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Abstract 

 
The purpose of this research is to derive and examine blind adaptive algorithms 

for equalizing multicarrier (MC) communication systems and analyze how they perform 

under varying environmental conditions and parametric variations, focusing on equalizers 

set in cascade with the channel.  Two well-accepted and widely-known cost functions, 

Decision Directed (DD) and Constant Modulus (CM), are applied to the MC signal 

structure, and gradient descent algorithms based on both DD and CM functions are 

derived, analyzed and compared.  Comparison of the new algorithms, Multi Carrier 

Decision Directed (MCDD) and Multi Carrier Constant Modulus (MCCM), focuses on 

detailing how each algorithm performs when the factors of noise power and symbol 

synchronization are varied.  Additionally, a Frequency Domain Equalizer (FEQ) is 

developed and employed to de-rotate and resize the output symbol constellation.  Both 

MCDD and MCCM are compared against other blind and trained adaptive MC 

equalization algorithms in the areas of bit error rate (BER) vs. signal to noise ratio (SNR) 

and BER vs. synchronization delay.  Results are presented showing that MCDD and 

MCCM perform worse than a MC Trained (MCT) approach but better than both 

Multicarrier Equalization by Restoration of Redundancy (MERRY) and Carrier Nulling 

Algorithm (CNA).     

 

     iv     
 



 
 

 
 

 
AFIT/GE/ENG/06-36 

 

 

 

 

 

 

 

 

To Jennifer, for your dedication and support 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

     v     
 



 

 
 

 
 
 
 
 

Acknowledgments 
 
 
 

 I would like to express my sincere appreciation to my faculty advisor, Dr. Richard 

Martin, for his guidance and support throughout the course of this thesis effort as well as 

his understanding and patience for dealing with my selective memory.  I would, also, like 

to thank my thesis committee, Dr. Richard Raines and Dr. Michael Temple, for their 

support in helping in the revision process.  I would also like to thank my sponsor, Mr. 

Jim Stephens, from the Air Force Research Laboratory for taking interest in my work. 

  

 

 
 
 

 
       Nicholas L. Linnenkamp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vi 



 

 
 

 

Table of Contents 

  Page 
Abstract  ...................................................................................................................... iv 
 
Acknowledgements  .................................................................................................... vi 
 
Table of Contents  ...................................................................................................... vii 
 
List of Figures ............................................................................................................. ix 
 
List of Tables  ............................................................................................................. xi 
 
  I.  Introduction ............................................................................................................1 
 
       Background.............................................................................................................1 
       Problem Statement ..................................................................................................4 
       Research Objectives/Questions/Hypotheses...........................................................4 
       Research Focus .......................................................................................................6 
       Implications ............................................................................................................7 
       Preview ...................................................................................................................7 
 
  II. System Model..........................................................................................................9 
 
        Notation .................................................................................................................9 
        System Under Test...............................................................................................11 
        Summary ..............................................................................................................15 
 
 III.  Background/Literature Search .............................................................................17 
       
        Overview..............................................................................................................17 
        Minimum Mean Squared Error............................................................................17 
        Maximum Shortening SNR..................................................................................18 
        Maximum Geometric SNR ..................................................................................19 
        Single Carrier Decision Directed and Constant Modulus....................................20 
        Multicarrier Equalization by Restoration of Redundancy ...................................20 
        Sum-Squared Auto-Correlation Minimization ....................................................21 
        Carrier Nulling Algorithm ...................................................................................22 
        Summary ..............................................................................................................22 

 
 
 
 
 

vii



 

 
 

 Page    

  IV. Algorithm Development ......................................................................................24 
 
        Overview..............................................................................................................24 
        Multi Carrier Decision Directed ..........................................................................24 
        Multi Carrier Trained...........................................................................................33 
        Multi Carrier Constant Modulus..........................................................................34 
        Least Mean Squared Frequency Domain Equalizers ...........................................43 
        Summary ..............................................................................................................50 
 
  V.  System Operation.................................................................................................51 
 
        Overview..............................................................................................................51 
        Channel Selection ................................................................................................52 
        Noise Generation .................................................................................................53 
        Selecting Step Size...............................................................................................55 
        Null Carriers ........................................................................................................56 
        Synchronization Delay.........................................................................................58 
        Multi Carrier Trained Example............................................................................58 
 
  VI. Results and Analysis............................................................................................66 
 
        Overview..............................................................................................................66 
        Synchronization Delay without Null Carriers .....................................................66 
        Synchronization Delay with Null Carriers...........................................................68 
        Bit Error Rate vs. Signal to Noise Ratio without Null Carriers...........................71 
        Bit Error Rate vs. Signal to Noise Ratio with Null Carriers................................73 
 
 VII. Conclusion...........................................................................................................76 
 
        Summary ..............................................................................................................76 
        Additional Research Work...................................................................................76 
         
Appendix A.  MATLAB code .....................................................................................79 
 
        Overview..............................................................................................................79 
        Script File.............................................................................................................79 
        Transmitter and Channel......................................................................................82 
        Receiver Code......................................................................................................83 
 
Bibliography ................................................................................................................95 
 
Vita...............................................................................................................................98 

 

viii



 

 
 

 

 
 
 

List of Figures 
 

 Figure Page 
 
1. System Under Test...........................................................................................12 

 
2. Block Diagram for MMSE Channel Shortener................................................18 

 
3. Picture Showing Window and Wall of CIR.....................................................19 

 
4. Decision Directed (DD) Error ei ......................................................................25 

 
5. Illustration of 4-QAM Modulus.......................................................................35 

 
6. Constant Modulus (CM) Error, ei ....................................................................36 

 
7. Magnitude Plot of Rayleigh Fading Channel ..................................................53 

 
8. Plot Showing Unequalzied Scatter Diagram ...................................................59 

 
9. Plot Showing Unequalized Effective Channel.................................................61 

 
10. MCT Equalized Effective Channel..................................................................62 

 
11. Comparison Plot Between MCT Equalized and Unequalized  
 Effective Channels ...........................................................................................63 

 
12. MCT Equalized Scatter Diagram.....................................................................64 

 
13. MCT Cost Function .........................................................................................65 

 
14. Plot of BER vs. Synchronization Delay for MCDD   
 and MCCM without Null Carriers ...................................................................67 

 
15. Plot of BER vs. Synchronization Delay for MERRY   
 and MCT without Null Carriers.......................................................................68 

 
16. Plot of BER vs. Synchronization Delay for MCDD and   
 MCCM with Null Carriers ...............................................................................69 

 
ix 
 



 

 
 

 Figure                                                                                                                      Page 
 

17. Plot of BER vs. Synchronization Delay for MERRY   
 and MCT with Null Carriers ............................................................................70 

 
18. Plot of BER vs. Synchronization Delay for CNA with Null Carriers .............70 

 
19. BER vs. SNRdB without Null Carriers ...........................................................72 

 
20. BER vs. SNRdB with Null Carriers.................................................................74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 



 

 
 

 
 

 
 

List of Tables 
 

 Table Page 
  
1. Multi Carrier Decision Directed Update Rule .......................................................31 

 
2. Multi Carrier Decision Directed Computational Complexity................................32 

 
3. Multi Carrier Trained Update Rule........................................................................34 

 
4. Multi Carrier Constant Modulus Update Rule.......................................................41 

 
5. Multi Carrier Constant Modulus Computational Complexity ...............................42 

 
6. Blind LMS-FEQ Update Rule ...............................................................................47 

 
7. LMS FEQ Computational Complexity ..................................................................48 

 
8. Trained LMS-FEQ Update Rule............................................................................49 

 
9. LMS FEQ Computational Complexity ..................................................................49 

 
10. Algorithm Adaption Step Sizes .............................................................................56 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

xi 
 



 

 
 

1

 
 

 
 

DECISION DIRECTED AND CONSTANT MODULUS ALGORITHMS  
 

DERIVED AND EVALUATED FOR MULTICARRIER SYSTEMS 
 
 
 
 

I.  Introduction 
 
 

Background 
 
           Equalizers have grown in importance over the last few decades due to the rise in 

number of communication systems and have application over a wide variety of 

communication mediums.  Example systems include those based on communications 

over the telephone infrastructure built on the ITU V.XX standards, over broadband 

coaxial infrastructure used by cable companies for cable-television and high-definition 

television (HDTV), and over wireless communication channels found in cell phones 

along with other terrestrial wireless channels.  Blind adaptive algorithms are algorithms 

that track the channel without having to exchange any additional training information or 

having prior knowledge about the channel.  Blind adaptive algorithms are attractive to 

many applications since training information doesn’t have to be sent reducing algorithm 

overhead.  Although trained adaptive algorithms take less time to equalize the channel 

and have lower processing cost they are prohibitive in situations involving broadcast 

mediums or channels that are already bandwidth constrained.   
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Broadcast mediums such as cell phones and cable television tend to have a one-

to-many type distribution scheme.  A cell phone that is powered on needs to equalize to 

the channel in order to receive information from cell-tower and in this case may not be 

able to tell when a training sequence begins.  It is possible to start a new communication 

with each client that tries to connect in order to train them to the channel but if there are a 

lot of clients this can become bandwidth costly.  In addition, the act of sending periodic 

training sequences decreases available bandwidth.  Similar results can be found in the 

wire broadcast mediums of cable television.  In these situations it would be of great 

benefit to have blind equalization where the clients were able to train to the channel 

without involving the server side.  Blind equalization removes the need to send periodic 

training sequences at the cost of an increase in computation on the client and slower 

convergence of the equalizer.   

For bandwidth constrained channels where the needs of the client use up all 

available bandwidth resources any methods that can increase the carrying capacity of the 

channel for the client is a marked improvement.  An application that is data transfer 

starved, as is often the case when using modems that run over the telephone lines, would 

benefit greatly from blind equalization due to the bandwidth freed from not using bits for 

training. 

Equalization has found wide spread use in multicarrier (MC) communication 

systems by helping to reduce or remove channel effects such as inter-carrier and inter-

symbol interference (ICI, ISI), see Johnson [1] and Martin [2] for a treatment of ISI and 

ICI.  ICI is caused when the orthogonal signals in a MC system are spread in frequency 

so that they are no longer orthogonal and degrade the ability to distinguish one signal 
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from others.  ISI is when the channel causes one transmitted symbol to spread in time 

into another symbol.  When symbol rates are high ISI becomes a concern because of the 

small spacing between the signals.  MC communication systems, such as Satellite Radio, 

HDTV,  wireless LANs and digital subscriber lines (DSL), make use of a cyclic prefix 

(CP) inserted before each symbol so that interference can be removed, see [3], [4], [5], 

and [6] for treatment of Digital Audio Broadcast (DAB), Digital Video Broadcast, 

Wireless LANs and DSL.  The CP is introduced so that the convolution of the channel 

with the data looks circular.  If the length of the CP does not exceed the length of the 

channel then interference occurs.  Although the CP can be made arbitrarily long and 

remove ISI and ICI, it involves the transmission of redundant bits, reducing available 

bandwidth for transmitting information. In order to help keep the length of the CP as 

short as possible and assist in removing interference, a time-domain equalizer (TEQ) can 

be placed after the channel.  Using a TEQ to shorten the channel, effectively reducing the 

channel memory, allows for a shorter CP which increases information transmission 

capacity [2]. 

TEQs for MC systems can be implemented by either placing one filter after the 

channel (in cascade) or by a bank of filters tone-by-tone (per tone.  Using one filter in 

cascade allows global equalization over all tones, which aims to reduce interference but 

typically does not focus on maximizing bit rate.  On the other hand, per-tone equalization 

has the ability to maximize throughput on each tone and can be used to optimize the bit 

rate for the system.  Although per-tone equalization increases bit rate for the system it 

also requires an additional equalizer for every tone each of which requires adapting 

vastly increasing the computational complexity.  A cascade implementation is attractive 
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because only one equalizer needs to be adapted).  See [7] for a discussion of per-tone 

equalization and [2] for additional discussion of per-tone and cascade equalizers. 

Equalizers can either be set statically or adaptively.  Statically set TEQs can be 

used when the channel doesn’t change at all or very infrequently whereas adaptive TEQs 

are used when the channel is changing.  A static TEQ can require a large one-time 

upfront computational cost in computing the channel shortener but then the system runs 

without significant additional equalizer computation.  Adaptive filters have low up front 

computational cost but require some time to converge and ongoing update computations.   

 

Problem Statement 
 
 Blind adaptive equalization algorithms developed for single carrier channels do 

not directly apply to MC systems.  Changes in the receiver structure, such as a Fourier 

transform and Frequency Domain Equalizer, contribute to the necessity of modifying 

these algorithms.   It would be advantageous to have several of the single carrier blind 

adaptive equalization algorithms modified so that they take into account the MC receiver 

structure.  The new algorithms would be based on the cost functions of the single carrier 

algorithms but include the complexity of the new receiver structure.  

 

Research Objectives/Questions/Hypothesis 
 
 The objective of this research is to take two well known cost functions, decision 

directed and constant modulus, and modify them to take into account a MC receiver 

structure.  Decision directed and constant modulus are the two blind algorithms most 

often deployed when blindly updating single-carrier equalizers, and examination of how 
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they work gives insight into what can be expected when they are used to update MC 

TEQs.  Both form updates from information about the symbol set.   

In a simplified example of decision directed, if the symbol set consists of 1 and -

1, then by observing the output and comparing it to a decision boundary of zero, steps 

can be made in the right direction of the proper TEQ filter weights.  More complicated 

symbol sets require more complicated decision regions but the Decision Directed (DD) 

cost function remains the same.  The DD cost function is similar in nature to a trained 

cost function except you have the possibility of noise causing an error in the 

determination of the symbol and of phase ambiguity.   

In a simplified example of Constant Modulus (CM) using 1 and -1, if the output is 

squared the result should be similar to the square of the input.  Squaring the input gives 

us a constant modulus of 1 and any deviations from that in the output will be penalized 

driving a solution for the TEQ.  More complicated symbol sets can be handled by 

creating decision moduli for the symbol set and comparing the closest to the modulus of 

the received symbol, but in practice usually only one modulus is used, even for multi-

level quadrature amplitude modulation (QAM).  See [1] to see an in-depth look at CM for 

single carrier systems. 

