
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

9-2006 

Fault and Defect Tolerant Computer Architectures: Reliable Fault and Defect Tolerant Computer Architectures: Reliable 

Computing With Unreliable Devices Computing With Unreliable Devices 

George R. Roelke IV 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Computer and Systems Architecture Commons 

Recommended Citation Recommended Citation 
Roelke, George R. IV, "Fault and Defect Tolerant Computer Architectures: Reliable Computing With 
Unreliable Devices" (2006). Theses and Dissertations. 3337. 
https://scholar.afit.edu/etd/3337 

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 







Figure 2.24: RMR Performance (Max allowable pf versus Re-
dunancy, R) [FNS01].

a design with no redundancy (i.e., R = 1), the design meets yield requirements only

if the individual defect rate is pf ≈ 10−13. Incorporating RMR with R = 5 raises the

allowable defect rate to pf ≈ 10−9. Thus, the same probability of chip reliability can

be achieved with devices four orders of magnitude less reliable

2.4.3.2 Cascaded Tri-Modular Redundancy. RMR benefits can be

increased by connecting RMR or TMR modules in series. The outputs of three TMR

modules can be connected to a majority gate to make a second order TMR module,

or Cascaded TMR (CTMR) module. The probability of correct output with a CTMR

module of the ith order is P
(i)
w , or

P (i)
w = (1 − pf )

mB
[

(

P (i−1)
w

)3
+ 3

(

P (i−1)
w

)2 (
1 − P (i−1)

w

)

]

(2.21)

where mB is the number of devices in the majority gate [FNS01]. However, there is

no advantage to using CTMR for units containing small numbers of devices, although

improvement is possible for CTMR units with large values of Nc. Three improvement

regions are identified [FNS01].

63



1. Ncpf > ln 2, redundancy affords no advantage.

2. 10−3 . Ncpf < ln 2, redundancy is most effective.

3. Ncpf < 10−3, only first order redundancy offers an advantage.

In region (2), effectiveness scales exponentially with the order of CTMR used.

The failure probability is

P
(i)
fail ∝ (Ncpf )

2i. (2.22)

For region (3), effectiveness scales in accordance with the ratio mB/Nc. The

failure probability for this region is

P
(i)
f ≈







Ncpf , for i = 0

mB
Ntotal

Ncpf = mB
Nc
P

(0)
f , for i = 1, 2, . . .

(2.23)

2.4.3.3 NAND Multiplexing. NAND Multiplexing was originally pro-

posed by John von Neumann in 1956 [vN56]. In early computers, logical functions

were realized using vacuum tubes. These devices were prone to failure, and the mean

time before failure of a vacuum tube computer was quite low. von Neumann showed

that when the probability of gate failure is sufficiently small, and errors are indepen-

dent, a high probability of a correct result can be achieved using NAND multiplexing.

A NAND Multiplexor reliably performs the boolean NAND operation in the

presence of errors that change the operation of the device. A ‘von Neumann fault’

[vN56] inverts the correct output of a NAND gate. The NAND multiplexor circuit

performs the NAND operation redundantly, as shown in Figure 2.25, increasing the

probability of correct output over a single NAND gate.

Logic signals in the multiplexing technique are implemented by bundles of sig-

nals. For example, a NAND gate may have two inputs, X and Y , and one output, Z.

Each signal is implemented as a bundle of N signals. If there are no errors in a signal,

all N lines in the bundle have the same value. If errors are present, some fraction of

64



the lines have the opposite value. A threshold, ∆ ∈ (0, 0.5) is defined such that when

no more than ∆N of the lines in the bundle are stimulated (i.e., logic ‘true’ or ‘1’),

the logical value of the variable represented by the bundle is interpreted to be ‘false’

or ‘0’. Likewise, at least (1 − ∆)N lines must be asserted for the logic value of the

variable represented to be considered ‘true’ or ‘1’. If the number of asserted lines in

the bundle is between these two thresholds (∆N, (1 − ∆)N), the state is undecided,

and a malfunction is declared.

The NAND Multiplexor is composed of two parts: the Executive Stage and one

or more Restorative Stages. Each restorative stage is nothing more than two executive

stages in series. In most cases, adding more restorative stages or increasing the bundle

size N makes the NAND operation more reliable.

The Executive Stage contains two parts: a row of N NAND gates in parallel,

and a Permutation Unit (i.e., block ‘U’). The initial input signals X and Y are

implemented as two bundles of N signals. The output of the NAND operation is the

bundle Z, which also contains N signals. Prior to the introduction of any errors, all

of the signals in each bundle should match the “correct” values (i.e., Xi = Xj ∀ i, j
and Yi = Yj ∀ i, j). If errors have occurred, some fraction of these lines will contain

the logical inverse of the correct value. Without loss of generality, logical true, ‘1’, is

defined to be the “correct” value for X and Y , and thus ‘0’ is the correct output Z.

Let (X,Y, Z) have (kx0 = x̄N, ky0 = ȳN, kz0 = z̄N) stimulated signals. Thus, the

three-tuple (x̄, ȳ, z̄) is the probability each variable is stimulated, while kx0, ky0, kz0

represent the number of stimulated lines in each respective bundle for stage 0.

In the permutation unit, U, the X and Y bundles are randomly permuted and

combined into N XiYj pairs. For example, if N = 4, one possible permutation is

X2Y3, X0Y1, X3Y0, X1Y2. These XY pairs are the inputs to the N NAND gates. For a

von Neumman error, each NAND gate is subject to an error which inverts the correct

logical output with probability ε.

65



X0

X1

X2

XN
…

Y0

Y1

Y2

YN
…

X0

Y2

XN

Y1

X2

YN

X1

Y0

…
…

…

……
…

X

Y

U

Permutation

Unit

Executive Stage Restorative Stage(s)

…

…

X0

X1

X2

XN
…

Y0

Y1

Y2

YN
…

X3

YN

X1

Y0

XN

Y2

X2

Y1

…
…

…

……
…

X

Y

U

X0

X1

X2

XN
…

Y0

Y1

Y2

YN
…

X2

Y1

XN

Y0

X1

Y2

X0

YN

…
…

…

……
…

X

Y

U

Z

Figure 2.25: NAND Multiplexer

A model of NAND multiplexing has been developed [vN56,HJ02,NPK04] which

determines the distribution of the stochastic variable z̄ in terms of given x̄ and ȳ. von

Neumann [vN56] determined for large N , the output probability z̄ is a stochastic vari-

able with an approximately normal distribution. The upper bound of the probability

of gate failure that can be tolerated is εmax ≈ 0.0107. The tolerable threshold proba-

bility is actually εmax = (3 −
√

7)/4 ≈ 0.08856 [EP98]. Beyond this (i.e., ε > εmax),

the failure probability of the NAND multiplexor system is larger than some fixed,

positive lower bound, regardless of the bundle size N . Furthermore, for small N, the

number of stimulated outputs of the executive stage is theoretically a binomial dis-

tribution, although is disputed [NPK04], due to a lack of independence between lines

in the output bundle.

A model of NAND multiplexing performance that incorporates the dependence

between lines in the output bundle has been developed. The results of this research

are found in Chapter VI.

Several system architectures use NAND multiplexing [SNF04,HJ03]. By com-

bining fault masking from NAND multiplexing with fault recovery from reconfigura-

tion, a processor can tolerate defect probabilities as high as 10−2 [HJ03]. A processor

can be made 90% reliable over ten years of operation, with a defect rate of 10−4 and a

redundancy of only R = 50 [SNF04]. Due to the high levels of redundancy required,

66



NAND multiplexing has been of limited use. As process sizes get smaller and more

devices become available, the technique may see wider use.

2.4.3.4 Duplication With Comparison. Duplication With Comparison

[dLKNH+04] detects faults using redundant modules. Much like a majority gate,

this approach replicates hardware modules. Unlike majority voting, DWC does not

attempt to correct an error, but rather detects its presence signals an error handler

to the potential fault.

A simple DWC system compares the outputs of two modules. If the outputs

differ, an error flag is raised. DWC is of limited utility when used alone, since it

is not possible to identify which of the two modules is in error. To overcome this

limitation, DWC is sometimes combined with another technique, Concurrent Error

Detection [LCR03].

2.4.3.5 Concurrent Error Detection. Concurrent Error Detection(CED)

detects a fault without stopping circuit operation. While DWC detects faults in the

system, CED detects which blocks are fault free [dLKNH+04, LCR03]. Figure 2.26

shows the basic concept for a combined DWC/CED scheme. The circuit data outputs

are denoted out1 and out0. Three flag signals are used, one to signify a fault has been

detected (i.e., the outputs do not match), and two flags to denote the operational

state of each of the two logic modules.

After the DWC comparator detects an error, CED determines which module

produced the fault. The most common methods are bitwise inversion, recomput-

ing with shifted operands(RESO), and recomputing with swapped operands(REWSO)

[dLKNH+04,LCR03].

A detailed diagram of the RESO concept is shown in Figure 2.27 [dLKNH+04,

LCR03]. During normal operation, the A and B inputs are passed through multi-

plexers to the combinational logic in dr0 and dr1. A clock signal stores the results

of the two modules for later comparison. If the two outputs are equivalent, both

67



Figure 2.26: Combined Duplication With Comparison
(DWC)/Concurrent Error Detection(CED) fault detection
scheme [dLKNH+04].

output flags enable dr0 and enable dr1 are raised and both outputs are used by later

modules. During this second cycle, the operands are shifted prior to use so errors

from permanent faults in the combinational logic are different from those obtained in

the original calculations. Comparing the results can be used to identify which module

is in error. The final Enable dr output flags is then set to tell later modules which

input to use.

The benefit of this approach is error detection and isolation is done in only one

additional clock cycle. However, a fault occurring in the encoding, decoding, or voter

logic produces false positives even when both combinational modules are functional.

This problem can be overcome through the combination of DWC/CED modules in

larger fault tolerant modules using TMR or other techniques.

