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Abstract

Random phase screens are essential elements of simulating light propagation

through turbulent media. In order to be effective, they must accurately reflect theory

and be implementable by the user. This document explains and evaluates three

methods of generating random phase screens: using a Fourier series upon a polar

frequency grid with logarithmic spacing; using the fast Fourier transform, with its

cartesian frequency grid; and using Zernike polynomials. It provides a comparison of

the polar Fourier series technique with the two more common techniques (fast Fourier

transform and Zernike), with the end result of giving the users enough information to

choose which method best fits their needs. The evaluation criteria used are generation

time (usability) and phase structure function (accuracy).
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Polar Phase Screens:

A Comparison with Other Methods

of

Random Phase Screen Generation

I. Overview

Random phase screens are key elements of simulating optical atmospheric tur-

bulence. There several methods of generating random phase screens, three

of which (Zernike, Fast Fourier Transform, and Polar Fourier Series) are compared

herein. This is the first organized analysis of the benefits and drawbacks of each

method using the structure function as a measure of accuracy to theory. The phase

screen generation time is used as a measure of usability. Together, the structure func-

tion and the generation time allow one to choose the most effective method for a given

application.

1.1 Why Random Phase Screens?

Light travelling through the atmosphere (or any turbulent medium) is affected

by the random fluctuations of the index of refraction (IOR). Coherent masses of air,

called eddies, are characterized by indices of refraction determined by their partic-

ular temperature, pressure and humidity. The effect of these eddies upon the light

incident upon them is observable as distortion, or even loss, of the signal incident

upon the detector. If the optical path were non-random, the system could be mod-

elled and each distortion compensated for, allowing the perfect reconstruction of the

source. However, as the optical path is random, complex algorithms are required to

statistically model the random data.

Random phase screens are used to model the random IOR of a turbulent

medium. They do this by adding a correlated random phase to the propagating

1



field, resulting in a ‘detected’ image similar to that which would be the result of ac-

tual propagation. More than one screen can be used to simulate a complete optical

path; and, because each phase screen compresses the effects of propagation through a

three-dimensional volume into a two-dimensional ‘screen’, they can be placed at any

location along the propagation path.

There are several reasons for using more than one phase screen to simulate a

propagation. For instance, consider a telescope viewing an object in space. Using

only a single phase screen and placing it in the lens of the receiving aperture would

entirely negate the effect of scintillation. Scintillation, or fluctuation of signal power, is

effected by a phase screens located away from the aperture. Also, typical Fourier phase

screen generation techniques have difficulty representing low frequency abberations

accurately. However, placing the screen near the source or even equidistant between

the source and detector, fails to capture the fact that most of the turbulence is in

the first few 100 meters of above an earth based telescope. These difficulties can be

overcome by using multiple screens placed at strategic locations along the propagation

path. Because the low frequency tip and tilt abberations account for approximately

80% of the system’s aberrant power, artificial limitations upon them can greatly

decrease the efficacy of the model.

The use of multiple phase screens has some drawbacks. Each screen takes a

certain amount of time to generate, depending upon its size and the technique used.

Some applications call for the generation of extremely large phase screens (e.g.,the

implementation of Taylor’s frozen turbulence hypothesis to simulate time dependent

fluctuations [1, 59]). Using current techniques, the generation of multiple large phase

screens can take a prohibitive amount of time.

As phase screens are only a tool used to test the efficacy of what are often cum-

bersome algorithms, it is important that they be as efficient as possible. Minimizing

the generation time and accuracy of phase screens maximizes their usefulness to the

researcher.

2



1.2 Thesis Overview

Chapter two describes the theoretical and mathematical basis for phase screens

and their analysis.

Chapter three describes particular methods used to generate and evaluate phase

screens, including MATLAB R© commands and mathematical formulae.

Chapter four gives the results of the comparative analysis performed using the

method of generation and evaluation outlined in chapter three.

Chapter five presents the conclusions expands to possible applications and rec-

ommendations.

1.3 Contributions

This document gives an technical overview and evaluation of three methods of

generating random phase screens: Zernike, Fast Fourier Transform, and Polar Fourier

Series. It provides information for someone using random phase screens to decide

which method best fits their needs.

3



II. Atmospheric, Mathematical and Simulation Theory

Phase screens are valuable tools in simulating turbulent media (such as the earth’s

atmosphere) and their effects upon the propagation of light. This chapter will

highlight their significance after presenting necessary background material. Section

2.1 gives a rough overview of atmospheric turbulence and how it affects the propa-

gation of light. Section 2.2 discusses random variables and some of their statistics.

Random variable are used extensively in optical atmospheric modelling and 2.2 gives

and explanation of some of the basic tools used. Section 2.3 expands upon those basic

tools by development of the structure function. Section 2.4 covers the most common

models of the atmospheric power spectrum, including Kolmogorov’s. Section 2.5 uses

the structure function and power spectrum to define key atmospheric descriptors, in-

cluding the Fried radius. Section 2.6 gives an overview of the types of phase screens

focused upon in this thesis. Section 2.7 defines Zernike polynomials, their covariance

and useful related details. Section 2.8 covers the Fourier transform as it is used in

creating phase screens. It also covers the distinctions between the three methods.

2.1 Atmospheric Turbulence

Kolmogorov modelled the atmosphere as a viscous fluid, subject to conditions

of turbulent and laminar flow [1, Ch. 3]. The nature of the flow can be characterized

by a turbulent intensity using the Reynolds Number [9, p. 58], which increases with

the degree of turbulence. Turbulence in the atmosphere is caused by local unstable air

masses resulting from convection and wind shear in the atmosphere. These air masses,

called eddies range in size from small (on the order of millimeters or centimeters) to

large (on the order of 100 meters). The smallest an eddy can be and still retain its

own distinct refraction characteristics is called the inner scale, denoted l0. Thus air

masses smaller than l0 are seen only as elements of larger eddies. The largest and

eddy can be and still maintain viscosity, seen as a correlated index of refraction (IOR),

is called the outer scale, denoted L0. The range of eddy sizes l0 to L0 is called the

4



inertial subrange, within which there is a continuous transfer of energy as large eddies

break down into smaller ones and small eddies eventually dissipate as heat.

The defining characteristic of an eddy is that, within itself, each eddy is homo-

geneous and isotropic. The inertial subrange is the complete range of eddy sizes of

interest. Air masses smaller than l0 are assumed not to exist and air masses larger

than L0 are no longer assumed homogeneous or isotropic. It should be noted that the

inner scale is inversely proportional to turbulence strength, becoming even smaller in

strong turbulence, and the outer scale is directly proportional to turbulence strength,

becoming larger in strong turbulence.

It is the random formation and dissipation of these eddies that is responsible

for the stochastic nature of the atmospheric IOR. While the mean value of the IOR

of air n0 is approximately 1, it varies slightly with temperature, pressure, and humid-

ity. These conditions are slightly different for each eddy. By suppressing the time

variations, the index of refraction can be expressed as

n(R) = n0 + n1(R) (2.1)

where n1(R) is the deviation of the IOR from the mean at some location R. Setting

n0 = 1, and writing n(R) in terms of temperature and pressure dependence yields

n(R) = 1 + 77.6× 10−6(1 + 7.52× 10−3λ−2)
Patm(R)

T (R)
(2.2)

≈ 1 + 79× 10−6Patm(R)

T (R)
(2.3)

where λ is the optical wavelength in microns, Patm is the pressure in millibars and T

is the temperature in Kelvin. The approximation in the second line assumes visible

wavelengths.

Statistically, the atmospheric IOR deviates from n0 as a Gaussian (or normal)

distribution with a slowly varying mean. Though not strictly stationary, the atmo-

sphere does possess stationary increments which make it well suited to description by

5



structure function Dn(R), discussed in more detail later. Given that the ensemble

average of n(R), denoted 〈n(R)〉, is such that 〈n(R)〉 = m(R), the spatial auto-

covariance function can be expressed as

Bn(R) = 〈[n(R1)−m(R1)][n
∗(R2)−m∗(R2)]〉. (2.4)

Given the further assumption of statistical homogeneity, and substituting eqn. (2.1)

while noting that 〈n1(R)〉 = 0, the covariance expression simplifies to

Bn(R) = 〈n1(R1)n1(R1 + R)〉 (2.5)

where R = |R2 −R1|. [1, Ch.2]

2.2 Correlated Random Variables

Random variable are correlated if they are non-orthogonal, that is, if E[XY ] 6= 0

for any random variables X and Y . The covariance [5, sec. 4.7] of any two random

variables X and Y is

COV (X,Y ) = E[(X − E[X])(Y − E[Y ])] (2.6)

= E[XY −XE[Y ]− Y E[X] + E[X]E[Y ] (2.7)

= E[XY ]− 2E[X]E[Y ] + E[X]E[Y ] (2.8)

= E[XY ]− E[X]E[Y ]. (2.9)

However, if X and Y are independent (and thus uncorrelated), then E[XY ] =

E[X]E[Y ] and so COV (X, Y ) = 0.

Random processes, also known as a stochastic processes have a detailed defi-

nition, comprehensively covered in [5, Ch. 6]. They are closely related to random

variables and can be described using the same language of statistics.
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The statistics of a random process can be functions of time, location, or other

non-random variables. Let t be an independent, non-random variable (possibly a

vector), and X(t) be a random process.