 Both update rules have strengths and weaknesses.  Traditional DD tends to drive 

away from a good solution when bit error rates (BERs) are over 10-15%, which is often 

the case just after the device is turned on, also known as a cold start while CM relies on 

higher order statistics requiring additional computation.  Often in deployed blind adaptive 

equalizers it is found that CM is used initially when adapting the equalizer, and once 

BERs are low enough, DD is employed. 
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 The term symbol synchronization has a different meaning in the context of 

shortening algorithms then when generally referring to communication systems.  When 

referring to general communication systems, symbol synchronization usually refers to 

when the receiver samples to determine an individual symbol.  Symbol synchronization 

in the context of this thesis and MC equalization algorithms is when a receiver is first 

powered on and has not equalized the channel, the receiver must guess at which 

collection of symbols to input to the Fourier transform [8].  A deviation from perfect 

symbol synchronization is measured in whole symbols.  Since a good guess at symbol 

synchronization results in better channel equalization it would be convenient to know 

which range of values are good and which ones provide poor performance.  Both DD and 

CM have been studied in single carrier situations involving white, Gaussian noise and 

perfect symbol synchronization.  Non-perfect symbol synchronization has not been 

studied in depth with these algorithms and can be shown to have a substantial effect on 

algorithm performance.  Neither of the two algorithms has been derived for MC systems.  

Once the MC versions are derived, convergence rates and computational cost need to be 

evaluated.  It is assumed that the MC versions of the algorithms will have similar 

characteristics as the single-carrier versions of the algorithms because they are based on 

the same cost function.   

 
 

Research Focus 
 

The focus of this thesis is to derive and examine blind adaptive algorithms for 

equalizing MC communication systems and analyze how they perform under varying 
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system constraints focusing on equalizers set in cascade with the channel.  Two well-

accepted and widely-known cost functions, Decision Directed (DD) and Constant 

Modulus (CM), are applied to the MC signal structure, and gradient descent algorithms 

based on both DD and CM are derived, examined and compared.  The comparison of the 

new algorithms, Multi Carrier Decision Directed (MCDD) and Multi Carrier Constant 

Modulus (MCCM) will focus on detailing how each algorithm performs when the factors 

of noise power and symbol synchronization are varied.  Additionally, Frequency Domain 

Equalizer (FEQ) adaptive algorithms are developed and employed to de-rotate and resize 

the output symbol constellation.  A differential encoder is used on the input sequence so 

that a static phase rotation can be negated by a differential encoder on the output 

sequence. 

 

Implications 
 

 Having these algorithms available will enable professionals and researchers to 

implement these algorithms in a variety of systems.  In addition, these algorithms will 

hopefully become a basis for evaluating new blind and MC algorithms as DD and CM 

have been for single-carrier systems.  Both MCDD and MCCM performance will be 

shown against other existing blind adaptive channel shortening algorithms and 

comparisons will be made. 

 

Preview 
 
 The remainder of this thesis outlines the system model, background/literature 

search, algorithm development, results and analysis, and finally concludes.  Chapter 2 
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focuses on the system model, introducing an orthogonal frequency division multiplexed 

system as well as introducing terminology used throughout the rest of the paper.  Next, 

Chapter 3 provides a body of previous work to develop a framework of reference in 

which the new algorithms are compared against and classified.  Next, the document 

moves into Chapter 4 introducing the algorithms being developed, providing the 

mathematical framework under which the algorithms are generated, and discussing their 

computational complexity.  Chapter 5 discusses system operation and shows the effect of 

a trained adaptive equalization algorithm while extrapolating results for the remainder of 

the adaptive algorithms.  Lastly, Chapter 6 provides simulation results for the algorithms 

being derived as well as several other algorithms found in the background and literature 

search and concludes with areas of future research. 
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II. System Model 
 
 

Notation 
 

This section lays out the framework for the notational context and conventions 

used in the rest of the thesis document.  Notation for vectors, their transpose and 

conjugates, matrices, scalars and other conventions will be given. 

 Column vectors are represented by a lowercase or uppercase designator with an 

over-bar, for example: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

kr

r
r
r

r 3

2

1

 

Likewise, designators without over-bars are considered matrices and are generally 

complex. 

OFDM symbols are generally created in the frequency domain and transformed 

into the time domain in the transmitter.  Uppercase variable names designate the 

frequency-domain and lowercase variable names designate time-domain. 

Vector transpose is denoted by a superscripted T on the matrix or designator and 

can save space when displaying long column matrices, for example: 

[ ]Tkrrrrr 321=  OR [ ]k

T
rrrrr 321=  

 Vector conjugation is denoted by a superscripted conjugate symbol * on the 

matrix or designator, for example: 
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[ ] [ ]∗∗∗∗∗∗
== kk rrrrrrrrr 321321  

The Hermitian is denoted by a superscripted H and is the equivalent transpose and 

conjugation of a matrix, 

[ ]Tk

H
rrrrr ∗∗∗∗= 321  

 The system model will be working on blocks of input symbols.  Each block of 

input symbols is given a number referring to that input block.  When referring to the 

block of symbols a vector will have a parenthetical identifier denoting which block is in 

reference, for example: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

+

NNk

Nk

Nk

Nk

S

S
S
S

kS 3

2

1

)(  

 Here )(kS is a vector of N input symbols taken from a larger set of input symbols 

where k refers to the block in reference; hence the variable k is an argument to the vector. 

 The gradient operator ∇ , as often seen in multidimensional calculus, is applied to 

the adaptive equalizers in this thesis as to other gradient descent algorithms.  The 

gradient operator will be taken with respect to our time domain equalizers (TEQs) and 

denoted by a subscript indicating which TEQ it is being taken with respect to, such as 

1w∇ , the gradient with respect to TEQ w1.  The gradient operator can equivalently be 

though of as a column vector of partial derivatives with respect to each tap of the TEQ.  

The following formula introduces the column vector notation for the gradient operator, 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

=∇

)(

)2(

)1(

1

1

1

1

w

w

Lw

w

w

 

Where the values in parenthesis indicate the tap of the TEQ the partial derivative is being 

taken with respect to. 

The Fourier transform is an integral part of MC systems and notation needs to be 

developed to represent a Fourier transform operation.  Taking the Fourier transform can 

be seen as multiplication by a discrete Fourier Transform (DFT) matrix.  The DFT matrix 

can be derived easily by taking the Fourier transform of an identity matrix.  The notation 

for the Fourier transform is denoted by a F and the inverse Fourier transform by a -1F . 

 When referring to a portion of a matrix which will often be the case when 

deriving the blind adaptive algorithms, the first subscripted index will be used to denote 

row and the second to denote column, for example, l,iF refers to the lth row and ith 

column of the DFT matrix.  If only one subscript is given it refers to all entries of the row 

of the matrix it is augmenting.  If there is only one entry in the row, as is the case for 

column vectors, it refers to only that entry. 

 

System Under Test 
 

The system shown below is typical of a fractionally spaced or multi-antenna 

multicarrier (MC) system with fixed TEQs.  Although not shown, in order to make the 

TEQs adaptive, a feed back loop is inserted within the receiver (as opposed to feedback 



 

 
 

12

to the transmitter) after the frequency domain equalizer (FEQ) so that the MCDD and 

MCCM update rules can be applied to adapt the TEQs.  It is the focus of this study to 

derive the update rules and to analyze the performance under varying conditions.  The 

following figure shows in block diagram form the system under test. 

 
Figure 1.  System Under Test 

 
The system model includes a Fractionally Spaced Equalizer (FSE) and is 

implemented by using two channels and two noise sequences.  FSEs can be implemented 

by a receiver in several ways, such as installing two antennas in the receiver or by over-

sampling the same receiver.  Either way, both received sequences look as if they have 

undergone different channels and different additive noise sources from each other. 

The following discussion steps through the system under test and describes in 

detail the operations being performed at each juncture in the diagram.  This system will 

be the basis for all the algorithms in the following sections motivating a detailed and 

thorough description. 

Figure 1 represents in block diagram format the system under test.  On the left, as 

input to the system, input data is broken into blocks of N complex symbols or less 

depending on if null carriers are used or not, 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

+

NNk

Nk

Nk

Nk

S

S
S
S

kS 3

2

1

)(  (1)   

where N is the block size and k indicates the block in reference.  The input 

symbol set is often quadrature amplitude modulated (QAM) with the size of the 

constellation dependent on the type of application.  For this study, 4-QAM will be used.   

Since one of the algorithms detailed in the Results and Analysis section is the 

Carrier Nulling Algorithm (CNA) a brief discussion of null carriers and how they are 

implemented should be discussed.  CNA assumes that there are null carriers on several 

channels of the MC communication system.  Null carriers are defined as carriers that only 

transmit the symbol zero.  These null carriers can be used for any number of reasons but 

the primary motivating factor is for guard bands.  Guard band implementation is done by 

setting the edge tones of a MC communication system to null carriers to ensur that 

systems using frequencies near the system don’t accidentally drift or encroach upon the 

system don’t interrupt proper operation. 

In the case where null carriers are used not all of the N symbols will have 

complex 4-QAM data on them.  After the input symbols are put through the Inverse Fast 

Fourier Transform (IFFT),  

 )( kS(k)G -1F=  (2) 
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they are input into the parallel/serial and cyclic prefix block (P/S & CP).  The output 

sequence, x(k), is then found to have length v+= NM  , where v  is the length of the 

cyclic prefix.  M is considered the transmission block size.   

Thus the last v  symbols are appended to the front of the sequence, 

[ ]TNNkGNkGNkGNNkGNvNkGNvNkG(k)x )()2()1()()()( +++++−+−=
 (3) 
 
and transformed from parallel to serial.  If the subscript i is used as an index into the 

block then when the channel h1 and h2 convolutes x(k) and noise is added, the result is 

r1(Mk+i) and r2(Mk+i).  Here r1(Mk+i) and r2(Mk+i) are representative of either 

sequences received from a single oversampled antenna or possibly two spatially separate 

antennas.  r1(Mk+i) and r2(Mk+i) shown below,  
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After the equalization filter w, the output y1(Mk+i) and y2(Mk+i) are 
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These results are then summed, 
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 )()()( 21 iMkyiMkyiMky +++=+  (8) 

The next block takes the stream from serial back to parallel format and removes the 

cyclic prefix. At this stage,Δ , the synchronization delay, is accounted for since it 

represents the uncertainty of where the receiver should break the input into blocks. 
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After the cyclic prefix is removed and the blocks are back in parallel format then each 

block is put through a Fast Fourier Transform (FFT), 

 )()( kYkH ⋅=F  (10) 

 

Lastly, the output of each tone from the FFT is run through a one-tap frequency domain 

equalizer (FEQ) to de-rotate and scale the output symbol so that the output again looks 

like a 4-QAM symbol set. 

 The effective channel c, is defined as the sum of the convolutions of each channel 

with its respective TEQ, 21 ccc += , where 111 whc ∗= and 222 whc ∗= . 

  
 

Summary 
 
 One of the most important things to note about the system model is the symbol 

synchronization delay.  A goal of this study is to characterize the algorithms under test 

according to how synchronization delay affects their performance so understanding how 
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this delay affects the receiver can benefit analysis in the subsequent chapters.  Because 

there are only N samples in every block and the transmitter adds a CP of v samples then 

the synchronization delay can only vary between 0 and N+ v  before repeating.  It is 

expected then that a bit error rate (BER) plot vs. synchronization delay will be periodic, 

that is the BER for a delay of N+ v +1 should be the same as for a delay of 0. 

 After giving a thorough discussion of the system model, the next chapter outlines 

the background and literature search of relevant blind adaptive equalization algorithms 

for both single carrier and MC systems. 
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III. Background and Literature Search 
 
 

Overview 
 

While there are many trained TEQ designs, some of the most understood and 

deployed TEQ systems are focused on three different cost functions: Mean Squared Error 

(MSE), Shortening SNR (SSNR), and Geometric SNR (GSNR).  There are considerably 

less single-carrier blind equalization designs, among which the most deployed use 

Decision Directed (DD) and Constant Modulus (CM) cost functions.  Blind multicarrier 

TEQ designs of importance include Multicarrier Equalization by Restoration of 

RedundancY (MERRY), Sum-Squared Auto-Correlation Minimization (SAM), and the 

Carrier Nulling Algorithm (CNA).  These approaches, while not all inclusive, form a 

large basis from which to work and understand how blind adaptive Multi Carrier 

Decision Directed (MCDD) and Constant Modulus (MCCM) should be developed. 

 

Minimum MSE 
 
 Minimum MSE (MMSE) was first introduced by Falconer and Magee [9] as a 

method to shorten the impulse response of a single carrier channel.  The motivation to 

shorten the channel was drawn from a desire to reduce the complexity of the Viterbi 

decoding algorithm, since its complexity depends on channel memory.  See [23] for 

implementation and complexity dependencies of Viterbi coding as well as [2] and [9] for 

treatment of MMSE.  Later, Chow and Cioffi [10] applied MMSE to multicarrier 

systems.  Figure 2 shows in block diagram form how the MMSE error signal is formed, 

where TIR is the target impulse response of length v +1.   
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Figure 2.  Block Diagram for MMSE Channel Shortener 

 
 A cost function, based upon the error signal ek, is developed and minimized.  Knowledge 

of the bits sent is required to be able to determine the error which is why this is classified 

as a trained TEQ.  The cost function, J, then becomes a function of both the TIR and the 

TEQ. 

 ( ){ } ( )
⎭
⎬
⎫

⎩
⎨
⎧ −== Δ−

2
2),( k

T

k

T

k xbywEeEbwJ  (11) 

Hence it is called a MMSE design because it attempts to minimize the mean squared 

error.  

 

Maximum Shortening SNR 
 

MSSNR is a trained TEQ design proposed by Melsa, Younce, and Rohrs in 1996 

[11] in which they attempt to constrain the channel impulse response (CIR) so that the 

result mostly resides in v +1 consecutive samples, called a window.  

 



 

 
 

19

 
Figure 3.  Picture Showing Window and Wall of CIR 

 
By minimizing the fraction of energy outside of that window, or equivalently by 

maximizing the fraction of energy inside the window, the CIR is shortened.  With a 

shorter effective channel the CP can be shorter and the effective bit rate increases.  The 

MSSNR method requires that you have knowledge of the channel in order to 

minimize/maximize channel energies which is why MMSNR is classified as a trained 

method since training bits need to be sent across the channel in order to estimate the 

channel.  The cost function attempts to maximize the ratio of windowed energy to non-

windowed or equivalently the overall channel energy to non-windowed energy. 

