
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Optimizing Mean Mission Duration for Multiple-Payload Satellites Optimizing Mean Mission Duration for Multiple-Payload Satellites

John A. Flory

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aerospace Engineering Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Flory, John A., "Optimizing Mean Mission Duration for Multiple-Payload Satellites" (2006). Theses and
Dissertations. 3436.
https://scholar.afit.edu/etd/3436

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F3436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F3436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3436?utm_source=scholar.afit.edu%2Fetd%2F3436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

OPTIMIZING MEAN MISSION DURATION

FOR MULTIPLE-PAYLOAD SATELLITES

THESIS

John A. Flory, Captain, USAF

AFIT/GOR/ENS/06-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense or

the United States Government.

AFIT/GOR/ENS/06-08

OPTIMIZING MEAN MISSION DURATION

FOR MULTIPLE-PAYLOAD SATELLITES

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

John A. Flory, B.S.

Captain, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/06-08

OPTIMIZING MEAN MISSION DURATION

FOR MULTIPLE-PAYLOAD SATELLITES

John A. Flory, B.S.

Captain, USAF

Approved:

Dr. Jeffrey P. Kharoufeh
Thesis Advisor

Date

Dr. Stephen Baumert
Committee Member

Date

AFIT/GOR/ENS/06-08

Abstract

This thesis addresses the problem of optimally selecting and specifying satel-

lite payloads for inclusion on a satellite bus to be launched into a constellation.

The objective is to select and specify payloads so that the total lifetime utility of

the constellation is maximized. The satellite bus is limited by finite power, weight,

volume, and cost constraints. This problem is modeled as a classical knapsack prob-

lem in one and multiple dimensions, and dynamic programming and binary integer

programming formulations are provided to solve the problem. Due to the compu-

tational complexity of the problem, the solution techniques include exact methods

as well as four heuristic procedures including a greedy heuristic, two norm-based

heuristics, and a simulated annealing heuristic. The performance of the exact and

heuristic approaches is evaluated on the basis of solution quality and computation

time by solving a series of notional and randomly-generated problem instances. The

numerical results indicate that, when an exact solution is required for a moderately-

sized constellation, the integer programming formulation is most reliable in solving

the problem to optimality. However, if the problem size is very large, and near-

optimal solutions are acceptable, then the simulated annealing algorithm performs

best among the heuristic procedures.

iv

Acknowledgements

I would like to thank several people for their assistance throughout this re-

search effort. First, I would like to thank my advisor, Dr. Jeffrey Kharoufeh. His

feedback and careful attention to the research were integral to its success and to my

motivation throughout the entire thesis process. Also, I am indebted to my reader,

Dr. Stephen Baumert, for his valuable comments. I would also like to thank Mr.

Justin Comstock whose advice helped ensure the applicability of this research. Fi-

nally, I would like to thank Mr. Jack Brendmoen for providing some guidance on

the notional data.

John A. Flory

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . x

1. Introduction . 1-1

1.1 Background . 1-1

1.2 Problem Definition and Methodology 1-3

1.3 Thesis Outline . 1-5

2. Relevant Literature . 2-1

2.1 Payload Selection Strategies 2-1

2.2 Potential Optimal Solution Methodologies 2-2

2.2.1 Overview of Knapsack Problems 2-3

2.2.2 Dynamic Programming and KP/MKP 2-6

2.3 IP Formulation Results for KP/MKP 2-10

2.4 Potential Heuristic Solution Approaches 2-13

3. Mathematical Model Description 3-1

3.1 Model Assumptions and Definitions 3-1

3.2 Single-Satellite Model 3-6

3.2.1 Static and Deterministic Utility 3-7

3.2.2 Dynamic and Deterministic Utility 3-9

3.2.3 Static and Stochastic Utility 3-9

vi

Page

3.2.4 Dynamic and Stochastic Utility 3-10

3.3 Multi-Satellite Extension 3-11

3.4 Dynamic and Integer Programming Formulations . . . 3-14

3.4.1 Dynamic Programming Formulation 3-14

3.4.2 Integer Programming Formulation 3-17

4. Numerical Experimentation . 4-1

4.1 Exact Solution Methods 4-1

4.2 Greedy and Simulated Annealing Heuristics 4-2

4.2.1 Norm-Based Heuristics 4-2

4.2.2 Simulated Annealing Heuristic 4-6

4.3 Description of Experiment 4-9

4.3.1 Payload Utility Function 4-10

4.3.2 Notional Data and Problem Instances 4-11

4.4 Numerical Results and Summary 4-14

4.5 Random Problem Instances 4-25

5. Conclusions and Future Research 5-1

Bibliography . BIB-1

Appendix A. DP Enumeration Code A-1

Appendix B. IP Generation Code B-1

Appendix C. Simulated Annealing Code C-1

Appendix D. Random Neighbor Function D-1

Appendix E. 5-Norm Heuristic Code E-1

Appendix F. Weighted Norm Heuristic Code F-1

vii

Page

Appendix G. Greedy Heuristic Code G-1

Appendix H. Payload Survival Function H-1

Appendix I. Payload Utility Decay Function I-1

viii

List of Figures
Figure Page

1.1. Graphical depiction of payload MMD. 1-2

3.1. Graphical depiction of a dynamic programming solution (ξ = 2). . 3-17

4.1. Simulated annealing algorithm. 4-8

ix

List of Tables
Table Page

4.1. Simulated Annealing parameter settings. 4-7

4.2. Summary of solution methods. 4-9

4.3. Notional satellite payload data. 4-13

4.4. Notional satellite bus data. 4-14

4.5. Payload selection problem instances. 4-14

4.6. Maximum total utility (small instance 1). 4-15

4.7. Payload specifications (small instance 1). 4-15

4.8. Maximum total utility (small instance 2). 4-16

4.9. Payload Specifications (small instance 2). 4-16

4.10. Maximum total utility (small instance 3). 4-16

4.11. Payload specifications (small instance 3). 4-17

4.12. Maximum total utility (medium instance 1). 4-17

4.13. Payload specifications (medium instance 1). 4-17

4.14. Payload specifications (medium instance 1). 4-18

4.15. Maximum total utility (medium instance 2). 4-18

4.16. Payload specifications (medium instance 2). 4-18

4.17. Payload specifications (medium instance 2). 4-19

4.18. Maximum total utility (medium instance 3). 4-19

4.19. Payload specifications (medium instance 3). 4-20

4.20. Payload specifications (medium instance 3). 4-20

4.21. Payload specifications (medium instance 3). 4-20

4.22. Maximum total utility (large instance 1). 4-21

4.23. Payload specifications (large instance 1). 4-21

4.24. Payload specifications (large instance 1). 4-22

4.25. Payload specifications (large instance 1). 4-22

4.26. Maximum total utility (large instance 2). 4-22

4.27. Payload specifications (large instance 2). 4-23

4.28. Payload specifications (large instance 2). 4-23

4.29. Payload specifications (large instance 2). 4-23

4.30. Maximum total utility (large instance 3). 4-24

4.31. Payload specifications (large instance 3). 4-24

x

Table Page

4.32. Payload specifications (large instance 3). 4-24

4.33. Payload specifications (large instance 3). 4-25

4.34. Ranges of payload requirements for M1 problem instances. . . . 4-26

4.35. Ranges of bus capacities for M1 problem instances. 4-26

4.36. Ranges of payload requirements for M2 problem instances. . . . 4-26

4.37. Ranges of bus capacities for M2 problem instances. 4-26

4.38. Heuristic solution quality (100 replications of M1 random data). 4-27

4.39. Heuristic solution time (100 replications M1 random data). . . . 4-27

4.40. Heuristic solution quality (100 replications of M2 random data). 4-28

4.41. Heuristic solution time (100 replications M2 random data). . . . 4-28

4.42. Number of solutions beyond 5% optimality (100 replications M1 and
M2). 4-28

xi

OPTIMIZING MEAN MISSION DURATION

FOR MULTIPLE-PAYLOAD SATELLITES

1. Introduction

1.1 Background

The U.S. Department of Defense (DoD) spends approximately $18 billion dol-

lars annually on the development, procurement, and operation of satellites and other

space-based assets. According to a 2003 General Accounting Office report [9], many

of these acquisition programs consistently suffer from cost overruns and delays. In-

dividual satellites and satellite constellations constitute a sizable portion of these

space-based systems. However, it is possible that the costs of the satellite acquisi-

tion process may be greatly reduced through the application of methodologies that

more effectively allocate resources.

Satellites range in complexity from relatively simple $40-million GPS naviga-

tion satellites to complex and expensive half-billion dollar MILSTAR tactical com-

munication satellites. Although the current satellite design trend is toward simple

and inexpensive satellites due to mitigation of launch and component failures, pre-

vailing circumstances still necessitate the design and use of expensive, complex, mul-

tipurpose satellites. Because of the nature of funding, organizations often receive

large, irregular monetary allocations to acquire satellite systems, and in order to

use funding more effectively, satellites are designed to have as many mission capa-

bilities as possible. Furthermore, multiple satellites often work in concert forming a

constellation. As satellites in the constellation begin to degrade and lose function-

ality, decisions about how to best replace them given limited financial and material

resources must be made. Deciding which mission capabilities (i.e. payloads) to in-

1-1

clude on new satellites is paramount. Payloads must be selected according to the

functions they perform and given both physical and design parameter specifications

to ensure they are compatible with, and operate effectively on, the satellite bus.

One of the critical specifications of a satellite payload is its mean mission du-

ration (MMD). MMD is, approximately, a measure of the duration mission planners

can expect a payload to be functional. MMD is not a mean in the mathematical

sense, nor does it denote how long a payload will actually function. It simply pro-

vides mission planners a reasonable expectation of the amount of time the payload

will be useful. As shown in Figure 1.1, MMD is usually less than the design life of

the payload. Increasing a payload’s MMD is analogous to increasing its reliability.

This is accomplished by adding redundant systems and components as well as using

materials less susceptible to degradation. Such measures increase the payload’s cost,

weight, volume, and other requirements. These are resources for which a satellite

bus has only a finite capacity.

Survival
Probability

0

0.5

0.85

1

0.75

MMD Design Life

Time

Figure 1.1 Graphical depiction of payload MMD.

Some methodologies currently exist for selecting and specifying satellite pay-

loads. However, they are either very general and qualitative or so specific that their

1-2

application to general specification problems is very limited. This research seeks to

develop an analytical methodology to select and specify satellite payloads that has

sufficient generality for application to virtually any type of satellite constellation.

Such a method would take quantifiable characteristics present in every type of satel-

lite and payload and use that information in a methodical approach to make payload

selection and specification decisions. The use of operations research techniques can

greatly reduce the cost of a satellite constellation by allocating resources more ef-

fectively while simultaneously increasing its ability to achieve the overall mission

objectives.

1.2 Problem Definition and Methodology

Consider a satellite constellation observed at fixed times. Each satellite has a

set of payloads associated with it, and at each observation, the functional status of

each payload in the constellation is known. Also known are the MMDs and time in

service of payloads initially in the constellation. The survival distributions of similar

or dissimilar payloads are assumed to be statistically independent. At predetermined

times, single-satellite buses will be equipped with payloads from a fixed set of all

available payloads and launched into the constellation. Any selected payload must

be assigned a MMD specification from a finite set of MMD specifications available

to that payload. Each bus has finite power, cost, weight, and volume constraints. A

payload’s type denotes its specific function and is independent of its MMD specifica-

tion. Moreover, each payload has a utility associated with it though utility, as it is

used in this thesis, does not satisfy the strict definition of utility. Payload utility is

assumed to be a function of the payload’s relative importance, MMD specification,

and the expected number of functional like payloads in the constellation. The impor-

tance of a payload is analogous to its value to the mission. It is only dependent on

the payload’s type and is not affected by the payload’s MMD specification. Utility

dependence on the number of like-type, functioning payloads allows a payload’s util-

1-3

ity function to model diminishing marginal returns. It is assumed that a payload’s

power consumption is proportional to its utility. For a given payload type and MMD

specification, discrete functions are assumed to exist that give the cost, weight, and

volume resources consumed by the payload.

The objective is to select and specify payloads for the satellites being launched

such that the total overall utility of the constellation is maximized. Payload utility

can be static (constant over time) or dynamic (changing over time). Additionally, it

can be deterministic (known with certainty) or stochastic (probabilistic). Enumer-

ating each combination, utility can be characterized as one of the following: static

and deterministic, dynamic and deterministic, static and stochastic, or dynamic and

stochastic. The characterization of utility is integral to the form of the resulting

mathematical model for payload selection. The problem of selecting and specifying

satellite payloads is similar to a class of mathematical programming problems known

as knapsack problems. Given a set of items, each having an associated profit and

weight, the knapsack problem seeks to place them in a knapsack of finite weight-

capacity such that the profit of included items is maximized. A payload selection

model for a single satellite will be developed for each of the four characterizations

of payload utility and shown to be a relaxation of a type of multidimensional knap-

sack problem. The dynamic and stochastic case most realistically describes the

nature of actual payload utility and is extended to a multi-satellite case. A so-

lution methodology will be developed to solve the multi-satellite problem. Exact

solutions to knapsack problems generally require either dynamic programming or

integer programming formulations. Therefore, in order to apply knapsack-based so-

lution techniques to the multi-satellite payload selection problem, the multi-satellite

problem will be formulated as both a dynamic program and an integer program.

A dynamic program can be solved (at great expense) by completely enumerat-

ing the state space, and such a method can be applied to the dynamic programming

formulation of the payload selection problem. Integer programs are solved primarily

1-4

using branch-and-bound or branch-and-cut algorithms. Commercial IP solvers, like

Xpress, apply these algorithms in concert with preprocessing and search heuristics to

attain solutions more quickly. To provide a solution to the integer programming for-

mulation, the Xpress solver will be used. Moreover, heuristic solution methods will

be developed. An elementary heuristic for the one-dimensional knapsack problem

is based on the profit-to-cost ratio of the items. This can be extended to solve the

relaxed, multidimensional knapsack problem associated with the payload selection

problem. Furthermore, the ability of a more advanced heuristic like simulated an-

nealing to solve the payload selection problem will also be explored. Exact methods

guarantee the optimality of the solution but can take considerable time. Heuristics

are generally faster; however, they provide no guarantee of convergence to optimal-

ity. It is desirable to determine which method can best be applied to the problem

of satellite payload selection and specification. The performance of the exact and

heuristic solution methods will be compared by applying them to multiple problem

instances using notional and randomly-generated payload and satellite data sets.

Ultimately, one of the main objectives of this thesis is to provide recommendations

for which technique performs best to provide optimal, or near-optimal, solutions in

a reasonable amount of time.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents a review

of literature associated with payload selection methodologies as well as descriptions

and main results for knapsack problems. In chapter 3, the assumptions and math-

ematical models for both the single-satellite and multi-satellite payload selection

problems are discussed followed by dynamic programming and integer programming

formulations of the multi-satellite case. Chapter 4 introduces exact and heuristic

solution methods for solving the payload selection problem as well as prospective

functional forms for the payload utility and survival functions. The solution methods

1-5

are subsequently applied to problem instances using both notional and randomly-

generated data sets for payload resource requirements and satellite resource capac-

ities. Finally, chapter 5 summarizes conclusions, unresolved issues, and possibilities

for future extensions of the research.

1-6

2. Relevant Literature

This chapter reviews the literature pertaining to the selection and MMD

specification of satellite payloads. The chapter begins with a review of current pay-

load design and selection methodologies and proceeds to introduce a closely-related

problem known as the knapsack problem. Because the knapsack problem provides a

framework for payload selection, potential exact and heuristic solution methods for

the knapsack problem are also discussed.

2.1 Payload Selection Strategies

The literature on payload selection and specification is relatively sparse. Most

literature concerning satellite payloads addresses the intricacies associated with their

design and construction. Larson and Wertz [13] present a ten-step methodology for

payload selection and specification based on a satellite’s mission objectives. The pro-

cess begins by translating the relatively general mission objectives of a satellite into

payload objectives that denote the specific functions payloads are required to per-

form. Next, subject trades are conducted in which subjects, the specific objects with

which payloads interact, are identified. Together the subjects and payload objectives

allow generation of a payload operations concept. The payload operations concept

identifies what is necessary to enable payloads to both perform their functions and

communicate results.

Next, throughput and performance requirements of the payloads can be iden-

tified followed by the actual identification of candidate payloads. Because tasks can

often be broken down or shared in many different ways, many possibilities exist for

candidate payloads. The characteristics of each candidate payload must be estimated

including its performance and resource requirements. Once the characteristics are

estimated, a base-line of prospective payloads is selected. This selection is usually

based on cost versus performance considerations. Next, both life-cycle cost and op-

2-1

erability need to be assessed. Although this step ultimately seeks to define payload

utility as a function of cost, it is very complex and involves extensive contact with

the satellite’s prospective users and possible mission objective tradeoffs. Finally, the

requirements imposed by the payloads on the satellite bus, ground operations, and

mission control are enumerated. The process is concluded by thoroughly document-

ing all conclusions and may be repeated multiple times.

Although this selection methodology provides a general framework for pay-

load selection and specification, it does not provide a specific quantitative method

for decisions regarding the inclusion, exclusion, or specification of payloads. Bell

[2] presents a methodology applied to secondary payloads on GPS satellites. A

secondary nuclear detonation detection system (NDS) payload is included on ev-

ery GPS satellite. However, NDS ground systems can only monitor twenty-four of,

at that time, twenty-nine GPS satellites. Determining which satellites to monitor

is equivalent to a payload selection problem in which payloads are to be selected

for twenty-four satellites. The decision of which satellites to monitor was based on

their individual value. A satellite is valued by its contribution to coverage; that is,

its ability to both observe and detect a nuclear detonation. A satellite’s real-time

connectivity, optical sensor sensitivity, and orbital location were used to compute a

contribution to coverage coefficient. The first step of the solution involves determin-

ing an initial coverage that ensures a relatively even distribution of satellites over

each orbital plane. A heuristic is applied iteratively that replaces spare satellites in

each plane. For each successive solution, the coverage of the entire constellation is

calculated using a classified, GPS/MS simulation program.

2.2 Potential Optimal Solution Methodologies

The satellite payload selection problem seeks to maximize the total overall

utility, or some other benefit, subject to resource constraints. This is analogous to

a class of problems known as knapsack problems. This section discusses both the

2-2

one- and multidimensional knapsack problems (KP/MKP) as well as exact solution

methods for solving them.

2.2.1 Overview of Knapsack Problems

The one-dimensional knapsack problem is one of the oldest and most widely-

studied mathematical programming problems. Given a knapsack of finite capacity b,

which items, each having weight ai and profit ci, i = 1, 2, . . . , l, should be placed in

the knapsack such that total benefit is maximized and the capacity of the knapsack

is not exceeded? Let xi = 1 denote the inclusion of item i and xi = 0 denote the

exclusion of item i, i = 1, 2, . . . , l. Stated mathematically it is:

Maximize
l∑

i=1

cixi

Subject to
l∑

i=1

aixi ≤ b

xi ∈ {0, 1}
ci, ai, b ∈ Z+, i = 1, 2, . . . , l.

The knapsack problem is NP-hard, and no algorithm is known that yields

an optimal solution in polynomial-time; however, fully polynomial approximation

algorithms do exist [17]. Many variations of the one-dimensional KP have been

formulated to include the multiple-choice KP in which the item set Θ is partitioned

into k subsets, Θ1, Θ2, . . . , Θk, such that only one item in each subset may be selected.

Another variation is the bounded KP in which each xi ∈ Z+ and is bounded by

bi ∈ Z+ such that xi ≤ bi. Despite their differences, both the multiple-choice and

bounded KPs are NP-hard.

Many important results of the one-dimensional KP center around its LP-

relaxation. Dantzig’s [4] classical method to solve the LP-relaxation is to order

2-3

objects by decreasing profit-to-weight ratio, where

c1

a1

>
c2

a2

> . . . >
cl

al

. (2.1)

The solution proceeds with the insertion of item 1, and continues by inserting

items into the knapsack by successively decreasing profit-to-weight ratios. Eventu-

ally, item s will be reached which cannot fit into the knapsack. It can be shown

[17] that the optimal solution to the LP-relaxation is given by xs = b̄/as, where

b̄ = b−
s−1∑
i=1

ai. Item s is deemed the break or critical item. Simply including the first

s− 1 items in the knapsack often provides a good solution and forms the basis of a

greedy, profit-to-cost ratio heuristic. Based on integrality of all profits and weights,

Dantzig [4] showed an upper-bound of the knapsack solution is

s−1∑
i=1

ci +

⌊
b̄
cs

as

⌋
. (2.2)

This upper bound plays a role in branch-and-bound algorithms discussed later in

this chapter.

Consider a generalization of the knapsack problem to the multidimensional

case. The multidimensional knapsack problem assumes that the knapsack has mul-

tiple constraints akin to multiple dimensions. For a problem with m constraints, the

mathematical program for the MKP is:

Maximize
l∑

j=1

cjxj

Subject to
l∑

j=1

aijxj ≤ bi, i = 1, 2, . . . , m

xj ∈ {0, 1}, j = 1, 2, . . . , l,

2-4

where aij is the size of object j on the ith dimension. The MKP is NP-hard; however,

unlike the one-dimensional KP, no fully-polynomial approximation algorithms exist

unless P = NP [17]; however, polynomial approximations do exist [8]. Variations for

the MKP also exist including the multi-choice, multidimensional knapsack problem

(MCMKP). A formulation for the MCMKP is provided for this thesis based on an

adaptation of Martello and Toth’s [17] formulation for the one-dimensional, multi-

choice knapsack problem. Define the following quantities:

Θ ≡ Item set

Θ1, Θ2, . . . , Θk ≡ Partition of item set Θ

where,
k⋃

i=1

Θi = Θ and Θi ∩Θj = ∅, i 6= j

cj ≡ Benefit of item j, j = 1, 2, . . . , l

aij ≡ Size of item j on dimension i

j = 1, 2, . . . , l, i = 1, 2, . . . , D

bi ≡ Limit of knapsack dimension i, i = 1, 2, . . . , D

Let

xj =

1, if item j is included

0, if item j is not included

.

The MCMKP may be formulated as

Maximize
l∑

j=1

cjxj (2.3)

Subject to
l∑

j=1

aijxj ≤ bi, i = 1, 2, . . . , D (2.4)

∑
j∈Θi

xj = 1, i = 1, 2, . . . , k (2.5)

xj ∈ {0, 1}, j = 1, 2, . . . , l. (2.6)

2-5

Many different algorithms have been developed to solve the one-dimensional

and, to a lesser extent, the multidimensional knapsack problems exactly. These

methods are primarily based on dynamic or integer programming formulations. Each

is addressed in turn in the following subsections.

2.2.2 Dynamic Programming and KP/MKP

Dynamic programming provides a method to analyze sequential decision pro-

cesses [5]. It is based on a recursive relationship known as Bellman’s functional

equation. In general, dynamic programming requires a state space denoted by χ,

where x ∈ χ is a possible state of χ, and a decision variable ν ∈ π, where π is the set

of decisions at each stage. Assume T decision stages and let the variable t denote the

index of the current decision stage. For a given stage and decision, a payoff function

exists denoted by a(x, ν, t); and the state x′ at stage t + 1 is given by the function

g(x, ν, t), where

x′ = g(x, ν, t). (2.7)

Let f(x, t) be defined as the maximum (minimum) value of f attainable given

state x at stage t. Without loss of generality, assume the objective is to maximize

f(x0, t0), where x0 and t0 are the initial state and stage, respectively. Bellman’s

equation can be written either as either a forward or backward recursion. As a

forward recursion, Bellman’s equation is

f(x, t) = max
ν∈π

{x ∈ χ : a(x, ν, t) + f [g(x, ν, t), t + 1]} . (2.8)

A boundary condition is required to specify a terminal value of the recursion. Typ-

ically, this is

f(x, T) = 0, ∀ x ∈ χ. (2.9)

2-6

The pairs (x, t) form unique nodes in the dynamic programming state-space. The

key principle in dynamic programming is the principle of optimality. Consider an

optimal path from node (x1, t1) to node (x4, t4). For any two intermediate nodes

(x2, t2) and (x3, t3) in this path, the principle of optimality states that the optimal

path from (x2, t2) to (x3, t3) is the same as one contained in the optimal path from

(x1, t1) to (x4, t4).

The primary advantage of dynamic programming is its generality as virtually

no assumptions are imposed on the underlying functions or state-space. Unfortu-

nately, the computational and storage requirements associated with dynamic pro-

gramming are often massive. Dynamic programming-based techniques have been

applied to both the one- and multidimensional knapsack problems. We first consider

one-dimensional knapsack applications.

