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Abstract

Micro-Raman (µRaman) spectroscopy is an efficient, non-destructive technique

widely used to determine the quality of semiconductor materials and microelectrome-

chanical systems. This work characterizes the stress distribution in wurtzite gal-

lium nitride grown on c-plane sapphire substrates by molecular beam epitaxy. This

wide bandgap semiconductor material is being considered by the Air Force Research

Laboratory for the fabrication of shock-hardened MEMS accelerometers. µRaman

spectroscopy is particularly useful for stress characterization because of its ability to

measure the spectral shifts in Raman peaks in a material, and correlate those shifts to

stress and strain. The spectral peak shift as a function of stress, known as the phonon

deformation potential, is determined by applying strain to the material using a four-

point strain fixture while simultaneously monitoring the applied strain and recording

the Raman spectrum. The deformation potentials are then used to determine stress

distribution; the spectral positions of the E2 Raman mode (ν = 569 cm−1) in GaN

and A1g Raman mode (ν = 418 cm−1) in sapphire are recorded at each spatial

position in a raster map. The µRaman spectroscopy is performed using a Renishaw

InVia Raman spectrometer with argon ion (λ = 514.5 nm, hν = 2.41eV ) and

helium-neon (λ = 633 nm, hν = 1.96 eV ) excitation sources, and the data is

collected across the samples with 5- to 10-µm spatial resolution. Inherent stress and

evidence of significant damage in the GaN layer due to MEMS processing is discussed.
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Characterization of Stress in GaN-on-Sapphire

Microelectromechanical Systems (MEMS) Structures

Using Micro-Raman Spectroscopy

I. Introduction

The motivation for this research lies primarily in today’s battlefield, and the

need to design and fabricate systems able to withstand the harsh conditions our mil-

itary encounters. The Munitions Directorate of the Air Force Research Laboratory

(AFRL/MN), Air Force Materiel Command (AFMC), in collaboration with the Na-

tional Aeronautic Space Administration’s (NASA) Glenn Research Center, Air Force

Institute of Technology (AFIT) and others, is pursuing the development of hardened

inertial sensors for use in penetrating weapons. Micropressure sensors are a type of

microelectromechanical systems (MEMS)that function on the principle of mechanical

deformation (i.e., deflection) and stresses of thin membranes.

MEMS are relatively a new technology which combine electrical and mechanical

functions at the micrometer (µm) scale. Most of the research has concentrated on

developing new fabrication techniques and showing their potential. Over the past

few years, great progress has been made in the area of MEMS, but a limiting factor

is often material selection. Based solely on their size, these devices can be made to

provide better sensitivities or responses to various inputs. Formally, the most salient

characteristics of MEMS are: (1) The microfabrication process used to make the

devices should be scaleable. This is obviously important because of production. It

has to be realizable at low cost. (2) There is some level of integration, which refers

to coupling electronic and non-electronic functions [18].

1.1 Problem Statement and Research Objectives

This research constitutes a continuing effort to characterize materials for the

fabrication of inertial sensors. The main purpose is to determine the stress state

1



as a measure of the quality of gallium nitride (GaN) on c-plane sapphire circular

membranes fabricated using a novel micromachining laser drilling process.

The research objectives are: 1) Model, using finite element analysis, the behavior

of circular membranes; 2) Analyze the quality of the as-grown GaN on c-plane sap-

phire film using x-ray diffraction, Zygo interferometry, and surface profilometry; and

3) to determine the stress distribution in the fabricated circular membranes using

micro-Raman (µRaman) spectroscopy. LaVern A. Starman, in his doctoral disser-

tation titled, “Characterization of Residual Stress in MEMS Devices using Raman

Spectroscopy [19],” demonstrated that, using the nondestructive evaluation µRaman

spectroscopy, one could map the stress profiles of MEMS devices. This research works

follows his approach

1.2 Organization

This thesis is organized in four main chapters. Chapter II covers basic back-

ground information on MEMS devices in general, as well as micro-pressure sensors;

it also discusses the importance of finite element analysis in arriving at optimized

devices; the principles of micro-Raman spectroscopy are presented; and a brief intro-

duction to x-ray diffraction is given. Chapter III provides an overview of the samples

available for this research. Chapter IV provides a detailed account of the experimental

procedures performed to meet the research objectives. The experimental results and

analysis are presented in Chapter V. And finally, conclusions and recommendations

for future work are covered in Chapter VI.

2



II. Background

This chapter discusses topics relevant to the characterization of GaN on c-plane sap-

phire. Section 2.1 discusses micropressure sensors as MEMS and the use of wide

bandgap semiconductor (WBG) materials for their fabrication. Section 2.2 briefly

covers finite element analysis and specifically describes the software suite, Coventor-

Ware. Section 2.3 describes WBG materials and specifically addresses the properties

of GaN grown on c-plane sapphire. Section 2.4 covers Raman spectroscopy and its

application to determining the stress in semiconductor materials. A brief introduction

to x-ray diffraction (XRD) is given in Section 2.5.

2.1 MEMS Micropressure Sensors

There are three ways to fabricate MEMS: surface micromachining, bulk micro-

machining, and molding. Surface micromachining is a process that has evolved di-

rectly from the complementary metal-oxide-semiconductor electronic fabrication pro-

cesses. In this process, layers are patterned and etched. In order to obtain the different

elements (electromechanical), sacrificial layers are released. In bulk micromachining,

part of the substrate is etched away to yield the electromechanical elements. One

significant difference between these two methods is that higher aspect elements can

be achieved through bulk micromachining because there is no limitation in layer size.

Devices can be larger and obviously deeper. Molding, the third method, is perhaps

the most versatile of the three methods because it allows for a great number of ma-

terials that could possibly be used to fabricate the devices. Molding is the deposition

of material into a microfabricated mold. The most common is the process known by

its acronym LIGA, which stands for Lithography, Galvanoformung (electroforming),

and Abformung (molding). The flexibility of this method, as pointed out above, could

possibly be negated by the fact that integration would be difficult simply because the

process is not CMOS compatible like bulk or surface micromachining.

Micropressure sensors are MEMS that have been around for decades. Strictly

speaking, micropressure sensors are transducers in which the sensing mechanism re-

3



lies on the material’s piezoresistivity, piezoelectricity, capacitance, or other properties.

Figure 2.1 is a top view of a piezoresistive pressure sensor in which the major com-

ponents are highlighted. The piezoresistive elements (elements 1-4) are essentially

semiconductor strain gages, which produce a change of electrical resistance because

of the induced mechanical stress in the sensor. These elements are arranged in a

Wheatstone bridge configuration.

Figure 2.1: 6H-SiC pressure sensor showing the Wheatstone bridge configuration
of the piezoresistive elements deposited on the diaphragm [11].

Transducers of this type can be fabricated using bulk or surface micromachining

techniques. The primary advantage of using surface micromachining is that device

features are usually smaller than in bulk micro-machined structures. Regardless, the

planar nature of the fabrication process enables the designer to employ diaphragms

as the main form of sensing element. Application of a uniform pressure on either side

of the membrane results in deflection. Figure 2.2 shows the deflection of a circular

membrane of 400 µm in diameter and 30-µm thick. The plot was obtained using

the analytical modeling described in Appendix A [1]. The deflection is higher in the

4



Figure 2.2: Deflection of a 400-µm circular membrane obtained using the analytical
modeling detailed in Appendix A.

center of the membrane and the figure indicates that, as the pressure increases, the

deflection is higher.

This type of sensor can be further classified into three distinct regimes based

on the deflection of the membranes. These regimes are small deflection, medium

deflection, and membrane operation. The behavior shown in Figure 2.2 falls in the

small-deflection regime because its maximum deflection is kept within 30% of the

diaphragm thickness, the criteria for small deflection. Diaphragms can be circular

or rectangular. Circular membranes, such as the one shown in Figure 2.1 are char-

acterized by radial and tangential stresses. Figure 2.3 shows (a) the schematic of a

circular membrane depicting the direction of the radial and tangential stresses, (b)

the radial and (c) the tangential stress distribution of a circular membrane, with the

same dimensions as in Figure 2.2, that is rigidly clampled around its perimeter. Note

that both the radial and tangential stress are equal at the center of the membrane

(r=0).

2.2 Finite Element Analysis of MEMS

Finite element analysis (FEA) is a powerful tool because it allows designers to

visualize and study the design, construction and subsequent device behavior. From

5
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Figure 2.3: (a) Representation of a circular membrane highlighting the thickness
h and radius r. It also shows both the tangential (σ) and radial (σr). (b) Radial
stress distribution of a circular membrane with 400-µm diameter and 30-µm thick-
ness plotted using the analytical model outlined in Appendix 1. (c) Tangential stress
distribution of a circular membrane with 400-µm diameter and 30-µm thickness plot-
ted using the analytical model outlined in Appendix 1.

.
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a MEMS perspective, the use of FEA is a cost-saving technique that can be used to

optimized the properties or behavior of MEMS designs. For instance, FEA has been

widely used in mechanical engineering to predict the response of parts to an applied

load. The part is represented by smaller regions so they can be meshed. Each one of

these elements, in turn, is comprised of nodes and edges/corners that interact with the

other elements to yield the response sought [1]. FEA is computationally demanding

and a number of software suites are available to the designer to perform the analysis.

ANSYS, ConventorWare, and Intellisuite are some of the many examples of software

packages created to perform the analysis required.

To illustrate the value of FEA, Figure 2.4 (a) shows a polysilicon micro-mirror

designed in Ledit (Ledit is the layout editor for MEMSPro, which is a personal com-

puter based MEMS design tool) and later fabricated using the polysilicon multi-users

microelectromechanical systems process (PolyMUMPS) as requirement for the MEMS

curriculum at AFIT. PolyMUMPS is a surface micromachining process that consists

of three structural polysilicon layers and a metal layer. The three poly-silicon layers

are identified as Poly0, Poly1, and Poly2. The mirror is fabricated with the Poly2

layer. For actuation, a micro-mirror employs the capacitive property of electrodes,

in which a voltage differential applied between the electrodes results in a charge fluc-

tuation. The purpose of designing and subsequent fabrication of these micro-mirrors

was to model and later test their actuation in the laboratory. Figure 2.4 (b) shows

the three-dimensional model of the polysilicon micro-mirror. It shows a model of the

full-size mirror, as well as a symmetrical, quarter portion. The quarter portion also

shows the electrostatic and reaction forces and moments that act on the micro-mirror.

FEA results obtained for the micro-mirror are presented in Figure 2.5. Figure

2.5 (a) shows the maximum deflection obtained. The picture clearly shows how the

anchor remains fixed while the rest of the flexure and micro-mirror experience deflec-

tion. The voltage was applied to the top of the micro-mirror while the substrate was

grounded. Figure 2.5 (b) shows the Von Mises stress in the micro-mirror. Von Mises

stress is single value of stress derived from the stress tensor so it is easier to determine
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(a)

(b)

Figure 2.4: (a) SEM picture that shows the Poly2 micro-mirror at a magnification
of 20.0 kV, 499X. It also shows the dimension of the micro-mirror, which is a square
of 100 µm per side. The flexures on the mirror are also 100 µm. The picture also
shows some of the damage the structure sustained during release and handling. (b)
Three-dimensional model of the poly-silicon micro-mirror. It shows a model of the
full mirror, as well as a symmetrical quarter-space portion of the full mirror. The
electrostatic (ME, FE) and reaction (MR, FR) forces and moments that act on the
mirror are also shown in the quarter-size portion.

.
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the fatigue failure in a material. The stress state in the micro-mirror corresponds to

the maximum deflection shown in Figure 2.5 (a). The stress is concentrated at the

anchor and the link between the flexure and micro-mirror. These areas are marked

in the picture.

2.3 Wide Bandgap Semiconductors

Along with fabrication, the choice of material is important. Finding a MEMS

material has to be driven not just by the suitability of each fabrication process but

also by factors such as cost, properties, ease of control and processing, reliability, and

environment compatibility. MacDonald discusses three requirements for MEMS ma-

terials: compatibility with silicon technology, desirable electromechanical properties,

and low residual stress [2]. Compatibility with silicon is critical because of integra-

tion with microelectronics. Low residual stress is also very important because devices

might develop non-ideal effects (i.e., excessive buckling). It is, however, crucial that

stress be controlled so performance of the device can be accurately predicted [18].

Historically, micropressure sensors have been micromachined silicon devices.

