
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Cryptanalysis of Pseudorandom Number Generators in Wireless Cryptanalysis of Pseudorandom Number Generators in Wireless

Sensor Networks Sensor Networks

Kevin M. Finnigin

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Finnigin, Kevin M., "Cryptanalysis of Pseudorandom Number Generators in Wireless Sensor Networks"
(2006). Theses and Dissertations. 3470.
https://scholar.afit.edu/etd/3470

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F3470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3470?utm_source=scholar.afit.edu%2Fetd%2F3470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CRYPTANALYSIS OF PSEUDORANDOM NUMBER GENERATORS IN
WIRELESS SENSOR NETWORKS

THESIS

Kevin M. Finnigin, 1st Lt, USAF

AFIT/GIA/ENG/06-05

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GIA/ENG/06-05

CRYPTANALYSIS OF PSEUDORANDOM NUMBER GENERATORS IN
WIRELESS SENSOR NETWORKS

THESIS

Presented to the Faculty

Department of Computer and Electrical Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Kevin M. Finnigin, BS

1st Lt, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GIA/ENG/06-05

CRYPTANALYSIS OF PSEUDORANDOM NUMBER GENERATORS IN
WIRELESS SENSOR NETWORKS

Kevin M. Finnigin, BS

1st Lt, USAF

Approved:

/SIGNED/ 3/6/2006
____________________________________ ________
Barry E. Mullins, Ph.D., AFIT (Chairman) Date

/SIGNED/ 3/6/2006
____________________________________ ________
Henry B. Potoczny, Ph.D., AFIT (Member) Date

/SIGNED/ 3/6/2006
____________________________________ ________
Richard A. Raines, Ph.D., AFIT (Member) Date

iv

To Theresa,

for her love and support

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Barry Mullins,

for his guidance and support throughout the course of this thesis effort. The insight and

experience was certainly appreciated. I would, also, like to thank my sponsor, Mr. Neal

Ziring, from the National Security Agency for both the support and latitude provided to

me in this endeavor.

 Kevin M. Finnigin

 vi

Table of Contents

Page

Acknowledgments..v

Table of Contents... vi

List of Figures ..x

List of Tables ... xi

Abstract ... xii

I. Introduction ...1

1.1 Objectives...2

1.2 Implications..2

1.3 Preview...3

II. Background ...4

2.1 Introduction ..4

2.2 Distributed Sensor Networks ...4

2.2.1 Sensor Network Components .. 5

2.2.1.1 Mote Classes... 5

2.2.1.2 Resource Constraints.. 8

2.2.2 Popular Hardware and Software Platforms ... 8

2.2.2.1 Mica2.. 9

2.2.2.2 TinyOS .. 10

2.3 Security in Distributed Sensor Networks...11

2.3.1 Attacks and Vulnerabilities ... 11

2.3.2 Key Management .. 12

2.3.2.1 Shared Key Distribution Schemes .. 13

 vii

2.3.2.2 Public Key Distribution Schemes ... 15

2.3.3 Security Protocols in Distributed Sensor Networks 16

2.3.3.1 SPINS: Security Protocols for Sensor Networks 16

2.3.3.2 TinySec ... 20

2.3.3.3 Elliptic Curve Cryptography and EccM 2.0.. 21

2.4 Cryptanalysis..23

2.5 Random Number Generation ...24

2.5.1 Linear Feedback Shift Registers ... 25

2.5.2 Linear Congruential Generators .. 27

2.5.3 Cryptographically Secure PRNGs .. 27

2.6 Summary ...28

III. Methodology...29

3.1 Problem Definition...29

3.1.1 Goals and Hypothesis ... 29

3.1.2 Approach... 31

3.1.3 Assumptions and Limitations .. 32

3.2 System Boundaries...33

3.2.1 The Encryption Breaking System .. 34

3.2.2 The PRNG Performance System ... 35

3.3 System Services ...35

3.4 Workload..37

3.5 Performance Metrics ..38

 viii

3.6 Parameters ..38

3.6.1 The EBS System and Workload Parameters ... 39

3.6.2 The PPS System and Workload Parameters ... 40

3.7 Factors ..40

3.8 Evaluation Technique...42

3.9 Experimental Design..43

3.10 Analysis and Interpretation of Results ...44

3.11 Summary ..44

IV. Analysis and Results...46

4.1 Encryption Breaking System..46

4.1.1 RandomLFSR Analysis ... 46

4.1.2 EccM 2.0 Analysis... 48

4.1.3 Encryption Breaking System ... 51

4.1.3.1 The Expected Performance of EBS... 52

4.1.3.2 Results and Analysis of EBS Performance ... 53

4.2 PRNG Performance System...60

4.2.1 A Maximal Linear Feedback Shift Register .. 60

4.2.2 TinyOS 2.0’s Multiplicative Linear Congruential Generator 64

4.2.3 Performance of Alternatives ... 65

4.3 Summary ..66

V. Conclusions and Recommendations ..68

5.1 Restatement of the Problem and Conclusions..68

5.2 Contributions and Significance ..69

 ix

5.3 Recommendations for Future Research ...69

5.4 Summary ..71

Appendix A: Derivation of Equation Two...72

Appendix B: Computing the Average Private-Public Key Operation73

Appendix C: Data Tables...75

Appendix E: Optimization of Assembly..78

Appendix F: EBS Java Code ...80

Appendix F: MaximalLFSR Code ...115

Bibliography ..117

 x

List of Figures

Figure Page

1. A Hierarchical Structure for Wireless Sensor Network Components6

2. A Time-Release Key Chain for Source Authentication [PSW01]................................20

3. Diagram of an 8-bit Linear Feedback Shift Register ..26

4. The Encryption Breaking System ...34

5. The PRNG Performance System ..36

6. A Typical Distribution of the Numbers Produced by RandomLFSR...........................49

7. EccM 2.0 Algorithm for Generating the Private Key ...50

8. Average Times for Loading Key File for Each Mote ...54

9. The Correlation of RandomLFSR Sequence Lengths and Size of the Key Space

Assuming Motes are Addressed Sequentially..56

10. The Measured Time to Find Private Keys Versus Expected Time.............................57

11. The MaximalLFSR Function for Generating the Next Random Number62

12. Output of Program for Calculating Statistics of Time to Compute Private-Public Key

Operations ..73

13. Assembly Code for MaximalLFSR ..79

 xi

List of Tables

Table Page

1. Key Size Equivalencies for Desired Bits of Security ...22

2. The Parameters for the SUTs Categorized by System and Workload39

3. Factors and the Levels for the Systems Under Test..40

4. The Various Sequence Lengths Produced by TinyOS 1.1.0’s RandomLFSR..............47

5. Sequence Length of First 27 Sequential Mote IDs ...52

6. Expected Time to Identify a Private Key Versus Average File Load Time54

7. Measured Time of the EBS to Identify Private Keys with Zero Rekeys55

8. The Average Time for the EBS to Identify All Keys in a Network of a Given Size

Assuming an Arbitrary Number of Rekeys ...56

9. The Expected Time of the EBS to Find a Private Key Given a Mote Producing the

Listed Sequence Length...59

10. A Static Analysis of Alternative PRNGs Versus RandomLFSR................................66

11. Statistics for Average File Load Times ..75

12. Statistics For Network Size = 3 ..76

13. Statistics for Network Size = 6 ...76

14. Statistics for Network Size = 9 ...76

15. Statistics for Network Size = 27 ...77

16. Expected Performance for Sequential Network Sizes ..77

 xii

AFIT/GIA/ENG/06-05

Abstract

This work presents a brute-force attack on an elliptic curve cryptosystem

implemented on UC Berkley’s TinyOS operating system for wireless sensor networks.

The attack exploits the short period of the pseudorandom number generator (PRNG) used

by the cryptosystem to generate private keys. The attack assumes a laptop is listening

promiscuously to network traffic for key messages and requires only the sensor node’s

public key and network address to discover the private key. Experimental results show

that roughly 50% of the address space leads to a private key compromise in 25 minutes

on average. Furthermore, approximately 32% of the address space leads to a compromise

in 17 minutes on average, 11% in 6 minutes, and the remaining 7% in 2 minutes or less.

Two alternatives to the PRNG are examined that mitigate the brute-force attack. The

alternatives are implemented on the Mica2 mote and examined to determine CPU cycles

for execution and memory requirements. The recommended PRNG requires 73 CPU

cycles in the worst case and uses 66 bytes of memory. The period of the PRNG is

uniform for all mote addresses and theoretically requires 6.6 years on average for a key

compromise for the attack used in this thesis.

1

CRYPTANALYSIS OF PSEUDORANDOM NUMBER GENERATORS IN
WIRELESS SENSOR NETWORKS

I. Introduction

Wireless Sensor Networks (WSNs) hold the potential to revolutionize the fields of

remote automation and sensing. Applications range from non-invasive habitat

monitoring to battlefield surveillance. For sensor networks to reach their full potential,

security must be a consideration in designing the hardware and software for future

applications. Without security, WSNs could be rendered useless with simple denial-of-

service attacks or covertly monitored to learn confidential information. In a worst-case

scenario, the devices themselves could be subverted and used to distribute false

information to the listener. In data gathering applications such as habitat monitoring, the

data is simply lost or misinterpreted. In more sensitive applications, such as battlefield

surveillance, vulnerabilities could lead to loss of human life.

Sensor Network Security (SNS) is a growing field of research that presents

researchers with challenging goals under tight design constraints. The need for creative

and innovative security protocols is clear since current security primitives are too

resource intensive in terms of the power, memory, and processing capabilities of sensor

network nodes, also known as “motes”.

2

1.1 Objectives

 This thesis focuses on one piece of the overall security picture for WSNs, namely

the topic of pseudorandom number generators (PRNGs) as they apply to SNS protocols.

Although a small, often overlooked piece of security algorithms, PRNGs hold the

potential to open up serious vulnerabilities in security algorithms. This thesis

demonstrates the weakness of a particular PRNG and how it leads to a brute-force attack

on a state-of-the-art cryptographic protocol. SNS protocols must be based on a strong,

sound foundation for future research and applications to move forward. In an effort

towards that end, this thesis also examines alternatives to the current PRNG and analyzes

the cost of implementing these algorithms.

1.2 Implications

 This research attempts to provide a strong foundation on which to build future

SNS protocols. In addition, a thorough analysis of the de facto PRNG in use on the

widely distributed TinyOS operating system expects to yield valuable information to

engineers and scientists that design WSNs. The PRNG of TinyOS 1.1.x contains several

modifications to a well understood PRNG design [Sch96]. These modifications are not

documented in the code and the reasons for their introduction are not supported by any of

the known methods for altering the PRNG design [Sch96]. However, the PRNG

continues to be supported as is evidenced by its distribution with the beta release of

TinyOS 2.0. This research attempts to shed some light on the PRNG of TinyOS 1.1.x

and spread the word on its deficiencies. Ideally this results in engineers spending less

3

time tuning their application to compensate for the PRNG and spending more time

developing the application.

1.3 Preview

 Chapter 2 introduces the reader to important background information relevant to

information discussed in subsequent chapters. The reader is also briefly introduced to

related areas of SNS research. Chapter 3 states the problem and discusses the

methodology used to solve this problem. Chapter 4 presents the results and analyses the

data. Finally, Chapter 5 concludes by restating the problem, discussing the contributions

and significance of the findings and identifying areas for future work.

4

II. Background

2.1 Introduction

Sensor Network Security (SNS) is a growing field of research that presents

researchers with challenging goals under tight design constraints. The need for creative

and innovative security protocols is clear since standard security primitives are too

resource intensive in terms of the power, memory, and processing capabilities of sensor

network nodes, also known as “motes”. This chapter introduces SNS and the problem of

key management in this design space.

Section 2.2 introduces distributed sensor networks (DSN) and current

technologies related to DSNs. Section 2.3 discusses the sensor network security and

introduces several problems related to security in sensor networks specifically focusing

on the problem of key management. Section 2.4 introduces cryptanalysis and describes

several variations of a cryptanalytic attack. Finally, Section 2.5 presents random number

generators and examines the pseudorandom number generator (PRNG) used in DSN

software.

2.2 Distributed Sensor Networks

 DSNs are a sub-class of ad hoc networks. The key differentiation between ad hoc

networks and traditional networks is the absence of network infrastructure. Generally

speaking, ad hoc networks operate wirelessly, support distributed routing and support

some level of self-organization. Ad hoc networks can be broken into subclasses such as

Mobile Ad hoc Networks (MANETs) in which most or all of the nodes are mobile or

5

distributed sensor networks in which most or all of the nodes possess a sensing

capability.

This section introduces the concept of distributed sensor networks. First, the

reader is introduced to the basic components of sensor networks. In addition, the demand

for low cost components is explained and the impact this has on the design of sensor

network technology is examined. Finally, popular hardware and software platforms are

introduced.

2.2.1 Sensor Network Components

 An individual node in a sensor network is called a mote. Sensor networks are

envisioned to contain hundreds to thousands of these motes depending on the specific

application. Networks are created in an ad-hoc fashion and, besides the motes

themselves, have very little need for infrastructure. The networks are self organizing and,

depending on the application, can be distributed randomly or by purposefully placing

nodes at predetermined points, e.g., at hallway intersections inside a building [ASS01,

TAH02].

2.2.1.1 Mote Classes

 Several variations of motes exist today. Most motes maintain some type of

sensing capability and wireless communication capacity. However, the actual motes

themselves vary to fit a wide range of functionality. DSNs require a tiered architecture

that results in a hierarchy of nodes with different capabilities at each level [HHK04].

Figure 1 illustrates this hierarchy. It is referred to throughout the rest of this section. An

important aspect of DSNs is that information typically flows up the hierarchy.

6

Some nodes perform sensing functions and represent specialized nodes of very

limited resources. These nodes are akin to UC Berkley’s Smart Dust motes [KKP99].

They are the lowest rung in the hierarchy in Figure 1. They typically do not

High-Bandwidth
Nodes

Generic, multi-
purpose, sensing

platforms

Specialized,
sensing nodes

Base Stations

In
fo

rm
at

io
n

ty
pi

ca
lly

 fl
ow

s
up

...

No Routing Capability

Internet
Thick lines represent

high-bandwidth channels

Specialized nodes only communicate with nodes in
other tiers, not amongst each other

Figure 1. A Hierarchical Structure for Wireless Sensor Network Components

7

communicate with each other, but instead communicate with nodes higher in the chain

either when reporting information or when they are queried for data. A step above these

nodes is generic sensors that represent the workhorse of the sensor node classes. These

nodes are capable of interfacing with a wide variety of temperature, light, sound, motion,

pressure and heat sensors, among others. They have sufficient computation, battery and

memory capacity to process, store and transmit sensed and received data to other nodes in

the network. A typical example of this mote is the Mica and second-generation Mica2

[HiC02]. These nodes often communicate amongst each other, forming a multi-hop

network capable of communicating over greater distances than any single node.

Other nodes are designed for specific sensing functions such as video and audio.

These nodes have a greater capacity for computation, battery life and bandwidth then

generic sensor nodes. These high-bandwidth nodes also act as superhighways in a DSN

reducing the load on less powerful nodes [HHK04]. The application that the DSN is

designed for typically determines the number and concentration of these nodes, which are

typically fewer in numbers than generic-sensing platforms as shown in Figure 1.

Finally, most discussions of sensor networks involve the concept of a base station.

The base station acts as a gateway to more traditional networks, hence this type of node is

referred to as a gateway node. These nodes are designed with the state-of-the-art

technology and typically cost significantly more than other nodes in the network

[HHK04]. Figure 1 shows that more than one of these gateways may be present in a

DSN. When using two gateways, it allows the designers to place the nodes at the

boundaries of a DSN, thereby reducing the traffic load on adjacent nodes.

8

2.2.1.2 Resource Constraints

 Due to the nature of sensor networks in which hundreds to thousands of nodes

could be deployed, there is a demand that individual motes be low cost and unobtrusive.

The range of environments that motes could be deployed in requires that they be robust

and autonomous. These requirements have an impact on the design of the sensor motes

and the resources available to potential software applications. Specifically, sensors must

operate on a limited power supply since they are inaccessible . Power must be conserved

when receiving, processing and transmitting data. Computation and memory capacity are

limited to reduce cost and power. In addition, transmission range is limited to conserve

power [CKM00]. There are also practical limitations to transmission range, especially in

densely populated networks such as DSNs. For example, an unlimited transmission

range for every node in a large network results in increased contention for the shared

channel. Shorter transmission ranges decreases contention for the channel and increases

throughput.

 Other constraints weigh in as well on specific types of applications. Many

applications, such as surveillance and environmental monitoring, require real-time

feedback. Other applications, such as habitat monitoring or scientific studies, may have

less real-time constraints, but could possibly require higher fidelity when reporting data

[CKM00].

2.2.2 Popular Hardware and Software Platforms

 Early hardware platforms came in a variety of configurations and capabilities

[KKP99, PoK00, HiC02, HHK04]. Within the past few years, hardware platforms began

9

to see second and third generation development. Subsequently the research community

moved to the de facto standard hardware platform of the Mica2 mote, which is presented

in the next section.

 Very little documentation exists in the literature on the early operating systems

used during the development of the first generation of motes. TinyOS, introduced in

[HSW00], filled the need for system software to manage and operate the device.

Traditional embedded operating systems such as VxWorks, WinCE, PalmOS, and QNX

are designed for embedded PCs and require resources unavailable on a typical sensor

platform. Smaller real time executives such as Creem, pOSEK, and Ariel come much

closer to matching the resources available provided by DSN hardware [HSW00].

However, these systems are designed for a different operating environment and tend to be

control centric and do not support the efficient handling of hardware interrupts. Since

DSNs use radios that generate numerous hardware interrupts, this aspect of the operating

system becomes critical to power-efficient operation of the mote. This motivated the

development of TinyOS and contributed to the fact that it is the de facto operating system

used in DSNs. Section 2.2.3.2 describes the operation of TinyOS in detail.

2.2.2.1 Mica2

 The Mica2 is an example of the generic sensing node introduced in Section

2.2.1.1. It is a commercially available mote in use by over 100 research organizations

[HHK04]. The Mica2 is a third generation sensing platform initially developed at the

University of California, Berkley and then later manufactured by Crossbow Technology,

Inc., a sensor systems technology company.

10

 The Mica2 mote operates an 8-bit Atmega128L processor running at

approximately 8 MHz on two AA batteries with two modes of operation, active and

sleep. It provides 128 kilobytes (KB) of programmable flash memory, 512 KB of

EEPROM, and 4 KB internal SRAM. The processor uses 8 milliamperes (mA) and ~100

microamperes (µA) when active and asleep respectively [SHC04].

2.2.2.2 TinyOS

 TinyOS is a multi-threaded, event-based operating system designed for sensor

motes [HSW00]. It consists of a scheduler and a hierarchy of components. A component

consists of command handlers, event handlers, a bundle of tasks, and a frame. The frame

in this context is a fixed-size stack frame for storing the state of the currently running

program. Commands, events, and tasks execute within the context of a frame. Higher

level components issue commands to lower level components, and lower level

components signal events to higher level components [HSW00].

A set of tasks provide functionality for calling lower level commands, signaling

higher level events, and scheduling other tasks. Tasks are atomic with respect to other

tasks and execute asynchronously with respect to events. The obvious benefit of this

design is the allocation of only one stack to the currently executing stack, which creates

substantial savings in the memory constrained architecture of sensor networks [HSW00].

The atomic nature of tasks allows for the implementation of a simple FIFO task

scheduler. When the task queue is empty only an event can result in the scheduling of a

new task. This design allows for the power efficient use of the processor since an empty

task queue indicates that the processor can enter the sleep state. Hardware peripherals

11

such as the radio or sensor, can be left active to wake up the processor as needed. These

peripherals signal low level event handlers via hardware interrupts, which can trickle up

through the component hierarchy, scheduling tasks as required by the application

[HSW00].