 

Maximum Geometric SNR 
 

While MMSE and MSSNR will increase bit rate, neither functions have bit rate as 

part of the cost.  MGSNR, first proposed by Al-Dhahir and Cioffi in [12] and [13], is 

designed to maximize the bit rate of a MC system by observing the SNR on each 

subchannel of the system and weighting the results based upon the amount of bits per 

sample transmitted on that subchannel.  A cost function called the Geometric SNR 
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(GSNR) is formulated from the product of the subchannel SNRs and maximized.  While 

per-tone equalization can be used to maximize the bit rate on a single subchannel, 

MGSNR attempts to globally maximize bit rate with one TEQ across all channels.  

Drawbacks to MGSNR are that it is only an approximate and even though it uses only 

one  TEQ across all channels it still suffers from high computational cost. 

 

Decision Directed (DD) and Constant Modulus (CM) Algorithms 
 

All of the above designs rely on either knowing the transmitted bit sequence or on 

knowledge of the channel.  While these designs are adequate for most systems, some 

systems and applications require the use of blind TEQs in order to achieve optimal 

performance. 

Two single carrier blind equalizer designs, DD and CM, have a long history 

dating back to the 1970’s and 1980’s, see [1] for history and a more complete treatment 

of CM as well as [14] for discussion of both DD and CM.  The focus of DD and CM is on 

equalizing the channel using information about the transmitted symbol set to derive an 

error function and performing a gradient descent along that error function.  While these 

single carrier approaches have been around for a while, more recent work in blind TEQ 

designs tend to exploit additional information about the transmitted sequence or specific 

characteristics between the transmitter and receiver. 

 

Multicarrier Equalization and Restoration of Redundancy 
 

An example of a system which uses additional information other than the symbol 

set is the MERRY algorithm proposed by Martin, Balakrishnan, Sethares, and Johnson in 
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2002 [8] which uses information about the CP to equalize the channel.  MERRY creates a 

cost function which attempts to minimize the difference between the last sample in the 

CP with the last sample in the symbol since they should be equal.  

 { }2)()( Δ++−Δ+= NvyvyEJδ  (12) 

This cost function requires knowledge of the symbol synchronization, Δ, since it has 

substantial effect on the cost function.  By taking advantage of the redundancy of the 

transmitted bits it is possible to use this information on the receiving end in a blind 

fashion to equalize the channel. 

 

Sum-Squared Auto-Correlation Minimization 
 

Whereas the MERRY algorithm bears resemblance to a blind MMSE design since 

both use a first order difference, the SAM algorithm bears resemblance to the MSSNR 

design where it tries to minimize the energy outside of the a window of ν + 1 samples, 

but in a blind fashion.   

The SAM algorithm, developed by Balakrishnan, Martin, and Johnson in [15], 

formulates a cost function built on the auto-correlation of the received signal based upon 

the fact that autocorrelation values that are more than ν samples apart should be as small 

as possible in order for the channel to be constrained to the window.  By rewriting the 

channel correlation as functions of the received signal as well as second and fourth order 

products of the noise variance then observing that the noise products can be neglected, a 

blind cost function is developed. 
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This blind cost function is then applied in a gradient descent fashion in order to 

implement a blind adaptive TEQ.  Another paper derived from the work of SAM is 

shown in [16] and is worth noting here.   

 

Carrier Nulling Algorithm 
 

Lastly, CNA, presented by de Courville, Duhamel, Madec, and Palicot in [17], as 

well as Romano and Barbarossa in [18], attempts to exploit additional information about 

the transmitter structure.  Since in typical MC systems some carriers only transmit zero, 

they have been dubbed null carriers.  Since it is known a priori that these carriers will be 

zero then a cost function based on the null carriers can be formulated, 

 { }∑
∈

=
nSi

kGECNAJ 2)(  (14) 

where nS represents the set of null carriers, and )(kG is the DFT output on tone k.  By 

taking advantage of this information, a low-complexity, adaptive minimization procedure 

is developed, since the cost function is of low complexity and the transmitted data should 

not affect the null carriers.   

 

Summary 
 

These systems, particularly those focusing on blind adaptive TEQs, provide the 

motivation for developing and analyzing blind adaptive update rules for MCDD and 

MCCM.   It is from this common framework that the system model was developed for 
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implementation and analysis of both MCDD and MCCM algorithms.  Although not 

directly sourced, [19] and [20] give good background information on blind equalization 

while [21] suggests exploiting symmetry in the TEQ.  Finally, [22] is an additional paper 

on bit rate maximization using a single TEQ 

The next chapter delves into deriving and implementing the update algorithms 

used to adapt the TEQs of the system model.  Using a gradient descent approach several 

trained and blind algorithms are proposed.  These algorithms are then shown to 

adequately adapt to the channel and shorten the effective response.  In addition to 

adaptive TEQ algorithms, algorithms for adapting the FEQ are derived as well since if 

the TEQ changes, the FEQ must change as well.  
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IV. Algorithm Development 
 
 

Overview 
 

The algorithms in this chapter focus both on updating the Time Domain Equalizer 

(TEQ) as well as updating the Frequency Domain Equalizer (FEQ) in multicarrier 

systems.  The first two algorithms to be derived are the Multicarrier Trained (MCT) and 

the Multi Carrier Decision Directed (MCDD).  These two algorithms will be derived 

together since they are so closely related that their derivation is very similar.  Next, the 

derivation for the Multi Carrier Constant Modulus algorithm is shown.  Finally, a trained 

FEQ, the Least Mean Squares (LMS) – FEQ, as well as a blind FEQ, the Decision 

Directed LMS-FEQ, are derived. 

The algorithms presented in this chapter are the major contribution to knowledge 

of trained and blind adaptive equalization algorithms.  The next chapter focuses on 

exercising these algorithms and comparing them against other MC equalization 

algorithms. 

 

Multi Carrier Decision Directed 
 

The MCDD algorithm formulates an error function based on a first-order difference 

between a decision directed function and the output symbol.  When the gradient with 

respect to the TEQ is taken over the cost function, the magnitude squared of the error 

function, the result is first order.  The linear response of the gradient of the cost function 

ensures that steady, predictable progression towards a minimum is achieved.  While not 
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globally convergent in the single carrier case, for cases where w  is close to its global 

minimum fast convergence is expected.  In contrast, a second-order error function results 

in a fourth-order cost function and ultimately the gradient of the cost function is third-

order.  A higher-order cost function results in faster convergence than single-order when 

farther away from a minimum and slower convergence when close to the minimum.   

 

 
Figure 4.  Illustration of Decision Directed (DD) Error ei 

 

Figure 4 illustrates how the error, ei, is generated and the concept of the decision directed 

function.  Here ξ  is the decision direction function whose output is the closest symbol in 

the communication system’s constellation.  When the BER is high DD does not perform 

very well due to the fact that the decision function reports the closest symbol.   When an 
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error happens the result is a smaller error which points in a direction away from the 

correct input symbol.  This effect causes the single carrier DD algorithm to converge to 

an incorrect setting when BERs are high.  Most of these results, such as convergence 

speeds and globally/not globally convergent, are expected to hold for MCDD since it is 

derived from a similar cost function.  

As in the single carrier case for a DD update algorithm the cost function remains 

similar for each of the MC output taps.  If i designates the output of interest then the 

MCDD cost function can be written, 

 ∑∑
=

∗

=

==
N

i
ii

N

i
iMCDDMCDD eeJJ

11
,  (15) 

Where e is the error and e* is error compliment 

 ( ) outioutii SSe ,, −= ξ  (16) 

There will be an error for each of the tones in the MC communication system thus the 

object is to reduce the sum of the cost functions for all of the tones.  By taking the 

gradient with respect to the TEQ filters 1w  and 2w , represented by 
1w∇  and 

2w
∇ , on each 

tone an update rule is derived that will ensure that the cost function moves towards a 

minimum. 

 ( )∗∇=∇ iiwiMCDDw
eeJ
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Looking just at iw e
1

∇  for the first TEQ filter w1, 
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Since ξ  always resolves to a constant then the gradient of ξ  with respect to the TEQ is 

always zero.  outiS ,  defined here from the system under test, 

 ∑∑
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Now examining outiw

S ,
1

∇ , 
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Here, l,iF  is the element (i,l) of the DFT matrix.  Since the iFEQ  and l,iF  do not depend 

on 1w  they can be treated as constants with respect to the gradient,
1w

∇ .  Additionally, the 

terms containing )(2 jw go to zero when the gradient is taken with respect to 1w . 
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When moving the gradient inside the sum a little more work has to be done to progress 

further.  Examining the sum more closely, 
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The first partial with respect to 1w  results in only the first term of the sum remaining 

since it is the only term to depend on 1w .  Likewise, for the remaining partials a similar 

result is obtained.   
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Now continuing with the partial derivative.  Using the first partial as an example, 
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Noting that the cross terms go to zero, 
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Likewise for the remaining partial derivatives they all go to zero providing the following 

result, 
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Providing the following result for iw
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It is noted that ie∇ also goes to zero in an identical fashion if the gradient is taken over 

w2.   Looking at ∗∇ iw
e

1
 in a similar fashion as above for the first TEQ filter w1, 
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Focusing just on ∗∇ outiw
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Similarly to the outiw
S ,

1
∇ the following results are reached, 
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The expression for ∗∇ iw

e
1

 can be written as, 
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Recalling that 0
1

=∇ iw
e , the expression for JMCDD, 
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If similar analysis is done for TEQ w2, a similar result is found except that received 

sequence r2 is used instead of r1. 
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By using a gradient descent approach, an update rule for the TEQ w1 and TEQ w2 can be 

found. 

Table 1.  Multi Carrier Decision Directed Update Rule 
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Here equations (16), (42), and (43) are repeated for easy reference andμ is the algorithm 

step-size. 

A good comparison metric between gradient-descent update algorithms is 

computational complexity.  In the case of DD the computational complexity is expected 

to be low since the error function is first-order.  The following summarizes the following 

operations that must be completed to update the filter. 

 

Table 2.  Multi Carrier Decision Directed Computational Complexity 

For 11 +kw  
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 Subtract 
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  Lw Subtracts 

Same for 12 +kw , assuming Lw2 = Lw1 
 

x 2 x 2 

Total 2Lw x (N2+2N)+2 2Lw x (N2+N+1) 
+2N  

 

 For example, if Lw = 48 and N = 64, it is found that it would require a total of 

405506 complex multiplies and 399490 adds/subtracts to update both TEQs.  If N is 
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sufficiently large then the 2N term dominates and the number of Add/Subtract and 

Multiplies are both of ( )2NO .  While the complexity may seem high the results are for N 

information carrying channels.  Thus, the computational complexity per channel is of 

( )NO  as would be found in the single-carrier case. 

 

Multi Carrier Trained (MCT) 
 

 Multi Carrier Trained algorithm is so similar to the MCDD algorithm that it 

doesn’t warrant a new derivation but rather only the differences between MCDD and 

MCT need to be shown.  The only major difference between the MCT and the MCDD 

algorithm is the error function, ei.  The MCT error function is based upon what the actual 

transmitted symbol was rather than a decision direction function.  It is possible to change 

(16) of the MCDD derivation to (46) and proceed with virtually no substantial changes. 

 outiinii SSe ,, −=  (47) 

When (19) and (31) are revisited the following changes are made, 
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Because the gradient over iniS ,  does not depend on w1 or w2 then the resulting partial 

derivative with respect to w1 and  w2 both result in zero leaving the remaining portion of 

the derivation for MCDD unchanged.  When updating w1 or w2 be sure to use the MCT 

error function (46) which lead to the following result, 
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Table 3.  Multi Carrier Trained Update Rule 

 outiinii SSe ,, −=  (47) 

 T
wLlMklMkrr )1:1:1(}2,1{}2,1{ +−+−++=  (50) 

 ⎟⎟
⎠

⎞
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⎝

⎛
++⋅−=∇

∗

=

∗∗∑ )1( 2 1,1
lMkrFEQeiJ

N

liiiMCTw
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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∗

=

∗∗∑ )1( 2 2,2
lMkrFEQeiJ
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F  (52) 

 ∑
=

+ ∇−=
N

i
iMCTwkk Jww

1
,111

1
μ  (53) 

 ∑
=

+ ∇−=
N

i
iMCTwkk Jww

1
,212

2
μ  (54) 

 
 The changes outlined above show that both MCT and DD have very similar 

derivation and hence the computational cost for MCDD is the same as it would be for 

MCT (see Table 2).  Because of the differences in the error functions, MCT will have 

better performance than MCDD as well as not have the same convergence problems even 

under high noise or large channel effects.   

 

Multi Carrier Constant Modulus (MCCM) 
 

The MCCM algorithm formulates an error based on a second-order difference 

between the magnitude squared of the input symbol, the modulus, and the magnitude 

squared of the output symbol.  If i designates the output of interest then the MCCM cost 

function can be written, 

 ∑∑
=

∗

=

==
N

i
ii

N

i
iMCCMMCCM eeJJ

11
,  (55) 



 

 
 

35

Where ie  is the error and ∗
ie  is error conjugate 

 ( )( )∗−=−= outioutioutii SSSe ,,
2

, 22  (56) 

Since the modulus represents the square of the distance from the origin on the 

complex plane, the error function ie , is in effect the smallest distance from the circle that 

circumscribes the magnitude squared of an input symbol, see Figure 5 for illustration of 

4-QAM modulus and Figure 6 for visual representation of the error function. 

 

 
Figure 5.  Illustration of 4-QAM Modulus 
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Figure 6.  Visual Representation of Constant Modulus (CM) Error, ei 

 

In Figure 6, ei is the vector on the real axis that points left.  The error, ei, does not capture 

any error attributed with symbol rotation and only serves to reduce the error in 

magnitude.  Also of note is that the error function is completely real.  This second-order 

error function leads to a fourth-order cost function.  As described in the section on the 

DD update algorithm, a higher-order cost function means increased computation and 

slower convergence when near the minimum solution.  In tradeoff, it is found that CM 

has better convergence farther away from the minimum solution and when the BER of 

the system is high, since the modulus of the system is the same for all input symbols.  For 
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many blind, single-carrier systems, CM is often used on cold start up, and when the BER 

falls low enough, a switch is made to DD. 