Technological advances in microelectronics have provided MEMS designers with well

characterized materials that can be used in the type of harsh environment mentioned

in the introduction. WBG semiconductors are capable of operating at temperatures

far exceeding ambient temperatures. Silicon devices begin to experience problems

in power consumption, internal heating, and ultimately higher current leakages at

temperatures in excess of 200 degrees Celsius.

WGB materials can be defined as those with an energy bandgap exceeding 2.2

electron volts (eV). They typically include the II-oxygen, II-sulphur, II-selenium, III-

nitrogen, silicon carbide (SiC) and its many polytypes, and diamond and its various

alloys. Diamond, for instance, has the highest thermal conductivity of any material

and very high dielectric strength.
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(a)

(b)

Figure 2.5: (a) FEA results showing the maximum deflection experienced by the
micro-mirror as a voltage differential between the top electrode (the mirror) and
ground (the substrate) is attained. (b) FEA results showing the Von Mises stress
experienced by the micro-mirror as a voltage differential between the top electrode
(the mirror) and ground (the substrate) is attained. This stress state is for the
condition of maximum deflection.
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The sensor shown in Figure 2.1 is fabricated out of the 6H-SiC polytype. SiC

is a well known material for microelectronics and MEMS, and extensive research has

been done on its properties and fabrication. It exhibits polytypeism, meaning that it

crystallizes into many different polytypes. Polytypes differ in the way the atoms stack

when they form a lattice. The 6H-SiC sensor relies on the piezoresistive properties of

SiC.

The III-nitrogen compounds are important compounds in electronics because

of their physical properties, which include a large bandgap, considerable hardness

and high thermal conductivity. These compounds have been successfully used as

short-wavelength electroluminescent devices. Of the III-nitrogen compounds, gallium

nitride (GaN) is particularly attractive for MEMS applications because of its high

chemical inertness. AFRL/MN is particularly interested in designing micropressure

sensors suitable for harsh environments, and it is this high chemical inertness that

makes GaN a viable choice. However, for MEMS applications, a material must have

a releasable layer so device features could be achieved. GaN does not have a natural

oxide that could fit in this role. The literature research yielded limited information

on successful wet etching of GaN.

GaN is typically grown on c-plane sapphire by metal-organic chemical vapor

deposition (MOCVD) and molecular beam epitaxy (MBE). MBE is more advanta-

geous than MOCVD because the growth rate is slow, growth temperature is relatively

low, one can achieve atomically smooth surfaces, in-situ growth monitoring is pos-

sible, and all MBE deposition steps can be fully automated [12]. GaN crystallizes

in the wurtzite structure, with space group P63mc (no. 186). A wurtzite structure

consists of alternating planes of Ga and N pairs stacked in an ABABAB sequence.

This stacking means that atoms in the first and third layers are aligned. Figure 2.6

shows the wurtzite structure of GaN as viewed from the [0001] direction, as well as

the ABABAB structure arrangement.
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(a)

(b)

Figure 2.6: (a) Wurtzite GaN structure as viewed along the [0001] direction. The
large spheres are the Ga atoms and the smaller spheres represent N [11]. (b) ABABAB
arrangement of the hexagonal wurtzite structure of GaN.

12



The heteroepitaxial films grown by either growth method draw their properties

primarily from the substrate on which they are grown. The determining factor for a

material to be used as a substrate for GaN is the lattice constant mismatch. Table

2.1 shows the percentage lattice mistmatch for some selected GaN substrates. Note

that sapphire has the higher lattice mismatch percentage. The coefficient of thermal

expansion is another important characteristic of the substrate that will influence the

quality of the heteroepitaxial film. Sapphire has a higher coefficient of thermal ex-

pansion than GaN and the difference ultimately results in a compressive strain in the

film.

Table 2.1: GaN substrate and their percentage lattice mismatch [12].

Material c-Lattice constant (nm) a-Lattice constant (nm) a-Lattice % mismatch

GaN 0.5185 0.3188 0.0
Sapphire 1.299 0.4758 -14
6H-SiC 1.511 0.308 2.3

Film doping is another source of strain. The dopant atoms become sources of

hydrostatic strain that effectively change the lattice parameters. This type of stress

is physically different than the biaxial stress mentioned above. Some of the defects

associated with the heteroepitaxy of GaN arise from the substrate used and include

high dislocation densities (primarily edge dislocations) because of the a-lattice con-

stant mismatch, and antiphase boundaries because of the c-lattice constant mismatch.

Sapphire, for instance, could result in dislocation density as high as 1010 cm−2 in the

film [11].

Sapphire can be described as a hexagonal structure of six close-packed (0001)

planes of oxygen ions sandwiched between 12 planes of aluminum ions. It is mainly

composed of ionic bonds and has the space group R3̄c (no. 167). Figure 2.7 shows

the (0001) view of the hexagonal unit cell of sapphire.

Sapphire presents other disadvantages to the growth of GaN. It has a very low

thermal conductivity that results in poor heat dissipation. Its energy bandgap at
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Figure 2.7: View along the (0001) direction in the hexagonal unit cell of sapphire.
The large spheres are the Al atoms and the smaller spheres are the O atoms [11].

room temperature is approximately 8.6 eV, thus making it an insulator. This further

complicates device fabrication because electrical contacts cannot be made to the back

side (the substrate side) of devices. Heteroepitaxial GaN films grown on c-plane

sapphire usually result in c-plane films, but with a 30% rotation of the in-plane GaN

crystal orientation with respect to the same direction in sapphire. This rotation helps

reduce the lattice constant mismatch, which would otherwise be 30%. The use of

buffer layers of aluminum nitride (AlN) or even GaN has resulted in very smooth

GaN films [11].

2.4 Micro-Raman Spectroscopy

Researchers have used this non-destructive technique for determining the state

of stress in a material. The Raman effect can be simply explained as scattering. When

a photon of light interacts with a material, it will either be absorbed, scattered, or

simply pass through without any effect. Absorption results when the incident photon

has the same energy level as the gap between the ground state and an excited state;

the absorption is observed by the promotion of electrons to higher energy levels.

Scattering on the other hand results from the interaction between the photon and
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the material. In Raman spectroscopy, the incident light, which is a single frequency

of laser radiation, generates scattered radiation from the material at one vibrational

unit of energy from that of the incident light. The ability to measure this vibrational

unit of energy is the underlying detection mechanism in Raman spectroscopy. Raman

spectroscopy does not have any energy requirement (such as matching the energy gap

between the ground and excited state of an electron) because the light will interact

with the material and distort the electron cloud (or molecules) to a point that it yields

a short-lived virtual state. It is important to recognize that two types of scattering

will result from the interaction between the incident photon and the material: 1) The

dominant effect is an elastic-type scattering called Rayleigh scattering. Essentially,

the photon-material interaction results in very small frequency changes. 2) The weak

process is an inelastic-type scattering called the Raman scattering. In this case,

energy is transferred from the material to the photon, or vice versa, and the energy of

the scattered photon is indeed different than that of the incident photon by the one

vibrational unit, as mentioned above.

In terms of energy exchange, Raman scattering can be explained as follows:

the incident photon imparts some its energy, hνi, to the lattice, which results in a

phonon of energy, hνo, and a remaining photon of lessened energy, hνs, as described

by equation (2.1). This frequency shift is known as Stokes scattering. Usually, this re-

emission of a photon is isotropic and it can be observed at some angle to the exciting

energy. It is important to point out that when the energy of the incident beam is

higher than the bandgap of the material, the transition that occurs is much stronger.

hνs = hνi − hνo (2.1)

If the lattice of the material is already in an excited state because of induced

phonons (i.e., from other incident photons or due to thermal energy), the photon that

is re-emitted can be of greater energy than the incident photon, as shown by hνa−s

in equation (2.2). This frequency shift is known as anti-Stokes scattering. The anti-
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Stokes mode is generally much weaker than the Stokes mode because the phonons

that participate in absorption are much lower than those that can be emitted. The

phonons that can be emitted, however, will result in more anti-Stokes modes. In these

cases, the intensity of both modes will be comparable. This clearly represents a case

of conservation of energy.

hνa−s = hνi + hνo (2.2)

In addition to conservation of energy, momentum must also be conserved in

these interactions. The momentum of a wave is given by ~k , where k is the prop-

agation vector of the wave, and ~ is Plank’s reduced constant. The momentum of

the phonons is significantly larger than the momentum of the photons. The range

of momentum available to the phonons is up to k = 2π/a, where a is the lattice

constant of the material. The momentum of the photon, on the other hand, is given

by k = 2π/λ. To satisfy momentum, two or more phonons are emitted. In semi-

conductor materials, these phonons are usually two transverse optical modes (TO),

two transverse acoustical modes (TA), one longitudinal optical mode (LO), and one

longitudinal acoustical mode (LA) [17].

Raman spectroscopy has been used for the analysis of mechanical stress since

1970 when Anastassakis et al. first studied the effect of uniaxial stress on op-

tical phonons of a diamond-type lattice [5]. µRaman spectroscopy is a valuable

non-destructive tool for determining localized stress states in materials. The term,

µRaman, is used because of the ≤ 1-µm spatial resolution that can be obtained. The

technique has been successfully performed at AFIT by LaVern A. Starman in his

doctoral dissertation, “Characterization of Residual Stress in Microelectromechanical

Systems (MEMS) devices using Raman Spectroscopy [19],” Stanley J. Ness in his the-

sis,“Stress Analysis of Silicon Carbide Microelectromechanical Systems using Raman

Spectroscopy [14],” and John C. Zingarelli in his thesis, “Detection of Residual Stress

in SiC MEMS using µRaman Spectroscopy [20].”
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Figure 2.8 (a) shows the residual stress along the length of a 100-µm polysilicon

(poly1 layer) cantilever fabricated with the PolyMUMPS process. The stress was

analyzed by applying the polysilicon phonon deformations found by Starman [19].

For comparison, Figure 2.8 (b) shows the residual stress found by Starman on a

similar cantilever. The difference in the slope can be attributed to the deflection

of the cantilevers. The cantilever tested deflected upwards when released, contrary

to Starman’s cantilever. Furthermore, the stress in the cantilever is affected by the

localized heating that results from the laser power incident on it.

(a) (b)

Figure 2.8: (a) Residual stress of a 10 by 100-µm2 polysilicon cantilever fabricated
out of the poly1 layer using the PolyMUMPS process. (b) Residual stress of a 10 by
100-µm2 cantilever designed and analyzed by Starman [19].

Zingarelli used µRaman spectroscopy to map the residual stress in 6H-SiC ac-

celerometers. He was able to show the areas in the diaphragms where the stress is

higher, as well as defect areas in the material. Figures 2.9 (a) and (b) show the

NASA accelerometer fabricated out of 6H-SiC. Zingarelli tested the device by collect-

ing raster scans along the edge of the diaphragm. Figures 2.9 (c) and (d) show the

square area where the raster scan was collected, as well as the stress distribution. As

can be seen in the figure, the stress is higher along the edge of the diaphragm.

µRaman spectroscopy has been useful for analyzing epitaxial GaN. It can be

used to determine the stress/strain in the film similar to the work already performed
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(a) (b)

(c) (d)

Figure 2.9: (a) SEM picture of the NASA 6H-SiC accelerometer tested by Zin-
garelli. (b) Annotated SEM picture of the NASA 6H-SiC accelerometer showing the
diaphragm and main components. (c) Zoomed area on accelerometer (square shown
in picture (a)) showing the edge the diaphragm. (d) Stress distribution, along the
edge of the diaphragm, obtained using µRaman spectroscopy [6].
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in Si and SiC [14,19,20], as well as the film quality. As mentioned before, GaN in the

stable state crystallizes in the wurtzite structure. Group theory predicts four Raman

active modes represented by A1 + E1 + 2E2. The A1 and E1 modes split into LO and

TO components. The E2 modes are nonpolar modes. In the backscatter geometry

with the incident light along the [0001] direction, selection rules allow the E2 and A1

LO modes to be detected. For a more detailed explanation, refer to reference [16].

Figure 2.10 shows a typical Raman spectra of GaN; the top spectrum reflects the case

in which the incident and scattered polarizations are perpendicular to each other and

only the E2(H) is detected; when the incident and scattered polarizations are parallel,

both the E2(H) and the A1(LO) are observed as shown in the bottom spectrum. The

unstrained E2(H) phonon frequency is 567 cm−1 and the unstrained A1(LO) is 734

cm−1 [10].