The mean of X(t), denoted by mX , is

mX(t) = E[X(t)] =

∫ ∞

−∞
xfX(t)(x)dx (2.10)

where fX(t)(x) is the probability distribution function (pdf) of X(t).

The autocorrelation of X(t), denoted RX , is

RX(t1, t2) = E[X(t1)X(t2)] =

∫ ∞

−∞

∫ ∞

−∞
xyfX(t1),X(t2)(x, y)dxdy (2.11)

where fX(t1),X(t2)(x, y) is the second order pdf of X(t).

The autocovariance of of X(t), denoted BX , can be expressed in terms of the

mean, as

BX(t1, t2) = E[{X(t1)−mX(t1)}{X(t2)−mX(t2)}] (2.12)

and also in terms of the autocorrelation, as

BX(t1, t2) = RX(t1, t2)−mX(t1)mX(t2). (2.13)

Note that BX(t1, t2) = RX(t1, t2) for zero mean processes.

For a stationary random process, or one that can be described in stationary

independent increments, the autocorrelation can be expressed as RX(τ) in terms of

the offset τ = t2 − t1. The Power Spectral Density (PSD) of a random process X(t)

is defined as the Fourier Transform [4, 5] of the autocorrelation RX(τ). The PSD,

denoted ΦX , then becomes

ΦX(f) = F{RX(τ)} =

∫ ∞

−∞
RX(τ)e−j2πfτdτ (2.14)
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Through the use of Parseval’s Theorem, Pave the average power of X(t) can be

expressed as

Pave = E[X2(t)] (2.15)

= RX(0) (2.16)

=

∫ ∞

−∞
ΦX(f)df (2.17)

2.3 Structure Function

The structure function is the expected variance (or, equivalently, mean square

difference) of the random process with respect to the separation distance. Mathemat-

ically, the structure function is a difference function

Dn(R1,R2) = E[(n(R1)− n(R1 + R))2] (2.18)

where R = R2 −R1. In a statistically homogeneous medium, the structure function

is related to the covariance function as follows:

Dn(R) = 2[Bn(0)−Bn(R)] (2.19)

The additional assumption of isotropy of the propagation medium renders the statis-

tics rotationally invariant (translational invariance is given by homogeneity) and al-

lows the structure function to be expressed purely as a function of the magnitude of

the offset,

Dn(R) = 2[Bn(0)−Bn(R)] (2.20)

where R = |R|.

There are advantages inherent in the structure function that make it preferable

to the covariance for this research. First, due to the spectrum discussed later, the

covariance has a singularity at R = 0 which the structure function avoids. Second,

the structure function is a mean difference metric, so Dn(0) will always be zero, and
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Dn(R 6= 0) will be directly related to the similarity, or correlation, of the values of

n(R1) to those of n(R1 +R), making it an intuitive error metric. Third, the structure

function exists for non-stationary random process that have stationary increments,

whereas the covariance function is not well defined for such.

The atmospheric IOR structure function using the Kolmogorov power spectrum

(see section 2.4) is given in terms of C2
n as

Dn(R) =





C2
nR2/3, l0 ¿ R ¿ L0

C2
nl
−4/3
0 R2, R ¿ l0

(2.21)

where, as above, l0 is the inner scale of the inertial subrange. From observation,

Dn should increase exponentially with offset distance, Dn ∝ R2/3, within the inertial

subrange.

2.4 Power Spectra

The power spectrum of a process can give enormous insight into the nature of

the process, as it provides information about the frequency content. This has a direct

application in evaluating phase screen efficacy because different techniques are suited

to different ends of the spectrum. For instance, Zernike polynomials efficiently de-

scribe the low frequency portion of the spectrum but can become unwieldy when the

upper frequencies need to be accurately modelled; and it is just the opposite for the

FFT technique. Because optical systems must perform across the entire spectrum,

phase screens must be designed to include the entire spectrum. Therefore, it is con-

venient to express the descriptive statistics of both phase screens and the atmosphere

which they simulate in terms of the power spectrum density (PSD) Φn.

First, the power spectral density is itself a Fourier transform of the autocorrela-

tion (or autocovariance if the process is zero mean) function of a random process [1,5]

Φn(κ) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
Bn(R)exp(−jK ·R)d3R (2.22)
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where κ = |K| is the scalar wave number. Assuming that the autocorrelation is

homogeneous and isotropic the above equation becomes

Φn(κ) =
1

2π2κ

∫ ∞

0

Bn(R)sin(κR)RdR (2.23)

Using the inverse Fourier Transform to express the autocovariance in terms of the

power spectrum yields

Bn(R) =
4π

R

∫ ∞

0

κΦn(κ)sin(κR)dκ. (2.24)

Using the relationship between the structure function and the autocovariance, Dn can

also be expressed in terms of the PSD

Dn(R) = 8π

∫ ∞

0

κΦn(κ)

(
1− sin(κR)

κR

)
dκ. (2.25)

There are several power spectrum models, all of which have been derived em-

pirically from observations of the atmosphere and/or unit analysis of relevant quan-

tities [1].

2.4.1 Kolmogorov. Kolmogorov’s PSD is the simplest, but only accurate

within a bandwidth proportional to the inertial subrange.

Φn(κ) = 0.033C2
nκ

−11/3, 1/L0 ¿ κ ¿ 1/l0 (2.26)

2.4.2 Tatarski. Tatarski’s model extended the accuracy of the model to

high frequencies, but is still inaccurate for κ less than 1/L0.

Φn(κ) = 0.033C2
nκ

−11/3exp(−κ2/κ2
m), κ À 1/L0 (2.27)

Note that κm = 5.92/l0.
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Figure 2.1: Atmospheric power spectra models based upon
empirical observations. Parameters: l0 = 0.01m, L0 = 10m

2.4.3 Von Karmen. The Von Karmen PSD model is of use across the entire

spectrum

Φn(κ) = 0.033C2
nκ−11/3 exp(−κ2/κ2

m)

(κ2+κ2
0)11/16 , 0 ≤ κ < ∞ (2.28)

and κm = 5.92/l0 and κ0 = 1/L0 or κ0 = 2π/L0.

2.4.4 Modified Atmospheric. The modified Atmospheric spectrum is the

most complicated of the PSD models discussed herein. It largely follows the Von

Karmen PSD, but allows for the ‘bump’ observed around 1/l0, as follows

Φn(κ) = 0.033C2
n[1 + 1.802(κ/κl)− 0.254(κ/κl)

7/6]
exp(−κ2/κ2

l )

(κ2+κ2
0)11/16 , 0 ≤ κ < ∞ (2.29)

where κl = 3.3/l0 and κ0 = 1/L0 or κ0 = 2π/L0.
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2.5 Atmospheric Turbulence Descriptors

Optical atmospheric models are the subject of ongoing research. Most models

include the concept of the atmospheric index of refraction structure constant C2
n

denoting the intensity of atmospheric turbulence. The integrated C2
n profile is defined

as

C2
n =

∫
C2

n(z)dz (2.30)

where z is the optical path. C2
n can change drastically with time of day, location and

weather conditions. However, for relatively clear conditions, an reasonable C2
n value

is on the order of 10−16.

For a plane wave, still using the Kolmogorov power spectrum, the phase struc-

ture function Dφ(R) is related to the integrated C2
n as

Dφ(R) = 2.91k2R5/3C2
n (2.31)

where k is the wave number. The atmospheric coherence radius ρ0 is defined as

the point when the Dφ(R) = 2. This corresponds to the separation at which the

autocorrelation is 1/e. The Fried radius r0 is related to ρ0 as

r0 = 2.1ρ0 (2.32)

The Fried radius is used together with the diameter of a system optic to provide a

single widely used system descriptor, D/r0.

In terms of C2
n, r0 can be derived by noting the relationship between the phase

and atmospheric structure functions, in a homogeneous, isotropic medium, is

Dφ(R) = 2.91k2RDn(R) (2.33)
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Figure 2.2: Theoretical phase structure functions for various
D/r0 values.

Using the equation above along with equation 2.21, r0 of a plane wave can be expressed

as

r0 = 0.185

[
4π2

k2C2
n

]3/5

(2.34)

This in turn allows the Dφ to be expressed as

Dφ(R) = 6.88(R/r0)
5/3 (2.35)

where the proportionality Dφ to R5/3 is particularly evident.

A full derivation of the phase and atmospheric IOR structure functions can be

found in Roggemann and Welsh’s Imaging Through Turbulence [9, sec. 3.3,3.4].

2.6 Types of Phase Screens

Phase screens are used in wave optics models to simulate the correlated ran-

dom phase change that occurs during propagation of light through turbulent media,

such as the atmosphere. There are three methods commonly used to generate phase
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Table 2.1: Zernike Polynomials.

-

n m i Polynomial Name

0 0 1 1 Piston (Ignored herein)
1 1 2 2r cos θ Tip
1 1 3 2r sin θ Tilt
2 0 4 3.464r2 − 1.732 Defocus
2 2 5 2.449r2 sin 2θ Astigmatism 1
2 2 6 2.449r2 cos 2θ Astigmatism 2
3 1 7 (8.485r3 − 5.657r) sin θ Coma 1
3 1 8 (8.485r3 − 5.657r) cos θ Coma 2
3 3 9 2.828r3 sin 3θ
3 3 10 2.828r3 cos 3θ
4 0 11 3.416r4 − 13.416r2 + 2.236 Spherical Abberation

screens, Zernike polynomials, Fast Fourier Transforms (FFT), and Fourier Series (FS).