Each component must identify the resources it provides and the resources it

requires. The frame is statically allocated during compilation allowing the memory

requirements of the program to be determined before execution and preventing the costs

associated with dynamic allocation. Communication between components takes the form

of function calls [HSW00].

2.3 Security in Distributed Sensor Networks

There are a number of challenges to the deployment of a secure DSN. Not only

must the DSN designer consider the resource constraints of the motes, but the lack of

infrastructure inherent in ad-hoc networks has security implications as well. The first

examination of security in DSNs, as documented in [CKM00], identifies the critical

requirements and constraints in Sensor Network Security (SNS). It recognizes that key

management presents significant challenges to the deployment of a secure DSN. DSN

deployment in hostile environments also presents a unique challenge to security. Nodes

are likely to be left unprotected and exposed to physical access. Mote encasings must

provide tamper resistance and protection from physical destruction.

2.3.1 Attacks and Vulnerabilities

 Many analyses of attacks and vulnerabilities in DSNs focus on routing protocols

[WoS02, HPJ03, KaW03, NSS04]. Wood and Stankovic focus on denial-of-service

12

(DoS) attacks at all levels in the DSN design space. Hu, et al. introduces the “rushing

attack” that pertains to on-demand ad hoc routing protocols such as DSR [Joh94] and

AODV [PeR99]. Karlof and Wagner perform an in-depth analysis of routing attacks and

countermeasures. They note that many security issues in DSN routing also pertain to ad-

hoc network routing. However, the defenses developed for these attacks are not directly

applicable to the DSN environment. It is explicitly assumed that defenses using public

key cryptography are not applicable because they are too expensive. Although

countermeasures and defenses are developed in spite of this assumption, it remains to be

seen if defenses using public key cryptography are applicable to DSNs in light of work

done in [MWS04]. Newsome et al. provide an in-depth analysis of the “Sybil attack” and

offer novel defenses against it. A Sybil attack involves a malicious node or nodes

behaving as a larger number of nodes in an attempt to subvert network traffic.

2.3.2 Key Management

Key management in DSNs encompasses the problem of establishing a secret,

shared key for use in symmetric cryptographic algorithms. Symmetric algorithms use the

same key for encryption and decryption. Thus, modern computer networks require a

secure channel to distribute shared keys. The only secure channel available in DSNs is

the configuration phase when code is uploaded to the mote prior to deployment.

[CKM00] discusses in depth the constraints of DSNs as they relate to key management.

[HLV04] examines various energy and memory tradeoffs in the context of security and

key management.

13

A novel approach to key management involves the distribution of some k number

of keys on each mote where k is much smaller than the network size [EsG02, CPS03,

DCL04, DDH03, LiN03]. These schemes rely on pre-distribution of key material before

deployment to ensure trust when deployed. These schemes are touched on briefly in the

next section.

2.3.2.1 Shared Key Distribution Schemes

One way to establish trust is to configure each node with a single, shared master-

key during pre-deployment. This key management scheme is easy to deploy and

maintain, however a compromise of a single node results in a compromise of the entire

network. Alternatively, each node is configured with N-1 keys, where N is the number of

nodes in the network. This approach has the nice property of a compromise only

affecting N-1 links in the network. However, it is inefficient since it is unlikely that all

nodes can talk to each other and adding nodes after deployment requires installing keys

on nodes that may be inaccessible.

The third scheme relies on pre-distributing a set of keys, known as a key ring, of

cardinality k on each node and uses random graph theory to ensure graph connectivity.

[EsG02] first proposed this key management scheme for sensor networks. During a set-

up phase, an offline process generates a key pool, P, consisting of a large number of

unique keys. A key ring is created by randomly selecting k keys without replacement

from P. N key rings are created from the same P, where N is the network size.

Once all the motes are configured with a key ring they begin a shared key

discovery phase. The connectivity of the network is determined by three factors, namely

14

the size of the key pool, the key ring, and the expected number of nodes in a motes

neighborhood, i.e. the number of nodes within a motes transmission range. Since it is a

random deployment, the size of the neighborhood is determined via graph theory, which

uses the area of deployment, transmission range, and network size. For example, a mote

with an infinite transmission range has N-1 neighbors. The memory constraints of the

sensor motes determines the size of the key ring. The network size, deployment area and

transmission range are chosen by the network designers. Thus, two of the three factors in

the scheme proposed by [EsG02] are DSN constraints. However, the size of the key pool

is not a DSN constraint and is scaled to meet the security and connectivity needs of the

network.

[CPS03] expands on the scheme developed by [EsG02] by proposing a q-

composite scheme where q keys must be shared between nodes in order to establish a

link. [DDH03, LiN03] propose two similar, but different, approaches to random pre-

distribution schemes than proposed in [CPS03, EsG02]. [LiN03] uses a polynomial-

based key distribution protocol developed for group communication [BSH98] in

combination with the pre-distribution scheme proposed in [EsG02]. [DDH03] uses a

symmetric key generation protocol proposed in [Blo85] combined with [EsG02].

Random key pre-distribution provides a framework for establishing trust without

preexisting infrastructure. In this scheme, trust is delegated to the initialization process

that takes place before deployment. This implicitly assumes that the initialization process

is free from tampering. Also, re-keying, revocation, and adding nodes to the network

requires a certain amount of contingency planning when generating the key pool and key

15

rings. [EsG02] provides anecdotal evidence that the size of the key ring increases at a

slower rate than the size of the key pool for a given connectivity constraint. This seems

to indicate that key ring storage requirements are not a constraining factor in

implementing this key management scheme despite increased overhead.

2.3.2.2 Public Key Distribution Schemes

 Public key cryptography provides a way to distribute keys over an insecure

channel. The algorithms used in public key cryptography are known as asymmetric since

the keys used for encryption and decryption are not the same. [DiH76] first proposed a

key exchange protocol for establishing a shared secret over an insecure channel. The

protocol, known as Diffie-Hellman, is based on the discrete logarithm problem (DLP).

DLP is the problem of calculating k for some x = gk given knowledge of x mod m and g.

This problem is presumed difficult and for a large prime m is considered computationally

infeasible as there is no known efficient algorithm [Mal04, DiH76].

 Public key cryptography provides a memory efficient way to establish shared

keys in DSNs over insecure channels. There is an additional cost in computation

however. One implementation of Diffie-Hellman on the Mica2 showed decryption

operations, as opposed to encryption operations, would take “tens of minutes” [WKC04].

Since it is an asymmetric algorithm, one operation can take significantly longer than the

other. For this reason, public key cryptography was deemed infeasible on DSNs

[PWS01, EsG02, CPS03, DCL04, DDH03, LiN03].

16

2.3.3 Security Protocols in Distributed Sensor Networks

The following sections examine three security protocols in detail. These

protocols are chosen to provide background and insight into the potential for SNS.

2.3.3.1 SPINS: Security Protocols for Sensor Networks

 Some of the earliest work done in sensor network security focused on the

feasibility of security on the resource constrained networks [PSW01]. As a proof of

concept, SPINS was developed and implemented on UC Berkley’s “Smart Dust” nodes

using the TinyOS operating system. Although the nodes themselves were quite typical of

a resource constrained node in a sensor network, the network itself consisted of a

relatively small number of nodes.

 The security goals set in [PSW01] included data confidentiality, authentication,

integrity, and freshness. Two security building blocks developed by Perrig, et. al. helped

accomplish these goals. The Secure Network Encryption Protocol (SNEP) provided two-

party data confidentiality, authentication, integrity, and freshness. The micro version of

the Timed, Efficient, Streaming, Loss-tolerant Authentication (TESLA) protocol referred

to in [PSW01] as μTESLA provided authenticated broadcast.

Among their greatest contribution was SNEP (Secure Network Encryption

Protocol). SNEP provided semantic security, data authentication, replay protection, and

weak freshness. These are all important security properties. More importantly, SNEP

introduced very little additional overhead in communication cost. Transmission in sensor

networks happens to be the most expensive operation in the context of power

consumption [HSW00, SHC04].

17

Since the writing of the SPINS paper there has been a concerted effort to add

security to deployed sensor networks. However, one of the greatest weaknesses of the

SPINS paper was the key distribution scheme. It requires that each node maintain a

single, shared master-key. In [PSW04], one of the authors recognized that a secure,

efficient key management scheme for DSNs is critical for SNS. The sharing of a single,

shared master key is undesirable since it violates two security principles, namely the

principles of least privilege and least common mechanism. The principle of least

privilege states that “a subject should only be given the privileges it needs in order to

complete its task” [Bis03:343]. If SPINS adhered to this principle, a node would only

maintain shared-keys for active communication links with its neighbors. There are

practical limitations in sensor networks to consider when trying to adhere to this

principle. The establishment of a secret key between two nodes in a network incurs a

certain amount of overhead in computation and the number of transmissions. However,

the principle of least common mechanism is more feasible. It states that “mechanisms

used to access resources should not be shared” [Bis03:348]. In SPINS a master key is

shared by all nodes to derive shared keys for node-to-node communication. If a single

node is compromised then the entire network becomes vulnerable to eavesdropping. As

discussed in Section 2.3.2, this is undesirable and ultimately avoidable.

An important factor when considering encrypting messages in DSNs is how the

encryption algorithms change the size of the original message. The implementation of

SNEP consists of the RC5 block cipher in counter (CTR) mode. Since the CTR mode is

used, the ciphertext has the same length as the plaintext. In addition, the same function

18

can be used for encryption and decryption. Both of these properties are desirable in

sensor networks because they save on memory in terms of code space and message

length. Since the ciphertext is the same length as the plaintext there is no additional cost

in transmission time. Another benefit that the CTR mode provides is weak data

freshness. The counter is incremented after each message the sender transmits and

therefore the receiver can verify that the received packets have a monotonically

increasing counter.

RC5 is subject to a differential cryptanalysis from a chosen plaintext attack

[KaY98], but this attack requires approximately 244 plaintext-ciphertext pairs for a

successful attack. It seems unlikely that even a large sensor network will generate this

much traffic. For example, a network consisting of 10,000 nodes with each node

generating an average of 51 encrypted messages per hour operating continuously for a

year manages less than 233 messages. A well-publicized application for habitat

monitoring [MPS02, SPM04, SOP04] used a sampling rate of once every 70 seconds,

which is approximately 51 samples an hour. The above calculation assumes errorless

communication, doesn’t factor the computation time for encryption, and assumes a mote

can actually operate for a year. Thus, 233 messages is an upper bound, or in the context

of an attack a best-case scenario, and RC5 appears to be a good choice for SNS protocols.

The implementation of SNEP also provided message authentication via a message

authentication code (MAC) that used the same block cipher as the encryption algorithm.

For each packet sent over the channel a MAC is computed that not only provided

authentication, but data integrity as well. Strong freshness is achieved through the

19

generation of a random nonce that is sent out with a request message. The reply message

includes the nonce in the MAC computation, which allows the node to know that the

response was generated in reply to its request.

 The authors of [PSW01] saw the need for authenticated broadcast to support

node-to-node key agreement and secure, authenticated routing. To that end, they

introduced μTESLA, the micro version of the Timed, Efficient, Streaming, Loss-tolerant

Authentication (TESLA) protocol. The TESLA protocol [PTS00] is not specifically

designed for sensor networks and has a number of shortcomings in this context.

However, μTESLA was designed to overcome these shortcomings by reducing the

requirements of TESLA. It removes digital signatures from initial packets and instead

relies on symmetric mechanisms and a shared master key. Key disclosures in each

packet are also removed and the number of authenticated senders is restricted thereby

reducing the key storage requirements for each mote.

 μTESLA uses the concept of a key chain to provide message authentication. The

protocol generates the key chain by randomly choosing the last key in the chain, Kn, that

is then supplied to a one-way hash function, F, to generate K1 through Kn-1 such that Ki =

F(Ki+1). The keys of the key chain are used in a sequential fashion to create a MAC for a

message. This key is later released to provide authentication to nodes that receive the

message. μTESLA requires that each receiver must have one authentic key of the one-

way key chain, be loosely time synchronized to the sender, and know the key disclosure

schedule of the sender. In this way a node can authenticate messages upon addition to

the network [PSW01].

20

Figure 2 illustrates an example of μTESLA. Each hash on the timeline represents

one time interval. At each interval, the sender uses a new key to generate a MAC for

each packet that is broadcast. The packets are represented by P1, P2, etc. The receiver is

assumed to know K0 through some authenticated channel. The key release schedule is

arbitrary, but assume it is two time intervals for this example. Packets P1 and P2 are

broadcast with a MAC using K1. Packet P3 is broadcast with a MAC using K2. At this

point, the receiver cannot authenticate any packets. At time interval four, the sender

broadcasts K1, which for illustrative purposes is lost. In the fifth interval, K2 is broadcast,

which can be verified by checking K0 = F(F(K2)). Thus, P3 can be authenticated. In

addition, the receiver knows K1 = F(K2) [PWS01].

2.3.3.2 TinySec

 TinySec is a fully implemented link layer security architecture for wireless sensor

networks [KSW04]. It could be considered the second generation security architecture

for wireless sensor networks after SPINS. It is incorporated in the current version of

Figure 2. A Time-Release Key Chain for Source Authentication [PSW01]

Time
Interval 1 2 3 4 5

21

TinyOS and provides security, performance and ease of use in sensor network

applications. The security services of TinySec provide authentication and encryption

(TinySec-AE) and authentication only (TinySec-Auth).

 Encryption is provided with the RC5 or Skipjack block ciphers using cipher block

chaining (CBC) mode. CBC mode typically requires an initialization vector (IV) that is

combined with the plaintext to create a pseudorandom bit sequence. For this to work

correctly, the IV must not be reused, which means it must be long enough to guarantee

that it not be reused. The authors of [KSW04] chose to accept the risk of IV reuse and

compensate for this by choosing block ciphers that are robust in the presence of repeated

IVs. Authentication is provided using a MAC that is computed and verified using cipher

block chaining.

2.3.3.3 Elliptic Curve Cryptography and EccM 2.0

Elliptic curve cryptography uses elliptic curves in conjunction with the discrete

logarithm problem (DLP) to implement a public key cryptosystem. This system was first

described in [Mil86]. Elliptic Curve DLP (ECDLP) is concerned with the problem of

finding k given P=kG and G, where P is the public key and G is the base point on the

elliptic curve, which is in the public domain. Based on the mathematics of elliptic curves

it is assumed difficult to calculate k and is associated with the same set of problems

concerning the factorization of large integers.

 The main advantage of ECDLP over traditional public key cryptosystems is that

they allow for smaller keys sizes for equivalent security. The United States National

Institute of Standards and Technology (NIST) outlines this equivalency in [BBB05].

22

Table 1 describes the key size equivalencies. The left column describes a level of

security in which the best known attack is an exhaustive search. Algorithms for factoring

numbers and general discrete logarithm attacks determine the equivalency presented in

the other columns. For example, to provide 80 bits of security, the RSA public key

algorithm must use a key size of 1024 bits. RSA is a public key cryptosystem first

described in [RSA78] and is based on the DLP described in [DiH76]. Alternatively, for

an implementation of ECDLP, only a key size of 160 bits is required for 80 bits of

security. In other words, the current mathematical tools and theories available to solve

the similar, yet different mathematical problems of DLP and ECDLP results in

significantly smaller key sizes for elliptic curve cryptosystems.

EccM is the module name within TinyOS for an implementation of ECDLP on

the Mica2 platform [Mal04, MWS04]. EccM 2.0 provides public key encryption and

decryption for DSNs at a reasonable cost in terms of computation and memory. The

generation of a public-private key pair requires approximately 34 seconds. With

knowledge of a mote’s public key, it takes approximately 34 seconds to generate a shared

secret. The latest version of EccM 2.0 requires 35,401 bytes of total memory upon

Bits of Security RSA Elliptic Curves
80 1024 160
112 2048 224
128 3072 256
256 16360 512

Table 1. Key Size Equivalencies for Desired Bits of Security

23

installation. Running stack size reached a maximum of 81 bytes [MWS04]. The key size

is 163 bits, thus providing about 80 bits of security according to Table 1.

2.4 Cryptanalysis

 Cryptanalysis is the analysis and deciphering of cryptographic messages or

systems. Modern cryptography makes the deciphering of cryptographic messages

computationally infeasible. A cryptanalyst attacks such a system by looking for

weaknesses in the protocols. Examples of potential vulnerabilities include key exchange

protocols, software bugs, and human error.

 Attacks are categorized according to the type of attack performed against the

cryptosystem. Almost all attacks assume that the cryptographic algorithm is known a

priori. A ciphertext only attack uses knowledge of only the ciphertext to decrypt the

message. This type of attack is usually considered the most difficult to perform [Wag03].

A known plaintext attack uses knowledge of both the plaintext and ciphertext to gain

knowledge of the key. This type of attack is typically used in an exhaustive search for

the key. The attacker usually has a plaintext message and the corresponding ciphertext

produced by the cryptosystem. The attacker systematically encrypts the plaintext with a

key from the key space to produce a ciphertext. The two ciphertexts are compared and if

a match is found then the key is discovered. A chosen plaintext attack requires the

attacker to have access to the cryptosystem and thus provide a plaintext of his choice for

enciphering. This type of attack exploits cryptosystems that produce patterns in

ciphertext messages from similar plaintext messages. A chosen ciphertext attack is the

24

same as a chosen plaintext attack, except that the attacker can chose to decipher specified

ciphertext messages.

 All cryptographic functions are susceptible to a brute-force attack. A brute-force

attack systematically searches the key space for the appropriate key. This type of attack

is synonymous with an exhaustive search of the key space as described in the previous

section. The expected time to find the key is given in equation 1, where t is the time to

encrypt a plaintext and n is the size of the key space. To thwart this attack,

cryptosystems use astronomically large key spaces. The large key space makes it

computationally infeasible for an attacker to try all the keys in a reasonable amount of

time. However, with the advent of the Internet and distributed computing, processing

power is proving to be less of a barrier then previously thought. A widely publicized

attack on the Data Encryption Standard (DES) cipher [NBS99], a symmetric key cipher

with a 56-bit key, took advantage of distributed computing and the Internet to compute

245 billion keys per second [Nel99] and crack the encryption in a little over 22 hours.

2.5 Random Number Generation

Random number generation has a rich history of success followed by failure.

Many attempts at designing random number generators end in failure because they do not

pass statistical tests of randomness. Indeed randomness is a subjective concept in and of

itself. While a sequence of numbers may pass one test for randomness it may not pass

 ½tn (1)

25

another. Consequently, it is important to understand the requirements of the system using

the random numbers and know exactly how they will be used.

For all intents and purposes, a random sequence is defined for a given set of

elements as each element having an independent and equal probability of being chosen as

the next element in the sequence. This phenomenon is best illustrated with the flip of a

coin. Each flip holds the potential of turning up heads or tails and is independent of all

previous flips. Due to this definition, computers, as they are now known, will never be

able to produce random sequences. Algorithms attempting to produce sequences that

have the statistical properties of a random sequence are known as pseudorandom number

generators (PRNGs).

PRNGs require a seed that determines the starting point from which the PRNG

will begin generating numbers. PRNGs are predictable by definition. Given the current

state of the PRNG the next number can be predicted. Although this flies in the face of a

truly random sequence, the next number generated by the sequence can be statistically

shown to be independent (i.e., unbiased and uncorrelated).

2.5.1 Linear Feedback Shift Registers

Linear Feedback Shift Registers (LFSRs) are a type a PRNG that generates a

sequence of independent, uniformly distributed sequence of 1’s and 0’s, also known as a

bit-stream. The shift register consists of a bit sequence, bn, …, b0, where n is the length

of the LFSR and bn is the most significant bit. Upon request for the next random bit, the

shift register is shifted one bit to the right and b0 is output. The new bit, bn+1, is

calculated by XORing certain elements of the shift register with b0. The elements of the

26

LFSR used in the XOR operation are called the tap sequence. Figure 3 illustrates the

concept of an LFSR. A maximal LFSR is an LFSR that cycles through 2n-1 internal

states before reaching the initial state again. Zero cannot be reached unless it is the initial

state, in which case the LFSR produces nothing but zeros. The tap sequence determines

whether or not a sequence is maximal and is actually a well understood mathematical

problem [Sch96, Sti02]. Thus, a tap sequence can be derived for an arbitrarily chosen n.

