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Abstract 

 
 This research takes an existing ionospheric model and modifies it to include the 

effects of solar flare activity.  Solar flares are a localized explosive release of magnetic 

energy that appears as a sudden, short-lived brightening in the sun’s chromosphere.  This 

additional energy is deposited in the earth’s ionosphere, temporarily changing its 

properties, which can affect military communications.  Studying the effects of moderate 

solar flares will improve our understanding of the ionosphere’s response, leading to better 

operational models.  Modification of the model is accomplished by adding a flare 

irradiance model to represent solar irradiance changes due to a flare.  The irradiance 

output is then used to calculate the photoionization rates, electron impact ionization rates, 

and electron heating rates in the ionospheric model.  After the results of this integration 

are validated, two moderate flares are modeled and then compared to ionospheric 

measurements from Bear Lake Observatory.  It is found that the new model is able to 

accurately reflect the response of the E and lower F region of the ionosphere, but above 

the F2 peak the electron temperature does not increase as initially expected.  Future work 

will need to resolve this discrepancy so that the model can accurately develop the 

ionosphere’s response to solar flares. 
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Modeling E & F Region Ionospheric 

Response to X-Ray Solar Flares 

 
 

I. Introduction 

 
      Many current military applications must account for the effects of the solar-

terrestrial environment in their design and operation.  For instance, communication 

applications often rely on signals reflecting from the ionosphere to propagate signals 

from sender to receiver.  Changes in the reflective properties of the ionosphere, due to 

increased solar activity, can significantly alter a signal’s propagation path.  Another area 

of concern is the effect of the space environment on satellites.  While this environment is 

inherently hazardous to satellites, an increase in solar activity can decrease a satellites 

projected lifetime by years.  Degradation in the satellites orbit, anomalous incidents, and 

even spacecraft failures have been recorded during increased solar activity.  Hence, it is 

imperative that military operators have accurate forecasts for the state of the ionosphere 

and the space environment.  This would allow them to plan and prepare accordingly to 

avoid detriment to military operations. 

 There are many atmospheric models that have been developed to be used in space 

weather operations.   These models do not have an inherent capability to model solar 

flare1 events, decreasing the utility of the space weather forecast for the operator.  One 

 
1 A solar flare is a localized explosive release of magnetic energy that appears as a sudden, short-lived 
brightening of an area in the sun’s chromosphere, see section 2.1. 
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such model is the Time-Dependent Ionospheric Model (TDIM), developed at Utah State 

University [Schunk, 1988].  This model accurately reflects the quiet (non-flare) E and F 

regions of the ionosphere2 but lacks the ability to reproduce the effects of a sudden 

change from a solar flare.  What I hope to accomplish with this thesis is an improved 

understanding of the ionospheric response to solar flares in order to improve operational 

model output. 

      This area of research will modify the modeling techniques used to model the E 

and F regions of the ionosphere in the TDIM to include the effects of moderate solar x-

ray flare activity.  This model has two significant short-falls that will need to be corrected 

in order for it to accurately reproduce the ionospheric response to a solar flare.  The first 

is the model’s inability to update the solar irradiance during a solar flare and the second is 

that it does not self-consistently include the effect of photoelectrons.  These inputs are 

important in the proper development of the ionospheric response to a solar flare.  Once 

these shortfalls have been corrected it is hoped that a realistic ionospheric response will 

be generated.  

 Once this model is rigorously proven to accurately reproduce the effects of flares 

on the ionosphere, the model can be run and the data analyzed for all magnitudes of M-

class flares.  These results can then be used operationally to forecast the impact of a flare 

on the ionosphere.  This will be done in real time as the flare occurs since there is 

currently no way to forecast a solar flare event.  This can then be translated to the 

customer to include what frequencies will be affected over a given period of time. 

 
2 The E and F region altitudes vary but generally the E region is from 100 to 150 km and the F region is 
from 150 to 350 km, see section 2.2. 
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The following chapters will provide a background, show the model development, 

explain the results and discuss conclusions and future work.  Chapter 2 will discuss the 

required background knowledge to understand this work.  We will start by discussing 

solar flares, the ionosphere, solar irradiance, electron temperature, density and heating, 

ionograms, previous work, and models used in the research.  In Chapter 3 a discussion of 

the methodology used to modify the ionospheric model will comprise the majority of the 

chapter.  Section 3.2 will also discuss ionograms from Bear Lake Observatory that are 

used to compare to the modeled data.  Chapter 4 will analyze the results from two 

modeled flares; comparing the results to the real data.  And finally, Chapter 5 will end 

with the final conclusions of the research and what future work may take place. 
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II. Background 

 
 

 Space weather is a relatively new research area which involves the complicated 

interactions between the sun and the earth.  The National Space Weather Program, which 

began in 1994, defines space weather as “...conditions on the sun and in the solar wind, 

magnetosphere, ionosphere, and thermosphere that can influence the performance and 

reliability of space-borne and ground-based technological systems and can endanger 

human life or health.  Adverse conditions in the space environment can cause disruption 

of satellite operations, communications, navigation, and electric power distribution grids, 

leading to a variety of socioeconomic losses” [NSWP Strategic Plan, 1995].  This is a 

broad area to discuss, so we will briefly examine what is relevant to this research in the 

following sections. 

2.1 Solar Flares  

     A solar flare is a localized explosive release of magnetic energy that appears as 

a sudden, short-lived brightening of an area in the sun’s chromosphere.  This energy is 

released through a process called magnetic reconnection and is on the order of 1021 to 

1025 J.   The energy is released mainly in the form of electromagnetic radiation and 

energetic particles.  There is a significant increase in the extreme ultra violet (EUV)3  and 

X-ray regions of the solar output but the total solar output increase is less than 0.01% 

[Foukal, 2004].   It is this increase in EUV and x-ray intensities that will drive changes in 

the ionosphere. 

 
3 In this paper EUV is defined from 5-105 nm. 
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 The increased intensities are use to classify flares in two ways.  First the flare’s 

maximum area as observed in the Hα line and second by the soft x-ray classification.  

Flares in this paper will be categorized according to the x-ray classification scheme as 

defined in Table 1.   Importance is designated by a letter followed by a number 

multiplier: i.e. M4.2 indicates a peak flux of 4.2 x 10-5 Wm-2. 

 

Table 1.  X-Ray flare classification. 

     Importance         Peak Flux in 0.1-0.8 nm range 
                                                    (Wm-2) 
               B                                    10-7 
               C                                    10-6 
               M                                   10-5 
               X                                    10-4 

  
 
 
2.2 The Ionosphere 

 The ionosphere is the region of the atmosphere that contains significant numbers 

of electrons and ions, generally considered to be at altitudes above ~60 km.  This region 

is sensitive to the sun’s x-ray and ultraviolet radiation output, which ionizes the neutral 

particles.  Once these electrons and ions are formed, they are affected by chemical 

reactions, diffusion, wave disturbances, plasma instabilities and transport due to electric 

and magnetic fields [Schunk, Chap. 1, 2000].  Figure 1 is an example of a typical profile 

of electron density of the Earth’s ionosphere at solar minimum versus maximum and 

nighttime versus daytime. 

 In Figure 1, you can see four defined regions in the ionosphere; the D, E, F1, and 

F2 regions.  Since at night the photoionization process stops, the overall electron density 



 6

will drop throughout the ionosphere, with the greatest loss in the F region.  The D and F1 

region peaks will disappear so that there are only two defined regions at night: the E and 

F2 regions.  The E region has a definable peak with its electron density maintained 

through photoionization by starlight, moonlight, and scattered sunlight.  The F2 region 

maintains a definable peak also, with its electron density maintained through transport 

and diffusion processes.  During solar maximum, electron densities will increase due to 

an increase in the flux of EUV and x ray photons.   

 

 

 Figure 1. The electron density profile of Earth’s atmosphere plotted as a function 
of altitude for solar minimum (dashed) vs. maximum (solid), and nighttime vs. 
daytime.  

 

Min 

Max 
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 There are specific wavelength ranges that are responsible for ionizing each region. 

In the D region the primary source of ionization is by solar x-ray (0.2 to 0.8 nm) 

ionization of N2 and O2, and Lyman-α (121.1 nm) ionization of NO.  The regions 

concerned with in this paper are the E and F regions, where primary ionization of the E 

region is caused by the 5 to 10 nm and 95 to 105 nm wavelengths.  Here the resulting 

major ions are O2
+ and NO+.  The F1 region is ionized at the 91 nm wavelength which 

creates the region’s principle ion, O+.  Finally the F2 region’s major ion is also O+ with a 

density peak between 200 and 400 km.  Formation of this region is the result of a balance 

between plasma transport and chemical loss processes.  These regions of the ionosphere 

are impacted during a solar flare event because of the particular wavelengths that are 

enhanced during a solar flare. 