An elementary application of dynamic programming to the knapsack problem

is found in Denardo [5] in which the decision ν is to include one of the T items at

each stage. In addition a slack item 0 is assumed to exist, where c0 = 0 and a0 = 1.

The state-space is scalar x, where x is the remaining capacity of the knapsack.

Therefore, feasible values of x are x ∈ {0, 1, 2, . . . , b}. Note that the stage index t is

unnecessary in this particular formulation and will be omitted. If item i is included;

that is, ν = i, the payoff function a(x, i) = ci, and g(x, i) = x − wi, i = 1, 2, . . . , l,

x ≤ b. The objective function f(x) is the maximum value the knapsack can contain

given remaining capacity x. A backward recursion is written as

f(x) = max
i
{x > 0 : ci + f(x− wi)} . (2.10)

Since no items can be inserted into a knapsack with a remaining capacity of zero,

the boundary condition is f(0) = 0, and the solution to the knapsack problem is

f(b). The most straightforward way to solve the dynamic program is by explicit

enumeration in which each f(x) is evaluated for all T + 1 possible item inclusions.

2-7

This means there are T + 1 branchings from initial state b. Furthermore, each

resulting, nonzero state will potentially require successive branchings of size T + 1.

Therefore, the complexity grows rapidly.

Although intuitive, explicit enumeration is extremely inefficient. Accelerated

reaching is a method to eliminate state-space computations. Assume the items are

sorted such that c1/a1 ≥ ci/ai, i = 2, 3, . . . , l. Let m(x) be defined as the lowest

index item that can be included in an optimal packing of knapsack size x, where

m(x) = min {i : f(i) = ci + f(x− ai)}, (2.11)

and m(0) ≡ T .

It can be shown that there exists x∗ = max{x : m(x) > 1}; that is, there is a

state x∗ such that every knapsack of size x∗ or larger will include at least one item

1 in its optimal packing. It can also be shown that

x∗ ≤ (a1 − 1)H = x̄∗, (2.12)

where H = maxj {cj}, j = 1, 2, . . . , l. Therefore, when in a state x > x̄∗ only

the decision involving the insertion of item 1 needs to be evaluated. The solution is

accelerated by continuing to insert item 1 until reaching a state x < x̄∗. At this point,

the remainder of the DP must be evaluated using standard methods. In practice,

reaching is difficult to apply for large and non-integer knapsack problems. So more

advanced methods have been developed to apply dynamic programming.

Horowitz and Sahni [11] studied a number partitioning problem that is a special

case of the one-dimensional KP. They present a dynamic programming algorithm

that, seeking to reduce storage requirements, splits the sorted multiset of weights

into two multisets having a difference in cardinality of 0 or 1. Each smaller multiset

has a profit set associated with it. A profit-maximizing dynamic recursion is applied

to each multiset, and the optimal solution is attained by searching the end states of

2-8

each recursion and determining an optimal feasible pair. While this approach relies

only on dynamic programming, often dynamic programming is used in concert with

other algorithms.

Pisinger [20] augments a class of algorithm known as a core algorithm with

dynamic programming. The core of a knapsack consists of those knapsack vari-

ables whose optimal values are different between the optimal IP solution and the

LP-relaxation. Since solving the core is equivalent to solving the knapsack problem,

the core is estimated. Once a core is estimated, Pisinger uses a dynamic, reaching

recursion that moves bi-directionally from the break item alternatively inserting and

deleting items. Each state is compared to an upper bound and fathomed accordingly.

Martello et al. [15] refine Pisinger’s algorithm using a core that can consist of non-

consecutive items to better fill the knapsack. A similar dynamic program is applied;

however, the state space is controlled actively by decreasing knapsack capacity, solv-

ing a surrogate relaxation, and deriving an improved lower bound through optimal

item to state-space paring.

The complexity of the MKP generally precludes the effectiveness of exact dy-

namic programming. Bertsimas and Demir [3] mitigate dynamic programming state

space requirements by applying approximate dynamic programming techniques to

the MKP. Instead of applying the exact dynamic recursion formula, an approxi-

mation is used resulting in less storage and computation. Bertsimas and Demir

apply three different approximations. The first is a base-heuristic that rounds the

successive LP-relaxation solutions; the second involves a parametric approximation

that samples the state space; and the third is a nonparametric approximation. The

authors conclude that the base-heuristic approximation provides the best solutions.

Although dynamic programming provides a solution method, it does not take

advantage of properties associated with the problem’s integer programming formu-

lation. In the next section, we consider IP-based methods.

2-9

2.3 IP Formulation Results for KP/MKP

Generally, the most efficient algorithms for solving knapsack problems involve

the IP formulation. This is because information can be exploited by relaxing the

integer constraints in both linear programming (LP), Lagrangian, and surrogate

relaxations. An algorithm that successively uses information from LP-relaxations

is the branch-and-bound algorithm [25]. Consider the branch-and-bound algorithm

applied to a knapsack problem. At node 0, the branch-and-bound algorithm initially

solves the LP-relaxation of the KP. The objective value of the relaxation forms an

upper bound for the optimal IP solution value. If all variables have integer values,

the initial LP-relaxation is optimal; otherwise, a non-integer variable xi is chosen and

two new LP-relaxations are created by imposing an integrality constraint xi ≤ bxic
and xi ≥ dxie in each respective relaxation. This is branching, and it forms two

additional nodes.

The algorithm chooses one of the relaxations and solves it. The solution must

be checked for feasibility in the IP. If it is feasible, and one or more non-integer

variables exist, integrality constraints are imposed on another variable and branch-

ing occurs again. If the solution is infeasible, further branching is unnecessary as

all nodes generated by branching on an infeasible node will, themselves, be infeasi-

ble. This is called fathoming a node. Assuming feasibility is maintained, continued

branching eventually yields a feasible, integer solution. The objective function value

of this initial, integer solution forms a lower bound for the objective function value

of the optimal, KP solution. Now another unexplored node is chosen and branch-

ing occurs on it. Because each node forms an upper bound for all successor nodes,

any node whose objective function value is less than the value of the initial integer

solution need not be explored further.

While branch-and-bound improves the lower bound by successively finding

better integer solutions, the upper bound given by the initial LP-relaxation can be

tightened through the use of cutting plane algorithms such as Gomory cuts. The

2-10

two are combined in a branch-and-cut algorithm which is similar to branch-and-

bound except that cuts are generated at successive LP-relaxations and stored in a

cut pool. The computations required to find an optimal solution may be reduced

through application of preprocessing to eliminate variables and search heuristics to

determine the best branching nodes.

Faster branch-and-bound algorithms for the one-dimensional KP have been

developed by exploiting properties unique to the knapsack problem to attain tighter

upper-bounds, faster computation, or better candidate solutions. One of the first

advances was the upper-bound developed by Dantzig [14] and was given in equation

(2.2).

Horowitz and Sahni [11] modified a previous branch-and-bound algorithm mak-

ing it a depth-wise search, thereby, reducing computing storage requirements from

exponential to linear. Based on the same profit-to-cost sorting of Dantzig’s method

[4], it consists of forward moves and backtracking. A forward move adds the largest

possible set of ordered, non-included items into the current solution; and backtrack-

ing removes the last item added. Martello and Toth [16] present a similar algo-

rithm; however, the forward move consists of two phases involving building and

saving the current solution. This reduces the number of backtrackings. Of particu-

lar significance is their development of a tighter upper-bound than that developed by

Dantzig. For particularly hard problems, Martello and Toth [14] develop minimum

and maximum cardinality upper bounds computed by using a Lagrangian-relaxation.

A branch-and-bound algorithm uses these upper bounds to fathom nodes.

Core algorithms have also been developed that incorporate branch-and-bound.

Pisinger [19] initially determines the break item b, the core’s center, through an

efficient partial sorting algorithm. A greedy algorithm finds an initial solution, and

a branch-and-bound enumerates items from the break item outward. Each time

the branching grows outside the core, a nearby interval of items undergoes variable

reduction before being added to the core.

2-11

In contrast to one-dimensional KPs, the MKP has very few specialized, IP-

based procedures [8]. Soyster et al. [22] developed an algorithm suited for MKPs

with many variables and few constraints. Based on partitioning the variables into

integer and fractional sets, it successively finds the optimal integer solution of a series

of LP-relaxations given a partial fractional solution. Convergence is not guaranteed,

nor does it occur quickly for more than 100 variables. Shih [21] presents a modified

branch-and-bound in which each variable is relabeled with m subscripts denoting the

rank of its profit-to-cost ratio for each of the m constraints. The algorithm proceeds

in a greedy manner by attempting to load each constraint to equality. The minimum

of the m resulting objective values is chosen as the upper bound, and branching is

done on the constraint with the largest upper bound. The algorithm was tested on

thirty, five-constraint knapsack problems with less than 100 variables and performed

reasonably well.

Fréville and Pleateau [6] present a reduction method, i.e. an algorithm that

attempts to reduce the problem size. Surrogate relaxation heuristics determine a

lower bound, and tests are applied to eliminate variables and constraints. Fréville

and Plateau [7] also develop an effective method to find the exact solution of the

bidimensional knapsack problem. Using the surrogate dual they show that an exact

optimal solution for the bidimensional case is equivalent to a search on the [0, 1]

interval. Furthermore, they modify a previous search method and prove optimality

occurs after a finite number of iterations.

Using exact algorithms to solve knapsack problems is often of greater theoreti-

cal than practical interest. Even the most efficient algorithms can take an inordinate

amount of time to solve larger problems. Heuristic algorithms provide an alternative

and are discussed in the next section.

2-12

2.4 Potential Heuristic Solution Approaches

Knapsack-type problems are ideal for heuristics because of the time and com-

putation often involved in exact solutions. Heuristics are solution methods that find

optimal or near-optimal solutions but are not guaranteed to converge to optimality.

There are a number of general types of heuristic methods that can be applied to

many different types of problems. These include simulated annealing, tabu search,

genetic algorithms, etc. Heuristics begin with some initial point in the solution space

and consist of two primary phases: performing a global search and performing a lo-

cal search. The global search enables the heuristic to explore the solution space in

order to avoid settling on the nearest local optimum. The local search allows the

heuristic to narrow its scope and seek the best solution in a particular area of the so-

lution space. In general, a heuristic is distinguished by the methods used to execute

global and local searches as well as the rules used to govern transitions between each

type of search. A widely applied heuristic that searches using probabilistic moves is

simulated annealing.

The simulated annealing heuristic is designed to mimic the process of anneal-

ing metals. When a metal is annealed, it begins in a molten state. Although metal

atoms prefer to be aligned, the high-temperature enables them to have random ori-

entations. Slowly cooling the metal enables the atoms to gradually settle into a

lower-energy aligned state; however, a rapid, cooling schedule can result in atoms

becoming trapped in unaligned, high-energy states creating imperfections. The simu-

lated annealing algorithm behaves similarly in that, at high temperatures, simulated

annealing allows free movement throughout the solution space. It is effectively a ran-

dom search as suboptimal solutions have a high probability of acceptance. At low

temperatures, movement throughout the solution space is more restricted and sim-

ulated annealing accepts only superior solutions. Therefore, it effectively becomes a

2-13

hill-climbing algorithm [18]. Consider the optimization problem

Maximize f(x)

Subject to x ∈ χ.

A simulated annealing heuristic begins at a high initial temperature, denoted

by T0. A random solution x0 ∈ χ is chosen as a starting point, and a random move

is made to x1 ∈ χ, where x1 is an adjacent or neighboring solution of x0. Then

the objective values f(x0) and f(x1) are compared. Define δ = f(x1)− f(x0). The

neighboring solution can be accepted under two scenarios: (i) if δ ≥ 0, move to x1,

and (ii) if δ < 0, move to x1 if q < e
δ

T0 , where q ∼ U[0, 1].

At this point, additional solutions can be explored at a temperature of T0, or

the temperature can be lowered to T1 according to some schedule. Let N ≥ 1 be

defined as the number of solutions explored at each fixed temperature. At each tem-

perature decrease, the heuristic continues from its last feasible solution and explores

N − 1 additional solutions. Simulated annealing terminates when the temperature

decreases to a predetermined terminal temperature Tf < T0 and N solutions have

been explored at Tf . Aside from selection of the parameters themselves, the vari-

ations of simulated annealing abound. Differences include temperature schedules,

solution selection, termination conditions, and post-processing [18].

When using the simulated annealing heuristic, optimality is guaranteed only

under very specific conditions. Hajek [10] provides a simulated annealing algorithm

that, under certain conditions, is guaranteed to find a global minimum using tem-

perature schedule Tk = C/ ln(1 + k), where C is the depth of the deepest local

minimum. Although of theoretical interest, the temperature schedule is too slow

to be practically useful. In general, the more closely a temperature schedule main-

tains thermal equilibrium throughout, that is, the probability distribution of state

transitions remain close to their equilibrium distribution at a given temperature, the

2-14

higher the quality of the resulting solution. Triki et al. [23] provide a summary of

effective cooling schedules. These include the geometric cooling schedule and cooling

schedules that rely on past information called adaptive cooling schedules.

The selection of parameter values is integral to the performance of simulated

annealing. Ben-Ameur [1] created an algorithm to select Tf based a specified accep-

tance probability of a suboptimal move. The method requires sampling transitions in

the state space and use of a recursive formula. More commonly, parameter selection

is done experimentally. Wang and Wu [24] devised a six-step method to experi-

mentally determine parameter methods subject to time constraints using response

surface methodology. Although theoretical selection of parameters is not without

merit, selection of parameters is often done experimentally by trying a variety of

parameter settings and observing satisfactory, near-optimal solutions.

This chapter introduced current satellite payload selection methodologies. A

general, ten-step process was discussed to determine payload specifications from a

satellite’s mission objective. Also reviewed was a more specific, quantitative method-

ology applied to an analogous problem of monitoring secondary payloads. The knap-

sack problem was introduced in both one- and multidimensional cases as an approach

to formulate the payload selection problem. Analytical results for knapsack problems

were presented as well as dynamic programming and integer programming based so-

lution procedures. Finally, the simulated annealing heuristic was introduced as a

possible solution method for the payload selection problem. In the next chapter, for-

mal mathematical models are presented for the payload selection and specification

problem. Four single-satellite models are presented and shown to be equivalent to a

relaxation of the multi-choice, multidimensional knapsack problem. Then one of the

single-satellite models is extended to the multi-satellite case. The chapter concludes

by formulating the multi-satellite model as both a dynamic program and an integer

program.

2-15

3. Mathematical Model Description

In this chapter, formal mathematical models are developed for the satellite

payload selection and MMD specification problem. The problem assumptions and

model characteristics are first described followed by four mathematical models de-

scribing a single-satellite problem. The final model is an extension of the single-

satellite model to the multiple-satellite case. Finally, both dynamic programming

and integer programming formulations are provided to solve the multiple-satellite

model.

3.1 Model Assumptions and Definitions

Assume a satellite constellation consisting of S satellites is observed at fixed

time epochs with equal inter-inspection time ∆. Each satellite bus carries payloads,

and upon inspection the binary status (functional/not functional) of each satellite’s

payloads is known with certainty. It is also assumed that at time n = 0 the mean

mission duration (MMD) specifications of any payloads on satellites already in the

constellation are known as well as their time in service. At M predetermined epochs

n1, n2, . . . , nM , single-satellite buses will be loaded with payloads selected from a

fixed set of all payloads and launched into the constellation. All selected payloads

must have a specified, nonzero MMD. It is assumed that satellite payloads imme-

diately enter service upon launch. Associated with each satellite payload is a total

lifetime utility. Utility in the context of this research does not correspond to the

strict definition in utility theory. This will be fully discussed later in the chapter.

The objective is to maximize the total lifetime utility of the constellation.

Each satellite bus has finite power, cost, weight, and volume constraints. It is

assumed that any set of specified payloads requiring more resources than the satellite

bus can provide is infeasible. A description of each finite resource is provided in what

follows.

3-1

The satellite’s power subsystem is responsible for generating and storing all

electrical energy required by the payloads. For earth-orbiting satellites, photovoltaic

cells convert solar radiation into electrical energy which is then stored in the battery.

Energy storage is necessary because during certain periods of the satellite’s orbit, the

sun is eclipsed by the earth and the solar cells are unable to receive solar radiation.

During eclipse, the battery is the sole provider of energy to the satellite. Therefore,

the battery continuously undergoes charge and discharge cycles as the satellite passes

in and out of eclipse. Because the duration and periodicity of eclipses depends on the

satellite’s orbit, the depth of battery discharge varies from an average of 15-20% for

the short, frequent eclipse periods of low earth orbit to 50% for the long, infrequent

eclipse periods of geostationary orbit. The battery cycle life (i.e. the number of

times it can be charged and discharged) is dependent on the depth of discharge. A

greater depth of discharge reduces the cycle life of the battery. Therefore, taking the

expected depth of discharge into account, the total lifetime output of the battery can

be estimated by multiplying the expected energy discharge per cycle by the cycle

life. For all formulations, the power constraint is equivalent to the lifetime output

of the satellite’s battery and is denoted by P (measured in Watt-Years).

An overall budget is allotted to a satellite mission that usually includes de-

velopment, construction, launch, and support of the satellite. It is assumed that

a known portion of this total allotment is assigned specifically to payload procure-

ment. This quantity, denoted as C (measured in $), will constitute the total cost

constraint.

The weight of a satellite is ultimately constrained by the capability of the

selected launch vehicle to place the satellite in its required orbit. The weight of a

mission-capable satellite at launch is defined as the loaded weight and includes the

weights of both propellent and all satellite subsystems. Subtracting the propellent

weight from the loaded weight yields the satellite dry weight. Payloads typically

constitute between 15%-50% of satellite dry weight. In this research, it is assumed

3-2

that a launch vehicle is selected and the weights of both propellent and non-payload

subsystems are estimated leaving a known allowance for total payload weight denoted

by W (measured in lb).

A satellite’s volume is constrained by the volume of the launch vehicle’s pay-

load compartment. Additionally, the satellite must conform to the compartment’s

geometry. Because ensuring geometric feasibility drastically increases the problem

complexity, it is assumed that a basic satellite bus design is used of known volume

that ensures geometric feasibility after payload inclusion. The total payload volume

constraint V (measured in ft3) is the difference between the volumes of the launch

vehicle’s payload compartment and the volume of the satellite bus.

Assume there exist K different satellite payload types. Let L1, L2, . . . , LK

denote the lifetimes of each satellite payload type. It shall be assumed that these

lifetimes are mutually statistically independent. For each payload type, assume

there are ξ distinct, nonzero MMD specifications. Denote the MMD of payload i

on satellite j by mj
i , i = 1, 2, . . . , K, j = 1, 2, . . . , M . Let Θi denote the set of

nonzero type-i MMD specifications, where |Θi| = ξ, i = 1, 2, . . . , K. Additionally,

each payload type i can be assigned mj
i = 0 which is equivalent to excluding payload

type i from satellite j.

A payload is selected if it is assigned a nonzero MMD specification. There-

fore, the MMD specification serves as both a selection and specification variable.

The values mj
i , i = 1, 2, . . . , K, j = 1, 2, . . . , M will serve as the decision variables

throughout. For satellite j, define mj = [mj
1,m

j
2, . . . , m

j
K], j = 1, 2, . . . , M , as the

row vector of MMD specifications for all payload types on satellite j. Associated

with each payload is a utility function. Utility in the classical sense is a relative scalar

measure that compares the probabilistic outcomes of two consequences. Keeny and

Raiffa [12] define utility by considering a set of consequences, x1, x2, . . . , xn, such

that their preference order is x1 ≺ x2 ≺ . . . ≺ xn. If xj ≺ xi, then consequence xi

is preferable to xj. A numerical value scaling ϕi is assigned to each xi such that

3-3

ϕ1 = 0, ϕn = 1, and ϕ1 < ϕ2 < . . . < ϕn, i = 1, 2, . . . , n. Now consider an action a

that results in consequence xi with probabilities pi. The utility ϕ̄ of a is calculated

as

ϕ̄ =
∑

i

piϕi. (3.1)

Although the term payload utility will be used throughout this thesis, it is not

utility in the sense defined by equation (3.1). Instead, payload utility is analogous to

a relative value scaling on R+. The term utility is invoked throughout this research

instead of value for two reasons: the computation of payload utility is similar to the

computation of utility in the classical sense, and payload utility is dependent on a

payload’s relative importance which is closely analogous to the value scaling used in

the utility definition. Utility of a payload type i is a function of three factors:

1. The relative importance of payload type i;

2. the MMD specification of payload type i;

3. the expected number of functional, type i payloads in the constellation.

The relative importance of a payload is only dependent on its functional type.

This can be thought of as a measure of its relative functional importance to the

constellation’s mission and is analogous to a payload’s value. Define ψi as the relative

importance of payload type i, i = 1, 2, . . . , K.

As a payload’s MMD is increased, it is expected that the payload will operate

longer. However, it is also possible that the shape of its utility curve will change as

its construction is more robust. Thus, MMD is included in the utility function. The

rationale for utility dependence on the number of functional, like-type payloads is

to model diminishing marginal returns. For example, as the constellation contains

increasing numbers of a payload type, further additions of that type may add only

negligible utility to the constellation. It may eventually be optimal to add a payload

3-4

of another type, even if it is of lower importance. The random number of functional

type-i payloads at time n is denoted by a random variable Qi(n) and its expectation

by E[Qi(n)], i = 1, 2, . . . , K, n ≥ 0.

Utility can be either static (constant over time) or dynamic (varying over

time). In the case of dynamic utility, it is assumed that utility is a discrete-time

stochastic process changing values only at inspection times i∆, i = 0, 1, The

static utility of payload type i on satellite j is denoted by uj
i (ψi,m

j
i , E[Qi]); and

uj
i (ψi,m

j
i , E[Qi(n)]; n) denotes the dynamic utility of payload type i on satellite j at

epoch n, i = 1, 2, . . . , K, j = 1, 2, . . . , M .

Whether the utility is static or dynamic, the total lifetime utility of a payload

type i on satellite j is represented by U j
i (mj

i), i = 1, 2, . . . , K, j = 1, 2, . . . , M . For

satellite j, define the vector

uj(mj) = [U j
1 (mj

1), U
j
2 (mj

2), . . . , U
j
K(mj

K)], j = 1, 2, . . . , M. (3.2)

The elements of uj(mj) are the total lifetime utilities of payloads on satellite j

with MMD specification mj , j = 1, 2, . . . , M . Each payload consumes power, cost,

weight, and volume resources. Satellite payloads are, in general, custom-built items

and are not mass produced. The nuances associated with different satellites preclude

them having a standardized design. Estimates are typically given by engineers for a

payload’s resource requirements if designed to meet a particular set of MMD spec-

ifications. Therefore, these estimates will be modeled as discrete functions. Define

the discrete functions Ci(m
j
i), Wi(m

j
i), and Vi(m

j
i) that represent the cost, weight,

and volume, respectively, of payload type i with specification mj
i , and since mj

i = 0

corresponds to excluding payload i on satellite j, assume that

Ci(0) = Vi(0) = Wi(0) = 0, i = 1, 2, . . . , K, j = 1, 2, . . . , M. (3.3)

3-5

It is assumed that the rate of a payload’s power consumption is proportional

to its utility and independent of the payload’s MMD specification. Let Ai be defined

as the rate of power consumption of a new type-i payload, i = 1, 2, . . . , K. If utility

is static, power consumption can be calculated using Ai, i = 1, 2, . . . , K. To allow

for dynamic utility, payload power must be calculated by multiplying utility by a

scaling factor. Let A
′j
i denote the power scaling factor of payload i on satellite j

where,

A
′j
i =

Ai

ui(ψi,m
j
i , 0; 0)

, i = 1, 2, . . . , K, j = 1, 2, . . . ,M. (3.4)

The scaling factor is calculated by multiplying the initial rate of power consumption

by 1/ui(ψ
j
i ,m

j
i , 0; 0), which is the utility of payload i on satellite j when it enters

service and no utility dependence is present. The resulting constant maintains the

direct proportionality of power consumption to utility when utility increases or de-

creases at future times; therefore, it is power required per unit of utility.

