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Abstract

This research examines the power costs of network irregularities on communi-

cations and localization in an Ad-hoc Wireless Sensor Network (AWSN). Specifically,

the performance of two anchor -based algorithms, APS-Euclidean and Map-Growing,

are characterized with respect to the data communications costs. The number of data

bits transmitted and received are significantly affected by varying levels of mobility,

node degree, and network shape. For APS-Euclidean, mobility accounts for 92.91%

of the variation in the number of bits transmitted. The highest level of mobility re-

sulted in 672% more transmitted bits than the corresponding static network. The

concurrent localization approach, used by the APS-Euclidean algorithm, has signifi-

cantly more accurate position estimates with a higher percentage of nodes localized,

while requiring 50% less data communications overhead than the Map-Growing algo-

rithm. Analytical power models capable of estimating the power required to localize

are derived. The average amount of data communications required by either these

algorithms in a highly mobile network with a relatively high degree, consumes less

than 2.0% of the power capacity of an average 560mA-hr battery. This is less than ex-

pected and contrary to the common perception that localization algorithms consume

a significant amount of a node’s power.

The potential of an AWSN to be self-organizing, scalable, and fault-tolerant

makes it a very promising Command, Control, Communications, and Information

(C3I) tool for the military to perform surveillance, reconnaissance, and target tracking

missions. One of the key concerns with location aware AWSNs is how sensor nodes

determine their position. Although position estimation accuracy is a primary goal of

localization, it is also necessary to minimize the power consumption of the process.

The inherent power limitations of an AWSN along with the requirement for long

network lifetimes, makes achieving fast and power-efficient localization vital.
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Evaluation and Analysis of

Node Localization Power Cost in

Ad-hoc Wireless Sensor Networks with Mobility

I. Introduction

1.1 Motivation

Ad-hoc Wireless Sensor Networks (AWSNs) can be used in many military appli-

cations. A self-organizing, scalable, and fault-tolerant AWSN would be a very promis-

ing command, control, communications, and information (C3I) tool for the military

to perform surveillance, reconnaissance, and target tracking missions. AWSNs could

be used to passively and secretively monitor, detect, and identify the presence or

movement of enemy forces, terrorists, or even weapons of mass destruction in areas

where the presence of ground forces is not feasible. Additionally, the integration of

AWSNs into military “Blue Force Tracking” systems can contribute to mission success

while avoiding losses due to friendly fire. Both of these systems will require accurate,

reliable, and low cost methods of achieving and maintaining sensor location, while

maximizing the lifetime of the network.

1.2 Background

AWSN technology is still in its infancy, and there is much work to be done

before we tap their full potential. For example, achieving reliable, accurate, and

energy-efficient node localization is an immature area. Node localization is the pro-

cess of deriving physical or virtual coordinates of nodes in a sensor network. It is

crucial for reporting the location of an event for location-aware applications, evaluat-

ing network coverage, and assisting with optimal-path multi-hop routing to minimize

power consumption. AWSNs by definition are unable to deploy with a priori knowl-

edge of node placement. Additionally, allowing every node to self-localize with Global
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Positioning System (GPS) receivers is costly in terms of dollars, size, and power con-

sumption. Thus, many AWSN localization algorithms rely on a small percentage of

nodes equipped with GPS to serve as anchors and assist in a distributed localization

algorithm. Although there are also several anchor -free localization algorithms that

provide relative or virtual location estimates, this research is limited to anchor -based

algorithms, where every node in the network belongs to one of two categories, an-

chors and unknowns. Anchors are able to self-localize via GPS or some other means.

Unknowns require the help of anchors and possibly other unknowns to estimate their

positions.

Several network and environmental factors impact the performance of node lo-

calization algorithms. For instance, network shape irregularities (due to geograph-

ic/environmental conditions), varying network topologies (network connectivity and

node distributions) and node mobility introduce many challenges to achieving local-

ization. Several localization algorithms, such as any where position estimates are

based on shortest-path distances, will simply not perform well in networks with irreg-

ular network shape. Furthermore, many algorithms may also have thresholds on the

minimum average node degree necessary for the network to successfully localize or

converge. Non-uniformity of node placement typically has a negative effect on the ac-

curacy and success of a localization algorithm. Node mobility arguably introduces the

most perplexing challenge, as initially achieving and maintaining up-to-date position

estimations for mobile nodes ultimately requires additional, and possibly continuous,

localization traffic.

1.3 Research Objectives & Hypothesis

A major objective of localization within AWSNs is to minimize the power con-

sumption of the process. The inherent power limitations of an AWSN along with

the requirement for long network lifetimes, makes achieving fast, power-efficient, and

accurate localization vital to the success of an AWSN application. Operating for ex-

tended periods with limited battery power is a major concern and challenge. The
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main goal of this research is to determine the effect of network shape, node degree,

and node mobility on the power required to localize nodes in an AWSN. The hypoth-

esis of this research is that the more irregular or dynamic the network configuration,

the more power required to achieve localization.

Another objective of this research is to determine the performance differences

between a incremental and a concurrent localization algorithm in irregular networks

with node mobility. For this, the incremental algorithm Map-Growing [LSS04] and

the concurrent algorithm APS-Euclidean [NN01] are used as representative of the

respective approaches. Although the research examines the effects of these factors on

convergence and accuracy, the main focus is to determine the data communications

cost of the two algorithms. Given that Map-Growing is a multi-phase incremental

algorithm, it is hypothesized that it will have a higher communications overhead than

the concurrent APS-Euclidean algorithm.

1.4 Approach

Simulation models of the Map-Growing and APS-Euclidean algorithms are de-

veloped and observed under various experimental configurations. Mean position error,

percent localized, bits transmitted, and bits received are all performance metrics of

interest. Next, the effects of the various levels of node mobility, degree, and network

shape are computed and analyzed. The results are analyzed to determine the signifi-

cance of the effect on the response for each factor level. Additionally, an analysis of

variance is performed to determine the factors or interactions that explain the highest

percentage of variation in the response. The secondary objective of this research is ac-

complished by simultaneously analyzing the performance differences and similarities

of the two algorithms.

Additionally, a multiple linear regression on the Bits Transmitted and Bits Re-

ceived responses is performed, in order to derive a power model for estimating power

consumption given different factor levels. The results of the data communications
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overhead responses and the associated power costs are further analyzed with respect

to percentage of battery capacity consumed.

1.5 Summary

The capabilities of AWNSs in passive surveillance and target tracking applica-

tions make it a promising technology for future Air Force and other Department of

Defense weapon systems. One of the key concerns of AWSNs is achieving accurate

node localization while not significantly reducing the expected lifetime of the network.

The primary focus of this research is to examine the data communications cost and

associated power requirements of performing node localization in networks with node

mobility and varying network degree and shape.

This document is organized as follows. Chapter 2 contains the background

information and associated challenges of node localization in wireless sensor networks.

Chapter 3 describes the methodology used to evaluate the effects of networks shape,

network degree, and node mobility on AWSN localization. Chapter 4 presents the

experimental results and analysis. Lastly, Chapter 5 summarizes the conclusions of

the research and discusses its significance.
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II. Background

2.1 Introduction

This chapter presents an overview of the fundamentals of localization and ex-

plores challenges associated with achieving “ideal” localization in Wireless Sensor

Networks. Section 2.2 describes some of the characteristics, constraints, and difficul-

ties associated with achieving accurate and efficient node localization. Section 2.3 in-

troduces the fundamentals of several different ranging methods often used in AWSNs.

Section 2.4 explains the process of propagating ranging and position information and

introduces various techniques for doing so. Section 2.5 explores several basic methods

for computing position estimation such as the most common method, trilateration.

Section 2.6 describes how to improve initial node position estimates through a handful

of different iterative refinement methods. Finally, Section 2.7 concludes this chapter

looking at relevant research dealing with node localization in anisotropic/irregular

and mobile networks.

2.2 Fundamentals of Localization

Localization is the process by which sensor nodes deduce their physical, global,

or relative position in a sensor network. Node localization in AWSN applications has

been an active area of research in recent years, with a focus towards achieving accurate,

efficient and cost effective localization of ad-hoc networks. Detailed surveys of such

systems can be found in [ASSC02] and [HB01b]. Self-organizing, scalable, fault-

tolerant, and energy-efficient are four important design characteristics of a typical

AWSN. Unfortunately, these four characteristics, along with the requirement for a low-

cost and micro-size node platform, present formidable constraints and complications

that ultimately impact how node localization is accomplished. The remainder of

this section discusses the impact these characteristics have on localization, presents

a general localization structure, and discusses some of the obstacles associated with

common ranging and position estimation approaches.
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The self-organizing characteristic implies an AWSN operates independently.

Thus, every node in the network must determine its location without a priori of

coordinates or obtaining them through a fixed infrastructure. From this single re-

quirement, the need for a scalable, fault-tolerant, and energy-efficient method of lo-

calization arises. Localization algorithms can be classified by their accuracy (i.e.,

coarse-grained versus fine-grained localization), by whether or not they use distances

to derive position estimates (i.e., range-based versus range-free), by whether they al-

low nodes to localize concurrently or incrementally, and lastly by whether they are

implemented in a distributed or a centralized manner.

Localization is typically achieved using either a distributed or a centralized al-

gorithm. The centralized algorithm collects range measurements and node locations

at a central node, where the localization computations take place and the resulting

position estimations are sent back to the respective unknowns. The distributed local-

ization algorithm has each node estimate its own location until accuracy requirements

for position estimation are met. In wireless sensor network applications where capable

hardware and power supplies are available, centralized localization algorithms can be

very accurate, efficient, and effective. Multi-Dimensional Scaling (MDS) algorithms

have been used to perform centralized localization (MDS-MAP) in an AWSN [SPS02],

since the algorithm requires the all-pairs shortest path distance between all of the

nodes in the network to accurately estimate positions. However, given a resource con-

strained AWSN and the unpredictability of the deployed environment, a centralized

algorithm introduces several problems. The most crucial is it creates a single point-of-

failure; if the central node is not appropriately positioned or it fails, the network will

not be able to localize. Centralized approaches also require support mechanisms such

as leader election and an efficient non-location based routing protocol which results in

additional communication overhead. For example, Figure 2.1 shows a centralized im-

plementation of the Ad-Hoc Localization System (AHLos) with six to ten times more

communications overhead than a comparable distributed implementation [SHS01].
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Figure 2.1: Network Traffic in Distributed versus Centralized AHLoS Algo-
rithms [SHS01]

Another major problem with centralized localization is nodes close to and around

the central node route more traffic and thus use more power; ultimately leading to

a shorter life-expectancy of the heavily used nodes and therefore the entire network.

Centralized localization also has difficulty with network topology changes due to node

mobility or failure which also adds to the already high communications overhead. For

many resource-constrained AWSN applications, a distributed approach is more suit-

able, as it is more efficient and scales better than a centralized approach. Furthermore,

a distributed approach typically provides additional fault-tolerance in the presence of

node or communication failures [SPS02].

The hardware and algorithms used to perform localization are influenced by

the cost, size, and power constraints of wireless sensor platforms used in AWSNs.

Crossbow Technology produces wireless sensor platforms, commonly referred to as

motes, which have a form factor of 25mm and are sized to fit on a 3V coin cell

battery [Ric05]. The smart dust chip or “Spec” mote, developed by researchers at UC

Berkeley, is a single wireless chip with integrated CPU, memory, and RF transceiver

with a form factor of approximately 5mm [Bra05]. The current cost of these motes

is about $100 each [Ric05], but the number needed for many applications dictate

that they must ultimately be a fraction of that price; making the cost of a several

7



thousand node AWSN acceptable. Limited power is also a major concern in an AWSN

application. Crossbow’s MICA motes are designed to be energy-efficient, and draw

about 8 milliamps per hour when processing data. Additionally, the RF transceiver on

the MICA motes consumes less than 1 microamp when off, 8 milliamps when receiving

and 25 milliamps when transmitting [Ric05]. Given a battery rated at 1,000 milliamp-

hours, a mote can operate with constant processing for 30 to 125 hours, depending

on the time spent transmitting and receiving. Most implementations however, use

a power-aware MAC, routing, and sensing protocols so the CPU and receiver are

in low power mode or sleep mode much of the time; therefore, there is potential

for these sensor platforms to operate for a year or more. By implementing energy-

efficient protocols and algorithms that incorporate small, inexpensive, and energy-

efficient hardware, a localization algorithm that fits within the cost, size and power

constraints of an AWSN can be achieved. The remainder of this chapter considers the

size and cost issues mentioned above, along with the following three critical metrics

when discussing different methods of localization:

(i) Position accuracy or error,

(ii) Total time required to achieve desired position accuracy, and

(iii) Total network energy required to achieve localization.

Localization methods generally follow a four-step process: (1) Determine Range:

determine node-to-node distances or proximity; (2) Disseminate Ranging Data: share

predetermined attributes of ranging data between nodes; (3) Estimate Node Positions:

perform position estimation to derive positions of unknown nodes; (4) Refine Node

Positions: iteratively refine position estimations. The next four sections describe these

steps in greater detail, discussing several techniques and the challenges associated with

each.
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2.3 Ranging

Ranging is the process of acquiring distance or proximity measurements between

two nodes. It is the first and most important step in range-based localization, since in-

accurate ranging measurements will ultimately result in poor position estimates. Ide-

ally, ranging hardware and methods are highly-accurate, long-range, energy-efficient,

low-cost, and small to achieve precise and efficient localization performance.

Received Signal Strength, Time of Flight (TOF), and Angle of Arrival (AOA)

are physical characteristics of a signal often used to obtain distance and angle measure-

ments in a wireless sensor networks. Many ranging algorithms using these signal char-

acteristics have achieved accurate distance measurements but either require expensive

hardware, lack long-range capabilities, or as with received signal strength, results are

based on idealistic assumptions about signal propagation characteristics [HE04]. The

next three sections discuss variations of the three ranging methods as well as their

strengths and weaknesses

2.3.1 Received Signal Strength. Received Signal Strength Indicator (RSSI)

measurements derive pair-wise node distance measurements using RF signal attenu-

ation in a mathematical propagation model to derive distance. RSSI is an attractive

option as it is relatively inexpensive, simple to implement, and typically does not re-

quire additional hardware to implement. Many RF transmitters/receivers have RSSI

capabilities built in; eliminating additional hardware and node complexity while al-

lowing the localization algorithm to benefit from normal network traffic. However,

RSSI measurements are susceptible to several sources of interference such as fading,

multi-path, and non-line-of-sight reception, resulting in inaccurate distance measure-

ments with errors increasing with node separation distance. The biggest sources of

error in an outdoor environment measurement errors due to obstacles, reflections,

and variations in altitude [SHS01]. For example, the usable transmission range of an

RSSI signal can range from 10m at ground-level to around 100m at a height of 1.5m

[SHS01]. Simple implementations assume isotropic spherical radio propagation, when
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in actuality this is not the case. However, since radio signal strength samples are

normally distributed, errors due to non-isotropic radio propagation can be overcome

by taking the average of several (30 or more) samples [Whi02]. Although this solves

the problem of measurement errors due to non-isotropic radio propagation, it does

not eliminate errors due to systemic effects. Additionally, averaging samples results

in a significant increase in the number of ranging transmission required to localize.

The transmit power of the source is an issue since it can often decrease as the power

available at the source decreases with time. Wireless sensor networks, however, also

possess two properties that help overcome RSSI range measurements errors. They

are [SRB01]

(i) A dense interconnectivity of sensor platforms which leads to redundant

range measurements, and

(ii) Long observation times in static wireless sensor networks can remove

fast-fading effects through integration.

Off course, not all AWSNs will have these properties. In these cases, a prob-

ability distribution function of the distance corresponding to the RSSI of beacon

packets may result in more accurate distance estimates [SR04]. Ultimately, RSSI is

a viable ranging option in outdoor wireless sensor network applications, with near

ideal or isotropic environmental conditions, where fine grained position accuracy is

not required.

2.3.2 Time of Flight (TOF). Ranging methods based on TOF are the meth-

ods of choice for networks requiring fine-grained position estimate accuracy. Various

methods use RF, audible, ultrasonic, or a combination of signals to perform TOF

measurements. The method of measuring TOF using one signal is referred to as

Time of Arrival (TOA), while methods that calculate the time difference between

arrivals of multiple signals is referred to as Time Difference of Arrival (TDOA). Since

the speed of a radio wave is equal to the speed of light (in a vacuum) and is constant

over short distances, the time between transmission and reception of a signal can be
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used to calculate the distance the signal traveled. This is the method used in GPS.

This approach requires the transmitter and receivers clocks be closely synchronized

to correctly measure TOF. Otherwise, even the slightest time difference between a

pair of clocks can result in extreme errors in range estimates. In fact, if the receiving

node’s clock is ahead of the sending, the calculation may actually result in a negative

time of flight.

A TOA approach that avoids clock synchronization altogether is TDOA us-

ing both radio and audible signals. Since the propagation speed of a radio signal

is approximately 106 times faster than the speed of sound, the difference of the ar-

rival times of the sound and radio signals is good estimate of the time of flight. As

long as the two signals are transmitted simultaneously, a receiver can calculate the

TOF differences without synchronization with the transmitter. Unfortunately, chan-

nel noise, echoes, and obstructions often make TOF measurements inaccurate and

unreliable. For example, accurately detecting the beginning of an audible signal is

problematic, and the ability to generate a sound signal with a sharp rising envelope re-

quires certain hardware [SBM+04]. Furthermore, accurate detection of a noisy signal

is difficult. However, over-sampling of acoustic signal and signal processing techniques

such as filters and heuristics can increase the signal-to-noise ratio (SNR) [SBM+04].