2.4.3.6 Reconfiguration. Reconfiguration also can achieve fault tol-

erance in hardware. Reconfiguration relies on the ability of hardware to modify its

configuration to implement different logical structures. It is most commonly im-

plemented in programmable logic devices such as Field Programmable Gate Arrays

(FPGAs). The FPGA implement application circuits by programming RAM-based

68



Figure 2.27: Combined Duplication With Comparison
(DWC)/Concurrent Error Detection(CED) fault detection op-
eration. Data propagation during normal operation is shown on
the left, and in fault detection mode on the right [dLKNH+04].

Configurable Logic Blocks (CLB) and setting interconnect switches to connect them.

The structure of FPGAs is discussed in more detail in Appendix A.1.2.

Application circuits implemented in FPGAs typically provide better perfor-

mance than those implemented in software on general purpose processors (GPP).

The study of these architectures is often referred to as Reconfigurable Computing and

is discussed in Appendix A.2.

Reconfiguration is also used to provide fault tolerance. Reconfigurable devices

have a large number of configurable logic blocks (CLBs). Provided that the applica-

tion design does not use all available configurable resources (i.e., CLBs and routing),

unused resources can be used to provide hardware redundancy. If portions of the

hardware implementing the application circuit fail, the FPGA can be reconfigured to

move the affected portions of the application circuit to the spare resources. Recon-

figuration overcome manufacturing defects was demonstrated in the Teramac system

constructed by Hewlett-Packard [HKSW98]. Teramac was implemented using 864

inexpensive, low-quality, FPGAs. Upon system configuration, each FPGA was tested

69



and defects located. A detailed map of roughly 220,000 defects was obtained, and the

application architecture was mapped onto the remaining operational CLBs and cor-

rect operation of the Teramac computer was demonstrated. Teramac did not attempt

to detect or correct faults that occurred after the system was initially configured, but

the concept can be extended to cover hard faults occurring during system operation.

Comparison of reconfiguration to other hardware FT techniques is made based

on the upper limit on pf , the defect probability per device, that can be tolerated

[NSF01,FNS01, LMSP98]. The probability a CLB composed of Nt transistors, each

of which fail with probability pf , functions correctly is

Pclb,w = (1 − pf )
Nt . (2.24)

An arbitrary number, Nc, of CLBs are connected together to form an atomic

fault tolerant block (AFTB). Since an AFTB can be reconfigured to perform some

operation even if one of the component CLBs is faulty, the probability that an AFTB

functions properly, Paftb,w, is the sum of the probabilities of zero and one CLB failure,

or

Paftb,w = (Pclb,w)Nc + (Pclb,w)Nc−1(1 − Pclb,w). (2.25)

The failure probability for the AFTB is

Paftb,f = 1 − Paftb,w. (2.26)

If NA AFTBs are combined in clusters to perform higher level functions (e.g.,

adders, memories, etc.), the probability a cluster fails [FNS01] is

Pcluster,f = 1 − (Paftb,w)NA . (2.27)

70



Suppose R of these clusters are combined into a supercluster and the overall

computer can diagnose faults in the clusters. If the processor uses the output of a

functional cluster, as long as at least one of the R clusters functions correct results are

achieved. The probability at least one of the R clusters in the supercluster functions

correctly is

Psc,w = 1 − (Pcluster,f )
R. (2.28)

The total number of superclusters on the chip, Nsc, is

Nsc =
Ntotal

R ·Nt ·Nc ·NA

. (2.29)

Finally, the probability the entire chip functions is

Pchip,w = (Psc,w)Nsc . (2.30)

It is assumed in this example that each cluster can be tested and defective

clusters disabled. In reality, limitations on interconnect resources make the problem

more complicated. Fault tolerance modelling of reconfigurable systems is an area for

further study.

Figure 2.28 shows the performance of reconfiguration versus RMR and NAND

multiplexing [FNS01]. In this example, Nc is the number of superclusters in the

design, determined by the granularity of the configurable units. The plots show the

maximum allowable device failure probability, pf , versus the level of redundancy,

R. The top three lines represent reconfiguration; the middle three lines are NAND

multiplexing; and the bottom three lines are RMR. Reconfiguration is able to use

devices with failure probabilities several orders of magnitude higher than RMR or

NAND multiplexing for any particular level of redundancy. While the model used is

fairly simple, it is clear that reconfiguration provides good fault tolerance at levels of

redundancy lower than those required by other methods.

71



Figure 2.28: Comparison of three hardware FT methods (Max
allowable pf versus Redundancy, R) [FNS01].

Reconfiguration, however, provides no protection against soft errors. For this

reason, a fault and defect tolerant computer (FDTC) should implement other fault

tolerance techniques in addition to reconfiguration. This research will explore ways

to combine these strategies.

2.5 Radiation Effects

Circuit operation can be affected by environmental factors such as cosmic radi-

ation, thermal noise, and power supply fluctuations. These factors sometimes induce

errors in digital logic, change the value of bits stored in memory, and cause devices

to degrade and suffer permanent failures. In the past, these effects only had a signif-

icant impact on microchips used in space applications. But as process size shrinks,

these effects are becoming significant even for terrestrial users, and soon computer

architects will no longer be able to ignore their impact.

This section examines the common effects of radiation and other environmental

factors on the performance of electronic devices.

72



• Section 2.5.1 examines the causes of radiation-induced faults.

• Section 2.5.2 examines how devices are affected.

• Section 2.5.3 describes how the effects change as the process size decreases.

• Section 2.5.4 examines potential solutions, both at the process and design level.

Due to the large number of storage devices present, Field Programmable Gate

Arrays (FPGA) are particularly susceptible to Single Event Upsets and other soft

errors. FPGA-specific effects are covered in Appendix A.1.2.5.

2.5.1 Causes. In modern 90nm CMOS, the area per memory bit is a mere

1µm2 [KH04]. By 1962, it was predicted that when channel length fell below 1µm,

a single cosmic ray particle strike could short circuit the source and drain terminals,

disrupting circuit operation [KH04].

The first errors directly attributed to cosmic rays occurred in 1975, when space-

craft electronics malfunctioned during a “magnetically-quiet time,” meaning the fail-

ure was not due to magnetic charging of the spacecraft. By 1978, soft errors were

observed in dynamic memory devices at ground level. Memory contents had changed

some time after being written. Although no damage was observed in the circuit, when

new data was stored errors would reappear at different locations. A memory value

error due to single particle strike is called a Single Event Upset (SEU).

Leading causes of radiation effects include alpha particles and cosmic rays

[HSA94]. Cosmic rays are typically protons, but also include alpha particles and

heavy atoms with energy levels up to 500MeV. The most common radiation sources

in the atmosphere, however, are high energy neutrons. Neutrons are naturally present

in the atmosphere and are imparted energy through the impact of cosmic rays and

the decay of radioactive nuclei [KH04]. Neutron energies range from 20-300MeV.

2.5.1.1 Alpha Particles. Alpha particles are emitted from a small

number of radioactive impurities found in the plastic packages of microchips as well

as in the microchip itself [KH04]. Plastics and other materials in the packaging

73



contain several parts per million of Uranium-238 and Thorium-232. Alpha particle

flux rates for current process technologies are about 0.001α/cm2−hr [KH04] and the

Soft Error Rate (SER) due to alpha particles does not vary significantly with altitude.

SER decreases over time as the impurities decay. SER due to alpha particle strikes

is significant–one soft error per day in a 4 kbit DRAM chip, but can be reduced

with better packaging materials and shielding between the plastic package and the

chip [KH04].

Radioactive impurities are the source of the alpha particles. In 1995, Boron-10

was identified as a significant cause of SEUs [KH04]. It caused as many as 80% of

the SEUs in a 0.25µm SRAM chip. In addition, impurities in the interconnect metals

create alpha particles; the silicon wafer itself contains a small number of radioactive

impurities.

2.5.1.2 Neutrons. High energy neutrons are generated in the at-

mosphere by the impact of high energy cosmic ray particles. Neutrons do not carry an

electric charge, but when they strike a silicon microchip, the impact energy can cause

electron-hole pair formation. The energy required to create a hole pair is dependent

on the bandgap of the semiconductor; for silicon it is 3.6eV.

Cosmic rays decrease exponentially with the amount of shielding applied to the

chip [KH04]. The atmosphere acts as a natural shield, decreasing SER by three orders

of magnitude from aircraft flight altitudes to sea level. Thus, SEUs caused by neutrons

are more prevalent in space and aircraft applications than at sea level. Neutron density

varies with altitude, being particularly high from 10-40km. The maximum intensity

is at 15km. Sea level neutron density is roughly 20 neutrons/cm2−hr (with energies

> 10MeV ). However, not every neutron striking the surface of the silicon chip strikes

a proton. Since the most of the space occupied by an atom is the electron cloud, only

one out of 40,000 neutrons striking the surface hits a silicon nucleus in the first 10µm

of depth [KH04].

74



Table 2.5: Short and long term radiation effects on microelec-
tronic devices.

Transient effects Source Method

Rapid annealing of minority carrier
lifetime

Particle Displacement

Transient currents Particle/Photon Ionization
Latching conditions in bistable cir-
cuits

Particle/Photon Ionization

Long-Lived Effects

Increased defect concentration Particle/Photon Displacement
Decreased carrier lifetime, mobility,
concentration

Particle/Photon Displacement

Altered population of traps Particle/Photon Ionization
Oxidation-reduction reactions Particle/Photon Ionization

2.5.2 Effects. Radiation causes both short and long term impacts on elec-

tronic devices. This section summarizes several of the most significant effects as

observed in materials, transistors, and the system architecture. These effects are

common to all ASICs, including FPGAs. The application-level impact on FPGAs is

covered in Appendix A.1.2.5

2.5.2.1 Effects on Materials. Several effects relevant to CMOS logic

circuits are shown in Table 2.5. The effects are categorized by their duration (i.e.,

transient or long-term), their source (i.e., high energy particle impact such as alpha

particles or neutrons), and the method of damage (i.e., ionization of atoms and re-

sulting hole-pair generation, or physical displacement of atoms in the silicon lattice).