There will be a corresponding error for each of the tones in the MC 

communication system thus the goal is to reduce the sum of the cost functions for each 

tone.  By taking the gradient with respect to the TEQ filter on each tone an update rule is 

derived that ensures that the cost function moves towards a minimum. 

 ( )∗∇=∇ iiwiMCCMw
eeJ

11
,   (57) 

 ( ) ( )∗∗ ∇+∇=∇ iwiiiwiMCCMw
eeeeJ

111
,  (58) 

 
Looking just at iw e

1
∇  for the first TEQ filter w1, 

 ( )( )∗∇−∇=∇ outioutiwwiw SSe ,,111
2  (59) 

Since 2 is a constant then its gradient with respect to the TEQ w1 is always zero. 

 ( )( ) ( )( ) ⎥⎦⎤⎢⎣
⎡ ∇+∇−=∇ ∗∗

outiwoutioutioutiwiw
SSSSe ,,,,

111
 (60) 

Focusing on outiw S ,1
∇ , Recall outiS , , 

 ∑∑
==

+−+=
Lw

j

N

i,liouti jlMkrjwFEQS
1

11, )1()((( 
1  l

F    

 )1()( 22 +−++ jlMkrjw  (61) 

The term )1()( 22 +−+ jlMkrjw  is ignored since it will resolve to zero when the gradient 

is taken with respect to 1w . 
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 ∑∑
==

+−+∇=∇
Lw

j
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i,liwoutiw jlMkrjwFEQS
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11, )1()( 
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1  l

F  (62) 

The gradient can be moved inside the FEQ and Fourier coefficient since they do not 

depend on 1w , 
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F  (63) 

When moving the gradient inside the sum a little more work has to be done to progress 

further.  Examining the sum more closely, 
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 (64) 

The first partial with respect to 1w  results in only the first term of the sum remaining 

since it is the only term to depend on 1w .  Likewise for the remaining partials a similar 

result occurs.   
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Continuing with the partial derivative.  Using the first partial as an example, 
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Noting that the cross terms go to zero, 
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Likewise for the remaining partial derivatives they all go to zero providing the following 

result, 

 0,1
=∇ outiw S  (70) 

Focusing just on ∗∇ outiw Sj ,1
whose derivation is very similar to outiw S ,1

∇ , 
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Going back to (60) and substituting in (70) and (86), 
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Now looking at ∗∇ iw e
1

 since ie  is all-real error signal then by virtue ii ee =∗  thus, 
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Revisiting (66), 
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A similar result would be found if the gradient is taken with respect to w2, 
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By using a gradient descent approach, update rules for the TEQs w1 and w2 are found. 

 Table 4.  Multi Carrier Constant Modulus Update Rule 
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Here equations (81) and (82) are repeated for easy lookup andμ is the algorithm step-

size. 

Examining the computational complexity similarly to DD,  the following results are 

found for CM.  For CM it is expected that computational complexity would be higher 

since the error function is second-order.  The following summarizes the following 

operations that must be completed to update the filter. 

Table 5.  Multi Carrier Constant Modulus Computational Complexity 

For 11 +kw  
 

Complex 
Multiplies 

Adds/Subtracts 

∑
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∇−
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i
iMCCMw

J
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,
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μ

 

iMCCMw
J ,

1
∇

 

   

  Calculating ie  1 complex 
multiply 

1 subtract 

  
ie  1 complex 

multiply 
 

  
outiS ,  1 complex 

multiply 
 

  ∗
iFEQ  1 complex 

multiply 
 

  
)1( 1,

++
∗
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∗∑ lMkr
N

li
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F  
N complex 

multiplies x Lw 
N adds x Lw 

  Repeat N times x N x N 
 Subtotal  Lw x (N2+4N) Lw x (N2+N) 
 

∑
=

N

i 1
 

  N adds 

 μ   1 complex 
multiply 

 

 Subtract 
quantity 

  Lw Subtracts 

Same for 12 +kw , assuming Lw2 = Lw1 
 

x 2 x 2 

Total 2Lw x (N2+4N)+2 2Lw x (N2+N+1) 
+2N  
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It is quickly noted that the number of adds/subtracts as well as the number of 

multiplies has increased above what is required for DD thus confirming that the trend for 

CM to have higher computational complexity than DD in the single-carrier case applies 

when modified for MC.  For example, If Lw = 48 and N = 64, it requires a total of 417794 

complex multiplies and 399490 adds/subtracts to update both TEQs which requires an 

additional 12288 complex multiplies, a negligible increase over MCDD, the number of 

adds/subtracts remain the same.  When comparing to single carrier update algorithms it 

should be recognized that this is for N-separate channels and that the computational 

complexity per channel is a better metric to compare. 

 

Least Mean Squared Frequency Domain Equalizers 
 
 
 Frequency Domain Equalizers (FEQs) are important in helping to resize the 

symbol constellation and to remove rotation in the symbol set.  It is often the case that 

TEQs require re-normalization, such as a unit norm constraint, after each update to keep 

them from growing without bound, keeping them from being able to correct a change in 

size of the symbol constellation.  Because the TEQ needs to re-normalize it falls on the 

FEQ to resize the symbol constellation.  FEQs are not always required to make confident 

bit-error determinations as is the case when differential encoding is used but they do help 

open the eye diagram and decrease output symbol error.  Similar to TEQs, FEQs can be 

trained or blind depending on the information available at the receiver.  Like trained 

TEQs, trained FEQs have faster convergence and have the ability to de-rotate the symbol 

set even if it has rotated an arbitrary number of quarter turns.  Blind FEQs must rely on 
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information about the transmitted symbol set in order to de-rotate the symbol set 

resulting in slower convergence than the trained case and the inability to correctly 

remove a phase rotation of more than a quarter turn.  The two FEQs implemented and 

derived in this section consist of one that is developed when training information is 

available, LMS-FEQ, and one based on a Decision Direction (DD) cost function, 

DDLMS-FEQ.  These FEQs are adaptive and use a Least Mean Squares approach to 

finding the direction of lowest cost.  The differences seen between DD and trained are 

minimal as seen in the difference between MCDD and MCT.  The following will be a 

discussion of DDLMS-FEQ and to follow will be an explanation of how to derive a 

trained LMS-FEQ through minor changes. 

 Starting with a cost function for the single-tap FEQ, for output i, the cost function 

should be the magnitude squared of the error function, 

 ∗= iiFEQ eeJ
i

 (86) 

Where e is the error and e* is error compliment 

 ( ) outioutii SSe ,, −= ξ  (87) 

Here ξ  is the decision direction function whose output is the closest symbol in the 

communication system’s constellation.  By taking the gradient with respect to the FEQ 

filter ensures that the cost functions moves towards a minimum. 

 ( )∗∇=∇ iiFEQiFEQFEQ eeJ
ii

 (88) 

 ( ) ( )∗∗ ∇+∇=∇ iFEQiiiFEQFEQFEQ eeeeJ
iiii

 (89) 
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Looking just at iFEQ e
i

∇ , 

 outiFEQFEQiFEQ Se
iii ,∇−∇=∇ ξ  (90) 

Since ξ  always resolves to a constant then the gradient of ξ  with respect to the FEQ is 

always zero.  Recall outiS , , 

 ∑∑
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+−+=
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j
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i,liouti jlMkrjwFEQS
1

11, )1()(( 
1  l

F   

 ))1()( 22 +−++ jlMkrjw  (91) 
 
Equation (91) can further be simplified by rewriting the formula in terms of the output 
after the FFT, iH , because only the first part depends on the FEQ, 
 
 iiouti HFEQS =,  (92) 
 
Now examining outiFEQ S

i ,∇ , 

 iiFEQoutiFEQ HFEQS
ii

∇=∇ ,  (93) 

 
The only part that depends on the FEQ is of interest when taking the partial derivative.  

Examining iFEQ FEQ
i

∇ more closely, 

 ( )( )IiRiFEQFEQiFEQ jFEQFEQjFEQ
IiRii ,,,,

+∇+∇=∇  (94) 
 
Noting that the cross terms go to zero, 
 
 IiFEQRiFEQiFEQ FEQjFEQFEQ

IiRii ,
2

, ,,
∇+∇=∇  (95) 

Completing the gradients, 

 01 2 =+=∇ jFEQiFEQi
 (96) 

Thus, 
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 0, =∇ ∗
outiFEQ S

i
 (97) 

 
Now moving on to the ∗∇ iFEQ e

i
, 

 ∗∗∗ ∇−∇=∇ outiFEQFEQiFEQ Se
iii ,ξ  (98) 

Since ∗ξ  always resolves to a constant then the gradient of ξ  with respect to the FEQ is 

always zero.  Recall ∗
outiS , , 
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Equation (99), like equation (91), can further be simplified because only the first part 
depends on the FEQ, 
 
 ∗∗∗ = iiouti HFEQS ,  (100) 
  
Now examining ∗∇ outiFEQ S

i , , 

 ∗∗∗ ∇=∇ iiFEQoutiFEQ HFEQS
ii ,  (101) 

 
The only part that depends on the FEQ is of interest when taking the partial derivative.  

Examining iFEQ FEQ
i

∇ more closely, 

 ( )( )IiRiFEQFEQiFEQ jFEQFEQjFEQ
IiRii ,,,,

−∇+∇=∇ ∗  (102) 
 
Noting that the cross terms go to zero, 
 
 IiFEQRiFEQiFEQ FEQjFEQFEQ

IiRii ,
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, ,,
∇−∇=∇ ∗  (103) 

 21 2 =−=∇ ∗ jFEQiFEQi
 (104) 

Thus, 
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 ∗∗ =∇ ioutiFEQ HS
i

2,   (105) 

Revisiting equations (89) and substituting equations (90), (97), (98), and (105), 

 ( ) ( )∗∗ ∇+∇=∇ iFEQiiiFEQFEQFEQ eeeeJ
iiii

 (89) 

 ( )∗∇−=∇ outiFEQiFEQFEQ SeJ
iii ,  (106) 

 ∗−=∇ iiFEQFEQ HeJ
ii

2  (107) 

Rewriting some equations for ease of searching, Table 6 puts together the adaptive 

update rule for a blind LMS-FEQ. 

 Table 6.  Blind LMS-FEQ Update Rule 

 ( ) outioutii SSe ,, −= ξ  (87) 
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ii FEQFEQii JFEQFEQ ∇−= μ  (108)  

 

In Table 6, μ is the algorithm step size.  Table 7 examines the computational complexity 

of the blind LMS-FEQ and tabularizes the results.  The computational complexity is 

minor in comparison to updating the TEQ because most of the information required is 

already provided as output of the communication system before the FEQ. 
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Table 7.  LMS FEQ Computational Complexity 

For iFEQ  
 

Complex 
Multiplies 

Adds/Subtracts 

ii FEQFEQ J∇− μ  
ii FEQFEQ J∇     

  Calculating ie   1 subtract 

  
ie  1 complex 

multiply 
 

  ∗
iH  1 complex 

multiply 
 

 μ   1 complex 
multiply 

 

 Subtract 
quantity 

  1 subtract 

  Repeat N times x N x N 
Total 3N 2N 

 

The cost for a single FEQ update is repeated N times because there it is repeated for 

every output channel.  Taking into account our previous example of N = 64, the cost for 

updating the multicarrier FEQ every update requires 256 complex multiples and 128 

adds/subtracts. 

 Next, the derivation for a trained FEQ will be shown from derivation for the blind 

FEQ.  By making a simple change to the error function of the blind FEQ, a trained FEQ 

is derived with minimal effort.  Consider the following change to the error function, 

 outiinii SSe ,, −=  (109) 

Since iniS ,  always resolves to a constant then the gradient of iniS ,  with respect to the FEQ 

is always zero providing a similar case as in the blind FEQ.  Because both cases are 

similar the analysis follows the same logic all the way to the conclusion.  See Table 7 for 

a trained adaptive update rule for a LMS-FEQ.   
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Table 8.  Trained LMS-FEQ Update Rule 

 outiinii SSe ,, −=  (109) 
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ii FEQFEQii JFEQFEQ ∇−= μ  (112)  

 

Examining the computational cost for adaptively updating the FEQ using a training 

sequence and LMS approach it is found that it has nearly the same cost as a blind FEQ.  

Table 9 shows the computational cost of a trained LMS-FEQ.   

Table 9.  LMS FEQ Computational Complexity 

For iFEQ  
 

Complex 
Multiplies 

Adds/Subtracts 

ii FEQFEQ J∇− μ  
ii FEQFEQ J∇     

  Calculating ie   1 subtract 

  
ie  1 complex 

multiply 
 

  ∗
iH  1 complex 

multiply 
 

 μ   1 complex 
multiply 

 

 Subtract 
quantity 

  1 subtract 

  Repeat N times x N x N 
Total 3N 2N 

 

Again, the cost for a single FEQ update is repeated N times because there it is 

repeated for every output channel.  Taking into account our previous example of N = 64, 

the cost for updating the multicarrier FEQ every update requires 192 complex multiples 

and 128 adds/subtracts. 
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Summary 
 
 This chapter has examined several blind and trained algorithms for adapting both 

Time-domain Equalizers (TEQs) as well as Frequency-domain Equalizers (FEQs).  Multi 

Carrier Decision Directed (MCDD), a blind adaptive equalization algorithm based upon 

the single carrier version of decision directed (DD) was developed and the update rule 

provided.  In addition, the computational complexity for MCDD was evaluated.  Next, 

Multi Carrier Trained (MCT) was derived as a small change to MCDD and its 

computational complexity was noted as comparable to MCDD.  Following MCDD and 

MCT was the derivation for Multi Carrier Constant Modulus (MCCM), a blind adaptive 

equalization algorithm based upon the single carrier version of constant modulus (CM), 

as well as results for its computational complexity.  Finally, the chapter finished with the 

derivation for both blind and trained frequency domain equalizers (FEQs) and an 

examination of their computational complexity.
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V. Communication System Operation 

 

Overview 
 

This section describes the many common pieces used in setting up the 

communication system and how parameter selection is achieved.  All of the algorithms 

are run using the system model presented in Chapter 2 and are set up with similar 

parameters to allow comparison among the algorithms.  The rest of this section focuses 

on describing the system model and general parameter selection while the remaining 

sections of this chapter discuss more involved parameters. 