LFSR-PRNGs are best used in cryptography as stream ciphers. LFSR-PRNGs

generate a keystream of a length equal to the plaintext from successive calls to the bit-

generating function. Each output bit, i.e., the least-significant bit, is used as the next

element of the keystream. The plaintext is encrypted using the keystream to get the

ciphertext. The encryption operation is usually a simple bit-wise exclusive-or operation.

Due to the popularity and simplicity of LFSR-PRNGs, researchers have

thoroughly studied the randomness of the keystream [Sch96]. Several approaches

combine two or more LFSRs in an effort to conceal the internal state. Additional LFSRs

b1b2b3b4b5b6b7b8 Output

Figure 3. Diagram of an 8-bit Linear Feedback Shift Register

27

complicate the problem, but once the internal state of the LFSR is discovered the next

value of the LFSR-PRNG is predictable.

2.5.2 Linear Congruential Generators

Linear congruential generators (LCGs) are a class of pseudorandom number

generators taking the form of 1 () modi is as c m+ = + [PaM88, Sch96]. A seed, s0, is

supplied and variables a, c, and m are chosen appropriately. If a, c, and m are chosen

with some care, the LCG produces a maximum sequence with a period m. A common

form of this LCG selects c = 0 and is known as a multiplicative linear congruential

generator (MLCG). In this form, if a and s0 are relatively prime to m, then a maximum

sequence is generated. For this reason, m is often prime, thus ensuring that a and s0 are

relatively prime to m.

 All that remains for an MLCG to produce a statistically random sequence is the

proper choice of m and a. Countless studies have shown that m = 231-1 and a = 16807

withstand both empirical and theoretical tests for randomness [PaM88]. Unfortunately,

this PRNG does not provide a cryptographically secure source of random numbers either.

2.5.3 Cryptographically Secure PRNGs

Cryptographically Secure PRNGs (CS-PRNG) aspire to produce random number

sequences that withstand cryptanalysis. As the name suggests, this class of PRNGs are

suitable for use in key generation algorithms. They provide a level of unpredictability

when some or all of its secrets are known.

CS-PRNGs often require certain prerequisites in order to remain secure. For

instance, a common prerequisite is that the seed remain secret. This is usually achieved

28

by creating a seed from a true random source. Random sources in modern computers

include packet interarrival times, keyboard latency, and white noise from radio receivers

[Sch96]. While all of these sources are adequate, special care must be taken when

altering these numbers for use in cryptographic primitives. A level of post-processing to

distill any bias or nonrandomness is usually required. Of greatest importance in this

discussion of random sources is that the bits cannot be reproduced.

2.6 Summary

This concludes the background discussion. This chapter introduces the terms and

concepts necessary for an understanding of the following chapters of this work. Of

particular importance to the reader are the sections discussing EccM 2.0 and

pseudorandom number generators, Sections 2.3.3.3 and 2.5 respectively. Equation 1

from Section 2.4 is also of importance and referred to frequently throughout the rest of

this work.

29

III. Methodology

3.1 Problem Definition

 Given the current state of SNS, it seems likely that a fast, power-efficient, and

secure method for generating random numbers in sensor networks is an immediate need.

Most key management schemes completely side-step the problem of generating keys on

the mote, as is the case in the pre-distribution of secret keys. Others, such as EccM 2.0

use questionable methods for generating keys. The following chapter defines goals and

hypotheses related to random number generation in sensor networks and its impact on

key generation. It also presents a methodology for achieving these goals.

3.1.1 Goals and Hypothesis

 The weakness of the key generation algorithm of EccM 2.0 is known [MWS04].

However, a metric measuring the extent of this weakness is unavailable. EccM 2.0 relies

on the underlying operating system, TinyOS, and its PRNG module called RandomLFSR,

for generating private keys. RandomLFSR is based on an LFSR design for generating

random sequences and is seeded with the mote’s ID, which is a 16-bit unsigned integer.

The mote ID is also used as the network address and therefore is sent in the packet

header. This fact makes the exact random sequence a mote generates discoverable

simply by observing network traffic. Since RandomLFSR is based upon a 16-bit

algorithm there is a maximum bound on the period of 216-1. A pilot study performed on

RandomLFSR generating all possible sequences shows the period to be about ½ of this

maximum in the best case. [MWS04] specifically states EccM 2.0’s “reliance on

TinyOS’s RandomLFSR module is troubling cryptographically”. How the reliance on

30

this PRNG affects the security and strength of the underlying cryptographic primitives of

EccM 2.0 is the subject of this thesis. It is hypothesized that the encryption is breakable

using a brute-force attack given a mote ID and public key. Specific questions to be

answered include:

1. Can the weaknesses of the LFSR-PRNG in TinyOS be exploited to break the

public key cryptography of EccM 2.0 and, if so, how fast can it be done?

2. Will the rate of key compromise exceed the motes capacity to rekey?

Another goal is to propose a fast, power-efficient, and secure PRNG that defeats

the brute-force attack described in this thesis. Secondary to this goal is to propose a

PRNG to replace the current RandomLFSR module. Many of the system functions in

TinyOS rely on RandomLFSR to behave in a certain manner. It may even be the case

that specific applications are tuned to perform optimally with RandomLFSR’s quirky

behavior, such as radio interrupt handlers that determine backoff. System performance

aside, cryptographic protocols must have numbers that meet requirements of CS-PRNGs

regardless of the time to produce them. These requirements for a PRNG on TinyOS

represent an apparent dichotomy. RandomLFSR does not allow for this distinction. An

objective of the stated goal is to create a parameterized PRNG. This will allow for a

PRNG initialized to the same starting conditions as RandomLFSR to perform comparably

in terms of execution time, CPU cycles and resource requirements. If the proposed

PRNG is implemented, it must not negatively affect the current system functions relying

on RandomLFSR. Many candidate PRNGs exist including modifying the current LFSR

31

design to be a maximal LFSR PRNG. It is not the objective of this work to create a novel

PRNG, but instead base the proposed PRNG off a well known PRNG algorithm.

3.1.2 Approach

 To break the public key encryption of EccM 2.0, a network of three or more

motes randomly sends encrypted messages amongst each other. A malicious mote

connected to a laptop promiscuously monitors the network transmissions and relays the

captured traffic to a packet analyzer on the laptop. The laptop identifies packet headers

and captures the mote IDs of the network. Since the motes use public key encryption, the

motes send the keys in the clear, which the malicious mote also captures. Once the

laptop identifies a mote’s ID and its public key it executes a brute-force attack to find the

corresponding private key. This is a modified known plaintext attack, except that in this

case, the brute-force attack systematically creates a private key and performs the same

computation as EccM 2.0 to produce the public key. If the keys match, then the private

key is discovered. Theoretically, this attack is possible on any cryptographic system, but

is normally infeasible due to the size of the key space that must be tested. EccM 2.0 uses

a 163-bit key, but generates these keys with a 16-bit LFSR that has a theoretical

maximum period of 216-1. Thus the key space is significantly reduced and vulnerable to

a brute-force attack.

 The current implementation of the LFSR-PRNG is analyzed for areas of

improvement. The PRNG could be seeded with a random number either captured from

the environment or created upon mote configuration. In addition, the selection of taps for

the LFSR is examined in order to create a maximal LFSR. Added flexibility is

32

considered for system processes that require fast random number generation at the cost of

a lower quality random number. Alternatively, applications that require high quality

random number sequences need to be able to specify this when requesting a random

number from the PRNG. Research literature documents feasible alternatives to the LFSR

method of generating random numbers that have been proven to be cryptographically

secure, but these algorithms may be too resource intensive for sensor network motes.

3.1.3 Assumptions and Limitations

 Unfortunately, like many other applications built for TinyOS, EccM 2.0 is still in

its infancy. Before EccM 2.0 was developed it was held as common sense that public key

systems were too expensive for DSNs. EccM 2.0 was developed to prove that assertion

wrong. However, there still remains much to be done. Section 5.3 discusses this in

further detail, but suffice it to say EccM 2.0 works as a proof-of-concept. It is meant to

work with two motes only and simply broadcasts key messages without any other

information. The receiver simply assumes the received key message is from the other

mote and begins its calculations for generating the shared secret. Although EccM 2.0 is

not fully implemented, it can be reasonably assumed that in a network of three or more

motes, a receiver must be able to associate the broadcast of a public key with a mote in

the network. It follows that the sender would include its network address within the

broadcasted key message. This is critical to the brute-force attack presented in this thesis

because it uses knowledge of the mote ID to reduce the key space of EccM 2.0.

Actual measurement of the execution times for the alternatives may be impossible

to document when using the system clock of the Mica2 due to its resolution; the smallest

33

measurable increment is the millisecond. The Mica2 is clocked at 8 million cycles per

second. In order to measure any difference in execution times, the PRNGs must differ by

roughly 8000 cycles. Unfortunately, at first glance, the RandomLFSR appears too

simplistic to require anywhere near this amount of cycles. However, due to its simplicity

a static analysis of the number of cycles required to execute the PRNG function may be

possible. This provides a much more accurate measurement of the difference between

the alternatives.

3.2 System Boundaries

 Since Section 3.1.1 identifies two goals, there are two Systems Under Test. The

first system is called the Encryption Breaking System (EBS). The second system is

called the PRNG Performance System (PPS). In the following discussion of system

boundaries and throughout the rest of this thesis, the concept of rekeying is used

frequently. In the scope of this thesis, a rekey operation is defined as a private-public key

operation in EccM 2.0 in response to a request to communicate with a mote in which a

shared key in an active state does not exist. Key states are formally defined in [BBB05],

however only the active and deactivated states are necessary for this thesis. The active

state of a key is the point in a keys lifecycle in which it may protect information, i.e.,

perform encryption, and process protected information, i.e., perform decryption. A key

in the active state transitions to the deactivated state after a predetermined time period has

expired and can only process protected information. The time period that a key in EccM

2.0 remains in an active is defined as the rekey period.

34

3.2.1 The Encryption Breaking System

 This system consists of the laptop running the encryption breaking program

(EBP). The Component Under Test is the encryption breaking program (EBP). Figure 4

illustrates the system. This SUT addresses the first question stated in Section 3.1. The

second question requires a metric for the power cost of generating a private-public pair in

EccM 2.0. According to [MWS04] this is approximately 0.00549 Joules for the private

key operation and 0.816 Joules for the corresponding public key operation.

 It is assumed that a private-public keying operation is only done in response to a

request from a neighboring node to communicate securely. This is a safe assumption

since it is a waste of time and energy to automatically rekey once the freshness of the

current key expires. This assumption implies that with every rekey operation, a shared

secret must also be generated. While no energy cost for computing a shared secret is

Mote ID

Public Key

Private Key

Execution
Time

of Trials

Laptop

EBP

Input Encryption Breaking System Output

Figure 4. The Encryption Breaking System

35

supplied in [MWS04] the average time to compute the shared secret is included, which

turns out to be 34.173 seconds. Similar times for private and public key operations are

provided and they are 0.229 seconds. and 34.161 seconds, respectively. This gives a total

running time of 68.563 seconds. If one rekey operation is performed each hour, it would

result in a 1.9% duty cycle by the following calculation.

seconds68.563
hour 100 1.904%seconds3600

hour

× =

3.2.2 The PRNG Performance System

 This system consists of a Mica2 mote with the current RandomLFSR module and

the proposed PRNGs installed on the OS. The Components Under Test are the proposed

PRNGs. This is illustrated in Figure 5.

3.3 System Services

 The EBS offers one service, which is a modified known plaintext attack on the

EccM 2.0 key generation algorithm. The service has two possible outcomes, either

success or failure. Success is indicated by the successful match of the given public key

with the key generated by the EBP. The primary metrics are the time to find the key, the

number of keys tried before a successful decryption, and the private key. Failure occurs

if the key space is exhausted without finding a key that successfully matches the given

public key. Failure can also occur if the key space is large enough to effectively thwart a

brute force attack. While failure in this context is fundamentally subjective, the expected

time to compromise a private key and the duty cycle provide a way to formally define

36

this concept. Requiring a mote running EccM 2.0 to rekey once an hour requires a 1.9%

duty cycle. Requiring the mote to rekey twice an hour requires a 3.8% duty cycle.

Alternatively, requiring a rekey once every two hours requires a 0.95% duty cycle. Thus,

the expected rate of compromise is directly related to the duty cycle required for a rekey.

This is defined in equation 2, where r is the rate of private-public key operations per hour

on the laptop, n is the size of the key space, and D is duty cycle. See Appendix A for the

derivation of this equation.

2 *1.9r D
n

= (2)

 Selecting D and measuring r results in a lower bound for n, which precisely

defines how large the key space must be to thwart a brute-force attack for a desired duty

cycle. Selecting D is subjective, but for the purposes of this thesis, a lower bound on the

Seed

Bit Size

Random
Value

Execution
Time

Mica2 Mote

RandomLFSR

Input PRNG Performance System Output

Proposed PRNG

Figure 5. The PRNG Performance System

37

duty cycle of 0.1% is not unreasonable. Thus, if the size of the key space results in a duty

cycle less than 0.1% the system fails.

The PPS offers one service, the generation of random values of a specified

number of bits. The service has two possible outcomes, success or failure. Success is

determined by a successful generation of a random value of sufficient length. Failure

occurs if the PRNG fails to generate a sequence of random values of sufficient length to

thwart a brute-force attack, i.e., the PPS fails if the EBS succeeds.

3.4 Workload

 The workload for the EBS is directly related to the number of motes in the

system. The TinyOS architecture and the network are simulated and the public key is

generated and fed to the EBP. Two motes communicating across a channel do not

accurately model a computer network because there is no contention for the channel.

This means three is the minimum number of motes needed to form a network. Sensor

networks are envisioned to have thousands of motes deployed in an ad hoc fashion.

However, it is not necessary to scale the workload to this size because an asymptotic

upper bound can be found for N, the number of nodes in the network, based on the

algorithm used in EBP.

 The workload for the PPS is a small application running on a Mica2 mote. The

application generates iterative requests to the PRNG modules under test. The application

generates requests until the sequence repeats. The period of the PRNG is reported at this

time. Practically speaking, it is unnecessary to run the application on a Mica2 mote. The

distribution of TinyOS 1.1.x is capable of emulating program behavior on a PC

38

[LLW03]. The number of CPU cycles are determined from a static analysis of the

assembly code and likewise the memory requirements are determined from counting the

bytes required for each instruction.

3.5 Performance Metrics

 The main performance metrics for the EBS are the amount of time the system

takes for a success and the number of keys tried before success. These metrics provide a

measure of the feasibility of the EBS. If the EBS takes longer to break the encryption

than the motes capacity to generate new keys, the current method for creating random

numbers may be considered strong enough. This is unlikely given the size of the key

space.

 The main performance metrics for the PPS are the time to generate a random

value and the memory requirements of the PRNG. The execution time is directly related

to CPU cycles on the Mica2 mote and is a sound metric for determining power

consumption due to CPU computation. In addition, program memory is at a premium on

the Mica2 and should be considered for any application that runs on the Mica2.

 Another important factor when considering PRNGs is the randomness of the

output and the period of the random sequence. The intent of this thesis is to use

published algorithms and verification of these factors is assumed unnecessary.

3.6 Parameters

This section describes the parameters chosen for the two systems under test.

Table 2 identifies the system parameters and workload parameters for each system.

39

3.6.1 The EBS System and Workload Parameters

 The rate at which the key space is generated and potential keys are tested is

directly related to the speed of the CPU on the laptop. Since it is a brute force attack, it is

a simple matter of processing power and time. The number of keys to break determines

the workload submitted to the system. This is directly related to the network size.

 Another workload parameter that affects performance is the number of rekeys a

mote performs before an ID-key pair is captured and sent to the EBS. The generation of

a private key in EccM 2.0 is an iterative call to the LFSR-PRNG until enough numbers

are generated to create a 163-bit key. If an ID-key pair is captured during the initial

startup of a sensor network, the EBS only has to generate one key before success.

However, if an ID-key pair is captured at an unknown time after deployment it is

impossible to know how many calls to the LFSR-PRNG have been made.

 Finally, during the pilot study, mote IDs generated random sequences of varying

length. The maximum period observed is 31,796, which is about half the theoretical

 Systems Under Test
 EBS PPS

System
Laptop CPU speed
System Processes

Mote CPU speed
Mote memory
Mote energy

Workload Network size
Number of rekeys

PRNG period

Table 2. The Parameters for the SUTs Categorized by System and Workload

40

maximum. The minimum period consists of only one random value. Hence, the seed

used for RandomLFSR affects the period of the PRNG and consequently the size of the

key space. This behavior of RandomLFSR will be examined in-depth to identify

particularly weak seeds (i.e., mote IDs).

3.6.2 The PPS System and Workload Parameters

 The execution time of a request for a random value is directly related to the CPU

speed of the mote. The number of requests that can be made is ultimately constrained by

the mote’s power capacity. Finally, if the results need to be saved, the maximum number

of random values stored is limited by the mote’s memory capacity and the size of the

value. The size of the value requested varies according to the workload submitted to the

system.

3.7 Factors

 This section identifies the factors chosen for experimentation. Table 3 identifies

these factors and their respective levels.

 The main purpose of the EBS is to demonstrate that applications that rely on the

TinyOS LFSR-PRNG are vulnerable to exploitation; no system parameters identified in

the EBS will be varied. The network size and number of rekeys are varied to measure

system response. It is standard practice for motes to be assigned IDs starting at 0 and

EBS PPS
network size 3, 6, 9, 27 none
of rekeys 0, random

Table 3. Factors and the Levels for the Systems Under Test

41

counting up sequentially during configuration. This same practice is used when

assigning mote IDs in the EBS and is not varied in order to reduce the number of

experiments. The EBS is expected to perform closely to equation 1, the expected time of

a brute-force attack. The key space of a network of motes is simply the summation of

each individual mote’s key space. To verify this, network sizes of 3, 6, 9 and 27 are

selected as levels for experimentation.

The sequence produced by RandomLFSR for a given mote ID can be viewed as a

cyclical group. The number of rekeys corresponds to an element of this group. For

example, zero rekeys corresponds to the first element of the cycle. An arbitrary number

of rekeys, x, corresponds to the x mod n element of the group, where n is length of the

sequence, i.e., the number of elements in the group. To generate a private key in EccM

2.0, 11 calls are made to the LFSR-PRNG to generate enough bits for a 163-bit key.

Since the RandomLFSR module is initialized by EccM 2.0, only it may call the LFSR-

PRNG, preventing random permutations of the sequence. This could allow calculation of

the position in the sequence given the number of rekeys. However, no reasonable way to

attain this information seems available. Therefore, simulation of an attacker at network

deployment and at an arbitrary time after deployment are only considered. To simulate

an attacker at network startup the first key in the sequence is fed to the EBS. To simulate

an arbitrary number of rekeys, elements of the sequence are chosen randomly using a

uniformly distributed random number generator.

 The Mica2 and TinyOS are popular platform choices for sensor networks.

Therefore, the CPU speed, memory size, and energy parameters are not considered

42

variables for this system. The period of the PRNG determines its ability to thwart a brute

force attack. However, the period of each alternative is dependent upon its design and

cannot be modified.