Most long term effects accumulate over time, and are most significant in high

radiation environments such as space. Permanent failure of devices can occur due to

prolonged radiation exposure. While radiation hardened design is outside the scope

of this research, it will be assumed an appropriate level of radiation hardening is

used to prevent long term effects. The most significant effects for general purpose

applications, at sea level, in aircraft, and in space, are transient effects.

75



2.5.2.2 Effects on Devices. Transient effects in microelectronic devices

are caused by concentrated bursts of electric charge generated at random locations

in the substrate and collected by the drain diodes in MOSFETs. The charge transfer

can be enough to change the logic state of a node in the circuit. A circuit node in

90nm CMOS stores about 1-10fC of charge [KH04]. Alpha particles carrying 3-10MeV

correspond to 100fC of charge, well in excess of the amount needed to generate a SEU.

Not all the generated charge is collected by the drain. Most of the electron-hole pairs

recombine or are collected by reverse-biased PN junctions shorted to the power rail.

The fraction of charge collected by the circuit is defined as the collection efficiency .

The amount of charge necessary to change the output of a device is called the critical

charge, or QCRIT .

Depending on their design, circuits are affected by alpha particles and neutrons

to different extents. In SRAM cells with lower values of QCRIT , alpha particles con-

tribute to SER as much as neutrons. For devices with higher QCRIT values (due to

larger device area), neutrons usually dominate. The relative influence of the two types

of soft error determines the overall SER for the device.

The electrical pulse generated by the impact of an alpha particle or neutron

may not affect the output state of the local transistor, a higher level logic gate, or

the system. A typical single event upset (SEU) lasts about 100ps, and if the charge

disturbance is less than the noise margin for the device the charge pulse will not effect

the output of the logical gate. If it exceeds the noise margin, it can cause an inverter

to change state. If connected in a feedback loop such as in a latch or flip flop, the

error in the first inverter is passed on to the second inverter, changing the memory

state of the device.

In a combinational circuit, many transient effects dissipate prior to the end of

the clock cycle and the latching of results and are said to be masked. Therefore, the

soft error rate (SER) observed at the module or system level is often less than the

76



SER at the device level. The higher level SER is derated to remove soft errors that

are masked. Three common types of masking are

• Logical masking occurs when the output of a gate is controlled by the input not

subject to the soft error. For example, a NAND gate with inputs of ‘0’ and ‘1’

would not be affected by a soft error on the ‘1’ input since it does not change

the output.

• Temporal masking occurs when the noise on the input of a latch or flip-flop is

outside of the clocking window and does not change the state of the memory.

• Electrical masking results from the limited bandwidth (i.e., switching speed)

of devices. Transients with bandwidths greater than the cutoff frequency of

the device are attenuated and the pulse amplitude visible on the output of the

transistor may be reduced below the threshold of the next device in series. Thus

the effect may be limited to a few serial logic gates.

2.5.2.3 Effects on Systems. Many soft errors are masked and do not

affect the output or state of the overall system. The soft errors may or may not be

detectable, and may or may not be correctable. For example, many modern memories

contain parity bits to detect errors. Some memories implement error correcting codes

to correct single bit errors. The following SERs have been observed in memory devices

[KH04,Xil03]:

• Neutron induced soft errors in a 256kbit SRAM on a commercial aircraft resulted

in an SER of 1 error per 80 days.

• Alpha particle strikes at a rate of several per cm2 − hr led to an SER of 1/day

in a 4kbit DRAM.

• A supercomputer with 156Gbit of DRAM failed several times per day.

• The SER in pacemakers is about the same errors caused by background neutron

radiation.

77



• The European Space Agency’s Freja satellite experiences > 200 SEUs/day.

More than 40 proton-induced latchup events were observed in three years in

orbit.

Logic errors are more difficult to detect and correct and will soon dominate chip

level SER in ASICs [KH04]. Testing of real processors has not yet shown this to be a

major problem, but with further process scaling, soft errors in logic will soon become

more prevalent.

2.5.3 Relation to Process Scaling. The impact of process scaling on soft

error rate is difficult to predict as it depends on many competing factors. Many

studies have been done to determine the effect of voltage and size scaling on SER and

to find ways to keep the overall SER down. Even if the bit level SER is kept down,

the exponential growth in the number of devices on a chip can result in a system level

SER that grows as process size shrinks.

At sea level, scaling effects in SER are an aggregate of alpha particle, high

energy neutron, and thermal neutron effects. Power supply voltage is also a factor.

SER has been shown to increase by a factor of two when power supply voltage was

decreased from 1.2V to 0.8V [KH04]. Device size plays a role, as the critical charge,

QCRIT , decreases by K2 with the constant scaling rules . At the same time, the

collection area decreases with size, lowering SER. The collection efficiency decreases

with increased substrate doping and reduced bias voltages, decreasing SER.

Theoretical predictions show SER due to alpha particle strikes remains relatively

constant with scaling. Experimental measurements have produced minor variations,

but in general agree with the theoretical predication.

For neutrons, experimental results vary widely. For example, one study shows

a 50% decrease in SER in SRAM cells from 0.5µm to 0.25µm, but a 300% increase

from 0.25µm to 0.14µm [KH04]. Another study reports an increase of 8% per process

generation from 0.25µm to 90nm [KH04]. This variation may be explained by dispro-

portionate scaling of QCRIT with respect to collector efficiency.

78



Technology trends, then, indicate a moderate increase in SER/bit or SER/latch

with process scaling [KH04]. Due to careful modeling of SEUs, process improve-

ments, and device hardening, this trend has not been manifest in production devices.

Whether SER can be held constant with scaling remains to be seen.

2.5.4 Solutions. Several strategies can overcome the effects of soft errors

on digital circuits. The fabrication process can be controlled to reduce the numbers

of radioactive impurities. Better modelling and characterization techniques can be

developed to accurately model the impacts of design and process changes on SER.

Finally, architectural changes can be incorporated to detect and overcome faults.

Many process improvements have already been incorporated to reduce the soft

error rate. When Boron-10 was discovered to be a cause of soft errors, boro-phospho-

silicate glass was removed from the fabrication process. In addition, increasing the

purity of silicon wafers will reduce the number of radioactive impurities.

The use of Silicon On Insulator (SOI) also reduces soft error rate. SOI devices

have lower junction capacitances and better noise isolation since the thinner substrates

present a lower collection volume and thus collect less charge during a particle strike.

It has been shown that SER can be reduced by a factor of five or more through use

of SOI. Further radiation hardening techniques can decrease SER by as much as 100

times. Care must be taken in design, however, as the forward biasing of the substrate

is more significant in SOI, which creates a parasitic bipolar transistor whose signal

can be amplified in the circuit and contribute to soft errors. In the worst case this

can cause SER to exceed bulk CMOS.

It is also important to be able to accurately quantify and model the effects of

radiation on devices. Accurate design trade-offs cannot be made without an under-

standing of the impact of design changes on SER. Most radiation modelling has been

targeted toward bulk CMOS using conventional materials. As new materials such

as copper interconnect, high k dielectric materials, and silicon-germanium strained

silicon come into use, modelling of SEU effects becomes more difficult. Some of these

79



materials increase SER. First order modelling shows neutron SER increases with the

mass density of the materials present. Copper, tantalum, tungsten, and cobalt in

CMOS fabrication may increase SER by a factor of two or more [KH04].

Simulation of SEU effects is difficult, with complexity growing exponentially

with the size of the circuit. Even testing is difficult to perform as the impact rates

of alpha particles and neutrons is very low. Accelerated testing is often performed

by bombarding a microchip for a short time with white neutron or proton beams at

a higher rate than found in the environment. Results are then scaled with time to

match a lower radiation rate for a long time period.

Architectural changes can make the circuit more tolerant to soft errors. Many

memory designs incorporate parity bits and error correcting codes (ECC) to detect

or correct single bit errors in memory arrays. ECC is very effective, as relatively few

SEUs result in the upset of two or more adjacent memory bits. Interleaved memory

designs can separate bits checked together by ECC, reducing the probability that of

a multi-bit error.

2.6 Fault Tolerant Architectures

2.6.1 Fault and Defect Tolerant Systems. This section examines several

recent experimental and hypothetical system architectures incorporating fault toler-

ance. These systems can be broadly classified in four categories:

• Error Tolerant Systems

• Defect Tolerant Systems

• Fault Tolerant FPGA-Based Systems

• Array-Based Multiprocessor Systems

2.6.1.1 Error Tolerant Systems. Certain applications do not require

accurate computation [BGM04]. For example, video compression and some signal

processing algorithms produce approximations rather than exact results. In many

80



cases, errors in a computation result is acceptable, since it would go unnoticed amid

the inaccuracies inherent in the application algorithm.

This type of application may be well suited for error-prone chips implemented

with molecular crossbars or other devices. Errors in the control logic in the circuit

would still be unacceptable, as the processor may lock up or crash. Likewise, errors in

data-producing module such as adders and multipliers would be unacceptable when

producing results for the control flow of the program. But errors in the data output

may be tolerated. In these cases, the system designer can trade off performance versus

reliability, resulting in a design that operates very fast (either singly, or using many

processors in parallel on a dense chip) at the cost of accuracy.

2.6.1.2 Defect Tolerant Systems. Teramac, constructed by Hewlett-

Packard in 1998, is a defect tolerant computer [HKSW98,Cla98]. Teramac is a mas-

sively parallel computer constructed from inexpensive, defect-prone FPGAs. Con-

structed using 864 identical FPGAs, only 217 of the chips passed fabrication testing.

The remaining 75% were provided for free by the manufacturer, as they would other-

wise have been discarded as defective. In all, over 220,000 defects were identified in

the FPGAs. After constructing the computer from the 864 FPGAs, the system was

powered up and a test configuration was loaded onto the FPGAs. Defect locations

and types (logic and interconnect) were mapped and provided to a specially-built ap-

plication compiler, which placed and routed the final multiprocessor architecture onto

the FPGAs. Teramac demonstrated correct operation using defective components.