Figure 2.10: Raman spectra of wurtzite GaN at room temperature showing two
polarization configurations and the allowed phonons based on the configuration. The
top spectrum reflects the case in which the incident and scattered polarizations are
perpendicular to each other and only the E2(H) is detected. The bottom spectrum
shows the case when the incident and scattered polarizations are parallel, in which
case both the E2(H) and the A1(LO) are observed [10].
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Sapphire, the most common substrate for heteroepitaxial GaN, has seven active

phonon modes based on its group theory symmetry (2A1g + 5Eg). After an thorough

literature search for this research it is concluded that the stress/strain and Raman

peaks relationship for sapphire has not been established. The relationship between

stress/strain and Raman peaks will be established in this thesis. Figure 2.11 shows an

example of a sapphire spectrum for a sample that had been cooled in liquid nitrogen

for two years. The peaks agree with the expected maxima located at 376, 414, 428,

440, 573, 642, and 748 cm−1 [9].

Figure 2.11: Raman spectrum of sapphire for a sample that had been cooled down
in liquid nitrogen for two years [9]

2.5 X-Ray Diffraction

The use of x-rays for evaluating materials is advantageous because the wave-

length used (≈ up to 0.1 angstroms) is on the order of the size of atoms so the

structural properties of materials can be studied. X-rays experience two types of in-

teractions with matter. Elastic scattering (or Thompson scattering) occurs when the

incident x-rays do not lose energy when they strike the electrons of the material but

rather deflect in a different direction. Inelastic scattering (Compton scattering), on

the other hand, occurs when the x-rays lose energy to the electrons, which implies

their wavelength will change in the process. XRD relies on Thompson scattering to

obtain information about the material under investigation. The usefulness of XRD is
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that all the diffracted waves can experience constructive interference and the resultant

pattern will have peaks of maximum intensity that correspond to the arrangement of

the atoms in the material. These peaks are governed by Bragg’s law:

2d sin θ = nλ (2.3)

where λ is the wavelength of the x-ray, θ is the scattering angle, d is the distance

between lattice planes, and n is the order of the diffraction peak.

Modern instruments vary in their capabilities, but a typical spectrum consists

of an intensity (counts per second) versus a detector angle (θ or 2θ depending on the

instrument configuration). XRD can be used to estimate the quality of a crystal by

rotating the sample under investigation through θ (or ω, which is another symbol

typically used to express the same angle) while the detector is maintained at a known

Bragg angle, 2θ. The intensity of the spectrum obtained (counts/sec versus θ or ω) is

known a “rocking curve.” Another type of scan is the “omega-theta” scan (ω−2θ), in

which the source remains fixed, but if the sample rotates θ, then the detector rotates

2θ. This type of scan is useful for determining the structural composition of the

material (the layers). Both types of scans are called symmetric scans and are useful

for determining the quality of the material.

In heteroepitaxial GaN films, x-ray rocking curves have been used to measure

the peak position of GaN, strain in the film and substrate, and peak widths. These

measurements can lead to the determination of stress in the film and substrate, as

well as defects in the material (dislocation types and densities) [11].

2.6 Summary

This chapter provides a brief introduction to MEMS micro-pressure sensors and

material considerations, specifically GaN on c-plane sapphire. It also introduces FEA

modeling for MEMS and provides a brief description of µRaman spectroscopy and
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XRD. The information provided serves as necessary background for the understanding

of upcoming chapters.
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III. Samples and Circular Membrane Design

MEMS are usually created in three distinct processes. First, the features of the

device are layed out in a computer software. Second, the designs are submitted to a

foundry for fabrication. Last, the devices undergo a series of post-fabrication steps

such as release, bonding, packaging, and integration. The designer will design the

device according to established design rules of the fabrication process. PolyMUMPS,

for instance, publishes design rules for MEMS fabricated using this process and the

foundry guarantees the features, provided the rules are followed. Just as important to

the designer is knowing the suitability of the material for the devices. The first section

in this chapter describes the wafers used for the fabrication of the circular membranes.

The fabrication process of these membranes is then covered in the second section.

3.1 Wafers

The GaN heteroepitaxial films were grown by gas source MBE on 3-inch c-plane

sapphire (Al2O3(0001)) wafers. MBE is a process in which thin films are deposited on

clean surfaces of single-crystalline substrate held at high temperatures under ultrahigh

vacuum conditions. The deposition is done by reacting thermal beams of atoms or

molecules on the substrate. It is a physical process of depositing films [12]. The wafers

were grown by Dr. Joe Van Nostrand from the AFRL’s Materials and Manufacturing

Directorate (AFRL/ML), Wright-Patterson Air Force Base, with a Varian 360 MBE

system using ammonia as the nitrogen source. A buffer layer of AlN is deposited onto

the substrate after a 1-min exposure of the substrate to ammonia for stabilization of

the ammonia flux. The purpose of this buffer layer is to improve the quality of the

GaN main layer (helps alleviate the lattice mismatch in the GaN film). Elemental

aluminum and gallium are supplied at a rate of 0.5 µm−h−1 from standard Knudsen

cells. Table 3.1 shows the layers grown in each wafer, respective thickness, and dopant

(if known).

There were problems in the growth of wafers A812 and A813. Outgassing of the

ring carrier prevented film growth on the outer edge of the wafer. Furthermore, the
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Table 3.1: Wafer information showing the thickness of each layer and the dopant
used (if known) for each of the wafers investigated in this research [15].

Wafer Layer Thickness Dopant

A342 AlN 800 A◦ None
A342 GaN 2 µm Silicon (2.4X1017cm−3)
A812 AlN 250 A◦ None
A812 GaN 2000 A◦ Carbon
A812 GaN 4.8 µm Silicon
A813 AlN 375 A◦ None
A813 GaN 1333 A◦ Carbon
A813 GaN 4.0 µm Silicon

measured film thickness was less than the values shown in Table 3.1. According to

Van Nostrand, the growth rate appears to drop in long growths although the cause of

this drop has not been determined. He suspects the Knudsen effusion cells or changes

in surface kinetics [15]. Figure 3.1 shows the mapping of the film growth for wafers

(a) A812 and (b) A813. Note the significant difference in film thickness in each of the

wafers, as well as the deviation from the expected thickness of 4.8 µm for A812 and

4.0 µm for A813.

3.2 Fabrication of Circular Membranes

The circular membranes for the pressure sensors investigated in this research

were fabricated by Laser Mound and Photonic Center, Inc., Miamisburg, OH using

a technique known as micromachining laser drilling. The drilling was done using

a pulsed Spectra-Physics, Third Harmonic Vanadate (Nd : Y V O4) 355- nanometer

(nm) laser. Unlike more traditional MEMS fabrication techniques, a mask is not

defined for laser drilling. The laser beam is directed onto the sample with a scan

head that is preloaded with the pattern desired. The peak power on the sample

can be high and varies depending on the settings used. Traditional microprocessing

techniques are not feasible with some WBG materials because of their hardness. Ding

et. al. reported using a laser-induced backside wet etching on sapphire, in which the
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(a)

(b)

Figure 3.1: (a) Map of the GaN film thickness in wafer A812. The thickness is
not uniform throughout the wafer and deviates from the expected value of 4.8 µm.
(b) Map of the GaN film thickness in wafer A813. The thickness is not uniform
throughout the wafer and deviates from the expected value of 4.8 µm [15].
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pyrene/acetone, neat toluene, or an aqueous solution of pyrene or naphtalene were

used as etching media. The light source was a 248-nm KrF laser with a repetition rate

of 2 hertz. They found that even though etching of sapphire was possible, the quality

of the etch is not very good. Furthermore, the breakdown of the etching medium

generated a thin layer of amorphous carbon film which contributed to the etching but

also to the poor quality of the etch [4]. Plasma etching is another etching method

for the fabrication of MEMS, but it could possibly introduce damage to the devices,

thus rendering it less suitable for precise micromachining. Laser drilling, on the other

hand, does not require the use of a etching medium. It is a process that selectively

removes material. The foundry performed the laser drilling from the backside of the

substrate. The target device features specified for the circular membranes are shown

in Figure 3.2.

Figure 3.2: Device features and dimensions specified by AFRL/MNMF for the
circular membranes [7]

3.3 Summary

In this chapter, the growth of the wafers using gas-source MBE was explained.

The chapter also provides specific layer information for the grown material. The

fabrication of the membranes using laser micromachining drilling was also presented.

The experimental setup will be covered in detail in the next chapter.
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IV. Experimental Procedure and Equipment

This chapter describes the experimental setup, as well as the equipment used during

the experiments. The sections in the chapter are FEA of circular membranes, Zygo

interferometry, XRD analysis and Raman spectroscopy.

4.1 Finite Element Analysis

FEA was done using the 2004 version of ConventorWare, which is a design and

simulation environment for MEMS. It consists of four independent processes or bun-

dles: designer, analyzer, integrator, and architect. The designer is the environment for

designing, specifying, and modeling MEMS. The user is able to create a layout of the

structure, and then generate a three-dimensional solid model from two-dimensional

masks. The analyzer consists of various types of solvers or analysis tools, such as

MemCap, MemMech, CoSolveEM, etc. All these simulations use finite element tech-

niques and boundary conditions to appropriately solve the differential equations for

each of the physical domains of the structures. MemMech, which is the tool used in

this research, is the mechanical tool that analyzes structural, displacement, modal,

harmonic, stress, and thermomechanical properties of devices [1].

Chapter II provided background information on the importance of modeling

because it eventually leads to optimized devices. Modeling the circular membranes

involves a three-step process: first, the growth sequence of the membrane is created

and the features of the device are drawn using the layout tool included in the software;

second, the 3D model of the membrane is created; and third, the required simulation

is performed, which in the case of the circular membranes, is a mechanical simulation.

The circular membranes are fabricated on a sapphire substrate using a laser

micromachining laser technique. Essentially, this process falls under bulk microma-

chining because material is etched away from the substrate to create the device. Laser

micromachining cannot be simulated in CoventorWare. However, starting with the

substrate, layers of the desired material can be added with the appropriate thickness
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in order to fabricate the device. The sapphire properties used for the simulation are

shown in Table 4.1

Table 4.1: Sapphire properties used in the FEA analysis of circular membranes
using the 2004 version of CoventorWare.

Property Value

Young Modulus 452000 MPa
Poisson’s 0.3
Density 3.98X10−15 kg/µm3

Thermal Coefficient of Expansion 6.8X10−6 K−1

Thermal Conductivity 2.508X107 pW/µmK
Electrical Conductivity 1X105 pS/µm
Dielectric 8.0

Two models are available for the circular membrane. The first model is the

full membrane and the second is just a symmetric quarter portion of it. This second

model was created to take advantage of symmetry and to speed up the simulation time.

Recall from Chapter II that a 3D model is broken down into smaller parts that are

meshed together. The various types of mesh elements available include tetrahedral,

bricks, and hexahedral. The choice is up to the user, but should be geometry-specific.

The mesh was optimized for evaluation time by trying different node sizes. The

mesh type for the membrane is extruded bricks mesh, pave algorithm, with parabolic

volume elements of 6250 cubic units. Figures 4.1 (a) and (b) show the 3D model

and corresponding mesh model for the full membrane. Not shown in the figure is the

substrate. The two thin strips of GaN film on top of the membrane were arbitrarily

placed symmetrically about the center line. Figures 4.1 (c) and (d) show the 3D

model and corresponding mesh model for the quarter portion of the membrane. The

figure shows the side walls (vias) of the membrane, which are representative of the

substrate. The thin strip of GaN film was arbitrarily placed symmetrically on the

membrane and the substrate (represented by the wall).

The circular membrane was analyzed using a mechanical simulation (Mem-

Mech). In this type of simulation, CoventorWare yields displacement and mechanical
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(a) (b)

(c) (d)

Figure 4.1: (a) Annotated 3D model for the full circular membrane indicating
dimensions and features of the device. (b) Mesh model for the full circular mem-
brane. (c) Annotated 3D model for the symmetric, quarter-portion of the membrane
indicating dimensions and features. (d) Mesh model for the quarter-portion of the
membrane.

29



stress at each node and consequently for the entire model. Two different simulations

were set up: 1) A single uniform load of 20 MPa was applied on top of the quarter-

portion of the membrane; the boundary conditions included fixing the edges of the

model along the x- and y-directions, and using a tied-link to the walls; the walls were

not allowed to move during the simulation. 2) A load ranging from 1 to 50 MPa was

applied in steps of 5 MPa to the top of the quarter portion of the membrane; the

boundary conditions remained the same.

4.2 Surface Profiling

The purpose of this experiment was to physically characterize the quality of

the membranes. Examining the topography of fabricated devices is a standard post-

fabrication technique in MEMS technology. It is particularly important when deter-

mining the amount of residual stress because one can accurately measure deflections

and/or curvature of devices. The two techniques employed to performed this charac-

terization are by the use of an interferometry microscope and a surface profiler.