      In a solar flare there is an increase in solar flux.  It is this increase in solar flux 

that directly impacts the daytime midlatitude ionosphere.  Increases in intensity in the x-

ray and EUV part of the electromagnetic spectrum will increase photoionization rates and 

enhance the temperature of the plasma in the ionosphere.  In flares that are very large, 

greater than X10, the increased photoionization rates will cause the total electron count 

(TEC) and the F2 peak electron density (NmF2) to increase by up to 20% and decrease the 

height of the maximum electron density (HmF2) peak by 20% [Huba et al., 2005].  While 

Smithtro et al. [2004] has shown a 10% decrease in the peak F2 frequency (foF2) for 

certain M class flares.  When analyzing M class flares, Sharma et al. [2004] has shown 

that the electron temperature will increase by 1.3 to 1.9 times and the ion temperature 

will increase by a factor of 1.2 to 1.4 times over the normal days average temperature.       
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      The response of the ionosphere to the increased solar flux can be different with 

each storm.  So next it is important to look at the solar irradiance and how variations in it 

will cause changes in temperatures and densities in the ionosphere. 

 2.3 Solar Irradiance  

 The solar irradiance is the total amount of solar energy received at the top of the 

earth’s atmosphere per unit area per unit time (Wm-2).  The total solar irradiance varies 

by 0.1% with the solar cycle, with an average value of 1366 Wm-2.  It has been shown by 

Hinteregger [1981], from data that was obtained from a spectrometer on the NASA 

Atmosphere Explorer (AE-E) satellite, that irradiance values below 180 nm change 

significantly with solar cycle.  Figure 2 shows the ratio of solar maximum to solar 

minimum irradiance for wavelengths below 180 nm.  The variability of these 

wavelengths is evident in the figure. 

 

 

  
 Figure 2.  The ratio of solar spectral irradiance near solar maximum, January 1979 

to the irradiance near solar minimum, July 1976.  Wavelengths bins are in 25 
angstrom intervals [Hinteregger, 1981]. 
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 These shorter wavelengths (< 180 nm) are completely absorbed by the 

ionosphere.  This increase in energy deposition affects the composition of the ionosphere 

and its properties.  The variability of this irradiance is sometimes described by using the 

sunspot number or the 10.7 cm solar radio flux (F10.7).  F10.7 is the radio emission 

(flux) by the sun at a wavelength of 10.7 cm at the earth’s orbit.  This is a global daily 

value measured at local noon at the Pentictin Radio Observatory in Canada.    

 During a solar flare, only the EUV and x-ray part of the solar spectrum 

(wavelengths less than 105 nm) will fluxuate significantly.   The EUV wavelengths can 

double in value while the x-ray wavelengths can increase by 100 times the pre-flare 

irradiance values.  This irradiance increase is what drives changes in the ionospheric 

density, temperature, and heating rates.  Researchers have developed proxies to describe 

the irradiance variations at these shorter wavelengths, which in turn are used in models to 

drive the changes in the ionosphere during solar flares. 

2.4 Electron/Ion Temperatures  

 The solar irradiance, through ionization and heating, affects the electron/ion 

temperature and electron density in the ionosphere.  So it is important to understand how 

these parameters change during quiet conditions so that the changes that take place 

during a flare are better understood.   

 The electron temperature responds rapidly to changing conditions and is generally 

in a quasi-steady state.  At lower altitudes, the electron temperature is determined by a 

balance of the heating and cooling processes.  This thermal equilibrium prevails at 

altitudes below 150 to 350 km depending on season, solar cycle, etc.  Above this, the 
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thermal balance is dominated by thermal conduction and can be expressed in the 

following simplified analytical equation [Schunk, Chap 11, 2000],  

                                     7/2
5

2/7 )])(
107.7

(
2
7[ b

et
ebe zz

q
TT −

×
−=                                           (1) 

where Teb (K) is the electron temperature at the bottom boundary of the thermal 

conduction regime, qet (eVcm-2s-1) is the electron heat flow through the top boundary and 

zb (cm) is the altitude of the bottom boundary.  This equation shows that if there is a 

downward heat flow through the top of the boundary (qet < 0) then Te increases with 

altitude. 

  Figure 3 shows calculated neutral, ion, and electron temperatures and how they 

change diurnally.  Below the F peak or ~300 km, the electron temperature is controlled 

by thermal equilibrium and above by thermal conduction.  The left panel is during the 

day when photoelectron heating plays a significant role in increasing the temperature 

below 280 km.  Above this, the temperature is due to a large downward flux of electron 

heat flow at 800 km.  At night (right panel), the heat source is absent and the temperature 

decreases below 280 km, while above this a downward flux of heat maintains the electron 

temperature.  

 The ion temperatures are controlled by collisional coupling to hot thermal 

electrons and cooler neutrals.  At low altitudes, coupling to neutrals dominates and the 

ion temperature is equal to the neutral temperature both day and night.  As the altitude 

increases, coupling to the hot electrons becomes more important and the ion temperature 

will increase. 
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 Sharma et al. [2004] has shown that the temperature response of the ionosphere to 

solar flares is correlated with local time for small flares.  Enhancement of electron and 

ion temperatures is at a maximum at sunrise with progressively smaller enhancements as 

 

 

 Figure 3. The figure shows the calculated electron, ion, and neutral temperature as 
a function of altitude for the ionosphere.  The left diagram is during the day and 
shows how photoionization will increase the electron temperature (Te), the ion 
temperature (Ti), and the neutral temperature (Tn) while at night they decrease. 
[Schunk, Chap 11, 2000]. 

 
 
 
the day progresses.  Electron temperatures can be increased up to 1.9 times the daily 

average and the ion temperature can be up to 1.4 times the daily average.   

 Holding all other loss and gain processes constant, the electron temperature is 

inversely related to the electron density.  Figure 4 shows electron temperature and density 

profiles for the daytime mid-latitude ionosphere for both solar minimum and maximum.  

This figure is a good example of the inverse relationship between electron temperature 

Day Night 
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and density.  During solar maximum the electron temperature decreases while the 

electron density increases and vice versa for solar minimum. 

 

 

 
 Figure 4.  Electron temperature and density profiles for the daytime mid-latitude 

ionosphere at equinox for both solar minimum and maximum conditions.  The 
solid curves are measured profiles while the dashed are calculated, note the 
inverse relationship between temperature and density [Schunk, Chp11, 2000]. 

 
 
 
2.5 Electron Density 

 The solar irradiance affects the electron densities differently above and below the 

F peak.  The electron density below the F region peak is controlled by ionization which is 

under strong solar control.  The ionization reaches a peak when the solar zenith angle is 

at its smallest, around noon.  Above the F region peak, some ionization does occur, but  

diffusion, interhemispheric flow and neutral winds have a greater influence on electron 

density concentrations.  Hence there is less solar zenith angle dependence and peak 

ionization is reached late in the afternoon. 

    Left                            Right 
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 During a solar flare, the increase in plasma temperature will cause the plasma 

scale height4 to increase.  This will cause the F2 region to expand and force diffusion to 

higher altitudes; changing the overall ionospheric profile. 

2.6 Photoelectrons and Electron Heating Rates 

  Photoelectrons are formed from the excess energy of photoionization.  Equation 2 

shows this relationship: 

                                              m + hν → m+ + e-                                                           (2) 

Equation 2 shows that a photon (hν) interacts with a molecule (m) and produces an ion 

(m+) and a photoelectron (e-).  The conservation of momentum shows that the excess 
 
energy of ionization will be imparted to the lighter electron as kinetic energy.  Because 

photoelectrons are a by-product of photoionization, their production is also dependant on  

the solar irradiance.  The photoelectron production rate, Pe(E,χ,z), is described in 

Equation 3.   

          ∑ ∫∑ −= ∞
s

ls
i
ss

l
e

si

dEpzIznzEP
λ

λλλσχλτλχ
0

),()()],,(exp[)()(),,(                    (3) 

Where ns is the number density, I∞ is the irradiance at the top of the atmosphere, exp[-

τ,χ,z] is the optical depth, σ is the wavelength dependant total ionization cross section, 

ps(λ,El) is the branching ratio for a given final ion state with ionization energy level El, 

and λsi is the ionization threshold wavelength for neutral species s, and ion states l 

[Schunk, Chap 9, 2000].  In this equation, I∞ is the variable that is changed in the model 

to allow for variations in irradiance due to the solar flare.    