3.8 Evaluation Technique

The performance evaluation for both systems is done via measurements of real

systems. The EBS uses simulation to generate the workload, but the EBP is implemented

in Java on a laptop. The laptop contains a 2 GHz AMD Athlon 64 Processor 3200+ with

512 MB RAM. The operating system is Microsoft Windows XP, Home Edition with

Service Pack 2 installed. All non-critical system services are stopped and the only

running applications are the the Windows Task Manager and a command prompt. The

EBS uses the Java Random class as its PRNG for selecting random keys from the key

space of each mote. The seed for the simulation is arbitrarily chosen as

1030785277711181.

In theory, the PPS is implemented on a Mica2 mote. However, as discussed in

Section 3.1.3 individual requests to the PPS are impossible to measure in software with

the system clock. TinyOS version 1.1 is used as it is the most strenuously tested. The

code is compiled for the Mica2 and a static analysis of the disassembled code is

performed to determine the number of instructions used and cycles required for

execution. The disassembled code is produced with avr-objdump, a disassembler

included with the distribution of TinyOS 1.1. Finally, a cycle count is determined from

the ATMega128L datasheet [Atm04].

43

Another important metric of the PPS is the randomness and period of the

proposed PRNGs. Many statistical tests exist to test randomness. These tests will be

applied if the randomness of the algorithm is in question. Additionally, the period of

most PRNGs can be verified empirically by generating the full sequence. Certain

PRNGs, specifically CS-PRNGs, are specifically designed to make it computationally

infeasible to generate the full sequence. These must be verified with a mathematical

proof, but since it is not the aim of this thesis to create such an algorithm, this type of

verification should not be needed.

3.9 Experimental Design

 The EBS is designed to demonstrate the weakness of the RandomLFSR module,

and there is no comparison being performed. Therefore the experiment is

straightforward. Eight experiments are run to obtain a full factorial test of the time to

break the encryption. As shown in Table 3, one factor of two levels and one factor of

four levels are chosen for the EBS. Thus, two times four equals eight experiments. Each

experiment for a given network size using a random number of rekeys is replicated 20

times totaling 80 experiments (1 * 4 * 20 = 80). When using zero re-keys each network

size level is deterministic and thus each experiment only needs to be executed once. A

total of 84 experiments are run to profile the performance of the EBS.

 The PPS is designed to measure the performance of the enhanced PRNG

compared to the LFSR-PRNG. The PPS is analyzed analytically requiring no

experiments to be run.

44

3.10 Analysis and Interpretation of Results

 The execution time for the EBS is averaged over the replications for each

experiment. These are plotted on a graph and visually verified for linearity. The key

space of each network size tested by the EBS does not proceed in a linear manner. That

is to say, a network of size 6 does not contain twice as many keys as a network of size 3.

This is due to the sub-maximal performance of RandomLFSR. However, the expected

time for each network can be obtained by knowing t, the time to compute a private-public

key pair. The value t is determined empirically via repeated measurements of a single

private-public key computation on the target laptop. Each network size level forms its

own category and the average of each category is calculated to verify that it is in the

range of the expected value of ½tn with 90% confidence.

 The PPS is an attempt to provide TinyOS with an alternative to the LFSR-PRNG.

Metrics are obtained on its performance to give implementers an idea of the costs

associated with the proposed PRNG. In addition, the randomness and period of the

proposed PRNGs are presented and discussed.

3.11 Summary

 Chapter III presented the experimental methodology for key generation in sensor

networks. Goals and objectives are stated and assumptions and limitations are discussed.

Section 3.1 states the objective of breaking EccM 2.0 with a brute-force attack. As a

means to this end, this work must determine the average time to perform a private-public

key operation on the experimental laptop. Section 3.1 also states the objective of

45

proposing an alternative to RandomLFSR at a similar cost in terms of execution time and

memory requirements.

46

IV. Analysis and Results

4.1 Encryption Breaking System

The following subsections discuss the procedures used to discover the weaknesses

in RandomLFSR and consequently EccM 2.0. They also discuss the EBS design,

implementation, and performance. An analysis and interpretation of the results is

presented alongside the discussion of the EBS performance.

4.1.1 RandomLFSR Analysis

The LFSR-PRNG of TinyOS, hereafter called RandomLFSR, was never designed

to provide security primitives with random numbers. It is initialized with the mote’s

TOS_LOCAL_ADDRESS constant, which is assigned during configuration and program

upload. This constant is the mote’s network address and is used when routing traffic

through the WSN. Thus it can be discovered simply by monitoring the packets generated

by the mote.

TinyOS 1.1.0, and consequently RandomLFSR, are written in the nesC language

[GLB03]. In order to implement the EBS, it was necessary to port the code to Java. The

port also made it easier to quickly examine the sequence for any given seed and analyze

the behavior of RandomLFSR. As mentioned, the mote ID also acts as the seed for

RandomLFSR. The mote ID is a 16-bit unsigned integer and in theory can range from 0-

216-1. However, in actual operation certain network addresses should not be used, such

as 65535, or 0xFFFF in hexadecimal, and 126, or 0x007E in hexadecimal. These values

represent the network broadcast address and Universal Asynchronous

47

Receiver/Transmitter (UART) address. This turns out to be irrelevant since there are no

arbitrary restrictions on the seed to RandomLFSR, not even a seed of zero.

[Lev04] described the odd behavior of RandomLFSR, but did not go into details.

To better understand RandomLFSR, the random number sequence was generated for the

full range of possible seeds. Table 4 illustrates the various sequence lengths for different

seeds. The first column lists the various sequence lengths produced by RandomLFSR,

the second column lists the number of seeds that generate a sequence of the given length,

and the last column lists the percentage of the total possible seed values (216). Most

notable is that while none of the mote IDs produces a maximal sequence, some IDs

produce sequences shorter than others.

Another interesting behavior is that for seeds in the range 0 thru 216, 31796 of

them produce a sequence of 31796 before repeating, 21159 produce a sequence length of

Sequence Length # of Seeds Percentage
31796 31796 48.52%
21159 21159 32.29%
7471 7471 11.40%
2492 2492 3.80%
1110 1110 1.69%
345 345 0.53%
325 325 0.50%
301 301 0.46%
294 294 0.45%
195 195 0.30%
12 24 0.04%
8 8 0.01%
7 7 0.01%
6 6 0.01%
2 2 0.00%
1 1 0.00%

Table 4. The Various Sequence Lengths Produced by TinyOS 1.1.0’s RandomLFSR

48

21159, 7471 produce a sequence of length 7471, and so on as is shown in Table 4. The

reason for this behavior is easily understood once it is realized that RandomLFSR creates

cyclical subgroups from set of all 16-bit integer seeds. The seeds generating a sequence

length of 31,796 form a cyclic subgroup of { }| , 0 65536x x x∈ < < . If one of the

elements generating this sequence length is used as a seed, it creates the same random

sequence as any other number in the group. This behavior of RandomLFSR implies that

only 17 unique sequences are ever generated. This follows from the 16 rows in Table 4

plus one row (sequence length 12) has two subgroups generating the same sequence

length, thus 16+1=17. One minor detail in the code of the LFSR prevents this fact from

being exploited. A numerical mask that is different for each seed is used to alter the

output of RandomLFSR. The mask is calculated from the initial seed by the formula

137*29*(_ _ 1)mask TOS LOCAL ADDRESS= + . Documentation for why the mask is

calculated in this manner could not be found, especially why the multipliers of 137 and

29 were chosen. This mask is applied by XORing the mask with the output of

RandomLFSR before the output is returned to the caller. Therefore, while the underlying

sequences generated by each group are the same, the sequence generated for each seed is

not. This does not affect the distribution of RandomLFSR as shown in Figure 6, which

shows the distribution of the sequence of numbers generated by a seed of zero.

4.1.2 EccM 2.0 Analysis

EccM 2.0 represents large integers using a byte array to hold the bits of the

integer. This representation is commonly known as a “big integer” or bigints. For

example, to represent 2163 using a byte array requires an array length of 21. Thus, the

49

right-most element of the array represents the 8 least significant bits of the big integer.

The left-most element (indexed at 0) represents the 8 most significant bits. EccM 2.0

actually uses an array of length 42 to handle overflow as the number is manipulated by

the elliptic curve algorithms. Figure 7 shows the section of code used to generate the

private key. The function b_mod is function used by the author of EccM 2.0 to perform

modular arithmetic on bigints. It takes to two byte arrays representing bigints and the bit

length of the bigints, uses the second bigint argument as the modulus, and places the

result in the first bigint argument.

Distribution of RandomLFSR (seed=0)

0

500

1000

1500

2000

2500

3000

7500 15000 22500 30000 37500 45000 52500 60000 More

Random Value

Fr
eq

ue
nc

y

Figure 6. A Typical Distribution of the Numbers Produced by RandomLFSR

50

It is the intention of this section of code to randomly select a number between 0

and r, the order of the elliptic curve, with equal probability. The order of the curve

(params.r in the code) is a 49 digit number and is roughly given as 5.84e48, somewhere

between 2163 and 2162 [Mal04]. However, because of the deficiencies of RandomLFSR it

is known that at most 31,179 numbers can ever be generated in the best case. This is

because the private key is created via repeated calls to the RandomLFSR module. If n is

the length of the sequence and S is the sequence for a given mote, then the first call to

RandomLFSR can be viewed as the starting point of some subsequence in S. There are

only n such subsequences in S and therefore only n private keys will be generated from S.

The author of EccM 2.0 specifically chose a 163-bit key with the intention of

providing 80 bits of security as per the recommendation of the NIST. However, in the

best case, a little less than 15 bits of security (215 = 32768) is provided by EccM 2.0.

This fact leaves EccM 2.0 vulnerable to a brute-force attack. All that is needed to

discover the private key for a given public key is to know the sequence used (i.e. know

the seed).

// privKeyA.s = random number in [0, 2^p);
for (i = NUMWORDS/2; i < NUMWORDS; i++)
 privKeyA.s[i] = (word_t) call Random.rand();

// privKeyA.s = privKeyA.s (mod params.r)
b_mod(privKeyA.s, params.r, NUMWORDS/2);

Figure 7. EccM 2.0 Algorithm for Generating the Private Key

51

4.1.3 Encryption Breaking System

 With the RandomLFSR understood and EccM 2.0 exposed, it simply remains to

design a system that faithfully duplicates the steps performed by EccM 2.0 to generate

public keys. The Encryption Breaking System (EBS) is implemented in Java. The EBS

is intended to run on a laptop with a mote connected via the serial port that is listening

indiscriminately to packets transmitted over the air. Tools to forward packets from the

mote to a connected PC are already written in Java and provided with the distribution of

TinyOS 1.1.0, thus Java was a natural choice for the EBS. It is a simple matter to modify

these tools to seamlessly pass packets to the EBS. In order to maintain a controlled

experiment, an offline process generates all public keys used in the experiment and stores

them in a database. When the simulation of EBS runs, a seed and public key are

randomly selected from the database and artificially injected into the EBS. The

encryption breaking program is triggered by the simulation in the same manner that an

overheard packet is forwarded over the serial port. That is to say, they use the same

method call.

 The EBS now possesses the two things it needs to discover the private key via a

brute-force attack, namely the mote’s ID and the public key. It is simply a matter of time

before the key is discovered. How much time is of concern because taking too much

time renders the private key useless to the attacker since the mote may have rekeyed. For

example, if it takes several months to discover the private key by trial and error, it is

likely that the mote will have rekeyed itself by then. On the other hand, if the key can be

52

discovered in a trivial amount of time, then in order to remain secure, the mote must

rekey itself at least as fast as the average case.

4.1.3.1 The Expected Performance of EBS

In order to verify the execution time of the EBS, the variables of equation 1, must

be known. The key space, n, is easy enough to determine. The key space for each mote

used in the experiment is known because it is simply the period of that motes’

RandomLFSR sequence. However, the time to generate the private-public key pair, t, is

not known. One possible way to determine this value is to measure the time it takes for

the offline process to generate the public keys used within the experiment. The process

stored these keys in text files that can be loaded by the simulation to randomly feed keys

and IDs to the EBS. Table 5 shows that this requires 566,500 iterations. The sequence

length of each of the mote IDs selected for experimentation was measured empirically by

generating the entire sequence. As mentioned in Section 3.7, it is common practice to

address motes in a network starting at 0 and counting up. Therefore, mote IDs 0-26 are

used to obtain the numbers in Table 5. Consequently, 8 mote addresses in the range 0-26

have a sequence length of 31,796, 14 have a length of 21,159, etc. The key space for all

Sequence Length # of Motes Total Keys
31796 8 254,368
21159 14 296,226
7471 2 14,942
345 1 345
325 1 325
294 1 294

Total 27 566,500

Table 5. Sequence Length of First 27 Sequential Mote IDs

53

27 motes is simply the summation of the right column in Table 5, which is the sequence

length multiplied times the number of motes.

This presented the opportunity to measure the execution time of the laptop when

generating the keys required. On average, the laptop took approximately 97.14 msecs to

compute a public key with a standard deviation of 6.87 and 90% confidence interval of

±0.015 msecs. Appendix B discusses how the average is derived.

The sheer size of the task created additional difficulties. The public keys are

selected “on the fly” while the simulation is running. However, attempting to load the 27

text files containing the public keys causes the JVM to throw an OutOfMemoryError

error due to the average file size of 5.5 MB. Therefore, as the simulation runs, the file for

the target mote is loaded and a public key is randomly selected. This implies that a small

amount of overhead in terms of file loading time is introduced for each mote that would

not be present in the actual system. The average load time for each file is shown in

Figure 8. To put things in perspective, Table 6 shows the expected performance for each

network size and the overhead introduced. Appendix C provides the data for the

numbers used to derive the average load time.

4.1.3.2 Results and Analysis of EBS Performance

To simulate attackers present during a DSN deployment, four experiments on

different network sizes used zero rekeys. If an attacker is present at deployment he will

overhear the first broadcast of any mote in the network. This leaves EccM 2.0 extremely

vulnerable to attack due to its straightforward startup. An attacker simply needs to

generate the first pair of keys in the sequence to find the private key. Table 7 illustrates

54

the performance of the four experiments. The first column lists the network sizes used in

the experiments and the second column lists the running time to find the private keys of

all the motes in the network. The measured times are higher than the expected time of

about 97 msecs per mote. This is partly explained by the file loading times listed in the

third column of Table 6. However, there is still a significant gap, which is assumed to be

due to program overhead at startup.

Table 6. Expected Time to Identify a Private Key Versus Average File Load Time

Network
Size

Expected
Time

Average File
Load Time

Ratio of
Load/Expected

3 68 min, 36 sec 6 sec 0.0015
6 137 min, 12 sec 12 sec 0.0015
9 205 min, 48 sec 18 sec 0.0015
27 458 min, 34 sec 41 sec 0.0015

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Network Mote ID

A
ve

ra
ge

 F
ile

 L
oa

d
Ti

m
es

 (m
se

c)

Figure 8. Average Times for Loading Key File for Each Mote

55

In contrast to an attacker being present at DSN deployment, it is possible for

EccM 2.0 to rekey an arbitrary number of times. This means that any key in the key

space could be in use at any given time. To simulate this, a random key is selected from

the key space for each mote and injected into the EBS. The size of the key space for each

network size is dependent upon the mote IDs used for each network. As discussed in

Chapter 3, it is common practice to sequentially number the mote IDs starting at 0. This

results in a key space of 84,751 for 3 motes, 169,502 for 6 motes, 254,253 for 9 motes

and 566,500 for 27 motes. Figure 9 plots the sequence length of each mote ID over the

cumulative key space for a network consisting of the greatest assigned network address.

The x-axis represents the mote ID, the left y-axis is the sequence length of the particular

mote ID, and the right y-axis is the size of the network assuming motes are addressed

sequentially. For example, a network of 3 motes consists of motes addressed 0, 1, and 2.

The key space for this network is the point labeled 2 on the x-axis and is the summation

of the individual mote’s key spaces. As discussed in Section 4.1.2, the key space of a

network is essentially equal to the sequence lengths generated by RandomLFSR, which is

based on the mote’s network address.

Network Size Measurement
(msecs)

3 7016
6 13109
9 19656
27 44235

Table 7. Measured Time of the EBS to Identify Private Keys with Zero Rekeys.

56

Table 8 summarizes the results from the experiments for the different sized

networks. The average time in the second column is the measured time from each

experiment averaged over 20 measurements. The expected time in column three is

Network
Size Average Time Expected % Error Standard

Deviation
3 74 mins, 36 secs 68 mins, 36 secs 8.82% 24 mins, 42 secs
6 138 mins, 11 secs 136 mins, 12 secs 0.72% 31 mins, 42 secs
9 222 mins, 16 secs 205 mins, 49 secs 8.00% 49 mins, 29 secs
27 455 mins, 3 secs 458 mins, 34 secs 0.77% 138 mins, 34 secs

Table 8. The Average Time for the EBS to Identify All Keys in a Network of a Given
Size Assuming an Arbitrary Number of Rekeys

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Mote Network Address (TOS_LOCAL_ADDRESS)

0

100000

200000

300000

400000

500000

600000

Sequence Lengths Size of Key Space

Figure 9. The Correlation of RandomLFSR Sequence Lengths

and Size of the Key Space Assuming Motes are Addressed Sequentially

57

computed using equation 1, with 97.14 milliseconds as t. The key space, n, is determined

empirically, since it is a simple matter to generate the random sequence for each mote

address. The percent error is the difference of the average measured time and the

expected time divided by the expected time. Figure 10 shows these results graphically

with the error bars giving the 90% confidence interval for each point. The expected time

is plotted for each network size. Obviously it closely resembles the line in Figure 7 since

it is simply the key space multiplied times the constant ½t. Thus, it appears that the

performance of the EBS supports the expected time of 97.14 milliseconds per private-

public key operation.

Average Measured Time of the EBS with 90% Confidence
Interval

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0 5 10 15 20 25 30

Network Size

Ex
ec

ut
io

n
Ti

m
e

(m
se

cs
)

Measured Expected

Figure 10. The Measured Time to Find Private Keys Versus Expected Time

58

The result of all this is that for 31,796 potential mote IDs, the time that EBS can

discover the private key on average is:

1 1 97.14 milliseconds 31796
2 2

1544331.72 milliseconds

tn = × ×

=

or in minutes:

1544331.72 milliseconds
milliseconds60000

minute
25.738862 minutes

=

=

This means that in order for EccM 2.0 to remain secure, the mote must transition

a private-public key pair to a deactivated state 25 minutes after its initial use. This is at a

minimum; a prudent design would allow the key to remain in an active state at most 15

minutes. Of course, this assumes that only motes with the maximum period are used.

Table 9 shows the expected time to identify a private key for all sequence lengths

generated by RandomLFSR. The times in the second column are computed using

equation 1. The last row groups sequence lengths of 12 or less together and specifies that

it takes 600 milliseconds or less to break sequence lengths of 12 or less. How this affects

the longevity of the WSN is application dependent. For example, assuming the batteries

provide 2200 mAh at 3V and considering that the Mica2 processor requires 8 mA to

operate and that a rekey operation on the Mica2 takes 68.53 seconds, then the Mica2 can

calculate approximately:

59

seconds2200 milliamp-hours 3600 7920000 milliamp-secondshour
seconds milliamp-seconds8 milliamperes 68.53 548.24
rekey rekey

14446 rekeys

×
=

×

=

before exhausting its batteries. Assuming four rekeys per hour allows the Mica2 to last

for about 151 days. Of course, this is the best case scenario and concedes that the Mica2

does nothing else in those 151 days except rekey itself.