4.2.1 Zygo Interferometry. The Zygo interferometer uses white light to gen-

erate interference patterns onto a surface. The pattern, which is simply a band of

dark and bright lines or fringes, occurs because of the optical path difference between

the reference and the sample under investigation. Any standard optics textbook ex-

plains interferometry as splitting light inside the interfometer, with one beam directed

toward an internal reference mirror and the other beam toward the sample. The re-

flected beams recombine and undergo constructive and destructive interference. The

dark and bright lines are, in fact, the constructive and destructive interference pat-

tern [8]. Figure 4.2 (a) shows the interferometer spectrum obtained from a series of

PolyMUMPS Poly1 cantilevers. The spectrum was collected with the instrument’s

standard 10X objective at a zoom level of 2.0. Figure 4.2 (b) is an oblique construct

of the spectrum to illustrate the elevation and deflection of the devices. The plots

were obtained with MetroPro, the instrument’s software.
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(a)

(b)

Figure 4.2: (a) Interferometer spectrum of a series of PolyMUMPS Poly1 can-
tilevers collected with a 10X objective at a zoom level of 2.0. (b) Oblique pattern
constructed with the Zygo Interferometer’s accompanying MetroPro software to show
the deflection and features of the cantilevers.

4.2.2 Surface Profiler. Another technique for determining the quality of a

material surface is with the use of a profilometer. Profilometers are useful because they

can detect the roughness in the surface as well as other topographical features (dips,

heights, etc.). Figure 4.3 is a picture of the Tencor P-10 profiler used to characterize

the circular membranes. The profiler is owned by AFRL/ML.

4.3 Phonon Deformation Potential of GaN on Sapphire

µRaman spectroscopy was used to characterize the stress distribution in the

GaN epilayer grown on c-plane sapphire wafers, and fabricated circular membranes.

It is, as pointed out in Chapter II, an efficient, nondestructive technique for deter-
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Figure 4.3: Picture of the Tencor P-10 profiler

mining this distribution because of the ability to measure the spectral shift in Raman

peaks in a material and correlate the shift with stress and strain. The Raman peak

shift as a function of stress correlation, known as the phonon deformation potential

(PDP), of both the GaN and sapphire is first determined by applying pressure to

the material using a four-point strain fixture while simultaneously monitoring the

applied pressure using a strain gauge, and recording the Raman spectrum. Starman

successfully showed this relationship with silicon and polysilicon devices. A detailed

treatment of the theory and experimental procedure is outlined in his PhD disserta-

tion [19]. The spectral positions of the E2 Raman mode in GaN and A1g mode in

sapphire are tracked in the samples, and stress distribution then determined using

the PDP. The following sections describe the equipment used for this experiment.

4.3.1 µRaman Spectroscopy. The µRaman spectra was performed using

a Renishaw InVia Raman spectrometer located at AFRL/ML. The spectrometer is

equipped with four excitation laser sources: a helium-cadmium (λ = 325 nm, 50 mW ),

argon ion (λ = 514.5 nm, 150 mW ), helium-neon (λ = 633 nm, 30 mW ), and a

diode array (λ = 830 nm, 300 mW ). Appendix B lists the instrument’s technical

specifications obtained from AFRL/ML. Figure 4.4 (a) shows the AFRL/ML InVia

spectrometer used during this experiment. Figure 4.4 (b) is the internal schematic of

the system with the main components shown in the legend.
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(a)

(b)

Figure 4.4: (a) Renishaw InVia spectrometer located at AFRL/ML. (b) Schematic
of the internal components of the InVia spectrometer [20].

The spectral resolution of the InVia is summarized in Table 4.2. The values

were obtained using ∆ν = ∆λ/λ2, where ∆λ = (aw)/(fm) where, in turn, a is the

grating spacing (1200, 1800, or 2400 lines/mm), w is the slit width (50 µm), f is the

focal length of the monochromator (200 mm), and m is the diffraction order (1) [20].

The approximate sampling rate is specified in Appendix B. For instance, using the

514-nm laser, the scan wavenumber resolution is approximately 2-3 cm−1 when using

the 1800 l/mm grating.
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Table 4.2: Spectral resolution of Renishaw InVia
spectrometer for each of the excitation sources and
corresponding grating [20].

Source Wavelength (nm) Grating (l/mm) Resolution (cm−1)

325 2400 9.865
514 1200 7.884
514 1800 5.257
633 1200 5.199
633 1800 3.467
830 1200 3.024

To determine the best excitation source to collect the Raman spectra, scans were

collected using the 325-, 514-, and 633-nm lasers. Because the energy bandgap of GaN

is approximately 3.5 eV, the 325-nm laser (≈3.8 eV) would only yield information on

the surface of the GaN. The absorption coefficient of GaN at 3.8 eV is approximately

1.0X105, which means the 325-nm laser will examine a surface layer of approximately

50 nm using the relationship, penetration depth = 1/(2α) [13]. On the other hand,

both GaN and sapphire are semi-transparent to visible wavelengths, so both the 514-

and 633-nm lasers would be adequate sources for information on the GaN layer and

substrate.

4.3.2 Four-point Bending Fixture. To fully understand and derive a rela-

tionship between stress and Raman shift, it is necessary to collect a series of Raman

spectra over a range of known stress values. The induced stress can be achieved with

a four-point bending fixture, shown in Figure 4.5. Samples of GaN on sapphire were

cut from the center of wafer A812, where the film thickness is more uniform. The

samples were rectangular beams (2-mm wide by 10-mm long) that were then fixed

to plexiglass rectangular beams using M-bond 200 epoxy. The strain induced in the

beams is monitored with a Vishay 06-125AD-120 precision strain gauge epoxied next

to the GaN on sapphire rectangular samples. The strain is read and recorded using

a P-3 strain indicator. A µRaman spectrum is collected after each strain adjustment
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on the samples. Because the beams experience compressive strain, it is necessary to

re-focus the collecting objective onto the sample every time a strain adjustment is

made.

(a)

(b)

Figure 4.5: (a) Four-point bending fixture under the Raman microscope. (b) Close-
up picture of the same set up shown in (a) that shows how the sample is loaded.

4.3.3 P-3 Strain Indicator. The P-3 Strain Indicator, shown in Figure 4.6,

was used to read the induced strain in the samples of GaN on sapphire. The instru-

ment is able to read strain gauges configured as half-bridge or full-bridge resistive

elements.
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Figure 4.6: P-3 Strain Indicator

4.4 Wafer and Membrane Stress Distribution Characterization

To characterize the stress, two separate procedures were performed. The first

experiment is a qualitative look at the material using XRD. As pointed out in Chapter

II, XRD spectra collected on heteroepitaxial GaN films can lead to the asssesment

of stress in the film and substrate, as well as defects in the material. The second

experiment involves collecting Raman spectra of the material and using the PDP to

quantify the amount of stress.

4.4.1 X-ray Diffraction. Omega-theta scans obtained by XRD on the (002)

plane were collected across wafer A813 in steps of 10 mm to determine the quality of

the as-grown material. The other type of scan was a reciprocal space map to examine

the crystalline quality of the material. The scans were done using an Xpert Pro

system equipped with a germanium channel cut (220), four-bounce monochromator

selecting only the copper Kα1 wavelength (λ = 0.154059 nm) line. Figure 4.7 is a

picture of the instrument used.

4.4.2 µRaman Spectroscopy. Single, line, and area scans were collected from

the three samples described in Chapter III. Unless specified otherwise, the scans were

collected at room temperature, with the 50X objective, and using the 514-nm laser

at 100% laser power. The samples were analyzed in a backscatter configuration with

the z-direction parallel to the c-axis of the material.

36



Figure 4.7: Xpert Pro system used for all the x-ray diffraction measurements

Single scans were collected away from any fabricated membrane to ensure the

scans would be representative of the film growth and quality. It also provides back-

ground results from areas not affected by the energy of the laser used during micro-

machining drilling. Single scans were also taken in the membranes to quantify the

quality of the material post-fabrication

Line scans were collected from representative membranes. The purpose of these

scans is to quantify the stress level of the material. Figure 4.8 depicts the scan setup.

Raster scans were collected along the edge of the membranes to show the distri-

bution of stress state that occurs from the clampled nature of the membrane. These

area scans were rectangular and collected at different step sizes. These scans were

done using the 20X objective. Figure 4.9 shows the setup of one of the raster scans

collected, in which the step size is 5 µm for a total area of 625 µm2.

4.5 Summary

The experimental setups were explained in this chapter. When applicable, the

equipment used for the experiments was described. The results are presented in

Chapter V.
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Figure 4.8: Line scan setup. The scan goes from approximately the middle of the
membrane to the edge in steps of 10 µm.

Figure 4.9: Raster scan setup. The zoomed-in box shows the area in the membrane
where the scan was collected. The raster scan area is 625 µm2.
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V. Results and Analysis

This chapter presents the modeling and experimental results obtained. Section 5.1

presents the results obtained from the FEA modeling done. The surface profiling of

the fabricated membranes is shown and discussed in section 5.2. Section 5.3 presents

and discusses the determination of Raman shift as a function of applied stress (phonon

deformation potential). Finally, stress analysis of the fabricated membranes via single,

line, and raster scans is presented in Section 5.4.

5.1 Finite Element Analysis

The FEA results give an insight to the behavior of the membranes. As pre-

dicted by the analytical modeling described in Appendix A, the pressure load applied

uniformly on the top surface of the diaphgram results in a downward deflection, with

its maximum value at the center of the diaphragm. The circular structure is clamped

to the rest of the substrate. This is evident from the results because at the tied-link

between the diaphgram and substrate (represented in the model by the wall), there

is no evidence of deflection. The analytical results presented in Chapter II further

validate this observation (Figure 2.2). Figure 5.1 shows the results obtained. Figure

5.1 (a) is the symmetric quarter portion of diaphragm modeled, and it shows the

deflection that occurs from the clampled boundary to the center of the diaphragm.

From the figure, the maximum deflection obtained for a pressure load of 50 MPa is

approximately 13 µm. Even though the mechanical simulation increased the pressure

applied from 1 MPa to 50 MPa in steps of 5 MPa, the figure only shows the result

obtained when 50 MPa is impinged on the top surface of the diaphgram. Also shown

in the figure is the deflection experienced by the piezoresistive GaN beam placed at

the boundary between the substrate and the diaphgram. Figure 5.1 (b) shows the

parametric results of deflection as a function of applied pressure. It is a linear rela-

tionship because the pressure was applied uniformly on the top surface. The results

accurately show that, for 50 MPa, the deflection obtained is just under 13 µm.
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(a)

(b)

Figure 5.1: (a) FEA model result of the deflection of a clampled circular diaphgram.
The maximum deflection occurs at the center of the diaphgram. The figure also shows
the clampled boundary between the diaphgram and the substrate (represented in the
model by the wall). The uniformly applied pressure was 50 MPa. (b) Parametric
results of the deflection at the center of the diaphram for a uniformly applied pressure
ranging from 1 to 50 MPa in steps of 5 MPa.
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The other characterizing factors in circular diaphgrams are the radial and tan-

gential stresses. The analytical behavior of the circular membrane indicates the max-

imum radial stress occurs at the boundary with the substrate. Both the radial and

tangential stresses are equal at the center. FEA results are typically presented as Von

Mises stress. In this research, the Von Mises stress is used to show the generalized

stress distribution in the circular membranes. Figure 5.2 shows that stress is concen-

trated along the boundary between the diaphragm and substrate. The radial stress

distribution predicted this behavior. In the model, however, high Von Mises stress is

found along the edges of the quarter portion of the diaphgram. This is simply a result

of having fixed the edges of the model in the x- and y-direction. These are necessary

boundary conditions to take advantage of the diaphgram’s symmetry. Also shown

in the plot is the effect the deflection has on the GaN film. The film strip extends

beyond the diaphragm, and it is representative of one of the resistive elements in a

Wheatstone bridge configuration. As expected, the stress is higher right along the

boundary.

Figure 5.2: Von Mises stress distribution of a clampled circular diaphgram showing
how stress is significantly higher along the boundary of the diaphragm and substrate
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5.2 Surface Characterization

The characterization of device surfaces is very important in MEMS because any

superficial defects, roughness, and even differences in thickness could lead to unwanted

behavior of the devices. It is also an important step in post-fabrication. As pointed

out in Chapter IV, the surface characterization was done using a Zygo interferometer

and a surface profiler. A microscope was used to supplement the results obtained.