 
4 The scale height (H) defines the vertical distance over which concentration falls off to about 37% of its 
original value.  H=kT/mg, k-Boltzmann’s constant, T-temperature, m-mass, g-gravity 
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 Photoelectrons are important in secondary ionization and in determining the 

electron heating rate in the ionosphere.  Secondary ionization is the result of primary 

photoelectrons ionizing neutrals which create secondary photoelectrons.  It has been 

shown that secondary ionization increases the total ionization rate by approximately 30% 

in the F2 region and by 100% in the E and F1 regions [Titheridge, 1996].  Full 

calculations are difficult because the upward and downward photoelectron fluxes must be 

calculated as a function of energy and height.  Figure 5, which was computed using an 

ionospheric model, shows how the ion production rates vary with altitude when including 

both photoionization rates and total ionization rates5.  These rates are for summer solar 

minimum at 1300 L6.  Note at the peak ionization rates, that O2
+ changes by only 8% at 

104 km with the addition of electron impact ionization rates, while O+ changes by 28% at 

160 km and N2
+ changes by 24% at 148 km.  The greatest increases are seen below 130 

km with increases as much as 79% for O+, 88% for N2
+ and 11% for O2.   

 Most ionospheric models use a fixed correction factor for a given height to 

account for the effects of photoelectrons, but this fixed value does not allow for any 

effects from a solar flare.  Figure 6 has also been computed by an ionospheric model and 

it shows photoionization rates that are plotted against total photoionization rates, but this 

time it is during a flare.  Here the peak ionization rates have changed along with the 

percentage of increase in total ionization.  With the addition of the electron impact 

ionization rates, O2 changed by 54%  at 104 km, O changed by 77% at 116 km and N2 

changed by 87% at 108 km.  Electron impact ionization rates are significantly higher  

 
5 Total ionization rate refers to photoionization rates plus electron impact ionization rates. 
6 1300 L is the time of peak ionization rate. 
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 Figure 5.  Photoionization rates (dashed lines) compared to total photoionization rates 
(solid lines) for a non-flare time. Profile is for summer solar minimum, latitude 41.7◦ 
at 1300 L.  

 
 
 
during flare time than non-flare time, so parameterization of the non-flare time rates will 

not work if you want to include the effects of a flare in the ionospheric model.      

 Another way to show this effect of increased ionization rates during a flare is to 

look at the ratios of electron impact ionization rates to photoelectron ionization rates.  

Again these rates were calculated using an ionospheric model and are similar in results to 

that of Richards et al. [1988].  Figure 7 shows the ionization ratios for O+, O2
+ and N2

+  
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  Figure 6.  Photoionization rates (dashed lines) compared to total photoionization rates 
(solid lines) during peak flare. Profile is for summer solar minimum, latitude 41.7◦ at 
peak flare time.  

 
 
 
for a non-flare time and a flare time.  Electron impact ionization becomes much more 

important during flare time than non-flare time, especially at altitudes below 

approximately 140 km.   The ratio changes by a magnitude of 10 for O2
+ at 112 km and 

by a magnitude of ~5 for O+ and N2
+ at altitudes above 125 km.  The increased ratio at 

low altitudes is due to the greater attenuation of photons responsible for photoionization. 

 Photoelectrons are also needed to calculate the electron heating rate.  In the 

ionosphere significant heating of the electrons takes place in the sunlit regions due to  
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Figure 7.  The ratio of electron impact ionization rates to photoionization rates for O2
+, 

N2
+, and O+ as a function of altitude for a pre-flare (dashed) time and a peak flare time 

(solid).  Profiles are for summer solar minimum at latitude 41.7◦. 
 
 

photoelectrons.   Low-energy photoelectrons (≤ 2 eV) directly transfer energy to the 

thermal electrons by Coulomb collisions.  The more energetic photoelectrons can escape 
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the ionosphere; this energy is then conducted back down to the conjugate ionosphere via 

magnetic field lines, thus increasing the electron temperatures.   

 The full electron energy equation is difficult to solve, so Schunk [1988] uses a 

parameterization of the electron volume heating rate based on the F10.7 and the solar 

zenith angle, but again this will not account for the increase in solar irradiance output 

caused by solar flares. 

2.7 Understanding Ionograms 

 Ionograms represent the electron density structure of the ionosphere.  This is 

accomplished by using radio soundings of different frequencies.  These soundings show 

the variation of the virtual height of a reflection as a function of the radio frequency.  The 

virtual height is the reflection height calculated assuming the waves travel at the speed of 

light, but in the ionospheric plasma the waves travel at less than the speed of light; 

because of this the virtual height is greater than the actual height of reflection.  Figure 8 is 

showing a simple schematic of this relationship.    

 

 

 Figure 8. Relationship between the virtual and actual height for vertical and 
oblique propagation. 
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 Generally two wave modes are reflected back, one is the ordinary wave (o) the 

other the extraordinary wave (x).  These correspond to the different propagation modes of 

the wave in the presence of a magnetic field.  For clarity, reference will be made only to 

the ordinary mode in this research; although in practice both are used to describe the 

ionosphere.   

 Ionograms are affected by three parameters, the electron density (N), the total 

magnetic induction (B) and the angle between the magnetic field and the direction of 

propagation.  In this research the electron density is the parameter of interest.  The 

relationship between N and electron plasma frequency f, for vertical propagation is 

shown in Equation 4.   

                                         )(9)( 3−= cmNkHzf e                                                    (4)     

 In passing through the ionosphere, the electron density (N) increases with altitude 

until the F2 peak, when it starts to decrease with altitude, this occurs at approximately 300 

km.  The highest frequency that can be reflected from a given ionospheric region is called 

the critical frequency (f) which is indicated by asymptotes or cusps in the virtual height.  

Figure 9 shows a typical ionogram with the critical frequencies and virtual height of the 

different regions of the ionosphere annotated.  These different regions correspond to the 

regions in the density profile of Figure 10.  This figure plots the electron density as a 

function of actual height.  The frequency peaks can be seen to be at lower altitudes here 

than the virtual heights plotted on the ionogram in Figure 9.  The densities above the foF2 

peak7 in Figure 10 must be obtained via satellite measurements or other techniques. 

  
 
7 In foF2, the o indicates that this is from the ordinary trace. 
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 Figure 9.  This figure shows a vertical electron density profile, or ionogram, 
which is measured by sweeping through a range of frequencies. 

 

 

2.7.1 Bear Lake Dynasonde  

 The Bear Lake dynasonde is located at Bear Lake Observatory near Utah State 

University.  The dynasonde produces ionograms at 5-minute intervals which can be 

combined into a 12-hour plot showing how the ionosphere changes over time.  These 

ionograms are ideal in showing the ionospheric changes in response to solar flares as long 

as the flares are not so large that D-region absorption8 blocks the entire signal.  This  

 

 
8 D-region absorption occurs when no signal is returned to the dynasonde due to increased electron 
densities in the D-region.   
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 Figure 10.  This is a plot of the electron density in the ionosphere versus actual 
height.  The frequency peaks from the ionogram of Figure 9 corresponds to the 
peak electron density at each layer. 

 

 

limits the flares studied to X1 class or lower.  These plots will be used to compare to the 

modeled ionograms in this research.         

 Figure 11 is an example of a 12-hour ionogram from NGDC for 11 May 2004.  

The flare starts at 19:23 UT, peaks at 19:37 UT and is over by 19:54 UT.  This was a 

class M1.1 flare.  Note the D-region absorption during the flare is indicated by the white 

intrusion in the lower frequencies during flare time.  There is also a frequency decrease 

during flare time at foF2 that Smithtro et al [2004] termed a flare notch.  The flare notch is 

believed to be due to enhanced electron temperatures due to heating by photoelectrons.  

As the temperature increases, the electron density will correspondingly decrease due to F 

region expansion and diffusion.  This is most often seen during an M-class flare that 
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occurs near local noon.  The other notching that appears in the foF2 boundary is possibly 

due to traveling ionospheric disturbances9.    Local maxima in the E and F1 regions, 

which produce asymptotes or cusps in the standard ionogram, appear as inversions of the 

virtual height in a 12-hour plot, these areas are indicated in the diagram as foE and foF1. 

