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Abstract 

 The purpose of this research is to design and implement a comprehensive mission 

planning system for swarms of autonomous aerial vehicles.  The system integrates 

several problem domains including path planning, vehicle routing, and swarm behavior. 

  The developed system consists of a parallel, multi-objective evolutionary 

algorithm-based path planner, a genetic algorithm-based vehicle router, and a parallel 

UAV swarm simulator.  Both the path planner and the UAV swarm simulator are 

developed on AFIT’s Beowulf parallel computer clusters. 

  An extensive set of tests are performed to validate the system components as well 

as the system integration.  Tests focus on two primary objectives: efficiency and 

effectiveness. 

  The simulator is interfaced with a visualization system that serves as both an 

iterative design tool and as a mission playback tool.  As a design tool, the visualization 

system provides rapid feedback, allowing developers to quickly observe the effects of 

model changes on its behavior.  As a mission playback tool, decision makers and mission 

planners can view mission scenarios played out with different sets of parameters.    

  Novel aspects of this research include: integrating terrain following technology 

into a swarm model as a means of detection avoidance, combining practical problems of 

path planning and routing into a comprehensive mission planning strategy, and the 

development of a swarm behavior model with path following capabilities. 

  The culmination of this effort is the development of an extensible developmental 

model for swarm behavior.  Discussions on the of the system’s capabilities and 

limitations are presented along with recommendation for further development.  
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AFIT UAV SWARM MISSION PLANNING AND PARALLEL SIMULATION 

SYSTEM 

 

 

 

1. Introduction 

 

 

1.1. Problem Statement 

 Path planning is the process of designing a sequence of states through which an 

object must assume in transiting from an initial state to a goal state [28].  Path planning 

optimization is a process that proscribes a particular plan for reaching a goal state from 

an initial state at a minimal cost.  A path planning algorithm is a sequence of steps taken 

to calculate a path plan given knowledge of the path environment and a set of conditions 

or constraints that must be adhered to.  Many successful path planning algorithms have 

been developed over the years [5] [8] [9] [22] [44] [59] [67] [68].  These algorithms vary 

in their effectiveness and efficiency based primarily on the specific formulation of the 

path planning problem and the number of variables and constraints required to solve the 

problem. 

 The Vehicle Routing Problem (VRP) is defined as the task of assigning a set of 

vehicles, each with a limited range and capacity, to a set of locations or targets that must 

be visited [62].  The VRP is an NP-complete problem [21].  Such problem classes do not 

lend themselves to deterministic problem solving methods because the runtime of these 

approaches grows exponentially with the problem size.  Many stochastic methods have 

been used to provide “good” solutions to the VRP in reasonable time [49][62].  These 
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stochastic methods achieve their results by generating feasible solutions and then 

improving these results through successive refinements using heuristics.  In all of these 

methods, the set of inputs to the problem includes a cost associated with traveling from 

one target or location to another.  These costs can be represented simply as the distance 

between the locations or they can contain other costs associated with the problem’s 

constraints.  The costs are usually stored in a table or matrix, and are referenced 

continuously by the algorithm to compute the overall cost of a particular solution.   

 Representing cost as a fixed input is adequate for routing problems in which 

distances between targets are large enough to ignore the added path lengths resulting 

from having to make series of turns in order to change heading from one location to 

another.  However, when the target layout is such that the distances between the targets 

are as near as several turn radii of an aircraft apart, then the cost of traveling between any 

two targets must consider the heading at which the aircraft arrived at the initial location 

and the heading the aircraft must assume to vector itself towards the next target. 

 Taking this into account, algorithms that solve the VRP must calculate the cost of 

every assignment from scratch in order to accurately represent the cost associated with 

that assignment.  In this research, a path planning algorithm is developed that simplifies 

cost calculations for the set of possible paths through a given set of targets by first 

considering target triplets, each consisting of a start node, midpoint, and end node.  The 

algorithm calculates the optimal path through each triplet, and these triplet paths are 

concatenated with other triplets to quickly and accurately calculate the actual cost of a 

vehicle assignment.  This information is tabularized and fed in as inputs to programs such 

as the Genetic Vehicle Router (GVR) [49] where good assignments can be made; but this 
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time, the costs associated with these assignments is more representative.  The goal is not 

merely to calculate the true cost of a particular assignment made by the GVR but to 

influence the GVR to make better assignments using the more complete cost information.  

 

1.2 Fundamental Concepts of Research 

 

 This section describes the major research areas and concepts used in this research.  