Figure 5.3 shows the results obtained with the Zygo interferometer. Figure

5.3 (a) is the interferometer’s spectrum obtained with a 10X objective from a repre-

sentative diaphgram in wafer A813. The figure shows areas around the diaphgram

where the interferometer was unable to obtain interference patterns. The areas ap-

pear as a black ring around the perimeter of the diaphgram. Figure 5.3 (b) is a

measurement obtained from the region in the diaphgram where the interference in-

tensity is the highest. The results clearly indicate that the GaN epilayer experienced

delamination during fabrication. The reading shows a bulge height of approximately

2 µm. Recall that the film thickness is approximately 4 µm. Figure 5.3 (c) is simply

an oblique plot obtained with the intrument’s software to show the bulge section and

the rest of the diaphgram more clearly.

Micrographs of the front of the diaphgram show that material has been lifted

off during fabrication. Figure 5.4 (a) is the top of the diaphgram taken with a 20X

objective that clearly shows the areas where material is missing around the perimeter

of the diaphgram. Figure 5.4 (b) is a micrograph from an area in the perimeter to

show the extent of the damage to the GaN film. The micrograph was taken with a

100X objective. The pictures provide the evidence that material is missing and give

an insight to the damage sustained during fabrication. Recall that the fabrication

process makes use of a 355-nm laser. Sapphire has a large bandgap (8 eV), which

means the laser’s energy is passing through to the GaN film where it gets absorbed.

Furthermore, because the fabrication of each membrane requires multiple passes in

both the x- and y-direction, the film is subject to cumulative effects.
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(a)

(b)

(c)

Figure 5.3: (a) Zygo interferometer spectrum obtained with a 10X objective from
a representative fabricated diaphgram. The plot shows areas around the diaphgram
where interference could not be obtained. (b) Side profile obtained across the di-
aphgram where the interference interference is the highest. The height measurement
obtained is approximately 2 µm. (c) Oblique construction of the diaphgram that
clearly shows the height of the bulge with respect to the rest of the diaphgram.
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(a) (b)

Figure 5.4: (a) Micrograph of the top surface of a representative fabricated diaph-
gram taken with a 20X objective. The picture shows the areas in the perimeter where
material is missing. (b) Micrograph of an area in the perimeter of the diaphragm to
show the damage extent to the GaN film. The micrograph was taken with a 100X
objective.

The Zygo Interferometer results showed the extent of the damage to the GaN

epilayer during fabrication. The micrographs presented visual evidence that material

is indeed missing around the perimeter of the diaphragms. To further validate the

observations, the result obtained with the surface profilometer, and presented in Fig-

ure 5.5 (a), show a dip of approximately 4 µm around the perimeter (recall that the

GaN film is approximately 4 µm). The figure also shows a 2-µm height on the bulge

observed with the Zygo interferometer. Figure 5.5 (b) indicates the location in the

diaphragm of the profilometer scan. Figures 5.5 (c) and (d) show the via (on back

surface of wafer) and bottom surface of diaphgram, respectively. Both pictures were

taken with a 20X objective. The micromachining drilling resulted in a lot of surface

roughness as shown in the figure.

5.3 X-ray Diffraction

Omega-theta scans were taken from wafer A813 to qualitatively assess the crys-

talline quality of the material. Figure 5.6 shows the results obtained along the wafer.
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(a) (b)

(c) (d)

Figure 5.5: (a) Surface profilometer result showing the film lift-off and bulging
that occured during fabrication. (b) Picture to show the location of the surface
profilometer. (c) Micrograph showing the fabricated via. The picture is from the
back surface of the wafer using a 20X objective. (d) Micrograph showing the bottom
surface of the diaphragm. The fabrication resulted in a lot of surface roughness on
the bottom of the membrane.
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The scans were collected at 10, 20, and 30 mm from the center of the wafer along the

(002) plane of GaN. The results show that the FWHM increases from the center of the

wafer to the outer parts. This behavior indicates that the film quality is not uniform

throughout the wafer and confirms the wafer map results shown in Chapter III. XRD

can also be used to determine the relaxation of heteroepitaxial films. A reciprocal

space map was collected and the results, shown in Figure 5.7, show that the film is

relaxed. This can be infered because there is no tilt along the omega axis. However,

there is significant broadening of intensity along the omega-theta and omega axes,

which indicates a high density of defects in the material. The nature of the defects

cannot be accurately determined from this scan.

Figure 5.6: Omega-theta scans of wafer A813 collected to determine the quality of
the GaN film throughout the wafer

5.4 µRaman Spectroscopy of GaN on c-plane Sapphire

As pointed out in Chapter II, the use of µRaman spectroscopy has been useful

in determining the state of stress in semiconductor materials. In this research, this
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Figure 5.7: Reciprocal-space map of wafer A813 collected to determine the relax-
ation of the as-grown film. The film can be assumed relaxed because there is no tilt
along the omega axis.

nondestructive technique is primarily used to assess the stress of the circular mem-

branes fabricated using the micromachining laser drilling. The following subsections

describe the research performed to meet the objective.

5.4.1 Excitation Source. To determine the best excitation source to collect

the Raman spectra, scans were collected using the 325-, 514-, and 633-nm lasers.

Figure 5.8 shows the results obtained with the three excitation sources. Figure

5.8 (a) shows the scan collected with the 325-nm source. Indicated in the figure are

two peaks that cannot be resolved. GaN does not have a phonon frequency around

300 cm−1. The figure also shows a peak at around 750 cm−1, which could correspond

to the A1(LO) or the E1(LO) phonons [10]. It is, however, difficult to differentiate

between the two.
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Figure 5.8 (b) shows the scan collected with the 514-nm source. The result

shows that both GaN and sapphire peaks are measured with this excitation source.

It is important to point out that both GaN and sapphire have phonon frequencies at

around 750 cm−1. In the figure, that frequency peak is labeled as sapphire, but it

could easily be a GaN phonon.

Figure 5.8 (c) shows the scan collected with the 633-nm laser. The scan shows

a lot of fluorescence toward the higher frequencies (600 cm−1 and above). Sapphire

has a phonon frequency at approximately 642 cm−1, but as the scan shows, the peak

is very broad. Comparing the three sources, the 514-nm laser appears to provide the

best spectra with clearly resolved phonon frequencies of sapphire and GaN.

5.4.2 Instrument Calibration. To determine the accuracy of the instrument,

several scans of the internal silicon source were obtained in a span of three months.

The scans were collected using the 514- and the 633-nm lasers. However, since it

was determined that the 514-nm laser would be the best source of excitation for

this research, the accuracy of the instrument was determined using the 514-nm laser

source, only.

Renishaw, Inc. specifies that the instrument is able to resolve the silicon phonon

peak with an accuracy of 520.5 ± 0.5 cm−1. Zingarelli had shown that since the peaks

in the spectra are statistically fit using a Voigt profile, the mean position of the peak

is determined with resolution below the instrument resolution [20]. This is important

because the research involves tracking shifts in frequency less than a wavenumber.

Statistically, the spectra collected over the three month span give an accuracy of the

silicon peak at 520.23 ± 0.47 cm−1. This is in agreement with the posted accuracy

from the company, and it shows that tracking changes in frequency shifts of less than
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(a)

(b)

(c)

Figure 5.8: Scans of GaN on c-plane sapphire collected using the (a) 325-nm laser,
(b) 514-nm laser, and (c) the 633-nm laser.
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a wavenumber is possible even though the dynamic sampling rate and spectrometer

resolution when using the 514-nm laser are both 2-3 cm−1.

5.4.3 Baseline Spectra. Figure 5.9 presents the baseline spectra collected

from samples A342, A812, A813, and sapphire. The scans were collected at room

temperature with the 50X objective to ensure maximum collection efficiency. The

purpose of these scans was to characterize the stress of the as-grown material. The

scans were collected at a distance far from the fabricated membranes to ensure the

influence of the micromachining drilling does not affect the results. Ideally, these scans

should have been collected prior to any fabrication process. Unfortunately, the wafers

were not available for pre-fabrication analysis. The figure shows that the A1g phonon

of sapphire and E2(H) phonon of GaN are present in samples A342 and A813. Only

the E2(H) phonon is observed in the A812 sample. Notice that the A1(LO) phonon is

clearly observed in sample A342. In the backscatter configuration used, the A1(LO)

phonon is an allowed mode. Therefore, this phonon appears to have shifted to higher

wavenumbers in the A813 sample, and it is completely missing in sample A812. The

sapphire sample shows all the allowed phonons except the 642 cm−1 peak.

5.4.4 Raman Shift as Function of Stress Calibration Using a Four-Point Bend-

ing Fixture. The Raman peak shift as function of applied stress of the E2(H)

phonon of GaN has been experimentally determined in the past by other researchers.

Demangeot et al. found that the PDP for the case of biaxial stress (ω) in GaN

heteroepitaxial film is given by [3].

∆ω = 2.43σ cm−1 (5.1)

Starman successfully used this technique, of applying strain with a four-point

bending fixture, to calibrate the Raman spectrometer so it can be used to detect

residual stress in a material [19]. The samples were subjected to compressive strain

using the four-point bending fixture. The strain was monitored with the P-3 strain
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(a)

(b)

Figure 5.9: Background spectra of GaN on c-plane sapphire collected using a 50X
objective at room temperature in a backscatter configuration from sample (a) A342
(red), A812 (green), A813 (blue), and (b) sapphire. The A1g phonon of sapphire and
E2(H) phonon of GaN are present in samples A342 and A813 but missing in sample
A812. Only the E2(H) phonon is observed in the A812 sample. Notice that the
A1(LO) phonon is clearly observed in sample A342. This phonon is missing in sample
A812, and it has shifted to a higher wavenumber in sample A813. The sapphire
sample shows all the allowed phonons except the 642 cm−1 peak.

51



indicator. Hooke’s law relates strain (ε) to stress (σ) in a material by the Young’s

modulus (E) of the material,

σ = εE (5.2)

The Raman spectrum corresponding to each strain point was collected using a

20X objective at room temperature. After each strain adjustment, the spectrograph

was focused on the surface of the sample to ensure the collection efficiency of the

objective would remain the same. The fitting was done using a linear, robust bisquare

fitting algorithm using the code contained in Appendix C. A bisquare fitting method

minimizes the summed square of the residuals and minimizes the effect outliers have

on the overall fit. It is a more robust method than a simple linear least square method.

Figure 5.10 shows the linear fit obtained for the E2 phonon of GaN. From the

linear fit, Raman shift as a function of stress in GaN film is given by equation (5.3).

The slope of the equation is given in units of cm−1/GPa.

νE2H = 0.2051σ + 568.5 cm−1 (5.3)

Even though a fit was obtained, the peak shift is not appreciable considering the

amount of compressive stress applied to the sample. The peak shifts, as function of

applied stress, can be tracked even at the low resolution and dynamic sampling rate

of the instrument because of the nonlinear fit performed on the data. The resolution

affects the broadening of the peak, but the peak can be tracked to shifts of less than

a one wavenumber. Figure 5.10, however, shows a range of approximately 0.5 cm−1,

which is less than the standard deviation (sy = 0.4342 cm−1). So even though the

fitting performed has some statistical merit because the standard error of the estimate

(sy/x = 0.3730 cm−1) given by [2],

sy/x =

√
sse2

n− 2
(5.4)
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Figure 5.10: Linear fit of the E2(H) phonon of GaN obtained using a linear, robust
bisquare fitting algorithm. Strain was applied to the sample using a four-point bending
fixture and monitored using a P-3 strain indicator

where sse is the square of the sum of the error, and n is the number of data point, is

less than the standard deviation, the data does not yield enough statistical confidence

to accurately claim the fit obtained represents the PDP of MBE-grown GaN.

The experimental value for GaN obtained in this research differs by one order

of magnitude from the one obtained by Demangeot et al. The difference can be at-

tributed to the experimental technique used to determine the deformation potentials.

In this bending technique (four-point bending fixture), the sample under examination

experiences the largest moment between the two center contact points (refer to Figure

4.5). The initial assumptions were that the interface between the plexiglass beam and

sample of GaN on sapphire was ideal (thus making it a trilayer structure consisting of

plexiglass, sapphire and GaN epilayer), and that the sample experienced pure bend-

ing (thus the moment was considered constant between the two center points). The
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entire structure (plexiglass and sample) was assumed to be one, which meant the top

surface (the GaN epilayer) would experience compression while the bottom surface

(the bottom of the plexiglass beam) would be under tension. This is consistent with

pure bending of beams. In this case, stress (σ) is directly proportional to the moment.

