
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

9-2006 

Optimizing the Replication of Multi-Quality Web Applications Optimizing the Replication of Multi-Quality Web Applications 

Using ACO and WoLF Using ACO and WoLF 

Judson C. Dressler 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Applied Mathematics Commons, and the Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Dressler, Judson C., "Optimizing the Replication of Multi-Quality Web Applications Using ACO and WoLF" 
(2006). Theses and Dissertations. 3460. 
https://scholar.afit.edu/etd/3460 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=scholar.afit.edu%2Fetd%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3460?utm_source=scholar.afit.edu%2Fetd%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


OPTIMIZING THE REPLICATION OF

MULTI -QUALITY WEB APPLICATIONS

USING ACO AND WOLF

THESIS

Judson C Dressler, Second Lieutenant, USAF

AFIT/GCS/ENG/06-05

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this paper are those of the authors and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the U.S. Government.



AFIT/GCS/ENG/06-05

OPTIMIZING THE REPLICATION OF

MULTI -QUALITY WEB APPLICATIONS

USING ACO AND WOLF

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Systems

Judson C Dressler, B.S.C.S.

Second Lieutenant, USAF

14 September 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GCS/ENG/06-05

OPTIMIZING THE REPLICATION OF

MULTI -QUALITY WEB APPLICATIONS

USING ACO AND WOLF

Judson C Dressler, B.S.C.S.

Second Lieutenant, USAF

Approved:

/signed/ 14 Aug 2006

Maj Christopher Mayer, PhD (Chairman) date

/signed/ 14 Aug 2006

Dr. Gilbert Peterson (Member) date

/signed/ 14 Aug 2006

Dr. Gary Lamont (Member) date



AFIT/GCS/ENG/06-05

Abstract

Since its introduction, the Ant Colony Optimization (ACO) meta-heuristic has been

successfully applied to a wide range of combinatorial problems. This thesis presents the

adaptation of ACO to a new NP-hard problem involving the replication of multi-quality

database-driven web applications (DAs) by a large application service provider (ASP). This

problem is a special case of the generalized assignment problem (GAP) which occurs in

many military contexts such as logistics planning, air crew scheduling, and communications

network management.

The ASP must assign DA replicas to its network of heterogeneous servers so that user

demand is satisfied at the desired quality level and replica update loads are minimized.

The ACO algorithm proposed, AntDA, for solving the ASP’s replication problem is

novel in several respects: ants traverse a bipartite graph in both directions as they construct

solutions, pheromone is used for traversing from one side of the bipartite graph to the other

and back again, heuristic edge values change as ants construct solutions, and ants may

sometimes produce infeasible solutions.

Although experiments show that AntDA outperforms several other solution meth-

ods, there was room for improvement in the convergence rates of the ants in finding better

solutions. Therefore, in an attempt to achieve the goals of faster convergence and better

solution values for larger problems, AntDA was combined with the variable-step policy

hill-climbing algorithm called Win or Learn Fast (WoLF). In experimentation, the addition

of this learning algorithm in AntDA provided for faster convergence and still outperformed

the other solution methods. However, as problem complexity rose, AntDA with the WoLF

algorithm converged to statistically significant lesser solutions than those found by AntDA,

but at a much faster rate.
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OPTIMIZING THE REPLICATION OF

MULTI -QUALITY WEB APPLICATIONS

USING ACO AND WOLF

I. Introduction

1.1 Motivation

With the rise of the Internet and advances in services desired by users, companies

with websites are finding it more economical torent a network from a provider rather than

purchasing and maintaining their own. In order to do this, they turn to Application Service

Providers (ASPs). This relatively new business partnership introduces interesting technical

problems for both the company and the ASP.

This problem is a special case of the generalized assignment problem (GAP) which

occurs in many military contexts such as logistics planning, air crew scheduling, and com-

munications network management.

With growth in size and number of users, making content widely available while

reducing the load on the web servers becomes a major challenge. Users want the appli-

cations and servers they use to be available at all times and with short response times for

those requests. A single web server can not handle all of this traffic. Therefore, they create

copies of their content, called replicas, and spread them all over the internet using an ASPs

expansive server network. In most cases, user requests for an application are received by

the nearest ASP where the replicated logic interprets and processes them. Those requests

needing information from the back-end databases are passed to the owner’s data center for

further processing. This combination of an application and its database is referred to as a

database applicationor DA for short (see Figure 1).

There would be no problem if the back-end databases data never changed. However,

users of most applications require a certain quality ofdata freshness. The quality of data

1
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Figure 1: An example e-commerce site.

freshness depends on the freshness of the data in the database and the higher the quality of

freshness requested, the more frequently the database needs updating.

Although the quality aspect allows for some flexibility in replicating DAs, it presents

some significant issues. For one, user demand for a DA’s content is unpredictable and sud-

den surges in DA demand occur. Second, updating a DA replica with fresh data diminishes

the replica’s capacity for handling end-user requests. If not managed effectively, this para-

sitic update load could cause more replicas to be created than needed. Finally, the back-end

databases of DA replicas can be huge and take a non-trivial amount of time to move and

reestablish replicas.

The core problem dealt with in this thesis investigation is that of an ASP’s assignment

of replicas of its customers’ DAs on its network of servers so as to satisfy user demand (in-

cluding the appropriate quality) for the DAs while minimizing the parasitic database update

load of the DA replicas. This problem is known as the Quality-Sensitive DA Replication

Problem, or DArep for short.

2



1.2 Solution Approach

In order to solve the DArep problem, an ant colony optimization algorithm, AntDA

(originally proposed in [53]), is investigated. First, AntDA’s parameters are tuned and it is

tested against many different test cases. Results show that AntDA performs better than the

other search algorithms tested but had higher solution execution times.

In order to minimize the drawback of higher solution times, AntDA is combined with

a variable-step policy hill-climbing algorithm called Win or Learn Fast (WoLF). Two dif-

ferent definitions of the WoLF algorithm is experimented with to produce two variations of

AntDA: WoLFAntDA and PD-WoLFAntDA. The addition of the WoLF learning algorithm

into AntDA allows the ACO heuristic to be applied to more complex problems while still

being solved in a reasonable amount of time.

1.3 Thesis Organization

The problem of replicating Web-based applications and copies of their associated

databases (DA replicas) that are being updated in order to meet the quality demands of

its users requests is the Quality-Sensitive DA Replication Problem (the DArep problem).

This thesis effort examines this one aspect of replicating and delivering differing quality

Internet content and presents different approaches for solving the problem and effective

implementation.

The remainder of this document is organized in the following manner. Chapter 2

delves deeper into the background of the Quality-Sensitive DA Replication Problem. The

first part of the chapter describes the challenges of the DArep problem in detail as well as

a non-mathematical definition. It also presents a formalized variation of DArep in which

servers process updates and requests with varying efficiencies. The following sections pro-

vide definitions of other assignment problems as well as an in depth description of the Ant

Colony Optimization algorithm as well as the Win or Learn Fast algorithm which were

adapted to solve the DArep problem and evaluated experimentally. Chapter 3 provides the

insight into how the experiments are conducted with descriptions of how the Ant Colony

3



Optimization and Win or Learn Fast algorithms were adapted to fit the DArep problem. It

also describes briefly three other search algorithms for solving assignment problems that

were used for comparison. Chapter 4 contains the initial performance results for AntDA

and explains the effects of changes and alternatives to the AntDA algorithm that were made

in order to improve performance. It concludes with the performance results of WoLFAntDA

and a comparison of its effect on the AntDA algorithm. The conclusion of the main body

of this thesis is in Chapter 5. It contains a summary of the main contributions of this thesis

and avenues for further research.

4



II. Background and Related Work

2.1 Introduction

This chapter provides an overview of the background and related work on the Quality-

Sensitive DA Replication Problem and Ant Colony Optimization. It starts out with a de-

scription of the Quality-Sensitive DA Replication Problem and its environment and dis-

cusses other assignment problems related to the Quality-Sensitive DA Replication Problem.

The Ant Colony Optimization technique is then explained, followed by an in depth review

of the Win or Learn Fast algorithm.

2.2 Problem Background

This section presents a deeper introduction to the environment of the Quality-Sensitive

DA Replication Problem and a non-mathematical problem statement. The problem is then

formulated mathematically as a 0-1 assignment problem [53] and is proven to be NP-hard

even when each DA in the system has only one quality-level

2.2.1 The DArepEnvironment. With the rise of the internet, web-based applica-

tions have become very complicated. The applications and services are now implemented

as a combination of application logic that takes user requests and talks to the back-end

databases to acquire the data content necessary to generate the appropriate response. These

systems are referred to as Database Applications, or DAs for short, and are commonly seen

in e-commerce and e-business (on-line stores, auctions, news services, banking, etc.) (see

the Fig. 1 on page 2).1 However, as Table 1 shows this web-centric model of DAs is not

fundamentally different from that found in other contexts such as scientific grid computing

[4,5,39,44] and data warehousing [67,68].

With the explosion of internet users in the late 1990’s and today, some database ap-

plications have become too popular for owner’s to be able to keep up the infrastructure nec-

essary to handle the traffic. Consequently, these owners have turned to application service

1Notionally aserveris a single computer or a group of computers working in concert to implement a DA
or a DA replica. To simplify matters, this document hides this multiple-computer notion ofserverby always
assuming a server is a single computer.

5
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Figure 2: A Typical Application and Database (DA) Replica Setup. DA replicas con-
sist of an application servers and local read-only database replicas. When reading data to
fulfill a user request, an application server accesses its local database. When generating
or changing data, the master database is contacted. The frequency at which the master
database synchronizes its database replicas determines the service quality provided by the
replica.[53]

providers (ASPs), such as Akamai [2] and ASP-One [6], in order to relieve some of their ap-

plication’s workload by distributing the application logic onto the ASP’s extensive network

of servers. This also relieves the owner of handling infrastructure needs such as hardware,

network, backup, security, and operating systems, making the owner’s process much more

manageable. In most cases, requests for the application are received by the ASP where the

replicated logic interprets and processes them. Those requests needing information from

the back-end databases are passed to the owner’s data center for further processing. By

doing this, access to the database often becomes the major performance bottleneck of the

process [65]. Therefore, replicating just the application logic may be insufficient.In order

for an owner to receive maximum benefit, the database must be replicated too[48,58].
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Description

Similarity Web-based DA Data Warehousing Scientific Grid Comput-
ing

Goal Assign DA replicas to
servers, direct requests to
appropriate replica, avoid
DBMS overload

Place DW replicas on
servers, data mine on ap-
propriate replicas, avoid
DBMS overload

Assign compute tasks to
servers avoid DBMS over-
load at servers

Servers Hundreds of servers each
with its own capacity limit

Hundreds of servers each
with its own capacity limit

Hundreds of servers each
with its own capacity limit

Bottleneck DBMS DBMS Computing tasks and
DBMS

Data Large databases generate
HTML

Large Databases store
warehouse data

Experiment data in mas-
sive Databases

Load Sources User requests and replica
database synchronization

Data mining operations
and new data added to
DW

Tasks query database and
generate new data.

Service Qualities Data freshness require-
ments of users create qual-
ity levels

Levels: managers (low)
and data analysts (high)

Levels: making hypothe-
sis (low) and proving hy-
pothesis (high)

Table 1: DAs, Data Warehousing, and Grid Computing Compared [53].

Recent advances in database caching and update propagation have made replicating

the database portion of multi-tiered web application (Fig. 2) more feasible [17, 18, 21, 28,

47, 49, 51, 55]. Nevertheless, database replication still has many issues. Most importantly,

the database replicas must be periodically updated so that their content is timely orfresh.

Updating a database replica with fresh data, strips the replica of capacity for handling end-

user request and may cause the need for many more replicas. Also, databases are normally

many gigabytes in size and can take a great deal of time to move and establish replicas.

One of the main difficulties faced by an application service provider (ASP) is the

decision of where to assign replicas of its customers’ DAs on its network of servers. In

doing this, it must consider how to best meet user demand for the DAs and keep the cost of

database updates for the DA replicas minimized. Users having differing expectations about

the timeliness or freshness of the content they receive severely complicate this assignment

problem [13, 22]. In other words,users may have service quality requirements that have

to be met. The implication of this is two-fold. First, not every DA replica must operate

at the highest quality level as there may be users which are happy with a lower quality.

Secondly, a request must be served from a replica (a copy of the application logic and

7
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Figure 3: Distributed Environments Requiring Effective Replication Solutions. Shown
are examples of (a) Grid computing domains, (b) data warehousing operations, (c) applica-
tion service providers replicating dynamic Web sites [53].

relevant portions of the database) that meets or exceeds the user’s quality requirement. The

ASP’s problem of deciding on replica-to-server assignments of such quality-differentiated

DAs is theQuality-Sensitive DA Replication Problem, or DArep for short.

2.2.2 Quality-Sensitive DA Replication Problem Assignment Issues.For the

Quality-Sensitive DA Replication Problem (DArep), there are several issues that must be

taken into account when assigning replicas to servers: application masters and replica

8



slaves, dynamic content, keeping replicas fresh, large databases, and DBMS load and

replica server response times.

Application Masters and Replica Slaves: A trend in DA architecture and replication is

the user of the master/slave relationship for updating the database application. In operation,

there is a single master and zero or more slaves (or replicas). Both masters and slaves

contain a database component and are capable of receiving and handling user requests.

When a slave needs to update its database, it contacts the master which processes the update

and propagates the appropriate changes to the slaves, thereby refreshing their databases.

Oracle’s Database Cache and IBM/DB2 support master/slave replication [19].