In general, it is difficult to estimate the longevity without an application. If the

key is expired every 15 minutes, or four rekeys per hour, the processor would require a

duty cycle of:

seconds68.53
hour4 100 7.614%seconds3600
hour

× × =

Sequence Length Expected Time to
Identify Private Key

31796 25.74 minutes
21159 17.13 minutes
7471 6.05 minutes
2492 2.02 minutes
1110 53.91 seconds
345 16.76 seconds
325 15.79 seconds
301 14.62 seconds
294 14.28 seconds
195 9.47 seconds

12 or less < 600 milliseconds

Table 9. The Expected Time of the EBS to Find a Private Key Given a Mote
Producing the Listed Sequence Length

60

Of the few applications actually published, most constrain the processor’s duty

cycle to no more than 5.8% [MPS02]. Since the duty cycle required for secure operation

is greater than what is allowed by the application, a compromise must be made

somewhere. For example, it is possible to design a DSN that operates only 15 minutes

every hour. In fact, many designs may already do this in the interest of conserving

power. However, this constraint is an unnecessary burden on a DSN engineer since

better alternatives to RandomLFSR exist in the literature.

4.2 PRNG Performance System

 The following subsections discuss alternatives to the RandomLFSR PRNG of

TinyOS. Two alternatives are examined. The first is a maximal LFSR-PRNG adapted

from [Sch96]. The second is a MLCG-PRNG adapted from [PaM88] and distributed

with the beta of TinyOS 2.0. Their performance is analyzed in terms of computation

cycles, memory requirements and sequence lengths. Due to their fundamentally different

design, a direct comparison is inappropriate. However, a system’s view is taken when

analyzing the impact of each PRNG on the performance of EccM 2.0 that clearly shows

the best alternative.

4.2.1 A Maximal Linear Feedback Shift Register

 One possible way to overcome the deficiencies of RandomLFSR is to create a

maximal LFSR and seed it with a secret number. The literature is replete with examples

of how to create a maximal LFSR. The linear nature of LFSR-PRNGs however make

this an even weaker PRNG then RandomLFSR. Since the next number of an LFSR, xi+1,

is dependent on the previous number, xi, a random sequence produced for a given

61

maximal tap sequence forms a linear chain, x0, x1, x2, …, xn-1, xn, where n is the period of

the LFSR. The result of this behavior is that no matter which value is chosen as the seed

it will always produce the same sequence. All that is needed to break EccM 2.0 in this

case is produce 216-1 public keys. Each mote produces the same set of keys. This set of

keys could be generated off-line and reduce breaking EccM 2.0 to a reverse lookup table.

RandomLFSR avoids this pitfall by creating a mask based on the seed value as

discussed in Section 4.1.1. The same approach can be used for a maximal LFSR and thus

produce 216 unique sequences, where a seed of zero produces the base sequence. The

maximal property of the LFSR is not affected by this modification, which was verified

empirically by generating the sequences for all possible seed values. The code for this

maximal LFSR, hereafter referred to as MaximalLFSR, is shown in Figure 11. The main

body of the function is taken directly from [Sch96] and implemented in the nesC

language. The full code can be viewed in Appendix F. shiftReg is the 16-bit shift

register of MaximalLFSR and is essentially the state of the LFSR. The atomic statement

prevents system interrupts and ensures other tasks cannot alter the state of the

MaximalLFSR. endbit is a Boolean value representing the exclusive-or of the 16th, 5th,

3rd, 2nd, and 1st bits and determines the “feedback” of the LFSR. If endbit evaluates to

true, shiftReg is shifted right by one and a 1 is placed in the left-most bit. If it evaluates

to false, shiftReg is shifted right by one and a 0 is placed in the left-most bit by definition

of the right-shift operation in nesC.

The design is slightly modified from [Sch96] in that instead of outputting a single

bit, the entire state of MaximalLFSR is XORed with initseed, which is simply the initial

62

seed of MaximalLFSR, and returned. As discussed in [Sch96], LFSR-PRNGs are

designed to produce random bits. To produce random numbers from LFSR-PRNGs,

[Sch96] suggests repeatedly calling the random function and ORing the bits together to

form the desired length integer. Thus, given that an n-bit number is desired and a n-bit

LFSR is used, the resulting value after n calls is simply the state of the LFSR n calls

prior. Therefore, for a 16-bit PRNG such as MaximalLFSR it seemed logical to simply

return the current state of the LFSR. This approach succeeds at thwarting a brute force

attack because knowledge of the private key cannot be gained from the public key. In

other words, while knowledge of the private key reveals information about the underlying

random sequence, all the cryptanalyst has access to is the public key. Thus, when using

async command uint16_t Random.rand() {
 bool endbit;
 uint16_t tmpShiftReg;

 atomic {
 tmpShiftReg = shiftReg;
 endbit = ((tmpShiftReg >> 16) ^ (tmpShiftReg >> 5) ^
 (tmpShiftReg >> 3) ^ (tmpShiftReg >> 2) ^
 (tmpShiftReg)) & 0x0001;
 if (endbit)
 tmpShiftReg = (tmpShiftReg >> 1) | 0x8000;
 else
 tmpShiftReg = tmpShiftReg >> 1;
 shiftReg = tmpShiftReg;
 }
 return tmpShiftReg ^ initseed;
}

Figure 11. The MaximalLFSR Function for Generating the Next Random Number

63

MaximalLFSR, the EBS must generate 216 * (216-1) * ½ public keys on average to break

the encryption. A successful attack by the EBS would take on average:

()()16 161 milliseconds97.14 2 2 1 keys 208,603,378,483.2 milliseconds
2 key
× × − =

or in years:

208,603,378,483.2 milliseconds 6.61 years3600 second 24 hours 365.25 days1000
1 hour 1 day 1 year

=
× × ×

However, EBS fails in this case by the definition of failure. Using equation 2 results in a

duty cycle for the Mica2 of:

()
5

16 16

milliseconds3,600,000
hour2 milliseconds97.14

key
1.9% 3.27 10 % 0.1%

2 2 1 keys
−

⎛ ⎞
⎜ ⎟
⎜ ⎟×
⎜ ⎟
⎜ ⎟
⎝ ⎠ × = × <

−

Unfortunately, MaximalLFSR does not produce random sequences. While no

statistical tests were run on the output of MaximalLFSR, a cursory analysis shows that

the output is predictable for internal states that are powers of two. For example, suppose

shiftReg equals 214, or 0x4000 in hexadecimal. In this case, endbit evaluates to 0 and the

else branch is executed, which simply left-shifts the value of shiftReg by 1. In other

words, it divides 214 by 2 giving 213, or 0x2000. This pattern continues for 0x1000,

0x0800, 0x0400, 0x0200, and so on, until the internal state becomes 25 and endbit

evaluates to 1. While the exclusive-or operation on the output transforms this sequence,

this pattern is still easily identified. For example, suppose initSeed equals 1, then the

pattern is the same, except that one is added to each element of the sequence. The

64

exclusive-or changes the underlying pattern in a consistent, predictable way, which is

readily detected under close inspection. This in turn, reveals the initial seed and allows

the output to be predicted.

4.2.2 TinyOS 2.0’s Multiplicative Linear Congruential Generator

 The beta version of TinyOS 2.0 was released in November 2005 [Tin05]. This

release came packaged with two random number generators, the original RandomLFSR

and a new PRNG proposed in [Lev04]. The new PRNG is based upon the Park-Miller

minimum standard proposed in [PaM88] and is a multiplicative linear congruential

generator (MLCG). Researchers extensively tested the output of this MLCG for

randomness [CoM67, FiM86, Hoa76, Knu81] and it is generally accepted to be a good

PRNG [PaM88]. While MLCGs are excellent choices for simulations, they prove to be a

poor choice for cryptographic systems as they are predictable [Sch96]. With that said,

seeding TinyOS 2.0’s MLCG with a secret seed (presumably loaded during

configuration) succeeds at thwarting the attack defined in this thesis because the sequence

generated by the MLCG is maximal with a period of 231-1. For the EBS to successfully

identify the private key would require on average:

()311 milliseconds97.14 2 1 keys
2 key 3.305 yearsmilliseconds 3600 second 24 hours 365.25 days1000

1 second 1 hour 1 day 1 year

× × −
=

× × ×

RandomMLCG also manages to causes the EBS to fail by only requiring a duty cycle of:

65

()
5

31

milliseconds3,600,000
hour2 milliseconds97.14

key
1.9% 6.56 10 % 0.1%

2 1 keys
−

⎛ ⎞
⎜ ⎟
⎜ ⎟×
⎜ ⎟
⎜ ⎟
⎝ ⎠ × = × <

−

4.2.3 Performance of Alternatives

 Sections 4.2.1 and 4.2.2 examine the behavior of each of the proposed alternatives

for uniformity and randomness. Also of interest is the cost of implementation on the

Mica2, particularly as it relates to computation time. Analysis of the compiled binaries

reveals the number of instructions and cycles required to implement both RandomLFSR

and MaximalLFSR. It is shown that the number of branch instructions of RandomMLCG

increases significantly compared to both RandomLFSR and MaximalLFSR, which

hinders an exact static analysis of the cycle requirements. Simulation software could

have been used to obtain a more precise profile of RandomMLCG than is presented in

this section. However, the main objective of this analysis is to show that one alternative

is superior to the other, which is clearly evident with the analysis presented.

Furthermore, the analysis of RandomLFSR and MaximalLFSR is as precise as possible

and simulation of these modules would not have added any new information.

Table 10 shows the results of the analysis. The instruction count, cycles required

for execution, total number of branch instructions in the assembly, and memory

requirements in bytes are listed for each PRNG. The third column lists the number of

cycles required for execution of a single function call. Branch statements result in

different cycle requirements depending on the internal state of the PRNG and are

represented by multiple values. RandomMLCG has branch statements within branch

66

statements. There are two main branches of execution, which are presented with

approximate values since nested branch statements result in different cycle counts.

 Four of the five branch statements in MaximalLFSR are used in an iterative loop

that evaluates a register that is decremented each pass through the loop. Optimization of

the assembly code could eliminate the execution of 75 cycles resulting in a requirement

of 71 or 73 cycles. Of course, this is at a cost of 66 bytes of program memory. See

Appendix E for a discussion of the optimization used to determine these figures.

4.3 Summary

 This chapter consists of two main sections. Section 4.1 discusses the EBS and the

work carried out to answer the questions put forth in Section 3.1.1. Section 4.1.1 presents

the analysis performed on RandomLFSR to determine its behavior. Section 4.1.2 shows

how the short period of RandomLFSR leaves EccM 2.0’s key generation algorithm

vulnerable to a brute-force attack. Finally, Section 4.1.3 presents the steps taken to

exploit this vulnerability and determines the expected time to identify a private key given

a mote’s address and public key.

Table 10. A Static Analysis of Alternative PRNGs Versus RandomLFSR

PRNG Instruction
Count Cycles Branch

Instructions
Size

(bytes)
RandomLFSR 21 20, 23 1 46
MaximalLFSR 41 146, 148 5 86
RandomMLCG 540 ~916, ~1024 34 1108

Optimized
MaximalLFSR 74 71, 73 1 152

67

 Section 4.2 discusses the PPS and the analysis necessary to meet the goals laid out

in Section 3.1.1, namely the goal of finding an alternative capable of thwarting a brute-

force attack on EccM 2.0. Sections 4.2.1 and 4.2.2 presents PRNGs based on LFSR and

LCG designs, respectively. Both alternatives succeed at thwarting the brute-force attack

defined in this work. Section 4.2.3 presents the cost of implementation on the Mica2 for

each alternative as well as the costs associated with RandomLFSR.

68

V. Conclusions and Recommendations

5.1 Restatement of the Problem and Conclusions

Chapter 3 asks the following questions:

1. Can the weaknesses of the LFSR-PRNG in TinyOS be exploited to break the

public key cryptography and, if so, how fast can it be done?

2. Will the rate of key compromise exceed the mote’s capacity to rekey?

Chapter 4 shows that the LFSR-PRNG used in TinyOS exposes the elliptic curve

cryptosystem proposed in [Mal04,MWS04] to a brute-force attack. The average time to

discover the private key for a given mote is 97.14 milliseconds. Practically speaking, this

requires the mote to rekey once every 15 minutes. This equates to a 7.6% duty cycle.

While the needs of DSN applications vary widely, this is an additional constraint on an

already severely constrained environment. There is a better solution.

Another stated goal of this work is to produce an alternative to the RandomLFSR

module in TinyOS that thwarts the brute-force attack defined in this thesis. One

alternative, MaximalLFSR, was proposed by the author. Another alternative,

RandomMLCG, comes packaged with the beta release of TinyOS 2.0. Although both fail

requirements of a cryptographically secure PRNG due to their linear nature, they succeed

at defeating the brute-force attack when the seed is kept secret. MaximalLFSR does this

at a much lower cost than RandomMLCG while requiring significantly more computation

time on the part of the attacker (6.6 years versus 3.3 years).

69

5.2 Contributions and Significance

The main contribution of this thesis is the analysis of the current RandomLFSR

module distributed with the current version of TinyOS and in the beta release of TinyOS

2.0. This module is used throughout the operating system and in a wide array of

applications. While it is likely that many applications using RandomLFSR are tuned to

operate with its quirkiness, certain seeds are shown to produce sequences of only a few

numbers. At the very least, users of TinyOS should be made aware of these limited seeds

and avoid them. Even better, RandomLFSR should be replaced with MaximalLFSR, as it

performs comparably in terms of execution time and memory requirements.

 A secondary contribution includes the demonstration of a brute-force attack on

EccM 2.0, an implementation of ECDLP on the Mica2. Although it is a simplistic attack

that is easily thwarted, it examines the threat of such an attack given a computationally

superior attacker that future DSNs could face in the field. A determined attacker could

transmit public keys overheard via a laptop connected to a mote to a more powerful

computing system. The attack described in this thesis can be easily modified to work in

parallel and use the power of distributed computing to break the cryptosystem more

quickly.

5.3 Recommendations for Future Research

In the process of answering the questions put forth in this thesis, many more

questions surfaced. Perhaps most tantalizing is the possibility that the public keys could

somehow be correlated to the underlying sequence used to generate the private keys. The

structures of RandomLFSR and MaximalLFSR are very simplistic and quite a bit of

70

mathematical theory could be applied to discover nonrandom properties. If these

properties reveal themselves in the key space of the mote, perhaps they could be

generalized to apply to all motes. Thus, the public key could be used to determine which

sequence is used and where in the sequence the key is generated from. This information

could then be used to generate the private key.

EccM 2.0 itself still requires much work before it is complete. A generalized

protocol for exchanging keys in an arbitrarily large network must be devised. In addition,

the shared key is actually a point on the elliptic curve used in EccM 2.0. To use this

shared secret in a symmetric key cipher, a secure mechanism is needed for transforming

this shared secret into a secret key suitable for use in TinySec or other symmetric

cryptosystem. One such mechanism is a cryptographic hash function. These can also be

used in combination with a counter to provide secure key generation. An efficient

implementation of a cryptographic hash function in nesC can serve dually as a source of

random bits for cryptographic keys and a secure hash of the shared key produced by

EccM 2.0.

The brute-force attack described in this thesis works well on relatively small key

spaces. However, a key space of only 225 requires roughly 18 days of computation,

assuming 97.14 milliseconds per private-public key operation, to discover one key.

Obviously, it does not scale well because it is limited to one laptop with a single

processor. A determined attacker with greater computational power can easily overcome

the key space provided by MaximalLFSR. Indeed, using a system similar to the one used

to crack DES, the entire key space of a WSN using MaximalLFSR could be computed in

71

less than a second. This information could then be used to simply lookup the private key

of the public key in use. This begs the question of how large the key space must be to

thwart such an attacker. WSNs are extremely susceptible to brute-force attacks that look

to overpower the resources of the individual mote.

5.4 Summary

This work presents a brute-force attack on an implementation of ECDLP on

TinyOS. The attack exploits the short period of the RandomLFSR module of TinyOS. It

demonstrates an average compromise time of 25 minutes for the longest sequence

produced by RandomLFSR. Over 50% of possible mote addresses lead to significantly

shorter compromise times. The possibility of distributing the attack over multiple

machines is an area for future research that could lead to even shorter compromise times.

Two alternatives to RandomLFSR are examined that can thwart the brute-force

attack presented in this work. RandomMLCG, the multiple linear congruential generator

distributed with TinyOS 2.0 beta, offers a much longer period of 231-1, but at a

significantly greater cost in terms of computation time and program memory.

MaximalLFSR, an alternative based on the well-known mathematics of LFSRs, performs

more closely to RandomLFSR and roughly doubles the length of the period provided by

RandomMLCG.

72

Appendix A: Derivation of Equation Two

Equation 2 in Section 3.3, page 36, is given as:

2 1.9r D
n
× =

In part, this is derived from the fact that one rekey per hour on the Mica2 results in a duty

cycle of 1.9%. Thus, the constant 1.9 in equation 2. It remains to determine a formula

for calculating the expected number of keys compromised per hour. Equation 1 gives the

expected time for one key compromise as:

1
2

tn

where t, is the time for one private-public key operation and n is the size of the key space.

Thus, if t is in hours, the expected number of key compromises per hour is simply the

multiplicative inverse of equation 1:

2
tn

 (3)

Equation 3 must be in hours. To avoid confusion a new variable, r, is defined as the

number of key trials per hour and is given as:

1r
t

=

where t is in hours. Substituting r in for t in equation 3 gives:

2 2
1

r
nn

r

=

which is the first term in equation 2.

73

Appendix B: Computing the Average Private-Public Key Operation

The computation of the key spaces for the first 27 sequential mote IDs provided

ample opportunity to measure the time required to compute a single private-public key

pair. In fact, exactly 566,500 private-public key pairs are computed. Computing the key

pair involves two function calls, generatePrivateKey(int index, byte[] arrSequence) and

generatePublicKey(byte[] privKey). See Appendix X, pages XX and XX, respectively.

The system clock is polled before the first call and after the second call and the difference

is taken as the time to compute the key pair. This result is stored along with the public

key in a text file for retrieval at a later time. It proved easier to write a program to

compute the average then to load 566,500 measurements in to Excel. The program

produced the output displayed in Figure 12.

