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Abstract

The Bayesian solution for tracking a target in clutter results naturally in a

target state Gaussian mixture probability density function (pdf) which is a sum of

weighted Gaussian pdfs, or mixture components. As new tracking measurements

are received, the number of mixture components increases without bound, and even-

tually a reduced-component approximation of the original Gaussian mixture pdf is

necessary to evaluate the target state pdf efficiently while maintaining good tracking

performance. Many approximation methods exist, but these methods are either ad

hoc or use rather crude approximation techniques. Recent studies have shown that

a measure-function-based mixture reduction algorithm (MRA) may be used to gen-

erate a high-quality reduced-component approximation to the original target state

Gaussian mixture pdf.

To date, the Integral Square Error (ISE) cost-function-based MRA has been

shown to provide better tracking performance than any previously published Bayesian

tracking in heavy clutter algorithm. Research conducted for this thesis has led to the

development of a new measure function, the Correlation Measure (CM), which gauges

the similarity between a full- and reduced-component Gaussian mixture pdf. This

new measure function is implemented in an MRA and tested in a simulated scenario

of a single target in heavy clutter. Results indicate that the CM MRA provides

slightly better performance than the ISE cost-function-based MRA, but only by a

small margin.
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Notation

Notation Usage
x(k) the discrete-time state random process vector at sample k;

represents the state (location, velocity, etc.) of the target
x̂(k|k − 1) the mean estimate of the state random process vector at sam-

ple k, using information only up to the (k−1)th measurement
P(k|k) the covariance estimate of the state random process vector at

sample k, using all available information up to the kth mea-
surement

X(k) the joint target state random process composite vector con-
taining the state random process vectors of multiple targets
at sample k

z(k) the measurement random process vector at sample k
Z(k) the composite measurement random process vector containing

all of the measurement random process vectors at sample k
zk a realization of z(k) at sample k
Zk a realization of Z(k) at sample k

Zk the measurement history through sample k
Zk the realized measurement history through sample k
p(·) the probability mass function (pmf) for the discrete random

argument (·)
f(·) the probability density function (pdf) for the continuous ran-

dom argument (·)
L({zi}n

1 ; α) the likelihood function for the set of observations {zi}, i =
1, . . . , n, from the distribution of z with pdf scalar parameter
α unknown

N{x; µ, σ2} denotes a Gaussian pdf for the scalar random variable x, dis-
tributed with mean µ and variance σ2

N{x; µ,P} denotes a Gaussian pdf for the vector random variable x, dis-
tributed with mean µ and covariance P

Ωo, Ω̂ the set of multivariate Gaussian mixture parameters for the
original and reduced-component target state pdfs, respectively

αo, α̂ the true and estimated pdf scalar parameters, respectively
Nf the number of models used in a multiple model algorithm, and

thus the number of elemental filters
M continuous random vector representing kinematic model un-

certainty for non-switching models
M(k) continuous random process vector representing kinematic

model uncertainty for switching models
Mi discrete random vector representing kinematic model uncer-

tainty for non-switching models
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Notation Usage
Mik discrete random process vector representing kinematic model

uncertainty for switching models
M the continuous sample space of M and M(k); M,M(k) ∈ M ⊂

R
n; or, the discrete sample space of Mi and Mik ; Mi ∈ M =

{Mi}Nf

1 and Mik ∈ M = {Mi}Nf

1

{Miℓ}k−1
1 the history of models for switching models from sample ℓ = 1

through sample ℓ = k − 1
µi(k), µik(k) mode probability that model i for non-switching models, or

model ik for switching models, is correct given the measure-
ment history

τik,ik−1
mode Markov transition probability (from model Mik−1

to
model Mik) for switching models under the assumption that
Mik is a discrete Markov random process

Θ(k) the association event continuous random process vector rep-
resenting the uncertainty in the origin of measurements

Θik the association event discrete random process vector repre-
senting the uncertainty in the origin of measurements

{Θiℓ}k−1
1 the history of association events from sample ℓ = 1 through

sample ℓ = k − 1
Nm(k) the number of measurements at sample k
NDT,ik the number of measurements hypothesized under association

event Θik as originating from targets hypothesized in a previ-
ous scan and detected in the current scan k

NTGT the total number of existing targets hypothesized under the
association event history through sample k − 1

NNT,ik the number of measurements hypothesized under association
event Θik as originating from potential new targets at the
current scan k

NFT, ik the number of measurements hypothesized under association
event Θik as originating from false sources at the current scan
k

NH(k) the original number of hypothesized mixture components in
the target state multivariate Gaussian mixture pdf at sample
k before mixture reduction is applied

NR(k) the reduced number of mixture components in the target state
multivariate Gaussian mixture pdf at sample k after mixture
reduction is applied

T{pdf1, pdf2} a true distance measure between two pdfs
D{pdf1, pdf2} a pseudo-distance measure between two pdfs
| A |= det A the determinant of the matrix A

〈f(x), g(x)〉 the inner product of two functions of x defined as
∫

x∈X
f(x)g(x)dx
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GAUSSIAN MIXTURE REDUCTION FOR

BAYESIAN TARGET TRACKING IN CLUTTER

I. Introduction

Measurement origin and target kinematics model parameter uncertainties are

two fundamental problems encountered when estimating the state (position,

velocity, etc.) of targets in clutter. By modeling these sources of uncertainty as

random quantities, Bayes estimation may be used to estimate the unknown target

state. If the uncertainty is modeled as a discrete random vector (i.e., unknown but

constant over time), then the resulting Bayesian solution is computationally tractable.

However, if the uncertainty is modeled as a discrete random process vector (i.e.,

unknown and generally changing over time), then the rigorous Bayesian solution is a

summation of weighted Gaussian probability density functions in which the number of

terms in the summation increases exponentially with time (assuming linear dynamics

and measurement models, and normally distributed noise disturbances and initial

state) [4,21,38]. Thus, this solution is computationally intractable, and approximation

is necessary to implement the Bayesian solution.

Two types of Gaussian mixture approximations to the rigorous Bayesian solu-

tion can be used for reducing the number of mixture components (summation terms

in the Gaussian mixture (pdf)) when the measurement origin uncertainty is modeled

as a discrete random process vector. The first type of approximation is to reduce the

Gaussian mixture pdf to a single Gaussian pdf at the end of each tracking system

scan. This approximation is used in the Probabilistic Data Association Filter (PDAF)

and the Joint Probabilistic Data Association Filter (JPDAF) [5]. Although this ap-

proximation is relatively simple and it does not require many computations, it is a

rather crude approximation in cases in which the target state pdf is multi-modal with

well-spaced peaks [31]. The other type of approximation is to reduce the number of
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mixture components in the target state pdf at the end of each scan, as by using some

type of measure function (providing a measure of the difference between the original

pdf and the pdf with the reduced number of mixture components) to guide reduction

decisions. This kind of approximation typically provides a better reduced-component

representation of the original Gaussian mixture target state pdf, but at the expense

of increased computational complexity and time.

Various examples of reducing the number of mixture components are found in

the literature. Singer et al. [32] proposed merging measurement histories after (N +1)

scans and/or limiting the pool of measurements to include in the measurement as-

sociation hypothesis generation process to decrease the number of mixture compo-

nents. Reid [27] manages the explosive growth of mixture components by merging

similar ones and deleting unlikely ones. Alspach [1], Lainiotis and Park [18], and

Salmond [30] appear to be the first researchers to attack this problem by reduc-

ing the number of mixture components based on a measure function. The latter of

this group proposed optimally reducing the number of components by minimizing

a cost function based on the covariance matrix of the Gaussian mixture. Fourteen

years later, Williams [38]1 also proposed using a cost function criterion for mixture

reduction. However, Williams’ cost function differed from that of Salmond by con-

sidering the impact of reduction actions on the entire Gaussian mixture pdf, and not

just the covariance matrix. Compared to other possible cost functions (such as the

Kolmogorov Variational Distance [1, 2, 24, 28, 38], Bhattacharyya coefficient [18], and

Kullback-Leibler distances [17]), Williams’ cost function can be evaluated without

approximation, yielding tractability. In fact, Williams’ Integral Square Error (ISE)

1This author owes a great deal of gratitude to Williams since the majority of this thesis is based
on his work.
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mixture reduction algorithm (MRA) produced what is thought to be the best single

target tracking performance in a heavy clutter environment [38, 40, 41].

1.1 Research Goal

Recommendations in [38] indicate the potential for improving upon the results

produced by Williams’ ISE MRA. The goal of this research is to create a new MRA

which offers better tracking performance and/or decreased computation time as com-

pared to Williams’ algorithm. Research conducted for this thesis will be tailored to

meet this goal. Specifically, the fields of mathematical statistics and statistical infer-

ence will be explored to cultivate ideas which may be useful for developing the new

MRA.

1.2 Organization

With the above goal in mind, the remainder of this thesis is organized into

six additional chapters. Chapters II, III, and IV provide the background concepts

needed for this thesis. The Bayesian approach to target tracking is covered in Chap-

ter II, which introduces the concept of target tracking, target tracking models, target

state pdf estimation, Gaussian mixture pdfs, and target state pdf estimation in the

presence of kinematics model parameter uncertainty and measurement origin uncer-

tainty. Chapter III is motivated by the recommendation in [38] to utilize a maximum

likelihood estimation measure function. It summarizes the maximum likelihood es-

timation and Expectation Maximization techniques for estimating pdfs, and it also

develops a maximum likelihood estimation-based measure function. The final back-

ground chapter, Chapter IV, presents distance and pseudo-distance measure functions

for approximating pdfs as well as the MRAs developed by Williams [38, 40, 41] and

Salmond [30, 31].

Based on the material covered in the background chapters, four new MRAs are

developed, implemented, tested, and analyzed in Chapter V. The best performing

MRA is chosen and tested in a single-target in heavy clutter tracking simulation

3



scenario presented in Chapter VI. Finally, Chapter VII concludes this thesis by

summarizing the results of this research and recommending ideas for future study.

4



II. The Bayesian Approach to Target Tracking

Target tracking is a means of determining the state of moving objects over some

time interval of interest from observations of the objects in the presence of

uncertainty. A state may be one or several random processes that completely describes

the behavior of the moving objects at any point in the time interval of interest.

The movement of the objects is described by one or more dynamics models that

mathematically characterize the motion of the objects. Observations of the objects

are made using sensors. Uncertainty is present in both the objects’ movement and in

observations of the objects. Both sensor measurement model adequacy concerns and

actual measurement corruption noise contribute to this uncertainty.

One common approach to target tracking is Bayesian estimation. This estima-

tion method is used to obtain, in most instances, a real-time, recursive solution for

a target tracking problem, which makes Bayesian estimation an ideal tool for tar-

get tracking. The goal of this chapter is to present the Bayesian approach to target

tracking and highlight its versatility in solving problems which exhibit uncertainty in

the target state, the dynamics model parameters, and the origin of measurements.

Bayesian estimation uses Bayes’ rule to solve for the target state pdf, and it will

be shown that the Bayesian approach to target tracking may be boiled down to one

equation. This insight has been mentioned in other sources [4, 5, 38], and Bayes’ rule

is emphasized as the starting point for solving every problem in this chapter.

Target tracking scenarios can be roughly categorized by the number of targets,

the number of sensors, and the number of dynamics models. Scenarios which allow

multiple targets are more prevalent in practice, whereas single target tracking scenar-

ios are more often used as an instructional tool because of their relative simplicity.

When available, multiple sensors usually provide more information about the state

of the targets because the sensors’ observations may be optimally combined using a

multi-sensor fusion algorithm. In contrast, a single-sensor tracking system typically

provides less information than a multi-sensor system using sensors with the same ac-

curacy, but the tracking algorithms become less complicated than in a multi-sensor

5



system. In some cases, tracking system designers do not know the correct dynamics

model to incorporate in their system, so multiple possible models are included in the

design to account for this source of uncertainty. Consequently, the design architec-

ture requires some type of multiple model estimation algorithm. In other instances,

though, one dynamics model may be enough to handle a given tracking scenario.

Figure 2.1 depicts a block diagram of the target tracking process in which a

presumed number of targets exist in the observation environment. At each scan,

the sensors (or single sensor) obtain noise-corrupted measurements which are math-

ematically related to the state through the measurement model. The origin of each

measurement is not known, and each measurement could belong to any one of the

targets or it could have resulted from an erroneous detection due to clutter or sensor

error (as characterized by its false alarm rate). Therefore, a tracking system may need

to perform a measurement association process to reconcile the origin of each measure-

ment to remove some uncertainty in the overall tracking problem. The measurements

are fed into a bank of estimators (or one estimator if only one model is used), each

with its own presumed dynamics model and hypothesized measurement association

set, and a final state estimate is made by appropriately combining the outputs of the

separate state estimators.

This chapter is organized as follows. Target kinematics models are presented in

Section 2.1. Section 2.2 introduces recursive Bayesian filtering for linear and nonlinear

estimation of the target state pdf. A description of the multivariate Gaussian mixture

pdf is provided in Section 2.3 to lay the groundwork for understanding the Bayesian

solution when uncertainty exists in the kinematics model parameters, Section 2.4,

or in the source of the measurements, Section 2.5. Understanding Gaussian mixture

pdfs will also be useful for Chapter III, Estimating Probability Density Functions,

and Chapter IV, Approximating Gaussian Mixtures and Mixture Reduction.
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Figure 2.1: A conceptual block diagram of a target tracking algorithm.
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2.1 Target Kinematics Models

Adequate target kinematics models are essential for accurate target tracking.

Without sufficient models, even the most advanced model-based target tracking algo-

rithm falls apart. Kinematics models, or dynamics models, are based on differential

equations which characterize the evolution of the objects’ movements over time. By

its nature, a differential equation is only an approximation of the actual target dy-

namics. Since the mathematical descriptions are approximations, there is uncertainty

in the fidelity of the model and the differential equations become stochastic in na-

ture [21]. If the stochastic differential equations are restricted to the time-invariant

class of problems, then these models may be succinctly written in state space form as

(assuming no deterministic input)

ẋ(t) = Fx(t) + Gw(t) (2.1)

where ẋ(t) is the time-derivative of the n-dimensional state random process vector 1, F

is the n-by-n time-invariant system dynamics matrix, G is the n-by-s time-invariant

noise input matrix, w(t) is the s-dimensional model noise process vector (assumed

zero-mean, uncorrelated in time or “white,” and Gaussian) [21]. Equation (2.1) is

called the system dynamics or kinematics model. Likewise, uncertain observations

are made at time samples tk and are given by the mathematical model

z(tk) = Hx(tk) + v(tk) (2.2)

where z(tk) is the m-dimensional measurement random process vector at sample

time tk, H is the m-by-n time-invariant measurement matrix, and v(tk) is the m-

dimensional measurement noise process vector (also assumed zero-mean, white, and

Gaussian) [21]. Equation (2.2) is termed the measurement model. A set of initial

conditions must be specified to obtain a particular solution to the above differential

1The state random process vector may represent kinematic quantities such as position, velocity,
and acceleration.
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equations. This set of initial conditions is usually unknown, in which case it may be

represented by a Gaussian random vector with mean and covariance specified by

E{x(t0)} = x̂0

E{[x(t0) − x̂0][x(t0) − x̂0]
T} = P0. (2.3)

Eventually, these models will likely be implemented on a computer, and a

discrete-time form for Equation (2.1) will be required. If k is the sample index2,

then the shift-invariant3 discrete-time models are

System Dynamics Model: x(k) = Φ(k, k − 1)x(k − 1) + Gdwd(k − 1)

Measurement Model: z(k) = Hx(k) + v(k) (2.4)

where the previous nomenclature holds, d stands for “discrete-time,” and Φ(k, k−1) is

the n-by-n discrete-time state transition matrix given by Φ(k, k−1) = eF(tk−tk−1) [21].

The initial conditions to these difference equations are

E{x(0)} = x̂0

E{[x(0) − x̂0][x(0) − x̂0]
T} = P0. (2.5)

2The sampling interval is defined as T = tk − tk−1.
3In the discrete-time formulation, “time-invariant” becomes “shift-invariant.”
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The first- and second-order statistics of the noise process vectors are

E{wd(k)} = 0

E{wd(k)wT
d (l)} = Qd(k) δkl

E{v(k)} = 0

E{v(k)vT (l)} = R(k) δkl

E{v(k)wT
d (l)} = 0

E{v(k)xT (0)} = 0

E{wd(l)x
T (0)} = 0 (2.6)

where δkl is the Kronecker delta function:

δkl =







1 if k = l

0 otherwise.

Since x(0), wd(k), and v(k) are assumed jointly Gaussian4, the last three lines of

(2.6) imply that they are independent.

Before continuing to the next section, it should be noted that nonlinear kine-

matics models are also possible. In discrete time, the nonlinear shift-invariant models

are [13, 21]

System Dynamics Model: x(k) = φ[x(k − 1)] + Gdwd(k − 1)

Measurement Model: z(k) = h[x(k)] + v(k) (2.7)

where φ[·] is the nonlinear system dynamics vector function and h[·] is the nonlinear

measurement vector function. Note that, in general, these equations may be shift-

varying, in which case φ[·] and h[·] would also be functions of the appropriate time

index.

4If two jointly Gaussian random vectors are uncorrelated, then they are also independent. In
general, though, uncorrelated random vectors are not necessarily independent [20, 21, 35].
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One common linear system dynamics model used in target tracking is the con-

stant velocity (CV) model [7, 21]5. The CV model is of particular interest since it

was used in simulations by Salmond [30,31] and Williams [38,40,41] to evaluate their

Gaussian mixture reduction methods and it will be used in simulations to evaluate

new Gaussian mixture reduction approaches later in this thesis. For a target traveling

in the x-y plane, the discrete-time CV model is











x(k)

vx(k)

y(k)

vy(k)











=











1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1





















x(k − 1)

vx(k − 1)

y(k − 1)

vy(k − 1)











+











T 2

2
0

T 0

0 T 2

2

0 T














wx(k − 1)

wy(k − 1)



 (2.8)

where T is the sampling interval, x(k) and y(k) are the x and y target positions,

vx(k) and vy(k) are the target velocities in the x and y directions, and wx(k − 1) and

wy(k − 1) are the model noise processes in the x and y coordinates. The model noise

process is zero mean, and its covariance matrix is

Qd(k) = Qd =




qdx

0

0 qdy



 . (2.9)

5Various other system dynamics models, as well as measurement models, may be found in [4, 5,
6, 7, 23, 33].
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2.2 Recursive Bayesian Filtering

A recursive Bayesian filter6 is used to calculate the target state x(k). For linear

models, the linear recursive Bayesian filter, which is the well-known Kalman filter,

provides an optimal target state estimate by almost all practical criteria [21]. This

filter is the topic of Subsection 2.2.1. Nonlinear recursive Bayesian filters are used

when the dynamics models are nonlinear, the measurement models are nonlinear,

or both, but in general nonlinear filters do not enjoy the same claim to optimality

as the Kalman filter and require approximations to yield a finite-dimensional form.

Nonlinear recursive Bayesian filters are the subject of Subsection 2.2.2.

2.2.1 Linear Recursive Bayesian Filtering. For the discrete-time linear

models listed in Section 2.1, the Kalman filter is the optimal estimator of the state

random process vector [21]. The Kalman filter may be derived from a Bayesian point

of view, as in [21], or from an orthogonal projection perspective, as in [13, 35]. This

subsection provides the key steps from [21] in the derivation of the Kalman filter

using the Bayes estimation technique. These derivation steps will hopefully provide

the reader with insights into the Kalman filter equations.

Before beginning the derivation, it is worthwhile to introduce important pre-

liminary information about the Kalman filter. First, each iteration of the Kalman

filter operates in two stages that are referred to as time propagation and measurement

update. The notation “(estimate at time index |measurement history through time in-

dex )” allows one to follow the time varying quantities of the filter (e.g., x̂(·|·), which

is the state random process vector mean estimate) at each stage of a filter iteration.

For example, the notation x̂(k|k − 1) signifies that the state mean estimate has been

propagated in time through the kinematics model to sample k, but measurements at

sample k have not yet been incorporated into the estimate. Second, a composite vector

Zk, called the measurement history, is defined as a composite vector formed from all

6The word “filter,” as it is used in the context of estimation, differs from the same word used in
deterministic signal processing. In this thesis, a filter should be thought of as a type of estimator
that includes observations up to and including sample k to determine the target state [13].
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of the measurement random process vectors from the time of the initial measurement

through the current sample, k [21]. That is,

Zk =








z(1)
...

z(k)








. (2.10)

Likewise, a composite vector of realized measurements Zk, termed the realized mea-

surement history, is defined as the vector containing all of the actual measurements

through sample k, and is given by

Zk =








z1

...

zk








(2.11)

where zi, i = 1, . . . , k, is the ith realized measurement random process vector [21].

Third, the initial state random process vector x(0) is assumed to be Gaussian, and

since the dynamics and measurement models are linear, the state random process

vector at any sample k is also Gaussian7. Additionally, a multivariate Gaussian pdf is

completely specified by the mean and covariance parameters of the Gaussian random

vector it represents, and expressions for these parameters can be found by applying

the expectation operation, E{·}, to the discrete-time models given in Equation (2.4)

at the appropriate time index. Thus, the pdf of the state random process vector x(k)

may be found at any sample k.

Using this preliminary information, the derivation of the Kalman filter equations

begins by identifying the conditional pdf of the Gaussian state random process vector

7Linear transformations (e.g., the linear dynamics and measurement models) of a Gaussian ran-
dom vector are also Gaussian [21], and linear combinations of jointly Gaussian random vectors are
similarly Gaussian.
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x(k − 1) conditioned on the measurement history through sample k − 1 as [21]

f
(
x(k − 1)|Zk−1

)
=

exp
[
−1

2
(·)TP(k − 1|k − 1)−1(·)

]

(2π)
n
2

√

detP(k − 1|k − 1)
(2.12)

(·) = x(k − 1) − x̂(k − 1|k − 1)

or

f
(
x(k − 1)|Zk−1

)
, N{x(k − 1); x̂(k − 1|k − 1),P(k − 1|k − 1)}. (2.13)

The values of x̂(k−1|k−1) and P(k−1|k−1) are the outputs from the last iteration

of the Kalman filter.

Next, the state random process vector x(k − 1) is propagated in time through

the linear dynamics model (the first line of Equation (2.4)) in the time propaga-

tion stage. Since the model is linear and the state and model noise process vectors

are jointly Gaussian, the state random process vector at sample k conditioned on

the measurement history through sample k − 1 is also Gaussian [21]. This fact can

be shown by applying Bayes’ rule8 and the result that the product of two Gaus-

sian pdfs is a Gaussian pdf [21]. The state random process vector pdf is given by

N{x(k); x̂(k|k − 1),P(k|k − 1)}, and its mean and covariance parameters are

x̂(k|k − 1) = Φ(k, k − 1)x̂(k − 1|k − 1) (2.14)

P(k|k − 1) = Φ(k, k − 1)P(k − 1|k − 1)Φ(k, k − 1)T + GdQd(k − 1)GT
d .

8The law of conditional probability for two pdfs states that

f(A|B) =
f(AB)

f(B)
.

Bayes’ rule follows from the law of conditional probability for pdfs and is given by

f(A|B) =
f(B|A)f(A)

f(B)
.
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Equations (2.14) are the Kalman filter time propagation equations.

The next step in the Kalman filter equations derivation is to apply the current

measurement, z(k), in the measurement update stage. Using Bayes’ rule and noting

that Equation (2.10) may be written as




Zk−1

z(k)





the pdf of the state random process vector conditioned on all of the measurements

through sample k is [21]

f
(
x(k)|Zk

)
=

f
(
x(k), z(k), Zk−1

)

f
(
z(k), Zk−1

) (conditional probability for pdfs)

=
f
(
z(k)|x(k), Zk−1

)
f
(
x(k), Zk−1

)

f
(
z(k)|Zk−1

)
f
(
Zk−1

) (more of the same)

=
f
(
z(k)|x(k), Zk−1

)
f
(
x(k)|Zk−1

)
f
(
Zk−1

)

f
(
z(k)|Zk−1

)
f
(
Zk−1

) (. . . and again)

=
f
(
z(k)|x(k), Zk−1

)
N{x(k); x̂(k|k − 1),P(k|k − 1)}

f
(
z(k)|Zk−1

) . (2.15)

From a broad perspective, the last line of Equation (2.15) provides the justi-

fication for the term “recursive Bayesian filter.” The state random process vector

pdf at the current sample k, conditioned on the latest measurements, cannot be cal-

culated until the state random process vector pdf conditioned on the measurements

up to the previous time index is determined. That is, Equation (2.14) must first be

determined before the pdf N{x(k); x̂(k|k − 1),P(k|k − 1)} can be specified. Hence,

the recursive nature of the filter is apparent in the last line of Equation (2.15). The

terms f
(
z(k)|x(k), Zk−1

)
and f

(
z(k)|Zk−1

)
are found with relative ease by noting

that they are Gaussian pdfs that are completely specified by their respective mean

and covariance [21]. One may find these parameters by applying the conditional ex-

15



pectation operation to the discrete-time measurement model given in the second line

of Equation (2.4). However, determining the final form of f
(
x(k)|Zk

)
is not so easy

since it requires a rather unpleasant amount of linear algebraic manipulations to show

that f
(
x(k)|Zk

)
is a Gaussian pdf.

Returning to the derivation, the initial representation of Equation (2.15) is a

complicated algebraic form which has very little apparent resemblance to a Gaus-

sian pdf [21]. However, after several pages of algebraic manipulations, f
(
x(k)|Zk

)

assumes the much nicer form of [21]

f
(
x(k)|Zk

)
=

exp
[
−1

2
[x(k) − x̂(k|k)]TP(k|k)−1[x(k) − x̂(k|k)]

]

(2π)
n
2

√

detP(k|k)

= N{x(k); x̂(k|k),P(k|k)}.

The parameters of this pdf are (note that zk is the realization of the random vector

z(k) at sample k)

x̂(k|k) = x̂(k|k − 1) + K(k)[zk − Hx̂(k|k − 1)]

P(k|k) = P(k|k − 1) −K(k)HP(k|k − 1) (2.16)

and they are referred to as the Kalman filter measurement update equations [21]. Note

that the term Hx̂(k|k − 1) = ẑ(k|k − 1) is the conditional mean of the measurement

at sample k, or the predicted measurement . Also, the term K(k) is called the Kalman

gain which is given by [21]

K(k) = P(k|k − 1)HT [HP(k|k − 1)HT + R(k)]−1. (2.17)

The previous equation completes the presentation of the key steps in the derivation

of the Kalman filter equations using the Bayes estimation technique.
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In summary, given the discrete-time models in Equation (2.4), including the

initial conditions in Equation (2.5) and noise statistics given in Equation (2.6), one

iteration of the Kalman filter is calculated by using the Kalman filter time propagation

equations :

• Propagate the mean estimate to sample k according to the system dynamics

model:

x̂(k|k − 1) = Φ(k, k − 1)x̂(k − 1|k − 1)

• Propagate the covariance estimate to sample k according to the system dynamics

model and add the covariance of the model noise process vector:

P(k|k − 1) = Φ(k, k − 1)P(k − 1|k − 1)Φ(k, k − 1)T + GdQd(k − 1)GT
d ,

followed by the Kalman filter measurement update equations:

• Calculate the covariance of the residual r(k) and the realized residual rk, which

is the residual evaluated with the observed measurement zk:

r(k) = z(k) − ẑ(k|k − 1)

S(k) = E{r(k)rT (k)}

= HP(k|k − 1)HT + R(k)

r(k)
∣
∣
z (k)=zk

= rk

= zk − ẑ(k|k − 1)

• Compute the Kalman gain as a function of the uncertainty in the system dy-

namics model and the measurement model at sample k:

K(k) = P(k|k − 1)HTS−1(k)
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• Add the “new information” from the measurement at sample k to the propa-

gated mean estimate to form the measurement-updated conditional mean esti-

mate:

x̂(k|k) = x̂(k|k − 1) + K(k)rk

• Subtract the weighted propagated covariance estimate from the propagated co-

variance estimate:

P(k|k) = P(k|k − 1) − K(k)HP(k|k − 1).

The Kalman gain plays a pivotal role in the Kalman filter because it reflects the

amount of confidence placed in the information provided by the measurements relative

to that of the propagated information [35]. If the uncertainty in the measurements

is large (as indicated by R(k)), then the Kalman gain is small (notice [. . . + R(k)]−1

in Equation (2.17)), and the impact of the measurement on the state random pro-

cess vector mean and covariance estimates is small. Likewise, if the measurement

uncertainty is small, then the entries in the matrix R(k) are small, and the measure-

ments have a greater impact on the updated state random process vector mean and

covariance estimates.

From a visual perspective, the conditional pdfs f(x(k−1)|Zk−1), f(x(k)|Zk−1),

and f(x(k)|Zk) are modified according to the Kalman filter equations. For a typical

problem involving a scalar state random process, these pdfs appear in Figure 2.2.

Initially, before the time propagation and measurement update stages are entered,

the scalar state process has a conditional pdf represented by the dotted trace in the

figure. After time propagation, the scalar state process pdf, shown as the dash-dotted

trace, is modified according to Equation (2.14) and the width of the pdf is larger

than before since the dynamics model adds uncertainty. Finally, the measurement is

incorporated and the scalar state random process pdf is narrower than the propagated

pdf as shown by the solid trace. This narrowing of the pdf is expected since the
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Figure 2.2: Typical conditional scalar state pdfs before time propagation, after time
propagation, and after measurement update.

variance of the scalar state random process is smaller than that of the propagated

scalar state random process according to Equation (2.16): this is the benefit obtained

from the most recent measurement.

2.2.2 Nonlinear Recursive Bayesian Filtering. Nonlinear recursive Bayesian

filters are used when the dynamics and/or measurement models are nonlinear. Non-

linear transformations destroy the Gaussian nature of the target state random process

vector, and the mean and covariance of the state random process vector no longer

completely describe the target state pdf. In the best case, if the nonlinearity in the

transformation is negligible, then a Gaussian pdf may be a good approximation to

the true target state pdf. In the worst case, if the nonlinearity in the transformation

is substantial, then the true target state pdf will likely bear little resemblance to a

Gaussian pdf. Considering either case, an optimal nonlinear recursive Bayesian fil-

ter would need to compute an infinite number of moments to characterize the exact

target state pdf [16, 22]. By contrast, only the mean and covariance of the state ran-
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dom process vector are required to describe the target state pdf completely when the

models are linear.

Tracking problems that require slightly nonlinear models are adequately solved

with the extended Kalman filter (EKF). Problems which utilize moderately nonlinear

models, or models in which analytic expressions for the Jacobian of the nonlinear

system dynamics or nonlinear measurement vector functions do not exist9, are po-

tentially better suited to an unscented Kalman filter solution. In the case of highly

nonlinear models, or models in which closed-form expressions for the Jacobian of

the nonlinear system dynamics or nonlinear measurement vector functions are not

available, the tracking problem could be solved using a particle filter. The EKF is

introduced in this subsection, but the unscented Kalman filter and the particle filter

are not covered.

For nonlinear models, both the nonlinear system dynamics vector function and

nonlinear measurement vector function can be written in a Taylor series expansion

about some nominal point as long as an analytic expression for the Jacobian and

higher-order derivatives of both nonlinear vector functions exist. If the vector func-

tions are slightly nonlinear, then the second- and higher-order terms in their respective

expansions may be justifiably ignored to create a first-order linear approximation of

each nonlinear vector function [22]. Then, the Kalman filter Equations (2.14), (2.16),

and (2.17) can be used by replacing the state transition and measurement matrices

with the Jacobian of the nonlinear system dynamics and measurement vectors, re-

spectively, about some appropriate point [21]. These steps form the basis for the

EKF derivation.

A mathematical derivation of the EKF similar to the one found in [22] is pre-

sented below. The final equations for the EKF appear at the end of this subsection,

and they are placed in the same propagate-update structure as used for the Kalman

9In [14], the author proposes using radar cross-section measurements to track and identify targets
simultaneously. Because of the nature of the measurement equation for radar cross-section, a closed-
form measurement equation does not exist. Consequently, the Jacobian of the measurement equation
cannot be found.
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filter equations to accentuate the similarity between the steps required to implement

each filter. These equations emphasize an important distinction between the Kalman

filter and the EKF: unlike in the Kalman filter equations, the state mean estimate,

x̂(·), and state covariance estimate, P(·), are interdependent in EKF equations. The

interdependence of the state mean and covariance estimates stems from expanding

the Taylor series about the state mean estimate. Also, since the true models are

nonlinear, one should keep in mind that the true target state pdf is not a Gaussian

pdf as one may be led to believe by the EKF equations.

