x(t,) (3.38)

P(t;) = ®(titi)Pt )@ (titim1) + Ta(ti—1)Qalti—1)T5 (ti-1) (3.39)
Once the filter has been propagated, measurements updates are calculated by:
= H(,)P(t;)H" () + R(%:)
= P(t7)H (t:)A(t:) ™

) (3.40)
) (3.41)
ti) = =z —H(t;)X(t;) (3.42)
) = %)+ K(t)r(t) (3.43)

) (3.44)

= P(t]) — K(t:)H(L)P(t]))

Note that z; = z(¢;) for convenience.

Ideally, if the filter is properly designed (the noise statistics and the model are com-
mensurate to the real world), it would have a zero-mean residual vector, r(¢;), with an
associated filter-computed covariance A(t;). Once the filter has been propagated and

updated, the new values for %(¢;) and P(¢]) are used for the next propagation cycle.

3.3.1.3 Optimal Smoother.  The traditional Kalman filter is optimal when
working in real time. Propagations and updates only go forward in time, but take into

account all previous measurements. Optimal stochastic smoothers are an evolution to the
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KF. These stochastic smoothers make use of future data to improve the state and covari-
ance estimate. While there are three classes of smoothers (the Fixed-interval Smoother
(FIS), Fixed-point Smoothers (FPS), and Fixed-lag Smoothers (FLS)), this research will
use the fixed-interval smoother because it has been shown to give the best estimates pro-

vided that all the data has been acquired prior to the estimation (22).

Conceptually, a fixed-interval smoother can be defined as a combination of two
stochastic filters. A traditional forward-running Kalman filter, and a backward-running
Kalman filter that is typically implemented using an inverse covariance formulation (22).
Estimates are calculated by optimally combining the forward and backward portions of the
filter estimates and covariance matrices. The forward filter approximates state estimate
%(t, ) and error covariance P (¢, ) before z; (the new measurement where k = 1,2, .....,14)
is taken. When z, is incorporated, the forward smoother estimates %(¢;") and P(¢). In
the case of the backward filter %;(¢, ) and Py(t, ) denotes the state and covariance before
the measurement zy, is incorporated, and %(¢;) and Py (¢;) after the measurement zj, has

been incorporated.

The Forward Filter. The forward filter of a stochastic smoother is

basically a KF given the following initial conditions:

X(tg) = Xo (3.45)
P(ty) = Po (3.46)
The system is propagated using:
R(ty) = B(trerte)X(E) (3.47)
Pt 1) = ®(tepr,tr)P)®7 (tryrtr) + Talte) Qate) T (t) (3.48)

Once the system has been propagated, it is updated by the following equations:

K(ty) = P(ty)H (1) [Ht)P () H (1) + R(t)] (3.49)

X(ty) = %)+ K(tw) [ze — Htp)%(t),)] (3.50)
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P(t}) = P(t;) — K(to)H(tx)P(t;) (3.51)

The update and propagation equations are used iteratively for kK = 1,2, ...,4. This produces

a set of estimated state variables f((t:r) at every sample period.

The Backward Filter. The backward filter is initialized in much the

same way as the forward filter, but with one slight exception:

Bilty) = 0 (3:52)

P l(t;) = 0 (3.53)

Where §,(¢ ;) is the final measurement estimate before the incorporation of z; and P! (ty)

is the final covariance. Measurement updates are instanced by:

S’b(t;) = }A’b(t];)—i-HT(tk)Rfl(tk)Zk (354)

Poi(t5) = Pyl(ty) + H ()R (tx)H(t) (3.55)
and the backward propagations are estimated by:

= Pt Taltr—1) [T t1)Py (&) Ta(te—1) + Qp (te—1)]

)

L(ty) = I—J(tx)T] (teo1)
)
)

w
ot
0]

= @7 (t) tr_1)Ltx) [Fo(t]))]

= ®T(tptp 1) *

—~ —~ —~ —~
(@3]
~

~ ~— ~— ~

w
Ut
Ne)

{L(ty)Py  (EOLT (8) + I (1) Qg (1) I (t) } @ (1 ti—1)

A brief inspection of the indices in this equation does indeed show a backward propagation

from k = f,(f —1),..., (i + 1) to finally generate y;(¢; ).

The Smoothed Estimate. Once the forward filter has propagated and
estimated %(¢) and P(¢]") and the backward filter has estimated 3(¢; ) and P} *(¢;), the
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smoothed estimate is calculated by:

= [1+PEP )]

= P(HX ()

= I-W(t)P, (1)

= Y()PE)Y" (t:) + W(t)P, (5 )W (t)

(2

X(ti/ty) = X(t)%(t7) + P(ti/ty)Fu(t;) (3.64)

where the notation (t;/ts) indicates values generated over the fixed interval of ¢; to t;.
While there are methods of optimizing this code into algorithms that would require less
computational cost, these are seldom used in a smoother. A fixed interval smoother is
mostly used for post processing applications, so processing time and memory optimization

is not required in most cases.

3.3.2  Residual Monitoring. A residual is defined as the difference between the
measurement value estimated by a filter and the actual measurement provided to the filter.
The residual value, r(t;), is calculated from the measurements and the estimates of these

measurements before they are incorporated into the state estimates:
r(t;) = a(t:) — H(t)x(t}) (3.65)

The residual shows the error in the estimate based on the measurements. Because of this,
residuals are useful tools in checking the reasonableness of the system. Large residuals
mean that there is a big difference between the estimate and the measurement it is com-
pared to. Small residuals mean that there is little or no difference between the estimates
and measurements. Naturally, large residuals also mean that there is a model mismatch,
since the model cannot produce good estimates. Small residuals mean that the model is

adequate for the estimation of measurements.
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3.4 Summary

The entire purpose of this research is to conceptualize a new experimental method
useful in identification of cell samples. Measurement of a sinusoidal output, given a
sinusoidal input, are taken and recorded. The measurements are used to build a state
space model that accurately depicts the cell’s electrical characteristics. The state space
matrices are used to develop a stochastic smoother. The smoother is used to estimate the
electrical behavior of different cells samples. Residual monitoring will be used to assess
modeling errors. Based on residual values this research is hoping to distinguish between

different cell-types.
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IV. Results

This chapter presents the results acquired through the development of the theory in Chap-
ter 3. The first couple of sections describe the practicalities of cell sample testing and
the measurement process. The subsequent section deals with the analysis used in devel-
oping the state-space model that describes the electrical characteristics of a cell sample.
The next section discusses the development of the stochastic smoother. Finally, a section

describing residual analysis and windowing results will be presented

4.1  Measurement Equipment

One of the most important parts of this experiment is to record the electrical charac-
teristics of the cell samples as accurately as possible. This research effort was somewhat
constrained by financial factors; so the testing was done with the most accurate equipment

on hand.