Interestingly, if the formula for computing the variance is done by the program, it

throws an exception because a non-terminating decimal expansion occurs when the JVM

Figure 12. Output of Program for Calculating Statistics of Time to Compute Private-
Public Key Operations

Average 97.14295675198588
Sum 5.5031485E7
Sum of Squares 5.372645861E9
Count 566500

Measurement Frequency
78 5591
79 715
93 107196
94 323739
109 81218
110 47989
125 42
140 4
141 6

74

tries to represent one of the terms of the equation as a double. Consequently, this data

was then used to perform the following computations by calculator:

()2
2

1 12

1 2

(1)
566500*5372645861 55031485

566500*566499
47.152

47.152
6.86842

6.871.645
566500

0.015

n n
i ii i

n x x
s

n n

s

sCI z
nα

= =

−

−
=

−
−

=

=

=
=

= ±

= ±

= ±

∑ ∑

75

Appendix C: Data Tables

Table 11. Statistics for Average File Load Times

Mote ID Average Sum Variance
Standard

Dev 90% CI
0 1665.6 16656 2260.71 47.547 20.7943
1 2362.5 23625 3398.5 58.297 25.4956
2 2343.7 23437 430.68 20.753 9.0761
3 1554.7 15547 600.01 24.495 10.7128
4 2339.1 23391 709.88 26.644 11.6524
5 2339 23390 555.78 23.575 10.3103
6 2339.2 23392 547.29 23.394 10.2313
7 1559.3 15593 693.34 26.331 11.5159
8 2340.7 23407 696.01 26.382 11.5380
9 25 250 60 7.746 3.3876

10 1554.7 15547 600.01 24.495 10.7128
11 546.8 5468 160.4 12.665 5.5389
12 1556.3 15563 725.57 26.936 11.7804
13 1560.9 15609 824.99 28.723 12.5616
14 1553.1 15531 646.32 25.423 11.1185
15 21.9 219 68.54 8.279 3.6208
16 1553.1 15531 489.21 22.118 9.6732
17 1559.4 15594 757.6 27.525 12.0377
18 1554.7 15547 784.23 28.004 12.2474
19 1557.8 15578 596.4 24.421 10.6805
20 2340.6 23406 759.16 27.553 12.0500
21 1559.4 15594 590.49 24.300 10.6274
22 1554.7 15547 767.12 27.697 12.1131
23 548.4 5484 133.16 11.539 5.0466
24 1553.1 15531 339.66 18.430 8.0601
25 26.6 266 57.16 7.560 3.3064
26 2339.1 23391 386.1 19.649 8.5935

76

Table 12. Statistics for Network Size = 3
Mean 4479343.05
Standard Error 331548.9481
Median 4516843.5
Standard Deviation 1482731.972
Sample Variance 2.19849E+12
Minimum 2098188
Maximum 7655797
Sum 89586861
Count 20
Confidence Level
(90%) 573292.1584

Table 13. Statistics for Network Size = 6
Mean 8291583.7
Standard Error 425433.7989
Median 7802117
Standard Deviation 1902597.789
Sample Variance 3.61988E+12
Minimum 5978250
Maximum 13374094
Sum 165831674
Count 20
Confidence Level
(90%) 735631.5327

Table 14. Statistics for Network Size = 9
Mean 13336702.35
Standard Error 664054.1218
Median 12922953
Standard Deviation 2969740.314
Sample Variance 8.81936E+12
Minimum 8710234
Maximum 19740094
Sum 266734047
Count 20
Confidence Level
(90%) 1148237.758

77

Table 15. Statistics for Network Size = 27
Mean 27303081.15
Standard Error 1054178.669
Median 27383156.5
Standard Deviation 4714430.33
Sample Variance 2.22259E+13
Minimum 19027094
Maximum 35832671
Sum 546061623
Count 20
Confidence Level
(90%) 1822814.906

Table 16. Expected Performance for Sequential Network Sizes

Mote ID Cumulative
Key Space

½ tn, t=97.14
(msecs)

0 21159 1027692.63
1 52955 2572024.35
2 84751 4116356.07
3 105910 5144048.7
4 137706 6688380.42
5 169502 8232712.14
6 201298 9777043.86
7 222457 10804736.49
8 254253 12349068.21
9 254578 12364853.46

10 275737 13392546.09
11 283208 13755412.56
12 304367 14783105.19
13 325526 15810797.82
14 346685 16838490.45
15 346979 16852770.03
16 368138 17880462.66
17 389297 18908155.29
18 410456 19935847.92
19 431615 20963540.55
20 463411 22507872.27
21 484570 23535564.9
22 505729 24563257.53
23 513200 24926124
24 534359 25953816.63
25 534704 25970573.28
26 566500 27514905

78

Appendix E: Optimization of Assembly

Figure 12 presents the assembly code of MaximalLFSR. As Table 9 states, it

consists of 5 branch instructions, located at addresses 0x1A4, 0x1AE, 0x1BC, 0x1DE,

and 0x1DC. Addresses 0x1DE and 0x1DC are relative jumps and are required for proper

execution. The brne instructions on the other hand are part of a loop that operates

similarly to a do-while. For instance, the instructions in the address space 0x19C-0x1A4

constitute the first loop. The ldi instruction represents the initial condition and loads the

constant 16 into the register r26. The next two instructions constitute the loop’s work.

The dec instruction decrements r26 by one. The brne instruction evaluates r26 to see if it

equals zero. If not, the program jumps to the start of the loop at 0x19E at a cost of 2 CPU

cycles. This occurs 15 more times until the final dec instruction sets r26 to zero and the

brne instruction evaluates to false at a cost of one cycle. This loop ultimately requires 80

cycles, 1 for the initial condition, 5 for each execution of the loop when brne evaluates to

true (5*15=75), and 4 for the final loop iteration.

Alternatively, the loops could be manually unrolled and the work portion of the

loop could be repeated 16 times. This increases the number of instructions the program

contains resulting in a larger memory requirement for the program. However, the

unrolling of the loop decreases the number of instructions that it executes, particularly the

costly branch instruction. This essentially halves the execution time of MaximalLFSR.

79

194: 2f b7 in r18, 0x3f ; 63
196: f8 94 cli
198: 62 2f mov r22, r18
19a: ac 01 movw r20, r24
19c: a0 e1 ldi r26, 0x10 ; 16
19e: 36 95 lsr r19
1a0: 27 95 ror r18
1a2: aa 95 dec r26
1a4: e1 f7 brne .-8 ; 0x19e
1a6: f5 e0 ldi r31, 0x05 ; 5
1a8: 96 95 lsr r25
1aa: 87 95 ror r24
1ac: fa 95 dec r31
1ae: e1 f7 brne .-8 ; 0x1a8
1b0: 28 27 eor r18, r24
1b2: ca 01 movw r24, r20
1b4: e3 e0 ldi r30, 0x03 ; 3
1b6: 96 95 lsr r25
1b8: 87 95 ror r24
1ba: ea 95 dec r30
1bc: e1 f7 brne .-8 ; 0x1b6
1be: 28 27 eor r18, r24
1c0: ca 01 movw r24, r20
1c2: 96 95 lsr r25
1c4: 87 95 ror r24
1c6: 96 95 lsr r25
1c8: 87 95 ror r24
1ca: 28 27 eor r18, r24
1cc: 24 27 eor r18, r20
1ce: ca 01 movw r24, r20
1d0: 96 95 lsr r25
1d2: 87 95 ror r24
1d4: 20 ff sbrs r18, 0
1d6: 03 c0 rjmp .+6 ; 0x1de
1d8: ac 01 movw r20, r24
1da: 50 68 ori r21, 0x80 ; 128
1dc: 01 c0 rjmp .+2 ; 0x1e0
1de: ac 01 movw r20, r24
1e0: 50 93 17 01 sts 0x0117, r21
1e4: 40 93 16 01 sts 0x0116, r20
1e8: 6f bf out 0x3f, r22 ; 63
Figure 16. Assembly Code for MaxmalLFSR

80

Appendix F: EBS Java Code

import java.io.*;
import java.util.Hashtable;
import java.util.Random;

public class EBS
{
 Random rndSim;
 Hashtable tblSourceToPubKey;
 Hashtable tblSourceToPrivKey;
 KeyStore[] arrKeyDict;
 SimLogger current;

 public static void main(String[] args)
 {
 EBS sim = new EBS();
 if (args[0].equals("-sim"))
 {
 long seed = Long.parseLong(args[1]);
 sim.runSim(seed);
 }
 }

 public EBS()
 {
 tblSourceToPubKey = new Hashtable();
 tblSourceToPrivKey = new Hashtable();
 }

 public void runSim(long seed)
 {
 rndSim = new Random(seed);

 // create the "motes" and load keys for each mote

 current = new SimLogger(3, "Deterministic", 0);

81

 simulateDeterministic(3);
 System.out.println("Completed 3-deterministic experiment...");
 current = new SimLogger(6, "Deterministic", 0);
 simulateDeterministic(6);
 System.out.println("Completed 6-deterministic experiment...");
 current = new SimLogger(9, "Deterministic", 0);
 simulateDeterministic(9);
 System.out.println("Completed 9-deterministic experiment...");
 current = new SimLogger(27, "Deterministic", 0);
 simulateDeterministic(27);
 System.out.println("Completed 27-deterministic experiment...");

 for (int i=1; i < 11; i++)
 {
 current = new SimLogger(3, "Deterministic", i);
 simulateRandom(3);
 System.out.println("Completed 3-random-" + i + " experiment...");
 }
 for (int i=1; i < 11; i++)
 {
 current = new SimLogger(6, "Deterministic", i);
 simulateRandom(6);
 System.out.println("Completed 6-random-" + i + " experiment...");
 }
 for (int i=1; i < 11; i++)
 {
 current = new SimLogger(9, "Deterministic", i);
 simulateRandom(9);
 System.out.println("Completed 9-random-" + i + " experiment...");
 }
 for (int i=1; i < 11; i++)
 {
 current = new SimLogger(27, "Deterministic", i);
 simulateRandom(27);
 System.out.println("Completed 27-random-" + i + " experiment...");
 }
 }

82

 public void simulateDeterministic(int size)
 {
 current.simStart = System.currentTimeMillis();
 KeyStore ks = null;
 for (int i=0; i < size; i++)
 {
 String fname = i + ".ks";
 try
 {
 ks = new KeyStore(fname);
 }
 catch (IOException ioex)
 {
 System.out.println("Failed to load keystore.");
 return;
 }
 EBSPoint pubKey = ks.getKey(0);
 current.logKeySelectionf(i, ks.getLastIndex());
 messageReceived(65535, new KeyMessage(i, (short) 1, pubKey.getShortX()));
 messageReceived(65535, new KeyMessage(i, (short) 0, pubKey.getShortY()));
 }
 current.simEnd = System.currentTimeMillis();
 current.writeResults();
 }

 public void simulateRandom(int size)
 {
 current.simStart = System.currentTimeMillis();
 KeyStore ks = null;
 for (int i=0; i < size; i++)
 {
 String fname = i + ".ks";
 try
 {
 ks = new KeyStore(fname);
 }
 catch (IOException ioex)
 {

83

 System.out.println("Failed to load keystore.");
 return;
 }
 EBSPoint pubKey = ks.getRandomKey(rndSim);
 current.logKeySelectionf(i, ks.getLastIndex());
 messageReceived(65535, new KeyMessage(i, (short) 1, pubKey.getShortX()));
 messageReceived(65535, new KeyMessage(i, (short) 0, pubKey.getShortY()));
 }
 current.simEnd = System.currentTimeMillis();
 current.writeResults();
 }

 public void messageReceived(int dstaddr, Message msg)
 {
 if (msg instanceof KeyMessage)
 {
 KeyMessage kmsg = (KeyMessage) msg;

 int sourceID = kmsg.get_sourceID();
 short isX = kmsg.get_isX();
 short[] coord = kmsg.get_coord();

 EBSPoint pubKey = null;
 Object tmp = tblSourceToPubKey.get(new Integer(sourceID));
 if (tmp == null)
 {
 pubKey = new EBSPoint();
 tblSourceToPubKey.put(new Integer(sourceID), pubKey);
 }
 else
 {
 pubKey = (EBSPoint) tmp;
 }
 if (isX != 0)
 {
 for (int i=0; i < coord.length; i++)
 {
 pubKey.x[i] = (byte) coord[i];

84

 }
 }
 else
 {
 for (int i=0; i < coord.length; i++)
 {
 pubKey.y[i] = (byte) coord[i];
 }
 //fire off encryption breaking thread
 findPrivateKey(sourceID);
 }
 }
 }

 private void findPrivateKey(int sourceID)
 {
 long start = System.currentTimeMillis();

 boolean found = false;
 EBSPoint ActualKey = (EBSPoint) tblSourceToPubKey.get(new Integer(sourceID));
 EBSPoint G = EccM.initializePoint();

 int[] arrRndSequence = EccM.generateRandomSequence(sourceID);
 int index = 0;
 for (; index < arrRndSequence.length; index++)
 {
 byte[] privKey = EccM.generatePrivateKey(index, arrRndSequence);

 EBSPoint trialKey = EccM.generatePublicKey(privKey);
 if (ActualKey.isEqual(trialKey))
 {
 found = true;
 tblSourceToPrivKey.put(new Integer(sourceID), privKey);
 break;
 }
 }
 long time = System.currentTimeMillis() - start;
 if (!found)

85

 current.logResults(sourceID, ((long) -1), -1);
 else
 current.logResults(sourceID, time, index+1);
 }
}

/**
 * Implementation of ECC module.
 *
 * Heavily borrowed from Malan's EccM module in TinyOS
 */
import java.math.BigInteger;

public class EccM
{
 public static final String strOrder = "4000000000000000000020108a2e0cc0d99f8a5ef";
 public static final String strX = "2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8";
 public static final String strY = "289070fb05d38ff58321f2e800536d538ccdaa3d9";

 public static final char[] digits = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c',
'd', 'e', 'f' };
 public static final int NUMBITS = 163;
 public static final int NUMWORDS = (int) (2 * ((NUMBITS +1)/8.0 + 0.5));

 public static EBSCurve E = new EBSCurve();

 //
 // bint
 // routines
 //

 /**
 * Clears bint.
 */
 public static void b_clear(byte[] a)
 {
 a = new byte[NUMWORDS];

86

 }

 /**
 * Prints bint in hexadecimal to debugging console.
 */
 public static void b_print(byte[] a)
 {
 char[] output = new char[a.length*3];
 // iterate over bint's bytes, displaying each in hexadecimal
 for (int i = 0; i < a.length; i++)
 {
 int b = a[i] & 0xff;
 output[i*3+1] = digits[b & 15];
 b = b >>> 4;
 output[i*3] = digits[b & 15];
 output[i*3+2] = ' ';
 }
 System.out.println(new String(output));
 }

 /**
 * Prints lower half of bint in hexadecimal to debugging console.
 */
 public static void b_halfprint(byte[] a)
 {
 char[] output = new char[a.length/2*3];
 // iterate over bint's bytes, displaying each in hexadecimal
 for (int i = 0; i < a.length/2; i++)
 {
 int b = a[i+a.length/2] & 0xff;
 output[i*3+1] = digits[b & 15];
 b = b >>> 4;
 output[i*3] = digits[b & 15];
 output[i*3+2] = ' ';
 }
 System.out.println(new String(output));
 }

87

 /**
 * Sets ith bit (where most significant bit is 0th bit) of bint.
 */
 public static void b_setbit(byte[] a, int i)
 {
 if (a.length*8 < i)
 return; // not enough bits
 a[a.length - 1 - i/8] |= (1 << (i%8));
 }

 /**
 * Clears ith bit (where most significant bit is 0th bit) of bint.
 */
 public static void b_clearbit(byte[] a, int i)
 {
 if (i == 0)
 return;
 if (a.length*8 < i)
 return; // not enough bits
 a[a.length - 1 - i/8] &= (0xff ^ (1 << (i % 8)));
 }

 /**
 * Returns TRUE iff bint is zero.
 */
 public static boolean b_iszero(byte[] a)
 {
 for (int i = 0; i < a.length; i++)
 if (a[i] != 0)
 return false;

 return true;
 }

88

 /**
 * b = a.
 * Assumes a.length == b.length
 */
 public static void b_copy(byte[] a, byte[] b)
 {
 System.arraycopy(a, 0, b, 0, a.length);
 }

 /**
 * c = a XOR b.
 */
 public static void b_xor(byte[] a, byte[] b, byte[] c)
 {
 // let c[] = a[] XOR b[]; casting effectively unrolls loop a bit,
 // saving us some cycles
 for (int i = 0; i < NUMWORDS; i++)
 c[i] = (byte) (a[i] ^ b[i]);
 }

 /**
 * Returns -1 if a < b, 0 if a == b, and 1 if a > b.
 */
 public static int b_compareto(byte[] a, byte[] b)
 {
 for (int i = 0; i < NUMWORDS; i++)
 {
 if (a[i] != b[i])
 {
 int x = a[i] & 0xff;
 int y = b[i] & 0xff;
 return x < y ? -1 : 1;
 }
 }
 return 0;
 }

89

 /**
 * Shifts bint left by n bits, storing result in b.
 *
 * a and b are allowed to point to the same memory.
 */
 public static void b_shiftleft(byte[] a, int n, byte[] b)
 {
 if (n == 0)
 {
 System.arraycopy(a, 0, b, 0, NUMWORDS);
 return;
 }

 // storage for shift's magnitudes
 int nBytes = n >>> 3;
 int nBits = n & 0x7;

 if (nBytes != 0)
 {
 for (int i = nBytes; i < NUMWORDS; i++)
 b[i-nBytes] = a[i];
 for (int i = NUMWORDS - nBytes; i < NUMWORDS; i++)
 b[i] = 0;
 }
 else if (nBytes == 0)
 System.arraycopy(a, 0, b, 0, NUMWORDS);

 int nBits2 = 8 - nBits;
 for (int i = 1; i < NUMWORDS; i++)
 {
 b[i-1] = (byte) (((b[i-1] << nBits) & 0xff) | ((b[i] & 0xff)>>> nBits2));
 }
 b[NUMWORDS-1] <<= nBits;
 }

 /**

90

 * Returns the number of bits in the shortest possible
 * representation of this bint.
 */
 public static int b_bitlength(byte[] a)
 {
 // local storage
 int n, x, y;

 // iterate over other bytes, looking for most significant set bit;
 // algorithm from Henry S. Warren Jr., Hacker's Delight
 for (int i = 0; i < a.length; i++)
 {
 x = a[i] & 0xff;
 if (x != 0)
 {
 n = 8;
 y = x >>> 4;
 if (y != 0)
 {
 n = n - 4; x = y;
 }
 y = x >>> 2;
 if (y != 0)
 {
 n = n - 2;
 x = y;
 }
 y = x >>> 1;
 if (y != 0)
 return (a.length - i - 1) * 8 + (8 - (n - 2));

 return (a.length - i - 1) * 8 + (8 - (n - x));
 }
 }

 // if no bits are set, bint is 0
 return 0;
 }

91

 /**
 * Returns TRUE iff ith bit of bint (where index of least
 * significant bit is 0) is set. Recall that bints
 * are big-endian.
 */
 public static boolean b_testbit(byte[] a, int i)
 {
 return (a[NUMWORDS - 1 - (i/8)] & (1 << (i % 8))) != 0;
 }

 /**
 * Returns TRUE iff bints are equal.
 */
 public static boolean b_isequal(byte[] a, byte[] b)
 {
 // iterate over bints, looking for a difference
 for (int i = 0; i < NUMWORDS; i++)
 if (a[i] != b[i])
 return false;

 // if no difference found, bints are equal
 return true;
 }

 //
 // point
 // routines
 //

 /**
 * Clears point.
 */
 public static void p_clear(EBSPoint P0)
 {
 // clear each coordinate

92

 b_clear(P0.x);
 b_clear(P0.y);
 }

 /**
 * Returns TRUE iff P0 == (0,0).
 */
 public static boolean p_iszero(EBSPoint P0)
 {
 return b_iszero(P0.x) && b_iszero(P0.y);
 }

 /**
 * P1 = P0.
 */
 public static void p_copy(EBSPoint P0, EBSPoint P1)
 {
 // copy point's ordinates
 b_copy(P0.x, P1.x);
 b_copy(P0.y, P1.y);
 }

 /**
 * Prints point.
 */
 public static void p_print(EBSPoint P0)
 {
 System.out.println("x:");
 b_halfprint(P0.x);
 System.out.println("y:");
 b_halfprint(P0.y);
 }

 //
 // curve
 // routines
 //

93

 /**
 * Multiplies P0 by n, storing result in P1. P1 cannot be P0.
 *
 * Based on Algorithm IV.1 on p. 63 of "Elliptic Curves in Cryptography"
 * by I. F. Blake, G. Seroussi, N. P. Smart.
 */
 public static void c_mul(byte[] n, EBSPoint P0, EBSPoint P1)
 {
 // index variable
 int i;

 // clear point
 p_clear(P1);

 // perform multiplication
 for (i = b_bitlength(n) - 1; i >= 0; i--)
 {
 c_add(P1, P1, P1);
 if (b_testbit(n, i))
 c_add(P1, P0, P1);
 }
 }

 /**
 * Q = P1 + P2. Algorithm 7 in An Overview of Elliptic Curve Cryptography,
 * Lopez and Dahab.
 *
 * P1, P2, and Q are allowed to reference the same memory.
 */
 public static void c_add(EBSPoint P1, EBSPoint P2, EBSPoint Q)
 {
 byte[] lambda = new byte[NUMWORDS];
 byte[] numerator = new byte[NUMWORDS];
 EBSPoint T = new EBSPoint();

 // 1. if P1 = 0
 if (p_iszero(P1))