The nonlinear, shift-invariant system dynamics and measurement models are

given as

System Dynamics Model: x(k) = φ[x(k − 1)] + Gdwd(k − 1)

Measurement Model: z(k) = h[x(k)] + v(k). (2.7)

If x̂(k − 1|k − 1) is the conditional mean of x(k − 1), and x̃(k − 1) is described by

the first- and second-order statistics

E{x̃(k − 1)|Zk−1} = 0

E{x̃(k − 1)x̃(k − 1)T |Zk−1} = P(k − 1|k − 1)

then the state random process vector at sample k − 1 is equivalently represented by

x(k − 1) = x̂(k − 1|k − 1) + x̃(k − 1). In a similar manner, the propagated state

random process vector at sample k may be written as x(k) = x̂(k|k−1)+x̃(k), where

x̃(k) is zero-mean and P(k|k − 1) is its covariance. The Taylor series expansion of
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φ[x(k − 1)] about x̂(k − 1|k − 1) is10

φ[x(k − 1)] = φ[x̂(k − 1|k − 1) + x̃(k − 1)]

= φ[x̂(k − 1|k − 1)] +
∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x (k−1)=x̂ (k−1|k−1)

x̃(k − 1) + H.O.T.

≈ φ[x̂(k − 1|k − 1)] +
∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

x̃(k − 1) (2.18)

where H.O.T. stands for “higher order terms” which are neglected in the first-order

approximation [3, 22]. A similar expression may be found for the first-order linear

approximation to the nonlinear measurement vector function.

The propagated state conditional mean and covariance estimates may be found

by substituting Equation (2.18) into the conditional expectation equations for these

quantities, conditioned on the measurement history through sample k−1. Noting that

x̃(·) is zero-mean, wd(·) is zero-mean and uncorrelated in time, and φ[x̂(k− 1|k− 1)]

10A modified form of the Taylor series is given in [3] as

φ(x + h) =

∞∑

n=0

hn

n!
φ(n)(x).

This form is adapted according to [22] and used in the derivation of the propagation equations for
the EKF.
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is a constant, the propagated state mean estimate is

x̂(k|k − 1) = E
{
x(k)|Zk−1

}

= E
{
φ[x(k − 1)] + Gdwd(k − 1)

∣
∣Zk−1

}

≈ φ[x̂(k − 1|k − 1)] + GdE
{
wd(k − 1)|Zk−1

}

+
∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

E

{

x̃(k − 1)

∣
∣
∣
∣
Zk−1

}

= φ[x̂(k − 1|k − 1)]. (2.19)

In a similar manner, the propagated state random process vector covariance estimate

is

P(k|k − 1) = E
{
[x(k) − x̂(k|k − 1)][x(k) − x̂(k|k − 1)]T |Zk−1

}

= E
{
x(k)x(k)T |Zk−1

}
− x̂(k|k − 1)x̂(k|k − 1)T

= E
{
[φ[x(k − 1)] + Gdwd(k − 1)][φ[x(k − 1)] + Gdwd(k − 1)]T |Zk−1

}

− x̂(k|k − 1)x̂(k|k − 1)T

= E
{
φ[x(k − 1)]φ[x(k − 1)]T |Zk−1

}

+ E
{
φ[x(k − 1)]wd(k − 1)TGT

d |Zk−1
}

+ E
{
Gdwd(k − 1)φ[x(k − 1)]T |Zk−1

}

+ GdE
{
wd(k − 1)wd(k − 1)T |Zk−1

}
GT

d − x̂(k|k − 1)x̂(k|k − 1)T
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Aside 1 :

E{φ[x(k − 1)]φ[x(k − 1)]T |Zk−1} ≈ E
{
φ[x̂(k − 1|k − 1)]φ[x̂(k − 1|k − 1)]T |Zk−1

}

+ E

{

φ[x̂(k − 1|k − 1)]x̃(k − 1)T ∂φ[x(k − 1)]T

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

∣
∣
∣
∣
Zk−1

}

+ E

{

∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

x̃(k − 1)φ[x̂(k − 1|k − 1)]T
∣
∣
∣
∣
Zk−1

}

+
∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

· E
{
x̃(k − 1)x̃(k − 1)T |Zk−1

}

· ∂φ[x(k − 1)]T

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

= φ[x̂(k − 1|k − 1)]φ[x̂(k − 1|k − 1)]T + 0 + 0+

∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

· P(k − 1|k − 1) · ∂φ[x(k − 1)]T

∂x(k − 1)

∣
∣
∣
∣
x (k−1)=x̂ (k−1|k−1)

= x̂(k|k − 1)x̂(k|k − 1)T+

∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

· P(k − 1|k − 1) · ∂φ[x(k − 1)]T

∂x(k − 1)

∣
∣
∣
∣
x (k−1)=x̂ (k−1|k−1)

Aside 2 :

E
{
φ[x(k − 1)]wd(k − 1)TGT

d |Zk−1
}

= E
{
φ[x(k − 1)]|Zk−1

}
E
{
wd(k − 1)T |Zk−1

}
GT

d

= 0

E
{
Gdwd(k − 1)φ[x(k − 1)]T |Zk−1

}
= 0
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P(k|k − 1) =
∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x (k−1)=x̂ (k−1|k−1)

· P(k − 1|k − 1)

· ∂φ[x(k − 1)]T

∂x(k − 1)

∣
∣
∣
∣
x (k−1)=x̂ (k−1|k−1)

+ GdQdG
T
d + x̂(k|k − 1)x̂(k|k − 1)T − x̂(k|k − 1)x̂(k|k − 1)T

=
∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x (k−1)=x̂ (k−1|k−1)

· P(k − 1|k − 1) · ∂φ[x(k − 1)]T

∂x(k − 1)

∣
∣
∣
∣
x(k−1)=x̂ (k−1|k−1)

+ GdQdG
T
d . (2.20)

Expressions for the measurement-updated state mean and covariance estimates may

be derived using the same techniques used in the propagated estimates derivation.

The final EKF equations are listed below according to the EKF stage in which

they are calculated. At the time propagation stage of the EKF, calculate

Φ(k, k − 1) =
∂φ[x(k − 1)]

∂x(k − 1)

∣
∣
∣
∣
x (k−1)=x̂ (k−1|k−1)

x̂(k|k − 1) = φ[x̂(k − 1|k − 1)]

P(k|k − 1) = Φ(k, k − 1)P(k − 1|k − 1)Φ(k, k − 1)T + GdQd(k − 1)GT
d . (2.21)

In the measurement update stage of the EKF, calculate

H(k) =
∂h[x(k)]

∂x(k)

∣
∣
∣
∣
x (k)=x̂(k|k−1)

K(k) = P(k|k − 1)H(k)T [H(k)P(k|k − 1)H(k)T + R(k)]−1

x̂(k|k) = x̂(k|k − 1) + K(k)
[
zk − h[x̂(k|k − 1)]

]

P(k|k) = P(k|k − 1) −K(k)H(k)P(k|k − 1). (2.22)
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2.3 Multivariate Gaussian Mixtures

Understanding multivariate Gaussian mixtures will aid in understanding the

target state pdf generated by the Bayesian solution for tracking problems in which

uncertainty exists in the model parameters or in the origin of the measurements.

More importantly, since Gaussian mixture reduction is the focus of this thesis, a good

introduction to this subject is necessary before continuing to the next chapters.

In this thesis, a multivariate Gaussian mixture pdf is a weighted, finite sum of

multivariate Gaussian pdfs. It is characterized by the number of mixture components

and the weight, mean vector, and covariance matrix of each component. Since a pdf

must be nonnegative, and the integral of a pdf over the sample space of the random

quantity it represents must evaluate to unity, the mixture weights must be nonnegative

and the sum of all of the weights must equal one. The multivariate Gaussian mixture

pdf of the random vector x with the parameter set Ω is represented by

f (x|Ω) =

M∑

i=1

pif (x|µi,Pi) (2.23)

where M is the number of mixture components and pi, µi, and Pi are the weight, mean

vector, and covariance matrix for each component i = 1, . . . , M . Each multivariate

Gaussian pdf has the form

f (x|µi,Pi) = N{x; µi,Pi} =
exp

[
−1

2
(x − µi)

TP−1
i (x − µi)

]

(2π)
n
2

√
detPi

(2.24)

where n is the dimension of the random vector x and the covariance Pi is symmetric

positive definite. Figure 2.3 illustrates a four-component univariate Gaussian mixture

pdf.

The overall mean and covariance of x given in (2.23) are derived in Appendix

B of [31] and in Chapter II of [38]. These statistics are reproduced in the following
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Figure 2.3: An illustration of a four-component univariate Gaussian mixture pdf
(the solid line). Note that mixture components (represented by the dash-dotted
traces) are scaled by their respective mixture weights in this graphic.

equations.

µ =

M∑

i=1

piµi

P =

M∑

i=1

pi

(
Pi + µiµ

T
i

)
− µµT

=
M∑

i=1

pi

[

Pi + (µi − µ) (µi − µ)T
]

(2.25)

Merging components of a target state Gaussian mixture pdf is one of two kinds

of mixture reduction actions which will be used in this thesis. In Chapter 3 of [31],

Salmond derived the equations for the merged mixture component weight, mean vec-

tor, and covariance matrix resulting from merging two or more components of the

original multivariate Gaussian mixture pdf. These equations were derived under

the constraint that the overall mean and covariance of the original mixture is pre-
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served [31]. The new merged component parameters are

pm =
∑

i∈I

pi

µm =
1

pm

∑

i∈I

piµi

Pm =
1

pm

∑

i∈I

pi(Pi + µiµ
T
i ) − µmµT

m (2.26)

where i ∈ I indicates that the summation is taken only over those components that

are merged and the subscript “m” is used to differentiate the merged component

parameters from the others. As an example, if mixture components 1 and 2 are

merged, then the resulting merged-component weight, mean vector, and covariance

matrix would be (as derived by Williams in [38])

p12 = p1 + p2

µ12 =
1

(p1 + p2)
(p1µ1 + p2µ2)

P12 =
1

(p1 + p2)

[

p1P1 + p2P2 +
p1p2

p1 + p2
(µ1 − µ2)(µ1 − µ2)

T

]

.

Deleting a mixture component is the second kind of mixture reduction action

that will be used in this thesis. If a component of a target state Gaussian mixture pdf

is deleted, then all one needs to do is ensure that the reduced set of mixture weights

is re-normalized so that they sum to one.
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2.4 Bayesian Approaches for Kinematics Model Parameter Uncertainty

In the previous sections, uncertainty was represented by the white Gaussian

noise process vectors wd(k − 1) and v(k) and the initial conditions on the state

random process vector in Equation (2.5) in the discrete-time system kinematics and

measurement models. This section introduces a new, realistic source of uncertainty

encountered in target tracking. Two recursive Bayesian approaches are formulated

depending on how one chooses to represent the uncertainty.

Consider the discrete-time linear system dynamics model

x(k) = Φ(k, k − 1)x(k − 1) + Gdwd(k − 1) (2.4)

where wd(k) is zero-mean with covariance Qd. This equation represents the equivalent

discrete-time model of the continuous-time system describing the motion of a target

over time. If this model does not adequately describe the target’s motion, then

the state vector estimated by a Kalman filter based on this model will likely be very

inaccurate. The problem is not the Kalman filter, but the assumption that the system

dynamics model sufficiently describes the target’s motion over the time of interest.

One remedy for this situation is to use more than one model when estimating the

state random process vector. The underlying assumption is that at least one of the

employed models is an adequate characterization of the target’s kinematics. As a

designer, this begs the question, “How can this be done?”.

Assuming that the form of the linear system dynamics model in Equation (2.4)

is correct, the answer to this question begins with the model matrices Φ(k, k − 1),

Gd, and Qd. Fundamentally, system dynamics models are defined by the elements

of Φ(k, k − 1), Gd, and Qd. One way to represent the uncertainty mathematically

in the kinematics model is to assign these elements to random quantities. If these

random matrix elements are placed into a vector, then the vector is either a continuous

random vector (i.e., their values are unknown constants) denoted by M (for “non-

switching” models) or a continuous random process vector M(k) (for “switching”
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models). The difference between non-switching and switching models is that the latter

type includes a temporal dependence which admits the possibility that the target can

assume different dynamics models over the tracking time of interest. However, a non-

switching model-based Bayesian solution may also be used to track a target which

exhibits various dynamics over a time interval of interest by including the appropriate

modifications to enable model switching [23].

In general, the sample space of the random vectors representing the elements

of the Φ(k, k − 1), Gd, and Qd matrices is the n-dimensional real vector space R
n:

M,M(k) ∈ M ⊂ R
n [22]. Conceptually, the continuous sample space M contains

every possible model that has the form of Equation (2.4). However, since the sample

space includes every possible model, an uncountably infinite number of matrix element

combinations is possible, and the Bayesian solution is not well-suited to real-time

application [22].

Despite this obstacle, two recursive Bayesian approaches suitable for real-time

implementation may be formulated by making a finite discretization of the contin-

uous sample space, M, along with other modifications. Subsection 2.4.1 introduces

the recursive Bayesian solution for non-switching models and the ad hoc modifica-

tions necessary for this solution to accommodate target maneuvering. Subsection

2.4.2 presents the recursive Bayesian solution for switching models and three common

approximations required to make this solution computationally tractable.

2.4.1 Non-Switching Models. For non-switching models, the kinematics of

the target is assumed to be adequately modeled by at least one model in the continu-

ous sample space, M, for all times of interest (e.g., a plane travels according to model

A for the observation times of interest). In most practical target tracking applications,

this constraint is unrealistic since, for example, an aircraft could move at a constant

velocity for a period of time and then perform some type of maneuver while in the

surveillance region of an enemy tracking system. However, two ad hoc modifications

to this approach allow the models to switch over time and accommodate maneuvering
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targets [4, 23]. In this thesis, a non-switching model Bayesian solution that incorpo-

rates the ad hoc modifications to enable model switching is called a Multiple Model

Adaptive Estimation (MMAE) algorithm.

The Bayesian solution for non-switching models is derived in this section. Ini-

tially, the model sample space M is the continuous vector space R
n, but this space

is then discretized such that M = {Mi}Nf

1 , where Nf is the number of models (and

thus the number of elemental filters in the non-switching model algorithm), to obtain

a real-time solution [22]. Care must be taken when choosing the discretization of

the original sample space so that at least one model in the set {Mi}Nf

1 adequately

describes the kinematics of the target for all times of interest.

The derivation begins by modifying Equation (2.15) to include the random vec-

tor M as a quantity to be estimated by inserting it to the left of the conditioning

symbol. Assuming the joint pdf of x(k), Zk, and M exists, the recursive Bayesian

solution is

f
(
x(k),M|Zk

)
=

f
(
x(k),M, Zk

)

f
(
Zk
)

=
f
(
x(k)|M, Zk

)
f
(
M|Zk

)
f
(
Zk
)

f
(
Zk
)

= f
(
x(k)|M, Zk

)
f
(
M|Zk

)
(2.27)

where the first pdf is the Kalman filter solution conditioned on a given model (a

Gaussian pdf) and the second pdf is of the model conditioned on knowledge of the

measurement history [22, 23]. The focus of the remainder of the derivation is on the

second conditional pdf, f
(
M|Zk

)
.
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The model conditional pdf in Equation (2.27) evaluates to

f
(
M|Zk

)
=

f
(
M, z(k), Zk−1

)

f
(
z(k), Zk−1

)

=
f
(
z(k)|M, Zk−1

)
f
(
M|Zk−1

)
f
(
Zk−1

)

∫

M
f
(
z(k),M, Zk−1

)
dM

=
f
(
z(k)|M, Zk−1

)
f
(
M|Zk−1

)
f
(
Zk−1

)

∫

M
f
(
z(k)|M, Zk−1

)
f
(
M|Zk−1

)
dMf

(
Zk−1

)

=
f
(
z(k)|M, Zk−1

)
f
(
M|Zk−1

)

∫

M
f
(
z(k)|M, Zk−1

)
f
(
M|Zk−1

)
dM

(2.28)

where the denominator is seen as the marginal pdf of the joint random vectors Zk and

M, integrating out the dependence on M. In general, the integral in the denominator

will require a computationally costly numerical solution and will likely prohibit the

use of Equation (2.28) in an online implementation [22]. This problem is overcome

by a finite discretization of M [22].

Now, instead, let M = {Mi}Nf

1 . Then M becomes a discrete random vec-

tor and its pdf may be written in terms of the probability mass function (pmf)
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p(Mj) = P[M = Mj ] as11

f
(
M|Zk

)
=

Nf∑

i=1

p(M = Mi|Zk)δ(M −Mi)

=

Nf∑

i=1

µi(k)δ(M− Mi) (2.29)

where µi(k) , p(M = Mi|Zk) is the hypothesis conditional probability or mode

probability [4,22,23]. This quantity represents the probability that model i is correct,

given the observed measurements [4, 22]. The mode probabilities are constrained by

µi(k) ≥ 0 , i = 1, . . . , Nf , and

Nf∑

i=1

µi(k) = 1

which will hold true (and will subsequently be shown) as long as µi(0) ≥ 0, ∀i and
∑Nf

i=1 µi(0) = 1 [22].

11The generalized definition of the pdf allows for a pdf representation of a discrete random variable
by noting that

FX(x) =
∑

k

pX(xk)u(x − xk)

where FX(x) is the cumulative distribution function of the random variable X and pX(xk) is the
pmf of X [20]. The derivative of FX(x) is, by definition, fX(x), so the pdf of a discrete random
variable is [20]

d

dx
FX(x) = fX(x) =

∑

k

pX(xk)δ(x − xk).

33



Substituting the expression above for f
(
M|Zk

)
and f

(
M|Zk−1

)
in Equation

(2.28) results in

Nf∑

i=1

µi(k)δ(M −Mi) =

f
(
z(k)|M, Zk−1

)
Nf∑

i=1

µi(k − 1)δ(M− Mi)

∫

M

f
(
z(k)|M, Zk−1

)
Nf∑

i=1

µi(k − 1)δ(M− Mi)dM

=

f
(
z(k)|M, Zk−1

)
Nf∑

i=1

µi(k − 1)δ(M− Mi)

Nf∑

i=1

µi(k − 1)

∫

M

f
(
z(k)|M, Zk−1

)
δ(M− Mi)dM

=

f
(
z(k)|M, Zk−1

)
Nf∑

i=1

µi(k − 1)δ(M− Mi)

Nf∑

i=1

µi(k − 1)f
(
z(k)|Mi, Z

k−1
)

(2.30)

by the sifting property of the delta function. To find a particular mode probability,

simply set both sides of the above equation to M = Mj where Mj is the model of

interest. Applying this approach for j = 1, . . . , Nf yields an expression for each mode

probability [4, 22, 23, 33]:

µj(k) =
µj(k − 1)f

(
z(k)|Mj, Z

k−1
)

Nf∑

i=1

µi(k − 1)f
(
z(k)|Mi, Z

k−1
)

, j = 1, . . . , Nf . (2.31)

Equation (2.31) indicates that the second term in the numerator divided by the de-

nominator is always less than one as long as the initial constraints cited above are met

(the µj(0)’s sum to one and each µj(0) is greater than or equal to zero). Consequently,

the sum of all mode probabilities is one for any sample k.

The expression f
(
z(k)|Mj , Z

k−1
)

is the conditional pdf of z(k) conditioned

on the assumed mode and the observed prior measurement history. At sample k the
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current measurement is observed (in fact, it is zk, which is a realization of the random

process z(k) at sample k), and the pdf f
(
z(k)|Mj, Z

k−1
)

becomes the likelihood

function of mode j given by [4, 22]

f
(
z(k)|Mj, Z

k−1
) ∣
∣
z (k)=zk

= L (zk; rk,j,Sj(k))

=
exp

[
−1

2
rT

k,jS
−1
j (k)rk,j

]

(2π)
m
2

√

detSj(k)

rk,j = zk − Hjx̂j(k|k − 1)

Sj(k) = HjPj(k|k − 1)HT
j + Rj(k). (2.32)

In this notation j indicates the model number, j = 1, . . . , Nf , so that each quantity

above corresponds to one of the Nf filters. Also, m is the dimension of the random

measurement vector z(k) or, equivalently, the dimension of rk,j.

To complete the recursive Bayesian estimator derivation for the case of non-

switching models, substitute (2.29) and (2.15) into (2.27),

f
(
x(k),M|Zk

)
= f

(
x(k)|M, Zk

)
Nf∑

i=1

µi(k)δ(M− Mi)

=

Nf∑

i=1

µi(k)f
(
x(k)|Mi, Z

k
)

=

Nf∑

i=1

µi(k)
f
(
z(k)|x(k),Mi, Z

k−1
)

f
(
z(k)|Mi, Z

k−1
) · N{x(k); x̂i(k|k − 1),Pi(k|k − 1)}

=

Nf∑

i=1

µi(k)N{x(k); x̂i(k|k),Pi(k|k)}. (2.33)
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Equation (2.33) has nice interpretations in the context of the Kalman filter

derivation in Subsection 2.2.1 and the multivariate Gaussian mixture introduction

in Section 2.3. The last two lines of (2.33) indicate that the time propagation and

measurement update stages of the non-switching model algorithm are comprised of Nf

single-model Kalman filter time propagation and measurement update stages. Thus,

Nf Kalman filters are needed, and each filter recursively operates under its own state

random process vector estimates. The last line of Equation (2.33) is a Gaussian

mixture since it is a weighted sum of Gaussian pdfs and the constraints on µi(k) are

the same constraints imposed on pi. Each mixture component, which is the weighted

output of a Kalman filter with a distinct system dynamics model, may be interpreted

as corresponding to the hypothesis that model j is correct. In this sense, the Bayesian

solution for kinematics model uncertainty evaluates hypotheses about which model in

the design best matches the target kinematics given the observed measurements.

Figure 2.4 depicts a block diagram of the non-switching model Bayesian solution

inferred from Equation (2.33). Notice that each filter operates recursively under its

own mean and covariance estimates. The overall mean and covariance of the state

vector are

x̂(k|k) =

Nf∑

i=1

µi(k)x̂i(k|k)

P(k|k) =

Nf∑

i=1

µi(k)
[
Pi(k|k) + x̂i(k|k)x̂i(k|k)T

]
− x̂(k|k)x̂(k|k)T

=

Nf∑

i=1

µi(k)
[
Pi(k|k) + (x̂i(k|k) − x̂(k|k))(x̂i(k|k) − x̂(k|k))T

]
(2.34)

where the state random process vector mean estimate is given by x̂(k|k) and the state

random process vector covariance estimate is P(k|k).

As noted, the non-switching model Bayesian solution for kinematics model pa-

rameter uncertainty does not account for the realistic possibility of target maneu-

vering. This shortfall is evident in the recursive mode probability calculation given
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Figure 2.4: A block diagram of the non-switching multiple model algorithm. When
certain ad hoc modifications are made to the non-switching model algorithm to enable
model switching, then the algorithm is called MMAE.
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in Equation (2.31). If any of the mode probabilities reach zero, then this mode

probability will remain zero even if future measurements indicate (through the like-

lihood function calculation in Equation (2.32)) that the corresponding model is the

best match to the current target dynamics. However, by introducing an artificial

non-zero modal probability lower bound into Equation (2.31), this shortfall is over-

come [4,22,23,38]. Consider a scenario in which a target’s dynamics over a long period

of time were best represented by the first of two models so that the mode probability

of the unfavorable filter is at the lower bound. Now imagine that the target assumes

a new trajectory over an extended period of time which is best described by the

second model. Then the observed measurements, through the likelihood function in

Equation (2.32), would indicate that the second model is a more favorable match to

the target’s present dynamics. Since the modal probability of the second filter is at

the lower bound and not zero, the modal probability will increase over time to favor

the hypothesis that the target’s motion is best described by the second model. A

second ad hoc modification improves the response time of the algorithm to changes

in target dynamics. Re-initializing the estimates of divergent filters allows the modal

probability for unfavorable filters to increase more quickly in value if the observed

measurements indicate that this filter is a good match. If the scalar quadratic form

(Chi-square variable) [rT
k,jS

−1
j (k)rk,j] in Equation (2.32) is substantially greater than

m, then that elemental filter can be declared divergent, and then be restarted with the

state estimate in Equation (2.34) without the divergent elemental filter contributions

included (and the mode probabilities rescaled so that the sum of these probabilities

is one). MMAE implements modal probability lower bounding and divergent filter

re-initialization to modify the non-switching model Bayesian solution for kinematics

model uncertainty to accommodate maneuvering targets.

2.4.2 Switching Models. The switching model Bayesian solution for kine-

matics model uncertainty addresses the possibility of a maneuvering target up-front

by mathematically modeling the uncertainty in the appropriate elements of the state
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transition, noise input, and model noise process vector covariance matrices as random

processes. It was shown in the previous subsection that allowing the model vector to

have a continuous sample space would not likely lead to a real-time implementation,

so the sample space of the model random process vector, M(k), is restricted to a

finite discrete set {Mi}Nf

1 for all values of k [4]. Since M(k) is now discrete-valued,

let M(k) = Mik . One drawback of representing the model vector as a random process

is that the Bayesian solution needs to be approximated to obtain a computationally

tractable algorithm. The recursive Bayesian solution in the presence of kinematics

model parameter uncertainty is derived in this subsection, and three approximated

solutions are developed in subsequent subsections.

As a starting point in finding a recursive Bayesian solution to this problem, con-

sider the joint conditional pdf of the unknown target state random process vector and

the unknown model random process vector f(x(k),M(k)|Zk). After an application

of the law of conditional probability for pdfs, this density becomes

f
(
x(k),M(k)|Zk

)
= f

(
x(k)|M(k), Zk

)
f
(
M(k)|Zk

)
(2.35)

which is similar to the joint conditional pdf in the non-switching model case (Equation

(2.27)); that is the purpose of writing out Equation (2.35). However, it is shown in

the remainder of this subsection that one must consider the model random process

vector at all time instants through sample k (the model history) and not just M(k)

itself to evaluate the pdfs on the right hand side of Equation (2.35) readily by means

of a Kalman filter. Since M(k) is a discrete random vector at sample k, the second

pdf is written as

f
(
M(k)|Zk

)
=

Nf∑

ik=1

p
(
M(k) = Mik |Zk

)
δ(M(k) −Mik) (2.36)

where the subscript on the summation index emphasizes that it corresponds to the

discrete random vector M(k) at sample k. Since a recursive solution is sought so
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that a Kalman filter may be applied to this problem, a relationship between M(k)

and M(k − 1),M(k − 2), . . . ,M(1) is needed. By using the fundamental definitions

of discrete random processes and marginal pdfs [20], this pdf may be represented as

(replacing M(k) = Mik with simply Mik)

f
(
M(k)|Zk

)
=

Nf∑

ik=1





Nf∑

ik−1=1

· · ·
Nf∑

i1=1



 p
(
Mik ,Mik−1

, . . . ,Mi1 |Zk
)
δ(M(k) − Mik)

=

Nf∑

ik=1





Nf∑

ik−1=1

· · ·
Nf∑

i1=1



 p
(
Mik , {Miℓ}k−1

1 |Zk
)
δ(M(k) −Mik) (2.37)

which is, in fact, the marginal pdf of the joint pdf f(M(k), . . . ,M(1)|Zk). The

summation notation ik−1 indicates that the summation index is for the discrete-valued

random vector M(k − 1) = Mik−1
which has a sample space of {Mi}Nf

1 . A similar

notational convention applies to the other subscripted i’s. Since each summation

contains Nf terms and there are k summations, determining f(M(k)|Zk) requires

evaluating (Nf)
k terms. As time increases (i.e., k increases), the number of evaluations

becomes unbounded and this solution becomes computationally intractable.

Still, the joint pmf p(Mik , {Miℓ}k−1
1 |Zk) may be expanded using the law of

conditional probability for pmfs in an attempt to reduce this expression to a recursive

form:

p
(
Mik , {Miℓ}k−1

1 |Zk
)

=
f
(
Mik , {Miℓ}k−1

1 , z(k), Zk−1
)

f
(
z(k), Zk−1

) (2.38)

=
f
(
z(k)|Mik , {Miℓ}k−1

1 , Zk−1
)
p
(
Mik |{Miℓ}k−1

1 , Zk−1
)
p
(
{Miℓ}k−1

1 |Zk−1
)

f
(
z(k)|Zk−1

) .

Observe that the measurement pdf f(z(k)|·) as well as the model pmf p(Mik |·) in the

numerator of this equation are conditioned on the entire model history, {Miℓ}k−1
1 .
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Thus, a recursive solution would require knowledge of the model history over all

previous samples.

However, these observations lead to two possible remedies to the problem of the

exponential growth of evaluations. First, if Mik is assumed to be a Markov process,

then p(Mik |{Miℓ}k−1
1 , Zk−1) becomes p(Mik |Mik−1

, Zk−1) (a transition probability

from state Mik−1
to state Mik) and likewise for the other values of k12. By the defini-

tion of a Markov process, the transition probability p(Mik |Mik−1
, Zk−1) solely depends

on the previous state, so that the conditioning on Zk−1 may be dropped; however,

this conditioning will remain explicit in the notation for clarity. The second remedy

is to limit the model histories for the measurement pdf above to the current sample or

the current and previous time instants. Combining the Markov process assumption

for Mik and limiting the model histories for the measurement pdfs results in the Gen-

eralized pseudo-Bayesian (GPB) and Interacting Multiple Model (IMM) algorithms.

Further approximations are necessary to produce practical real-time algorithms from

GPB and IMM. These algorithms will be derived in the following subsections.

2.4.2.1 Generalized Pseudo-Bayesian-1 Algorithm. The GPB-1 al-

gorithm uses the Markov process assumption for Mik and limits the model history

conditioning of the measurement pdf to the current sample k [4]. It also approximates

the measurement history through sample k−1 by the combined state random process

vector mean and covariance estimates from the previous cycle. The algorithm requires

Nf models, or filters, like the non-switching model algorithm, but model switches are

enabled by the initial uncertainty modeling assumption given in Subsection 2.4.2. A

derivation of the GPB-1 algorithm is contained in this subsection.

The GPB-1 derivation begins by using Equations (2.35) and (2.36) in their

current form. Equation (2.38) is approximated using the Markov process assumption,

12By the definition of a Markov process, if x(k) is a discrete Markov process [20, 21], then

p(x(k)|x(k − 1), . . . , x(0)) = p(x(k)|x(k − 1)).
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and by discarding the conditioning on the previous model history in the measurement

pdf:

p
(
Mik , {Miℓ}k−1

1 |Zk
)
≈ f

(
z(k)|Mik , Z

k−1
)
p
(
Mik |Mik−1

, Zk−1
)
p
(
Mik−1

|Zk−1
)

f
(
z(k)|Zk−1

) .

(2.39)

Substituting this expression into Equation (2.36) yields

f
(
M(k)|Zk

)
=

Nf∑

ik=1

p
(
M(k) = Mik |Zk

)
δ(M(k) − Mik)

≈
Nf∑

ik=1

δ(M(k) − Mik)

Nf∑

ik−1=1

f
(
z(k)|Mik , Z

k−1
)
p
(
Mik |Mik−1

, Zk−1
)

f
(
z(k)|Zk−1

) p
(
Mik−1

|Zk−1
)
.

(2.40)

The inner summation term is defined as the mode probability µik(k) , p(Mik |Zk),

and the term p(Mik−1
|Zk−1) is µik−1

(k − 1), which leads to the recursion initially

sought [4]. Additionally, p(Mik |Mik−1
, Zk−1), τik,ik−1

is the mode transition proba-

bility which is simply the state transition probability for discrete Markov chains (this

is a consequence of the Markov process approximation) [4]. The mode transition

probability is chosen by the designer based on engineering insights.

Explicitly, the mode probabilities at sample k are given by

µik(k) =

Nf∑

ik−1=1

f
(
z(k)|Mik , Z

k−1
)

f
(
z(k)|Zk−1

) τik ,ik−1
µik−1

(k − 1) (2.41)
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for ik = 1, . . . , Nf . The term in the denominator is a normalization factor and may

be found by using the property of marginal pdfs/pmfs as

f
(
z(k)|Zk−1

)
=

Nf∑

ik=1

f
(
z(k),Mik , Z

k−1
)

f
(
Zk−1

)

=

Nf∑

ik=1

f
(
z(k)|Mik , Z

k−1
)
p
(
Mik |Zk−1

)
f
(
Zk−1

)

f
(
Zk−1

)

=

Nf∑

ik=1

f
(
z(k)|Mik , Z

k−1
)
p
(
Mik |Zk−1

)
. (2.42)

Now, the term p
(
Mik |Zk−1

)
is

p
(
Mik |Zk−1

)
=

Nf∑

ik−1=1

f
(
Mik ,Mik−1

, Zk−1
)

f
(
Zk−1

)

=

Nf∑

ik−1=1

p
(
Mik |Mik−1

, Zk−1
)
p
(
Mik−1

|Zk−1
)
f
(
Zk−1

)

f
(
Zk−1

)

=

Nf∑

ik−1=1

τik ,ik−1
µik−1

(k − 1). (2.43)

The final expression for the mode probabilities at sample k is now seen as

µik(k) =

f
(
z(k)|Mik , Z

k−1
)

Nf∑

ik−1=1

τik,ik−1
µik−1

(k − 1)

Nf∑

ik=1

f
(
z(k)|Mik , Z

k−1
)

Nf∑

ik−1=1

τik ,ik−1
µik−1

(k − 1)

(2.44)

for ik = 1, . . . , Nf , which ensures that the sum of all mode probabilities is one. The

term f
(
z(k)|Mik , Z

k−1
)

is simply the likelihood function given in Equation (2.32)

but with ik replacing j.
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Substituting Equation (2.44) into Equations (2.40) and (2.35) yields

f
(
x(k),M(k)|Zk

)
= f

(
x(k)|M(k), Zk

)
f
(
M(k)|Zk

)

≈ f
(
x(k)|M(k), Zk

)
Nf∑

ik=1

µik(k)δ(M(k) −Mik)

=

Nf∑

ik=1

µik(k)f
(
x(k)|Mik , z(k), Zk−1

)
. (2.45)

A final approximation is made by letting x̂(k−1|k−1) and P(k−1|k−1) represent the

information in the measurement history Zk−1 so that the overall mean and covariance

estimates from the previous cycle are propagated through each model; that is,

f
(
x(k)|Mik , z(k), Zk−1

)
≈ f (x(k)|Mik , z(k), x̂(k − 1|k − 1),P(k − 1|k − 1)) .