4.1.1 Oscilloscope.  The oscilloscope used is an Agilent 54641D. Analog channels
Chl and Ch2 have simultaneous acquisition. The range limits of the sample frequencies
are from AC coupled 3.5 Hz to 350 MHz. The calculated rise time is 0.35/bandwidth
or ~1.0ns. The Single Shot Bandwidth is 350 MHz maximum. The vertical amplitude
scale ranges from 2 mV per division to 5 V per division, while the maximum input is 300
Vrms or 400 Vpk. The input resistance is 1 meg Ohm +1% or 50-Ohm selectable. Input
capacitance was ~ 13 pF. Figure 4.1 depicts the oscilloscope used for cell sample data

collecting.

The oscilloscope provided measurements by re-scaling its resolution before each fre-
quency measurement was taken. This guaranteed the most accurate measurement regard-
less of frequency. The amplitude of each frequency reading was recorded with a resolution
of 100 points per sample at each frequency measurement. Scales varied from 10ns/sample
to 2us/sample. Both channels recorded the input and output data simultaneously. Also,

frequency and phase measurements were recorded at every frequency reading.



Figure 4.1  Agilent 54641D oscilloscope used in the measurement of the input and output
signals of the test samples.

4.1.2  Function Generator.  The function generator used was an Agilent 33250A.
It is an arbitrary waveform generator with a sine function output frequency range of 1pHz
to 80MHz. The harmonic distortion is -30 dBc. The amplitude into 50 Ohms of resistance
is 10mVpp to 10Vpp +£0.1mVpp. Figure 4.2 depicts the function generator used during

the experiment.

The function generator was used to provide a sine input at a set amplitude with
varying frequencies. The oscilloscope subsequently recorded the input from the function

generator and the output from a cell sample.

4.1.8 Probes. The actual oscilloscope-to-cell sample interface consisted of two
components; the oscilloscope probes that came from the manufacturer and a second com-
ponent used to acquire measurements from the cell sample. These Agilent probes were
used for the purpose of isolating electromagnetic waves and losses in the transmission wires.
They were also used because they worked with negligible reactance to the signal over the

frequency range of experimentation.



Figure 4.2  Agilent 33250A function generator used in this experiment. The function
generator was used to input a sine wave at different frequencies into the cell
sample.

The second probing component consisted of an interface that was able to properly
measure the response of a cell sample. Each cell sample was placed in a fabricated well and
the probe device was customized to fit into standard biological cell sample wells. Figure 4.3
depicts the design schematics of these well-probe component, while Figure 4.4 shows the
fabricated probe components. These probe components were used to connect the industry
fabricated probes to the cell samples. These probe components were tested at the limits
of the input and output devices for signal distortion. No significant changes in the input

or output measurements were viewed or recorded.

4.1.4  Computer Interface. A Dell laptop was used to record all measurements and
direct all instrument processes. A General Purpose Interface Buss (GPIB) card interfaced
the oscilloscope and function generator to the laptop (15). Agilent Visual Engineering
Environment (VEE) program was used to program the equipment to take measurements.

Figure 4.5 displays the entire cell measurement setup.
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Figure 4.3  Fabrication schematic of probe interface. The probe interphase was specifi-
cally designed to fit into a well containing a biological cell sample.

™

Figure 4.4  Picture of fabricated probe interface. This specific probe interface fits into a
24 sample well (see figure 4.10). Two probe interface types were considered:
two leads and four leads. The four lead probe was not used because subse-
quent experiments found that the two inner probes did not take cell sample
measurements but only measured extra-cellular material. This resulted from
cells sticking to the bottom of the sample wells, where the middle leads could
not properly test.



Figure 4.5 Figure of measurement and experimental equipment used to send an input
and record an output of the cell sample. The function generator (bottom
left) sends a sinusoidal input into the cell sample. The oscilloscope (top left)
measures the input and registers the output of the cell sample. The laptop
(on the right) directs the input and output, and records the measurements
at every sample time.

Measurements were recorded at a variety of frequencies and at multiple sample times.
There was a delay from the time each sinusoidal input was used to excite the cells and
the time each measurement was taken. This was done to make sure the measurement
represented the output while in steady-state. The system was carefully built so that no
transients were recorded. Figure 4.6 shows the programing flow chart for the recording of

measurements. The measurement acquisition process steps are summarized below:

e Function generator sends a signal into the cell (i.e., a sine wave with 1Vpp amplitude

and 1MHz frequency).
e Delay of 0.5 seconds to let the transients die out and reach steady-state.
e Oscilloscope re-scales for optimal measurement resolution.
e Oscilloscope records input, output, frequency and phase change.

e Function generator advances to the next frequency (i.e., a sine wave with 1Vpp

amplitude and 2MHz frequency).
e Process is repeated until the entire frequency range specified has been covered.

This process was repeated for every cell sample.



Figure 4.6
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with an amplitude
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The flowchart depicts the process of taking different cellular measurements
automatically. The computer specifies the input of the function genera-
tor. The output is read by the oscilloscope and recorded into a computer
file at each frequency. The automated process then moves on to the next
frequency increment to take a measurement until measurements from the

entire frequency range are taken.
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Figure 4.7  Contrel HEL-30 sample at 10x magnification.

4.2 Cell-type Samples

There were two main cell-types that were tested in this experiment. The HEL-30
cell-type was used to model the smoother. It is a keratinocyte cell made immortal. It is
basically an epidermal cell that originated on the tail of a rodent. The HEL-30 is mainly
used to model skin behavior. The PC-12 is a lung type cell and was used to test the ability
to distinguish cell types. This type of cell models nervous system characteristics. Refer
to Chapter 2 for a more in-depth background on the sample cells. Figure 4.7 and 4.8
display HEL-30 cells and PC-12 cells respectively.

The cells were grown in the same sample plate wells that were later used to take
measurements. Each sample plate consisted of 24 wells, with two wells left untested for
control purposes, so there were 22 samples per plate. In total, 14 sample plates were
tested, resulting in 308 total cell samples. Figure 4.10 depicts a 24 well cell sample plate,

while a cell sample is being tested.