The problem, however, is that all three materials have different Young’s moduli thus

rendering the initial assumptions wrong. The GaN epilayer does not appear to com-

press during the bending, and the data obtained does not support the assumptions.

Also, Demangeot et al. experimented on wurtzite GaN grown on (111) silicon rather

than sapphire. Recall that sapphire poses the highest lattice constant mismatch of

all the substrates available for GaN heteroepitaxial film growth.

Figure 5.4.4 shows the linear fit for the A1g phonon of sapphire. From the linear

fit, Raman shift as a function of stress in sapphire is given by equation (5.5). The

slope of the equation is given in units of cm−1/GPa.

νA1g = 0.152σ + 417 cm−1 (5.5)

This research constitutes the first attempt at determining the phonon deforma-

tion potential for sapphire. The frequency shift as function of stress was minimal

(less than a wavenumber). The standard deviation of the data was sy = 0.2071 cm−1,

while the standard error of the estimate, as given by equation stderror, is sy/x =

0.3023 cm−1. There is not statistical merit in these results because sy/x is higher than

sy [2].

As previously mentioned for GaN, the data obtained cannot be attributed to

the strain applied with the four-point bending fixture. The conclusion drawn for the

GaN epilayer can be drawn for sapphire.

One more possibility that can be considered is that the bond used to fix the

sample onto the plexiglass beam relaxed, thus preventing the sample from bending

with the plexiglass beam.
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Figure 5.11: Linear fit of the A1g phonon of GaN obtained using a linear, robust
bisquare fitting algorithm. Strain was applied to the sample using a four-point bending
fixture and monitored using a P-3 strain indicator

5.4.5 Stress Characterization of Fabricated Membranes. Since the PDP

determination for both GaN and sapphire failed to provide a reliable linear fit of peak

shifts as function of applied stress, the GaN PDP obtained by Demangeot et al. was

used to characterize the state of stress of the fabricated membranes.

Line scans across the membranes and raster scans that overlap the boundary

between the membrane and the substrate are useful in determining the stress. A

series of line and raster scans were collected from a representative membrane in each

of the wafers A812 and A813 for the purpose of mapping out the stress state. The

scans were fit with a nonlinear Voigt profile using the code included in Appendix C

and the InVia accompanying software Wire 2.0.

5.4.5.1 Line Scans. Figure 5.12 presents the results obtained from

three line scans collected along the radius of membrane 1 in wafer A812. The scans
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were collected in steps of 10 µm at room temperature using the 50X objective, 100%

laser power on the sample (6.30 mW). The stress across the membrane is calculated

using equation (5.1). The plot shows that the stress across the membrane is mostly

compressive, as expected, because of the lattice mismatch between wurtzite GaN and

sapphire. The errorbars in the plot were calculated using the standard deviation

specified in equation GaNpdpdemangeot1001[3].

Figure 5.12: Residual stress distribution along the radius of membrane 1 in wafer
A812. The stress was mapped using the PDP found by Demangeot et al.

Figure 5.13 shows the stress result along the radius of membrane B in wafer

A813. The scans were collected with the same conditions of results shown in Figure

5.12. Similarly to membrane 1 of wafer A812, the stress is compressive in nature.

The state of stress determined in this research represents the residual stress in

the material post-fabrication. As stated before, the laser used during fabrication may

cause localized heating of the sapphire and consequently the film, which may result in
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Figure 5.13: Residual stress distribution along the radius of membrane B in wafer
A813. The stress was mapped using the PDP found by Demangeot et al

.

stress changes in the material. Sapphire has a very poor thermal conductivity, thus

rendering it a very ineffective heat sink [11].

5.4.5.2 Raster Scans. Raster scans along the boundary of the fabri-

cated membrane and substrate were collected for the same membranes characterized

with the line scans. The raster scans are useful because they directly pinpoint to

areas where stress is high. The scans are plotted as function of position and position

references are provided for ease of understanding.

GaN Film. For comparison, the raster scans for membranes 1

(A812) and B (A813) are provided in Figures 5.14 (a) and (b). The overall stress in

membrane 1, wafer A812 is less than the membrane B, wafer A813. The figures show

how the state of stress is not uniform on either side of the membranes, and it also gives
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evidence that stress is higher inside the membrane. Furthermore, the boundary line

is characterized by the highest level of stress. This is in accordance with the behavior

expected for a clamped, circular membrane. The same results were observed in the

FEA modeling results. It is important that stress be evenly distributed along the

boundary so the response of the piezoresistive elements overlapping the membrane and

substrate can be accurately predicted, and even though the figure shows a difference in

stress in and outside the membrane, the results do not provide that even distribution

sought.

(a) (b)

(c) (d)

Figure 5.14: Raster scan setup showing the 10000-µm2 grid used for the scan of
wafers (a) A812 and (b) A813. The scans were collected at every 10 µm. Raster scan
of (c) membrane 1, wafer A812, and (d) membrane B, wafer A813.

The linewidth of the E2(H) phonon varies with position as well. Good quality

material has a linewidth of approximately 3 cm−1 [11]. This distribution shows that

the film quality varies in small spatial positions in both the membrane and outside the
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membrane. Figure 5.15 highlights how the Raman peak, as well as the linewidth, vary

with position for both membranes 1 and B, wafers A812 and A813, respectively. In

Figures 5.15 (a) and (b), the maps show a 2-cm−1 span ranging from 566-568 cm−1 for

membrane 1, wafer A812, and 567-569 cm−1 for membrane B, wafer A813. Fabrication

of the membrane results in significant damage to the GaN film. The absorption of

the laser energy during fabrication drastically changes the Raman spectra of the GaN

film. For instance, the linewidth in the middle of wafer A813 (far away from any

fabricated membrane) is approximately 1.5 cm−1. In contrast, the linewidth in the

middle of the membrane is 3.4 cm−1 while just outside the membrane is 2.73 cm−1.

The three values clearly differ from the 3-cm−1 linewidth considered to be quality

film [11]. These two values, although close to the 3 cm−1 linewidth mentioned as

quality film, differ significantly from the value obtained in the middle of wafer A813.

This difference confirms the damage sustained by the film during fabrication.

Figure 5.16 shows the spectra obtained in the middle of the membrane, as well as

just outside the membrane, to show the effect the fabrication had on the film. Notice,

for instance, how the A1(TO) phonon of GaN appears after fabrication. The baseline

spectra of wafers A812 and A813 (Figures 5.9 (a) and (b)) did not show this peak,

which leads to the conclusion that the thermodynamic effects of the micromachining

drilling resulted in the appearance of this peak.

Sapphire. The PDP of sapphire is not statistically reliable. The

Raman peak distribution, however, can be used as an indicator of the changes in

the material post fabrication. Figure 5.17 shows the wavenumber shift across the

boundary of the membrane. The plots shows a 10-cm−1 range, which is quite large

but necessary to show the variation obtained. In the plots, the sections that appear

white indicate areas where the A1g phonon could not be detected. This behavior

cannot be explained and further testing needs to be accomplished to determine if the

sapphire substrate sustained enough damage to prevent the detection of the phonon.

In Figure 5.17 (d), the A1g distribution is fairly uniform outside the membrane with
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Figure 5.15: (a) E2(H) Raman peak distribution used to determine the stress in
(a) membrane 1, wafer A812, and (b) membrane B, wafer A813, shown in Figure
5.14. Linewidth of the E2(H) Raman peak showing the quality of the GaN film in
(c) membrane 1, wafer A812, and (d) membrane 1, wafer A812.

values averaging between 417 to 418 cm−1. On the other hand, Figure 5.17 (c) shows

a wider distribution of peak shifts. Figure 5.16 showed the effect fabrication had

on the Raman spectra; notice, for instance, how the intensity of the A1g phonon

has significantly dropped after fabrication. This could be the reason why inside the

membrane it is difficult to detect it; however, it does not explain those areas outside

the membrane.

5.5 Summary

The results presented show that the fabrication process introduces significant

damage to the GaN film and the sapphire. The surface characterization conclusively
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Figure 5.16: Comparison of spectra inside and outside of membrane B, wafer A813
to show the appearance of the A1(TO) of GaN after fabrication.

serves as evidence of the damaging effect the laser energy. Raman spectroscopy results

point to the changes in film quality using the linewidth of the E2(H) phonon of GaN

as the indicator. Determining the PDP of GaN and sapphire experimentally using the

four-point bending fixture was unsuccessful because the peak shifts induced could not

be attributed to applied strain. The state of stress distribution of the GaN epilayer

in representative membranes of wafers A812 and A813 was mapped using the PDP

obtained by Demangeot et al. For sapphire, the Raman peak shifts were mapped to

make the correlation between stress and peak shifts.
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(a) (b)

(c) (d)

Figure 5.17: Raster scan setup showing the 10000-µm2 grid used for the scan of
wafers (a) A812 and (b) A813. The scans were collected at every 10 µm. Sapphire
A1g phonon map distribution for (c) membrane 1, wafer A812 and (d) membrane 1,
wafer A813. The maps show areas where the phonon could not be detected.
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VI. Conclusions and Recommendations

µRaman spectroscopy has been in use since the early 1970’s to examine the state of

stress in semiconductor materials. It is a proven, nondestructive technique, capable of

detecting areas of high residual stress through the PDP, which relates the Raman peak

shift to stress. Determining the PDP for both GaN and sapphire was experimentally

attempted but did not yield useful results. Line and raster scans were collected

to characterize the stress in the circular membranes fabricated with the novel laser

micromachining drilling technology. Surface characterization techniques, XRD, and

FEA were performed to supplement the µRaman spectroscopy.

6.1 Conclusions

The reliability of MEMS devices starts with material selection, but more im-

portantly, with knowing the type of environment under which it will be operated.

WBG materials are quickly fulfilling the role that silicon-based devices dominated

for years. SiC proved to be an excellent candidate for the fabrication of the MEMS

micro-pressure sensors under the Generation-After-Next munitions program. It is

well characterized and growth/fabrication processes are improving. GaN has gained

ground with the advent of blue-emitting diodes and other devices that operate in the

ultra-violet regime. Fabrication of GaN-based MEMS must improve for the material

to remain a suitable candidate for operation in harsh environments. The results ob-

tained in this research prove that laser micromachining drilling with the 355-nm laser

introduces significant damage to both the heteroepitaxial GaN film and the sapphire

substrate. Understanding the physical process that occurs during laser drilling is crit-

ical in order to assess the damage it imposes on the material. Laser drilling is, in fact,

a violent process in which the material melts, ablates, and then cools down to the

solid state again. Now, the suitability of a particular laser for the fabrication must

account for these factors.

µRaman spectroscopy results showed the state of stress of the fabrication mem-

branes. Unfortunately, there are not any suitable fabrication procedures (wet etching,
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deep reactive ion etching, etc.) that could quickly produce sapphire circular mem-

branes for micro-pressure sensors.

Determining the PDP for GaN on c-plane sapphire proved difficult because

of the inability to exert any significant strain using the four-point bending fixture.

However, this research effort represents the first time this Raman shift as function of

stress in sapphire has been attempted.

6.2 Recommendations for Future Work

Further analysis of the damage to the film and substrate is needed to fully

understand the effect of the laser used for fabrication. The extent of the damage in

the material could be directly related to the absorption of the energy by the material

(heating of the material). A study of how the material properties, such as thermal

conductivity and heat capacity, behave in response to the rapid heating due to the

incident laser energy is paramount. Any future research should include analyzing the

wafers prior to fabrication using XRD and µRaman spectroscopy in order to have a

baseline characterization of the material.

To aid in the PDP determination, thinning of the material could be explored.

Sapphire wafers can be thinned to about 10 µm and are readily available in the

commercial sector. Thin samples can then be used with the four-point bending fixture

to find the relationship between stress and Raman peak shift. Thinned sapphire

samples (approximately 7.5 centimeters (cm) long by 1 cm wide by 150 µm thick)

were ordered from a commercial vendor and should be tested once available.

Laser Mounds and Photonic Center, Inc., will explore using a different wave-

length laser for the fabrication of the membranes. As mentioned above, a baseline

analysis of the wafers pre-fabrication must be accomplished on the wafers to examine

the effect this new laser will have on the material.
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Appendix A. Analytical Modeling of MEMS Micropressure Sensors

The sensing element in a micromachined mechanical transducers relies on material

properties that include piezoresistivity, piezoelectricity, capacitance, and others. The

type of microsensor discussed in this thesis uses the piezoresistive property of wide

bandgap semiconductor materials. Piezoresistive is a term with greek roots; piezin

means ”to press.” Some materials experience a change in resistivity when a pressure is

impinged on them. The piezoresistive elements in this type of transducer are usually

arranged in a Wheatstone bridge configuration. The measured and supplied voltage

to the Wheatstone bridge is given by

Vout = Vin

(
R1

R1 + R4

)
(A.1)

Where Vout and Vin are the measured and supplied voltage to the Wheatstone

bridge circuit, respectively.