First, a brief description of evolutionary algorithms and their application as a mission 

planning system are given.  Next, the concept of Terrain Following is defined.  The 

section concludes with a brief discussion on parallel discrete event simulation (PDES). 

 

 1.2.1 Evolutionary Algorithms.  High dimension optimization problems can not be 

solved in a reasonable time by traditional, deterministic search algorithms.  Their time 

complexity scales exponentially with the problem size thus prohibiting the employment 

of exhaustive search methods.  Evolutionary algorithms (EAs) use biologically-inspired 

methods to create and evolve solutions in a reasonable amount of time [2] [38].  

Populations of candidate solutions evolve through the use of genetic operators such as 

selection, recombination, and mutation.  After multiple generations members of the 

population tend to converge to near-optimal solutions.   

 In optimization problems, EAs attempt to find the optimum (min or max) cost 

solution from a set of candidates.  This cost can represent a single datum calculated by an 

evaluation function, or it can represent an aggregate of cost functions.  When problems 

require minimization of multiple competing, cost elements, a trade-off is established 

between the set of competing requirements.  In these instances, multi-objective 

evolutionary algorithms (MOEAs) can provide a decision maker with a variety of 
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candidate solutions, each representing a level of optimization of one parameter with 

respect to another [11][18].  MOEAs produce a set of solutions where each solution 

represents an optimal cost in terms of one parameter for a corresponding cost associated 

with one or more others.  Presenting decision makers with a set of choices allows them to 

see the trade-offs between competing objectives and make choices based on acceptable 

levels of these objectives. 

 In this research, an MOEA is developed for path planning where the objectives 

are cost, (encompassing distance traveled and the amount of climbing a vehicle does), 

and risk (resulting from flying through areas of threat).  The solution set contains a 

selection of routes such that each route has the lowest cost associated with a particular 

level of risk and vice versa.  The development of this MOEA is detailed in Chapters 3 

and 4 while evolutionary algorithms are described from a historical perspective in 

Chapter 2.  

 

 1.2.2 Terrain Following.  Terrain following (TF) is a mode of flight in which an 

aircraft maintains a fixed altitude above ground level (AGL) and flies low (on the order 

of a few hundred feet) through an area of interest.  Naturally, this type of flying involves 

a great deal of climbing and descending, a costly operation.  DoD terrain following 

missions have been carried out for many years dating back to Cold War missions flown 

by F-111 Raven aircraft [19].  More recently TF missions have been flown by U.S. 

Special Operations Command (USSOCOM) in using MC-130 gunships and a variety of 

rotary-wing platforms [55]. 

 The idea behind TF is to remain hidden from enemy air defenses without using 

stealth technology.  This technique of hiding within rugged terrain is known as terrain 



 1-5 

masking.  Terrain masking (TM) algorithms determine a route of flight in which an 

aircraft can move toward a target or location of interest while remaining masked from 

enemy air defense radar by the surrounding terrain.  Often routes calculated by TM 

algorithms have significant climbing and descending costs associated with them.  The 

process of picking the best-masked routes with the least possible cost in terms of 

climbing and overall distance traveled is known as Terrain Following Optimization 

(TFO).  Current terrain following Optimization algorithms developed by Air Force 

Research Laboratory (AFRL) use a set of deterministic operators that produce an optimal 

route selected from a limited subset of possible route choices.  In this research, the multi-

objective route optimization algorithm seeks to find better routes by exploring larger 

areas of the search space. 

 TF operations and TM technology can benefit the development of swarms of 

autonomous UAVs.  First, swarm components need to be inexpensive and potentially 

expendable.  Naturally, stealth technology in individual swarm components would be 

both costly and their loss could result in undesirable disclosure of technology to enemy 

forces.  Secondly, even if stealth technology is not too costly for swarm elements, 

maintaining the stealth property of an entire swarm would require highly regulated flight 

patterns.  Such patterns would inhibit the self-organizational exploratory nature of 

autonomous UAVs.  By incorporating TM technology into swarm elements, swarms 

could gain the benefits of remaining hidden without the expense of stealth technology 

and the computational expense of maintaining a stealthy formation.     

 

 1.2.3 Simulation and Visualization.  Routing algorithms and vehicle assignments 

represent a static view of a mission.  Simulation and visualization of a mission enhances 
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the commander’s view of the battle plan and identifies some potential pitfalls.  To this 

end, the routes and assignments generated from the given problem instances are 

visualized using the SPEEDES parallel discrete event simulator and the SkyView 

visualization tool [56][57].  Real world digital terrain data is used by the algorithms and 

shown in the visualizations along with realistic threat representation.  Additional 

information about SPEEDES and SkyView are contained in Chapter 4. 