Dynamic Content: While improvements in dynamic content caching have been made and

techniques exist to synch masters and slaves [17,18,21,28,47,49,51,55], caching’s benefits

are limited, meaning that ample access to source data is always required. Replication can

provide this ample access. An application and a relevant portion of its database can be

replicated by a service provider as is done by Akamai using IBM’s WebSphere product

[42]. Figure 2 shows the replication of a single DA. An important concept to remember

is that updates occur at a master database which propagates changes to database replicas

based on the replicas’ freshness requirements.

Keeping Replicas Fresh: Database replicas have to be regularly updated so that their con-

tent is timely orfresh. Assigning a DA replica to a server induces a continuous update

load on the server’s database component due to the frequent updates required to maintain

the replica’s service quality. This update load is parasitic in the sense that it reduces the

replica’s capacity for handling end-user requests. This resource drain also excludes plans

of creating more replicas than demand warrants and limits how many replicas a server can

host. A higher quality of service requires fresher data and require more frequent database

synchronization. Therefore, update load on a replica increases with freshness or service

quality. Understandably, update load mitigation has been the subject of much research

[17,18,20,46,49,52,57].

9



Large Databases: The database of a DA is normally many gigabytes large and can take a

great deal of time to move and establish replicas in response to changing demand.

DBMS Load and Replica Server Response Times: Response times are the crucial mea-

surement of speed in today’s internet, especially for e-commerce applications, since slow

response times translate into unhappy customers and lost revenue [47, 65]. Since request

and response sizes are small and propagate quickly over today’s internet, the performance

bottleneck for database-driven applications has been shown to be the Database Management

System (DBMS). DA response times depend greatly on database load, and not necessarily

the placement of the replicas geographically close to users or network delays [18,28,47,65].

The database load of a DA replica has two components: request load and update load. Re-

quest load results from queries stemming from user requests. Update load is the resources

consumed in synchronizing a replica’s slave database with its master database. Therefore, if

the DBMS can keep the request and update loads from overloading the database, response

times will be managable.

2.2.3 A Non-mathematical Definition of the DA Problem.The concepts presented

up to this point are used to define theQuality-Sensitive DA Replication Problem, DArep

as shown in Fig. 4. All terms used in the definition were defined previously in this chapter.

Figure 5 contains an ASP replication scenario that fits the DArep definition. Cus-

tomers maintainmaster databasesfrom which updates are disseminated. Once replicas

are assigned to the ASP’s servers, the database replicas are synchronized with customers’

master databases so as to maintain each replica’s designated service quality (Figs. 2 and 5).

Since users access replicas, which are read-only, any request that changes a DA’s database

is routed through the master database and then disseminated to the replicas. Replica up-

date/synchronization is costly in terms of resources, and hence, has to be minimized while

maintaining the appropriate freshness levels.

This thesis presents and evaluates several algorithms for solving various forms of

Quality-Sensitive DA Replication Problem.
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The Quality-Sensitive DA Replication Problem
Given

• A set of DAs to be replicated where each DA has one or more freshness quality levels at
which it operates.

• A set of servers on which DAs can be placed. Each server has a (possibly different) load
limit. Zero or more DAs can be hosted on server.

• Request rates for DA content and freshness levels for each web site to be replicated.

• Operating loads:

– Update load: The load of maintaining a DA replica at a certain freshness level is the
product of an update rate and DA update complexity.

– Request load: The load for handling requests for a DA replica is the product of the total
request rate at the replica and the expected request complexity for the DA.

• Requests are considered satisfied only if the returned content meets or exceeds a minimal
freshness requirement stated in the request.

Find an assignment of

1. DA replicas to servers,

2. freshness quality levels to DA replicas, and

3. a distribution of requests to replicas that fulfills the application and quality demands of the
requests

such that, for each server, the sum of the update and request loads for DA replicas hosted by a server
does not exceed the server’s load limit.

Figure 4: The Quality-Sensitive DA Replication Problem Informally Defined

31 2, x21, 3 x

DA 1 
Master

DA 2 
Master

DA x 
Master

DA 3 
Master

Figure 5: An Application Service Provider Network Hosting DAs [53].

2.2.4 The Quality-Sensitive DA Replication Problem Formalized.In this sub-

section, the DArep problem is formulated as a linear, mixed-integer minimization problem

which has been proven to be NP complete [53].
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Definitions:

• The ASP hasm servers,S = {1, . . . ,m}.

• Each servers ∈ S has a processing capacity denoted byCs.

• The ASP hasn customer-provided DAs to be hosted,D = {1, . . . , n}, on its m

servers.

• Eachd ∈ D operates at one or more service quality levels,Qd = {1, . . . , q, . . . , qmax(d)},

whereqmax(d) is the highest level offered by DAd.

• The request load for DAd, RLd, is the sum of the request loads, denoted byrld, for

each of its quality levels:RLd =
∑

q∈Qd
rld,q.

• For each service quality of a DAd there is a certain update load required to maintain

that service quality:ULd = {uld,1, . . . , ld,q, . . . , uld,qmax(d)}.

• Let xs,d,q ∈ {0, 1} be a binary variable that indicates that servers is hosting a replica

of a certain〈d, q〉 pair where〈d, q〉 pair is shorthand forquality q of DA d. Let

λs,d,q ∈ [0, 1] denote the fraction of the request load of a〈d, q〉 pair,rld,q, assigned to

servers. The update load experienced by servers depends on the quality level of the

DA replicas it hosts:

uls =
∑
d∈D

∑
q∈Qd

xs,d,q · uld,q. (1)

Servers’s request load is the fraction of each〈d, q〉 pair’s request load sent to it:

rls =
∑
d∈D

∑
q∈Qd

λs,d,q · rld,q. (2)

Objective and Constraints: The ASP seeks an assignment of DA replicas to servers that

minimizes the system-wide update burden,UB, and is subject to four constraints.

min UB = min
∑
s∈S

∑
d∈D

∑
q∈Qd

uld,q · xs,d,q (3)

1. Request load for each quality of each DA is satisfied:
∑

q∈Qd

∑
s∈S λs,d,q = 1.
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2. Only one quality level of a DA is hosted by a server:
∑

q∈Qd
xs,d,q ≤ 1.

3. A server’s processing capacity cannot be exceeded:uls + rls ≤ Cs.

4. Requests processed by a replica must meet or exceed the request’s quality expecta-

tion, qr:
∑

qs|qs,qr∈Qd∧qs≥qs
xs,d,qs ≥ λs,d,qr .

Although, in theory, the above formulation could enable the ASP to find optimal DA

assignments, in reality, optimal solutions are elusive since DArep is in the class of NP-hard

problems, even if all the DAs in an ASP have only one freshness quality level, as shown in

[53].

2.3 Other Assignment Problems

Essentially, the Quality-Sensitive DA Replication Problem is an optimization assign-

ment problem with many constraints. This section covers a couple of the categorical as-

signment problems and how they have been solved.

Pairing problems constitute a vast family of problems which deal with practical de-

sign and resource-allocation problems. Different versions of these problems have been

studied since the mid 1950s due both to their many applications and to the challenge of

understanding their combinatorial nature. Some can be easily solved in polynomial time,

whereas others are extremely difficult. The simplest one is the Assignment Problem that

can be easily solved by the Hungarian Algorithm [61]. Others are much harder, such as the

Generalized Assignment Problem and the Quadratic Assignment Problem, which are very

difficult and NP hard [61].

2.3.1 Generalized Assignment Problem.Assignment problems consist of find-

ing the best assignment of some set of items to items (or agent) of another disjoint set

according to some predefined function. Its many applications include the assignment of

tasks to workers, of jobs to machines, of fleets of aircraft to tasking orders, or the assign-

ment of school buses to routes [1,60]. However, in most practical applications, each agent

requires a quantity of some limited resource to process a given job or has a limited capac-

ity for a given resource. Therefore, the assignments have to be made taking into account
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the resource necessity or capacity of each agent. The problem derived from the classi-

cal Assignment Problem by taking into account these capacity constraints is known as the

Generalized Assignment Problem (GAP). Among its many applications is the problem of

assigning variable length commercials to time slots [7], jobs to computers in a computer

network [7], distribution of activities to the different subsections of a company when mak-

ing a project plan [69], etc. Besides these applications, it also appears as a subproblem in a

variety of combinatorial problems like Vehicle Routing [36] or Resource Location [31,61].

A classic NP-hard problem that is similar to the Generalized Assignment Problem is graph

coloring [24,25].

2.3.2 Quadratic Assignment Problem.The Quadratic Assignment Problem (QAP)

is another classic combinatorial optimization problem and is widely regarded as one of the

most difficult problems in this class. It was first introduced by Koopmans and Beckman to

solve a facilities location problem [59]. The problem involves assigningN facilities toN

locations so that the cost of the assignment,Z, is minimal. It can be defined as follows.

minZ =
N∑
i=1

N∑
j=1

aijxij +
N∑

i=1

N∑
j=1

N∑
k=1

N∑
l=1

fikcjlxijxkl

s.t.
N∑

j=1

xij = 1, i = 1, 2, . . . , N

N∑
i=1

xij = 1, j = 1, 2, . . . , N

xij ∈ {0, 1}, i, j = 1, 2, . . . , N

(4)

whereN = total number of facilities,aij = fixed cost of locating facilityi at locationj, fik

= flow of material from facilityi to facility k, cjl = cost of transferring a material unit from

locationj to locationl, andxij = 1, if facility i is at locationj; 0 otherwise.

Many solution methods have been developed to address the QAP because of its con-

siderable practical importance in facility layout, machine scheduling and other applications.

Even with fast computers, exact algorithms such as branch-and-bound methods are only

able to globally solve rather small QAPs in a reasonable amount of time [34]. Therefore,
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researchers have concentrated on developing effective heuristics for the QAP. The diverse

QAP-heuristics are not examined here. Instead, extensive assessments of the QAP and its

associated solution methods can be found in [16, 34, 45]. Recent developments in facility

layout are also covered in [40, 41]. Many classic NP-hard problems fall into the QAP cat-

egory such as bin-packing and the knapsack problem [34]. The DArep also resides in the

QAP category of assignment problems [53].

2.4 Ant Colony Optimization

Despite the current technology, and rapid advances in every field, there are still some

problems that continue to elude scientists. Learning algorithms have been developed in

combination with artificial intelligence systems such as neural networks to try and solve

some of these problems, but imperfections and inefficiencies in both the hardware and

software often prevent reliable results. Scientists, are now looking into the world of insects,

or swarm intelligence for inspiration for new methods and approaches of attacking complex

problems. This section describes how one particular form of swarm intelligence, the Ant

Colony Optimization (ACO) meta-heuristic algorithm uses the cooperative nature of ants

in order to solve difficult combinatorial optimization problems.

2.4.1 Ant Algorithm Background. An individual ant is relatively unintelligent,

but as a part of a colony, a complex group behavior emerges from the interactions of indi-

viduals who exhibit simple behaviors by themselves [34, 53]. This phenomenon is indica-

tive of all swarm intelligences, where something is created that is greater than the sum of

its parts. Using their social structure ants are able to complete very complex tasks with-

out even knowing of the existence of the problem [34, 53]. One of the complex behaviors

that naturally emerges from the ant colony is the ability to determine the shortest path be-

tween two points. An important insight of ant behavior is that most communication among

individuals, or between individuals, is based on the use of chemicals, called pheromones,

produced by the ants. Particularly important for the social life of ants is the trail pheromone,

a pheromone that individuals deposit while walking in search of food [53]. By sensing the
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level of pheromone on trails, forager ants can follow the path found by other ants to get to

food. The behavior of pheromone-laying and pheromone following is the inspiring source

of ant colony optimization. Initially, all ants move randomly from their starting point in

search of food, since there is no pheromone to start with, all ants choose between paths

with equal probability. While walking, ants deposit on the ground a pheromone trail; when

choosing which way to go when their trail forks, ants choose with higher probability those

directions marked by a stronger pheromone concentration [34, 53]. However, ants some-

times behave randomly and select trails with lighter concentrations or even investigate a

new trail altogether. This random behavior promotes the exploration and discovery of other

paths which enhances the chances of finding the best solution possible. An ant continues to

follow trails until it reaches its goal or gets tired. Either way, each ant will return to the nest

while laying pheromone. The concentration of the pheromone trail is directly proportional

to the impact of the goal found. For example, if the food item is highly appetizing and could

not be taken by the single ant, then a large amount of pheromone would be deposited on the

ants return trip to make sure other ants would find their way to it. Likewise, if the food item

is not appetizing, is small in quantity, or nothing was found at all, the ant would deposit

less pheromone which would make other ants not pay as much attention to that trail. Since

pheromone evaporates over time, trails leading to a big reward are continually reinforced,

while trails leading to little or no reward fade away [53].

When choosing between a shorter and longer trail leading to the same goal, those

ants choosing the shorter branch find the food first and are first to get back to the nest.

Therefore, more ants traverse the shorter branch and the pheromone trail on this branch

will grow faster, thus increasing the probability that it is used by approaching ants. This

process of positive feedback is at the heart of the ant colony behavior that can very quickly

lead all the ants to choosing the shortest branch. This behavior has been adapted into an

algorithm which can be used by artificial ants to find minimum cost paths on graphs, as

explained in the next section.
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2.4.2 The Ant Colony Meta-heuristic. A colony of (artificial) ants traverse a

graph where the graph’s edges (directed or undirected) can be seen as the ants possible trails

and the graph’s vertices as decision points. While traversing the graph, the ant records its

path taken and remembers its cost. Each ant’s path is a solution to the problem and the more

desirable the cost, the better the solution to the problem. After each iteration of finding a

solution, each ant deposits pheromone on the edges it traversed. The amount of pheromone

laid by each ant depends on the desirability of its solution cost, usually done by adding

pheromone equal to the inverse of the solution cost (eg. Solution cost = 800, pheromone

laid = 1/800). In other words, edges used to find the best solutions (least cost) are reinforced

with more pheromone than edges that are determined to lead to worse solutions. With time,

the pheromone on the edges evaporates, making undesirable edges less attractive over time.