An increase in SNR can result in less than 10 cm average ranging error for ranges

up to 10m [SBM+04]. Although this is less sensitive to background noise and has

a longer range than previous implementations, it comes at the expense of increased

computational, communications, and associated power costs.

To overcome the inherent problem of measuring the TOF of an audible signal,

experimental systems such as AHLoS [SHS01] and DOLPHIN [MSK04] implement

TDOA with radio and ultrasound signals and achieve accuracies within 2 centimeters

for node separations under 3 meters. Similar to acoustic ranging, errors in ultrasonic

ranging are minimized through multiple-sampling, filtering and applying heuristics.

However, ultrasonic transmitters/receivers are highly directional, typically only hav-

ing a 120o field of transmission with signal degradation towards the outer edge of the
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field. This results in a single ultrasound receiver only being able to detect signals

accurately in a relatively small field of view (∼90o). Because sensor platforms in a

AWSN perform range in every direction, multiple ultrasound transmitters/receivers

must be used. AHLoS uses 4 pairs, enabling it to perform “accurate” ranging in

almost every direction. Due to the resulting increase in the overall form factor, power

consumption, and cost of the sensor platform, TDOA using ultrasound will not be a

viable solution for some AWSN applications.

Although ultrasound ranging achieves centimeter accuracy for short distances,

it also can have large errors or fail completely in low node density and non line-of-sight

conditions [SHS01]. Additionally, to achieve long ranging capabilities (10+ meters),

a more powerful ultrasonic ranging module would be required, resulting in a higher

cost and added power consumption. Consequently, this approach is best suited to

high-precision localization for infrastructure based networks as the added size, cost,

complexity, and power requirements make it unsuitable for many AWSN applications.

2.3.3 Angle of Arrival (AOA). AOA exploits the ability of nodes to sense

the direction from which a signal is received to aide in position estimation and to

provide node orientation. An antenna array or several ultrasound receivers detect

the angle at which a signal is received relative to its own axis of reference [NN03b].

The Cricket Compass Project [PCB00] obtains the arrival angle via range estimates

(using TDOA with ultrasound and RF) at two local ultrasound receivers separated

by a known distance. Figure 2.2 illustrates how to determine a node orientation with

respect to a transmitting node given the two measured ranges, x1 and x2, the distance

between the two local receivers, L, and the distance, x [PCB00]. The distance x can

be calculated exactly using the laws of Cosines and Sines or simply estimated as the

average of distances x1 and x2. Given x, θ can be determined using

θ = arcsin

(
x2

2 − x2
1

2Lx

)
. (2.1)
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The AOA technique does not eliminate the need for ranging. In fact, it requires

precise ranging hardware such as TDOA using ultrasonic signals. Additionally, AOA

does not provide any better error propagation performance than other techniques.

A significant advantage of using AOA is that node orientation could be very helpful

in applications where organized node movement is required. However, the resulting

increase in size, cost, and power-consumption makes AOA an expensive and unattrac-

tive option for many resource constrained AWSN applications.

 

Figure 2.2: Two-Dimensional AOA [PCB00]

2.3.4 Range-free. Range-free localization methods derive proximity mea-

surements from non-distance information. Thus, the “range-free” designation. These

measurements may include mere radio communications connectivity [SPS02] or a

comparison of received signal strength [LWH04].

The level of localization precision or granularity is always application-dependent.

Therefore, the added hardware cost for range-based ranging solutions may not always

be appropriate, since many range-free solutions can sometimes achieve acceptable

precision at a lower cost.
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2.4 Dissemination of Ranging Data

Given ranging data along with the estimated position of known nodes, the next

step in the localization process disseminates and merges data to determine accurate

distance estimation from unknowns to anchors in the network.

Depending on the AWSN application and its purpose, the goal of localization

is to derive absolute, relative, or virtual positions or coordinates. Many applications

require absolute coordinates as the users require specific global locations of sensed

events. However, in some AWSN applications precise location information is not nec-

essary, and relative or virtual coordinates will therefore suffice. Relative coordinates

are typically derived from range-based localization, while virtual coordinates, which

are not as fine-grained, are typically derived from range-free localization algorithms.

Some localization algorithms, such as the Map-growing algorithm [LSS04], initially

produce a network topology with only relative positions for unknowns, and then trans-

form the relative positions into a global position using the global coordinates of 3 or

more anchor nodes.

Regardless of the type of coordinates required, the network must successfully

merge and propagate position, range, directionality, and/or connectivity data. The

amount of data shared is mostly dependent on the complexity of localization algo-

rithm. Some of the simpler localization algorithms require each node to obtain ranging

information from 1-hop neighboring nodes, while the more complex algorithms require

nodes to have almost total knowledge of the pairwise node distances for every node in

the network. For this reason, the localization process can quickly become extremely

costly in terms of communications and power required to disseminate the necessary

data.

The position estimation techniques discussed later in Section 2.5 rely on a con-

siderable amount of critical information that can typically only be obtained through a

network-wide distribution and sharing of ranging and node position data. Addition-

ally, it is crucial that multi-hop distances between unknowns and anchors be accu-
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rately merged and represented through the sharing of this information. The biggest

challenge of this process is to avoid cumulative errors that result in large position

estimation inaccuracies.

The Ad-hoc Positioning System (APS) is a class of distributed localization algo-

rithms that propagate distance information to anchors throughout the network so all

unknown nodes can obtain distance or angle estimates to 3 or more anchors [KMS+04].

The DV-distance, DV-hop, Euclidean, and DV-coordinate algorithms are common

APS algorithms. The main difference between the four algorithms is how the distance

information is represented as it propagates throughout the network. DV-distance al-

gorithms propagate pairwise node distances while maintaining the minimum path

lengths to anchors. The distance to a particular anchor is determined by the sum-

ming the distances in the shortest path to that anchor. DV-hop on the other hand,

propagates average distances per hop while maintaining the minimum hop count to

anchors. Distance estimates to any particular anchor in the network are obtained

by multiplying the hop count by the average distance per hop. The Euclidean algo-

rithm concurrently computes distances between unknowns and anchors ; maintaining

only distances from unknowns to anchors. A comparison of these algorithms show

that each perform well in different scenarios [LR03] [NN03b] [KMS+04]. For instance,

DV-hop and DV distance algorithms usually require isotropic networks and uniform

node density to achieve accurate position estimation, while Euclidean techniques are

more resilient to irregular networks, but require a higher degree and anchor density

to achieve accurate position estimation [KMS+04] [LR03].

DV-coordinate is an APS localization algorithm that has every node initially

derive its own relative coordinates or map one-hop neighbors. Instead of passing

distance estimates to anchors like the Euclidean algorithm, DV-coordinate passes

local coordinate information from node to node. Receiving nodes transform the re-

ceived coordinate information into their own coordinate system; thereby building the

map. Localization is accomplished once a node establishes a local map with at least

three non-collinear anchors. This is very similar to the Self-Positioning Algorithm

15



(SPA) [CHH01], which establishes relative coordinates for an entire network. Addi-

tionally, SPA adjusts and maintains the relative coordinates of a network with low

to moderate node mobility. Two major weaknesses of these algorithms is the high

communications cost and the requirement for full-network connectivity to anchors to

derive position estimations. This ultimately leads to needing a much higher anchor

density.

DV-Bearing and DV-Radial are angle-based localization algorithms similar to

the above mention distance-based APS algorithms [NN03a]. They are most similar

to the Euclidean algorithm as they propagate either true bearing angle estimates,

or true bearing and radial angle estimates from unknowns to anchors in a network.

The methods rely on triangulation to calculate intermediate angle estimates before

propagating them throughout out the network.

It is crucial for these and all ranging propagation techniques and algorithms to

be efficient and robust to limit unnecessary communications and ensure scalability

to varying network sizes, topologies, and irregularities. Additionally, they must ac-

curately propagate and represent distances from unknowns to anchors to minimize

position estimation errors.

2.5 Position Estimation

This section discusses the fundamental concepts of position estimation tech-

niques and how they are applied to localization in a AWSN.

2.5.1 Lateration. Trilateration estimates the 2-dimensional position of a

node by measuring its distance from 3 or more reference points. Figure 2.3 illustrates

the concept of trilateration, given the distances to and locations of 3 anchors, to

determine the location of a single unknown node. Simply drawing circles with radii

equal to the estimated distances to the respective anchor nodes results in a single

intersection point where the unknown node must lie. Calculating the position at

this point can be accomplished using linear algebra. One common method described
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in [LR03] involves setting up a system of linear equations and solving it using a

standard least squares approach shown in Appendix A.

Figure 2.3: Obtaining 2D Position Estimation using Trilater-
ation (adapted from [HB01a])

Given distance measurements to four or more non-collinear anchors, lateration

can be used to obtain three-dimensional position estimation of unknowns. More than

4 ranging measurements to anchors can be used to further improve the accuracy of

position estimation by averaging the lateration results of all combinations sets of 3

(2-dimensional) or 4 (3-dimensional) anchor nodes.

Trilateration requires the three referenced anchor nodes to be non-collinear,

since collinear references would result in two possible points of intersection instead

of one. Additionally, references that are near-collinear may be perceived as collinear

due to errors in ranging measurements. Thus, many localization algorithms check to

see if the three reference nodes form a triangle with a minimum angle greater than

a certain threshold. For example, the Map-growing algorithm uses a minimum angle

threshold of 30 degrees [LH05]. Given the distance between three nodes (a, b, and c),

the Law of Cosines determines the three angles of the formed triangle

a2 = b2 + c2 − 2bc cos(A). (2.2)
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Similarly, some algorithms use a simpler non-collinear test that ensures the sum dis-

tance of the smallest sides of the triangle is greater than the third side multiplied by

a given threshold [LR03].

Multilateration is the process of estimating a position based on the range mea-

surements of three or more anchors. Atomic multilateration is the simplest form of

multilateration (represented in Figure 2.4a), which only uses ranging measurements

from anchors to estimate position of unknowns. A more robust form of multilater-

ation referred to as iterative multilateration consists of using estimated positions of

unknowns to serve as anchors ; allowing achievable localization in light of low an-

chor densities. Iterative multilateration is illustrated in Figure 2.4b where node U2

may use the two neighboring anchor nodes plus the estimated position of node U1.

Figure 2.4c illustrates collaborative multilateration, where nodes U1 and U2 are able

to collaborate and share neighboring anchor information to estimate both of their

positions.

Figure 2.4: Atomic, Iterative, and Collaborative Multilatera-
tion (Adopted from [SHS01])

Both iterative and collaborative multilateration are more robust than atomic,

but are prone to more significant error accumulation, due to the use of localized

unknowns or the sharing of information between neighboring unknowns for position

estimation of other unknowns.

2.5.2 Multi-Dimensional Scaling (MDS). MDS is any procedure that uses a

set of distance measurements between several points to find a set of relative coordinate

values [Lee05]. MDS is a position estimation approach that derives relative position

estimates and transforms them into global coordinates [LSS04]. In classical MDS, a
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distance matrix consisting of an all-pairs-shortest-path data to one or more nodes is

required.

A more robust form of MDS, iterative MDS (otherwise known as Least Squares

Scaling (LSS)) is more robust than classical MDS since it always generates relatively

accurate position estimates even with inadequate and inaccurate distance informa-

tion [JZ03] [JZ04]. Unlike classical MDS, LSS is capable of estimating positions

even with missing distances in a given set of all-pairs-shortest-path distances. The

greater the number all-pairs-shortest-path distances, the more accurate the position

estimation results are. If just one or two distances are used, large position errors

will occur [SPS02]. Additionally, LSS accepts the assignment of different weights for

distance measurements depending on their confidence levels as well as constraints on

node separation. This ultimately improves the accuracy of the resulting position esti-

mation as bad points are discarded and greater weight is given to points with higher

confidence [KMS+04].

Most forms of MDS are implemented using a centralized algorithm. This is

mainly due to better position accuracy is achieved by having a larger amount of rang-

ing and position data. However, distributed approaches using LSS can also achieve

very good accuracy [KMS+04] [SPS02]. For example, a distributed algorithm, N-hop

Multilateration, sets up a global non-linear optimization problem and solves it using

iterative least squares scaling [SPS02]. N-hop Multilateration essentially performs

LSS through a series of collaborative and iterative multilateration steps performed in

a repetitive sequence. The algorithm provides a method for establishing a random

refinement sequence that can be repeated in order to ensure all nodes conform to the

global gradient. Otherwise, neighboring nodes will likely arrive at a local minimum

with erroneous position estimates due to “local oscillation” [SPS02].

2.5.3 Min-Max. An alternative to Lateration and MDS is the Min-Max

position estimation approach discussed in [SPS02]. This technique requires less com-

putational complexity than the previous approaches but results in a less precise posi-
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tion approximation. Figure 2.5 illustrates the Min-Max technique where the unknown

node is bounded in the X and Y coordinates by the distance measured to each of the

three surrounding anchors. Once the minimum and maximum X and Y coordinates

are determined, the node estimates its position to be in the center of these minimum

and maximum X and Y values respectively. One study concludes that Min-Max can

outperform Lateration in experiments with large ranging errors (greater than 10%

standard deviation) [LR03].

 

Figure 2.5: Min-Max Position Estimation [SPS02] [LR03]

2.5.4 Angle of Arrival (AOA). Triangulation is the most common form of

angulation used to perform two-dimensional position estimation of an unknown node

given angle of arrival (bearing) estimates to two or more anchors. There are several

methods for performing position estimation using triangulation. The chosen method

is mostly driven by the hardware capabilities of the sensors in the network.

For example, given all nodes are capable of maintaining and sensing received

angles with respect to one global, constant, reference vector or axis (i.e, magnetic

north) [HB01b], then triangulating the position of an unknown only requires knowl-

edge of the angles of arrival for signals from two anchor nodes. This solution requires
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the unknown to first use the point-slope methods to determine the equation of the

lines between it and the two anchor. Then the position of the unknown is given by

the intersection of the two lines, which can be computed using linear algebra.

However, if the sensor platforms not equipped with compass-like hardware, the

process is more complicated. The most straightforward approach uses the distance

between pairs of anchors since it can easily be calculated using the Pythagorean

Distance Formula as well as the fact that anchors are capable of determining the

angles formed in their respective corner of the triangles. Figure 2.6 illustrates this

approach. Note that a single common reference vector (node B) is not required for

this approach to work. Given that an unknown knows the distance between two

neighboring anchors, side AB, as well as the bearing to each, θ, and the angles α

and β, the Law of Sines is applied to determine the distances between the unknown

and both anchor nodes. The same steps are applied to one or more subsequent

neighboring anchor nodes, node C for example, until the requirements for performing

trilateration are met. This technique ultimately transforms the triangulation problem

into a simpler trilateration problem.

Figure 2.6: Obtaining 2D Position Estimation using Triangu-
lation
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2.5.5 Range-free. Range-free position estimation techniques rely on the

results of trigonometry and/or geometry to derive position estimations from node

connectivity information. Connectivity criteria can range from mere radio communi-

cations connectivity to a comparison of received signal strength [LWH04].

Figure 2.7 shows two common convex position estimation approaches using tri-

angular and circular regions. It demonstrates how positions of unknowns nodes can be

confined to convex regions using connectivity constraints to anchors. Specifically, the

unknowns are constrained to the gray areas. Many connectivity based algorithms per-

form a center of gravity calculation to best approximate the position of the unknown

node.

Comparing Figures 2.7a to 2.7b and Figures 2.7c to 2.7d, it is easy to see how

a more precise position estimation can be derived given a greater number of anchors

with a favorable geometry. The main limitation of many range-free localization ap-

proaches is that they require a high anchor density to achieve acceptable position

accuracy. For many AWSN applications, this makes a range-free approach impracti-

cal.

Figure 2.7: Obtaining 2D Convex Position Estimation using
Connectivity
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2.6 Position Refinement

After completing initial position estimation, every node in the AWSN has an

estimated position in the overall network topology. The average position error is

dependent on the accuracy of the ranging measurements as well as the position es-

timation method. However, initial position estimation errors can be significantly

reduced by additional post processing of initial estimates [SRB01] [SPS02] [LR03].

In general, the accuracy of position estimates can be greatly improved through

an iterative refinement process, where each node uses the most recent position es-

timates and ranging measurements of neighboring nodes to recompute their own

position. The Hop-TERRAIN algorithm [SRB01] uses a refinement step that pe-

riodically recalculates position estimates based on updates from neighboring nodes.

To avoid erroneous position estimates, it computes and uses confidence levels of po-

sition estimates as well as ensuring new position estimates are still within the reach

of the original estimated distances to anchors. The combination of these techniques

ultimately maintain a global gradient and prevent erroneous position estimates. Hop-

TERRAIN reduced its original position error of 39 percent of the maximum range to

just 5 percent after 25 iterations [SRB01]. Alternatively, a refinement method that

maintains a global gradient and prevents “local oscillation” of neighboring nodes, also

results in improved position estimates. N-hop Multilateration algorithm accomplishes

this by using a repeatable refinement sequence [SPS02].