2.8 Previous Work 

There has been much work done regarding solar flares and their effects on the 

ionosphere.  Researchers have looked at how large flares can increase the total electron 

content (TEC) by 5-7 TEC unit10 [Hubba et al., 2005; Tsurutani et al., 2005].  They have 

studied the increased electron and ion temperatures due to moderate flares and have 

shown that the temperature increase is dependent on the time of day the flare takes 

place [Sharma et al., 2004].  Huba et al. [2005] have shown that for large flares, the 

maximum electron density in the F-layer will increase by 20%, and that the altitude of 

this maximum will decrease by 20%.  The solar spectral irradiance has been studied by 

Meier et al. [2002] who has shown that for large flares the x-ray radiation can increase by 

more than a factor of 200 and that the EUV enhancement increases by much less, only 

about 50%.  And finally the photoelectron response to a large flare has been studied by 

Woods et al. [2003].  They have shown that high energy electrons increase by a factor of 

10 while low-energy electrons change very little. 

 The current effort is built upon the previous work done by Smithtro et al. [2004], 

which examined moderate solar flares using an ionospheric model. They found 

enhancements in the E and F1 regions while the electron density in the F2 region  

 
9 Traveling ionospheric disturbances are waves in the F region of the ionosphere that propagate 
equatorward from high latitudes. They  have intermittent regions of decreased electron density. 
10 1 TEC unit = 1016 m-2 
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 Figure 11.  A 12-hour ionogram plotted with data from NGDC for 11 May 04. 

 

simultaneously decreased with moderate solar activity.  They were able to model this 

outcome using a modified ionospheric model, and found that the decrease is due to 

enhanced temperatures which change the scale height moving the plasma to higher 

altitudes.  Figure 12 shows a measured ionogram from Bear Lake Observatory compared 

to a modeled ionogram from the Smithtro et al. [2004] model.   

 These ionograms indicate where the E and F1 region increase in electron density 

is located and the F2 region electron density decrease is also shown.  The differences seen 

foF2 

D-region 
Absorption 

foF1 

foE 

Flare notch 

Erroneous Data 
Point 



 24

in Figure 12 between the real and modeled ionograms may be due to the simple model 

applied for flare response and the irradiance or the simplistic treatment of secondary 

ionization by photoelectrons [Smithtro et al., 2004].   

 

 

Figure 12.  A comparison between a measured ionogram and a modeled 
ionogram using an ionospheric model modified by Smithtro et al. [2004] to 
include the effects of flares. 
 

 
 

2.9 The Models 

 In this section the background on the three primary models are given.  Discussed 

first is the main ionospheric model; the Time-Dependent Ionospheric Model (TDIM) 

which develops the ionospheric profiles used in this research.  This will be followed by a 

discussion on the models that will be integrated into the TDIM; the Flare Irradiance 

Spectral Model (FISM) and the Glow model. 
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2.9.1 The Time-Dependent Ionospheric Model              

      The TDIM is a comprehensive, multi-ion (NO+, O2
+, N2

+, O+, N+, He+) model of 

the middle and high latitude ionosphere.  It solves the continuity (5), momentum (6), and 

energy (7) equations as a function of height for an inclined magnetic field at E and F 

region altitudes (100 to 800 km).    
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Where ∇⋅+= sutDtD δδ  is the convective derivative of species s, ps = nskTs is the 

partial pressure, ns is the number density, ms is the mass, es is the charge, Ts is the 

temperature, us is the drift velocity, qs is the heat flow vector, τs is the stress tensor, P΄s is 

the ionization production rate, L΄s is the ionization loss frequency, Qs is the heating rate, 

Ls is the cooling rate, G is the acceleration due to gravity, E is the electric field, B is the 

magnetic field, tδδ  is the time derivative, ∇ is the coordinate-space gradient, and k is 

Boltzmann’s constant.  tM s δδ and tEE δδ  represent the rate of momentum and energy 

exchange in collisions between species s and the other species in the plasma [Schunk, 

1988].  In these equations, the production and loss terms will be modified to include more 

rigorous calculations of the electron impact ionization rates and the electron heating rates. 
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 The three-dimensional structure of the ionosphere is obtained by following a co-

rotating plasma flux tube as it convects through the neutral atmosphere.  This model takes 

into account diurnal variations, convection electric fields and particle precipitation.  The 

ion and electron energy equations are also solved [Schunk, 1988].  The neutral gas 

specifications are computed using the Mass Spectrometer Incoherent Scatter empirical 

model (MSIS-86) [Hedin, 1991].   

      Although the TDIM models the ionosphere accurately during solar quiet days, 

there are two shortfalls to this model if one wants to see how the ionosphere changes in 

time due to solar flares.  First, the irradiance used is from the Extreme UltraViolet for 

Aeronomic Calculations (EUVAC) model [Richards et al., 1994] which relies on the 

F10.7 proxy that is measured only once per day.  Because of this, the TDIM has no 

inherent capability to specify the irradiance changes during a solar flare.  Second, the 

model does not include the effects of photoelectrons, which in turn are responsible for 

secondary ionization and electron heating.  These shortfalls must be corrected to 

accurately reflect the effects of a solar flare on the ionosphere. 

      In the modified TDIM, Smithtro et al. [2004] accounted for these issues by 

creating a flare-time irradiance model, using a parameterized fit to the results of Woods et 

al. [1998].  They were able to use irradiance measurements made by the SEE on the 

TIMED satellite to develop a ratio of flare irradiance to pre-flare irradiance [Woods et al., 

1998].  The SEE instrument, as stated earlier, was designed to measure the spectral 

irradiance between 0.1 and 195.0 nm for approximately one 3-minute interval per 97 

minute orbit. This would normally make the data unsuitable for solar flare studies, but 

fortuitously on 21 April 2002, the TIMED satellite measured an X1 flare prior to onset 
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and just after its peak.  Using this data, Woods et al. [1998] developed a ratio of flare 

irradiance to pre-flare irradiance to approximate the irradiance increase during a 

moderate x-ray flare event.   

 Figure 13 illustrates the energy flux ratio which was used to create a flare-time 

irradiance model as an addition to the EUVAC model.  In order to develop the model 

over time, the GOES soft x-ray flux is used as a proxy.  This data is fit using a lognormal 

function, which provides an analytic expression to compute a scale factor as a function of 

time.   This scale factor is used to develop the behavior of the flare over time and is then 

applied to the EUVAC irradiance [Smithtro et al, 2004].  The current work will improve 

upon this approach by using irradiances derived from the FISM model, which will be 

discussed in the next section. 

    The second shortfall of the TDIM model is that it does not self-consistently 

include the effect of photoelectrons.  Photoelectrons cause secondary ionization when 

they collide with the neutral gas and they also heat the ambient thermal electrons via  

coulomb collisions.  The wavelengths below 31 nm are important for calculating the 

photoelectron flux.  Richards and Torr [1988] showed that the longer wavelengths are 

attenuated more efficiently than the shorter wavelengths, so that photoelectron impact 

ionization becomes most important at lower altitudes.  Recall Figure 7, which depicts the 

ratios of electron impact ionization rates to photoionization rates.  The attenuation effect 

from the increased energy at shorter wavelengths is clearly seen in these plots.  TDIM 

approximates this additional ionization by applying a simple altitude and species 

dependent scale factor to the photoionization rate [Richards and Torr, 1988].   
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Figure 13.  The ratio of the flare irradiance to the pre-flare irradiance is shown 
as a function of wavelength.  The measurements were made by the SEE 
instrument on the TIMED satellite at 0026 and 0233 UT [adapted from Woods et 
al., 2003]. 
 
 
 

 During a solar flare the additional photon flux in the shorter wavelengths 

increases the photoionization rates below 150 km.  Depending on the intensity of the 

flare, the rates can increase by as much as 100%.  This effect will be seen in the results of 

this research. 

The electron heating rate used by Schunk [1988] is based on a model from 

Richards and Torr [1984] and it computes the solar EUV heating rate by using a 

parameterization of the electron volume heating rate based on F10.7 and the solar zenith 

angle (see Figure 14).  This process does not allow for changes during a solar flare.  

Smithtro et al. [2004] introduced a simple flare-time increase to the volume heating rate.  

This was done by calculating the ratio of solar maximum to minimum heating rates, and 

then applying an altitude dependent correction as a scale factor to represent the changes 

induced by the X1 flare discussed above.  A lognormal fit to the GOES satellite x-ray 
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flux data was used as a proxy to drive changes in the volume heating rate over the course 

of the flare [Smithtro et al, 2004].  In the current work, this heating rate will be replaced 

by more rigorously calculated values from the Glow model. 

                               

 Figure 14.  The electron heating rate as a function of altitude for solar EUV 
sources.  The EUV heating rate is shown for several solar zenith angles and was 
calculated using the method described by Richards and Torr [1984] [Schunk, 
1988].    