There is also a modification of the FFT technique called Sub-Harmonic Frequency

Expansion (SHFE) which is worth mentioning, but is not covered in depth due to its

similarity to both the FFT and the FS methods. Each of these phase screen genera-

tion methods relies upon random magnitudes applied to sets of basis functions. For

the Zernike method, the functions are a set of indexed polynomials, while the FFT

and FS methods rely upon sinusoids.

2.7 Zernike Polynomials

Zernike phase screens are generated as a weighted set of polynomials [9]. Each

Zernike polynomial is continuous and describes a unique pattern of abberation as

may be found in a lens of unit diameter. The set Zernike polynomials form a normal,

orthogonal basis set thus, for any Zernike polynomials Zi and Zj

∫ 2π

0

∫ 1

0

Zi(r, θ)Zj(r, θ)drdθ =





0 if i 6= j

1 if i = j
(2.36)
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The equations in table 2.1 are derived from the more general equations

Zi,even(r, θ) =
√

2(n + 1)Rm
n (r) cos(mθ),m 6= 0 (2.37)

Zi,odd(r, θ) =
√

2(n + 1)Rm
n (r) sin(mθ),m 6= 0 (2.38)

Zi(r, θ) = R0
n,m = 0 (2.39)

where m and n are the indices of azimuthal order and radial order, respectively, and

r ≤ 1. If a screen of other than unit radius (r > 1) is required, the following transform

is used: For a screen of desired radius R, with absolute position as r, and normalized

position ρ = r/R, the phase can be expressed as

φ(Rρ, θ) =
∞∑
i=1

aiZi(ρ, θ) (2.40)

φ(r, θ) =
∞∑
i=1

aiZi

( r

R
, θ

)
(2.41)

Note that table 2.1 also uses the index i, which is used in applying the Zernike

coefficient ai. The subscript i is unique to an individual polynomial Zi (as n and m

are not) and allows one to specify the power of each separate abberation within the

system once the polynomials have been generated.

The Zernike coefficients ai relating to to Zernike polynomials Zi can be recovered

from a given phase screen due to their orthonormality, using the following equation

ai =

∫
W (~r)φ(~r)Zi(~r)d~r∫
W (~r)|Zi(~r)|2d~r (2.42)

where W (~r) is a windowing function that defines the extent of the Zernike polynomials,

φ(~r) is the zero mean input phase map and

∫
W (~r)d~r = 1
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Figure 2.3: Zernike Polynomials 2 through 10. Note that the
Zenike basis set assumes a unit circle and must be scaled if that
is not the case.

The assumption that φ(~r) is zero mean implies that piston error (Z1) is ignored,

which is practical as it corresponds to a non-measurable constant time delay from the

source to the detector. If the screen is not zero mean, it must be normalized before

equation 2.42 is applied. a1 can be recovered by noting that it is equal to the mean

of the phase before normalization.

The total aberrant power (i.e. the average mean square wavefront error) of a

Zernike phase screen can be expressed by the sum of its squared Zernike coefficients,

excluding a1 for the reasons given above.

ε2 =

∫
W (~r)φ2(~r)d~r (2.43)

=
∞∑
2

a2
i (2.44)
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Table 2.2: Zernike Covariance Ma-
trix (Empty squares represent zeros).

2 3 4 5 6 7 8 9 10

2 0.448 -0.0141

3 0.448 -0.0141

4 0.0232

5 0.0232

6 0.0232

7 -0.0141 0.00618

8 -0.0141 0.00618

9 0.00618

10 0.00618

Table 2.2 shows the Zernike covariance matrix for a system D/r0 = 1, denoted

Ai,j, using the Komogorov spectrum. The covariance matrix for any given D/r0 value

is

BZiZj
= Ai,j(D/r0)

5/3 (2.45)

Scaling the covariance matrix and applying it to the set of polynomials are key

steps in construction a Zernike phase screen, as is further discussed in chapter 3.

The Zernike method builds phase screens from low frequency to high, so the first

few polynomial describe the abberations of greatest power. As noted by Roggeman

and Welsh [9] nearly 80% of the aberrative power of an optical system is contained

within the tip and tilt (Z2 and Z3) error alone. This is advantageous for ‘ball-park’

simulations, when an adequate phase screens may be constructed with only a few
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polynomials. The disadvantage arises when attempting more precise high-frequency

models, as they can require a large number of polynomials to be generated.

2.8 Fourier Phase Screens

The discrete Fourier transform is the representation of a signal as the sum of its

frequency content [4, 6, 8]. The result is a complex valued function of the frequency

variable ~k = (kx, ky):

F (kx, ky) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−j 2π
N

(xkx+yky) (2.46)

= FR(kx, ky) + jFI(kx, ky) (2.47)

= |F (kx, ky)|ej∠F (kx,ky) (2.48)

Both the FFT and the FS methods use this transform, as does SHFE. However,

the difference between the methods is readily discussed using the inverse transform.

The two-dimensional inverse transform represents a signal f(x, y) as the sum of its

frequency content F (kx, ky)

f(x, y) =
∑

kx

∑

ky

F (kx, ky)e
−j2π(xkx+yky) (2.49)

The FFT method uses frequencies kx and ky at regular intervals on a cartesian grid,

such that dkx = dky for all kx and ky (see figure 2.4). The FS method presented

here uses frequencies at logarithmic intervals on a polar grid (figure 2.5). The SHFE

method uses the same base frequency grid as the FFT, but iteratively expands the

lower frequencies (figure 2.6) to build more low frequency content.

2.8.1 Fast Fourier Transform. By evenly spacing the component frequencies

on a cartesian grid and using code that has been extensively optimized, the FFT

method requires only N log N operations, reducing the number of operations required
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Figure 2.4: The base frequency grid of an FFT phase screen.
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Figure 2.5: The base frequency grid of an FS phase screen.
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Figure 2.6: The zero frequency pixel of an FFT phase screen
after three iterations of Sub-Harmonic Frequency Expansion.

by an order of N/logN . The atmospheric phase is modelled via a power spectrum

Φ(~κ) used as a filter. The filter is applied to Gaussian random variables to create the

weighting function for each frequency component, and the Fourier transform is taken.

SFFT (~r) = F−1{G(~κ)
√

Φ(~κ)} (2.50)

where G(~κ) is a matrix of unit variance Gaussian random variables and F−1 is the

inverse Fourier transform operator. If G(~κ) is complex Gaussian,

SFFT (~r) = SR(~r) + jSI(~r)

where SR and SI are independent. This yields two distinct phase screens φ1(~r) =

SR(~r) and φ2(~r) = SI(~r).

There are two negative characteristics associated with the FFT frequency grid.

First, all frequencies lower than the sampling frequency fs are lumped into the DC

component (see figure 2.4. Due to the fact that atmospheric turbulence power is
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0

0

Figure 2.7: The nine lowest frequencies of an FFT phase
screen. The diagonal frequency points are farther from zero
than the on-axis points by a factor of

√
2.

highest for low frequencies, this may lower fidelity. Second, the frequency steps are

larger on the diagonal than on either of the axes by a factor of
√

2 (see figures 2.7

and 2.8).

2.8.2 Fourier Series. The FS phase screen generated on a logarithmically

scaled polar grid, rather than an equidistant rectangular grid. The logarithmic scaling

allows for a higher density of frequencies near zero while not requiring the same density

at the higher frequencies (figure 2.9). Figure 2.10 is the magnified center of figure 2.5,

showing the low frequency components. No that the low frequency grid is divided into

multiple low frequencies. The polar distributions ensures that the frequency step will

be the same regardless of direction; eliminating the
√

2 difference seen on the FFT

diagonals.

2.8.3 Sub-Harmonic Frequency Expansion. In order to avoid generating

excess high frequency data while retaining the speed of the FFT, the Sub-Harmonic
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Figure 2.8: Example of the nine lowest frequencies within an
FFT phase screen, corresponding to figure 2.7. The effect of the√

2 factor in the frequency step of the diagonal elements can be
seen in the closer spacing of the lines in (a),(c),(g) and (f).
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Figure 2.9: Frequency domain locations of the sinusoids con-
tained within the FS phase screen on log-log and semi-log axes.
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Figure 2.10: Frequency domain locations of the sinusoids con-
tained within the FS phase screen.

Frequency Expansion (SHFE) can be used to expand only the low frequency terms of

an FFT phase screen. This is done by dividing the zero frequency pixel of the FFT

screen into increasingly finer grids (2.11). Each new frequency is used to generate a

two-dimensional sinusoid which is then weighted with a random added to the original

FFT phase screen. Due to the decrease in frequency, the phase screen will be to small

to contain an entire sinusoidal period, causing the screen to gain a non-zero mean.

Therefore, the phase screen may need to be re-normalized after SHFE.