The Teramac project showed it is possible to build a powerful computer from

defective components, given sufficient routing resources. It was also shown the com-

munications resources do not have to be regular in structure, so long as they provide

a sufficiently high degree of connectivity. Finally, Teramac identified interconnect

resources as the most critical aspect of the design [HKSW98]. Future molecular com-

puters will require tremendous amounts of communications bandwidth to connect the

various parts of the circuit.

81



2.6.1.3 Fault Tolerant FPGA-Based Systems. Space-Based Radar is a

fault tolerant systems being developed using FPGAs. Designed by the Jet Propulsion

Laboratory and the Air Force Research Laboratory, the system will provide onboard

processing of radar data [LCC+04], as well as:

• Provide a capability to reconfigure the FPGAs to support algorithm updates

after launch.

• Provide graceful degradation of capabilities while operating in a radiation-

intense environment for a period of at least three years.

• Be tolerant of the space radiation environment, while achieving a given reliability

and availability.

The architecture of the processor is a tightly-coupled reconfigurable computer

consisting of a FPGA front end connected to a digital signal processor back end. For

fault tolerance, the system incorporates modular TMR, replicating the entire FPGA

processor three times and comparing the results. A separate Fault Management

Unit controls the operation of the three FPGA processors, as well as implementing

periodic scrubbing of the configurations, and periodic off-line testing of the FPGAs.

In addition, a failed FPGA can be disabled completely.

Future design iterations of the system will include redundancy at lower levels

(i.e., circuit, gate, and module levels). Other fault tolerance techniques under con-

sideration include algorithm-based fault tolerance, time redundancy, and information

redundancy [LCC+04].

The Center for Reliable Computing at Stanford University is developing a two

FPGA architecture that provides error detection and autonomous self-repair without

external intervention [MHS+04]. Each FPGA design includes internal Concurrent

Error Detection (CED) circuitry. Many faults and errors can be corrected internally

using standard fault tolerance techniques. For suspected configuration bit errors due

to SEUs, one FPGA reads and compares the configuration of the other. Scrubbing

techniques are used to repair SEUs in the configuration.

82



Permanent fault recovery is provided by relocating portions of the application

design to unused columns in the FPGA. Pre-compiled alternate configurations are

loaded at random, moving columns to different locations. The operation producing

the error is retried using different configurations until the error disappears. The

column not used in the final configuration is deemed the defective column. This

method of fault diagnosis claims to be simpler and faster than other techniques such

as Roving Self-Test and Repair (STAR) [MHS+04] (cf., Section 2.6.3.3).

A column relocation strategy limits the number of defects that can be tolerated.

When a permanent fault is detected, an entire column is marked defective, which limits

the number of faults that can be repaired. If the FPGA contains M column, with

N columns being used by the application, only M − N spare columns exist. As few

as M − N faults (i.e., one per column) can render the system unusable. This is a

limitation primarily due to the column-based reconfiguration architecture of the Xilinx

FPGAs used by the project. Alternate FPGA designs can remove this limitation.

Another limitation of the approach is the pre-defined alternative configurations,

which target faults in the CLBs rather than in the interconnect. The alternative

configurations must pass signals across unused columns. If the fault lies in one of the

configuration memory cells in a switchbox matrix, in a pass transistor, or is in the

wiring itself, the faulty component may be used by the alternative configuration, even

though the column itself is not used. This is an area that needs to be addressed.

2.6.1.4 Theoretical Array-Based Systems. Some systems are based

upon massively parallel multiprocessor systems with configurable interconnect net-

works. A multi-stage interconnect network was proposed by [ACD+02]. In this sys-

tem, the processing nodes are FPGAs, connected in a large multi-stage switch network

containing a high level of redundant links and two levels of fault tolerance. System

level fault tolerance removes a failing FPGA node from use and transfers its function

to another node. The switch network is reconfigured to route the inputs and outputs

from the old node to the new one. The second layer of fault tolerance reconfigures

83



the FPGAs themselves. Each FPGA provides spare CLBs in each column. Alternate

FPGA configurations are used to move the application design from faulty to working

CLBs. As a final option, entire columns can be moved [MHS+04].

2.6.2 Fault Tolerant FPGAs. This section examines research efforts to con-

struct more reliable FPGAs. Fault tolerance techniques have been proposed as meth-

ods to overcome manufacturing defects, thereby increasing yield, as well as making

operatal FPGAs less subject to SEU-induced errors and other failures.

One of the first papers to address the problem of increasing yield in FPGAs

through redundant resources was [HTA94]. Although the research focused on CMOS

FPGAs, several key challenges were identified that will prove equally relevant to fu-

ture fault and defect tolerant computers implemented with other device technologies.

The most important is the burden placed on the users of the chip. The capabilities

and performance of each chip will vary greatly depending on the number, type, and

locations of defects. Each device must be individually tested after fabrication to de-

termine funcationality, and whether the intended application design can be mapped to

the defect-free resources. Yield will be much more difficult to predict than in current

ASICs, as single defects will no longer render the entire chip useless.

The standard yield equation for ASICs [HTA94] is

Y =

(

1 +
λ

α

)−α

, (2.31)

where α is a clustering parameter to account for the fact that defects often occur

in close proximity on the wafer. This factor produces higher yields than would be

expected from a uniform distribution of defects. The mean number of defects in the

chip area, λ, is

λ = A× d (2.32)

where A is the chip area, and d is the defect density (in defects per unit area).

84



FPGAs with one or more defective resources (i.e., either CLBs, switching ele-

ments, or configuration memory cells) can still be used. Thus, it is more appropriate

to measure cell yield , the fraction of FPGA CLBs that are usable [HTA94]. In the

simple cell yield model, the primary resource under consideration is the CLB, while

interconnect resources are assigned to the CLB cells. Depending on where a defect

occurs, it can disable one or more cells (i.e., CLBs and associated interconnect) in

the FPGA, since FPGAs contain interconnect resources that span multiple cells. An

interconnect fault affecting one or more column lines may disable an entire column of

CLBs. The probability a defect disables an entire column or row of cells is Pcol and

Prow. Likewise, a defect affecting the configuration or power distribution portions of

the FPGA can disable the entire device. The probability a defect disables the entire

array is Parray, while the probability that an occurring defect disables a single cell is

Pcell. These probabilities are relative to each other, with Pcell+Prow+Pcol+Parray = 1.

Thus, cell yield is

λ = [Acell · (i · j · Parray + i · Prow + j · Pcol + Pcell) + Aoverhead(i, j)] × d, (2.33)

where Acell is the area of a single cell (i.e., the CLB and its portion of the interconnect

matrix), Aoverhead(i, j) is the area of configuration logic for the entire FPGA, and d is

the defect density (in defects per unit area) [HTA94].

Cell yield can be increased using segmented or hierarchical interconnects. By

breaking row and column lines into segments, a fault on one segment affects fewer

CLBs. This has the effect of lowering Prow and Pcol. For this reason, segmented routing

will continue to be included in future FPGA designs as fault tolerance becomes more

of a consideration.

Another design consideration relevant to fault tolerant FPGAs is the channel

design for routability [RN95]. A method for finding the optimal channel design (i.e.,

channel widths and segmentation) was developed using simulated annealing. By com-

paring the fault tolerance of an FPGA architecture synthesized for routability and

85



performance to that of an FPGA architecture designed for improved fault tolerance

using the new technique, a 6% increase in the number of faults that could be tolerated

was realized.

The remainder of this section addresses the following categories of improving

reliability in FPGAs:

• Circuit level improvements,

• Logic block designs,

• Fault tolerant interconnect,

• Spare logic blocks interspersed in the array, and

• Spare rows and columns of logic blocks.

2.6.2.1 Circuit Level Improvements. Xilinx produces a line of radia-

tion hardened FPGAs that include a thin epitaxial layer in the fabrication process

to reduce the susceptibility to Single Event Latchups [Xil03]. A variety of VLSI

layout techniques are used in radiation-hardened circuit design to provide increased

protection at the cost of special materials, increased design times, and larger circuit

size. Radiation hardened processes typically lag behind conventional processes by

one or two generations, so radiation-hardened FPGAs provide less capability than

commercial FPGAs.

Rather than applying these techniques to the entire device, several papers have

proposed alterations to the VLSI layout of the FPGAs configuration cells as a method

of increasing the resistance to SEUs [Wan04, SGV+04]. This method is sometimes

called radiation “hardening by design.” This method allows the use of conventional

CMOS fabrication processes.

Radiation-hardened memory cell designs use resistor-capacitor pairs to filter

Single Electron Events (SEE) [Wan04]. As shown in Figure 2.29, resistors R1 and R2

are added in series with the gate capacitances of the two inverters (M1-M3 and M2-

M4). The resistor-capacitor pairs form a filter on the input lines entering the inverters,

86



Figure 2.29: Radiation hardened SRAM cell using Resistor-
Capacitor filtering [Wan04].

filtering out the high frequency components of a SEE. This technique does not require

redundant transistors, but may require large resistors. As process size shrinks and

node capacitance decreases, resistor values must increase to maintain the correct

RC time constant to filter the high frequency components of a SEE. For example,

in 0.25µm processes resistance values in the megaohm range are necessary, and the

addition of these large resistors may cause an unacceptable increase in switching

delays due to the larger RC time constant and the increased time needed to charge

the gate electrodes of each transistor [Wan04].

A second technique observes that the typical configuration bitstream of an

FPGA is composed of 87% zeros [SGV+04]. Thus, the design of the SRAM memory

cell can be optimized to be more resistant against 0 → 1 SEUs than 1 → 0. The new

SRAM cell is called Asymmetric SRAM (ASRAM). The ASRAM-0 cell design has a

lower leakage current and increased soft error immunity when storing a ‘0’ bit. In an

87



Figure 2.30: The Asymmetric-0 SRAM cell provides increased
SEU protection when storing a 0 bit [SGV+04].