All cell samples (including the control cell samples) were subjected to the MTT test
for mitochondrial activity. Figure 4.9 shows HEL-30 cells with the MTT marker used for
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Figure 4.9

Figure 4.8  Control PC-12 cell sample at 60x magnification.
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Figure displaying results of MTT tests. This is a comparison between the
normalized data of the 308 samples tested with an input signal and the control
test samples, which were not excited by an electrical input.



Figure 4.10  Depiction of 24 well cell sample plate. Fach well contains either a sample
of HEL-30 cells or PC-12 cells. Probes are connected to test the electrical
characteristics of an individual cell sample within the plate.



Figure 4.11 HEL-30 control cell without MTT marker. Photographs used to compare
the structure of the cell of anomilies.

testing. When this marker was irradiated with a spectrometer, it emitted a specific light
spectrum depending on mitochondrial activity (reddish purple delineates no mitochondrial
activity while a greenish glow depicts normal mitochondrial activity). It was important to
determine if the cells lived through the measurement process for many reasons. Dead cells
would change in electrical properties which would make the measurement of the response
of the cell sample invalid. If cells died, it would also imply that the process could not be
used in-vivo. Based on this, it was important to choose parameters that would ensure the
survival of the cell samples. Figure 4.12 is a comparison of all the cell tests in every plate
as compared to the control samples. As shown, 100 % of the cell samples survived the
testing procedure. It can be seen that the tested samples have slightly larger than 100%
mitochondrial activity. This could be due to a slight rounding off of the data numbering,
or the fact that the electrical input stimulated the cells in some way. Regardless of the
reason, it is well within boundaries of healthy cells (too much increase in mitochondrial

function could be a sign of mutation of the cells, effectively making it cancerous).

4.2.1 Cell Test Samples. For research purposes, it was important to find the
ability of the cell to survive under different input parameters. Literature suggested the
types of inputs that cells could handle (i e., sinusoids up to 46 Vpp with a frequency range
between 10KHz and 1MHz), but none of this literature directly pertained the cell-type
samples that were used in this research. Also, tests had to be done to see the time it

took the transients of the initial signal to die out such that the output of the cell sample
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Figure 4.12 HEL-30 cell control samples with MTT marker.

reached steady-state. For this purpose, some samples were subjected to extreme inputs.
Table 4.1 and Table 4.2 show initial tests done on the HEL-30 cells to determine viable
inputs. Cells were tested at a temperature of 52°C. The period column delineates the
total time the cells were tested. Once it was established that the cell could survive for a

lengthy period of testing (up to 615 seconds), the time was no longer recorded.

The rest of the cell sample plates’ frequency range and amplitude for HEL-30 cells
are summarized in Table 4.3. Note the variety of changes in amplitudes, frequency
ranges, and frequency steps. The main reason for these variations in testing amplitudes
and frequency ranges was the need to obtain useful output data. At the beginning of
the experimentation, measurements found in literature were used, but it was found that
responses were more significant in other frequency ranges. The initial frequency range
used was from 10KHz to 1MHz as stated in much of the literature (1, 2, 10, 11, 41).
No significant signal response was found in this frequency range as shown in Figure 4.13.
There was no discernible frequency variation in amplitude or phase; so a different frequency

range with a more discernible response was required.
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Table 4.1  This table denotes the results of Cell Sample Plate 1. HEL-30 cell samples
were tested. There were no control samples in this plate because boundaries
needed to be tested.

Sample (#) | Amplitude (Vpp) | Frequency Tested (Hz) | Period (s)
1 1.0 10K-50M @ 10K steps N/A
2 1.0 80 M 300
3 1.0 10K-1M @ 20K steps N/A
4 1.0 10K-1M @ 20K steps N/A
5 1.0 10K-1M @ 20K steps N/A
6 1.0 10K-1M @ 20K steps N/A
7 1.0 10K-1M @ 20K steps N/A
8 1.0 10K-1M @ 20K steps N/A
9 1.0 10K-1M @ 20K steps N/A
10 1.0 10K-1M @ 20K steps N/A
11 1.0 10K-1M @ 20K steps N/A
12 1.0 10K-1M @ 20K steps N/A
13 1.0 10K-1M @ 20K steps N/A
14 1.0 10K-1M @ 20K steps N/A
15 1.0 10K-1M @ 20K steps N/A
16 1.0 10K-1M @ 20K steps N/A
17 1.0 10K-1M @ 20K steps N/A
18 1.0 10K-1M @ 20K steps N/A
19 1.0 10K-1M @ 20K steps N/A
20 1.0 10K-1M @ 20K steps N/A
21 1.0 10K-1M @ 20K steps N/A
22 1.0 10K-1M @ 20K steps N/A
23 0.1 10K-60M @ 20K steps N/A
24 0.1 10K-60M @ 20K steps N/A
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Table 4.2  This table denotes the results of HEL-30 Cell Sample Plate 2. This plate was
mainly tested to find input boundaries that could be used for experimentation.

Sample (#) | Amplitude (Vpp) | Frequency Tested (Hz) | Period (s)
1 N/A (control) N/A (control) N/A
2 N/A (control) N/A (control) N/A
3 100m 10K-3M @ 10K steps 600
4 100m 10K-3M @ 10K steps 600
5 100m 10K-3M @ 10K steps 600
6 100m 10K-3M @ 10K steps 600
7 100m 10K-3M @ 10K steps 600
8 100m 10K-3M @ 10K steps 600
9 100m 10K-3M @ 10K steps 600
10 100m 10K-3M @ 10K steps 600
11 100m 10K-3M @ 10K steps 600
12 100m 10K-3M @ 10K steps 600
13 100m 10K-3M @ 10K steps 600
14 100m 10K-3M @ 10K steps 600
15 100m 10K-3M @ 10K steps 600
16 100m 10K-3M @ 10K steps 600
17 100m 10K-3M @ 10K steps 600
18 100m 10K-3M @ 10K steps 600
19 100m 10K-3M @ 10K steps 600
20 100m 10K-3M @ 10K steps 600
21 100m 10K-3M @ 10K steps 600
22 100m 10K-3M @ 10K steps 600
23 100m 10K-3M @ 10K steps 600
24 100m 10K-3M @ 10K steps 600
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Typical Input/Output Relationship in 200KHz-1MHz Frequency Range