The SHFE method combines the optimized code of the FFT method with some

of the individual frequency specification of the FS method. It is more cumbersome

than the pure FFT method and still retains some of the flaws, such as the
√

2 difference

between axial and diagonal frequency steps (figure 2.12). The SHFE frequency spread

is not as efficient as that of the FS method, even though it does increase frequency

density near zero. The SHFE method can be viewed as a hybrid combination of FFT

and FS methods. Therefore, though worth mentioning for completeness, SHFE will

not be evaluated individually herein.
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Figure 2.11: The low pixels of an FFT frequency grid after
one iteration of SHFE. The expanded frequencies are denoted
with an asterisk.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.12: Phase effects examples corresponding to the ex-
panded frequencies from figure 2.11. Note that they are lower
frequency than those of 2.8 but still contain the

√
2 difference

on the diagonals.
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III. Methods of Comparison

Three types of phase screens are generated - Zernike, FFT, and FS - in various

sizes. Each of which must then evaluated for time efficiency and correspondence

to theory. This chapter outlines the evaluation methods used herein. Section 3.1

covers the methods used to generate all three, in the above order. Section 3.2 covers

what needs to be considered when deciding the size of phase screen to generate.

Section 3.3 discusses how the generation time of each method is analyzed. Section 3.4

contains information about the frequency content of the Zernike polynomials. Section

3.5 is a brief summary of the use of the structure function.

3.1 Generating Phase Screens

3.1.1 Zernike. A Zernike phase screen is generated by applying weighted

coefficients to the set of Zernike polynomials. The coefficient values are determined by

the Zernike covariance matrix for the given D/r0. The random samples are calculated

by using the cholescky factorization via the MATLAB R© ‘chol’ command [6]

A = CHOL(Ka)′ ∗G (3.1)

where Ka is the Zernike covariance matrix, G is a vector of unit variance, zero mean

Gaussian random variables and A is the resulting vector of random, correlated Zernike

coefficients. Note that the Zernike covariance matrix for any D/r0 can be generated

by multiplying the covariance matrix for D/r0 = 1 by (D/r0)
(5/3). This allows one

Zernike covariance matrix to be loaded from memory and used with only a multi-

plicative change.

The MATLAB R© routine MakeZernikePhzScrn.m generates an N×N pixel, zero

mean phase screen with a covariance corresponding to a given D/r0. It takes as input

four parameters: the system D/r0 value, the size (in pixels) of the screen, the square

Zernike covariance matrix for D/r0 = 1 (Ka0), and the number of Zernike polynomials

to be used. The process of generating a Zernike phase screen can be summarized as

follows:
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Figure 3.1: A Zernike Phase Screen constructed using Zernike
polynomials 2 through 81. N = 100 pixels per side.

• Calculate given Zernike polynomials Zi on a unit circle.

• Load Zernike covariance matrix Ka and normalize it to D/r0

• Calculate random weights ai and apply them to Zi.

• Sum Zi’s, after any necessary scaling.

There are three items of particular note when generating a Zernike phase screen

using MakeZernikePhzScrn.m. First, the dimensions of Ka0 must be at least as large

as the number of Zernike polynomials to be used, as it does in fact describe their

covariance. Second, the first degree Zernike polynomial (describing time delay, or

‘piston’ error) is not present in the covariance matrix and not used in constructing

the phase screen. The user can compensate for this by adding a constant to the screen,

making it a non-zero mean matrix. Third, as can be seen in figure 3.1, Zernike phase

screens are circular. Therefore the usable screens size is only πN2/4 rather than N2

which is the size of the matrix generated.

26



3.1.2 FFT. The MATLAB R© code Make FFTPhzScrn.m generates a phase

screen corresponding to a particular atmospheric spectral model Φ at a given C2
n.

The input spectra Φ must be the same dimensions as the desired phase screen. A

peculiarity of the FFT method is the continuity across edges. This leads to higher than

theory correlation of values on opposite sides of the screen, causing non-physical edge

effects (Figure 3.2). This is an inherent result of the Fourier transform method and

can be compensated for by generating a larger than necessary screen and discarding

the edges. In summary, to build an FFT phase screen

• Build a two-dimensional cartesian frequency grid (shown here using Von Karmen

PSD)

κ =

(
k2

x + k2
y +

(
D

L0

)2
)−11/12

exp
[−0.56(l0/D)2(k2

x + k2
y)

]

• Generate random weights G as a set of zero mean, unit variance, complex

Gaussian random numbers.

• Take the Fourier transform of the weighted frequency grid κG and multiply by

0.1517
(

D
r0

)(5/6)

.

• Take the real and imaginary parts of the result to form two distinct phase

screens.

3.1.3 FS. An FS phase screen is generated by first constructing a kernel of

two-dimensional sinusoids with frequencies relating to logarithmically spaced points

on a polar grid. Using the multiplicative spacing factor Q, the number of frequencies

Nκ is inversely proportional to the value of Q, such that

Nκ = Nθ




log
(

14.2L0

πl0

)

log Q




(3.2)
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Figure 3.2: An FFT Phase Screen constructed using Von Kar-
men frequency spectrum.

where Nθ is the number of equal angles in each polar grid. Using a triply nested

for loop, and the mean PSD, the value of each sinusoid at each pixel is calculated,

yielding a three-dimensional kernel size of SK = Nx × Ny × Nκ. Generating square

phase screens, as is done here, N = Nx = Ny, so the kernel size is

SK = N2 ×Nκ (3.3)

Randomness is applied to the kernel by multiplying by a zero mean, unit vari-

ance, complex Gaussian random number. The real and imaginary parts are taken to

form two sets of data, then each set is summed and the mean is subtracted, forming

two distinct random phase screens. In summary, to form an FS phase screen

• Generate a kernel sinusoids with frequencies relating to a logarithmic polar grid,

using the mean PSD.

• Weight each sinusoid with a zero mean, unit variance, complex Gaussian random

number.
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Figure 3.3: An FS Phase Screen constructed using a logarith-
mic kernel.

• Use the real and imaginary parts of the result to for two distinct phase screens.

Note that the itemized steps for FS greatly resemble those of the FFT. The main

difference is that, due to the frequency grid used, the FS routine cannot make use of

the optimized fft2.m code in MATLAB R© and must instead construct each sinusoid a

pixel at a time. The result (figure 3.3) contains a greater spectrum representation of

low frequency content than in typical FFT techniques. It also avoids the continuity

across edges that causes some non-physical edge effects.

3.2 Sizing Considerations

When generating phase screens as part of a model of physical phenomena the

physical area represented is important. The physical size is specified by the sample

period ∆x and the number of pixels across N , yielding a total area A of

A = N∆x×N∆x = N2∆x2 (3.4)
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As mentioned above, both Zernike and FFT phase screens have a useable size

somewhat less than the N × N pixel grid generated. For FFT phase screens, this is

because the method itself causes the opposite edges of the generated phase screen to

be highly correlated, which is contrary to observation of the atmosphere. This is a

problem that can be overcome by generating a phase screen large than what is needed

and using only the center portion for simulation.

In the case of Zernike phases screens, the size discrepancy is the result of the

definition of Zernike polynomials. Each Zernike polynomial is defined only on the unit

circle, and must be scaled to represent a larger area using the following transform

r = Raρ (3.5)

where r is the absolute position, Ra is the constant radius of aperture and ρ is the

normalized position. However, even once scaled, the corners of the square screen will

still be zero, leaving a represented area of

AZ =
π

4
N2∆x2 (3.6)

FS screens avoid both limitations, being defined as sinusoids upon an infinite

grid and having a distribution of frequency components that does not artificially

correlate the outer edges of the finite screen.

3.3 Generation Time Analysis

Each phase screen has some parameter(s) that may be generated once at the

beginning of given scenario and used to make any number of screens. This initial

generation time Ti can be separated from the individual screen generation time Ts,

allowing the total time used to generate NS screens (Tt) to be expressed as

Tt = Ti + NSTs. (3.7)
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Optimization of Tt must consider the optimal number of phase screens needed

to effectively model a given scenario. As the number of screens needed goes up, the

effect of Ti becomes less important. Also, it may be feasible to complete all initial

calculations prior to the implementation the simulation, again lessening the emphasis

upon initialization time. However, if one must change conditions drastically during

the simulation, Ti can have a great impact upon the efficiency of the model.

3.3.1 Initialization Time. In MATLAB R©, execution time can be measured

using the tic and toc commands. In the case of the Zernike PS, tic is used before

loading the covariance matrix and Zernike polynomial index; toc is used after they

are loaded. The Zernike PS initialization time Ti−Z is then set equal to toc.

Similarly, tic and toc can be used to record the FFT PS initialization time

Ti−FFT , and the FS PS initialization time Ti−FS. Ti−FFT encompasses calculating

the analytical spectra (Φ). Ti−FS encompasses defining a frequency grid spacing and

generating a polar kernel of sinusoids, one for each frequency grid point.

3.3.2 Per Screen Time. The per screen generation time Ts is calculated by

using tic and toc to record the time it takes to construct N phase screens after the

initial constructs have been formed (Ti), then dividing by N :

Ts = (Tt − Ti)/N

However, in practice Ti and Ts are recorded independently within the code.

3.4 Zernike Frequency Analysis

Taking the FFT’s of the Zernike equations (2.37) both individually and as a

screen made of of equally weighted polynomials allows one to compare the frequency

content of the Zernike phase screens with that of the FFT and FS phase screens. This

is done by generating an set of Zernike polynomials, Zi through Zj, using non-random
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coefficients

ai = aj for all i, j

The polynomials are then Fourier transformed, and their power spectrum evaluated,

both in one dimension and two. For the purpose of cross-sectional comparisons, a

selection of polynomials with increasing radial order n is used. Results are presented

in chapter 4.