ASRAM cell, the threshold voltages, Vt, of the transistors are chosen to minimize the

leakage current in the ‘usual’ state. An ASRAM cell is illustrated in Figure 2.30. The

circuit structure is the same as a standard memory cell. The upper right and lower

left transistors have a higher threshold voltage than the other two transistors in the

feedback loop. When storing a ‘0’, the node labelled Q is at Vss = 0V . Thus, there

may be a small leakage current from Vdd across the upper right transistor to node

Q. Likewise, node Q′ is at Vdd. A small leakage current exists from node Q′ to Vss

across the lower left transistor. Increasing the threshold voltage for these two tran-

sistors will reduce the leakage current at the expense of a small performance penalty.

The ASRAM-0 cells used in the experiment reduced leakage energy consumed by the

configuration SRAMs by a factor of 18 compared to standard balanced SRAMs.

A final design technique incorporates redundant transistors to provide immunity

to single event upsets [CNV96]. The design is called Dual Interlocked Memory Cell .

The concept is illustrated in Figure 2.31. In this design, redundancy in the memory

latches stores a second copy of the data state. Thus, one latch provides a “state

restoring feedback” function to the other in case of an SEU. In this diagram, IA1 and

88



Latch 1

Latch 2

IB1IA1

OA1 OB1

IB2IA2

OB2OA2

Figure 2.31: The conceptual view of the DICE Memory cell
[CNV96].

IB1 correspond to the D and D inputs to latch 1, while OA1 and OB1 are the Q and

Q outputs.

The circuit diagram for the DICE SRAM cell is shown in Figure 2.32. The four

nodes X0 − X3 store the state of the cell. Logic ‘1’ is ‘1010’, and logic ‘0’ is stored

as ‘0101’. Transistors N4-N7 form transmission gates to enable or disable read/write

access to the cell. The design of the feedback loops is such that a SEU occurring at

one of the nodes Xi can temporarily affect the logic state of Xi+1 (in the case of a

negative upset pulse, converting a 1 → 0) or Xi−1 (in the case of a positive upset,

converting 0 → 1). However, the SEU will not affect the logic state stored in the other

feedback loop. Thus, the other two nodes are isolated from the effects of the SEU.

The logic perturbation is removed after the transient ends due to the state-reinforcing

feedback function of the other two nodes.

The DICE cell protects against a SEU affecting only one node but requires 12

transistors versus the six of a standard SRAM cell. If the particle impact generates

pulses at two nodes in the same logic state (e.g., X1 and X3), the immunity is lost

and an SEU occurs. This probability can be kept low if the transistor drain areas of

the two nodes are suitably spaced on the VLSI layout. This will become difficult as

process size decreases, however.

89



Figure 2.32: DICE Memory cell is immune to SEUs [CNV96].

2.6.2.2 Logic Block Designs. Over the years, many researchers have

investigated changing the FPGA configurable logic block to provide the maximum

flexibility and functionality with the minimum amount of overhead (i.e., redundant

interconnection). Over time, the four-input lookup table logic block has become

standard commercial practice. More recently, alterations to the CLB structure to

increase fault tolerance have been proposed. This section highlights several of these

projects.

The Field Programmable Transistor Array (FPTA) can be viewed as a FPGA

with extremely fine granularity; the hardware is configurable at the transistor level.

The FPTA array of transistors is interconnected by programmable switches [Sto99,

KZJS00,SZK+01]. More interconnect resources are provided than in a larger grained

FPGA, although not every possible connection is possible. A proposed node ar-

chitecture for the FPTA is shown in Figure 2.33. The FPTA cell consists of eight

transistors and 24 programmable interconnect points. The cell corresponds to the

90



Figure 2.33: Node design for a Field Programmable Transistor
Array. Similar in function to an FPGA, the FPTA has a much
finer granularity [Sto99].

CLB in a FPGA. The FPTA consists of an array of cells in surrounded by a mesh of

programmable interconnect.

Due to the fine granularity, the FPTA is more flexible than a FPGA and capable

of implementing a wider range of application circuits. On the other hand, the FPTA

has a much higher interconnect and configuration overhead. If the 24 programmable

switches in Figure 2.33 are implemented using four transistors each, 96 transistors

would be required to control the eight application transistors. While an example of a

FPTA has been fabricated for research purposes, the tremendous overhead required

makes it unlikely the FPTA will be widely adopted for CMOS processes. The FPTA

architecture may prove useful with technologies such as molecular switches, which can

implement the memory bits very efficiently.

91



Table 2.6: Stuck-Open and Stuck-Closed transistors in the
multiplexer can be detected using the voltage level of the output.
A simple voltage detector is formed from two inverters with
different threshold voltages [PCL+02]. A fault is indicated when
Inverter 1 = VDD and Inverter 2 = GND.

Vout Inverter 1 Inverter 2
GND < Vout < VT1 VDD VDD

VT1 < Vout < VT2 VDD GND
VT2 < Vout < VDD GND GND

Another fine-grained CLB design has CLB granularity at the level of individual

gates [SP03]. The architecture is designed to support research in evolutionary algo-

rithms (also known as genetic algorithms). Evolutionary algorithms are used with

partial reconfiguration to progressively modify the application circuit to improve per-

formance (and recover from faults). While research is ongoing, current results indicate

genetic algorithms might be useful for fault tolerance. In addition, fine-grained FP-

GAs provide more flexibility and better fault recovery capability than coarser-grained

(i.e., LUT-based) CLB designs [SP03].

A third modification to the CLB design detects transistor faults in the CLB

[PCL+02]. As shown in Table 2.6, a simple circuit detects abnormal voltage levels

that signify stuck-closed and stuck open faults in the transistors of the multiplexers in

the CLB. The checking circuit is constructed from two inverters connected in parallel

to the output of the multiplexer. The two inverters use transistors with specially

selected threshold voltages. LUT memory faults are detected using a built-in current

sensor to detect anomalous current flows.

This technique can detect single transistor stuck-open or stuck-closed errors.

A simple CLB design used in experiments consisted of 300 transistors. Ninety-six

additional transistors were required to implement the fault detection circuits, for an

overhead of 32%.

92



2.6.2.3 Fault Tolerant Interconnect. The use of extra interconnect

resources to provide fault recovery has often been proposed [HTA94,HD98,HTL04b,

HTL04c,HTL04a,HSN+93]. Sufficient redundant interconnect can eliminate the need

to relocate CLBs when a fault occurs in interconnect lines or switch matrices [HD98].

It may even be possible to switch from faulty interconnect lines to non-faulty resources

without using a router.

2.6.2.4 Spare Logic Blocks. Fault tolerance can also be achieved using

spare configurable logic blocks scattered throughout the FPGA. The redundant CLBs

are no different from the other CLBs, but are not normally used by the placement

software during initial placement of the application design. When a failure is detected

in a CLB, the spare is activated. Depending on the location of the spare relative to

the faulty CLB, the configuration contained in the faulty CLB is either transferred

to the spare, or multiple CLBs are shifted to new locations. Depending on the design

of the FPGA and its interconnect structure, the routing of signals between the CLBs

may change substantially. Simple moves are accomplished by shifting the appropriate

configuration bits, while more complex routing changes will require a router.

Topologies for the placement of spares include placing a spare CLB at the end

of each row and column of the array [KI94,HD98]. This idea was extended to include

a torus structure by connecting the end of each row back to its beginning, and the

top of each column to its bottom [DI01]. A 2x2 node covering structure requires no

modification of the configuration bit files, while switching of the the wiring internal

to the nodes is done automatically to replace a faulty CLB inside the node [Els03].

Two other approaches include “king-shifting” and “horse-shifting” algorithms,

named after chess pieces [DKI99]. As shown in Figure 2.34, king-shifting places a spare

at the center of a 3x3 cluster. It can be used to replace any of the eight surrounding

CLBs. In horse-shifting, the spare can only replace vertically or horizontally adjacent

cells. In terms of the number of spares required, king shifting is more efficient, since

93



Figure 2.34: Spare CLB locations for king shifting (a) and
horse shifting (b). In king shifting, the spare can replace any
adjoining cell, while in horse shifting, the spare can only replace
vertically or horizontally adjacent cells (no diagonals) [DKI99].

one spare is used for every eight usable cells, while in the horse method, one spare is

used for every five cells.

2.6.2.5 Spare Rows and Columns. Redundant CLB arrangements also

include sparing entire rows or columns [HSN+93,HTA94,MHS+04]. The column relo-

cation method is attractive because it can be implemented with current commercial

FPGAs, which allow partial reconfiguration by columns (See Section A.1.3). In a

typical scheme, each alternate configuration is pre-routed, and the partial bit files are

stored [MHS+04]. When a CLB failure is detected, the application module using the

column containing the faulty CLB is moved to the spare column. The system uses

pre-routed alternate configuration. This scheme is described in more detail in Section

2.6.1.

This section describes numerous techniques for post-detection fault recovery.

For these techniques to be useful, it must be possible to both detect the error, diagnose

the cause, and identify the failed resource (i.e., CLB, interconnect, switch matrix,

94



Figure 2.35: With column shifting, the original configuration
places a spare column to the right side of the array (left). Fol-
lowing a fault in column 3, function D is moved to the spare
column (right). A variation on the technique would shift both
D and C to the right [MHS+04].

CMC, etc). Methods for detecting and diagnosing faults in FPGAs are described in

the next section.

2.6.3 FPGA Testing. As with other forms of VLSI testing (cf., Section

2.4.1), FPGA testing has become more complicated and time consuming as the num-

ber of devices on the chip increases. Typically, chips undergo manufacturing tests at

the completion of the fabrication process. A sequence of test vectors is applied to each

chip to detect functional and parametric faults. With conventional fault detection,

chips containing faults are discarded.

The architecture of a FPGA is by design redundant, containing a large array

of regular structures. Even with many faults, the remaining resources on the FPGA

can be used, albeit at a reduced capacity. Therefore, defect tolerance is a way of

increasing yield , and fault diagnosis becomes as important as fault detection. Fault

diagnosis locates and characterizes the detected fault, allowing the FPGA design

software to avoid the defective resources (e.g., CLB, switch element, interconnect)

during application placement and routing.

FPGA fault detection and diagnosis can also be done during operation. FP-

GAs used in space and other radiation intensive applications degrade and fail during

95



operation. Fault diagnosis enables the continued use of the remaining resources in

the FPGA. This approach has already seen use in long term space missions [Rat04].