The transmitter and channel portion of the system model (IFFT, P/S&CP, h1 and 

h2, n1 and n2) has been implemented with an Inverse Fast Fourier Transform (IFFT) size 

of 64, a Cyclic Prefix (CP) of 16, and an h1 and h2 length of 32.  The receiver portion of 

the system model (w1 and w2, S/P&XCP, FFT, FEQ) is implemented with w1 and w2 

having a length of 48 as well as other values corresponding to those in the transmitter 

such as the XCP having a removal length 16 and the FFT having a size of 64, while the 

FEQ consists of single tap filters. 

Default initialization of w1 and w2 is achieved by setting a center tap of the filters 

w1 and w2 to a constant value of one.  In all simulations default initialization is done by 

setting tap 24 to a value of one.  The value “one” is used because the filters w1 and w2 are 

renormalized to have constant energy equal to one and initializing the energy of the filter 

to anything other one would just result in immediate renormalization to one.  In addition, 
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tap 24 is chosen because it is nearly an equal distance from either end of the filter.  An 

equalization filter will have its best performance if the majority of the energy and ripple 

is in the center of the filter rather than on the edges due to the fact that taps below zero 

and above 48 are effectively all zeros and abrupt changes cause poor performance.  

Default initialization of the FEQ is done by setting all FEQ taps to 1.  Setting the FEQ 

taps to 1 initially introduces no rotation or scaling to the output sequence. 

 

Channel Selection 

 
  A Rayleigh distributed fading channel with an exponential decay profile was 

used to implement the channel, see Sklar [24] for implementation of Rayleigh channels.  

The following MATLAB code snippet shows how the Rayleigh fading channel was 

created, 

   
 Fade1 = 0.1;  

ChannelLength1 = 32; 
 

PowerScalingFactor1 = exp(-Fade1*(0:ChannelLength1-1)); 
 
RayleighChannel1 = PowerScalingFactor1.*(randn(1,ChannelLength1) 
      +j*randn(1,ChannelLength1)); 

 

Note that the channel length has been chosen longer than the CP.  If the channel length is 

not longer than the CP then all channel interference can be removed by the CP and the 

TEQ doesn’t need to do any adaption to shorten the channel.  In all examples, a channel 

length of 32 is used with a Rayleigh channel that has a fade value of 0.1, providing a 

channel that is twice as long as our CP ensuring that enough energy will reside outside 

the window of 16 samples that eye diagram closure will result if the channel is not 
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shortened, even with a high signal to noise ratio (SNR).  The following figure is a 

magnitude plot of an example Rayleigh channel, 

 

 
Figure 7.  Magnitude Plot of Rayleigh Fading Channel 

 

Noise Generation 
 
 After introducing our Rayleigh fading channel noise is added.  While not all noise 

is white and Gaussian, for the purposes of the simulations, white Gaussian noise provides 

a good basis for evaluating the algorithms against each other.  Other noise sources as well 

as narrow-band interferers could be examined to see how these algorithms perform under 

non-standard conditions.  The complex noise sequence is generated by selecting a desired 

SNR value in decibels (SNRDB) and scaling a complex white Gaussian sequence 
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according to the computed SNR.  The SNR is the ratio of average signal power to 

average noise power.  If a 4-QAM constellation is used for input symbols to the FFT then 

each input symbol has a signal power of 2
xσ . 

 22 =xσ  (113) 

Since there are 64 carriers, when the average is taken over all the carriers the signal 

power remains the same as for a single carrier. 

 2
64

64
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2
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xσ  (114) 

The noise power, nσ , is then scaled appropriately, by the term NoisePower to achieve a 

desired SNR. 
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Since 2
xσ  is defined to have a power of 2, similar to 2

xσ .  To obtain a specific SNR value, 

solve to determine the appropriate scaling factor for the noise power. 
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hnormNoisePower )( 1=  (116) 

In the case where null carriers are present, the average signal power decreases since some 

of the carriers have zero noise power.  For example, when there are 12 null carriers 

present the following SNR is developed. 
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The noise power is then adjusted to achieve the desired SNR. 
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SNR

hnorm
NoisePower 64

52)( 1

=  (118) 

See the following MATLAB code snippet for development of the noise sequence for 

when there are no null carriers. 

   
SNR = 10^(SNRDB/10); 
NoisePower =norm(Channel1)*sqrt(1/SNR); 

 
NoisePower*(randn(1,length(ChannelOut1)) + 

j*randn(1,length(ChannelOut1))); 
 

For implementing the Fractionally Spaced Equalizer (FSE) a second channel is generated 

as well as a second noise sequence using the same process. 

Selecting Step Size 
 

Step size plays a critical role in ensuring that the algorithms move toward a 

minimum and will depend largely upon the channel and noise power.  Selecting a step 

size that is too large can cause the algorithm to diverge.  An example of how to select a 

good step size will be shown using MCT and then step sizes for all of the algorithms will 

be given using that method.   

The algorithm adaption step size μ  needs to be selected for both TEQs as well as 

the FEQ.  Appropriate step sizes for the MCT algorithm are shown in the following 

MATLAB code snippet, 

         
W1delta = .000003; 
W2delta = .000003; 
FEQdelta = .005; 

 
These values were chosen through experimentation by selecting the values that provided 

the fastest convergence of the MCT algorithm.   
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The first step in obtaining good algorithm step sizes is to ensure that the FEQ 

adapts before the TEQ since the TEQ will try to shorten the channel to an impulse if the 

FEQ is too slow.  In order to find the best FEQ step size, set the step size for the TEQs, 

w1 and w2, to zero (not adapting) and adjust the FEQ step size until the best performance 

is achieved.  FEQ performance can be measured by observing the FEQ error function, or 

sum of error functions, over the adaption window and choosing the step size that 

provides the fastest convergence with the smallest error.  A larger step size usually 

results in a larger error but faster convergence; step sizes too large cause the algorithm to 

diverge.  After the FEQ step size is chosen, the next step is to choose an appropriate step 

size for the TEQ.  Experimentation will help to choose a good step size for the TEQs.  

Repeatedly examine the cost function over the window of updates for a range of step 

sizes and choose the step size that provides the fastest convergence. 

The process for selecting the step size for all of the adaptive algorithms is 

essentially the same.  Test and select a good step size for the FEQ then move on to 

selecting a good step size for the TEQ.  The following table shows the step sizes found to 

be sufficient using this test and select method, 

Table 10.  Algorithm Adaption Step Sizes 

 FEQ TEQ 
Multicarrier Decision Directed 0.005 0.000003 
Multicarrier Constant Modulus 0.005 0.00000005 

Multicarrier Trained 0.005 0.000003 
Multicarrier Equalization by Restoration of Redundancy 0.005 0.0005 

Carrier Nulling 0.005 0.000003 
 

Null Carriers 
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The authors presenting CNA show that often OFDM systems use the first K and 

last K channels of the OFDM system as guard channels to ensure that the system isn’t 

encroached upon.  These null carriers can be used to blindly equalize the channel.  See 

De Courville et al. [17] as well as Romano and Barbarossa [18], for full explanation of 

how CNA is implemented.  When null carriers are referenced in this context of this 

research it is implemented as the first 6 and last 6 carriers of the OFDM system 

transmitting a constant string of zeros.  Because the adaptive equalization algorithms 

behave differently in the presence of null carriers, analysis of the algorithms is treated 

along two distinct classes, with or without null carriers.  The primary driving factor for 

the special treatment for null carriers is that the MERRY algorithm assumes that the input 

sequences are uncorrelated and the addition of null carriers creates correlation, see 

Martin et al.[8].   

All algorithms when run with null carriers are treated with the knowledge that 

they know that the first 6 and last 6 carriers are null carriers and when training or 

adapting they either use that to their advantage such as MCT and CNA or ignore the 

information such as MCDD and MCCM.  MERRY is unchanged since its cost function is 

derived from the time-domain samples.  Null carriers are not seen as an advantage for 

MERRY because they introduce correlation into the time-domain samples.  CNA, since it 

relies solely on null carriers is not examined when comparing algorithms without null 

carriers. 
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Synchronization Delay 
 

Synchronization delay plays a key role in determining how well the TEQ can 

shorten the channel and will be the first metric of comparison for the algorithms.  It is 

important to understand how synchronization delay affects the algorithms performance in 

order to get the best performance possible.   Since the largest v +1 taps of the channel are 

usually the first v +1 taps in the model used in this thesis, the channel delay is zero.  

Because the channel doesn’t introduce a delay, the ideal synchronization delay is one less 

than that introduced by setting tap 24 equal to 1.  If the channel were to introduce a delay 

the ideal synchronization delay would be the delay introduced by the channel plus the 

delay introduced by the equalization filter.   

The BER curves generated using the Rayleigh fading channel and default 

initialization of the TEQs have the synchronization delay value set to 23 since it is a near 

optimal value across all the algorithms.  With the introduction of null carriers the 

synchronization delay will need to be reevaluated to ensure that 23 is a good 

synchronization delay value.  It is assumed that the algorithms will perform similarly 

with respect to synchronization delay when null carriers are present as when they are not 

present.  

Multi Carrier Trained (MCT) Example 
 

MCT is a great example algorithm because it establishes how well you can do 

with perfect transmitted symbol knowledge and demonstrates the effects of an adaptive 

shortening algorithm.   Although the other algorithms go about shortening the channel in 

different ways according to different cost functions they all strive to do the same thing 
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which can be clearly illustrated using MCT.  After MCT has had plenty of time to 

shorten the channel, comparisons will be made between equalized and un-equalized 

plots.   

The scatter diagram in Figure 8 for output data generated using a synchronization 

delay of 23, SNR equal to 15 dB, and no TEQ or FEQ adaptive algorithms running shows 

that the eye is closed.  The eye diagram is closed mostly due to channel effects since the 

noise doesn’t contribute substantially to eye closure as a SNR of 15 dB is considered a 

fairly good operating noise level. 

 
Figure 8.  Plot Showing Unequalzied Scatter Diagram 

 
Along with eye diagram analysis, another good plot to examine is the effective channel 

since it shows in which taps the equalized and un-equalized energies reside.  The 
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effective channel is the TEQ convolved with the Rayleigh channel.  In the case of the 

FSE, the effective channel is the sum of both TEQs convolved with their respective 

Rayleigh channels.  The following MATLAB code snippet shows how the effective 

channel is generated for a FSE, 

 

EffectiveChannel = (conv(RayleighChannel1,w1)+conv(RayleighChannel2,w2));  

 

If the Rayleigh channel has length 32 and w1 and w2 have length 48 then the effective 

channel will have a length of 32+48 -1, or equivalently 79 taps.  Figure 9 shows what the 

real part of the effective channel looks like before equalization using default parameters.   
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Figure 9.  Plot Showing Unequalized Effective Channel 

 
Note that the un-equalized effective channel has energy in more than 17 taps.  The CP in 

the default example can only remove the distortion attributable to 17 taps of the effective 

channel.  For systems that do not have a TEQ the only option available is to increase the 

CP to handle a longer effective channel increasing overhead.  Later it will be shown that 

a TEQ can reorient the energy outside of the first 16 taps and move it so that the effective 

channel is shorter.   

When the MCT algorithm is run for 10,000 updates using a step size of 0.000003 

for the TEQ and a step size of 0.005 for the FEQ, results for the effective channel as well 
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as a scatter diagram showing an open eye are obtained.  Relative to Figure 9, Figure 10 

illustrates the shortening of the effective channel, i.e. there are fewer non-zero tap values. 

 
Figure 10.  MCT Equalized Effective Channel 

 

As can be seen in the above shortened channel, the TEQ shortening filter has moved the 

energy residing outside of the range correctable by the CP.  Also, Figure 10 shows that 

there are 17 taps over which a large majority of the channel energy resides.  Since the CP 

can remove interference due to 16 taps the 17th tap with energy in it is seen as just a 

delay.   A comparison plot showing the real part of the energy that was moved is detailed 

in Figure 11. 
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Figure 11.  Comparison Plot Between MCT Equalized and Unequalized Effective Channels 

 
After the channel has been successfully shortened, the plot in Figure 12 of the 

output scatter diagram is seen to have removed the effects of ISI and ICI, causing the 

scatter diagram eye to open.  Figure 12 shows the eye diagram after MCT has shortened 

the channel. 
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Figure 12.  MCT Equalized Scatter Diagram 

 
Figure 13 shows that the MCT adaption algorithm is reducing the cost function, 

equivalently the mean squared error (MSE). 
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Figure 13.  MCT Cost Function 

 
As was noted earlier, MCT has mostly adapted to the channel after 3000 updates.  

Further updates after 3000 have not provided a substantial decrease in the error.  Most of 

the sharp drop and bend seen between updates 0 and 1000 are attributed to the FEQ 

adapting which causes a resizing and de-rotation of the output symbol constellation. 

All of the plots shown in this section have provided conclusive evidence that the 

MCT algorithm has shortened the channel as well as opened the eye diagram.  The 

remaining algorithms are blind and will not do as well as MCT at shortening the channel. 

The blind algorithms strive to provide the same results as the MCT so replicating the 

plots shown for MCT is not necessary for the rest of the algorithms.   
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VI. Results and Analysis 
 
 

Overview 
 

This chapter focuses on exercising and comparing Multi Carrier Trained (MCT), 

Multi Carrier Decision Directed (MCDD), and Multi Carrier Constant Modulus (MCCM) 

with each other and with two additional blind adaptive equalization algorithms, 

Multicarrier Equalization by Restoration of Redundancy (MERRY) and Carrier Nulling 

Algorithm (CNA).  The goal of examining the new algorithms with each other, as well as 

several well-accepted blind adaptive equalization algorithms, is to stratify the algorithms 

according to BER in order to get a feel for the proper way to implement the algorithms.  

This chapter provides comparisons of all algorithms showing bit error (BER) vs. SNR 

curves for each of the algorithms as well as BER vs. synchronization delay plots, both in 

the presence of null carriers and without.  