3.5 Structure Function Analysis

Being a mean square difference function, the structure function of a phase screen

can be found as follows: For any phase screen φ, let φ(R) be the original phase screen

φ(0) shifted in some direction by R pixels, then

Dφ(R) = E[(φ(0)− φ(R))2] (3.8)

Implementing this for a phase screen with values distributed on a discrete carte-

sian grid means that Dφ(R) is affected by the direction of the frequency shift. If the

shift is along either of the axes, each step ∆R will be a single unit of separation.

However, if it is off axis, such as along the diagonal, each step will be greater than a

single unit

∆R =
√

(∆x + ∆y)2 (3.9)

and Dφ(R) must be scaled accordingly when plotted.
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IV. Results

This chapter contains the results from the methods described in chapter 3. Sec-

tion 4.1 covers the generation times for all three methods, as well as how the the

Zernike method and FS method times are affected by varying NZ and Q, respectively.

Section 4.2 addresses how the frequency content of Zernike phase screens compares to

that of FFT and FS phase screens. Section 4.3 covers how the structure functions of

the various screens relate to the theoretical atmospheric phase structure function. Fi-

nally, section 4.3 discusses quality/usability comparisons between FFT and FS phase

screens.

4.1 Time Results and Analysis

This section is broken down into four subsections: the first two, initialization

time and per screen time, give the usability of each method in terms of how long

each one takes. The second two, Zernike time explanation and FS time explanation,

are included because there is much optimization that the routines lack. The FFT

code has already been extensively optimized because it is used so ubiquitously within

signal processing, and so there is no particular need to focus upon it. The results

presented here are based upon the performance of a particular computer, so the times

will change given different hardware. However, they should be accurate as a relative

measure of performance.

4.1.1 Initialization time. The initialization time Ti includes different ele-

ments for each method. Initialization of an N×N phase screen requires the following:

Using FFT’s, one must initially calculate the N×N atmospheric spectra using a model

such as those discussed in section 2.4. Using FS, one must generate the polar kernel,

choosing each included frequency on a two-dimensional grid. Each frequency point

corresponds to an N ×N sinusoid in the time domain. Using Zernikes, one must load

both a covariance matrix and a polynomial index, then each indexed polynomial must

be generated in a N ×N matrix.
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Figure 4.1: Initialization times for all three types of phase
screens with respect to the number of pixels per screen edge N .

Figure 4.1 shows the initialization times for all three methods. Times were

calculated using 84 Zernike polynomials and a Q value of 2.0. Recall that Ti−FFT ,

Ti−FS, Ti−Z are the initialization times for the FFT, FS, and Zernike methods, re-

spectively, and Ts−FFT , Ts−FS, Ts−Z are their respective per-screen times. Ti−FFT is

by far the smallest and is nearly linear in the range given. This is due to the small

amount of preparation needed for the FFT method, most of which makes use of opti-

mized MATLAB R© vector operations. Ti−Z and Ti−FS are more interesting. Both are

quadratically proportional to the number of pixels per screen edge N , making them

linearly proportionate to the number of pixels per screen, N2.

Ti−FS is the highest due to the kernel size and the nested for loop used in

generating it. The FS kernel size SK is proportional to N2 and the for loop execution

time is directly proportional to the kernel size. The FS initialization encompasses

the generation of 416 N × N sinusoids. By comparison, Ti−Z is lower because it
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Figure 4.2: (a) The time to generate each phase screen af-
ter the initial calculations have been made, with respect to the
square root of the number of pixels in the screen.

encompasses the calculation of only 84 N × N polynomials. Ti−FFT is lowest of all

because it encompasses the calculation of only 4 N ×N power spectra.

Judged purely upon initialization time, the FFT method is by far the most

efficient. The Zernike method comes second and the FS method is the least efficient.

4.1.2 Per-Screen Time. The per-screen time Ts (figure 4.2) is taken from

those calculations that cannot be made in advance for a given set of phase screens.

For each method, this involves the generation of complex random weights. In the

case of the FFT, it also involves taking the two-dimensional fast Fourier transform of

the N × N data matrix and separating the result into its real and imaginary parts.

In MATLAB R©, this process has been extensively optimized using vector operations,

with excellent results.

As can be seen in figure 4.2, Ts−FFT is the lowest of the three per-screen gen-

eration times shown. Figure 4.3 shows this more clearly by ignoring the far larger
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Figure 4.3: (a) The time to generate each Zernike and FFT
phase screen after the initial calculations have been made, with
respect to the square root of the number of pixels in the screen.

Ts−FS and showing only Ts−FFT and Ts−Z . Though not entirely linear and increasing

monotonically, Ts−FFT follows the expected upward trend proportional to the number

of operations required, N log N . It does not rise above a tenth of a second until after

N = 320. Figure 4.3 also shows that Ts−Z passes the tenth of a second mark shortly

after N = 128, and figure 4.2 shows that Ts−FS rises above 0.01 s for N = 100.

The irregular progression of Ts−FS in figure 4.2 is particularly noteworthy. Al-

though it possesses a general quadratically increasing trend, it is not monotonic. De-

creases are evident from N = 128 to N = 192 and again from N = 256 to N = 320.

These are most likely a result of the manner in which MATLAB R© allocates memory:

one segment at a time.

By default, MATLAB R© uses 64-bit (8-byte) double precision floating point num-

bers. The memory requirements M for a kernel can therefore be calculated in kilobytes

(KB)

M = 8SK/1024 = 8N2Nκ/1024 (4.1)
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using the binary definition of 1 KB = 1024 bytes and 1 MB = 1024 KB. For N = 100

and Nκ = 416 (i.e.,Q = 2.0), the memory required is M = 32, 500 KB ≈ 33 MB. For

N = 384 at the same Q value, M = 479232 KB = 468 MB.

Complex numbers are treated as two separate floating point numbers, the real

part ant the imaginary part. Thus one complex number actually takes 128 bits (or 16

bytes) of memory. Therefore, when the random weights are applied to the kernel to

generate each new screen, two new matrices the same size are generated. Where the

before the memory was allocated for one object of size SK , it must now be allocated

for three such objects. If N = 100, this means 96 MB are now needed.

Memory allocations are done by segment, so when the need exceeds the memory

available, another entire segment is allocated. The following operations use the newly

allocated memory until it to is overfilled, whereupon, the process of request and

allocation will be repeated until there is no more memory to allocate. However, the

request and allocation take time, increasing the execution time of routines that must

pause to do so. It is this increase that is reflected in the peaks in figure 4.2.

As far as per-screen generation time, Ts−FS both starts out higher and rises

more rapidly than both Ts−Z and Ts−FFT , making the FS method the least per-screen

time efficient. Ts−Z is more comparable to Ts−FFT , but the FFT method is the most

per-screen time efficient.

4.1.3 FS Time Enhancement. The FS method can be made to execute

more rapidly by decreasing the number of frequency components, controlled by the

multiplicative frequency spacing parameter Q. However, there a tradeoff between

execution time and number of frequencies, which becomes lower as Q increases. For

instance, increasing Q from 1.5 to 2.0 retains 76% of the frequencies while using only

56% of the time: a 24% loss for a 44% gain. But when you increase Q from 2.0 to 2.5

there is a 20% loss for a 20% gain, and that is about as good as it gets from there on

out.
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Figure 4.4: Mean Time taken to generate a 100 × 100 pixel
FS phase screen, with respect to the Q value. Q is inversely
proportional to the number of frequency components.

The frequency grid remains polar and logarithmic, so both low and high frequen-

cies are retained. They are simply more sparse as Q increases. However, eventually

the frequencies will become so sparse that one loses the advantage gained by the polar

frequency grid. There are other possible options for optimizing the FS method that

should be explored as well. They will be discussed in chapter 5.

4.1.4 Zernike Time Enhancement. The Zernike method will also execute

faster if you decrease the number of Zernike polynomials used NZ . The difference

being that what is lost with each polynomial is not a specific frequency component,

but a particularly shaped abberation. Zernike polynomials can be selected to include

those abberations most important to the user. This may allow an effective model to

be developed using a very few polynomials that would be extremely time efficient.

Figures 4.5 and 4.6 show the initialization and per-screen generation times,

respectively, for various numbers of Zernike polynomials. It can be seen that Ti−Z

increases quadratically as a function of NZ , while Ts−Z increases linearly. The total
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Figure 4.5: Time spent initializing 100 × 100 pixel Zernike
phase screens with respect to the number of Zernike polynomials
used.

time is second order function of NZ as

Tt−Z = Ti−Z + NscrnsTs−Z ∝ N2
Z + NZ

As the number of phase screens Nscrns generated increases, the quadratic initialization

time factor becomes less dominant.

An advantage that the Zernike method has over the Fourier methods is that it

does not require the generation of new polynomials for changing atmospheric condi-

tions. Such variations are included in the random weighting factors correlated by the

D/r0 proportionate Zernike covariance matrix. Therefore, regardless of how many or

how different the phase screens needed, a large time investment in the beginning can

yield efficiency later on.
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Zernike polynomials used. Does not include Ti.