(2.46)

Finally, the target state pdf, under the GPB-1 assumption that Mik is a Markov

process and using the approximations (2.39) and (2.46), is

f
(
x(k),M(k)|Zk

)
≈

Nf∑

ik=1

µik(k)f (x(k)|Mik , z(k), x̂(k − 1|k − 1),P(k − 1|k − 1))

=

Nf∑

ik=1

µik(k)N{x(k); x̂(k|k),P(k|k)} (2.47)

with an overall mean and covariance given by

x̂(k|k) =

Nf∑

ik=1

µik(k)x̂ik(k|k)

P(k|k) =

Nf∑

ik=1

µik(k)
[
Pik(k|k) + x̂ik(k|k)x̂ik(k|k)T

]
− x̂(k|k)x̂(k|k)T

=

Nf∑

ik=1

µik(k)
[
Pik(k|k) + (x̂ik(k|k) − x̂(k|k))(x̂ik(k|k) − x̂(k|k))T

]
. (2.48)
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Equation (2.47) looks very similar to Equation (2.33) in that it represents a

Gaussian mixture, but unlike that equation, the GPB-1 state vector pdf shows that

the Nf models recursively operate on the combined state random process vector mean

and covariance estimates. This fact is evident in the parameters of the Gaussian pdf

in these two equations. For the non-switching model state vector pdf, the parameters

of the Gaussian pdf inside the summation are x̂i(k|k) and Pi(k|k) where the subscript

i indicates that these values are from the ith filter. Thus the non-switching algorithm

requires each filter to operate recursively on its own estimates. In contrast, the

Gaussian pdf parameters in (2.47) are x̂(k|k) and P(k|k) (the combined mean and

covariance estimates of the target state vector), which show that each filter recursively

operates according to the combined estimates of all filters. Additionally, Equation

(2.47) includes the possibility of a model switch at any given time. That is, if the target

changes from model M3 at time k−1 to model M5 at time k, then this model switch is

characterized by the model transition probabilities, τik,ik−1
, contained in µik(k). One

potential drawback of GPB-1, and of any of the switching model algorithms (GPB-1,

GPB-2, and IMM), is that the model transition probabilities, τik,ik−1
, must be known.

If these probabilities are not provided to a designer, then the designer must make an ad

hoc assignment to their values. This last point demonstrates that ad hoc adjustments

may be necessary for a practical implementation of the switching model algorithms,

and that a practical Bayesian solution may require ad hoc modifications regardless of

the initial assumption about the nature of the model vector (i.e., whether the model

vector is represented as a random vector or a random process vector).

Figure 2.5 is a graphical representation of Equation (2.47). As previously noted,

each filter runs under the combined target state vector estimates. Also note that the

subscripts on the mean and covariance estimates of the state random process vector

are the index values of the summation in Equation (2.47).

45



Figure 2.5: A block diagram of the GPB-1 algorithm.
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2.4.2.2 Generalized Pseudo-Bayesian-2 Algorithm. Like GPB-1, the

GPB-2 algorithm uses the Markov process assumption for Mik , but now the mea-

surement pdf is conditioned on the model vector at sample k − 1 in addition to the

conditioning on the current model vector at sample k [4]. Since the measurement

pdf conditioning includes the model vector at samples k and k − 1, the algorithm

requires N2
f filters to operate. GPB-2 approximates the measurement and model his-

tories through sample k − 1 by the weighted sum of the state random process vector

mean and covariance estimates from the first set of filters (which will become clear

when Equation (2.53) and Figure 2.6 are introduced). GPB-2 typically outperforms

GPB-1, but at the expense of using N2
f filters as opposed to only Nf filters [4].

One assumption and two approximations to the switching model derivation are

used to develop the GPB-2 algorithm:

1. Mik is assumed to be a Markov process.

2. The conditional model pmf conditioned on the measurement history is approx-

imated by conditioning the measurement pdf on the model vectors Mik and

Mik−1
while discarding the model history at previous samples. Combining this

approximation and condition 1 results in condition 2:

p
(
Mik , {Miℓ}k−1

1 |Zk
)
≈
f
(
z(k)|Mik ,Mik−1

, Zk−1
)

f
(
z(k)|Zk−1

) p
(
Mik |Mik−1

, Zk−1
)
p
(
Mik−1

|Zk−1
)

In comparison, the corresponding GPB-1 approximation in Equation (2.39) only

conditions the measurement pdf on the current model vector Mik .

3. The measurement and target state pdfs are approximated by letting the state

random process vector mean and covariance estimates from the previous sample

represent the information contained in Mik−1
and Zk−1. That is,
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f
(
z(k)|Mik ,Mik−1

, Zk−1
)
≈ f

(
z(k)|Mik , x̂ik−1

(k − 1|k − 1),Pik−1
(k − 1|k − 1)

)

f
(
x(k)|z(k),Mik ,Mik−1

, Zk−1
)
≈

f
(
x(k)|z(k),Mik , x̂ik−1

(k − 1|k − 1),Pik−1
(k − 1|k − 1)

)

As before, a recursive Bayesian solution is desired, so (2.35) is used, but now

M(k − 1) is included in the target state pdf:

f
(
x(k),M(k),M(k − 1)|Zk

)
=

f
(
x(k)|M(k),M(k − 1), Zk

)
f
(
M(k − 1)|M(k), Zk)f(M(k)|Zk

)
. (2.49)

Since M(k) and M(k − 1) are discrete-valued random vectors, Equation (2.36) may

be used in conjunction with the Markov assumption for the model random process

vector (condition 1) to write the above equation as

f
(
x(k),M(k),M(k − 1)|Zk

)

=

Nf∑

ik=1

Nf∑

ik−1=1

f
(
x(k)|Mik ,Mik−1

, Zk
)
p
(
Mik−1

|Mik , Z
k
)
p
(
Mik |Zk

)

=

Nf∑

ik=1

Nf∑

ik−1=1

f
(
x(k)|Mik ,Mik−1

, Zk
)
p(Mik−1

|Mik , Z
k)µik(k)

=

Nf∑

ik=1

µik(k)

Nf∑

ik−1=1

f
(
x(k)|Mik ,Mik−1

, Zk
)
p(Mik−1

|Mik , Z
k) (2.50)

where p(Mik−1
|Mik , Z

k) represents the merging probabilities and µik(k) = p(Mik |Zk)

is the mode probability [4]. Using conditions 1, 2, and 3, the merging probabilities
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are given by (the overset number above the approximation symbols indicates which

of the three conditions are used)

p
(
Mik−1

|Mik , Z
k
)

= (2.51)

f
(
z(k)|Mik , {Miℓ}k−1

1 , Zk−1
)
p
(
Mik |{Miℓ}k−1

1 , Zk−1
)
p
(
{Miℓ}k−1

1 |Zk−1
)

f
(
z(k)|Zk−1

)

1,2≈ f
(
z(k)|Mik ,Mik−1

, Zk−1
)

f
(
z(k)|Zk−1

) p
(
Mik |Mik−1

, Zk−1
)
p
(
Mik−1

|Zk−1
)

=
f
(
z(k)|Mik ,Mik−1

, Zk−1
)

f
(
z(k)|Zk−1

) τik,ik−1
µik−1

(k − 1)

=
f
(
z(k)|Mik ,Mik−1

, Zk−1
)
τik ,ik−1

µik−1
(k − 1)

Nf∑

ik=1

Nf∑

ik−1=1

f
(
z(k)|Mik ,Mik−1

, Zk−1
)
τik ,ik−1

µik−1
(k − 1)

3≈ f
(
z(k)|Mik , x̂ik−1

(k − 1|k − 1),Pik−1
(k − 1|k − 1)

)
τik ,ik−1

µik−1
(k − 1)

Nf∑

ik=1

Nf∑

ik−1=1

f
(
z(k)|Mik , x̂ik−1

(k − 1|k − 1),Pik−1
(k − 1|k − 1)

)
τik ,ik−1

µik−1
(k − 1)

where τik,ik−1
is the mode transition probability given by p(Mik |Mik−1

, Zk−1) (as in

Equation (2.40)) and µik−1
(k−1), as given in Equation (2.41), is the previous sample

mode probability, p(Mik−1
|Zk−1). When the measurement is available, the measure-

ment pdf of this equation, f(z(k)|Mik , x̂ik−1
(k−1|k−1),Pik−1

(k−1|k−1)), becomes

the likelihood function (2.32) for each of the ik models with the appropriate changes
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to the parameters. In a similar fashion, the current mode probabilities are given by

µik(k) = p
(
Mik |Zk

)
(2.52)

3≈

Nf∑

ik−1=1

f
(
z(k)|Mik , x̂ik−1

(k − 1|k − 1),Pik−1
(k − 1|k − 1)

)
τik ,ik−1

µik−1
(k − 1)

Nf∑

ik=1

Nf∑

ik−1=1

f
(
z(k)|Mik , x̂ik−1

(k − 1|k − 1),Pik−1
(k − 1|k − 1)

)
τik,ik−1

µik−1
(k − 1)

.

Finally, after applying condition 3, the state random process vector pdf is

f
(
x(k),M(k),M(k − 1)|Zk

) 3≈
Nf∑

ik=1

p(Mik |Zk)

·
Nf∑

ik−1=1

f
(
x(k)|z(k),Mik , x̂ik−1

(k − 1|k − 1),Pik−1
(k − 1|k − 1)

)
p
(
Mik−1

|Mik , Z
k
)

=

Nf∑

ik=1

µik(k)

Nf∑

ik−1=1

p
(
Mik−1

|Mik , Z
k
)
N{x(k); x̂ik−1

(k|k),Pik−1
(k|k)}. (2.53)

The inner summation is a Gaussian mixture with mean and covariance given by

Equation (2.25). Once the inner summation is evaluated, then the outer summation

produces another Gaussian mixture. That is, first compute

x̂ik(k|k) =

Nf∑

ik−1=1

p(Mik−1
|Mik , Z

k)x̂ik−1
(k|k)

Pik(k|k) =

Nf∑

ik−1=1

p(Mik−1
|Mik , Z

k)

[

Pik−1
(k|k) +

(x̂ik−1
(k|k) − x̂ik(k|k))(x̂ik−1

(k|k) − x̂ik(k|k))T

]

, (2.54)
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then calculate the GPB-2 overall mean and covariance estimates as

x̂(k|k) =

Nf∑

ik=1

µik(k)x̂ik(k|k)

P(k|k) =

Nf∑

ik=1

µik(k)
[
Pik(k|k) + (x̂ik(k|k) − x̂(k|k))(x̂ik(k|k) − x̂(k|k))T

]
. (2.55)

Figure 2.6 depicts a block diagram of the GPB-2 algorithm. At the beginning

of a processing cycle, each of the merged estimates are input into Nf filters and

the same measurements are fed to each filter. The superscripts on the mean and

covariance estimates at the outputs of the N2
f filters correspond to the indices of the

inner summation in Equation (2.53). Once the inner summation is calculated for

each ik of the outer summation, the estimates are merged after being scaled by the

merging probabilities p(Mik−1
|Mik , Z

k). Finally, the merged estimates are scaled by

the mode probabilities µik(k) and combined via Equation (2.55) into the overall mean

and covariance estimate of the state random process vector.
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Figure 2.6: A notional block diagram of the GPB-2 algorithm.
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2.4.2.3 Interacting Multiple Model Algorithm. The IMM algorithm

achieves the performance of GPB-2 but uses only the same number of filters as

GPB-1 [4,38]. For these reasons IMM is the preferred approximation to the switching

multiple model approach.

In [4], IMM is derived starting from the GPB-1 assumptions/approximations

and later incorporating condition 3 from the GPB-2 subsection. This approach results

in an algorithm in which the the merging probabilities scale the estimate of the state

random process vector from the previous cycle before beginning the next cycle of the

algorithm. In [38] and [33], the derivation of IMM incorporates scaling by the merging

probabilities after the end of each cycle13. This form of the derivation emphasizes that

the IMM algorithm reduces to the non-switching algorithm if estimate merging does

not take place (skipping ahead to Figure 2.7, if one removes the “Model Estimate

Merging” block and feeds the previous estimates into the appropriate filters, then

the IMM block diagram is essentially the same as the non-switching model block

diagram in Figure 2.4). Mathematically, it can be shown that IMM reduces to the

non-switching model solution when p(Mik−1
|Mik , Z

k) is replaced by a Kronecker delta

function, δikik−1
, for each pair of index values [33].

This subsection includes a third form of the IMM algorithm derivation which

emphasizes two points not highlighted in [4, 33, 38]. First, IMM may be viewed as a

Gaussian mixture reduction approximation of GPB-2 to decrease the number of filters

from N2
f to Nf . The second point is more subtle than the first. The claim that IMM

provides performance similar to GPB-2 is evident when the IMM algorithm is derived

directly from GPB-2. Therefore, the third derivation of the IMM algorithm begins

with GPB-2.

The inner summation of the GPB-2 target state pdf in Equation (2.53) is a

Gaussian mixture. If the mixture is approximated by a single Gaussian pdf with the

same overall mean and covariance as the original Gaussian mixture, then the num-

13Whether merging occurs at the beginning or the end of a process cycle is irrelevant. Both
methods are theoretically equivalent.
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ber of filters is reduced from N2
f to Nf (only the outer summation remains). In this

way, IMM may be derived from GPB-2 by including this Gaussian mixture reduc-

tion approximation to the assumption/approximation conditions listed in Subsection

2.4.2.2.

Starting with the GPB-2 state random process vector pdf given in Equation

(2.53), the IMM target state pdf is

f
(
x(k),M(k),M(k − 1)|Zk

)

= f
(
x(k)|M(k),M(k − 1), Zk

)
f
(
M(k − 1)|M(k), Zk)f(M(k)|Zk

)

GPB−2≈
Nf∑

ik=1

p
(
Mik |Zk

)
Nf∑

ik−1=1

N{x(k); x̂ik−1
(k|k),Pik−1

(k|k)}p
(
Mik−1

|Mik , Z
k
)

IMM≈
Nf∑

ik=1

p
(
Mik |Zk

)
N{x(k); x̂ik(k|k),Pik(k|k)}. (2.56)

The overset text on the first approximation,“GPB-2,” indicates that the assump-

tion/approximation conditions in Subsection 2.4.2.2 are invoked in the approxima-

tion. Likewise, the overset text on the second approximation indicates that the IMM

single Gaussian pdf mixture reduction approximation is used. The IMM target state

pdf appears to be the same as that for GPB-1 in Equation (2.47), but it fundamen-

tally differs from the target state pdf of GPB-1 since the merging probability terms,

p(Mik−1
|Mik , Z

k), are embedded in N{x(k); x̂ik(k|k),Pik(k|k)}. Thus the perfor-

mance of IMM is expected to be closer to that of GPB-2 than that of GPB-1. The

parameters of the pdf, x̂ik(k|k) and Pik(k|k), are given by Equation (2.54). However,

the equation for p(Mik−1
|Mik , Z

k) is calculated in a different manner than seen in

Equation (2.51).
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The Bayes expansion of the merging probability p(Mik−1
|Mik , Z

k) differs from

that of GPB-2 by conditioning on the current measurement history (through sample k)

instead of the previous measurement history (through sample k−1). This modification

enables merging of the previous cycle estimates prior to beginning the next cycle. To

see this point, consider the expansion of p(Mik−1
|Mik , Z

k) using Bayes’ rule and

marginal probability:

p(Mik−1
|Mik , Z

k) =
p
(
Mik |Mik−1

, Zk
)
p
(
Mik−1

|Zk
)

p
(
Mik |Zk

)

=
p
(
Mik |Mik−1

, Zk
)
p
(
Mik−1

|Zk
)

Nf∑

ik−1=1

p
(
Mik |Mik−1

, Zk
)
p
(
Mik−1

|Zk
)

=
τik ,ik−1

p
(
Mik−1

|Zk−1
)

Nf∑

ik−1=1

τik,ik−1
p
(
Mik−1

|Zk−1
)

=
τik ,ik−1

µik−1
(k − 1)

Nf∑

ik−1=1

τik,ik−1
µik−1

(k − 1)

. (2.57)

Two insights were used to obtain the last line of this equation. First, p(Mik−1
|Zk) is

equivalent to p(Mik−1
|Zk−1) since the measurement at sample k has no impact on the

model vector at sample k − 1. Second, p(Mik |Mik−1
, Zk) is represented by the model

transition probability, τik,ik−1
. It seems counterintuitive that the probability of the

current model would not depend on the current measurement. However, the Markov

process assumption for Mik imposes the condition that the transition probability is

only dependent on the previous model state. Therefore, the conditioning on Zk in

p(Mik |Mik−1
, Zk) is irrelevant under the Markov process assumption.

All that remains of the IMM algorithm derivation is to determine the mode

probability, µik(k) , p(Mik |Zk), and the likelihood function, f(z(k)|Mik , Z
k−1). The
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mode probability is

µik(k) = p
(
Mik |z(k), Zk−1

)

=
f
(
z(k)|Mik , Z

k−1
)
p
(
Mik |Zk−1

)

f
(
z(k)|Zk−1

)

=

f
(
z(k)|Mik , Z

k−1
)

Nf∑
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p
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, Zk−1
)
p
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|Zk−1
)

Nf∑
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f
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k−1
)
p
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Mik |Zk−1

)

=

f
(
z(k)|Mik , Z

k−1
)

Nf∑

ik−1=1

p
(
Mik |Mik−1

, Zk−1
)
p
(
Mik−1

|Zk−1
)

Nf∑

ik=1

f
(
z(k)|Mik , Z

k−1
)

Nf∑

ik−1=1

p
(
Mik |Mik−1

, Zk−1
)
p
(
Mik−1

|Zk−1
)

=

f
(
z(k)|Mik , Z

k−1
)

Nf∑

ik−1=1

τik,ik−1
µik−1

(k − 1)

Nf∑

ik=1

f
(
z(k)|Mik , Z

k−1
)

Nf∑

ik−1=1

τik ,ik−1
µik−1

(k − 1)

(2.58)

(note that the mode probability for IMM is the same as that for GPB-1 in Equation

(2.44)). Using Equation (2.32), the likelihood function of f(z(k)|Mik , Z
k−1) given

the realized observation z(k) = zk is

f(z(k)|Mik , Z
k−1)

∣
∣
z (k)=zk

= L (zk; rik,k,Sik(k))

=
exp

[
−1

2
rT

ik,kS
−1
ik

(k)rik,k

]

(2π)
m
2

√

detSik(k)

rik,k = zk − Hikx̂ik(k|k − 1)

Sik(k) = HikPik(k|k − 1)HT
ik

+ Rik(k). (2.59)

56



Figure 2.7: A block diagram of the IMM algorithm.

Figure 2.7 represents the IMM algorithm. At the beginning of each processing

cycle, the Nf estimates of the last processing cycle are merged according to the

merging probabilities of each model (filter). Merging occurs in the “Model Estimate

Merging” block which functions as a mixture reduction algorithm, reducing the Nf -

order Gaussian mixture to a single Gaussian pdf. The filters then operate on the

merged estimates (note that the subscripts on the mean and covariance estimates of

the state random process vector change from ik−1 to ik, which corresponds to Equation

(2.56)). After being scaled by the mode probability for each model, the outputs of

the filters are combined into the overall estimates by the summation block.

2.4.3 Multiple Model Algorithms Summary. This section introduced the

realistic problem of kinematics model parameter uncertainty encountered in target
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tracking. This uncertainty may be represented by the unknown elements of the

Φ(k, k − 1), Gd, and Qd matrices, which are mathematically represented as random

quantities and inserted into a parameter vector to be estimated. Since the model

parameters are random quantities, Bayes estimation can be used to find a recursive

Bayesian solution. It was quickly determined that the model parameters had to be

limited to a discrete set of values to provide any hope of a real-time implementation.

After limiting the continuous set of possible values to a finite discrete set, two fun-

damental assumptions about the random nature of the model parameters were made,

leading to two Bayesian solutions. The first solution assumed that the model param-

eters were time-invariant so that they were represented by a random vector M. This

assumption led to the non-switching model recursive Bayesian solution. The funda-

mental drawback to representing the model parameters as random constants is that

the resulting Bayesian solution presumes that the target travels according to only one

model for all time. The second solution assumed that the model parameters were

time-varying, and the model parameters were represented by a random process vector

M(k). This assumption led to the switching model recursive Bayesian solution. The

advantage of this method is that the target is not assumed to travel according to

only one model for all time. Both the rigorous non-switching and switching model

recursive Bayesian solutions are unsuitable for practical implementation in a target

tracking system.

Ad hoc modifications and approximations to the rigorous non-switching and

switching model solutions, respectively, led to practical implementations for target

tracking systems. MMAE, which is based on the non-switching model recursive

Bayesian solution, utilizes ad hoc modal probability lower bounding to enable model

switching. Additionally, filter re-initialization is used to improve the response of

the algorithm to changes in target dynamics. With these modifications to the non-

switching model solution in place, MMAE is a suitable multiple model algorithm for

use in real-time tracking of a maneuvering target. GPB-1, GPB-2, and IMM incor-

porate various approximations to the rigorous switching model Bayesian solution to
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produce practical algorithms which inherently allow for target maneuvering. Of the

three approximations, IMM provides performance approaching that of GPB-2 (which

generally provides the best performance of the group), but with a computational bur-

den on par with that of GPB-1 (and MMAE). In fact, IMM reduces to MMAE when

the model transition probabilities are represented by Kronecker delta functions [33].

2.5 A Bayesian Approach for Measurement Origin Uncertainty

This section introduces another practical source of uncertainty: the origin of

measurements. One aspect of the data association problem is depicted in Figure 2.8

in which fourteen measurements are observed when only two targets are known to

exist. Assuming that each target cannot produce more than one return, and that

feature information about each of the measurements (e.g., amplitude, phase, etc.) is

not available, which two of the fourteen observed measurements originated from the

two targets? This scenario is the typical data association problem in which the origin

of all measurements generated by sensors in a scan must be determined. Another

aspect of the data association problem allows for the possibility that, for example, all

fourteen observed measurements were generated by fourteen new targets and the two

existing targets were not detected.

Measurements may be broadly categorized into true measurements or false-

origin measurements. True measurements include those belonging to hypothesized

targets that were hypothesized in previous scans and are used for track continuation,

or those belonging to potential new targets so that new tracks are initiated. A track

is a state vector trajectory estimated from a set of measurements that have been

associated with the same target over some number of scans [5]. False-origin mea-

surements may arise from clutter, countermeasures, or false alarms. Clutter may be

considered objects other than targets that create spurious returns. Countermeasures

include decoys and jamming. False alarms are erroneous measurements caused by

random sensor or environmental noise. The possibility of missed measurements also

exists, which may occur when tracking low observable targets, for instance.
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Figure 2.8: An illustration of one aspect of the data association problem. Given
more observed measurements than targets, how does one update the target state
random process vector estimates (adapted from [38])? The pictures of the F/A-22
and S-37 represent the true location of the targets.

Data association requires generating hypotheses about the origin of the mea-

surements. These hypotheses are represented by association events which are formed

by labeling the measurements according to one of two underlying assumptions used in

practice. The first assumption is that the true number of targets is known exactly. In

this case, one would associate measurements to known tracks or to false sources (clut-

ter, countermeasures, or false alarms). Under this assumption, the tracker operates

according to a target-oriented data association method [5]. The second underlying

assumption, which seems more widely applicable, is that the true number of targets

is not known. Under this assumption, measurements may be associated with existing

tracks that were hypothesized in previous scans, potential new tracks, or false sources.

This association method is called the measurement-oriented approach [27].

A commonly used method to reduce the number of association events is to place

a measurement gate around the predicted measurement, ẑj(k|k−1), for each existing

target j that was hypothesized in a previous scan. Measurements that are within

a measurement gate of an existing target at the current scan are hypothesized as

potentially originating from that target, while measurements outside of the gate are
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Figure 2.9: By using measurement gates based on the predicted measurement,
ẑj(k|k − 1), for each existing target j that was hypothesized in a previous scan, the
number of potential association events is decreased (adapted from [38]).

not considered as candidates for association to that target. Instead, measurements

outside all of the measurement gates are hypothesized as false-origin measurements

when the target-oriented data association method is used, or as false-origin or poten-

tial new target measurements when using the measurement-oriented data association

approach. Figure 2.9 shows the predicted measurements for the existing targets that

were hypothesized in a previous scan as a dot and a square, and the true target loca-

tions are indicated by the F/A-22 and S-37 images. Although there are several types

of measurement gates [7], Figure 2.9 depicts two elliptical measurement gates centered

about the predicted measurement for each target. The size of each gate is related to

Sj(k), which is the covariance of the residual for each target j (see Subsection 2.2.1),

and it may be specified in terms of the probability that the true target measurement

falls within the gate, Pg [5]. Measurements outside the union of the measurement

gates are considered too unlikely to have originated from the targets and, as a result,

are hypothesized to have originated from other sources.

The union of all association events formed from labeling all of the measurements

at sample k creates the discrete sample space of the association event discrete random

process vector Θ(k) = Θik . Thus, as in the switching model case of the previous
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section, the uncertainty about the true origin of the measurements is modeled by a

discrete random process vector, and the mathematics of that section also apply to

this section. The number of measurements received at each time instant is random

in nature and, consequently, so is the size of the discrete sample space of Θik . As a

result, the number of association events is also random.

As an illustration of generating association events at some sample k, consider the

following example. A confirmed track is to be updated by two measurements at sample

k. Furthermore, to simplify the example, measurement gating is not used, so either

measurement may be associated with the confirmed track. Using the measurement-

oriented data association method, the origin of each measurement may be the existing

track that was hypothesized in a previous scan, a potential new track, or a false source.

Assume that the measurements originate from at most one source and any, all, or

none of the measurements may originate from potential new targets or false sources.

Let HFT , HDT , and HNT represent the hypotheses that one of the measurements

originated from a false source, the existing track hypothesized in a previous scan (“D”

is for “detected”), or a potential new track, respectively. Also, let zk,1 and zk,2 denote

the two observed measurements. Under these conditions, one may generate all of the

feasible association events by creating tables in which each column corresponds to

a distinct hypothesis (HFT , HDT , or HNT ), each row corresponds to a measurement

(zk,1 or zk,2), and each element contains a “1” or a “0” depending on whether a

hypothesis/measurement pair is considered “true” or “false,” respectively.

Figure 2.10 depicts tables containing all feasible association events for the ex-

ample given above. Since there is only one confirmed track and two measurements

at sample k, the number of potential targets is three using the measurement-oriented

data association method (the two measurements may be from two new targets). A

“1” in the cell corresponding to hypothesis H∗ and measurement zk,∗ indicates that

the hypothesis/measurement pair is true, while a “0” means that the hypothesis/mea-

surement pair is not true. For instance, the third table in the first row shows that

measurement zk,1 is associated with hypothesis HFT , a false source, and measurement
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Figure 2.10: Generated feasible association events at sample k for two measure-
ments and one confirmed track. This representation of the discrete sample space of
Θik contains eight association events or hypotheses.
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zk,2 is associated with the confirmed target hypothesized in a previous scan HDT . The

true association event is assumed to be included in the sample space of the association

event random process vector, Θik . Note that each row of every table must sum to one

since a measurement cannot originate from more than one source. Also, the entries

in the columns corresponding to hypotheses HFT and HNT may sum to a number

greater than one since any, all, or none of the measurements may have originated

from false sources or potential new targets; the entries in the columns corresponding

to HDT may only sum to zero or one, since the actual target (pre-existing track) is

assumed to generate at most one measurement.

The remainder of this section is dedicated to finding a rigorous Bayesian solu-

tion for the measurement origin uncertainty problem encountered in target tracking.

The measurement-oriented data association method is chosen over the target-oriented

data association method because it is the more general of the two methods, and the

target-oriented method is readily obtained from the measurement-oriented approach.

Because measurement origin uncertainty is modeled in the same way as the kinematics

model parameter uncertainty for switching models, the recursive Bayesian solution is

mathematically similar to the solution found in Subsection 2.4.2. Consequently, the

recursive Bayesian solution suffers from the same computational difficulties as the

switching model solution. Specifically, the number of association events, or hypothe-

ses, grows exponentially over time, and some type of hypothesis reduction routine is

necessary if one wishes to implement this solution in a practical tracking system.

Approximations of the recursive Bayesian solution for the measurement uncer-

tainty problem may be divided into two categories14. The first classification includes

the Probabilistic Data Association Filter (PDAF) (for single target scenarios), Joint

Probabilistic Data Association Filter (JPDAF) and its variants (for multiple target

scenarios), and N-Scan filter with N set to one [5,32]. PDAF and JPDAF approximate

14Measurement gating is another type of approximation to the rigorous Bayesian solution. This ap-
proximation reduces the number of terms necessary for computing the target state pdf by effectively
limiting the sample space of Θik

through the restrictions imposed by the measurement gates.
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the rigorous solution in the same manner as the GPB-1 approximation in which the

target state Gaussian mixture pdf is approximated by a single Gaussian pdf at the

end of each scan cycle [5]. The N-scan filter, with N set to one, uses an approximation

similar to that used for the GPB-2 algorithm [5]. These three algorithms rely on the

target-oriented data association method, so the number of targets is assumed known

a priori. The second category includes the Joining and Clustering [30, 31] and Inte-

gral Square Error [38,40,41] mixture reduction algorithms, which are approximations

that may use either of the two data association methods. Both algorithms reduce the

number of mixture components in the target state Gaussian mixture pdf at the end of

each scan based on preset criteria and, in most cases, provide a better approximation

to the target state pdf than a single Gaussian pdf approximation.

2.5.1 A Bayesian Solution for Measurement Origin Uncertainty. Although

this thesis only considers tracking a single target in clutter using the target-oriented

data association method, a Bayesian solution for tracking multiple targets in the

presence of measurement origin uncertainty utilizing the measurement-oriented data

association method is developed in this subsection based on [5, 27, 38]. The reason

multiple targets and the measurement-oriented data association method are consid-

ered is two-fold. First, the multiple-target solution using the measurement-oriented

data association method is more general. Second, this solution readily reduces to the

single-target, target-oriented data association solution.

A new set of notation is needed for the multiple target tracking in the presence

of measurement origin uncertainty scenario. When considering more than one target,

the state random process vector must include the state random process vectors of all

of the targets. Thus, a joint target state random process composite vector is formed

as

X(k) =








x1(k)
...

xNT (k)(k)








(2.60)
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where NT (k) is the number of targets at sample k. The number of targets is con-

strained to equal the sum of the number of detected targets, NDT , and the number

of new targets, NNT , at scan k. Since potentially more than one measurement vec-

tor is available at each scan due to measurement origin uncertainty, the composite

measurement random process vector is represented by

Z(k) =








z1(k)
...

zNm(k)(k)








(2.61)

where Nm(k) is the random number of measurements at sample k. Upon observation

of the measurements, the composite measurement random process vector becomes the

realized composite measurement vector given by

Z̄k =








zk,1

...

zk,Nm(k)








. (2.62)

Using the new definition of the composite measurement vector, the measurement

history composite vector of Subsection 2.2.1 becomes

Zk =








Z(1)
...