Total lifetime power consumption of payload type i on satellite j is defined by

Rj
i (m

j
i), i = 1, 2, . . . , K, j = 1, 2, . . . , M . For any satellite j, define vector functions

pj(mj), cj(mj), wj(mj), and vj(mj):

pj(mj) = [Rj
1(m

j
1), R

j
2(m

j
2), . . . , R

j
K(mj

K)], j = 1, 2, . . . , M,

cj(mj) = [C1(m
j
1), C2(m

j
2), . . . , CK(mj

K)], j = 1, 2, . . . , M,

wj(mj) = [W1(m
j
1),W2(m

j
2), . . . , WK(mj

K)], j = 1, 2, . . . , M,

vj(mj) = [V1(m
j
1), V2(m

j
2), . . . , VK(mj

K)], j = 1, 2, . . . ,M.

3.2 Single-Satellite Model

Utility can also be characterized as deterministic or stochastic. Any mathe-

matical model formulation is affected by the underlying characterization of payload

3-6

utility. Interchanging static or dynamic and deterministic or stochastic leads to four

possible types of payload utility:

1. Static and deterministic;

2. Dynamic and deterministic;

3. Static and stochastic;

4. Dynamic and stochastic.

In the next four sections, the payload selection and specification problem is

formulated for a single-satellite bus to be launched into an empty constellation.

A distinct mathematical programming formulation is constructed for each type of

utility. For notational brevity, the satellite subscript j will be suppressed, and the

utility dependence variable E[Qi(n)] is omitted since no utility dependencies exist

in this case.

3.2.1 Static and Deterministic Utility

Consider the problem of payload selection and specification for a single-satellite

bus to be launched into an empty constellation. Payload utility is assumed to be

static and deterministic; therefore, it is constant over time and known with certainty.

The total lifetime utility of payload i is

Ui(mi) = u(ψi,mi)mi, i = 1, 2, . . . , K, (3.5)

and the total lifetime power consumption of payload i is

Ri(mi) = Aiu(ψi,mi)mi, i = 1, 2, . . . , K. (3.6)

3-7

The mathematical programming formulation under static and deterministic

utility is as follows:

Maximize u(m) · 1 (3.7)

Subject to p(m) · 1 ≤ P (3.8)

c(m) · 1 ≤ C (3.9)

v(m) · 1 ≤ V (3.10)

w(m) · 1 ≤ W (3.11)

mi ∈ Θi ∪ {0}, i = 1, 2, . . . , K (3.12)

where 1 is a column vector of ones.

The payload selection and specification problem is a relaxation of the MCMKP

of equations (2.3)-(2.6). The set of all items Θ = Θ1 ∪Θ2 ∪ . . .∪ΘK consists of each

unique payload type and nonzero MMD specification combination. The items are

partitioned by payload type into subsets Θi, i = 1, 2, . . . , K. The problem considered

in this thesis is a slight relaxation of the MCMKP because it is not required that

one item of each type (or partition) be selected as in the MCMKP. Payloads can be

given a MMD of zero so, at most one item of each type can be selected. Power, cost,

weight, and volume represent multiple dimensions of the knapsack.

Static and deterministic utility results in a relatively straightforward formula-

tion. Because utility is static and deterministic, the computation of total payload

utility and power consumption require only one evaluation of the utility function

along with two and three multiplications, respectively. Therefore, with the excep-

tion of a few minor calculations, the static and deterministic case of payload selection

is virtually a relaxed MCMKP. Next dynamic and deterministic utility is considered.

3-8

3.2.2 Dynamic and Deterministic Utility

In this section, the case of dynamic and deterministic payload utility is consid-

ered. Recall, it is assumed that utility is a discrete-time stochastic process. Thus, the

utility of payload i remains constant on all inter-inspection intervals. Therefore, the

total lifetime utility of a payload is calculated by summing the total utility on each

individual time interval over all time intervals spanned by the payload’s MMD. Let κi

be defined as the number of time intervals spanned by payload i, where κi = bmi/∆c,
i = 1, 2, . . . , K. Then, the total lifetime utility and power consumption of payload

type i are respectively approximated as

Ui(mi) =

κi−1∑
n=0

ui(ψi,mi; n)∆, (3.13)

Ri(mi) =

κi−1∑
n=0

A
′
iui(ψi,mi; n)∆. (3.14)

Substituting equations (3.13) and (3.14) into vectors u(m) and p(m) leads

to the same formulation as equations (3.7)–(3.12). Therefore, the dynamic and

deterministic utility formulation is also equivalent to a relaxation of the MCMKP.

In the next section, static and stochastic utility is considered.

3.2.3 Static and Stochastic Utility

A payload with static and stochastic utility will operate at a fixed-value of

utility throughout its lifetime; however, the exact value it operates at is not known

with certainty. Instead the possible values are described by a probability distribution.

The expression for total lifetime utility of a payload is identical in form to that of

the static, deterministic case:

Ui(mi) = ui(ψi,mi)mi, i = 1, 2, . . . , K. (3.15)

3-9

However, because the utility function is stochastic, it is advantageous to con-

sider the mathematical expectation of total payload lifetime utility:

E[Ui(mi)] = E[ui(ψi,mi)mi]

= E[ui(ψi,mi)]mi, i = 1, 2, . . . , K. (3.16)

Similarly, the expected total lifetime power consumption of payload i is given by:

E[Ri(mi)] = AiE[ui(ψi,mi)]mi, i = 1, 2, . . . , K. (3.17)

Now, define vector functions uE(m) and pE(m) as follows:

uE(m) = [E[U1(m1)], E[U2(m2)], . . . , E[UK(mK)]], (3.18)

pE(m) = [E[R1(m1)], E[R2(m2)], . . . , E[RK(mK)]]. (3.19)

The static and stochastic payload selection and specification problem is formulated

by inserting vectors uE and pE into equations (3.7) and (3.8). The static and

stochastic problem formulation is virtually identical to the static and deterministic

formulation with the exception of the presence of the expectation operator. There-

fore, it is also equivalent to the relaxed MCMKP. Finally, the dynamic and stochastic

model is formulated.

3.2.4 Dynamic and Stochastic Utility

Dynamic and stochastic utility changes in value over time; however, its value

at a future time is not known with certainty and is described by a probability dis-

tribution. Because utility is assumed to be a discrete-time stochastic process, its

expected value is constant over all inter-inspection intervals. Therefore, analogous

to the derivation of the dynamic and deterministic case, total payload lifetime utility

3-10

and power consumption for payload type i are

E[Ui(mi)] =

κi−1∑
n=0

E[ui(ψi,mi; n)]∆, i = 1, 2, . . . , K, (3.20)

E[Ri(mi)] =

κi−1∑
n=0

A′
iE[ui(ψi,mi; n)]∆, i = 1, 2, . . . , K, (3.21)

respectively, where the expected utility and power consumption on each time interval

is summed over all intervals spanned by the payload MMD.

Substitution of (3.20) and (3.21) into vectors uE(m) and pE(m) leads to

the identical formulation of equations (3.7)–(3.12). Like the other three cases, the

dynamic and stochastic formulation is equivalent to a relaxed MCMKP.

The dynamic and stochastic formulation is of the most interest for the satellite

payload selection and specification problem because it most accurately reflects the

realistic behavior of satellite payloads in space. Payload utility changes over time and

typically decreases as payload components fail or degrade in the space environment.

Furthermore, utility at any future time may not be known with certainty. A payload

may fail immediately and have zero utility upon entering service, or it may operate

at near-maximum utility throughout its entire mean mission duration. So, because

of the dynamic and stochastic nature of actual payload utility, the dynamic and

stochastic model will be the central focus of the remainder of this thesis.

3.3 Multi-Satellite Extension

Consider an extension of the dynamic and stochastic model to the full-constellation

problem in which payloads for M satellites are selected and specified. Recall that

the payloads are launched sequentially at predetermined epochs into a pre-existing

constellation of S satellites. It is assumed that both the launch times of the pre-

existing satellites and their payload MMDs are known. Let m̄j
i be defined as the

remaining MMD of payload type i on preexisting satellite j and κ̄j
i = bm̄j

i/∆c be

3-11

defined as the number of time intervals spanned by the remaining MMD of payload

type i on preexisting satellite j, i = 1, 2, . . . , K, j = 1, 2, . . . , S.

Therefore, Ū j
i , the expected total remaining utility of payload type i on pre-

existing satellite j is

E[Ū j
i (m̄j

i)] =

κ̄j
i−1∑

n=0

E[ui(ψi,m
j
i , E[Qi(n)]; n)]∆, (3.22)

for i = 1, 2, . . . , K, j = 1, 2, . . . , S.

Let ūj
E(m̄j) be a vector function of the expected total remaining utilities of

all payloads on a preexisting satellite j defined by

ūj
E(m̄j) = [E[Ū j

1 (m̄j
1)], E[Ū j

2 (m̄j
2)], . . . , E[Ū j

K(m̄j
K)]], j = 1, 2, . . . , S. (3.23)

Likewise, for payloads on the M satellites to be launched, the expected total utility

and power consumption are

E[U j
i (mj

i)] =

κj
i−1∑

n=0

E[ui(ψi,m
j
i , E[Qi(n

′)]; n)]∆, (3.24)

E[Rj
i (m

j
i)] =

κj
i−1∑

n=0

A
′j
i E[ui(ψi,m

j
i , E[Qi(n

′)]; n)]∆, (3.25)

where, n′ = nj +n adjusts the number of time intervals a payload has been in service

to the actual time interval of the constellation.

For satellites j = S + 1, S + 2, . . . , S + M , vectors uj
E(mj) and pj

E(mj) are

uj
E(mj) = [E[U j

1 (mj
1)], E[U j

2 (mj
2)], . . . , E[U j

K(mj
K)]], (3.26)

j = 1, 2, . . . , M,

pj
E(mj) = [E[Rj

1(m
j
1)], E[Rj

2(m
j
2)], . . . , E[Rj

K(mj
K)]], (3.27)

j = 1, 2, . . . , M.

3-12

The specification of M satellites results in M power, cost, weight, and volume

constraints denoted by Pj, Cj, Wj, and Vj for satellites j = S + 1, S + 2, . . . , S + M .

The payload selection and specification problem of a satellite constellation with

dynamic and stochastic utility is as follows:

Maximize
S∑

j=1

ūj
E(m̄j) · 1 +

S+M∑
j=S+1

uj
E(mj) · 1 (3.28)

Subject to pj
E(mj) · 1 ≤ Pj, j = 1, 2, . . . , M (3.29)

cj(mj) · 1 ≤ Cj, j = 1, 2, . . . , M (3.30)

vj(mj) · 1 ≤ Vj, j = 1, 2, . . . , M (3.31)

wj(mj) · 1 ≤ Wj, j = 1, 2, . . . ,M (3.32)

mj
i ∈ Θi ∪ {0}, (3.33)

i = 1, 2, . . . , K, j = S + 1, S + 2, . . . , S + M.

When the single-satellite case is extended to multiple-satellites, the effect of

utility dependence must be considered. Recall that utility dependence affects both

the total lifetime utility and power requirements of payloads. If payload utilities are

assumed to be independent, then it is only necessary to solve the payload selection

problem once for each distinct type of satellite and apply each optimal loading to all

identical satellites. However, if payload utilities are dependent, the optimal loading

of each successive satellite will depend on previous satellite loadings. It is tempting

to conclude that an exact solution would consist of solving a succession of MCMKPs,

one for each satellite, using the appropriate resource requirements for the payloads

available to each respective satellite. Such a solution would maximize the utility

of each individual satellite in sequence; however, it would not necessarily maximize

the utility of the overall constellation. In maximizing the constellation’s utility, it

may be necessary to assign a preceding satellite a suboptimal loading such that a

3-13

subsequent satellite can be assigned a loading that results in an increased overall

constellation utility.

Therefore, due to utility dependence, the payload selection problem cannot be

solved as a series of knapsack problems. However, its similarity to knapsack-type

problems suggests two potential solution methodologies. First, payload assignment

can be thought of as a sequential decision process in which the decision to include

a particular payload on a particular satellite is made at each stage. Such a process

lends itself nicely to a dynamic programming formulation. Second, it is possible that

binary variables can be used to define different payload assignments, and the problem

can be formulated as an integer program. In the next section both approaches are

presented.

3.4 Dynamic and Integer Programming Formulations

In this section, the general constellation payload specification and selection

problem is formulated using both dynamic and integer programming. Both formu-

lations provide a basis for exact solutions to the payload selection problem.

3.4.1 Dynamic Programming Formulation

First considered is a dynamic programming approach in which decisions are

made in sequential stages. Such a method agrees with the intuitive way one might

solve this problem. For example, one could begin by specifying payload 1 on satellite

1 and then specify payload 2 on satellite 1. Once all satellite 1 payloads are speci-

fied, payloads on satellite 2 can be specified. Continuing in this manner, one could

eventually conclude by specifying payload K on satellite M . If these specifications

are made such that the total constellation utility is maximized, the resulting solution

is equivalent to a dynamic programming solution.

3-14

More formally, a decision stage v ∈ {1, 2, . . . , `} is the specification of a unique

satellite and payload type combination, where ` = KM . Therefore, the dynamic

programming formulation can be thought of as a problem in which ` payloads are

specified.

Define p1 = [P1, P2, . . . , PM], c1 = [C1, C2, . . . , CM], v1 = [V1, V2, . . . , VM], and

w1 = [W1,W2, . . . , WM] as vectors of the initial power, cost, weight and volume

resources of satellites 1, 2, . . . , M . The stage variable is v, the number of remaining,

unspecified payloads, v = 1, 2, . . . , `. As payloads are added, satellite resources are

consumed. Let pv, cv, vv, and wv represent the vectors of remaining power, cost,

weight and volume resources of satellites 1, 2, . . . , M at stage v, v = 1, 2, . . . , `. The

objective function f(v, pv, cv,vv, wv) is defined as the maximum utility achievable

given v unspecified payloads and pv, cv, vv, and wv resources remaining on satellites

1, 2, . . . , M , v = 1, 2, . . . , `. The payoff function is Uv(mv) defined as the expected

total utility of payload v with specification mv, v = 1, 2, . . . , `. The expected total

power consumption of payload v and specification mv is denoted by Rv(mv), and let

Cv(mv), Vv(mv), and Wv(mv) represent the cost, volume, and weight, respectively,

of payload v with specification mv, v = 1, 2, . . . , `.

Specification of payload v on satellite j consumes power, cost, volume, and

weight resources defined by vectors pc, cc,wc, and vc, respectively, where

pc = Rv(mv)ej, j = 1, 2, . . . , M, v = 1, 2, . . . , `, (3.34)

cc = Cv(mv)ej, j = 1, 2, . . . , M, v = 1, 2, . . . , `, (3.35)

wc = Wv(mv)ej, j = 1, 2, . . . , M, v = 1, 2, . . . , `, (3.36)

vc = Vv(mv)ej, j = 1, 2, . . . , M, v = 1, 2, . . . , `, (3.37)

and ej is defined as the jth elementary vector, j = 1, 2, . . . , M .

3-15

Letting f ∗ represent the optimal cost-to-go function, a forward dynamic pro-

gramming recursion is written as follows:

f ∗(v, pv, cv,wv,vv) = max
mv

{ Uv(mv) (3.38)

+ f ∗(v − 1,pv−1 − pc, cv−1 − cc, wv−1 −wc, vv−1 − vc)},

for v = 1, 2, . . . , `. After the last stage, there are no more payloads to select and

further increases in utility are not possible. Likewise, if either power, cost, weight,

or volume resources are depleted, the addition of payloads is impossible and util-

ity cannot be increased. Therefore, the dynamic program has the following set of

boundary conditions:

f ∗(0,p0, c0, v0,w0) = 0, ∀ p0, c0, v0, w0 ≥ 0, (3.39)

f ∗(v,0, cv,vv,wv) = 0, ∀ v ≥ 0, ∀ cv, vv, wv ≥ 0, (3.40)

f ∗(v, pv,0,vv,wv) = 0, ∀ v ≥ 0, ∀ pv, vv, wv ≥ 0, (3.41)

f ∗(v, pv, cv,0,wv) = 0, ∀ v ≥ 0, ∀ pv, cv, wv ≥ 0, (3.42)

f ∗(v, pv, cv, vv,0) = 0, ∀ v ≥ 0, ∀ pv, cv, , vv ≥ 0. (3.43)

The optimal solution to the problem is

f ∗(`,p`, c`,w`, v`). (3.44)

The state-space of the payload selection problem grows rapidly. In stage v, the

payload selection and specification problem with M satellites, K payload types, and

ξ nonzero MMD specifications per payload has the following state-space size:

States in stage v = (ξ + 1)v. (3.45)

States in final stage = (ξ + 1)`. (3.46)

3-16

It is clear that for relatively small values of M , K, and ξ, the number of states can be

massive. For example, when M = 2 satellites and K = 5 payloads, each with ξ = 3

possible nonzero MMD specifications, the final stage of the dynamic program has

(3 + 1)5·2 = 410 = 1, 048, 576 states to consider. Figure 3.1 graphically depicts the

dynamic programming approach for a selection and specification problem in which

ξ = 2 nonzero MMD specifications are available for each payload.

Payload Type
1

Payload Type
2

… Payload Type
K

…

Satellite
1

Payload Type
1

Payload Type
2

… Payload Type
K

…

Satellite
2

Payload Type
1

Payload Type
2

… Payload Type
K

…

Satellite
M

0

1

2

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

…

…

3l Final States

Figure 3.1 Graphical depiction of a dynamic programming solution (ξ = 2).

3.4.2 Integer Programming Formulation

Now an integer programming formulation is considered. Let m′
j represent a

payload’s MMD specification on satellite j, j = 1, 2, . . . , M . Define m′ = [m′
1,m

′
2, . . . , m

′
M]

3-17

as the vector of a payload’s MMD specifications on satellites 1, 2, . . . , M . Let,

xi
m′ =

1, if payload type i is given MMD m′
1 on satellite 1,

m′
2 on satellite 2,. . .,m′

M on satellite M

0, otherwise

where, the total utility associated with each xi
m′ is the sum of the utilities of type i

payloads over all M satellites at their respective MMDs. Let ui
m′ represent the total

utility derived from the vector of specifications m′, where

ui
m =

M∑
j=1

U j
i (mj

i), i = 1, 2, . . . , K. (3.47)

Furthermore, for xi
m′ , let the total consumption of power, cost, volume, and

weight resources on satellite j be denoted by pij
m′ , cij

m′ , vij
m′ , and wij

m′ , respectively:

pij
m′ = Rj

i (m
′
j), i = 1, 2, . . . , K, j = 1, 2, . . . , M, (3.48)

cij
m′ = Ci(m

′
j), i = 1, 2, . . . , K, j = 1, 2, . . . , M, (3.49)

vij
m′ = Vi(m

′
j), i = 1, 2, . . . , K, j = 1, 2, . . . , M, (3.50)

wij
m′ = Wi(m

′
j), i = 1, 2, . . . , K, j = 1, 2, . . . , M. (3.51)

3-18

Letting Pj, Cj, Vj, and Wj represent the power, cost, volume, and weight re-

sources associated with satellite j the IP formulation is as follows:

Maximize
K∑

i=1

∑

m′
ui

m′xi
m′ (3.52)

Subject to
K∑

i=1

pij
m′x

i
m′ ≤ Pj, j = 1, 2, . . . , M (3.53)

K∑
i=1

cij
m′x

i
m′ ≤ Cj, j = 1, 2, . . . , M (3.54)

K∑
i=1

vij
m′x

i
m′ ≤ Vj, j = 1, 2, . . . , M (3.55)

K∑
i=1

wij
m′x

i
m′ ≤ Wj, j = 1, 2, . . . , M (3.56)

∑

m′
xi

m′ = 1, i = 1, 2, . . . , K (3.57)

xi
m′ ∈ {0, 1}, i = 1, 2, . . . , K. (3.58)

For a M -satellite, K-payload type specification problem in which each payload

has ξ nonzero MMDs available, the number of binary variables and constraints is:

Number of binary variables = K(ξ + 1)M . (3.59)

Number of constraints = K + 4M. (3.60)

Associated with each payload type is the special ordered set found in equation (3.57),

and associated with each satellite are the four resource constraint equations (3.53)-

(3.56). Although the number of binary variables grows quickly as the number of

payload types and satellites in a problem increases, it is, in most cases, less than the

number of states in the final stage of the problem’s corresponding dynamic program-

ming formulation. Also, unlike the dynamic programming state growth, the binary

variables do not increase substantially when the number of payload types increases.

3-19

Superficially, the IP formulation appears more efficient than the DP formulation.

However, the relatively small number of constraints to variables is of some concern.

This is because variables increase the dimensionality of the solution space, whereas,

constraints, while not affecting the dimensionality, narrow the scope of the solution

space. The M equality constraints represented by equation (3.57) allow only one

of K variables in each of the M groups to be nonzero, thus, greatly reducing the

solution space. The presence of these constraints will offset some of the inefficiencies

associated with the formulation having relatively few constraints.

This chapter began with a list of assumptions for the payload selection problem

including assumptions for both the payloads and satellite buses. The formulation

of the problem is dependent on the four characterizations of payload utility: static

and deterministic, dynamic and deterministic, static and stochastic, and dynamic

and stochastic. Mathematical models were developed for the single-satellite problem

using each characterization of utility. It was shown that each single-satellite model

can be transformed into a relaxation of the multi-choice, multidimensional knapsack

problem. Since the dynamic and stochastic model most closely represents the realis-

tic nature of payload utility, it was extended to a multiple-satellite model. To enable

the multiple-satellite model’s solution, both dynamic and integer programming for-

mulations were derived. Solution methods must now be applied to exactly solve these

formulations. In the next chapter, such methods are discussed. Additionally, three

prospective heuristics are introduced to achieve fast, near-optimal solutions. Finally,

the performance of both the exact and heuristic methods is evaluated by solving pay-

load selection problems using both notional and randomly-generated data.

3-20

4. Numerical Experimentation

In this chapter, the dynamic and stochastic problem is solved for notional and

randomly-generated problem instances. In addition to using exact methods to solve

the dynamic and integer programming formulations of the payload selection problem,

four heuristics are devised. The first two are based on an extension of the classic,

profit-to-weight ratio heuristic of the one-dimensional knapsack problem; the third is

a greedy heuristic based on payload utility; and the fourth is a simulated annealing

routine. Three small, medium, and large problems are solved using each method with

a notional data set. Problem size is designated by the number of binary variables

in the resulting IP formulation. Finally, the smallest problem instance is solved for

payloads and satellite buses whose resource requirements and capacities have been

randomly generated. Results include both problem solutions and a comparison of

the solution techniques’ performance.

4.1 Exact Solution Methods

A dynamic program can be solved using a variety of methods many of which

rely, to some degree, on enumeration. Pure enumeration is evaluation of all states in

the state space. Although pure enumeration guarantees optimality, it is very costly in

terms of computational requirements and storage. For cases with appropriate prob-

lem structure, approximate dynamic programming may be used wherein the cost-

to-go function is approximated to avoid complete enumeration. The formulation for

the payload selection problem assumes no underlying structure for the importance,

MMD, and resource requirements of each payload. This requires all payloads to be

examined or, more specifically, all stages in the DP to be evaluated. Therefore, it

is not possible to find good approximations of the cost-to-go function because no

inferences can be made on attributes of unspecified payloads. Additionally, this pre-

cludes the development of bounds to eliminate suboptimal states. For this reason,

4-1

a pure enumerative routine with pruning was used and carried out via Matlab. At

each stage, infeasible states are eliminated resulting in reduced computational and

storage requirements. The IP formulation in this research was solved using Dash

Optimization’s commercial solver Xpress. Xpress, like most industrial solvers, uses

a variety of methods to solve an integer program. Preprocessing is applied to the

initial problem to eliminate variables, and heuristics are used to determine the best

starting point for the branch-and-cut algorithm, which uses both Gomory cuts and

lifted cover inequalities at branch nodes. The algorithm is strengthened through the

use of strong branching in which branching samples are ranked, and the best branch

is chosen.

4.2 Greedy and Simulated Annealing Heuristics

In this section, the heuristic methods are introduced. Two norm-based heuris-

tics are presented which are based on extending the one-dimensional knapsack prob-

lem’s profit-to-cost ratio heuristic to a multidimensional knapsack. A greedy heuris-

tic based on payload utility is briefly discussed. Also outlined is an application of

the simulated annealing routine to the payload selection problem.

4.2.1 Norm-Based Heuristics

The motivation for the norm-based heuristics introduced in this section is the

classic profit-to-weight ratio heuristic for the one-dimensional KP. As stated earlier,

the payload selection problem for a single satellite is a relaxation of the MCMKP.