4.2 Zernike vs Fourier Frequency Content

The Fourier The Zernike polynomials have frequency content that tends to be-

come higher as the index increases, but there is no direct correspondence to the

frequency content of the FFT and FS sinusoids. Figure 4.7 shows a set of Zernike

polynomials selected for their increasing radial orders n and figure 4.8 shows their

Fourier transforms, i.e. their frequency content. Instead of each polynomial being

represented by a discrete spike in the frequency domain, as are the sinusoids from

the FFT and FS methods, they form a continuous spread, showing that each one

is composed of multiple frequency components. However, there is increasing power

contained in the higher frequencies as the Zernike index increases.

4.3 Structure Function

The structure function of an atmospheric random phase screen, being a mean

square difference function, should increase with separation distance, indicating that
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Figure 4.8: The Fourier transforms of the zernike polynomials
from Z2 to Z74 shown in figure 4.7, raised to the 1/3 power.
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Figure 4.9: Zernike structure functions taken of screens con-
structed using Zernike polynomials that form complete sets of
each radial order n. From left to right, and up to down, NZ = 2,
35, 60, and 84, respectively. D/r0 = 1 and N = 100.

correlation decreases with separation distance R. The slope of a theoretical structure

function on a loglog plot is 5/3 because Dn ∝ (D/r0)
5/3, where larger R corresponds to

smaller spatial frequencies f . Also, the structure functions taken along the diagonals

of a phase map should match those taken along the axes. This shows the radial

symmetry that results from the assumption of homogeneity and isotropy.

4.3.1 Zernike Structure Function. The structure function of Zernike phase

screens is a not only a function of separation distance R, but also of the number and

radial order of the Zernike polynomials used to form the phase screen. Figures 4.9

and 4.10 both show the structure functions of four different phase screens constructed

for D/r0 = 1 using increasing numbers of Zernike polynomials.

In figure 4.9, all of the screens were constructed using complete sets of radial

order Zernike polynomials. The 2 polynomials used in the upper left plot are tip
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and tilt, the complete set of first radial order (n = 1) Zernike polynomials; the 35

polynomials used in the upper right plot form the complete sets of Zernike polynomials

for radial orders n = 1 through n = 7, etc. This ensures that each phase screen will

be radially symmetric, as fits the assumption of homogeneity and isotropy.

The radial symmetry of a phase screen is reflected in the similarity of the axial

structure function to the the diagonal structure function. Using Zernike polynomials,

this symmetry is seen when n ≥ 4, as, even given complete radial order sets, a certain

number are required to ensure this symmetry. Figure 4.9 gives an example: on the

upper left only the set of n = 1 is used, on the upper right sets n = 1 through n = 7

are used. One can see that the lines are almost entirely overlapping in the latter plot.

The lower plots include even greater numbers of radial order sets. In the bottom left

plot especially, it is almost impossible to tell the axial structure function from the

diagonal structure function, indicating an almost exact radial symmetry.

However, if the Zernike polynomials are not taken in radial order sets, radial

symmetry can be lost, regardless of the number of Zernike polynomials used. Figure

4.10 illustrates this nicely. In the upper left is the structure function of a screen built

with only 36 Zernike polynomials. On the lower left is the structure function of one

built with 60 Zernike polynomials. Both screens were built using complete n sets,

and both have axial and diagonal structure functions that almost entirely overlap.

On the right are structure functions from screens that each include a partial n set.

The screens were built with 59 and 61 polynomials, for the upper and lower right

plots, respectively, but they are less radially symmetric than the screen on the upper

left built with only 36 polynomials.

Increasing the number of Zernike polynomials used, however, does improve the

performance at higher frequencies. One can see in figure 4.9 that as imax increases,

high-frequency correspondence of the Zernike structure function to the theoretical

structure function. Hypothetically, by including an infinite number of Zernike poly-

nomials, the Zernike phase screen structure function would exactly match the theo-
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Figure 4.10: Zernike structure functions taken of screens con-
structed using Zernike polynomials that do (on the left) and do
not (on the right) form complete sets of each radial order n.
From left to right, and up to down, NZ = 35, 59, 60, and 61,
respectively. D/r0 = 1 and N = 100.
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retical. It can come close for finite numbers, but at the cost of increased generation

time proportional to N2
Z .

4.3.2 FFT Structure Function. As can be seen in the upper left plot of figure

4.11, the structure function of an FFT phase screen corresponds well with theory for

small R (high frequencies), but falls of at large R (low frequencies). The degradation

of Dn−FFT at large R is due the high correlation of opposing screen edges. This

correlation is caused by the lack of low frequency content in the component sinusoids

The lowest non-zero frequency component has a period of exactly the screen width.

The more rapid degradation of the structure function along the diagonals (seen

best in figure 4.13) is explained by the larger (by
√

2) diagonal frequency intervals

than axial frequency intervals. The decrease in size of the longest sinusoidal period

increases the rapidity of noticeable period correlation. This phenomenon is related

to aliasing, and can be compensated for. As is shown in figure 4.11, by generating

larger than needed phase screens and discarding all but the center portion needed for

simulation, the low frequency content of an FFT phase screen can be increased.

If the generated screen size is twice the size of the outer scale, then the lower

frequencies will be adequately populated and the structure function will parallel the-

ory. This can be related to Nyquist sampling in signal processing. Given the inverse

relationship of frequency to distance, the longest separations of a phase screen corre-

spond to the lowest frequencies. In order to sample the lowest theoretical frequency,

one must have a screen size of twice the theoretical limits of correlation.

For example, given a necessary screen size of D = 1 m with a sample size of

∆x = 0.01 m, and a generated screen size of N = D/dx = 100, the lowest frequency

included in the screen will be

fL =
1

N∆x
= 1 m−1.
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Figure 4.11: FFT structure functions for the center 100 ×
100 pixels of screens generated using N = 100, 193, 448 and
704 pixels. Generating screens of excess size includes more low
frequency content.

If the number of pixels (i.e. samples) N is increased so that N∆x = 2L0 where L0 is

the upper bound of the inertial subrange, and thus the outer limit of correlated IOR,

then the lowest frequency represented becomes

fL =
1

2L0

m−1.

As any frequencies lower than 1
2L0

represent separations larger than are theoretically

correlated in their IOR, they should not be present in the phase screen.

The center 100×100 pixels of a 2L0×2L0 FFT phase screen can be taken to form

the desired phase screen of D = 1 m, which will have a structure function exactly

matching theory. Unfortunately, this increase in quality requires a corresponding

increase in computational inefficiency on the order of N log N , which presents as an

increase in generation time.
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Figure 4.12: FS structure functions taken of screens con-
structed using various Q values. There is a graceful degrada-
tion of quality as Q increases, due to the increasingly sparse
frequency grids.

4.3.3 FS Structure Function. The FS structure function parallels theory

across the spectrum, though it does degrade slowly with the number of frequencies.

Figure 4.12 shows the structure functions of screens constructed using various Q

values, corresponding to numbers of frequencies NK from 640 on the upper right

(Q = 1.5) to 120 on the lower left (Q = 5.5). Note that, unlike either the FFT or

the Zernke structure functions, the FFT structure function does not fall off for any

extremity of frequency.

The variance from theory, presenting as ‘waves’ in the structure function, for

higher Q’s is due to the sparse frequency content. There are simply not enough

sinusoids to give an accurate representation of random phases. Frequencies that are

not well represented show up as peaks in the structure function difference from theory.

However, at no frequency band is this degradation catastrophic; all frequencies are

somewhat represented, even using only 120 sinusoids, some just more so than others.

This is a benefit of the logarithmic spacing of the frequency grid.
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Figure 4.13: The average structure functions for FFT, FS and
Zernike phase screens, calculated along the axes (on the left) and
along the diagonals (on the right); and the theoretical structure
function (denoted Th) for comparison. Parameters: D/r0 = 1,
Q = 2.0, NZ = 84, N = 100.

The FS axial and diagonal structure functions almost exactly overlap, showing

a high degree of radial symmetry that is only slightly affected by increasing Q. This is

a benefit of the polar frequency grid. The radial symmetry and graceful degradation

make the FS structure function useful even at high Q values. However, for lower Q

values the FS structure function almost exactly matches theory, differing only by a

constant that can be easily accounted for in code. This makes it highly applicable to

all types of simulations.

4.4 Discussion

Figure 4.13 shows the structure functions of the three types of phase screens

discussed herein calculated along the axes and the diagonals, respectively. It also

shows the theoretical structure function for comparison.
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The irregularities (presenting as wavering near R = 1) of the diagonal of the

FFT and FS structure functions are present because the sample set for the mean

difference drops below acceptable statistical parameters. In fact, the largest three

separations take the mean square difference of two matrices composed of only 9, 4,

and 1 pixels (for Rmax − 3, 2, and 1, respectively), because it is only the far corners

of the screen that are overlapped. This does not happen on the axial calculation

because, even at the farthest separation, there is still a set of N differences to be

averaged over.

4.4.1 Maximum Phase Screen Size. It should be noted that any phase screen

generated at a size in excess of L0 should have a structure function that plateaus at

R > L0 due to the uncorrelated random behavior of the atmospheric IOR beyond that

point. I.e. the phases at separations greater than L0 are completely independent, so

their mean squared expected difference will reach a constant maximum.

4.4.2 FFT vs FS Comparison. It is interesting to note that the FS method

achieves better results than the FFT method while using far fewer frequencies. In

figure 4.13, the FS method uses only 416 frequencies and has a structure function

parallel to theory, while the FFT method uses N2 = 10, 000 frequencies and still falls

off at higher R, failing to model low frequencies. However, more time is required using

the FS method.