 Currently, AFIT maintains a UAV swarm simulation [13] [23] which models 

various swarm behaviors developed for self-organizing autonomous air vehicles.  This 

research adds a routing capability to the model so that swarms can proceed to assigned 

targets while still exploring and exploiting the battle space for targets of opportunity 

discovered by their sensors.  The initial routes and assignments used in the simulation are 

those generated from the problem instances in this research.  

  

1.3 Research Goal, Objectives and Approach 

 

 The research goal is the improvement of routing and mission planning capabilities 

for UAVs and terrain following air vehicles.  In this effort there are three main 

objectives: 

 1.  Develop a multi-objective evolutionary algorithm for efficient path planning 

 2.  Develop a parallel system that computes individual route segments for use in a 

GVR algorithm 

3.  Improve AFIT’s parallel swarm simulator by incorporating path-following 

capabilities with existing swarm behavior and observe the extent to which limitations of 

fixed-wing aircraft constrain model behavior. 
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   1.3.1 Objective 1:  Path Planning Algorithm.  The first objective concerns the 

development of a robust path planning algorithm for terrain following missions.  Since all 

routes have both a cost and a risk associated with them, path planning is naturally 

expressed as a multi-objective minimization problem. Most often, decreasing the cost of 

the path, i.e. the path length and the amount of climbing required to navigate the terrain, 

results in increasing the risk associated with enemy air defenses.  Likewise, a path 

generated to avoid intersection with all enemy air defense radar systems results in 

increased path cost.  Single objective problem formulations for path planning often use 

constraints such as obstacle and threat avoidance and then calculate the least-cost path 

available that adheres to all constraints [53][68].  Other single objective problem 

formulations treat constraints as components of the solutions fitness [67].  Problems 

defined in this way have weights assigned to each objective and the resulting fitness is an 

aggregation of component scores. The common disadvantage of these approaches is two 

fold.  First, a risk free path may not exist or its cost may exceed the capabilities of the 

aircraft.  Second, paths containing an acceptable level of risk may have a substantially 

lower cost than a completely risk adverse path if one exists.  A multi-objective objective 

approach provides a commander with a choice of routes with cost proportional to their 

level of risk.  This empowers the commander to choose the acceptable level of risk and 

obtain the least-cost path associated with that choice.  Due to the intractability of the path 

planning problem, an evolutionary approach is developed to produce low cost routes in a 

reasonable amount of time.  The multi-objective evolutionary algorithm design for path 

planning is described in detail in Chapter 3.  
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Validation of the path planning component is accomplished through a set of 

experiments (see section 5.1) aimed at testing the planner’s ability to produce feasible 

routes, to avoid terrain, and minimize exposure.  Analysis of this data accompanies 

visualizations of solutions to various problem instances. (See Section 6.1). 

 

   1.3.2 Objective 2:  Parallelization and integration into GVR algorithm.  The 

Genetic Vehicle Routing algorithm [49] [61] uses an evolutionary approach to find an 

optimal assignment of vehicles to targets for combat or reconnaissance missions.  The 

algorithm uses as its set of inputs, the cost associated with traveling between any two 

target locations.  This cost reflects only the Euclidian distance between the targets.  In 

order to include the cost incurred by turning from one location and proceeding to another, 

which increases the path length, the actual cost of traveling between two locations must 

include the direction from which the aircraft approached the first target and the direction 

the aircraft will depart the second target in route to a subsequent target.   By calculating 

the cost associated with traveling from each location to every other through an 

intermediate point, the true cost of an entire target assignment can be calculated by 

concatenating the set of triplets to construct the route.  The generation of optimal route 

triplets scales as O(n
3
) compared to the O(n

2
) cost of optimizing pair-wise links.  This 

limits scalability but is less costly than the exponential alternative of enumerating and 

calculating all possible permutations of complete route assignments.  To offset some of 

the cost of enumerating triplets, the path planning algorithm is parallelized, solving 

multiple triplets concurrently.  The output data from the path planner is then given as 

input to the GVR algorithm which has been modified to use this new data in its 
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evaluation function.  The result is an optimal assignment of aircraft to targets based on 

the true costs of completing the routes. 

Testing on this component focuses on the efficiency and scalability of the 

parallelization of the path planner and its ability to answer queries from the vehicle 

router. 