Z(k)








. (2.63)

If one only considers a single-target scenario utilizing the target-oriented data asso-

ciation method, then Equation (2.60) is simply a single target state vector and the

number of new targets, NNT , is zero. Equations (2.61), (2.62), and (2.63) remain un-

changed. Using this new notation, a recursive Bayesian solution may be formulated

in the same manner as in Subsection 2.4.2.
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The joint target state random process composite vector conditioned on the mea-

surement history is

f
(
X(k), Θ(k)|Zk

)
= f

(
X(k)|Θ(k), Zk

)
f
(
Θ(k)|Zk

)

= f
(
X(k)|Θ(k), Zk

) ∑

ik∈NH(k)

p
(
Θ(k) = Θik |Zk

)
δ (Θ(k) − Θik)

=
∑

ik∈NH(k)

f
(
X(k)|Θik , Z

k
)
p
(
Θik |Zk

)
. (2.64)

The second line of this equation follows from the generalized definition of a pdf (see

Subsection 2.4.1) since Θ(k) is a discrete random process vector, and NH(k) represents

the number of hypotheses or association events in the discrete sample space of the

association event discrete random process vector Θik (see Figure 2.10 for an example

sample space). A deferred decision approach is desired so that the previous asso-

ciation events are incorporated into the decision criterion for evaluating association

hypotheses. Therefore, the Bayesian solution should include the entire association

event history, {Θiℓ}k
1. The above equation is then written in terms of the joint pdf of

Θ(k) for all time as

f
(
X(k), Θ(k)|Zk

)
=

∑

ik∈NH(k)

· · ·
∑

i1∈NH(1)

f
(
X(k)|{Θiℓ}k

1, Z
k
)
p
(
{Θiℓ}k

1|Zk
)
. (2.65)

As in the switching model case, the Bayesian solution results in a Gaussian mixture

(in this case, mixtures of mixtures). It is computationally intractable unless approxi-

mated using one of the methods presented in the section introduction. The remainder

of this subsection is dedicated to determining p({Θiℓ}k
1|Zk), since f(X(k)|{Θiℓ}k

1, Z
k)

is provided by the Kalman filter solution given that there is no measurement origin

uncertainty.
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The joint conditional pmf, p({Θiℓ}k
1|Zk), of the current association event history,

given the measurement history, Zk, is [5]

p
(
{Θiℓ}k

1|Zk
)

=
f
(
Θik , {Θiℓ}k−1

1 , Z(k), Zk−1, Nm(k)
)

f
(
Z(k), Zk−1, Nm(k)

) (2.66)

=
f
(
Z(k)|Θik , {Θiℓ}k−1

1 , Zk−1, Nm(k)
)
p
(
Θik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)
p
(
{Θiℓ}k−1

1 |Zk−1
)

f
(
Z(k)|Zk−1, Nm(k)

)

for ik = 1, . . . , NH(k), iℓ = 1, . . . , NH(ℓ), and ℓ = 1, . . . , k − 1. Notice the condition-

ing on the number of measurements at sample k15, Nm(k), is included in the above

pdfs/pmfs since this quantity determines the number of hypotheses in the sample

space of Θik (see the example in Figure 2.10, for instance). Furthermore, condition-

ing on the current measurement history Zk implies conditioning on the number of

measurements, Nm(k), even though this conditioning is not explicitly shown in the

left-hand side of Equation (2.66). Also, the conditioning on Nm(k) was dropped in the

pmf p({Θiℓ}k−1
1 |Zk−1) because the number of current measurements has no bearing

on the prior association event history. Equation (2.66) is evaluated in the next three

subsections.

15This number represents the total number of measurements made in the entire surveillance region
so that a new track initiation capability is maintained [27].
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2.5.1.1 The Composite Measurement Likelihood Function. The first

term in the numerator of the second line of Equation (2.66), the composite measure-

ment likelihood function, is evaluated in this subsection. The distribution of each

measurement random process vector contained in the composite measurement vector

in Equation (2.61) is assumed to be either Gaussian, for measurements hypothesized

originating from existing targets in a previous scan, or Uniform, for measurements

hypothesized originating from new targets or false sources16. For each realized mea-

surement vector at sample k, zk,j, hypothesized under association event Θik (ik =

1, . . . , NH(k)) as originating from a corresponding existing target j (j = 1, . . . , NDT,ik)

that was hypothesized in a previous scan and detected in the current scan, the mea-

surement likelihood function for the jth existing target is

f
(
zj(k)|Θik , {Θiℓ}k−1

1 , Zk−1, Nm(k)
) ∣
∣
z j(k)=zk,j

= L (zk,j; rk,j,Sj(k)) (2.67)

=
exp

[
−1

2
rT

k,jS
−1
j (k)rk,j

]

(2π)
m
2

√

detSj(k)

rk,j = zk,j − Hjx̂j(k|k − 1)

Sj(k) = HjPj(k|k − 1)HT
j + Rj(k).

The measurement likelihood function for a measurement hypothesized under associa-

tion event Θik as originating from a potential new target or false source is represented

by 1/VS, where VS is the surveillance volume [5, 27].

16In previous sections of this chapter, a measurement originating from a target is assumed to be
distributed as a Gaussian random quantity since the target state random process vector is assumed
to be Gaussian. In this section, a measurement could also originate from a new target or a false
source. Measurements originating from new targets or false sources are assumed to appear at random
locations in the surveillance volume with equal probability. Thus, a measurement hypothesized to
originate from a new target or false source is mathematically modeled as a uniformly-distributed
random variable.
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Typically, the target state random process vectors, which form the joint target

state random process composite vector in Equation (2.60), are assumed to be mutually

independent [5]. Using this assumption and the assumption that the measurement

noise process vector in Equation (2.4) is independent of the state process vector, the

measurement random process vectors forming the composite measurement vector in

Equation (2.61) are also mutually independent17. To evaluate the composite likeli-

hood function, f(Z(k)|Θik , {Θiℓ}k−1
1 , Zk−1, Nm(k)), first note that the total number

of measurements at scan k, Nm(k), is equal to the sum of the number of measure-

ments hypothesized under a given association event, Θik , as originating from targets

that were hypothesized in a previous scan and detected in the current scan (NDT,ik),

potential new targets (NNT,ik), and false sources (NFT, ik). Invoking the mutual inde-

pendence of the measurement random process vectors and the modeling assumptions

in the previous paragraph, the composite measurement likelihood function may be

written as [5, 27]

f
(
Z(k)|Θik ,{Θiℓ}k−1

1 , Zk−1, Nm(k)
)∣
∣
Z (k)=Zk

=

(
1

VS

)NF T,ik
+NNT,ik

· L
(

{zk,j}
NDT,ik

1 ; {rk,j}
NDT,ik

1 , {Sj(k)}NDT,ik

1

)

=

(
1

VS

)NF T,ik
+NNT,ik

·
NDT,ik∏

j=1

exp
[
−1

2
rT

k,jS
−1
j (k)rk,j

]

(2π)
m
2

√
detSj(k)

(2.68)

for ik = 1, . . . , NH(k). The terms rk,j and Sj are defined in Equation (2.67). If mea-

surement gating is used, then measurements falling outside of the gate of an existing

target cannot be hypothesized to have originated from that target. In addition, if an

association event consists of hypotheses which do not associate any measurement to

17One possible intuitive justification for this assumption lies in the previously-made condition
that a measurement cannot originate from multiple sources. Since each measurement is assumed to
originate from a distinct source, it seems intuitive to believe that the measurements are mutually
independent.
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existing targets hypothesized in the previous scan and detected in the current scan,

then NDT,ik is zero for that association event, and the product term,
∏0

j=1(·), in

Equation (2.68) is not evaluated.

Equation (2.68) may be applied to the example given in the section introduction

and shown in Figure 2.10. Consider association event Θ7k
in which both measurements

are hypothesized to have originated from false sources. For this association event, the

composite measurement likelihood becomes (1/VS)2 since NDT,7k
and NNT,7k

equal

zero, and NFT,7k
is two (recall that hypothesis HFT supposes that a measurement is

due to a false source). As another example of using Equation (2.68), consider associ-

ation event Θ2k
(in the same figure) which hypothesizes that the first measurement is

due to the existing target hypothesized in a previous scan (as indicated by hypothesis

HDT ), and that the other measurement is due to a new target (hypothesized under

HNT ). Its composite measurement likelihood function is (1/VS)L(zk,1; rk,1,S1(k)).

2.5.1.2 The Conditional Current Association Event pmf. Consider the

conditional current association event pmf, conditioned on the current number of mea-

surements and the prior association event and measurement histories,

p(Θik |{Θiℓ}k−1
1 , Zk−1, Nm(k)). To evaluate this pmf, one must either wisely choose a

discrete probability distribution model for Θik (e.g., discrete Uniform, Poisson, Multi-

nomial, etc.) or use some other assumption about the random quantity Θik . Any

choice of probability distribution model that does not incorporate prior knowledge

about the detection capabilities of the tracking system or other engineering insights,

such as the number of expected false-origin measurements or potential new targets in

a given surveillance volume, would be unwise. Such prior knowledge could be incor-

porated into the current association event pmf through NDT,ik, NNT,ik , and NFT, ik

by modeling these integer-valued variables as appropriately-chosen random variables.

This approach is taken in [5, 27], and it will be reproduced in this subsection.

First, model the number of measurements hypothesized according to the ithk as-

sociation event as originating from existing targets hypothesized in a previous scan
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and detected in the current scan (NDT,ik), potential new targets (NNT,ik), and false

sources (NFT, ik) as integer-valued random variables. Next, form the joint conditional

pmf of the random quantities Θik , NDT,ik , NNT,ik , and NFT, ik. Applying the condi-

tional probability rule for pmfs to this joint conditional pmf yields the desired result

p
(
Θik , NDT,ik,NNT,ik, NFT, ik|{Θiℓ}k−1

1 , Zk−1, Nm(k)
)

= p
(
Θik |NDT,ik, NNT,ik , NFT, ik, {Θiℓ}k−1

1 , Zk−1, Nm(k)
)

· p
(
NDT,ik, NNT,ik , NFT, ik|{Θiℓ}k−1

1 , Zk−1, Nm(k)
)
. (2.69)

The conditional pmf of the current association event is now conditioned on the in-

formation one may possess about the detection capabilities, the expected number of

false-origin measurements, and the expected number of potential new targets. This

conditioning achieves the desired goal of the previous paragraph. The second con-

ditional pmf in Equation (2.69) depends on the probability distribution assigned to

each of the integer-valued random variables NDT,ik , NNT,ik , and NFT, ik. Both pmfs

on the right-hand side of Equation (2.69) are evaluated next.

If all association events containing the same number of detected targets, the

same number of new target measurements, and the same number of false-origin mea-

surements are considered equally likely [38], then the new conditional current associa-

tion event pmf p(Θik |NDT,ik, NNT,ik , NFT, ik, {Θiℓ}k−1
1 , Zk−1, Nm(k)) may be evaluated

by counting methods, like those found in [20]. Assuming that measurement gating is

not used (to simplify the matter18), the total number of association events is found

by calculating the product of the number of ways to partition Nm(k) measurements

into NDT,ik, NNT,ik , and NFT, ik mutually exclusive and exhaustive partitions, and the

number of ways to assign NDT,ik measurements to the existing targets hypothesized

18Measurement gating imposes a restriction on associations between observed measurements and
existing targets hypothesized in a previous scan since observations outside the measurement gate of
an existing target may not be assigned to that target. This restriction makes developing a general
equation for the total number of association events very difficult due to the random nature of the
measurements (i.e., one does not know a priori where measurements may fall within a surveillance
volume).
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under the association event history through sample k−1, {Θiℓ}k−1
1 . The first quantity

in the product is found by using the multinomial coefficient [20, 27],

Nm(k)!

NDT,ik !NNT,ik !NFT, ik!
, (2.70)

since this coefficient is the number of ways to partition the total number of measure-

ments at scan k into three mutually exclusive and exhaustive groups. The number

of ways to assign the hypothesized number of measurements associated with detected

targets in the current scan k, NDT,ik, to the total number of existing targets hypoth-

esized under the association event history through sample k − 1, denoted as NTGT ,

is [27]
NTGT !

(NTGT − NDT,ik)!
. (2.71)

(Notice that Equation (2.71) is the “sampling without replacement and with order-

ing” equation found in [20].) Combining Equations (2.70) and (2.71) yields the new

conditional current association event pmf (the first pmf on the right-hand side of

Equation (2.69)) [27]:

p
(
Θik |NDT,ik , NNT,ik, NFT, ik, {Θiℓ}k−1

1 , Zk−1, Nm(k)
)

=

[
Nm(k)!

NDT,ik!NNT,ik !NFT, ik !
· NTGT !

(NTGT − NDT,ik)!

]−1

. (2.72)

Technically, Equation (2.72) is not a true pmf since it is not normalized. A normaliza-

tion factor could be included in this expression, however, since the joint conditional

pmf of the current association event history, Equation (2.66), is normalized, normal-

ization of Equation (2.72) is omitted.

The joint conditional pmf of NDT,ik, NNT,ik , and NFT, ik, which appears in the

last line of Equation (2.69), may be found by first assuming that the random variables
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NDT,ik , NNT,ik , and NFT, ik are mutually independent [5]19. Then, the joint pmf of

these random variables becomes

p
(
NDT,ik ,NNT,ik , NFT, ik|{Θiℓ}k−1

1 , Zk−1, Nm(k)
)

= p
(
NDT,ik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)
p
(
NNT,ik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)

· p
(
NFT, ik|{Θiℓ}k−1

1 , Zk−1, Nm(k)
)
. (2.73)

The random variable NDT,ik is modeled as Binomial with parameters PD, the proba-

bility of detection, and NTGT , the total number of existing targets hypothesized under

the association event history through sample k−1. The pmf of this Binomial random

variable is [20, 27]

p
(
NDT,ik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)

=
NTGT !

NDT,ik!(NTGT − NDT,ik)!
P

NDT,ik

D (1 − PD)NTGT −NDT,ik . (2.74)

Poisson random variables are used to model NNT,ik and NFT, ik , and the pmf for each

random variable is [20, 27]

p
(
NNT,ik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)

=
(λNT VS)NNT,ik

NNT,ik !
e−λNT VS

p
(
NFT, ik|{Θiℓ}k−1

1 , Zk−1, Nm(k)
)

=
(λFT VS)NF T,ik

NFT, ik !
e−λF T VS . (2.75)

Since the parameter of a Poisson pmf has the units of “average number of events,” the

constants λNT VS and λFTVS may be interpreted as the expected number of new targets

and false-origin measurements in a given surveillance volume, VS. The terms λFT and

19Williams [38] pointed out that the conditioning on Nm(k) in this pmf makes this independence
assumption questionable since the random variables NDT,ik

, NNT,ik
, and NFT, ik

are mathematically
related by the equation Nm(k) = NDT,ik

+ NNT,ik
+ NFT, ik

. However, it was shown in [38] that
the mutual independence assumption may be made without conditioning on the number of current
measurements by applying Bayes’ rule to remove this conditioning.
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λNT are the false-origin measurement clutter density and new target measurement

clutter density, respectively.

Finally, combining Equations (2.72), (2.74), and (2.75), and canceling the terms

NTGT !, NDT,ik !, (NTGT −NDT,ik)!, NFT, ik !, and NNT,ik !, the conditional current asso-

ciation event pmf under the measurement-oriented data association assumption and

in the absence of measurement gating is [27]

p
(
Θik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)

=
1

Nm(k)!
· P NDT,ik

D (1 − PD)NTGT −NDT,ik (2.76)

· (λFTVS)NF T,ik e−λF T VS · (λNT VS)NNT,ik e−λNT VS

for ik = 1, . . . , NH(k). Notice that this pmf includes information a designer might

possess about the detection capabilities of a tracking system and the expected number

of false-origin and new target measurements generated by the tracker in a certain

surveillance volume. Also, this pmf may be modified in the case of a target-oriented

data association approach by setting NNT,ik to zero with probability one.

2.5.1.3 The Normalization Factor. The final piece of Equation (2.66),

the normalization factor in the denominator, is evaluated in this subsection. Since

the joint pdf of the entire measurement history, the current number of measurements,

and the entire association event history is assumed to exist (as shown in the first

line of Equation (2.66)), the normalization factor may be expanded using marginal

probabilities as

f
(
Z(k)|Zk−1, Nm(k)

)
=

∑

ik∈NH(k)

· · ·
∑

i1∈NH(1)

f
(
Z(k), Θik, . . . , Θi1 |Zk−1, Nm(k)

)
.
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Two applications of the law of conditional probability for pdfs/pmfs yields the desired

result

f
(
Z(k)|Zk−1, Nm(k)

)
=

∑

ik∈NH(k)

· · ·
∑

i1∈NH(1)

f
(
Z(k)|Θik , {Θiℓ}k−1

1 , Zk−1, Nm(k)
)

· p
(
Θik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)
p
(
{Θiℓ}k−1

1 |Zk−1
)
. (2.77)

Finally, recall Equation (2.66), the joint conditional pmf of the current associ-

ation event history:

p
(
{Θiℓ}k

1|Zk
)

=
f
(
Θik , {Θiℓ}k−1

1 , Z(k), Zk−1, Nm(k)
)

f
(
Z(k), Zk−1, Nm(k)

) (2.66)

=
f
(
Z(k)|Θik , {Θiℓ}k−1

1 , Zk−1, Nm(k)
)
p
(
Θik |{Θiℓ}k−1

1 , Zk−1, Nm(k)
)
p
(
{Θiℓ}k−1

1 |Zk−1
)

f
(
Z(k)|Zk−1, Nm(k)

)

Substituting Equations (2.68), (2.76), and (2.77) into this expression and canceling

the term (1/VS)NF T,ik
+NNT,ik with the term V

NF T,ik
+NNT,ik

S in both the numerator and

denominator, and canceling the terms e−λF T VS and e−λNT VS yields the intermediate
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result

p
(
{Θiℓ}k

1|Zk
)

=
NUM

DEN
(2.78)

NUM =

NDT,ik∏

j=1

exp
[
−1

2
rT

k,jS
−1
j (k)rk,j

]

(2π)
m
2

√
detSj(k)

P
NDT,ik

D (1 − PD)NTGT −NDT,ik

· (λFT VS)NF T,ik (λNT VS)NNT,ik p
(
{Θiℓ}k−1

1 |Zk−1
)

DEN =
∑

ik∈NH(k)

· · ·
∑

i1∈NH(1)

NDT,ik∏

j=1

exp
[
−1

2
rT

k,jS
−1
j (k)rk,j

]

(2π)
m
2

√

det Sj(k)
p
(
{Θiℓ}k−1

1 |Zk−1
)

· P NDT,ik

D (1 − PD)NTGT −NDT,ik (λFT VS)NF T,ik (λNT VS)NNT,ik .

The final result is obtained by substituting Equation (2.66) into Equation (2.65),

f
(
X(k), Θ(k)|Zk

)
=

∑

ik∈NH(k)

· · ·
∑

i1∈NH(1)

p
(
{Θiℓ}k

1|Zk
)
f
(
X(k)|{Θiℓ}k

1, Z
k
)

(2.65)

which is a multivariate Gaussian mixture with NH(k) · NH(k − 1) · · ·NH(2) · NH(1)

components. At each new scan, another summation is added to this equation, and

the Bayesian solution cannot be implemented without approximation.

Approximating Equation (2.65) to trim computations while maintaining good

performance is the focus of this thesis. Effectively, the approximation will reduce the

original NH(k)·NH(k−1) · · ·NH(2)·NH(1) Gaussian mixture components in Equation

(2.65) to some manageable level. In practice, this reduction will be accomplished

by a mixture reduction algorithm (MRA) which will reduce the NH(k) number of

association events (or, equivalently, mixture components) to NR(k) association events

at the end of each scan k.
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2.5.2 Tracking with Measurement Origin Uncertainty Summary. Measure-

ment origin uncertainty leads to the data association problem in which the source

of a measurement is ambiguous. One poses hypotheses about the possible source of

each observed measurement as a first-step towards solving this problem. Hypothe-

ses are formed according to one of two assumptions about the potential origin of a

measurement used in practice. The target-oriented data association approach assumes

that the potential sources of measurements are existing tracks that were hypothesized

in previous scans or false sources, while the measurement-oriented data association

method supposes that measurements may also arise from potential new tracks in ad-

dition to existing tracks and false sources. Both data association approaches restrict

the number of measurements generated by any single source to one.

A rigorous Bayesian solution for tracking multiple targets in the presence of

measurement origin uncertainty using the measurement-oriented data association ap-

proach was presented in this section as a second step towards solving the data associ-

ation problem. Association events were modeled as a discrete random process vector,

Θ(k) = Θik , and were included with the joint target state random process composite

vector X(k) as another random quantity to be estimated. The resulting Bayesian so-

lution was mathematically similar to that for the switching model case of Subsection

2.4.2 since the measurement origin uncertainty was modeled in the same manner as

the kinematics model parameter uncertainty for switching models. Information about

the detection capabilities of a tracking system and the expected number of false-origin

and new target measurements generated by the tracker in a certain surveillance vol-

ume were embedded into the pmf of the association event history. Where appropriate,

the steps necessary to convert the multiple-target, measurement-oriented data associ-

ation method Bayesian solution into the single-target, target-oriented data association

approach solution were noted.

The final form of the solution is a Gaussian mixture with NH(k) · · ·NH(1) com-

ponents (as shown in Equation (2.65)). This solution is intractable, and some type of

approximation is necessary to make the solution a viable candidate for practical im-
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plementation. Two fundamental approximations are to reduce the Gaussian mixture

to a single component, which is used by PDAF and JPDAF, or to a lower number

of components, which is the approximation used by the Joining and Clustering and

the Integral Square Error cost-function-based MRAs, at the end of each scan k. The

focus of this thesis is on the latter kind of approximation, specifically the type of

MRA introduced by Williams in [38, 40, 41].

2.6 Summary

This chapter introduced target tracking as a means of determining the state

of targets over some time interval of interest from observations of the targets in the

presence of uncertainty. Two basic sources of uncertainty are due to mathematical

models of the targets’ dynamics which may, at best, only approximate the true motion

of the targets and may change substantially from one time instant to another, and

from sensor noise which corrupts measurements. If the target kinematics model and

measurement model are linear, and all random quantities are modeled as Gaussian,

then the Kalman filter, which is a linear recursive Bayesian filter, provides the optimal

mean and covariance estimates of the target state random process vector under almost

all practical criteria, conditioned on an assumed measurement association history and

an assumed target dynamics model. If either model is nonlinear, then a nonlinear

recursive Bayesian filter is used instead. However, the nonlinear filter will, in general,

not produce an optimal estimate of the target state process vector.

Gaussian mixtures result from using Bayes estimation to solve target tracking

problems in which kinematics model parameter and measurement origin uncertainty

exists. The general form of a multivariate Gaussian mixture pdf was presented, and

equations for calculating the overall mean and covariance of a target state random

process vector described by a multivariate Gaussian mixture pdf were provided. Also,

the effects of merging or deleting mixture components on the resulting Gaussian

mixture during a mixture reduction process were described.
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Bayesian solutions for the target state pdf in the presence of kinematics model

parameter20 and measurement origin uncertainty were also derived using Bayes esti-

mation. Solutions which modeled the uncertainty as a random vector were tractable,

while Bayesian solutions which represented the uncertainty as a random process vec-

tor were intractable, and approximation was necessary to implement the solutions.

In fact, new methods for approximating the rigorous Bayesian solution for the target

state Gaussian mixture pdf in the presence of measurement origin uncertainty is the

focus of this thesis, and such methods will be presented in subsequent chapters.

20Kinematics model parameter uncertainty should not be confused with uncertainty in a kinematics
model due to mathematically modeling a target’s dynamics. The former source of uncertainty arises
from a designer not knowing which model to use, while the latter source of uncertainty is a simple
admission that mathematical equations cannot exactly describe the realistic motion of an object.
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III. Estimating Probability Density Functions

In [38], Williams derived the Maximum Likelihood measure which he believes “. . . is

probably the most physically meaningful cost function for this application [Gaus-

sian mixture reduction].” Because one aspect of the goal for this thesis is to develop

a new mixture reduction algorithm which outperforms any previously published algo-

rithm, Williams’ endorsement of the Maximum Likelihood measure is the motivation

behind this chapter. As such, Chapter III explores the techniques of pdf estimation

drawn from statistical inference which is based on the well-developed field of the

mathematical theory of probability and mathematical statistics (to include maximum

likelihood estimation). Given a set of random observations, one tries to “infer” the

underlying distribution that spawned these samples. In some cases this distribution

is known, or at least assumed known, to be of a certain type (Gaussian, Poisson, etc.)

and the task is to estimate the parameter or parameters of the distribution (e.g., the

mean and variance for a Gaussian density, the rate for a Poisson distribution, etc.).

In other cases the distribution may be known (or assumed known) to be limited to

some set of possible distributions, and the task now is to identify the correct one from

the set and estimate the parameter or parameters of this distribution.

Although pdf estimation may not seem directly applicable to the purpose of

approximating a Gaussian mixture with one containing a lower number of compo-

nents, it is useful to explore the concepts and techniques of this field in the hope of

gaining insights into an appropriate method for mixture approximation (such as the

Maximum Likelihood measure which Williams developed in [38]). Generally, there

are at least two methods of estimation that can be applied to this problem: maxi-

mum likelihood estimation (MLE) and Bayesian estimation. Both methods attempt

to estimate the one or many parameters of a presumed pdf, but differ in application.

MLE is used when the pdf parameters are deterministic (fixed but unknown) while

Bayesian estimation can handle the case in which the parameters are random. In this

thesis, the parameters of a Gaussian mixture will be modeled as deterministic quan-
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tities, and this chapter uses MLE to solve for these parameters1. This chapter also

introduces an iterative implementation of MLE called the Expectation Maximization

(EM) algorithm.

The following sections are not intended to be a comprehensive narrative of MLE

methods, but rather an introduction highlighting certain aspects of this approach that

may shed light on approximating a full-component Gaussian mixture with one having

a lower number of mixture components. Complete treatments of MLE are presented

in [10,17,25,42], from a mathematical statistics perspective, and [21,22,35,36], from

an engineering viewpoint.

3.1 Maximum Likelihood Estimation

The method of maximum likelihood can be traced back to Gauss but was not

applied to general estimation problems until R. A. Fisher published a short paper on

the topic in 1912 [10]. Over the next thirty years Cramér [10], Rao [25], and others

developed this method in a more formal mathematical manner. As their work popu-

larized the method of maximum likelihood, it became commonly known as maximum

likelihood estimation (MLE) and as the preferred way to estimate the deterministic

parameters of a pdf.

MLE is ideally suited to estimating one or more deterministic parameters of

a pdf when independent samples are drawn from a known distribution. That is,

given a set of independent identically distributed (i.i.d.) observations from a random

quantity for which the mathematical form of the pdf is known (except for a certain

number of parameters), the MLE approach may be used to find an estimate of the

pdf parameters. This estimate is a random quantity since it is a function of the

random observations, and under the Cramér-Rao (C.R.) regularity conditions (see [42]

1In Chapter II, Bayesian estimation was used to estimate the target state since it was modeled
as a random process vector. However, this chapter does not consider Bayesian estimation for the
Gaussian mixture parameters since they are modeled as unknown deterministic quantities.
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pp. 182–183), the estimate has the asymptotic (the number of observations is large)

qualities of [10, 25, 42]:

• converging to the true value of the parameters,

• converging to a Gaussian distribution, and

• efficiency (the distribution of the estimate is minimum variance).

A detailed derivation of these properties is contained in Subsection 3.1.1 to help the

reader better understand the asymptotic qualities of MLE. For instance, the derivation

will show that the first property listed above is not always true since the maximization

may only converge to one of a number of local maxima.

As an example, consider the problem of estimating a single parameter of a pdf

f(z|α) when a set of n i.i.d. observations {zi}n
1 are made. The likelihood function is

defined as

L({zi}n
1 ; α) =

n∏

i=1

f(zi|α) (3.1)

since the observations are i.i.d (i.e., they are independent so the joint density of the n

observations is just the product of the separate marginal densities and the marginal

density has the same form). The method of maximum likelihood is simply maximizing

this expression for some α in the open interval A (α is not an endpoint). In theory the

estimate from this maximization will converge to the true value of the parameter as the

number of observations grows; however, there is no guarantee that the maximization

is global, and the true value of the parameter may not be so easily found. This fact

will become evident in the proof that follows.

3.1.1 Asymptotic Properties of MLE. The three asymptotic qualities of

MLE will be proven for a single parameter in a derivation according to [10,25,42]. But

before continuing, it is necessary to introduce some preliminary information. First,

the product form of L(·) is converted into a summation so that useful convergence

theorems may be invoked. Since ln
∏n

i=1 yi =
∑n

i=1 ln(yi) and ln(·) is a monotonically

increasing function, the value of α that maximizes Equation (3.1) also maximizes the
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log-likelihood function

ln L({zi}n
1 ; α) =

n∑

i=1

ln f(zi|α). (3.2)

By solving the likelihood equation

∂ ln L({zi}n
1 ; α)

∂α

∣
∣
∣
∣
α=α̂ml

= 0 (3.3)

for α̂ml one obtains the maximum likelihood estimate of the parameter α. Second, the

following conditions are imposed [10, 25, 42]:

(i) α ∈ A ∈ R, α not an endpoint of A.

(ii) For almost all z, ln f(z|α) is analytic2 in α.

(iii) The observations, zi, are i.i.d..

(iv) For every α ∈ A,

∫ ∞

−∞

(
∂ ln f(z|α)

∂α

)2

α=αo

f(z|αo)dz = k2 < ∞ (3.4)

where αo is the true value of the parameter and k > 0.

(v) All moments of ∂ ln f(z|α)
∂α

are finite; i.e.

E

{
∂i ln f(z|α)

∂αi

}

< ∞. (3.5)

Third, the following identities will be used.

(a) By the chain rule of calculus,

∂ ln f(z|α)

∂α
=

1

f(z|α)

∂f(z|α)

∂α
.

2An analytic function is guaranteed an infinite number of finite-valued derivatives [3].
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(b) The first and second partial derivatives of
∫∞

−∞
f(z|αo)dz are zero since

∫ ∞

−∞

(f(z|α))α=αo
dz = 1

and differentiating this expression with respect to α yields:

d

dα

∫ ∞

−∞

(f(z|α))α=αo
dz =

d

dα
1.

Thus:

∫ ∞

−∞

(
∂f(z|α)

∂α

)

α=αo

dz = 0 (3.6)

∫ ∞

−∞

(
∂2f(z|α)

∂α2

)

α=αo

dz = 0. (3.7)

(c) E{[(∂2/∂α2) ln f(z|α)]α=αo
} = −E{[(∂/∂α) ln f(z|α)]2α=αo

} since

E

{(
∂2 ln f(z|α)

∂α2

)

α=αo

}

= E

{

∂

∂α

(
∂f(z|α)

∂α

f(z|α)

)

α=αo

}

= E

{(
∂2f(z|α)

∂α2 f(z|α) − ∂f(z|α)
∂α

∂f(z|α)
∂α

f 2(z|α)

)

α=αo

}

= E

{(
∂2f(z|α)

∂α2

f(z|α)

)

α=αo

}

− E







(
∂f(z|α)

∂α

f(z|α)

)2

α=αo







= −E







(
∂f(z|α)

∂α

f(z|α)

)2

α=αo







= −E

{(
∂ ln f(z|α)

∂α

)2

α=αo

}

. (3.8)
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Note that the derivative can be taken inside the integral since it is with respect to the

parameter α and not z (this can be shown by a limit argument; see pp. 66–68 of [10]).

With this information in mind, the asymptotic qualities of MLE will be derived.

To show that MLE converges in probability to the true parameter, αo, consider

the parameter values α = αo ± δ where δ is some arbitrarily small positive number.

By Jensen’s inequality [25]

∫ ∞

−∞

ln

(
f(z|αo)

f(z|αo ± δ)

)

f(z|αo)dz > 0

∫ ∞

−∞

ln f(z|αo)f(z|αo)dz −
∫ ∞

−∞

ln f(z|αo ± δ)f(z|αo)dz > 0

∫ ∞

−∞

ln f(z|αo)f(z|αo)dz >

∫ ∞

−∞

ln f(z|αo ± δ)f(z|αo)dz

E {ln f(z|αo)} > E {ln f(z|αo ± δ)} . (3.9)

Invoking the strong law of large numbers3 the expectations may be written as

1

n

n∑

i=1

ln f(zi|αo) >
1

n

n∑

i=1

ln f(zi|αo ± δ)

ln L({zi}n
1 ; αo) > ln L({zi}n

1 ; αo ± δ). (3.10)

This equation shows that, for almost all sample sequences {zi}n
1 , ln L({zi}n

1 ; αo) will

be greater than lnL({zi}n
1 ; αo ± δ). Since ln f(z|α) is analytic by condition (ii), it is

differentiable and continuous for all α so that there is a stationary point (the derivative

3If y is a random variable with finite variance, then

lim
n→∞

1

n

n∑

i=1

yi
a.s.−→ E{y}

where a.s. means “almost surely,”or “with probability 1.”
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of the log-likelihood function in Equation (3.3) is zero at this point) within the region

α = αo ± δ. If the stationary point is α⋆({zi}n
1) ∈ (αo ± δ) then by letting δ → 0,

α⋆({zi}n
1 ) → αo. So MLE converges with probability 1 to a maximum of the likelihood

function (3.1) which may or may not be a global maximum value.

Given the existence of a solution, one can show that this solution is asymp-

totically normally distributed. Using a Taylor series expansion4 about αo, the true

value of the parameter, Equation (3.3) may be written as (with α⋆({zi}n
1) simply

represented by α⋆)

n∑

i=1

(
∂ ln f(zi|α)

∂α

)

α=α⋆

=

n∑

i=1

(
∂ ln f(zi|α)

∂α

)

α=αo

+ (α⋆ − αo)
n∑

i=1

(
∂2 ln f(zi; α)

∂α2

)

α=αo

+ H.O.T.

= 0.

The term H.O.T. represents higher order terms in (α⋆−αo). Next multiply both sides

of this equation by 1/n

1

n

n∑

i=1

(
∂ ln f(zi|α)

∂α

)

α=αo

+ (α⋆ − αo)
1

n

n∑

i=1

(
∂2 ln f(zi|α)

∂α2

)

α=αo

+
1

n
H.O.T. = 0.