 

Synchronization Delay without Null Carriers 
 

Synchronization delay plays a key role in determining the performance of the 

algorithm and it would be an advantage to determine how a change in synchronization 

delay affects BER.  In the set up of the communication system there is a set delay 

introduced by the initialization of the TEQ and a delay in the channel.  The optimal 

synchronization delay is always one less than the sum of the two delays.  In order to 

obtain the plots in this section each algorithm shortened the same channel for a range of 

synchronization delay values and the BER was observed after each algorithm had 
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performed 1000 updates.   The following are plots showing BER versus synchronization 

delay for the four algorithms simulated without null carriers,   

 
Figure 14.  Plot of BER vs. Synchronization Delay for MCDD and MCCM without Null 

Carriers 

 
The above plot shows that 23 is indeed an optimal synchronization delay for MCDD and 

MCCM as well as showing that there is a window of good values that can be chosen.  

Because the algorithms have only had 1000 updates there are correspondingly fairly high 

BER rates, but the low number of updates was chosen to clearly show that 

synchronization delay has substantial effect on BER and even convergence rate.  The 

next figure shows MERRY and MCT without null carriers present, 
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Figure 15.  Plot of BER vs. Synchronization Delay for MERRY and MCT without Null 

Carriers 

 
It can be seen from both Figure 13 and Figure 14 that all algorithms have the 

same area of lowest BER around a synchronization delay of 23.  As noted earlier, MCT 

can be seen to have the best performance of all the algorithms.  Since MCT has perfect 

transmitted symbol knowledge it has a larger area of good synchronization delay values.  

The next section will examine synchronization delay for the case when null-carriers are 

present.  

Synchronization Delay with Null Carriers 
 

After examining the system without null carriers and determining the range of 

values that provide good convergence and consequentially low BERs, focus can move on 
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to the case when null carriers are present in the transmitter.  In this section the CNA 

algorithm will also be shown since with the availability of null carriers brings the ability 

to use CNA.   

 

Figure 16.  Plot of BER vs. Synchronization Delay for MCDD and MCCM with Null Carriers 

 
The following plot shows MERRY and MCT when null carriers are present, 
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Figure 17.  Plot of BER vs. Synchronization Delay for MERRY and MCT with Null Carriers 

 
The following plot shows CNA when null carriers are present, 

 

Figure 18.  Plot of BER vs. Synchronization Delay for CNA with Null Carriers 
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Again Figure 16, Figure 17 and Figure 18 show that the addition of null carriers 

doesn’t have a substantial affect on changing the selection of a good synchronization 

delay as well as present new results for CNA.  A selection of a delay around 23 provides 

again provides good results for ensuring fast convergence and low BERs.  As stated 

before in the previous chapter, the ideal synchronization delay will always be the delay 

introduced by the TEQ plus the delay introduced by the channel.   

The results for the previous two sections on synchronization delay are drawn over 

the same channels with a fairly good SNR of 15 dB.  A more comprehensive study of 

synchronization delay vs. BER could be done where the algorithms were allowed to 

adapt over a larger number of updates and for a wide variety of Rayleigh fading channels 

so that more general conclusions can be drawn about good synchronization delay values. 

 

Bit Error Rate vs. Signal to Noise Ratio without Null Carriers 
 
 A plot of BER vs. SNR reveals an expected performance given an operating SNR.  

In addition, plotting the results for all the algorithms gives a chance the viewer a chance 

to compare results and stratify algorithm performance.  In this section the simulations 

focus on the case when null carriers are not present and so results for CNA will not be 

shown.  The next section shows results for when null carriers are present. 

 The following plot shows simulation results for MCT, MCDD, MCCM, and 

MERRY, 
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Figure 19.  BER vs. SNRdB without Null Carriers 

 
Since MCT uses perfect transmitted symbol information it has the best performance 

followed closely by MCDD.  MCDD has performance very close to MCT since at very 

high SNR the decision direction function provides output nearly exact to the input 

sequence.  A second grouping of BER curves comes with MCCM, and MERRY.  Even 

though MERRY only performs slightly worse than MCCM it should be noted that 

MERRY has a slow convergence rate requiring more updates than the other blind 

adaptive algorithms.  MERRY would benefit substantially from an additional 5,000-

10,000 updates and would provide an improved BER curve.  Even though MERRY 

requires additional updates to fully converge, MERRY requires much less computation 
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than the other algorithms both trained and blind, a benefit when processing speed is 

important. 

 Results in this section have shown BERs after 10,000 updates of each respective 

algorithm. MCT and MCDD, which have nearly identical performance for high SNR, 

show better channel equalization than MERRY and MCCM.  MERRY is showing a 

worse performance than MCCM but since MERRY converges slowly it could benefit 

from additional updates.  The next section will focus on detailing BER vs. SNR dB with 

null carriers present.   

 

Bit Error Rate vs. Signal to Noise Ratio with Null Carriers 
 
 Null carriers introduce correlation into the transmitted data which may produce a 

shift in BER for some of the adaptive algorithms.  Since MCT knows that certain data 

channels will transmit a zero its performance isn’t expected to change.  MCDD and 

MCCM cost functions depend on knowing information about the transmitted symbols 

and may perform slightly worse since they will have to ignore the 12 null carriers, 

leaving less channels to adapt with.  MERRY is derived based upon having uncorrelated 

data and because the null carriers introduce correlation it should perform worse. 

 The following plot shows BER vs. SNR for MCT, MCDD, MCCM, MERRY and 

CNA, 
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Figure 20.  BER vs. SNRdB with Null Carriers 

 
MCT has not changed from the introduction of null carriers and MCDD has not shown 

any substantial drop in performance.   MCCM is showing a BER that is slightly better 

than CNA but seems to have a slightly worse performance after the null carriers have 

been introduced.  

 Results in this section have shown BERs after 10,000 updates of each respective 

algorithm in the presence of null carriers.  Nearly identical to the case when null carriers 

weren’t present, MCT and MCDD have nearly identical performance for high SNR and 

show better channel equalization than MERRY, MCCM, and CNA.  Also as in the non-

null carrier case, additional updates will still benefit MERRY.   
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 This chapter showed BER vs. Synchronization delay as well as BER vs. SNR dB 

for MCT, MCDD, and MCCM with and without null carriers and noted how the 

algorithms performed in relation with each other as well as several other MC blind 

adaptive algorithms, MERRY and CNA.   
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VII. Conclusion 
 

 

Summary 
 
 This section concludes the thesis on blind adaptive equalization algorithms for 

multicarrier systems by examining the focus and results of the thesis.  The focus of this 

thesis was to develop and exercise two new blind adaptive equalization algorithms, Multi 

Carrier Decision Directed (MCDD) and Multi Carrier Constant Modulus (MCCM) for 

adapting a Time Domain Equalizer (TEQ) as well as present new results on a trained 

multicarrier adaptive equalization algorithm, Multi Carrier Trained (MCT) and a single 

tap Frequency Domain Equalizer (FEQ).   

 The reader was introduced to a system model reminiscent of many OFDM 

systems and notation describing certain operations within the system was outlined.  Next, 

background literature was discussed to give the reader a treatment of current methods for 

channel shortening as well as example algorithms.  Afterward, analytical development of 

MCDD, MCT, MCCM, LMS-FEQ, and the DDLMS-FEQ was given, and then 

exploratory results for MCT were shown.  The Results and Analysis chapter exercised all 

the algorithms and presented results showing optimal synchronization delays and BER 

curves for a range of SNR values.    

 The primary goal of this research, algorithm derivation and development, was 

completed and shown explicitly in Chapter 4 and MATLAB implementations of all 

algorithms are given in Appendix A.  The new algorithms were shown to shorten the 

channel and decrease inter-symbol interference as well as inter-carrier interference, 
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showing the effectiveness of the new algorithms and meeting the primary research goal.  

The secondary goal of this research was to compare the newly derived algorithms to 

other multicarrier adaptive algorithms.  MCT, MCDD, and MCCM were simulated and 

compared against MERRY and CNA in Chapter 6, meeting the secondary research goal. 

 

Additional Research Work 
 
 MCT, MCDD, and MCCM have several areas where additional research would 

benefit the algorithms by characterizing performance under a larger variety of 

simulations such as pink or colored noise rather than white, the introduction of narrow 

band interferers, more comprehensive synchronization delay study, and comparison 

against a wider range of blind TEQ adaptive algorithms. 

 Noise sequences are often not white and so a study of the algorithms presented for 

other noise types could provide increased knowledge about the robustness or 

shortcomings of these algorithms in the presence of colored noise and interferers.  

 As previously noted, a more comprehensive study of how synchronization delay 

affects the algorithms should be done with a random sampling of Rayleigh fading 

channels as well as allowing the algorithms more time to adapt to the channel.  With an 

increased number of updates many of the algorithms will shorten the channel enough so 

that BERs will be too low at an SNR of 15 dB.  To compensate, the algorithms could be 

run at a lower SNR to introduce more errors so that a more varied plot could be obtained. 

 Along with a more comprehensive study of how synchronization delay affects the 

algorithms more multicarrier algorithms, such as Sum Squared Autocorrelation 

Minimization (SAM) and others, could be compared.  The additional comparisons would 
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give better insight into how the algorithms stack up against other multicarrier blind 

adaptive equalization algorithms. 
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Appendix A. 
 
 

Overview 
 

Appendix A includes MATLAB code segments for implementing the transmitters, 

channels, and receivers detailed in this thesis.  The system model is broken into 2 logical 

pieces based upon ease of operation for running simulations and aggregating results.  

First the transmitter and channel portion of the code has been written so that a function 

call to a transmitter / channel, given a set of parameters, returns appropriate information 

for running a second function for reception / decoding of the transmitted sequence.  See 

the appropriate functions for arguments passed and returned.  Adaptation of the functions 

for providing additional information is possible depending on simulation need.  In order 

to run the transmitter and receiver functions a script file is set up to make repeated calls 

to both of these functions.  The format of the rest of this appendix will show the script 

file followed by the transmitter and channel, and lastly show the 5 receiver files. 

Script File 
 

The script file is used to make repeated and coordinated calls to the transmitter 

and channel as well as the appropriate receiver functions.  The script file shown is set up 

to make multiple runs and collect Bit Error Rates (BERs) for all of the algorithms 

present. 

% This is a script file to control the transmitter and reciever in order to 
% coordinate multiple runs with slightly differnt operating parameters. 
 
clear; 
clc; 



 

 
 

80

tic; 
 
%///////// Default Parameters for Operating the Transmitter   //////////// 
DiffEncoding = 1;     % This Turns DiffEncoding on = 1/off = 0 
NullCarriers = 0;     % This Turns Null Carriers on = 1/off = 0 
FFTSIZE = 64;         % The size of the IFFT/FFT being performed 
NUMFFT = 10001;        % The number of FFTs being done 
CP = 16;              % Cyclic Prefix  
SNRDB = 100;          % Constant to scale Noise Power 
 
ChannelLength1 = 32;  % Length of Channel #1 
ChannelLength2 = 32;  % Length of Channel #2 
 
Fade1 = .1;           % Rate at which Channel #1 fades 
Fade2 = .1;           % Rate at which Channel #1 fades  
 
SNRDB = 15; % Default SNR dB value for transmitter 
%///////// END Parameters for Operating the Transmitter//////////// 
 
 
%///////// Default Parameters for Operating the Reciever       //////////// 
% Lets make a good guess as to what the filter should be 
GoodGuess = zeros(1,48); 
GoodGuess(24) = 1; 
 
% DELTA is synchronization delay 
DELTA = 23; 
 
%///////// END Parameters for Operating the Reciever    //////////// 
 
for DD = 1:5 
     
    % Stepsize for DD adaption algorithm 
    if DD == 1 
        W1delta = .00003; 
        W2delta = .00003; 
        FEQdelta = .005; 
    elseif DD == 2 
    % Stepsize for CM adaption algorithm 
        W1delta = .00000005; 
        W2delta = .00000005; 
        FEQdelta = .005; 
    elseif DD == 3 
    %Stepsize for the MERRY algorithm 
        W1delta = .0005; 
        W2delta = .0005; 
        FEQdelta = .005; 
    elseif DD == 4 
    %Stepsize for the Trained algorithm 
        W1delta = .000003; 
        W2delta = .000003; 
        FEQdelta = .005; 
    elseif DD == 5 
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    %Stepsize for the CNA algorithm 
        W1delta = .000003; 
        W2delta = .000003; 
        FEQdelta = .005; 
    end 
     
    for Run = 1:10 
        index = 0; 
     
    for SNRDB = 15:-1:-10 
        index = index + 1; 
         
    [S,r1,r2,RayleighChannel1,RayleighChannel2] = ... 
        FSE_Multicarrier_Transmitter(NullCarriers,FFTSIZE,... 
        NUMFFT,CP,SNRDB,ChannelLength1,ChannelLength2,Fade1,Fade2); 
 
        if DD == 1 
            [BitErrors,MSE,w1,w2] = FSE_Decision_Directed_Receiver(... 
                DELTA,GoodGuess,W1delta,W2delta,FEQdelta,S,ChannelLength1,... 
                ChannelLength2,NUMFFT,FFTSIZE,CP,r1,r2,DiffEncoding,NullCarriers); 
            DecisionDirectedBitErrors(index,Run)=BitErrors; 
        elseif DD == 2 
            [BitErrors,MSE,w1,w2] = FSE_Constant_Modulus_Receiver(... 
                DELTA,GoodGuess,W1delta,W2delta,FEQdelta,S,ChannelLength1,... 
                ChannelLength2,NUMFFT,FFTSIZE,CP,r1,r2,DiffEncoding,NullCarriers); 
            ConstantModulusBitErrors(index,Run)=BitErrors; 
        elseif DD == 3 
            [BitErrors,MSE,w1,w2] = FSE_Merry_Receiver(... 
                DELTA,GoodGuess,W1delta,W2delta,FEQdelta,S,ChannelLength1,... 
                ChannelLength2,NUMFFT,FFTSIZE,CP,r1,r2,DiffEncoding,NullCarriers); 
            MerryBitErrors(index,Run)=BitErrors; 
        elseif DD == 4 
            [BitErrors,MSE,w1,w2] = FSE_Trained_Receiver(... 
                DELTA,GoodGuess,W1delta,W2delta,FEQdelta,S,ChannelLength1,... 
                ChannelLength2,NUMFFT,FFTSIZE,CP,r1,r2,DiffEncoding,NullCarriers); 
            TrainedBitErrors(index,Run)=BitErrors; 
        elseif DD == 5 
            [BitErrors,MSE,w1,w2] = FSE_Carrier_Nulling_Receiver(... 
                DELTA,GoodGuess,W1delta,W2delta,FEQdelta,S,ChannelLength1,... 
                ChannelLength2,NUMFFT,FFTSIZE,CP,r1,r2,DiffEncoding); 
            CarrierNullingBitErrors(index,Run)=BitErrors; 
        end 
         
         pack; 
         
        toc 
    end 
    end 
     
end 
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Transmitter and Channel 
 
