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Abstract

This thesis addresses the improvement of data transmission performance in a

challenged network. It is well known that the popular Transmission Control Protocol

degrades in environments where one or more of the links along the route is intermit-

tently available. To avoid this degradation, this thesis proposes placing at least one

node along the path of transmission to buffer and retransmit as needed to overcome

the intermittent link. In the four-node, three-link testbed under particular conditions,

file transmission time was reduced 20 fold in the case of an intermittent second link

when the second node strategically buffers for retransmission opportunity.
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Mitigating TCP degradation over intermittent

link failures using intermediate buffers

I. Introduction

This chapter introduces the work and places it in the context of a larger mil-

itary construct referred to as Network Centric Operations. In Network Centric Op-

erations, data must be relayed throughout numerous mobile communication nodes.

By networking the various nodes together exchanges significantly more information,

in real-time and near real-time than is currently possible. The focus of this thesis is

improvement of reliable transmissions over a channel that is intermittently available.

Network Centric Operations is a vision of people, organizations, and tools work-

ing together where quality communication is demanded by the users and provided by

the network systems. Users demand rapid and reliable communication because dis-

tributed information is needed to make real time decisions. By providing reliable and

rapid communication, the system facilitates an increase in the rate of decision making,

thereby creating or maintaining an advantage over competitors. In these operations,

information flows in all organizational directions: up, down, across, and broadcast.

Decision loops exist where information is repeatedly gathered, processed, and dis-

seminated. More and more decisions are made in less and less time. Operations of

all kinds are increasingly becoming network centric in order to be more efficient and

more effective. Government, military, private organizations, and even individuals, are

actively and passively becoming more network centric. To improve performance, we

need more information, causing an increase in information demand. The response

to the demand is to have more information. This ironically increases awareness of

how additional information can assist us, causing yet another increase in demand for

information. As people, businesses, and all levels of organization become more reliant

on the flow of information, their operations begin to center around the network; hence

we refer to this as network centric operations.
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To be successful in this exchange, technologies must work together. Machines

must be capable of communicating with each other over various protocols. Working

together, communication hardware, software, protocols, and users interact to deliver

information across space and time. Although directly connected wire networks offer

the greatest reliability and bandwidth, the desire for mobility has produced a growing

variety of physical media such as wireless LANs, cellular networks, satellite, and even

free-space optical links. A single data packet may traverse all of these forms of media,

as it runs from a source to a destination. Additionally, the data may be translated

from one format to another as it traverses the network. Understanding the interactions

between the communication protocols, the link characteristics, and attributes of these

various technologies is essential to achieving reliable performance across a range of

operating environments and deployment scenarios.

In addition to the requisite ability to interoperate, military tools must work

whenever and wherever we need them. These tools are used in demanding locations

and environments for very good reasons. These difficult places and conditions are

found in post-disaster rescue and recovery operations, on the ground in a battlefield,

or in the harsh climate of deep seas or outer space. Information needs to flow into, out

of, and within the harsh area. To assure connectivity, systems must employ various

aspects of diversity including spatial diversity, frequency diversity, temporal diversity,

and equipment diversity.

The term Hybrid Communications refers to the utilization of diverse forms of

communication. Multiple forms of communication may be used to meet the require-

ments and goals of the communication and to overcome any environmental conditions.

Although a diversity of media may be able to meet requirements better than homoge-

neous media, the existence of diversity necessitates decision making. Decision making

requires suitable algorithms and processing power; i.e. with only one form of commu-

nication media, there is no decision regarding the choice of media.
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The requirements and goals of the communication may limit choices in the me-

dia, hardware, software, and protocols. For example the requirement that the message

not be compromised requires encryption software. As more demands are placed onto

the communication the fewer options are available. Similarly the conditions of the

network and the node constrain options.

Further consideration is given to the network at the macro and micro level.

Hybrid Communications enhances Network Centric Operations by incorporating re-

quirements and conditions at both global and local levels. Global requirements include

but are not limited to such things as network connectivity, stability, security, priority,

cost, and utilization. Global conditions include traffic demand, backbone topology

and link state, policy changes, or other large scale shifts. Local requirements involve

things like mobility, or lack there of, hardware, power consumption, and man power.

Local conditions such as weather, presence of adversaries, injuries, and malfunctions

impact communication. Table 1.1 shows the matrix.

Investigating and testing the interaction between global and local requirements

and conditions involves models, simulations, and testbeds. In the process of this the-

sis a testbed was implemented which provides a means to integrate various forms of

wireless and wired communication. The testbed network provides physical nodes to

Table 1.1: This is the matrix of example require-
ments and conditions that exist at the global and local
scope of the network.

Local Global
Requirements mobility, hardware, power

consumption, man power
network connectivity, stabil-
ity, security, priority, cost,
utilization

Conditions weather, presence of adver-
saries, injuries, malfunctions

traffic demand, backbone
topology and link state, pol-
icy changes

3



transmit data across the network given certain requirements. The network addition-

ally provides a mechanism to alter or emulate changes in environmental conditions.

Successful communication is defined as the successful transmission of data from

a specific source to a specific destination. The source and the destination could be in

direct communication however, the more likely scenario is that one or more intermedi-

ate nodes relay transmissions between them (multi-hop). In the latter case, the point

to point exchange of data between nodes along the path must succeed at each step

for successful end to end communication. In a wireless communication media, the en-

vironmental conditions affect how well the point to point transmissions work. Hybrid

Communications provides strategic and tactical mechanisms to facilitate overcoming

these link level challenges.

For our purposes, the challenged link between nodes can be modeled as a mo-

mentary status of up or down, regardless of the cause. We refer to the momentary

disruption of communication between two nodes as link wink. Link wink may be the

result of any of a number of possibilities. An aircraft used as a hub of communica-

tion may come in and out of range of ground based nodes. A central node using a

directional communication device may service many nodes by physically moving the

transceiver to point from one node to another. One node will experience link wink as

the transceiver on the central node temporarily services another node. Interference

or jamming may result in link wink. When a link is unavailable as a result of con-

gestion and/or starvation, we refer to this as logical link wink. Although not a result

of physical factors, the loss of the link due to congestion or starvation is semantically

identical to the loss of the link due to interference; with the possible exception that

the duration of the wink or its pattern of occurrence may be different. In general,

link wink represents the time in which data packets do not successfully move across

the link.

The cause of the link wink may be predictable. For example, the mobility pat-

terns of nodes may be known. If the wink is predictable or periodic, we can exploit
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the moments in which the link is available. If the wink is unpredictable, we must

employ methods which produce good overall performance, without leading to system

instability. Depending on these causes, their effects, and the requirements of the

communication, a variety of options exist to deal with the situation. Traffic can be

routed over other links. A different form of communication can be employed. The

communication can be canceled entirely. Information could be sent to the source,

deferring the decision to the source. An alternative route can be selected; simply by-

passing the troublesome link. Of these many options, this thesis focuses on aggressive

retransmission across the troublesome link.

Most reliable end-to-end communication today uses the well known Transport

Control Protocol (TCP) over the Internet Protocol (IP). TCP is a reliable, in order

delivery protocol. Using the presence or absence of acknowledgements as a feed-

back mechanism, it is optimized for a wired, well connected environment. Unfortu-

nately, while its reliability mechanisms are desirable, its performance in unreliable

environments is well known to be poor [1]. Imagine a large scale, ad hoc, wireless

environment, such as a disaster area or a battlefield, employing a variety of wireless

protocols, both directional and omni-directional. This dynamic environment does not

match the assumptions of TCP. TCP assumes a high level of connectivity in its end

to end transmission. Lost packets are assumed to be caused by congestion, to which

TCP responds by reducing transmission attempts. While congestion is the most com-

mon form of packet loss in a wired environment, it is not in the wireless environment

where a large percentage of failures are a result of bit errors over a harsh channel.

The use of TCP in the wireless environment represents an incongruent matching of

assumptions to conditions.

The way TCP responds to lost packets is called congestion control. The most

congestion control assumes that loss is a sign of excessive traffic at a router along

the path. To prevent congestion, this approach reacts by sending fewer packets less

frequently. Naturally the throughput for the particular stream employing TCP drops.

Presumably, other TCP streams are also affected by the packet loss, and hence they

5



too reduce transmissions, causing appropriate reductions in the congestion at the

router. Various other algorithms have been developed to react differently, given dif-

ferent assumptions about packet loss. Some assume a wireless environment such that

packet loss is not necessarily congestion. Others assume a more dedicated, reserved

path such that congestion is unlikely. In all cases the congestion control must pro-

vide for back off in the face of congestion. This fairness keeps the network available.

This fairness requirement causes TCP to under perform when packets are lost and

congestion is not present.

This thesis shows that if the loss of packets caused by link wink is addressed

near to the point of trouble, and not at the transmission source, overall performance

does not degrade. If along the path, routers are equipped with additional process-

ing and storage resources, the point of trouble is addressed locally. The additional

resources allow for the passive buffering of the TCP flows. Once trouble is detected,

i.e. the local node detects the lack of acknowledgements, the buffer is immediately

retransmitted (as opposed to waiting for the source to detect the trouble and be-

gin retransmissions). Throughput is near optimal (fully utilizing the link when it is

available) because the intermediate buffer transmits as soon as the link is available.

Traditional TCP is necessarily delayed as the source is expecting acknowledgments

later, and the retransmissions require time to arrive at the intermediate buffer, at

which point the link may have winked out again. TCPs mechanisms are forced to

hope that the retransmission coincides with the links availability.

Further optimization is accomplished by notifying the source not to retrans-

mit any of the packets that have been buffered, thereby freeing the upstream links

to transmit other data. Three related factors contribute. First, packets that have

traveled all the way to the buffering router are not needlessly consuming network re-

sources by being retransmitted. Second, the source has the opportunity to send fresh

packets. Third, congestion avoidance is not invoked at the source.

6



In summary, with an appropriate matching of assumptions, TCP can be made

to perform much better in the environment of wireless network centric operations.

We believe that strategic buffering, as we have defined it, holds great promise to serve

as a mediating interface between incongruent assumptions and operating conditions.

The remainder of this thesis flows as follows. Chapter Two outlines related work and

background material necessary to properly place this work in context. Chapter Three

presents our approach to implementing strategic buffering on challenged links and a

mathematical model. Chapter Four presents analysis of our expected results compared

with the actual results obtained on a physical testbed. Chapter Five concludes the

document with a summary of results and recommendations for further research and

development.
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II. Background

2.1 Overview

The required knowledge to appreciate this thesis is an understanding of networks

and their protocols, the Transmission Control Protocol (TCP), TCP’s congestion

control mechanisms, and networking testbeds. Additionally related items include

delay tolerant networks and ad hoc wireless networks. This chapter first covers TCP

and two specific papers most closely related to this thesis. This is followed by coverage

of testbeds, network storage, TCP related issues, and finally delay tolerance.

This thesis focuses on data flow retransmission strategies in a challenged envi-

ronment. In general the strategy provides a mechanism for a router somewhere in

a data flow to retransmit packets in response to an unreliable link in the route, as

opposed to the typical TCP approach of relying on the source node to retransmit

packets. In order to accomplish this, an intermediate router necessarily ”listens”to

the traffic corresponding to a given TCP stream and reacts accordingly. The listening

router under some conditions assumes the retransmission of the flow and suppresses

the retransmission of the source. Before assuming this responsibility, which we re-

fer to as taking custody, the router has been copying the data packets to a buffer in

anticipation of possible retransmission. As acknowledgments return for these data

packets, the opportunistically copied packets are removed from the buffer. The buffer

approximates the packets in flight. This buffer is retransmitted repeatedly in bulk to

overcome the troublesome link. With this approach in mind, we now address some

fundamental principles and protocols necessary to appreciate its application.

2.2 Transmission Control Protocol (TCP)

TCP is the established mechanism for ensuring reliable, in order delivery of a

stream of data packets. In general, data packets are sent from a particular source to

a particular destination. The destination responds with an acknowledgment packet

for each data packet is successfully receives. As acknowledgments are received by the

source more data is sent. TCP attempts to achieve fairness by reacting to down-
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stream congestion in two ways: sending less data and sending it less frequently. A

TCP source determines the existence of congestion implicitly through the absence

of acknowledgment packets. Essential to this thesis is TCP’s inability to distinguish

between packet loss due to congestion and packet loss due to other reasons such as a

lossy link. While all of the intricacies of TCP are not discussed here, extensive detail

is found in TCP/IP Illustrated by Wright and Stevens [30], and many other books,

conference proceedings, and archival publications.

2.2.1 Congestion and Backoff. TCP uses acknowledgments, retransmission,

window size, and timers, to provide reliable, in order transmission with some fair-

ness (flow control). Because of its goals, assumptions, and trade-offs TCP does not

perform well in a topologically challenged environment. With no ability to distin-

guish between congestion and other losses, TCP assumes unacknowledged packets are

dropped due to congestion somewhere between the source and the destination. As

TCP is presumably operating on many streams, delivering data from many different

source-destination pairs, the collective result is that congestion will be relieved if all

TCP flows coming into the congestion area reduce their respective load. The source

reacts by incrementally shrinking the transmission window and incrementally waiting

longer between retransmissions. In contrast, if packets are lost due to a link wink-

ing in and out, the rate of transmission should not slow down because the winking

is neither caused by nor cured with a slower data rate. Overall throughput suffers

significantly by reacting to lost packets in this fashion.

2.2.2 Window Size. Fundamental to TCP’s performance is window size.

The window size is the number of packets that TCP will send before waiting for

an acknowledgment (ACK). TCP endeavors to have the optimal number of packets

in flight such that the pipe is full of data packets in one direction and full of ac-

knowledgments in the other. As an acknowledgment is received by the source the

transmission window is increased by one (until some upper limit is reached). If an

acknowledgment is not received within a calculated timeout based on estimated round
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trip time, the size of the transmission window is cut in half. This is referred to as

additive increase, multiplicative decrease [30] and leads to a saw tooth effect [30] as

the window slowly increases to a point only to immediately and dramatically drop.

In a challenged environment, the window size never achieves a suitable size and thus

limits performance.

2.2.3 Retransmission. Retransmission is indisputably necessary for reliable

transmission. TCP will therefore retransmit packets for which it does not receive

explicit acknowledgment of reception (ACK) from the destination, within a suitable

time period (referred to as back off, which is itself an adaptable parameter). Presum-

ably, as packets are retransmitted, they will eventually reach the destination and be

acknowledged. If retransmissions continue to go unacknowledged, however, the time

between retransmissions attempts (back off) climbs; doubling every timeout up to a

maximum of 64 seconds. Upon retransmission, TCP retransmits the entire window of

unacknowledged packets. TCP also contains a gross timeout of just over nine minutes

in which retransmission attempts cease entirely; although this is generally operating

system and implementation specific. In a challenged environment, retransmission is

not coordinated with the links being up. Because TCP is an end-to-end strategy, TCP

has no information on the status of the links between the source and the destination.

TCP transmits on its clock, not when the links are up. In a challenged environment

performance suffers dramatically.

2.2.4 Fast Retransmit. In a reliable link, packets are occasionally corrupted,

but this typically occurs in an individual packet as opposed to affecting the entire

stream. In an attempt to avoid disruption due to a single packet loss, TCP includes

a mechanism to detect the loss of a single or very few packets. Sequence numbers

in TCP are incremented by the number of bytes sent rather than by the number of

packets sent. Under normal circumstances, the receiver acknowledges the reception

of a packet by sending an ACK with an acknowledgment number equal to the sent

packet’s sequence number plus its payload’s length in bytes. This represents the next
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sequence number the destination expects from the source. For example, packet 14

shows up and has 45 bytes in it. This means the next sequence number is 59. The

ACK field in a return packet from the destination contains the number 59, indicating

it got packet number 14 (and its 45 bytes), and expects packet 59 to be the next one.