At every vertex, the ant observes the pheromone levels of all outgoing edges of that

vertex. It then, based on each outgoing edge’s pheromone concentration and a heuristic

desirability, makes a probabilistic choice about which edge to follow. The ants use both

pheromone (representing past good solutions) and a heuristic value (to guide ants when

little is known about an edge’s desirability) to encourage the exploration of solutions in the

region of known good solutions, but is still random enough that good solutions are highly

unlikely to go undiscovered [53].

Many NP-complete combinatorial problems have been attempted with ant algorithms.

These include the traveling salesman problem [14,33,35], job-shop scheduling [23], graph

coloring [24, 25], vehicle routing [15, 56], adaptive routing in communication networks

[10, 29, 30, 63, 66], sequential ordering [38], shortest common supersequence [54], and

multidimensional knapsack [3]. In each case, ant algorithms perform as well or better than

the best known algorithms for solving the problems above as a majority of the works cited

above indicates.

Typically, ant algorithms consist of a doubly nested loop. The outer loop controls the

number of iterations (usually called time steps) executed and the inner loop controls each

ant as it traverses the graph and builds a solution. Once each ant has completed building
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its solution, the pheromone on the graph’s edges are updated to reflect the quality of the

solutions found in the current time step and account for the evaporation of pheromone from

infrequently-used edges. This updated graph is then used as the starting graph for the next

iteration.

According to Ant Colony Optimization Pioneers - Eric Bonabeau, Marco Dorigo,

and Guy Theraulaz, there are four essential elements to an ant algorithm. This next section

is adapted from [9].

1. Heuristic Desirability. This element gives the desirability of moving from vertexi

to vertexj based only on local information. Heuristic desirability is denoted byηij.

Since this element is problem specific, no definitive or typical equation can be given.

However, for example’s sake, at least two TSP algorithms use the inverse of inter-city

distances as the heuristic. Thus, cities that are closer together are more attractive than

cities that are farther apart.

2. Transition Rule. This rule determines the probability that an antk follows edge (i, j)

when moving from vertexi to vertexj. Let Jk
i be the set of vertices antk can move

to if currently at vertexi. A typical rule is:

pk
ij
(t) =

[τij(t)]
α · [ηij]

β∑
l∈Jk

i

[τil(t)]α · [ηil]β
(5)

whenj ∈ Jk
i and0 whenj /∈ Jk

i . In the above equation,τij(t) is the pheromone

concentration on edge (i, j) at time stept. Scaling parametersα andβ control the

influence of pheromone trailτij(t) and heuristic desirability,ηij, respectively. Note

that
∑

j∈Jk
i

pk
ij

= 1 as long asJk
i is non-empty.

3. Constraint Satisfaction. This element ensures that the solutions found are feasible.

For example, maintaining a list of visited cities ensures that ants visit each city exactly

once during a tour in the TSP.

4. Pheromone Update Rule.This rule governs the updating of pheromone on edges.

Pheromone is deposited on edges to reflect the quality of solutions found by the

18



ants. Evaporation of pheromone from the edges also occurs. In ant TSP algorithms

the concentration of pheromone deposited on edges is inversely proportional to the

shortness of a tour or set of tours, i.e., edges making up short tours receive more

pheromone than longer tours. Evaporation of pheromone is typically modelled as a

constant phenomenon; each time step a constant fraction of pheromone evaporates

from all edges. A typical update rule is:

τij(t + 1)← (1− ρ) · τij(t) + ρ ·∆τij(t) (6)

whereτij(t) is the amount of pheromone on edge (i, j) at time stept, ∆τij(t) is the

amount of new pheromone to be deposited on edge (i, j) as a result of the ants’ col-

lective activity during time stept, andρ determines the fraction of old pheromone to

new pheromone. Note that the determination of∆τij(t) is implementation specific.

Past researchers have experimented with∆τij(t) expressions that (i) rank the solu-

tions of thek ants and deposit pheromone on the edges of the topm, 1 ≤ m ≤ k,

solutions proportional to each solution’s rank [9], (ii) limit the maximum and mini-

mum amount of pheromone on any edge, and (iii) proportionally reinforce stronger

pheromone trails less than weaker ones.

Pheromone trails can also be updated dynamically as the ants work. For example,

[32] updates edges each on each ant’s passing using:

τij(t)← (1− ρ) · τij(t) + ρ · τ0 (7)

whereτ0 is a constant amount of pheromone. This style of dynamic updating reduces

pheromone on visited edges and encourages exploration of non-visited edges by ants

working later in the current time step.

The Ant Colony Optimization algorithm can be adapted to solve many types of op-

timization algorithms. In section 3.1, it discusses how ACO was adapted in order to solve
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the Quality-Sensitive DA Replication Problem problem and in section 4.4, how this opti-

mization technique compares to other methods for solving this problem.

2.5 Reinforcement Learning

The Win or Learn Fast Algorithm is a reinforcement learner. Since this thesis inves-

tigation centers on a combination of ACO and WoLF, this section reviews reinforcement

learning concepts. It begins with an introduction to learning algorithms and their uses. It

discusses policy hill-climbing algorithms and an in depth look at the Win or Learn Fast

algorithm and how it has been applied to problems and its effect.

2.5.1 Reinforcement Learning. Reinforcement learning concerns an agent who

must learn behavior through trial-and-error interactions with a dynamic environment. The

agent’s job is to find a policyπ, mapping states to actions, that maximizes some long-

run measure of performance [43]. However, in order to find the policy, the agent must

first explore the problem space and determine, at each state, the effect of choosing each

action as it impacts the long-term goal of finding the optimal solution. The following ex-

ample demonstrates the problem of exploration versus exploitation. The simplest possible

reinforcement-learner problem is known as thek-armed bandit problem [64]. In this prob-

lem, an agent must pull one ofk arms (gambling machines) at each time step so as to

maximize the total average reward. The agent is permitted a fixed number of pulls,h. Any

arm may be pulled on each turn. The machines do not require a deposit to play; the only

cost is wasting a pull. When armi is pulled, machinei pays off 0 or 1, according to some

underlying probability parameterpi, where payoffs are independent events and thepis are

unknown [43]. The goal of this problem is to determine the best strategy for the agent to

take in order to obtain the maximum possible payoff.

This problem illustrates the fundamental tradeoff between exploitation and explo-

ration. An agent who believes that a particular machine has a fairly high payoff probability

could choose that arm every time, but it could be missing out on a better probability of

winning on another machine. The solution to this problem depends on the number of pulls
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allowed or how long the agent is expected to play the game. The longer the game lasts,

the worse the consequences of prematurely converging on a sub-optimal machine, and the

more the agent should explore before converging on a solution [43].

There are two main strategies for solving reinforcement-learning problems. The first

is to search in the problem space in order to find a behavior that performs well in the prob-

lem environment. This approach has been taken by those working in genetic algorithms

and genetic programming, as well as some novel search techniques [62]. The second uses

statistical techniques and dynamic programming methods to estimate the utility of taking

actions in states in the world and then choosing the best action based on the statistics gen-

erated. This second approach is the basis for the Win or Learn Fast algorithm which is

examined in section 2.5.2.

2.5.2 Win or Learn Fast Algorithm. In most learning algorithms involving agents,

the solution space is seen as a collection of state-action pairs, represented by(s, a) where

s ∈ S anda ∈ A. The set of states,S, is the particular locations/places where an agent can

be located (e.g. the states of DArep are the servers/〈d, q〉 pairs).A is the set of all possible

actions or moves an agent is allowed to do when in a certain state (e.g. pick a server to host

the〈d, q〉 pair selected). In policy hill-climbing (PHC) algorithms, each(s, a) pair is given

a policy value in the agent’s problem space in order to guide an agents decision making

toward maximizing the reward (or minimizing the cost) of the problem being solved. The

policy of each(s, a) pair,πsa, is updated based on a probability that the actiona taken from

states will lead to a better solution [26]. Actions with a high policy value are considered

more important to producing optimal results and are more likely to be exploited by the

agent in the future [11].

Using the policy hill-climbing algorithm, an agent must explore the solution space,

then based on the reward (or lack thereof) received by performing actiona in states, adjusts

πsa. Seeing the maximum reward as getting to the top of a hill, the algorithmclimbstoward

the best reward. The policies are adjusted by an amount,δ, which is referred to as the

learning rateor step size.
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Normally, PHC algorithms use a single fixed step size, which for several reasons, is

not ideal. First, a single fixed step size prevents the algorithm from increasing policies by

a larger or smaller amount than the fixed size when necessary. Second, it has been shown

that in fixed step size hill-climbing algorithms, an agent’s policies never reaches a steady

state, or converge for the general problem case [26].

WoLF (Win or Learn Fast) is a policy hill-climbing method by Bowling and Veloso

for changing the learning rate to encourage convergence in a multiagent reinforcement

learning scenario [12]. WoLF’s technique is very intuitive. It suggests that an agent should

adapt quickly when doing more poorly than expected, and be cautious when it is doing

better than expected so as not to overstep a better strategy. This approach allows for con-

vergence in an agent’s policies [12].

The novelty of WoLF is that it replaces the usual single fixed step size, with two

learning rates, for each state-action pair. The two step sizes are associated with the concept

of winningandlosing.

In WoLF, winning is when the policy for a state action pair is interpreted as leading

to an optimal solution. For state action pairs that are considered winning, a small step size,

δw, is used to updateπ to encourage exploration in the solution space around the winning

state-action pair [12]. However, if a state action pair is losing, it has been shown to lead

to a far from optimal solution. Therefore, a large step size,δl, is used to dramatically

increase theπ of a losing state-action pair. This step size allows the WoLF algorithm to

exploit recent performance gains uncovered by the losing state-action pair and to move

more quickly towards a solution of optimal value. This is what is meant bylearn fast[26].

The impact an action has is determined by combining the concept of policy with

search algorithms such as Policy Hill Climbing [27], Gradient Descent [11], Q-Learning

[11, 37], or Ant Colony Optimization [26]. When combined with these algorithms, WoLF

uses the strength of an adaptive decision policy to enable agents to converge more rapidly

to optimal solutions, thus making these algorithms more effective.
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There are three main options when using the Win or Learn Fast algorithm that must

be manipulated to fit the problem at hand.

1. An estimation policy. This is the value derived from the optimization algorithms

discussed. It is the approximation of an agents perceived environment at each state.

For gradient ascent algorithms, this would be the probabilities of an action being

selected and the expected payoff that would result. In Q-learning, the Q-value can be

used to determine an approximation of an agents current environment. For ACO, an

edge’s pheromone concentration can be used to estimate the ant colony’s best guess

at which edges should be included in the optimal solution [26].

2. A rule for determining winning or losing. This rule determines whether or not an

agent is approaching a local optima or not. In [11], Bowling and Veloso introduced

an algorithm, called WoLF-PHC, that combined the WoLF concept with the policy

hill-climbing variant of Q-learning. In accordance with WoLF, they proposed that the

value ofδ, whether the(s, a) pair is winning or losing, to be determined by:

δ =


δw, if

∑
a′

π(s,a′)Q(s,a′) >
∑
a′

π(s,a′)Q(s,a′)

δl, otherwise
(8)

wherea′ are the actions available from states, Q(s,a′) is an(s, a) pairs Q-value, and

π̄(s,a) is the average of allπ(s,a′) values. Using this equation, an agent is winning if its

current policies for all actions in states have a greater benefit than using the average

policy of all actions in states [11].

However, Banerjee and Peng, in their Policy Dynamics-Based Win or Learn Fast Pol-

icy Hill-Climbing (PDWoLF-PHC) algorithm [8], suggest an alternate definition of

winning and losing using the gradient of the policy. This definition relies on keep-

ing track of policy rate of change (policy velocity)∆(s,a), and policy acceleration,

δ∆(s,a):
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δ =

 δw, if ∆π(s,a) (t) ·∆π2
(s,a) (t) < 0

δl, otherwise
(9)

where

∆π(s,a)(t) = π(s,a)(t)− π(s,a)(t− 1) (10)

and

∆π2
(s,a)(t) = ∆π(s,a)(t)−∆π(s,a)(t− 1) (11)

According to this definition, the policy for an(s, a) pair iswinning if:

(a) the policy value is increasing (positive∆π(s,a)) but the rate of increase is slow-

ing down (negative∆π2
(s,a)) or

(b) the policy value is decreasing (negative∆π(s,a)) but the rate of decrease is slow-

ing down (positive∆π2
(s,a)).

This definition uses the fact that policy value change rates should slow down as they

near their optimums (from either the positive or negative side). Therefore, when the

change rate slows, the(s, a) pair is seen as winning. Otherwise, the edge is seen as

losing and needs to take larger step sizes (learn faster) in order to reach its optimal

value faster. This definition has been shown to converge more rapidly and require

less overhead than WoLF-PHC’s definition [8,26].