For a 1 m (N = 100) screen with a conservative upper boundary L0 = 10, a

sampling width of ∆x = 0.01 m, the FFT method would have to generate a Ngen×Ngen

pixel screen where

Ngen =
2L0

∆x
= 2, 000

and N2
gen = 4 × 106 is the total number of pixels per screen. This would require a

number of operations on the order of Ngen log(Ngen) ≈ 6, 600 and a corresponding

generation time. Extrapolating from figures 4.1 and 4.3, this leads to a total genera-
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tion time for two phase screens on the order of 3 to 5 seconds, the majority of which

is the per-screen generation time Ts.

On the other hand, the FS method, generating a screen of similar quality for

the same specifications, would require only NK = 416 frequencies (Q = 2.0). The FS

screen generated would be exactly the size needed so the number of operations would

be on the order of N2NK = 4.16×106 due to the lack of optimization within the code.

From figures 4.1 and 4.2, it takes 6 to 7 seconds to generate two equivalent 100× 100

phase screens, most of which constitutes the initialization time Ti.

Because most of the time for the FS screen is spent building the kernel, sub-

sequent phase screens can be generated at the rate of 0.5 second per pair. But

because most of the FFT generation time is spent generating the screen itself, addi-

tional screens will take 3 seconds per pair. Therefore, in a situation where quality is

important and more than four phase screens are required, it is more time efficient to

use the FS method than the FFT method.
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V. Conclusions and Recommendations

These conclusions and recommendations stem directly from the results covered

in chapter 4. They include suggested applications of the various methods as

well as possible optimizations that might be made.

5.1 Zernike Method

The Zernike is highly effective at capturing low frequency abberations, such as

tip and tilt. It is also radially symmetric for complete radial order sets of Zernike

polynomials beyond n ≥ 4. This makes it highly effective for simulating turbulence

when low frequency accuracy is required, such as for use with tracking and target-

ing algorithms. The main fault with the Zernike method is that it falls off at high

frequencies for limited numbers of polynomials; however, including the high numbers

(on the order of 500 to 1000) of polynomials needed to accurately model the high

frequencies can become cumbersome as far as generation time is concerned.

5.2 FFT Method

The FFT method is by far the fastest for generating phase screens, but it di-

verges from theory at low frequencies for screen sizes of less than 2L0, and becomes

cumbersome at sizes near 2L0. This makes it good for simulating high frequency tur-

bulence for adaptive optics algorithms, where low frequency abberations are assumed

to be already removed.

5.3 FS Method

The FS method takes the longest initialization time, but it has the best results

across the spectrum. It does not fail catastrophically at any frequency range, instead

it degrades gracefully with few frequencies modelled. FS phase screens are applicable

to any scenario, but are computationally cumbersome as implemented here. The FS

method is therefore well worth optimizing. One obvious area for improvement is to

find a way other than a triply-nested for loop to construct the kernel.
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Given an optimized implementation, the FS method would be universally ap-

plicable, generating quality results across the spectrum. However, even as is, the FS

method has a comparable implementation time with either the Zernike or the FFT

methods for the same quality of result.
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Appendix A. MATLAB Code

Note that filenames have had underscores removed and capitals inserted for LaTex

display calls. The files must be renamed to match the code before implementation.

Listing A.1: Top level code to generate all three types of phase screens.
(appendix1/GeneratePhzScrnsDn.m)

% GeneratePhzScrnsDn.m
% Rebecca Eckert
% 15 Feb 06
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

5 % GENERATEPHZSCRNSDN.M Generates Zernike , FFT phase screens and ...
calculates

% their structure functions given a particualr D/r0. It also ...
records the

% time taken to generate each screen.
% - Iterate D/r0 = [1 3 5 10]
% - Iterate 30 phase screens/Sturcture Functions per D/r0

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
clear;clc;matlabpath(pathdef)
% INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

% Screen Descriptors
15 N = 100; % The size in pixels of phase screens

NumScreens = 60; % The number of phase screens to be ...
generated

NumZernikeModes = 84; % The number of polynomials/mode to be...
used in

% generating the Zernike Phase Screen
% Atmospheric Descriptors

20 D = 1; % optic Diameter
r0 = [D]% D/3 D/5 D/10];% Fried radius
AtmSpectrum = ’VonKarmen ’; % ’Kolomogorov ’,’Tatarski ’,’VonKarmen ...

’,’ModAtm ’
% => Used in making the FFT phase ...

screen
% Large inertial subrange

25 lo = 0.01; % Inertial Subrange Inner Scale (m)
Lo = 10; % Inertial Subrange Outer Scale (m)
% Small Inertial subrange
% lo = 0.01;
% Lo = 10;

30
lambda = 0.5e-6; % Wavelength (m)
WaveNumber = 2* pi/lambda ; %

35 % Reference Coordinates - Spatial Domain
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R = linspace(0,D);
dx = D/N;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

for kk = 1: length(r0)
40 D_r0 = D/r0(kk);

PhzFileName = [’PhzScrns_Dr0_ ’ num2str(D_r0)]

% Ideal structure function...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Dphi_Ideal = 6.88*(R/r0(kk)).^(5/3);
45

% FFT PHASE SCREEN...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic
PhzScrnFFT = zeros(N,N,NumScreens);
ind = 1;

50 for ii = 1: NumScreens /2
[P1,P2] = MakeFFT_PhzScrn(D,r0(kk),Lo,lo,N);
PhzScrn_FFT (:,:,ind) = P1;
PhzScrn_FFT (:,:,ind+1) = P2;
ind = ind + 2;

55 end
toc
% ZERNIKE PHASE SCREEN...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Note that the My_get_zernike_mode.m function only contains the ...

first 85
% Zernike polynomial modes , starting with Piston [1]. HOWEVER , ...

the
60 % Zernike_Cov matrix contains 2999 x2999 covariance terms , starting...

with tip
% and tilt [1 ,2] and ignoring piston . Therefore , only 84 ...

polynomials/modes
% are currently available , limiting the higher frequency ...

capabilities.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

% Zernike Coevariance Matrix
65 load z_cov.mat

zernike = My_get_zernike_mode(NumZernikeModes + 1,N);
zernike = zernike (2: NumZernikeModes +1,:,:);
load zernike_index
ZernikeCov = z_cov;

70
tic
PhzScrn_Zern = zeros(N,N,NumScreens);
for ii = 1: NumScreens

PhzScrn_Zern (:,:,ii) = ...
75 MakeZernikePhzScrn(D_r0 ,NumZernikeModes ,ZernikeCov ,N,...

zernike);
end
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toc

80
% Housekeepint to optimize FS routine
save(PhzFileName ,’PhzScrn*’,’dx’,’Dphi_Ideal ’,’R’) % Keep phase ...

scrns
save temp1 D r0 N kk lo Lo D_r0 NumScreens PhzFileName
clear PhzScrn*

85 save temp2
clear all
load temp1
% RADIAL FOURIER SERIES PHASE SCREENS...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generates a screen similar to the FFT screen , but with ...

logrithmic
90 % frequency components generated on a polar grid.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

tic
x_p = linspace (0,.5,N);

95 y_p = x_p;
Q = 2.0
kern = My_make_polar_kern(x_p ,y_p ,r0(kk),lo,Lo,Q);
toc
tic

100 ind = 1;
for ii=1: NumScreens /2

[phi1 ,phi2 ] = make_polar_screen(kern);
PhzScrn_FS (:,:,ind) = phi1 -mean(phi1 (:));
PhzScrn_FS (:,:,ind + 1) = phi2 -mean(phi2 (:));

105 ind = ind + 2;
end
toc

save(PhzFileName ,’-append ’,’PhzScrn_FS ’,’x_p’,’Q’)
110 clear PhzScrn_FS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

load temp2
end

Listing A.2: Generate a Zernike phase screen.
(appendix1/MakeZernikePhzScrn.m)

function [ PhzScrn ] = MakeZernikePhzScrn(D_r0 ,numModes ,z_cov ,...
numPix ,zernike)

% MAKEZERNIKEPHZSCRN Creates a random phase screen using the ...
Zernike
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% technique . The phase screen is generated in cartesian ...
coordinates on a

% rectangular grid.
5 % NOTE that the Zernike will be a circle inscribed on the ...

rectangular
% frequency grid.
% NOTE that the My_get_zernike_mode.m function only contains the ...

first 85
% Zernike polynomial modes , starting with Piston [1].