 
 
 

2.9.2 The Flare Irradiance Spectral Model  

     Chamberlain [2005] created FISM as an empirical model that uses proxies to 

determine the solar XUV, EUV, and FUV irradiances (0.1-195 nm) at a 1-nm spectral 

resolution in one minute time intervals.  Daily proxies that are formed in the same layer 

of the solar atmosphere as the wavelengths that are being modeled, such as Mg II core-to-

wing ratio and Lyman alpha, are used to model the 11-year solar cycle and 27-day 

rotational period irradiance variations of the sun.  These proxies are from the data 

measured by the Solar EUV Experiment (SEE) onboard the Thermosphere, Ionosphere, 
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Mesosphere, Energetics and Dynamics (TIMED) satellite.  The SEE instrument measure 

the full-disk solar vacuum ultraviolet (VUV) irradiance from 0.1 to 194.5 nm.  The 

irradiance is measured in 1 nm intervals for 3-minutes every orbit (97 minutes), which 

gives 14-15 observations per day.  SEE has been collecting data since 2002 and is 

considered to have the most accurate irradiance measurements to date.  In order to model 

irradiance changes in intervals less than a day, the 3-second flux values from the GOES 

0.1-0.8 nm channel and the positive time derivative of this flux was used.     

Compared to the EUVAC, this model improves significantly the irradiance values 

in the EUV range and also adds algorithms to empirically model flares.  Figure 15 shows 

the standard deviation between the FISM and EUVAC model at minimum and maximum 

solar conditions.  This data uses the daily average for EUVAC for a 54-day period and is 

in 5 nm bins.  There are large differences between the models, but FISM data has been 

shown by Chamberlain [2005] to agree with the data from the TIMED SEE to within 

10%.  The TIMED SEE data are the most accurate EUV measurements available.  Since 

FISM is accurate to within 10% of the TIMED SEE data, Figure 15 shows the large 

discrepancies between the measured data and the EUVAC model. 

            The wavelengths below 105 nm have the greatest impact on ionization in the 

lower ionosphere, affecting the electron/ion densities and temperatures in the E and F1 

regions of the ionosphere.  It is also these wavelengths that undergo the greatest variation 

during solar flares.  Depending on the size of the flare, increases can be more than 10 

times the normal irradiance values, causing large variations in the lower ionosphere.  

These are variations that EUVAC cannot model during a solar flare. 
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                                 a.                                                                    b.  

 Figure 15.  The standard deviation between measured data and EUVAC at (a.) 
minimum and (b.) maximum solar conditions for a 54-day period separated in 5 
nm bins [Chamberlain, 2005]. 

 
 

2.9.3 The Glow Model 

    The Glow model, developed by Solomon, [2005], uses an input solar spectrum to 

calculate photoelectron ionization, auroral electron ionization (not used in this research), 

and electron heating rates.  Photoelectron transport, including cascade and secondary 

ionization processes, is computed using the two-stream method by Nagy and Banks, 

[1970].  The two-stream method performs calculations in the upward and downward 

directions and since electrons follow magnetic field lines, this is a good approximation.  

In the Glow model, the neutral atmosphere is assumed to vary with altitude.  Electrons 

follow a slant path from the top of the atmosphere to the base (100 km).  The electrons 

can be scattered forward or backward by elastic collisions or they can be ionized, 

dissociated, or excited through inelastic collisions [Bailey et al., 2002]. Glow calculates 

all these processes.  A model atmosphere for Glow is obtained from the previously 

mentioned MSIS model and the International Reference Ionosphere-90 (IRI-90).  The 
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MSIS model describes the neutral atmosphere while IRI -90 is used to initialize the 

electron/ion temperatures and O+, O2
+, NO+ and electron densities.   
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III. Methodology 
 

 The methodology of integrating the models is described in the following sections.  

Starting with the FISM model and then the Glow model, the results of the integration is 

looked at for non-flare days and compared to other models and actual data to ensure the 

integration is developed appropriately.    

3.1 Integrating the Models 

The FISM model does not have a direct interface with the TDIM model.  The 

model was recently developed by Chamberlain [2005] at the University of Colorado and 

he has yet to develop an interface for the user.  Until one is developed, he runs the model 

for the requested days and sends the data to the user.   

The FISM files have 170 wavelength bins from 0.5 to 170 nm, at a one minute 

cadence.  It was made compatible to Glow by readjusting the number of bins to 123 and 

the wavelength range from 0.5 to 105 nm.  The Glow bins vary in wavelength width, 

smaller widths from 0.5 to 10 nm to capture the large irradiance changes and larger 

widths at 95 to 105 nm where the change in irradiance is much less.  Adjusting the bins 

was accomplished using an algorithm that combined or divided the irradiance as 

necessary to get into the appropriate format.  

An example of how the ionospheric profile changes with the use of FISM 

irradiances versus EUVAC is shown in Figure 16.   The electron densities along the most 

of the FISM profile have decreased slightly in comparison to the EUVAC profile.  This is 

due to the irradiance being greater when using FISM causing the electron density to 

decrease.  In Figure 16 the electron temperatures remains the same from 280 to 400 km 
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and from 220 to 280 km it decreases slightly.  This slight decrease doesn’t change the 

electron density but in the area where it stays the same there is a slight increase in 

electron density.   

The increased temperatures in Figure 17 are due to the increased irradiance values 

of the FISM model.  Figure 18 is a plot of the irradiance versus wavelength values for the 

EUVAC model.  These values underestimate the irradiance for this particular day as 

compared to the FISM irradiance in Figure 19.  Figure 19 shows the irradiance values for 

the FISM model on 12 May 05 at 1200L.  These values are greater than EUVAC and 

cause the electron temperature to increase. 

 

 

   Figure 16.  Ionospheric profiles showing electron densities as a function of altitude on 
a non-flare day; 12 May 05 at 1200L.  The solid lines show TDIM using the Glow 
model with EUVAC irradiance and the dashed lines show TDIM with the Glow 
model using FISM irradiances. 
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 Figure 17.  The electron temperature as a function of height.  It compares the original 

TDIM model to the integrated model at 1300 L for a non-flare day.  This model was 
run with the TDIM electron heating rates. 

 
 
 
 

 
 
 

 Figure 18.  The irradiance (flux) is plotted as a function of wavelength using the 
standard EUVAC irradiance (left) and FISM (right) used in the TDIM model. 

 

Left Right 
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 Figure 19.  Ratio of FISM to EUVAC irradiance for non-flare time. 
 
 
 
 The Glow integration was more complicated than the FISM integration.  The 

Glow model outputs that are used for the TDIM are the electron heating rates and O+, 

O2
+, and N2

+ total ionization rates as a function of altitude.  The total ionization rates 

comprise the photoionization rates plus the electron impact ionization rates.   

 First the IRI-90 ionosphere temperatures and densities were replaced with the 

TDIM values.  Glow was then run to ensure there were no inconsistencies with these 

changes; no changes in the output of the TDIM program were noted.  Then the 

photoionization rates in the TDIM were substituted with the rates from Glow, again this 

was validated to be correct because the densities did not change with the original model.  

Then the electron impact ionization rates were added to the photoionization rates.  The 

expected changes were seen below 130 km where there was an increase in total ionization 

rates.  Figure 20 shows how important the additional electron impact ionization is below 
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130 km.  It is showing the ratio of electron impact ionization rates to photoionization 

rates as a function of altitude.  The rates are greater than one for O+ and N2
+ and there is a 

slight increase for O2
+ as well.  When Figure 20 is compared to the results of Titheridge 

[1996], the ratio and structure of the profiles are very similar for O+ and N2
+.  Below 150 

km the profile for O2
+ varies a bit but the ratio is approximately the same.  The final 

change was substituting the Glow heating rates into the TDIM.   
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 Figure 20.  The ratio of electron impact ionization rates to photoionization rates.  

Data is from early summer solar minimum at 41◦ latitude, 1300L time, and a solar 
zenith angle of 25◦; this is a non-flare time. 
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 The Glow heating rates made the most dramatic changes to the profiles.  The 

Glow heating rates increased below 130 km and ~25 km above and below the electron 

heating peak for several profiles that were modeled.  Some heating rate profiles increased 

between 25 and 50% from 100 to 500 km, with a very slight increase to 800 km while 

other profiles maintained the increase around the electron heating peak but showed a 

varied increase or decrease beyond 200 km.  Figure 21 shows this varied change in 

heating rates.  These changes are due to the FISM irradiance being slightly different  
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 Figure 21.  The electron heating rate comparison between TDIM and Glow. Data is 
from early summer solar minimum at 41◦ latitude, 1300L time, and a solar zenith 
angle of 25◦; this is a non-flare time. 
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between the days.   There were also changes in the electron density and the electron 

temperature profiles from substituting in the Glow heating rates. 