Data correlation from sensed events can further refine position estimates. Specif-

ically, Online Localization [GKLP04] and Manifold Learning Localization [PH04], op-

portunistically use information gained through the normal mission of a AWSN. Hence,

their strength is the use of data inherent in AWSN applications which ultimately im-

proves localization accuracy without additional communications costs.
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2.7 Relevant Research

Node Localization in wireless sensor networks has been an area of active research

in recent years, with many new and innovative approaches focused on achieving ef-

ficient, accurate, and cost-effective localization in ad-hoc networks. Although much

of the research has focused on experimenting with “ideal” isotropic networks, some

have used more irregular or anisotropic AWSN applications. Some common sources

of irregularity in a network are initial node placement, obstructions and irregular net-

work shape, and the addition of mobile nodes. This section presents current research

in these different dynamics and challenges of AWSN localization. Lastly, the two

algorithm used for this research, APS-Euclidean [NN01] and Map-Growing [LSS04],

are introduced and discussed in terms of their performance in anisotropic and mobile

networks.

2.7.1 Anchor Placement. Anchor assisted localization algorithms rely on

network node connectivity and anchor placement [SHS01]. The probability that a

node in the network has a connected degree of 3 or more is a key characteristic to

consider when planning AWSN deployment. The probability a single node will have

a degree greater than a desired number, d, for large values of N is

P (d) =
(NPR)d

d!
e−(NPR) and, (2.3)

P (d ≥ n) = 1−
n−1∑
i=0

P (i), (2.4)

where N is the number of nodes in a network, PR = πR2

L2 is the probability a node is in

transmission range of another node, R is the transmission range in meters, and L is the

approximate side length (in meters) of a square network [SHS01]. The percentage of

anchors needed to meet the minimal requirement of atomic multilateration decreases

as the average node degree increases.

Some AWSNs use self-configuring anchor networks [BHE00] [BHE01] [BHET04].

This algorithm requires a given anchor density to achieve a quality estimate of local-
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ization [BHET04]. Therefore, the probability a packet is successfully received without

interference in a self-configuring network is

Psuccess =
Tx

T

(
1− Tx

T

)ρπR2

(2.5)

Pcollision = 1− Psuccess (2.6)

where ρ is the anchor density, Tx is the transmission time, and T is the beaconing

interval [BHET04]. Thus, the probability of a successful transmission decreases ex-

ponentially with increased anchor density. This results in an inability to efficiently

localize in a timely manner. This leads to an anchor density threshold where the

benefits of the increased number of anchors is outweighed by the network congestion

it causes.

Unfortunately, guaranteeing a deployed network has the desired isotropic anchor

density is difficult and often not feasible. Thus, algorithms have been developed

for networks with anchor densities that would be considered either too low or too

high. For networks with low and medium anchor densities, the HEAP algorithm

detects regions with poor localization and selects optimal areas for placing additional

anchors [BHE01]. This algorithm has all the anchors in a network share information

with each other (directly or indirectly), followed by each individual anchor using that

information to determine candidate points for new anchor placement. Every anchor

forwards their candidate points to a single central node, referred to as the placer.

The placer is responsible for choosing the best candidate points for new anchors;

ultimately improving the distribution of anchors in the network. A major drawback

of this algorithm is that it relies on a single placer node; creating a single point of

failure. Additionally, HEAP assumes new nodes can be placed in the chosen locations.

Although not mentioned in the HEAP research, a similar or modified algorithm could

take advantage of mobile nodes to move already deployed anchors to new positions

to improve the topology of the deployed anchors.
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Since adding new anchors to a deployed AWSN is not always feasible, AWSNs

can be deployed with a higher anchor density than desired. In these instances, the

STROBE algorithm (Selectively TuRning Off BEacons) can “reduce channel con-

tention while exploiting the spatial diversity and redundancy of densely deployed”

anchors [BHE01]. STROBE nodes have three states: Designated, Voting, and Sleep.

In the “Designated” state a node is an active anchor and sends periodic beacons,

while in the sleep state, a node is inactive for the set period of time. Upon entering

the voting state, a node is an active anchor for the designated period of time. At

the end of the designated time period, a node determines if it should transition to

the “Designated” state or the “Sleep” state based on the number of active anchors in

its neighborhood and the anchor density threshold. If the number of active anchors

is less than the anchor density threshold, the node automatically transitions to the

“Designated” state. However, if the number is equal to or greater than the anchor

density threshold, the probability it transitions to the “Designated” state is

p =
µthresh − 1

ζ
(2.7)

where µthresh is the anchor density threshold and ζ is the number of active anchors

in the 1-hop neighborhood. The probability a node transitions to the sleep state is

therefore (1 - p) [BHET04]. Techniques such as STROBE maintain uniform anchor

density, while minimizing and fairly distributing power consumption at each beacon.

2.7.2 Irregular Network Shape. One common assumption many localization

algorithms make is network topology is isotropic, i.e., the properties are identical in

all directions. Some sources of anisotropic characteristics are irregular or non-uniform

network topology, irregular geography, and obstructions such as buildings, obstacles,

and foliage. These types of network irregularities strongly influence localization per-

formance. Therefore, a robust range-based localization algorithm must accurately

estimate geographic distances from unknowns to anchors in anisotropic sensor net-

works to achieve accurate position estimates.
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Many localization algorithms such as APS rely on high node and/or anchor

densities to localize in an anisotropic network. The performance of some of the APS

algorithms to a Map-growing algorithm in different anisotropic network configurations

has been studied [LSS04]. The network configurations varied the initial node distri-

bution (Normal Grid with variance & Random Normal), as well as the network shape

(Full-Square, O-Shaped, and C-Shaped). The variation in node distribution models

the randomness of an AWSN deployment, while the shape-variation models topo-

logical irregularities due to geography, man-made structures, or node failures. The

localization error of the DV-distance algorithm ranges from under 30 of maximum

range in the Normal Grid configuration shown in Figure 2.8a, to over 220 percent

in a C-shaped random network configuration as shown in Figure 2.8b. Additionally,

given an average node degree of 12.3, the Euclidean algorithm requires a high anchor

density (30%+) in all network configurations (isotropic or anisotropic) to localize at

least 80% of the deployed nodes.

Figure 2.8: Isotropic versus Anisotropic Network Configura-
tions [NN03b]

2.7.3 Node Mobility. Many anchor based localization algorithms do not

model or plan for node mobility [SPS02] [NN03b] [BHET04]. However, most can

achieve and maintain localization in mobile networks by simply refreshing location

estimates frequently when a node moves. Unfortunately, these frequent updates in-
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crease the communication overhead and corresponding power costs of performing lo-

calization.

Dynamically localizing mobile nodes with stationary anchors make achieving

localization difficult, since as node speed increases so do position estimation er-

rors [BM02]. However, Monte Carlo Localization (MCL), a technique originally devel-

oped for robotics localization, takes advantage of node mobility to improve position

estimation accuracy while reducing the required number of anchor nodes [DFBT99].

MCL incorporates a position prediction and an update phase, which occurs between

each node step or movement. The prediction phase derives a new position estimate

based on adding the uncertainty due to the step/movement to the previous sample

of possible positions. Prediction is followed by an update phase where new measure-

ments or observations, such as the presence or absence of landmarks, are considered

to filter and update the set of new potential positions. Repeating this process allows

a node to continually update and even improve its position estimate. This method

also improves localization accuracy in networks with anisotropic radio propagation.

Specifically, in networks with variation in the maximum radio range, an implementa-

tion of MCL adapted for use in AWSN node localization, achieves 35% to 65% lower

position estimate error compared to other proposed range-free algorithms [HE04].

Alternatively, some network applications may not require mobile nodes to know

its current position. In these cases, a mobile node may simply send a hello message

upon stopping, and after receiving replies from its new neighbors, it estimates its

position as it normally would. This avoids unnecessary communications overhead

and a potential increase in position estimation errors due to re-estimating position

while mobile.

Anchor nodes are not always stationary [SHS04] [PBDT05] [SR04]. For example

a single mobile anchor can assist unknown nodes to localize [SR04]. Furthermore, the

mobile anchor does not have to be a sensor platform; it could be a person, animal,

or even an aircraft. If these approaches could work, the communications cost to
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achieve localization would be drastically reduced as the need to propagate ranging

measurements is eliminated and the number of beacon signals is reduced to one. One

major challenge is the anchor node must follow a trajectory that covers the entire

deployment area while ensuring each point receives at least three non-collinear beacon

signals [SR04].

2.7.4 Algorithms. Although many algorithms are not designed for node mo-

bility or network irregularity, several are still capable of localizing in such scenarios;

though often with degraded performance. Map-growing and APS-Euclidean algo-

rithms can be so modified. The remainder of this section discusses these algorithms

along with how network irregularity impacts them.

2.7.4.1 APS-Euclidean. Of all the APS algorithms, Euclidean is said

to be more accurate and more predictable in anisotropic networks [NN01]. This ver-

sion of the APS algorithm propagates the true Euclidean distances to anchors while

the other algorithms use hop counts as distance estimates to anchors. The APS-

Euclidean algorithm has every node concurrently estimates distances to anchors in

the network [NN01] [NN03b]. Nodes must communicate with immediate neighbors;

sharing all estimated distances to anchors, distances to one-hop neighbors, and anchor

distance estimates of one-hop neighbors. Thus, the Euclidean algorithm uses second-

hop information. After obtaining distance estimates to three or more non-collinear

anchors, a node can estimate its position. However, upon receiving information re-

garding unknown anchors, a localized node continues to estimate its distance to them.

After estimating the distance to new anchors, a localized node propagates the esti-

mates to its neighbors, to further assist network localization.

Although APS-Euclidean is said to perform well in anisotropic networks of vary-

ing shapes [NN03b], in networks with low connectivity, only a small percentage of

nodes can localize due to the low neighbor degree and the resulting inability to es-

timate distances to anchors [LR03]. APS-Euclidean incorporates node mobility be-
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tween a newly positioned mobile node and its new neighbors. A mobile node sending

a hello packet in its new position, will result in responses from its new neighbors.

2.7.4.2 Map-Growing. The Map-growing algorithm is an incremental

localization algorithm [LSS04]. This algorithm is more complex than APS-Euclidean

in that it has three phases. The first is the election phase, where a single starting

node is elected and two subsequent neighboring nodes are chosen to make up a center

island or triangle of relative coordinates, with the starting node having the relative

position of (0,0). In the second phase nodes incrementally estimate their relative posi-

tions as the relative map grows. Lastly, the third phase floods the global and relative

positions of every anchor node in the network so every node can perform a transfor-

mation from the previously estimated relative coordinates to global coordinates. Like

the APS-Euclidean algorithm, Map-Growing requires one-hop and two-hop neighbor

information to satisfy the position estimation requirements.

Unlike APS-Euclidean, given a connected undirected network, Map-Growing

reaches 100% global localization with as few as three non-collinear anchor nodes

for both isotropic and anisotropic networks [LSS04]. Additionally, just like APS-

Euclidean, the impact of a mobile node is also constrained to a mobile node re-

entering the network and its new neighbors. However, during the election phase, it

is not desirable to have mobile nodes as it would require a more complex election

algorithm.

Regardless of the algorithm, node mobility increases communications overhead,

and can possibly impact network connectivity and shape. Depending on the type of

mobility (intelligent, organized, or purely random), this effect may or may not be

controllable. In the simplest case with purely random mobility, nodes continue to

move until successfully localized. The resulting network topology will most likely be

more highly connected than originally deployed.
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2.8 Summary

Node localization is a fundamental problem in AWSNs. This chapter provides

an overview of node localization in AWSNs. Additionally, some of the characteris-

tics, constraints, and difficulties associated with achieving accurate and efficient node

localization are discussed. The chapter presented in detail the four general steps of

localization, ranging, ranging dissemination, position estimation, and position refine-

ment. Lastly, this chapter discussed current research and challenges dealing with

achieving localization in non-isotropic and mobile AWSNs.
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III. Methodology

3.1 Introduction

This chapter defines a methodology to evaluate the effects of network shape,

network degree, and node mobility on AWSN localization. The overall experimental

design is discussed in detail, and the information needed to duplicate the experiment

is presented. Section 3.2 defines the problem and discusses the goals, hypothesis,

and approach used. Section 3.3 describes the system under test. Section 3.4 defines

the system services, and Section 3.5 describes the workload presented to the system.

Section 3.6 explains the metrics which are observed in the experiments. Sections

3.7 and 3.8 explain the parameters and factors. Section 3.9 explains the evaluation

technique and implementation details of the Map-Growing and APS-Euclidean local-

ization algorithms. Section 3.10 describes the experimental design, and Section 3.11

is a summary of the chapter.

3.2 Problem Definition

Localizing nodes in an AWSN is more difficult when conditions such as network

shape irregularities (due to geographic/environmental conditions), varying network

topologies (node degree and node distributions), and mobile sensor platforms are

introduced into the system.

3.2.1 Goals & Hypothesis. Operating for extended periods with limited

battery power is a major concern and challenge for AWSN applications. The main

goal of this research is to determine the effect of network shape, node degree, and

node mobility on the data communications costs and associated power required to

localize nodes. The hypothesis of this research is that the more irregular or dynamic

the network configuration, the more communications and power required to achieve

localization.

Another objective of this research is to examine the performance differences be-

tween an incremental algorithm and a concurrent algorithm in anisotropic and mobile
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networks. To satisfy this objective, the incremental Map-Growing algorithm and the

concurrent APS-Euclidean algorithm serve as representative algorithms for the exper-

iments. Map-growing localization algorithms claim to achieve better coverage than

APS-Euclidean in networks with low anchor ratios [LSS04]. However, according to the

results in [NN03b], APS-Euclidean achieves better accuracy and comparable coverage

for similar experiments. Besides examining the differences in coverage and position er-

ror, the communications cost differences of the two algorithms are determined. Since

Map-Growing is a multi-phase incremental algorithm, it is hypothesized it will have

higher communications overhead than the concurrent APS-Euclidean algorithm.

3.2.2 Approach. To achieve the above research goals, simulated AWSNs are

observed under various operating conditions. Specifically, the bits transmitted and

bits received responses are used to determine the associated power costs of performing

localization.

The effects of the different levels of each factor on the mean response are com-

puted and contrasted to determine if one level is significantly less or more than an-

other. This will determine the effect of varying levels of network “irregularity” on

the communications and respective power costs of each localization algorithm. Addi-

tionally, an analysis of variance will determine the percentage of variation explained

by each factor and their interactions. Furthermore, the effects of the algorithm on

the mean response are computed and contrasted to determine if the two algorithms

perform significantly different.

Additionally, an analytical power model for both algorithms is developed, which

provides a rough-order-of-magnitude estimate for the power costs associated with

data communications and processing during localization. A multiple linear regression

is performed on the Bits Transmitted and Bits Received responses to construct the

power model. Using the regression equations a prediction of the number of the number

of data bits transmitted and received can be obtained. Finally, a processing time is
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estimated based on the number of instructions executed and included in the power

model.

3.3 System Boundaries

Figure 3.1 shows the System under Test (SUT) and the Component under Test

(CUT). The SUT is the Wireless Sensor Network, which consists of anchors, un-

knowns, and ranging error. The hardware components of the sensor platforms are

considered outside of the SUT. The workload of the system include network shape,

network topology, sensor mobility, and data packets. Radio communication is as-

sumed to be isotropic and channel noise and interference are not modeled. Packet

collisions due to network congestion can occur, however due to random delays being

added to message transmission start times, they occur with very low probability. To

simplify the model, retransmissions of collided messages are not modeled. This sim-

plification is acceptable due to the redundancy in the algorithms. That is, the same

data typically gets transmitted multiple times throughout the course of localization.

Figure 3.1: Graphical Representation of SUT and CUT

The component under test is the localization algorithms. Input to the algorithms

include the location of each transmitting node in two-dimensional space, pair-wise

distances between nodes within their maximum transmission range, and an applied
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Gaussian error. Using this data, the algorithms estimate node positions when the

conditions for localization are met.

3.4 System Services

The system provides a position estimation service for static and mobile nodes.

A successful outcome is defined as a node deriving a position estimate within a desired

accuracy. Failure is defined as the estimated position being outside a desired accuracy

or a node being unable to estimate its position.

3.5 Workload

The workload for the system is the data that passes through the AWSN. This

data includes ranging data and control data. Ranging data are signals broadcasted to

neighboring nodes for the purpose of estimating distance between nodes. Nodes use

control data to disseminate ranging data and other information to meet the require-

ments of the localization algorithm. Network shape irregularities (due to geographic

or environmental conditions), varying network topologies (node degree and network

distributions), and mobility of sensor platforms, all influence the amount of data that

passes through the system and thus the workload of the system

3.6 Performance Metrics

The following metrics measure the performance of the localization algorithm:

• Power Consumption: Three critical power consuming functions of a sensor

platform include transmitting, receiving, and processing. Therefore, the average

number of bits transmitted, the average number of bits received, and processing

time are the power consumption metrics used in this research to measure power

consumed by the localization process. Bits Transmitted and Received responses

are the sum of all data bits transmitted and received respectively for the entire

network.
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• Accuracy: Commonly, position accuracy is the most important performance

metric of a localization algorithm. This study uses position error as a percentage

of maximum ranging distance to measure the average accuracy of the localization

algorithm.

• Percentage of Nodes Localized: The Percentage of Nodes Localized is de-

fined as the percentage of nodes which have successfully localized. Random net-

work configurations often result in disconnected or partially connected nodes.

Additionally range error and the resulting propagation of range and position

error sometimes results in nodes that do not satisfy position estimation require-

ments. Thus a localization algorithm will not always localize 100% of nodes

in the network. Therefore, the length of the experiments are determined by

the time it takes to reach 98% localization. However, if 98% localization is not

achieved by a certain point, then the experiment ends regardless.

3.7 Parameters

The following parameters affect the performance of the system under test.