Input
Output

200kHz 400kHz 600kHz 800kHz 1 MHz

100 200 300 400 500
Sample Points

Typical frequency response over a 200KHz-1MHz range with a 2Vpp ampli-
tude. There is no significant response change between the input and the
output. It was for this reason that a range of IMHz to 80 MHz in the 5 dis-
persion frequency range was chosen. X label denotes sample points (100 per
frequency measurement). Frequencies labeled in their specific partitions.
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Table 4.3  This table denotes the input that each HEL-30 cell sample plate was subjected
to. The cell samples that have already been displaye are referenced from other
tables. There were only 22 test samples in each plate because 2 test samples
were always used for control

Plate (#) | Amplitude (Vpp) | Frequency Tested (Hz) | Period (s)

1 refer to Table 4.1 refer to Table 4.1 refer to Table 4.1
2 refer to Table 4.2 refer to Table 4.2 refer to Table 4.2
3 0.1 10K-1M @ 5K steps 615

4 0.025 10K-1M @ 10K steps 204

5 0.025 10K-60M @ 500K steps N/.A

6 0.025 10K-20K @ 0.5K steps N/A

7 0.025 10K-3M @ 500K steps N/A

8 0.025 10K-3M @ 10K steps N/A

9 0.25 1IM-70M @ 5M steps N/A

10 0.25 1M-70M @ 5K steps N/A

11 0.25 1M-75M @ 1M steps N/A

Frequency ranges were not the only input variation in the experiment. Based on the
literature (11), a 25mV amplitude would guarantee linearity in the system. It was found
that this voltage did not provide any significant signal changes except for noise. Fur-
thermore, at low amplitudes, the oscilloscope could not read the frequency measurements.
Frequency measurements were vital to the processing of the model; so research at this

amplitude had to be abandoned.

The cell samples that produced the most significant responses and provided a good
measure of the amplitudes, were the cell samples in plate 11. These samples were taken
at an amplitude of 250 mV and a frequency range of 1IMHz to 80MHz (with frequency
change steps of 1IMHz). The following figures show the input and output relationship of
a representative sample in plate 11. As seen in Figure 4.14 and Figure 4.15, the input
output relationship does not show a significant response until 40MHz is reached. After
this point, the frequency response is very significant. Once it was established that this
specific amplitude and frequency range gave good measurements regarding the HEL-30
cell samples, the last three plates involving PC-12 samples were subjected to these same
inputs. Table 4.4 shows the amplitude and frequency range of the last 3 sample plates.

Figures 4.16 and 4.17 show a representative input and output sample from plate 14.
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Figure 4.14
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Input/output relationships of representative HEL-30 cell samples used in the
system modeling. Top scale and dividers denote frequencies and boundaries
respectively. Bottom scale denotes number of sample points. Y scale
denotes units in volts (V). This figure denotes a frequency range of 1MHz-
40MHz at 1MHz steps.
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Figure 4.15  Input/output relationships of representative HEL-30 cell samples used in
the system modeling. Top scale and dividers denote frequency changes.
Bottom scale denotes number of sample points. Y scale denotes units in
volts (V). This figure denotes a frequency range of 41MHz-75MHz at 1MHz
steps.
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Figure 4.16  Input/output relationships representative of PC-12 cell samples. Top scale
and dividers denote frequency. Bottom scale denotes number of sample
points. Y scale denotes units in volts (V). This is from a frequency range

1MHz-40MHz at 1MHz steps and an amplitude of 250 mVpp.
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Figure 4.17  Input/output relationships of representative PC-12 cell samples. Top scale

and dividers denote frequency. Bottom scale denotes number of sample
points. Y scale denotes units in volts (V). This is from a frequency range
41MHz-75MHz at 1MHz steps and an amplitude of 250 mVpp.
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Table 4.4  This table denotes inputs that PC-12 sample plates were subjected to. MTT
test column delineates survival of all test samples. There were only 22 test
samples in each plate because 2 test samples were always used for control

Plate (#) | Amplitude (Vpp) | Frequency Tested (Hz) | Period (s)
12 0.25 IM-75M @ 1M steps N/A
13 0.25 1IM-75M @ 1M steps N/A
14 0.25 IM-75M @ 1M steps N/A

The next step in the experimental process was to make sure that both cell-types
did not produce the same output characteristics despite identical inputs. Figures 4.18
and 4.19 denote the comparison between HEL-30 and PC-12 cell samples despite the fact
that they have the same input. One can easily see the differences between the HEL-30
and PC-12 output characteristics when compared to one another. In this plot, one can
definitely see the different cellular characteristics, especially once a higher frequency range
is reached. When higher frequencies are reached, both signals seem to display a noise
component. These are only sinusoidal signals sampled at a different resolution. The
oscilloscope opted for a different resolution because it could not trigger onto a single signal
so it allowed a greater variety of samples to be shown as some frequencies base on the

variance of the output. It can be seen that both cell display such similar characteristics.

4.8 System Modeling

Once it was realized that sample plate 11 had the cell samples with the most dis-
cernible frequency response, the 22 cell samples were put into a MATLAB® program
named Ident (21). This Graphic User Interface (GUI) has the capacity of taking in-
put/output frequency data to produce a model via the ARX method. Refer to Chapter 3
for a discussion of the ARX algorithm. Figure 4.20 shows a picture of the GUIL. The left
side of the figure depicts the inputs and outputs loaded into the program. The right side

of the figure depicts the models built via ARX model estimation.

The ident tool produced a variety of models that were suitable matches based on
their input/output characteristics. Figure 4.21 depicts the models generated by the in-

put/output data. Based on the model characteristics, one model was chosen to be used

4-20



0.5
0 100
9MHz,10MHz,11MHz,12MHz

1MHz,2MHz,3MHz,4MHz

200 300 400

| | |
0 100 200 300 400

17MHz,18MHz,19MHz,20MHz

| |
200 300

100 400

25MHz,26MHz,27MHz,28MHz

5MHz,6MHz,7MHz,8MHz

0.5
0 100 200 300 400
13MHz,14MHz,15MHz,16MHz
0.5
| |
0
05 L
0 100 200 300 400
21MHz,22MHz,23MHz,24MHz
0.5
| |
0
05 | | |
0 100 200 300 400