When a fault has been diagnosed, a new bit file for the application design is generated

avoiding the defective resource and sent to the spacecraft via radio.

Many of the test strategies discussed in this section take advantage of the

FPGA’s reconfigurability to support the test process. Unlike ASICs, which have a

fixed, limited amount of logic available to support testing, the FPGA can implement

much larger test structures in the CLB array, which are subsequently overwritten by

the application circuit. Fault and defect tolerant computers of the future will likely

include reconfigurability, and have similar capabilities. Thus, the test techniques de-

scribed in this section will have application to not just modern FPGAs, but future

fault and defect tolerant computers based on non-CMOS technologies.

The remainder of this section is divided into three parts:

• Classification of test approaches and common fault models.

• FPGA fault detection.

• FPGA fault diagnosis.

2.6.3.1 Classification of Approaches. Test engineers want to achieve

maximum test coverage with minimal testing time. Exhaustive testing, whereby every

possible input combination is tested against every state of the state machine, is im-

possible with large devices. A good understanding of how the devices are likely to fail

allows the test engineer to design an efficient test set that provides the best coverage

with the fewest number of test vectors. A new dimension is added for FPGAs: the

need to test with the fewest configurations of the FPGA.

An excellent overview of FPGA test approaches is contained in [DI03]. FPGA

test engineers use a variety of fault models. Academic researchers, in contrast, are

somewhat limited in their ability to develop accurate circuit level fault models, as

FPGA vendors do not typically provide details of the internal structures of CLBs and

96



the circuits used to program and control FPGA operation [DI03]. Therefore, many

academic studies in this field use hybrid models combining functional fault models and

stuck-at fault models. When detailed knowledge of a FPGA resource is not available,

functional fault models represent a resource as a black box and detect errors at the

digital level. Where more specific knowledge is available (e.g., interconnect resources

are typically described in detail by FPGA vendors), more detailed fault models can

be used. In this case, stuck-at, open circuit, short circuit, and bridging faults are

often used.

FPGA testing is typically divided into two stages: fault detection and fault

diagnosis. Fault detection detects errors caused by faulty FPGA resources. Fault

diagnosis localizes the fault to a specific resource that can be marked and avoided.

Testing is done at the time of manufacture as well as during use in an application

system. In-system testing can be done off-line, during which operation of the appli-

cation circuit is suspended, or on-line , which is done while the application circuit

continues operation.

A good fault detection/diagnosis approach should have the following qualities:

• Maximal test coverage.

• Fewest number of test vectors and test configurations of the FPGA.

• If possible, method should target current FPGA architectures, without requiring

HW changes.

• If HW changes are used, they should minimize HW overhead such as extra

configuration memory.

• Should not assume that certain resources are fault free (i.e., do not test CLBs,

assuming that the interconnect is fault free).

• Faults in each different resource type should be included (i.e., in addition to

CLBs, also consider interconnect, switch matrices, configuration memory, I/O

blocks, programming circuits, etc.)

97



2.6.3.2 Fault Detection. Fault detection in FPGAs can be divided

into three categories [DI03]:

• Testing by reconfiguring the FPGA to implement test circuits.

• Testing by modifying the FPGA’s architecture.

• Parametric testing using variations in timing and current consumption to detect

faults.

The most common test approach is the first method, which uses test circuitry

created by configuring the FPGA’s programmable logic. Several papers propose mod-

ifications to the FPGA architecture to better support this type of testing. Few re-

searchers have examined IDDQ testing, which uses variations in the power supply

current, IDD, to detect short circuits, slow switching speeds, and other problems that

may not cause logic errors detectable by normal means.

Fault detection typically targets each of the major resource types on the FPGA.

The tester must verify the correct operation of each of the CLBs, interconnect lines,

switch matrices, I/O blocks, configuration memory cells, and configuration control

circuitry.

Most approaches to CLB testing examine a single CLB and then repeated for

the entire CLB array. Exhaustive testing of a CLB requires an unacceptable number

of test vectors (i.e., 2I+O+C , where I is the number of input lines to the CLB, O is the

number of outputs, and C is the number of configuration bits in the CLB). Therefore,

minimizing the number of test configuration used is critical [HL96, SKCA96]. Since

FPGA manufacturers do not publish the details of their CLB designs, most academic

studies of CLB testing use functional fault models. Different numbers of “minimum

test configurations” have been proposed, from 21 [HL96] to four [WT99]. The effec-

tiveness of these test approaches depends on how accurately the assumed fault model

models real faults in the CLB.

98



When testing the entire array of CLBs, most techniques assume the interconnect

resources have been tested and are reliable [DI03]. The most basic test approach tests

each CLB in sequence, connecting its inputs and outputs directly to the pins of the

FPGA [HL96]. Test vectors are supplied externally. Multiple CLBs can be tested in

parallel, limited by the number of I/O pins available.

Rather than controlling tests from an external source, Built-In Self Test can

be used [SMSP97, SKCA96]. Unlike conventional BIST, which incorporates custom

hardware onto an ASIC to support testing, FPGA BIST implements the test con-

troller with programmable logic. A portion of the CLB array is configured as the test

controller, and tests other CLBs in the array. The advantage of this BIST approach is

testing can be controlled on-chip, with no additional test-specific hardware resources.

However, a highly flexible interconnect structure is required to adequately test all of

the configurable resources.

Testing of interconnection resources has not received as much attention as logic

blocks. Interconnect testing falls into two categories: BIST-based testing, and non-

BIST testing. Interconnect BIST is similar to logic BIST [SWHA98]. Some CLBs are

configured as test pattern generators, while others analyze the outputs of the devices

under test (DUT). Several configurations of the test must be done in sequence to

test the entire FPGA interconnect fabric. Of course, BIST-based testing requires

component CLBs to be fault free.

Non-BIST based testing of the interconnect is controlled from an external source

[RPFZ98]. Renovell proved only three configurations are needed to test for single

faults in a switch box, as shown in Figure 2.36. In this simple switch box, two

wires enter the switch from each direction. The only allowable connections between

lines labelled ‘1’ are with other ‘1’ lines. The ‘0’ lines can only be connected to the

other ‘0’ lines. Test configurations for larger switch boxes are generated in a similar

manner. Real FPGAs have more complicated switch box designs. In addition to the

99



Figure 2.36: Renovell showed that only three configurations
are needed to test a switch block for single faults [RPFZ98].

interconnect lines and switch boxes, the connecting blocks linking the interconnect

with the CLBs must be tested as well [RPFZ99].

Modifications to the FPGA architectures better support fault detection. Con-

figuration shifting , for example, moves test structures from one area of the FPGA

to another, testing portions of the FPGA in sequence. Likewise, the configuration

memory cells in the CLBs linked in series allow the configurations of one CLB to be

shifted to the next [DI99,DI00,DI01]. Thus, a test configuration is loaded onto the

FPGA only one time, and shifted to the other CLBs under the control of an external

test unit, or automatically by the FPGA itself.

2.6.3.3 Fault Diagnosis. Fault diagnosis is an extension of fault de-

tection, and most of the proposed techniques are extensions of the techniques from

the previous section. In fault detection, a large number of devices could be tested in

parallel with a single flag to report the error in any of the devices. Fault diagnosis

requires identification of the specific location of the fault and its impact on overall

FPGA function.

100



As with fault detection, most work has addressed diagnosis of faults in CLBs

and the interconnect network. Most of the techniques use the programmability of the

resources rather than proposing changes to the architecture to support test.

The BIST approach was extended by configuring alternate rows as blocks un-

der test and output response analyzers [SLA97]. A second configuration swaps the

arrangement so one row is the output response analyzer and the next is the block un-

der test. All of the CLBs in a row are tested in parallel, so after two configurations,

all of the CLBs have been tested. When a fault is detected, the row of the fault is

available, but not the column. At this point, a third configuration is loaded, rotating

the test structure 90 degrees in the array to test the columns. The third and fourth

configurations are identical to the first and second, but rotated to test the columns

instead of the rows. Thus after four configurations, the row and column of a faulty

CLB is uniquely determined.

The Roving Self-Test Areas (RSTAR) is an on-line test method performed

during circuit operation, without disturbing the operation of the application cir-

cuit [ASH+99,ASSE00,AES01,ASE04]. Similar to the configuration shifting method

[DI99], RSTARs moves the self-test area across the configurable array. Fault latency ,

the interval between the occurrence of a fault and its detection, is thus bounded by

the interval required to test the entire FPGA.

The basic concept of the RSTARS technique is shown in Figure 2.37. A portion

of the FPGA array is initially assigned to be the horizontal and vertical STARS blocks.

During operation of the application circuit in the remaining blocks, the VSTAR and

HSTAR test unused portions of the array. When testing is complete, the HSTAR

and VSTAR are relocated to new locations. One complete scan of each is enough to

test the entire FPGA. While only the HSTAR (or the VSTAR) is needed to scan the

CLBs, scans in both directions are used to locate faults in the interconnect.

The test is controlled by an external processor that is assumed to be reliable,

called the Test and Reconfiguration Controller (TREC). The TREC can be imple-

101



Figure 2.37: The Roving STARS technique uses Self Test ar-
eas that are relocated across the FPGA array during on-line
testing [ASE04].

mented as an embedded processor on the FPGA, or externally using a separate ASIC.

The relocation of the application circuit and STARS is done using pre-compiled partial

configuration bit files controlled by the TREC. For a left-right sweep, the RSTARS

approach needs N/2 swaps to move the columns across the array. To perform both a

horizontal and vertical sweep across the entire FPGA, N swaps are needed. Runtime

routing is not typically used to compute new configurations, although it can be done

later if alternative configurations avoiding faulty resources are not available in pre-

compiled form. This can be done while the main circuit continues operation, since

STARS testing is done in unused areas of the chip [AES01].

Logic block testing in RSTARS is done by grouing six cells to uniquely determine

the faulty CLBs (each cell is notional, and may actually larger than a single CLB).