3.7.1 System.

• Localization Algorithm: The method for achieving localization has a direct

impact on system metrics.

• Ranging Method: Localization algorithms use several different ranging meth-

ods. The particular method directly impacts maximum range capability and

ranging errors, and thus the performance metrics. While not specified, the

ranging method is assumed to have a maximum range of 3 distance units. The

measurement error is modeled as a zero mean Gaussian random variable with

a standard deviation of 10% of the actual distance between a pair of nodes.

Antennas are assumed to be omni-directional.
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• Communications Channel: Control messages and ranging data are sent

through the network over a single radio channel. The maximum transmission

range of the sensor nodes is 3 distance units.

3.7.2 Workload. Levels and variations in network shape, node degree, and

node mobility constitute the workload of the system. Networks have 200 nodes dis-

tributed according to a uniform distribution. All experiments use a standard anchor

ratio of 1 anchor for every 9 unknowns (i.e., 10%). Anchors are chosen at random

from the 200 nodes and therefore are also randomly distributed throughout the net-

work.

• Network Degree: Degree is defined as the average number of neighboring

nodes within the maximum range of a node. In other words, it is the average

number of one-hop neighbors of all nodes in the network. Degree directly affects

the performance of a localization algorithm. In a network where all nodes, an-

chors and unknowns, are randomly distributed, degree and the ratio of anchors

to unknowns ultimately determines the average anchor degree for any particular

node in the network. If the anchor ratio is constant while degree increases, so

does the average anchor degree.

• Network Shape: The overall area of a network and the physical layout de-

fines the network shape. The geographic topology of the environment as well

as obstacles or interference encountered determines the physical layout of the

network. Irregularities in network shape can affect the accuracy of a localization

algorithm as well as its ability to fully converge.

• Node Mobility: The addition of node mobility to an AWSN deployment di-

rectly impacts the performance of a localization algorithm. Mobile beacons

can improve the coverage, accuracy, and power consumption of a localization

algorithm [SR04] [PBDT05]. However, the addition of mobile unknowns will

increase the time, communications, and power required to localize.
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3.8 Factors

The four factors varied include the localization algorithm, network shape, aver-

age node degree, and node mobility. Table 3.2 shows the levels of each factor and the

remainder of the section describes the levels in detail.

Table 3.1: Factors & Levels

Factors Levels

System Characteristics Localization Algorithm Euclidean,
Map-Growing

Network Shape Full-square,
C-Shaped

Workload Characteristics

Degree
Low,
Medium,
High

Node Mobility

None,
Low,
Medium,
High

There are two baseline experiments, one for each localization algorithm. The

baseline experiments uses a full-square area consisting of 200 randomly distributed

static nodes with medium average node degree.

• Localization Algorithm: Discussed in Section 3.1.1, this research examines

the difference in data communications and associated power cost requirements

of the Map-Growing and the APS-Euclidean algorithms.

• Network Shape:

Full Square: Nodes are distributed throughout the entire square area. This

factor level models an ideal deployed environment with no obstacles.

C-Shaped: Nodes are distributed throughout the upper, left, and bottom

of the square area. To maintain the same average node degree, the sides of

the square area are scaled to ensure the nodes are occupying approximately the
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same area as the Full Square networks. This factor level models an irregular

network shape or an obstacle in the deployed environment.

• Degree: The average node degree has a direct impact on localization. High

network degree intuitively results in localization that is more accurate. However,

that same number of nodes covers a smaller area. The degree is varied to

determine the effect it has on power consumed during the localization process.

Degree is measured as the average one-hop neighbor degree of all nodes in the

network.

Low: Average node degree of 8.

Medium: Average node degree of 12.

High: Average node degree of 16.

• Node Mobility: Introducing mobile anchors into a network has been shown to

improve localization performance. However, introducing mobile unknowns into

a network will likely increase the data communications and associated power

costs of performing localization. Therefore, only mobile unknowns are modeled

in the experiments to isolate the impact they have on the power required to

localize. For these experiments, node mobility is modeled as a distinct random

exit and entry point into the network. Additionally, once a node estimates its

position, it remains static from that point on.

None: All nodes are static.

Low: At most, 10% of all unknowns are mobile at any given time.

Medium: At most, 30% of all unknowns are mobile at any given time.

High: At most, 50% of all unknowns are mobile at any given time.

3.9 Evaluation Technique

These experiments are conducted through simulation. The system is modeled,

simulated, and analyzed using OPNET Modeler 10.5. Simulation is chosen over an-
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alytical evaluation since no analytical models exist for measuring localization perfor-

mance in AWSNs. Direct measurement evaluation is not practical given the cost, size,

and complexity of setting up an operational AWSN. Evaluation using simulation is

ideal as it allows for repeatable and controllable experiments. The experimental de-

signs are validated by comparing the results to those found in the published research.

3.9.1 Experimental Setup. Both algorithms are designed and modeled using

the MAC, MAC layer interface, and WLAN transmitter & receiver of the Wireless

Station node model found in the OPNET 10.5A component library. Custom pro-

cess models are added to perform the functions of the localization algorithm being

modeled.

Sections 3.9.1.1 and 3.9.1.2 discuss design details and decisions made while im-

plementing the two algorithms.

3.9.1.1 Map-Growing Implementation Details. A brief overview of

the Map-Growing algorithm is provided in [LSS04]. However, the lower-level imple-

mentation details are not discussed in any detail. Therefore, many modeling and

implementation decisions are made that may effect the performance of the algorithm.

This section discusses several of the major decisions in the development of the Map-

Growing algorithm modeled using OPNET 10.5A (MG-OP).

The Map-Growing algorithm consists of three main phases. The first phase es-

tablishes the center of a relative local map. In [LSS04], it is assumed all nodes already

have distance estimates to all one-hop neighbors. To account for the communications

cost of this, MG-OP has every node randomly transmit a ranging beacon during the

first minute of simulation. A Gaussian ranging error is applied by the nodes receiving

the beacon messages at this time. During the second minute of the simulation, nodes

randomly send control messages to share and obtain all one-hop neighbor information,

which includes degree and distance estimates.
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The degree information is used to randomly select a single starting node that

meets the requirement of having a degree that is greater than or equal to the degrees

of all one-hop neighbors. To implement this in MG-OP, a flooding algorithm is used

to coordinate the selection of a single starting node. Furthermore, MG-OP goes a step

further and selects the node with the highest one-hop neighbor degree. If multiple

nodes have the highest degree, then the one with the smaller source ID is selected.

The flooding process begins by having all eligible nodes randomly transmit a starting

message that advertises its degree and eligibility. Upon receiving an election message,

a node compares the degree of the eligible node with the highest eligible degree known

to that point, and takes one of the following three actions:

1. If the degree is greater, or if the degree is equal and has a smaller source-ID,

the message is forwarded.

2. If the degree is less than or equal to the highest known degree with a larger

source-ID, the message is deleted.

3. If the eligible node is currently winning the election, the message is deleted.

The flooding process continues until the end of the election time window. At this

time, the elected starter identifies itself, if-and-only-if it did not receive a message

from another eligible node with a higher degree or equal degree and smaller source-

ID.

The starting node selects two one-hop neighbors to be part of the starting center

island as shown in Figure 3.2. MG-OP selects the two neighbors with the highest sum

degree that meet the collinearity requirements (all ∠’s > 30◦). These three nodes

establish a relative coordinate system with the starting node, u, at location (0,0)

and the second node, v, on the relative X-axis at location (a,0). The third node, s,

computes its relative (x,y) coordinates using (3.1) and (3.2) below [LSS04]. Note that

(3.2) below corrects a misprint [LSS04]. Furthermore, MG-OP always chooses the
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Figure 3.2: Map-Growing: Relative Map of Starting Center Island

positive value for y. The (x,y) coordinates are

x =
a2 + b2 − c2

2a
(3.1)

y = +

√
(−a + b− c)(a− b− c)(a + b− c)(a + b + c)

2a
(3.2)

where a is the distance from U to V , b is the distance from U to S, and c is the

distance from S to V .

With the relative coordinates established for the center island, the Map-Growing

phase begins. Upon localizing, a node broadcasts its estimated relative position.

During this phase, all unknown nodes localize either using trilateration or a 2-Anchor

localization method, depending on the relative anchor conditions shown in Figure 3.3.

Figure 3.3: Map-Growing: Relative Anchor Conditions [LSS04]
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Trilateration is always used when a node knows of three or more non-collinear

relative anchor neighbors (Figure 3.3, Case 1). Appendix A provides an example

of trilateration calculations. MG-OP localizes by averaging the trilateration results

for every combination of the three relative anchors that meet the residue criteria.

Residue is defined as the average of the differences of (1) the sum of the calculated

distance estimates between nodes (using the position estimate), and (2) the sum of the

original distance estimates (obtained in the ranging step). A large residue indicates

an “inconsistent set of equations” or a more inaccurate position estimate [LR03].

In [LR03], a position estimate is rejected when

Residue =

∑n
i−1

√
(x1 − x)2 + (y1 − y)2 − di

3
≤ MaxRange. (3.3)

However, pilot studies show that an even smaller maximum residue criteria avoids

extremely large position errors while not negatively affecting the algorithms ability to

localize. Thus a lower residue threshold results in a lower average position error for

the entire network. Therefore, MG-OP uses a maximum residue criteria of
MaxRange

12
.

Once a node receives a message from a second relative anchor, it waits 30 sec-

onds before attempting to localize with the 2-Anchor localize method. If a node

subsequently learns of localized non-collinear anchors during this time, it localizes

using trilateration as described above. However, if three or more collinear anchors

are available (Figure 3.3, Case 2), or if only two neighboring anchors are available

(Figure 3.3, Case 3), the 2-Anchor localization method is used which requires two-

hop neighbor information. Therefore, during this phase all messages not only consist

of one-hop neighbor information, but also all two-hop neighbor information. Instead

of requiring the transmission of two-hop neighbor information on-demand, two-hop

neighbor information is always transmitted to simplify the implementation of the algo-

rithm. This decision, therefore, models the worst case data transmission requirements

for this algorithm.
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The 2-Anchor localization method is similar to trilateration in that all com-

binations of two anchors are considered and the position estimation results of each

combination are averaged together. Specific details of this method are in Appendix A.

At the conclusion of the method, nodes subsequently use the “not being connected”

constraint to choose between the two potential position estimates. This means at

least one two-hop anchor is within maximum range of one but not both of the posi-

tion estimates. Given it is within range of one estimate, that position is not plausible

given the two-hop anchor would actually be a one-hope anchor. Therefore, the other

position estimate is chosen.

In some cases, a pair of one-hop anchors know several neighboring anchors

that are two-hop anchors of the localizing node. Additionally, in rarer cases there

may be three or more collinear one-hop neighbors. In these cases, MG-OP performs

the 2-Anchor localization method on all pairs of one-hop anchors and tests for the

“not being connected” constraints on every localized two-hop anchor. MG-OP then

estimates the position as the average of all valid results of every iteration of the

2-Anchor Localize method.

The third and last phase of the algorithm is the Transformation phase where

relative coordinates are transformed into global coordinates. To perform this transfor-

mation, every node must obtain the relative and global coordinates of three or more

non-collinear global anchor nodes by having all global anchors initiate a network

flood, similar to the one used in the election of the starting node. When obtaining

this information, all nodes with the exception of global anchors transform their rela-

tive coordinates into global ones using the affine transformation method described in

Appendix A. As with lateration, the affine transformation is performed on all combi-

nations of three global anchors and the estimated position results of each combination

that meets the residue criteria are averaged together. However, the maximum residue

criteria for the transformation is set to the maximum range, to transform a higher

percentage of the nodes. So, although the smaller residue limit does not have a signif-

icant impact on the ability of nodes to localize during the relative localization step, it
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does during the transformation. This is likely due to the increased distance separation

and the associated accumulation in distance errors between the nodes localizing and

the global anchors.

3.9.1.2 APS-Euclidean Implementation Details. A brief overview of

the APS-Euclidean algorithm is provided in [NN01]. This section discusses some of

the lower-level implementation details and choices made in the development of the

APS-Euclidean algorithm modeled using OPNET 10.5A (E-OP).

The main computational complexity of APS-Euclidean is in the methods that

derive distance estimates to anchors that may be multiple hops away. Distances to an-

chors are estimated one of two ways, either by voting between multiple combinations

of one-hop neighbors or by examining the relationship between one-hop neighbors,

two-hop neighbors, and anchors.

Figure 3.4 depicts the basic concept of APS-Euclidean’s method for propagating

anchor distances. Suppose the node trying to localize, Self, knows the distances a, b, c,

d, and e, it is able to determine it is either at distance r1 or r2 away from the Anchor.

E-OP determines the distances r1 and r2 the same way MG-OP establishes the relative

positions of the center island. It then follows the two potential relative positions for

Self in relation to n1, n2, and the Anchor, are computed using the 2-Anchor localize

method. Given the relative local map, the distances are obtained using Pythagora’s

generalized theorem for calculating the distances between two known points.

The preferred method of localizing in APS-Euclidean is by one-hop neighbor

voting. This method performs the above for two or more different pairs of one-hop

neighbors that meet the criteria of (a) being neighbors with one another, (b) both

have distance estimates to the same anchor and a common one-hop neighbor (other

than Self ). Additionally, the common one-hop neighbor must also have a distance

estimate to the same anchor. Given multiple combinations of one-hop neighbors

that meet this criteria, Self estimates its position as the average of half the distance

estimates that are the same (given no ranging errors), or the set of half of the distances
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Figure 3.4: APS-Euclidean: Anchor Distance Propagation [LR03]

that have the smallest standard deviation (given ranging errors). [NN01] does not

discuss setting a limit on the maximum number of combinations of one-hop neighbors,

or their subsequent one-hop common neighbors for this voting method. Thus, E-OP

does not restrict this number. Therefore, the computational complexity of E-OP is a

worst case.

The secondary method for determining distance to an anchor consists of per-

forming the voting method with a single pair of one-hop neighbors, followed by ex-

amining their relation with a common neighbor. This common neighbor must not be

a one-hop neighbor of Self and it also must have a distance estimate to the anchor

of interest. It follows that Self uses the “not being connected” constraint (also used

in MG-OP), to choose between the two position estimates.

This requires Self to not only know the distance estimates between one and

two-hop neighbors, but also the distance estimates from two-hop neighbors to an-

chors. Therefore, like MG-OP, this implementation of APS-Euclidean requires nodes

to always forward one-hop and two-hop neighbor information.

Once a node obtains distance estimates to three or more anchors, it uses trilat-

eration to estimate its position. Even after a node localizes, it continues to estimate

distances to additional anchors to further propagate anchor distances that may assist
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the rest of the network in localizing. No limit is placed on the maximum number of

anchors a node will use to determine a distance estimate.

3.10 Experimental Design

A full factorial design is conducted for this experiment. Two of the factors have

2 levels, one has 3, and the other has 4 levels. Therefore, a single replication of the

full factorial design consists of 2×2×3×4 = 48 experiments. These experiments are

shown in Table 3.2. The advantage of this design is that every possible combination

of configuration is examined, allowing the effects of every factor and their interactions

to be determined.

Table 3.2: Experimental Design: Factors & Levels

Localization
Algorithm

Network
Shape

Network
Degree

Node
Mobility

APS-Euclidean
Full Square
C-Shaped

L, M, H
L, M, H

None, L, M, H
None, L, M, H

Map-Growing Full Square
C-Shaped

L, M, H
L, M, H

None, L, M, H
None, L, M, H

The length of each simulation varies according to the time required for each

experiment to successfully converge on position estimations. Using a 90% confidence

interval, repeating each experiment 30 times provides a sufficient statistical basis for

analysis. The largest variance in the data will most likely occur in the experiments

with the most irregularity (e.g., C-Shaped, Low Degree, and High Mobility) since net-

work irregularity introduces significantly more variability into the experiment. Given

30 repetitions, a total of 1,440 simulations are executed. Assumptions about the data

and measurements errors are (1) measurement errors are statistically independent,

(2) measurement errors are normally distributed with a mean of zero, and (3) the

variance of measurement errors is constant. These assumptions are verified using the

appropriate approximate visual tests.
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3.11 Summary

This chapter defines a methodology to determine the effect of network shape,

degree, and node mobility on the data communications and associated power needed

for a node to localize nodes in an AWSN. The system boundaries, services, and

workload are defined. Additionally, performance metrics, system parameters, and

experimental factors are explained in detail. Lastly, the evaluation technique and

experimental design is given.
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IV. Results and Analysis

4.1 Introduction

This chapter presents experimental results and analysis. Section 4.2 discusses

the validation results of the OPNET implementations of the Map-Growing and APS-

Euclidean localization algorithms. Section 4.3 explains how the data is collected

and analyzed. Section 4.4 evaluates the results of the Mean Percent Localized and

Mean Position Error Responses. Section 4.5 presents an in-depth analysis of the Bits

Transmitted and Bits Received responses for both algorithms. Section 4.6 presents

a power model for each algorithm based on a multiple linear regression of the Bits

Transmitted and Bit Received responses. Section 4.7 briefly discusses other findings

of this research. Lastly, Section 4.8 provides a summary of the chapter.

4.2 Algorithm Validation

The OPNET implementation of both algorithms are validated by comparing the

simulation results for percent localized and position error to those published in [LSS04]

and [NN01] respectively. The ultimate goal is to determine if the OPNET implemen-

tations result in similar behavior and performance.