 

   1.3.3 Objective 3:  Parallel Swarm Simulation Model.  AFIT’s swarm 

simulation model [13][23] models a swarm of autonomous air vehicles with a set of three 

behaviors.  The first behavior is a tendency to remain together.  The second behavior is a 

tendency to maintain a safe distance from one another.  The third behavior is for the 

swarm members to align themselves together toward a particular direction.  The swarm 

simulation is extended in this research to include a routing capability that guides the 

swarm along a route generated by the path planner and the GVR optimizer while still 

adhering to the three existing behaviors.  Testing of this research component focuses on 

the ability of the swarm model to conform to established rules while adding new 

capabilities.  The design of experiments in Section 5.2 provide metrics to measure swarm 

formation correctness and to determine the effects of additional functionality on the 

swarm’s ability to adhere to the formation rules given in Section 3.5.  While the swarm 

model includes many abstractions, it attempts to account for limitations in aircraft 

performance to the extent that they limit swarm behavior.  Figure 1.1 gives a sample 

visualization of the swarm model developed in this research.  
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Figure 1.1 Swarm Model Visualization. 

1.4  Sponsors 

 This research is sponsored by the Information Directorate, Air Force Research 

Laboratory (AFRL), Wright Patterson Air Force Base, Ohio.  The mission of the 

Information Directorate is “the advancement and application of information systems, 

science, and technology to meet Air Force unique requirements for Information 

Dominance and its transition to air and space systems to meet war fighter needs.”  This 

research supports this mission by offering a capability to enhance mission planning and 

integration of autonomous vehicles into the mission planning process.  The intent is to 

reduce mission planning time, develop more efficient mission plans and provide 

commanders with information needed to make resource decisions based on trade-offs.  

Specific points of contact concerning the sponsorship of this research include Mr. David 

Zann and Mr. Derryl Williams (AFRL/IFSC). 
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 This research is also supported by a branch of the AFRL sensors applications and 

demonstrations division (AFRL/SNZ), specifically, the Virtual Combat Laboratory 

(AFRL/SNZW).  The Virtual Combat Laboratory conducts advanced development field 

and flight test demonstrations and evaluations.  They maintain a UAV simulation model 

along with a suite of visualization tools.  This research continues the ongoing relationship 

between AFIT/ENG and AFRL/SNZW in which both parties share information on and 

enhance the capabilities of UAV swarm simulations.  The specific point of contact is Mr. 

Mike Foster (AFRL/SNZW). 

 

 

1.5. Thesis Overview 

 The remaining chapters assume the reader has a basic knowledge in the areas of 

combinatorics, evolutionary computation, self-organization, and unmanned aerial 

vehicles.  Extensive references provided throughout provide the reader with more 

extensive background information in these areas.   

Chapter 2 of this thesis defines and develops the concepts behind this research 

and gives a historical perspective on related research.  Chapter 3 details the methodology 

used in this research and illustrates the high-level design strategies used in the 

development of a multi-objective routing algorithm and its use as inputs to VRP problem 

solvers.  Chapter 4 shows the development of the specific implementation model used to 

achieve the research objectives.  Chapter 5 describes the design of experiments used to 

evaluate the effectiveness and efficiency of the tools developed in this research.  This 

includes the testing methodology, development of benchmarks and the scope of the 

experiments performed.  Chapter 6 discusses the test results and evaluates the 
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effectiveness of the research.  Chapter 7 presents conclusions resulting from this research 

and makes specific recommendations for future swarm-based research. 
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2. Background and Historical Perspective 

 

Mission Planning for swarms of autonomous aerial vehicles requires an efficient 

assignment of vehicles or sub-swarms to targets, a set of efficient, feasible paths for 

vehicles to follow, a set of swarm behaviors that allow the swarm members to reach their 

targets while maintaining their collective swarm properties, and a detailed simulation of 

the mission to ensure objectives are met.  This chapter considers historical approaches to 

solving these individual problems as well as a discussion of ways to unify these problem 

domains into a comprehensive problem statement.  A discussion on path planning is 

given followed by the development of the vehicle routing problem.  The section 

concludes with various approaches to swarm modeling and their applications. 

 

2.1 Path Planning 

 

Path planning for air vehicles is a subset of a broader set of general path planning 

problems.  All path planning problems and the algorithms used to solve them consist of 

some initial condition, objective, and a set of actions that completely connect the initial 

condition to the objective.  However, there are many ways to specify a path planning 

problem.  The method selected is often linked to the algorithm used to solve the problem.  