Consider a single satellite j and define the set of objects as all unique pairs (i,mj
i),

i = 1, 2, . . . , K, j = 1, 2, . . . , M ; that is, every possible payload type and MMD

combination. Payload weights are power, cost, weight, and volume requirements. A

greedy solution to the multiple-satellite payload selection problem is to maximize the

utility of each satellite successively, in other words, solving a succession of MCMKPs,

each involving one of the M satellite buses. As discussed earlier, such a greedy

4-2

solution does not guarantee optimality of the overall constellation’s utility; however,

all heuristic methods for the payload selection problem take this greedy approach.

For individual satellite buses, the one-dimensional profit-to-weight ratio heuris-

tic cannot be directly applied to the payload selection problem. First, the satellite

bus is a four-dimensional knapsack instead of a one-dimensional knapsack. One could

choose either power, cost, weight, or volume and apply the greedy profit-to-weight

ratio heuristic based on that resource. However, failing to take all resources into

account leads to a heuristic of questionable effectiveness. The second reason the

classic profit-to-weight heuristic cannot be used is the additional restriction that at

most one payload of each type can be loaded onto a single satellite bus. Fortunately,

this is easily resolved by tracking which payload types have already been loaded onto

the satellite bus.

To resolve the multi-dimensionality, a scalar is required that provides some

aggregate measure of a satellite’s resource consumption. This is done using a similar

motivation as the Toyota heuristic for MKPs. Dividing each payload’s utility by an

aggregated scalar provides an analogous profit-to-weight ratio. To motivate such a

measure, first consider the p-norm of a vector x = [x1, x2, . . . , xn], where

‖x‖p = (xp
1 + xp

2 + . . . + xp
n)1/p (4.1)

and p ≥ 1. The p-norm provides a generalized measure of distance, and when p = 2,

it is the Euclidean distance. For each satellite, there are K(ξ+1) payload type/MMD

combinations. Define Û j
i , R̂j

i , Ĉj
i , Ŵ j

i , and V̂ j
i as the utility and power, cost,

weight, and volume resources used by payload type/MMD combination i on satellite

j, respectively, i = 1, 2, . . . , K(ξ + 1), j = 1, 2, . . . , M . For payload type/MMD

combination i on satellite j, define vector ωj
i = [R̂j

i/Pj, Ĉ
j
i /Cj, V̂

j
i /Vj, Ŵ

j
i /Wj],

i = 1, 2, . . . , K(ξ + 1), j = 1, 2, . . . , M . That is, ωj
i is the vector of ratios of the pay-

load’s resource requirements to the bus’s resource capacities, i = 1, 2, . . . , K(ξ + 1),

4-3

j = 1, 2, . . . , M . Each resource has different units, so scaling them by their respec-

tive satellite capacities makes them comparable. Now, for some value of p, define

constant ωj
i as the aggregate payload weight, where

ωj
i = ‖ωj

i‖p, i = 1, 2, . . . , K(ξ + 1), j = 1, 2, . . . ,M. (4.2)

For satellite j, ωj
i and Û j

i can be computed for all K(ξ + 1) combinations of

payload type and MMD specifications, i = 1, 2, . . . , K, j = 1, 2, . . . , M . This forms

the set of K(ξ + 1) items. The combinations (or items) for each satellite can be

ordered such that
Û j

1

ωj
1

≥ Û j
2

ωj
2

≥ . . . ≥
Û j

K(ξ+1)

ωj
K(ξ+1)

.

Payloads can then be inserted into the satellite greedily from largest to smallest ra-

tios. A formal description of the heuristic is as follows:

For satellites j = 1, 2, . . . , M .

1. Select value of p ∈ R+.

2. Compute Û j
i and ωj

i for each payload/MMD combination i on satellite j,

i=1, 2, . . . , K(ξ + 1), j = 1, 2, . . . ,M .

3. Order combinations such that:
Ûj

1

ωj
1

≥ Ûj
2

ωj
2

≥ . . . ≥ Ûj
K(ξ+1)

ωj
K(ξ+1)

.

4. For combinations i = 1, 2, . . . , K(ξ + 1): If combination i can be included,

and the payload type in combination i has not been previously loaded, include

combination i. Otherwise, exclude combination i.

Extensive testing of the p-norm heuristic for different values of p indicated

that the heuristic was more accurate for 2 < p < ∞. In particular a value of

p = 5 is chosen for all runs deeming the heuristic the 5-norm heuristic. It may seem

counterintuitive that a non-Euclidean norm yields better results. However, the effect

of a larger p-value in the norm is that larger vector components have more effect

4-4

on the norm’s value. Since each component of ωj
i represents the fraction of total

satellite resources a payload type/MMD combination consumes, the resource that

consumes the largest amount of satellite capacity most strongly affects the norm’s

value. In other words, under the 5-norm, payloads receive a larger aggregate measure

of resource consumption if they consume a larger portion of one resource than they

would under the 2-norm. This is the motivation for the next heuristic.

Although ωj
i represents a measure of resources required by a payload type/MMD

combination, it does not take into account the relative scarcity of each resource. For

example, if a satellite bus is severely limited in its capacity to produce power, it

is intuitive that payloads having a larger relative power requirement should have

a greater effect on the norm’s value. This is accomplished by weighting the norm

elements by the relative scarcity of resources. Let ζj
P , ζj

C , ζj
W , and ζj

V represent the

relative scarcity of power, cost, weight, and volume resources on satellite j, respec-

tively, where

ζj
P =

K(ξ+1)∑
i=1

R̂j
i

Pj

, j = 1, 2, . . . , M, (4.3)

ζj
C =

K(ξ+1)∑
i=1

Ĉj
i

Cj

, j = 1, 2, . . . ,M, (4.4)

ζj
W =

K(ξ+1)∑
i=1

Ŵ j
i

Wj

, j = 1, 2, . . . , M, (4.5)

ζj
V =

K(ξ+1)∑
i=1

V̂ j
i

Vj

, j = 1, 2, . . . , M. (4.6)

4-5

For payload type/MMD combination i on satellite j, define a weighted 2-norm ω
′j
i ,

where

ω
′j
i =

√
ζj
P (R̂j

i/Pj)2 + ζj
C(Ĉj

i /Cj)2 + ζj
W (Ŵ j

i /Wj)2 + ζj
V (V̂ j

i /Vj)2 (4.7)

for i = 1, 2, . . . , K(ξ + 1), j = 1, 2, . . . , M . The scalar ω
′j
i forms the basis for the

next heuristic using exactly the same routine as the first with the exception that ω
′j
i

is used in place of ωj
i . This is called the weighted norm heuristic.

To determine the effectiveness of the norm-based heuristics, they will be com-

pared to a strictly greedy heuristic that bases selection decisions on the total utility

of payload type/MMD combinations. The greedy heuristic first computes and then

sorts the utility associated with each payload type/MMD combination in descending

order, i = 1, 2, . . . , K, j = 1, 2, . . . , M . Starting with the largest utility combination,

it attempts to include it, subject to feasibility. It then attempts to include each

successive combination and finishes by attempting to include combination K(ξ +1).

Because it does not take payload resource requirements into account, the greedy

heuristic is expected to perform worse than the norm-based heuristics.

4.2.2 Simulated Annealing Heuristic

Simulated annealing is applied to each satellite in the payload selection problem

in a greedy manner. Like the two previous heuristics, it seeks to maximize the utility

of each individual satellite successively, so each satellite is solved as an individual

MCMKP. Without loss of generality, the loading of a single satellite is considered in

the following discussion. Define xi, i = 1, 2, . . . , K(ξ + 1) as:

xi =

1, if payload type/MMD combination i is included

0, otherwise

.

4-6

A solution x = [x1, x2, . . . , xK(ξ+1)] is feasible if x ∈ χ, where χ is the set of all

payload loadings such that:

1. At most one of each payload type i is included, i = 1, 2, . . . , K.

2. Total power, cost, weight, and volume requirements of included payloads does

not exceed P , C, W , and V , respectively.

For any x ∈ χ, a neighboring solution is any x′ ∈ χ that differs from x by the inclu-

sion or exclusion of one payload type/MMD combination, i = 1, 2, . . . , K. Therefore,

a move will consist of adding or removing a payload subject to feasibility. Recall that

T0 is the initial temperature, and Tf is the terminal temperature, where Tf < T0. A

geometric cooling schedule is used with rate r ∈ (0, 1). Under a geometric cooling

schedule Ti+1 = riTi, i = 1, 2, . . . , I, where I = min
j
{j : Tf ≥ rjT0}. The geometric

cooling schedule lends itself well to simulated annealing because initially tempera-

ture decreases rapidly from T0 avoiding an inordinate amount of time being spent

in the random-search phase. The cooling schedule then tapers off as it reaches its

terminal temperature Tf allowing full exploration of the local optimum. At each

temperature level, N solutions are explored. A detailed outline of the heuristic is

presented in Figure 4.1.

Selection of parameters T0, Tf , r, and N is integral to the performance of

simulated annealing. Although theoretical selection of parameters is not without

merit, an experimental approach was taken to determine parameter settings. A

variety of parameter settings was tested and those selected that gave satisfactory,

near-optimal solutions. The simulated annealing parameters used are found in Table

4.1

Table 4.1 Simulated Annealing parameter settings.

Parameter T0 Tf r N

Value 500 0.01 0.05 5

4-7

Select: N ≥ 1, r ∈ (0, 1), T0, Tf s.t. 0 < T0 < Tf

Set: T = T0, n = 0

x1 = random(x) ∈ χ

while T ≥ Tf do

while n ≤ N do

x2 = random(x) ∈ χ

δ = f(x2)− f(x1)

if δ > 0 then

x1 = x2

else if random(q) ∼ U[0, 1] < e
δ
T then

x1 = x2

end if

n = n + 1

end while

T = rT

end while

Figure 4.1 Simulated annealing algorithm.

In simulated annealing, it is desirable to set T0 large enough to get some free

movement throughout the solution space. However, a sufficiently high value may

require a large number of iterations before the system cools to Tf . Therefore, because

sufficient, free movement throughout the solution space cannot always be practically

ensured, simulated annealing is often dependent on its starting solution. A way

to mitigate this is to run multiple replications of the simulated annealing heuristic

and select the best solution. A faster, less exact simulated annealing heuristic run

over multiple replications is capable of providing better solutions than one lengthy,

computationally-expensive routine.

4-8

Because simulated annealing, as it pertains to the payload specification prob-

lem, shows strong dependence on the initial solution, replications were performed.

Loadings for each of the individual M satellites were specified by a single, simulated

annealing run. However, the overall M satellite loading problem was run multi-

ple times. As with the selection of parameters, the optimal number of replications

was determined through experimentation to balance optimality with run-time. The

number of replications chosen was 30.

In order to evaluate the performance of both the norm-based heuristics and

simulated annealing, numerical experiments are required to compare the performance

of the heuristics against exact solutions. The next three sections describe both the

construction and execution of these experiments.

4.3 Description of Experiment

A numerical experiment was conducted to compare the performance of the

exact and heuristic solution methods using notional payload data. A method is

deemed exact if, in theory, it is guaranteed to yield the optimal solution. Exact

methods include the Matlab enumeration of the dynamic programming formulation

and the Xpress solver solution to the integer programming formulation. Heuristic

methods include simulated annealing, the two norm-based heuristics, and the greedy

heuristic.

Table 4.2 Summary of solution methods.

Exact Heuristic

Pure Enumeration Simulated Annealing
Xpress Solver Weighted 2-Norm

5-Norm
Greedy

Performance is measured by two attributes: solution quality and run-time.

Although exact methods are guaranteed to eventually yield optimality, it may not

4-9

be achievable in practice due to time or computational limits. The design of the

numerical experiments consists of two major parts. The first is selection of an explicit

functional form for payload utility. The second is generation of payload and satellite

bus data as well as the problem instances. Each is next discussed in turn.

4.3.1 Payload Utility Function

No assumptions are made regarding the functional form of payload utility in

the derivation of the models for payload selection. Both the exact and the heuristic

methods will work with any arbitrary function. Let indicator function φj
i (n) ∈ {0, 1}

denote the functional status (up or down) of payload i on satellite j at time n,

i = 1, 2, . . . , K, j = 1, 2, . . . , M . To motivate the functional form of utility, condition

payload utility on φj
i (n):

E[uj
i (ψ

j
i ,m

j
i ; n)] =

∑

x∈{0,1}
E[uj

i (ψ
j
i ,m

j
i ; n)|φj

i (n) = x]P{φj
i (n) = x}. (4.8)

Both E[uj
i (ψ

j
i ,m

j
i ; n)|φj

i (n) = x] and P{φj
i (n) = x} need to be characterized.

Assume the conditional utility expression is characterized by

E[uj
i (ψ

j
i ,m

j
i ; n)|φj

i (n) = 1] =
Dj

i (ψ
j
i , m

j
i ; n)

qi(n)γ
, γ ≥ 0 (4.9)

E[uj
i (ψ

j
i ,m

j
i ; n)|φj

i (n) = 0] = 0 (4.10)

where, Dj
i (ψ

j
i ,m

j
i ; n) is a deterministic function describing the utility decay of pay-

load i on satellite j at epoch n, i = 1, 2, . . . , K, j = 1, 2, . . . , M. In other words, it is

assumed that the utility decline of a functioning payload is a deterministic function

and that, when a payload fails, it has zero utility.

The constant γ is a utility dependence parameter such that when γ = 0,

there is no dependence, and γ ≥ 0 implies dependence. Both the enumerative and

heuristic methods require the calculation of a payload’s total utility when it enters

4-10

a constellation, so total utility cannot be adjusted for future payloads added. It is

possible to reformulate the IP in a way that allows the total utility of each payload

to be adjusted for the addition of future payloads; however, this is not done to allow

direct comparison of the IP method with the other methods. Therefore, if utility

dependence exists, only the total utilities of subsequent payloads are diminished. A

value of γ = 0.5 was used throughout the numerical experiments.

In selecting a functional form Dj
i (ψ

j
i ,m

j
i ; n), i = 1, 2, . . . , K, j = 1, 2, . . . , M , it

is assumed that the utility of a functional payload declines exponentially with time,

and

Dj
i (ψ

j
i ,m

j
i ; n) = ψj

i e
−βn/mj

i , β > 0. (4.11)

The constant β is a tuning parameter to adjust the shape of the curve. It is as-

sumed that payload survival distributions are independent; however, no additional

assumptions are made regarding the distributions, and it is not necessary to have a

memoryless distribution. However, because satellite payloads are largely comprised

of electronic components, it is assumed that payload survival distributions are ex-

ponentially distributed. Denote the survival distribution by

P{φj
i (n) = 1} = e−αn/mj

i , α > 0 (4.12)

where, α is another tuning parameter. The values β = | ln 0.5| and α = | ln 0.9| were

used throughout the experiment. These values imply that payloads will survive to

their MMD with 90% probability, and upon reaching their MMD, they will operate

at 50% of their original utility.

4.3.2 Notional Data and Problem Instances

The motivation for using notional data as opposed to actual data is that a

notional data set can be tailored to better test the solution methods. For example,

if a specific set of actual data were used, it is possible that power is the only limiting

4-11

resource. In this case, the payload selection problem would effectively reduce to a

one-dimensional knapsack problem; and the solution methods would be evaluated

on a special, one-dimensional resource case as opposed to a more general, multi-

dimensional case. The notional data set can be constructed to make the scarcity of

the resources competitive thereby avoiding such a situation.

Although the data is notional, it is desirable to use realistic values for payload

resource requirements. General ranges were obtained from a payload engineer for the

power, cost, weight, and volume requirements of the satellite payloads and capacities

of the satellite buses. In practice, a payload’s cost estimate is directly proportional

to its weight; therefore, costs and weights are generally correlated throughout the

notional data. It is assumed that each payload can be assigned an MMD of 3 years, 6

years, or 10 years. The same set of MMD choices were used for each payload type to

allow an easier comparison of results, but it is not necessary, in general, that each type

of payload selects among the same set of MMD values. A payload type constructed

to a higher MMD specification will likely include redundant systems or more robust

materials requiring additional cost, weight, and volume resources. Therefore, in the

notional data, as MMD is increased, the cost, weight, and volume resources consumed

by payloads also increases. The notional data used in this research are presented in

Table 4.3.

Ranges were also obtained for the resource capacities of the satellite buses. It

is assumed throughout that all satellite buses have identical resource capacities, so

each satellite’s loading can be compared more easily. Satellite bus data is provided

in Table 4.4

To fully explore each method’s performance, a variety of problem instances are

required, both simple and complex. Problem complexity for all methods is dependent

on three variables: the number of satellite buses, payload types available, and MMD

specifications available to each payload type. Through all runs, each payload type

has three MMD specifications available to ensure realism. The number of satellites

4-12

Table 4.3 Notional satellite payload data.

Type MMD (Yr) Importance Power (W) Cost ($100k) Weight (lb) Volume (ft3)

3 10.0 500 425 450 15.0
1 6 10.0 500 460 475 17.0

10 10.0 500 500 500 20.0
3 8.5 475 375 400 16.0

2 6 8.5 475 405 415 18.0
10 8.5 475 430 420 19.5
3 7.5 425 410 430 10.0

3 6 7.5 425 460 480 13.0
10 7.5 425 480 495 14.0
3 7.0 260 300 230 10.0

4 6 7.0 260 350 280 13.0
10 7.0 260 370 300 14.0
3 6.0 225 370 380 13.0

5 6 6.0 225 400 390 15.5
10 6.0 225 410 395 17.5
3 5.5 300 280 240 8.0

6 6 5.5 300 320 290 9.0
10 5.5 300 380 310 12.0
3 5.0 275 150 280 7.0

7 6 5.0 275 190 350 9.5
10 5.0 275 240 410 14.0
3 3.0 175 270 225 4.0

8 6 3.0 175 310 360 5.5
10 3.0 175 335 300 8.0

and payload types, however, are varied. Problem size is measured by the number of

binary variables in the resulting IP formulation. This measure was chosen because,

as seen later, the IP formulation was the only exact method that was practical for

all problem sizes. Small problems have ≤ 100 IP variables; medium problems have

101 − 10, 000 IP variables; and large problems have ≥ 10, 000 IP variables. Three

instances each of small, medium, and large problems were generated to provide a

good sampling over each range of problem size.

The preexistence of satellites in the constellation at time n = 0 does not affect

problem complexity. In all problems, it is assumed there are no preexisting satel-

4-13

Table 4.4 Notional satellite bus data.

Power Capacity (W-Yr) Budget ($100k) Weight (lb) Volume (ft3)
10500 2500 2500 100

Table 4.5 Payload selection problem instances.

Problem Size Factor Instance 1 Instance 2 Instance 3

No. Satellites 1 2 2
Small No. Payload Types 8 4 5

No. IP Variables 32 64 80
No. Satellites 3 4 5

Medium No. Payload Types 4 6 6
No. IP Variables 256 1536 8192
No. Satellites 6 6 7

Large No. Payload Types 6 8 8
No. IP Variables 24576 32768 131072

lites; therefore, utility dependence is solely generated by the payloads selected by

each method. This prevents confounding the source of utility dependency effects.

Satellites are launched at epochs 2, 5, 7, 9, 10, 11, 13, and 15, and with such close

launch intervals, utility dependence is expected to occur. All problem instances be-

gin by selecting payloads for epoch 2, the first launch epoch. Additional satellites

use each successive launch epoch. Matlab code was written to execute the dynamic

programming enumeration and all heuristic methods. The IP formulation was solved

using Xpress software. All computations were preformed on a Dell Precision Work-

station with a 2.66 GHz Intel Xeon CPU and 2 GB memory. In the next section,

numerical results are presented for each instance of small, medium, and large problem

sizes.

4.4 Numerical Results and Summary

This section contains results of the notional payload selection problem in-

stances. The results are presented from the smallest problem instance to the largest.

For each problem, the comparison of performance measures is presented followed by

4-14

the actual payload specifications provided by each method. Simulated annealing is

abbreviated by S.A., the greedy heuristic is abbreviated by G.H., and the weighted

norm heuristic is abbreviated by W. Norm. First presented are the small problems

beginning with the 1 satellite, 8 payload type instance in Tables 4.6 and 4.7. Note

that this is the only instance lacking utility dependence and is equivalent to solving

a pure MCMKP.

Table 4.6 Maximum total utility (small instance 1).

Method Total Utility % Diff. Optimal Time (s)

Xpress Solver 228.7 0.0 0.5
Enumeration 228.7 0.0 751.39

Simulated Annealing 219.1 4.2 22.25
Greedy Heuristic 211.0 7.7 0.06

5-Norm 225.5 1.4 0.09
Weighted Norm 209.6 8.4 0.12

Table 4.7 Payload specifications (small instance 1).

Method Xpress Enum. S.A. G.H. 5-Norm W. Norm
Satellite No. 1 1 1 1 1 1

Payload 1 MMD 10 10 10 10 10 10
Payload 2 MMD 0 0 0 10 0 10
Payload 3 MMD 0 0 3 0 0 0
Payload 4 MMD 10 10 10 10 10 10
Payload 5 MMD 10 10 10 3 10 0
Payload 6 MMD 3 3 0 0 10 3
Payload 7 MMD 10 10 0 0 0 0
Payload 8 MMD 0 0 3 0 3 0

Although this is a simple instance, the enumerative routine took a compara-

tively inordinate amount of time to find an exact solution when compared to the

IP-based, Xpress solver. In both time and accuracy, the 5-norm performed better

overall than the other heuristics coming within 5% of the optimal solution. Now

consider the 2-satellite, 4-payload type result in Tables 4.8 and 4.9.

4-15

Table 4.8 Maximum total utility (small instance 2).

Method Total Utility % Diff. Optimal Time (s)

Xpress Solver 414.1 0.0 0.5
Enumeration 414.1 0.0 1951.44

Simulated Annealing 414.1 0.0 22.00
Greedy Heuristic 385.6 6.9 0.06

5-Norm 382.0 7.8 0.09
Weighted Norm 381.0 8.0 0.12

Table 4.9 Payload Specifications (small instance 2).

Method Xpress Enum. S.A. G.H. 5-Norm W. Norm
Satellite No. 1 2 1 2 1 2 1 2 1 2 1 2

Payload 1 MMD 10 10 10 10 10 10 10 10 10 10 10 10
Payload 2 MMD 6 10 6 10 6 10 10 10 10 6 10 6
Payload 3 MMD 6 10 6 10 6 10 0 10 0 10 0 10
Payload 4 MMD 10 10 10 10 10 10 10 6 10 10 10 10

Despite a doubling of IP variables from 32 to 64, the Xpress solver found an

optimal solution in the same amount of time as the previous instance. However,

the solution time of the enumerative method nearly doubled. Simulated annealing

also found the optimal solution in a modest amount of time. The two norm-based

heuristics performed worse than the greedy heuristic. Presented next are results for

the 2 satellite, 5 payload type problem in Tables 4.10 and 4.11.

Table 4.10 Maximum total utility (small instance 3).

Method Total Utility % Diff. Optimal Time (s)

Xpress Solver 437.6 0.0 0.7
Enumeration* - - >288,0000

Simulated Annealing 435.1 0.6 20.76
Greedy Heuristic 405.2 7.4 0.07

5-Norm 430.1 1.7 0.14
Weighted Norm 430.1 1.7 0.11

For this instance and all subsequent instances, complexity of the enumeration

precluded it from finding a solution in a reasonable amount of time. Meanwhile, the

4-16

Table 4.11 Payload specifications (small instance 3).

Method Xpress Enum. S.A. G.H. 5-Norm W. Norm
Satellite No. 1 2 1 2 1 2 1 2 1 2 1 2

Payload 1 MMD 10 10 - - 10 10 10 10 10 10 10 10
Payload 2 MMD 3 10 - - 3 10 10 10 6 10 10 3
Payload 3 MMD 3 3 - - 6 3 0 10 0 3 0 10
Payload 4 MMD 10 10 - - 6 10 10 0 10 10 10 10
Payload 5 MMD 10 10 - - 10 10 3 6 10 10 3 10

Xpress solver took only 0.2 s longer to find the optimal solution. The performance of

the two norm-based heuristics was comparable, and they were closer to optimal than

the greedy heuristic. Of the heuristics, simulated annealing found solutions that

were closest to the optimal solution. Presented next is the smallest, medium-size

problem having 3 satellites and 4 payload types in Tables 4.12-4.14.

Table 4.12 Maximum total utility (medium instance 1).