29MHz,30MHz,31MHz,32MHz

0.5 0.5
0 100 200 300 400 0 100 200 300 400
33MHz,34MHz,35MHz,36MHz 37MHz,38MHz,39MHz,40MHz
0.5 0.2 : - -
| | |
os L] o LV YV
0 100 200 300 400 0 100 200 300 400
HEL-30 Output
PC-12 Output
Figure 4.18  Comparison of PC-12 sample and HEL-30 sample outputs (Blue denotes

HEL-30 samples while Red deontes PC-12 samples).

frequency changes.
amplitude in volts (V).

of 1IMHz-40MHz. 4-21

Lower scale denotes sample steps.
These plots show response over a frequency range

Upper scale denotes
Y scale denotes



41MHz,42MHz,43MHz,44MHz

0.2
0 100 200 300 400
49MHz,50MHz,51MHz,52MHz

0.2

RARIRSIRAS
0 100 200 300 400
57MHz,58MHz,59MHz,60MHz

0.2
0 100 200 300 400
65MHz,66MHz,67MHz,68MHz

0.2
0 100 200 300 400
73MHz,74MHz,75MHz

2
0 100 200 300

45MHz,46MHz,47MHz,48MHz
0.2

LYV
0 100 200 300 400
53MHz,54MHz,55MHz,56MHz

0.2

2 |
0 100 200 300 400

61MHz,62MHz,63MHz,64MHz

0.2
0 100 200 300 400
69MHz,70MHz,71MHz,72MHz

0.2
0 100 200 300 400

HEL-30 Output
PC-12 Output

Figure 4.19

Comparison of PC-12 sample and HEL-30 sample outputs (Blue denotes
HEL-30 samples while Red deontes PC-12 samples).
frequency changes. Lower scale denotes sample steps.

Upper scale denotes
Y scale denotes

amplitude in volts (V). Theé:ls_e2 flots show response over a frequency range

of 41MHz-75MHz.



) lident: Plate11
File Options Window  Help

Irport data j Import models j

Cperations ‘

m =-- Preprocess j /
A3 A4 1 a3 a4 as ab
AS AB I ' ar ad ad ald
Wiarking Crats
B1 B2 ‘ imp =pad model arues
Estimate --= j \— \—
B3 B4 nds madel2a madel2b moclel
Data Views Made! Yiewes
To To
[ Time plat \Werkspace LTI ewer [] made! output [] Tranzient resp
[[] Dsta spectra [] Madel resids [[] Frequency resp
[C] Frequency function ] ] ] [] Zeros and poles
A4
Exit I ct
X S “aliclation Data [ me spesi

Cormpiling ..

List of Abreviations.doc - Microsoft Waord

r =
1y Start £ § ® ) 6 MATLAB

Figure 4.20  Figure of Ident, a GUI used within MATLAB® to build system models
based on ARX models. This tool is used to estimate transfer functions
based on input and output measurements.

4-23



10

10

Figure 4.21

Frequency Functions

— model 1
——— model 2
— model 3
model 4
— model 5
model 6
—— model 7
— model 8
— model 9
model 10
model 11
— model 12

— true output
chosen M

10° 10 10
Frequency (rad/s)

The figure depicts 13 different models that very closely resemble the output
charaterisics of the samples at different frequencies. These models were
produced by differnt iterations of the ARX algorithm. From these models,
one was chosen as best depiction. The line in black is the system measured
response, the smooth mutli-colored lines depict the different models.
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Figure 4.22  Figure depicts the model that was to be used in the development of the
stochastic smoother.

in the development of the smoother. Figure 4.22 depicts the model chosen based on its

similarity to the sample data.

The model was chosen based on two criteria; it was the model that best fit the
measurement output from the cell and it was also the model that had a D matrix =~ 0

(more to follow on this subject). The model chosen produced the following differential

equation:
Alq)y(t) = Blgu(t) +e(t) (4.1)
A(g) = 1-4¢7"+6.001g > —4.001g > +¢* (4.2)
B(q) = -—0.0006025 + 0.001807¢~* — 0.001807¢ 2 + 0.0006021¢ > (4.3)
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Loss function Vi (6) (refer to Equation 3.20) was calculated to be:
Vn(6) = 1.09032¢ %7

Based on this differential equation, the following state space model was created:

X(tiv1) = P(tiv1;ta)x(ti) + B(ti)u(ti) + alti)wa(ti) (4.4)
y(ti) = H(ti1)z(ti-1) + D(ti-1)u(ti-1) (4.5)
4 10 0]
—6.001 0 1 O
> — (4.6)
4001 0 0 1
i -1 0 0 0_

[ 0.0006039 63414
0.001809  —1.445¢13
~0.001808  9.635¢~ 14
0.0006026  —2.409¢~ 14

H:[1ooo] (4.8)

D = [ —0.00060252 40814 } A [ 0 0 ] (4.9)

The D matrix was approximated to zeros because the feed through items, or extra outputs,
would make the calculations for the estimation of the stochastic smoother more difficult.
Given that the numbers were not very significant, an approximation to zero was logical.

This is the state-space model in discrete form.

4.4 Modeling of Stochastic Smoother

Once the state model in discrete form was determined, the next step was to use this

model in implementing the smoother. The forward filter in the smoother developed from
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the HEL-30 sample response used the following initial values:

X(to) = 0 (4.10)

P(t)) = 0 (4.11)

Where X(%p) is the initial measurement estimate and P(¢o) is the initial covariance. From
this point forward, X(to) and P(¢p) are propagated and updated using Equations (3.47)
to (3.51). The values of X(tg) and P(tp) were set to 0. This is by no means the best
case scenario because a covariance matrix is is not transposable if set to 0. Setting the
covariance equal to zero implies that the measurement is perfect as is. This situation
is rarely true. By saying that a perfect measurement is attained there is a chance that
the filter equations become singular. Equation (3.51) may become negative which would
imply a non-existent negative covariance. The values were chosen based on the fact that
all initial sample points were set to zero. This was done to counteract instrument behavior.
Every time the oscilloscope took measurements, it would set each initial sample to a very
high value (10e3” volts) regardless of input. This huge value did not allow the filter to
acquire an estimate. To allow the filter to estimate after a couple of samples, each initial
sample value was set to zero. Since the value was set, it was determined that a perfect

knowledge of this initial value was the correct assumption.