3. Winning and learning step rates.These are the step sizes discussed above,δw, and

δl. These values determine the learning rate and affect the rate at which an agent

will converge on an optimal solution. In [26], the authors suggest a win-to-learn ratio

of 1:3 for good performance, however, since DArep is a different problem, many

different ratios were experimented with in order to determine the optimal parameters

for WoLFAntDA(see section 4.3.
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WoLF has been adapted to help solve many problems such as the Traveling Salesman

Problem [26] and stochastic matrix games [8, 11, 12, 27]. Section 3.2 describes how the

Win or Learn Fast algorithm has been combined with AntDA in order to solve the Quality-

Sensitive DA Replication Problem.

This chapter described the Quality-Sensitive DA Replication Problem as well as other

assignment problems related to it. The ACO and WoLF algorithms were covered as well

and how they have been adapted to fit other optimization problems.
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III. Methodology

This chapter begins with an overview of how the Ant Colony Optimization and Win or

Learn Fast Algorithms were adapted in order to be implemented on the Quality-Sensitive

DA Replication Problem. Next, there is an introduction to other solution methods used

for performance comparison with the proposed algorithms: AntDA, WoLFAntDA, and PD-

WoLFAntDA. This chapter concludes with an explanation of the Server Filling heuristic

which was combined with the Ant Colony Optimization algorithm to enhance the perfor-

mance of AntDA.

3.1 AntDA: An ACO Algorithm for DArep

The first proposed algorithm, AntDA, is the adaptation of ACO to fit the Quality-

Sensitive DA Replication Problem. This section covers the basic behavior, transition rules,

and the rules for depositing pheromone on edges.

3.1.1 Basic Behavior. In AntDA, ants operate on a bipartite graph representing

an instance of DArep (Fig. 6). The graph,G = (V, E), consists of a set of vertices,V , and

edges connecting vertices,E. The vertices are divided into two groups,DQ andS, such

thatV = DQ ∪ S andDQ ∩ S = ∅. Each vertex inDQ represents a〈d, q〉 pair (a quality

q of DA d).

The vertices inS represent the servers. Eachdq ∈ DQ is connected to everys ∈ S

by a directed edge(dq, s). Similarly eachs ∈ S is connected to everydq ∈ DQ by a

directed edge(s, dq). Even though each edge(dq, s) has a reverse edge(s, dq), undirected

edges are not used since pheromone is interpreted differently on edges of type(dq, s) versus

edges of type(s, dq).

Ants construct solutions by moving back and forth between vertices inDQ (〈d, q〉

pairs) and vertices inS (servers) creating a replica and assigningdq request load or adjust-

ing the service quality of an existing replica on the server chosen for assignment.

Ants work independently (maintain their own solution spaces) but share the same

graph. An ant works on a solution until either server capacity is exhausted or all request
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S vertices (servers)

DQ vertices (<d,q> pairs)

s: 1 s: 2 s: 3 s: m

d: 1
q: 1

d: n
q: -

d: 2
q: 2

d: 2
q: 1

Figure 6: The bipartite problem graph used by AntDA. Although all〈d, q〉 pairs are
connected to servers via directional edges and vice-versa, single non-directional edges are
shown here for simplicity.

load has been assigned to the servers. Once all ants have solved, they deposit pheromone on

the shared graph, pheromone evaporation takes place, and then the next time step begins.

Ants are placed at a random server vertex at the beginning of each time step. The algorithm

for AntDA is shown in algorithm 1.

3.1.2 Moving From Servers to〈d, q〉 pairs. An ant at vertexs must decide which

〈d, q〉 pair should be assigned next (Algorithm 1, step 14). LetDQk
s be the set ofdq vertices

which are still capable of being assigned to servers. A〈d, q〉 pair can be assigned if:

1. it has some amount of unassigned request load (rem(rld,q) > 0), and

2. There exists a servers such that the net change in update load ons because of placing

a replica of DAd at qualityq ons is less than the remaining capacity ons: rem(Cs) >

net change inuls because of hosting a replica of the〈d, q〉 pair.
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Algorithm 1 The AntDA Algorithm
1: Initialize parameter values
2: for each edge(dq, s) ∈ graphG do
3: τ(dq,s) = τ0

4: end for
5: for each edge(s, dq) ∈ graphG do
6: τ(s,dq) = τ0

7: end for
8: for each time stept do
9: Distribute graphG to all ants

10: for each antk do
11: T k = ∅
12: Randomly select a starting servers ∈ S
13: while DQk

s 6= ∅ andSk
dq 6= ∅ do

14: Selectdq ∈ DQk
s according to equation 12

15: Selects ∈ Sk
dq according to equation 14

16: Assigndq to s.
17: Adjust server capacity to reflect assignment.
18: Adjustdq remaining load.
19: UpdateDQk

s andSk
dq

20: Invoke the server filling algorithm - Section 3.3
21: end while
22: end for
23: //Now all ants have built tours for time stept
24: for each antk with one of the topm solutionsdo
25: Update pheromone using the rules in Section 3.1.4
26: end for
27: end for

If DQk
s = ∅, the algorithm terminates. Otherwise, the probability that antk selects

edge(s, dq) is given by:

pk
s,dq

(t) =


[τs,dq(t)]

α · [ηs,dq]
β∑

dq′∈DQk
s

[τs,dq′(t)]α · [ηs,dq′ ]β
, whendq ∈ DQk

s

0, whendq /∈ DQk
s .

(12)

whereτs,dq(t) is the pheromone concentration on(s, dq). The scaling parametersα andβ

again control the relative importance of pheromone and heuristic desirability. Also,ηs,dq is
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the heuristic desirability of selecting(s, dq) and is given by:

ηs,dq =
uldq · rem(rldq)∑

dq′∈DQk
s

uldq′ · rem(rldq′)
. (13)

Dividing uld,q · rem(rld,q) by a server’s remaining capacity,rem(Cs), estimates the update

burden incurred by creating replicas on servers of sizerem(Cs). Eq. (13) is an appropriate

heuristic since it prefers〈d, q〉 pairs most likely to produce high update burdens (no matter

which servers are used). Note thatηs,dq values change as the ant constructs its solution.

After making its selection, the ant traverses the edge to the selected〈d, q〉 pair and

then must choose a new server.

3.1.3 Transitioning From〈d, q〉 pairs to Servers. When at vertexdq, antk must

find a server to which the〈d, q〉 pair represented bydq will create a replica and assign load

(Algorithm 1, step 15). LetSk
dq be the set of servers (vertices) upon which request load of

the〈d, q〉 pair represented by vertexdq can be assigned. Letrem(Cs) represent the unused

(remaining) capacity of servers. Servers is available for assignment if the net change in

update load ons caused by its hosting DAd at qualityq is less thanrem(Cs) (i.e., s will

be able to handle request load for the〈d, q〉 pair). This is theserver hosting condition.

The probability that antk selects edge(dq, s) is

pk
dq,s

(t) =


[τdq,s(t)]

α · [ηdq,s]
β∑

s′∈Sk
dq

[τdq,s′(t)]α · [ηdq,s′ ]β
, whens ∈ Sk

dq

0, whens /∈ Sk
dq.

(14)

τdq,s(t) is the pheromone concentration on(dq, s) at time stept. Parametersα andβ

are constants governing the relative importance of pheromone to the heuristic desirability,

ηdq,s, of traveling along edge(dq, s):

ηdq,s =
rem(Cs)∑

s′∈Sk
dq

rem(Cs′)
(15)
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whererem(rld,q) is the amount of request load for〈d, q〉 pair yet to be assigned to a server.

The heuristic is based on the idea that greedily selecting the largest server should reduce

the number of replicas created and, thus, update burden produced. Note thatηdq,s values

change as servers are assigned. The heuristic in Equation (15) mirrors the greedy selection

criteria of the greedy algorithm (see Section 3.4) in the way that it favors the selection of

the server with the most remaining capacity.

After selecting edge(dq, s) the ant moves from vertexdq to vertexs. Once ats the

ant creates a replica for the〈d, q〉 pair and assigns as much remaining request load of the

〈d, q〉 pair,rem(rldq), to s as possible. If a replica of DAd already exists ons, then the ant

adjusts the quality level of the replica if needed (increases the update load of the replica).

The server’s remaining capacity,rem(Cs), is decreased based on the amount of update load

and request load assigned.

After creating a replica of DAd at quality levelq on servers, the ant can attempt to

invoke theServer-Filling (SF) heuristic (explained in section 3.3). In cases where a replica

of d does not use all the capacity on its host servers, the SF heuristic looks to assign request

load of other qualities ofd to s. After making its selection, the ant traverses the edge to the

selected server node and then transitions back to a〈d, q〉 pair (Section 3.1.2).

3.1.4 Pheromone Update Rule. When each ant has constructed a solution to

DArep it is time to deposit pheromone on the shared graph (Algorithm 1, step 25). By

finding a solution, an ant has essentially assigned values for thexs,d,q andλs,d,q variables

described in the informal version of the problem shown in Fig. 4.

Recall that the DArep problem’s goal is to minimize the amount of update load,

UL, expended in a solution that assigns all request load. In other words, DArep seeks to

minimize the following equation:

UL =
∑
s∈S

∑
d∈D

∑
q∈Qd

uld,q · xs,d,q. (16)
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Quite naturally, the minimization function of the formal problem (Eq. 16) can be

used to rate the solutions found by the ants. The number of ants allowed to update edges

and exactly how much pheromone each updating ant deposits is a tunable parameter sub-

ject to experimentation. The pheromone deposit scheme which worked best for AntDA is

explained in section 4.2.

Since better solutions have lower update burdens, the amount of pheromone deposited

by ants is inversely proportional to a solution’s update burden. However, low update bur-

dens are not always better – since some ants’ solutions may be infeasible (i.e., they do

not assign all request load). Differentiating between feasible and infeasible solutions when

deciding how much pheromone to deposit on the edges used in an ants solution is easily

handled. LetUBk(t) be the update burden of antk’s solution after time stept as computed

by (3). Then adjustUBk(t) to account for infeasible assignments as follows:

UB′
k(t) =

UBk(t)(
RLk(t)

RL

)ω (17)

whereRLk(t) is the amount of request load assigned by antk in time stept andω is a

constant that determines the magnitude of the penalty paid for not assigning all request

load. Eq. (17) increases the update load of an infeasible assignment based on how much

request load was satisfied raised byω. Thus, infeasible assignments cannot compete with

feasible ones.

OnceUB′
k(t) has been determined, it is used to calculate the amount of new pheromone

antk will deposit. The ants with them best solutions are allowed to deposit pheromone af-

ter each time step. More specifically, if edgee was used in theith best solution andi ≤ m,

then the amount of pheromone deposited one by the ant that produced theith best solution

is

∆τe(t) =
γ

UB′
i(t)

(18)
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whereγ is a constant. For AntDA,γ was set to1 during experimentation and was found

to have little, if any, impact on performance. If an edgee was not used by anti, then

∆i
e(t) = 0.

Let ∆τe(t) =
∑m

i=1 ∆i
e(t) be the amount of new pheromone to be deposited on edge

e because of them solutions chosen. The amount of pheromone on the edges in graphG is

then updated as is typically done in ACO [9]:

τe(t + 1)← (1− ρ) · τe(t) + ρ ·∆τe(t) (19)

Once implemented, AntDA’s parameters were tuned, the server filling heuristic added,

and simulations run. Section 4.4 describes the performance of AntDA and how it compared

to other search algorithms in solving the Quality-Sensitive DA Replication Problem.

3.2 WoLFAntDA: A Reinforcement Learning ACO algorithm for DArep

3.2.1 Motivation: Why WoLF? Although the Ant Colony Optimization algorithm

has very good search capability in optimization problems, it still has some drawbacks such

as stagnation, computing time, and premature convergence. Stagnation and premature con-

vergence can be limited by tuning of parameters for each individual problem. However,

computing time is due to random decision making and problem/graph size and can only be

slightly reduced by parameter tuning. Thus, ACO is not, at present, an effective method for

some problems.

In AntDA, tuning the parameters of the ACO algorithm allowed for better solutions

and quicker convergence (see Section 4.7. However, there is still room for improvement.

In [26], the authors’ combined a variable-step policy hill-climbing algorithm called Win or

Learn Fast with an ACO algorithm for solving the Traveling Salesman problem. They found

that the addition of this learning algorithm provided faster convergence to optimal solutions.

Therefore, in an attempt to achieve the goals of faster convergence and better solution values

for larger problems, WoLFAntDA and PD-WoLFAntDA combine the AntDA algorithm
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with two versions Win or Learn Fast (WoLF-PHC [12] and PDWoLF-PHC [8] respectively).

These algorithms were explained in section 2.5.2.

3.2.2 How the Win or Learn Fast algorithm was modified to work with AntDA.

As described in section 2.5.2, there are three characteristics that must be modified for

each specific problem in which it is applied. The three options manipulated to use the

Win or Learn Fast algorithm (introduced in section 2.5.2) in both WoLFAntDA and PD-

WoLFAntDA are:

1. An estimation policy. In AntDA, each ant traverses the problem graph and constructs

a solution. Following, the ants with the topm solutions deposit pheromone on the

edges used to construct their solutions. Therefore, the pheromone concentration on

an edge is the best estimate available as to which edges should be used to construct

the optimal solution. Hence, the estimation policy used in WoLFAntDA and PD-

WoLFAntDA is edge pheromone.

2. A rule for determining winning or losing . There have been two suggested rules

for determining winning or losing in the Win or Learn Fast algorithm. Both of these

methods have been described in section 2.5.2. Although it has been shown that the

PDWoLF-PHC definition of winning and losing requires less computation and mem-

ory overhead and converges more rapidly in other problems than the WoLF-PHC

definition [26], neither one has been applied to DArep. Therefore, AntDA has been

implemented with both rules (adapted to ACO) to determine which allows for better

solutions and convergence rates for this problem. WoLFAntDA was implemented

with the WoLF-PHC definition and PD-WoLFAntDA with the PDWoLF-PHC defi-

nition. The implementations are described in the following sections and results are

shown in section 4.7.