4.2.1 Map-Growing Algorithm. The OPNET implementation of the Map-

Growing algorithm (MG-OP) is tested on both the Normal Grid and the Normal

Random network layouts described in [LSS04]. Both scenarios are run with 13 differ-

ent range errors, from 0% to 12%. Thirty repetitions of the 26 experiments are run,

resulting in a total of 780 simulation runs. Table 4.1 shows the parameter values for

both the Normal Grid and Normal Random scenarios.

Table 4.1: MG-OP: Validation Simulation Settings

Validation Parameter Normal Grid Settings Normal Random Settings
Square Side Length (units) 18 20
Number of Nodes 100 200
Range (units) 3 3
Average Node Degree 6.5 12.3
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The published results state that 100% of nodes are localized for every scenario.

However, the simulated results ranged from an average of 98% to 100% of nodes

localized. Inspection of several of the specific trials where 100% localization is not

achieved shows that nodes not localized are either fully disconnected, partially con-

nected (1-neighbor), or minimally connected (2 or 3 neighbors) with the inability to

meet localization requirements due to near-collinear conditions combined with large

range errors. Since the Map-Growing algorithm does not clearly define techniques

allowing for successful localization in these situations, the slightly lower percent lo-

calized results are deemed unavoidable.

The simulation results for the Normal Grid scenario are shown in Figure 4.1 and

the results for the Normal Random scenario are shown in Figure 4.2. The published

results [LSS04] are visually estimated and shown as the “basis” data series in both

figures. Comparing the simulated results (with 90% confidence intervals) to the “ba-

sis” clearly shows MG-OP does not achieve the same position error performance. It

Figure 4.1: MG-OP: Mean Position Error Response for Normal Grid Net-
work

is interesting to note that the average position error performance of MG-OP is gener-

ally better for the Normal Grid scenario but worse for the Normal Random scenario.

The published results [LSS04] state that 900 repetitions are performed. However,
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Figure 4.2: MG-OP: Mean Position Error Response for Normal Random
Network

no confidence intervals are given and the raw data was unavailable when requested.

Although, the average position error results are much higher, the best simulated ex-

periments (the “Simulated (Min)” data series) achieved a position error very close to

the “basis”. All experiments with zero range error result in no error in the position

estimation.

Since many of the lower-level implementation details of the Map-Growing algo-

rithm are not provided, it is possible that differences and missing optimizations may

be the cause of the performance differences. However, it is also important to mention

that “basis” data was the result of a Matlab simulation. Since Matlab is a table-driven

simulator and OPNET is an event-driven simulator, this may also contribute to the

performance differences. In the OPNET simulation, nodes receive update messages

from neighbors at varying times throughout the scenario. These update messages

often only contain partial neighborhood information, resulting in nodes making lo-

calization decisions without having all of one-hop and two-hop node information. It

is possible that the Matlab simulation assumes total awareness of this information

when making decisions. Other than these conjectures, no reason for the performance

difference could be determined. However, the trends of the OPNET simulations are

51



similar to the “basis”. Furthermore, because position error is not used a basis for com-

parison, the model is deemed a good representation of an anchor-based incremental

localization algorithm and is therefore acceptable for the purpose of this research.

4.2.2 APS-Euclidean Algorithm. The OPNET implementation of the APS-

Euclidean algorithm (E-OP) is tested using a normal random network scenario [NN01].

Table 4.2 lists the parameters values used and the factor levels varied for these ex-

periments. How anchors are placed in the network are not mentioned in [NN01].

Therefore, anchors are uniformly selected from the random uniform distribution of

nodes. A full-factorial experiment is performed on 5 different random network layouts,

resulting in 180 simulations.

Table 4.2: E-OP: Simulation Settings

Parameter / Factor Settings

Square Side Length (units) 17.5

Number of Nodes (units) 100

Range (units) 3

Average Node Degree 7.6

Anchor Ratio 0.05, 0.1, 0.2, 0.5, 0.9

Percent Range Error (StDev) 0.0, 0.02, 0.05, 0.1, 0.2, 0.5, 0.9

The simulation results for the mean percent localized response are shown in

Figure 4.3, while the published percent localized results are shown in Figure 4.4. The

results are close to the published results and generally follow the same trend and

therefore are acceptable.

The simulated results for the mean position error response are shown in Fig-

ure 4.5, while the published results are shown in Figure 4.6. Generally, E-OP follows

the same performance trend of the published results. There are only four points in

the simulated results that bear mentioning. Two configurations, 10% anchors with

10% range errors, and 10% anchors with 90% range errors, were approximately 20%

below the published results. Also, the results of the configuration with 20% anchors
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Figure 4.3: E-OP: Simulated Percent Localized Response

Figure 4.4: APS-Euclidean: Previously Published Percent Localized Re-
sponse [NN01]

and 20% range errors are about 15% below the published results. Lastly, the 90%

range error with 90% anchors is approximately 10% above the published results. All

other design points are within about ±5% of the published results and all experiments

with zero range error resulted in no error in the position estimation. This leads to the

conclusion that E-OP performs similarly to the published results and is functionally

sound. The model is a good representation of a anchor-based concurrent localization
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algorithm, since position error is not used as a basis for comparison and the trends

are similar. Therefore it is acceptable for the purpose of this research.

Figure 4.5: E-OP: Simulated Mean Position Error Response

Figure 4.6: APS-Euclidean: Mean Position Error Basis [NN01]

4.3 Data Collection and Analysis Methods

The experiments are tested or repeated on 30 different random network layouts.

The length of the experiments are determined by the time it takes to reach 98%
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localization. However, if 98% localization is not achieved by a certain point, then the

experiment ends regardless. For MG-OP, this time is 2,700 seconds and for E-OP

1,700 seconds. MG-OP requires an extra 1,000 seconds to complete the election and

transformation phases. Additionally, both algorithms have a 1,600 second window

in which nodes may be mobile. For MG-OP, mobility starts at approximately 400

seconds, immediately following the election phase and ends at 2,000 seconds. However,

E-OP initiates mobility at the beginning of the simulation and ends at 1,600 seconds.

For both algorithms, 100 seconds is allocated after the end of mobility, to allow newly

positioned ‘mobile’ nodes to localize. After the 100 second window, MG-OP has 600

seconds to complete its transformation phase.

Data Transmissions and Receives are calculated in the OPNET custom process

models and a running total is maintained by each individual node. Only the size of

the data being sent is recorded. Therefore, no lower-level communications overhead

such as packet headers and trailers are considered. However, additional overhead can

be later accounted for as a percentage of goodput in the regression equations. Given

that the amount of data sent is determined by the type of message and the amount

of neighbor information being sent, messages vary in size. Upon completion of a trial,

each node computes the totals for each response and records the results in a file.

Furthermore, at the end of every run the appropriate responses for the entire network

are calculated and saved to a separate file.

The simulation generates individual values for position error, bits transmitted

and bits received for every node. The simulation also records the mean value for

position error and percent localized, the total number of bits transmitted and received.

MiniTab 14 is used to further consolidate the data and display it in graphical form.

The computation of effects are computed in Microsoft Excel, and the Analysis of

Variance (ANOVA) for the performance metrics are performed with MiniTab 14.

MiniTab 14 provides native support for n-way ANOVA computations. All insignificant

factors (P-value > 0.1) and related higher-order interactions are removed (pooled)

from all ANOVA calculations. The result of pooling is that the degrees of freedom
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and the sum of squares for all removed factors and interactions are added to the

degrees of freedom and sum of squares of the error term, and mean square terms are

recalculated. The ANOVA tables presented reflect the final calculations after pooling.

After implementing node mobility into the custom process models, a simulation

abort due to invalid memory access occurred randomly for about 10% of the network

configurations. The total number of aborts for any one particular configuration is

approximately 33%. The cause of this problem was not determined. However, all

of the completed trials appear to behave normally. Therefore, 45 different random

seeds are used for the MG-OP experiments, of which 30 of the successfully completed

repetitions are randomly selected and used. Similarly, 40 different random seeds are

used for E-OP, of which 30 are also selected at random.

4.4 Percent Localized & Position Error Response Analysis

The main objective of an AWSN localization algorithm is to localize every node

with the smallest achievable position error. This section presents the experimental

results and analysis for the percent localized and position error performance metrics.

Figure 4.7 shows the mean percent localized and mean position error responses

(with 90% confidence intervals) versus the algorithm and network shape factors. As

expected, the plot shows that both algorithms localize fewer nodes for C-shaped

networks than they do for full Square networks. However, the resulting decrease in

percent localized performance in C-Shape networks is less drastic for E-OP. Figure 4.7

also shows that E-OP results in a mean position error performance significantly lower

than MG-OP with 90% confidence, regardless of the network shape.

Similarly, Figure 4.8 illustrates the effects of algorithm and degree on the mean

percent localized and mean position error responses. Both algorithms result in the

same trend. That is, as the degree of the network increases, so does the percentage

of nodes able to localize. This confirms the intuition that the higher the average

degree of a network, the easier it is for a localization algorithm to converge. It is also
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Figure 4.7: Interval Plots: Mean Percent Localized and Position Error Re-
sponses versus Algorithm and Shape

interesting to note how the reduction in percent localized between degree 12 to 8 is

substantially more than between degree 16 to 12. Specifically, the 68% localization

achieved by MG-OP, indicates that low degree networks are unsuitable for the Map-

Growing algorithm.

The low percent localized performance associated with low degree networks,

has a direct impact on the corresponding mean position error; drastically lowering

the mean position error performance for MG-OP degree 8 networks. However, this is

a reasonable response since networks with significantly fewer nodes localizing (holding

other factors constant) have much less propagation and accumulation of ranging/po-

sitioning error. In principle, the closer (in hop counts) localizing nodes are to anchors,

the more accurate their position estimate. For the incremental Map-Growing algo-

rithm especially, as a higher percentage of nodes localize, the overall average position

error increases due to the larger position error results of nodes further away from the

center island. With the exception of MG-OP degree 8, the position error significantly

decreases as the degree level increases, at a α = 0.1 significance level. This confirms

the expected trend that a higher degree results in more accurate position estimates.
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Figure 4.8: Interval Plots: Mean Percent Localized and Position Error Re-
sponses versus Algorithm and Degree

The interval plot also shows that E-OP achieves significantly lower mean position

error than MG-OP for networks with corresponding degrees.

Figure 4.9 show the interval plots for percent localized and mean position error

responses versus algorithm and mobility. The most obvious conclusion is 10% and

30% mobility levels significantly improve the percent localized response with 90%

confidence, regardless of the algorithm. Intuitively this effect makes sense, since

node mobility allows unconnected or poorly positioned nodes to potentially move

to other locations with better connectivity. Also, with the exception of the 10%

mobile networks, E-OP localizes significantly more nodes than does MG-OP. It is

likely the inability for MG-OP to localize with high mobility is a direct result the

incremental approach requiring a stable and uniformly distributed network to grow in

a timely manner. These results indicate that high mobility networks are unsuitable

for the Map-Growing algorithm. It is interesting to note how the percent localized

and position error plots share the same trends. This adds additional support to the

fact that the mean position error response is directly related to the percent localized

response.
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Figure 4.9: Interval Plots: Mean Percent Localized and Position Error Re-
sponses versus Algorithm and Mobility

Figure 4.10 shows the mean percent localized and mean position error for both

algorithms. Since the confidence intervals don’t overlap, the differences in the mean

percent localized and mean position error responses of the two algorithms are statis-

tically significant at a α = 0.1 significance level. This indicates E-OP localizes more

nodes and achieves more precise position estimates than does MG-OP.

4.5 Communications Response Analysis

This section presents an in-depth analysis, to include computation of effects

and an Analysis of Variance (ANOVA) for the total Bits Transmitted and total Bits

Received responses. The Bits Transmitted and Received responses are measured as

the sum of all data bits transmitted and received by every node in a network. For

readability of the graphs, 1,000,000 bits equals 1.0 Mega-bits.

Prior to statistical analysis of the data, visual tests confirm the ANOVA assump-

tions of independent observations and normally distributed residuals with constant

variance. Initial visual tests for both of the responses show the following:
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Figure 4.10: Interval Plots: Mean Percent Localized and Position Error
Responses versus Algorithm

• The scatter plot of Residuals versus Fitted Values show an increasing trend,

indicating a dependence of errors on the factor levels and a non-constant variance

of errors.

• The Normality Plot of Residuals is non-linear (s-shaped), indicating residuals

are not normally distributed.

• The ratio ymax

ymin
is large for each of the responses, indicating a transformation is

most likely necessary [Jai91].

Therefore, since observations are not independent and normally distributed

with constant variance, a Box-Cox (BC) Transformation is performed on both re-

sponses [Jai91]. MiniTab 14 determined the best BC transformation had parameter a

between 0.3 and 0.4. Therefore, a = 0.4 is used for both responses in both algorithms.

The visual tests on the transformed data show no trends and a constant spread in the

Residuals versus Fitted Values. The Normal Plot of Residuals is reasonably close to a

straight line. However, for MG-OP, the Normal Plot of Residuals result in short tails

consisting of approximately 50 outliers among the two responses. These outliers are
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shown in the Normal Plot of Residuals for the BC-Bits Received response shown in

Figure 4.11. Inspection of the outliers determined they correspond to the high mobil-

ity and/or low degree networks. These outliers are likely the result of uncontrollable

variability introduced by these factor levels. Thus, we propose that low degree and

high mobility networks may not be suitable for the Map-growing algorithm given this

instability, and the outliers are subsequently removed. The resulting Normal Plot

of Residuals shown in Figure 4.12 shows a good linear fit of residuals. Therefore,

the assumptions the transformed data is independent and normally distributed with

a constant variance are met. The results of all visual tests used for validating the

ANOVA assumptions are provided in Appendix C.

Figure 4.11: Normal Plot of Residuals for BC-Bits Received Response
(with outliers)

Figure 4.12: Normal Plot of Residuals for BC-Bits Received Response (out-
liers removed)

61



The largest number of high mobility, low degree outliers in a single experimental

configuration is 8. Therefore, to maintain a balanced experimental design, the number

of each MG-OP configuration is reduced by 8 by randomly removing non-outliers from

the results as necessary. This reduces the number of observations for MG-OP to 22.

The number of APS-Euclidean observations remain at 30. All statistical analysis

presented is based on the remaining observations, with all identified outliers removed.

Since the number of bits received is a function of the total number of bits

transmitted, both responses typically follow the same trends. Therefore the analysis

of these two responses is presented together. Sections 4.5.1, 4.5.2, and 4.5.3 present

the results and analyze how network shape, node degree, and node mobility affect

them. Section 4.5.4 presents the computation of effects on the responses for both

algorithms, while Section 4.5.5 provides the corresponding Analysis of Variance for

the responses.

4.5.1 Shape. Figure 4.13 shows the main effect of a C-Shape networks is

a decrease in the number of transmitted and received bits. That is, the number

of bits transmitted and received in a C-Shape network is significantly less than the

Square networks, at a α = 0.1 significance level. The one exception is with E-OP

where the difference between the bits received for the two shapes is not significant at

α = 0.1 significance level. These results do not support the hypothesis that network

irregularity leads to an increase in communications costs. From the previous section,

it is apparent that the irregular network shape ultimately affects the ability of nodes to

localize. This inability to localize results in a decrease in the amount of data known

about the network; ultimately decreasing the communications cost of the network.

However, it is likely that if the percent localized response were comparable to that of

a Square network, the C-Shape network would require a comparable, and most likely

not significantly different, number of bits transmitted and received.

4.5.2 Degree. The interval plots in Figure 4.14 confirm that an increasing

average node degree results in a higher communications cost. Although the responses
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Figure 4.13: Interval Plot: Communications Responses versus Algorithm
and Shape

of both algorithms support this fact, the most apparent effect is in the performance

of MG-OP. This is expected, since the amount of neighbor data sent increases with

neighbor degree. A visual comparison of the confidence intervals for the E-OP degree

12 and 16 networks show that the differences in the Bits Transmitted responses are

not statistically significant at a α = 0.1 significance level. This indicates degree has

less of an effect on communications for the E-OP algorithm than for MG-OP.

4.5.3 Mobility. The interval plots shown in Figure 4.15 confirm an increase

in the percentage of mobile nodes increases the number of bits transmitted and re-

ceived during localization. For both algorithms and both responses, the difference in

the mean responses from one level of mobility to another is statistically significant at

a α = 0.1 significance level.

4.5.4 Computation of Effects. This section analyzes the effects of each

level of the shape, degree, and mobility factors. The effects of the factor levels on

the Mega-bits Transmitted and Mega-bits Received responses are analyzed separately
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for each algorithm. Supporting tables for the computation of effects are provided in

Appendix B.

Figure 4.14: Interval Plot: Communications Responses versus Algorithm
and Degree

Figure 4.15: Interval Plot: Communications Responses versus Algorithm
and Mobility
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4.5.4.1 Bits Transmitted.

MG-OP. A summary of results for the computation of

effects on the Mega-bits Transmitted response for MG-OP is shown in Table 4.3. The

corresponding computation of effects tables are provided in Appendix B. The overall

mean response is 9.32 Mega-bits Transmitted. Since zero is not included in any of the

confidence intervals, the effects of all levels of all factors are statistically significant at

an α = 0.1 significance level. Furthermore, since no confidence intervals overlap for

the levels of any particular factor, all effects of the levels are significantly different from

one another with 90% confidence. As is the case with MG-OP, mobility and degree

also have the largest effect on the Bits Transmitted response for E-OP. Specifically,

the mean response of the 50% mobility level is approximately 37% higher than the

mean, and 100% higher than the mean response of a static network. Similarly, the

mean response for a high degree network is approximately 34% higher than the mean,

and 104% higher than a low degree network.