4 10 0
6001 0 1 0
Bl ty) = (4.12)
4001 0 0 1
-1 00 0|
(100 0]
0100
Ly(ty) = (4.13)
0010
(000 1
Qu(ty) = 0.1 (4.14)
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Hty) = |1 00 0 (4.15)

R(t;) = 10 (4.16)

The values for Qg and R were obtained based on fine tuning of the system. The value
Qg pertains to the covariance of the zero-mean Gaussian noise pertaining to the model,
while R is the covariance of the zero-mean Gaussian noise relating to the measurement.
Each of them is basically a measure of how much confidence should be given to each of
these components (Qg pertains to how accurate the model is, while R pertains to the
accuracy of the measurement). In this case R was obtained by analyzing the variance
of the instrument accuracy. This variance was then squared to obtain R. There was
no way to know the adequacy of the model based on the fact that this was the first time
it had been used. Due to the lack of empirical date pertaining to the accuracy of the
model, values of Qg were varied until an accurate estimate was obtained. While this is
not the optimal method for smoother tuning, the lack of research did not allow for a more
accurate option. The values for the backward filter were calculated using Equations (3.52)

to (3.56). The smoothed estimates were calculated using Equations (3.60) to (3.64)

Figure 4.23 and Figure 4.24 represent the comparison of the smoothed estimate of
the measurement versus actual output measurement of an HEL-30 cell sample. As Figure
4.24 shows, the filter starts giving sub-standard estimates at the higher frequencies. This

is due to mismodeling at high frequencies.

Figure 4.25 and Figure 4.26 represent the comparison of the smoothed estimate of
the measurement versus the actual output measurement of a representative PC-12 cell
sample. The system was not built based on the characteristics of this cell-type. As a
result, accurate estimation is not expected. From these figures it can be seen that, while
the filter estimates cell sample output values well over some frequency ranges, cell sample
estimation is not as accurate as it had been for the HEL-30 cell estimation in Figure 4.23

and Figure 4.24.
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Figure 4.24  This figure shows the difference between the smoothed output estimated and
the measured output of a representative HEL-30 cell sample. Red shows the
cell sample output. Blue shows the estimate output. Upper scale denotes
frequencies. Lower scale shows sample intervals. Y scale shows magnitude
in volts (V).
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The figure shows the difference between the smoothed output estimate and
the measured output of a representative PC-12 cell sample. Red shows the
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in volts (V).
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4.5  Residual Analysis

One can compare the difference between the estimated results of the samples of both
cell-types and the output measurements of the oscilloscope. While this would be a way to
identify the different cell samples, this research effort opted doing residual analysis instead.
While residual analysis is not the only method available that could be used to identify cells,
it was used in this case because it was readily available and easily implemented. With
this in mind, the research effort focused on identification by studying the residual results
acquired from the estimates and the measurement outputs. Residuals are defined as the
difference between an estimated value and an actual value. For more on residuals, refer to
Sections 3.2.1 and 3.2.2. Residuals are important because they show the adaptability of
the filter to the system. A low residual shows that a filter is adapting accurately, while a
high residual shows that a filter is not estimating the response correctly (22). Naturally, it
would be ideal if the filter could accurately estimate the output of the HEL-30 cell samples,

and not be able to estimate the PC-12 cell sample output.

4.5.1 Residual Results.  Typical residuals of both cell samples in Plate 11 (HEL-
30 cells), and Plate 14 (PC-12 cells) are compared in Figure 4.27. An empirical threshold
was placed in order to separate low residuals from high residuals. The smoother can
estimate a measurement rather closely, but will seldom provide a residual value that is
exactly zero. Therefore an empirical threshold of TmV was used to distinguish "large"
residuals from "small" residuals. An issue of concern was the fact that even though the
residuals in the HEL-30 samples were consistently lower than the residuals of the PC-12
samples, the HEL-30 sample residuals were continually above the threshold through all
frequencies. A blown up plot such as Figure 4.28 and Figure 4.29 illustrate why this
happened. It can be observed by looking at the plot that residuals of both types of cell
samples spike when there is a frequency change. During a frequency change, the filter
has a harder time making the correct estimate, but soon recovers. The tuning of the
filter helped reduce the spikes at the frequency changes, but not enough to remove them
completely. Other than the spikes, it was observed that the residuals of the HEL-30 cell

samples were consistently lower than the residuals estimated with the PC-12 samples.
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Figure 4.27  Typical comparison between residuals from HEL-30 cell sample and PC-12
cell sample. Black line delineates allowable threshold error in the estimate.
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4.5.2  Results from Windowing. Some of the high residual values had to be
removed from the data at the frequency boundaries in order to properly use the data for cell
identification. To remove the high residuals that only occurred at frequency boundaries,
a windowing method was devised. This windowing method made use of binary logic to

address the issue of samples being above the threshold for short durations.

The routine for windowing looks at each sampled residual and organizes them into a

defined value calculated by Equation (4.17),

—_
=
—~
~
BA
~—
A%
o

m(t;) = (4.17)

where m(t;) is indicator value on whether the residual is above or below the threshold,
c. For the purposes of this research, events were defined as a residual being above the

threshold.

Finally, identification is established based on a hypothesis. This hypothesis states
that if, at any time, there are a predefined number of consecutive events (a number of
concurrent m(t;) = 1 values in a predefined window area), then a cell sample mismatch

decision is declared:

h(t;) =1 i m(t;) > w
v (4.18)
h(tl) =0 Z m(tz) <w

where w is the window size and h(¢;) is a hypothesis assigned a binary value based on

whether it is true or false at any individual sample time.

For the purposes of this study, a threshold was defined as ¢ = TmV. The window

size was defined as w = 5. Figure 4.30 depicts a flow-diagram describing the logic process.

Figure 4.31 is a representative plot of the residuals having been subjected to window-
ing. It is extremely clear in the plot that the PC-12 cell samples are consistently instancing
the predefined hypothesis at different frequencies. Looking at Table 4.5 it can be observed
that HEL-30 cells have no true hypothesis points plotted. This is representative that
the hypothesis is, and should be, false with cell samples that match the model-derived
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Figure 4.30  Flow diagram describing the process of windowing. Windowing is a method
to determine if residuals are consistently above a certain threshold.
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Figure 4.31  Window plot representing flags from windowing the data in residual plots
from Plate 14 and Plate 11.

smoother. If at anytime the estimates have a residual higher than the threshold (i.e.,
when there is a frequency change), it takes the smoother less than five sample periods to
start estimating accurately again. This is not the case with the samples of the PC-12 cells,

which are consistently breaking the threshold between 1MHz-30MHz and again between

70MHz and 75MHz.