Fast Retransmit begins when the destination receives a packet out of order,

e.g., the next expected packet did not show up but a subsequent packet did. For

every packet received after the missing packet, an ACK is sent indicating the missing

packet as the next expected packet. In the example, if packet 59 did not show up but

several packets after it did, the receiver will send an ACK for 59 (the ACK for packet

14). This is interpreted by the sender to mean that packets are still getting through,

but a particular packet (number 59) is missing. The sender, upon getting three of

these duplicate acknowledgments, instantly retransmits the missing packet without

decreasing the window size. This avoids paying the timeout penalty of waiting for 59

to become unacknowledged. The penalty instead is that the complexity of TCP has

increased.

2.2.5 Send Window. So far the discussion has been about TCP’s handling

of flow control. In fact there are two transmission windows in TCP. The one discussed

previously is technically the congestion window. In order to prevent the overflow of

a receiver’s buffer, the receiver specifies a requested window size in the packets it

transmits back to the sender. This is the send window. This window tells the sender

just how much the receiver can actually handle. This is limited to the buffer size the

receiver wants to implement.

To prevent wasteful transmission, the sender will not have more than this win-

dow size in unacknowledged packets out at a given time. The receiver might need to

keep this window small if it is constrained by resource limitations or stresses. This

window is the largest amount of data the receiver will hold onto while waiting for a

continuous set of bytes to deliver up the stack to the application.
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TCP guarantees in order delivery. This means if a previous packet is missing the

data it has received will not be passed up to the application out of order. The send

window is generally fixed during the transmission. The maximum number of packets

in flight is the minimum of the transmitter’s congestion window and the transmitter’s

current estimate of the receivers send window.

2.2.6 Congestion Control Algorithms. The classic TCP congestion control

algorithm was described above. Over the last several years, multiple variations of

the TCP congestion control have been studied, and even adapted. Each of these

varying flavors of congestion control serves a specific purpose. For example, since

the maturation of TCP, long distance, high speed transmission lines such as 1 Gb

and 10 Gb have become common place; creating a huge delay bandwidth product

which results in TCP becoming a bottleneck to improved performance over such links.

Additionally wireless communication has become ubiquitous. In both environments,

TCP’s classic congestion control algorithms under perform.

To assist in the development of other TCP congestion control algorithms, Linux

has included a simplified mechanism for creating and deploying new congestion control

algorithms. This simplified mechanism in Linux is reviewed in McDonald and Nelson

[23]. These changes are recent additions to Linux and significant documentation

does not exist. In essence, at critical moments in handling TCP retransmissions,

Linux provides callback function hooks which allow a researcher control of the various

aspects of TCP congestion control: send window size, congestion window size, slow

start threshold, etc. It is contemplated that the various strategies will affect the

performance of TCP in a challenged environment.

The Linux kernel v2.6.14.7 includes several congestion control algorithms. They

are listed below. These descriptions come directly from McDonald and Nelson [23].

Reno is the implementation of Van Jacobsons research [11] and was the default

congestion control scheme until recently.
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Binary Increase Congestion Control (BIC) [31] aims to address issues

on high performance networks, particularly around RTT unfairness, and uses

a combination of additive increase and binary search to alter the size of the

congestion window.

Vegas [4] is based on Reno and tries to track the sending rate through looking

at variances to the RTT along with other enhancements.

Westwood [22] is an implementation that estimates the available bandwidth

and is claimed to be suited to wireless use or other networks where loss may

occur which does not mean congestion.

TCP-Hybla [5] is a congestion control mechanism that works with links such as

satellite which have high RTT but also high bandwidth as some other congestion

control mechanisms favour low RTT flows.

H-TCP [21], Highspeed TCP [9], and Scalable TCP [15] all aim to improve

congestion control on high speed networks.

2.2.7 Challenges. Al Hanbali et. al. [10] is a survey of the issues, perfor-

mance, and solutions in TCP for mobile ad hoc networks. Five categories of issues

are described: high bit error rates, path asymmetry, network partitions, route fail-

ures, and power constraints. The bit errors come primarily from signal attenuation,

Doppler shifts of mobile units, multi-path fading, and signal interference. Path asym-

metry comes from bandwidth asymmetry, loss rate asymmetry, and route asymmetry.

Network partitioning is primarily a problem caused by mobility and/or power control

problems. Routing failures are again caused by node mobility; i.e., even though the

network is connected the route may fail due to the changing topology. From the

perspective of performance, simulations demonstrate that as the number of nodes

increase, and thus the number of hops increase, the performance of TCP decreases

rapidly.
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In Al Hanbali et. al. [10], the proposed solutions to TCP’s difficulties are cate-

gorized into one of two types: Cross Layer and Layered. The Cross Layer proposals

are further broken into three categories: TCP and network cross layer, TCP and

physical cross layer, and network and physical cross layer. In the TCP and network

cross layer, the solutions generally propose suspending the TCP session if there is a

route failure. Each solution uses additional control packets to distinguish between

congestion failure and route failure. TCP-BuS suggests buffering the packets in the

intermediate nodes while the route is failed. Lastly, Split TCP [18] uses proxies along

the route to provide point to point ACKs in addition to end to end acknowledgments.

The network and physical cross layer focuses on routing and signal strength [10]. The

Preemptive routing in ad hoc networks [10] attempts to predict that a route will

fail by looking at the signal power of the packet receipt notification. If the value is

below a threshold and new route will be discovered and hopefully used before the

original route fails. Another solution again predicts trouble by checking the power of

the next hop’s signal, but in this solution a notification is sent to the sender so that

transmission and stop and a new route discovered (Proactive Link Management [10]).

Additionally though, the ”ailing” node increases its transmission power (Reactive

Link Management).

In Al Hanbali et. al. [10], the Layered proposals are solutions limited to a

single layer of the stack, either the TCP layer or the link layer. In the TCP layer,

one technique suggests not using the exponential back off for route failures. Another

assumes that out of order events demonstrate a route failure and thus congestion

control can be disabled for a specific time period. Another demonstrates that setting

the TCP window size to four packets and using a delayed ACK and cumulatively

ACKing every other packet increases performance 15%-32% [10]. This reduces the

number of ACKs in flight and makes TCP increase the window size more slowly [10].

Finally, another uses a dynamic delayed ACK that increases as the transmission

continues (successfully) over time [10]. The link layer approaches primarily rely on
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using some form of Random Early Discard at the link layer to reduce contention or

increase fairness.

Since Hybrid Communication Testbed is wireless, it faces the same issues facing

TCP in an ad hoc wireless network. Some of these issues can be alleviated using

directional communication. However, TCP still presents a significant challenge. Al-

though it contemplates a Cross Layer solution by suggesting information from the

other layers could be used to make good buffering decisions, this thesis is specifically

a Layered solution.

2.3 TCP Bulk Repeat

The bulk retransmission of a TCP buffer is introduced in TCP Bulk Repeat [32].

This work examines the performance of retransmitting an entire buffer in response to

packet loss. Yang et. al. [32] assumes a difficult environment where the probability

of packet loss is as high as 20-30%. Three observations in TCP are discussed. First,

multiple losses occur in a transmission window. Second, when the error rate is high

there are non-optimal back offs in the Retransmission Timeout. And third, in the

high error situation the slow start threshold and the congestion window are much

smaller than the optimal value. This retransmission occurs in response to a lost

packet indicated by repeated acknowledgments. Instead of simply sending the single

lost packet, the entire window of packets, up to some size, is resent.

This mechanism is similar to this thesis in that it retransmits a buffer of packets

in response to loss. As discussed later in Chapter Three, this thesis faces similar issues

as pointed out in TCP Bulk Repeat and include determining the amount of the buffer

to retransmit and the amount of time to wait between retransmissions. Too much

data, too quickly has the potential to overwhelm the channel. Too little may not

overcome the channel’s difficulties.

The TCP Bulk Repeat differs from this thesis in two related ways. Foremost

their implementation exists in the source of the transmitted data. This thesis places
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the retransmission in an intermediate router much closer to the destination and to the

difficult link. Since the logic of the retransmission is in the source, TCP Bulk Repeat

uses information in the source such as windows sizes, acknowledgment receipt, and

other internal TCP state information. Because this thesis provides retransmission

downstream, the TCP state information in the source is not fully available and is

only approximated in the router.

2.4 Snoop TCP

Snoop TCP [2] introduces the snoop agent. This agent resides in a base station

(access point) for a wireless network. The agent monitors TCP packets as they pass

through the station in both directions. From this monitoring a cache of unacknowl-

edged packets are stored in the base station. Repeated, duplicate acknowledgments

indicate packet loss. The snoop agent transmits the missing packet from its cache,

if available, and suppresses the duplicate acknowledgments from reaching the source.

This prevents the source from invoking congestion control and fast retransmission.

This solution is similar to this thesis in that it has an agent located in an inter-

mediate node that retransmits packets. It is further similar by keeping per-connection

state and only keeping unacknowledged packets. It differs in that it only reacts by

sending the indicated missing packets. This thesis sends all of the unacknowledged

packets when it is time to retransmit.

2.5 Hybrid Communications Laboratory

This thesis is part of a larger effort called Hybrid Communications, which ad-

dresses the use of multiple communication media interacting in harmony for an entire

network. To study these issues, we are developing a hybrid communications testbed

capability, which will allow various forms of wireless, free space optical, and wired

communications interfaces to interact. While this thesis’ effort focused on the effects

of link wink, which were simulated in a wired medium, much work was accomplished
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for the purpose of enabling future research in hybrid communications. That research

is out of scope in this thesis but is mentioned for completion.

2.6 Testbeds

This thesis is the first research project utilizing the Hybrid Communication

Testbed. During the course of this thesis the testbed was initially researched, proto-

typed, and developed. This section discusses the several wireless testbeds previously

documented. Their purposes and implementations are discussed by comparing and

contrasting them to the Hybrid Communication Testbed.

Wireless testbeds exist in a variety of settings. These testbeds test a variety

of topics including protocol development, power reduction, transmission interference,

and effects of mobility. The primary goal of wireless testbeds is to verify the findings

suggested by theory and demonstrated in simulations. Testbeds validate (or inval-

idate) theory and simulation by injecting real asynchronicity, real interference, real

equipment, and real spatial restrictions. A few of these testbeds are covered here and

are compared to the Hybrid Communication testbed.

At the CSRC at NIST (the Computer Security Resource Center at National

Institute of Standards and Technology), a wireless testbed has been created for their

MANET and Sensor Network Security Project. Their objectives are to test node

mobility, facilitate configuration management, and to recreate an environment [14].

Their software tools are written in C and Linux shell scripts. Logical networks are

created and manipulated by configuring the nodes’ Linux IP tables. Additionally,

mobility is emulated by varying power levels with a software tool. Each node (Linux

Intrinsync CerfCubes) communicates with other nodes using 802.11 wireless connec-

tions. The testbed is administered using a central server that communicates with

each node via a wired Ethernet connection.

The Hybrid Communication Testbed similarly utilizes a centralized server to

administer the network and its topology of wireless nodes. The Hybrid Communi-
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cations Testbed however utilizes more wireless platforms that 802.11. The Hybrid

Communication Testbed is not currently concerned about node mobility, although it

is a future consideration.

In Nordstrom et. al. [24] the APE (Ad hoc Protocol Evaluation) testbed presents

a methodology for an analyzing the stochastic issues innate to wireless networks.

Their goals are to reduce the number of stochastic factors and the variance for these

factors. This testbed utilizes Linux laptops using 802.11. Software modules include

clock synchronization, a routing daemon, a traffic generator, a scenario interpreter,

and a traffic recorder. Data gathered at nodes focuses on connections to other nodes

and the strength of each connection over time. Two metrics, Link Change Metric and

Virtual Mobility Metric, provide a framework for assessing stochastic variance. Link

Change counts connection establishment and loss between two nodes over time. The

Virtual Mobility tracks the signal strength of between two nodes overtime. These

metrics provide a basis to assert that two experimental trials had statistically similar

topologies over the course of the experiment. As nodes move throughout the testbed,

the strength and number of links change over time.

The Hybrid Communication Testbed again utilizes a variety of wireless commu-

nication platforms, not just 802.11. Similarly though, as the Hybrid Communication

Testbed is advanced it will intentionally vary topology. The changing topology de-

rives from intentionally changing a directional link or using a different communication

medium. Similar metrics, like Link Change and Virtual Mobility, and others are input

into route and topology calculation of the central server. This functionality will exist

in the future and is not used in this thesis; the links remain static.

Multi-radio nodes provide some unique issues in testbed and real world environ-

ments. In Robinson et. al. [26], multi-hop, ad hoc wireless networks are investigated

specifically using nodes with multiple 802.11 radios such that one receives and one

transmits. Each node is a Linux PC workstation using PCI bus NICs. Instead of

using a backbone of wireless access points wired together, the purpose of the testbed
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is to emulate a multi-hop wireless backbone. In Robinson et. al. [26], the investiga-

tion demonstrates simultaneous activation of multiple radios in the same node leads

to degradation due to crosstalk, leakage, and inadequate antenna separation. The

experimentation shows that separating the antennas greatly increases performance.

Specifically, their routers can not have more than two radios and require a minimum

antenna separation of 35db.

The Hybrid Communication Testbed provides a wireless backbone with specific

focus on directional heterogeneous platforms. Robinson et. al [26] shows the difficulty

of only using 802.11 omni-directional technology in a backbone architecture.

TAPs, Transit Access Points, is described in [13] and has a home at Rice Univer-

sity. TAPs provide a multi-hop wireless backbone for broadband networking. A TAP

is stationary 802.11 access point. Each TAP communicates with other TAPs with

directional 802.11, forming the backbone. A limited number of these TAPs provide

gateways to the outside, wired world. In the paper, ten premises of the TAPs ar-

chitecture are presented focusing on cost-efficiency, performance, scalability, fairness,

and the need for new routing and scheduling protocols.

The Hybrid Communication Testbed is very similar to the TAPs architecture.

The Hybrid Communication Testbed can have multiple links between each node in

the backbone (potentially of different wireless platforms). These multiple links can

be used for different types of transmissions or for redundancy or for bandwidth ag-

gregation.

At Microsoft Research, the Mesh Connectivity Layer (MCL) [7] has been created

to exist between layer 2 and 3 of the OSI model. This software creates a virtual

network card that sits on top of other network cards in a single PC. The mesh network

is an overlay network lying on top of the Ethernet data link layer. Each node is

assigned a virtual MAC address. By default Link Quality Source Routing (LQSR),

derived from Dynamic Source Routing (DSR), routes packets in the mesh network.

In [7], particular interest is paid to routing in a mesh network of multi-hop, multi-radio
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nodes. LQSR relies on a metric to establish the ”quality” of the links. Two particular

metrics are tested: WCETT (Weighted Cumulative Expected Transmission Time)

and ETX (Expected Transmissions). In short the results show that WCETT out

performs ETX which outperforms a shortest path routing algorithm. Each of twenty

three nodes are PC workstations running the Microsoft Windows XP operating system

and two 802.11 wireless NICs. Interestingly, they point out that the Windows OS will

not support two identical wireless NICs at the same time so each is a different make.