Two broad categories of path planning problems and approaches dominate the research.  

The first category defines the problem in what is known as a configuration space.  

Problem formulations of this type involve determine the set of desired actions (torques, 

rotations, and other forces) needed to move a system from an initial state to a goal state.  

The second category of problem formulations, trajectory spaces, involves generating a set 
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of feasible trajectories to move a vehicle from an initial location to a goal location 

through a defined space. In this section a historical view of path planning problems of 

both configuration and trajectory spaces is presented.   

 

2.1.1  Configuration Spaces.  Historically, configuration space-based (C-space) 

problems have been applied to robotic motion. However, research has also used this 

domain to define problems for general 3-D motion.  This section develops the notion of a 

C-space and examines some of the problems and algorithms that have been created in this 

domain. A Configuration Space, CCCC  [30] is defined as the position (or configuration) of an 

object completely determined by a single point having n independent parameters as 

coordinates.  The space CCCC ,,,, is divided into two general subspaces, CCCC obs and CCCC free. 

Configurations which are invalid because of constraints violations or collisions belong to 

CCCC obs. Those configurations satisfying constraints and resulting in collision-free states 

belong to CCCC free. In the configuration space, the path planning problem consists of finding a 

continuous curve (representing a path for a single geometrical point) that connects the 

points representing the initial and the final configuration of the object, and lies entirely 

within CCCC free.  In figure 2.1, [34] a 2-jointed robot arm is placed among a set of obstacles.  

The arm’s joints can be rotated through a set of angles (q0, q1).  An assignment of these 

angles results in either a valid configuration if the rotation of the joints does not result in 

a collision, or an invalid configuration, CCCC obs, if the rotation causes the arm to collide with 

an obstacle. 
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Figure 2.1.  A Two DOF Arm in an Operational Space with Obstacles [34]. 

 

The configuration space for this problem is given in figure 2.2.  The axes represent 

possible angular rotations of the joints q0 and q1 and the space contains valid and invalid 

sub-spaces corresponding to the assignment of these angles.  A valid region of the 

configuration space represents the set of solutions to the problem. 

                                                   

Figure 2.2. Configuration Space Corresponding to Figure 2.1 [34]. 

 

Configuration space-based problems have been solved using two main 

approaches: retraction methods, and decomposition methods [34].  In a retraction method, 
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Figure 6.17 Experiment 4: Threshold Violation. 

 

 

Figure 6.18 Experiment 4: Threshold Violation for Small Sub-swarms. 

 Experiment 5: The Effect of Swarm Synchronization on Swarm Stability.  This 

experiment repeats the parameters of experiment 3, i.e. a multi-layered swarm with 3D 

terrain following.  In addition, the period at which the swarm synchronizes is varied from 

30 seconds (the baseline) to 90 seconds.  Increased synchronization has an associated cost 

in terms of both computation and communication.  Figure 6.19 shows the threshold 

violations for synchronization periods of 30, 60, and 90 seconds. 
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Figure 6.19 Experiment 5: The Effects of Synchronization Period on Model Stability. 

 

 Figure 6.19 shows that little benefit is seen in increased synchronization.  There 

are two possible explanations for this: 1) after 60 seconds of simulation time, the swarm 

is too unstable to benefit from synchronization, and 2) the model forces synchronization 

during turn operations.  The scenario contains numerous turns in the swarm’s path.  

Additional scheduled synchronization may realize little additional benefit if forced 

synchronization occurs regularly. 

 

6.2.2. Simulation Scalability Experiment.  This experiment showed that the model 

has limited scalability. Parallelization of the simulation however, provides nearly linear 

speedup for larger problem sizes.  Table 6.4 and Figure 6.20 show the runtimes in 

seconds for a 20 minute sample of the simulation.   
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Table 6.4 Runtimes for Parallel Problem Execution. 

                            

         

Figure 6.20 Parallel Runtimes as a Function of Problem Size and Number of CPUs. 

 

 Table 6.4 and Figure 6.20 suggest limitations in the scalability of the model.  A 

significant increase in runtime is observed as the problem size increases from 160 to 320 

UAVs.  Speedup resulting from the additional processors is however nearly linear as a 

column-wise inspection of table 6.4 suggests.  The poor scalability may result from the 

changes in neighborhood resulting from the model’s instability.  As neighborhoods are 

reconfigured, the model requires direct communication among swarm members to adjust 
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their positions.  Chapter 7 presents some alternative communication methods from the 

literature. 