Table 4.3: MG-OP: 90% Confidence Intervals for Main Effects on Mega-bits Trans-
mitted

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 9.32 0.05 (9.24, 9.41)

Mobility Effects
Static -2.89 0.09 (-3.03, -2.75)

10% Mobile -1.32 0.09 (-1.46, -1.18)
30% Mobile 0.69 0.09 (0.55, 0.83)
50% Mobile 3.52 0.09 (3.38, 3.66)

Degree Effects
Low -3.28 0.07 (-3.40, -3.16)
Med 0.25 0.07 (0.13, 0.37)
High 3.03 0.07 (2.92, 3.15)

Shape Effects
Square 1.43 0.05 (1.35, 1.52)

C-Shaped -1.43 0.05 (-1.52, -1.35)

E-OP. A summary of results for the computation of effects

on the Mega-bits Transmitted response for E-OP is shown in Table 4.4. This table

shows the overall mean Mega-bits Transmitted response is 5.68. All factor levels have
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effects that are statistically significant at an α = 0.1 significance level. Additionally,

the confidence intervals do not overlap so all levels of each factor are statistically

different from one another. For E-OP, mobility has the largest affect on the number

of bits transmitted, with the mean response of the 50% mobility level being approx-

imately 86% higher than the mean, and 672% higher than the mean response of a

static network.

Table 4.4: E-OP: 90% Confidence Intervals for Main Effects on Mega-bits Trans-
mitted

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 5.68 0.03 (5.63, 5.73)

Mobility Effects
Static -4.31 0.05 (-4.39, -4.22)

10% Mobile -2.21 0.05 (-2.30, -2.13)
30% Mobile 1.62 0.05 (1.53, 1.71)
50% Mobile 4.90 0.05 (4.81, 4.99)

Degree Effects
Low -0.51 0.04 (-0.58, -0.43)
Med 0.14 0.04 (0.07, 0.21)
High 0.36 0.04 (0.29, 0.44)

Shape Effects
Square 0.39 0.03 (0.34, 0.44)

C-Shaped -0.39 0.03 (-0.44, -0.34)

4.5.4.2 Bits Received.

MG-OP. A summary of results for the computation of

effects on the Mega-bits Received response for MG-OP is shown in Table 4.5. The

overall mean response is 155.28 Mega-bits. The effect of the medium degree level is not

statistically significant at an α = 0.1 significance level, since the confidence interval

for the mean effect includes zero. All other effects are statistically significant at a

α = 0.1 significance level. Additionally, all effects are significantly different from one

another with 90% confidence. The response follows the same trend as the Mega-bits

Transmitted response does for this algorithm. Thus, mobility and degree have the

largest affect on the mean response. The effects of the 50% mobile level is the most

significant with a response that is 101.57 Mega-bits more than the mean response.
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Table 4.5: MG-OP: 90% Confidence Intervals for Main Effects on Mega-bits Re-
ceived

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 155.28 1.38 (153.01, 157.55)

Mobility Effects
Static -69.24 2.39 (-73.17, -65.31)

10% Mobile -41.90 2.39 (-45.82, -37.97)
30% Mobile 9.56 2.39 (5.64, 13.49)
50% Mobile 101.57 2.39 (97.64, 105.50)

Degree Effects
Low -65.25 1.95 (-68.45, -62.04)
Med -2.43 1.95 (-5.64, 0.77)
High 67.68 1.95 (64.47, 70.89)

Shape Effects
Square 26.10 1.38 (23.83, 28.37)

C-Shaped -26.10 1.38 (-28.37, -23.83)

Table 4.6: E-OP: 90% Confidence Intervals for Main Effects on Mega-bits Received

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 82.54 0.62 (81.52, 83.56)

Mobility Effects
Static -62.33 1.07 (-64.10, -60.56)

10% Mobile -34.04 1.07 (-35.81, -32.28)
30% Mobile 21.09 1.07 (19.32, 22.86)
50% Mobile 75.29 1.07 (73.52, 77.05)

Degree Effects
Low -17.72 0.88 (-19.16, -16.27)
Med -0.03 0.88 (-1.47, 1.42)
High 17.74 0.88 (16.30, 19.19)

Shape Effects
Square 1.53 0.62 (0.51, 2.55)

C-Shaped -1.53 0.62 (-2.55, -0.51)

E-OP. Table 4.6 summarizes the main effects on the Mega-

bits Received response for E-OP. The overall mean response is 82.54 Mega-bits Re-

ceived. All effects are significantly different from one another with 90% confidence.

The effect of the medium degree level is not statistically significant at an α = 0.1

significance level, given the confidence interval includes zero. All other effects are

statistically significant at a α = 0.1 significance level. The response follows the same

trend as the Mega-bits Transmitted response does for this algorithm.
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4.5.5 ANOVA. This section provides an Analysis of Variance of the pre-

dictors, shape, degree, mobility, and their respective interactions. The resulting pro-

portion of variation in the response explained by each predictor is discussed. The

Adjusted Coefficient of Determination, R2-Adj, indicates the proportion of variation

in the response data that can be attributed or explained by the factors. All predictors

with P-values less than 0.1 are statistically significant with 90% confidence.

4.5.5.1 Bits Transmitted.

MG-OP. Table 4.7 is the ANOVA of the MG-OP BC-Bits

Transmitted response. The coefficient of determination, R2-Adj, indicates 92.85% of

the variation in the response is explained by the factors and their interactions. The

ANOVA results indicate 42.2% of the variation is attributed to degree, while only

27.6% of the variation is attributed to mobility. This is somewhat unexpected, given

the amount of additional messages random mobility requires. However, it is likely that

the election and transformation phases of the Map-Growing algorithm is essentially

masking the effects of mobility. That is, all networks regardless of the mobility level

participate in the election and transformation phases, which like mobility also requires

a large amount of message traffic. Therefore, the degree of the network affects the

bits transmitted during these stages significantly more than mobile nodes do during

the mobility phase. Network shape explains 12.36% of the variation in the number

of bits transmitted. Lastly, the interactions of the factors account for 11.01% of the

variation, while the remaining 6.84% is attributed to experimental error.

E-OP. Table 4.8 shows the ANOVA of the BC-Bits Trans-

mitted response using E-OP. The R2-Adj indicates 96.23% of the variation in the

response is explained by the factors and their interactions. The ANOVA indicates

92.97% of the variation is attributed to mobility, while only 0.85% by degree, and

0.59% by shape. This is not surprising given the number of messages introduced
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Table 4.7: MG-OP: ANOVA for BC-Bits Transmitted

Sum of Percentage Degrees of Mean F- p-
Component Squares Variation Freedom Squares Computed Value
SSY 1.95E+08 528
SS0 1.88E+08 1
SST 7.36E+06 527
Shape 9.10E+05 12.36% 1 9.10E+05 911.15 < 0.0005
Degree 3.10E+06 42.20% 2 1.55E+06 1555.01 < 0.0005
Mobility 2.03E+06 27.60% 3 6.77E+05 678.04 < 0.0005
Shape*Degree 4.38E+05 5.96% 2 2.19E+05 219.45 < 0.0005
Shape*Mobility 2.82E+05 3.83% 3 9.39E+04 94.06 < 0.0005
Degree*Mobility 5.87E+04 0.80% 6 9.78E+03 9.79 < 0.0005
Shape*Degree*Mobility 3.08E+04 0.42% 6 5.14E+03 5.15 < 0.0005
Errors 5.03E+05 6.84% 504 9.98E+02

Se = 31.595 R2-Adj = 92.85%

by random mobility. The interactions of the factors only account for 1.94% of the

variation, while the remaining 3.65% is attributed to experimental error.

Table 4.8: E-OP: ANOVA for BC-Bits Transmitted

Sum of Percentage Degrees of Mean F- p-
Component Squares Variation Freedom Squares Computed Value
SSY 1.38E+08 720
SS0 1.24E+08 1
SST 1.47E+07 719
Shape 8.69E+04 0.59% 1 8.69E+04 112.45 < 0.0005
Degree 1.25E+05 0.85% 2 6.25E+04 80.83 < 0.0005
Mobility 1.37E+07 92.97% 3 4.57E+06 5911.17 < 0.0005
Shape*Degree 5.74E+04 0.39% 2 2.87E+04 37.14 < 0.0005
Shape*Mobility 1.05E+05 0.71% 3 3.51E+04 45.46 < 0.0005
Degree*Mobility 5.77E+04 0.39% 6 9.61E+03 12.43 < 0.0005
Shape*Degree*Mobility 6.61E+04 0.45% 6 1.10E+04 14.25 < 0.0005
Errors 5.38E+05 3.65% 696 7.73E+02

Se = 27.8 R2-Adj = 96.23%

4.5.5.2 Bits Received.

MG-OP. Table 4.9 shows the ANOVA for the BC-Bits

Received response using MG-OP. The R2-Adj indicates 92.6% of the variation in

the response is explained by the factors and their interactions. According to the

ANOVA, degree and mobility explain 38.07% and 38.06% of the variation in the
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response respectively. Network shape only account for 7.52% of the variation in the

response. The interactions of the factors only account for 9.27% of the variation,

while the remaining 7.08% is due to experimental error.

Table 4.9: MG-OP: ANOVA for BC-Bits Received

Sum of Percentage Degrees of Mean F- p-
Component Squares Variation Freedom Squares Computed Value
SSY 1.82E+09 528
SS0 1.69E+09 1
SST 1.31E+08 527
Shape 9.85E+06 7.52% 1 9.85E+06 535.42 < 0.0005
Degree 4.99E+07 38.07% 2 2.49E+07 1355.43 < 0.0005
Mobility 4.99E+07 38.06% 3 1.66E+07 903.38 < 0.0005
Shape*Degree 5.34E+06 4.07% 2 2.67E+06 145.02 < 0.0005
Shape*Mobility 4.89E+06 3.73% 3 1.63E+06 88.54 < 0.0005
Degree*Mobility 9.14E+05 0.70% 6 1.52E+05 8.28 < 0.0005
Shape*Degree*Mobility 1.01E+06 0.77% 6 1.68E+05 9.12 < 0.0005
Errors 9.27E+06 7.08% 504 1.84E+04

Se = 135.65 R2-Adj = 92.6%

E-OP. Table 4.10 shows the ANOVA for E-OP’s BC-Bits

Received response. The first thing to note is that the p-value for the shape factor is

0.868. This indicates that there is an 86.8% probability that any variation explained

by shape is actually due to random effects. Therefore, shape and its subsequent

interactions are pooled from the ANOVA computations. The resulting ANOVA, Ta-

ble 4.11, has a coefficient of determination of 92.79%. Mobility explains 86.49% of

the variation in BC-Bits Received response, while degree level only explains 6.23% of

the variation. Lastly, the interactions of degree and mobility only explains 0.18% of

the variation, and the remaining 7.10% is experimental error.

4.5.6 Summary. The results of this analysis clarify what factors are the

major contributors to variation in the overall communications overhead. The perfor-

mance differences of the two algorithms is also evident.

Even though irregular network shape tends to have a negative effect on local-

ization convergence and accuracy, it does not negatively impact the communications
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Table 4.10: E-OP: Initial ANOVA for BC-Bits Received

Sum of Percentage Degrees of Mean F- P-
Component Squares Variation Freedom Squares Computed Value
SSY 1.22E+09 720
SS0 1.08E+09 1
SST 1.38E+08 719
Shape 287 0.00% 1 2.87E+02 0.03 0.868
Degree 8614549 6.23% 2 4.31E+06 415.20 < 0.001
Mobility 119695044 86.49% 3 3.99E+07 3846.01 < 0.001
Shape*Degree 842307 0.61% 2 4.21E+05 40.60 < 0.001
Shape*Mobility 1274271 0.92% 3 4.25E+05 40.94 < 0.001
Degree*Mobility 255698 0.18% 6 4.26E+04 4.11 < 0.001
Shape*Degree*Mobility 482832 0.35% 6 8.05E+04 7.76 < 0.001
Errors 7220276 5.22% 696 1.04E+04

Se = 101.85 R2-Adj = 94.61%

Table 4.11: E-OP: ANOVA for BC-Bits Received

Sum of Percentage Degrees of Mean F- P-
Component Squares Variation Freedom Squares Computed Value
SSY 1.22E+09 720
SS0 1.08E+09 1
SST 1.38E+08 719
Degree 8.61E+06 6.23% 2 4.31E+06 310.55 < 0.0005
Mobility 1.20E+08 86.49% 3 3.99E+07 2876.59 < 0.0005
Degree*Mobility 2.56E+05 0.18% 6 4.26E+04 3.07 0.006
Error 9.82E+06 7.10% 708 1.39E+04

Se = 117.771 R2-Adj = 92.79%

overhead required to perform localization. In fact, for both algorithms, the irregular

C-shape networks tend to significantly lower the number of bits transmitted and re-

ceived during localization. However, as expected, mobility and degree have a more

significant effect. For the Map-Growing algorithm, the effects of degree and mobility

are similar; as the degree and mobility levels increase, so does the communications

cost of achieving localization.

It is interesting to see how the percent of variation explained by degree and

mobility differ for the two algorithms. The multi-phase incremental approach used by

Map-Growing consists of two flooding phases where the number of transmits and re-

ceives during those phases are highly dependant on the average degree of the network.

This ultimately masks the amount of variation explained by mobility. Alternatively,
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using APS-Euclidean’s single phase concurrent approach, the effects of mobility over-

shadow the effects of degree.

Lastly, a comparison of the communications cost of the two algorithms shows

that APS-Euclidean’s mean responses for bits transmitted and received are signifi-

cantly less than MG-OP at an α = 0.1 significance level. Figure 4.16 further confirms

these results.

Figure 4.16: Interval Plots: Mean Mega-Bits Transmitted and Received
Responses versus Algorithm

4.6 Power Models

This section presents power models useful for predicting the power consumption

of a node during the localization process. Two models are derived. The first assumes

optimal receiver capabilities, where a receiver is on only when a message is being

received. Thus, the power consumed while receiving is based on the number of bits

received. The second power model assumes the receiver is always on and therefore

uses the time to localize to determine the power consumed while receiving. Both

models assume receiving and processing are independent of one another. That is, a

node’s processor may be in sleep mode while the receiver is on, and vise versa. This

section introduces the models, explains how they are derived, and presents example
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predictions based on the algorithm and various levels of the factors varied. The general

equation for power consumed is

Cp = [a0T + a1R + a2P ]mA-hours (4.1)

where a0 and a1 are the predicted Bits Transmitted and Received responses, and a2

is an estimate of the worst case number of instructions required for a single node to

localize. The values for a0 and a1 are obtained via the reverse transformation of the

multiple linear regression equations for BC-Bits Transmitted and BC-Bits Received,

respectively. Parameters T, R, and P represent the total current used in mA-hours

for transmitting a0 bits, receiving a1 bits, and processing a2 instructions respectively.

Suppose transmissions use X mA, receives use Y mA, processing uses Z mA, a pro-

cessor capable of executing i instructions per second, and a transmit and receive data

rate of j bits per second, the equations in Table 4.12 define parameters T, R, and P.

The 3,600 in the denominator of T and P converts the transmit and receive data rate

from bits/second to bits/hour.

Table 4.12: Parameter Summary for Power Models

Algorithm /
Parameter Parameter Value

T = X
3600×j mA-hours/bit

R = Y
3600×j mA-hours/bit

P = Z
3600×i mA-hours/instruction

Section 4.6.1 derives parameters a0 and a1, while Section 4.6.2 discusses the

derivation of the estimate for a3. Finally, Section 4.6.3 contains an example power

predication and analysis of the results.
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4.6.1 Multiple Linear Regression. This section presents the results of mul-

tiple linear regression for the BC-Bits Transmitted and BC-Bits Received responses,

derived using MiniTab 14.

Earlier in Section 4.5, the visual tests for independent and normally distributed

residuals with a constant standard deviation are discussed and verified. However, a

linear relationship between predictors and the response is also necessary to perform

multiple linear regression. The scatter plots of BC-Bits Received versus degree and

mobility, and BC-Bits Transmitted versus degree and mobility for both algorithms

are provided in Appendix C. These plots verify that the relationship between the

factors and the responses are in fact linear.

Tables 4.13, 4.14, 4.15, and 4.16 summarize the results of the multiple linear

regression for BC-Bits Transmitted and Received for both algorithms. The bi columns

are the coefficient of the predictor and is used directly in the regression equations

shown later in Table 4.17. The sbi
column is the standard error of the coefficients

and is used to calculate the confidence intervals. Given the degrees of freedom of the

error term is 524 for MG-OP and 715 for E-OP, the 90% confidence intervals of the

predictor terms are calculated using the z-variate, zα=0.1 = 1.645. Additionally, all

p-values are less than 0.0005, indicating that each of the predictors are significant.

Predictors are selected based on their p-value and their impact on the coefficient of

determination. However, to simplify the regression, higher-order predictors are only

used if the sum of the increase in R2-Adj is greater than 1%.