10 % Generate Zernike Phase screen
if ( isempty(numPix) == 1)

error(’MakePhzScrn of type = ‘ZERNIKE ‘ requires input SIZE in ...
pixels ’)

elseif ( isempty(D_r0) == 1)
error(’MakePhzScrn of type = ‘ZERNIKE ‘ requires input ...

atmospheric D/r0’)
15 else npix = numPix;

end
if (mod(npix ,2) == 1)
[x y] = meshgrid(-floor(npix /2):floor(npix /2));
else [x y] = meshgrid(npix /2: npix /2-1);

20 end
r = sqrt(x.^2 + y.^2);

% Zernike Coevariance Matrix
% load z_cov.mat

25 % zernike = My_get_zernike_mode(numModes + 1, npix);
% zernike = zernike (2: numModes +1,:,:);

a = chol(z_cov) ’*randn(length(z_cov) ,1);
a_ps = a(1: numModes)*D_r0 ^(5/3);

30 Aps = ( repmat(a_ps ,[1 npix npix]));

PhzScrn = squeeze(sum(Aps.*zernike ,1));

Listing A.3: Generate FFT phase screen.(Using Von Karmen spectral model.)
(appendix1/MakeFFTPhzScrn.m)

function [ PhzScrn1 PhzScrn2 ] = MakeFFT_PhzScrn(D,r0 ,Lo ,lo ,N)
% MAKEFFT_PHZSCRN Creates a random phase screen using the FFT ...

technique
% and the Von Karmen spectral model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

5
Dr0 =D/r0;

[p q] = meshgrid((-N/2:N/2-1));
r1 = randn(N) + j*randn(N);
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10 G = (p.^2 +q.^2 + (D/Lo)^2) .^( -11/12) .*exp ( -0.563*(lo/D)^2*(p.^2+q...
.^2));

G(N/2+1,N/2+1) =0;
F = fftshift(fft2(fftshift(G.*r1)));
F = F*0.1517* Dr0 ^(5/6);

15 PhzScrn1 = real(F);
PhzScrn2 = imag(F);

% isc(PhzScrn1);colorbar
20

% OLD CODE
% if ( isempty(PHI) == 1)

25 % error(’MakePhzScrn of type = ‘FFT ‘ ...
% requires input PHI = atmospheric spectrum (eg , Von Karmen)’)
% elseif ( isempty(numPix) == 1) |( numPix < length(PHI))
% npix = length(PHI);
% else

30 npix = length(PHI);
% end
% S = sqrt(PHI);
% Generate Gaussian random phase screen using FFT technique
g = randn(npix);

35 PhzFFT = g.*PHI;
G = fftshift(ifft2(fftshift(PhzFFT)));
PhzScrn1 = real(G);
PhzScrn2 = imag(G);

Listing A.4: Generate FS phase screen.(appendix1/MakePolarScreen.m)
%==========================================================================...

% Creates a pair of phase screens with subharmonics sampled over a...
pseudo -

% polar grid.
%==========================================================================...

5 function [phi1 ,phi2 ] = make_polar_screen(kern)

[Ny,Nx,Ns] = size(kern);
comp = randn(1,1,Ns) + j*randn(1,1,Ns);
phi = zeros(Ny ,Nx);

10 for i1 = 1: Nx
for i2 = 1: Ny

phi(i2,i1) = phi(i2,i1) + sum(comp.*kern(i2 ,i1 ,:) ,3);
end

end
15 % phi_s = sum(kern.* shiftdim(repmat(comp ,[1,Ny , Nx]) ,1) ,3);

phi1 = real(phi);
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phi1 = phi1 -mean(mean(phi1));
phi2 = imag(phi);

20 phi2 = phi2 -mean(mean(phi2));

return

Listing A.5: Generate FS kernel.(appendix1/MyMakePolarKern.m)
function kern = make_polar_ker(x,y,r0 ,l0 ,L0 ,Q)

% % Q = 2.0; % Factor to set number of points
next_inc = 10; %used to display progress

5 prog_step = 10; % used to display progress
max_iter = 1000; % num of iterations for midpoint selection
tol = 1e-12; % tolerance for midpoint selection

10
dx = x(2) - x(1);
dy = y(2) - y(1);
Nx = length(x);
Ny = length(y);

15
kappa0 = 1/ L0;
% Set max freq also based on sampling
kappam1 = 5.92/ l0;
kappam2 = 2* pi/(2*dx);

20 kappam = min(kappam1 ,kappam2);

k_max = kappam;
k_min = 2* pi/5/L0; % half the lowest frequency demanded by the ...

outer scale

25 disp(’Forming polar grid kernel ’);

log_k_min = log10(k_min);
log_k_max = log10(k_max);
delta_log = log_k_max - log_k_min;

30 num_freq_pts = ceil(delta_log/log10(Q));
log_k_pts = linspace(log_k_min ,log_k_max ,num_freq_pts);
k_pts = 10.^ log_k_pts ; % These are the radial frequency values ...

used

35 k_low = k_pts (1: end - 1);
k_low2 = ( k_pts (1: end - 1)).^2;
k_high = k_pts (2: end);
k_high2 = ( k_pts (2: end)).^2;
delta_k = diff(k_pts);

40
% need to find the 2D power in each annular segment from PSD
d_phi2 = zeros(1,length(delta_k));
for i1 = 1: length(delta_k)
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d_phi2(i1) = int_vK2D2(r0,l0,L0,k_pts(i1),k_pts(i1 + 1));
45 end

%%%%%%%%%% loop to pick point to use for sinusoids
% define differential area

50 k_area = pi*( k_high2 - k_low2);
% % provide a guess at the desired midpoint and then iterate to ...

choose best
% % midpoint as defined by place where power in annular segment is...

equal to
% % product of area and PSD at that midpoint
k_mid = 0.5* delta_k + k_low;

55 % cnt = 0;
% max_iter = 1000;
% tol = 1e-12;
% for index = 1: length(k_mid)
% % seed binary searc with endpoints and midpoint

60 % k_lower = k_pts(index);
% k_upperu = k_pts(index + 1);
% B = k_mid(index);
% phi_mid = vK_phi(B^2,r0 ,l0 ,L0);
% ip = phi_mid*k_area(index);

65 % while (cnt <= max_iter) && ( abs(ip - d_phi2(index)) > tol)
% if ip < d_phi2(index)
% k_upper = B;
% B = k_lower + .5*(B - k_lower);
% else

70 % k_lower = B;
% B = k_lower + .5*( k_upper - B);
% end
% phi_mid = vK_phi(B^2,r0 ,l0 ,L0);
% ip = phi_mid*k_area(index);

75 % cnt = cnt + 1;
% if cnt == max_iter
% disp(’Warning maximum iterations reached in kappa ...

calc ’);
% disp([’ tol: ’ num2str(abs(ip - d_phi2(index)...

))])
% end

80 % end
% k_mid(index) = B;
% cnt = 0;
% end

85 % this can be changed later to include a progression of theta ...
slices

num_theta = 32; % number of slices in theta
theta = linspace(pi/num_theta ,2*pi - pi/num_theta ,num_theta);
theta = repmat(theta ,[1, length(k_mid)]);

90 k = [];
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d_area = [];
for i1 = 1: length(k_mid)

k = [k repmat(k_mid(i1) ,[1,num_theta ])];
d_area = [ d_area repmat(k_area(i1)/num_theta ,[1, num_theta ])];

95 end

kx = k.*cos(theta); % cartesian points for given theta value
ky = k.*sin(theta);

100 sqrt_phi = sqrt(vK_phi(k.^2,r0,l0,L0));
sqrt_area = sqrt (2*pi*d_area);

tot_iter = Nx*Ny*length(k);
kern = zeros(Nx,Ny,length(k));

105 for i1 = 1: Nx
for i2 = 1: Ny

for i3 = 1: length(k)
kern(i2 ,i1 ,i3) = sqrt_phi(i3)*sqrt_area(i3)*...

exp(j*(x(i1)*kx(i3) + y(i2)*ky(i3)));
110 end

if i1*i2*i3*100/ tot_iter > next_inc
disp(num2str(next_inc));drawnow
next_inc = next_inc + prog_step;

end
115 end

end
disp(’done!’);
% test code
% output the resulting set of kappa values for analysis

120 ktst2 = logspace(log10(k_pts (1)),log10(k_pts(end)) ,1000);
ptst = vK_phi(ktst2 .^2,r0,l0,L0);
% % figure (2); clf;
% % subplot (1,2,1);
% % loglog(ktst2 ,ptst ,’g-.’);

125 % % hold on;
% % loglog(k_pts ,vK_phi(k_pts .^2,r0 ,l0 ,L0),’k+ ’);
% % loglog(k_mid ,vK_phi(k_mid .^2,r0 ,l0 ,L0),’ro ’);
% % axis tight;
% % subplot (1,2,2);

130 % % semilogy(ktst2 ,ptst ,’g-.’);
% % hold on;
% % semilogy(k_pts ,vK_phi(k_pts .^2,r0 ,l0 ,L0),’k+ ’);
% % semilogy(k_mid ,vK_phi(k_mid .^2,r0 ,l0 ,L0),’ro ’);
% % axis tight;

135 % % hold off;

kmtstsq = sqrt(k_mid);
ptstsq = sqrt(vK_phi(k_mid.^2,r0 ,l0 ,L0));

140 % end test code
return
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Listing A.6: Calculate Von Karmen spectral model.(appendix1/vKphi.m)
% calculate the von Karman phase spectrum for a given kappa , r0 , ...

l0 , and L0
function PHI = vK_phi(kappa2 ,r0 ,l0 ,L0)
% kappa_max = 5.92/ l0;
% kappa_max2 = kappa_max ^2;

5 % kappa_min = 1/ L0;
% kappa_min2 = kappa_min ^2;
% PHI = 0.4916693* r0^( -5/3)*exp(-kappa2 ./ kappa_max2).*...
% (kappa2 + kappa_min2).^( -11/6);

10 PHI = 0.4916693* r0^( -5/3)*exp(-kappa2 ./(5.92/ l0).^2) .*...
(kappa2 + (1/ L0).^2) .^( -11/6);

return
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