The transmitter and channel have been implemented in the same function call and 

require a large number of input parameter to effectively control.  Most of the input 

arguments are self-explanatory since they are usually named clearly after what they are 

named for or are defined in the script file.  The output arguments are defined as follows, 

S is the sequence generated and is necessary for the trained equalizers, r1  and r2 are the 

sequences that are fed into the receivers, and Rayleigh1 and Rayleigh2 are the Rayleigh 

channels that were generated when the transmitter was called,  

 
%  2LT Nicholas Linnenkamp 
%  Blind Adaptive Deconvolution for Multicarrier 
% 
%  A sequence of 4-QAM data will be created, sequenced and passed through  
%  an IFFT, then put into a parallel to serial converter. 
%  The resulting signal is transmitted over a channel and noise is added. 
 
function [S,r1,r2,RayleighChannel1,RayleighChannel2] = ... 
    FSE_Multicarrier_Transmitter(NullCarriers,FFTSIZE,... 
    NUMFFT,CP,SNRDB,ChannelLength1,ChannelLength2,Fade1,Fade2) 
 
%Calculate the Noise Power  
SNR = 10^(SNRDB/10); 
NoisePower = sqrt(1/SNR); 
 
% Factor to scale the channel power 
PowerScalingFactor1 = exp(-Fade1*(0:ChannelLength1-1)); 
PowerScalingFactor2 = exp(-Fade2*(0:ChannelLength2-1)); 
 
% Binary_Sequence is the bits being transmitted over channel grouped in 
% an amount appropriate for transmission according to FFTSIZE 
S = sign(2*rand(FFTSIZE,NUMFFT)-1)... 
    + i*sign(2*rand(FFTSIZE,NUMFFT)-1);  
 
if NullCarriers == 1 
    S(1:6,1:NUMFFT) = 0; 
    S(FFTSIZE-5:FFTSIZE,1:NUMFFT) = 0; 
end 
 
% Now we perform the IFFT to generate output signal 
G = sqrt(FFTSIZE)*ifft(S,FFTSIZE); 
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% Now we add a cyclic prefix to the data 
x(1:CP,1:NUMFFT) = G(FFTSIZE-CP+1:FFTSIZE,1:NUMFFT); 
x(1+CP:FFTSIZE+CP,1:NUMFFT)= G(1:FFTSIZE,1:NUMFFT); 
 
% Now we perform parallel to serial positioning of Output_Sequence 
x = reshape(x,1,(FFTSIZE+CP)*NUMFFT); 
 
%######### Fading Channel #1 ########## 
% Once in serial we convolve it with a random Rayleigh fading channel 
RayleighChannel1 = PowerScalingFactor1.*(randn(1,ChannelLength1)... 
    +j*randn(1,ChannelLength1)); 
%RayleighChannel = [RayleighChannel,RayleighChannel]; 
ChannelOut1 = conv(x, RayleighChannel1); 
 
% Now we add some noise to the channel 
r1 = ChannelOut1 + NoisePower*(randn(1,length(... 
    ChannelOut1)) + j*randn(1,length(ChannelOut1))); 
%######### End Fading Channel #1 ######## 
 
 
%######### Fading Channel #2 ########## 
% Once in serial we convolve it with a random Rayleigh fading channel 
RayleighChannel2 = PowerScalingFactor2.*(randn(1,ChannelLength2)... 
    +j*randn(1,ChannelLength2)); 
%RayleighChannel = [RayleighChannel,RayleighChannel]; 
ChannelOut2 = conv(x, RayleighChannel2); 
 
% Now we add some noise to the channel 
r2 = ChannelOut2 + NoisePower*(randn(1,length(... 
    ChannelOut2)) + j*randn(1,length(ChannelOut2))); 
%######### End Fading Channel #2 ######## 

 

Receiver Code 
 

The following MATLAB code functions are the receiver and decoding portion of the 

system under test.  The receiver portion implements the TEQs and FEQs and outputs the 

equalized symbols.  All receivers assume that the input sequence is differentially encoded 

and perform differential decoding on the last 500 blocks of symbols (around 20,000 

symbols).  Since the receiver structure doesn’t change it is only appropriate to show how 

each additional receiver differs from Multicarrier Trained.  In order to achieve operation 
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of the receivers other than Multicarrier Trained replace the respective portion of code in 

the Multicarrier Trained with the code shown in each additional section. 

 
 
 
 
FSE_Trained_Receiver 
 
function [BitErrors, MSE, w1, w2] = FSE_Trained_Receiver(DELTA,... 
    GoodGuess,W1delta,W2delta,FEQdelta,S,ChannelLength1,... 
    ChannelLength2,NUMFFT,FFTSIZE,CP,r1,r2,DiffEncoding,NullCarriers) 
 
%%%%  -------- start deconvolution process --------  %%%% 
 
w1 = GoodGuess;  %Make a good guess at the inverse filter 
w2 = GoodGuess;  %Make a good guess at the inverse filter 
 
% Initialize FEQ here 
FEQ = ones(1,FFTSIZE); 
 
% Lets truncate the recieved signals to the shortest of the two 
if length(r1) > length(r2) 
    r1 = r1(1:length(r2)); 
else 
    r2 = r2(1:length(r1)); 
end 
 
% Preallocation to speed up computation 
Lw1 = length(w1); 
Lw2 = length(w2); 
h = waitbar(0,'Please wait...Completing Trained Reciever'); 
 
y = zeros(1, length(r1)+Lw1); 
y1 = zeros(1, length(r1)+Lw1); 
y2 = zeros(1, length(r1)+Lw1); 
 
Y = zeros(1, NUMFFT*FFTSIZE); 
Err = zeros(FFTSIZE,NUMFFT); 
Sout = zeros(1,NUMFFT*FFTSIZE); 
 
FFTBLOCK = 0; 
 
% We run through the incomming sequence sample by sample 
for k = 1:length(r1)+Lw1 
 
    % Determine the output y1 
    if k <= Lw1 
        y1(k) = sum( w1(1,1:k).*r1(k:-1:1)); 
    elseif k > length(r1) 
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        y1(k) = sum (w1(1,k-length(r1)+1:end).*r1(end:-1:... 
            end-Lw1+(k-length(r1)+1))); 
    else 
        y1(k) = sum( w1(1,:).*r1(k:-1:k-Lw1+1)); 
    end 
     
    % Determine the output y2 
    if k <= Lw2 
        y2(k) = sum( w2(1,1:k).*r2(k:-1:1)); 
    elseif k > length(r2) 
        y2(k) = sum (w2(1,k-length(r2)+1:end).*r2(end:-1:... 
            end-Lw2+(k-length(r2)+1))); 
    else 
        y2(k) = sum( w2(1,:).*r2(k:-1:k-Lw2+1)); 
    end 
     
    % Lets sum the results together 
    y(k) = y1(k)+y2(k); 
     
    % If you have generated enough samples to strip CP off and 
    % do the FFT then at this point we can update the filter. 
    if k == (FFTBLOCK+1)*(FFTSIZE+CP)+DELTA  
         
       if FFTBLOCK > 0 
            
           % In order to not run into bounds error stop just before the end 
            if FFTBLOCK == NUMFFT - 1  
                break 
            end 
        
        % We remove the CP by just ignoring it when taking FFT 
        Y(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE) = ... 
            sqrt(1/FFTSIZE)*fft(y(FFTBLOCK*(FFTSIZE+CP)+1+DELTA+CP: ... 
   FFTBLOCK*(FFTSIZE+CP)+DELTA+CP+FFTSIZE),FFTSIZE); 
         
        % At this point we continue by processing through the FEQ 
        % to determine output sequence Sout. 
        Sout(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE)... 
            = Y(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE) ... 
            .*FEQ; 
                 
        % At this point we update the adaptive filters based upon Sout. 
                 
            %% Trained %% 
        % Create error vector  
 

Err(1:FFTSIZE,FFTBLOCK+1) = 
S(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE).'... 

           -Sout(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE).'; 
         
        FFT = fft(eye(FFTSIZE)); 
         
        % Precomputation to reduce size of next block of code 
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        start = FFTBLOCK*(FFTSIZE+CP)+DELTA+CP; 
         
        %#### Updating w1 ######## 
        column = conj(r1(start+1:start+FFTSIZE)); 
        row = conj(r1(start+1:-1:start+1-(Lw1-1))); 
        Rx = toeplitz(column,row); 
 
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw1); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW1J(m,1:Lw1) = -2*Err(m,FFTBLOCK+1)*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
        deltaW1Jsum = sum(deltaW1J(1:FFTSIZE,1:Lw1),1); 
         
        w1(1,:) = w1(1,:)- W1delta*deltaW1Jsum; 
        %constrain w1 to unit energy 
        w1(1,:)= w1(1,:)/sqrt(w1(1,:)... 
            *w1(1,:)'); 
        %#### End Updating w1 #### 
             
             
        %###### Updating w2 ###### 
        column = conj(r2(start+1:start+FFTSIZE)); 
        row = conj(r2(start+1:-1:start+1-(Lw2-1))); 
        Rx = toeplitz(column,row); 
         
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw2); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW2J(m,1:Lw2) = -2*Err(m,FFTBLOCK+1)*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
        deltaW2Jsum = sum(deltaW2J(1:FFTSIZE,1:Lw2),1); 
         
        w2(1,:) = w2(1,:)- W2delta*deltaW2Jsum; 
        %constrain w2 to unit energy 
        w2(1,:)= w2(1,:)/sqrt(w2(1,:)... 
            *w2(1,:)');     
        %#### End Updating w2 ##### 
             
         
        %###### Updating FEQ ###### 
        deltaFEQJ = -2*Err(1:FFTSIZE,FFTBLOCK+1)... 
            .*Y(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE)'; 
        FEQ(1,:) = FEQ(1,:)-(FEQdelta.*deltaFEQJ).'; 
        %#### End Updating FEQ #### 
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        end 
        % We update the block so we work on the next one 
        FFTBLOCK = FFTBLOCK + 1; 
        waitbar(FFTBLOCK/NUMFFT,h) 
                 
    end 
     
    % continue determining y(k) 
end   
% If Differential Encoding has been used then we undo for xmitted sequence 
% and for the recieved sequence before determining the number of bit errors 
 
SoutRemoveDiffEncode = zeros(1, NUMFFT*FFTSIZE); 
SRemoveDiffEncode = zeros(1, NUMFFT*FFTSIZE); 
 
for k = NUMFFT-500:NUMFFT-3 
    for l = 1:FFTSIZE 
       
        % This handles computation of output symbol by removing diff encode 
        PhaseOutSymbol = phase(sign(real(Sout(l+k*FFTSIZE)))+ ... 
            j*sign(imag(Sout(l+k*FFTSIZE)))); 
        PhaseNextOutSymbol = phase(sign(real(Sout(l+(k+1)*FFTSIZE)))+ ... 
            j*sign(imag(Sout(l+(k+1)*FFTSIZE)))); 
         
        if PhaseOutSymbol < 0 
            PhaseOutSymbol = PhaseOutSymbol +2*pi; 
        end 
        if PhaseNextOutSymbol < 0 
            PhaseNextOutSymbol = PhaseNextOutSymbol +2*pi; 
        end 
             
        % Calculate the Output Symbol 
        if PhaseOutSymbol == PhaseNextOutSymbol 
            %No Change 
            SoutRemoveDiffEncode(l+k*FFTSIZE) = 1 + i; 
        elseif PhaseOutSymbol < PhaseNextOutSymbol 
            PhaseDiff = PhaseNextOutSymbol-PhaseOutSymbol; 
            if PhaseDiff == 0.5*pi 
                % 90 Degree Change 
                SoutRemoveDiffEncode(l+k*FFTSIZE) = -1 + i; 
            elseif PhaseDiff == pi 
                % 180 Degree Change 
                SoutRemoveDiffEncode(l+k*FFTSIZE) = -1 - i; 
            elseif PhaseDiff == 1.5*pi 
                % 270 Degree Change 
                SoutRemoveDiffEncode(l+k*FFTSIZE) = 1 - i; 
            end 
        else  
            PhaseDiff = 2*pi-(PhaseOutSymbol-PhaseNextOutSymbol); 
            if PhaseDiff == 0.5*pi 
                % 90 Degree Change 
                SoutRemoveDiffEncode(l+k*FFTSIZE) = -1 + i; 
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            elseif PhaseDiff == pi 
                % 180 Degree Change 
                SoutRemoveDiffEncode(l+k*FFTSIZE) = -1 - i; 
            elseif PhaseDiff == 1.5*pi 
                % 270 Degree Change 
                SoutRemoveDiffEncode(l+k*FFTSIZE) = 1 - i; 
            end 
        end  % End Calculation of Output Symbol 
             
        % This handles computation of input symbol by removing diff encode 
        PhaseInSymbol = phase(S(l+k*FFTSIZE)); 
        PhaseNextInSymbol = phase(S(l+(k+1)*FFTSIZE)); 
         
        if PhaseInSymbol < 0 
            PhaseInSymbol = PhaseInSymbol +2*pi; 
        end 
        if PhaseNextInSymbol < 0 
            PhaseNextInSymbol = PhaseNextInSymbol +2*pi; 
        end 
             