Usually, the mechanical structure that is used for sensing is a diaphragm. Di-

aphragms can be either circular or rectangular. This appendix describes the ana-

lytical equations that describe the operation of a circular diaphragm that is rigidly

clamped [1]. Usually, MEMS fabrication techniques do not yield simply supported

structures. The analysis is only valid under the following assumptions:

• The diaphragm is flat and uniform.

• The material is homogeneous and isotropic.

• Pressure is applied normally to the plane.

• The elastic limit of the material is not exceeded.

• The diaphragm is not too thick.

• deformation is due to bending and the neutral axis experiences no stress.

Figure A.1 depicts a rigidly clamped diaphragm and its associated deflection

under uniform pressure load. Note that in the figure the rigidity of the edges has
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been exagerated for illustration purposes. It is important to point out that pressure

P can be applied to either side of the membrane. Bedises deflection, this type of

structure can be characterized by its stress distribution; the two stress components

are radial and tangential.

Figure A.1: Side view of a rigidly clamped circular diaphragm and its displacement
under a uniform pressure load. P is the applied pressure, a is the radius of the
diaphragm and r is the radial distance.

The deflection y at a radial distance r under uniform pressure load P for a rigidly

clamped structure, as shown in Figure A.1, is given by equation (A.2)).

y =
3(1− ν2)P

16Eh3

(
a2 − r2

)2
(A.2)
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Where h is the thickness, E and ν are the Young’s modulus and Poisson’s ratio,

respectively, and a is the radius of the diaphragm.

As mentioned above, the other characterizing elements are both the radial and

tangential stress distributions across the diaphragm. The neutral axis depicted in A.1

experiences zero stress while the outer faces suffer from maximum stress. The two

stress components are given by equation (A.3). Equation (A.3a) governs the radial

stress, σr, while equation (A.3b) describes the tangential stress, σt.

σr =
3

8

Pa2

h2

[
(3 + ν)

r2

a2
− (1− ν)

]
(A.3a)

σt =
3

8

Pa2

h2

[
(3ν + 1)

r2

a2
− (1− ν)

]
(A.3b)
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Appendix B. Renishaw Specifications

These are the specifications of the Renishaw InVia spectrometer obtained from AFR-

L/MLBP.

(a) (b)
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Appendix C. Renishaw Specifications

C.1 Voigt Fitting Algorithm

Program used to fit the Raman spectra using a nonlinear Voigt profile algorithm.

Listing C.1: Voigt Fitting Algorithm. (Appendix3/Raman.m)
%**************************************************************************...

% Micro -Raman Data Analysis Program ( MRDAP)
%**************************************************************************...

% Version 2.00
5 % Date : 23 December 2005

% Changes:
% (1) Removed the selection of reference files

10 % Suggested future changes:
% (1) Use NARGIN to allow script -like/batch execution of a list ...

of files.
% (2) Same as (1) , but to initialize the GUI default directory ...

instead.

% Authors : Jason Foley (1) , Capt Frank Parada (2) , and Michael ...
Marciniak (2)

15 % (1) AFRL/MNMF , jason.foley@eglin.af.mil , (850)...
883 -0584

% (2) AFIT/ENG , michael.marciniak@afit.edu , (937)...
255 -3636 x 4529

% Description:
% This program processes the spectral data in micro -Raman data ...

files from
20 % a Renishaw machine . The data is written to a " summary " file , ...

with
% point -by -point values for all of the tracked peaks . The peaks...

are
% summarized in the
%
% Pseudocode:

25 % 1. File Import and Data Extraction
% 2. Sampling Plot
% 3. Curve fitting
% a. Gaussian + Lorentzian = Voigt!

30
% References:
% [1] Timucin , Dogan A. , 2004 , "A new computational framework ...

for
% atmospheric and surface remote sensing ," Proc. ESTC 2004 , ...

B9P1 ,
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% pp. 1-7.
35 % [2] Puerta , Julio , and Martin , Pablo , 1981 , " Three and four

% generalized Lorentzian approximations for the Voigt
% line shape ," Appl. Opt . , 20 (22) , pp . 3923 -3928.
% [3] Foley , Jason R., et al. , 2006 , " Data reduction for micro -...

Raman
% spectroscopy experiments ," in preparation for submission ...

to J.
40 % Raman Spectroscopy.

%
%function [ linek0 ]= Raman
function main()
%% Setup

45 dbstop if error
clc;
clear all;
figure (1);
clf;

50
%% File Import GUI

% File selection for data importation (GUI Codelet)
cd(’C:\ Documents and Settings\Frank\My Documents\Thesis Folder\...

Processed Raman Data \19 Oct05 ’);
55 % Begin GUI codelet to select the SCAN DATA files for analysis

dirchange = true;
while dirchange

% dialog for file name
currdir = cd;

60 d = dir;
str = {d.name};
isdir = [d.isdir ];
dirindices = find(isdir == true);
dialogstr = str;

65 for ii = 1: length(dirindices)
dialogstr(dirindices(ii)) = {[ ’<’,char(str(dirindices(ii))...

),’>’]};
end
% select SCAN data files ( allow multiple files)
[s,v] = listdlg(’PromptString ’,’Select SCAN data file(s):’ ,...

70 ’SelectionMode ’,’multiple ’ ,...
’ListString ’,dialogstr);

if strcmp ( ’..’,char(str(s)))
% Chosen is directory ... want to go up a level
lastslash = max(findstr(currdir ,’\’));

75 currdir(lastslash +1:end) = [];
cd(currdir);

elseif strcmp ( ’.’,char(str(s)))
% Chosen is directory ... want to refresh current directory...

... just
% don ’t allow anything to happen , as it will repopulate at

80 % beginning of while loop
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elseif isdir(s)
% Chosen is subdirectory ... append to current path and ...

start over
currdir = [ currdir ,’\’,char(str(s))];
cd(currdir);

85 else
dirchange = false;

end
end

90 % Read in data file(s)
Ndf = length(s); % number of data files
Nscans = zeros(Ndf ,1); % total number of scan locations
for idf = 1: Ndf

filename{idf } = d(s(idf)).name;
95 disp(sprintf(’Scan data file selected : %s.’,filename{idf}));

% Open the file
filedata{idf } = importdata(filename{idf});
[nrows ,ncols ] = size(filedata{idf});
switch ncols

100 case 2
% Point scan
xi{idf } = 0;
Nx(idf) = length(xi{idf});
%

105 yi{idf } = 0;
Ny(idf) = length(yi{idf});
%
scantype{idf } = ’point’;
Nscans(idf ,1) = 1;

110 kcol = 1; % column with k values
Scol = 2; % column with S values

case 4
% Find the unique locations ... X
xi{idf } = unique(filedata{idf}(end:-1:1,1));

115 Nx(idf) = length(xi{idf});
% and Y
yi{idf } = unique(filedata{idf}(end:-1:1,2));
Ny(idf) = length(yi{idf});
% Assemble the knowledge

120 if Nx(idf) == 1
% A vertical line
scantype{idf } = ’yline’;
Nscans(idf ,1) = Ny(idf);

elseif Ny(idf) == 1
125 % A horizontal line

scantype{idf } = ’xline’;
Nscans(idf ,1) = Nx(idf);

else
% Area scan (raster , circle , or other)

130 scantype{idf } = ’area’;
Nscans(idf ,1) = Ny(idf)*Nx(idf);
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end
kcol = 3; % column with k values
Scol = 4; % column with S values

135 end

% Sort the x and y vectors ...
ixy = 1;
for iy = 1: Ny(idf)

140 for ix = 1:Nx(idf)
x{idf ,ixy } = xi{idf}(ix ,1);
y{idf ,ixy } = yi{idf}(iy ,1);
ixy = ixy + 1;

end
145 end

% Sort the signal and wavenumber vectors ...
Nk = nrows/Nscans(idf ,1); % number of wavenumbers in each scan
for is = 1: Nscans(idf ,1); % each scan ...

150 k{idf ,is} = flipud(filedata{idf }(1+(is -1)*Nk:is*Nk ,kcol));
S{idf ,is} = flipud(filedata{idf }(1+(is -1)*Nk:is*Nk ,Scol));

end % scan loop

end % data file loop
155

%% Plot data
figure (1);
% subplot (2,1,1);

160 plot(k{1,1},S{1 ,1});
xlabel(’Wavenumber {\itk} (cm^{ -1})’);
ylabel(’Raman Signal {\itS} ( counts)’);
title(’Reference ’);
%

165 % subplot (2,1,2);
% plot(k{1,1},S{1 ,1});
% xlabel(’Wavenumber {\ itk } (cm^{-1}) ’);
% ylabel(’Raman Signal {\ itS } ( counts) ’);
% title(’Data ’);

170
%% Data Analysis : Estimation Parameters
windows = [

% kmin kmax Npeaks
% -50 50 1

175 % 100 200 1
450 650 3

% 675 825 2
];

[Nwin ,dum ] = size(windows);
180 % GaN Values

% E2a 144 cm^-1 Window 1
%
% A1TO 533 cm^-1 Window 2
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% E1TO 561 cm^-1
185 % E2b 569 cm^-1

%
% A1LO 735 cm^-1 Window 3
% E1LO 743 cm^-1
peaks = {

190 % Peak name kcenter dkcenter rel. amp.
% ’Rayleigh ’ 0 1 0.2
% ’E2a ’ 144 3 0.2

’A1TO’ 533.0 5 0.08
’E1TO’ 561.0 5 1

195 ’E2b’ 569.0 5 1
% ’A1LO ’ 735.0 1 0.2
% ’E1LO ’ 743.0 1 0.2

};
%% Data Analysis : Model -Based Estimation

200 % Algorithm for the data analysis
% For each scan ...
% 1. Fit Rayleigh peak and calculate the relative ...

wavenumber shift ,
% which is stored as dkappaR
% 2. Shift the wavenumber component of the data by this ...

quantity ,
205 % i.e., kappa(i) <- kappa(i) + dkappaR.

% Nscanstemp = 2;

for is = 1: Nscans
currpeaknum = 1; % keeps track of which peak we are tracking

210 for iw = 1: Nwin; % estimate the properties of each window ...
separately ...
% Extract k and d vectors from each window
a = min( find( k{is} > windows(iw ,1) ) ); % minimum index
b = max( find( k{is} < windows(iw ,2) ) ); % maximum index
k_w = k{is}(a:b); % windowed k vector

215 d_w = S{is}(a:b); % windowed S vector

% Estimate the noise in the sample from background data , i...
.e., the

% 10 pts near the ends of the window for this peak
nendpts = 10;

220 bgd = [ d_w(1: nendpts);d_w(end -nendpts:end)];
bgk = [ k_w(1: nendpts);k_w(end -nendpts:end)];
sigmad = std(bgd);
Rd = 1./ sigmad;
% Also , estimate the background from these points

225 bgline = polyfit(bgk ,bgd ,1);
bgslope = bgline (1);
bgoffset = bgline (2);

% Quick peak at the data
230 figure (1); % go to figure 1

plot(k_w ,d_w ,’-+b’ ,...
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bgk ,bgd ,’+g’ ,...
k_w ,k_w*bgslope + bgoffset ,’--r’);

drawnow ; % force plot update on the screen
235

% Estimate the peak values ...
pkidx = floor(mean(find(d_w == max(d_w))));
pkk = k_w(pkidx); % finds middle of saturated zone
pkA = max(d_w);

240
% Set initial guesses and optimization parameters for each...

of the
% peaks
params = {}; % Clear the params variable
Npeaks = windows(iw ,3);

245 for iin = 1: Npeaks
linename = peaks{currpeaknum ,1}; % Name of the line
k0 = peaks{currpeaknum ,2};
sigmak0 = peaks{currpeaknum ,3};
A0 = pkA*peaks{currpeaknum ,4}; % scaled by relative ...

amplitude
250 params (1+(iin -1)*4:iin*4,:) = {

% MIN MAX S(1) S(0) SIGMAS0 ...
NAME

0 1e6 A0 A0 Inf [...
linename ,’_A’]

k0 -sigmak0 k0+sigmak0 k0 k0 1 [...
linename ,’_k0’]

0 100 5 5 0.5 [...
linename ,’_sigmaG ’]

255 0 50 1 1 0.5 [...
linename ,’_sigmaL ’]

};
currpeaknum = currpeaknum + 1;

end

260 sname{is,iw} = params (:,6); % char(sname {1 ,1}(3 ,:))
s1{is,iw} = cell2mat(params (:,3)); % initial guess
s0{is,iw} = cell2mat(params (:,4)); % a priori estimate
smin{is,iw} = cell2mat(params (:,1)); % parameter min
smax{is,iw} = cell2mat(params (:,2)); % parameter max

265 Rs0{is,iw } = 1./( cell2mat(params (:,5))); % parameter ...
covariance

Ns = length(smin{is,iw}); % number of estimation variables

% Use LSQNONLIN to do the estimation for us (much cleaner ...
than the

% previous methods
270 options = optimset(optimset(’lsqnonlin ’) ,...