4The Taylor series expansion of f(x) about the point xo is

f(x) =

∞∑

i=0

f (i)(xo)

i!
(x − xo)

i.
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By setting T1 equal to the the second summation term scaled by 1/n 5 and combining

the 1/n scalar with the H.O.T. term to form H.O.T., this equation may be written as

1

n

n∑

i=1

(
∂ ln f(zi|α)

∂α

)

α=αo

+ (α⋆ − αo)T1 + H.O.T. = 0.

After a few lines of algebra this equation becomes

k
√

n(α⋆ − αo) =

1

k
√

n

n∑

i=1

(
∂ ln f(zi|α)

∂α

)

α=αo

−
[

1

k2
T1 + H.O.T.

] (3.11)

(recall that k is the standard deviation of the partial derivative with respect to α of

the true log-likelihood ln f(z|α) as given in Equation (3.4)). Finally, take the limit

5T1 (“T1” is used to represent the first order term of the expansion) equals Equation (3.8),

E{[(∂2/∂α2) ln f(z|α)]α=αo
} = −E

{(
∂ ln f(z|α)

∂α

)2

α=αo

}

(3.8)

in the limit as n approaches infinity by the strong law of large numbers.
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as the number of samples n grows to infinity

lim
n→∞

k
√

n(α⋆ − αo) =

lim
n→∞

1

k
√

n

n∑

i=1

(
∂ ln f(zi|α)

∂α

)

α=αo

−
[

1

k2
lim

n→∞
T1 + lim

n→∞
H.O.T

]

lim
n→∞

α⋆ =

lim
n→∞

1

k
√

n

n∑

i=1

(
∂ ln f(zi|α)

∂α

)

α=αo

− lim
n→∞

k
√

n

[
1

k2
lim

n→∞
T1 + lim

n→∞
H.O.T

] + lim
n→∞

αo

lim
n→∞

α⋆ =

lim
n→∞

1

k2n

n∑

i=1

(
∂ ln f(zi; α)

∂α

)

α=αo

−
[

1

k2
lim

n→∞
T1 + lim

n→∞
H.O.T

] + αo

lim
n→∞

α⋆({zi}n
i )

a.s.−→ N
{

0,

(
k
√

n

k2n

)2
}

+ αo = N
{

αo,

(
1

k
√

n

)2
}

. (3.12)

The final steps in the derivation of Equation (3.12) requires an explanation. The

term limn→∞ αo in the second line is simply αo since the true value of the parameter

is not a function of the number of samples n. The denominator in the third line con-

tains the term limn→∞ T1 which converges to −k2 by the strong law of large numbers,

condition (iv), and identity (c). The other term in the denominator, limn→∞ H.O.T,

is zero since these higher order terms are the higher order moments of z as n → ∞,

which are finite by condition (v), and each of these terms is scaled by (α⋆ − αo)
i,

i ≥ 2, which converges to zero as n → ∞. Therefore, the denominator converges to

−(−k2/k2 + 0) = 1 with probability 1. Finally, the central limit theorem states

that a sum of n i.i.d. random variables yi, with finite mean E{y} = µ and variance

E{(y−µ)2} = σ2, converges as the number of samples becomes infinite to a normally

distributed random variable with mean and variance parameters nµ and nσ2, respec-

tively. Applying this theorem to the third line of the equation leads to the conclusion

that α⋆ is a normally distributed random variable with a mean of zero (by identity

(b)) and a variance of (k
√

n/(k2n))2. The last line then follows from the third line,
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and the MLE estimate α⋆({zi}n
1 ) is in fact asymptotically normally distributed with

probability 1.

Finally, the third asymptotic quality of MLE, efficiency, can be shown in two

ways. The easiest way to show that the MLE estimate α⋆({zi}n
1) is asymptotically

efficient is to note that its variance is inversely proportional to the number of samples

n, so as this number increases, the variance decreases. In fact, the variance is zero

in the asymptotic limit as n → ∞. The second method to show the asymptotic

efficiency of the MLE estimate is to use Cramér’s definition of an asymptotically

efficient estimator [10]:

lim
n→∞

eff(α⋆({zi}n
1 )) =

1

(1/k)2E

{(
∂ ln f(z|α)

∂α

)2

α=αo

} =
1

k2/k2
= 1. (3.13)

The efficiency function eff(·) is used to determine the efficiency of an estimate. By

taking the limit as n approaches infinity of the efficiency function, one may calculate

the asymptotic efficiency of an estimate. A value of 1 indicates that the estimate is

the most efficient estimate possible. Therefore, α⋆({zi}n
1 ) is the most efficient estimate

for α.

3.1.2 MLE Measure Function. The method of maximum likelihood can be

related to the problem of approximating one pdf with another, which is the goal of

this thesis. Again consider the problem of estimating a single pdf parameter α given a

set of n i.i.d. samples. The log-likelihood function is given in Equation (3.2) and the

likelihood equation is given by Equation (3.3). Since the original (true) pdf, f(z|αo),

is known, we need to relate this pdf to an approximate pdf based on the likelihood

equation. To do so, begin with the log-likelihood equation and set the derivative equal

to some number, c, when some approximated value of the parameter, α̂, is input into

the equation. Next, multiply both sides of this equation by 1/n and take the limit as
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n → ∞,

lim
n→∞

1

n

n∑

i=1

∂

∂α
ln f(zi|α)

∣
∣
∣
∣
α=α̂

= lim
n→∞

1

n
c = 0

a.s.−→ E

{(
∂ ln f(z|α)

∂α

)

α=α̂

}

= 0.

This equation may be rewritten in integral form as

∫ ∞

−∞

1

f(z|α̂)

(
∂

∂α
f(z|α)

)

α=α̂

f(z|αo)dx = 0 (3.14)

where f(z|αo) is the true density and f(z|α̂) is the approximate pdf. This MLE

measure function may be used to evaluate the “fit” of f(z|α̂) to f(z|αo).

3.2 Expectation Maximization

Generally, the solution to the likelihood equation given by Equation (3.3) may

require solving nonlinear differential equations for the MLE of the parameter. In

particular, for the problem of finding the parameters of a mixture density, the single

likelihood equation usually becomes a set of nonlinear differential equations without

an analytic solution [26]. Instead, an approximate solution is sought by an iterative

approach such as Newton’s method or some form of this method, such as Rao “Scor-

ing” [22, 26]. As an alternative to the traditional Newton-like approaches to solving

the nonlinear differential equations, the Expectation Maximization (EM) algorithm

is another iterative approach to solving for the MLE parameters. The EM algorithm

offers a number of desirable qualities, including reliable convergence to the MLE of the

parameters and computational tractability [26]. However, convergence to the solution

may be slow even when applied to relatively simple problems [26].

The EM algorithm is useful when applied to MLE problems in which maximizing

a “complete data” log-likelihood function is easier than maximizing the observed

“incomplete data” log-likelihood function [26]. An example will be given in Subsection
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Figure 3.1: Sample spaces for the EM algorithm derivation.

3.2.2 to illustrate this point. The observations may be viewed as incomplete data in

that they are drawn from a sample space that is mapped from a subset of the complete

data sample space [11, 26]. To clarify this point, Figure 3.1 depicts the sample space

of the complete data, z, as Z and the sample space of the observed incomplete data,

y, as Y. The observed incomplete data sample space is actually the mapped image

of a subset of the complete data sample space, Z(y), which is mapped according to

the many-to-one transformation (i.e., non-invertible) y(z) [11].

3.2.1 Theoretical Derivation of the EM Algorithm. The EM algorithm for

observations from an exponential family (e.g., Gaussian, Poisson, and Multinomial)

is derived from a theoretical perspective in this section. This derivation, including

elaboration on certain details, follows that of Dempster et al. [11], who first drew

widespread attention to the algorithm and developed a generalized version. The final

result, Equation (3.17), is a direct consequence of the MLE approach under certain

conditions and has been noted in different articles prior to the publication of [11].

The pdf of the complete data sample space is f(z|α) and the pdf of the observed

incomplete data sample space is g(y|α), where α is the vector set of parameters of
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the pdfs. These densities are related by6

g(y|α) =

∫

z not in Z(y)

f(z|α)dz. (3.15)

Considering only exponential families of pdfs for possible candidates of f(·), the com-

plete data pdf has the form

f(z|α) =
b(z)eα

T t(z)

a(α)
(3.16)

where t(z) represents the vector of complete data sufficient statistics7, b(z) is a non-

negative scalar function of z, and a(α) is a normalization scalar [9]. The aim of the

EM algorithm is to maximize g(y|α) by appropriate choice of α and by using the

complete data pdf f(z|α).

The derivation of the EM algorithm for exponential families of distributions

begins by noting that the pdf of the complete data conditioned on the observed

incomplete data may be written using conditional probability as [11, 26]

f(z|α) = f(z|y, α)f(y|α)

since y is related to z through the transformation y = y(z). To emphasize the distinc-

tion between the pdfs given above, let f(z|y, α) = k(z|y, α) and f(y|α) = g(y|α).

6In the paper by Dempster et al., this integral is over the domain Z(y). However, based on the
written description in [11] and the corresponding graphical depiction of the sample spaces in Figure
3.1, the domain “z not in Z(y)” appears to be more appropriate for the purpose of this section.

7Heuristically, a set of observations from some underlying parent distribution is considered a suf-
ficient statistic if it contains enough information to make a correct inference about certain properties
of the parent distribution. See Chapter 2 of [42] for a more informative definition.

93



Now, the equation becomes8

f(z|α) = k(z|y, α)g(y|α),

where the first term is [11]

k(z|y, α) =
b(z)eα

T t(z)

a(α|y)
.

Taking the natural logarithm of this equation and rearranging terms yields an

equation for the log-likelihood of g(y|α):

ln g(y|α) = ln f(z|α) − ln k(z|y, α)

= ln b(z) + αT t(z) − ln a(α) − [ln b(z) + αT t(z) − ln a(α|y)]

= ln a(α|y) − ln a(α).

The a(·) terms can be expressed using the law of total probability:

∫

Z(y)

k(z|y, α)dz = 1

∫

Z(y)

b(z)eα
T t(z)dz = a(α|y)

8An attentive reader may question why a(α|y) is conditioned on y but neither b(z) nor t(z)
have this conditioning. The answer to this question lies in Figure 3.1. By conditioning on y, z is
known to exist only over the restricted sample space Z(y), which will be seen in the subsequent
paragraphs. So, although the conditioning is not made explicit for these terms, the conditioning has
not been neglected. This notation is consistent with that of [11], so the conditioning is not explicitly
represented in the aforementioned terms of the above equation.
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since the conditioning on y implies z ∈ Z(y), and

∫

Z

f(z|α)dz = 1

∫

Z

b(z)eα
T t(z)dz = a(α).

In an analogous manner to maximizing the log-likelihood function given in Equation

(3.2), to maximize ln g(y|α), take the partial derivative with respect to the parameter

vector α and equate to a row vector of zeros, making the substitutions given in the

last two results.

∂

∂α
ln g(y|α) =

∂

∂α
ln a(α|y) − ∂

∂α
ln a(α)

=
1

a(α|y)

∂a(α|y)

∂α
− 1

a(α)

∂a(α)

∂α

=
1

a(α|y)

∫

Z(y)

∂

∂α
b(z)eα

T t(z)dz − 1

a(α)

∫

Z

∂

∂α
b(z)eα

T t(z)dz

=

∫

Z(y)

tT (z)k(z|y, α)dz −
∫

Z

tT (z)f(z|α)dz

= Ez{tT (z)|y, α} − Ez{tT (z)|α} = 0T (3.17)

As with the likelihood equation given in Equation (3.3), the left-hand side of Equation

(3.17) equals zero (in this case a row vector of zeros) when α = αml, which implies

that Ez{t(z)|y, αml} = Ez{t(z)|αml}.

The EM algorithm follows from Equation (3.17) when it is interpreted as a

two-step process. First, the complete data sufficient statistics t(z) are estimated by

t̂(i) = Ez{t(z)|y, α(i)} at iteration i of the algorithm. Since the estimate is the ex-

pected value of the sufficient statistics conditioned on the incomplete data observation
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vector y, this step is referred to as the “E-step” or “expectation step.” Next, find the

value of α that maximizes the likelihood by invoking the equality Ez{t(i)|α} = t̂(i)

to obtain the next iteration of the estimated parameter vector α(i+1) (of course, an

initial value must be set for α(0) for the algorithm to begin). This second step in the

EM algorithm is referred to as the “M-step” or “maximization step.”

3.2.2 EM Algorithm Example. Now that the theory of the EM algorithm

has been presented, the algorithm will be applied to a simple discrete random vari-

able problem found in [35] which is a modified version of an example given in [11].

Consider an array of five sensors with outputs {z1, z2, z3, z4, z5} following a Multino-

mial distribution with pmf f(z|α)9; this data set and pdf correspond to the complete

data. Assume that the sensor array has a malfunction such that the first and second

sensor outputs are summed. Then the observed incomplete data set is {y1, y2, y3, y4}
(y1 = z1 + z2, y2 = z3, y3 = z4, and y4 = z5) with a Multinomial pmf g(y|α). Recall

from basic probability that the sum of the realizations of the random variables of a

Multinomial distribution are constrained by the total number of “trials,” n. In the

case of this example, the sum of realizations from the complete data distribution must

equal nz (i.e., nz = z1 + z2 + z3 + z4 + z5). Likewise, the sum of realizations from the

incomplete data distribution must equal ny (i.e., ny = y1 + y2 + y3 + y4).

This scenario is well suited for the EM algorithm since maximizing the complete

data pmf, f(z|α), is easier than maximizing the incomplete data pmf, g(y|α). To see

this point, solve for the MLE using both likelihood functions. If

f(z|α) =
(z1 + z2 + z3 + z4 + z5)!

z1!z2!z3!z4!z5!

(
1

2

)z1 (α

4

)z2

(
1

4
− α

4

)z3
(

1

4
− α

4

)z4 (α

4

)z5

g(y|α) =
(y1 + y2 + y3 + y4)!

y1!y2!y3!y4!

(
1

2
+

α

4

)y1
(

1

4
− α

4

)y2
(

1

4
− α

4

)y3 (α

4

)y4

9To this point, the notation p(·) has been used to represent a pmf. For this subsection, f(·) and
g(·) are used to represent pmfs to stay consistent with the notation used in Section 3.2.
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then the solutions to the likelihood equation given in Equation (3.3) for each log-

likelihood function (or, equivalently, but with more algebra, each likelihood function)

are10

(z2 + z3 + z4 + z5)α̂ml − (z2 + z5) = 0

(y1 + y2 + y3 + y4)α̂
2
ml − (y1 − 2y2 − 2y3 − y4)α̂ml − 2y4 = 0.

It is evident that solving a linear equation for α̂ml using the complete data likelihood

function is simpler than solving a quadratic equation using the incomplete data like-

lihood function. Therefore, the EM algorithm is ideally suited for this example since

it simplifies the MLE problem by introducing the complete data pmf. In fact, the

solutions to these equations are

α̂ml =
z2 + z5

z2 + z3 + z4 + z5
(3.18)

α̂ml =
(y1 − 2y2 − 2y3 − y4) ±

√

(y1 − 2y2 − 2y3 − y4)2 + 8y4(y1 + y2 + y3 + y4)

2(y1 + y2 + y3 + y4)
.

Now assume that the observation vector y = [y1, y2, y3, y4]
T = [125, 18, 20, 34]T

is available for computing the MLE of α. First commence with the E-step to es-

timate the complete data sufficient statistics t(z) = z = [z1, z2, z3, z4, z5]
T using

t̂(i) = ẑ(i) = Ez{z|y, α(i)}. Since z3 = y2 = 18, z4 = y3 = 20, and z5 = y4 = 34 are

given by y, only z1 and z2 need to be estimated (recall that z1 + z2 = y1 = 125).

Referring to [9], the conditional pmfs are (with the observed values substituted for

10These expressions are easily obtained by simply taking the partial derivative with respect to the
parameter α for each log-likelihood function and setting the results equal to zero.
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the sufficient statistics where applicable)11

k(z1, z2|z3, z4, z5, α
(i)) =

125!

z1!z2!

(
1/2

1/2 + α(i)/4

)z1
(

α(i)/4

1/2 + α(i)/4

)z2

k(z1|z2, z3, z4, z5, α
(i)) =

125!

z1!(125 − z1)!

(
1/2

1/2 + α(i)/4

)z1
(

α(i)/4

1/2 + α(i)/4

)(125−z1)

k(z2|z1, z3, z4, z5, α
(i)) =

125!

z2!(125 − z2)!

(
α(i)/4

1/2 + α(i)/4

)z2
(

1/2

1/2 + α(i)/4

)(125−z2)

.

Note that the quantity 125! appears in the numerators above and not 197! since the

conditioning on z3, z4, z5 limits the number of trials of z1 and z2 to 197 − 72 = 125.

These conditional pmfs are Binomial with a mean of np, where n is the number of

trials and p is the probability of each event [20], so the conditional expectations are

ẑ
(i)
1 = 125 · 1/2

1/2 + α(i)/4

ẑ
(i)
2 = 125 · α(i)/4

1/2 + α(i)/4
. (3.19)

Thus the estimated sufficient statistics at step i are ẑ(i) = [ẑ
(i)
1 , ẑ

(i)
2 , 18, 20, 34]T and

the E-step is finished.

Before proceeding with the M-step, which calculates the next iteration of the

parameter estimate α(i+1), first observe that finding the value of α that maximizes

Ez{t(z)|α} in Equation (3.17) is equivalent to finding a stationary point of ∂
∂α

ln f(z|α).

11In general,

f(x1, x2|x3, x4, x5) =
f(x1, x2, x3, x4, x5)

f(x3, x4, x5)

f(x3, x4, x5) =
n!

x3!x4!x5!(n − x3 − x4 − x5)!
px3

3 px4

4 px5

5 (1 − p3 − p4 − p5)
n−x3−x4−x5

f(x1, x2|x3, x4, x5) =
(n − x3 − x4 − x5)!

x1!x2!

(
p1

1 − p3 − p4 − p5

)x1
(

p2

1 − p3 − p4 − p5

)x2

where f(·) is a Multinomial pmf, n is the number of trials, and pi is the probability of zi for
i = 1, 2, 3, 4, 5.
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This fact follows from

Ez{t(z)|α} =
∂

∂α
ln f(z|α) = 0

=
∂

∂α
(ln b(z) + αt(z) − ln a(α)) = 0

= t(z)

which is the equation used in the M-step. Therefore, the M-step is carried out by

applying MLE using the complete data log-likelihood function ln f(z|α) which is

α(i+1) =
ẑ

(i)
2 + 34

ẑ
(i)
2 + 18 + 20 + 34

(3.20)

(this is the first of the two MLE equations given in Equation (3.18)).

Although the previous example is relatively simple, it illustrates the main virtue

of the EM algorithm. Notice that the MLE using the incomplete data log-likelihood

function ln g(y|α) results in solving a quadratic equation (given in the second line of

Equation (3.18)) while the corresponding equation for the complete data log-likelihood

function is linear (the first line of Equation (3.18)). The algorithm proceeds by first

computing the E-step, Equation (3.19), followed by maximization of the likelihood

function in the M-step, Equation (3.20). These steps continue until the difference

between the the most recent successive parameter iterative estimates reaches a desired

value.

3.2.3 General Form of the EM Algorithm. Although Equation (3.17) was

introduced as the EM algorithm, this equation is only valid for exponential families

of pdfs. A more general form of the algorithm is given in [11] which is introduced in

this subsection as a bridge to the notation used in the next section. This form also

enables combining the E- and M-steps. The general form of the EM algorithm defines

the E-step as

Q(α′, α(i)) = E
{
ln f(z|α′)|y, α(i)

}
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and the M-step as

α(i+1) = arg max
α′

Q(α′, α(i)).

The form of these steps makes it possible to combine the E- and M-steps conveniently

into a single step.

As an illustration, the general form of the EM algorithm may be applied to the

example in the previous section with the E- and M-steps combined:

∂

∂α′
Q(α′, α(i)) =

∂

∂α′

[

E

{

ln
(z1 + z2 + 18 + 20 + 34)!

z1!z2!18!20!34!

∣
∣
∣
∣
α(i)

}

+ E{z1|α(i)} ln(1/2)

+ E{z2|α(i)} ln(
α′

4
) + 38 ln(

1 − α′

4
) + 34 ln(

α′

4
)

]

= 0 + 0 +
ẑ

(i)
2

α′
− 38

1 − α′
+

34

α′

= 0.

Solving this equation for α′ leads to the next iteration of the estimated parameter

α(i+1),

α(i+1) =
ẑ

(i)
2 + 34

ẑ
(i)
2 + 18 + 20 + 34

,

which is the same as Equation (3.20).

3.3 Multivariate Gaussian Mixture Estimation

This section applies the theory behind MLE and the EM algorithm to the prob-

lem of estimating a multivariate Gaussian mixture pdf. This problem is motivated

by the goal of the thesis, which is to represent one Gaussian mixture with another

containing a reduced number of components. Although this section pertains to es-

timating a multivariate Gaussian mixture pdf, the techniques involved may provide

valuable insight into approximating one Gaussian mixture with another. The asymp-

totic representation of the estimates are of particular interest since they relate the

true, full-component mixture to the approximated, lower-component mixture.
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In [26], Redner and Homer derive the MLE and EM algorithm equations for

estimating the mean, covariance, and mixture weights of a multivariate Gaussian

mixture pdf. Their derivation includes the constraint that the mixture weights are

non-negative and sum to one, but the authors acknowledge that the constraints on the

covariance being symmetric and positive definite are not explicitly imposed. However,

the forms of the solutions are claimed to uphold the qualities of the initial quantities:

if the initial mixture weights are non-negative and sum to one then so do the estimated

mixture weights. Likewise, if the initial covariance is positive definite and symmetric,

then the estimated covariance has the same properties (see pp. 217–218 of [26]).

When reading the following sections, one should keep in mind the context of

the derivations of the parameter estimation equations. First, the parameters to be

estimated are from the multivariate Gaussian mixture pdf given in Equation (2.23).

The resulting likelihood function, provided N i.i.d. sample vector observations, is

L({zi}N
1 ;Ω) =

N∏

i=1

f(zi|Ω)

=
N∏

i=1

M∑

j=1

pif(zi|µj ,Pj). (3.21)

Again, it is emphasized that {zi}N
1 = {z1, . . . , zN} is a vector set of i.i.d. observa-

tions in which each vector in the set has dimension m (see Equation (2.24)); that is,

zi = [zk1, . . . , zkm]T for i = 1, . . . , N . Also note that the constraints on the param-

eters are the same as those mentioned in Section 2.3. Second, the MLE approach

will maximize this equation only using the constraint that the mixture weights are

non-negative and sum to one. Third, for the EM algorithm method to be used, Red-

ner and Homer suppose that the sample observations are incomplete in that they are

not “labeled” (it is unknown which mixture component spawned which samples) and

propose a complete data sample yi = (zi, li) where lk is the vector containing the

labels for each zuv (i.e., for each component sample of each vector set of observations).
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3.3.1 MLE of a Multivariate Gaussian Mixture. The MLE of the parameters

of a multivariate Gaussian mixture log-likelihood function,

lnL({zi}N
1 ;Ω) =

N∑

i=1

ln f(zi|Ω)

=

N∑

i=1

ln

M∑

j=1

pjf(zi|µj,Pj),

are the solutions to the likelihood equations,

∇Ω ln L({zi}N
1 ;Ω)

∣
∣
∣
∣
Ω=

ˆΩml

= 0,

in the unconstrained optimization case 12. After applying the constraint on the mix-

ture weights, the MLE of this parameter is given by (with the ml subscript sup-

pressed) [26]13

p̂j =
1

N

N∑

i=1

p̂j

f(zi|µj ,Pj)

f(zi|Ω)
, (3.22)

for j = 1, . . . , M . Next, the MLE of the mixture component means and covariances

are found as the solutions to the unconstrained likelihood equations

∇µ
j
ln L({zi}N

1 ;Ω)

∣
∣
∣
∣
Ω=

ˆΩml

= 0

∇Pj
ln L({zi}N

1 ;Ω)

∣
∣
∣
∣
Ω=

ˆΩml

= 0

12In general, the vector derivative of a scalar function dependent on the components of the deriva-
tive is given by [35]

∇xF (x) =






∂
∂x1

F (x)
...

∂
∂xN

F (x)




 .

13One troubling aspect of this equation is that it is in terms of itself! That is, the mixture weight
appears on both sides of the equation. This apparent flaw is not noted in [26]. Later, the MLE
equations will be set aside in favor of the EM algorithm equations, so this apparent mathematical
contradiction is avoided.
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for j = 1, . . . , M . These solutions are14

µ̂j =

N∑

i=1

zip̂j

f(zi|µ̂j, P̂j)

f(zi|Ω̂)

N∑

i=1

p̂j

f(zi|µ̂j, P̂j)

f(zi|Ω̂)

(3.23)

P̂j =

N∑

i=1

(zi − µ̂j)(zi − µ̂j)
T p̂j

f(zi|µ̂j , P̂j)

f(zi|Ω̂)

N∑

i=1

p̂j

f(zi|µ̂j, P̂j)

f(zi|Ω̂)

for j = 1, . . . , M .

The solutions for the MLE of the mixture weights, means, and covariances of a

multivariate Gaussian mixture have some nice properties. Equation (3.22) shows that

each p̂j will be non-negative since all of the quantities are non-negative, including the

pdfs, and that the set sums to one. Furthermore, it can be seen that the covariance pa-

rameter solution, Equation (3.23), is a sum of symmetric, rank one matrices scaled by

positive numbers which will produce a symmetric, positive semi -definite matrix [34].

However, Redner and Homer claim that the covariance solution is positive definite

as long as the initial covariance estimate is positive definite [26]. The authors’ claim

may be substantiated in practice since the possibility of a sample vector zi equalling

µ̂j (thus making the covariance parameter solution positive semi -definite) is unlikely.

These properties meet the constraints given above so that the parameters estimated

by Equations (3.22) and (3.23) will result in a valid multivariate Gaussian mixture

solution.

14To derive these results apply the dell operator to the unconstrained likelihood equations, use the
chain and product rules, use the vector and matrix derivative identities [8, 35]

(a) ∇xxT Ax = 2Ax

(b) ∇AxT A−1x = −A−T xxT A−T

(c) ∇A detA = (det A)A−T

and solve for the parameters.
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Although the above estimates appear to meet the requisite constraints on the

parameters, they possess at least one troubling property - each solution is in terms

of itself. In Equation (3.22) the p̂j terms cancel so that an estimate cannot be made.

Also, the mean and covariance solutions in Equation (3.23) are complicated non-linear

relations of the parameters to be estimated.

One means of circumventing this problem (which was introduced in Section 3.2)

is to implement the EM algorithm. By doing so, the estimation equations remain

the same but the estimates are now iterative and thus in terms of the future and

current estimates. This simplification is a direct result of applying the EM algorithm

to an MLE problem where maximizing the likelihood function that is produced by

the algorithm is easier than maximizing the MLE likelihood function.

3.3.2 EM Algorithm for a Multivariate Gaussian Mixture. As mentioned

above, the EM algorithm can simplify the MLE solution for the parameters of a

multivariate Gaussian mixture if the estimation problem can be posed in terms of

complete and incomplete data (see Section 3.2). In this instance, the simplification

is not the form of the parameters estimate solutions in Equations (3.22) and (3.23),

but the iterative nature of the EM algorithm.

The EM algorithm is derived by modifying the MLE problem according to the

developments in Section 3.2 and using the general form of the EM algorithm given in

Subsection 3.2.3 rather than the result given for exponential families of distributions.

To begin, specify the complete data set yi = (zi, li) where li is the vector containing

the labels for each zuv as mentioned in the beginning of this section. The complete,
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incomplete, and conditional likelihood functions are then

f({yi}N
1 |Ω) =

N∏

i=1

pijf(zi|µij ,Pij)

g({zi}N
1 |Ω) =

N∏

i=1

f(zi|Ω)

k({yi}N
1 |{zi}N

1 ,Ω) =
f({yi}N

1 |Ω)

g({zi}N
1 |Ω)

.

Applying the E-step yields [26] (s is the iteration index)

Q(Ω′,Ω(s)) = E{ln f({yi}N
1 |Ω′)|{zi}N

1 ,Ω(s)}

=

M∑

j=1

[
N∑

i=1

p
(s)
j f(zi|µ(s)

j ,P
(s)
j )

f(zi|Ω(s))

]

ln p′j +

M∑

j=1

N∑

i=1

ln f(zi|µ′
j,P

′
j)

p
(s)
j f(zi|µ(s)

j ,P
(s)
j )

f(zi|Ω(s))

and applying the M-step15 produces the EM algorithm solutions for the parameters:

p
(s+1)
j =

1

N

N∑

i=1

p
(s)
j

f(zi|µ(s)
j ,P

(s)
j )

f(zi|Ω(s))

µ
(s+1)
j =

N∑

i=1

zip
(s)
j

f(zi|µ(s)
j ,P

(s)
j )

f(zi|Ω(s))

N∑

i=1

p
(s)
j

f(zi|µ(s)
j ,P

(s)
j )

f(zi|Ω(s))

(3.24)

P
(s+1)
j =

N∑

i=1

(zi − µ
(s+1)
j )(zi − µ

(s+1)
j )T p

(s)
j

f(zi|µ(s)
j ,P

(s)
j )

f(zi|Ω(s))

N∑

i=1

p
(s)
j

f(zi|µ(s)
j ,P

(s)
j )

f(zi|Ω(s))

15To obtain this result, use the constrained maximization for the mixture weights and the uncon-
strained maximization for the means and covariances as in Subsection 3.3.1. The derivatives should
be with respect to the primed variables.
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for j = 1, . . . , M . Note that all of the properties mentioned in Subsection 3.3.1 apply

to these solutions, but since the estimates are iterative, they are not in terms of

themselves as with the MLE solutions.

3.3.3 Asymptotic Representation of the EM Algorithm. The EM algorithm

estimates for the parameters of a multivariate Gaussian mixture can be asymptotically

extended to include the true mixture pdf. This action is motivated by finding a

method of comparing a full-component multivariate Gaussian mixture with one having

a reduced number of components. To see this point, take the limit as the number of

sample vectors approaches infinity and invoke the strong law of large numbers. In the

equations that follow, Ωo is the full-component or true value of the parameter set, N

is the number of sample vectors, and a.s. means almost surely as previously defined.

lim
N→∞

p
(s+1)
j = p

⋆,(s+1)
j

a.s.−→
∫

z∈Z

p
⋆,(s)
j

f(z|µ⋆,(s)
j ,P

⋆,(s)
j )

f(z|Ω⋆,(s))
f(z|Ωo)dz

lim
N→∞

µ
(s+1)
j = µ

⋆,(s+1)
j

a.s.−→

∫

z∈Z

zp
⋆,(s)
j

f(z|µ⋆,(s)
j ,P

⋆,(s)
j )

f(z|Ω⋆,(s))
f(z|Ωo)dz

∫

z∈Z

p
⋆,(s)
j

f(z|µ⋆,(s)
j ,P

⋆,(s)
j )

f(z|Ω⋆,(s))
f(z|Ωo)dz

(3.25)

lim
N→∞

P
(s+1)
j = P

⋆,(s+1)
j

a.s.−→

∫

z∈Z

(z − µ
⋆,(s+1)
j )(z − µ

⋆,(s+1)
j )T p

⋆,(s)
j

f(z|µ⋆,(s)
j ,P

⋆,(s)
j )

f(z|Ω⋆,(s))
f(z|Ωo)dz

∫

z∈Z

p
⋆,(s)
j

f(z|µ⋆,(s)
j ,P

⋆,(s)
j )

f(z|Ω⋆,(s))
f(z|Ωo)dz

for j = 1, . . . , M .
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Of particular interest is the relationship between the asymptotic EM Equations

(3.25) and the MLE measure function given by Equation (3.14). If the MLE measure

function is written in terms of a multivariate Gaussian mixture, then it has the form

∫

z∈Z

1

f(z|Ω̂)

(
∇Ωf(z|Ω)

)

Ω=
ˆΩ

f(z|Ωo)dz = 0. (3.26)

By setting ∇Ω = {∇µ
j
,∇Pj

} and solving for the mean and covariance parameters,

respectively, one obtains the corresponding equations in Equation (3.25).

3.4 Summary

This chapter explored sample observation-based pdf estimation using MLE and

an iterative implementation of MLE called the EM algorithm to gain insight into

possible methods for approximating a multivariate Gaussian mixture pdf with one

containing a lower number of mixture components. Three asymptotic qualities of

MLE (convergence to the true parameter value, convergence to a Gaussian distri-

bution, and efficiency) were derived to emphasize the effectiveness of MLE as a pdf

estimation technique. The asymptotic nature of MLE is important because the MLE

measure function derived in Equation (3.26) could be used to discriminate between

a full-component target state Gaussian mixture pdf and an approximate reduced-

component mixture pdf. The EM algorithm makes use of complete data to simplify

the MLE problem as illustrated by the example provided in Subsection 3.2.2 in which

a quadratic solution equation was replaced by a linear solution equation. This al-

gorithm was applied to the problem of estimating the parameters of a multivariate

Gaussian mixture pdf when provided with sample vector observations in Subsection

3.3.2. It may be possible to use this approach to produce an approximation to a

multivariate Gaussian mixture pdf by generating samples from the original pdf and

implementing Equation (3.24) to estimate the parameters of the reduced-component

mixture pdf.
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IV. Approximating Gaussian Mixtures & Mixture

Reduction Algorithms

In the context of the tracking with measurement origin uncertainty problem outlined

in Chapter II, the Bayesian solution to the problem results in a Gaussian mixture

representation of the target state pdf. When new measurements are received at each

scan, the number of mixture components, which represent hypotheses about each

measurement in the entire measurement history with regard to the overall target

state, increases. The rate of increase is usually exponential and the tracking problem

quickly becomes computationally intractable.