While the representative window plot of Figure 4.31 is typical, there were some
extreme cases. Figure 4.32 shows a PC-12 cell sample where the smoother had a very hard
time estimating the output measurements. In total 465 instances of the residual breaking
the threshold at five consecutive points were recorded. This figure does, however, show
that the extra flags were instanced around the same frequency range as in Figure 4.31.
Examining the actual residual plot for this flag plot (refer to Figure 4.33), it can be seen

that most of the residuals barely break the threshold. But it can also be observed that the
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Table 4.5  The table shows how many flags each of the samples in Plate 11 (made up of
21 HEL-30 samples), and Plate 14 (made up of PC-12 samples) raised as a
result of their residuals not being below acceptable thresholds. Based on this
data, it can be safe to assume that system identification is possible based on
the number of times the residuals of the data exceet a specific limit

Sample # Positive Hypothesis Instances Positive Hypothesis Instances
Plate 11 (HEL-30) Plate 14 (PC-12)
1 0 91
2 0 115
3 0 237
4 0 9
5 0 450
6 0 62
7 0 130
8 0 242
9 0 202
10 0 465
11 0 256
12 0 285
13 0 397
14 0 194
15 0 218
16 0 165
17 0 137
18 0 142
19 0 203
20 0 112
21 0 71
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Window Flags of PC-12 Cell Type
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Figure 4.32  Window plot representing extreme amount of flags from windowing the data
in residual plots from Plate 14 (top) and Plate 11 (bottom).

residual plot shows much higher residuals than shown plot in Figure 4.27. There could be
many reasons for this phenomenon. It could be that for some reason the cellular response
was unusually erratic. It could also be postulated that some biological phenomena beyond

the scope of this research is represented in these measurements.

On the other side of the spectrum, Figure 4.34 shows a PC-12 cell sample that
seems to have been very well estimated by the smoother (although still showing true
hypothesis instances plotted). This sample could be considered an anomaly because while
the previous plot on Figure 4.32, instanced a true hypothesis in an excessive number of
sample points, Table 4.5 shows other samples where a commensurate number of samples
identified a positive hypothesis. This is the only estimate, however, that identified a true

hypothesis in only nine samples. Regardless of this observation, it can be shown that this
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Figure 4.33  Comparison between residuals from HEL-30 cell sample and PC-12 cell sam-
ple. Black line delineates allowable threshold error in the estimate.
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Window Flags of PC-12 Cell Type
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Figure 4.34  Window plot representing minute amount of flags from windowing the data
in residual plots from Plate 14 (Top) and Plate 11 (bottom).

method for identifying cell samples is effective based on the two different cell-types used in
this study. Residuals on Figure 4.35 show a significant difference between the estimated

values of the two cell types, yet still below the empirical threshold.

Based on the information in Table 4.5, it is logical to surmise that a method made
up of Electrical Impedance Spectroscopy and Stochastic Estimation and Control concepts
can be implemented to successfully identify a cellular sample. The results of this research

suggest that cellular sample identification is made possible by implementing a stochastic

fixed interval smoother.

4-43



Residual of PC-12 Cell Type

06 T T T T T I
g Residual
ow 04t Threshold |
k)
>
=oo || ‘
Té’ T IR |
.g 0 | -
& [ || || T | T

_02 | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000
Sample Points
Residual of HEL-30 Cell Type

0.6 T T T T T I
g Residual
o 04rF Threshold |
k)
>
= 02t ‘ -
(_g I_ 1 | |||| ||| | ¥ N . ||| [T

1ol | |

g oph P T e b -
&J II|I | I|| 'I|| |

-0.

2 | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000
Sample Points

Figure 4.35  Comparison between residuals from HEL-30 cell sample and PC-12 cell sam-
ple. Black line delineates allowable threshold error in the estimate.
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V. Conclusions and Recommendations

This chapter is written in order to summarize the work accomplished throughout this
study. It will initially review and reinstate what the original goals of the project were.
Section 5.2 will then continue to describe how the goals stated in Section 5.1 were met.
The next section will delineate the benefits of continuing in this line of research. Finally,

recommendations for future research will be made in the final section before the conclusion.

5.1 Restatement of Research Goals

The goals of this research were simple: to see if the synthesis of two disciplines,
Electrical Impedance Spectroscopy (EIS) and Stochastic Estimation and Control (SEC)
would provide a new type of experimental method that could identify cellular samples via
their electrical characteristics. By using EIS theories, measurements that characterized
the input and output of a cell sample could be used to build a transfer function that
characterized the electrical behavior of a cell sample. Based on this transfer function, a

fixed interval smoother could be developed and used to estimate samples of the system.

It was postulated that if the stochastic smoother (originally built from the transfer
function of HEL-30 cell electrical characteristics) was able to properly estimate the output
of the cell sample, other cell samples would be different enough so as not to be estimated
well with the smoother. Identification of a cell-type would be based on the precision with
which the smoother was able to estimate the output of such sample. An empirical threshold
would be applied and, if the smoother matched the cell type, the residuals for such cell
system would not exceed the threshold. This would be the basis of the identification of

the cellular sample.

5.2 Summary of Results

When the residuals were first calculated (Figure 4.27), it was very hard to establish
a threshold on the data that would provide distinguishability of the cells. The residual
plot of the HEL-30 cells consistently showed lower residuals than the PC-12 cells.



Upon closer inspection, the residuals that were consistently higher than the threshold
occurred during the times that the oscilloscope transitioned through different frequencies.
The smoother had trouble estimating during frequency transitions, but it went back to
estimating residuals to an acceptable threshold within one or two sample periods. Based
on this observation, it was decided that a windowing algorithm could be used to more
efficiently show where the residuals were above the threshold while at the same time elimi-
nating those residuals that were created when the smoother tried to estimate over frequency

boundaries.