Table 4.13: MG-OP: Regression Parameters for BC-Bits Transmitted

Predictor bi sbi p-value 90% Confidence Interval
Constant 287.46 9.30 <0.0005 (272.16, 302.75)

Shape -41.51 2.26 <0.0005 (-45.23, -37.78)
Degree 23.23 0.69 <0.0005 (22.09, 24.37)

Mobility 319.77 11.79 <0.0005 (300.38, 339.16)
Se = 52.0187 R2-Adj = 80.6%
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Table 4.14: MG-OP: Regression Parameters for BC-Bits Received

Predictor bi Sbi
p-value 90% Confidence Interval

Constant 441.48 36.58 <0.0005 (381.31, 501.65)
Shape -136.60 8.91 <0.0005 (-151.25, -121.95)
Degree 93.89 2.73 <0.0005 (89.41, 98.38)

Mobility 1595.64 46.38 <0.0005 (1519.34, 1671.94)
Se = 204.652 R2-Adj = 83.20%

Table 4.15: E-OP: Regression Parameters for BC-Bits Transmitted

Predictor bi Sbi
p-value 90% Confidence Interval

Constant 275.91 6.68 <0.0005 (264.92, 286.90)
Shape -21.97 2.63 <0.0005 (-26.30, -17.65)
Degree 3.68 0.40 <0.0005 (3.02, 4.35)

Mobility 1232.49 26.38 <0.0005 (1189.09, 1275.89)
Mobility2 -1051.72 50.60 <0.0005 (-1134.96, -968.48)

Se = 35.2672 R2-Adj = 93.9%

Table 4.16: E-OP: Regression Parameters for BC-Bits Received

Predictor bi Sbi p-value 90% Confidence Interval
Constant 431.51 18.49 <0.0005 (401.09, 461.93)
Degree 33.37 1.38 <0.0005 (31.10, 35.64)

Mobility 3376.49 90.36 <0.0005 (3227.85, 3525.13)
Mobility2 -2551.20 173.40 <0.0005 (-2836.44, -2265.96)

Se = 25.58 R2-Adj = 92.4%

Given these regression parameters, the generic regression equations take the

form of

yp = b0 + b1x1p + b2x2p + · · ·+ bkxkp (4.2)

where yp is the predicted response and the xip values are the input levels that corre-

spond to the predictor coefficients, bi.

The R2-Adj values indicate between 80.6% and 93.9% of the variation in the

responses is explained by these regressions. Although the lower R2-Adj values indicate

less accurate predictions of the response, they are still useful for determining a rough-

order-of-magnitude estimate fits the measured response.
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4.6.1.1 Prediction Interval. The regression equations predict or es-

timate the response of the algorithms for various factor levels. The 90% confidence

intervals associated with the predicted results are derived using the standard deviation

of the predictions

Sŷp = Se

√
1

m
+ xp

T Cxp (4.3)

where se is the standard deviation of error values (given in the Regression Parameter

Tables), xp is the single column matrix of predictor levels, and C is the correlation

matrix of regression variables (provided in Appendix D) [Jai91]. Using the z-variate

1.645, it follows the 90% confidence intervals for the predicted results are

yp ∓ 1.645sŷp . (4.4)

The matrix xp contains the input levels of the predictors. For example, using the

APS-Euclidean BC-Bits Transmitted response, to predict the response for a square

shape network with a degree level of 14 and a mobility level of 40%, the xp is

xp =



1

0

14

0.4

0.16


. (4.5)

4.6.2 Processing Time. Without constructing a simulation of a processor,

or implementing the localization algorithms on hardware, there is no practical way

to precisely determine the processing time of localization. Therefore, a worst case

estimate is calculated for use in the power models. The OPNET custom process

model C-code is disassembled to Intel x8086 assembly instructions. Using the highest

observed node degree and the highest number of received messages by a single node as
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inputs, the assembly code is examined, and a upper-limit on the number of instructions

executed by a single node is determined for both algorithms. The estimated worst case

number of instructions executed for a single node using MG-OP is a2 = 150, 000, 000,

and for E-OP a2 = 2, 400, 000, 000 instructions. E-OP requires sixteen times more

processing than MG-OP, because the method used to obtain anchor distances are

much more computationally intensive than the methods used for localizing in MG-

OP. Also, once a node localizes in MG-OP it has no significant computations left to

perform with the exception of the affine transformation. Alternatively, E-OP requires

a localized node to continue to compute distance estimates to additional anchors,

to aide and improve the localization of other nodes. Even though MG-OP generate

more messages than E-OP on average, the E-OP simulations were still somewhere

about twenty times slower than MG-OP simulations. This intuitively indicates that

the ratio of the two estimates are proportionally accurate.

Table 4.17 summarizes the equations for a0 and a1, and the worst case a2 esti-

mates for both MG-OP and E-OP.

Table 4.17: Parameter Summary for Power Models

Algorithm/
Parameter Parameter Value
MG-OP

a0 = (287.46−41.51×Shape+23.23×Degree+319.77×Mobility)2.5

200
bits

a1 = (441.48−136.60×Shape+93.89×Degree+1595.64×Mobility)2.5

200
bits

a2 = 150,000,000 Instructions

E-OP

a0 = (275.91−21.97×Shape+3.68×Degree+1232.49×Mobility−1051.72×Mobility2)2.5

200
bits

a1 = (431.51−33.37×Degree+3376.49×Mobility−2251.20×Mobility2)2.5

200
bits

a2 = 2,400,000,000 Instructions
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4.6.3 Power Model Results. This section uses the power models discussed

above to estimate the power required to localize using both algorithms. An example

estimate and an analysis of the results are discussed. The estimates are based on

a full-square network with degree 14 and a mobility level of 40%. Thus, the input

matrix, xp, is the same as shown in (4.5).

4.6.3.1 Power Models with Optimal Receiver. Using xp as input to the

regression equations given in Table 4.17, the parameters for a0 and a1 are calculated

and shown in Table 4.18. This table also includes the 90% confidence intervals for the

predicted mean response that correspond to having m equal to 1, 30, or 100 future

observations.

Table 4.18: Example Predictions for Mega-Bits Transmitted and Received

Algorithm Parameter Mean 90%CI (m = 1) 90%CI (m = 30) 90%CI (m = 100)
MG-OP a0 14.92 (10.97, 19.63) (14.08, 15.80) (14.38, 15.48)

a1 280.69 (191.80, 390.09) (261.32, 300.48) (268.15, 293.16)

E-OP a0 10.86 (8.56, 13.48) (10.32, 11.40) (10.48, 11.26)
a1 127.91 (94.43, 167.48) (120.70, 135.39) (123.17, 132.78)

Table 4.19 provides example values for the variables used in defining parameters

T, R, and P. These values correspond to the specifications of Crossbow Technologies

MICA2DOT Wireless Microsensor Mote [Xbo05]. It is assumed for these calcula-

tions, that the mote’s 4MHz processor is capable of executing one instruction per

clock cycle. Given these values for ai, T, R, and P, the predictions are computed

and shown in Table 4.20. The results highlight two interesting findings. First of

all, the power consumed by a node due to the data communications overhead is ex-

tremely small, even with node mobility. In fact, even though the MG-OP algorithm

required twice the amount of power for data communications (0.116097 mA-hr) com-

pared to APS-Euclidean (0.056873 mA-hr), it still only requires 0.04% of the battery

capacity. Interestingly though, the estimated power required for processing given the

APS-Euclidean algorithm is substantially more than the power costs associated with
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Table 4.19: Power Model Example Parameter Values

Algorithm /
Parameter Parameter Value

T = 27
3,600×38,400 mA-hr/bit

R = 10
3,600×38,400 mA-hr/bit

P = 8
3,600×4,000,000 mA-hr/instruction

transmitting and receiving data. Consider, however, that this estimate is based on

rough-order-of-magnitude worst case scenario, with no computational optimizations

assumed. Given a receiver with optimal capabilities, these results show that the power

associated with data communications during node localization is extremely small.

Table 4.20: Power Model Example Predictions

a0T a1R a2P Total Power Consumed % of Battery
Algorithm (mA-hr) (mA-hr) (mA-hr) (mA-hr) (560mA-hr Capacity)

MG-OP 0.01 0.10 0.08 0.20 0.04%

E-OP 0.01 0.05 1.11 1.17 0.21%

4.6.3.2 Power Models with Receiver-Always-On. To ensure nodes re-

ceive all incoming messages, a synchronized Medium Access Control (MAC) protocol

could be used, or alternatively the receivers could be on at all times. Since these

experiments do not model a MAC protocol, the power model assumes that receivers

are always on during the localization process. Thus estimating the worst case power

required to receive.

This assumption means the total power required for receiving, a1R, is calculated

based on the time it takes to localize instead of the number of bits received. The total

power required for transmitting, a0T , and the total power required for processing, a2P ,

derived above remain unchanged.

79



Consequently, the experimental results are examined to estimate the total time

for the localization algorithms to converge. First, it is assumed the time to localize is

dependent on the mobility level of the network. The following estimates are based on

the average time to localize and the general trends in the response. The static network

localizes in the shortest amount of time (10 minutes), while the networks with the

highest level of mobility take the longest amount of time to localize (40 minutes for

MG-OP and 25 minutes for E-OP). The expressions for a1 in Table 4.21 are used to

estimate the time to localize for both algorithms. For these power models, the receive

power parameter, R, is given by the hardware specifications of the sensor platform.

Table 4.21: Alternate Receive Power Parameters

Algorithm a1

MG-OP [1
6

+ Mobility] hours

E-OP [1
6

+ (0.5×Mobility)] hours

Subsequently, a1 and R are multiplied to determine the power required to receive

for the entire a1 hours. Table 4.22 shows the updated estimate for the power consumed

during localization, given the same factor levels used in the earlier estimate. Having

the receiver always on in this second scenario significantly increases the overall power

required to localize for both algorithms. However, the power consumed by a node is

still relatively small, even with node mobility. For instance, even a network with a

60% mobility level and a degree of 18 consumes less than 2% of the 560mA-hr battery.

Thus, localization algorithms similar to Map-Growing and APS-Euclidean should

concentrate on achieving position accuracy, scalability, and the ability to converge,

rather than the power costs associated with data communications overhead.
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Table 4.22: Power Model Example Predictions

a0T a1R a2P Total Power Consumed % of Battery
Algorithm (mA-hr) (mA-hr) (mA-hr) (mA-hr) (560mA-hr Capacity)

MG-OP 0.01 5.67 0.08 5.76 1.03%

E-OP 0.01 3.67 1.11 4.79 0.86%

4.7 Size-Factor Analysis

The number of nodes in a network has a significant affect on the mean position

error performance of the Map-Growing algorithm. Therefore, a secondary experiment

using the number of nodes in the network as a factor is performed to compare the

scalability of the two algorithms. Networks consisting of 100, 200, 400, and 800 nodes

are tested with varying average node degree of degree 12 and 16. The results of these

experiments, shown in Figure 4.17, indicate that the position error performance of

the APS-Euclidean algorithm is essentially independent of the network size, while

Map-Growing is directly affected by the size of the network. That is, as network size

increases, so does the resulting mean position error.

Figure 4.17: Graph of Network Size Effects
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Using visual tests on the 90% confidence intervals, MG-OP achieves better mean

position error performance for network sizes of 100, at a significance level of α =

0.1. The mean position error performance of the two algorithms is not significantly

different for network sizes of 200. However, MG-OP achieves a significantly worse

mean position error for networks of size 400 and 800.

Since Map-Growing is a incremental algorithm, measurement errors originate at

a single starting point and continue to propagate and compound as the network grows.

The incremental approach used in the Map-growing algorithm is therefore not suitable

for larger networks with moderate ranging error. However, an incremental approach

such as Map-Growing may be useful in networks with smaller range error, networks

with as few as 3 anchor nodes, and networks with a small number of nodes (n ≤ 200).

These results emphasize the inherent strength in APS-Euclidean (a concurrent non-

shortest path algorithm), lies in its scalable and predictable performance for larger

networks.

4.8 Summary

This chapter discusses the effects of network shape, network degree, and node

mobility on the communications overhead associated with performing localization in

an AWSN. The experiments show that mobility and degree account for the major-

ity of variation in the Bits Transmitted and Bits Received responses, while network

shape has relatively little effect. It is also determined that the concurrent localization

approach used by the APS-Euclidean algorithm results in better localization perfor-

mance with a lower communications overhead than the incremental approach used by

Map-Growing. Power models are developed to predict the power costs of perform-

ing localization in a 200 node mobile AWSN. Lastly, power costs relating to data

communications are shown to be small with respect to the capacity of an average

battery.
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V. Conclusions

5.1 Introduction

This chapter reviews the objectives and the respective experiments of this re-

search. Additionally, a summary of the research conclusions and contributions are

provided. Last, potential areas of future research are discussed.

5.2 Conclusions of Research

This research examined the effects of network shape, average node degree, and

node mobility on the performance of AWSN localization. The research first analyzed

the effects of these factors on position estimation accuracy and the localization al-

gorithms to converge. However, the main goal of the research was to determine the

effect of shape, degree, and mobility on data communications overhead and the cor-

responding power costs required to localize. Additionally, the Map-Growing and the

APS-Euclidean algorithms were compared.

A few interesting conclusions relating to mean position error and mean percent

localized responses come from this research. For one, the resulting metrics show that

localization algorithms have a more difficult time localizing in irregular shaped net-

works and low degree networks. Specifically, the incremental Map-Growing algorithm

has the most difficulty, only achieving 75% localization in C-Shaped networks, and

68% in degree 8 networks. This finding indicates the incremental approach used in

Map-Growing is not suitable for low degree and irregularly-shaped networks. Inter-

estingly, it is also determined that a low percentage of node mobility, 10% to 30%, can

significantly improve the convergence of a localization algorithm. Low mobility levels

effectively allow disconnected or poorly positioned nodes to move to a better position,

while not negatively impacting the ability of localization to converge. However, 50%

node mobility negates this effect, and ultimately causes an incremental localization

method such as Map-Growing to perform both poorly and unpredictably.

The conclusion reached based on the first objective of this research is that mo-

bility and node degree account for the majority of variation in the bits transmitted
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and bits received. For both algorithms, the effects of degree and mobility are sim-

ilar; as the degree and mobility levels increase, so does the communications cost of

achieving localization. For Map-Growing, the percentage of response variation ex-

plained by the two factors are comparable. However, for APS-Euclidean, mobility

accounts for 92.91% of the variation in Bits Transmitted and 86.49% in Bits Re-

ceived. Additionally, although an irregular network shape tends to have a negative

effect on localization convergence and accuracy, it does not negatively impact the

communications overhead required to perform localization.

The second objective, to compare the performance of an incremental versus

a concurrent localization algorithm, found that the concurrent localization approach

used by the APS-Euclidean algorithm results in better overall localization performance

while requiring significantly less communications overhead than the incremental ap-

proach used by Map-Growing. Specifically, APS-Euclidean localized a significantly

higher percentage of nodes with a significantly lower mean position error than the

Map-Growing algorithm. APS-Euclidean is also more predictable, given that it per-

forms better with node mobility and it is more scalable. It is evident that because

the APS-Euclidean algorithm requires less communications overhead and because it

achieves better accuracy and convergence, it is the more stable and predictable al-

gorithm of the two. However, this is at the expense of processing time, given an

estimated 20 times more processing required compared to Map-Growing.

This research also develops Power Models to predict the power costs of perform-

ing localization in a 200 node mobile AWSN. Estimates are presented and analyzed.

Assuming the receiver is only on when receiving messages shows the power associ-

ated with the data communications overhead of the localization algorithms is less

than 0.02% of an average button-cell battery with a 560mA-hr capacity. Whereas,

assuming the worst case scenario where a node’s receiver must remain on to ensure

all messages are received, the results show that even in a high mobility high degree

configuration, less than 2% of the battery is consumed. Regardless, the total power

cost associated with data transmissions and processing time is relatively small.
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Given these results, it is apparent that the power associated with communi-

cations and processing is not the most critical aspect or concern of localization in

AWSNs. On the contrary, the primary focus in the development of localization algo-

rithms should be position estimation accuracy, robustness, and scalability.

5.3 Research Contributions

The following are the main contributions of this research:

• Network shape does not negatively impact data communications overhead in

node localization using APS-Euclidean and Map-Growing like algorithms.

• The average network degree and mobile nodes have the most significant effect

on the data communications overhead in node localization. As both factors

increase, so does the data communications overhead.

• Incremental localization approaches such as Map-Growing are not suitable for

use in networks with low degree, high percentage of node mobility, or networks

with more than 200 nodes.

• Even with high mobility and high degree networks, the overall data communi-

cations overhead associated with localization only consumes a small percentage

of a battery capacity.

5.4 Recommendations for Future Work

There are many additional areas of research in node localization for wireless

sensor networks. Specifically, follow-on research in these areas could be examined:

• Self-Organizing Mobile Networks: Given the effect of low levels of mobility,

it may be useful to examine ‘smart’ mobility algorithms to allow self-configuring

optimal placement and distribution of nodes. For example, targeting an opti-

mal average node degree and a node distribution would likely show significant

improvement in the accuracy, convergence, and possibly the size of the area

‘covered’ by the sensor network.
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• Mobile Anchors: Along the same line as self-organizing mobile networks, it

would be interesting to examine the possible modification of specialized anchor

placement algorithms such as HEAP and STROBE [BHE01], for self-organizing

mobile anchors. The goal of this work would also be to improve position estima-

tion accuracy, localization convergence, and area coverage of a sensor network.

• Examine Processing Costs: Lastly, it would be interesting to examine the

computational complexity and associated processing requirements of localiza-

tion algorithms. Specifically, given the processing estimates of this research, ex-

amining the real-time processing requirements for APS-Euclidean and/or other

localization algorithms would be useful in determining the significance of power

costs associated with processing required for localization. Given a high compu-

tational complexity, further examining tradeoffs of computational optimizations

verses the accuracy and convergence of the algorithms would be fruitful.