 Figure 22 shows the electron density plotted as a function of altitude.  This profile 

is for a non-flare day at 1300 L.  The largest increase in electron density was below 130 

km while there was a decrease in the densities from 130 to 230 km.  Above 230 km, the 

electron densities showed a very slight increase. The changes below 230 km were due to 

decreased calculated photoionization rates by the Glow model.  Figure 23 shows the 

electron temperature plotted as a function of altitude for the same day.  The electron 

temperature increases from ~130 to ~220 km while the electron densities decrease over 

this altitude range.  The electron temperature slowly starts to increase above 400 km with  

 
 

 

 Figure 22.  Electron density profile comparison between the original TDIM model 
and the TDIM modeled integrated with the Glow and FISM models.  Data is from 
summer solar minimum at 41.7◦ latitude, 1300L and a solar zenith angle of 30.2◦; 
this is a non-flare time. 
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a maximum change of 400 K at 800 km while the electron density increases just slightly.   

The increased electron temperatures are due to the increased heating rates in the lower 

altitudes. 

 

 

    Figure 23.  Electron temperature comparison between the original TDIM and TDIM 
integrated with the Glow and FISM models.  Data is from early summer solar 
minimum at 41◦ latitude, 1300L time, and a solar zenith angle of 30.2◦; this is a non-
flare time. 

 
 

 
3.2 Comparison to Bear Lake Observatory Ionograms 

 The Bear Lake ionograms are downloaded from the National Geographic Data 

Center (NGDC) website and put through an algorithm to get a 12 or 24-hour ionogram.  

Because of the time involved in downloading this data11 only 12 hours of this data has 

been retrieved for each flare.  Since this research is only concerned with the flare event 

and not the entire day’s profile, this is a sufficient amount of data to compare to model 
 
11 144 files at 3 minutes each = 7.2 hours of downloading 



 41

results.  This graph is then compared to the modeled output from the combined TDIM, 

FISM, and Glow model (or the integrated model).  The integrated model is run for a 36 

hour period to allow for the conditions to equilibrate.  Then the last 12 hours from the 

output is put through an algorithm and plotted.  Figure 24 in the next chapter will show 

an example of this type of ionogram composite.  The details of this figure are explained 

more fully there. 
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IV. Results and Discussion 
 
 

4.1 Introduction 
 
 Two flares were chosen so that the best noise free data could be retrieved from 

Bear Lake Observatory.   The flares are categorized as a M2.0 and a M1.1 x-ray flare.  

They occurred around noon local time, so a flare notch should be easily recognizable in 

the NGDC data.  The flares are similar in energy output but the duration of the M2.0 flare 

was 63 minutes and the M1.1 lasted 31 minutes. The solar zenith angles at the time of the 

flares peak are 37.6 degrees for the M2.0 and 24.1 degrees for the M1.1 flare.   

The following sections will include the measured data downloaded from NGDC 

to be used as a comparison for the modeled data.  The NGDC data will be plotted in a 12-

hour ionogram and also as two individual ionograms for pre-flare and peak flare.  These 

will be discussed so that they can be used to compare with the modeled ionograms, which 

will follow.  Then we will look at how diurnal effects will change the different 

ionospheric density and temperature profiles from pre-flare to peak flare.  This will be 

used as a baseline to compare to the integrated model’s profiles.  Finally a look at the 

spectra from the FISM model during pre-flare and peak flare times to see how it affects 

the outcome of the model.   

4.2 M2.0 Flare 4 April 2003 

This flare began over Bear Lake Observatory at 19:35 UT (12:35 L), peaked at 

20:18 UT (13:18 L) and ended at 20:38 UT (13:38 L).  Figure 24 shows a 12-hour 

ionogram from Bear Lake Observatory, the vertical lines are where the data was missing 

at 10 and 40 minutes after every hour.  Otherwise the data is at a 5-minute cadence.  
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Figure 25 shows pre-flare and peak flare ionograms from Bear Lake Observatory.  These 

will be used for comparison to the model runs but first an explanation of these figures. 

 4.2.1 Bear Lake Observatory Ionograms 

 The 12-hour ionogram in Figure 24 shows a diurnal increase in electron density 

starting at 1300 UT as indicated by the increase in frequency.  The E and F1 layers start to 

decrease in electron density at 2100 UT because the solar angle starts to increase, but the 

F2 layer continues to increase until 2400 UT.  The F2 layer increase may be due to 

diffusion or gravity waves since this layers electron density is controlled by processes 

other than photoionization.  The M2.0 flare that began at 19:35 UT is immediately 

recognizable by the inverted v-notch that is due to D-region absorption during the flare.  

There is also a small foF2 decrease or flare notch identifiable above the inverted v-notch.  

The other areas of notching in the foF2 region are possibly due to traveling ionospheric 

disturbances.  The two arrows at the bottom of the figure indicate the approximate times 

of the ionograms in Figure 25.   

 The ionograms in Figure 25 were taken at 19:30 UT (black) and 20:20 UT 

(green).  They are plotted as a function of virtual height and frequency.  The black cusps 

in this figure indicate h’E at ~100 km, h’F1 at ~210 km and h’F2 at ~275 km. At the peak 

of the flare h’F2 and the electron density in the F2 region decrease slightly during flare 

time, indicating that the scale height has changed due to the increased electron 

temperatures.   

4.2.2 Integrated Model Ionograms 
 

In Figure 26, the 12-hour modeled ionogram is plotted for comparison to the 

actual NGDC 12-hour ionogram of Figure 24.  The modeled ionogram composite shows  
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Figure 24.  The figure depicts 12 hours of ionograms taken at a 5 minute cadence 
from Bear Lake Observatory on 4 April 2003.  The ionogram is plotted as a 
function of signal frequency and UT time; the color scale represents the virtual 
height of the returned signal. 

 
 

the smooth diurnal increase and decrease in frequency that is expected, but the maximum 

frequency is 2 MHz too large, and after the flare the frequency starts to decline when it 

should hold steady.  This frequency peak is not due to the flare because it is also in the 

original TDIM output.  This may indicate that the real data is varying from climatological 

trends and that the TDIM is unable to properly model these variances.  The E and F1  
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 Figure 25.  Ionograms for pre-flare (19:30, black) and peak flare (20:20, green) as 
a function of frequency and virtual height on 4 April 2003. 

 
  
 
inversions are close to the actual data and are labeled as foE and foF1 in the figure.  In the 

D-region of the modeled ionograms, the white area indicates that there is no data below 

100 km, but the NGDC data does extend below 100 km.  There is an inverted v-notch 

indicating the area of D-region absorption due to the solar flare which correlates well 

with the real data, but there is no flare notch above the inverted v-notch as is indicated in 

the actual data.   

 The integrated model’s individual ionograms (Figure 27) show the effects of the 

flare but the results do not accurately reflect the profiles of the NGDC ionograms.  The E  
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 Figure 26.  This figure shows a 12-hour ionogram from the integrated model for 4 
April 2003. 

 
 
 
layer density increases,  but since the measured data has no information for this region it 

can be inferred from the composite ionograms to be approximately correct.  The F layer 

density increases when it should decrease and the height decreases when it should 

increase.  In the pre-flare ionogram the F2 layer is 2 MHz too high.  

 Figure 28 is a contour in which a baseline file was created using a single 

irradiance spectrum and no flare dynamics integrated into it.  Then a second file was  
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 Figure 27. This figure is the integrated model pre-flare and peak flare ionograms 
as a function of frequency and virtual height for 4 April 2003. 

 
 
 

 
 

 Figure 28.  Flare electron density and temperature contour as a function of UT 
time and altitude for 4 April 2003. 
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created using the baseline data with the flare irradiance and beyond inserted at flare start 

time.  This is then plotted as a contour plot to show the differences in electron density and 

temperature due to the flare itself.  There is a slight increase in temperatures (~150 k) in 

the high altitudes, but as noted earlier, the increase in temperature at the middle altitudes 

is being suppressed.  The electron densities at the lower altitudes increase as expected, 

but above 220 km there should be a decrease in densities not an increase as indicated in 

the figure.  

 4.2.3 Modeled Temperature and Density Profiles 

 The modeled electron density profile, along with the electron and ion temperature 

profiles, should help explain the structure of the ionograms.  Looking at these details will 

help explain what specific change in the model is driving certain changes in the 

ionograms.   