Six rotations of the configuration is sufficient to test all the cells. The concept is

illustrated in Figure 2.38. In the figure, ‘T’ denotes a Test Pattern Generator, ‘O’ is

the Output Response Analyzer, and ‘B’ is the Block Under Test.

Interconnect is tested in a similar manner, using different patterns of blocks,

separated by some distance. A partially-exhaustive test pattern is used, but rotates

on every test pass so the time required to perform a test is kept within bounds. Fault

coverage is high after several passes, but fault latency is increased since it requires

several passes before a test vector occurs that detects the fault.

102



Figure 2.38: The Roving STARS technique uses six rotations
test units to determine which CLB is faulty. ‘T’ denotes a Test
Pattern Generator, ‘O’ is the Output Response Analyzer, and
‘B’ is the Block Under Test [ASSE00].

An additional RSTAR concept is the Partially Usable Block (PUB). RSTARS

identifies the failure mode of the CLB, and what partial function it is capable of

providing. For this to be successful, runtime routing is mandatory.

At the system level, the RSTARS approach proposes a three-tiered fault han-

dling approach [AES01]. Following the location of a faulty resource, the TREC may:

1. Leave the STARS parked where they are, allowing the application circuit to

continue operation in the rest of the array.

2. Apply precompiled or newly computed alternate configurations using spare

CLBs and resources throughout the array.

3. When the spares are exhausted, de-allocate resources reserved for the RSTARS

and use them in alternative configurations. This reduces later test capability,

but allows graceful degradation.

The RSTARS system has been demonstrated in a limited manner on commer-

cially available ORCA FPGAs. The test algorithm is effective at detecting and iso-

lating faults, although the overhead incurred to perform the testing is significant. In

addition, the requirement for an external control unit is a limitation of the system, as

is the large number of alternate configuration bit files that must be stored. Without

the pre-compiled bit files, routing around failed resources must be done at runtime.

The RSTARS approach uses a slightly modified conventional router to avoid faulty

103



resources. Routing time is therefore likely to be significant. If devices fail frequently,

routing may not complete before the next error occurs, causing system failure.

Finally, other methods also diagnose faults in FPGAs. Readback of the configu-

ration memory can be used to localize the faults. TMR in the context of FPGAs was

proposed by [DMP+98]. Fault diagnosis in I/O blocks was examined in [RWCG02].

104



III. Research Goals

This chapter presents the four goals of this research. The methodology for achieving

these goals is addressed in the next chapter.

3.1 Motivation

Chapter II made several important observations that will shape future computer

architectures:

• For silicon CMOS, Moore’s Law may no longer apply within the next several

process generations.

• Both silicon CMOS and potential replacement technologies will be more difficult

to fabricate reliably, and more likely to fail in operation.

• Fault tolerance is a viable way to use unreliable device technologies in commer-

cial as well as space and military applications.

• Architectural fault tolerance can provide a lower cost alternative to fabricating

devices with extremely low defect rates.

• Conventional fault tolerance involves temporal or spatial redundancy, which

must be carefully balanced against available area and power in real devices.

• Methods need to be developed to combine fault tolerance, reconfigurable com-

puting, and computer architecture technologies together to address this problem.

3.1.1 Four Goals. As a foundational effort in fault tolerant computer archi-

tecture at AFIT, this research defines a fault and defect tolerant computer, determines

how it is different from a conventional computer, and identifies capabilities that must

be present to achieve reliability goals. Relating this back to the device technolo-

gies, it determines the minimum reliability characteristics needed to compete with

conventional CMOS. From this general goal, four explicit goals are defined:

Goal 1: Develop a system architecture for the FDT computer, propose a concept of

operations (CONOPS), identify required capabilities.

105



Goal 3: Map 

to Emerging 

Device

Technologies

Goal 2: Map to 

a Functional 

Architecture

Goal 1: Develop 

System

Architecture

Online Test

Runtime Routing

Mobile Agents

Partial Reconfiguration

Device Technologies

Power Aware Fault Tolerance

Multilevel Fault Tolerance

OS Support

1

N

r m

j

P t P t

“How will the FDT 
mesh differ from a 
FPGA?”

“What overhead is 
incurred for FT?”

“How many 
defects can be
tolerated?”

“How much smaller 
will the new 
technologies have to 
be?”

Figure 3.1: The three primary goals develop the FDT archi-
tecture from the system down to the device level.

Goal 2: Design a functional architecture and demonstrate it supports the functions

identified in the previous goal.

Goal 3: Develop techniques to map the FDT architecture onto emerging technolo-

gies (e.g., molecular crossbars, quantum cellular automata (QCA), etc.) and

characterize their reliability.

Goal 4: Extend the mathematical models for fault tolerance techniques.

The relationship between the first three goals is shown in Figure 3.1. Goal

four is an enabling goal. The initial step in the research approach specifies a top-

level architecture to determine required capabilities, and maps the architecture onto

progressively lower levels. At each stage, fault tolerance effectiveness and overhead

are examined. All four goals support the overall purpose: create a foundation for

reliable computing using unreliable devices.

106



3.2 Goal 1: Develop the FDT System Architecture

“Develop the system architecture for the FDT computer, propose a concept of

operations (CONOPS), identify required capabilities.”

3.2.1 Questions Addressed. The output of this goal is an architecture for a

“fault and defect tolerant computer.” as well as addressing the following questions:

• What constitutes a fault and defect tolerant (FDT) computer?

• How is a FDT computer different from a conventional computer?

• What functions should a FDT computer be able to perform?

• How would a FDT computer operate?

• What fault and defect tolerance techniques must the FDT computer include?

• How will a FDT computer be compared against a conventional computer?

• If the FDT computer implements reconfiguration, how would it resemble a mod-

ern FPGA? How must it be different?

In general terms, a FDT computer is built from devices with a higher individ-

ual device defect rate and a higher operational failure rate than conventional silicon

CMOS. Unlike a conventional processor, the FDT processor requires some level of

fault and defect tolerance to achieve acceptable manufacturing yields and system

reliability. Unlike modern fault tolerant systems which primarily target operational

failures, FDT computers tolerate both manufacturing defects and operational failures.

Operational failures in a FDT computer may occur more frequently than in current

fault tolerant systems. Thus, the service provided by the FDT computer is reliable

application programs execution in the presence of manufacturing defects, operational

permanent faults, and operational soft errors.

The FDT computer can be compared to a conventional computer with several

metrics, as defined in Chapter II:

107



• Defect Tolerance

– Yield

– Maximum Allowable Defect Probability (MADP)

• System Fault Tolerance

– Availability

– Reliability

– Mean-Time-Before-Failure (MTBF)

– Mean-Time-To-Repair (MTTR)

– Maximum allowable Soft Error Rate (SER)

• Performance

– Application speedup (or slowdown)

– Maximum system clock speed

• Overhead

– Amount of hardware redundancy

– Die area

– Amount of power increase

As the focus of this research is at the architecture rather than device level,

limited information is available to develop performance and overhead estimates. Thus,

defect tolerance is the primary metric used for goal one. Hardware overhead is also

considered for goals two and three.

3.2.2 Quantifiable Goals. It is now possible to define quantifiable goals for

the fault and defect tolerant computer architecture to be developed in this research.

Goal 1.1: Develop the system architecture for a FDT processor capable of meet-

ing the following evaluation metrics:

108



• Provide a manufacturing yield of > 70% for a process technology with an individ-

ual device defect probabilities greater than 10−6 for a representative microproces-

sor containing one million logic transistors and 100 million cache transistors.

• Provide architectural fault tolerance support for soft errors and single event up-

sets occurring in memory.

Goal 1.2: Develop a FDT system concept of operation (CONOPS) and demon-

strate it supports the performance criteria.

Goal 1.3: Develop mathematical models to demonstrate that the combined capa-

bilities achieve desired performance criteria.

The choice of target values is intended to be representative of modern computer

architectures and fabrication processes. The yield figure is chosen as a typical value

for standard CMOS. Current CMOS processes have device defect rates typically less

than 10−6, thus 10−6 to 10−3 represents a range of emerging technologies with defect

rates inferior to current fabrication limits. The value of 10−6 serves as a minimum

threshold. The values for logic gates and cache transistors were chosen to represent a

typical modern microprocessor.

3.3 Goal 2: Design the Functional Architecture

“Design a functional architecture and demonstrate it supports the capabilities

identified in the system architecture.”

3.3.1 Questions Addressed. Goal two moves the system architecture devel-

oped in the first goal to a functional or logical level. Thus, a functional architecture

capable of supporting the fault and defect tolerance techniques specified in the system

architecture is developed. This goal addresses the following questions:

• How will the FDT processor architecture differ from a conventional microproces-

sor?

• How will the FDT processor operate?

109



• How will it be configured at startup?

• How will it reconfigured in operation?

• How will it be tested?

• What level of fault tolerance does the FDT processor provide against defects,

operational permanent faults, soft errors, and SEUs?

• What is the overhead incurred compared ASIC implementations of a micro-

processor?

The service provided by the functional architecture is the ability to implement a

general purpose processor, while incorporating the fault tolerance techniques specified

in goal one.

Performance metrics for the functional architecture of goal two are similar to

those of the system level, although information is now available to develop estimates

for performance and overhead. The following metrics are used:

• Defect Tolerance (i.e., yield, MADP)

• Overhead (e.g., hardware, die area, power)

Information on device technology is not available at this stage. Thus, estimates are

based on logical gate counts and other methods that do not rely on device character-

istics.

3.3.2 Quantifiable Goals. This goal has two parts: design the FDT proces-

sor; and develop models for its performance and overhead. In this manner, it will be

possible to show that the FDT processor implements the functions required by the

system architecture of goal one and meets the system reliability requirements.

Goal 2.1: Develop the architecture of the FDT processor such that it supports

the capabilities identified in the system architecture.

Fault detection. The FDT processor should be able to detect and diagnose:

110



• Hard faults in the application and fault tolerance logic.

• Soft errors in the application logic.

• SEUs in the cache memory.

Fault masking. If fault masking is incorporated at the hardware level, the FDT

processor should be able to provide the fault coverage specified in the system

architecture (Goal 1).