Method Total Utility % Diff. Optimal Time (s)

Xpress Solver 590.0 0.0 0.4
Enumeration - - -

Simulated Annealing 568.6 3.6 26.77
Greedy Heuristic 563.8 4.4 0.06

5-Norm 561.0 4.9 0.09
Weighted Norm 561.0 4.9 0.13

Table 4.13 Payload specifications (medium instance 1).

Method Xpress Enum. S.A.
Satellite No. 1 2 3 1 2 3 1 2 3

Payload 1 MMD 10 10 10 - - - 6 10 10
Payload 2 MMD 6 10 10 - - - 6 6 10
Payload 3 MMD 6 10 10 - - - 10 10 10
Payload 4 MMD 10 10 10 - - - 10 10 10

Although the underlying IP has grown to 256 variables, Xpress still obtained a

solution quickly. Simulated annealing outperformed the other heuristics by a slight

margin. The effects of utility dependence are becoming apparent. In all solutions,

4-17

Table 4.14 Payload specifications (medium instance 1).

Method G.H. 5-Norm W. Norm
Satellite No. 1 2 3 1 2 3 1 2 3

Payload 1 MMD 10 10 10 10 10 10 10 10 10
Payload 2 MMD 10 10 10 10 6 10 10 6 10
Payload 3 MMD 0 10 10 0 10 10 0 10 10
Payload 4 MMD 10 6 10 10 10 10 10 10 10

satellite 3 is assigned all four payload types with a MMD specification of 10. Note

that all payloads on satellite 3 will experience decreased utilities due to the number of

payloads already present in the constellation. Power consumption is proportional to

utility, so each payload requires less power; hence, both the number of payloads and

their MMD specifications can be increased without violating the power constraint.

Next, consider the 4 satellite, 6 payload type problem in Tables 4.15-4.17.

Table 4.15 Maximum total utility (medium instance 2).

Method Total Utility % Diff. Optimal Time (s)

Xpress Solver 874.5 0.0 85.0
Enumeration - - -

Simulated Annealing 850.1 2.8 47.90
Greedy Heuristic 815.7 6.7 0.10

5-Norm 835.4 4.5 0.11
Weighted Norm 822.7 5.9 0.15

Table 4.16 Payload specifications (medium instance 2).

Method Xpress Enum. S.A.
Satellite No. 1 2 3 4 1 2 3 4 1 2 3 4

Payload 1 MMD 6 10 10 10 - - - - 10 3 3 10
Payload 2 MMD 6 3 10 10 - - - - 3 10 10 10
Payload 3 MMD 3 6 0 10 - - - - 0 6 10 3
Payload 4 MMD 10 10 10 10 - - - - 10 6 10 10
Payload 5 MMD 10 10 10 10 - - - - 6 6 10 10
Payload 6 MMD 3 6 10 0 - - - - 10 10 6 10

4-18

Table 4.17 Payload specifications (medium instance 2).

Method G.H. 5-Norm W. Norm
Satellite No. 1 2 3 4 1 2 3 4 1 2 3 4

Payload 1 MMD 10 10 10 10 10 10 10 10 10 10 10 10
Payload 2 MMD 10 10 10 10 0 10 10 10 10 10 10 10
Payload 3 MMD 0 10 10 10 0 0 10 10 0 10 0 10
Payload 4 MMD 10 0 10 10 10 10 10 10 10 0 10 10
Payload 5 MMD 3 6 6 0 10 10 0 0 0 0 10 0
Payload 6 MMD 0 0 0 10 10 3 3 10 3 6 10 10

Finding an exact solution requires substantially more time for the IP solver

than in the previous instance. Simulated annealing found a near-optimal solution in

roughly half the time. Of the remaining heuristics, only the 5-norm found a solution

within 5% of optimal. The largest, medium-sized problem is presented next in Tables

4.18-4.21. This is the first instance in which Xpress fails to find a provable, optimal

solution. Therefore, all methods are compared against the best, integer solution

obtained as well as the lowest, upper bound on the objective function value. This

bound is determined through cuts generated by Xpress.

Table 4.18 Maximum total utility (medium instance 3).

% Diff. Best % Diff. Upper
Method Total Utility Solution Bound Time (s)

Xpress Solver 1088.8 0.0 0.2 1404.5
Enumeration - - - -

Simulated Annealing 1039.4 4.5 4.7 109.13
Greedy Heuristic 1033.0 5.1 5.3 0.11

5-Norm 1054.3 3.2 3.4 0.13
Weighted Norm 1037.1 4.7 5.0 0.17

The simulated annealing solution is within 5% of the best integer solution

and upper bound; however, the 5-norm came the closest to optimality of all the

heuristics. The largest problems are next presented beginning with the 6 satellite, 6

payload type instance found in Tables 4.22-4.25. Xpress managed to find a solution,

but it required a substantial amount of time. Although simulated annealing found

4-19

Table 4.19 Payload specifications (medium instance 3).

Method Xpress Enum.
Satellite No. 1 2 3 4 5 1 2 3 4 5

Payload 1 MMD 10 10 10 10 10 - - - - -
Payload 2 MMD 3 0 0 0 10 - - - - -
Payload 3 MMD 0 3 6 10 0 - - - - -
Payload 4 MMD 10 10 10 10 10 - - - - -
Payload 5 MMD 10 10 10 10 10 - - - - -
Payload 6 MMD 3 10 10 10 10 - - - - -
Payload 7 MMD 3 6 10 10 10 - - - - -
Payload 8 MMD 0 0 0 0 0 - - - - -

Table 4.20 Payload specifications (medium instance 3).

Method S.A. G.H.
Satellite No. 1 2 3 4 5 1 2 3 4 5

Payload 1 MMD 6 0 10 10 6 10 10 10 10 10
Payload 2 MMD 0 10 0 6 10 10 10 10 10 10
Payload 3 MMD 6 6 3 10 10 0 10 10 0 10
Payload 4 MMD 10 10 6 10 6 10 0 10 10 10
Payload 5 MMD 6 6 10 10 0 3 6 0 10 10
Payload 6 MMD 6 3 10 0 10 0 0 0 10 0
Payload 7 MMD 0 6 10 3 10 0 0 6 3 6
Payload 8 MMD 3 3 0 0 0 0 0 0 0 0

Table 4.21 Payload specifications (medium instance 3).

Method 5-Norm W. Norm
Satellite No. 1 2 3 4 5 1 2 3 4 5

Payload 1 MMD 10 10 10 10 10 10 10 10 10 10
Payload 2 MMD 0 10 0 10 10 10 0 10 10 10
Payload 3 MMD 0 0 10 10 0 0 10 0 10 0
Payload 4 MMD 10 10 10 10 10 10 10 0 10 10
Payload 5 MMD 10 0 10 10 0 0 0 10 10 0
Payload 6 MMD 10 0 10 0 10 3 10 6 0 10
Payload 7 MMD 0 10 0 0 10 0 0 10 0 10
Payload 8 MMD 3 0 0 0 10 0 3 0 0 10

4-20

a solution closest to optimal, the difference in solution quality of the heuristics is

small. Consider the 6 satellite, 8 payload problem in Tables 4.26-4.29. In this

instance, simulated annealing performed worse than all other heuristics including

the greedy heuristic. The 5-norm performed best. In the final instance involving 7

satellites and 8 payloads in Tables 4.30-4.33, the 5-norm, once again, had the most

optimal solution followed by the weighted norm.

Table 4.22 Maximum total utility (large instance 1).

Method Total Utility % Diff. Optimal Time (s)

Xpress Solver 1248.0 0.0 5435.7
Enumeration - - -

Simulated Annealing 1191.4 4.5 71.02
Greedy Heuristic 1186.9 4.9 0.11

5-Norm 1188.4 4.8 0.13
Weighted Norm 1180.4 5.4 0.25

Table 4.23 Payload specifications (large instance 1).

Method Xpress Enum.
Satellite No. 1 2 3 4 5 6 1 2 3 4 5 6

Payload 1 MMD 6 10 10 10 10 10 - - - - - -
Payload 2 MMD 6 6 10 10 10 10 - - - - - -
Payload 3 MMD 3 3 3 3 10 10 - - - - - -
Payload 4 MMD 10 10 10 10 3 10 - - - - - -
Payload 5 MMD 6 10 10 10 10 10 - - - - - -
Payload 6 MMD 6 6 6 10 10 3 - - - - - -

Several conclusions can be drawn from the results of these notional problem

instances. Of the exact solution methods, the IP-based Xpress solver clearly worked

best. Although it was unable solve three of the larger problems to optimality, it

placed relatively tight bounds on the optimal objective function value and provided

a near-optimal integer solution. The enumerative method took inordinately long,

even for small problems and if terminated early, provided no solution. Of the heuris-

tic methods, the simulated annealing routine and the 5-norm provided solutions

4-21

Table 4.24 Payload specifications (large instance 1).

Method S.A. G.H.
Satellite No. 1 2 3 4 5 6 1 2 3 4 5 6

Payload 1 MMD 6 10 6 10 10 6 10 10 10 10 10 10
Payload 2 MMD 3 10 10 6 10 10 10 10 10 10 10 10
Payload 3 MMD 3 6 10 10 10 10 0 10 10 10 10 10
Payload 4 MMD 6 6 6 10 6 10 10 0 10 10 10 3
Payload 5 MMD 10 3 3 10 10 10 3 6 6 0 10 10
Payload 6 MMD 10 0 10 6 3 6 0 0 0 10 3 10

Table 4.25 Payload specifications (large instance 1).

Method 5-Norm W. Norm
Satellite No. 1 2 3 4 5 6 1 2 3 4 5 6

Payload 1 MMD 10 10 10 10 10 10 10 10 10 10 10 10
Payload 2 MMD 0 10 10 10 10 10 10 10 10 10 10 10
Payload 3 MMD 0 0 10 10 3 10 0 10 0 10 10 10
Payload 4 MMD 10 10 10 10 10 10 10 0 10 10 10 10
Payload 5 MMD 10 10 0 0 10 0 0 0 10 0 10 0
Payload 6 MMD 10 3 3 10 10 10 3 6 10 10 3 10

Table 4.26 Maximum total utility (large instance 2).

% Diff. Best % Diff. Upper
Method Total Utility Solution Bound Time (s)

Xpress Solver 1286.3 0.0 1.0 3472.1
Enumeration - - - -

Simulated Annealing 1219.6 5.2 6.1 131.81
Greedy Heuristic 1232.3 4.2 5.1 0.12

5-Norm 1250.3 2.8 3.7 0.16
Weighted Norm 1234.6 4.0 4.9 0.18

that were consistently close to optimality. Simulated annealing is the most time

consuming, yet the most reliable heuristic. On all but one instance, in which the

sub-optimality was 5.2%, simulated annealing came within 5% of the optimal or best

integer solution.

4-22

Table 4.27 Payload specifications (large instance 2).

Method Xpress Enum.
Satellite No. 1 2 3 4 5 6 1 2 3 4 5 6

Payload 1 MMD 6 10 10 10 10 10 - - - - - -
Payload 2 MMD 0 3 3 0 10 10 - - - - - -
Payload 3 MMD 6 0 10 10 10 0 - - - - - -
Payload 4 MMD 10 10 10 10 10 10 - - - - - -
Payload 5 MMD 10 10 10 10 10 10 - - - - - -
Payload 6 MMD 6 6 6 10 3 10 - - - - - -
Payload 7 MMD 3 6 0 0 0 10 - - - - - -
Payload 8 MMD 0 3 0 10 0 0 - - - - - -

Table 4.28 Payload specifications (large instance 2).

Method S.A. G.H.
Satellite No. 1 2 3 4 5 6 1 2 3 4 5 6

Payload 1 MMD 3 6 10 10 6 10 10 10 10 10 10 10
Payload 2 MMD 0 6 10 10 10 10 10 10 10 10 10 10
Payload 3 MMD 10 0 6 0 10 10 0 10 10 0 10 10
Payload 4 MMD 3 6 0 10 10 3 10 0 10 10 10 10
Payload 5 MMD 10 10 10 10 0 0 3 6 0 10 10 0
Payload 6 MMD 10 3 0 3 0 10 0 0 0 10 0 10
Payload 7 MMD 3 10 3 3 10 10 0 0 6 3 6 10
Payload 8 MMD 0 3 6 10 6 0 0 0 0 0 0 0

Table 4.29 Payload specifications (large instance 2).

Method 5-Norm W. Norm
Satellite No. 1 2 3 4 5 6 1 2 3 4 5 6

Payload 1 MMD 10 10 10 10 10 10 10 10 10 10 10 10
Payload 2 MMD 0 10 0 10 10 10 10 0 10 10 10 10
Payload 3 MMD 0 0 10 10 0 10 0 10 0 10 0 10
Payload 4 MMD 10 10 10 10 10 10 10 10 0 10 10 10
Payload 5 MMD 10 0 10 10 0 0 0 0 10 10 0 0
Payload 6 MMD 10 0 10 0 10 10 3 10 6 0 10 10
Payload 7 MMD 0 10 0 0 10 10 0 0 10 0 10 10
Payload 8 MMD 3 0 0 0 10 0 0 3 0 0 10 0

4-23

Table 4.30 Maximum total utility (large instance 3).

% Diff. Best % Diff. Upper
Method Total Utility Solution Bound Time (s)

Xpress Solver 1469.7 0.0 2.8 7012.7
Enumeration - - - -

Simulated Annealing 1415.6 3.7 6.3 151.88
Greedy Heuristic 1420.4 3.4 6.0 0.14

5-Norm 1441.3 1.9 4.6 0.16
Weighted Norm 1426.5 2.9 5.6 0.21

Table 4.31 Payload specifications (large instance 3).
Method Xpress Enum.

Satellite No. 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Payload 1 MMD 10 10 10 10 10 10 10 - - - - - - -
Payload 2 MMD 3 3 3 0 10 10 10 - - - - - - -
Payload 3 MMD 3 0 6 10 0 10 0 - - - - - - -
Payload 4 MMD 10 10 10 10 10 10 10 - - - - - - -
Payload 5 MMD 6 10 10 10 10 10 10 - - - - - - -
Payload 6 MMD 3 3 10 10 10 0 10 - - - - - - -
Payload 7 MMD 0 6 0 0 0 6 10 - - - - - - -
Payload 8 MMD 0 6 0 10 3 0 0 - - - - - - -

Table 4.32 Payload specifications (large instance 3).

Method S.A. G.H.
Satellite No. 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Payload 1 MMD 10 6 0 10 6 10 10 10 10 10 10 10 10 10
Payload 2 MMD 0 6 10 0 10 10 10 10 10 10 10 10 10 10
Payload 3 MMD 0 10 10 6 10 0 0 0 10 10 0 10 10 10
Payload 4 MMD 10 3 3 6 0 10 10 10 0 10 10 10 10 10
Payload 5 MMD 6 0 6 10 10 10 10 3 6 0 10 10 0 10
Payload 6 MMD 6 10 10 10 10 0 10 0 0 0 10 0 10 0
Payload 7 MMD 10 3 3 10 0 10 10 0 0 6 3 6 10 6
Payload 8 MMD 0 0 10 0 10 6 0 0 0 0 0 0 0 0

For the heuristic methods it is important to determine whether the observa-

tions made regarding each heuristic method hold true in general. For any heuristic,

it is likely that it will perform well for certain payload data sets and poorly for oth-

4-24

Table 4.33 Payload specifications (large instance 3).

Method 5-Norm W. Norm
Satellite No. 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Payload 1 MMD 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Payload 2 MMD 0 10 0 10 10 10 10 10 0 10 10 10 10 10
Payload 3 MMD 0 0 10 10 0 10 10 0 10 0 10 0 10 10
Payload 4 MMD 10 10 10 10 10 10 10 10 10 0 10 10 10 10
Payload 5 MMD 10 0 10 10 0 0 10 0 0 10 10 0 0 10
Payload 6 MMD 10 0 10 0 10 10 0 3 10 6 0 10 10 0
Payload 7 MMD 0 10 0 0 10 10 6 0 0 10 0 10 10 6
Payload 8 MMD 3 0 0 0 10 0 0 0 3 0 0 10 0 0

ers. Therefore, it is desirable to test each heuristic on a large number of randomly

generated data sets in order to draw stronger conclusions regarding the performance

of each method. This is done in the next section.

4.5 Random Problem Instances

In this section, randomly generated problem instances are solved by each

heuristic, and their solutions are compared to optimal solutions. Because the over-

head associated with conditioning data for Xpress is time-consuming, the enumer-

ation routine was used to exactly solve each problem instance. In order to keep

the time required for an exact solution manageable, only the 1 satellite, 8 payload

problem was solved. In addition to payloads having randomly-generated resource

requirements, the satellite bus has randomly-generated resource capacities. Two

separate methods were used to generate data, and 100 instances of each method’s

problems were solved.

The motivation of the first method is to generate a variety of random problems

within ranges of expected payload resource requirements and satellite bus capacities.

The method, denoted M1, uses the same values of payload importance as the notional

data in Table 4.3. All payload resource requirements and satellite bus capacities were

4-25

generated using a uniform distribution. Payloads of the same type are assigned the

same power requirement; however, unlike the notional data, there is no correlation

between payload MMD and randomly-generated resource consumption. Tables 4.34

and 4.35 show the ranges over which the payload and satellite bus data was generated:

Table 4.34 Ranges of payload requirements for M1 problem instances.

Resource Power (W) Cost ($100k) Weight (lb) Volume (ft3)

Range 100-500 100-500 100-500 3-20

Table 4.35 Ranges of bus capacities for M1 problem instances.

Resource Power (W-Yr) Cost ($100k) Weight (lb) Volume (ft3)

Range 7500-12500 2000-3000 2000-3000 75-125

The second method, denoted M2, is designed to test the heuristics over a

wider-range of problem instances than M1. Instead of using the notional vales,

payload importance values are randomly-generated between 0 and 10. Data in M2 is

generated using a uniform distribution on ranges specified in Tables 4.36 and 4.37.

Table 4.36 Ranges of payload requirements for M2 problem instances.

Resource Power (W) Cost ($100k) Weight (lb) Volume (ft3)

Range 0-500 0-500 0-500 0-20

Table 4.37 Ranges of bus capacities for M2 problem instances.

Resource Power (W-Yr) Cost ($100k) Weight (lb) Volume (ft3)

Range 0-10500 0-2500 0-2500 0-100

To execute the experiment, 100 problem instances of the 1 satellite, 8 payload

type problem were exactly solved via DP enumerations using M1 and M2 randomly-

generated data. Then each heuristic was applied to the problems, and the resulting

solutions were compared to the exact solutions. The heuristic performance on the

M1 generated problem instances are in Tables 4.38 and 4.39, and the results of the

4-26

M2 generated problem instances are in Tables 4.40 and 4.41. Table 4.42 shows how

many M1 and M2 problem solutions were beyond 5% of optimality.

The mean differences from optimality of the heuristics’ solutions were relatively

close in the M1 problem set. Simulated annealing has the lowest mean followed by

the 5-norm with a slightly higher mean. The lower standard deviation of simulated

annealing indicates that it provides near-optimal solutions more consistently than

do the other heuristics. In the M1 problem instances, the weighted norm performed

roughly equivalently to the greedy heuristic, and no clear advantage was attained

in using the weighted norm. The performance results of the M2 problem instances

provide a starker contrast of solution quality between the different heuristics. Sim-

ulated annealing has a much lower mean difference from optimality than any other

heuristic. The 5-norm once again performs better than the weighted norm; how-

ever, unlike the M1 problem set, the weighted norm performs better than the greedy

heuristic.

Table 4.38 Heuristic solution quality (100 replications of M1 random data).

Method % Mean Diff. % Std. Dev. % Max Diff. % Median Diff.

Simulated Annealing 2.4931 2.0204 7.7330 2.1342
Greedy Heuristic 5.0545 5.1807 24.9068 4.3784

5-Norm 3.0781 3.5238 15.6261 1.8375
Weighted Norm 4.9201 5.4404 26.9841 3.3097

Table 4.39 Heuristic solution time (100 replications M1 random data).

Method Simulated Annealing Greedy Heuristic 5-Norm Weighted Norm

Mean Time (s) 20.87 0.02 0.02 0.02

A number of conclusions can be drawn from the results of the notional and

random problem instances. Clearly, the exact method with the best performance is

applying the Xpress solver to the IP formulation. The DP enumeration routine could

only solve the two smallest notional problems in a reasonable amount of time. Xpress

4-27

Table 4.40 Heuristic solution quality (100 replications of M2 random data).

Method % Mean Diff. % Std. Dev. % Max Diff. % Median Diff.

Simulated Annealing 0.2013 0.8337 5.3157 0.0000
Greedy Heuristic 10.2515 14.1882 74.8440 4.0379

5-Norm 3.4383 5.7982 26.8590 0.0000
Weighted Norm 4.4508 8.5532 46.8890 0.0000

Table 4.41 Heuristic solution time (100 replications M2 random data).

Method Simulated Annealing Greedy Heuristic 5-Norm Weighted Norm

Mean Time (s) 24.26 0.02 0.02 0.03

Table 4.42 Number of solutions beyond 5% optimality (100 replications M1 and M2).

Method Simulated Annealing Greedy Heuristic 5-Norm Weighted Norm

M1 11 44 24 40
M2 1 49 25 25

solved all but three of the notional problem instances, and for the three it failed to

solve, the best integer solutions were within 3% of optimality. The best heuristic

based on solution quality and consistency is simulated annealing. The closeness to

optimality of the 5-norm solutions often rivals those of simulated annealing but, the

5-norm fails to attain near-optimal solutions consistently. However, the 5-norm ran

on the order of 1,000-10,000 times faster than simulated annealing, and it can be

argued that, taking time into consideration, the 5-norm heuristic has the best overall

performance. However, practically considering the lengthy time frame associated

with satellite construction and the monetary value of the resources at stake, the time

required by simulated annealing (∼3 minutes for the largest problem) is negligible

compared to the value gained attaining a nearly-optimal solution.

Several factors must be considered when deciding between the use of the Xpress

IP solver or simulated annealing. Most importantly is what level of sub-optimality

can be tolerated. Although this research provides the means by which to select and

specify payloads, the solution is just a starting point in the process of actually con-

4-28

structing a satellite. Modifications to the solution will likely be required because of

geometric or thermal considerations. Additionally, the mission objectives or prior-

ities of the satellite constellation itself may change. Therefore, a 5% difference in

optimality between the exact and simulated annealing solutions may not be very

significant with respect to the other design factors. Additionally, because of the size

of the IP formulation, a costly commercial solver like Xpress or CPLEX is almost

certainly required. In contrast, the simulated annealing routine is well-documented

and coding it in virtually any computer language requires very little specialized or

proprietary knowledge. In any case, the tradeoff between a solution’s quality and its

complexity must be assessed in determining which technique to apply.

4-29

5. Conclusions and Future Research

Nations spend an enormous amount of financial resources acquiring, launch-

ing, and operating satellites. Selecting and specifying satellite payloads is a process

that can benefit tremendously from the development of methodologies for more effec-

tive resource allocation. Payloads are the mission critical components of a satellite

and require power, cost, weight, and volume resources, of which, the satellite bus

can only provide a limited amount. A critical specification of a satellite payload is

its mean mission duration (MMD), which denotes the payload’s lifetime for mission

planning purposes. Increasing a payload’s MMD specification requires additional

components and materials increasing the payload’s cost, weight, and volume. Cur-

rent payload selection and specification methodologies are either general and qual-

itative or only applicable to a specific type of satellite constellation. This research

has developed a general, quantitative methodology to select and specify satellite

payloads that can be applied to virtually any satellite constellation.

The payload selection and specification problem was shown to be similar to

a class of mathematical programming problems known as knapsack problems. To

motivate a methodology for the payload selection problem, a thorough review of the

literature on knapsack problems was presented to include well-known results and

a variety of solution techniques. Solution techniques are generally based on two

formulations of the knapsack problem: a dynamic programming formulation and

an integer programming formulation. Exact solution methods for each formulation

were reviewed. Enumerative methods are typically applied to dynamic programs,

while integer programs can be relaxed to provide information about their solution.

Solution algorithms that exploit the LP-relaxation are the branch-and-bound and

branch-and-cut algorithms. Using the ideas associated with knapsack problems, for-

mal mathematical models were developed for the payload selection problem. It was

assumed that a satellite constellation observed at fixed intervals will be maintained

5-1

or expanded by launching satellites individually at predetermined epochs. At each

launch epoch, payloads are selected for the satellite bus to be launched and assigned

MMD specifications. Each individual payload has a utility associated with it that,

while not satisfying the textbook definition of utility, is a function of the payload’s

importance, MMD specification, and the random number of like-type functional

payloads. The objective of the payload selection and specification problem is to

maximize the total lifetime utility of the satellite constellation. Four characteriza-

tions of utility were discussed: static and deterministic, dynamic and deterministic,

static and stochastic, and dynamic and stochastic.