 4.2.3.1 Baseline Profiles 

 This flare has a 63 minute lifetime, so the diurnal changes will be small, but still 

noticeable.  Comparing the diurnal changes to the flare changes will show how much the 

model changes due to the flare input.  The baseline model run is used to show how the 

electron density changes due to the solar zenith angle decreasing as the time progresses.  

Figure 29 is a plot of the electron density as a function of altitude for pre-flare and peak 

flare times.  The F region peak drops in altitude, and as the electron temperature (Figure 

30) decreases there is a simultaneous increase in electron density from 220 to 340 km.   

Above 340 km (F peak), photoionization does not have a strong solar zenith angle 

dependence so changes that are taking place here are influenced by other processes

 Figure 30 shows the diurnal change of the electron and ion temperatures as a 
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function of altitude.  The temperatures are changing, but less noticeably than the electron 

densities at this time of day.  The electron temperature stays relatively constant above the 

F-peak and the ion temperature below 400 km stays the same.  Above this altitude the ion 

temperature is controlled by the diurnal variation of the electron temperature and ion heat 

flow from the magnetosphere.   

 The diurnal changes seen here are not significant because the time advances only 

50 minutes, but this will help to differentiate flare changes from diurnal changes in the 

integrated model profiles. 

 

 

 Figure 29.  This figure shows how the electron density in the baseline model 
changes as a function of height from 19:30 UT to 20:20 UT due to diurnal 
variations. 
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 Figure 30.  These figures show the electron and ion diurnal temperatures change 
as a function of height using the baseline model from 19:30 UT to 20:20 UT. 

 
 
 
4.2.3.2 Integrated Model Profiles for Peak Flare 

 When looking at Figure 31, the integrated models electron density for pre-flare to 

peak flare, there is an expected density increase below 130 km, which is due to the  

increased ionization rate that occurs below 130 km.  Figure 33 shows the pre-flare and 

peak flare total ionization rates as a function of altitude.  The rates increase by 65% at 

112 km, increasing the electron density by 26%.  The density continues to slightly 

increase up to ~220 km due to the slight increase in total ionization rates in this region.  

From 220 to 700 km it has the same diurnal change in profile as seen in Figure 29.  The 

change from baseline to flare peak is better seen in Figure 32 which is a comparison of 

the baseline model, at peak flare time, to peak flare electron density in the integrated 

model.  It is obvious in this figure that the flare induced changes took place only below 

220 km.   A significant change in electron densities above the F peak is not expected 

from increased photoionization rates.  But there should be a decrease in density in the F 

region because  
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 Figure 31.  Pre-Flare and Flare Electron Density comparison for the Integrated 

TDIM model for 4 April 2003. 
 
 

 
 Figure 32.  Flare Electron Density comparison for the baseline and Integrated 

TDIM model for 4 April 2003. 
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 Figure 33.  Total ionization rates plotted as a function of altitude for baseline and 
flare times.  The large increase below150 km is due to the increased irradiance at 
short wavelengths during the flare. 

 
  

of increased plasma temperatures that expand the F2 region and force the diffusion of 

electrons to higher altitudes, but neither of these effects is seen in the model. 

 The temperature response of the integrated model is not what was expected.  

Figure 34 shows the electron and ion temperature change as a function of altitude for pre-

flare and flare times.  There should be a greater increase in electron temperature between 

300 and 500 km. But the temperature here is being suppressed.  There is a change in the 

electron temperature, ~150 K at 700 km, due to the solar flare that the integrated model 

does capture.  This temperature increase falls short of what we expected at this time of 

day; according to Sharma et al. [2004] an approximate increase of 1.3 times over daily 

average or about 750 K at 700 km might be seen.  The ion temperatures did not change  
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 Figure 34.  Pre-flare and Flare electron and ion temperature comparison for the 
Integrated TDIM for 4 April 2003. 

 
 

  
 Figure 35.  Flare electron and ion temperature comparison for the baseline and the 

integrated TDIM for 4 April 2003. 
 
   

except due to the normal diurnal changes.  The ion temperature should increase by 1.2 

times the average or 460 K at 700 km, again according to Sharma et al.[2004].  Figure 35 

shows the baseline compared to the integrated model for both temperatures; it is apparent 

in this figure that the flare had little effect on either temperature.  As has been shown, the 
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temperature changes within the integrated model do not behave as expected when 

responding to the solar flare irradiance input.  

 The electron heating rates in Figure 36 do change significantly due to the flare 

irradiance.  The largest increase is seen below 300 km; the peak increases by 12% while 

the greatest increase of 91% is seen at 108 km.  These heating rates should significantly 

increase the electron temperature above the F2 peak as previously shown in Equation 1. 
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 Figure 36.  The integrated models electron heating rates as a function of altitude 
for baseline and flare. 
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4.2.4 FISM Spectra 

 The FISM spectrum is what drives the evolution of the flare over time.  Figure 37 

is the pre-flare solar irradiance.  It is plotted in 5-nm wide wavelength bins along the x- 

axis and flux is shown along the y-axis.  The peak flare spectrum shown in Figure 38 is 

different from the pre-flare spectra of Figure 37.  The flare spectrum increases at all 

wavelengths with the greatest increase in the shortest wavelengths.  Figure 39 shows the 

ratio of peak flare to pre-flare spectra to highlight these differences.  It confirms the 

increase at all wavelengths with a maximum of 9.1 times the original wavelength at 50 Ǻ.  

This is what causes the increase in the photoionization rates and the impact ionization 

rates below 120 km.  The increased spectra is responsible for increasing the electron 

heating rates throughout the ionosphere and because the electron heating rates do 

increase, this does not appear to be the reason why the electron temperatures are not 

increasing as much as would be expected. 

 

  

 Figure 37.  This is the FISM irradiance prior to flare onset used in the integrated 
model. 
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 Figure 38.  This figure shows the FISM irradiance during peak flare time used in 

the integrated TDIM model. 
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 Figure 39.  This graph shows the ratio of flare to pre-flare irradiance.  The 
irradiance increases across the spectrum during the peak of the flare with the 
greatest increase occurring below 200 Ǻ.  
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4.3 M1.1 Flare 11 May 2005 

 This flare began over Bear Lake Observatory at 19:23 UT (12:23 L), peaked at 

19:37 UT (12:37 L) and ended at 19:54 UT (12:54 L).  The solar zenith angle at peak was 

24.1 degrees. Figure 40 shows a 12-hour ionogram and Figure 41 shows a single pre-

flare and peak flare ionogram from Bear Lake Observatory.  This is what will be used for 

comparison to the model runs but first an explanation of these figures. 

 4.3.1 Bear Lake Observatory Ionograms 

 The 12-hour ionogram shows normal diurnal increase in electron density starting 

at 1200 UT.  A maximum frequency is reached at ~2100 UT on this ionogram which is 

due to the ionosphere relaxing back to a pre-flare state.  The M1.1 flare is recognizable 

by the inverted v-notch due to D-region absorption from ~19:30 UT to ~20:00 UT.  Note 

that this flare also has a flare notch located above the inverted v-notch.  The foE, foF1 and 

foF2 regions are identified on the figure.  The two arrows at the bottom of the figure 

indicate the times of the ionograms in Figure 41. 

 The ionograms in Figure 41 where taken at 19:15 UT (black) and 19:35 UT 

(green).  They are plotted as a function of virtual height and frequency.  The bases of the 

black cusps in this figure indicate h’E at ~100 km, h’F1 at ~240 km, and h’F2 at ~320 km.  

The h’F2 increases to ~350 km at peak flare.  The E region densities increase slightly, 

while the F1 region densities remain the same up to the foF1 cusp.  Beyond this, the 

electron densities decrease, as is expected with a flare notch.   
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 Figure 40.  The figure depicts 12 hours of ionograms taken at a 5 minute cadence 
from Bear Lake Observatory on 11 May 2005.  The ionogram is plotted as a 
function of signal frequency and UT time; the color scale represents the virtual 
height of the returned signal. 

 
 
 

4.3.2 Integrated Model Ionograms 

 Like the first flare, the integrated model will be compared to the actual NGDC 

data.  Once again the modeled ionograms in Figure 42 shows the smooth diurnal increase 

and decrease in frequency that is expected, but again, the maximum frequency is 2 MHz  
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 Figure 41.  The figure shows ionograms for pre-flare (19:15, black) and peak 
(19:35, green) on 11 May 2005.  These are plotted as a function of frequency and 
virtual height. 

 
 
 
too large.  The height of the E and F1 inversions are close to the actual data. There is an 

inverted v-notch at the correct time but there is no flare notch above it. 