3. Winning and learning step rates. After testing multiple values, in the same man-

ner as in parameter selection, the step rates to be used in WoLFAntDA and PD-

WoLFAntDA areδw set to 0.005 andδl set to 0.030. These effect how the policy

values for an edge are updated (more fully explained in 3.2.7).
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Algorithm 2 The WoLFAntDA and PD-WoLFAntDA Algorithm
1: Initialize parameter values
2: for each edge(dq, s) ∈ graphG do
3: τ(dq,s) = τ0

4: end for
5: for each edge(s, dq) ∈ graphG do
6: τ(s,dq) = τ0

7: end for
8: for each time stept do
9: Distribute graphG to all ants

10: for each antk do
11: T k = ∅
12: Randomly select a starting servers ∈ S
13: while DQk

s 6= ∅ andSk
dq 6= ∅ do

14: Selectdq ∈ DQk
s according to equation 20

15: Selects ∈ Sk
dq according to equation 21

16: Assigndq to s.
17: Adjust server capacity to reflect assignment.
18: Adjustdq remaining load.
19: Updatedq ∈ DQk

s ands ∈ Sk
dq

20: Invoke the server filling algorithm - Section 3.3
21: end while
22: end for
23: //Now all ants have built tours for time stept
24: for each antk with one of the topm solutionsdo
25: Update pheromone using the rules in section 3.2.6
26: end for
27: for each antk with one of the topp solutionsdo
28: Update policy using the rules in section 3.2.7
29: end for
30: end for

3.2.3 Basic Behavior. In WoLFAntDA and PD-WoLFAntDA, ants still oper-

ate on a bipartite graph representing an instance of DArep (Fig. 6) and make decisions

much as they do in AntDA. The main difference is that decision-making is now sensitive to

edge pheromone, the heuristic desirability of the edge, and edge policy values. Each edge

(whether server to〈d, q〉 pair or 〈d, q〉 pair to server) maintains each of these values and

each are updated using the methods described in the following sections. The algorithm for

WoLFAntDA and PD-WoLFAntDA is shown in algorithm 2.
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3.2.4 Moving From Servers to〈d, q〉 pairs. An ant at vertexs must decide which

〈d, q〉 pair should be assigned next (Algorithm 2, step 14). The selection of the〈d, q〉 pair

to be assigned is subject to the same constraints as in AntDA(see section 3.1.2) and the

decision making process has also been adjusted slightly to allow policies to affect〈d, q〉

pair selection.

The probability that antk selects edge(s, dq) is given by:

pk
s,dq

(t) =


[τs,dq(t)]α·[πs,dq(t)·ηs,dq ]βP

dq′∈DQk
s

[τs,dq′ (t)]
α·[πs,dq′ (t)·ηs,dq′ ]

β , whendq ∈ DQk
s

0, whendq /∈ DQk
s .

(20)

whereτs,dq(t) is the pheromone concentration on(s, dq) andπs,dq(t) is the policy value on

(s, dq) at time stept. The scaling parametersα andβ again control the relative importance

of pheromone and policy/heuristic desirability. Once again, the heuristic desirability for

the transition from a server to〈d, q〉 pair is calculated the same in WoLFAntDA and PD-

WoLFAntDA as in AntDA and is shown in Eq. 13.

Equation 20 is identical to Eq. 12 except for the addition of the policy term,π. The

introduction of this term allows the ants to be sensitive to pheromone, policy, and heuristic

values when selecting a〈d, q〉 pair.

After making its selection, the ant traverses the edge to the selected〈d, q〉 pair and

then must choose a server node.

3.2.5 Transitioning From〈d, q〉 pairs to Servers. When at vertexdq, antk must

select a server to which the〈d, q〉 pair represented bydq will create a replica and assign

load (Algorithm 2, step 15). This selection of the server follows the AntDA method but

with slight changes that allow policies to affect server selection.
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The probability that antk selects edge(dq, s) is

pk
dq,s

(t) =


[τdq,s(t)]

α·[πdq,s(t)·ηdq,s]
βP

s′∈Sk
dq

[τdq,s′ (t)]
α·[πdq,s′ (t)·ηdq,s′ ]

β , whens ∈ Sk
dq

0, whens /∈ Sk
dq.

(21)

whereτdq,s(t) is the pheromone concentration on(dq, s) at time stept andπdq,s(t) is the

policy value on(dq, s) at time stept. α andβ are constants governing the relative im-

portance of pheromone to the policy/heuristic desirability of traveling along edge(dq, s).

The heuristic desirability is calculated the same in WoLFAntDA and PD-WoLFAntDA as

in AntDA and is shown in Eq. 15.

Equation 21 is identical to Eq. 14 except for the addition of the policy term,π. The

introduction of this term makes the ants to be sensitive to pheromone, policy, and heuristic

values when selecting a server. Early in the algorithm, when pheromone and policies are

fairly neutral, ants are guided by the heuristics,η. However, as pheromone and policies

become more differentiated, ant behavior becomes more dependent on them [26].

After selecting edge(dq, s) the ant moves from vertexdq to vertexs and updates its

graph in the same manner as AntDA. It then transitions back to adq node (Section 3.2.4

3.2.6 Pheromone Update Rule. When each ant has constructed a solution to

DArep it is time to deposit pheromone on the shared graph (Algorithm 2, step 25). For

WoLFAntDA and PD-WoLFAntDA, this process is done in the exact manner as AntDA

which is described in section 3.1.4.

3.2.7 Policy Updates. After all ants have constructed solutions and pheromone

has been deposited on the shared graph, it is time to update policy values for the edges (Al-

gorithm 2, step 28). To regulate the policy update for these edges, the following equations

were used. This section has been adapted from [8,11] where a similar approach was used to

merge WoLF with ACS-TSP (an ACO algorithm) to solve a Traveling Salesman Problem

in [26]. The variables used for policy update depend on what kind of edge is being updated.
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3.2.7.1 Server to〈d, q〉 pair. The first step (Equations 22 and 23) is to

determine whether the particular edge iswinningor losing.Equation 22 is the WoLF-PHC

definition [12] forwinningandlosingwhile equation 23 is the PDWoLF-PHC definition [8].

In section 2.5.2, these two different rules were discussed in depth. The equations remain

similar to those of [12] and [8] except for a minor notation change. Both of these equations

originally used the idea of state/action pairs (explained in section 2.5.2), but this concept

has been adapted to fit the pheromone and graph nature of AntDA. In WoLFAntDA and

PD-WoLFAntDA, for an ant traversing from a server to〈d, q〉 pair, the state is the server,

s,the ant has currently chosen, and the action is one of the〈d, q〉 pairs,dq, capable of being

hosted by the servers. These equations reveal the learning rate,δ, for the given state/action

pair. The learning rate for WoLFAntDA is given by:

δ =


δw, if

∑
dq′∈DQs

π(s,dq′)τ(s,dq′) >
∑

dq′∈DQs

π(s,dq′)τ(s,dq′)

δl, otherwise
(22)

While the learning rate for PD-WoLFAntDA is given by:

δ =

 δw, if ∆π(s,dq′) (t) ·∆π2
(s,dq′) (t) < 0

δl, otherwise
(23)

where

∆π(s,dq′)(t) = π(s,dq′)(t)− π(s,dq′)(t− 1) (24)

and

∆π2
(s,dq′)(t) = ∆π(s,dq′)(t)−∆π(s,dq′)(t− 1) (25)

Once an edge’s learning rate is discovered, a policy change value must be calculated,

which is given by equations 26 and 27.
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δ(s,dq) = min

{
π(s,dq),

δ

|DQ| − 1

}
(26)

∆(s,dq) =


−δ(s,dq)), dq 6= arg maxl∈DQ τ(s,l)∑
l∈S

δ(l,dq)), otherwise
(27)

Once the change in policy is determined, it is used to calculate the new policy value

for the edge by adding the change in policy to the current policy value.

π(s,dq)(t + 1) = π(s,dq)(t) + ∆(s,dq) (28)

The ants with thep best solutions were allowed to update policy on the edges. Each

of these ants computes∆(s,dq) and then the sum of all of them is used in equation 28.p is

a tunable parameter subject to experimentation. The parameter values that worked best for

WoLFAntDA and PD-WoLFAntDA are explained in section 4.3.

3.2.7.2 〈d, q〉 pair s to Servers. Once policy has been updated on the

server to〈d, q〉 pair edges, policy is then updated on the〈d, q〉 pair to server edges. This is

accomplished in the same manner as section 3.2.7.1 except that instead of using the edges

going from servers to〈d, q〉 pairs (π(s,dq)), the edges traversing from〈d, q〉 pairs to servers

(π(dq,s)) are used.

3.3 The Server-Filling Replica Creation Heuristic

In the AntDA, WoLFAntDA, and PD-WoLFAntDA algorithms described previously

in this chapter, ants simply create replicas or adjust the update loads of existing replicas

(when the replica is already hosting a lower quality replica of applicationd) as they make

assignments. However, in cases where a replica of DAd does not use all the capacity on

its host servers, it may be possible to assign request load of other qualities ofd to s. If
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additional request load can be assigned tos, then update burden ons can be further utilized

and, in turn, system-wide update burden,UB, can be kept low.

AntDA, WoLFAntDA, and PD-WoLFAntDA do this using the Server Filling heuristic

(SF). It can be invoked when the following two conditions are met.

1. SF first tries to avoid the creation of extra replicas ofd by finding other qualities ofd

that completely fit ons. More specifically, SF looks for another qualityr ∈ Qd such

that all of rem(rld,r) can be assigned tos. Note that update load differences have

to be accounted for since it may be thatr > q and henceuld,r > uld,q. SF assigns

the highestr found, repeating with additional qualities ofd if possible. Lety be the

highest quality ofd assigned tos at the end of this step.

2. If s still has spare capacity after step 1, SF looks for the highest qualityy of d such

thatu < y and assigns as much request load of qualityu as possible to the replica.

The SF heuristic is an optional, but beneficial, part of AntDA, WoLFAntDA, and

PD-WoLFAntDA; in experiments SF reduced update burden by over 4% on average (see

Section 4.5).

3.4 Other Solution Methods Used for Comparison

To show the worth of AntDA, WoLFAntDA, and PD-WoLFAntDA, they must be

shown to perform better than other solution methods that have historically been used for

assignment optimization problems. In the next chapter, these three algorithms’ results

are compared against three algorithms adapted to fit the Quality-Sensitive DA Replica-

tion Problem. Results for performance comparisons were obtained by using a random as-

signment algorithm, Random, a greedy algorithm, Greedy, and the LINGO Integer Linear

Programming (ILP) solver [50].

Random picks a〈d, q〉 pair with non-zero remaining request load at random and

assigns it to a random server capable of hosting it. All selections are made using a uniform

distribution. Random reports the best solution found out of 1000 trials.
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TheGreedy algorithm [53] makes assignments by choosing the〈d, q〉 pair with the

highest predicted update burden. It does this by the following algorithm:

Algorithm 3 The Greedy Algorithm for DArep
1: Sort the set of capacitated servers by capacity and store the results in a data structure
S.

2: Setrem(rld,q) = rld,q for each〈d, q〉 pair.
3: Let Cmax denote the capacity of the server,smax, with the most remaining capacity in
S. Choose the〈d, q〉 pair to be assigned tosmax

4: if creating a replica of the chosen〈d, q〉 pair onsmax means thatsmax has no room left
over for handling requests (Cmax ≤ uld,q) then

5: removesmax from S and go to step 19.
6: end if
7: For the〈d, q〉 pair selected in Step 2, decide the replica’s qualityrepQ (repQ ≥ q)
8: Then, decide the amount of request load for any additional qualities ofd, r ∈ Qd, to

be carried by the replica using either the Server Filling replica creation policy (Section
3.3).

9: RecordrepQ and the amount of request load of eachr ∈ Qd assigned tosmax.
10: Decrementrem(rld,r) for eachr ∈ Qd by the amount assigned tosmax.
11: DecrementCmax by the replica’s update load and the sum of the request loads assigned.
12: if rem(rld,q) = 0 for all 〈d, q〉 pairsthen
13: STOP with a complete solution.
14: end if
15: if Cmax = 0 then
16: removesmax from S.
17: end if
18: ResortS if needed.
19: if S = ∅ then
20: STOP with a partial solution.
21: else
22: go to step 3.
23: end if

Greedy only needed to be run once for its best solution to be found.

LINGO ILP Solver solves DArep using the ILP formulation in section 2.2.4. Al-

though ILP solvers such as LINGO are the only known method besides complete enu-

meration that can find guaranteed optimal solutions, execution times can be prohibitive.

Therefore, LINGO was only used on the small test cases and allotted four hours to work

on the DArep problems. This was sufficient time for LINGO to product feasible, but not

optimal, solutions and provides a notion of DArep’s complexity.
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All three of the assignment algorithms presented above are static. For more informa-

tion on some dynamic assignment algorithms adapted for DArep, as well as more detailed

explanations of these static algorithms, see [53].