They point out that TCP degrades in performance in long multi-hop paths due to

high round trip times and the high probability of packet loss. Additionally, they

point out that the multiple radios interfere with each other even when using distant

channels and even using 802.11a, 802.11b, and 802.11g in various combinations.

The Hybrid Communications Testbed has two commonalities with the MCL

testbed. This virtual mesh network has each node uniquely identified in an overlay

network and each node has more than one NIC. The two testbeds differ on two signif-

icant issues: routing and topology. The Hybrid Communication Testbed is not using

a distributed routing algorithm at this time. Currently a centralized, and more proac-

tive, means of routing is used. Furthermore, determining the quality of a route will

incorporate more information than a single metric. From the perspective of topology,

the MCL testbed assumes that the topology of the 23 node network is relatively fixed,

while the Hybrid Communication Testbed assumes a dynamic topology.

2.7 Network Data Storage

In a topologically dynamic environment, data in transit encounters, with a prob-

ability greater than zero, a break in the topology between the source and the destina-

tion. In the face of this difficulty the node currently holding the data can (1) panic,

drop the data, and potentially alert the failure back to the sender, (2) desperately

forward the data to another node with the hope that the new node will have a better

chance delivery, or (3) store the data in a buffer until the topology is such that it can

be forwarded and potentially alert the sender. The last option requires sufficient and
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persistent storage in the network infrastructure. Furthermore, this option must con-

sider the handling of end to end transmission timeouts. A review of some persistent

network storage follows.

In Beck et. al. [3], Logistical Networking is outlined as a means of storing

data throughout the network. End to end considerations are applied to data storage.

Traditional storage, such as a hard disk in a server is called local storage. Local storage

is tightly coupled to the process that is accessing it. It has predictable delay, high

accuracy, and high availability. In contrast, network storage must provide availability,

integrity, confidentiality, unbounded file size, and unbounded duration of storage.

These considerations must be addressed with end to end principals. A storage stack,

similar to the network stack, is discussed that ranges from the physical devices through

a few logical abstractions up to the application. Just above the physical storage and

local access layers, the Internet Backplane Protocol is defined to allocate and manage

the storage on network storage depots. Above this layer is the exNode, a layer above

the IBP, and is analogous to the iNode structure in the UNIX file system. It points

to depots on the network instead of locations on a disk.

The above approach focuses on formal storage systems, such as a distributed file

system. It acknowledges the important requirements of storing data on a network that

must be considered if the storage is a file system or the storage is data in transit. The

concept of attaching storage to network infrastructure, such as routers, is essentially

similar. The storage buffers in the Hybrid Communication testbed are locally accessed

by the node in need of buffering.

A mobile file system named Coda, initially described in Satyanarayanan et. al.

[27] and highlighted in Satyanarayanan [28], provides a means for mobile workstations

to disconnect from a network while continuing to work with the local file system.

Coda caches files on the workstation as they are accessed or predicted to be accessed.

Once the workstation disconnects the file operations work on the cached objects.

Finally when the workstation reconnects the cached files are reintegrated with the
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corresponding files on the network, and vise versa. Also highlighted in [28], Odyssey

offers a Resource Negotiation API for applications. Applications request an amount

of a resource and a window of tolerance. The API returns the amount available

and further notifies the application of changes in the availability. Odyssey optionally

delivers the resources in different levels of fidelity, e.g., degrees to which the copy of

the data presented matches the copy on the server. Coda is an application transparent

solution to the problem of disconnectedness. Odyssey is an application-aware solution

to the issue of disconnectedness or limited connectivity.

Coda is similar to our strategic buffering in that Coda assumes that connectivity

is not continuous. Similarly Coda will buffer changes over time until the channel is

available. The changes do not have to be forwarded all at once. Large files can

be updated by transmitting only the changes to the document, similar to database

transactions; see Lee [20]. Coda operates at, or just below, the application layer of

the OSI model defining connectivity in the end to end context, while our strategic

buffering operates at the transport and network layers defining connectivity one link

at a time. Coda is concerned with consistency. Odyssey and strategic buffering

share the need to define from the application layer what the tolerance is for resource

constraints. Strategic buffering defines how much data must be transferred in what

time frame. Furthermore, strategic buffering accelerates the transmission as resources

become available.

Kangaroo [29] off loads the transmission and retrieval of large data files in a

super computing environment. It off loads the work from a super computer, much

in the same way an operating system and a hard drive controller off load the work

from the CPU. Kangaroo offers this to every node in the Kangaroo network, so data

can be hopped from one node to the next until it reaches its final destination. It

uses a fixed routing table in each node to accomplish routing. In Rajamani [25], a

multi-route Kangaroo is contemplated and evaluated so that Kangaroo works around

failure points. Strategic buffering behaves similar to Kangaroo in that data is fed
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from one node to another until the destination is reached. Strategic buffering does

not do routing itself. It uses a provided, static routing table in this thesis.

2.8 Big Picture

Kramer et. al. [19] is a broad review of technologies needing improvement to

facilitate the future of high powered computing, called Deep Computing. The en-

vironment discussed includes large scale grid computing, supercomputers, and large

sized data sets. Included in the discussion, of interest to this thesis, are the needs of

routers and of transport protocols. For routers, the mismatch of Maximum Transmis-

sion Units (MTUs) across networks causes inefficiency. One solution suggests Layer

7 routers that repackage MTUs; however, production of these is noted to be unlikely.

The other suggested solution is to turn the computing nodes into high speed routers,

so they can be placed directly onto the highest speed connection that has the largest

MTU. In regards to transport protocols, current TCP is inadequate. TCP aims to

fully utilize the network path and be fair to other traffic. TCP, by its design, is

prevented from utilizing the available high bandwidth delay product. In the example

given, one Gb path with a 100 ms round trip and an MTU of 1500 bytes needs the

error rate to be less than 2 · 10−8 (one packet every 555 round trips) in order to fully

utilize the allotted capacity. Without any congestion, this is less than the random er-

ror rates of the equipment used to support the network path. Two solutions to TCP’s

issues are discussed. Using multiple streams increases throughput but, as noted, is

unfair and requires software to disassemble and reassemble the streams. Additionally,

reserved bandwidth, or a virtual circuit, limits congestion and guarantees bandwidth

for the TCP stream. However, the paper points out that this does not remove the

minimum error rate described above for high bandwidth reservations.

While the Hybrid Communication Testbed is not specifically concerned with

massive parallel computing and its capacity concerns, it faces similar troubles on a

smaller scale; routers and the transmission control protocol must change. Using a

variety of physical media to communicate presents the issue of varying MTU sizes.
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Smaller MTUs require more transmissions raising the possibility of message transmis-

sion failures. Furthermore, as previously discussed, TCP works well in the environ-

ment it currently excels in: continuously connected, low bit error rate, and medium

to small bandwidths; in other words: wired general purpose internets.

2.9 Delay Tolerant Networking

Fall [8] presents an architecture addressing the difficulties of data transmission in

a challenged network. A challenged network is defined as a network with worse latency,

bandwidth limitations, error probability, node longevity, or path stability than typical

networks, such as wire networks or the Internet. This work is a broad survey of the

aspects that must be considered in such networks. One of the points is the issues

facing TCP in such an environment. TCP’s original specification defines the maximum

segment length to be two minutes. For a network that could be disconnected for any

length of time, this causes obvious difficulties. At the IP layer, there is no mechanism

for fragment retransmission. IP also has a time to live field (maximum 255) that

indicates the number of seconds (or hops) a particular packet can live. In regards

to routing, Fall [8] points out that conventional routing protocols (RIP, BGP, etc)

determine paths based on available connectivity. In the face of regular disconnection

these protocols will not function sufficiently. In terms of application development,

applications assume a connected, low latency environment. Four issues discussed

are short application timeouts, lack of automatic failover, application execution is

assumed to be much longer than transaction duration, and application protocols are

”chatty”. Several other points are made about SMTP, the Postal Service, naming

conventions, and internetworking unchallenged networks with challenged networks.

A more detailed discussion about routing in a delay tolerant network (DTN) in

Jain et. al. [12] addresses specifics of path discovery and maintenance with varying

levels of network knowledge. In a DTN an end to end path may never exist. The

delivery eventually occurs over time. If a DTN has paths that vary predictably over

time, a proactive approach to routing might be useful and would likely involve a set of
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fixed routes that are indexed by time. Otherwise a reactive scheme is more attractive.

To this end, the concept of (network) Knowledge Oracles is introduced. These are

nodes throughout the network that collect information about the past, present, and

future state of the network. The Contact Oracle answers questions about contacts

(connections) between any two nodes at any point in time. The Contacts Summary

Oracle answer questions about the aggregated statistics of contacts. The Queuing

Oracle gives information of the instantaneous buffer occupancies at any node at any

time. The Traffic Demand Oracle answers questions about requests for service in the

networks. Discussion is given about routing with none, some, or all of these oracles

and performance of various algorithms are analyzed.

The Hybrid Communication Testbed’s initial vision utilizes a centralized rout-

ing and topology server that is similar to the oracles discussed above. This is not

implemented in this thesis. Current work in the Hybrid Communications Laboratory

is addressing the ability to predict various network state information, thereby en-

abling the oracles presented above. Additionally, the testbed incorporates directional

communication. The direction may change due to a prescribed topological shift. If

packets were traveling along the path when the shift occurred, the packets are buffered

at the node until the topology shifts backs upon which they are transmitted. The

DTN solution relies on a bundle transport protocol that resides at the application

layer. This Hybrid Communication Testbed operates at lower layers in the stack.

2.10 Summary

This chapter provides background specific to the testbed implementation and

to the experiment at hand. Additional related topics and similar research has been

addressed. The next chapter builds upon this knowledge by detailing the specifics of

strategic buffering and a model of its performance.
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III. Modeling and Implementing Strategic Buffering in the

Hybrid Communication Laboratory

3.1 Overview

This thesis investigates the effects of TCP retransmissions in a challenged en-

vironment and strategies to overcome them. This chapter discusses the environment,

assumptions, mathematical model, testbed implementation, and methodology used

to analyze TCP performance with and without strategic buffering. The environment

is a wireless networking testbed, intended for this work and flexible enough for future

work. The testbed consists of multiple nodes connected using specifically configured

IP networks. In the testbed, links between nodes can be disabled to simulate trans-

mission difficulty. Intermediate nodes strategically buffer and retransmit packets to

overcome the transmission difficulty. In order for this buffering and retransmission

strategy to work with TCP, modifications are made to the TCP implementations

running in the testbed. The testing investigates the effects of buffering versus not

buffering under varying conditions of transmission difficulty: the probability of trou-

ble and the length of trouble.

The last part of the chapter describes the implementation of this strategy in a

testbed environment. The configuration of the various hardware and software tools

is presented.

3.2 Concept Definitions

This section defines the various concepts involved in strategic buffering.

3.2.1 Link Wink. Link wink is a term used to describe the dynamic nature

of a link’s status. Assuming the link can be available, link wink is the availability

of the link. A link connected and available all of the time is not experiencing link

wink. A link that is never available is not experiencing link wink. A link’s availability

that is intermittent is experiencing link wink. For analysis in this work, link wink

is defined as a probability of an outage and a duration of that outage. An example
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of this is a directional laser link that slews periodically between networks in a time

sharing fashion spending one minute dedicated to each. A plane circling a battle field

or a disaster area comes in range with some predictability. Lossy RF links create link

wink on smaller time scales; potentially down to the packet and bit level. Congestion

at a router is a simple example of link wink; at times the link appears to be down.

Similar to congestion, higher priority traffic of sufficient load creates link wink for a

lower priority flow.

Link wink is modeled in the testbed by dropping packets on the troubled link.

If the link is determined to be down (according to a random variable) the packets are

dropped. If the link is up the packets are allowed through. For a given interval, i,

such as 100ms, the status of the link is determined to be down with a probability of p

every 100ms; otherwise it is up with a probability of 1 - p. The status is determined

every 100ms, in this case. The link wink space is defined as (p, i). Winks arrive

according to a Poisson distribution and have a geometric duration (exponential in the

limit). To achieve link wink in the testbed, the winker (code to create link wink) is

placed on one side of the link. In one direction it destroys packets before they leave

the node. In the other direction the packets are destroyed as they arrive at the node.

This allows control of the link wink in both directions to exist in a single node.

3.2.2 Strategic Buffering. To address the difficulties of TCP (discussed in

Chapter Two) in an environment where the links are winking in and out, adjustments

must be made to the retransmission strategies of TCP. The goals are to increase

throughput and decrease retransmissions from the source. To gain this advantage,

resources must be available at intermediate routers such as processing capacity and

storage capacity. It is desirable to avoid overhead penalties when links are working

successfully. The solution described in this thesis uses buffers and retransmissions in

routers located in the path of the TCP conversation. Specifically this solution involves

buffering strategy, retransmission strategy, TCP state management, intermediate ac-

knowledgment, custody considerations, and leader election considerations.
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A TCP flow is identified by a four-tuple: source IP address, source port, des-

tination IP address, and destination port. In order to have the packets available for

retransmission at the intermediate routers, packets for each flow (in each direction)

are copied to a buffer as they pass through the router, as shown in Figure 3.1. As

ACKs return from the destination, copied packets are removed from the buffer. Un-

der normal circumstances, i.e., little or no link wink, packets are simply copied and

removed from the buffers with no intermediate intervention.

If it is determined that links are experiencing transmission difficulties, and cus-

tody for this flow must be taken, the packets needing to be retransmitted are im-

mediately available from the buffer. Ideally, this retransmission occurs at the router

nearest the point of difficulty, thereby avoid wasteful upstream retransmissions. Along

the path of a TCP flow each router has the buffer of unacknowledged packets avail-

able in the event any particular link goes bad. The buffer approximates the actual

window of unacknowledged packets the source has sent. An unsubstantiated, but

logical, observation is that on average the buffers in the routers closest to the source

will be larger than the buffers in the routers closest to the destination simply because

the buffers closer to the destination will see ACKs sooner than buffers closer to the

source.

If difficulty is encountered, the router takes custody of retransmissions. Ide-

ally the router immediately before the troubled link takes custody and retransmits,

as needed, to optimize the throughput over the troubled link. Subsequently, the

source node is notified that custody has been taken, which, at a minimum, tells the

Figure 3.1: Two nodes buffering between the source and the
destination.
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source not to invoke its congestion control mechanisms, i.e., slow down transmissions.

Furthermore, this notification tells upstream buffering routers (between it and the

source) that custody has been taken downstream and the packets acknowledged by

the downstream intermediate buffer are to be removed from their buffers.

This method combines the facets of TCP Bulk Retransmission and Snoop TCP

described in Chapter Two. TCP Bulk Retransmission focuses on retransmitting from

the source, not from an intermediate node. Snoop TCP applies retransmission in an

intermediate node but only to packets that have been lost to avoid fast retransmission

in the source.

3.2.3 Custody. Once packets are buffered and retransmission is to occur,

responsibility for the successful retransmission of these packets must be taken by the

buffering node. The taking of this responsibility by an intermediate node is referred

to as taking custody. Packets that have made it to the node taking custody are not

retransmitted by the source (through explicit notification), which saves upstream net-

work resources. Not only is bandwidth made available, but for a troubled network,

packets may have already traveled a great distance and encountered significant trou-

ble. There is no reason to send them again. It is left for future consideration on how

to deal with the node that has pledged responsibility for the retransmission of these

packets, and subsequently disappears.

Ideally the source continues to transmit fresh packets to the buffering node.