 The integrated model ionograms, in Figure 43, show that the foF2 asymptote is too 

high.  It approaches 11 MHz when the actual data is showing 7 MHz.  The E region data 

is also showing an increase in frequency when the actual data does not significantly 

change. The F region does not change and since there is only 30 minutes between the two 

ionograms, there would also be no noticeable diurnal changes. 

 The electron density and temperature contour in Figure 44 is similar in 

characteristic to Figure 28 of the first flare.  There is again a slight increase in 
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temperature at upper altitudes with no change in mid-altitudes and slight changes in the 

lower altitudes.  The densities increase below 120 km with a slight increase up to 500 km.  

There should be a decrease at the F2 peak (~300 km), but this is once again not being 

modeled as expected. 

 

 

  
 Figure 42.  This figure shows a 12-hour ionogram as a function of UT time and 

frequency, from the integrated model for 11 May 2005. 
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 Figure 43. This figure shows the integrated model pre-flare and peak flare 

ionograms as a function of frequency and virtual height for 11 May 2005.  
 
 
 
 4.3.3 Modeled Temperature and Density Profiles 
 
 The modeled electron density profile, along with the electron and ion temperature 

profiles, should help explain the structure of the ionograms.  Looking at these details will 

help explain what may be driving the incorrect temperature and density values in the 

ionograms. 

 4.3.3.1 Baseline Profiles 
  
 The baseline density and temperature profiles are presented to show what diurnal 

changes occur.  Since the time between pre-flare and peak flare is only 20 minutes, there 

will not be a significant change in these parameters.  Figure 45 shows the electron density 

profile with minimal changes.  Looking at Figure 46 you can see that the electron and ion 

temperatures will not change with only 20 minutes between data points.  So any change 

between pre-flare and flare profiles will be solely due to the flare input.   
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 Figure  44.  Flare electron density and temperature contour plotted as a function 

of UT time and altitude, for 11 May 2005. 
 
 

 

 
 
 
 Figure 45.  This figure shows the diurnal changes of the electron density using the 

baseline model from 19:15 UT to 19:37 UT. 
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 Figure 46.  These figures show the electron and ion diurnal temperature change as 

a function of altitude using the baseline model. 
 
 
  

4.3.3.2 Integrated Model Profiles 
 
 When looking at Figure 47, the only notable change between the pre-flare and 

peak flare electron density profile is below 140 km, which is due to the increased 

ionization rate below 140 km.  Figure 48 shows the total ionization rates for baseline and 

peak flare as a function of altitude.  The greatest increase in ionization is 93% at 108 km, 

which increases the electron density by 32%.    From 140 to 230 km there is a slight 

increase in density and then beyond 230 km the profile matches the slight diurnal change 

in Figure 45. There should have been a decrease in electron densities at the F2 peak (~330 

km) but it is not seen in this density profile.  

 There is even less of a temperature response in this flare than the previous flare.   

The integrated model does not accurately represent the temperature response between 

pre-flare and peak flare times; an increase in electron temperature from 230 to 700 km.  

Figure 50 shows a very slight increase in electron temperature beyond 500 km and no 
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change in ion temperature.  Looking at Figure 51 confirms that there is no significant 

change due to the flare.  As with the previous flare, this flare is also not increasing in 

temperature as would be expected.  For both the ion and electron temperatures there 

should be a 1.3 and 1.2 times the daily average temperature increase respectively.  If this 

increase would occur, then the flare notch that is expected to be seen on the 12-hour 

ionogram would appear.   

 The electron heating rates in Figure 52 do change but with a slightly different 

profile than the previous flare.  The largest increase for this flare is below 300 km; the 

peak increases by 10% while the greatest increase is 2.5 times the original heating rate at 

108 km.  These heating rates should significantly increase the electron temperature above 

the F2 peak. 

 

 
 Figure 47.  Pre-flare and peak flare electron density comparison for the integrated 

model, plotted as a function of altitude for 11 May 2005. 
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 Figure 48.  Peak flare electron density comparison for the baseline and integrated 

model, plotted as a function of altitude for 11 May 2005. 
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 Figure 49.  Total ionization rates plotted as a function of altitude for baseline and 

peak flare.  The large increase below 150 km is due to the increased irradiance at 
short wavelengths during the flare. 
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 Figure 50.  Pre-flare and flare electron and ion temperature comparison for the 
integrated TDIM for 11 May 2005. 

 
 
 
 
 

  
 
 Figure 51.  Peak  flare electron and ion temperature comparison for the baseline 

and integrated TDIM for 11 May 2005. 
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 Figure 52.  The integrated models electron heating rates as a function of altitude 
for pre-flare and peak flare times. 

 
 
 
 4.3.4 FISM Spectra 

 The pre-flare spectrum is in Figure 53.  The wavelength in this figure is plotted in 

5 nm wide bins as a function of flux.  Figure 54 is the peak flare spectrum which has  

increased from the pre-flare spectrum across all wavelengths.  Figure 55 shows the ratio 

of peak flare to pre-flare spectra.  It confirms a very slight increase beyond 200 Ǻ.  At 

wavelengths less than 200 Ǻ there is a large increase with a maximum of 4.7 times the  

original wavelength at 50 Ǻ.  The increase in the peak flare spectrum is what causes the 

increase in photoionization and impact ionization rates below 140 km while also 

increasing the electron heating rates. 
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 Figure 53.  This is the FISM irradiance prior to flare onset used in the integrated 
model.  The wavelength is plotted in 5 nm wide bins as a function of flux. 

 
 
 

 

 Figure 54.  This is the FISM irradiance at flare peak used in the integrated model. 
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 Figure 55.  This graph shows the ratio of flare to pre-flare irradiance.  The 
irradiance increases significantly only up to 200 Ǻ. 
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V. Conclusions and Future Work 
 
 
 

5.1 Conclusions 

 The objective of this thesis was to use a current, well tested model of the quiet 

ionosphere and integrate a more rigorous development of certain parameters so that a 

flare time response of the ionosphere could be modeled.  We achieved this in the E and 

lower F region, but beyond this point the model failed to fully develop the ionospheric 

response expected.  In trying to understand where the problem may be, a discussion of 

what happened with each changed parameter and how it affected the outcome of each 

model will follow. 

 Starting with the FISM model, the irradiances used to describe the solar variations 

worked very well.  The model was able to easily integrate the flare effects into the lower 

ionosphere and the spectra increased at the expected wavelengths.  This increase in 

irradiance values caused the photoionization and electron impact ionization to increase in 

the lower ionosphere; this effect was especially strong during the flare.   

 The Glow model integration appeared to be correct.  There were two major 

changes in the program.  First the photoionization rates were replaced with Glow values 

and the Glow electron impact ionization rates were added to the photoionization rates.  

The photoionization and electron impact ionization rates had correct magnitude ranges.  

The profile structure was also correct.  Referring back to Figures 5 and 6, you can see the 

profiles of this ionization which correlates well to other documented studies of this 

structure.  I do not believe this was the problem with the model.  The next major change 
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from the Glow program involved the electron heating rates.  The heating rates increased 

as they should have with pre-flare and peak flare values.   

 The thermal structure of the ionosphere was not what was expected beyond 220 

km in both flares.  The thermal structure from 220 to about 500 km followed the diurnal 

changes expected for these quantities.  Above 500 km there was an increase in electron 

temperature but it fell significantly short of the expected values (100 K vs. 750 K).  Since 

the temperatures did not get modeled appropriately, the electron densities never 

decreased at the F2 peak, which prevented the flare notch from developing.  The ion 

temperatures followed diurnal patterns completely; no change due to flaring was noted.  

So where did the model go wrong? 

 The TDIM is a very complicated model that has been developed and changed 

since 1988; it is very possible that there is code that manipulates the temperatures in 

unexpected ways.  This model was not originally written to include the effects of flares, 

so it is possible that in trying to keep out data that would be erroneous for a quiet solar 

day it is suppressing the effects of the flare. 

 Even though the electron and ion temperature profiles were incorrect above 220 

km, the lower E and F region did respond as expected.  The success of using the 

irradiance from FISM and the total ionization rates and electron heating rates from Glow 

gets us one step closer to understanding the effects that flares have on the ionosphere.     

5.2 Future Work 

   Trying to find out why the electron and ion temperatures were not correctly 

calculated during the flare will be the next step.  This would have to start with the 

original programmers and scientists from Utah State University.  With their insight, this 
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problem may quickly be resolved.  Once this issue is resolved and the model is validated 

against NGDC data, one would be able to study the effects that flares will have on the 

ionosphere and possibly use this as a forecasting tool.  
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