Chapter IV presents the results of experiments that compare AntDA with these solu-

tion methods, reveal the importance of the Server-Filling heuristic, and the importance of

pheromone and heuristics on ants traversing the bipartite graph. It also demonstrates the

effects of the Win or Learn Fast algorithm combined with AntDA compared with AntDA

alone.
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IV. Results and Analysis

This chapter evaluates the performance of the proposed AntDA, WoLFAntDA, and PD-

WoLFAntDA algorithms and is divided into six main sections. Section 4.1 discusses the

configuration of the experiments used for analysis. The second and third sections describe

how parameter values are chosen and which values are used for both AntDA and WoL-

FAntDA. Section 4.4 demonstrates the performance of AntDA as compared with other so-

lution methods. Sections 4.5 and 4.6 show the effect of the Server Filling optimization

heuristic and of limiting the number of ants allowed to deposit pheromone has on the three

proposed algorithms. The chapter concludes with a performance analysis of WoLFAntDA

and PD-WoLFAntDA versus AntDA.

4.1 Explanation of Test Cases

Each experiment involves a hypothetical ASP with a variety of server capacities and

customer DAs. The DAs are designed to subject the algorithms to extremes that might be

found in a real world environment. The test cases were derived from [53].

In each experiment, DAs have the same number of service quality levels (either 1, 2,

or 3) and have a particular update load (UL) pattern and request load (RL) pattern. Table 2

describes the parameters used in constructing ASPs for the experiments.

The UL pattern determines the update load values that the freshness quality levels of

the DA can assume. There are two patterns: low and high. Update loads for DAs always

increase with quality level. The low UL pattern ensures that all qualities of all the DAs can

fit on any of the ASP’s servers. However, update loads in the high UL pattern are boosted

so that some servers will not be able to host high-quality replicas of some DAs.

The RL pattern determines how user request loads change with quality level for the

DAs an ASP is hosting. There are two patterns: increasing and decreasing. For the decreas-

ing RL pattern, request loads are large for low quality levels and decrease as quality levels

rise. For the increasing RL pattern, request loads start small and increase with quality level.
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Parameter Parameter Option Option Description
Number of Qualities Per DA 1 All the DAs hosted by the ASP have 1 service quality

level.
2 All the DAs in an ASP have 2 service quality levels.
3 All the DAs in an ASP have 3 service quality levels.

Update Load (UL) Pattern low Any server can host any DA.
high The maximum update load can be above the capacity

limit of the smallest servers.

Request Load (RL) Pattern decreasing Request load decreases as a DB’s quality levels in-
crease. Since higher service qualities require more
maintenance and probably account for declining per-
centages of demand, this pattern is most likely pre-
dominant in the real world.

increasing decreasing ’s opposite – the higher the service
quality, the higher the request load.

Table 2: Parameters Used in Constructing ASPs for the Static Experiments.

# DAs # Quals UL Pattern and Value Ranges RL Pattern and Value Ranges
Per Per For Each DA Quality Level For Each DA Quality Level
ASP DA Option 1 2 3 Option 1 2 3

5 1 low 1-5 - - decr 400-600 - -
5 1 high 5-35 - - decr 400-600 - -

5 2 low 1-7 9-15 - decr 300-400 100-200 -
5 2 high 5-18 22-35 - incr 100-200 300-400 -

5 3 low 1-4 6-9 11-15 decr 233-300 133-200 34-100
5 3 high 5-14 16-25 27-36 incr 34-100 133-200 233-300
10 3 low 1-4 6-9 11-15 decr 233-300 133-200 34-100
10 3 high 5-14 16-25 27-36 incr 34-100 133-200 233-300
20 3 low 1-4 6-9 11-15 decr 233-300 133-200 34-100

Table 3: How ASPs Were Constructed for the Static Experiments. This table shows how
the parameters of Table 2 were combined to form ASPs for the static experiments. Value
ranges for update loads and request loads are listed.

Each experiment is run on a Intel Xeon CPU, 3.20 GHz processor with 3.75 GB

of RAM. AntDA, WoLFAntDA, and PD-WoLFAntDA were all written in Java and run in

Netbeans 4.0 development environment.

Table 3 shows how these parameters were combined to produce the test cases for

the static experiments. For each combination of parameters (UL pattern, RL pattern, and

# of qualities/DA) five, ten, or twenty ASPs were randomly created. For example, the

five 2-quality/low/decreasing ASPs (third row of data in Table 3) shows that DA update

loads in these type of ASPs range from 1-7 for quality 1 and 9-15 for quality 2, while
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request loads range from 300-400 for quality 1 and 100-200 for quality 2. Five test cases

were also generated for a 20 DA, 3 quality, increasing RL pattern, high UL pattern but the

hardware the tests were conducted on was insufficient to compute these cases due to its

high complexity levels.

Once an ASP’s DAs are assigned, the ASP’s servers were determined by growing a

candidate set of servers. Initially empty, servers are added to the candidate set in groups of

five. The servers in each group have the following load capacities: 25, 50, 75, 100, 125.

This distribution of server capacities is intended to model an ASP with a variety of servers.

Groups are added to the candidate set until the Greedy algorithm, using the Server Filling

policy (see section 4.5), produced feasible assignments. These test cases were then solved

by Random, Greedy, and the LINGO ILP Solver as well as AntDA and WoLFAntDA. The

results are shown and discussed in sections 4.4 and 4.7.

4.2 Parameter Selection for AntDA

The main task after implementing AntDA is to find the best parameter values in order

to optimize them for solving the Quality-Sensitive DA Replication Problem. The param-

eter values are determined through trial and error, testing many different values for each

parameter subjected to 50 trials of 400 time steps each. Since there are many parameters,

trying every possible combination of them would be infeasible. Therefore, to determine

parameter values, one parameter is chosen as the variable to be tested and all others are

held constant. Table 4 shows each parameter and the values examined/tested for each. The

numbers inbold are the values for parameters while they are being held constant. Each

test case was run using the same problem instance to maintain consistency. The problem

instance is one of the five constructed from line ten of Table 3 (# nodes = 70) because it

was the hardest problem available that could be solved in a manageable amount of time

by AntDA and LINGO (though LINGO only produced feasible but not optimal solutions).

After going through this process, the best value for each parameter was used in combina-

tion with each other to verify that performance did not degrade (it didn’t). The best values
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Parameter Parameter Values Tested
α 0,1, 3, 5, 7, 8, 10
β 0, 1, 3, 5, 7,8, 10
ρ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8, 0.9
ω 1, 2, 3,4, 5, 6, 7, 8, 9
γ 0.01,0.1, 1, 10, 100

Number of Ants 35, 42, 49, 56, 63,70, 77, 84, 91, 98, 105
τ0 0.0000001, 0.000001, 0.00001, 0.001,0.1, 1.1, 5, 10, 100, 500, 1000
m 1, 3, 7, 14, 21, 28, 35, 42, 49, 56, 63,70

Table 4: Parameter and condition values tested for AntDA experiments.

Parameter Parameter Value Parameter Description
α 1 Pheromone weighting.
β 8 Heuristic weighting.
ρ 0.8 New to old pheromone ratio.
ω 4 Non-feasible solution penalty constant.
γ 1 Pheromone change constant.

Number of Ants |DQ|+ |S| The number of ants.
τ0 0.1 Initial edge pheromone.
m b# Ants· 0.1c The top m ants are allowed to deposit

pheromone.

Table 5: Parameter and condition values for AntDA experiments.

identified by this selection process are shown in table 5 and are used throughout the AntDA

experiments presented hereafter unless otherwise stated.

For the most part, AntDA was fairly insensitive to a change in the values shown in

Table 5. However, the one parameter that had a major impact was the number,m, of ants

that deposit pheromone at the end of each time step (Sections 3.1.4). For AntDA, settingm

to be the top 10% of the number of ants cut the convergence rate by as much as 4.5 times

compared to allowing all ants to deposit pheromone while also reducing update burdens.

The impact of settingm to the top 10% of the number of ants is presented in section 4.6.

4.3 Parameter Selection for WoLFAntDA and PD-WoLFAntDA

After implementing WoLFAntDA and PD-WoLFAntDA the parameters needed to

be tuned for solving the Quality-Sensitive DA Replication Problem. The parameter values
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Parameter Parameter Values Tested
α 0,1, 3, 5, 7, 8, 10
β 0, 1, 3, 5, 7,8, 10
m 1, 3,7, 14, 21, 28, 35, 42, 49, 56, 63, 70
p 1, 3,7, 14, 21, 28, 35
δl 0.005, 0.01,0.015, 0.02, 0.025, 0.03, 0.035
δw 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035

Table 6: Parameter and condition values tested for the WoLFAntDA and PD-
WoLFAntDA experiments.

Parameter Parameter Value Parameter Description
α 1 Pheromone weighting.
β 8 Heuristic weighting.
ρ 0.8 New to old pheromone ratio.
ω 4 Non-feasible solution penalty constant.
γ 1 Pheromone change constant.

Number of Ants |DQ|+ |S| The number of ants.
τ0 0.1 The amount of pheromone initially on each

edge in the graph.
m b# Ants· 0.2c The top m ants are allowed to deposit

pheromone.
p b# Ants· 0.1c The topp ants are allowed to update policy.
δl 0.03 Losing step size.
δw 0.005 Winning step size.

Table 7: Parameter and condition values for the WoLFAntDA and PD-WoLFAntDA ex-
periments.

were determined in the same manner as AntDA with the exception that there are a few new

variables:δl, δw, and p. The main focus was on tuning these new parameters, but tests

were also run forα, β, andm to determine their best values for WoLFAntDA and PD-

WoLFAntDAṪhrough this process, unless otherwise stated, these two algorithms are run

with the parameter values and conditions shown in Table 5.

WoLFAntDA and PD-WoLFAntDA are also fairly insensitive to a change in the val-

ues shown in Table 5. However, just as in AntDA, the parameter that seemed to have the

biggest impact was the number of ants allowed to change edge pheromone values. The

impacts of this parameter,m, are presented in section 4.6.
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4.4 Comparison of AntDA To Other Optimization Algorithms

Tables 8 and 9 show the performance of AntDA and the other solution methods for

forty-five test cases. Each row of the tables represents one test case while columns group

each solution method. The Random column shows the lowest-cost solution produced over

1000 executions of the Random algorithm. For the ant-based results, the minimum, max-

imum, average, and standard deviation of the fifty solutions for each test case are shown.

Recall that AntDA is run 50 times for each test case and that each running is for 400 time

steps. The lowest-cost solutions for each test case are shown inbold typeface.

AntDA found the solution with the lowest update burden in all but three test cases.

Also, in all but two cases, the solution with the maximum update burden found by AntDA is

better than the minimum update burden found by the Random and Greedy solution methods.

Clearly, AntDA produces better solutions than the three other methods. However,

AntDA has higher solution times than the other methods. For example, in the 5 DA, 3

quality, increasing RL pattern, high UL pattern experiments, the Greedy algorithm can

produce a solution in milliseconds, the Random algorithm needed about1.5 minutes, and

LINGO was cut off after two weeks. Yet, on the same hardware, AntDA requires an average

of 7.2 minutes to complete the 400 time steps and produce a single solution. Since AntDA

was run 50 times, its run-time was close to 6 hours. For more complex problems, AntDA

took as long as a week to run through 50 times. However, 400 time steps and 50 runnings

is being overly thorough. Reducing the number of time steps would allow for much faster

results. The number of time steps (or convergence rate) necessary to AntDA find the best

solution is presented in section 4.7.

4.5 Effect of the Server Filling Algorithm

This section highlights the impact of the Server-Filling (SF) optimization heuristic.

Figure 10 shows the minimum update burdens produced by AntDA, WoLFAntDA, and PD-

WoLFAntDA with and without the Server-Filling heuristic.
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Quals Solution Cost (Update Burden)
# Per RL UL AntDA #

DA DA Patt Patt # Random Greedy LINGO min max avg stdev Ants

1 305 258 246+ 239 249 245.68 1.67 45
2 254 225 203+ 203 207 203.72 0.97 45

5 1 n/a low 3 298 243 231+ 231 231 231 0.0 50
4 379 323 313+ 305 314 308.22 2.40 50
5 351 307 292+ 284 292 287.06 2.27 45
1 930 860 821+ 796 821 799.16 4.70 60
2 698 659 656+ 645 647 645.24 0.66 55

5 1 n/a high 3 895 894 856+ 856 945 916 24.16 55
4 998 983 964+ 953 1009 976.1 19.48 55
5 810 761 710+ 708 727 713.06 4.25 55
1 259 211 206∗ 196 201 197 1.81 50
2 188 164 166∗ 160 160 160 0.0 50

5 2 decr low 3 271 226 230 217∗ 220 217.78 1.25 55
4 169 157 156∗ 155 155 155 0.0 50
5 230 194 193∗ 187 188 187.02 0.14 50
1 1070 890 829∗ 838 850 849.12 2.39 65
2 990 909 831∗ 838 850 844.8 3.11 60

5 2 incr high 3 999 819 781∗ 786 813 796.74 9.17 65
4 1167 957 1002∗ 858 860 858.08 0.40 65
5 974 809 832∗ 720 728 722.58 2.89 65
1 242 206 237++ 178 179 178.02 0.14 55
2 220 186 215++ 158 159 158.04 0.20 55

5 3 decr low 3 186 155 166++ 154 155 154.07 0.27 55
4 177 151 158++ 142 142 142.00 0.00 55
5 196 171 176++ 145 147 146.40 0.57 55
1 1057 842 961∗∗ 784 800 793.86 5.77 70
2 1135 884 940∗∗ 811 824 817.94 2.94 70

5 3 incr high 3 1048 788 907∗∗ 764 771 766.06 2.78 70
4 1099 849 885∗∗ 813 822 818.98 2.02 75
5 1137 867 913∗∗ 811 823 814.64 2.60 70

Table 8: Comparison of AntDA to other search algorithms for 5 DA problems. Depend-
ing on the Problem, LINGO was let run for differing amounts of time: (+) = 1 hour, (*) =
2 hours, (++) = 4 hours, and (**) = 300 hours. The lowest-cost solutions for each test case
are shown inbold typeface.