This allows the buffering node to have a sufficient amount of packets to optimize

retransmission over the troublesome link. For example, if a link is up and down for

three seconds at a time, performance will be optimized if enough packets are in the

buffer to transmit the entire three seconds the link is up.

The blue arrow in Figure 3.2 denotes the notification to the source that custody

has been taken and communicates what packets have already been received, e.g. in

the buffer. This notification informs the source not to retransmit what is the buffer.

It further notifies the other buffering nodes to flush their buffers of the packets for
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Figure 3.2: Nodes taking custody in the presence of link wink.

which custody has been taken. The red arrows indicate the repeated retransmissions

across the winking link.

A significant challenge is determining when (under what conditions) custody is

required. The wink of the link is either predictable or unpredictable. The perfect

solution to the unpredictable outage would be explicit notification from the link layer

that the link is in trouble. If the downtime is predictable, custody is predictable.

Knowledge of the anticipated outages must be delivered to buffering router. This

explicit notification comes from the global network. For example, a directional link

may be temporarily ordered to communicate with another node. During this outage

packets could be buffered in preparation of the directional link returning to its normal

target. Another example is the predictable movement of nodes. As a node moves back

and forth from network to network traffic is buffered in preparation of the node’s

return.

In the absence of these explicit notifications, either from the global network or

from the link layer below, the TCP flow is the only source of information available to

the buffering node. The flow of data packets and the return of their acknowledgments

is the only indication the router has of trouble. The absence of acknowledgments can

indicate a lost destination, a lost route, congestion, a lossy link just outside the router,

or a lossy link further down the route, etc. Some conditions require retransmission and

others do not. Furthermore, once custody has been taken, conditions for terminating

custody must be defined in the absence of explicit notification. The topics of implicit

and explicit notification of custody are left for future research.
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A subtle note about the assumption of custody is a concern about leader elec-

tion. If the flow of traffic is the only mechanism determining custody, all of the routers

between the source and the trouble will use the same criteria and react in a synchro-

nized fashion with perhaps all assuming custody simultaneously. This anomaly is not

handled in this thesis. One consideration to handle this is to use the Time To Live

(TTL) field in the packets. This field is decremented for each hop along the path.

The value for the TTL in any given packet at any given router can be anything but is

monotonically decreasing. It is contemplated that this field should be considered in

the timeout value used to determine if custody is taken so that routers further from

the source will react sufficiently quicker than routers closer to the source.

The experiments performed in this thesis assume only one winking link and

one node taking custody. The first experiment demonstrates the implication of link

wink without custodial retransmission. The second experiment analyzes how custodial

retransmission performs in the same winking environment. In this second experiment,

the node has custody the entire time. The conditions under which to take custody

are left for future investigation.

As mentioned in Chapter Two, various congestion control algorithms change

how packets are sent in the absence of ACKs. As mentioned above, the buffer must

have packets to send when the link is available to perform optimally. When experienc-

ing packet loss, congestion control algorithms are designed to back off. However, in

the case of winking links, the buffers need more packets as links degrade. To test this

situation, a special purpose congestion control algorithm, called Unfair, is defined. Its

modus operandi is to have a fixed congestion window size of 2 GB. The intention is

to not slow down in the absence of ACKs. It is noted in McDonald and Nelson [23]

that all congestion control algorithms in Linux only manipulate certain variables, not

the TCP timers. See Wright and Stevens [30] for more.

3.2.4 Retransmission. As stated previously, a router assuming custody be-

gins retransmitting packets stored in its buffers over the troubled link. Consideration
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must be given to two facets of this retransmission strategy. First the size of the

router’s retransmission window must be determined. Many parameters are available

to determine the size the window: size of the buffer, defined or perceived capacity

of the link, rate of data arrival, other flow usage of the link, other buffer capacities,

flow priority, receiver’s suggested window size, link behavior, round trip time, and

explicit external notifications. This thesis leaves these calculations to future research

and assumes the entire buffer or a set limit (which ever is smaller) is retransmitted.

The second facet of retransmission is the interval. Regular routers send packets

out as instantly as possible without regard for the downstream consequences. TCP

retransmits with a shrinking window as conditions downstream appear to get worse.

The consideration here: should this intermediate, strategic retransmission behave like

TCP or like an IP router?

The router may completely consume the outgoing link’s bandwidth. If the link

is only intermittently available 10% of the time, and the link is not shared, then

”shouting” might be the proper choice. The extreme scenario involves a buffer with

one data packet and a high capacity link that is winking. This packet could be

constantly retransmitted filling the 100Mbit channel with one packet.

The link’s medium is an important consideration. Shared links must be taken

into consideration. Moreover, bandwidth must be available for returning ACKs to get

through in a timely manner. It is further contemplated that if a link is bad enough

to warrant custody on one side, it is likely the other side of the bad link has taken

custody of flows traveling in the other direction. If both sides engage in shouting on a

shared medium, performance may suffer. This thesis leaves this for future research as

well. This thesis assumes retransmission of all buffers in custody every 10 milliseconds;

transmit, wait, transmit, wait, etc.

3.2.5 Delay Tolerant Traffic. A network generally supports various classes

of traffic. The various classes of traffic have varying levels of priority. Traffic such

as command and control or real time system control requires the highest priority
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generally available. Other traffic such as personal emails or backing up files does not

require immediate attention from the network resources. This lower priority of traffic

does require reliable, eventual delivery. It is thus considered delay tolerant traffic.

The overall performance of this low priority traffic is improved by increasing

network utilization. Logically, if a network’s overall utilization is not entirely con-

sumed, then there is available bandwidth. Unused bandwidth is lost forever. If a

continuous supply of low priority traffic is available, the otherwise lost, unused band-

width provides an opportunity to send traffic. Using previously unused bandwidth

increases performance.

A continuous supply of low priority traffic is required in order to take advantage

of the bandwidth as it becomes available. In order to accomplish this, the apparent

disadvantage of lower priority actually provides the solution. By definition, the lowest

priority traffic yields to all other priorities. Then on a unshared medium, by design,

the lowest priority traffic is able to be unfair in its transmission scheme. A low priority

TCP flow is not required to back off in the face of congestion with higher priority

flows. By design the low priority traffic is in a near constant state of congestion.

Instead of backing off, the lowest priority traffic should increase its output.

This surplus of low priority traffic must have some place to go. Strategic buffer-

ing provides holding tanks for the low priority traffic. The nodes honor the high

priority traffic by always sending it when it arrives. However, in the absence of high

priority traffic, the reserve of low priority traffic is sent. The low priority traffic is

aggressively sent in order to fill the next strategic buffer. It can be sent aggressively

because it always yields to the other traffic.

From the perspective of the lowest priority traffic, the unavailability of a link due

to channel failure or due to the presence of high priority are semantically equivalent.

The presence of high priority traffic can therefore be modeled as if the link were

unavailable, e.g. Link Wink. Link Wink can be used to model the high priority
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network utilization. The generic utilization-delay graph looks like Figure 3.3. As

utilization increases, delay increases.

In this instance, if the current high priority utilization is 0.6, the delay is 2.5.

If additional traffic is injected to increase the utilization to 0.9, the delay increases

to 10. If the strategic buffering used to insert the extra traffic to take advantage of

the unused bandwidth, the delay increases slower. This is demonstrated in the two

graphs 3.4 and 3.5.

Delay tolerant traffic was one of the original motivating factors to pursue this

research thesis. The important thing to take away from this section is the similarity of

a lossy link and the intermittent starvation of lower priority traffic. Both are modeled

the same way. The mathematical model that follows in the next section provides

insight into how TCP behaves in a lossy link and how TCP behaves with respect to a

low priority flow in an environment where significant higher priority flows dominate

the resources.

Figure 3.3: This graph demonstrates the exponential increase
in delay as utilization approaches capacity.

It is contemplated that hording low priority traffic in a buffer provides a source

of packets to send when the link is available. It is further contemplated this buffer

of traffic can be transmitted when high priority traffic is not available to the extent

that the link’s utilization is maximized for optimization. From this is is asserted

that (1) the low priority traffic will proceed through the network faster with strategic
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Figure 3.4: This graph demonstrates how far delay increases
as utilization increase from 0.6 to 0.9.

Figure 3.5: This graph demonstrates how the delay of low
priority traffic increases less as utilization increase from 0.6 to
0.9 using strategic buffering.

buffering and (2) this improvement does not interfere with higher priority traffic. The

first point is proven in this thesis. The second is left for future pursuit.

3.3 Mathematical Model

In an attempt to demonstrate the behavior of the transmission times a math-

ematical model of the retransmission delay is constructed. This model is based on

several assumptions. These assumptions are described below and are conservative.

The model is based on two distributions. One distribution models the success of an

interval on the first transmission. The second models the cost of the successive fail-
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ures of retransmitting the intervals that fail on the first transmission. As explained

in detail below, the cost of each retransmission is based on TCP exponential back off.

3.3.1 Assumptions. To simplify the model several assumptions are made.

The propagation delay is assumed to be zero. The distance covered in the lab is on

the scale of feet. At the speed of light this is negligible. The transmission of the ACK

for each packet is assumed to be negligible as well. The relative size of the ACK and

the fact that ACKs are cumulative make their impact minimal.

The most significant assumption is the following simplification. Each successful

interval is assumed to successfully transmit an entire interval of packets. In reality,

the congestion control algorithm shrinks the window after a wink is noticed. Once

a retransmission starts in a successful interval the congestion window grows quickly

as each successive packet is acknowledged. It is assumed that within the interval the

congestion window will reach or exceed its average size.

The round trip time in the test bed pinged just shy of 0.5ms. A 100 Mbit speed,

in one direction there are just over 4 packets in flight. Assuming the window starts at

a size of 1 and every 0.5ms an ACK shows up, the window will increase by 2 packets

per ms. In a matter of 3ms, the pipe is full of packets. Assuming the entire interval is

full is acceptable because the smallest interval investigated is 40ms. This assumption

will underestimate the transmit time because it assumes more packets are sent in a

successful interval than are actually possible. Further refinement of this assumption

is left for future consideration

For a given interval, i, the number of such intervals required to transmit a file is

the transmission time of the file under perfect conditions divided by the interval. For

example the 20MB file takes 1.86 seconds to transmit with no winking. If i = 40ms,

then 46.25 intervals are needed to transmit the entire file. This is rounded up to the

next whole interval of 47. At i = 1100ms, it takes 2 intervals. Logically under good

or bad conditions, the number of successful intervals required remains the same.
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As a note, this interval could be reduced down to the size of a packet. It is

contemplated as the interval gets smaller and smaller that the congestion windows

size and other retransmission strategies will dominate the model more than the TCP

exponential back-off. This is left for future research. This model reduces the interval

no further than 40ms.

3.3.2 Winking. The winking environment is comprised of two mechanisms:

probability and interval. The status of the link is determined periodically based on the

probability, p, that the link is unavailable. The period is based in the time interval, i.

Every i milliseconds with probability p the link’s status is down otherwise is it up. For

this test, the probability is such that p ∈ {0.00 to 0.40, step 0.05}. The probabilities

stop at 0.40 because the time required to test these probabilities is prohibitively high

in a testbed environment. The interval is such that i ∈ {40 to 1100, step 20}. This

creates 477 data points based on the 9 probabilities and the 53 intervals. At each of

these data points, the file is transmitted 30 times in order to gather a mean and a

variance.

This construct models link outages that arrive in a Poison distribution and that

last in a geometric distribution. For an interval i, regardless of length, the status of

the link in a particular interval is independent of all of intervals. The status of the

link is determined based strictly on the probability p. Every interval the ”dice are

rolled” determining if the status of the link is up or down. To fully understand the

model, one must understand how long the wink will last.

The length, in intervals, of the wink is geometrically distributed. The geometric

distribution provides a probability for how many consecutive intervals the link is

down. In other words, how many intervals is it down until it is up. The expected

value of the geometric distribution is 1
p
. In this case the probability of the link being

up is 1−p. On average this means on try number 1
p−1

will get a failure after a series of

successes. Because the expected value includes the interval that failed, one (1) must
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be subtracted. The expected number of intervals between winks, X, is defined by this

equation.

E[X] =
1

1 − p
− 1 (3.1)

For similar reason discussed above, the expected length of a wink, X, is defined

as follows.

E[X] =
1

p
− 1 (3.2)

Table 3.1: The relationship between the probability
of a wink, the expected intervals between winks, and
the expected length of a wink.

p Intervals between Winks Length of Wink
0.05 19.00 0.05
0.10 9.00 0.11
0.15 5.67 0.18
0.20 4.00 0.25
0.25 3.00 0.33
0.30 2.33 0.43
0.35 1.86 0.54
0.40 1.50 0.67
0.45 1.22 0.82
0.50 1.00 1.00
0.55 0.82 1.22
0.60 0.67 1.50
0.65 0.54 1.86
0.70 0.43 2.33
0.75 0.33 3.00
0.80 0.25 4.00
0.85 0.18 5.67
0.90 0.11 9.00
0.95 0.05 19.00

3.3.3 Initial Transmission Failure. The first part of the model portrays how

many of the intervals fail on the first attempt to transmit. If a file was comprised of
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10 intervals, then zero, some, or all of intervals could fail on their first transmission,

e.g. the link is down. The intervals that fail incur the cost of retransmission. The

number, n, of successful intervals required to send a file is a function of the time it

takes to send the file under perfect conditions, tperfect, and the interval i.

n =
tperfect

i
(3.3)

Employing the binomial distribution, the probability of a r number of failures is easily

calculated. Equation 3.4 provides the probability of incurring r failed transmissions

of n intervals. (
n

r

)
· pr · (1 − p)n−r (3.4)

The expected value of a binomial distribution is n · p. For example, if there are 10

intervals and the probability of a failure is 0.2, then the expected number of failures

is 2. The probability of having 10 failures is low but not impossible: 0.210.

If each failure costs c, then the expected cost is defined in Equation 3.5.

n∑
r=0

(
n

r

)
· c · pr · (1 − p)n−r (3.5)

The probability of each possibility is multiplied by the cost of a failure. This assumes

that there is a fixed cost, c, for each retransmission. TCP does not incur a fixed cost

for retransmissions. The second part of the model addresses the cost of retransmission.

3.3.4 Retransmission Cost. According to Wright and Stevens [30], the

first retransmission in TCP occurs after approximately 1.5 seconds. If no ACK is

received for the retransmission, TCP waits exponentially longer for every subsequent

transmission. The next retransmission occurs at 3 seconds; followed by 6, 12, 24, 48,

64, 64, 64, ... In most implementations, and in Linux, TCP waits up to a total of

nearly a nine minutes before the an error occurs. If TCP does get an ACK for any
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of these retransmissions the timer goes back to 1.5 seconds. Table 3.2 shows how the

delay accumulates over successive retransmission failures.

Table 3.2: These costs represent the cost of expo-
nential back-off in TCP’s retransmission scheme. The
cost of each subsequent failed retransmission is accu-
mulated in the right most column.

Hit Cost (s) Cumulative Cost (s)
1 1.5 1.5
2 3 4.5
3 6 10.5
4 12 22.5
5 24 46.5
6 48 94.5
7 64 158.5
8 64 222.5
9 64 286.5
10 64 350.5
11 64 414.5
12 64 478.5
13 64 542.5

The probability of consecutive failed retransmissions is modeled with a geomet-

ric distribution. The probability of a single retransmission failure is the probability of

the link being down, p. Consider a failed retransmission to be a hit. The probability

of encountering h consecutive hits using probability p is defined as (ph)(1− p). Com-

bining the cost Table 3.2 and the geometric probability distribution, the following

formula calculates the expected cost of retransmissions.