        % Calculate the Input Symbol 
        if PhaseInSymbol == PhaseNextInSymbol 
            %No Change 
            SRemoveDiffEncode(l+k*FFTSIZE) = 1 + i; 
        elseif PhaseInSymbol < PhaseNextInSymbol 
            PhaseDiff = PhaseNextInSymbol-PhaseInSymbol; 
            if PhaseDiff == 0.5*pi 
                % 90 Degree Change 
                SRemoveDiffEncode(l+k*FFTSIZE) = -1 + i; 
            elseif PhaseDiff == pi 
                % 180 Degree Change 
                SRemoveDiffEncode(l+k*FFTSIZE) = -1 - i; 
            elseif PhaseDiff == 1.5*pi 
                % 270 Degree Change 
                SRemoveDiffEncode(l+k*FFTSIZE) = 1 - i; 
            end 
        else  
            PhaseDiff = 2*pi-(PhaseInSymbol-PhaseNextInSymbol); 
            if PhaseDiff == 0.5*pi 
                % 90 Degree Change 
                SRemoveDiffEncode(l+k*FFTSIZE) = -1 + i; 
            elseif PhaseDiff == pi 
                % 180 Degree Change 
                SRemoveDiffEncode(l+k*FFTSIZE) = -1 - i; 
            elseif PhaseDiff == 1.5*pi 
                % 270 Degree Change 
                SRemoveDiffEncode(l+k*FFTSIZE) = 1 - i; 
            end 
        end  % End Calculation of Input Symbol 
 
    end  % End for l=  
end % End for k 
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if NullCarriers == 1 
    % Lets determine number of bit errors 
Range = FFTSIZE*(NUMFFT-2)-FFTSIZE*313+1:FFTSIZE*(NUMFFT-2); 
realBitErrors = sign(real(SoutRemoveDiffEncode(Range)))... 
    -sign(real(SRemoveDiffEncode(Range))); 
realBitErrors = reshape(realBitErrors,FFTSIZE,313); 
realBitErrors = realBitErrors(7:58,1:313); 
realBitErrors = reshape(realBitErrors,1,(FFTSIZE-12)*313); 
 
imagBitErrors = sign(imag(SoutRemoveDiffEncode(Range)))... 
    -sign(imag(SRemoveDiffEncode(Range))); 
imagBitErrors = reshape(imagBitErrors,FFTSIZE,313); 
imagBitErrors = imagBitErrors(7:58,1:313); 
imagBitErrors = reshape(imagBitErrors,1,(FFTSIZE-12)*313); 
 
BitErrors = sum(sign(abs(realBitErrors)+abs(imagBitErrors))); 
 
 
MSE = sum(abs(Err.').^2,2)/FFTSIZE; 
 
% Display Scatter plot 
%if Display == 1 
    DisplaySout = reshape(Sout,FFTSIZE,NUMFFT); 
    DisplaySout = DisplaySout(7:58,1:end); 
    DisplaySout = reshape(DisplaySout,1,(FFTSIZE-12)*(NUMFFT)); 
    scatter(real(DisplaySout((FFTSIZE-12)*(NUMFFT-1)-1000:end)),... 
        imag(DisplaySout((FFTSIZE-12)*(NUMFFT-1)-1000:end))); 
%end 
 
else 
% Lets determine number of bit errors 
Range = FFTSIZE*(NUMFFT-2)-20000:FFTSIZE*(NUMFFT-2); 
realBitErrors = sign(real(SoutRemoveDiffEncode(Range)))... 
    -sign(real(SRemoveDiffEncode(Range))); 
imagBitErrors = sign(imag(SoutRemoveDiffEncode(Range)))... 
    -sign(imag(SRemoveDiffEncode(Range))); 
BitErrors = sum(sign(abs(realBitErrors)+abs(imagBitErrors))); 
 
 
MSE = sum(abs(Err.').^2,2)/FFTSIZE; 
 
% Display Scatter plot 
%if Display == 1 
    Sout = reshape(Sout,1,FFTSIZE*(NUMFFT)); 
    scatter(real(Sout((FFTSIZE)*(NUMFFT-1)-1000:end)),... 
        imag(Sout((FFTSIZE)*(NUMFFT-1)-1000:end))); 
%end 
end 
close(h) 
 
 
FSE_Multicarrier_Decision_Directed 
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            %% Decison Directed %% 
        % Create error vector  
        range = FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE; 
        DecisionArray = sign(real(Sout(range)))+j*sign(imag(Sout(range))); 
        Err(1:FFTSIZE,FFTBLOCK+1) =  DecisionArray.' - Sout(range).'; 
         
        % Generate FFT Twiddle Matrix 
        FFT = sqrt(1/FFTSIZE)*fft(eye(FFTSIZE)); 
         
        % Precomputation to reduce size of next block of code 
        start = FFTBLOCK*(FFTSIZE+CP)+DELTA+CP; 
         
         
        %#### Updating w1 ######## 
        column = conj(r1(start+1:start+FFTSIZE)); 
        row = conj(r1(start+1:-1:start+1-(Lw1-1))); 
        Rx = toeplitz(column,row); 
 
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw1); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW1J(m,1:Lw1) = -2*Err(m,FFTBLOCK+1)*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
        deltaW1Jsum = sum(deltaW1J(1:FFTSIZE,1:Lw1),1); 
         
        % Update filter 
        w1(1,:) = w1(1,:)- W1delta*deltaW1Jsum; 
        %constrain w1 to unit energy 
        w1(1,:)= w1(1,:)/sqrt(w1(1,:)... 
            *w1(1,:)'); 
        %#### End Updating w1 #### 
             
             
        %###### Updating w2 ###### 
        column = conj(r2(start+1:start+FFTSIZE)); 
        row = conj(r2(start+1:-1:start+1-(Lw2-1))); 
        Rx = toeplitz(column,row); 
         
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw2); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW2J(m,1:Lw2) = -2*Err(m,FFTBLOCK+1)*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
        deltaW2Jsum = sum(deltaW2J(1:FFTSIZE,1:Lw2),1); 
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        % Updating Filter 
        w2(1,:) = w2(1,:)- W2delta*deltaW2Jsum; 
        %constrain w2 to unit energy 
        w2(1,:)= w2(1,:)/sqrt(w2(1,:)... 
            *w2(1,:)');     
        %#### End Updating w2 ##### 
             
         
        %###### Updating FEQ ###### 
        deltaFEQJ = -2*Err(1:FFTSIZE,FFTBLOCK+1)... 
            .*Y(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE)'; 
        FEQ(1,:) = FEQ(1,:)-(FEQdelta.*deltaFEQJ).'; 
        %#### End Updating FEQ #### 

 
 

FSE Multicarrier Constant Modulus 
 
        %% Constant Modulus error for TEQ %% 
        % Create error vector  
        range = FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE; 
        Err(1:FFTSIZE,FFTBLOCK+1) =  2 - Sout(range)'.*Sout(range).'; 
         
        FFT = sqrt(1/FFTSIZE)*fft(eye(FFTSIZE)); 
         
        % Precomputation to reduce size of next block of code 
        start = FFTBLOCK*(FFTSIZE+CP)+DELTA+CP; 
         
        %#### Updating w1 ######## 
        column = conj(r1(start+1:start+FFTSIZE)); 
        row = conj(r1(start+1:-1:start+1-(Lw1-1))); 
        Rx = toeplitz(column,row); 
 
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw1); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW1J(m,1:Lw1) = -4*Sout(range(m)).*real(Err(m,FFTBLOCK+1))*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
        deltaW1Jsum = sum(deltaW1J(1:FFTSIZE,1:Lw1),1); 
 
        w1(1,:) = w1(1,:)- W1delta*deltaW1Jsum; 
        %constrain w1 to unit energy 
        w1(1,:)= w1(1,:)/sqrt(w1(1,:)... 
            *w1(1,:)'); 
        %#### End Updating w1 #### 
             
             
        %###### Updating w2 ###### 
        column = conj(r2(start+1:start+FFTSIZE)); 
        row = conj(r2(start+1:-1:start+1-(Lw2-1))); 
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        Rx = toeplitz(column,row); 
         
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw2); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW2J(m,1:Lw2) = -4*Sout(range(m))*real(Err(m,FFTBLOCK+1))*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
        deltaW2Jsum = sum(deltaW2J(1:FFTSIZE,1:Lw2),1); 
 
         
        w2(1,:) = w2(1,:)- W2delta*deltaW2Jsum; 
        %constrain w2 to unit energy 
        w2(1,:)= w2(1,:)/sqrt(w2(1,:)... 
            *w2(1,:)');     
        %#### End Updating w2 ##### 
             
         
        %###### Updating FEQ ###### 
         
        %% Decison Directed error for FEQ %% 
        % Create error vector  
        range = FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE; 
        DecisionArray = sign(real(Sout(range)))+j*sign(imag(Sout(range))); 
        FEQErr(1:FFTSIZE,FFTBLOCK+1) =  DecisionArray.' - Sout(range).'; 
         
        deltaFEQJ = -2*FEQErr(1:FFTSIZE,FFTBLOCK+1)... 
            .*Y(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE)'; 
        FEQ(1,:) = FEQ(1,:)-(FEQdelta.*deltaFEQJ).'; 
        %#### End Updating FEQ #### 
 
 

FSE Multicarrier Restoration of Redundancy 
 

            %% Merry %% 
        % Create error vector  
        start = FFTBLOCK*(FFTSIZE+CP)+DELTA+CP; 
        Err(FFTBLOCK+1) =  y(start)-y(start+FFTSIZE); 
         
        %#### Updating w1 ######## 
        % Update filter 
        w1(1,:) = w1(1,:)- W1delta*Err(FFTBLOCK+1)*(conj(r1(start:-1:start-(Lw1-1)))... 
            -conj(r1(start+FFTSIZE:-1:start+FFTSIZE-(Lw1-1)))); 
        %constrain w1 to unit energy 
        w1(1,:)= w1(1,:)/sqrt(w1(1,:)... 
            *w1(1,:)'); 
        %#### End Updating w1 #### 
             
             
        %###### Updating w2 ###### 
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        % Update filter 
        w2(1,:) = w2(1,:)- W2delta*Err(FFTBLOCK+1)*(conj(r2(start:-1:start-(Lw2-1)))... 
            -conj(r2(start+FFTSIZE:start+FFTSIZE+Lw2-1))); 
        %constrain w2 to unit energy 
        w2(1,:)= w2(1,:)/sqrt(w2(1,:)... 
            *w2(1,:)');     
        %#### End Updating w2 ##### 
             
         
        %###### Updating FEQ ###### 
        %% Decison Directed error for FEQ %% 
        % Create error vector  
        range = FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE; 
        DecisionArray = sign(real(Sout(range)))+j*sign(imag(Sout(range))); 
        FEQErr(1:FFTSIZE,FFTBLOCK+1) =  DecisionArray.' - Sout(range).'; 
         
        deltaFEQJ = -2*FEQErr(1:FFTSIZE,FFTBLOCK+1)... 
            .*Y(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE)'; 
        FEQ(1,:) = FEQ(1,:)-(FEQdelta.*deltaFEQJ).'; 
        %#### End Updating FEQ #### 
 
 

FSE Carrier Nulling Algorithm 
 
            %% Carrier Nulling %% 
        % Create error vector  
        range = FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE; 
        DecisionArray = zeros(FFTSIZE,1); 
        Err(1:FFTSIZE,FFTBLOCK+1) =  DecisionArray - Sout(range).'; 
        Err(7:FFTSIZE-6,FFTBLOCK+1) = zeros(1,FFTSIZE-12); 
         
         
        % Generate FFT Twiddle Matrix 
        FFT = sqrt(1/FFTSIZE)*fft(eye(FFTSIZE)); 
         
        % Precomputation to reduce size of next block of code 
        start = FFTBLOCK*(FFTSIZE+CP)+DELTA+CP; 
         
        column = conj(r1(start+1:start+FFTSIZE)); 
        row = conj(r1(start+1:-1:start+1-(Lw1-1))); 
        Rx = toeplitz(column,row); 
         
        %#### Updating w1 ######## 
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw1); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW1J(m,1:Lw1) = -2*Err(m,FFTBLOCK+1)*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
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        deltaW1Jsum = sum(deltaW1J(1:6,1:Lw1),1); 
        deltaW1Jsum = deltaW1Jsum + ... 
            sum(deltaW1J(FFTSIZE-5:FFTSIZE,1:Lw1),1); 
         
        % Update filter 
        w1(1,:) = w1(1,:)- W1delta*deltaW1Jsum; 
        %constrain w1 to unit energy 
        w1(1,:)= w1(1,:)/sqrt(w1(1,:)... 
            *w1(1,:)'); 
        %#### End Updating w1 #### 
             
             
        %###### Updating w2 ###### 
        column = conj(r2(start+1:start+FFTSIZE)); 
        row = conj(r2(start+1:-1:start+1-(Lw2-1))); 
        Rx = toeplitz(column,row); 
         
        for m = 1:FFTSIZE 
            %Calculate inner sum 
            FFTx = FFT(m,1:FFTSIZE)'*ones(1,Lw2); 
            temp = sum(FFTx.*Rx,1); 
             
            deltaW2J(m,1:Lw2) = -2*Err(m,FFTBLOCK+1)*conj(FEQ(m))*temp; 
        end 
 
        % Calculating outer sum 
        deltaW2Jsum = sum(deltaW2J(1:6,1:Lw2),1); 
        deltaW2Jsum = deltaW2Jsum + ... 
            sum(deltaW2J(FFTSIZE-5:FFTSIZE,1:Lw2),1); 
         
        % Updating Filter 
        w2(1,:) = w2(1,:)- W2delta*deltaW2Jsum; 
        %constrain w2 to unit energy 
        w2(1,:)= w2(1,:)/sqrt(w2(1,:)... 
            *w2(1,:)');     
        %#### End Updating w2 ##### 
             
         
        %###### Updating FEQ ###### 
         
        %% Decison Directed error for FEQ %% 
        % Create error vector  
        DecisionArray = sign(real(Sout(range)))+j*sign(imag(Sout(range))); 
        FEQErr(1:FFTSIZE,FFTBLOCK+1) =  DecisionArray.' - Sout(range).'; 
         
        deltaFEQJ = -2*FEQErr(1:FFTSIZE,FFTBLOCK+1)... 
            .*Y(FFTBLOCK*FFTSIZE+1:(FFTBLOCK+1)*FFTSIZE)'; 
        FEQ(1,:) = FEQ(1,:)-(FEQdelta.*deltaFEQJ).'; 
        %#### End Updating FEQ #### 
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