 

6.3. Summary.  This chapter presents the results of the complete experiment set defined 

in chapter 5.  Analysis of the data reveals opportunities for improvement of the parallel 

path planner and the swarm behavior model.  Chapter 7 provides conclusions on the 

effectiveness of the AFIT UAV Swarm Mission Planning and Parallel Simulation System 

and suggestion to improve the performance of the individual components.  
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7. Conclusion and Future Research 

 

 The overall goals of this research are met.  The AFIT UAV Swarm Mission 

Planning and Parallel Simulation System integrates three domains that have, in past 

efforts, been treated independently. The system architecture is capable of integrating 

additional functionality as it becomes available. This chapter addresses the satisfaction of 

the research objectives as defined in Chapter 1 and provides recommendations for future 

research. 

  

7.1 Satisfaction of Objectives.  Recalling the Chapter 1 objectives: 

      1.  Develop a multi-objective evolutionary algorithm for efficient path  

           planning  

      2. Develop an efficient parallel system that computes individual segments for      

          use in the GVR routing algorithm 

      3. Improve AFIT’s parallel swarm simulator by incorporating path-following     

         capabilities with existing swarm behavior and measure the effects of these  

         capabilities on swarm cohesiveness.  

The results presented in Chapter 6 show that objectives 1 and 2 are satisfied.  For 

example, the path planner generates paths that avoid terrain as seen in figure 6.1.  The set 

of solutions to the multi-objective routing problem defined in Section 5.1 produces a set 

of solutions with cost vs. risk tradeoffs.  These solutions have lower cost and associated 

risk than those produced by the Terrain Following Optimizer as seen in table 6.2.  The 

efficiency of the path planner’s parallelization scheme is clearly demonstrated in table 

6.3. 
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Objective 3 was satisfied in terms of the addition of path following behavior. The 

data in Section 6.2 show that the addition of path following and terrain following 

behaviors to the swarm model produces stable behavior for small swarm sizes (<12 

UAVs).  Instability was observed in the behavior of larger swarms (>50 UAVs) as a 

result of the path following behavior.  Additional research is needed to mitigate the side 

effects of these additional capabilities as they pertain to swarm cohesion in large swarm 

formations.  Possible insight was gained into the limitations of fixed-wing flight as an 

option for creating physically realizable swarms.  For example, slower cruise speeds and 

greater maneuverability may be needed to implement some of the lateral movement 

proposed by the swarm model.       

   

7.2 Improvements to the Path Planner.  Compared to the Terrain Following Optimizer 

(TFO), the path planner generates routes that are comparable.  Additionally, the turning 

violations generated by TFO and the restrictions on the spacing of targets were 

eliminated.  Future improvements to the path planner are needed regarding its ability to 

explore larger-sized areas for terrain and threat avoidance.  Currently, the search area for 

the placement of points is tightly restricted by the turn constraint.  This restriction causes 

the planner to behave more like a local search algorithm than a true optimization tool.  

More exploratory mutation operators such as Xiao’s Mutate 2 [67] that deletes multiple 

consecutive segments and replaces them with new ones could overcome this deficiency.   

 Another promising technique is to increase the search space through the use of 

“migrant” population members.  Originally developed for use in the Island model [61], 

migrant members are randomly initialized solutions added to the population at various 
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epochs of the evolutionary cycle.  The diversity added to the population would allow the 

planner to search different regions of the problem space. 

 As a multi-objective algorithm, the path planner creates an aggregation of the 

fitness characteristics into two fitness functions.  The elements of each function are 

parameterized. For example, the cost function combines the path length and climb cost 

with a parameterized weighting factor for each.  These parameters have been derived 

empirically in the development of TFO and they have not been well documented.  If the 

benefit of creating an MOEA is to provide the decision maker with trade-offs, then 

further research into the parameterization of the cost and risk elements would enhance 

this knowledge.  The parameters could be input directly by decision makers if a heuristic 

were available to guide the decision.  

 In their current form, both TFO and the parallel path planner have no conception 

of “time on target” in their approach to optimization.  Mission planning generally 

requires targets be reached by specified times.  Modifications to the path planner should 

allow either verification that time on target constraints can be met or that adjustments in 

the vehicle speed be evolved along path segments. 