13∑
h=1

ch · ph · (1 − p) (3.6)

The value of ch is a lookup into cumulative cost column in the cost Table 3.2.

3.3.5 Combining the Two. The first part of the model (Equation 3.5)

calculates how many of the intervals need to be retransmitted. The second part

(Equation 3.6) calculates the expected cost of the retransmission. Combining to the
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two yields the following equation.

n∑
r=0

15∑
h=1

(
n

r

)
· pr · (1 − p)n−r · r · ch · ph · (1 − p) (3.7)

Notice that second part of the model is multiplied by r to account for the cost of each

failed retransmission. This formula further simplifies to Equation 3.8.

n∑
r=0

15∑
h=1

(
n

r

)
· pr+h · (1 − p)n−r+1 · r · ch (3.8)

To account for the time required to transmit the interval, the interval length,

i, is added to the cost. For h hits, the time to transmit is h · i. The cost is now as

follows.

ch + h · i (3.9)

3.3.6 Further Insights. If this model is correct and only a single interval

fails and is successfully retransmitted on its first attempt, it causes a 1.5 second hit.

In the case of the 20MB file that takes 1.86 seconds to transmit, the smallest time

to send the file with at least one retransmission is 1.86 + 1.5 = 3.36 seconds. The

preliminary data does not support this.

The smallest time greater than 1.86 is near 2.1 seconds, 200ms more. The next

lowest times center around 2.25 seconds, 500ms more. TCP has two internal timers.

One is 200ms and the other 500ms. The 200ms time is for fast retransmit and the

other is for regular retransmit. For further information about these timers, the reader

is referred to Wright and Stevens [30]. It does appear from the preliminary data that

the earliest retransmission occurs at 200ms and the next at 500ms.

Once an interval fails, the first possible retransmission attempt is at 200ms.

The interval fails because the link is down. If i > 200, the link is down for longer

than 200ms. When the chance for the retransmission occurs the link is still down.

Similarly, the 500ms retransmission opportunity is no longer available when i > 500.
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To account for this behavior the cost Table 3.2 is adjusted to vary for different

interval ranges and displayed in Table 3.3. For 40 < i ≤ 200 is extended to allow

for 15 hits. This still allows for the maximum of 9 minutes while incorporating the

200ms and 500ms. For 200 < i ≤ 500, the table provides for 14 hits. For i > 500,

the table remains the same. This thesis looks at only intervals up to 1100ms. It is

contemplated as the the intervals grow greater that 1.5, 3, 6, etc that the tables would

need to be adjusted as well.

Table 3.3: These costs represent the cost, in seconds, of exponential
back-off in TCP’s retransmission scheme. The cost of each subsequent
failed retransmission is accumulated in the right most column.

i ≤ 200 200 < i ≤ 500 i > 500
Hit Cost Accum. Cost Hit Cost Accum. Cost Hit Cost Accum. Cost
1 0.2 0.2 1 0.5 0.5 1 1.5 1.5
2 0.5 0.7 2 1.5 2.0 2 3 4.5
3 1.5 2.2 3 3 5.0 3 6 10.5
4 3 5.2 4 6 11.0 4 12 22.5
5 6 11.2 5 12 23.0 5 24 46.5
6 12 23.2 6 24 47.0 6 48 94.5
7 24 47.2 7 48 95.0 7 64 158.5
8 48 95.2 8 64 159.0 8 64 222.5
9 64 159.2 9 64 223.0 9 64 286.5
10 64 223.2 10 64 287.0 10 64 350.5
11 64 287.2 11 64 351.0 11 64 414.5
12 64 351.2 12 64 415.0 12 64 478.5
13 64 415.2 13 64 479.0 13 64 542.5
14 64 479.2 14 64 543.0
15 64 543.2

The cost is now defined in Equation 3.10. Incorporating Equation 3.10 into

Equation 3.8, the final formula is defined by Equation 3.11.

ch,i + h · i (3.10)

n∑
r=0

15∑
h=1

(
n

r

)
· pr+h · (1 − p)n−r+1 · r · (ch,i + h · i) (3.11)
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Figure 3.6: Graphs Equation 3.11.

The model produces the graph in Figure 3.6. The worst performance is where

the interval is low and the probability is high. Curious though, near the interval

lengths of 200ms and 500ms deep valley can be seen. These correlate to the TCP

retransmission timers lengths.

3.3.7 Strategic Buffering Model. Using strategic buffering is an attempt to

over come link wink. The best case scenario has a buffer in the node immediately

before the winking link. Ideally this buffer always has enough packets on hand to

transmit while the wink is up. In this case the buffer fills up, potentially with the

entire file. The buffer retransmits as much of the buffer as the up time of the link will

allow. In this scenario, the source never invokes the TCP exponential back of sue to

the link winking. The source transmits smoothly to the buffering node.

The perfect model has perfect knowledge of the link’s status and only transmits

when the link is available. In this model, independent of file length and interval

length, only p is a factor. The function for this is 1
(1−p)

. Figure 3.7 shows this.
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Figure 3.7: Graphs the delay incurred with a perfect retrans-
mission scheme.

To make the earlier model reflect the new scenario requires adjusting the cost

of retransmission. A few assumptions must be made to discuss this. The winking

link’s effective bandwidth needs to be less than the available bandwidth between the

source and the buffering node. The source must continue to send more packets in

the temporary absence of ACKs from the destination. The congestion control algo-

rithm needs to provide congestion windows that instead of shrinking in the absence

of ACKs actually might grow. Creating a congestion control algorithm that performs

as described is left for future work.

Using the above assumptions, the analytical model is adjusted to change the

cost of a retransmission. The cost of a failed transmission using strategic buffering and

retransmission is optimally the cost of the lost interval. Since the buffer is full, once

the link becomes available transmission occurs. The formula is changed as follows

and displayed in Figure 3.8.
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Figure 3.8: Graphs Equation 3.12.

n∑
r=0

15∑
h=1

(
n

r

)
· pr+h · (1 − p)n−r+1 · r · (h · i) (3.12)

Figure 3.8 shows the cost of retransmission predicted by the model. It predicts

the delay is higher as the probability increases. Across the intervals it appears to

relatively stable. The spikes occur because the number of intervals required to send

the entire file are rounded up to the next highest interval. If it takes 46.25 intervals

to send the file, then 46.25 is rounded up to 47.

3.4 Testbed Implementation

This section discussed each of the components utilized in creating the testbed.

The end of the section addresses security and specific issues encountered during the

development process.

3.4.1 Private Networks. Private IP networks are networks with addresses

that are only accessible from within the network. The privacy of these addresses is
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enforced using routing mechanisms. Furthermore certain IP address spaces, such as

192.168.0.0, are defined as private and routers are designed to not forward this traffic.

The hybrid communication testbed is a dynamic meshing of many private net-

works utilizing many forms of communication. For example, assume a node utilizes

three forms of communication: an 802.11b omni-directional network card, a direc-

tional infrared transceiver, and a satellite link. Each forms a separate physical net-

work, perhaps with its own address space. The integration of these networks occurs

at either the data-link layer or the network layer of the Open System Interconnection

(OSI) model.

One of the following scenarios describes how traffic integrates across these net-

works. First, communication is not forwarded across the individual separate networks.

In this case nodes on each network do not know of each other and do not communi-

cate. Second, the networks are bridged at the link layer; in effect merging the two

(or more) private networks into one single network. In this case, the nodes on each

network have the ability to discover and communicate with each other. Third, the

node is a router between the two (or more) private networks; merging the networks

at layer three.

From the above circumstances, three assumptions are made for this thesis. First,

Internet Protocol (IP) is used as the Network layer addressing and routing scheme.

Second, the private networks are not bridged together, the nodes route traffic between

private networks. Third, the use of hierarchical routing schemes (such as traditional

IP addressing/routing) is not present between these meshed private networks.

Figure 3.9 shows the nodes participating in private networks. The function of

the private networks is semantically similar to the link layer. In Microsoft MCL [7],

meshing occurs at the link layer. The MCL however is limited to the 802.11 Ethernet.

A major contributor to the success of the Internet is the fact that the ubiquitous IP

protocol does not depend on the underlying physical media. Instead, IP is capable of

routing over any physical media. In Figure 3.9, Node 101 communicates with node 103

46



Figure 3.9: Mesh of Private IP Networks. Gateway nodes
indicated with boxes.

directly on the 192.168.3.x network. Node 101 communicates with node 104 through

node 103 or alternatively through 105 and 102. In the testbed for this thesis four

nodes are arranged in a linear fashion. While this is a admittedly a simple setup, it

is semantically identical to many complex scenarios.

The presumed dynamic environment of hybrid communication allows networks

to connect to other networks without regard to any hierarchy. As a node moves

through a geographical region the node dynamically connects and disconnects to var-

ious networks as needed. Each of these networks provides its own IP addressing

scheme. This could be Dynamic Host Configuration Protocol (DHCP) or static or

otherwise. Regardless of how it is handled, the private nature of the IP addresses

prevents using the generally recognized hierarchical nature of the public IP address

space. For global routing to succeed, other mechanisms are required.

3.4.2 Overlay Network. An overlay network is a network implemented on

top of another network or networks. Examples of overlay networks are virtual private

networks (VPN) and peer-to-peer (P2P) networks. The overlay network relies entirely

on the underlying network(s).

47



Figure 3.10: IP network overlaying the previous mesh of pri-
vate IP networks.

In this testbed, an IP network is overlaid across the private networks. Each node

is assigned an IP address globally unique to the overlay network. This overlay network

resides between layer three and layer four of the OSI model. The services at Transport

Layer act upon the addresses of the overlay network. A node that belongs to three

private networks has three private IP addresses.In Figure 3.9, Node 101 has two IP

addresses: 192.168.1.101 and 192.168.3.101. The isolation of these IP address spaces

allows for local autonomy thereby relieving the global authority of micro-managing

various networks. The address management of the global overlay network is out of the

scope of this thesis. It is simply assumed that each node participating in the global

communication has an address in the overlay network.

In this testbed, Figure 3.10, each node is assigned an overlay network IP address

of 192.168.0.x. In order for node 192.168.0.106 to pass a message to node 192.168.0.104

(note that the addresses in the private networks are not globally unique), the overlay

address is required. The packets are routed over the private networks, but use the

overlay network addresses at various bridging points. All services in the Transport

layer and above use the overlay IP. Routing across this overlay network is discussed

below. This is not the typical hierarchical routing scheme used in typical IP networks.
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Assuming the routing is updated appropriately, the global overlay IP is able to

move with the node from one private network to another. For example a mobile node

can leave one ad hoc 802.11 network and join another carrying with it the overlay IP

address.In Figure 3.10, if node 106 joins the 192.168.4.x network, it is still referenced as

192.168.0.106; although some routing updates need to occur. As mentioned above, the

structure of the IP network of the private networks is independent of that of the other

private networks. Similarly the structure of the overlay network is independent of the

private networks. The overlay network functions the same as regular IP networks. It

can be hierarchical and interact with other outside networks.

In order to connect the mesh of private networks and the overlay network, nodes

must have routing information; instructions on where to send packets. Each router

is a relay, a gateway, to other private networks. Packets are sent from one gateway

to next across the overlay network. This is not standard hierarchical routing. This

overlay network clearly requires its own routing algorithms in order to manage the

routing dynamically as nodes physically move around the mesh of private networks.

This particular topic is addressed in other work on the testbed but is out of scope of

this thesis.

3.4.3 Routing. The topology of the overlay network is dynamic in nature;

reacting to the dynamic environment and requirements placed upon it. Dynamic

topology implies that links between nodes exist sometimes and not at others subject

to many considerations, both global and local. These considerations include, but are

not limited to, mobility, transmission interference, security, congestion, and priority

starvation.

At one extreme, a soldier in the bush concerned about avoiding capture, may

choose to refrain from using an omni-directional radio frequency transmission (since

it can be detected by the enemy). This local concern causes the omni-directional

link to be down and without some other form of communication, this node is not

transmitting. From an extreme global perspective, a node with a single directional
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link positioned between two private networks must alternately point its directional

laser in order for traffic to flow through the overall network.

Node mobility results in dynamic topologies, which are both a challenge and

an opportunity for routing. For instance, a plane may fly through several networks

along its path, breaking existing routes, but providing an opportunity to deliver com-

munication that otherwise would be impossible. The plane may transfer information

to and from one remote network and then return near the backbone network ferrying

the remote network’s information.

A more subtle topological concern arises from low priority traffic starvation. If

a channel is consumed by high priority traffic, it is unavailable from the perspective

of the lower priority traffic that gets little or no bandwidth. From the perspective of

the low priority traffic, the topology of network is broken.

Routing issues are out of the scope of this thesis. However, the dynamic nature

of hybrid communication presents issues to routing traffic. For this thesis the route is

considered to be a priori knowledge. Behind this assumption, finding the proper mix

of proactive and reactive algorithms is a significant challenge. In general the more

dynamic the environment, the more reactive routing tactics are employed; and the

more stable the environment, the more proactive routing tactics are employed. Both

proactive and reactive routing rely on the connectedness of the network. Proactive

routing adjusts slowly to changes in link status. Proactive routing algorithms may

over react to link wink believing the link to be down. Reactive algorithms may

discover sub-optimal routes or no route at all during the route discovery process. An

open issue is at what point is a routing change used to over come a troublesome link

versus assuming the performance hit. Future consideration is needed to integrate the

strategic buffering into the routing algorithms, i.e. a route will be available if the

traffic hangs out in the router momentarily. See Kim et. al [16] for a discussion of

this.
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3.4.4 Nodes. A testbed for investigating these issues has been developed.

The testbed consists of Linux (Fedora Core 4) workstations. These workstations are

connected to a single, wired network as a back channel to collect data and configure

the nodes. In order to test a variety of communication media, each node can be

configured with Bluetooth, 802.11, infrared, laser, etc.

On the back channel network (see Figure 3.11) is a server to be used to gather

information from the nodes. From this information the server makes decisions about

topology and routing. These decisions are communicated to the nodes through the

back channel network. These instructions turn on or off various network cards in the

nodes. These instructions also include the routing tables for each node.

On each node a modular software router, developed at MIT and called Click [17],

serves to route packets. Click elements are written in C++. Elements are connected to

allow packets to flow between them, mimicking the behavior of hardware routers. Each

element processes the packets, potentially manipulating, forwarding, or destroying

each one. Examples of elements include queues, network interfaces, routing tables,

network address translators, etc. Click runs as a user process in Linux. In previous

versions of Linux it could run in kernel mode, exhibiting a commensurate speedup.

For our experiments, only relative speedup was of concern, hence running in user

mode was sufficient.

3.4.5 Intermediate Acknowledgments. Once custody is assumed, an interme-

diate acknowledgment (IACK) is transmitted from the assuming router to the source.

The IACK contains an acknowledgment number of the highest continuous byte num-

ber seen, similar to a normal ACK. The IACK also contains a window size similar

to a normal ACK. This IACK passes through all of the buffering routers and to the

source. Each of these intermediate routers now knows to flush their buffers and to

not take custody themselves. The source knows not to retransmit the packets that

are ACK’d by this IACK. The source however does not remove these packets from its

window as if a normal ACK was received, because the IACK is not notification that
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Figure 3.11: Testbed network physical connections showing
backchannel, private, and overlay networks.

the packets reached the destination. An IACK is sent every retransmission round to

include any recently received packets from the source.