The windowing algorithm developed to properly identify significant changes in resid-
uals worked. It progressively compared every sample to the threshold. When a residual
was below the threshold, it was plotted with a value of zero, denoting that the hypothesis
for a mismatch had not been met. If the sample residual was above the threshold, then
it would be labeled as an event. The hypothesis was that if a set window number of
consecutive events were detected, then the hypothesis would become true. A true hypoth-
esis denotes a model mismatch from the cell sample. In this way, any estimate that was
above the threshold due to a frequency change was not recorded. By the same token, any
estimate that was consistently above a residual threshold due to the fact that the model
did not match the measurements was recorded. Table 4.5 clearly shows that the cellular
samples used to build the model were estimated very accurately, while the cell samples
from a different cell-type could not be estimated as accurately. From the data displayed
on the table, one can see that only three cell samples had less than 90 detections of a
true hypothesis. In the most extreme case, one PC-12 cell sample showed only 9 occa-
sions where the system detected a true hypothesis (refer to Figure 4.34). This anomaly
is likely due to equipment or measurement errors. Most of the PC-12 cellular samples
were identified to have at least 100 true hypothesis detections. Based on the research,
the flag-counting method could be used to correctly identify the HEL-30 cell sample from
a PC-12 cell sample given their electrical characteristics. The bottom line is that 100%
of the cell samples’ residuals of the same cell-type used to develop the smoother did not

break the threshold barrier for more than five samples in a row. While 100% of the cell



samples’ residuals from another cell-type broke the threshold five times in a row at least

in nine different occasions.

5.8  Significant Contributions of Research

This research could have many contributions both in the military and the civilian
sector. This experimental method is new, therefore its capacities could not completely be
explored at this point. There are however many avenues that could be used to expand

this research.

5.3.1 The Military Sector.  In the military sector, this research could be expanded
in many directions. By being able to identify a cell-type from a sample, the military could
build sensors that identify certain types of biological agents via their electrical charac-
teristics. Also, research and development could use a very highly tuned version of this
experimental method to develop a device that identifies different cell processes within the

same cell-type.

Implementation of this experimental method could also be of practical used in the
field based on the fact that it makes use of electrical impedance. Handheld devices could
be developed that test for a specific biological phenomenon. Handheld devices that test

for certain biological agents in the water could also be developed.

5.8.2 The Civilian Sector.  Through this experimental method, a device could be
developed for testing different types of benign or malignant cancers. Myoscopies would
be a thing of the past, if tumors could be tested simply by introducing a Micro Electro

Mechanical Systems (MEMS) device into the body to test for malignancy.

The civilian sector is looking for different tools to identify markers to learn more
about new diseases. A cure for cancer, or even arthritis and Alhemeizers is not yet
available, but there is research that suggests that these maladies could be prevented if
they are detected in time. By developing this experimental method to look for different
biological markers within the same cell-type, an inexpensive early-warning procedure could

be developed.



5.4  Recommendation for Future Research

It is wise to point out that these are the first steps to developing a new type of experi-
mental method. While it is admitted that this method is not ready for full implementation,
this research has found that it has a lot of potential. Given this, recommendations for

future research are as follows:

5.4.1 More Accurate Experimentation. There needs to be an improvement in
the experimental method. While this project was accurate enough to notice a significant
change between two cell-types, other cell-types may have electrical characteristics that
more closely resemble the tested cell samples’ electrical characteristics. Probes need to
be developed specifically for this type of testing. While the probes in this research were
accurate enough to take measurements, experimentation on the correct kind of probing of
these cell samples could be developed. Also, research on different types of testing could
be implemented (this research made use of two lead probes, but four-lead probing may be

more accurate).

More accurate equipment could be used in the experimentation. This experiment
used the best function generator, oscilloscope and interface, available given the economic
constraints. Different companies have already developed probes, techniques and machines

that will test EIS.

Finally, the stochastic smoother process could also be improved. While this research
was very careful to make all the correct assumptions, there is no doubt that any experi-
mental method could be improved. Given this, expansion on the modeling and stochastic
theory would make a great impact in future accuracy of the results. Recommendations
of this type would include to build a Multiple Model Adaptive Estimation (MMAE) filter.
This filter makes use of more than one filter. This would be useful in many ways; it could
help figure out which filter out of a multitude of filters gave the best estimate. Also, each
filter could be tuned to estimate a different cell sample, making identification of multiple

cell samples in one algorithm possible.



Figure 5.1 MEMS probe designed during this research but never implemented. Probe
is 100pm long and 10pum wide and is made of polysilicon overlayed with gold.
Probe thicknes is 6um. Gold wire (Blue) connects probe to wire bonded
gold pad.

5.4.2 MEMS. Recent research efforts by many people have gone towards the
development of EIS via the use of MEMS probes (4, 9, 19, 36). At one point, this thesis
would have tackled such an endeavour, but given the complexity of the research, it was
decided that this effort had to be abandoned. Future research would definitely improve
if this technology were implemented. Several different methods of fabricating MEMS
probes for biological purposes have already been in industry. Numerous MEMS probes
were fabricated for use in testing and one design is shown in Figures 5.1 and 5.2. By using
MEMS in future studies, researchers could test a single cell instead of a cell sample (each
cell sample consisted of about 70,000 cells). This would allow for increased accuracy in the
estimation of different cells, and allow for testing of specific phenomena within the same
cell type. Inherent problems in this type of research would include the signal interference
from probes, isolation of a single cell, and fabrication of biologically friendly electrical

devices.
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Figure 5.2  Probe array designed for cell testing. Given that different cells vary in size,
this probe is designed to be fit around a cell and then probe from differnt
angles for best measurement accuracy. Each of these probes are the same as
in Figure 5.1.



5.4.8 Noninvasive Designs.  In theory, any development of EIS could be extended
to identification given correct modeling and stochastic algorithms. In the spirit of this,
biological identification could be extended to noninvasive methods. A noninvasive method
of EIS pertains to the theory of electromagnetism. If a specific electromagnetic field were
interrupted by an eddy field (a field in the opposite direction), then there would be a
change in the inherent current that produced the electromagnetic field. In theory, one
could put a current through a coil to make an electromagnetic field. If that magnetic
field gets too close to the skin, the skin’s natural eddy field would change the magnetic
field, which in turn would change the current going through a coil This current could then
be tested for magnitude an frequency changes (for a more detailed explanation, refer to
Chapter 2). A stochastic filter could be put in place to identify the cell type. In this way
any anomalies in the skin cells (i.e., certain types of skin cancers begin mutating skin cells
without visual confirmation of such a change) could be identified and different maladies

could be prevented.

5.5 Conclusion

In conclusion, the goal to find an experimental method that could be used to identify
a cell-type via its electrical characteristics was a success. While the full implementation of
this experimental method is premature, the procedures show promise for future research.
There are many inherent benefits of this type of biological identification, both in the civilian
sector and the military sector. There are still, however, many facets of research that will

need to be exploited before the theories presented here can be used.
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