Mathematical models for the single-satellite payload selection problem were

developed for each characterization of utility. It was shown that each was a relax-

ation of a multi-choice, multidimensional knapsack problem. Because dynamic and

stochastic utility most closely describes the actual nature of payload utility, this

model was extended to a multi-satellite case which was the central focus of this

research. To enable similar solution methods to those used in knapsack problems,

both dynamic programming and integer programming formulations were derived for

the multi-satellite model. The dynamic programming formulation was solved exactly

using a Matlab program to completely enumerate the state space and prune infeasi-

ble states. The integer programming formulation was solved through application of

Dash Optimization’s Xpress solver that employs the branch-and-bound algorithm in

concert with preprocessing and search heuristics. In addition to exact methods, four

heuristic methods were introduced. Each heuristic solved the payload selection and

specification problem as a series of MCMKPs; however, such an approach did not

guarantee optimality. Both a 5-norm and a weighted norm heuristic were developed

by extending the classical profit-to-weight ratio heuristic of the one-dimensional KP.

For comparison purposes, a greedy heuristic that selects payloads based on their

utility was introduced. Finally, a simulated annealing routine was developed for

the payload selection problem using experimentally determined parameters. Pos-

5-2

sible functional forms for payload utility functions and survival distributions were

developed, and the performance of the exact and heuristic solution methods was

evaluated on a variety of both notional and randomly-generated problem instances.

It was observed that the Xpress solver vastly outperformed the dynamic program-

ming enumeration in both solution time and practical ability to attain an optimal

solution. Of the heuristics, the solutions provided by simulated annealing and the

5-norm heuristic were typically closest to optimal. However, the greater consistency

of simulated annealing in providing near-optimal solutions led to the conclusion that

it was the best heuristic to use for satellite payload selection. Deciding whether to

solve the payload selection problem using an exact IP-based solver or a simulated

annealing routine is a multifaceted decision, and tradeoffs must be made between

solution quality and complexity.

Although a general methodology has been developed for the selection and spec-

ification of satellite payloads, there are a number of unresolved issues and areas of

future research. The power constraints of satellite buses were quantified in terms

of energy measurements, the lifetime discharge of the battery. In reality, before it

ceases to produce energy, a battery’s true power, the rate of its energy delivery, will

decline to an insufficient level for the operation of many payloads. This is a very

important factor in the operability of many satellites, and the model’s realism would

be greatly increased by incorporating it. Additionally, the independence of payload

survival distributions was assumed. This is somewhat restrictive as payload queue-

ing, in which one payload prompts the operation of another, is relatively common.

Therefore, the failure of a payload may cause the effective failure of another. Closely

related is extending the assumption of utility dependence to incorporate the utility

dependence between different types of payloads. A possible research direction to

incorporate dependence in survival distributions and utility functions is attempting

to aggregate the dependent payloads into a single payload whose survival distribu-

tion and utility function characterize the superposition of the aggregated payloads.

5-3

Finally, neither thermal or geometric constraints were considered. In practice it is

critical to dissipate the heat generated by payloads. Also, it must be ensured that the

payload’s geometries allow them to fit properly on the bus. The ability to extend the

payload selection and specification model to incorporate these items would greatly

enhance both its usefulness and effectiveness in the process of acquiring, launching

and operating satellite systems.

5-4

Bibliography

1. W. Ben-Ameur (2004). Computing the initial temperature of simulated anneal-
ing. Computation Optimization and Applications, 29, 396-385.

2. Bell, A.J. (2002). Analysis of GPS Satellite Allocation for the United States
Nuclear Detonation Detection System (USNDS). M.S. Thesis, Air Force Institute
of Technology, Wright-Patterson, OH.

3. Bertsimas, D. and R. Demir (2002). An approximate dynamic programming
approach to multidimensional knapsack problems. Management Science, 48,
550-565.

4. Dantzig, G. (1957). Discrete variable extremum problems. Operations Research,
5, 266-277.

5. Denardo, E. (2003). Dynamic Programming: Models and Applications. Dover,
New York.

6. Fréville, A. and G. Plateau (1986). Heuristics and reduction methods for multiple
constraints 0-1 linear programming problems. European Journal of Operational
Research, 24, 206-215.

7. Fréville, A. and G. Plateau (1993). An exact search for the solution of the
surrogate dual of the 0-1 bidimensioal knapsack problem. European Journal of
Operational Research, 68, 413-421.

8. Fréville, A. (2004). The multidimensional 0-1 knapsack problem: An overview.
European Journal of Operational Research, 155, 1-21.

9. General Accounting Office (2003). Military Space Operations: Common Prob-
lems and Their Effects on Satellite and Related Acquisitions. Washington D.C.,
GPO.

10. Hajek, H. (1988). Cooling schedules for optimal annealing. Mathematics of
Operations Research, 13, 311-329.

11. Horowitz, E. and S. Sahni (1974). Computing paritions with applications to
the knapsack problem. Journal of the Association for Computing Machinery, 2,
277-292.

12. Keeney, R. and Raiffa, H (1993). Decisions with Multiple Objectives. Cambridge
University Press, Cambridge, UK.

13. Larson, W. and J. Wertz (2004). Space Mission Analysis and Design. Microcosm
Press, El Segundo, CA.

14. Martello, S. and D. Pisinger (2000). New trends in exact algorithms for the 0-1
knapsack problem. European Journal of Operational Research, 123, 325-332.

BIB-1

15. Martello, S., D. Pisinger, and P. Toth (1999). Dynamic programming and strong
bounds for the 0-1 knapsack problem. Management Science, 45, 414-424.

16. Martello, S. and P. Toth (1977). An upper bound for the zero-one knapsack
problem and a branch and bound algorithm. European Journal of Operational
Research, 1, 169-175.

17. Martello, S. and P. Toth (1990). Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, Inc., New York.

18. Michalewicz, Z. and D. Fogel (2000). How to Solve It: Modern Heuristics.
Springer-Verlag, New York.

19. Pisinger, D. (1995). An expanding core algorithm for the exact 0-1 knapsack
problem. European Journal of Operational Research, 87, 175-187.

20. Pisinger, D. (1997). A minimal algorithm for the 0-1 knapsack problem. Opera-
tions Research, 46, 758-767.

21. W. Shih (1979). A branch and bound method for the multiconstraint zero-one
knapsack problem. Journal of the Operational Research Society, 30, 369-378.

22. Soyster A., B. Lev, and W. Slivka (1978). Zero-one programming with many
variables and few constraints. European Journal of Operations Research, 2, 195-
201.

23. Triki, E., Y. Collette, and P. Siarry (2005). A theoretical study on the behavior
of siulated annealing leading to a new cooling schedule. European Journal of
Operational Research, 166, 77-92.

24. Wang, T. and Wu, K (1999). A parameter set design procedure for the simulated
annealing algorithm under the computational time constraint. Computers and
Operations Research, 26, 665-678.

25. Wolsey, L.A. (1998). Integer Programming. John Wiley & Sons, Inc., New York

BIB-2

Appendix A. DP Enumeration Code
1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This program performs a complete enumeration of the multi-satellite

6 % payload selection and specification problem. Pruning is used to

7 % eliminate infeasible states.

8 %%%

9

10

11 clear all;

12

13 % Begin clock

14 tic;

15

16 % Set alpha and beta, the tuning parameters for the utility decay function

17 % and survival distribution, respectively

18 alpha = log(.5);

19 beta = log(.9);

20

21 gamma = .5;

22

23 % Number of satellites, payload types and MMD specifications per type

24 N_Sat = 2;

25 N_Type = 5;

26 N_Spec = 3;

27

28 % Time horizion of problem

29 Epochs = 30;

30

31 % Set launch time periods

32 Nl = [2 5 7 9 10 11 13 15];

33

34 % Input Payload Data -- [Importance,MMD,Power,Cost,Weight,Volume]

35 PD(1,:,1)=[10 3 500 425 450 15];

36 PD(2,:,1)=[10 6 500 460 475 17];

37 PD(3,:,1)=[10 10 500 500 500 20];

38 PD(1,:,2)=[8.5 3 475 375 400 16];

39 PD(2,:,2)=[8.5 6 475 405 415 18];

40 PD(3,:,2)=[8.5 10 475 430 420 19.5];

41 PD(1,:,3)=[7.5 3 425 410 430 10];

A-1

42 PD(2,:,3)=[7.5 6 425 460 480 13];

43 PD(3,:,3)=[7.5 10 425 480 495 14];

44 PD(1,:,4)=[7 3 260 300 230 10];

45 PD(2,:,4)=[7 6 260 350 280 13];

46 PD(3,:,4)=[7 10 260 370 300 14];

47 PD(1,:,5)=[6 3 225 370 380 13];

48 PD(2,:,5)=[6 6 225 400 390 15.5];

49 PD(3,:,5)=[6 10 225 410 395 17.5];

50 PD(1,:,6)=[5.5 3 300 280 240 8];

51 PD(2,:,6)=[5.5 6 300 320 290 9];

52 PD(3,:,6)=[5.5 10 300 380 310 12];

53 PD(1,:,7)=[5 3 275 150 280 7];

54 PD(2,:,7)=[5 6 275 190 350 9.5];

55 PD(3,:,7)=[5 10 275 240 410 14];

56 PD(1,:,8)=[3 3 175 270 225 4];

57 PD(2,:,8)=[3 6 175 310 260 5.5];

58 PD(3,:,8)=[3 10 175 335 300 8];

59

60 % Create array of the initial number of each payload type in constellation

61 % at time 0

62 Init_Cons = zeros(N_Type,N_Spec);

63

64 % Input the number of each specific payload type/nonzero MMD combination in

65 % constellation at time 0

66 Init_Cons = [0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0;0 0 0];

67

68 % Create array for expected numbers of payload types at each time period

69 ENum_Orig = zeros(N_Type,Epochs);

70

71 % Given the initial numbers of each payload type/nonzero MMD combination

72 % initially in constellation, calculate their expected numbers at future

73 % time periods.

74 for i = 1:Epochs;

75 for j = 1:N_Type;

76 Num = 0;

77 for k = 1:N_Spec

78 if i <= PD(k,2,j)+1;

79 Num = Num + Init_Cons(j,k) * Death_Exp(beta,PD(k,2,j),i-1);

80 end;

81 end;

82 ENum_Orig(j,i) = Num;

83 end;

84 end;

A-2

85

86 % Set number of states for stage 1

87 N_States = N_Spec+1;

88 N_States

89

90 % Initialize utility vector for all states in stage 1

91 Utility = zeros(N_States,1);

92

93 % Initialize utility vector for all states in previous stage

94 Utility_Last = zeros(N_States,1);

95

96 % Initialize vector that stores payload contents of stage 1

97 Contents = zeros(N_States,1);

98

99 % Initialize vector of expected number of payload type being specified

100 % in stage 1

101 ENum = zeros(N_States,Epochs);

102

103 % Initialize vector of state designators as feasible or infeasible

104 Feasible = zeros(N_States,1);

105

106 % Initialize vectors of satellites’ remaining power, costs, weight, and

107 % volume resources for all states in stage 1

108 Power = zeros(N_States,N_Sat);

109 Cost = zeros(N_States,N_Sat);

110 Weight = zeros(N_States,N_Sat);

111 Volume = zeros(N_States,N_Sat);

112

113 % Set power, cost, weight, and volume capacities of all satellite buses

114 for i = 1:N_States;

115 for j = 1:N_Sat;

116 Power(i,j) = 10500;

117 Cost(i,j) = 2500;

118 Weight(i,j) = 2500;

119 Volume(i,j) = 100;

120 end;

121 end;

122

123 % Create identity matrix to construct elementary vectors

124 Ident = eye(N_Sat,N_Sat);

125

126 % Begin stage 1

127 for i = 1:N_Type;

A-3

128 for j = 1:N_Sat;

129 e_i = Ident(j,:);

130

131 % Only do for stage 1

132 if i==1 & j==1;

133

134 % Iterate through all stage 1 states

135 for k = 1:N_States;

136

137 % Load expected number of payload type being added

138 % stage 1

139 ENum(k,:) = ENum_Orig(i,:);

140

141 % Update contents vector to reflect the addition of this

142 % payload type and its given MMD specification

143 Contents(k,1) = mod(k,N_Spec+1)*10^(N_Sat*(i-1)+(j-1));

144

145 % If specifying a nonzero MMD

146 if mod(k,N_Spec+1) ~= 0;

147 MMD = PD(k,2,i);

148 psi = PD(mod(k,N_Spec+1),1,i);

149

150 % Iterate over all epochs payload is in service

151 for l = Nl(j)+1 : (Nl(j)+1)+MMD

152 n = l-Nl(j)-1;

153

154 % Update number of expected payloads at each

155 % time

156 ENum(k,l)= ...

157 ENum_Orig(i,l)+1*Death_Exp(beta,MMD,n);

158

159 % Get total number of like-type payloads in

160 % the constellation

161 N = max(ENum(k,l),1);

162

163 % Compute the power scaling factor

164 a = PD(mod(k,N_Spec+1),3,i)/...

165 Util_Exp(psi,1,gamma,alpha,MMD,0);

166

167 % Compute the added utility of a time

168 % period

169 z = Util_Exp(psi,N,gamma,alpha,MMD,n)...

170 *Death_Exp(beta,MMD,n);

A-4

171

172 % Update total payload utility

173 % and bus power consumption

174 Utility(k,1) = Utility(k,1) + z;

175 Power(k,:) = Power(k,:) - z * a * e_i;

176 end;

177 end;

178

179 % If payload has nonzero MMD specification subtract

180 % power, cost, weight, and volume resources from bus

181 % capacity

182 if mod(k,N_Spec+1) ~= 0;

183 Cost(k,:) = Cost(k,:)-PD(mod(k,N_Spec+1),4,i)*e_i;

184 Weight(k,:) = Weight(k,:)-PD(mod(k,N_Spec+1),5,i)*e_i;

185 Volume(k,:) = Volume(k,:)-PD(mod(k,N_Spec+1),6,i)*e_i;

186 end;

187 end;

188

189 % Now check feasibility of states in stage and count number of

190 % feasible states

191 N_Feasible = N_States;

192

193 for k = 1:N_States

194 if Power(k,j)<0 | Cost(k,j)<0 | Weight(k,j)<0 | ...

195 Volume(k,j)<0

196 Feasible(k,1) = 0;

197 N_Feasible = N_Feasible-1;

198 else

199 Feasible(k,1) = 1;

200 end;

201 end;

202

203 % Now eliminate infeasible states

204 t = 1;

205 for k = 1:N_States

206 if Feasible(k,1) == 1;

207 Utility(t,1) = Utility(k,1);

208 Contents(t,1) = Contents(k,1);

209 Power(t,:) = Power(k,:);

210 Cost(t,:) = Cost(k,:);

211 Weight(t,:) = Weight(k,:);

212 Volume(t,:) = Volume(k,:);

213 ENum(t,:) = ENum(k,:);

A-5

214 t = t+1;

215 end;

216 end;

217

218 % Transfer information about current states into storage to

219 % transfer to stage 2

220 N_States = N_Feasible * (N_Spec+1);

221 Utility_Last = Utility;

222 Contents_Last = Contents;

223 ENum_Last = ENum;

224 Power_Last = Power;

225 Cost_Last = Cost;

226 Weight_Last = Weight;

227 Volume_Last = Volume;

228 N_States

229

230 else

231 % Iterate through all states in stage and load state values

232 % from the previous stage

233 for k = 1:N_States;

234 Utility(k,1) = Utility_Last(ceil(k/(N_Spec+1)),1);

235 Contents(k,1) = Contents_Last(ceil(k/(N_Spec+1)),1)...

236 + mod(k,N_Spec+1) * 10^(N_Sat*(i-1)+(j-1));

237 Power(k,:) = Power_Last(ceil(k/(N_Spec+1)),:);

238 Cost(k,:) = Cost_Last(ceil(k/(N_Spec+1)),:);

239 Weight(k,:) = Weight_Last(ceil(k/(N_Spec+1)),:);

240 Volume(k,:) = Volume_Last(ceil(k/(N_Spec+1)),:);

241

242 % If you start specifying next payload type, load new

243 % expected numbers; otherwise, continue with the old.

244 if j ~= 1;

245 ENum(k,:) = ENum_Last(ceil(k/(N_Spec+1)),:);

246 else;

247 ENum(k,:) = ENum_Orig(i,:);

248 end;

249

250 end;

251

252 % Iterate through all states in stage

253 for k = 1:N_States;

254

255 % If payload has nonzero MMD

256 if mod(k,N_Spec+1) ~= 0;

A-6

257

258 % Load payload data values

259 MMD = PD(mod(k,N_Spec+1),2,i);

260 psi = PD(mod(k,N_Spec+1),1,i);

261

262 % Compute no. time periods payload is in service

263 for l = Nl(j) + 1 : (Nl(j)+1) + MMD

264 n = l - Nl(j) - 1;

265

266 % Update expected number of functional payloads

267 ENum(k,l) = ENum(k,l) + Death_Exp(beta,MMD,n);

268 N = max(ENum(k,l),1);

269

270 % Compute power scaling factor

271 a = PD(mod(k,N_Spec+1),3,i)/...

272 Util_Exp(psi,1,gamma,alpha,MMD,0);

273

274 % Compute stage incremental utility

275 z = Util_Exp(psi,N,gamma,alpha,MMD,n)...

276 * Death_Exp(beta,MMD,n);

277

278 % Update total payload utility and

279 % bus power consumption

280 Utility(k,1) = Utility(k,1) + z;

281 Power(k,:) = Power(k,:) - a * z * e_i;

282 end;

283 end;

284

285 % Update total bus power, weight, and volume consumption

286 if mod(k,N_Spec+1) ~= 0;

287 Cost(k,:) = Cost(k,:) -PD(mod(k,N_Spec+1),4,i)*e_i;

288 Weight(k,:) = Weight(k,:) -PD(mod(k,N_Spec+1),5,i)*e_i;

289 Volume(k,:) = Volume(k,:) -PD(mod(k,N_Spec+1),6,i)*e_i;

290 end;

291 end;

292

293 % Now check feasibility of states in stage and count number of

294 % feasible states

295 N_Feasible = N_States;

296

297 for k = 1:N_States

298 if Power(k,j)<0 | Cost(k,j)<0 | Weight(k,j)<0...

299 | Volume(k,j)<0

A-7

300 Feasible(k,1)=0;

301 N_Feasible = N_Feasible-1;

302 else

303 Feasible(k,1) = 1;

304 end;

305 end;

306

307 % Now eliminate infeasible states

308 t = 1;

309 for k = 1:N_States

310 if Feasible(k,1) == 1;

311 Utility(t,1) = Utility(k,1);

312 Contents(t,1) = Contents(k,1);

313 Power(t,:) = Power(k,:);

314 Cost(t,:) = Cost(k,:);

315 Weight(t,:) = Weight(k,:);

316 Volume(t,:) = Volume(k,:);

317 ENum(t,:) = ENum(k,:);

318 t = t+1;

319 end;

320 end;

321

322 if(i~=N_Type | j~=N_Sat);

323

324 % Set number of states for next stage

325 N_States = N_Feasible * (N_Spec+1);

326 else

327 N_States = N_Feasible;

328 end;

329

330 % Store all stage values for use in next stage

331 Utility_Last = Utility;

332 Contents_Last = Contents;

333 ENum_Last = ENum;

334 Power_Last = Power;

335 Cost_Last = Cost;

336 Weight_Last = Weight;

337 Volume_Last = Volume;

338 N_States

339 end;

340 end;

341 end;

342 disp(’END’);

A-8

343

344 % Find end state with greatest total utility

345 Best = 0;

346 Best_Index = 1;

347 for k = 1:N_States;

348 if Utility(k,1) > Best

349 Best = Utility(k,1);

350 Best_Index = k;

351 end;

352 end;

353 Sat_Cont = zeros(N_Sat,N_Type);

354 Best_Content = Contents(Best_Index,1);

355

356 % Translate the contents of the best state into actual payload

357 % specifications

358 for i = 1:N_Type;

359 for j = 1:N_Sat;

360 z = floor(Best_Content/10^((N_Sat*(N_Type-1) +...

361 (N_Sat-1)) - N_Sat*(i-1)-(j-1)));

362 Sat_Cont(N_Sat+1-j,N_Type+1-i) = z;

363 Best_Content = Best_Content -...

364 z*10^((N_Sat*(N_Type-1)+(N_Sat-1))-N_Sat*(i-1)-(j-1));

365 end;

366 end;

367

368 % Stop clock

369 toc;

370 time = toc;

371 time

372

373 % Display solution, optimal utility value and remaining power, cost,

374 % weight and volume on all buses

375 Sat_Cont

376 Utility(Best_Index)

377 Power(Best_Index,:)

378 Cost(Best_Index,:)

379 Weight(Best_Index,:)

380 Volume(Best_Index,:)

A-9

Appendix B. IP Generation Code
1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This program generates the objective functions and constraint matrix for

6 % the IP formulation of the payload selection and specification problem.

7 %%%

8

9 % Set survival and utility decay parameters

10 Death_Coef = log(.9);

11 Util_Coef = log(.5);

12

13 % Set utility dependence parameter

14 Type_Dep = .5;

15

16 % Set number of satellites, payload types, and nonzero MMD specifications

17 N_Sat = 2;

18 N_Type = 5;

19 N_Spec = 3;

20

21 % Time horizon of problem

22 Epochs = 30;

23

24 % Set launch time periods

25 Nl = [2 5 7 9 10 11 13 15];

26

27 % Input Payload Data -- [Importance,MMD,Power,Cost,Weight,Volume]

28 PD(1,:,1)=[10 3 500 425 450 15];

29 PD(2,:,1)=[10 6 500 460 475 17];

30 PD(3,:,1)=[10 10 500 500 500 20];

31 PD(1,:,2)=[8.5 3 475 375 400 16];

32 PD(2,:,2)=[8.5 6 475 405 415 18];

33 PD(3,:,2)=[8.5 10 475 430 420 19.5];

34 PD(1,:,3)=[7.5 3 425 410 430 10];

35 PD(2,:,3)=[7.5 6 425 460 480 13];

36 PD(3,:,3)=[7.5 10 425 480 495 14];

37 PD(1,:,4)=[7 3 260 300 230 10];

38 PD(2,:,4)=[7 6 260 350 280 13];

39 PD(3,:,4)=[7 10 260 370 300 14];

40 PD(1,:,5)=[6 3 225 370 380 13];

41 PD(2,:,5)=[6 6 225 400 390 15.5];

B-1

42 PD(3,:,5)=[6 10 225 410 395 17.5];

43 PD(1,:,6)=[5.5 3 300 280 240 8];

44 PD(2,:,6)=[5.5 6 300 320 290 9];

45 PD(3,:,6)=[5.5 10 300 380 310 12];

46 PD(1,:,7)=[5 3 275 150 280 7];

47 PD(2,:,7)=[5 6 275 190 350 9.5];

48 PD(3,:,7)=[5 10 275 240 410 14];

49 PD(1,:,8)=[3 3 175 270 225 4];

50 PD(2,:,8)=[3 6 175 310 260 5.5];

51 PD(3,:,8)=[3 10 175 335 300 8];

52

53 % Set satellite bus capacities

54 Power_Limit = 10500;

55 Cost_Limit = 2500;

56 Volume_Limit = 2500;

57 Weight_Limit = 100;

58 ENum_Orig = zeros(N_Type,Epochs);

59

60 % Set numbers of payload types/MMD specifications initially in the

61 % constellation

62 Init_Cons = zeros(N_Type,N_Spec);

63 Init_Cons = [0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];

64

65 % Calculate expected number of remaining payloads at each time period

66 for i = 1:Epochs;

67 for j = 1:N_Type;

68 Num=0;

69 for k = 1:N_Spec

70 if i <= PD(k,2,j) + 1;

71 Num = Num + Init_Cons(j,k) * ...

72 Death_Exp(Death_Coef,PD(k,2,j),i-1);

73 end;

74 end;

75 ENum_Orig(j,i) = Num;

76 end;

77 end;

78

79 % Compute total number of variables and number of variables associated with

80 % each payload type

81 tot_var = N_Type * (N_Spec + 1)^N_Sat;

82 type_var = (N_Spec + 1)^N_Sat;

83

84 % Create vector of utility objective coefficients, and power, cost, weight,

B-2

85 % and volume coefficients for the constraints

86 Utility = zeros(1,tot_var);

87 Power = zeros(tot_var, N_Sat);

88 Cost = zeros(tot_var, N_Sat);

89 Volume = zeros(tot_var, N_Sat);

90 Weight = zeros(tot_var, N_Sat);

91

92 % Create array of all possible MMD specifications over the satellites for

93 % each payload type

94 Spec = zeros(tot_var,N_Sat);

95

96 for i = 1 : N_Type;

97 for j = 1 : type_var;

98 % Translate variable index into a set of MMD specifications

99 comb = dec2base(j-1,4);

100 dec_comb = str2num(comb);

101 spec = zeros(1,N_Sat);

102

103 for k = 1 : N_Sat;

104 ENum(k,:) = ENum_Orig(i,:);

105 end;

106

107 % Generate MMD specifications

108 for k = 1 : N_Sat;

109 spec(1,k) = floor(dec_comb/10^(N_Sat-k));

110 dec_comb = dec_comb - spec(1,k) * 10^(N_Sat-k);

111 end;

112

113 Spec(type_var * (i-1) + j,:) = spec;

114 u = 0; u1 = 0;

115

116 % Calculate expected number of payloads

117 for k = 1 : N_Sat;

118 posn = N_Sat - (k-1);

119 if spec(1,posn) ~= 0;

120 MMD = PD(spec(1,posn),2,i);

121 for l = 1 : MMD + 1;

122 ENum(1,Nl(posn)+l) = ENum(1,Nl(posn)+l) + ...

123 Death_Exp(Death_Coef,MMD,l-1);

124 end;

125 end;

126 end;

127

B-3

128 % Calculate utility, power, cost, weight, volume requirements for

129 % each set of MMD specifications

130 for k = 1 : N_Sat;

131 p = 0; c = 0; w = 0; v = 0; ut = 0;

132 posn = N_Sat - (k-1);

133 if spec(1,posn) ~= 0;

134 psi = PD(spec(1,posn),1,i);

135 MMD = PD(spec(1,posn),2,i);

136 a_1 = PD(spec(1,posn),3,i) / ...