5.5 Summary

This chapter reviews the objectives and the respective experiments of this re-

search. The effects of node mobility, network degree, and network shape on node

localization performance is discussed. This research concludes that node mobility

and network degree have the largest affect on the bits transmitted and received dur-

ing localization, and therefore account for the largest percentages of variation in the

responses. Lastly, the power cost associated with the data communication overhead

is relatively small percentage of an average battery capacity.
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Appendix A. Position Estimation Techniques

A.1 Trilateteration

Trilateration is a form of triangulation, in which an unknown node uses the

estimated distances, di, to known positions (xi, yi) of three anchors in order to node to

estimate it position (x, y). Trilateration begins with deriving the system of equations

of the three circles centered around each of the anchor nodes with respective radii,

di [LR03]. The system of equations shown in (A.1), (A.2), and (A.3).

(x1 − x)2 + (y1 − y)2 = d1
2 (A.1)

(x2 − x)2 + (y2 − y)2 = d2
2 (A.2)

(x3 − x)2 + (y3 − y)2 = d3
2 (A.3)

The system is linearized by subtracting (A.3) from (A.1) and (A.2). The re-

spective results are shown in (A.4) and (A.5).

x1
2 − x3

2 − 2(x1 − x3)x + y1
2 − y3

2 − 2(y1 − y3)y = d1
2 − d3

2 (A.4)

x2
2 − x3

2 − 2(x2 − x3)x + y2
2 − y3

2 − 2(y2 − y3)y = d2
2 − d3

2 (A.5)

The linear equations are then placed in the form Ax = b, as shown in (A.6).

2(x1 − x3) 2(y1 − y3)

2(x2 − x3) 2(y2 − y3)

x =

x1
2 − x3

2 + y1
2 − y3

2 + d3
2 − d1

2

x2
2 − x3

2 + y2
2 − y3

2 + d3
2 − d2

2

 (A.6)

This system is then solved using the standard least-squares approach shown in (A.7).

[
x y

]
= (AT A)−1AT b (A.7)
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A.1.1 Residue. The residue of the position estimate (x, y) is computed as

shown in (A.8) to determine the consistency of the set of equations [LR03].

Residue =

∑n
i−1

√
(x1 − x)2 + (y1 − y)2 − di

3
(A.8)

A residue of zero indicates a position estimate that is exact given the estimated

distances. As the residue increases so does the inconsistency and/or inaccuracy of the

position estimate.

A.2 2-Anchor Localize Method

The 2-Anchor Localize method consists of using the estimated distances, di,

to known positions (xi, yi) of two anchors, to determine the two positions where an

unknown node may exist.

The method begins by deriving (A.9) and (A.10), which are the equations of the

circles based on the estimated distances, di, and positions (xi,yi) to the two known

anchor nodes.

(xp − x1)
2 + (yp − y1)

2 = d2
1 (A.9)

(xp − x2)
2 + (yp − y2)

2 = d2
2 (A.10)

Subsequently, (A.12), the equation of the straight line intersecting the the two

points where the circles intersect, is derived by setting (A.9) equal to (A.10) and

solving for y.

yp = mxp + c (A.11)

yp =
(−2x1 + 2x2)

(2y1 − 2y2)
xp +

(x2
1 − x2

2 + y2
1 − y2

2 − d2
1 + d2

2)

(2y1 − 2y2)
(A.12)
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Next, (A.12) is substituted into either one of the two circle equations, A.9 or A.10,

and rearranged into quadratic form, as shown in (A.13).

(1 + m2)x2
p + (2m(c− yi)− 2xi)xp + x2

i + (c− yi)
2 − d2

i = 0 (A.13)

It follows that the quadratic formula is used to solve (A.13), yielding the two x-

coordinates shown in (A.14) and (A.15).

xp1 = −b +

√
a2 + b2 − 2ac

2a
(A.14)

xp2 = −b−
√

a2 + b2 − 2ac

2a
(A.15)

The corresponding yp coordinates are solved for by substituting xp1 and xp2 into

(A.11), and solving for y respectively.

A.3 Affine Coordinate Transformation

Given three “control points” (i.e., Anchor nodes), whose coordinates are known

in two different coordinate systems (relative and global), the relative coordinates of an

unknown can be transformed into the corresponding global coordinate system, using

Affine Coordinate Transformation [WG97]. The affine transformation applies an x

and y scale factor, two translations of the origin, a rotation about the origin, and

a “small nonorthogonality correction between the x and y axes” [WG97]. These six

unknowns form the following mathematical model for affine transformation

X = ax + by + c (A.16)

Y = dx + ey + f (A.17)

Given the respective relative and global (x,y) coordinates of three anchors

(a1,a2,a3), the system of equations shown in (A.18) is formed. Similar to Latera-
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tion, the equations are placed in the form, Ax = L, and solved using the least squares

Equation shown in (A.19).



xa1 ya1 1 0 0 0

0 0 0 xa1 ya1 1

xa2 ya2 1 0 0 0

0 0 0 xa2 ya2 1

xa3 ya3 1 0 0 0

0 0 0 xa3 ya3 1





a

b

c

d

e

f


=



Xa1

Ya1

Xa2

Ya2

Xa3

Ya3


(A.18)

x = (AT A)−1AT L (A.19)
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Appendix B. Experimental Data Analysis Tables

Table B.1: MG-OP: Computation of Effects for Mean Percent Localized Response

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 73.82 95.80 94.57 84.93 7680.50 87.28 1.97 9.58 -17.18

Medium 97.77 99.82 99.11 95.70 8633.00 98.10 12.79 5.30
High 98.84 99.93 99.68 98.75 8738.50 99.30 13.99 11.89

C-Shape Low 35.07 67.14 55.34 38.36 4310.00 48.98 -36.34 -9.58
Medium 85.91 99.23 81.95 65.39 7314.50 83.12 -2.19

High 98.77 99.45 99.11 83.05 8368.50 95.10 9.78
Col Sum 10784.00 12350.00 11655.00 10256.00 45045.00
Col Mean 81.70 93.56 88.30 77.70 85.31
Mobility
Effect -3.62 8.25 2.98 -7.62

Table B.2: MG-OP: 90% Confidence Intervals for Main Effects on Mean Percent
Localized Response(% of Max Range)

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 85.31 0.35 (84.74, 85.88)

Mobility Effects
Static -3.62 0.60 (-4.60, -2.63)

10% Mobile 8.25 0.60 (7.26, 9.23)
30% Mobile 2.98 0.60 (2.00, 3.97)
50% Mobile -7.62 0.60 (-8.60, -6.63)

Degree Effects
Low -17.18 0.49 (-17.99, -16.38)
Med 5.30 0.49 (4.49, 6.10)
High 11.89 0.49 (11.08, 12.69)

Shape Effects
Square 9.58 0.35 (9.01, 10.15)

C-Shaped -9.58 0.35 (-10.15, -9.01)

Table B.3: E-OP: Computation of Effects for Mean Percent Localized Response (%
of Max Range)

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 86.90 95.53 92.28 87.63 10870.50 90.59 -1.90 2.39 -8.38

Medium 97.53 96.75 95.42 95.10 11544.00 96.20 3.71 2.88
High 99.65 97.63 97.10 97.05 11743.00 97.86 5.37 5.50

C-Shape Low 64.40 86.83 83.60 75.72 9316.50 77.64 -14.85 -2.39
Medium 90.20 96.62 96.67 94.68 11345.00 94.54 2.05

High 98.42 98.05 98.08 97.93 11774.50 98.12 5.63
Col Sum 16113.00 17142.50 16894.50 16443.50 66593.50
Col Mean 89.52 95.24 93.86 91.35 92.49
Mobility
Effect -2.97 2.75 1.37 -1.14

91



Table B.4: E-OP: 90% Confidence Intervals for Main Effects on Mean Percent
Localized Response(% of Max Range)

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 92.49 0.18 (92.19, 92.79)

Mobility Effects
Static -2.97 0.32 (-3.50, -2.45)

10% Mobile 2.75 0.32 (2.22, 3.27)
30% Mobile 1.37 0.32 (0.85, 1.89)
50% Mobile -1.14 0.32 (-1.66, -0.62)

Degree Effects
Low -8.38 0.26 (-8.80, -7.95)
Med 2.88 0.26 (2.45, 3.31)
High 5.50 0.26 (5.07, 5.92)

Shape Effects
Square 2.39 0.18 (2.09, 2.69)

C-Shaped -2.39 0.18 (-2.69, -2.09)

Table B.5: MG-OP: Computation of Effects for Mean Position Error Response (%
of Max Range)

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 128.17 158.45 111.01 72.75 10348.38 117.60 8.67 1.97 -11.90

Medium 128.11 123.24 117.77 90.38 10109.02 114.88 5.95 13.24
High 100.50 109.37 103.06 87.92 8818.57 100.21 -8.72 -1.34

C-Shape Low 67.86 120.97 69.08 47.91 6728.17 76.46 -32.47 -1.97
Medium 156.50 160.54 111.53 89.25 11391.98 129.45 20.53

High 121.62 134.23 122.02 82.03 10117.67 114.97 6.05
Col Sum 15460.72 17749.52 13958.39 10345.16 57513.78
Col Mean 117.13 134.47 105.75 78.37 108.93
Mobility
Effect 8.20 25.54 -3.18 -30.56

Table B.6: MG-OP: 90% Confidence Intervals for Main Effects on Mean Position
Error Response (% of Max Range)

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 108.93 1.83 (105.92, 111.94)

Mobility Effects
Static 8.20 3.17 (2.98, 13.42)

10% Mobile 25.54 3.17 (20.32, 30.75)
30% Mobile -3.18 3.17 (-8.40, 2.03)
50% Mobile -30.56 3.17 (-35.77, -25.34)

Degree Effects
Low -11.90 2.59 (-16.16, -7.64)
Med 13.24 2.59 (8.98, 17.50)
High -1.34 2.59 (-5.59, 2.92)

Shape Effects
Square 1.97 1.83 (-1.05, 4.98)

C-Shaped -1.97 1.83 (-4.98, 1.05)
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Table B.7: E-OP: Computation of Effects for Mean Position Error Response (% of
Max Range)

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 129.30 121.94 108.35 88.30 13436.63 111.97 16.20 -1.48 10.68

Medium 96.30 93.88 88.77 89.12 11042.06 92.02 -3.75 1.82
High 81.85 79.88 77.38 76.39 9465.13 78.88 -16.89 -12.50

C-Shape Low 98.17 122.30 98.60 84.61 12110.40 100.92 5.15 1.48
Medium 101.17 116.08 102.12 93.32 12380.79 103.17 7.40

High 91.70 89.75 87.16 82.05 10519.66 87.66 -8.11
Col Sum 17954.96 18714.87 16871.37 15413.48 68954.67
Col Mean 99.75 103.97 93.73 85.63 95.77
Mobility
Effect 3.98 8.20 -2.04 -10.14

Table B.8: E-OP: 90% Confidence Intervals for Main Effects on Mean Position
Error Response (% of Max Range)

Parameter Mean Effect Std Dev 90% Confidence Interval
Mean 95.77 0.88 (94.33, 97.21)

Mobility Effects
Static 3.98 1.52 (1.48, 6.48)

10% Mobile 8.20 1.52 (5.70, 10.70)
30% Mobile -2.04 1.52 (-4.54, 0.46)
50% Mobile -10.14 1.52 (-12.64, -7.64)

Degree Effects
Low 10.68 1.24 (8.63, 12.72)
Med 1.82 1.24 (-0.22, 3.87)
High -12.50 1.24 (-14.54, -10.46)

Shape Effects
Square -1.48 0.88 (-2.93, -0.04

C-Shaped 1.48 0.88 (0.04, 2.93)

Table B.9: MG-OP: Computation of Effects for Mega-bits Transmitted

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 4.51 6.48 9.13 13.32 735.74 8.36 -0.96 1.43 -3.28

Medium 7.36 8.55 11.38 16.94 973.21 11.06 1.74 0.25
High 9.25 10.45 13.67 18.05 1131.06 12.85 3.53 3.03

C-Shape Low 1.97 4.04 4.28 4.62 327.95 3.73 -5.60 -1.43
Medium 6.24 8.14 8.36 9.61 711.70 8.09 -1.24

High 9.28 10.35 13.29 14.52 1043.41 11.86 2.53
Col Sum 849.20 1056.30 1322.25 1695.32 4923.08
Col Mean 6.43 8.00 10.02 12.84 9.32
Mobility
Effect -2.89 -1.32 0.69 3.52
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Table B.10: E-OP: Computation of Effects for Mega-bits Transmitted

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 1.50 3.51 7.05 10.79 685.09 5.71 0.03 0.39 -0.51

Medium 1.44 3.20 7.80 11.25 710.74 5.92 0.25 0.14
High 1.29 3.33 8.66 13.00 788.47 6.57 0.89 0.36

C-Shape Low 0.74 3.44 6.04 8.31 555.80 4.63 -1.05 -0.39
Medium 1.64 3.87 7.19 10.17 686.04 5.72 0.04

High 1.62 3.42 7.08 9.94 661.54 5.51 -0.16
Col Sum 246.76 623.27 1313.96 1903.69 4087.68
Col Mean 1.37 3.46 7.30 10.58 5.68
Mobility
Effect -4.31 -2.21 1.62 4.90

Table B.11: MG-OP: Computation of Effects for Mega-bits Received

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 41.38 73.70 139.40 272.60 11595.81 131.77 -23.51 26.10 -65.25

Medium 90.15 114.40 175.53 350.40 16070.36 182.62 27.34 -2.43
High 145.26 169.95 242.31 361.53 20219.03 229.76 74.48 67.68

C-Shape Low 16.96 44.58 58.55 73.10 4250.08 48.30 -106.98 -26.10
Medium 74.51 106.20 131.99 179.60 10830.76 123.08 -32.20

High 147.99 171.49 241.28 303.89 19022.36 216.16 60.88
Col Sum 11357.38 14966.95 21759.47 33904.61 81988.40
Col Mean 86.04 113.39 164.84 256.85 155.28
Mobility
Effect -69.24 -41.90 9.56 101.57

Table B.12: E-OP: Computation of Effects for Mega-bits Received

Mobility (%)
Degree Row Row Row Shape Degree

Shape Level 0 10 30 50 Sum Mean Effect Effect Effect
Square Low 14.42 35.13 82.97 151.92 8533.20 71.11 -11.43 1.53 -17.72

Medium 18.72 40.92 98.99 154.88 9405.57 78.38 -4.16 -0.03
High 21.28 52.51 133.60 203.55 12328.42 102.74 20.19 17.74

C-Shape Low 9.04 40.04 76.08 109.01 7025.07 58.54 -24.00 -1.53
Medium 25.32 56.70 106.26 158.34 10398.43 86.65 4.11

High 32.51 65.68 123.87 169.27 11739.84 97.83 15.29
Col Sum 3638.38 8729.61 18653.37 28409.18 59430.55
Col Mean 20.21 48.50 103.63 157.83 82.54
Mobility
Effect -62.33 -34.04 21.09 75.29
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Appendix C. Visual Tests for Validation of ANOVA & Linear

Regression Assumptions

Figure C.1: MG-OP: Normal Plot of Residuals for BC-Bits Transmitted

Figure C.2: MG-OP: Residuals vs. Fitted Values Plot for BC-Bits Transmitted

Figure C.3: MG-OP: Histogram of Residuals for BC-Bits Transmitted
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Figure C.4: MG-OP: Normal Plot of Residuals for BC-Bits Received

Figure C.5: MG-OP: Residuals vs. Fitted Values Plot for BC-Bits Received

Figure C.6: MG-OP: Histogram of Residuals for BC-Bits Received
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Figure C.7: E-OP: Normal Plot of Residuals for BC-Bits Transmitted

Figure C.8: E-OP: Residuals vs. Fitted Values Plot for BC-Bits Transmitted

Figure C.9: E-OP: Histogram of Residuals for BC-Bits Transmitted
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Figure C.10: E-OP: Normal Plot of Residuals for BC-Bits Received

Figure C.11: E-OP: Residuals vs. Fitted Values Plot for BC-Bits Received

Figure C.12: E-OP: Histogram of Residuals for BC-Bits Received
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Figure C.13: MG-OP: Verification of Linear Relationship of BC-Bits Transmitted
and Received vs. Degree and Mobility

Figure C.14: MG-OP: Verification of Linear Relationship of BC-Bits Transmitted
and Received vs. Degree and Mobility
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Appendix D. Multiple Linear Regression Matrices

Table D.1: MG-OP: C-Matrix for BC-Bits Transmitted & BC-Bits Received

C = (XT X)−1 =

 0.0319562 −0.0018939 −0.0021307 −0.0115562
−0.0018939 0.0018939 0 0
−0.0021307 0 0.0001776 0
−0.0115562 0 0 0.0513611

 (D.1)

Table D.2: E-OP: C-Matrix for BC-Bits Transmitted

C = (XT X)−1 =


0.0359122 −0.0083333 −0.0015625 −0.03518 0.05304
−0.0083333 0.0055556 0 0 0
−0.0015625 0 0.0001302 0 0
−0.0351759 0 0 0.55939 −1.03643
0.053043 0 0 −1.03643 2.05891

 (D.2)

Table D.3: E-OP: C-Matrix for BC-Bits Received

C = (XT X)−1 =

 0.0234122 −0.0015625 −0.03518 0.05304
−0.0015625 0.0001302 0 0
−0.0351759 0 0.55939 −1.03643
0.053043 0 −1.03643 2.05891

 (D.3)
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