94

 {
 // Q <-- P2
 p_copy(P2, Q);
 return;
 }

 // 2. if P2 = 0
 if (p_iszero(P2))
 {
 // Q <-- P1
 p_copy(P1, Q);
 return;
 }

 // 3. if x1 = x2
 if (b_isequal(P1.x, P2.x))
 {
 // if y1 = y2
 if (b_isequal(P1.y, P2.y))
 {
 // lambda = x1 + y1/x1
 f_inv(P1.x, lambda);
 f_mul(lambda, P1.y, lambda);
 f_add(lambda, P1.x, lambda);

 // x3 = lambda^2 + lambda + a
 f_mul(lambda, lambda, T.x);
 f_add(T.x, lambda, T.x);
 f_add(T.x, E.a4, T.x);
 }
 else
 {
 // Q <-- 0
 b_clear(T.x);
 b_clear(T.y);
 }
 }
 else

95

 {
 // lambda <-- (y2 + y1)/(x2 + x1)
 f_add(P2.y, P1.y, numerator);
 f_add(P2.x, P1.x, lambda);
 f_inv(lambda, lambda);
 f_mul(numerator, lambda, lambda);

 // x3 <-- lambda^2 + lambda + x1 + x2 + a
 f_mul(lambda, lambda, T.x);
 f_add(T.x, lambda, T.x);
 f_add(T.x, P1.x, T.x);
 f_add(T.x, P2.x, T.x);
 f_add(T.x, E.a4, T.x);
 }

 // y3 <-- lambda(x1 + x2) + x3 + y1
 f_add(P1.x, T.x, T.y);
 f_mul(T.y, lambda, T.y);
 f_add(T.y, T.x, T.y);
 f_add(T.y, P1.y, T.y);

 // return
 p_copy(T, Q);
 }

 //
 // field
 // routines
 //
 /**
 * c = a + b.
 *
 * a, b, and/or c are allowed to point to the same memory.
 */
 public static void f_add(byte[] a, byte[] b, byte[] c)
 {
 b_xor(a, b, c);

96

 }

 /**
 * c = ab mod f
 *
 * Algorithm 4 from High-Speed Software Multiplication in F_{2^m}.
 *
 * a, b, and/or c are allowed to point to the same memory.
 */
 public static void f_mul(byte[] a, byte[] b, byte[] c)
 {
 // local variables
 byte[] T = new byte[NUMWORDS];

 // perform multiplication
 for (int j = 7; j > -1; j--)
 {
 for (int i = 0; i <= NUMWORDS/2-1; i++)
 if (b_testbit(a, i*8+j))
 for (int k = 0; k <= NUMWORDS/2-1; k++)
 T[NUMWORDS - 1 - (k+i)] ^= b[NUMWORDS - 1 - k];
 if (j != 0)
 b_shiftleft(T, 1, T);
 }

 // modular reduction
 f_mod(T, c);
 }

 /**
 * b = a (mod modulus).
 *
 * a and b are allowed to point to the same memory.
 * Hardcoded at present with default curve's parameters to save cycles.
 */
 public static void f_mod(byte[] a, byte[] b)
 {
 // local variables

97

 int blr, shf;
 int comp;
 byte[] r = new byte[NUMWORDS];

 // modular reduction
 comp = b_compareto(a, E.modulus);
 if (comp < 0)
 {
 b_copy(a, b);
 return;
 }
 else if (comp == 0)
 {
 b_copy(r, b);
 return;
 }
 b_copy(a, r);
 blr = b_bitlength(r);
 while (blr >= E.bitlength)
 {
 shf = blr - E.bitlength;
 r[NUMWORDS - ((163+shf) / 8) - 1] ^= (1 << ((163+shf) % 8));
 r[NUMWORDS - ((7+shf) / 8) - 1] ^= (1 << ((7+shf) % 8));
 r[NUMWORDS - ((6+shf) / 8) - 1] ^= (1 << ((6+shf) % 8));
 r[NUMWORDS - ((3+shf) / 8) - 1] ^= (1 << ((3+shf) % 8));
 r[NUMWORDS - ((0+shf) / 8) - 1] ^= (1 << ((0+shf) % 8));
 blr = b_bitlength(r);
 }
 b_copy(r, b);
 }

 /**
 * d = a^-1.
 *
 * Algorithm 8 in "Software Implementation of Elliptic Curve Cryptography
 * Over Binary Fields", D. Hankerson, J.L. Hernandez, A. Menezes.
 *
 * a and d are allowed to point to the same memory.

98

 */
 public static void f_inv(byte[] a, byte[] d)
 {
 // local variables
 int i;
 int j;
 byte[] ptr;
 byte[][] anonymous = new byte[5][NUMWORDS];
 anonymous[0] = new byte[NUMWORDS];
 byte[] b = new byte[NUMWORDS];
 byte[] c = new byte[NUMWORDS];
 byte[] u = new byte[NUMWORDS];
 byte[] v = new byte[NUMWORDS];
 anonymous[1] = b;
 anonymous[2] = c;
 anonymous[3] = u;
 anonymous[4] = v;

 // 1. b <-- 1, c <-- 1, u <-- a, v <-- f
 for (i = 0; i < NUMWORDS; i++)
 {
 b[i] = 0;
 c[i] = 0;
 v[i] = E.modulus[i];
 }
 b[NUMWORDS-1] = 0x01;
 f_mod(a, u);

 // 2. While deg(u) != 0
 int bitlen = b_bitlength(u);
 while (bitlen > 1)
 {
 // 2.1 j <-- deg(u) - deg(v).
 j = (b_bitlength(u) - 1) - (b_bitlength(v) - 1);

 // 2.2 If j < 0 then:
 if (j < 0)
 {

99

 // u <--> v
 ptr = new byte[NUMWORDS];
 System.arraycopy(u, 0, ptr, 0, NUMWORDS);
 System.arraycopy(v, 0, u, 0, NUMWORDS);
 System.arraycopy(ptr, 0, v, 0, NUMWORDS);

 // b <--> c
 ptr = new byte[NUMWORDS];
 System.arraycopy(b, 0, ptr, 0, NUMWORDS);
 System.arraycopy(c, 0, b, 0, NUMWORDS);
 System.arraycopy(ptr, 0, c, 0, NUMWORDS);

 // j <-- -j
 j = -j;
 }

 // 2.3 u <-- u + x^jv
 switch (j)
 {
 case 0:
 f_add(u, v, u);
 f_add(b, c, b);
 break;
 case 1:
 b_shiftleft(v, 1, anonymous[0]);
 f_add(u, anonymous[0], u);
 b_shiftleft(c, 1, anonymous[0]);
 f_add(b, anonymous[0], b);
 break;
 case 2:
 b_shiftleft(v, 2, anonymous[0]);
 f_add(u, anonymous[0], u);
 b_shiftleft(c, 2, anonymous[0]);
 f_add(b, anonymous[0], b);
 break;
 default:
 b_shiftleft(v, j, anonymous[0]);
 f_add(u, anonymous[0], u);

100

 b_shiftleft(c, j, anonymous[0]);
 f_add(b, anonymous[0], b);
 break;
 }
 bitlen = b_bitlength(u);
 }
 b_copy(b, d);
 }

 /**
 * This function generates all possible public keys from the given sequence.
 * rndSequence is a pseudo-random sequence (PRS) generated from RandomLFSR
 * The function does not generate all possible permutations of rndSequence and assumes
 * the sequence is generated sequentially (i.e. atomically)
 */
 public static EBSPoint[] generateKeys(int[] rndSequence)
 {
 EBSPoint[] arrKeys = new EBSPoint[rndSequence.length];
 EBSPoint G = initializePoint();

 int len = rndSequence.length;
 for (int index = 0; index < len; index++)
 {
 byte[] privKey = new byte[NUMWORDS];
 for (int i = NUMWORDS/2; i < NUMWORDS; i++)
 {
 /**
 * The calculation for the index of rndSequence is as follows
 * index = the starting point of this random sequence
 * (i-NUMWORDS/2) = essentially becomes the increment value for running through rnd sequence
 * use modulo rndSequence.length to wrap around since index ranges from 0 thru
 * (rndSeqnence.length-1)
 */
 int eccNum = rndSequence[(index + (i - NUMWORDS/2)) % len];
 privKey[i] = (byte) eccNum;
 }

 /**

101

 * This section of code essentially sidesteps EccM's b_mod.
 * Initial tests indicate minimal performance degradation. If performance becomes an issue, may
need
 * to revisit implementing b_mod. Implementing b_mod in Java could prove difficult because of use
of
 * pointers when passing parameters to subfunctions.
 */
 BigInteger bint = new BigInteger(1, privKey);
 BigInteger r = new BigInteger(strOrder, 16);
 bint = bint.mod(r);
 byte[] z = bint.toByteArray();
 privKey = new byte[NUMWORDS];
 for (int i = 0; i < z.length; i++)
 {
 privKey[NUMWORDS - 1 - i] = z[z.length - 1 - i];
 }

 arrKeys[index] = new EBSPoint();
 c_mul(privKey, G, arrKeys[index]);
 }
 return arrKeys;
 }

 public static byte[] generatePrivateKey(int index, int[] rndSequence)
 {
 byte[] privKey = new byte[NUMWORDS];
 for (int i = NUMWORDS/2; i < NUMWORDS; i++)
 {
 int eccNum = rndSequence[(index + (i - NUMWORDS/2)) % rndSequence.length];
 privKey[i] = (byte) eccNum;
 }

 BigInteger bint = new BigInteger(1, privKey);
 BigInteger r = new BigInteger(strOrder, 16);
 bint = bint.mod(r);
 byte[] z = bint.toByteArray();
 privKey = new byte[NUMWORDS];
 for (int i=0; i < z.length; i++)

102

 privKey[NUMWORDS - 1 - i] = z[z.length - 1 - i];
 return privKey;
 }

 public static EBSPoint generatePublicKey(byte[] privKey)
 {
 EBSPoint G = initializePoint();
 EBSPoint pubKey = new EBSPoint();

 c_mul(privKey, G, pubKey);
 return pubKey;
 }

 public static String printHex(BigInteger bi)
 {
 String s = bi.toString(16);
 StringBuffer sb = new StringBuffer();
 int index = 0;
 if ((s.length() % 2) == 1)
 {
 index = 1;
 sb.append("0");
 sb.append(s.substring(0, 1));
 sb.append(" ");
 }
 while (index < s.length())
 {
 sb.append(s.substring(index, index+2));
 sb.append(" ");
 index += 2;
 }
 return sb.substring(0, sb.length()-1);
 }

 public static String printHex(byte[] a)
 {
 char[] output = new char[a.length*3];
 // iterate over bint's bytes, displaying each in hexadecimal

103

 for (int i = 0; i < a.length; i++)
 {
 int b = a[i] & 0xff;
 output[i*3+1] = digits[b & 15];
 b = b >>> 4;
 output[i*3] = digits[b & 15];
 output[i*3+2] = ' ';
 }
 return new String(output);
 }

 public static EBSPoint initializePoint()
 {
 EBSPoint G = new EBSPoint();

 // initilize Gx
 G.x[NUMWORDS - 21] = (byte) 0x02;
 G.x[NUMWORDS - 20] = (byte) 0xfe;
 G.x[NUMWORDS - 19] = (byte) 0x13;
 G.x[NUMWORDS - 18] = (byte) 0xc0;
 G.x[NUMWORDS - 17] = (byte) 0x53;
 G.x[NUMWORDS - 16] = (byte) 0x7b;
 G.x[NUMWORDS - 15] = (byte) 0xbc;
 G.x[NUMWORDS - 14] = (byte) 0x11;
 G.x[NUMWORDS - 13] = (byte) 0xac;
 G.x[NUMWORDS - 12] = (byte) 0xaa;
 G.x[NUMWORDS - 11] = (byte) 0x07;
 G.x[NUMWORDS - 10] = (byte) 0xd7;
 G.x[NUMWORDS - 9] = (byte) 0x93;
 G.x[NUMWORDS - 8] = (byte) 0xde;
 G.x[NUMWORDS - 7] = (byte) 0x4e;
 G.x[NUMWORDS - 6] = (byte) 0x6d;
 G.x[NUMWORDS - 5] = (byte) 0x5e;
 G.x[NUMWORDS - 4] = (byte) 0x5c;
 G.x[NUMWORDS - 3] = (byte) 0x94;
 G.x[NUMWORDS - 2] = (byte) 0xee;
 G.x[NUMWORDS - 1] = (byte) 0xe8;

104

 // initialize Gy
 G.y[NUMWORDS - 21] = (byte) 0x02;
 G.y[NUMWORDS - 20] = (byte) 0x89;
 G.y[NUMWORDS - 19] = (byte) 0x07;
 G.y[NUMWORDS - 18] = (byte) 0x0f;
 G.y[NUMWORDS - 17] = (byte) 0xb0;
 G.y[NUMWORDS - 16] = (byte) 0x5d;
 G.y[NUMWORDS - 15] = (byte) 0x38;
 G.y[NUMWORDS - 14] = (byte) 0xff;
 G.y[NUMWORDS - 13] = (byte) 0x58;
 G.y[NUMWORDS - 12] = (byte) 0x32;
 G.y[NUMWORDS - 11] = (byte) 0x1f;
 G.y[NUMWORDS - 10] = (byte) 0x2e;
 G.y[NUMWORDS - 9] = (byte) 0x80;
 G.y[NUMWORDS - 8] = (byte) 0x05;
 G.y[NUMWORDS - 7] = (byte) 0x36;
 G.y[NUMWORDS - 6] = (byte) 0xd5;
 G.y[NUMWORDS - 5] = (byte) 0x38;
 G.y[NUMWORDS - 4] = (byte) 0xcc;
 G.y[NUMWORDS - 3] = (byte) 0xda;
 G.y[NUMWORDS - 2] = (byte) 0xa3;
 G.y[NUMWORDS - 1] = (byte) 0xd9;

 return G;
 }

 public static String getPercent(int num, int den, int dec)
 {
 double percent = (double) num;
 percent = percent/den * 100.0;
 String ret_val = String.valueOf(percent);
 int point = ret_val.indexOf('.');
 if (point + dec > ret_val.length())
 return ret_val.concat(getZeros(point+dec - ret_val.length()));
 return ret_val.substring(0, point + dec);
 }

105

 public static String getZeros(int len)
 {
 char[] c = new char[len];
 for (int i = 0; i < len; i++)
 c[i] = '0';
 return new String(c);
 }

 public static int[] generateRandomSequence(int seed)
 {
 RandomLFSR lfsr = new RandomLFSR(seed);

 int numUnique = 0;
 boolean[] rnd_vals = new boolean[65536];
 int[] temp = new int[65536];

 temp[numUnique] = lfsr.rand();
 while (!rnd_vals[temp[numUnique]])
 {
 rnd_vals[temp[numUnique]] = true; // indicate value has been generated
 temp[++numUnique] = lfsr.rand(); // get next "random" value
 }

 int[] arrRndSequence = new int[numUnique];
 System.arraycopy(temp, 0, arrRndSequence, 0, arrRndSequence.length);
 return arrRndSequence;
 }
}

import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class KeyStore

106

{
 int moteID;
 int[] arrRndSequence;
 EBSPoint[] arrPubKey;
 long generationTime;
 int sequenceLength;
 int lastIndex;

 public KeyStore(int mid)
 {
 moteID = mid;
 arrRndSequence = null;
 arrPubKey = null;

 generateKeys();
 sequenceLength = arrRndSequence.length;
 lastIndex = -1;
 }

 public KeyStore(String filename) throws IOException
 {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String[] elements = in.readLine().split(" ");
 moteID = Integer.parseInt(elements[2]);

 elements = in.readLine().split(" ");
 generationTime = Long.parseLong(elements[2]);

 elements = in.readLine().split(" ");
 int len = Integer.parseInt(elements[3]);
 arrRndSequence = new int[len];
 arrPubKey = new EBSPoint[len];
 int i=0;
 while (in.ready())
 {
 elements = in.readLine().split(";");
 arrRndSequence[i] = Integer.parseInt(elements[1]);
 String[] arrX = elements[2].split(" ");

107

 String[] arrY = elements[3].split(" ");
 arrPubKey[i] = new EBSPoint();
 for (int j=0; j < EccM.NUMWORDS; j++)
 {
 arrPubKey[i].x[j] = (byte) Integer.valueOf(arrX[j], 16).intValue();
 arrPubKey[i].y[j] = (byte) Integer.valueOf(arrY[j], 16).intValue();
 }
 i++;
 }
 sequenceLength = arrRndSequence.length;
 }

 private void generateKeys()
 {
 long time = System.currentTimeMillis();

 // create the random sequence
 arrRndSequence = EccM.generateRandomSequence(moteID);
 arrPubKey = EccM.generateKeys(arrRndSequence);

 generationTime = System.currentTimeMillis() - time;
 }

 public EBSPoint getKey(int index)
 {
 lastIndex = index;
 return arrPubKey[index];
 }

 public EBSPoint getRandomKey(Random prng)
 {
 lastIndex = prng.nextInt(sequenceLength);
 return arrPubKey[index];
 }

 public int getLastIndex()
 {
 return lastIndex;

108

 }

 public void writeKeys(String filename) throws IOException
 {
 PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(filename)));
 out.println("Mote ID: " + moteID);
 out.println("Generation Time: " + generationTime + " msecs");
 out.println("Length of Sequence: " + sequenceLength);
 for (int i=0; i < sequenceLength; i++)
 {
 out.println(i + ";" + arrRndSequence[i] + ";" + EccM.printHex(arrPubKey[i].x) + ";" +
EccM.printHex(arrPubKey[i].y));
 }
 out.close();
 }

}

public class RandomLFSR
{
 private int TOS_LOCAL_ADDRESS;
 private int shiftReg;
 private int initSeed;
 private int mask;

 public RandomLFSR(int seed)
 {
 TOS_LOCAL_ADDRESS = seed;
 /* Initialize the seed from the ID of the node */
 //System.out.println("RANDOM_LFSR initialized.");
 shiftReg = 119 * 119 * (TOS_LOCAL_ADDRESS + 1);
 shiftReg = shiftReg & 0xffff;
 initSeed = shiftReg;
 mask = 137 * 29 * (TOS_LOCAL_ADDRESS + 1);
 mask = mask & 0xffff;

 //for (int i=0; i<65536; i++)
 //{

109

 // System.out.println(rand());
 //}
 }
 public int rand()
 {
 /* Return the next 16 bit random number */
 boolean endbit;
 int tmpShiftReg;
 tmpShiftReg = shiftReg;
 endbit = ((tmpShiftReg & 0x8000) != 0);
 tmpShiftReg = tmpShiftReg << 1;
 if (endbit)
 tmpShiftReg = tmpShiftReg ^ 0x100b;
 tmpShiftReg++;
 tmpShiftReg = tmpShiftReg & 0xffff;
 shiftReg = tmpShiftReg;
 tmpShiftReg = tmpShiftReg ^ mask;
 return tmpShiftReg;
 }
}

public class EBSPoint
{
 public byte[] x;
 public byte[] y;

 public EBSPoint()
 {
 x = new byte[EccM.NUMWORDS];
 y = new byte[EccM.NUMWORDS];
 }

 public EBSPoint p_copy()
 {
 EBSPoint copy = new EBSPoint();
 System.arraycopy(x, 0, copy.x, 0, EccM.NUMWORDS);
 System.arraycopy(y, 0, copy.y, 0, EccM.NUMWORDS);
 return copy;

110

 }

 public boolean isZero()
 {
 for (int i = 0; i < EccM.NUMWORDS; i++)
 if (x[i] != 0 || y[i] != 0)
 return false;

 return true;
 }

 public boolean isEqual(EBSPoint ebsp)
 {
 return EccM.b_isequal(x, ebsp.x) && EccM.b_isequal(y, ebsp.y);
 }

 public short[] getShortX()
 {
 short[] sx = new short[EccM.NUMWORDS];
 for (int i=0; i < x.length; i++)
 {
 sx[i] = (short) (x[i] & 0xff);
 }
 return sx;
 }

 public short[] getShortY()
 {
 short[] sy = new short[EccM.NUMWORDS];
 for (int i=0; i < y.length; i++)
 {
 sy[i] = (short) (y[i] & 0xff);
 }
 return sy;
 }
}