This IACK is similar to the Local Acknowledgment (LACK) described in Split

TCP [18] discussed in Chapter Two. The IACK flows to the source, not to the next

intermediate router. The IACK is not sent in response to every packet received by

the router. The IACK is only sent when custody is in effect for a flow.

As mentioned previously, a regular ACK is not sent precisely because of the

semantics of an ACK. A regular ACK indicates to the source that the packet has

successfully reached its final destination, which, in this case, it has not. Furthermore

the receipt of an ACK is used to calculate round trip time. Using a regular ACK

would skew this calculation. Duplicate ACKs are used to invoke fast retransmission.

Possibilities exist for the source to receive duplicate IACKs. In summary, a regular

ACK has semantic implications to be avoided.

The IACK also contains the suggested window size. This controls the size of

the send window in the TCP source. This field in a regular ACK is used to control

the amount of data streaming from the source. Depending on the nature of the link

52



wink more or less data may be needed from the source. Manipulating this field in the

IACK to optimize overall flow control is left to future research. This thesis ignores the

adjustment of the congestion control algorithms other than the effects of the IACK

suppressing the retransmission of packets.

It is a zero length packet consisting of an IP header and a TCP header, shown

in Figure 3.12. The IACK is based on a pure ACK with a few differences. The

Identification field is set to 0xFFFF. The time to live field is set to 255. To identify

this as an IACK, the ACK and URG flags are set in the TCP header flags field. This

allows our modified Linux TCP to recognize the IACK. The ACK field is set to the

highest sequence number in the buffer up to the first missing packet or the end of

the buffer. After the IACK is sent, the entire buffer is traversed and a copy of each

packet is transmitted.

A few notes about some of the fields in the IACK. The Identification field is

a monotonically increasing packet identifier used by IP. Since this packet is being

inserted into the conversation mid stream, there was concern about what the value

of this field should be. It is set to 0xFFFF. The value 0x0000 appeared to cause

trouble in prototyping. In the Linux implementation of IP, the fact that 0xFFFF is

not in sequence does not appear to cause a problem. Similarly the TCP Sequence

Number field raised similar concerns. The sequence number is set to 0x00000000.

The code for handling the IACK in TCP was inserted before the sequence number

was validated. The window size field could be useful for future congestion control

algorithms to increase or decrease the flow of packets into the buffer. For now, it is

set to the last window size seen from the destination.

In Linux’s TCP code, a handful of changes are required to properly handle

the reception and processing of an IACK. A flag (iacked) was added to the control

block (struct tcp skb cb) for each packet. If true, this flag indicates the packet

has been IACK’d. When an IACK shows up, the flag is set for every transmitted

packet whose sequence number is less than the ACK in the IACK packet. In the

53



Figure 3.12: IACK packet’s relevant fields in the TCP and IP
Header.

retransmission function (tcp retransmit skb) checks this flag. If true, the packet is

not retransmitted. Three files were changed: tcp.h, tcp input.h, and tcp output.h.

It is believed that the careful employment of a SACK packet can replace the

IACK. A segment that is SACK’d it not retransmitted and it is not flushed from the

send buffer either. This is semantically similar to the IACK but would not require

modification in the the source’s TCP. This is left for future consideration.

3.4.6 TCPStore. A Click element handles the buffering and retransmission

of flows. This element, TCPStore, keeps a flow control block to keep all of the in-

formation about a flow. These control blocks are stored in nested linked lists. Each

flow control block has its buffer of packets and a pointer to the flow control block

for the other half of the TCP conversation. As packets arrive, the original packet is

forwarded on if custody has not been taken for this flow, and a copy of the packet is

stored in the buffer.

Each packet has a packet control block created for it to track the state of the

packet and to hold data extracted from the packet. For example the packet’s sequence
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number is used frequently so instead of extracting the data and flipping the bits every

time it is needed, the sequence number is extracted and manipulated once. The packet

control blocks for each flow are stored in a sorted linked list, sorted on sequence

number. Once a packet is stored the state of the flow is changed as needed. If a

duplicate packet arrives, the packet control block has a pointer to the original packet.

This packet is removed and the latest copy is kept in its place. The motivation for

this is that a duplicate packet may have an acknowledgment number that is higher

than the acknowledgment in the original packet.

Once the packet is stored in the buffer, if the packet is an acknowledgment

the sibling flow control block handles the removal of packets from its buffer. A walk

through the sorted list pops off any packets that are acknowledged by this packet.

Before walking through the list a check is made to see if this packet is a pure ACK.

If three consecutive duplicate pure ACKs are observed, the needed packet can be

retransmitted instantly from the buffer.

A separate thread runs to check for custody conditions, perform garbage col-

lection, and retransmit data. This task executes and then sleeps for 10 milliseconds.

Upon waking, this task loops through all of the flows. For each flow the following

process takes place. First, if there is only one packet in the buffer it is inspected to

see if this is a loitering packet. If it is then it is removed. The flow is checked to see if

it can be collected for garbage (if the flow and its sibling are closed). Next if there is

no custody for the flow, a check is made to see if custody should be taken. If custody

of the flow has been taken, then retransmission occurs and an IACK is Sent.

3.4.7 Notable Implementation Issues. Inserting a retransmission scheme in

the middle of a TCP causes a few exceptional cases. Three factors combine to create

irregular behavior: intense retransmission, duplicate acknowledgments, and a lossy

channel.

With the same packet arriving multiple times at a buffering node, duplicate

packets must be replaced in the buffer instead of storing multiple copies. This is not
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as simple as looking in the buffer for a packet with the same sequence number. Some

packets, like ACKs, have no data so the next packet will have the same sequence

number. In our particular case a duplicate packet is defined as having the same

sequence number, TCP header flags, and length. If such a match is found, the new

packet replaces the old. The new packet can have a higher ACK. The newer packet

can also have newer time stamp, if RFC 1323 is being used.

Another issue with RFC 1323 arises. The RFC describes that the algorithm

yields ”certain unlikely circumstances”. It is unlikely to occur and less likely to cause

issues in a regular TCP environment. Because strategic buffering has been injected

into the stream this circumstance occurs with some regularity. Essentially packets are

discarded if their time stamp is older than the time stamp of other packets near them

in the sequence number space. The reader is deferred to the RFC for precise details.

The destination was dropping some packets and requesting they be sent again. The

buffering node would send them again, only to have the destination continue to drop

them because of their bad time stamp. The fix involves setting the time stamp of all

packets sent in response to duplicate ACKs to the most recent value.

Due to the intense and repeated retransmission of the buffer, the destination

receives the same packet multiple times. The destination can also receive a significant

number of packets after missing the first packet of the buffer. This situation causes

a large number of duplicate acknowledgments to be sent. Letting these duplicate ac-

knowledgments reach the source triggers unnecessary retransmissions from the source.

The buffering node allows one of these duplicate ACKs through. The ones that follow

are discarded.

TCP receivers discard any duplicate packets without issuing an acknowledg-

ment. This is not true for duplicate pure ACKs. A pure ACK is defined as a zero

length packet, i.e. only a TCP header with the ACK flag set. When TCP receives

duplicate pure ACK’s, it assumes a packet was lost, and needs to be retransmitted.

The custodial retransmission of pure ACKs needs special attention. Lost ACKs are
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acceptable in TCP. As the buffer is retransmitted repeatedly, the ACK is sent only

twice and then discarded. The repeated sending of an acknowledgment has semantic

implications on congestion control algorithms. Furthermore, acknowledgments are

cumulative so losing a few is insignificant.

Another oddity discovered in prototyping is the loitering packet. The last packet

sent before a lull in conversation and the final ACK of the conversation are curious

cases. These packets are not ACK’d and therefore are not removed from the buffers.

If these are pure ACKs, they are removed after two retransmissions. These loitering

packets tend to be pure ACKs and are eliminated after two retransmissions. If custody

is not taken for the flow these packets can hang around for some time and may cause

custody to be taken. Periodically the buffer is investigated for this loitering packet.

If it qualifies as a loitering packet it is removed.

3.4.8 Security Considerations. Information security is a three fold con-

struct consisting of confidentiality, integrity, and availability. Encryption protects

confidentiality. Asymmetric encryption techniques provide a mechanism for protect-

ing integrity. For example, signing an email address with an individual’s certificate.

The message is essentially guaranteed to be from the holder of the certificate and

essentially guaranteed to be free of tampering. Availability is addressed using redun-

dant systems, backups, and mechanisms designed to avoid resource depletion. The

focus of this thesis is not security; however below each of these aspects are briefly

discussed.

The first line of defense in securing a network is using encryption. This encryp-

tion occurs at the data link layer, the network layer, and at the application layer. The

802.11 encryption such as WEP and WPA encrypts everything in the packet except

the Ethernet header. This header contains the MAC addresses that are essential to

the successful transmission of the packets. IPSec runs at the network layer. The IP

payload is encrypted leaving the IP header open for routers to read. SSL is an example
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of application layer encryption. In this case, the TCP payload is encrypted; leaving

the TCP header, such as the ACK, SEQ, flags, and ports available for inspection.

The routers proposed in this thesis require the ability to inspect the TCP header.

An encryption method such as IPSec breaks this unless the routers are doing point to

point IPSec between each other. This allows the encrypted packets to be unencrypted,

inspected, stored, re-encrypted, and finally forwarded. Data Link Layer encryption,

by its nature, is point to point. Therefore this method will have no effect on the

prescribed packages as the packets are decrypted before moving up the network stack.

Application layer encryption strictly affects the payload of the packets; therefore not

affecting the function of the routers.

Fabricating and injecting IACKs into the communication stream presents secu-

rity concerns; primarily concerns of integrity. The IACK is spoofed with the receiver’s

IP address and appears in all respects to be from the receiver even though, logically,

the receiver never generates an IACK. As currently designed, there is no indication

where the IACK originated. These packets could be falsely generated by a malicious

router along the path of communication. The simple attack is to IACK the sender

while never forwarding the packets.

Other security concerns manifest from the temporary storage of the packets. If

these packets are not encrypted with end-to-end techniques, the packets are stored

free for the taking. Trouble occurs if the node is physically compromised by falling

into the adversary’s hands. Alternatively if a malicious node is trusted, the traffic is

compromised.

All significant security decisions come down to trade-offs between competing

interests. The proposed model in this thesis provides increased availability. The

increased throughput across troubled link makes the link more available than it is

otherwise. Initially, without countermeasures, this comes at the cost of the issues

outlined above. Further consideration and investigation should relieve the impact of

these effects.
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IV. Analysis Link Wink and Strategic Buffering in TCP

4.1 Overview

This chapter details and analyzes the results of the experiments. This chapter

first discusses the specifics of the testbed experiments. The first experiment trans-

mits a file using different TCP congestion control algorithms over a troubled link.

The second experiment transmits the same file using TCP and strategic buffering

with retransmission over the same troubled link. The variables and the factors of the

experiments are outlined including data collection and organization. The graphs of

the results without buffering and retransmission are presented, analyzed, and contex-

tualized. The model presented in Chapter Three is used to predict the behavior of the

strategic buffering and retransmission. This prediction is compared with the results

of using strategic buffering. During this discussion some specific points of interest

in the data are visited and discussed. Finally the performance gains using strategic

buffering are presented.

4.2 Testing

The purpose of the testing is three-fold: to understand the performance implica-

tions of link wink on the different congestion control algorithms and to demonstrate

the performance benefits of strategic buffering in the presence of link wink and to

compare the testbed results to the mathematical model.

The testing takes place on four PCs with the following specifications, shown in

Figure 3.11. Each node is connected to the next mode using a 100 Mbit Ethernet

switch creating a chain similar to a predetermined route. Each node has Click installed

and configured with a Click configuration file.

The private IP networks created between each node are described in the dia-

gram. An IP overlay network is created across all four nodes providing a mechanism

for each node to communicate to each node.

Additionally a back channel network is established using a 100 Mbit Ethernet

switch to which all the PCs are connected. This back channel is used to execute the
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test scripts and to gather data from the experiment. The soft router Click is unaware

of the back channel network. The back channel network traffic sends insignificant

amounts of commands and data. All of which is sent between experimental trials.

The test simply transfers a 20MB file from Node 1 to Node 4. Node 1 runs

a small command line program that reads a directory of files into memory. This

program listens on a TCP port for a request of a file, similar to a web server. The

file is sent in response.

Node 4 runs a simple program similar in function to a web browser. This

program is a command line program specifying an IP, port, file name to request, and

a number of iterations. Node 4 for runs a bash script to coordinate and automate

the tests. This script, as described in the scenarios below, sets the TCP send and

receive windows on Node 1 and Node 4 to 60MB. This script loops through the various

winking probabilities, winking intervals, and turns on custody as needed in Node 2.

Inside the loops the script requests the file to be transferred from Node 1 to Node 4.

4.3 Factors

This experiment has several possible factors, outlined in the following list. These

are items that have potential to affect the outcome of the experiment. Each is dis-

cussed briefly in no particular order. The factors selected for examination in this

thesis are congestion control algorithm, probability of wink, and length of wink.

Number of nodes - The number of nodes in the route effects the time to send

the file. Additional transmission and queuing delays are incurred. Four nodes

are used in this experiment.

File size - The length of the file directly effects the time required to transmit.

A single file of approximately 20MB is used throughout this thesis.

Transmission rate of NICs - The speed of the network cards used directly

effects the time required to transmit. In this thesis, each PC uses 100Mbit

Ethernet NICs.
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Round trip time - The round trip time affects the number of packets in flight.

This number could effect how the congestion control algorithms behave.

Choice of network media - Some media are shared. Some are subject to

more outside interference. Choice of media effects the time to transmit. Each

PC is connected to the next with an Ethernet cable dedicated only to the two

connected PCs.

Send window size - The size of the TCP transmission window effects perfor-

mance. Linux provides a means of setting the minimum, default, and maximum

window size. For this thesis the minimum and default are left unchanged, but

the maximum is set to 60MB.

Congestion control algorithm - Performance of congestion control algo-

rithms varies under different conditions. Each is designed to perform best under

specified conditions. This is a factor in this thesis.

Socket configuration - In opening a socket, various options exist for tuning

the socket for optimal performance as needed. In addition to options, the send-

ing and receiving of data can be handled in a variety of fashions. In this thesis

the only option set is the maximum window size. The read() and write() C

functions are implemented in a generally simple method.

Other traffic - The load on the network effects the transmission time. Con-

gestion and contention increases delay. In this thesis there is no other traffic on

the network.

Size of retransmission blast - The unsophisticated method of retransmis-

sion used in this thesis sends everything in the buffer up to a constant size in

order to avoid overloading the NIC. Varying this amount effects the transmis-

sion time. If only one packet is sent at a time performance will suffer. If too

many are sent the time is wasted sending packets that are lost in the NIC.

Retransmission frequency - In this thesis the buffer is retransmitted every

10 milliseconds. This was determined by trial and error in the present testbed
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environment. It primarily depends on the bandwidth provided by the NIC.

More and less than 10ms yielded longer times in prototyping the test.

Size of buffers - This thesis assumes an unlimited amount of space for buffer

storage. The thesis suggests using large buffers, but infinite is excessive. Fairness

and performance have to be considered in a multi-flow environment. This thesis

has only a single flow with all the buffer space required.

Get more data from source - Throughput over the troubled link is maxi-

mized only if the buffer is never empty. Congestion control algorithms, properly

written, could keep the buffer full. In the extreme case, if the link is down long

enough to transmit the entire file into the buffer, it should.