Server-Filling experimental results are shown for just five test cases (hypothetical

DArep instances) involving five DAs of three quality levels each with an increasing request

load pattern and a high update load pattern. These test cases were chosen because they

proved to be the most difficult to solve in a reasonable amount of time.

Using SF reduced the update burden by an average of 39.0 points for all three al-

gorithms which translates to a 4.64% reduction on average for these 5 test cases. In all
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Quals Solution Cost (Update Burden)
# Per RL UL AntDA #

DA DA Patt Patt # Random Greedy min max avg stdev Ants

1 478 336 328 335 330.5 1.52 105
2 532 360 340 344 342.38 1.28 110

10 3 decr low 3 489 332 325 326 325.24 0.43 110
4 492 324 318 321 319.58 0.76 110
5 476 320 309 311 310.9 0.36 110
1 2401 1703 1635 1644 1639.71 2.90 135
2 2547 1817 1719 1749 1734.93 7.87 140

10 3 incr high 3 2335 1676 1565 1600 1584.73 10.30 140
4 2669 1899 1796 1826 1812.90 6.70 140
5 2531 1791 1711 1734 1725.31 5.41 135
1 1129 717 690 695 692.76 1.19 215
2 1074 705 677 687 681.96 2.16 210

20 3 decr low 3 1081 695 676 685 681.66 2.03 210
4 1069 699 667 676 670.82 2.98 215
5 1137 756 725 734 729.88 2.24 215

Table 9: Comparison of AntDA to other search algorithms for 10 and 20 DA problems.
The lowest-cost solutions for each test case are shown inbold typeface.

Solution Cost (Update Burden)
AntDA WoLFAntDA PD-WoLFAntDA

# Server Filling % Server Filling % Server Filling %
Off On Diff Off On Diff Off On Diff

1 823 784 4.74 832 797 4.21 827 793 4.11
2 841 811 3.57 862 819 4.99 854 814 4.68
3 793 764 3.66 806 764 5.21 793 764 3.66
4 852 813 4.58 851 818 3.88 864 816 5.56
5 852 811 4.81 870 814 6.44 861 814 5.46

Average 4.272 Average 4.946 Average 4.694

Table 10: The Effect of the server filling algorithm on AntDA and WoLFAntDA.

cases, SF improves solution values. This demonstrates the importance of local heuristics

(non-ACO) for improving performance of ACO algorithms (as was also seen in other ACO

work [34,38]).

4.6 Effect of Only Allowing the Topm of Ant Solutions to Deposit Pheromone

This section discusses the impact of only allowing the ants with the topm solutions

to deposit pheromone after each iteration. Figures 7 and 8 show the average update burden
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Effect of Allowing Top m% of Ant Solutions Deposit 
Pheromone on Update Burden
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Figure 7: Effect of limiting the number of ants allowed to deposit pheromone on update
burden. Smaller update burdens are better.

and convergence rates produced by AntDA and both versions of WoLFAntDA for many

different percentages of ants allowed to deposit pheromone.

Experimental results are shown for just one test case (Problem #5 of the test cases

with five DAs of three quality levels each with an increasing request load pattern and a high

update load pattern). This test case is chosen because it proved to be the most difficult to

solve in a reasonable amount of time, however results are representative of all test cases.

For AntDA, only allowing the ants with the top 10% of solutions to deposit pheromone

after each iteration versus allowing all ants to deposit pheromone decreased the average up-

date burden experienced by 36.1 points while decreasing the convergence rate by 141.16

time steps. This translates to a decrease in average update burden of 4.1% while cutting the

convergence rate by 4.6 times.

For WoLFAntDA and PD-WoLFAntDA, allowing only ants with the top 20% of

solutions to deposit pheromone after each iteration versus allowing all ants to deposit
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Effect of Allowing Top m% of Ant Solutions Deposit 
Pheromone on Convergence
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Figure 8: Effect of limiting the number of ants allowed to deposit pheromone on conver-
gence. Smaller convergence rates are better.

pheromone didn’t have as big of an impact (probably due to the addition of edge policy

values). However, it led to a decrease of over 24 points in average update burden experi-

enced and still cut convergence by over 2.5 times.

4.7 Comparison of WoLFAntDA and PD-WoLFAntDA To AntDA

Tables 11 and 12 show the performance of AntDA, WoLFAntDA, and PD-WoLFAntDA

for forty-five test cases. Each row of the tables represents one test case. For each test case,

the minimum, average, and standard deviation of the fifty solutions are shown. The lowest-

cost solutions for each test case are shown inbold typeface.

As seen in the table, WoLFAntDA and PD-WoLFAntDA find solutions comparable

to AntDA for all of the five DA test cases. However, with the rise of complexity in the

ten and twenty DA test cases (Table 12), WoLFAntDA and PD-WoLFAntDA begin to lose

ground on AntDA, this could be due to the fact that parameter selection was performed

51



Quals Solution Cost (Update Burden)
# Per RL UL AntDA WoLFAntDA PD-WoLFAntDA

DA DA Patt Patt # min avg stdev min avg stdev min avg stdev

1 239 245.68 1.67 241 250 3.06 241 245.68 2.26
2 203 203.72 0.97 203 206.26 1.74 214 206.14 1.64

5 1 n/a low 3 231 231 0.0 231 233.02 1.04 231 232.9 2.09
4 305 308.22 2.40 304 312.12 3.13 306 312.48 21.3
5 284 287.06 2.27 284 290.78 3.45 284 288.26 2.78
1 796 799.16 4.70 800 824.92 10.88 796 814.20 13.83
2 645 645.24 0.66 645 649.06 6.61 645 647.50 5.55

5 1 n/a high 3 856 916.00 24.16 874 936.66 37.18 856 920.62 29.25
4 953 976.1 19.48 969 1010.58 13.43 951 992.56 19.71
5 708 713.06 4.25 717 733.36 7.39 708 727.32 9.68
1 196 197 1.81 200 202.26 2.29 196 202.76 2.47
2 160 160 0.0 160 160 0.0 160 160.04 0.28

5 2 decr low 3 217 217.78 1.25 219 220.72 0.95 217 220.34 1.12
4 155 155 0.0 155 155.58 0.50 155 155.4 0.49
5 187 187.02 0.14 187 190.06 1.19 187 189.96 1.34
1 838 849.12 2.39 838 855.4 7.94 838 852.82 7.31
2 838 844.80 3.11 855 865.58 6.70 850 862.62 6.32

5 2 incr high 3 786 796.74 9.17 786 811.48 8.06 786 805.30 8.90
4 858 858.08 0.40 858 867.00 8.06 858 861.58 5.16
5 720 722.58 2.89 721 728.64 4.42 720 724.68 3.69
1 178 178.02 0.14 178 179.16 1.22 178 178.90 1.09
2 158 158.04 0.20 158 160.88 2.02 158 160.32 1.99

5 3 decr low 3 154 154.07 0.27 155 157.11 1.64 155 157.69 1.58
4 142 142.00 0.00 142 144.34 1.44 142 144.86 1.75
5 145 146.40 0.57 147 148.32 1.41 146 147.84 1.28
1 784 793.86 5.77 797 809.06 5.99 793 806.30 5.99
2 811 817.94 2.94 819 838.04 8.99 814 832.54 8.79

5 3 incr high 3 764 766.06 2.78 764 776.58 6.44 764 776.54 6.04
4 813 818.98 2.02 818 825.32 2.97 816 824.14 3.05
5 811 814.64 2.60 814 828.04 7.50 814 823.38 8.23

Table 11: Comparison of update burden for WoLFAntDA and PD-WoLFAntDA to
AntDA for 5 DA problems. The lowest-cost solutions for each test case are shown inbold
typeface.

for the five DA problems and not re-calibrated for larger problems. The policy values

could be increasing too rapidly on some edges and slightly tweaking theδl andδw values

could cause the ants to explore more. However, in the problem with the largest difference

between AntDA and the other two algorithms (the 20 DA test cases), AntDA’s minimum

update burden found was less than 3% lower than the minimum update burden found by

both WoLFAntDA and PD-WoLFAntDA. In other words, the difference is small. In five of

the trials, AntDA or WoLFAntDA found their best solutions with a standard deviation of

zero. This improbable behavior occurs when the algorithm finds the same best answer after

400 iterations every time.

A two-tailed t-test was conducted to ensure that WoLFAntDA and PD-WoLFAntDA’s

solution values were statistically different from AntDA’s solutions. Using an alpha level of
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Quals Solution Cost (Update Burden)
# Per RL UL AntDA WoLFAntDA PD-WoLFAntDA

DA DA Patt Patt # min avg stdev min avg stdev min avg stdev

1 328 330.50 1.52 332 336.71 1.66 333 336.32 1.62
2 340 342.38 1.28 349 354.74 1.82 350 354.59 2.16

10 3 decr low 3 325 325.24 0.43 329 330.10 0.67 328 329.93 0.83
4 318 319.58 0.76 321 324.03 1.51 321 323.89 1.74
5 309 310.90 0.36 312 316.89 1.99 313 316.69 1.62
1 1635 1639.71 2.90 1659 1677.03 8.61 1656 1674.86 7.58
2 1719 1734.93 7.87 1758 1784.56 13.18 1735 1779.79 16.85

10 3 incr high 3 1564 1584.73 10.30 1604 1635.29 11.64 1612 1629.56 10.92
4 1796 1812.90 6.70 1832 1858.06 9.11 1828 1857.05 9.77
5 1711 1725.31 5.41 1747 1772.56 10.29 1725 1768.41 10.76
1 690 692.76 1.19 705 711.62 3.43 706 710.42 2.99
2 677 681.96 2.16 690 700.00 4.37 697 700.31 2.21

20 3 decr low 3 676 681.66 2.03 687 693.07 2.62 690 693.75 2.38
4 667 670.82 2.98 677 684.10 3.63 679 684.60 2.99
5 725 729.88 2.24 745 747.50 1.96 744 746.60 1.43

Table 12: Comparison of update burden for WoLFAntDA and PD-WoLFAntDA to
AntDA for 10 and 20 DA problems. The lowest-cost solutions for each test case are shown
in bold typeface.

0.05 and a degree of freedom of 98 ((50 trials for WoLFAntDA or PD-WoLFAntDA -1)(50

trials for AntDA -1)), it was found that in all cases the probability that there is no difference

between the means is less than 0.05. Therefore, making the results for update burden and

convergence rates of WoLFAntDA and PD-WoLFAntDA statistically significant compared

to the results of AntDA.

Tables 13 and 14 display the convergence rates for the three algorithms for all 45 test

cases. In the 1 quality test cases, WoLFAntDA and PD-WoLFAntDA converged at approx-

imately the same rate as AntDA. However, as the problem complexity rose, WoLFAntDA

and PD-WoLFAntDA converged at a much faster rate, leading to a decrease in the average

convergence rate of 99.13% in the 20 DA test cases.

Although WoLFAntDA and PD-WoLFAntDA produce solutions that are worse than

AntDA, the solutions are still better than the solutions found by the other solution methods,

as seen in tables 15 and 16. A speedup in convergence of over 99% for less than a 3%

decline in solution cost makes WoLFAntDA and PD-WoLFAntDA much more competitive

with other solution methods. Using the rule-of-thumb that 95% of values fall within two

standard deviations of their mean, this means that for the 20 DA test cases, AntDA would

have to be run for 385 time steps (149 + 2 · 117.82) to have a 95% confidence that it is
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Quals Convergence Rate (Iterations)
# Per RL UL AntDA WoLFAntDA PD-WoLFAntDA

DA DA Patt Patt # min avg stdev min avg stdev min avg stdev

1 1 3.40 2.02 1 3.80 3.04 1 3.32 2.80
2 1 8.06 3.74 1 6.72 10.40 1 9.8 14.21

5 1 n/a low 3 2 4.7 1.18 1 3.9 2.31 1 3.3 2.71
4 1 14.02 5.16 1 5.3 7.14 1 3.92 5.65
5 1 7.96 3.48 1 3.54 2.05 1 5.72 3.55
1 10 15.40 5.43 2 6.86 4.57 4 9.26 4.78
2 2 7.02 2.43 1 5.14 2.81 2 5.78 3.97

5 1 n/a high 3 1 13.46 32.43 1 37.38 62.46 1 37.46 70.14
4 1 29.92 64.25 1 17.34 46.52 1 41.36 60.70
5 10 17.24 5.92 2 10.46 7.70 2 14.44 12.91
1 1 8.9 22.34 1 1.06 0.24 1 1.36 1.06
2 1 2.44 0.78 1 1.70 0.46 1 1.84 0.71

5 2 decr low 3 1 11.40 8.49 1 1.28 0.57 1 1.60 1.05
4 2 3.82 1.93 1 2.80 8.60 1 1.80 1.05
5 3 10.12 4.21 1 2.12 2.25 1 1.66 1.59
1 2 9.66 10.74 1 5.26 2.63 2 6.00 2.04
2 7 110.56 126.70 1 2.1 2.07 1 2.52 2.33

5 2 incr high 3 1 19.56 47.66 1 4.16 2.54 1 7.08 4.62
4 2 6.42 4.83 1 3.88 2.37 1 4.18 2.32
5 2 16.34 29.69 1 5.34 3.27 2 7.16 2.50
1 2 25.3 72.84 1 1.68 0.89 1 2.04 1.12
2 2 6.62 3.23 1 1.98 1.15 1 2.96 3.73

5 3 decr low 3 5 10.98 10.63 1 2.24 1.86 1 2.38 1.19
4 2 5.32 4.24 1 2.04 4.95 1 1.4 1.01
5 1 18.14 56.23 1 2.80 9.29 1 2.56 6.73
1 3 13.38 11.52 1 3.40 3.12 1 5.44 4.33
2 4 20.82 11.21 1 5.00 2.99 1 7.66 3.93

5 3 incr high 3 1 5.36 3.50 1 3.14 2.46 1 2.64 2.36
4 4 34.74 63.95 1 3.40 2.33 1 6.22 10.08
5 7 16.58 27.56 1 5.96 2.86 2 8.70 3.66

Table 13: Comparison of convergence rates for WoLFAntDA and PD-WoLFAntDA to
AntDA for 5 DA problems. The lowest average convergence rate for each test case are
shown inbold typeface.

finding the best solutions possible. With an average of a minute per time step for 20 DA

problems, it would take AntDA almost 6.5 hours to find its best solution. Using either

WoLFAntDA or PD-WoLFAntDA, for the same test cases, it requires runs of a mere 2 time

steps (1.22+2 · 0.383). It would therefore only take WoLFAntDA or PD-WoLFAntDA two

minutes to find its best solution.