Approximating the full-component target state Gaussian mixture pdf at the end

of every measurement processing cycle is one means of remedying this problem. There

are generally two types of mixture approximations that are used in practice. The first

method of approximation is to reduce the mixture to a single component, such as in

the PDA and JPDA algorithms [30, 31, 38]. However, this method is a rather crude

approximation to the original mixture, and it ignores well-spaced mixture components,

potentially losing valuable information at the end of the scan cycle [30]. The second

approach approximates the full-component mixture pdf with one containing a lower

number of components, as in Williams’ recently developed Integral Square Error (ISE)

cost-function-based mixture reduction algorithm [38,40,41] and others [27,30,31,32].

The focus of this chapter is approximating a full-component target state Gaus-

sian mixture pdf with one having a lower number of components based on some

mathematical measure. This type of approximation reduces the number of mixture

components by either merging or deleting existing ones based on the measure of each

action. Section 4.1 introduces the various measures used to indicate the goodness of

fit of a low-order approximate Gaussian mixture to the original target state Gaussian

mixture pdf. Next, Section 4.2 presents two heuristic algorithms, the Greedy algo-

rithms, for choosing the “best” mixture reduction actions from a pool of proposed

reductions based on the output of a measure function. Sections 4.3 and 4.4 cover two

existing mixture reduction algorithms (MRAs), Salmond’s Joining and Clustering al-
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gorithms and Williams’ ISE cost-function-based algorithm, respectively, for optimally

reducing the number of mixture components.

4.1 Measure Functions for Gaussian Mixture Approximation

In the context of this thesis, a measure function used for Gaussian mixture

approximation may be categorized as either a true distance measure or a pseudo-

distance measure. The distinction between the two classes of distance measures is

purely mathematical, since the second type of measure function does not satisfy the

triangle inequality1, but maintains the non-negative and, in some cases, the symmetry

properties of a true distance. A measure function is applied to Gaussian mixture pdf

approximation as a means of discriminating between two pdfs, such as a Gaussian

mixture pdf and a reduced-component approximation of the same. In this capacity,

a measure function provides a criterion for mixture reduction decisions and is a key

element of an MRA.

All of the distance measure functions presented in this section exhibit at least

one of the three properties of a true distance measure:

1. Symmetry

2. Satisfying the triangle inequality

3. Non-negativeness.

Symmetry, as it pertains to distance measures, means that the distance between two

pdfs is independent of the order in which the distance is calculated. For instance,

suppose that there are two vectors a and b which originate from a common point

1 The triangle inequality states that the length of the difference vector between two vectors a and
b is less than or equal to the sum of the lengths of the two vectors [10]. That is,

‖a − b‖ ≤ ‖a‖ + ‖b‖.

Another form of the triangle inequality is [34]

‖a + b‖ ≤ ‖a‖ + ‖b‖.
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Figure 4.1: Two vectors having a common origin in the space in which they exist.

(such as the origin of the space in which they exist) as shown in Figure 4.1. One

possible symmetric distance measure between the two vectors is the norm of the dif-

ference vector, since ‖a − b‖ = ‖b − a‖. If a measure function satisfies the triangle

inequality, then it is a candidate as a true distance measure [17]. To write a more

profound statement about this property would be unwise, given the limited mathe-

matical background of this author. However, the triangle inequality imposes a nice

physical constraint of a distance since the “real-world” concept of distance also has

this property2. Non-negativeness imposes another attractive physical constraint on a

true distance measure because it ensures that the measured distance in never negative

(although it may be zero).

Throughout this section, Gaussian mixture pdfs may be thought of as infinite-

dimensional vectors in Hilbert space. The length of a pdf in Hilbert space is mathe-

matically defined as the square root of the inner product of the pdf with itself (the

norm as defined in Hilbert space) [37]. If the original multivariate Gaussian mixture

pdf given its weight, mean, and covariance parameters is represented by f(x|Ωo),

2A basic “real-world” example of the triangle inequality is to measure the length of two sticks,
and then “add” the two sticks (using the second form of the triangle inequality) by placing them
end to end and measure their combined length. Common sense dictates that the combined length
of the sticks not exceed the separate length of each stick.
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then its length is

‖f(x|Ωo)‖ ,
√

〈f(x|Ωo), f(x|Ωo)〉

=

√
∫

∞

−∞

f 2(x|Ωo)dx

where 〈·, ·〉 is the inner product notation. Similarly, the length of a reduced-component

approximation of a multivariate Gaussian mixture pdf given its weight, mean, and

covariance parameters is represented by

‖f(x|Ω̂)‖ ,

√

〈f(x|Ω̂), f(x|Ω̂)〉

=

√
∫

∞

−∞

f 2(x|Ω̂)dx.

In both of these equations, Ω represents the weight, mean, and covariance parameters

of the mixtures, and the subscript o or “hat” notation indicates that the parameters

are for the original mixture or the approximate mixture, respectively.

4.1.1 True Distance Measures. A true distance measure satisfies the three

properties of a true distance introduced in Section 4.1. The following true distance

measures are presented in this subsection:

• Kolmogorov Variational Distance (L1 Distance, Total Variation Distance)

• Integral Square Error cost function

• Hellinger Distance

• Correlation Measure

• Hellinger Affinity Measure (Bhattacharyya coefficient).

The first three true distance measures may be thought of geometrically as measuring

length of the error vector between some function of two pdfs, while the last two true
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distance measures may be viewed as measuring the cosine of the angle between some

function of two pdfs (as in Figure 4.1).

4.1.1.1 Kolmogorov Variational Distance. The Kolmogorov Varia-

tional Distance (or L1 Distance) is given by (with the notation T indicating that this

measure is a true distance measure) [1, 2, 24, 28, 38]

TK{f(x|Ωo), f(x|Ω̂)} =

∫
∞

−∞

|f(x|Ωo) − f(x|Ω̂)|dx. (4.1)

The Kolmogorov Variational Distance may be viewed as the sum of the absolute

differences between the uncountably infinite, infinitesimally small elements of the two

pdfs. This measure clearly adheres to properties 1 and 3 of a true distance measure

because

TK{f(x|Ωo), f(x|Ω̂)} = TK{f(x|Ω̂), f(x|Ωo)}

and the absolute value function ensures that the distance is non-negative. To show

that this measure also meets the triangle inequality, let TK{f(x|Ωo), 0} represent ‖a‖
and TK{f(x|Ω̂), 0} represent ‖b‖3. Then, TK{f(x|Ωo) − 0, f(x|Ω̂) − 0} represents

‖a − b‖, and the triangle inequality is satisfied since

TK{f(x|Ωo) − 0, f(x|Ω̂) − 0} =

∫
∞

−∞

|f(x|Ωo) − f(x|Ω̂)|dx

≤
∫

∞

−∞

|f(x|Ωo) − 0|dx +

∫
∞

−∞

|f(x|Ω̂) − 0|dx

= TK{f(x|Ωo), 0} + TK{f(x|Ω̂), 0}.

Equation (4.1) seems difficult to evaluate without approximation. For instance,

the absolute value breaks the integral into two (not necessarily contiguous) pieces:

3Note that the distance between a non-zero vector and the zero vector is simply the length of the
non-zero vector using the given distance measure.
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one in which f(x|Ωo) > f(x|Ω̂) and the other in which f(x|Ωo) < f(x|Ω̂). Since

the pdfs are Gaussian, the integral over a portion of the domain of the pdf would

be extremely difficult to evaluate without some sort of approximation [38] such as

a numerical approximation of an integral. Assuming that such an approximation is

computationally expensive relative to the update time of the tracking system, this

measure function appears unsuitable for practical real-time implementation.

4.1.1.2 Integral Square Error Cost Function. Williams’ Integral Square

Error (ISE) cost function demonstrated the best performance against a single target

in heavy clutter tracking when implemented in an MRA for a Bayesian tracking al-

gorithm in the presence of measurement origin uncertainty [38]. His cost function

is

TISE{f(x|Ωo), f(x|Ω̂)} = 〈f(x|Ωo) − f(x|Ω̂), f(x|Ωo) − f(x|Ω̂)〉

=

∫
∞

−∞

[

f(x|Ωo) − f(x|Ω̂)
]2

dx (4.2)

=

∫
∞

−∞

[

f 2(x|Ωo) + f 2(x|Ω̂) − 2f(x|Ωo)f(x|Ω̂)
]

dx

where the first term in the last line of this equation is the original mixture self-likeness

term, the second term is the reduced mixture self-likeness term, and the third term is

the cross-likeness term [38,40, 41]. The ISE cost function is a true distance measure

since it meets the requisite properties listed in Section 4.1. Properties 1 and 2 hold

because interchanging the pdfs does not change the measure (it is symmetrical) and

the squaring function insures the distance measure is non-negative. It satisfies the

triangle inequality since (using similar representations for ‖a‖, ‖b‖, and ‖a − b‖ as
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before)

TISE{f(x|Ωo) − 0,f(x|Ω̂) − 0} =

∫
∞

−∞

[

f(x|Ωo) − f(x|Ω̂)
]2

dx

=

∫
∞

−∞

[

f 2(x|Ωo) + f 2(x|Ω̂)
]

dx −
∫

∞

−∞

2f(x|Ωo)f(x|Ω̂)dx

≤
∫

∞

−∞

[

f 2(x|Ωo) + f 2(x|Ω̂)
]

dx

=

∫
∞

−∞

[f(x|Ωo) − 0]2 dx +

∫
∞

−∞

[

f(x|Ω̂) − 0
]2

dx

= TISE{f(x|Ωo), 0} + TISE{f(x|Ω̂), 0}.

Unlike the Kolmogorov Variational Distance, an exact closed form solution exists

for the ISE cost function when the pdfs are multivariate Gaussian mixtures, so this

true distance measure is well-suited for real-time application as the reduction decision

criterion in an MRA [38, 40, 41]. By observing that the first line in Equation (4.2)

is the squared length of the point-by-point difference between two pdfs, the ISE cost

function may be interpreted using the Hilbert space vector analogy as the squared

length of the error vector in Figure 4.1. From this perspective, it should not be

surprising that the ISE cost function has been shown to provide the best single target

in heavy clutter tracking performance to date when implemented as the MRA for a

Bayesian tracking in clutter algorithm [38, 40, 41]. For the same area of discrepancy

between the two densities, f(x|Ωo) and f(x|Ω̂), a high narrow area of discrepancy

is weighted more severely by this cost measure than a low broad discrepancy region,

unlike the case of using the Kolmogorov Variational Distance [38].
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It is interesting to point out that the cross-likeness term by itself is used as

a measure in [15]. In this paper, the authors suggest that the Expected Likelihood

Kernel could be used for discrimination between two pdfs. This measure is (where M

is used to distinguish this measure from a true distance measure)

ME{f(x|Ωo), f(x|Ω̂)} =

∫
∞

−∞

f(x|Ωo)f(x|Ω̂)dx (4.3)

which is one-half of the cross-likeness term in the ISE cost function, Equation (4.2).

Although this measure has an exact closed-form solution, it is not immediately clear

how to use this measure to make mixture reduction decisions4. For instance, if it

is used as a measure of the distance between a pdf and an approximation of this

pdf, one would like to select the approximation that produces the smallest value of

Equation (4.3) (i.e., the smallest distance). However, the concept of orthogonality

in mathematics would indicate that if Equation (4.3) evaluates to zero for two pdfs,

then the pdfs are very dissimilar. So, small values for this measure would mean that

the two pdfs are not similar. For this reason, the Expected Likelihood Kernel is not

categorized as a distance measure, nor is it clear how to apply this measure to mixture

reduction5.

4.1.1.3 Hellinger Distance. The Hellinger Distance is similar to the

ISE cost function, except it operates on the square root of the pdfs rather than

directly on the pdfs. Several variations of the Hellinger Distance are found in the

4A more detailed discussion of the suitability of the Expected Likelihood Kernel as an appropriate
measure function is provided in Section 5.1.

5Although the Expected Likelihood Kernel appears as a component in the ISE cost function (it
is the cross-likeness term) and the Correlation Measure (presented in Subsection 4.1.1.4), it is not
conceptually related to either of these true distance measure functions, and outputs of the Expected
Likelihood Kernel do not have the physical interpretation of a distance.
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literature [15, 24, 25], and in this thesis, the Hellinger Distance is defined as [24]

TH{f(x|Ωo), f(x|Ω̂)} =

√

1

2

〈
√

f(x|Ωo) −
√

f(x|Ω̂),
√

f(x|Ωo) −
√

f(x|Ω̂)

〉

=

√

1

2

∫
∞

−∞

[
√

f(x|Ωo) −
√

f(x|Ω̂)

]2

dx

=

√

1 −
∫

∞

−∞

√

f(x|Ωo)f(x|Ω̂)dx. (4.4)

Given the similarity between the Hellinger Distance and ISE cost function, it is readily

apparent that the Hellinger Distance meets the first and third requirements of a true

distance. As expected, it also satisfies the triangle inequality :

TH{f(x|Ωo) − 0, f(x|Ω̂) − 0} =

√

1

2

∫
∞

−∞

[
√

f(x|Ωo) −
√

f(x|Ω̂)

]2

dx

=

√

1 −
∫

∞

−∞

√

f(x|Ωo)f(x|Ω̂)dx

≤ 1

=

√

1

2

∫
∞

−∞

f(x|Ωo)dx +
1

2

∫
∞

−∞

f(x|Ω̂)dx

= TH{f(x|Ωo), 0} + TH{f(x|Ω̂), 0}.

Equation (4.4) shows that the Hellinger Distance has the potential to be a

promising alternative to the ISE cost function since it does not require the compu-

tation of the two self-likeness terms in Equation (4.2). However, the integral of the

square root of a product of multivariate Gaussian mixture pdfs is extremely difficult

to evaluate exactly in closed form [15, 38]. Placing numerical evaluation aside, the
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Hellinger Distance could be approximated in closed form using a truncated binomial

series or the “heuristic approximation” of replacing the square root of a sum with a

sum of square roots proposed in [15].

4.1.1.4 Correlation Measure. The Correlation Measure is the first

of two true distance measures which may conceptually be thought of as calculating

the cosine of the angle between the original and approximate reduced-component

Gaussian mixture pdfs as if they were vectors in Hilbert space (see Figure 4.1)6. It is

written as [19]

TC{f(x|Ωo), f(x|Ω̂)} =
〈f(x|Ωo), f(x|Ω̂)〉

√

〈f(x|Ωo), f(x|Ωo)〉〈f(x|Ω̂), f(x|Ω̂)〉

=

∫
∞

−∞

f(x|Ωo)f(x|Ω̂)dx

√
∫

∞

−∞

f 2(x|Ωo)dx

∫
∞

−∞

f 2(x|Ω̂)dx

. (4.5)

This measure is used in the field of communication systems as a means of de-

termining the similarity between two signals [19]. Again, using a vector analogy, one

can easily see that if two signals (vectors) are the same, then the angle between the

two signals (vectors) is zero and the cosine of this angle is one. If the two signals

(vectors) are perpendicular, then they are considered “indifferent” to each other or

independent, and the cosine of the angle between the two signals (vectors) is zero [19].

Finally, if the two signals (vectors) point in opposite directions, then the angle be-

tween them is 180o, and the signals (vectors) are completely different [19]. Returning

to Equation (4.5) and noting that the two pdfs never assume negative quantities,

6The cosine of the angle between two vectors a and b in any dimensional Euclidean space is given
by (using the more general inner product notation) [34]

cos θ =
〈a, b〉

√

〈a, a〉〈b, b〉
.
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the range of possible values of the right-hand side of this equation is restricted to be

between zero and one. Thus, if one seeks a good approximation of a Gaussian mixture

pdf, then the Correlation Measure between the original and approximation mixtures

would have to be close to one.

Showing that Equation (4.5) is a true distance measure requires a deviation

from the previous pattern of proofs. The Correlation Measure is symmetric because

interchanging the arguments of this distance measure does not affect the distance

calculation, and it is non-negative since it is restricted to values between zero and

one, as noted in the previous paragraph. In addition, this measure must satisfy

the triangle inequality since the numerator of Equation (4.5) must be less than or

equal to the denominator by the Schwartz inequality (with equality), and the triangle

inequality reduces to the Schwartz inequality [34]. Thus the Correlation Measure has

the quality of being a true distance.

4.1.1.5 Hellinger Affinity Measure. The Hellinger Affinity Measure

[24] (or Bhattacharyya coefficient) is the second true distance measure which may

be viewed as the cosine of the angle between the square root of the original and

the square root of the approximate reduced-component Gaussian mixture pdfs using

the Hilbert space vector analogy7. This measure was considered for application to

Gaussian mixture reduction by Lainiotis and Park in [18], and it has the form

TA{f(x|Ωo), f(x|Ω̂)} = 〈
√

f(x|Ωo),

√

f(x|Ω̂)〉 (4.6)

=

∫
∞

−∞

√

f(x|Ωo)f(x|Ω̂)dx.

Notice that Equation (4.6) is simply the cosine of the angle between the the element-

wise square root of each vector representing the two pdfs in Hilbert space. This insight

7In this case, the square root of the infinite-dimensional vectors representing each pdf is taken as
the element-wise square root since the square root of a vector is undefined.
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is apparent when one considers replacing the pdfs in the Correlation Measure with

the square root of each pdf. Then, the denominator would reduce to one because the

integral of a pdf over the entire sample space of the random variable it describes is

one. The Hellinger Affinity Measure satisfies the three requirements of a true distance,

which can be shown in a similar manner as that for the Correlation Measure, and it

suffers from the same difficulty in finding an exact closed-form solution as the Hellinger

Distance (their functional forms are clearly related, as seen by comparing Equations

(4.6) and (4.4)).

4.1.2 Pseudo-Distance Measures. Pseudo-distance measures are different

from true distance measures because they do not satisfy all three properties of a

true distance listed in Section 4.1. However, this distinction should not preclude

their application to pdf discrimination problems. In fact, the two Kullback-Leibler

measures are probably used more in practice than all of the true distance measures

combined [12, 15, 24]. The following pseudo-distance measures are presented in this

subsection:

• Kullback-Leibler Mean Information

• Kullback-Leibler Divergence

• Salmond’s Joining Algorithm cost function.

The Kullback-Leibler measures were originally derived for use in sample observation-

based problems in which the true pdf of the parent distribution (i.e., the distribution

that spawned the samples) is unknown, but the measures may also be applied when

the true pdf is known exactly (as is the case for this thesis).

4.1.2.1 Kullback-Leibler Mean Information. When applied to a sam-

ple observation-based problem, one interpretation of the Kullback-Leibler Mean In-

formation measure is that it provides an indication of the amount of new information

gained for discrimination between two pdfs by making an additional observation [17].

As a pseudo-distance measure, the Kullback-Leibler Mean Information measure is
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not symmetric and it does not satisfy the triangle inequality [17]. However, by using

Jensen’s inequality (see Equation (3.9)) one can show that this distance measure is

non-negative [24]. The Kullback-Leibler Mean Information is (the D standing for

distance to distinguish pseudo-distance measures from true distance measures)

DMI{f(x|Ωo), f(x|Ω̂)} =

∫
∞

−∞

f(x|Ωo) ln
f(x|Ωo)

f(x|Ω̂)
dx. (4.7)

The natural logarithm in Equation (4.7) makes obtaining an exact closed-form solu-

tion of this distance extremely difficult when the pdfs are Gaussian mixtures [38].

4.1.2.2 Kullback-Leibler Divergence. The Kullback-Leibler Divergence

measure provides a sense of the difficulty in discriminating between two pdfs [17]. Like

the Mean Information, the Divergence is non-negative, but unlike this measure, the

Divergence is symmetric [17, 24]. The Kullback-Leibler Divergence is given by

DD{f(x|Ωo), f(x|Ω̂)} =

∫
∞

−∞

[

f(x|Ωo) − f(x|Ω̂)
]

ln
f(x|Ωo)

f(x|Ω̂)
dx. (4.8)

Again, the presence of the natural logarithm function makes finding an exact closed-

form solution extremely difficult when the pdfs are Gaussian mixtures [38].

4.1.2.3 Salmond’s Joining Algorithm Cost Function. Salmond based

the cost function for his Joining Algorithm on penalizing changes to the structure of

the original Gaussian mixture caused by reduction actions [30]. The cost function

is derived by first setting the covariance of the full-component mixture equal to the

covariance of the reduced-component mixture, thus maintaining the “structure” of

the original mixture. In the final step of his derivation, Salmond develops a scalar

cost function based on the Mahalanobis distance [30, 31]. This cost function meets

the symmetric and non-negative properties of a true distance measure, and so it is

classified as a pseudo-distance measure.
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Salmond’s Joining Algorithm8 cost function is (breaking from the previous no-

tation to maintain consistency with Salmond’s notation)

d2
ij =

pipj

pi + pj

(µi − µj)
TP−1(µi − µj) (4.9)

where d2
ij is the squared distance resulting from merging mixture components i and

j, and P is the overall covariance of the mixture [31]. The distances between compo-

nents are pair-wise compared using this cost function, and the components that fall

below some distance threshold are merged [31]. Salmond’s Joining Algorithm will be

discussed further in Section 4.3.

4.2 Greedy Algorithms for the Assignment Problem

Consider the problem of reducing a multivariate Gaussian mixture pdf with

NH(k) mixture components to one with a reduced number NR(k), NH(k) > NR(k), by

either merging or deleting components. A pool of potential reduction actions for the

original mixture pdf is formed by proposing the deletion of any one of the mixture com-

ponents, 1, . . . , NH(k), or the merging of every pair of distinct mixture components,

where the merged component’s parameters are calculated using Equation (2.26). After

all possible actions are proposed, this pool consists of NH(k) and NH(k)[NH(k)−1]/29

proposed mixture component deletion and merge actions, respectively. Selecting the

“best” reduction action or actions from the set of NH(k) + {NH(k)[NH(k) − 1]/2}
possible actions may be viewed as an assignment problem, and either of two heuristic

algorithms, called Greedy Algorithm A and Greedy Algorithm B10, may be applied

8A description of Salmond’s Joining and Clustering algorithms is given in Section 4.3.
9The number of possible merge actions is equivalent to selecting two mixture components from

NH(k) mixture components without replacement and without regard to order. Thus, the number of
possible merge actions is [20]

(
NH(k)

2

)

=
NH(k)!

2![NH(k) − 2]!
=

NH(k)[NH(k) − 1][NH(k) − 2]!

2[NH(k) − 2]!
=

NH(k)[NH(k) − 1]

2
.

10Williams’ ISE cost-function-based algorithm makes use of Greedy Algorithm B [41].
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to this problem [29]. Both of these algorithms assign the “best” reduction action or

actions based on the output of a measure function.

Again, consider the problem of reducing an NH(k)-component Gaussian mixture

pdf to an NR(k)-component mixture pdf. According to Greedy Algorithm A, one

selects the [NH(k) − NR(k)] reduction actions from NH(k) + {NH(k)[NH(k) − 1]/2}
possible actions with the most favorable outputs of some measure function [29]. In

the case of the distance and pseudo-distance measure functions of Section 4.1, the

[NH(k) − NR(k)] best reduction actions are those with the smallest corresponding

distance measures. The best [NH(k) − NR(k)] reduction actions are then executed,

and a reduced-component Gaussian mixture pdf approximation is obtained.

In contrast, Greedy Algorithm B selects the NH(k)−NR(k) best actions through

an iterative process. At the first iteration, a set of {NH(k) + NH(k)[NH(k) − 1]/2}
possible mixture reduction actions is proposed. Then, Greedy Algorithm B selects

the best reduction action from the set based on some measure function, and executes

this reduction action by either deleting the selected mixture component or merging

two selected mixture components. At the next iteration, a new set of possible deletion

and merge actions is proposed. Since the number of mixture components was reduced

by one in the previous iteration, the number of possible mixture reduction actions

is now [NH(k) − 1] + {[NH(k) − 1][NH(k) − 2]/2}. This process continues until the

desired number of reductions, [NH(k) − NR(k)], is obtained.

4.3 Salmond’s Joining & Clustering Algorithms

The Joining and Clustering algorithms are two MRAs for a Bayesian tracking

in clutter algorithm. In [30, 31], Salmond develops and tests these algorithms for a

scenario of a single target in clutter. The algorithms are applied separately to the

task of reducing the number of mixture components of the a posteriori target state

pdf while attempting to maintain track on the target.
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Before developing his algorithms, Salmond created design objectives which are

paraphrased below [31].

(i) The pdf approximations resulting from the algorithms should be the same form

as the approximated pdf; i.e., the approximation should be a multivariate Gaus-

sian mixture.

(ii) The algorithm allows the user to specify the number of components in the

approximation.

(iii) Reduction actions will be guided by a predetermined threshold on a cost func-

tion that measures the change to the “structure” of the approximated mixture.

Reduction should continue until either the threshold is breached or the num-

ber of specified components is reached. This cost criterion is chosen since it is

computationally tractable11.

(iv) Intuitively, the approximation should maintain the overall mean and covariance

of the original mixture.

(v) The algorithms should be computationally efficient such that the approximation

can take place before the completion of a scan cycle12.

Pair-wise component merging, carried out by Equation (2.26), is the focus of

each iteration of the Joining Algorithm [31]. This process is governed by requirement

(ii) from above so that merging continues until either a preset threshold is breached or

the requisite number of reduced components is met [31]. The cost function is given in

Equation (4.9) and the threshold T is set by noting that the cost function is bounded

below the dimension, n, of the target state random process vector, and simulation

results indicate that T = 0.001n [31].

11This part of requirement (iii) appears to have been the motivation behind Williams’ thesis [38].
He suggested that a more robust cost function could be utilized and still be computationally feasible
given the improvement in computing power since Salmond’s dissertation.

12The completion of one scan cycle means that the propagation and measurement update stages
(as given in Subsection 2.2.1) have been completed.
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The Clustering Algorithm [31] iteratively finds the component with the largest

mixture weight and groups other components which are closest to this cluster center

(the component with the largest mixture weight at each iteration). Grouping decisions

are based on a cost function with the same form as (4.9) but with slightly different

components [31]:

D2
i =

pipc

pi + pc
(µi − µc)

TP−1
c (µi − µc) (4.10)

(the subscript c indicates that the parameters are from the cluster center component).

As with the Joining Algorithm, a threshold is used to determine when components

should be clustered, but unlike the Joining Algorithm, this threshold is linearly in-

creased if the preset number of reduced components is not achieved at the end of

a clustering iteration [31]. The value of this threshold has a nice geometric inter-

pretation as being the volume of the hyperellipsoid centered about the mean of the

cluster center and encompassing a certain percentage of the components’ probability

mass [31].

4.4 Williams’ ISE Cost-Function-Based Algorithm

In [38], Williams develops the ISE Initialization and ISE Iterative Optimization

MRAs. The ISE Initialization MRA uses the ISE cost function to choose a start-

ing point for the approximate reduced-component mixture parameters. This starting

point is then used in the ISE Iterative Optimization MRA which optimizes the values

of the mixture parameters using the gradient of the ISE cost function with respect

to each of the three multivariate mixture parameters. However, it was noted in [38]

that the value of the mixture parameters obtained using the Initialization algorithm

provided a starting point which typically was close to the Iteratively Optimized pa-

rameter values, so that the added computational load of the optimization algorithm

could be avoided by using the Initialization algorithm only [38].

The ISE Initialization MRA combines the benefits of the pdf measure functions

used by Alspach, Lainiotis, and Park [1, 2, 18] and adapts the work of Salmond [31]

124



to create an MRA that produces a track life that surpasses that of the Joining and

Clustering algorithms [40] when considering a tracking scenario of a single target in

heavy clutter. Conceptually, the ISE cost function given by Equation (4.2) is similar

to the Kolmogorov Variational Distance used by Alspach and the Hellinger Affinity

Measure used by Lainiotis and Park in that it takes into consideration the entire pdf

of the original and reduced-component mixtures. However, unlike the Kolmogorov

Variational Distance and Hellinger Affinity Measure, the ISE cost function does not

need to be approximated to obtain a closed-form solution in the case of multivariate

Gaussian mixtures [38, 40, 41]. Williams adopts all of the requirements posed in [31]

(listed in Section 4.3), but requirement (iii) is modified to remove thresholding as a

criterion to stop reduction. The merging Equations (2.26) developed in [31] are used

to combine mixture components but clustering is avoided [38].

A flowchart summarizing the ISE Initialization MRA (which uses Greedy Algo-

rithm B) is shown in Figure 4.2 (reproduced from [38]). Like the Joining Algorithm,

each pair of components is potentially merged using (2.26). The cost of these merging

actions is evaluated using the ISE cost function which reduces to (keeping most of

Williams’ original notation)

JHR =

NH(k)
∑

i=1

NR(k)
∑

j=1

pip̄jN{µi|µ̄j,Pi + P̄j}

JRR =

NR(k)
∑

i=1

NR(k)
∑

j=1

p̄ip̄jN{µ̄i|µ̄j , P̄i + P̄j}

JHH =

NH(k)
∑

i=1

NH(k)
∑

j=1

pipjN{µi|µj ,Pi + Pj}

where the bars over the parameters indicate those of the reduced mixture, NH(k)

and NR(k) are the number of original and reduced mixture components, respectively,

at the end of scan k, and N{·} is a multivariate Gaussian pdf with the specified
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Figure 4.2: A flowchart for the ISE cost-function-based Initialization algorithm
(which uses Greedy Algorithm B).
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functional arguments in brackets13 [38,40,41]. Unlike the Joining Algorithm, the cost

is also evaluated for deleting each component. Given all of the potential reduction

actions, the one with the lowest cost is executed. This process continues until the

preset number of reduced mixture components is met (as illustrated in Figure 4.2),

in contrast to Salmond’s Joining Algorithm which may continue merging components

below this number as long as the threshold is not exceeded [31].

4.5 Summary

In Chapter II, the Bayesian solution for tracking a target in clutter leads to

a Gaussian mixture target state pdf in which the number of mixture components

(hypotheses) grows without bound over time. Implementing this solution requires

some type of mixture reduction algorithm (MRA) to limit the number of hypotheses

to a manageable number while maintaining good tracking performance. The choice

of measure function used as a criterion to make mixture reduction decisions has a

major impact on tracking performance because it is a key element of an MRA. True

distance and pseudo-distance measure functions were defined, and a comparison of the

geometric interpretation of each distance measure was made (when applicable), along

with a judgment of the measure function’s suitability for practical implementation.

The task of reducing the number of components of a multivariate Gaussian mixture

pdf by utilizing a measure function as the reduction decision criterion is an assignment

problem. Two heuristic assignment algorithms, Greedy Algorithm A and Greedy

Algorithm B, were presented as candidate solutions to this problem. Two existing

MRAs, Salmond’s Joining and Clustering algorithms and Williams’ ISE cost-function-

based algorithm, were summarized because they form the basis for this thesis.

13This notation may be a little confusing since the mean, which is a deterministic vector, is used
as the random vector of the pdf. The N{·} terms should be interpreted as a functional form and
not an actual pdf.
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V. Gaussian Mixture Reduction Algorithm Development &

Analysis

Several mixture reduction algorithms (MRAs) are developed in this chapter1. The

MRAs are composed of two essential pieces: the measure function used as a de-

cision criterion for selecting mixture reduction actions, and the assignment algorithm

which uses the measure function to decide which actions to execute. The most suit-

able measure functions from Chapter III and Chapter IV are mated with one of the

assignment algorithms of Chapter IV to produce each new MRA. Various univariate

Gaussian mixture pdfs are used to test the new MRAs, and the results are analyzed

to identify the best candidates for implementation in a full-scale Bayesian tracking

algorithm for use in the presence of measurement origin uncertainty.

5.1 Measure Function & Assignment Algorithm Selection

Before developing an MRA, a suitable measure function must be chosen and

coupled with either Greedy Algorithm A or Greedy Algorithm B from Section 4.2. A

measure function is considered suitable if it can be exactly evaluated or approximately

evaluated in closed-form when the pdfs are multivariate Gaussian mixtures, and if

the interpretation of its results is unambiguous. Either Greedy assignment algorithm

may be used with any suitable measure function. Salmond’s Joining Algorithm cost

function is not considered because it does not incorporate the reduction action effects

on the entire target state pdf. However, Williams thoroughly compared his Integral

Square Error cost function with Salmond’s Joining Algorithm cost function in [38,40,

41].