’display ’,’iter’ ,...
’TolFun ’,1e-3,...
’LevenbergMarquardt ’,’on’); % extra options

% ’MaxIter ’,500 ,...
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275 disp(sprintf(’Fitting peak (%g of %g , %3.3g%%)’,is ,Nscans ,...
is/Nscans *100));

[shat{is,iw},resnorm ,residual ,exitflag ,output ,lambda ,...
jacobian ] = ...
lsqnonlin(@LSQ_obj_func ,s1{is ,iw},smin{is,iw},smax{is,...

iw},options ,...
@linemodel ,Rd ,s0{is ,iw},Rs0{is ,iw},smin{is,iw},smax{is...

,iw},...
k_w ,d_w ,Npeaks ,bgoffset ,bgslope); % extra parameters ...

this line
280 % LSQ_obj_func(s,func ,Rdvec ,s0 ,Rs0vec ,smin ,smax ,...

% k,d,Npeaks ,bgoffset ,bgslope);
end

end % scan loop

285 %%
% Add to quick plot
plot(k_w ,d_w ,’+r’,k{is},S{is},’-b’); drawnow;
%keyboard
%% Save results

290
% Put ’em in a file

% HEADER : Add names of peaks with delimiter to give some reference
% capability

295 for idf = 1: Ndf
outfilename = [ filename{idf }(1:end -4),’.dat’];
fid = fopen(outfilename ,’w’);
headstr = ’Peak , k0 , A, sigma_G , sigma_L , x, y’;
fprintf(fid ,’%s \n’,headstr);

300 for iis = 1: Nscans
for iin = 1: Npeaks

line_name{iis ,iin } = peaks{iin ,1};
lineA{iis ,iin } = shat{iis }(4*(iin -1)+1);
linek0{iis ,iin } = shat{iis }(4*(iin -1)+2);

305 linesigG{iis ,iin } = shat{iis }(4*(iin -1)+3);
linesigL{iis ,iin } = shat{iis }(4*(iin -1)+4);

end
end
for iin = 1: Npeaks

310 for iis = 1: Nscans
fprintf(fid ,’%s, %g, %g, %g, %g, %g, %g \n’ ,...

line_name{iis ,iin},linek0{iis ,iin},lineA{iis ,iin},...
linesigG{iis ,iin},linesigL{iis ,iin},x{iis},y{...
iis});

%%%save into structure
% test=[ line_name{iis ,iin},linek0{iis ,iin} x{iis} y{iis...

}];
315 end

end
fclose(fid);

end
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320 %% Wrapup
endtime = datestr(now);
% disp(sprintf(’Execution time : %g s’,toc));
% disp(sprintf(’Program started at %s, ended at %s.’,starttime ,...

endtime));
% profile viewer

325 dbclear all;
%keyboard
end % of MAIN

330 %% LEAST SQUARES OBJECTIVE FUNCTION V 2.0
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...

function [fvec ,dfds ] = LSQ_obj_func(s,func ,Rdvec ,s0 ,Rs0vec ,smin ,...
smax ,...
k,d,Npeaks ,bgoffset ,bgslope);

% Bayesian maximum a posteriori ( LSBMAP) vectorized objective ...
function

335 % This function is the objective for the minimizer used to find ...
the

% parameters for the Raman lines that match the provided data.
% X - Unknown optimization parameters
% K - Wavenumber coordinates
% Y - Spectral intensity data

340
% Input parameters
%
% Output parameters
% fvec : vectorized pdf of model with respect to the data

345
Nd = length(d);
Ns = length(s);
fvec = zeros(Ns+Nd ,1);
dfds = zeros(Nd+Ns,Ns);

350
% M = Misfit function over all data sets
% This hold since we assume the experiments are uncorrelated ; ...

the
% off -diagonal terms between subsequent experiments are ...

identically zero.
[y0,r] = feval(func ,s,k,d,Npeaks ,bgoffset ,bgslope);

355 % linemodel(s,k,d,Npeaks ,bgoffset ,bgslope);
fvec (1:Nd ,1) = Rdvec .*r;

% S = Preference function
Ns = length(s);

360 method = ’pdp’;
switch method

case ’normprior ’
% Normal ( Gaussian) prior
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fvec(Nd+1:Nd+Ns ,1) = Rs0vec .*(s - s0);
365 case ’pdp’

% Partially diffuse prior
for is = 1:Ns

if ( Rs0vec(is) == 0)
fvec(Nd+is ,1) = 0;

370 else
sigmas(is) = 1./ Rs0vec(is);
C = 1/( smax(is) - smin(is) + sqrt (2*pi)*sigmas(is)...

);
if s(is) < smin(is)

fvec(Nd+is ,1) = log(C) - 0.5*((s(is)-smin(is))...
^2)/( sigmas(is)^2);

375 dfds(Nd+is ,is) = -((s(is)-smin(is)))/( sigmas(...
is)^2);

elseif s(is) > smax(is)
fvec(Nd+is ,1) = log(C) - 0.5*((s(is)-smax(is))...

^2)/( sigmas(is)^2);
dfds(Nd+is ,is) = -((s(is)-smax(is)))/( sigmas(...

is)^2);
else % s on interval (smin ,smax)

380 fvec(Nd+is ,1) = log(C);
dfds(Nd+is ,is) = 0;

end
end

end
385 end

if nargout > 1
for is = 1: Ns

sp = s;
390 eps_s = 0.0001;

if sp(is ,1) == 0;
ds = eps;

else
ds = eps_s*sp(is ,1);

395 end
sp(is ,1) = sp(is ,1) + ds;
[yp,rp] = feval(func ,sp,k,d,Npeaks ,bgoffset ,bgslope);
dfds (1:Nd,is) = Rdvec .*(yp - y0)/ds;

end
400 end

%
end
%##########################################################################...

%% Line Model
405 function [y,r] = linemodel(s,k,d,Npeaks ,bgoffset ,bgslope);

% This function calculates the intensity profile of an arbitrary ...
number of

% peaks ( given the parameters S) over the wavenumber range ...
specified by
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% K. The residual (R) is also calculated by this code given the ...
data

% vector D.
410

% Be sure to deal the estimated parameters into the right place
% s = [
% A % Nth peak amplitude
% k0 % Nth peak center

415 % sigmaG % Nth peak Gaussian width
% sigmaL % Nth peak Lorentzian width
%
% 0 % Baseline slope
% 0.05* max(ycomp{iis}) % Baseline offset

420 % ];

% Superposition of each of the spectral lines ...
for Ni = 1: Npeaks

A = s(4*(Ni -1) +1);
425 k0 = s(4*(Ni -1)+2);

sigmaG = s(4*(Ni -1)+3);
sigmaL = s(4*(Ni -1)+4);

linei = voigt(k,k0,sigmaG ,sigmaL ,A);
430 lines(:,Ni) = linei (:);

end
% ... and the linear model of the background ...
background = bgslope .*k + bgoffset;
% ... gives the net intensity distribution

435 y = sum(lines ,2) + background (:);

% Apply a saturation filter to both the data and the Rayleigh line
satvalue = 70 e3; % 75 ,000 counts
y( find( y > satvalue ) ) = satvalue;

440 d( find( d > satvalue ) ) = satvalue;

% Calculate the residual of the model with respect to the theory
r = ( y - d(:) );

445 % Plot the results
plot(k,d,’ok’,k,y,’-r’);
xlabel(’Wavenumber (cm^{ -1})’);
ylabel(’Intensity (A.U.)’);
pause (0.001);

450
end

%% VOIGT FUNCTION AND INTEGRAL
%--------------------------------------------------------------------------...

455 function f = voigt(omega ,omega0 ,sigmaG ,sigmaL ,A);
% This is the " outer " subroutine for the Voigt profile ...
for iw = 1: length(omega)
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method = ’approximation ’;
switch method

460 case ’approximation ’
% This is the approximation of the Voigt integral from...

Puerta and Martin ,
% 1981, ’ Three and four generalized Lorentzian ...

approximations for the Voigt
% line shape ,’ Appl. Opt . , 20 (22) , pp . 3923 -3928.
p = abs(sigmaL/sigmaG); % must be positive to be in ...

upper half -plane.
465 d = (( omega(iw)-omega0)/sigmaG);

z = p + i*d;
f(iw) = 2*A*real(cef(i*z,10))/sqrt(pi);
% f(iw) = A*real(erfw(z))/sqrt(pi);

case ’integral ’
470 omegamax = 2.5* sigmaG;

f(iw) = A*quadl(@voigtint ,-omegamax ,omegamax ,[],[],...
omega(iw),omega0 ,sigmaG ,sigmaL);

end
end
end

475 %--------------------------------------------------------------------------...

% This is the integrand for the Voigt integral if used
function I = voigtint(omegastar ,omega ,omega0 ,sigmaG ,sigmaL);
% I = exp ( - (( omegastar - omega0).^2) ./( sigmaG .^2) ) ./ ( (...

omegastar - omega - omega0).^2 + sigmaL .^2 );
I = exp ( - (( omegastar).^2) ./( sigmaG .^2) ) ./ ( ( ( omega -omega0)...

- omegastar ) .^2 + sigmaL .^2 );
480 end

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

%% CEF ( COMPLEX ERROR FUNCTION)
% -------------------------------------------------------------------%...

485 function w = cef(z,N)
% Computes the function w(z) = exp(-z^2) erfc(-iz) using a ...

rational
% series with N terms . It is assumed that Im(z) > 0 or Im(z)...

= 0.
%
% Andre Weideman , 1995

490 M = 2*N; M2 = 2*M; k = [-M+1:1:M-1] ’; % M2 = no. of sampling ...
points.

L = sqrt(N/sqrt (2)); % Optimal choice of L.
theta = k*pi/M; t = L*tan(theta /2); % Define variables ...

theta and t.
f = exp(-t.^2) .*(L^2+t.^2); f = [0; f]; % Function to be ...

transformed.
a = real(fft(fftshift(f)))/M2; % Coefficients of ...

transform.
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495 a = flipud(a(2:N+1)); % Reorder coefficients.
Z = (L+i*z)./(L-i*z); p = polyval(a,Z); % Polynomial evaluation...

.
w = 2*p./(L-i*z).^2+(1/ sqrt(pi))./(L-i*z); % Evaluate w(z).

% -------------------------------------------------------------------%...

500 end % End CEF %
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%...

C.2 Bisquare Fitting Algorithm

Code generated to fit the Raman peak shift as function of stress using a bisquare

linear fitting algorithm, in which the outliers do not influence the fit heavily.

Listing C.2: Bisquare Fitting Algorithm. (Appendix3/pdpf it.m)
%%%Lt Francisco E. Parada %%%%
%%% Master Thesis %%%
%%% Phonon Deformation Potential Fitting Code %%%

5 clear all;clc;pack;

%%%Young ’s modulus of GaN and sapphire in GPa %%%
E_sapphire =452;
E_GaN =196;

10
A=xlsread(’strain test results.xls’,1,’B22:F30’);
B=xlsread(’strain test results.xls’,3,’K2:L34’);

%%% Sapphire Data
15 a=A(:,1).*1e-6.* E_sapphire;

b_temp=transpose ([A(:,4) A(:,5)]);
b_avg=mean(b_temp);
b=transpose(b_avg);

20 %%%GaN Data
x=B(:,1).*1e-6.* E_GaN;
y=B(:,2);

%%% Fitting Options and method
25 fo = fitoptions(’method ’,’LinearLeastSquares ’,’Robust ’,’Bisquare ’)...

;
ft = fittype(’poly1 ’);

[cf1 gof1]=fit(x,y,ft)
b_std=std(b)

30 b_s=sqrt(gof1.sse ^2/( length(b) -2))
[cf2 gof2]=fit(a,b,ft,fo)
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y_std=std(y)
y_s=sqrt(gof2.sse ^2/( length(y) -2))
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