 Yet another weakness of the TFO and parallel path planner is the lack of a 

parameterized vehicle model. Both systems are tuned to create path feasibility based on a 

liberal first-order approximation of the AC-130 gunship.  The internal constraints on path 

feasibility need to be fully parameterized so that any vehicle model can be used in 

conjunction with the path planner.  Clearly, more maneuverable vehicles would be 

subject to softer constraints, thus enabling greater levels of optimization in the path.  

 



 7-4 

7.3 Improvements to the Parallel Swarm Simulator.  In transitioning the swarm 

behavior model, three major capabilities were added:  Path following, Terrain following, 

and 3-D swarm formation.  The results described in chapter 6 show that while path 

following allowed vehicles to reach their destinations, deterioration of swarm 

cohesiveness was observed, especially for larger swarms.  There are several explanations 

for this.  In the previous swarm model, the distribution of weights for cohesion and 

alignment vectors was nearly 50-50.  In the current model, Target vectors were given 

80% of the total vector weight while the total weight of all neighborhood-driven cohesion 

vectors was only 20%.  This limitation is placed in the model to serve as a place-holding 

constraint.  Large vehicles traveling at high speeds do not have the ability to create rapid 

lateral movement.  Therefore there are general physical limitations on the degree to 

which cohesion can be achieved while still exceeding the vehicle’s stall speed.  The 

place-holding constraint can be replaced by a realistic 2
nd

 order flight model.  With such a 

model, greater lateral movement to achieve cohesion could be achieved providing the 

vehicle had lower stall speeds.  A second hindrance to maintaining cohesion is the 

model’s limitation on the amount of increase or decrease on the thrust during a turn 

maneuver.  In the current model, a vehicle can only speed up or slow down by 10% 

during a simulation time step.  Again this is a place-holding constraint which takes into 

account in a general way the limitations on a vehicle’s ability to accelerate.  A second 

order vehicle model would provide realistic bounds on acceleration that would juxtapose 

required behavior against realistic capability.    

The greater deterioration of cohesion in large swarms versus small swarms 

suggests possible weaknesses in the nearest neighbor model.  While individual 
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neighborhoods are fairly well maintained, the neighborhood of neighborhoods within the 

large swarms clearly deteriorates.  Current research in control systems provides some 

additional possibilities to address this concern.  Bacconi proposes a Command Governor 

approach to maintain formations of satellites [1].  In his model, a command entity directs 

the movements of individuals.  The individual satellites use the commander’s position as 

a reference frame and adjust their position relative to the commander.  In a swarm of 

vehicles, a tiered command approach could be used to manage swarm movement.  Each 

neighborhood could have a central figure or “block captain” that directs local movement.  

This individual would then communicate to the next level of command above which 

would be a central figure responsible for directing the movement of a group of 

neighborhoods.  Using this tree-based hierarchy, the number of levels of communication 

would need to grow as the log of the swarm size.  

 

7.4 Future Simulation Capabilities.  In addition to improvements required in the current 

swarm model, additional capabilities would enhance the simulation.  The mission 

planning scenario in this research assumes a priori knowledge of all mission objectives 

and a fixed resource capability.  While it is reasonable to assume that missions are 

created to complete known objectives, additional information gained throughout the 

mission could alter the objectives.  Some swarm behavior models [42] [51] have a 

searching behavior defined that allows the swarm to seek out unknown targets and adjust 

behavior if and when they are detected.  While Price’s model is 2-D and does not include 

any path following capability, the self-organization and discovery capabilities would 

enhance the AFIT swarm simulator if they could be integrated with existing capabilities.  
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The result of such integration would be a swarm model that can perform a defined strike 

or reconnaissance mission while adapting behaviors to account for enemy engagement, 

attrition, and the discovery of targets of opportunity. 
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Appendix A.  Modified Convex Hull Algorithm 
 

 This appendix describes the development of the Modified Convex Hull Algorithm 

developed by J. Zaloudek.  The algorithm is used in the repair of paths to create 

additional way points such that no turn exceeds 45 degrees. 

Step 1. Place the octagon such that the midpoint, Pm is one vertex in it, chosen to be as 

close to the middle of the turn as possible. 

Step 2.  Find the convex hull (is like the "gift wrapping"). 

Step 3.  Traverse the CH route from Po to Pf  (this will require going through the CH 

route backwards if the point immediately after Po in the CH route is Pf). 