Excluding Salmond’s Joining Algorithm cost function, the nine measure func-

tions presented in Chapters III and IV will be considered for implementation in new

MRAs:

1. MLE measure (Equation (3.26))

1The sample-based multivariate Gaussian mixture approximation method using the EM algorithm
suggested in Chapter III is not considered in this chapter.
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2. Kolmogorov Variational Distance (Equation (4.1))

3. Integral Square Error (ISE) cost function (Equation (4.2))

4. Expected Likelihood Kernel (Equation (4.3))

5. Hellinger Distance (Equation (4.4))

6. Correlation Measure (Equation (4.5))

7. Hellinger Affinity Measure (Equation (4.6))

8. Kullback-Leibler Mean Information (Equation (4.7))

9. Kullback-Leibler Divergence (Equation (4.8)).

A number of these measure functions are unsuitable. Exact or approximate

closed-form evaluation of measure functions 2, 8, and 9 is extremely difficult, if not

impossible, to obtain when the arguments of these functions are Gaussian mixture

pdfs, as noted in the literature [15, 38], so these measure functions are not suitable.

The MLE measure function is discarded for the same reason. As pointed out in

Subsection 4.1.1.2, the interpretation of results generated by the Expected Likelihood

Kernel is somewhat ambiguous, so this measure function is also deemed unsuitable.

To see this point, consider a case in which the Expected Likelihood Kernel of

two pdfs is small. This result would imply that the two pdfs are dissimilar based on

the concept of orthogonality. However, a large measure value does not necessarily

correspond to a high-degree of similarity between the two pdfs under consideration.

Figure 5.1 shows two five-component univariate Gaussian mixture pdfs which differ

only by their respective mixture weights. The parameters for the first mixture pdf

(the solid trace in the figure) and the second mixture pdf (the dash-dotted trace in

the figure) are shown in Table 5.1. The Expected Likelihood Kernel of the solid-trace

mixture pdf with itself is 0.075159, while the same measure between the solid-trace

and dash-dotted trace pdfs is 0.075484, which is larger. Thus, in general, a larger

Expected Likelihood Kernel value does not always imply a better match between

pdfs.
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Figure 5.1: Two distinct five-component univariate Gaussian mixture pdfs with
the same mean and variance parameters, but with different mixture weight parame-
ters. The Expected Likelihood Kernel measure of the solid-trace mixture with itself
is 0.075159, while the same measure between the solid-trace and dash-dotted trace
mixture pdfs is 0.075484.

Parameter First pdf Second pdf

Weight [0.3, 0.1, 0.1, 0.2, 0.3]T [0.3, 0.2, 0.1, 0.15, 0.25]T

Mean [−1, 2, 6, 10, 5]T [−1, 2, 6, 10, 5]T

Variance [1, 4, 1, 3, 3]T [1, 4, 1, 3, 3]T

Table 5.1: Mixture parameters for the two univariate Gaussian mixture pdfs in
Figure 5.1.
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Measure functions 3, 5, 6, and 7 are considered suitable for implementation in

an MRA. Small evaluated values from the ISE cost function and Hellinger Distance

indicate that two pdfs under consideration are well-matched, while values close to

one imply that two pdfs are similar when using the Correlation Measure or Hellinger

Affinity Measure2. An exact closed-form solution for the ISE cost function for mul-

tivariate Gaussian mixture pdfs was derived in [38, 40, 41], and an exact closed-form

solution for the Correlation Measure also exists since the basic terms used in this

measure function are also used in the ISE cost function. Although exact closed-form

evaluations of the Hellinger Distance and Hellinger Affinity Measure may not exist

for multivariate Gaussian mixture pdfs [15, 38], approximate closed-form represen-

tations of these measure functions may be found using a truncated binomial series

approximation or the “heuristic approximation” cited in [15].

Of all the possible pairings of measure functions with assignment algorithms,

the following set of new MRAs will be investigated:

1. ISE cost function mated with Greedy Algorithm A

2. Correlation Measure mated with Greedy Algorithm B

3. Hellinger Distance mated with Greedy Algorithm B

4. Hellinger Affinity Measure mated with Greedy Algorithm B.

The first MRA is a modification to Williams’ ISE cost-function-based MRA since it

replaces Greedy Algorithm B with Greedy Algorithm A, and it is termed the ISE

Shotgun MRA. The second new MRA is created by replacing the ISE cost function

with the Correlation Measure and modifying the decision logic to select the measure

closest to one as opposed to the one closest to zero. This new MRA is the Correlation

Measure (CM) MRA. The final two new MRAs, the Hellinger Distance (HD) and

Hellinger Affinity Measure (HA) MRAs, are implemented using either the truncated

2In Subsection 4.1.1, the Correlation Measure and Hellinger Affinity Measure were described as
the cosine of the angle between two vectors in Hilbert space. A measure value close to one indicates
that the angle between the vectors representing the pdfs (using the Hilbert space vector analogy) is
nearly zero, so the two pdfs are similar.
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binomial series approximation or the “heuristic approximation” in the next section.

The performance of each new MRA will be compared to Williams’ ISE MRA, and a

final comparison of the best-performing new MRA will be made with the ISE MRA.

5.2 Mixture Reduction Algorithm Development

This section presents the complete development of the four new MRAs listed at

the end of the previous section. Exact closed-form solutions for the ISE cost function

and Correlation Measure in the case of multivariate Gaussian mixture pdfs are shown,

and approximate closed-form results for the Hellinger Distance and Hellinger Affinity

Measure are derived using two different approximations. The process of proposing

deletion and merge reduction actions is introduced. Finally, the selected measure

functions are mated to their corresponding assignment algorithm and detailed de-

scriptions of the four new MRAs are given.

5.2.1 Closed-Form Solutions of Select Measure Functions. Exact closed-

form solutions for the ISE cost function and Correlation Measure, and approximate

closed-form solutions for the Hellinger Distance and Hellinger Affinity Measure are

derived in this subsection. In [38], Williams demonstrated that the product of two

multivariate Gaussian pdfs results in another multivariate Gaussian pdf, and this

result is used to evaluate his ISE cost function. In [15], the authors present the

general probability product kernel for Gaussian pdfs which provides a generalized

version of the result found in [38]. These two results are used to develop the “heuristic

approximation” suggested in [15] for the Hellinger Distance and Hellinger Affinity

Measure. A binomial series representation for the square root function in the two

Hellinger measures is used to obtain the other approximate closed-form solution for

these measures.
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5.2.1.1 ISE Cost Function & Correlation Measure Closed-Form Solu-

tions. Since the ISE cost function,

TISE{f(x|Ωo),f(x|Ω̂)} = 〈f(x|Ωo) − f(x|Ω̂), f(x|Ωo) − f(x|Ω̂)〉

=

∫
∞

−∞

[

f(x|Ωo) − f(x|Ω̂)
]2

dx (4.2)

=

∫
∞

−∞

[

f 2(x|Ωo) + f 2(x|Ω̂) − 2f(x|Ωo)f(x|Ω̂)
]

dx

= 〈f(x|Ωo), f(x|Ωo)〉 + 〈f(x|Ω̂), f(x|Ω̂)〉 − 2〈f(x|Ωo), f(x|Ω̂)〉,

and the Correlation Measure,

TC{f(x|Ωo), f(x|Ω̂)} =
〈f(x|Ωo), f(x|Ω̂)〉

√

〈f(x|Ωo), f(x|Ωo)〉〈f(x|Ω̂), f(x|Ω̂)〉

=

∫
∞

−∞

f(x|Ωo)f(x|Ω̂)dx

√
∫

∞

−∞

f 2(x|Ωo)dx

∫
∞

−∞

f 2(x|Ω̂)dx

, (4.5)

share the two self-likeness terms and cross-likeness term, the required evaluations

of the exact closed-form solution when the pdfs are multivariate Gaussian mixtures

are the same. Although Williams’ closed-form result may be applied directly to both

measures, the general probability product kernel for multivariate Gaussian pdfs given

in [15] is used instead for two reasons. First, the general probability product kernel is

needed to derive the “heuristic approximation” for the Hellinger measures in the next

subsection. Second, the result produced by the general probability product kernel

may be checked against Williams’ solution to validate it (at least in one case).
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The general probability product kernel for two multivariate Gaussian pdfs and

general ρ is given as (note that | · |= det(·)) [15]

Kρ{f(x|µo,Po), f(x|µ̂, P̂)} = 〈f ρ(x|µo,Po), f
ρ(x|µ̂, P̂)〉 (5.1)

= (2π)(1−2ρ)n/2(ρ)−n/2 | P† |1/2| Po |−ρ/2| P̂ |−ρ/2

· exp
{

−ρ

2

[

µT
o P−1

o µo + µ̂T P̂−1µ̂ − µ†TP†µ†
]}

P† =
(

P−1
o + P̂−1

)−1

µ† = P−1
o µo + P̂−1µ̂.

(Note that P† is an inverse covariance and not a covariance.) Recall that a multi-

variate Gaussian mixture pdf has the form

f(x|Ω) =
M∑

i=1

pif(x|µi,Pi) (2.23)

so that the original, full-component single-target state multivariate Gaussian mixture

pdf may be written as

f(x(k)|Ωo(k)) =

NH(k)
∑

i=1

po,if(x(k)|µo,i,Po,i) (5.2)

and the approximated, reduced-component single-target state multivariate Gaussian

mixture pdf is

f(x(k)|Ω̂(k)) =

NR(k)
∑

j=1

p̂jf(x(k)|µ̂j , P̂j). (5.3)

Notice that the time dependence on k was added since the single-target state is

modeled as a random process vector. At sample k, the random process vector x(k)

is simply a multivariate Gaussian mixture vector with parameters given in Ωo(k)

or Ω̂(k). In contrast, the time dependence is not explicitly shown in the mixture

component parameters po,i, µo,i, Po,i, p̂j, µ̂j, and P̂j to enhance readability, but
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it should be understood that these values generally change from sample to sample.

Substituting Equations (5.2) and (5.3) into Equation (5.1), and setting ρ = 1 yields

the closed-form solution for the cross-likeness term

〈f(x(k)|Ωo(k)), f(x(k)|Ω̂(k))〉 = (5.4)

NH(k)
∑

i=1

NR(k)
∑

j=1

po,ip̂jK1{f(x(k)|µo,i,Po,i), f(x(k)|µ̂j , P̂j)}.

Likewise, the full-component mixture self-likeness term is

〈f(x(k)|Ωo(k)), x(k)|Ωo(k))〉 = (5.5)

NH(k)
∑

i=1

NH(k)
∑

j=1

po,ipo,jK1{f(x(k)|µo,i,Po,i), f(x(k)|µo,j,Po,j)}

and the reduced-component mixture self-likeness term is

〈f(x(k)|Ω̂(k)), f(x(k)|Ω̂(k))〉 = (5.6)

NR(k)
∑

i=1

NR(k)
∑

j=1

p̂ip̂jK1{f(x(k)|µ̂i, P̂i), f(x(k)|µ̂j, P̂j)}.
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Finally, for ρ = 1, Equation (5.1) evaluates to3

K1{f(x|µo,Po), f(x|µ̂, P̂)} = (2π)−n/2 | P−1
o + P̂−1 |−1/2| Po |−1/2| P̂ |−1/2

· exp

{

− 1

2

[

µT
o P−1

o µo + µ̂T P̂−1µ̂

− (P−1
o µo + P̂−1µ̂)T (P−1

o + P̂−1)−1(P−1
o µo + P̂−1µ̂)

]}

=| 2π(Po + P̂) |−1/2 exp

{

− 1

2

[

µT
o P−1

o µo + µ̂T P̂−1µ̂ − µT
o (Po + P̂)−1P̂P−1

o µo

− µ̂T P̂−1Po(Po + P̂)−1P̂P−1
o µo − µ̂T P̂−1Po(Po + P̂)−1µ̂ − µT

o (Po + P̂)−1µ̂

]}

=| 2π(Po + P̂) |−1/2 exp

{

− 1

2

[

µT
o (P−1

o −P−1
o P̂(Po + P̂)−1)µo

+ µ̂T (P̂−1 − P̂−1Po(Po + P̂)−1)µ̂ − 2µT
o (Po + P̂)−1µ̂

]}

=| 2π(Po + P̂) |−1/2 exp

{

− 1

2

[

µT
o (Po + P̂)−1µo − µT

o (Po + P̂)−1µ̂

− µ̂T (Po + P̂)−1µo + µ̂T (Po + P̂)−1µ̂

]}

=| 2π(Po + P̂) |−1/2 exp

{

− 1

2
(µo − µ̂)T (Po + P̂)−1(µo − µ̂)

}

(5.7)

which matches the result found in [38]. Thus, the ISE cost function and Correlation

Measure are fully specified by Equations (5.4), (5.5), and (5.6), and the probability

3This result is derived by using the following linear algebra properties/relations [8, 21, 34]:

(a) | A |−1= 1
|A| =| A−1 |

(b) | AB |=| A || B |
(c) | cA |= cn | A |, where c is a scalar and n is the number of rows or columns of A

(d) If A and B are symmetric positive definite, then AT = A, AB = (BA)T , (A−1)T = A−1,
and xTA−1y = yT A−1x

(e) If these inverses exist, and A and B are symmetric, then (A−1 +B−1)−1= A−A(A+B)−1A

= B− B(A + B)−1B= A(A + B)−1B = B(A + B)−1A
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product kernel for ρ = 1,

K1{f(x|µo,Po), f(x|µ̂, P̂)} = (5.7)

| 2π(Po + P̂) |−1/2 exp

{

− 1

2
(µo − µ̂)T (Po + P̂)−1(µo − µ̂)

}

.

5.2.1.2 Hellinger Distance & Hellinger Affinity Measure Closed-Form

Solutions. Two closed-form approximations of the Hellinger Distance and Hellinger

Affinity Measure are derived in this subsection. The first closed-form approximation

uses a binomial series expansion4 for the

√

f(x|Ωo)f(x|Ω̂) term in Equations (4.4)

and (4.6), and extracts the first-order term from this expansion as the approximation.

The second approximation is the “heuristic approximation” suggested in [15] which

replaces a square root of a sum of terms with the sum of the square root of each term

(notionally this approximation is
√

a + b + c ≈ √
a +

√
b +

√
c).

To use the binomial series to expand

√

f(x|Ωo)f(x|Ω̂), first note that this term

may be equivalently written as [1+(f(x|Ωo)f(x|Ω̂)−1)]1/2. Then, the binomial series

for this expression is

[

1 + (f(x|Ωo)f(x|Ω̂) − 1)
]1/2

=
∞∑

u=0

1
2
(1

2
− 1) . . . (1

2
− u + 1)

u!

[

f(x|Ωo)f(x|Ω̂) − 1
]u

.

(5.8)

4The binomial series is given by [3]

(1 + y)v =

∞∑

u=0

v(v − 1) . . . (v − u + 1)

u!
yu

for v ∈ R and y ∈ (−1, 1].
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The leading term is equivalently represented as

1
2
(1

2
− 1) . . . (1

2
− u + 1)

u!
=

(−1)u−1

2uu!
1 · 1 · 3 · · · (2u − 3)
︸ ︷︷ ︸

(u−1) terms

=
(−1)u−1

2uu!
1 · 3 · · · (2u − 3) · (2u − 1)

(2u − 1)
︸ ︷︷ ︸

u terms

· 2 · 4 · · · (2u − 2) · 2u
2 · 4 · · · (2u − 2) · 2u
︸ ︷︷ ︸

u terms

=
(−1)u−1

2uu!

(2u)!

2uu!

1

(2u − 1)

=
(−1)u−1(2u)!

22u(u!)2(2u − 1)
.

Substituting this expression into Equation (5.8) and writing out the first two terms

in the series yields

[

1 + (f(x|Ωo)f(x|Ω̂) − 1)
]1/2

= 1 +
1

2

[

f(x|Ωo)f(x|Ω̂) − 1
]

+ . . .

≈ 1

2
f(x|Ωo)f(x|Ω̂). (5.9)

This approximation uses the first-order term of the expansion and discards all other

terms5. Finally, the approximate Hellinger Distance becomes

TH{f(x|Ωo), f(x|Ω̂)} =

√

1

2

〈
√

f(x|Ωo) −
√

f(x|Ω̂),
√

f(x|Ωo) −
√

f(x|Ω̂)

〉

=

√

1 −
∫

∞

−∞

√

f(x|Ωo)f(x|Ω̂)dx

≈
√

1 − 1

2

∫
∞

−∞

f(x|Ωo)f(x|Ω̂)dx (5.10)

5The zeroth-order term is discarded since keeping this term would result in an indeterminant
form when evaluating

∫
∞

−∞
(1/2)dx.
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and the Hellinger Affinity Measure is approximated as

TA{f(x|Ωo), f(x|Ω̂)} = 〈
√

f(x|Ωo),

√

f(x|Ω̂)〉

=

∫
∞

−∞

√

f(x|Ωo)f(x|Ω̂)dx

≈ 1

2

∫
∞

−∞

f(x|Ωo)f(x|Ω̂)dx. (5.11)

Notice that the integral term in both Equations (5.10) and (5.11) is the cross-likeness

term of the ISE cost function, and it may be evaluated using Equations (5.4) and

(5.7). Also, this approximation functionally represents a scaled version of the Ex-

pected Likelihood Kernel (Equation (4.3)), but conceptually it was derived from an

approximation of the Hellinger Affinity Measure, which is a true distance measure.

The “heuristic approximation” is derived by approximating the integrand in

Equations (4.4) and (4.6) as a sum of square roots and using the general proba-

bility product kernel in Equation (5.1) with ρ = 1/2. Begin by writing the term
√

f(x(k)|Ωo(k))f(x(k)|Ω̂(k)) as

〈
√

f(x(k)|Ωo(k)),

√

f(x(k)|Ω̂(k))

〉

=

∫
∞

−∞

√
√
√
√

NH(k)
∑

i=1

NR(k)
∑

j=1

po,ip̂jf(x(k)|µo,i,Po,i)f(x(k)|µ̂j , P̂j)dx(k)

≈
NH(k)
∑

i=1

NR(k)
∑

j=1

√

po,ip̂j

∫
∞

−∞

√

f(x(k)|µo,i,Po,i)f(x(k)|µ̂j, P̂j)dx(k)

=

NH(k)
∑

i=1

NR(k)
∑

j=1

√

po,ip̂jK1/2{f(x(k)|µo,i,Po,i), f(x(k)|µ̂j, P̂j)}.

(5.12)
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Next, evaluate Equation (5.1) with ρ set to one-half:

K1/2{f(x|µo,Po), f(x|µ̂, P̂)} = (2π)0

(
1

2

)−n/2

| P−1
o + P̂−1 |−1/2| Po |−1/4| P̂ |−1/4

· exp

{

−1

4

[

µT
o P−1

o µo + µ̂T P̂−1µ̂ − µ†TP†−1µ†
]}

=

∣
∣
∣
∣

1

2
(Po + P̂)

∣
∣
∣
∣

−1/2

| PoP̂ |1/4 exp

{

−1

4
(µo − µ̂)T (Po + P̂)−1(µo − µ̂)

}

. (5.13)

Finally, the “heuristic approximation” to the Hellinger Distance and Hellinger Affinity

Measure is found by substituting Equation (5.13) into Equation (5.12), and then

substituting this result into the appropriate measure, Equation (4.4) or Equation

(4.6).

5.2.2 Proposing Mixture Reduction Actions. Now that exact closed-form so-

lutions or approximate closed-form solutions to the selected measure functions in the

case of multivariate Gaussian mixture pdfs have been found, the process of propos-

ing the reduced-component approximate target state pdf, f(x(k)|Ω̂(k)), is outlined.

Reduced-component mixture pdfs are proposed by either deleting a single component

or merging two distinct components of the original full-component Gaussian mix-

ture pdf, f(x(k)|Ωo(k)), or of the approximated target state pdf from the previous

mixture reduction algorithm iteration, depending on which Greedy assignment algo-

rithm is used. At the end of each scan k, there are NH(k) + {NH(k)[NH(k) − 1]/2}
possible reduced-component mixture pdfs to propose (see Section 4.2). If a single

mixture component is deleted, then the proposed reduced-component pdf is the orig-

inal target state Gaussian mixture pdf, but with one mixture component removed.

The mixture weights of the reduced-component mixture pdf are not re-normalized

until the MRA has reached the requisite number of components to improve the com-

putational speed of the algorithm, which will be discussed in the next subsection.

However, this improvement in run time alters the output of measure functions which

calculate the length of the error vector between the original and reduced-component

mixture pdfs (using the Hilbert space vector analogy of the previous chapter), such as

140



the ISE cost function and the Hellinger Distance. This issue is covered in Subsection

5.3.1. If two mixture components are merged, then the resulting approximate target

state Gaussian mixture pdf is the original pdf, but with the two merged components

replaced by a Gaussian mixture component with parameters specified by Equation

(2.26). Re-normalization is not an issue since the equation used to calculate the

merged-component mixture weight is simply the sum of the two merged components’

mixture weights. So, as long as the sum of the original mixture weights equals one,

the sum of the reduced-component mixture weights is also one.

5.2.3 Mating Measure Functions with Assignment Algorithms. Mating a

measure function with an assignment algorithm produces an MRA. In this subsection,

the four new measure function/assignment algorithm pairings listed at the end of

Section 5.1 are expounded. Insights gleaned from [38] and Williams’ original ISE

cost-function-based MRA code are used in the development of the four new MRAs.

5.2.3.1 Correlation Measure MRA. The CM MRA is simply Williams’

original MRA, but with the ISE cost function replaced by the Correlation Measure

and the decision logic modified to accept measure function values closest to one in-

stead of those closest to zero. A flowchart of the algorithm is shown in Figure 5.2. The

algorithm begins by computing and storing each Correlation Measure term in Equa-

tions (5.4), (5.5), and (5.6). Parameters for all possible pairwise component mergings

are calculated since they are needed when proposing reduced-component approximate

Gaussian mixture pdfs when the reduction action is to merge components. Reduced-

component mixture approximations to the original mixture are proposed by both

deletion and merge reduction actions, and the reduced-component mixture with a

Correlation Measure closest to one is declared as the optimal approximation to the

original Gaussian mixture pdf (optimal in the sense of the measure used). This process

continues through iterations of setting the optimal reduced-component approximate

mixture pdf from the previous iteration as the “original” mixture pdf for the cur-

rent iteration, until the desired number of mixture components is obtained. At the
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Figure 5.2: A flowchart of the Correlation Measure MRA.
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final step of the algorithm, the mixture weights of the optimal approximation to the

original, full-component target state Gaussian mixture pdf are re-normalized.

If the proposed reduced-component mixture is obtained by deleting a mixture

component, then the corresponding Correlation Measure is found by subtracting every

measure term in Equations (5.4), (5.5), and (5.6) corresponding to the deleted com-

ponent. This measure calculation is accomplished more quickly if re-normalization

of the remaining components’ mixture weights is not considered since the Correla-

tion Measure terms initially computed and stored at the start of the algorithm may

be used. Omitting re-normalization of the mixture weights during operation of the

algorithm does not degrade the approximation fidelity of MRAs based on measure

functions of the cosine of the angle between two vectors representing the original and

reduced-component mixtures, since re-normalization only affects the length of the

vectors and not their directions. This concept is explained in detail in Subsection

5.3.1.

If the proposed reduced-component mixture is obtained by merging two mixture

components, then the corresponding Correlation Measure between the full-component

(or the resulting approximate mixture pdf from a previous iteration of the algorithm)

and reduced-component pdfs is found by a slightly different procedure than for the

case of deleting a component. First, the Correlation Measure terms containing the two

merged mixture components are subtracted from the sum of the Correlation Measure

terms initially calculated. Then, the Correlation Measure between the newly-formed

merged component and every other surviving component is calculated according to

Equations (5.4), (5.5), and (5.6). These terms are added together and then to the

Correlation Measure found in the first step to obtain the Correlation Measure of the

reduced-component Gaussian mixture pdf resulting from merging the two selected

mixture components. Again, computational efficiency is gained by re-using previously

stored measure terms as in the deletion reduction action case.
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5.2.3.2 ISE Shotgun MRA. When the ISE cost function is combined

with Greedy Algorithm A from Section 4.2, the ISE Shotgun MRA is created. This

new MRA sacrifices the quality of the reduced-component approximation provided by

Williams’ original ISE cost-function-based MRA (this MRA used Greedy Algorithm

B), but improves the computational speed of the algorithm. The computational ac-

celeration may be seen in the ISE Shotgun MRA flowchart of Figure 5.3. Notice

that the algorithm continues to execute the lowest-cost reduction actions based on

the initially calculated costs until none remain or the requisite number of reduced

components is met (as indicated by the first decision block in Figure 5.3). In con-

trast, Williams’ original ISE cost-function-based MRA recomputes new costs after

each reduction action is executed6.

5.2.3.3 Hellinger Distance MRA. As shown in Figure 5.4, the HD

MRA is the same as the CM MRA except that the appropriate approximation to the

Hellinger Distance replaces the Correlation Measure as the measure function, and the

reduced-component mixture pdf with the smallest distance measure with respect to

the original mixture pdf is the optimal approximation. However, neglecting mixture

re-normalization causes a problem with the Hellinger Distance given by Equation

(4.4). The problem lies in the simplification made in the final line of the Hellinger

6In [41], Williams identifies two efficiency enhancements beyond those incorporated into his orig-
inal algorithm which modify the operation of his MRA by negating the need to recompute all of the
new costs.
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Figure 5.3: A flowchart of the ISE Shotgun MRA.
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Figure 5.4: A flowchart of the Hellinger Distance MRA.
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Distance equation

TH{f(x|Ωo), f(x|Ω̂)} =

√

1

2

〈
√

f(x|Ωo) −
√

f(x|Ω̂),
√

f(x|Ωo) −
√

f(x|Ω̂)

〉

=

√

1

2

∫
∞

−∞

[
√

f(x|Ωo) −
√

f(x|Ω̂)

]2

dx (4.4)

=

√

1

2

∫
∞

−∞

f(x|Ωo)dx +
1

2

∫
∞

−∞

f(x|Ω̂)dx −
∫

∞

−∞

√

f(x|Ωo)f(x|Ω̂)dx.

The first integral term is one-half since f(x|Ωo) is a valid Gaussian mixture pdf with

the sum of its mixture weights constrained to one. However, the second integral term

is not guaranteed to be one during operation of the HD MRA since the reduced-

component mixture weights are not re-normalized until the last step of the algorithm.

Thus, the Hellinger Distance given by Equation (4.4) must be modified to include

the possibility of reduced-component mixture weights which are not normalized. This

modification is accomplished by using Equation (2.23) (with appropriate modification
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to the mixture parameter notation):

TH{f(x|Ωo),f(x|Ω̂)}

=

√

1

2

∫
∞

−∞

f(x|Ωo)dx +
1

2

∫
∞

−∞

f(x|Ω̂)dx −
∫

∞

−∞

√

f(x|Ωo)f(x|Ω̂)dx

=

√
√
√
√1

2
+

1

2

M∑

i=1

p̂i

∫
∞

−∞

f(x|µ̂i, P̂i)dx −
∫

∞

−∞

√
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since the integral of a pdf over the entire sample space of the continuous random

quantity it describes is one.

5.2.3.4 Hellinger Affinity Measure MRA. Figure 5.5 shows the flow-

chart for the HA MRA. The algorithm is essentially the same as the HD MRA,

including a similar modification to the Hellinger Affinity Measure equation when the

reduced-component mixture weights are not normalized, but special consideration

is necessary when choosing the optimal value of this measure. Since the reduced-

component mixture weights are not guaranteed to be normalized throughout the op-

eration of the algorithm, the Hellinger Affinity Measure, given by Equation (4.6), is
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Figure 5.5: A flowchart of the Hellinger Affinity Measure MRA.
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modified to account for this possibility.
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(5.15)

Either the truncated binomial series or the “heuristic approximation” is applied to

the numerator term to find an approximate closed-form solution. However, since

the quantity on the right-hand side of Equation (5.15) represents the cosine of the

angle between the square root of the original and approximate pdfs using the vector

analogy developed in Subsection 4.1.1, this quantity must be bounded between −1

and +1. If either approximation produces values outside of these bounds, then the

resulting distance measure is not valid. In this case, one may choose to declare the

approximation inadequate and discard it.

5.3 Mixture Reduction Algorithm Analysis

The new MRAs developed in the previous section are analyzed in this section.

An analysis of the impact of neglecting mixture weight re-normalization during op-

eration of the MRAs is presented in Subsection 5.3.1. Also, each new MRA is tested

in Subsection 5.3.2 using two randomly-generated univariate Gaussian mixture pdfs,
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and the approximate reduced-component mixture pdf produced by each algorithm is

qualitatively compared with the original, full-component mixture and the output of

the other MRAs. A comparison is also made with respect to required computation

time for each algorithm when coded using the same techniques.

5.3.1 Impact of Mixture Weight Re-Normalization. Subsection 5.2.2 men-

tions that mixture weight re-normalization of the reduced-component approximation

Gaussian mixture pdf is neglected until near the last step of each MRA resulting in

improved computational speed. Using the Hilbert space vector analogy for Gaussian

mixture pdfs of Section 4.1, this subsection shows that this improvement does not

impact MRAs based on true distance measure functions of the cosine of the angle

between two vectors representing mixture pdfs, but that, in general, it does affect

MRAs based on true distance measure functions of the error vector between two vec-

tors representing mixture pdfs. That is, true distance measures of the cosine of the

angle between two vectors representing Gaussian mixture pdfs are invariant to scalar

transformations of the mixtures, such as re-normalization of mixture weights, but true

distance measures of the error vector between the two mixture pdfs are not invariant

to this type of transformation. Recall that the Correlation Measure calculates the

cosine of the angle between a vector representing the original mixture pdf and an-

other vector representing the reduced-component approximation of the same, while

the Hellinger Affinity Measure calculates the same quantity, but the vectors represent

the square root of each pdf instead. Also, recall that the ISE cost function is the

squared length of the error vector between the two vectors representing the original

and approximate Gaussian mixture pdfs, and that the Hellinger Distance is the length

of the error vector between two vectors representing the square root of each mixture

pdf.

Figure 5.6 may be used to explain the effect of mixture weight re-normalization

on the Hellinger Affinity Measure, Correlation Measure, Hellinger Distance, and ISE

cost function. Imagine that a mixture component deletion action is executed and that
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Figure 5.6: Two depictions of the error vectors and angles between the vectors a, b
and βb which represent the original mixture pdf, a reduced-component approximation
mixture pdf, and a scaled (re-normalized) version of the same reduced-component
approximation pdf, respectively. Notice that the length of the error vector a − b is
different from that of the error vector a − βb, but that the angles θ1 and θ2 are the
same.

the mixture weights of the approximation pdf are not re-normalized so that the vector

b, as shown in sub-plot (a), represents the reduced-component approximation. Also,

consider the case in which mixture weight re-normalization is performed so that the

approximation pdf is represented by the scaled vector βb, as shown in sub-plot (b).

Notice in sub-plots (a) and (b) that the angles θ1 and θ2 are equal, but that the lengths

of the error vectors a−b and a−βb are different. Since the Correlation Measure is the

cosine of the angle between two vectors, mixture weight re-normalization has no effect

on this measure function. Likewise, mixture weight re-normalization has no impact

on the Hellinger Affinity Measure as long as the appropriate modification, given by

Equation (5.15), is made to this measure function. In contrast, the ISE cost function

and the Hellinger Distance are dependent on the length of the vector representing the

reduced-component approximation mixture pdf, so, in general, re-normalization of

the approximation pdf mixture weights affects the output of these measure functions.

As an illustration of the role re-normalization plays in an MRA, consider reduc-

ing a 19-component univariate Gaussian mixture pdf to one containing only eight

components using the ISE and CM MRAs with and without mixture weight re-
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normalization7. Figure 5.7 shows the outputs of the ISE and CM MRAs when re-

normalization of the reduced-component approximation mixture pdf is not performed

(sub-plots (a) and (b)), and when re-normalization is performed (sub-plots (c) and

(d)). As predicted by theory, the CM MRA produces the same result regardless of

whether or not mixture weight re-normalization is performed during operation of the

algorithm, since the output of the Correlation Measure for the reduced-component

approximation pdf and the re-normalized (scaled) version of the approximation pdf is

the same. However, a comparison of sub-plots (a) and (c) shows that the ISE MRA

is dependent on mixture weight re-normalization, since the ISE cost function depends

on the length of the reduced-component approximation mixture pdf.

Although in general the ISE and HD MRAs are dependent on mixture weight

re-normalization during their operation, multiple experiments using the ISE and HD

MRAs have shown that this dependence is usually not strongly evident. As an exam-

ple, if the 19-component univariate Gaussian mixture pdf from the previous paragraph

is reduced to a four-component mixture pdf instead of an eight-component one, then

the reduced-component approximation Gaussian mixture pdf is the same whether or

not mixture weight re-normalization is performed (however, the intermediate steps of

the reduction process differ between the two implementations). Considering the sub-

stantial computational savings of not re-normalizing the mixture weights until near

the last step of an MRA and the unlikelihood of encountering a reduction task which

would result in significantly different outputs depending on whether or not mixture

weight re-normalization is performed, neglecting re-normalization until near the last

step of an MRA appears to be worth any potential degradation in approximation

quality. Therefore, all of the MRAs tested in the next subsection do not re-normalize

the mixture weights of the reduced-component approximation pdf until near the end

of the algorithm.