137 Util_Exp(psi,1,Type_Dep,Util_Coef,MMD,0);

138 c = c + PD(spec(1,posn),4,i);

139 w = w + PD(spec(1,posn),5,i);

140 v = v + PD(spec(1,posn),6,i);

141

142 % Compute total utility and power requirements

143 for l = 1 : MMD + 1;

144 N = max(ENum(1,Nl(posn)+l),1);

145 u1 = Util_Exp(psi,N,Type_Dep,Util_Coef,MMD,l-1) * ...

146 Death_Exp(Death_Coef,MMD,l-1);

147 u = u + u1;

148 p = p + u1 * a_1;

149 ENum(1,Nl(posn)+l) = ENum(1,Nl(posn)+l) - ...

150 Death_Exp(Death_Coef,MMD,l-1);

151 ut = ut+u1;

152 end;

153

154 % Set all coefficients with computed values

155 end;

156 Utility1(type_var*(i-1)+j,posn)=ut;

157 Power(type_var*(i-1)+j, posn) = p;

158 Cost(type_var*(i-1)+j, posn) = c;

159 Volume(type_var*(i-1)+j, posn) = v;

160 Weight(type_var*(i-1)+j, posn) = w;

161 end;

162 Utility(1, type_var*(i-1)+j) = u;

163 end;

164 end;

165

166 % Create vector of objective coefficients

167 Obj_Coefs = Utility;

168

169 % Compute number of constraints

170 num_constraint = N_Type + 4 * N_Sat;

B-4

171

172 % Create constraint matrix and RHS constraints

173 Cons_Mat = zeros(num_constraint, tot_var);

174 RHS = zeros(num_constraint,1);

175

176 % Create special ordered set constraints

177 for i = 1 : N_Type;

178 for j = 1 : type_var;

179 Cons_Mat(i, type_var*(i-1) + j) = 1;

180 RHS(i) = 1;

181 end;

182 end;

183

184 % Create power, cost, weight, and volume constraints

185 for i = 1 : N_Type;

186 for j = 1 : type_var;

187 for k = 1 : N_Sat;

188 cons = (N_Type + 1) + 4 * (k-1);

189 indx = type_var * (i-1) + j;

190 Cons_Mat(cons,indx) = Power(indx,N_Sat-(k-1));

191 Cons_Mat(cons+1,indx) = Cost(indx,N_Sat-(k-1));

192 Cons_Mat(cons+2,indx) = Weight(indx,N_Sat-(k-1));

193 Cons_Mat(cons+3,indx) = Volume(indx,N_Sat-(k-1));

194 RHS(cons) = Power_Limit;

195 RHS(cons+1) = Cost_Limit;

196 RHS(cons+2) = Volume_Limit;

197 RHS(cons+3) = Weight_Limit;

198 end;

199 end;

200 end;

201

202 Cons_Mat1 = zeros(num_constraint, tot_var+1);

203

204 for i = 1 : num_constraint;

205 Cons_Mat1(i,:) = [Cons_Mat(i,:),-1];

206 end;

207

208 % Create array with just objective and constraint coefficients

209 System1 = [Utility, -1;Cons_Mat1];

210 System1 = System1’;

211

212 % Output array to .csv file

213 csvwrite(’System1.txt’,System1);

B-5

Appendix C. Simulated Annealing Code
1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This program applies a simulated annealing routine to the payload

6 % specification problem. Simulated annealing is used to maximize the

7 % utility of each satellite in succession by solving the multi-choice,

8 % multidimensional knapsack problem associated with each satellite.

9 % Multiple replications of this proceedure are applied to the constellation

10 % and the replication with the greatest overall utility is chosen. A

11 % geometric-cooling schedule is used.

12 %%%

13

14 clear all;

15 tic;

16

17 % Set number of simulated annealing replications

18 N_replicate = 30;

19

20 % Set survival and utility function tuning parameters

21 Death_Coef = log(.9);

22 Util_Coef = log(.5);

23

24 % Set utility dependence parameter

25 Type_Dep = .5;

26

27 % Set number of satellites, payload types, and nonzero MMD specifications

28 % available to each payload type

29 N_Sat = 7;

30 N_Type = 8;

31 N_Spec = 3;

32

33 % Set time horizon of problem

34 Epochs = 30;

35

36 % Set satellite launch time periods

37 Nl = [2 5 7 9 10 11 13 15];

38

39 % Input Payload Data -- [Importance,MMD,Power,Cost,Weight,Volume]

40 PD(1,:,1)=[10 3 500 425 450 15];

41 PD(2,:,1)=[10 6 500 460 475 17];

C-1

42 PD(3,:,1)=[10 10 500 500 500 20];

43 PD(1,:,2)=[8.5 3 475 375 400 16];

44 PD(2,:,2)=[8.5 6 475 405 415 18];

45 PD(3,:,2)=[8.5 10 475 430 420 19.5];

46 PD(1,:,3)=[7.5 3 425 410 430 10];

47 PD(2,:,3)=[7.5 6 425 460 480 13];

48 PD(3,:,3)=[7.5 10 425 480 495 14];

49 PD(1,:,4)=[7 3 260 300 230 10];

50 PD(2,:,4)=[7 6 260 350 280 13];

51 PD(3,:,4)=[7 10 260 370 300 14];

52 PD(1,:,5)=[6 3 225 370 380 13];

53 PD(2,:,5)=[6 6 225 400 390 15.5];

54 PD(3,:,5)=[6 10 225 410 395 17.5];

55 PD(1,:,6)=[5.5 3 300 280 240 8];

56 PD(2,:,6)=[5.5 6 300 320 290 9];

57 PD(3,:,6)=[5.5 10 300 380 310 12];

58 PD(1,:,7)=[5 3 275 150 280 7];

59 PD(2,:,7)=[5 6 275 190 350 9.5];

60 PD(3,:,7)=[5 10 275 240 410 14];

61 PD(1,:,8)=[3 3 175 270 225 4];

62 PD(2,:,8)=[3 6 175 310 260 5.5];

63 PD(3,:,8)=[3 10 175 335 300 8];

64

65 % Input satellite bus capacities

66 for i = 1:N_Sat;

67 Power(i) = 10500;

68 Cost(i) = 2500;

69 Weight(i) = 2500;

70 Volume(i) = 100;

71 end;

72

73 % Create empty arrays to store the solution and total utility of each

74 % replication

75 rep_soln = zeros(N_Sat,N_Type,N_replicate);

76 rep_utility = zeros(1,N_replicate);

77

78 % For all replications

79 for replicate = 1 : N_replicate;

80 replicate

81 ENum_Orig = zeros(N_Type,Epochs);

82

83 % Input numbers of each payload type/MMD specification initially in

84 % the constellation

C-2

85 Init_Cons = zeros(N_Type,N_Spec);

86 Init_Cons = [0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];

87

88 % Calculate expected number of remaining payloads from those

89 % originally in the constellation

90 for i = 1:Epochs;

91 for j = 1:N_Type;

92 Num=0;

93 for k = 1:N_Spec

94 if i <= PD(k,2,j) + 1;

95 Num = Num + Init_Cons(j,k) * Death_Exp(Death_Coef,PD(k,2,j),i-1);

96 end;

97 end;

98 ENum(j,i) = Num;

99 end;

100 end;

101

102 % Create arrays to store total utility of each satellite and the

103 % specifications of its payloads

104 Utility = zeros(1,N_Sat);

105 Soln = zeros(N_Sat,N_Type);

106

107 for i = 1:N_Sat;

108 % Create vectors to store the utility, power, cost, weight, and

109 % volumes of all payload/specification combinations

110 utility = zeros(1, N_Type * N_Spec);

111 power = zeros(1, N_Type * N_Spec);

112 cost = zeros(1, N_Type * N_Spec);

113 weight = zeros(1, N_Type * N_Spec);

114 volume = zeros(1, N_Type * N_Spec);

115

116 for j = 1 : N_Type;

117 for k = 1 : N_Spec;

118 % Compute cost, weight, and volume of payload/specification

119 % combination

120 cost(1, N_Spec * (j-1) + k) = PD(k,4,j);

121 weight(1, N_Spec * (j-1) + k) = PD(k,5,j);

122 volume(1, N_Spec * (j-1) + k) = PD(k,6,j);

123

124 % Load importance and MMD of combination

125 psi = PD(k,1,j);

126 MMD = PD(k,2,j);

127

C-3

128 % Initialize utility and power summation values to zero

129 u = 0; u1 = 0;

130 p = 0;

131

132 % Compute power scaling factor

133 a_1 = PD(k,3,j) / Util_Exp(psi,1,Type_Dep,Util_Coef,MMD,0);

134

135 % Compute total utility and power consumption of

136 % payload/specification combination

137 for l = 1 : MMD + 1;

138

139 % Compute expected number of payloads if payload is

140 % included

141 N = max(ENum(j,Nl(i)+l) + ...

142 Death_Exp(Death_Coef, MMD, l-1), 1);

143 u1 = Util_Exp(psi,N,Type_Dep,Util_Coef,MMD,l-1) ...

144 * Death_Exp(Death_Coef,MMD,l-1);

145 u = u + u1;

146 p = p + u1 * a_1;

147 end;

148

149 % Store total utility and power consumption of combination

150 utility(1, N_Spec * (j-1) + k) = u;

151 power(1, N_Spec * (j-1) + k) = p;

152 end;

153

154 % Create utility/power/cost/weight/volume master array

155 UPCWV = [utility’,power’,cost’,weight’,volume’];

156

157 end;

158

159 % Randomly generate a starting slution

160 Vc = zeros(1,N_Type*N_Spec);

161

162 for j = 1 : N_Type;

163 % Decide whether to include (1) or exclude (0) payload type

164 inc = round(rand(1,1));

165 % If including, determine random specification for payload

166 if inc == 1;

167 inc_spec = round(N_Spec * rand(1,1) - 0.5) + 1;

168 Vc(1, N_Spec * (j-1) + inc_spec) = 1;

169 end;

170 end;

C-4

171

172 % Randomly remove items until solution is feasible

173 feasible = 0;

174

175 while ~feasible;

176 if (Vc * UPCWV(:,2) <= Power(i)) & ...

177 (Vc * UPCWV(:,3) <= Cost(i)) & ...

178 (Vc * UPCWV(:,4) <= Weight(i)) & ...

179 (Vc * UPCWV(:,5) <= Volume(i));

180 feasible = 1;

181 end;

182

183 % If starting solution is not feasible, randomly remove objects

184 if feasible == 0;

185 flipped = 0;

186 while flipped == 0

187 rand_indx = round((N_Type * N_Spec) * rand(1,1) - 0.5) + 1;

188 if Vc(1,rand_indx) == 1;

189 Vc(1,rand_indx) = 0;

190 flipped = 1;

191 end;

192 end;

193 end;

194 end;

195 Initial_Soln = Vc;

196

197 % Begin actual simulated annealing heuristic

198 % Set simulated annealing parameters

199 T = 500; % Initial temperature

200 r = .05; % Initialize cooling rate

201 T_min = .01; % Terminal temperature

202 N_Max = 5; % No. solutions explored at each temperature

203

204 while T > T_min;

205 n = 0;

206

207 while n <= N_Max;

208 % Generate random neighbor of current solution

209 feasible = 0;

210 loop_count = 0;

211 while ~feasible & loop_count <= 100;

212 Vn = Neighbor(Vc,N_Type,N_Spec);

213 if (Vn * UPCWV(:,2) <= Power(i)) & ...

C-5

214 (Vn * UPCWV(:,3) <= Cost(i)) & ...

215 (Vn * UPCWV(:,4) <= Weight(i)) & ...

216 (Vn * UPCWV(:,5) <= Volume(i));

217 feasible = 1;

218 end;

219 loop_count = loop_count+1;

220 end;

221

222 % Compare current solution to neighboring solution

223 Vc_Util = Vc * UPCWV(:,1);

224 Vn_Util = Vn * UPCWV(:,1);

225

226 % If neighbor is better, move to it

227 if (Vn_Util > Vc_Util) & feasible == 1

228 Vc = Vn;

229

230 % If neighbor is worse move to it with a probability

231 else

232 if rand(1,1) < ...

233 exp((Vn_Util - Vc_Util)/T) & feasible == 1

234 Vc = Vn;

235 end;

236 end;

237 n = n+1;

238 end;

239

240 % Decrease temperature

241 T = (1-r) * T;

242 end;

243

244 % Compute total bus utility

245 Utility(1,i) = Vc * UPCWV(:,1);

246

247 % Update numbers of each payload type in constellation

248 for j = 1 : N_Type;

249 for k = 1 : N_Spec;

250 indx = N_Spec * (j-1) + k;

251 if Vc(1,indx) == 1;

252 Soln(i,j) = k;

253 for l = 1 : PD(k,2,j)+1;

254 ENum(j,Nl(i)+l) = ENum(j,Nl(i)+l) ...

255 + Death_Exp(Death_Coef,PD(k,2,j),l-1);

256 end;

C-6

257 end;

258 end;

259 end;

260 end;

261

262 % Sum utility of all satellites, and store resulting utility along with

263 % specificaitons

264 tot_util = 0;

265 for i = 1 : N_Sat;

266 tot_util = tot_util + Utility(1,i);

267 end;

268 rep_soln(:,:,replicate) = Soln;

269 rep_utility(replicate) = tot_util;

270 end;

271

272 % Find replication with greatest utility

273 indx = 1;

274 for i = 1 : N_replicate

275 if rep_utility(i) >= rep_utility(indx);

276 indx = i;

277 end;

278 end;

279

280 % Stop clock

281 t = toc;

282 t

283

284 % Print best utility and specifications

285 rep_utility(indx)

286 rep_soln(:,:,indx)

C-7

Appendix D. Random Neighbor Function
1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This function, used in the simulated annealing code, generates a random

6 % neighboring solution to a given solution. A neighbor differes by the

7 % exclusion or inclusion of a single payload type/MMD combination.

8 %%%

9

10 function Neighbor = n(Vc,N_Type,N_Spec);

11 Neighbor = Vc;

12 length = size(Neighbor,2);

13

14 % Determine whether item will be added (move = 1) or removed (move = 0).

15 % If empty, can only add items

16 if Neighbor == zeros(1,length);

17 move = 1;

18 else

19 % Check to see one payload of each type has been included. In this

20 % case, no more items can be added

21 full = 1;

22 for i = 1 : N_Type

23 type_inc = 0;

24 for j = 1 : N_Spec

25 indx = N_Spec * (i-1) + j;

26 if Neighbor(1,indx) == 1;

27 type_inc = 1;

28 end;

29 end;

30 full = full & type_inc;

31 end;

32

33 % If full, items can only be removed, not added

34 if full == 1;

35 move = 0;

36 else;

37 % If neither empty or full, randomly decide to add/remove item

38 move = round(rand(1,1));

39 end;

40 end;

41

D-1

42 % If adding an object

43 if move == 1;

44 % Determine random type to include that is not already included

45 type_inc = 1;

46 while type_inc == 1;

47 type = round(N_Type * rand(1,1) - 0.5) + 1;

48 type_inc1 = 0;

49

50 for i = 1 : N_Spec;

51 if Neighbor(1,N_Spec * (type-1) + i) == 1;

52 type_inc1 = 1;

53 end;

54 end;

55 type_inc = type_inc & type_inc1;

56

57 if type_inc == 0;

58 spec = round(N_Spec * rand(1,1) - 0.5) + 1;

59 Neighbor(1, N_Spec * (type-1) + spec) = 1;

60 end;

61 end;

62 % If removing object

63 else

64 % Determine random type to remove that is not already removed

65 type_inc = 0;

66 while type_inc == 0;

67 type = round(N_Type * rand(1,1) - 0.5) + 1;

68 type_inc1 = 0;

69

70 % Determine if type is included

71 for i = 1 : N_Spec;

72 if Neighbor(1,N_Spec * (type-1) + i) == 1;

73 type_inc1 = 1;

74 spec = i;

75 end;

76 end;

77 type_inc = type_inc | type_inc1;

78

79 if type_inc == 1;

80 Neighbor(1, N_Spec * (type-1) + spec) = 0;

81 end;

82 end;

83 end;

D-2

Appendix E. 5-Norm Heuristic Code
1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This program applies the 5-norm heuristic to the selection and

6 % specification of payloads for a multi-satellite constellation. The

7 % heuristic is applied to each of the satellites in succession seeking to

8 % maximize the utility of each. The heuristic solves the multi-choice,

9 % multidimensional knapsack problem associated with each bus through an

10 % extension of the traditional profit-to-cost ratio heuristic for the

11 % one-dimensional knapsack problem.

12 %%%

13

14 clear all;

15

16 % Start clock

17 tic;

18

19 % Set norm to be the 5-norm

20 norm = 5;

21

22 % Set survival and utility function tuning parameters

23 Death_Coef = log(.9);

24 Util_Coef = log(.5);

25

26 % Set utility dependence parameter

27 Type_Dep = .5;

28

29 % Set number of satellites, payload types, and nonzero MMD specifications

30 N_Sat = 7;

31 N_Type = 8;

32 N_Spec = 3;

33

34 % Set time horizon of problem

35 Epochs = 30;

36

37 % Set launch time periods

38 Nl = [2 5 7 9 10 11 13 15];

39

40 % Input Payload Data -- [Importance,MMD,Power,Cost,Weight,Volume]

41 PD(1,:,1)=[10 3 500 425 450 15];

E-1

42 PD(2,:,1)=[10 6 500 460 475 17];

43 PD(3,:,1)=[10 10 500 500 500 20];

44 PD(1,:,2)=[8.5 3 475 375 400 16];

45 PD(2,:,2)=[8.5 6 475 405 415 18];

46 PD(3,:,2)=[8.5 10 475 430 420 19.5];

47 PD(1,:,3)=[7.5 3 425 410 430 10];

48 PD(2,:,3)=[7.5 6 425 460 480 13];

49 PD(3,:,3)=[7.5 10 425 480 495 14];

50 PD(1,:,4)=[7 3 260 300 230 10];

51 PD(2,:,4)=[7 6 260 350 280 13];

52 PD(3,:,4)=[7 10 260 370 300 14];

53 PD(1,:,5)=[6 3 225 370 380 13];

54 PD(2,:,5)=[6 6 225 400 390 15.5];

55 PD(3,:,5)=[6 10 225 410 395 17.5];

56 PD(1,:,6)=[5.5 3 300 280 240 8];

57 PD(2,:,6)=[5.5 6 300 320 290 9];

58 PD(3,:,6)=[5.5 10 300 380 310 12];

59 PD(1,:,7)=[5 3 275 150 280 7];

60 PD(2,:,7)=[5 6 275 190 350 9.5];

61 PD(3,:,7)=[5 10 275 240 410 14];

62 PD(1,:,8)=[3 3 175 270 225 4];

63 PD(2,:,8)=[3 6 175 310 260 5.5];

64 PD(3,:,8)=[3 10 175 335 300 8];

65

66 % Set satellite resource capacities

67 for i = 1:N_Sat;

68 Power(i) = 10500;

69 Cost(i) = 2500;

70 Weight(i) = 2500;

71 Volume(i) = 100;

72 end;

73

74 ENum_Orig = zeros(N_Type,Epochs);

75

76 % Set number of payloads of each type and specification initially in

77 % the constellation

78 Init_Cons = zeros(N_Type,N_Spec);

79 Init_Cons = [0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];

80

81 % Calculate expected number of payloads at each time period

82 for i = 1:Epochs;

83 for j = 1:N_Type;

84 Num=0;

E-2

85 for k = 1:N_Spec

86 if i <= PD(k,2,j) + 1;

87 Num = Num + Init_Cons(j,k) * ...

88 Death_Exp(Death_Coef,PD(k,2,j),i-1);

89 end;

90 end;

91 ENum(j,i) = Num;

92 end;

93 end;

94

95 % Create vectors for total satellite utility and payload specifications

96 Utility = zeros(1,N_Sat);

97 Soln = zeros(N_Sat,N_Type);

98

99 for i=1:N_Sat;

100

101 % Create vectors to store the utility, power, cost, weight, and volumes

102 % of each payload type/MMD specification

103 utility = zeros(1, N_Type * N_Spec);

104 utility_ratio = zeros(1, N_Type * N_Spec);

105 power = zeros(1, N_Type * N_Spec);

106 cost = zeros(1, N_Type * N_Spec);

107 weight = zeros(1, N_Type * N_Spec);

108 volume = zeros(1, N_Type * N_Spec);

109

110 for j = 1 : N_Type;

111 for k = 1 : N_Spec;

112

113 % Load cost, weight, volume, importance, and MMD of the payload

114 % type/MMD combination

115 cost(1, N_Spec * (j-1) + k) = PD(k,4,j);

116 weight(1, N_Spec * (j-1) + k) = PD(k,5,j);

117 volume(1, N_Spec * (j-1) + k) = PD(k,6,j);

118 psi = PD(k,1,j);

119 MMD = PD(k,2,j);

120

121 % Initialize total utility and power consumption to zero

122 u = 0;

123 u1 = 0;

124 p = 0;

125

126 % Compute power scaling factor

127 a_1 = PD(k,3,j) / Util_Exp(psi,1,Type_Dep,Util_Coef,MMD,0);

E-3

128

129 % Compute total utility and power consumption of a combination

130 for l = 1 : MMD + 1;

131 % Compute expected number if combination is included

132 N = max(ENum(j,Nl(i)+l) + ...

133 Death_Exp(Death_Coef, MMD, l-1), 1);

134 u1 = Util_Exp(psi,N,Type_Dep,Util_Coef,MMD,l-1) ...

135 * Death_Exp(Death_Coef,MMD,l-1);

136 u = u + u1;

137 p = p + u1 * a_1;

138 end;

139

140 % Update utility and power arrays with computed values

141 utility(1, N_Spec * (j-1) + k) = u;

142 power(1, N_Spec * (j-1) + k) = p;

143

144 % Compute 5-norm of resource ratios

145 size = ((p/Power(i))^norm + (PD(k,4,j)/Cost(i))^norm + ...

146 (PD(k,5,j)/Weight(i))^norm + ...