 

Placement of the octagon. Optimally the octagon could be placed such that Pm is 

half-way through the turn. The line (Ps-Pm) represents a normal to the turn at point Pm if 

Pm were exactly halfway through the turn.  Due to the grid, it will most likely not be 

possible to do this perfectly, but the angle of the line Ps Pm can be used to place the 

octagon as close as possible.  Figures A.1 and A.2 Illustrate the Octagon Placement         

 

Figure A.1 Octagon Placement: Normal Axis 

 

Po 

 Pf 

Pm 

Ps 
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Figure A.2 Placement of Octagonal Vertices on Midpoint 

To reference the octagon, two arrays of coordinate offsets are used. 

int xOctOffsetes = [0,-1,-2,-3,-3,-2,-1, 0]; 

 

int yOctOffsetes = [0, 1, 1, 0,-1,-2,-2,-1]; 

 

As an example, suppose Pm is (3,4) and the angle of Ps-Pm is 7π/4. Vertex 7 of the 

octagon would be chosen as the one to go on Pm.  Back out the location of vertex 0 by 

subtracting the offsets for vertex 7 from Pm’s coordinates: vert0 then is (3,5).  Going 

through the list and adding the offsets to vert0’s coordinates then specifies all the points 

in the octagon. 
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Appendix B.  Basic MPI Constructs 

This appendix describes the basic MPI constructs used in the parallel path planner.   

MPI_Init.  All MPI programs begin with a call to MPI_Init [Pacheco][Snir].  This 

function performs set-up operations that allow the MPI library routines to be used.  No 

MPI commands can precede this call.   

MPI_Finalize.  After the last MPI command is used, MPI_Finalize is called to 

clean up the system and de-allocate any memory used.  No MPI functions may follow the 

call to finalize. 

MPI_Comm_rank.  Most MPI programs have a master/slave organization.  

MPI_Comm_rank is a function that looks at all nodes in the program through a variable 

called MPI_COMM_WORLD and determines the rank or node number of the individual 

program instance.  An integer reference variable, &me, is passed to the function and is set 

with the rank of the individual.  By convention, the node with rank 0 is used as the 

master, while all others are used as worker nodes.  The rank variable is used in the 

decision tree to determine whether the program instance follows the code associated with 

the master node or that of a working node.  

MPI_Comm_size.  Since each node is assigned a number, the function 

MPI_Comm_size returns the number of nodes in the program.  The size or number of 

nodes is often used as a check to ensure that all nodes have completed their tasks. 

Blocking and non-blocking communication.  MPI allows for both blocking and 

non-blocking communication.  Blocking communication halts the sending program 

instance until the corresponding receive has completed.  In non-blocking communication, 
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the calling program continues to execute without waiting.  In this program, both blocking 

and non-blocking communication are used. 

MPI_Bcast.  To send common data such as terrain elevations to all nodes, the 

broadcast method is called by the master node.  The parameters of this function include 

buffer to be sent, the size, the data type, the sender, and the variable 

MPI_COMM_WORLD.  Broadcasts are non-blocking.  In order for the master to use the 

broadcast, the slave nodes must also call MPI_Bcast.  Both the broadcast sender and the 

receiver use the node of the caller as a parameter.  If the name of the node in the function 

call matches that of the calling node, the system interprets this as a send.  If calling node 

is different from the node in the function call, the system interprets this as a receive. 

MPI_Barrier.  In a parallel program it is often necessary to wait for all nodes to 

reach a common point before proceeding.  When a node reaches an MPI_Barrier call, it 

halts until all other nodes in MPI_COMM_WORLD reach the same point.   

MPI_Send.  This blocking function is the most primitive of the MPI send 

functions.  It is a point-to-point message that sends a buffer of data having a declared size 

and type to a designated receiver.    

MPI_Recv.  Also a blocking communication, this function halts the calling 

program until the specified buffer receives the message from the designated sender.  Use 

of this function is appropriate in cases where the calling program needs to process data in 

the buffer as its next task. 

MPI_Irecv.  When a program is waiting on multiple nodes to transmit, data, this 

non-blocking receive can be used.  It allows the receiving program to receive messages in 
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the order they come in.  Without this non-blocking ability, the calling program would 

have to block and receive each message in turn. 

MPI_Request.  When non-blocking receives are used, this accessory data structure 

provides a mechanism to check for a change in receipt status.  It is used with a 

MPI_Status flag that is set to true when the corresponding MPI_Request has been met. 

MPI_Test.  This function uses both the MPI_Request and MPI_Status flag associated 

with the non-blocking receive.  MPI_Test is called and if the status flag associated with 

the MPI_Request is set to true, then the receive has been completes and the calling 

program can begin processing the data in the receive buffer. 
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