7The HD MRA and HA MRA are not considered since evaluation of their corresponding measure
functions requires approximation which could potentially obscure the effect of mixture weight re-
normalization.
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Figure 5.7: An illustration of the effect of re-normalizing the mixture weights of
a reduced-component approximation Gaussian mixture pdf using the ISE and CM
MRAs with and without re-normalization during operation of the algorithms. Notice
that re-normalizing the mixture weights of the approximation pdf has no effect on the
CM MRA output, but the ISE MRA produces different results (the circled portions
of the pdf in sub-plot (c)) depending on whether mixture weight re-normalization is
used or not.
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5.3.2 Mixture Reduction Algorithm Test Results. Two randomly-generated

univariate Gaussian mixture pdfs are used to test the fidelity of the reduced-component

approximation Gaussian mixture pdfs produced by the new MRAs and Williams’

original ISE MRA. MRAs are judged based on the aesthetic quality of their respec-

tive approximations to the full-component Gaussian mixture pdf and on the required

computation time for each algorithm when coded using the same techniques. During

testing, it was noted that the “heuristic approximation” for the Hellinger Distance

and Hellinger Affinity Measure produced invalid distance measures. Computed dis-

tance measures for the Hellinger Distance were negative, and the Hellinger Affinity

Measure produced outputs which were greater than +1. Since the resulting distance

measures were invalid, the HD and HA MRAs based on this approximation were

abandoned, and only the HD and HA MRAs based on the truncated binomial series

approximation were considered.

The ISE, CM, ISE Shotgun, HA, and HD MRAs were tested against two

randomly-generated univariate Gaussian mixture pdfs. Results for the first test, which

was to reduce a 15-component mixture to a 10-component one, are shown in Figure

5.8. Of the five MRAs tested, the ISE Shotgun MRA produced the worst-looking ap-

proximation, and the ISE and CM MRAs generated reduced mixture approximations

that appear almost identical to the original mixture pdf. The HD and HA MRAs

produced questionable approximations, but required about half of the computation

time as that of the ISE and CM MRAs. Almost the same reduction in computation

time was noted for the ISE Shotgun MRA as well.

Figure 5.9 displays the results of the second MRA test, which required each

MRA to reduce a 19-component univariate Gaussian mixture pdf to a 5-component

mixture. Again, the ISE and CM MRAs produced the best-looking approximations

despite reducing the number of components in the original mixture pdf by almost 75%.

However, in contrast to the first test, the ISE Shotgun MRA generated a visibly better

reduced-component approximation than either of the Hellinger-based MRAs using the

truncated binomial series approximation. As in the first test, the ISE Shotgun, HD,
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Figure 5.8: The first MRA test consisting of a 15-component univariate Gaussian
mixture pdf which is approximated by a 10-component mixture pdf using the cor-
responding MRA. Mixture components are represented by dashed traces while the
complete mixture pdfs are depicted by the solid traces.
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Figure 5.9: The second MRA test consisting of a 19-component univariate Gaus-
sian mixture pdf which is approximated by a 5-component mixture pdf using the
corresponding MRA. Mixture components are represented by dashed traces while the
complete mixture pdfs are depicted by the solid traces.
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and HA MRAs took almost half of the required computation time as that for the ISE

and CM MRAs.

Based on the qualitative assessments of the approximations produced by the

MRAs in the two tests, the CM MRA is the best new candidate MRA (in addition to

William’s ISE MRA) for use in a Bayesian tracking in clutter algorithm. The HA and

HD MRAs performed rather poorly, which is likely attributable to the crude approx-

imation used in Equation (5.9). Utilizing higher-order terms in the binomial series of

Equation (5.8) would likely improve performance. However, the added computational

requirements may outweigh any performance gains, especially if the additional compu-

tations necessary for the approximation lead to a similar computational requirement

as that for the ISE and CM MRAs, which use exact closed-form solutions for their

respective measure functions. Results for the ISE Shotgun MRA do not indicate that

this MRA is a good candidate for implementation into a Bayesian tracking in clutter

algorithm: Greedy Algorithm B is significantly superior to Greedy Algorithm A for

MRA performance.

5.4 Summary

Four new mixture reduction algorithms (MRAs) were developed, implemented,

and tested in this chapter. MRAs based on the Hellinger Distance and Hellinger Affin-

ity Measure used either the truncated binomial series approximation or the “heuristic

approximation” suggested in [15]. However, the second approximation produced in-

valid distance measures, so it was abandoned in favor of the truncated binomial series

approximation. Williams’ original Integral Square Error (ISE) cost-function-based

MRA was modified by replacing Greedy Algorithm B with Greedy Algorithm A to

create the ISE Shotgun MRA, and it was also modified by swapping the ISE cost

function with the Correlation Measure (CM) to produce the CM MRA. Of the four

new MRAs proposed in this chapter, only the CM MRA appears suitable for use in

a Bayesian tracking in clutter algorithm: only it yields performance comparable to

that of the ISE MRA.
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VI. Simulation Description & Results

In the previous chapter, the Correlation Measure mixture reduction algorithm (CM

MRA) was selected as the best candidate as an alternative to the Integral Square

Error (ISE) MRA for the mixture reduction portion of a practical Bayesian tracking

in the presence of measurement origin uncertainty algorithm. The single-target in

heavy clutter simulation scenario presented in [38] is used to test both the CM MRA

and Williams’ ISE cost-function-based MRA. Simulation results for each MRA are

compared, and a final evaluation of the relative performance of the CM MRA is

presented.

6.1 Description

The single-target in heavy clutter scenario found in [38] is used to test both the

CM MRA and the ISE MRA. The target travels in the x-y plane according to the

constant velocity (CV) model of Section 2.1,
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with E{wx(k)} = E{wy(k)} = 0, E{wx(k)wx(l)} = δkl, E{wy(k)wy(l)} = δkl,

E{wx(k)wy(l)} = 0, and T = 1 second. Noise-corrupted measurements of the x

and y positions are available at each sample k, and the measurement model is
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 (6.1)

where E{nx(k)} = E{ny(k)} = 0, E{nx(k)nx(l)} = δkl, E{ny(k)ny(l)} = δkl, and

E{nx(k)ny(l)} = 0. Initial conditions for the Gaussian target state random process
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vector are
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. (6.2)

At each scan k, the expected number of false-origin measurements, λFTVS,

is 480. The false-origin measurement clutter density, λFT , is set to 0.012 so that

VS = 200 × 200, which is the surveillance region of the sensor at scan k. This re-

gion is a box in the x-y plane centered at the true target location at sample k. The

target-oriented data association approach and measurement gating are utilized, and

the gate probability, Pg, is set to one (Pg is the probability that the true target mea-

surement falls within the corresponding measurement gate). Measurement gating is

accomplished using Williams’ square gating routine in which the gate is formed as the

square centered about a predicted measurement with side length of twice the square

root of the maximum eigenvalue of the covariance of the residual after scaling by the

gate threshold [38,40,41]. Finally, the probability of detection, Pd, is also set to one.

Two-hundred Monte Carlo simulations were run using Williams’ MATLABr

code [38,40,41] with the maximum number of mixture components set to 1, 5, 10, 15,

20, 25, 30, and 35 components using both the ISE and CM MRAs. The CM MRA

was implemented by replacing the ISE cost function with the Correlation Measure in

Williams’ ISE MRA MEX C-code and modifying the decisions criterion accordingly.

Each simulation determined the total number of scans that the target was tracked

before track loss occurred (i.e., the track life). Track loss occurs if either of the

following criteria are met:

(i) the true target measurement is not within the measurement gates of any of the

hypothesized tracks for five consecutive scans, or
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(ii) the discrepancy between the combined target state mean estimate for every hy-

pothesized track and the combined true target state is greater than ten standard

deviations1 for five consecutive scans.

Pseudo-random number generators were set to predetermined values at the beginning

of each simulation so that both MRAs were presented with exactly the same mea-

surement data before track loss occurred. The track life results of these simulations

are presented in the next section.

6.2 Results

The results from the simulation scenario described in the last section are covered

in this section. Figure 6.1 depicts the average track life for the CM and ISE MRAs

as a function of the maximum number of mixture components over each set of two-

hundred Monte Carlo trials. As expected, the average track life improves as the

number of mixture components increases, since including more components in the

target state pdf approximation produces a better representation of the original target

state Gaussian mixture pdf. The CM MRA appears to outperform the ISE MRA

slightly in some cases while the opposite is true in other cases, however, overall the

average track life differences between the two MRAs are statistically insignificant.

Figure 6.2 shows the percentage and number of individual trials in which the

track life of the CM MRA was exactly the same, better than, and worse than the

track life of the ISE MRA. For instance, the bar on the far left of the figure (for

the case in which the maximum number of mixture components is set to one) shows

that a large percentage (99%) of the trials resulted in exactly the same track life for

both algorithms and that in two of those trials the MRAs produced different track

life results. In one of those trials in which the results of the MRAs differed, the CM

MRA produced a longer track life than the ISE MRA, and the ISE MRA generated

a better track life in the other trial. Although it may seem somewhat surprising that

1As calculated by a Kalman Filter applied to the same simulation scenario in the absence of
clutter [31, 38].
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Figure 6.1: Average track life results for the CM and ISE MRAs. The figures within
the coarsely-dashed boxes correspond to CM MRA results, while the numbers inside
of the finely-dashed boxes are for the ISE MRA.

Figure 6.2: The percentage and number of trials in which the track life of the CM
MRA was exactly the same, better than, and worse than that of the ISE MRA.
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the majority of the trials resulted in exactly the same track life figures for the CM and

ISE MRAs, recall that these MRAs produced the same reduced-component univariate

Gaussian mixture pdfs, as shown in Figures 5.8 and 5.9, for the two tests conducted

in Subsection 5.3.2, so this outcome should not be unexpected. Notice that in cases in

which the track life results of the two MRAs differ, the CM MRA outperforms the ISE

MRA for most settings of the maximum number of mixture components. However,

this graphic does not indicate the number of scans by which the CM MRA track life

is longer for these cases. This information is contained in the next figure.

For cases in which the track life for the CM and ISE MRAs differ, Figure

6.3 shows the average, maximum, and minimum track life disparities between the

two MRAs2. The upper plot, (a), shows that, for four of the seven settings for the

maximum allowable number of mixture components, in cases in which the CM MRA

outperformed the ISE MRA, the average disparity between the track life of the two

MRAs is larger than that for cases in which the ISE MRA outperformed the CM MRA.

In five of the seven settings for the maximum number of mixture components, the

maximum difference between the two MRAs is greatest for the CM MRA in trials in

which the CM MRA outperformed the ISE MRA. Sub-plot (b) is an enlarged version

of sub-plot (a). This graphic shows values in which the track life disparity between

the CM and ISE MRAs is less than ten scans. Notice that track life difference metrics

are not shown for the ISE MRA when the maximum allowable number of mixture

components is set to 30 since, as shown in Figure 6.2, the ISE MRA did not outperform

the CM MRA in any of the trials.

2The single mixture component simulations were not included in this figure to minimize clutter.
In the two trials in which the CM and ISE MRAs differed in track life, the CM MRA outperformed
the ISE MRA by 22 scans in the first instance, while the ISE MRA outperformed the CM MRA by
21 scans in the other trial.
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Figure 6.3: The average, maximum, and minimum track life differences between
the CM and ISE MRAs in the trials in which the MRAs produced different track life
results (sub-plot (b) is an enlarged version of sub-plot (a)).
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6.3 Summary

This chapter presented the single-target in heavy clutter simulation scenario

used to test the track life performance of the Correlation Measure mixture reduction

algorithm (CM MRA) when implemented as the mixture reduction mechanism of a

Bayesian tracking in clutter algorithm, in comparison to Williams’ Integral Square

Error (ISE) MRA. Various metrics of the track life results were obtained for the CM

MRA and compared to those for the ISE MRA using the same simulation scenario.

The average track life differences between the two MRAs are statistically insignifi-

cant. Since the CM and ISE MRAs only differ in the measure function used in each

algorithm and each measure function requires the evaluation of all the same compo-

nent terms, computation time for both MRAs is almost exactly the same under the

condition that both MRAs produce the same track life3. Trials in which the track life

figures for the two MRAs differed were further analyzed, but a conclusive declaration

about the superiority of one MRA over the other could not be made based on the test

data.

3In general, the scalar multiplication and division operations used to compute the Correlation
Measure are more computationally costly than the scalar addition and subtraction operations used
in the ISE cost function. However, it was noted in various simulations that the run time for the ISE
MRA and CM MRA were virtually identical.
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VII. Conclusions & Recommendations

This chapter concludes the thesis by summarizing its important findings. A

restatement of the research goal is presented to reacquaint the reader with the

objective of the thesis, followed by a summary of key results. Significant contributions

contained in this thesis are highlighted, and recommendations for future research are

included in the final section.

7.1 Restatement of the Research Goal

Equation (2.65) (modified for a single target state random process vector),

f
(
x(k), Θ(k)|Zk

)
=

∑

ik∈NH(k)

· · ·
∑

i1∈NH(1)

p
(
{Θiℓ}k
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)
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x(k)|{Θiℓ}k

1, Z
k
)

of Section 2.5 is the Bayesian solution for tracking a target in clutter. As new measure-

ments are received at subsequent scans, new summations are added, and the number

of terms needed to evaluate the target state multivariate Gaussian mixture pdf be-

comes computationally unrealistic. Thus, some type of approximation is necessary to

implement the rigorous Bayesian solution for the target state pdf.

A mixture reduction algorithm (MRA) is one method of approximation. When

tracking a single target in heavy clutter while retaining a large number of mixture

components, Williams’ Integral Square Error (ISE) MRA has been shown to provide

longer average track life results than any other algorithm [38, 40, 41]. However, rec-

ommendations in [38] indicate the potential for improving upon the results produced

by Williams’ algorithm. Thus, the goal of this research is to create a new MRA which

offers better tracking performance and/or decreased computation time as compared to

Williams’ ISE MRA.

7.2 Summary of Results

Four new MRAs were developed in an attempt to meet the research goal. The

motivation for three of the four new MRAs, the Integral Square Error (ISE) Shot-
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gun, Hellinger Distance (HD), and Hellinger Affinity Measure (HA) MRAs, was the

prospect of decreased computation time while preserving comparable tracking per-

formance to the ISE MRA. However, as any engineer knows, improved performance

in one aspect of a design often leads to decreased performance in another area, and

the ISE Shotgun, HD, and HA MRAs were no exception. Although all three MRAs

required roughly half of the computation time of Williams’ original ISE MRA1, the

quality of the reduced-component univariate Gaussian mixture pdf approximations

produced by these MRAs was rather poor, as shown in Figures 5.8 and 5.9.

The fourth new MRA, the Correlation Measure (CM) MRA, provided much

better results than the other new MRAs, but it only offered a slight improvement

over Williams’ ISE MRA. Figures 5.8(b) and 5.9(b) clearly show that the reduced-

component mixture pdf approximations generated by the CM MRA closely match

the original univariate Gaussian mixture pdf. In fact, the CM MRA made the same

approximations as the ISE MRA. Although this fact is not true in general (as indicated

by the track life performance of the two MRAs), this phenomenon likely occurred in

over ninety percent of the simulation trials, which resulted in exactly the same track

life for both MRAs, as depicted in Figure 6.2.

Geometrically, the similarity inferred from the descriptions of each measure

function given in Subsection 4.1.1 between the Correlation Measure and the ISE cost

function may be used to explain this phenomenon. Using a vector analogy, the origi-

nal Gaussian mixture pdf and reduced-component approximation may be thought of

as two vectors a and b, respectively, in Hilbert space, as shown in Figure 7.1. The

Correlation Measure is the cosine of the angle, θ, between the two mixture pdfs, and

the ISE cost function is the squared length of the error vector, (a − b), using the

“standard” definition of the Euclidean norm. Based on the Correlation Measure, two

mixtures are perfectly matched if the angle between them is zero. However, two mix-

1This statement only pertains to MRAs implemented for the purpose of this thesis. These al-
gorithms were coded using the same blocks of code whenever possible to minimize the impact of
specific implementations on algorithm run times.
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tures with a zero-angle between them may not be perfectly matched in the sense of

(a − b) being zero, as shown in Figure 7.1(b). In this case, the ISE cost function

provides a better measure of the similarity between the two mixtures since it would

indicate that the two mixtures in Figure 7.1(b) are not perfectly matched (the error

vector is non-zero). This scenario explains a situation in which the Correlation Mea-

sure and ISE cost function may produce different results, which would explain the

disparity in track life results experienced in certain simulation outcomes. In contrast,

Figure 7.1(c) shows the only scenario in which the ISE cost function and Correla-

tion Measure would “agree” on the similarity between the two mixtures, since both

the angle and error vector are zero. This case may explain why over ninety percent

of the simulation trials produced exactly the same track life. However, this conclu-

sion implies that the vectors representing the full-component and reduced-component

mixture pdfs are essentially co-linear and essentially of the same length over ninety

percent of the time, which seems unlikely. So this explanation of the reason why

ninety-plus percent of the simulation trials produced exactly the same track life is not

completely satisfying.

Despite the “zero angle, non-zero error vector” deficiency of the Correlation

Measure pointed out in the previous paragraph, the CM MRA slightly outperformed

the ISE MRA in some aspects for the tracking scenario considered in the simulations.

The CM MRA produced average track life figures for six of the eight settings of the

maximum number of reduced mixture components that were as good as, or slightly

better than, those for the ISE MRA, as shown in Figure 6.1. In cases in which the

track life figures of the two MRAs differed, the CM MRA had more trials with longer

track life values than the ISE MRA for seven of the eight settings of the maximum

number of reduced mixture components (see Figure 6.2). Additionally, other metrics,

depicted in Figure 6.3, indicate that the CM MRA outperformed the ISE MRA by

a small margin. However, for all cases in which the CM MRA slightly outperformed

the ISE MRA, the small differences in performance are statistically insignificant. In

addition, computational requirements for both MRAs are effectively the same since
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Figure 7.1: (a) Two vectors with a non-zero angle and a non-zero error vector.
(b) Two vectors with a zero angle and a non-zero error vector. (c) Two vectors with
a zero angle and a zero error vector.

the measure functions for both MRAs share the same components. Therefore, based

on the simulation results, a vote in favor of one MRA over the other cannot objectively

be made on the basis of resulting tracker performance.

7.3 Significant Contributions of Research

Although the CM MRA did not decisively outperform the ISE MRA, the CM

MRA provides a viable and readily-implemented alternative for Bayesian tracking al-

gorithms incorporating Williams’ MRA. The CM MRA was shown to provide slightly

better performance in certain aspects than the ISE MRA for the given simulation sce-

nario described in Section 6.1, and it may also provide slightly better performance in

other scenarios (although there is no guarantee to this claim). Additionally, the CM

MRA may be fully implemented without requiring mixture weight re-normalization

during operation of the algorithm, as noted in Subsection 5.3.1, thus drastically re-

ducing the run time of the MRA. Since all of the components of the ISE cost function

(the two self-likeness terms and one cross-likeness term), given by Equation (4.2),
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are also used in the Correlation Measure, given in Equation (4.5), one may read-

ily replace one measure function with the other. This interchangeability of the two

measure functions provides a designer with an added degree of freedom.

7.4 Recommendations for Future Research

Several future research topics may be spawned from the research presented in

this thesis. First, a hybrid Greedy Algorithm A/Greedy Algorithm B assignment

algorithm, mated with either the ISE cost function or Correlation Measure, could be

developed which operates according to a measure threshold. This new MRA would

combine the iterative operation of Greedy Algorithm B with the computational effi-

ciency of Greedy Algorithm A to execute all reduction actions iteratively with com-

puted measures which do not exceed some threshold. Essentially, it would operate

in a similar manner as the ISE Shotgun MRA, but instead of executing all reduction

actions in one step, the algorithm would only execute those reduction actions with

measures that met the threshold criteria (similarly to Salmond’s Joining algorithm).

For example, if the ISE cost function is used, then the algorithm would iteratively

execute reduction actions which have costs below some pre-specified threshold. There-

after, one could use the Greedy Algorithm B to drive to the final desired number of

components in the reduced mixture. This new MRA should decrease computation

time while, possibly, not suffering as much from the poor mixture approximation

performance of the ISE Shotgun MRA.

A second potential topic for future research is using the EM algorithm of Chapter

III to generate a reduced-component Gaussian mixture pdf from a full-component one.

Equation (3.24) could be used as a sample-based approach to generating the reduced-

component target state pdf approximation to the original target state pdf. This topic

would require a radical departure from the MRAs described in this thesis, and, as a

result, is a riskier potential research topic than the first one.

Finally, new approximations could possibly be developed for those true and

pseudo-distance measure functions listed in Section 4.1 which do not have exact closed-
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form solutions. New approximations for the Hellinger Distance and Hellinger Affinity

Measure could be made by using a different series approximation than the truncated

binomial series developed in Subsection 5.2.1.2. Also, as suggested in correspondence

with Williams [39], a closed-form approximation to the Kullback-Leibler Mean Infor-

mation and Kullback-Leibler Divergence could be developed. These pseudo-distance

measure functions are popular in the literature, and an adequate approximation may

even already exist.

171



Bibliography

1. Alspach, Daniel L. “A Gaussian Sum Approach to the Multitarget Identification–
Tracking Problem”. Automatica, 11(3):285–296, May 1975.

2. Alspach, Daniel L. and Harold W. Sorenson. “Nonlinear Bayesian Estimation
Using Gaussian Sum Approximations”. IEEE Transactions on Automatic Control,
AC-17(4):439–448, August 1972.

3. Arfken, George B. and Hans J. Weber. Mathematical Methods for Physicists.
Harcourt Academic Press, New York, NY, fifth edition, 2001.

4. Bar-Shalom, Yaakov and Xiao-Rong Li. Estimation and Tracking: Principles,
Techniques and Software. Artech House, Norwood, MA, 1993.

5. Bar-Shalom, Yaakov and Xiao-Rong Li. Mulitarget-Multisensor Tracking: Prin-
ciples and Techniques. YBS Publishing, Storrs, CT, 1995.

6. Blackman, Samuel S. Multiple-Target Tracking with Radar Applications. Artech
House, Norwood, MA, 1986.

7. Blackman, Samuel S. and Robert Popoli. Design and Analysis of Modern Tracking
Systems. Artech House, Boston, MA, 1999.

8. Brookes, M. “The Matrix Reference Manual”. Online reference material.
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html, 2005.

9. Casella, George and Roger L. Berger. Statistical Inference. Brooks/Cole Publish-
ing Company, Belmont, CA, 1990.

10. Cramér, Harald. Mathematical Methods of Statistics. Princeton University Press,
Princeton, NJ, 1966.

11. Dempster, A.P., N.M. Laird, and D.B. Rubin. “Maximum Likelihood from In-
complete Data via the EM Algorithm”. Journal of the Royal Statistical Society:
Series B, 39(1):1–21, November 1977.

12. Goldberger, Jacob, Shiri Gordon, and Hayit Greenspan. “An Efficient Image
Similarity Measure based on Approximations of KL-Divergence Between Two
Gaussian Mixtures”. This unpublished paper was provided to the author by
Jason Williams in Spring 2005.

13. Grewal, Mohinder S. and Angus P. Andrews. Kalman Filtering: Theory and
Practice. John Wiley & Sons, New York, NY, 2001.

14. Herman, Shawn Michael. A Particle Filtering Approach to Joint Passive Radar
Tracking and Target Classification. Ph.D. dissertation, Graduate College of the
University of Illinois at Urbana-Champaign, Urbana, IL, April 2002.

172

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html


15. Jebara, Tony and Risi Kondor. “Bhattacharyya and Expected Likelihood
Kernels”. URL http://www1.cs.columbia.edu/∼jebara/papers/bhatta.pdf.
Columbia University, New York, NY, Unpublished Paper, 2003.

16. Julier, S.J. and J.K. Uhlmann. “A General Method for Approxi-
mating Nonlinear Transformations of Probability Distributions”. URL
http://citeseer.ist.psu.edu/julier96general.html. Tech. Rep., RRG,
Dept. of Engineering Science, University of Oxford, November 1996.
http://www.robots.ox.ac.uk/ siju/work/publications/letter size/Unscented.zip.

17. Kullback, Solomon. Information Theory and Statistics. John Wiley & Sons, New
York, NY, 1959.

18. Lainiotis, D.G. and S.K. Park. “On Joint Detection, Estimation and System
Identification: Discrete Data Case”. International Journal of Control, 17(3):609–
633, March 1973.

19. Lathi, B. P. Modern Digital and Analog Communication Systems. Oxford Uni-
versity Press, New York, NY, third edition, 1998.

20. Leon-Garcia, Alberto. Probability and Random Processes for Electrical Engineer-
ing. Addison-Wesley, Reading, MA, second edition, 1994.

21. Maybeck, Peter S. Stochastic Models, Estimation, and Control, volume 1.
Navtech, Arlington, VA, 1994.

22. Maybeck, Peter S. Stochastic Models, Estimation, and Control, volume 2.
Navtech, Arlington, VA, 1994.

23. Maybeck, Peter S. “Multiple Model Adaptive Estimation”, 2005. Lecture Notes
for Course EENG768. Air Force Institute of Technology, Wright-Patterson Air
Force Base, OH.

24. Pollard, David. “Chapter 3: Distances and Affinities Between Measures”.
URL http://www.stat.yale.edu/∼pollard/Asymptopia/. Unpublished Chap-
ter Excerpt from Pollard’s Draft Book, 17 October 2000.

25. Rao, C. Radhakrishna. Linear Statistical Inference and Its Applications. John
Wiley & Sons, New York, NY, second edition, 1973.

26. Redner, Richard A. and Homer F. Walker. “Mixture Densities, Maximum Like-
lihood and the EM Algorithm”. SIAM Review, 26(2):195–239, April 1984.

27. Reid, Donald B. “An Algorithm for Tracking Multiple Targets”. IEEE Transac-
tions on Automatic Control, AC-24(6):843–854, December 1979.

28. Ren, Cuirong, Dongchu Sun, and Dipak K. Dey. “Bayesian and Fequentist Es-
timation and Prediction for Exponential Distributions”. Journal of Statistical
Planning and Inference, January 2005.

29. Ross, Sheldon M. Introduction to Probability Models. Academic Press, New York,
NY, eighth edition, 2003.

173

http://www1.cs.columbia.edu/~jebara/papers/bhatta.pdf
http://citeseer.ist.psu.edu/julier96general.html
http://www.stat.yale.edu/~pollard/Asymptopia/


30. Salmond, David J. “Mixture Reduction Algorithms for Target Tracking”. IEE
Colloquium on State Estimation in Aerospace and Tracking Applications, 7/1–7/4.
IEE Publishing, London, UK, December 1989.

31. Salmond, David J. Tracking in Uncertain Environments. Technical Memorandum
AW 121, Royal Aerospace Establishment, Farnborough, UK, September 1989.
DTIC Number ADA215866. Taken from a D. Phil. thesis of the University of
Sussex.

32. Singer, R.A., R.G. Sea, and K.B. Housewright. “Derivation and Evaluation of
Improved Tracking Filters for use in Dense Multi-target Environments”. IEEE
Transactions on Information Theory, IT-20(4):423–832, July 1974.

33. Smith, Brian D. Multiple Model Adaptive Estimator Target Tracker for Maneu-
vering Targets in Clutter. Master’s thesis, Graduate School of Engineering, Air
Force Institute of Technology (AETC), Wright-Patterson AFB OH, March 2005.
AFIT/GE/ENG/05-18.

34. Strang, Gilbert. Linear Algebra and its Applications. Brooks/Cole Publishing
Company, Belmont, CA, third edition, 1988.

35. Therrien, Charles W. Discrete Random Signals and Statistical Signal Processing.
Prentice Hall, Upper Saddle River, NJ, 1992.

36. Van Trees, Harry L. Detection, Estimation, and Modulation Theory, volume 1.
John Wiley and Sons, Inc., New York, NY, 1968.

37. Weisstein, Eric W. “Hilbert Space”. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HilbertSpace.html.

38. Willams, Jason L. Gaussian Mixture Reduction for Tracking Multiple Maneu-
vering Targets in Clutter. Master’s thesis, Graduate School of Engineering, Air
Force Institute of Technology (AETC), Wright-Patterson AFB OH, March 2003.
AFIT/GE/ENG/03-19.

39. Williams, Jason L. SPIE Annual International Defense and Security Symposium,
Orlando, Florida. Correspondence. April 2004.

40. Williams, Jason L. and Peter S. Maybeck. “Cost-Function-Based Gaussian Mix-
ture Reduction for Target Tracking”. Proceedings of the Sixth International Con-
ference of Information Fusion, 1047–1054, Cairns, Australia, July 2003.

41. Williams, Jason L. and Peter S. Maybeck. “Cost-Function-Based Hypothesis
Control Techniques for Multiple Hypothesis Tracking”. Proceedings of the SPIE
Annual International Defense and Security Symposium, 5428:167–179, Orlando,
Florida, April 2004.

42. Zacks, Shelemyahu. The Theory of Statistical Inference. John Wiley & Sons, New
York, NY, 1971.

174

http://mathworld.wolfram.com/HilbertSpace.html


REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–12–2005 Master’s Thesis Sep 2004 — Nov 2005

Gaussian Mixture Reduction for
Bayesian Target Tracking in Clutter

David J. Petrucci, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
AFIT/EN
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/06-01

Air Force Office of Scientific Research
Maj Todd E. Combs - (703) 696-9548
AFOSR/NM
Suite 325, Room 3112
875 Randolph Street
Arlington, Virginia 22203-1768

Approval for public release; distribution is unlimited.

The Bayesian solution for tracking a target in clutter results naturally in a target state Gaussian mixture probability density function (pdf)
which is a sum of weighted Gaussian pdfs, or mixture components. As new tracking measurements are received, the number of mixture
components increases without bound, and eventually a reduced-component approximation of the original Gaussian mixture pdf is necessary
to evaluate the target state pdf efficiently while maintaining good tracking performance. Many approximation methods exist, but these
methods are either ad hoc or use rather crude approximation techniques. Recent studies have shown that a measure-function-based mixture
reduction algorithm (MRA) may be used to generate a high-quality reduced-component approximation to the original target state Gaussian
mixture pdf.
To date, the Integral Square Error (ISE) cost-function-based MRA has been shown to provide better tracking performance than any
previously published Bayesian tracking in heavy clutter algorithm. Research conducted for this thesis has led to the development of a new
measure function, the Correlation Measure (CM), which gauges the similarity between a full- and reduced-component Gaussian mixture pdf.
This new measure function is implemented in an MRA and tested in a simulated scenario of a single target in heavy clutter. Results
indicate that the CM MRA provides slightly better performance than the ISE cost-function-based MRA, but only by a small margin.

Target Tracking, Multiple Hypothesis Tracking, Gaussian mixture reduction

U U U UU 189

Dr. Peter S. Maybeck

(937) 255–3636, ext 4581


	Gaussian Mixture Reduction for Bayesian Target Tracking in Clutter
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Notation
	Introduction
	Research Goal
	Organization

	The Bayesian Approach to Target Tracking
	Target Kinematics Models
	Recursive Bayesian Filtering
	Linear Recursive Bayesian Filtering
	Nonlinear Recursive Bayesian Filtering

	Multivariate Gaussian Mixtures
	Bayesian Approaches for Kinematics Model Parameter Uncertainty
	Non-Switching Models
	Switching Models
	Multiple Model Algorithms Summary

	A Bayesian Approach for Measurement Origin Uncertainty
	A Bayesian Solution for Measurement Origin Uncertainty
	Tracking with Measurement Origin Uncertainty Summary

	Summary

	Estimating Probability Density Functions
	Maximum Likelihood Estimation
	Asymptotic Properties of MLE
	MLE Measure Function

	Expectation Maximization
	Theoretical Derivation of the EM Algorithm
	EM Algorithm Example
	General Form of the EM Algorithm

	Multivariate Gaussian Mixture Estimation
	MLE of a Multivariate Gaussian Mixture
	EM Algorithm for a Multivariate Gaussian Mixture
	Asymptotic Representation of the EM Algorithm

	Summary

	Approximating Gaussian Mixtures & Mixture Reduction Algorithms
	Measure Functions for Gaussian Mixture Approximation
	True Distance Measures
	Pseudo-Distance Measures

	Greedy Algorithms for the Assignment Problem
	Salmond's Joining & Clustering Algorithms
	Williams' ISE Cost-Function-Based Algorithm
	Summary

	Gaussian Mixture Reduction Algorithm Development & Analysis
	Measure Function & Assignment Algorithm Selection
	Mixture Reduction Algorithm Development
	Closed-Form Solutions of Select Measure Functions
	Proposing Mixture Reduction Actions
	Mating Measure Functions with Assignment Algorithms

	Mixture Reduction Algorithm Analysis
	Impact of Mixture Weight Re-Normalization
	Mixture Reduction Algorithm Test Results

	Summary

	Simulation Description & Results
	Description
	Results
	Summary

	Conclusions & Recommendations
	Restatement of the Research Goal
	Summary of Results
	Significant Contributions of Research
	Recommendations for Future Research

	Bibliography