It is interesting to note that test cases with ahigh update load have higher standard

deviations for cost (Tables 11 and 12) and convergence (Tables 13 and 14). This is due to
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Quals Convergence Rate (Iterations)
# Per RL UL AntDA WoLFAntDA PD-WoLFAntDA

DA DA Patt Patt # min avg stdev min avg stdev min avg stdev

1 4 210.88 110.76 1 1.22 1.56 1 1.05 0.21
2 6 172.12 110.24 1 1.13 0.34 1 1.20 0.46

10 3 decr low 3 20 130.58 91.59 1 1.45 0.50 1 1.61 0.58
4 3 16.64 23.82 1 1.03 0.16 1 1.26 0.44
5 3 52.08 68.75 1 1.07 0.25 1 1.33 0.61
1 61 137.39 49.81 1 1.83 0.86 1 2.86 2.66
2 19 221.00 86.70 1 6.92 4.71 1 8.54 6.09

10 3 incr high 3 21 203.65 102.68 1 4.32 3.45 2 6.85 5.11
4 11 159.48 68.74 1 1.83 1.56 1 2.57 2.35
5 22 217.37 74.73 1 2.54 1.89 1 2.61 3.33
1 10 195.84 112.06 1 1.46 0.52 1 1.25 0.45
2 9 186.38 114.72 1 1.08 0.28 1 1.31 0.48

20 3 decr low 3 5 126.46 120.26 1 1.14 0.36 1 1.00 0.00
4 6 98.29 123.40 1 1.20 0.42 1 1.10 0.32
5 5 137.70 118.67 1 1.40 0.52 1 1.30 0.48

Table 14: Comparison of convergence rates for WoLFAntDA and PD-WoLFAntDA to
AntDA for 10 and 20 DA problems. The lowest average convergence rate for each test case
are shown inbold typeface.

the fact that in the high UL pattern, update loads are boosted so that some servers are not

able to host high-quality replicas of some DAs. This causes more difficulty in solving the

DArepproblem therefore causing a bigger disparity in solutions and convergence rates.

There were no big differences in the performances of WoLFAntDA and PD-WoLFAntDA.

Although WoLFAntDA had the lowest average in convergence rate more often, PD-WoLFAntDA

was never far off. Additionally, each found approximately the same update burden for each

test case. This shows that both rules for determining whether an agent iswinningor losing,

once tuned correctly, can be used to effectively solve the Quality-Sensitive DA Replication

Problem.
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Quals Solution Cost (Update Burden)
# Per RL UL WoLF- PD-WoLF-

DA DA Patt Patt # Random Greedy LINGO AntDA AntDA AntDA

1 305 258 246+ 239 241 241
2 254 225 203+ 203 203 214

5 1 n/a low 3 298 243 231+ 231 231 231
4 379 323 313+ 305 304 306
5 351 307 292+ 284 284 284
1 930 860 821+ 796 800 796
2 698 659 656+ 645 645 645

5 1 n/a high 3 895 894 856+ 856 874 856
4 998 983 964+ 953 969 951
5 810 761 710+ 708 717 708
1 259 211 206∗ 196 200 196
2 188 164 166∗ 160 160 160

5 2 decr low 3 271∗ 226 230 217 219 217
4 169 157 156∗ 155 155 155
5 230 194 193∗ 187 187 187
1 1070 890 829∗ 838 838 838
2 990 809 831∗ 838 855 850

5 2 incr high 3 999 819 781∗ 786 786 786
4 1167 957 1002∗ 858 858 858
5 974 809 832∗ 720 721 720
1 242 206 237++ 178 178 178
2 220 186 215++ 158 158 158

5 3 decr low 3 186 155 166++ 154 155 155
4 177 151 158++ 142 142 142
5 196 171 176++ 145 147 146
1 1057 842 961∗∗ 784 797 793
2 1135 884 940∗∗ 811 819 814

5 3 incr high 3 1048 788 907∗∗ 764 764 764
4 1099 849 885∗∗ 813 818 816
5 1137 867 913∗∗ 811 814 814

Table 15: Comparison of AntDA, WoLFAntDA, and PD-WoLFAntDA to other search
algorithms for 5 DA problems. Depending on the Problem, LINGO was let run for differing
amounts of time: (+) = 1 hour, (*) = 2 hours, (++) = 4 hours, and (**) = 300 hours. Only
the best solution found for each method are shown. The best solutions for each problem
instance are shown inbold typeface.
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Quals Solution Cost (Update Burden)
# Per RL UL WoLF- PD-WoLF-

DA DA Patt Patt # Random Greedy AntDA AntDA AntDA

1 478 336 328 332 333
2 532 360 340 349 350

10 3 decr low 3 489 332 325 329 328
4 492 324 318 321 321
5 476 320 309 312 313
1 2401 1703 1635 1659 1656
2 2547 1817 1719 1758 1735

10 3 incr high 3 2335 1676 1565 1604 1612
4 2669 1899 1796 1832 1828
5 2531 1791 1711 1747 1725
1 1129 717 690 705 706
2 1074 705 677 690 697

20 3 decr low 3 1081 695 676 687 690
4 1069 699 667 677 679
5 1137 756 725 745 744

Table 16: Comparison of AntDA WoLFAntDA and PD-WoLFAntDA to other search
algorithms for 10 and 20 DA problems. Only the best solution found for each method are
shown. The best solutions for each problem instance are shown inbold typeface.
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V. Conclusion

This thesis effort examined several aspects of the Quality-Sensitive DA Replication Prob-

lem (DArep). In this problem, the ASP must assign DA replicas to its network of heteroge-

neous servers so that user demand is satisfied at the desired quality level and replica update

loads are minimized. It then proposed three simple algorithms for solving it, and vali-

dated and analyzed the performance of the proposed algorithms compared to other search

algorithms.

5.1 Contributions and Achievements

Major accomplishments and achievements of this thesis investigation include the fol-

lowing.

1. DArep is thoroughly discussed and the practical impediments to its solution were

identified (Chapter II).

2. Problems similar to DArep were reviewed and reasons why solutions to those prob-

lems are ill-suited for DArepare discussed (Chapter II).

3. The ant colony optimization (ACO) meta-heuristic is discussed and has been shown

to be successful in solving difficult discrete optimization problems (Chapter II). An

ant colony algorithm, AntDA, originally proposed in [53], is further investigated and

results on its performance reported. Highlights in the AntDA investigation include

the following (Chapter IV).

(a) Better values for the tunable parameters were determined and were shown to

lead AntDA to better solutions and faster convergence.

(b) Limiting the number of ants depositing pheromone at the end of a time step

found that only allowing the ants with the top 10% of solutions to deposit

pheromone led to a convergence rate of over 4.5 times faster than allowing all

ants to deposit pheromone while reducing update burden by 4%. This occurs

due to the reinforcement of the edges which are used in the best solutions which

allowed the ants to search in the area of good solutions.
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(c) Ants are allowed to invoke a Server Filling replica creation policy when creating

a replica on a server. This led to a reduction in update burden by more than

4.5% on average. It does this by assigning additional qualities of a〈d, q〉 pair to

a server with remaining capacity which keeps system-wide update burden low.

4. In order to help AntDA converge quicker and find better solutions to more com-

plex problems, it was combined with the variable-step policy hill-climbing algorithm

called Win or Learn Fast (WoLF) to create two algorithms, WoLFAntDA and PD-

WoLFAntDA. Both algorithms are discussed (Chapter III) and results on their perfor-

mance reported (Chapter IV). Highlights in the WoLFAntDA and PD-WoLFAntDA

investigation include the following.

(a) Better values for the tunable parameters are determined for the DArep prob-

lem and are shown to lead WoLFAntDA and PD-WoLFAntDA to converge very

rapidly with better solutions.

(b) Limiting the number of ants depositing pheromone at the end of a time step was

also experimented with for WoLFAntDA and PD-WoLFAntDA. This time, it

was found that only allowing the ants with the top 20% of solutions to deposit

pheromone led to a decrease in convergence rate of over 2.5 times compared to

allowing all ants to deposit pheromone.

(c) The number of ants allowed to update an edge’s policy values was also exper-

imented with. Results show that only allowing the ants with the top 10% of

solutions to update policy values led to a decrease in convergence rate while

keeping update burden below other solution methods.

(d) WoLFAntDA and PD-WoLFAntDA allowed the convergence rates to solve the

most complex problem to be decreased by over 99% compared to AntDA while

only finding solution values of less than 3% higher on average.

(e) The addition of the learning algorithm into AntDA, allowed the ACO heuristic

to be applied to more complex problems while still being able to be solved in a

reasonable amount of time. With WoLFAntDA or PD-WoLFAntDA, a 20 DA,
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3 quality problem (the hardest tested) could find a better solution than the other

search algorithms tested by the second iteration on average. Therefore, bringing

its run time down to just two minutes, instead of hours with AntDA.

5.2 Future AntDA Work

Incorporating the learning algorithm into AntDA allowed WoLFAntDA to address

the issue of scalability, which is one of the most significant drawbacks of ant-based algo-

rithms. It allowed AntDA to be useful for realistically-sized problems (20 DAs) by improv-

ing convergence rates but failed to converge to the best answers found by AntDA. In this

regard, further research and testing needs to be done. The main goal of any further work

should be to get the AntDA algorithm to keep the convergence rate of WoLFAntDA and

PD-WoLFAntDA, but to improve solution values. The following list describes some ideas

for future work.

1. Starting ants at an artificial start node (ants learn which〈d, q〉 pair to assign first),

instead of positioning them at a randomly chosen server vertices, may have an impact.

However, since the halting criteria is examined when moving fromS to DQ vertices,

starting ants at a server vertex is probably wise.

2. Implement Equation 19 (Chapter III) so that the top-scoring solutions deposit pro-

portionally more pheromone on edges than low-scoring solutions.

3. Implement Equation 28 (Chapter III) so that the top-scoring solutions can add or

subtract proportionally more policy on edges than low-scoring solutions.

4. Develop a visualization tool so that the graph state and algorithm behavior can be

monitored. Such a tool would allow the researcher to better examine the impact of

parameter values and algorithmic problem areas that could be further addressed.

5. Adapt AntDA, WoLFAntDA, and PD-WoLFAntDA for use in dynamic environments.

6. Allow AntDA, WoLFAntDA, and PD-WoLFAntDA to run on better hardware and be

applied to more complex problems.
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7. Compare AntDA, WoLFAntDA, and PD-WoLFAntDA with other stochastic tech-

niques such as breadth-first search, depth-first search in order to ensure the worth of

these three algorithms in solving the Quality-Sensitive DA Replication Problem.

8. Adapt AntDA, WoLFAntDA, and PD-WoLFAntDA to be run in parallel to allow for

faster results. These algorithms are essentially in this form already (since each ant

solves on its own for each time step on a map that is only updated between time steps

and redistributed).

9. Finally, future work should include the application of ACO and WoLF in combina-

tion to other algorithms such as Quadratic Assignment Problem (QAP), the Vehicle

Routing Problem, and many other problems which ACO has already been applied.
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This thesis presents the adaptation of Ant Colony Optimization to a new NP-hard problem involving the replication of multi-quality
database-driven web applications (DAs) by a large application service provider (ASP). The ASP must assign DA replicas to its
network of heterogeneous servers so that user demand is satisfied and replica update loads are minimized. The algorithm proposed,
AntDA, for solving this problem is novel in several respects: ants traverse a bipartite graph in both directions as they construct
solutions, pheromone is used for traversing from one side of the bipartite graph to the other and back again, heuristic edge values
change as ants construct solutions, and ants may sometimes produce infeasible solutions. Experiments show that AntDA outperforms
several other solution methods, but there was room for improvement in the convergence rates of the ants. Therefore, in an attempt to
achieve the goals of faster convergence and better solution values for larger problems, AntDA was combined with the variable-step
policy hill-climbing algorithm called Win or Learn Fast (WoLF). In experimentation, the addition of this learning algorithm in
AntDA provided for faster convergence while outperforming other solution methods.

Ant Colony Optimization, Learning Algorithms, Win or Learn Fast, Policy Hill Climbing, Quality-Sensitive DA Replication Problem

U U U UU 77

Christopher B. Mayer, Major, USAF

(937) 785-3636 x4542christopher.mayer@afit.edu


	Optimizing the Replication of Multi-Quality Web Applications Using ACO and WoLF
	Recommended Citation

	tmp.1593099446.pdf.nTeU6