147 (PD(k,6,j)/Volume(i))^norm)^(1/norm);

148

149 % Update vector of utility-to-aggregated weight ratios

150 utility_ratio(1, N_Spec * (j-1) + k) = u/size;

151

152 % Create utility/power/cost/weight/volume master array

153 UPCWV = [utility_ratio’,utility’,power’,cost’,weight’,volume’];

154 end;

155 end;

156

157 % After all values for payloads have been computed

158 % determine payloads to include

159

160 % Sort the utility-to-aggregrate weight ratios

161 utility_ratio = sort(utility_ratio);

162

163 % Initialize vector of combinations included

164 Types_Inc = zeros(1,N_Type);

165 for j = 1 : N_Type * N_Spec

166 u = utility_ratio(N_Type*N_Spec+1-j);

167 ind = 0;

168 indx = 0;

169

170 % Determine index of combination in unsorted UPCWV master array

E-4

171 while ind == 0 & indx < N_Type*N_Spec+2;

172 if UPCWV(indx+1,1) == u;

173 ind = 1;

174 end;

175 indx = indx + 1;

176 end;

177

178 % Determine payload type of combination

179 Type = ceil(indx/N_Spec);

180

181 % Determine specification of combination

182 if mod(indx,N_Spec) == 0;

183 Spec = N_Spec;

184 else

185 Spec = mod(indx,N_Spec);

186 end;

187

188 % Calculate remaining resources if payload is included

189 if Types_Inc(1,Type) == 0;

190 c1 = Power(i) - UPCWV(indx, 3);

191 c2 = Cost(i) - UPCWV(indx, 4);

192 c3 = Weight(i) - UPCWV(indx, 5);

193 c4 = Volume(i) - UPCWV(indx, 6);

194

195 % If including combination is feasible, include it

196 if c1 >= 0 & c2 >= 0 & c3 >= 0 & c4 >= 0;

197 Utility(i) = Utility(i) + UPCWV(indx, 2);

198 Power(i) = Power(i) - UPCWV(indx, 3);

199 Cost(i) = Cost(i) - UPCWV(indx, 4);

200 Weight(i) = Weight(i) - UPCWV(indx, 5);

201 Volume(i) = Volume(i) - UPCWV(indx, 6);

202 Types_Inc(Type) = PD(Spec,2,Type);

203

204 % Update number of payloads in constellation

205 for l = 1 : Types_Inc(Type)+1

206 ENum(Type,Nl(i)+l) = ENum(Type,Nl(i)+l) + ...

207 Death_Exp(Death_Coef, Types_Inc(Type), l-1);

208 end;

209 end;

210 end;

211 end;

212

213 % Update payload specifications for satellite

E-5

214 Soln(i,:) = Types_Inc;

215 end;

216

217 % Display payload specifications on all satellites

218 Soln

219

220 % Stop clock

221 t = toc;

222 t

223 tot_util = 0;

224

225 % Compute total constellation utility

226 for i = 1:N_Sat;

227 tot_util = tot_util + Utility(1,i);

228 end;

229

230 % Display total utility and remaining resources of satellites

231 tot_util

232 Power(1,:)

233 Cost(1,:)

234 Weight(1,:)

235 Volume(1,:)

E-6

Appendix F. Weighted Norm Heuristic Code
1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This program applies the weighted heuristic to the payload selection and

6 % specification problem. The weighted norm heuristic applies a weighted,

7 % 2-norm to the vector of resource requirement to capacity ratios. The

8 % terms of the 2-norm are weighted by the relative scarcity of each

9 % resource.

10 %%%

11 clear all;

12

13 % Start clock

14 tic;

15

16 % The heuristic uses a 2-norm

17 norm = 2;

18

19 % Set survival and utility decay function tuning parameters

20 Death_Coef = log(.9); Util_Coef = log(.5);

21

22 % Set dependence parameter

23 Type_Dep = .5;

24

25 % Set number of satellites, payload types, and nonzero MMD specifications

26 N_Sat = 7; N_Type = 8; N_Spec = 3;

27

28 % Set time horizion of problem

29 Epochs = 30;

30

31 % Set launch time periods

32 Nl = [2 5 7 9 10 11 13 15];

33

34 % Input Payload Data -- [Importance,MMD,Power,Cost,Weight,Volume]

35 PD(1,:,1)=[10 3 500 425 450 15];

36 PD(2,:,1)=[10 6 500 460 475 17];

37 PD(3,:,1)=[10 10 500 500 500 20];

38 PD(1,:,2)=[8.5 3 475 375 400 16];

39 PD(2,:,2)=[8.5 6 475 405 415 18];

40 PD(3,:,2)=[8.5 10 475 430 420 19.5];

41 PD(1,:,3)=[7.5 3 425 410 430 10];

F-1

42 PD(2,:,3)=[7.5 6 425 460 480 13];

43 PD(3,:,3)=[7.5 10 425 480 495 14];

44 PD(1,:,4)=[7 3 260 300 230 10];

45 PD(2,:,4)=[7 6 260 350 280 13];

46 PD(3,:,4)=[7 10 260 370 300 14];

47 PD(1,:,5)=[6 3 225 370 380 13];

48 PD(2,:,5)=[6 6 225 400 390 15.5];

49 PD(3,:,5)=[6 10 225 410 395 17.5];

50 PD(1,:,6)=[5.5 3 300 280 240 8];

51 PD(2,:,6)=[5.5 6 300 320 290 9];

52 PD(3,:,6)=[5.5 10 300 380 310 12];

53 PD(1,:,7)=[5 3 275 150 280 7];

54 PD(2,:,7)=[5 6 275 190 350 9.5];

55 PD(3,:,7)=[5 10 275 240 410 14];

56 PD(1,:,8)=[3 3 175 270 225 4];

57 PD(2,:,8)=[3 6 175 310 260 5.5];

58 PD(3,:,8)=[3 10 175 335 300 8];

59

60 % Set satellite resource capacities

61 Power_Limit = 10500;

62 Cost_Limit = 2500;

63 Weight_Limit = 2500;

64 Volume_Limit = 100;

65

66 ENum_Orig = zeros(N_Type,Epochs);

67

68 % Input number of payload type/MMD specification combinations in

69 % the constellation at time 0

70 Init_Cons = zeros(N_Type,N_Spec);

71 Init_Cons = [0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];

72

73 % Calculate expected number of payloads at each time period

74 for i = 1:Epochs;

75 for j = 1:N_Type;

76 Num=0;

77 for k = 1:N_Spec

78 if i <= PD(k,2,j) + 1;

79 Num = Num + Init_Cons(j,k) * ...

80 Death_Exp(Death_Coef,PD(k,2,j),i-1);

81 end;

82 end;

83 ENum(j,i) = Num;

84 end;

F-2

85 end;

86

87 % Set satellite resource capacities

88 for i = 1:N_Sat;

89 Power(i) = Power_Limit;

90 Cost(i) = Cost_Limit;

91 Weight(i) = Weight_Limit;

92 Volume(i) = Volume_Limit;

93 end;

94

95 % Create vector to store resource scarcity values

96 PCWV_Sc = zeros(N_Sat,4);

97

98 % Create vector to store total utility of each satellite and its payload specifications

99 Utility = zeros(1,N_Sat);

100 Soln = zeros(N_Sat,N_Type);

101

102 for i = 1:N_Sat;

103

104 % Create vectors to store the utility, power, cost, weight, and volumes

105 utility = zeros(1, N_Type * N_Spec);

106 utility_ratio = zeros(1, N_Type * N_Spec);

107 power = zeros(1, N_Type * N_Spec);

108 cost = zeros(1, N_Type * N_Spec);

109 weight = zeros(1, N_Type * N_Spec);

110 volume = zeros(1, N_Type * N_Spec);

111

112 for j = 1 : N_Type;

113 for k = 1 : N_Spec;

114

115 % Load combination resouce requirements, importance, and MMD

116 cost(1, N_Spec * (j-1) + k) = PD(k,4,j);

117 weight(1, N_Spec * (j-1) + k) = PD(k,5,j);

118 volume(1, N_Spec * (j-1) + k) = PD(k,6,j);

119 psi = PD(k,1,j);

120 MMD = PD(k,2,j);

121

122 % Initialize total utility and power consumption values to zero

123 u = 0;

124 u1 = 0;

125 p = 0;

126

127 % Compute power scaling factor

F-3

128 a_1 = PD(k,3,j) / Util_Exp(psi,1,Type_Dep,Util_Coef,MMD,0);

129

130 % Compute payload type/MMD specification’s total utility and power consumption

131 for l = 1 : MMD + 1;

132

133 % Compute expected number if combination is included

134 N = max(ENum(j,Nl(i)+l) + ...

135 Death_Exp(Death_Coef, MMD, l-1), 1);

136 u1 = Util_Exp(psi,N,Type_Dep,Util_Coef,MMD,l-1) * ...

137 Death_Exp(Death_Coef,MMD,l-1);

138 u = u + u1;

139 p = p + u1 * a_1;

140 end;

141

142 % Update utility and power arrays with computed power and utility

143 utility(1, N_Spec * (j-1) + k) = u;

144 power(1, N_Spec * (j-1) + k) = p;

145

146 end;

147 end;

148

149 PCWV_sc = zeros(1,4);

150

151 % Compute total resource requirements of all combinations on a bus

152 for j = 1 : N_Type;

153 for k = 1 : N_Spec;

154 PCWV_sc(1,:) = PCWV_sc(1,:) + ...

155 [power(1, N_Spec * (j-1) + k), ...

156 PD(k,4,j), PD(k,5,j), PD(k,6,j)];

157 end;

158 end;

159

160 % Compute resource scarcities

161 PCWV_sc(1,1) = PCWV_sc(1,1) / Power(i);

162 PCWV_sc(1,2) = PCWV_sc(1,2) / Cost(i);

163 PCWV_sc(1,3) = PCWV_sc(1,3) / Weight(i);

164 PCWV_sc(1,4) = PCWV_sc(1,4) / Volume(i);

165

166 % Compute weighted norm and profit-to-requrements ratios of all combinations

167 for j = 1 : N_Type;

168 for k = 1 : N_Spec;

169 size = (PCWV_sc(1,1)*(p/Power(i))^norm + ...

170 PCWV_sc(1,2)*(PD(k,4,j)/Cost(i))^norm + ...

F-4

171 PCWV_sc(1,3)*(PD(k,5,j)/Weight(i))^norm + ...

172 PCWV_sc(1,4)*(PD(k,6,j)/Volume(i))^norm)^(1/norm);

173 utility_ratio(1, N_Spec * (j-1) + k) = ...

174 utility(1,N_Spec * (j-1) + k) / size;

175

176 % Create utility/power/cost/weight/volume master array

177 UPCWV = [utility_ratio’,utility’,power’,cost’,weight’,volume’];

178 end;

179 end;

180

181 % Sort the ratios based on the weighted norm

182 utility_ratio=sort(utility_ratio);

183

184 % Initialize vector of included payload types

185 Types_Inc = zeros(1,N_Type);

186

187 % Iterate over all combinations

188 for j = 1 : N_Type * N_Spec

189 u = utility_ratio(N_Type*N_Spec+1-j);

190 ind = 0;

191 indx = 0;

192

193 % Determine index of combination in unsorted UPCWV master array

194 while ind == 0 & indx < N_Type*N_Spec+2;

195 if UPCWV(indx+1,1) == u;

196 ind = 1;

197 end;

198 indx = indx + 1;

199 end;

200

201 % Determine payload type and MMD specification

202 Type = ceil(indx/N_Spec);

203 if mod(indx,N_Spec)==0;

204 Spec = N_Spec;

205 else

206 Spec = mod(indx,N_Spec);

207 end;

208

209 % Calculate remaing resources if combination is included

210 if Types_Inc(1,Type) == 0;

211 c1 = Power(i) - UPCWV(indx, 3);

212 c2 = Cost(i) - UPCWV(indx, 4);

213 c3 = Weight(i) - UPCWV(indx, 5);

F-5

214 c4 = Volume(i) - UPCWV(indx, 6);

215

216 % If including combination is feasible, include it

217 if c1 >= 0 & c2 >= 0 & c3 >= 0 & c4 >= 0;

218 Utility(i) = Utility(i) + UPCWV(indx, 2);

219 Power(i) = Power(i) - UPCWV(indx, 3);

220 Cost(i) = Cost(i) - UPCWV(indx, 4);

221 Weight(i) = Weight(i) - UPCWV(indx, 5);

222 Volume(i) = Volume(i) - UPCWV(indx, 6);

223 Types_Inc(Type) = PD(Spec,2,Type);

224

225 % Update expected number of payloads in constellation at each time period

226 for l = 1 : Types_Inc(Type)+1

227 ENum(Type,Nl(i)+l) = ENum(Type,Nl(i)+l) + ...

228 Death_Exp(Death_Coef, Types_Inc(Type), l-1);

229 end;

230 end;

231 end;

232 end;

233

234 % Store payload specifications

235 Soln(i,:) = Types_Inc;

236 end;

237

238 % Display payload specifications

239 Soln

240

241 % Stop clock

242 t = toc;

243 t

244

245 % Compute total constellation utility

246 tot_util = 0;

247 for i = 1:N_Sat;

248 tot_util = tot_util + Utility(1,i);

249 end;

250

251 % Display total constellation utility and remaining satellite resources

252 tot_util

253 Power(1,:)

254 Cost(1,:)

255 Weight(1,:)

256 Volume(1,:)

F-6

Appendix G. Greedy Heuristic Code
1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This program applies a greedy heuristic to each satellite in the payload

6 % selection and specification problem. All payload type/MMD specifications

7 % are sorted by their total utility. Payloads are included in order of

8 % decreasing total utility. If the includsion of a payload is feasible,

9 % the payload is included.

10 %%%

11

12 % Start clock

13 tic;

14

15 % Set survival and utility decay function tuning parameters

16 Death_Coef = log(.9); Util_Coef = log(.5);

17

18 % Set utility dependence parameter

19 Type_Dep = .5;

20

21 % Set number of satellites, payload types, and nonzero MMD specifications

22 N_Sat = 7; N_Type = 8; N_Spec = 3;

23

24 % Set problem time horizion

25 Epochs = 30;

26

27 % Input launch time periods

28 Nl = [2 5 7 9 10 11 13 15];

29

30 % Input Payload Data -- [Importance,MMD,Power,Cost,Weight,Volume]

31 PD(1,:,1)=[10 3 500 425 450 15];

32 PD(2,:,1)=[10 6 500 460 475 17];

33 PD(3,:,1)=[10 10 500 500 500 20];

34 PD(1,:,2)=[8.5 3 475 375 400 16];

35 PD(2,:,2)=[8.5 6 475 405 415 18];

36 PD(3,:,2)=[8.5 10 475 430 420 19.5];

37 PD(1,:,3)=[7.5 3 425 410 430 10];

38 PD(2,:,3)=[7.5 6 425 460 480 13];

39 PD(3,:,3)=[7.5 10 425 480 495 14];

40 PD(1,:,4)=[7 3 260 300 230 10];

41 PD(2,:,4)=[7 6 260 350 280 13];

G-1

42 PD(3,:,4)=[7 10 260 370 300 14];

43 PD(1,:,5)=[6 3 225 370 380 13];

44 PD(2,:,5)=[6 6 225 400 390 15.5];

45 PD(3,:,5)=[6 10 225 410 395 17.5];

46 PD(1,:,6)=[5.5 3 300 280 240 8];

47 PD(2,:,6)=[5.5 6 300 320 290 9];

48 PD(3,:,6)=[5.5 10 300 380 310 12];

49 PD(1,:,7)=[5 3 275 150 280 7];

50 PD(2,:,7)=[5 6 275 190 350 9.5];

51 PD(3,:,7)=[5 10 275 240 410 14];

52 PD(1,:,8)=[3 3 175 270 225 4];

53 PD(2,:,8)=[3 6 175 310 260 5.5];

54 PD(3,:,8)=[3 10 175 335 300 8];

55

56 % Set satellite bus resource capacities

57 for i = 1:N_Sat;

58 Power(i) = 10500;

59 Cost(i) = 2500;

60 Weight(i) = 2500;

61 Volume(i) = 100;

62 end;

63

64 ENum_Orig = zeros(N_Type,Epochs);

65

66 % Set numbers of each payload type/MMD specification in the constellation

67 % at time 0

68 Init_Cons = zeros(N_Type,N_Spec);

69 Init_Cons = [0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];

70

71 % Calculate expected number of payloads at each time period

72 for i = 1:Epochs;

73 for j = 1:N_Type;

74 Num=0;

75 for k = 1:N_Spec

76 if i <= PD(k,2,j) + 1;

77 Num = Num + Init_Cons(j,k) * ...

78 Death_Exp(Death_Coef,PD(k,2,j),i-1);

79 end;

80 end;

81 ENum(j,i) = Num;

82 end;

83 end;

84

G-2

85 % Create vectors to store utility and payload specifications

86 Utility = zeros(1,N_Sat);

87 Soln = zeros(N_Sat,N_Type);

88

89 for i=1:N_Sat;

90

91 % Create vectors to store the utility, power, cost, weight, and volume

92 % requirements

93 utility = zeros(1, N_Type * N_Spec);

94 power = zeros(1, N_Type * N_Spec);

95 cost = zeros(1, N_Type * N_Spec);

96 weight = zeros(1, N_Type * N_Spec);

97 volume = zeros(1, N_Type * N_Spec);

98

99 for j = 1 : N_Type;

100 for k = 1 : N_Spec;

101 % Load combination’s cost, weight, volume, importance, and MMD

102 cost(1, N_Spec * (j-1) + k) = PD(k,4,j);

103 weight(1, N_Spec * (j-1) + k) = PD(k,5,j);

104 volume(1, N_Spec * (j-1) + k) = PD(k,6,j);

105 psi = PD(k,1,j);

106 MMD = PD(k,2,j);

107

108 % Initialize total utility and power consumption summation

109 % values to zero

110 u = 0;

111 u1 = 0;

112 p = 0;

113

114 % Compute power scaling factor

115 a_1 = PD(k,3,j) / Util_Exp(psi,1,Type_Dep,Util_Coef,MMD,0);

116

117 % Compute total utility and power consumption of a payload

118 % type/MMD specification combination

119 for l = 1 : MMD + 1;

120 % Compute expected number of payloads if combination is

121 % included

122 N = max(ENum(j,Nl(i)+l) + ...

123 Death_Exp(Death_Coef, MMD, l-1), 1);

124 u1 = Util_Exp(psi,N,Type_Dep,Util_Coef,MMD,l-1) * ...

125 Death_Exp(Death_Coef,MMD,l-1);

126 u = u + u1;

127 p = p + u1 * a_1;

G-3

128 end;

129 % Update utility and power vectors with computed values

130 utility(1, N_Spec * (j-1) + k) = u;

131 power(1, N_Spec * (j-1) + k) = p;

132

133 % Create utility/power/cost/weight/volume master array

134 UPCWV = [utility’,power’,cost’,weight’,volume’];

135 end;

136 end;

137

138 % Sort total utility values

139 utility = sort(utility);

140

141 % Initialize vector of included payload types

142 Types_Inc = zeros(1,N_Type);

143

144 % Iterate over all combinations

145 for j = 1 : N_Type * N_Spec

146 u = utility(N_Type*N_Spec+1-j);

147 ind = 0;

148 indx = 0;

149

150 % Determine index of utility in unsorted UPCWV master array

151 while ind == 0 & indx < N_Type*N_Spec+2;

152 if UPCWV(indx+1,1) == u;

153 ind = 1;

154 end;

155 indx = indx + 1;

156 end;

157 % Determine payload type

158 Type = ceil(indx/N_Spec);

159

160 % Determine payload specification

161 if mod(indx,N_Spec)==0;

162 Spec = N_Spec;

163 else

164 Spec = mod(indx,N_Spec);

165 end;

166

167 % Calculate remaining satellite resources if payload is included

168 if Types_Inc(1,Type) == 0;

169 c1 = Power(i) - UPCWV(indx, 2);

170 c2 = Cost(i) - UPCWV(indx, 3);

G-4

171 c3 = Weight(i) - UPCWV(indx, 4);

172 c4 = Volume(i) - UPCWV(indx, 5);

173

174 % If payload can be included, include it

175 if c1 >= 0 & c2 >= 0 & c3 >= 0 & c4 >= 0;

176 Utility(i) = Utility(i) + u;

177 Power(i) = Power(i) - UPCWV(indx, 2);

178 Cost(i) = Cost(i) - UPCWV(indx, 3);

179 Weight(i) = Weight(i) - UPCWV(indx, 4);

180 Volume(i) = Volume(i) - UPCWV(indx, 5);

181 Types_Inc(Type) = PD(Spec,2,Type);

182

183 % Update expected number of payloads in constellation at

184 % each time period

185 for l = 1 : Types_Inc(Type)+1

186 ENum(Type,Nl(i)+l) = ENum(Type,Nl(i)+l) + ...

187 Death_Exp(Death_Coef, Types_Inc(Type), l-1);

188 end;

189 end;

190 end;

191 end;

192 % Store payload specifications

193 Soln(i,:) = Types_Inc;

194 end;

195

196 % Stop clock

197 t = toc; t

198 % Display payload specifications

199 Soln

200

201 % Compute total constellation utility

202 tot_util = 0;

203 for i = 1:N_Sat;

204 tot_util = tot_util + Utility(1,i);

205 end;

206

207 % Display total utility and remaining resources on all satellites

208 tot_util

209 Power(1,:)

210 Cost(1,:)

211 Weight(1,:)

212 Volume(1,:)

G-5

Appendix H. Payload Survival Function

1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This function is called by the programs to give the exponential

6 % survival distribution of satellite payloads.

7 %%%

8

9 % Function uses the following parameters:

10 % alpha - Tuning parameter > 0

11 % MMD - Mean mission duration specification

12 % n - Time period

13

14 function Death_Exp = F(alpha,MMD,n);

15

16 Death_Exp = exp(-abs(alpha)/MMD*n);

H-1

Appendix I. Payload Utility Decay Function

1 %%%

2 % AUTHOR: Capt John Flory

3 % AFIT/ENS/GOR-06M

4 % March 2006

5 % This function is called by the programs to give the exponential

6 % decay function of payload utility.

7 %%%

8

9 % Function uses the following parameters:

10 % psi - Payload importance

11 % N - Number of like-type functional payloads

12 % Type_Dep - Value of dependence parameter (gamma)

13 % alpha - Tuning parameter

14 % MMD - Payload mean mission duration

15 % n - Time period

16

17 function Util_Exp = u(psi,N,Type_Dep,alpha,MMD,n);

18

19 % Positive utility dependence

20 if Type_Dep > 0;

21 Util_Exp = psi/N^(Type_Dep)*exp(-abs(alpha)/MMD*n);

22

23 % No utility dependence

24 elseif Type_Dep == 0;

25 Util_Exp = psi*exp(-abs(alpha)/MMD*n);

26

27 % Logarithmic utility dependence

28 elseif Type_Dep == -1;

29 Util_Exp = psi/log(max(N,1))*exp(-abs(alpha)/MMD*n);

30

31 end;

I-1

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

02-03-2006
2. REPORT TYPE

Masters Thesis

3. DATES COVERED (From – To)
Mar 2005 – Mar 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Optimizing Mean Mission Duration for Multiple-Payload Satellites

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Flory, John, A., Capt, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GOR/ENS/06-08

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 National Reconnaissance Office
 Attn: William J. Comstock, Rm 43D19H
 14675 Leed Road
 Chantilly, VA 20151-1715 COMM: (703) 808-4436

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 This thesis addresses the problem of optimally selecting and specifying satellite payloads for inclusion on a satellite bus to be launched into a
constellation. The objective is to select and specify payloads so that the total lifetime utility of the constellation is maximized. The satellite bus is
limited by finite power, weight, volume, and cost constraints. This problem is modeled as a classical knapsack problem in one and multiple
dimensions, and dynamic programming and binary integer programming formulations are provided to solve the problem. Due to the computational
complexity of the problem, the solution techniques include exact methods as well as four heuristic procedures including a greedy heuristic, two
norm-based heuristics, and a simulated annealing heuristic. The performance of the exact and heuristic approaches is evaluated on the basis of
solution quality and computation time by solving a series of notional and randomly-generated problem instances. The numerical results indicate that,
when an exact solution is required for a moderately-sized constellation, the integer programming formulation is most reliable in solving the problem
to optimality. However, if the problem size is very large, and near-optimal solutions are acceptable, then the simulated annealing algorithm performs
best among the heuristic procedures.

15. SUBJECT TERMS
 Satellite Constellations, Payload, Selection, Knapsack Problem, Dynamic Programming, Integer Programming, Heuristic
 Methods.

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Jeffrey P. Kharoufeh, Phd (AFIT/ENS)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

131

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4603; e-mail: Jeffrey.Kharoufeh@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Optimizing Mean Mission Duration for Multiple-Payload Satellites
	Recommended Citation

	tmp.1592597590.pdf.xZilA