Implications of IACKS - Once a packet arrives in the buffer, the source

need not send it again. This functionality is implemented using Intermediate

Acknowledgments. This uses cumulative IACKs. Not using them or optimally

implementing them affects performance.

Probability of winking - This is a factor in this thesis. The likelihood of the

link being available directly effects the time to transmit. Period of winking The

”arrival” of the outages effects the time of transmission. This thesis assumes a

Poison arrival process.

Interval of winking - This is a factor in this thesis. The length of time the

link is down directly effects the time of transmission.

Direction of winking - The outage of the link occurs in one or two directions.

One direction allows for data packets to be dropped while the acknowledgments

are allowed to passed, or vice versa. A bi-directional link drops both data packets

and acknowledgments during an outage. This thesis uses a bi-directional wink.

Location of winking - The location of the wink has potential to effect the

time of transmission. It is either closer to the source or to the destination. This

thesis assumes the wink is between Node 2 and Node 3 in a four node route.
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Custody - The condition under which the custody of retransmission occurs

affects the time of transmission. This thesis assumes full time custody regardless

of the environment. It is not efficient when the link is generally available.

4.4 Congestion Control Algorithms

The congestion control algorithms used include all of the algorithms that ship

with Linux 2.6.14.7. These are Reno, Vegas, Hybla, Highspeed, H-TCP, Scalable,

Westwood, and BIC. They are described in Chapter Two. Each manipulates the

TCP congestion control in differently. In addition to these eight algorithms, a ninth

one is introduced called Unfair that attempts to maximize the congestion window. A

more detailed discussed is covered Chapter Three. The intent of investigating each of

these is to understand if there exists a difference in their performance under stress.

4.5 Trials

Each trial is a transmission of the file. Under perfect conditions, the 20MB file

takes 1.86 seconds to transmit. This time is defined to be the total time from the

moment the first byte is received until the moment just after the last byte is received.

Perfect conditions is defined has no winking; p = 0 and i = 0. For each data point

(p,i) the file is transmitted 30 times for each congestion control algorithm. With 9

algorithms, 477 data points, 30 trials, and estimated average 10 seconds per trial, the

total estimated runtime (9 ·477 ·30 ·10) is approximately 357 hours. In order to reduce

this estimate, if any trial exceed 600 seconds the rest of the 30 trials are canceled.

This exception should be rare and only affect the data points in the most extreme

cases. This is also the motivation for only investigating p ¡= 0.40.

4.6 Results with no Custodial Buffers

The initial qualitative analysis on the congestion control algorithms appears

that they generally behave the same with the exception of Highspeed. Looking at

Figure 4.1, the mean transmit time for each congestion control algorithms across
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the probabilities, excluding Highspeed, each increases at a similar rate. At 0.05,

the transmit time is 3 seconds increasing up to 10 seconds at 0.40. The following

graph visually displays the congestion control algorithm’s behavior across increasing

probabilities. The variances across the probabilities increase at similar rates. It is

worth noting that the variances all increase to a level that having only 30 samples is

not sufficient to have a tight confidence interval.

Further observations come from the performance of the congestion control al-

gorithm across the intervals. Again with the exception of Highspeed, all of the algo-

rithms’ means increase as the intervals get to shortest of lengths. Figure 4.2 visually

demonstrates the similarity each algorithm has to each other. It is contemplated that

the extremely short round trip time may prevent the algorithms from differentiating

themselves. Highspeed stands out from the other algorithms. The transmit times

suffer significantly, consistently 3 times higher from 0.05 to 0.40. This can be seen in

figures 4.1 and 4.2. Further investigation into this algorithm is needed to understand

why this occurs.

Figure 4.1: Average observed time of file transmission plotted
for probabilities aggregated across all interval lengths.
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Figure 4.2: Average observed time of file transmission plotted
for interval lengths aggregated across all probabilities.

Looking at the variance across intervals, nearly half are over 100 and several

are over 1000. These higher variances do not necessarily increase as the interval gets

shorter. The sporadic nature of the data suggests more samples are needed in order

to have a tighter confidence on the means. This exercise is left to future simulation

investigation.

Removing Highspeed from the calculation and not displaying the smallest inter-

vals to get good scaling, Figure 4.3 is the mean of all congestion control algorithms

(sans Highspeed) and all probabilities broken down by intervals. Two curious low

spots exist around 200ms and 500-600ms. These two valleys in the graph match the

valleys witnessed in Chapter Three’s mathematical model. These valleys have the

lowest averages and the tightest confidence intervals of the dataset.

TCP has retransmit timers triggering at 200ms and 500ms. These valleys are

likely to be caused by these timers as demonstrated by the model and the data. The

length of the link wink interval and the TCP timers each create a frequency. At
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these two low spots, a sort of harmony exists between the two while the other interval

lengths create a dissonance with TCP timer frequency. Figure 4.4 demonstrates that

the valley exist even at the worst probability of 0.40.

Figure 4.3: Average time of file transmission for intervals ag-
gregated across all probabilities and all algorithms.

Figure 4.4: Average time of file transmission for intervals at
probability 0.4 aggregated across all algorithms.
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Each of the following graphs (Figures 4.5– 4.13) is the set of trials for each of the

congestion control algorithms. The z-axis is average send time for the file over 30 runs

for each (p,i) pairs. The long x-axis is the interval. The short y-axis is the probability.

The z-axis is cut off at a maximum of 60 to visually scale the graph. This brings out

the terrain of the graph better. The highest spikes occur at the highest p (0.40) and

the lowest i (40). The following table shows these highest values that are eliminated

from the graphs. One last footnote, the worst area of Highspeed was taking too long

to reasonably test. This area is from 0.30 < p ≤ 0.40 and 40 ≤ i ≤ 160.

Table 4.1: Data too high to plot in graphs.

Algorithm Xmt time (s)
BIC 217.6

Scalable 105.9
Unfair 275.0

Highspeed -

Figure 4.5: Average observed time of file transmission plotted
for link wink probability and interval length using BIC conges-
tion control algorithm.
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Figure 4.6: Average observed time of file transmission plotted
for link wink probability and interval length using Highspeed
congestion control algorithm.

Figure 4.7: Average observed time of file transmission plot-
ted for link wink probability and interval length using H-TCP
congestion control algorithm.
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Figure 4.8: Average observed time of file transmission plot-
ted for link wink probability and interval length using Hybla
congestion control algorithm.

Figure 4.9: Average observed time of file transmission plotted
for link wink probability and interval length using Reno conges-
tion control algorithm.
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Figure 4.10: Average observed time of file transmission plot-
ted for link wink probability and interval length using Scalable
congestion control algorithm.

Figure 4.11: Average observed time of file transmission plot-
ted for link wink probability and interval length using Unfair
congestion control algorithm.
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Figure 4.12: Average observed time of file transmission plot-
ted for link wink probability and interval length using Vegas
congestion control algorithm.

Figure 4.13: Average observed time of file transmission plot-
ted for link wink probability and interval length using Westwood
congestion control algorithm.
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Qualitatively investigating the frequency of send times shows smallest time

greater than 1.86 is near 2.1 seconds, 200ms more. The next lowest times center

around 2.25 seconds, 500ms more. This is discussed in Chapter 3 and is incorporated

into the model. The following graphs are the complete data demonstrating this part

of the model. The model adjustments were based on some preliminary data collected

during prototyping.

The shortest transmit times seen for the lower intervals for i > 40 and i ≤ 200 is

2.1 seconds (see Figure 4.14. This demonstrates that the minimal transmission time

with at least on retransmission is 200ms. For 200 < i ≤ 500, the smallest transmission

times is at 2.5 seconds; Figure 4.15. For i > 500, the smallest significant time is 3.3

seconds; Figure 4.16.

The model consistently underestimates the values where p is low, like 0.05. It

also underestimates the regions where p is high, like 0.40, and i is low, such as 40.

Further refining the model is left for future consideration. It appears all of the costs

are not included or are underestimated by some of the assumptions made in Chapter

Three.

In particular, as intervals fail and are successfully retransmitted, the moment

the retransmission starts is not likely to be exactly at the beginning of an interval.

On average it starts half way through the interval. Since only part of the interval

is available for retransmission additional interval are required for every successful

retransmission.

The graph of the model does appear to model the graphs generated by the

testbed data for the various congestion control algorithms. The graph also depicts a

couple low spots near intervals 200ms and 500ms. These low spots are represented in

the testbed graphs as well however they are not exactly at 200ms and 500ms. The

peaks are generally represented also. Certain as the intervals get smaller the value

increases.
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Figure 4.14: Counts of observed transmission times with in-
terval lengths less than or equal to 200ms.

Figure 4.15: Counts of observed transmission times with inter-
val lengths greater than 200ms and less than or equal to 500ms.
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Figure 4.16: Counts of observed transmission times with in-
terval lengths greater than 1100ms.

While the shapes of the graphs are generally the same, the values of the model

are lower than the actual data. The values in the low i, and high p region are an

order of magnitude short. The high i region appears close. The assumption that the

number of intervals is strictly tied to the interval length appears to be weak. The

number of intervals required to send the file needs to be tied to the probability too.

For example,

n =
tperfect

i
· 1

p
(4.1)

or

n =
tperfect

i
· 1

p2
(4.2)

would increase the number significantly. This was attempted but an overflow

occurred. Instead, using

n =
tperfect

i
· (1 + p) (4.3)
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yielded the following graph. Further model refinement is left for future investigation.

The variances witnessed in the data grew substantially as the probability in-

creased. Accurately modeling the variance would further demonstrate the accuracy

of the model. This type of model is a mixture distribution. According to Statistical

Inference [6], the expected value and the expected variance are shown here where X

is the binomial distribution and Y is the geometric distribution.

E[X] = E[E[X|Y ]] (4.4)

V arX = E[V ar(X|Y )] + V ar(E[X|Y ]) (4.5)

The complex nature of these calculations are out of the scope of this thesis. It is

noted for future investigation.

4.7 Results with Custodial Buffering

A second set of experiments was run to understand the implications of strategic

buffering and retransmission in a challenged TCP stream. Due to the time constraints

of this thesis only 3 of the 9 congestion control algorithms are considered. The prob-

ability and intervals tested remain the same. At each of these points 30 trials are

run.

The three algorithms investigated are Reno, BIC, and Unfair. Reno was selected

because it is the closest to the original TCP. BIC was selected because it is the default

congestion control algorithm used in Linux at the time of this thesis. Unfair was

selected because it was crafted with the intention of keeping the buffer as full as

possible by never adjusting the congestion window.

As described in Chapter Three, the retransmission scheme employed in the

buffering node is not efficient. With little to no link wink it was expected that

the insertion of full time custodial retransmission would be worse than the regular
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TCP. However as the link wink gets worse, it is anticipated the new mechanism will

outperform TCP.

Using the described scheme, the file takes around 4 seconds to send without any

wink: BIC 4.7s, Reno 4.6s, and Unfair 3.6s. This is expected to be greater than 1.86s

due to the inefficient retransmission scheme in the buffering node. Two points are to

be made here. One, as better retransmission scheme reduces this number. Two, when

there is no wink, or little wink, employing custody is not optimal. Knowing when to

turn it on and off is critical to optimization. Both of these points are left to further

investigation.

In figures 4.17, 4.18, and 4.19, several points are of interest. Unfair appears to

standout from the other two. Unfair appears to look as to match the model presented

in Chapter Three, see Figure 4.20. All three increase as the probability increases.

BIC and Reno peak at 200ms. All three appear to do the same at the lowest interval

and the highest probability.

Unfair continues to keep the buffer full enough that as it retransmits, it does not

run out of packets. In other words, the buffer appears to have fresh packets to send

when it needs them. The model assumes the buffers are occupied and the empirical

data for Unfair appears to reflect this. Unfair outperformed the other two algorithms

at all points. In the shorter intervals, Unfair with custody also beat Unfair without

custody (Figure 4.11). From about 300ms and up, it outperformed the non-custodial

case by approximately 50%. At 620ms, the non-custodial was better than the custodial

case 3.7 to 5.8. Although the points where the non-custodial times beat the custodial

times are curiously interesting, optimizing the retransmission scheme may change this.

More testing is required here. There is significance in the lowest interval (40ms) and

the highest probability (0.40) point where the improvement went from 280ms to 7ms.

This was accomplished using a sub-optimal retransmission scheme.

At the shortest interval and highest probability, both Reno and BIC show sig-

nificant improvement. It took less than 10ms to send compared to 217ms for BIC and
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Figure 4.17: BIC Mean Transmission Time with custody.

Figure 4.18: Reno Mean Transmission Time with custody.
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Figure 4.19: Unfair Mean Transmission Time with custody.

Figure 4.20: Predicted Unfair Transmission Time with cus-
tody. Mathematical model delay plus baseline send of 3.6 sec-
onds.
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27ms for Reno. BIC and Reno in the 40ms interval follow Unfair and the above ana-

lytical model. Compared to BIC, the buffer must have a steady flow of fresh packets.

Both perform the worst with custody at 260ms. Two possibilities are contemplated

to cause this. One, the congestion window is too small to keep the buffer loaded with

packets. Or two, the 200ms timer in TCP is somehow being retransmitting the same

packets over and over. Recording and inspecting the specific traffic flows needs to be

investigated to answer this question. At the high probability and from 260ms and up,

BIC and Reno both perform worse, nearly double, than they do without custody, see

Figure 4.5 and 4.9 respectively.

4.8 Performance Improvements

In the scenario without custody, the transmission times spike in the area of high

probability and short intervals for all three congestion control algorithms. Consider

the worst case scenarios of p=0.40. In Figure 4.21, the dashed line represents BIC

without custodial buffering. Notice at the shortest interval (i=40) spikes up and out

of the graph up to 193 seconds. The graph is truncated for scaling purposes. In

Figure 4.22, the dashed line represents Reno without custodial buffering. While it

does not spike as high as BIC, it does reach near 40 seconds to send the 20MB file at

some of the shorter intervals. It is noted even though 30 trials per data point were

run, the variances grew rapidly as the probability p increased up to 0.40.

In each graph, the thin, solid line represents how each respective algorithm per-

formed employing full-time custodial buffering just before the winking link. Notice

the significant decrease in transmission times where the interval length of the wink is

small (i < 240). Also noticed at (i > 240), the custodial buffering performed worse

than without it. Some of this poor performance is blamed on the simple retransmis-

sion scheme. It also demonstrates certain conditions call for custodial buffering and

retransmission and others do not. However, the most significant contributing factor

to the poor performance is that the buffering node’s buffer did not have fresh packets

to retransmit.
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Figure 4.21: BIC with and without cus-
tody only for p=0.4. Note at i=40, the
value is 193.

Figure 4.22: Reno with and without cus-
tody only for p=0.4.
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In each graph, the bold, solid line represents the performance of the Unfair

algorithm employing full-time custodial buffering. In nearly all cases, this combination

outperforms the others. This combination appears consistently transmit around 6

seconds across all intervals. Because Unfair does not shrink its congestion window

in response to the lack of acknowledgements, it does not retreat to sending a small

amount of data. This keeps the buffering node’s buffer full enough of fresh packets.

For optimization, a node taking custody must communicate to the source node to

increase its transmission window instead of shrinking it.

4.9 Summary

This chapter has covered the data collected both with and without strategic

custodial buffering. The differences and similarities of the congestion control algo-

rithms’ behavior in the presence of link wink. The mathematical model qualitatively

demonstrates the behavior of TCP’s retransmission scheme in the presence of link

wink. Using this model, the behavior of strategic custodial buffering is predicted.