111

import java.math.BigInteger;

public class EBSCurve
{
 public byte[] a4;
 public byte[] a6;

 public byte[] modulus;

 public int bitlength;

 public EBSCurve()
 {
 a4 = new byte[EccM.NUMWORDS];
 a4[EccM.NUMWORDS-1] = 1;
 a6 = new byte[EccM.NUMWORDS];
 a6[EccM.NUMWORDS-1] = 1;
 modulus = new byte[EccM.NUMWORDS];

 EccM.b_setbit(modulus, 163);
 EccM.b_setbit(modulus, 7);
 EccM.b_setbit(modulus, 6);
 EccM.b_setbit(modulus, 3);
 EccM.b_setbit(modulus, 0);
 bitlength = 164;
 }
}

public class Message { }

public class KeyMessage extends Message
{
 int sourceID;
 short isX;
 short[] coord;

 public KeyMessage(int id, short x, short[] c)

112

 {
 sourceID = id;
 isX = x;
 coord = c;
 }

 public int get_sourceID()
 {
 return sourceID;
 }

 public short get_isX()
 {
 return isX;
 }

 public short[] get_coord()
 {
 return coord;
 }
}

import java.io.*;

public class SimLogger
{
 int size;
 String simType;
 int experiment;
 int[] keySelection;
 long[] times;
 int[] trials;

 long simStart;
 long simEnd;

 public SimLogger(int size, String simType, int experiment)

113

 {
 this.size = size;
 this.simType = simType;
 this.experiment = experiment;
 keySelection[size];
 times = new long[size];
 trials = new int[size];
 }

 public void logResults(int mote, long time, int tries)
 {
 times[mote] = time;
 trials[mote] = tries;
 }

 public void logKeySelection(int mote, int selection)
 {
 keySelection[mote] = selection;
 }

 public void writeResults()
 {
 try
 {
 String filename = size + "-" + simType + "-" + experiment + ".sr";
 PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(filename)));
 out.println("Network size: " + size);
 out.println("Sim Time: " + (simEnd - simStart));
 for (int i=0; i < size; i++)
 {
 out.println(i + ";" + times[i] + ";" + trials[i] + ";" + keySelection[i]);
 }
 out.close();
 }
 catch (IOException ioex)
 {
 ioex.printStackTrace();
 }

114

 }
}

115

Appendix F: MaximalLFSR Code

module MaximalLFSR
{
 provides interface Random;
}
implementation
{
 uint16_t shiftReg;
 uint16_t initSeed;

 /* Initialize the seed from the ID of the node */
 async command result_t Random.init() {
 dbg(DBG_BOOT, "RANDOM_LFSR initialized.\n");
 atomic {
 shiftReg = (TOS_LOCAL_ADDRESS + 1);
 initSeed = shiftReg;
 }
 return SUCCESS;
 }

 async command result_t Random.initseed(uint16_t s) {
 atomic {
 shiftReg = (s + 1);
 initSeed = shiftReg;
 }
 return SUCCESS;
 }

 /* Return the next 16 bit random number */
 async command uint16_t Random.rand() {
 bool endbit;
 uint16_t tmpShiftReg;

 atomic {
 tmpShiftReg = shiftReg;

116

endbit = ((tmpShiftReg >> 16) ^ (tmpShiftReg >> 5) ^ (tmpShiftReg >> 3) ^
 (tmpShiftReg >> 2) ^ (tmpShiftReg)) & 0x0001;

 if (endbit)
 tmpShiftReg = (tmpShiftReg >> 1) | 0x8000;
 else
 tmpShiftReg = tmpShiftReg >> 1;
 shiftReg = tmpShiftReg;
 }
 return tmpShiftReg;
 }

 async command uint32_t Random.rand32() {
 return (uint32_t)call Random.rand() << 16 | call Random.rand();
 }

 uint16_t TOSH_rand() __attribute__((C)) {
 return call Random.rand();
 }
}

117

Bibliography

[ASS01] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. “Wireless
Sensor Networks: A Survey,” Computer Networks: The International
Journal of Computer and Telecommunications Networking. Vol. 38, No. 4:
393-422 (March 2002).

[Atm04] Atmel. Atmega128 Datasheet, revision M. (November 2004). 31 Jan 2006

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

[BBB05] Barker, E., Barker, W., Burr, W., Polk, W., and Smid, M. Special

Publication 800-57: Recommendation for Key Management. National
Institute of Standards and Technology, August 2005.

[Bis03] Bishop, Matt. Computer Security: Art and Science (5th Edition). Boston:

Pearson Education, Inc, 2003.

[Blo85] Blom, R. “An Optimal Class of Symmetric Key Generation Systems,”

Advances in Cryptology: Proceedings of EUROCRYPT 84, Lecture Notes in
Computer Science. 335-338. New York: Springer-Verlag, 1985.

[BSH98] Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., and Yung,

M. “Perfectly Secure Key Distribution for Dynamic Conferences,”
Information and Computation. Vol 146, No 1: 1-23 (October 1998).

[CKM00] Carman, D., Kruus, P., and Matt, B. Constraints and Approaches for

Sensor Network Security. NAI Labs Technical Report 00-010. Glenwood
MD: Network Associates, Inc., September, 2000.

[CoM67] Coveyou, R.R. and MacPherson, R.D. “Fourier Analysis of Uniform

Random Number Generators,” Journal of the ACM. Vol. 14, No. 1: 100-
119 (January 1967).

[CPS03] Chan, H., Perrig, A., and Song, D. “Random Key Predistribution Schemes

for Sensor Networks,” IEEE Symposium on Security and Privacy. 197.
Washington, D.C.: IEEE Computer Society, 2003.

[DDH03] Du, W., Deng, J., Han, Y., and Varshney, P. “A Pairwise Key Pre-

Distribution Scheme for Wireless Sensor Networks,” Proceedings of the
Tenth ACM Conference on Computer and Communications Security. 42-
51. New York: ACM Press, 2003.

[DCL04] Duetre, B., Cheung, S., and Levy, J. Lightweight Key Management in

Wireless Sensor Networks by Leveraging Initial Trust. Contract F30602-
02-C-0212. Menlo Park CA: SRI International, April 2004.

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

118

[DiH76] Diffie, W. and Hellman, M. E. “New Directions in Cryptography,” IEEE
Transactions on Information Theory, Vol. IT-22, No. 6: 644-654
(November 1976).

[EsG02] Eschenauer, L. and Gligor, V. D. “A Key-Management Scheme for

Distributed Sensor Networks,” Proceedings of the Ninth ACM Conference
on Computer and Communication Security. 41-47. New York: ACM
Press, 2002.

[FiM86] Fishman, G.S. and Moore, L.R. “An Exhaustive Analysis of Multiplicative

Congruential Random Number Generators with Modulus 231-1,” SIAM
Journal on Scientific and Statistical Computing. Vol. 7, No. 1: 24-25
(January 1986).

[GLB03] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and Culler, D.

“The nesC Language: A Holistic Approach to Network Embedded
Systems,” Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation. 1-11. New York:
ACM Press, 2003.

[HiC02] Hill, J.L. and Culler, D.E. “Mica: A Wireless Platform for Deeply

Embedded Networks,” IEEE Micro, Vol. 22, No. 6: 12-24 (November
2002).

[HHK04] Hill, J., Horton, M., Kling, R., and Krishnamurthy, L. “The Platforms

Enabling Wireless Sensor Networks,” Communications of the ACM, Vol.
47, No. 6: 41-46 (June 2004).

[Hoa76] Hoaglin, D.C. Theoretical Properties of Congruential Random-Number

Generators: An Empirical View. Memorandum NS-340. Department of
Statistics, Harvard University. Cambridge, MA, 1976.

[HSW00] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K.

“System Architecture Directions for Networked Sensors,” Proceedings of
the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems. 93-104. New York:
ACM Press, 2000.

[HPJ03] Hu, Y., Perrig, A., and Johnson, D.B. “Rushing Attacks and Defense in

Wireless Ad Hoc Network Routing Protocols,” Proceedings of the 2003
ACM Workshop on Wireless Security. 30-40. New York: ACM Press,
2003.

119

[HLV04] Hwang, D. D., Lai, B. C., and Verbauwhede, I. “Energy-Memory-Security
Tradeoffs in Distributed Sensor Networks,” Proceedings of the Third
International Conference on Ad-Hoc, Mobile, and Wireless Networks
(ADHOC-NOW). 70-81.

[Joh94] Johnson, D.B. “Routing in Ad Hoc Networks of Mobile Hosts,”

Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications. 158-163. IEEE Computer Society, December 1994.

[KaY98] Kaliski, B. and Yin, Y. On the Security of the RC5 Encryption Algorithm.

RSA Laboratories Technical Report TR-602. Bedford, MA: RSA
Laboratories, September 1998.

[KaW03] Karlof, C. and Wagner, D. “Secure routing in wireless sensor networks:

Attacks and countermeasures,” Proceedings of the First IEEE International
Workshop on Sensor Network Protocols and Applications. 113-127. May
2003.

[KKP99] Kahn, J. M., Katz, R. H., and Pister, K. S. J. “Next century

challenges: mobile networking for ‘Smart Dust’,” Proceedings of the Fifth
ACM/IEEE International Conference on Mobile Computing and
Networking. 271-278. New York: ACM Press, 1999.

[Knu81] Knuth, D.E. The Art of Computer Programming (2nd Edition). Reading,

MA: Addison-Wesley, 1981.

[KSW04] Karlof, C., Sastry, N., and Wagner, D. “TinySec: A Link Layer Security

Architecture for Wireless Sensor Networks,” Proceedings of the Second
Conference on Embedded Networked Systems. 162-175. New York: ACM
Press, 2004.

[Lev04] Levis, P. “RandomMLCG,” Electronic Message. 22:08:11 PDT, 2 Sep 2004. 31

Jan 2006 https://mail.millennium.berkeley.edu/pipermail/tinyos-devel/2004-
September/000500.html

[LiN03] Liu, D. and Ning, P. “Establishing Pairwise Keys in Distributed Sensor

Networks,” Proceedings of the Tenth ACM Conference on Computer and
Communications Security. 52-61. New York: ACM Press, 2003.

[Mal04] Malan, D. Crypto for Tiny Objects. Harvard University Technical Report

TR-04-04. Cambridge, MA: Harvard University, January 2004.

[Mil86] Miller, V. “Use of Elliptic Curves in Cryptography,” Advances in

Cryptology: Proceedings of CRYPTO 85, Lecture Notes in Computer
Science. 417-426. New York: Springer-Verlag, 1986.

https://mail.millennium.berkeley.edu/pipermail/tinyos-devel/2004-September/000500.html
https://mail.millennium.berkeley.edu/pipermail/tinyos-devel/2004-September/000500.html

120

[MPS02] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Anderson, J.
“Wireless Sensor Networks for Habitat Monitoring,” 2002

[MWS04] Malan, D. J., Welsh, M., and Smith, M. D. “A Public key Infrastructure for

Key Distribution in TinyOS Based on Elliptic Curve Cryptography,” In the
First Conference on Sensor and Ad Hoc Communications and Networks.
2004

[NBS99] National Bureau of Standards. Data Encryption Standard. FIPS-Pub.46-3.

Washington D.C.: U.S. Department of Commerce, October 1999.

[Nel99] Nelson, M. “56-bit DES Algorithm Broken in Record Time,” InfoWorld,

Vol. 21, No. 4: 45 (January 1999).

[NSS04] Newsome, J., Shi, E., Song, D., and Perrig, A. “The Sybil Attack in Sensor

Networks: Analysis and Defenses,” Proceedings of the Third International
Symposium on Information Processing in Sensor Networks. 259-268. New
York: ACM Press, 2004.

[PaM88] Park, S. K. and Miller, K. W. “Random Number Generators: Good Ones

are Hard to Find,” Communications of the ACM, Vol. 31, No. 10: 1192-
1201 (October 1988).

[PeR99] Perkins, C.E. and Royer, E.M. “Ad Hoc On-Demand Distance Vector

Routing,” Proceedings of the Second IEEE Workshop on Mobile
Computing Systems and Applications. 90-100. February 1999.

[PSW01] Perrig, A., Szewczyck, R., Wen, V., Culler, D., and Tygar, J.D. “SPINS:

Security Protocols for Sensor Networks,” Proceedings of the Seventh
Annual International Conference on Mobile Computing. 189-199. New
York: ACM Press, 2001.

[PSW04] Perrig, A., Stankovic, J. and Wagner, D. “Security in Wireless Sesnor

Networks,” Communications of the ACM, Vol. 47, No. 6: 53-57 (June
2004).

[PTS00] Perrig, A., Canetti, R., Tygar, J. D., and Song, D. Efficient Authentication

and Signing of Multicast Streams Over Lossy Channels. Proceedings of the
2000 IEEE Symposium on Security and Privacy. 56. Washington, D.C.:
IEEE Computer Society, 2000.

[PoK00] Pottie, G.J. and Kaiser, W.J. “Wireless Integrated Network Sensors,”

Communications of the ACM, Vol. 43, No. 5: 51-58 (June 2004).

121

[RSA78] Rivest, R.L., Shamir, A., and Adleman, L. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Communications of the
ACM. Vol. 21, No. 2: 120-126 (February 1978).

[Sch96] Schneier, B. Applied Cryptography (2nd Edition). New York: John Wiley

& Sons, Inc, 1996.

[SHC04] Shnayder, V., Hempstead, M., Chen, B., Allen, G. W., and Welsh, M.

“Simulating the Power Consumption of Large-Scale Sensor Network
Applications,” Proceedings of the Second International Conference on
Embedded Networked Sensor Systems. 188-200. New York: ACM Press,
2004.

[SOP04] Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A.,

and Estrin, D. “Habitat Monitoring with Sensor Networks,”
Communications of the ACM, Vol. 47, No. 6: 34-40 (June 2004).

[SPM04] Szewczyk, R., Polastre, J., Mainwaring, A., and Culler, D. “Lessons from a

Sensor Network Expedition,” 2004.

[Sti02] Stinson, D.R. Cryptography: Theory and Practice. Boca Raton: Chapman

& Hall/CRC, 2002.

[TAH02] Tilak, S., Abu-Ghazaleh, N. B., and Heinzelman, W. “A Taxonomy of

Wireless Micro-sensor Network Models,” ACM SIGMOBILE Mobile
Computing and Communications Review, Vol. 6, No. 2: 28-36 (April
2002).

[Tin05] TinyOS Community Forum. “TinyOS 2.0 PreRelease2,” (November 2005)

12 February 2006
http://www.tinyos.net/scoop/story/2005/11/1/11215/8473

[Wag03] Wagstaff, S.S., Jr. Cryptanalysis of Number Theoretic Ciphers. Boca

Raton: Chapman & Hall/CRC, 2003.

[WKC04] Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., and Kruus, P.

“TinyPK: Securing Sensor Networks with Public Key Technology,”
Proceedings of the Second ACM Workshop on Security of Ad Hoc and
Sensor Networks. 59-64. New York: ACM Press, 2004.

[WoS02] Wood, A. and Stankovic, J. “Denial of Service Attacks in Sensor

Networks,” Computer, Vol. 35, No. 10: 54-62 (October 2002).

http://www.tinyos.net/scoop/story/2005/11/1/11215/8473

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23 March 2006
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2005 – March 2006
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Cryptanalysis of Pseudorandom Number Generators in
Wireless Sensor Networks

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Finnigin, Kevin M., 1st Lt, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GIA/ENG/06-05

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency
9800 Savage Rd., Suite 9704
Ft. Meade, MD 20755-6704
POC: Neal Ziring

(410) 854-5762

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This work presents a brute-force attack on an elliptic curve cryptosystem implemented on UC Berkley’s TinyOS
operating system for wireless sensor networks. The attack exploits the short period of the pseudorandom number
generator (PRNG) used by the cryptosystem to generate private keys. The attack assumes a laptop is listening
promiscuously to network traffic for key messages and requires only the sensor node’s public key and network
address to discover the private key. Experimental results show that roughly 50% of the address space leads to a
private key compromise in 25 minutes on average. Furthermore, approximately 32% of the address space leads to a
compromise in 17 minutes on average, 11% in 6 minutes, and the remaining 7% in 2 minutes or less. Two
alternatives to the PRNG are examined that mitigate the brute-force attack. The alternatives are implemented on the
Mica2 mote and examined to determine CPU cycles for execution and memory requirements. The recommended
PRNG requires 73 CPU cycles in the worst case and uses 66 bytes of memory. The period of the PRNG is uniform
for all mote addresses and theoretically requires 6.6 years on average for a key compromise for the attack used in this
thesis.
15. SUBJECT TERMS
Computer Networks, Cryptography, Data Transmission Security, Random Number Generators, Wireless Sensor
Networks
16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Barry E. Mullins, Ph.D, AFIT/ENG

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

135

19b. TELEPHONE NUMBER (Include area code)
785-3636, ext 7979
(barry.mullins@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Cryptanalysis of Pseudorandom Number Generators in Wireless Sensor Networks
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	
	 Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	I. Introduction
	1.1 Objectives
	1.2 Implications
	1.3 Preview

	 II. Background
	2.1 Introduction
	2.2 Distributed Sensor Networks
	2.2.1 Sensor Network Components
	2.2.1.1 Mote Classes
	2.2.1.2 Resource Constraints

	2.2.2 Popular Hardware and Software Platforms
	2.2.2.1 Mica2
	2.2.2.2 TinyOS

	2.3 Security in Distributed Sensor Networks
	2.3.1 Attacks and Vulnerabilities
	2.3.2 Key Management
	2.3.2.1 Shared Key Distribution Schemes
	2.3.2.2 Public Key Distribution Schemes

	2.3.3 Security Protocols in Distributed Sensor Networks
	2.3.3.1 SPINS: Security Protocols for Sensor Networks
	2.3.3.2 TinySec
	2.3.3.3 Elliptic Curve Cryptography and EccM 2.0

	2.4 Cryptanalysis
	2.5 Random Number Generation
	2.5.1 Linear Feedback Shift Registers
	2.5.2 Linear Congruential Generators
	2.5.3 Cryptographically Secure PRNGs

	2.6 Summary

	III. Methodology
	3.1 Problem Definition
	3.1.1 Goals and Hypothesis
	3.1.2 Approach
	3.1.3 Assumptions and Limitations

	3.2 System Boundaries
	3.2.1 The Encryption Breaking System
	3.2.2 The PRNG Performance System

	3.3 System Services
	3.4 Workload
	3.5 Performance Metrics
	3.6 Parameters
	3.6.1 The EBS System and Workload Parameters
	3.6.2 The PPS System and Workload Parameters

	3.7 Factors
	3.8 Evaluation Technique
	3.9 Experimental Design
	3.10 Analysis and Interpretation of Results
	3.11 Summary

	IV. Analysis and Results
	4.1 Encryption Breaking System
	4.1.1 RandomLFSR Analysis
	4.1.2 EccM 2.0 Analysis
	4.1.3 Encryption Breaking System
	4.1.3.1 The Expected Performance of EBS

	4.2 PRNG Performance System
	4.2.1 A Maximal Linear Feedback Shift Register
	4.2.2 TinyOS 2.0’s Multiplicative Linear Congruential Generator
	4.2.3 Performance of Alternatives

	4.3 Summary

	V. Conclusions and Recommendations
	5.1 Restatement of the Problem and Conclusions
	5.2 Contributions and Significance
	5.3 Recommendations for Future Research
	5.4 Summary

	Appendix A: Derivation of Equation Two
	 Appendix B: Computing the Average Private-Public Key Operation
	 Appendix C: Data Tables
	 Appendix E: Optimization of Assembly
	
	Appendix F: EBS Java Code
	 Appendix F: MaximalLFSR Code
	Bibliography
	