The results using the Unfair congestion control algorithm closely match the predic-

tions. The next chapter uses these results to highlight the conclusions and future

research.
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V. Conclusions and Future Research

5.1 Overview

This chapter concludes and discusses the implications of this thesis. The conclu-

sions focus on the benefits of custodial buffering and retransmission and the usefulness

of smart, resourceful routers. Following the conclusions, future research items are dis-

cussed.

5.2 Conclusions

5.2.1 Performance. This thesis demonstrates that where TCP performs

poorly under certain challenged conditions which we anticipate to be common in sce-

narios of interest, the use of custodial buffering and retransmission improves TCP

significantly while retaining desirable properties of reliable delivery and flow control.

The results from Chapter Four show that when the route of a TCP flow has a high

probability (0.4 or greater) of breaking for short intervals (40ms), TCP takes 20-100

times longer to complete transmissions. Most of this time is spent idle as TCP’s

congestion control timer increases exponentially between failed retransmissions. This

thesis demonstrates that these complications can be overcome by strategically insert-

ing a proactive agent in the route. By copying the flow’s traffic into a buffer, the agent

is capable of intense retransmission the moment a forward link experiences trouble.

This strategy only required 3-4 times longer to transmit the file at the worst of con-

ditions: short, intense winking. This is a significant improvement from 20-100 times

longer. In theory this method is capable of pushing transmissions through troubled

routes with failures much greater than 50%.

5.2.2 Delay Tolerant Traffic. Not only does retransmission provide improve-

ments, but the simple buffering of traffic allows for expanded possibilities. Delay tol-

erant traffic is traffic that does not have to arrive immediately. This traffic can be

buffered in the middle of the route and held for some period of time before it expires.

Examples of traffic that need a guarantee of arrival but does not have to arrive quickly
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include email, the sharing of large datasets, and system backups. The type of delay is

defined by the use of the data. Data gathered either from remote sensors or network

nodes is useful data but does not require instantaneous delivery.

Currently, data with a tolerance for delay is routinely dropped from intermediate

routers whenever the traffic demand exceeds transmission capability. The assumption

is that if it can withstand delay then let the source retransmit the traffic. This thesis

challenges this assumption by suggesting this traffic should be buffered in intermediate

nodes, if possible, instead of being dropped. The network may have already incurred

great cost in bringing the data this far, and will have to do so again if it is dropped.

If there is storage available to the node, then storing the data may prove far more

efficient. Acknowledgments can be returned to the source, preventing unnecessary

retransmissions and informing the source of the progress of the data and perhaps

anticipation of future progress

An important issue to examine is the condition that requires this delay tolerant

traffic be dropped. The only reason for dropping any traffic is congestion, i.e., insuf-

ficient transport capability for the current load. If a prioritization scheme is in place

which places delay sensitive traffic at higher priority than delay tolerant traffic, then

delay tolerant (lower priority) traffic is dropped before delay sensitive (high priority)

traffic. The logical, detrimental conclusion to this is that when the high priority traf-

fic is decongested or gone, there is little to no low priority traffic available to send.

From the perspective of the delay tolerant traffic, the hope is that the source is lucky

enough to retransmit during periods of little high priority traffic. Because of the delay

associated with re-transmitting the data back to the point at which it was lost, much

potential bandwidth is wasted, i.e., if the node at which the data was lost had an

unused period, this bandwidth could be used.

The custodial buffering alleviates this problem. This thesis asserts that (1) data

that can’t be sent and (2) data that fails to be sent, are semantically equivalent. The

data is not successfully transmitted. The model of link wink presented in Chapter
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Three and tested in Chapter Four is semantically equivalent to situations (1) and

(2). Whether a packet is dropped due to congestion, consumed by a lossy channel,

or simply held indefinitely due to its priority level, it is semantically identical from

the perspective of the sender and receiver. Thus, the availability of the channel to a

flow of traffic is semantically general. The transmission time of a flow does not care

whether packets are evaporating into the ether, rotting in the bit bucket, or stuck

sideways in the network card. Considering the link wink to be the presence of high

priority traffic, this thesis demonstrates that having low priority traffic available to

for transmission immediately during periods of little high priority traffic significantly

improves the transmission time of the low priority traffic.

5.2.3 Valleys. Further implications for the experiments in the thesis are

found in some ”sweet spots” in the TCP timers. In all of the congestion control al-

gorithms investigated, certain winking intervals demonstrated that the transmissions

did not suffer as much as expected, even at high probabilities of winking. Specif-

ically intervals in the range of 200-250ms and 500-600ms demonstrated at a high

probability (0.4) that the average time to send was only 2-3 times as long. The

other intervals were consistently higher. The frequency of these interesting winking

intervals coincides with frequency of TCP’s retransmission timers. This harmonic

alignment represents the moments when TCP got ”lucky” and transmitted when the

wink ended.

This has a couple of useful implications. If the environment is such that the

winks of the link are exist and are controllable, the timing and duration can be ad-

justed such that their frequency coincides with these ”sweet spots” in TCP’s timers.

With custodial buffering, the flows’ transmission times might be optimized in a chal-

lenged environment, keeping just barely enough low priority traffic available in in-

termediate nodes to capitalize on periods of low high priority traffic, or equivalently

periods of high available bandwidth. It is contemplated that with proper calculations

this could be used in the scheduling algorithms used in transmitting flows from vari-
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ous priority queues. If a router is using a round robin algorithm to pull from various

queues, the length of time and how often each queue is visited can be optimized to

minimize all of the flows transmission times and/or the size of buffers at intermediate

nodes. As a counter intuitive example, consider that a flow may need to be trans-

mitted less often in order to get better throughput. In certain conditions, the data

suggests that sending it every 200ms is more productive than sending it every 100ms

and orders of magnitude better than sending it every 40ms. While these results are

highly sensitive to the models and assumptions used in these experiments, the pres-

ence of such ”sweet spots” illustrates the possibility for considerable optimization.

5.2.4 Smart Routers. The most general implication of this thesis is that en-

abling routers with more resources and more sophisticated functionality is beneficial

in the scenarios outlined. The driving force in router design today is strictly minimiz-

ing the delay experienced by traffic passing through the router. Additionally if the

router is too busy the traffic is dropped. It is suggested that overall performance can

be increased if some processing time and storage capability is dedicated to handling

the traffic smarter instead of quicker. These additional resources such as storage and

processing units must keep the common case fast. If there is no congestion, no priority

starvation, or no troubled data links then minimizing delay is the number one factor.

Smart routers need to consider the common case outside of the common case.

Smart routers can increase performance if provided with the means and the informa-

tion to make and implement good decisions. A smart router needs a large amount of

storage for buffering the data flows. The smart router needs co-processing to manage

these buffers. It also needs some global and some local knowledge. The local knowl-

edge comes from analyzing all of the traffic passing through the router. Analysis of the

flows occurs at the Transport Layer. The local knowledge also comes from exchang-

ing this higher level knowledge with its neighbors. This information includes forward

route conditions such as buffer capacities and throughput performance. Globally, the

network at large can provide useful information such as hints or explicit knowledge of

85



large scale network conditions such as downstream issues or alternate routes. Global

instructions can include changes in priorities or specific commands to decrease or to

increase transmission rates to coordinate several smart routers to maximize perfor-

mance.

5.3 Future Research

In the course of this thesis, several assumptions were made. Several factors

such as round trip time, number of nodes, and file size were held constant. Many of

these factors need to be understood more. Other points of interest useful for future

investigation include: retransmission strategy, when to take custody, richer congestion

control algorithms, and the mathematical models. Each area is discussed below.

5.3.1 Retransmission Strategy. The retransmission strategy presented in

this thesis is rigid and unsophisticated. It simply sends a fixed amount of pack-

ets periodically. The entire buffer (up to a static pre-defined maximum amount) is

transmitted every retransmission cycle. Further investigation into how often to send

packets to overcome a winking link should increase the performance. This strategy

involves many aspects including but not limited to bandwidth, volume of other flows,

frequency and duration of the wink and downstream congestion. Understanding the

conflict between fairness (between flows or between nodes in a shared medium) and

the need to overcome the winking of a particular is very important.

The size of the retransmission is related to the frequency of retransmission.

Many parameters are available to influence this calculation: size of the buffer, defined

capacity of the link, perceived capacity of the link, rate of data arrival, other flow

usage of the link, other buffer capacities, flow priority, receiver’s suggested window

size, link behavior, round trip time, and explicit external notifications. Each of these

parameters must be monitored and computed somehow, per flow, in order to assist

in optimizing the amount and frequency of retransmission over a given link.
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5.3.2 Custody. Under good conditions, the overhead of buffering and re-

transmission degrades performance. Therefore, we believe that under good conditions

custody of the flow is best avoided. As conditions worsen a crossover point exists at

which taking custody of the flow increases performance. Determining the conditions

under which to take custody requires further research. TCP has limited information

about the status of the links along the route. The lower and closer data link layer is in

a much better position to provide information about the status of the link. The inter-

layer solution requires further research. Additionally global network monitors may be

able to compile information useful in determining when to take custody. A ”network

weatherman” could be constructed which would create and maintain knowledge of

the current status and the forecast such that this information can be provided to the

router. Custody could then be directed ahead of the ”storm”. Similarly, determining

when to halt custody is an open concern. Because custody hurts performance under

good conditions, knowing when to stop is just as critical to optimization. It may

also be possible to reduce the buffering overhead to point at which custody is always

preferred, negating the need for these decisions.

A route may have multiple nodes taking custody over multiple links. Under-

standing the performance and semantic implications of using more than one strategic

buffer in a route is important. Furthermore determining how many hops away from

a wink a buffering node can be would provide information on determining how many

buffering nodes are needed in a network to provide ”complete” coverage.

In the short term, establishing nodes on both sides of the wink, working together,

to overcome the wink in both directions is important. Each node can absorb the

repeated transmissions (and acknowledgments from the other) to overcome the bad

link and then forward the traffic away from the link more fairly. This situation is better

than what is presented in this thesis. If both nodes are attempting to overcome the

wink, they must work together so as to not blast packets at each other.
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A bad link also presents difficulty in exchanging not only data, but handshaking

packets and negotiating packets, such as RIP. Perhaps a back channel is available for

communication which can accommodate control traffic. This back channel could be a

separate form of communication or could be a separate route through the network. If

the alternative channel exists, consideration must be given as to whether the channel

could be used effectively. For example a slower more reliable channel may be more

efficient than a fast unreliable one.

Of serious concern is the potential for loss of a buffering node. If a node takes

custody and notifies the source and proceeds to accumulate a generous, if not entire,

portion of the flow in its buffer and then is lost or destroyed, the source will not

retransmit the message. The intermediate node has committed itself to getting the

data to the destination. The source is not to send the data again because an agent

has assumed responsibility. Some mechanism at the source or the stranded node must

be developed to detect the loss of an intermediate buffer and determine what actions

to take.

This is also a serious security concern. As described in Chapter Three, security

needs to be addressed. The cornerstones of information security: confidentiality,

integrity, and availability are all ripe for research in strategic buffering.

One final custodial area open for pursuit is a leader election protocol. Along a

route with more than one strategic buffer node, more than one node may indepen-

dently take custody. To scale properly each node should keep state for nodes further

than one hop away. The various nodes need to communicate in some fashion to nego-

tiate which is to take control. During the prototyping of the testbed, some discussion

looked into a solution using the TCP data packets themselves. The leader algorithm

should pick the buffering node furthest from source and closest to the bad link. The

TCP packet’s TTL field provides a monotonically decreasing value that might be use-

ful in determining where along the path a particular node is. More research is need

here.

88



5.3.3 Congestion Control. As presented in this thesis, differences exist be-

tween the congestion control algorithms in the face of winking links; whether custody

is taken or not. The algorithm Highspeed suffered significantly compared to the others

where there was no custody. The algorithm created for this thesis, Unfair, outper-

forms the others with custody; a natural result given that Highspeed was optimized

for a very different situation and Unfair was somewhat optimized for this situation.

Research into creating a congestion control algorithm that performs well under both

conditions is needed.

If custodial retransmission is in effect, the source should continue to feed pack-

ets to the node so that the buffer always a fresh set of packets to send when the

opportunity presents itself. In the IACK packet, described in Chapter Three, some

information can be provided to the source. Specifically the window size field in the

packet could be used to request more packets or fewer packets depending on the

conditions in the buffering node.

During the development of this testbed, it was contemplated that SACKs could

replace the use of IACKs. Originally defined in RFCs 1072, 2018, and 2883, Selective

Acknowledgments (SACKs) are altered acknowledgment packets intended to increase

the performance of TCP. They are implemented as TCP options stored in the TCP

header. The data included in the header defines ranges of sequence numbers that the

destination has received. This allows for gaps in sequence numbers to be communi-

cated to the source. The source is then able to send only the missing packets and not

the entire window.

More importantly, the sequence numbers indicated as having been received by

the destination are not truly acknowledged as if a regular ACK had been sent. These

packets are marked as SACKed in the source and not retransmitted. Furthermore,

they are discounted from the congestion window, i.e. the window slides. This is

semantically the same as the IACK described in Chapter Three, but may allow today’s

implementations of TCP (that support SACK) to be used with out modification. This
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presents an area for future consideration. One reason SACKs were not initially used

is that under certain conditions the packet marked as SACK’d is reset to not SACK’d.

Further trouble occurred in considering a chain of nodes having custody of a flow.

Certain combinations of SACK ranges create a loss of packets between the custodial

nodes. Due to the time constraint of this thesis the straightforward IACK approach

was implemented. Again, using SACKs offers a means of implementing strategic

buffering without changing TCP in the source node. This helps to honor the end-

to-end approach. Our strategic buffering and retransmitting could be implemented

without actively changing the end points and may work with existing congestion

control algorithms.

5.3.4 Mathematical Model. Although topographically similar, the math-

ematical model presented in Chapter Four consistently underestimates the values

seen in the testbed. The probability functions accurately reflect much of the TCP

retransmission mechanism. The cost and number of retransmissions appear to be

underestimated. The real question seems to be: how many packets are really sent

in a successful interval? This thesis assumed the entire interval was full of successful

packets. Some of the intervals will have less than a full interval of packets. Addition-

ally from these under populated intervals, additional intervals of packets are needed

to make up the shortfall.

The minimum number of intervals to send a file was based on the perfect send

time of the file divided by the length of the interval. It is asserted that the real number

of successful intervals needed to send the file under imperfect conditions is more than

under perfect conditions. What this formula should be is an area of investigation. It

is likely tied to the probability of the link winking.

This thesis stopped with intervals as small as 40ms. This amount can approach

0 up to the point that the interval is as short as a packet. How small can the interval

be and the model still work? At some point it is contemplated that the link winking

90



interval will be so small that the current TCP retransmission scheme will perform

better. It is designed to handle the intermittent loss of a few packets.

5.4 Summary

In final conclusion, this thesis demonstrates ways to overcome some of TCP’s

over reaction to lost ACKs in challenged environments. This was accomplished by

inserting retransmission into the path between the source and the destination. This

research has created several other angles for future research ranging from mathemat-

ical analysis to protocol implementation to network performance.

Mobile networks an intricate part of Network Centric Operations. We are con-

fident that strategic buffering will play an important part in optimizing network uti-

lization of future mobile networks. In addition to utilization, TCP transmissions that

would otherwise be impossible to send, can be transmitted in harsh environments such

as the battlefield and disaster areas. The demands of Network Centric Operations

places on its infrastructure will grow. As the work in the thesis is refined more of

those demands will be met.
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