Fault diagnosis. The FDT processor should be able to diagnose the location of a

fault, down to the level of granularity of the smallest reconfigurable unit (e.g.,

down to the column for a column-wise reconfigurable mesh). While not an

explicit focus of this research, test methodology should be discussed at a high

level.

Fault isolation. As required by the system architecture, the FDT processor should

be able to limit the impact of a fault on the overall system to some portion of

the system.

Fault recovery. The FDT processor should have the following fault recovery capa-

bilities:

• When a fault is detected, the FDT processor should support fault recovery

to a known state and allow resumption of operation.

• If required by the system architecture, the FDT processor should support

dynamic reconfiguration at the specified level of granularity.

Goal 2.2: Develop analytical estimators for overhead and performance of the

FDT processor versus a conventional architecture. Develop estimators (independent

of device technology) for hardware overhead and manufacturing yield.

111



3.4 Goal 3: Map the Functional Architecture onto Emerging Technolo-

gies

“Develop techniques to map the FDT architecture onto emerging technologies

(e.g., molecular crossbars, quantum cellular automata (QCA), etc.).”

3.4.1 Questions Addressed. This goal examines the implementation of the

FDT computer at the device level. The functional architecture created in the previous

goal will likely be implemented as conventional digital logic. As such, it can be

mapped to any device technology that implements boolean logic operations. The

emerging device technologies examined in Chapter II have capabilities different from

modern CMOS and may be able to implement some aspects of the FDT processor more

effectively than CMOS. Thus, the overhead incurred by the fault tolerant architecture

cannot be derived by simply examining the circuit at the digital logic level (i.e., by

counting gates). An examination of the problem at the device level is needed to

develop detailed comparisons between the technologies. The focus is thus not on

whether or not the FDT processor can be implemented using one of the emerging

device types, but rather how it would be implemented, what unique benefits it would

obtain, and how it compares to a conventional CMOS implementation.

The research addresses the following questions:

• How would the fault tolerance techniques used in the FDT processor be imple-

mented with non-CMOS technologies?

• How would hardware cost, yield, power, and speed be estimated using non-

CMOS device technologies?

• Compared to modern CMOS, how much smaller/more power efficient/faster will

the new device technologies have to be to overcome the overhead induced by

the fault tolerant circuitry?

• Can the unique characteristics of the new technologies overcome some of the

overhead?

112



• Based on current predictions, is it feasible to implement the FDT processor

architecture? If not, can minimum limits be defined for the device technologies

that must be exceeded to allow “real world” use of these devices?

This step limits examination to particular fault tolerance techniques, indepen-

dent of the architecture developed in the first two goals. The service provided is the

ability to implement the fault tolerance building blocks using one or more device tech-

nologies. At this level, it becomes possible to improve the estimators for performance

and overhead first developed at the functional level. As such, the performance metrics

at this stage are:

• Performance (e.g., speedup relative to CMOS), and

• Overhead (e.g., die area, power consumption).

3.4.2 Quantifiable Goals. The third goal has two parts: demonstrate that

the emerging technologies can implement the FDT processor; and develop models for

performance and overhead.

Goal 3.1: Demonstrate analytically how the fault tolerance techniques used in

the FDT processor may be implemented using one or more of the following emerging

device technologies:

• Quantum Cellular Automata,

• Molecular Crossbars, or

• Nanoscale Silicon CMOS.

Goal 3.2: Develop a methodology for estimating the FDT processor hardware

area, power consumption, and operating speed when implemented using one or more

of the aforementioned technologies.

Goal 3.3: Determine the minimum performance characteristics of a device tech-

nology necessary to fabricate a processor with the characteristics described in Goal 1.

The minimum performance characteristics include:

113



• Maximum Allowable Defect Probability (MADP),

• Size,

• Switching speed, and

• Power consumption.

Quantum Cellular Automata is the target technology for this goal. As device

technologies are still under development, the purpose of this goal is not to simulate

or characterize the entire FDT processor. Rather, the aim is to demonstrate how the

FDT processor implementation on the device technologies differs from conventional

CMOS, and how the difference affects overhead and performance estimates.

The second part of goal three develops estimators for hardware area, power

consumption, and operating speed used at the architectural level. First order esti-

mates are developed that can be used to make design tradeoffs. This research creates

estimators based upon device characteristics currently available.

The final part of goal three returns to the overall system architecture to deter-

mine whether construction of a reliable microprocessor may one day be feasible using

these device technologies. Previous work in this area has largely been to demonstrate

device operation. Researchers have acknowledged fabrication and reliability problems,

observing that some level of fault tolerance will be necessary at the architectural level

for reliable operation. For these technologies to be adopted, system level performance

must equal or match that of modern silicon CMOS. In this goal, a MADP target will

be established, below which the devices will not compete with conventional silicon

CMOS.

3.5 Goal 4: Develop an accurate analytical model for NAND Multi-

plexing

“Develop an accurate analytical model for von Neumann Multiplexing at small

and moderate levels of redundancy.”

114



3.5.1 Questions Addressed. This goal supports the first three goals by

improving the model for a fault tolerance technique that could be used in the FDT

processor architecture. NAND Multiplexing has not seen widespread use in current

applications due to its requirement for large levels of redundant hardware. At the low

defect rates common to modern processes, less aggressive fault tolerance techniques

are sufficient. NAND Multiplexing is more effective than other techniques in the

extreme defect ranges, from 10−5 to 10−2. For technologies much smaller than silicon

CMOS but much more defect prone, the overhead may be acceptable.

An approximation for the performance of NAND Multiplexing at large levels of

redundancy was proposed by von Neumann in [vN56]. Since then, other models have

been proposed for small and medium levels of redundancy. However, these models are

incomplete and in some cases erroneous (cf., Chapter II). Due to the large number of

devices in a microprocessor, even a small error in a yield estimate for a single device

can become an unusable result at a larger scale. Thus, an accurate model is essential

to determine how NAND Multiplexing can be used at the large scale.

The research addresses the following questions:

• Why is the model developed by [HJ02] incorrect, as claimed by [NPK04]?

• What is the actual analytical model?

• What use does NAND Multiplexing have in the FDT processor?

3.6 Research Contributions

Study of these problems will make the following contributions:

• A system architecture for a FDT computer, combining fault tolerance techniques

at several levels of abstraction.

• Determine required performance properties of the FDT computer.

115



• Determine the partitioning of fault detection, diagnosis, and recovery tasks re-

quired to implement DT/FT functionality between modules on the chip, BIOS,

and the operating system.

• Develop techniques to map the generic FDT processor onto various device tech-

nologies.

• Develop yield models for the FDT processor using FT/DT techniques.

• Develop an accurate analytical model for NAND Multiplexing, a basic fault

tolerance techniques, at small and medium levels of redundancy.

3.7 Summary

This chapter establishes the goals of this research. Four goals are established,

developing an architecture for a fault and defect tolerant computer from the top level

architecture down to the device level. Quantifiable metrics are established to gauge

success. The next chapter examines the methodology used to address these goals.

116



IV. Methodology

This chapter explains the methodology used to achieve the research goals. The major

tasks in each goal are defined, task dependencies are highlighted, and the methodology

for achieving the objectives are presented. In addition, scoping assumptions are given

to bound the effort.

4.1 Problem Scope

This research spans several disciplines and areas of electrical engineering. The

problem combines computer architecture and device technology, traditionally indepen-

dent fields. Several assumptions and starting conditions are made to focus research:

Technology independence. As no device technology has emerged as the clear choice

to replace silicon CMOS, this research is as independent of device technology

as possible. The main research focus is at the architectural level. As devel-

oped in Chapter V, the yield and hardware cost models are based on devices

(i.e., transistors) and do not explicitly model wires and other structures. These

techniques are extended to a particular device technology in Chapter X, illus-

trating the changes that must be made to incorporate the key capabilities and

limitations of a target technology.

Hardware Scope. Modern computers are made of several components connected on

circuit boards. It is reasonable to assume that dual-technology systems will be

built: a high performance non-silicon technology for the processor, while support

hardware is implemented using CMOS microchips. Thus, the microprocessor is

the focus of research. However, the techniques proposed are equally applicable

to other large circuits.

Key Performance Criteria. While operational failures and soft errors will be a

problem, the first challenge to overcome is manufacturing yield. The FDT

processor developed in this research includes some functionality to detect and

correct these types of faults, but the focus of analysis is on yield rather than

reliability.

117



4.2 Goal 1: Develop the FDT System Architecture

The general approach to this goal is analytical. By examining and modelling

various combinations of fault tolerance techniques, system yield models are developed.

Trade-offs between the various fault tolerance techniques, implemented at different

levels of the architecture, are investigated. From this information, the system ar-

chitecture and CONOPS are defined, and fault tolerance techniques selected. The

theoretical models show that the system yield requirements can be met.

Goal one is addressed in the high level architecture described in Chapter VII.

Supporting yield and hardware cost models are developed in Chapter V.

4.2.1 Tasks. To meet the research objectives of goal one, several tasks are

defined:

1. Propose initial system concept of operation (CONOPS).

2. Determine the appropriate set of fault tolerance techniques.

(a) Identify possible fault tolerance techniques.

(b) Develop analytical model for yield.

(c) Determine whether system meets performance goals.

(d) Adjust set of fault tolerance techniques and repeat Steps 2a-2d.

3. Develop the detailed system architecture implementing the identified fault tol-

erance techniques.

4. Develop criteria to compare FDT computers to each other and to conventional

computers.

5. Analyze the effectiveness of the top level system.

The first step proposes an initial system level concept of operations for the FDT

computer. As discussed in Chapter I, fault tolerance techniques can be incorporated

into the system architecture at multiple levels, from the device level up to the op-

erating system and application layers. The FDT processor proposed in Chapter VII

118



combines several fault tolerance techniques to achieve the system design objectives.

This step examines the different techniques available, how the techniques might op-

erate in support of each other, and determines an initial set to examine in detail.

The next step determines the set of fault tolerance techniques needed to achieve

the performance goals. In some cases, analytical models for the techniques already

exist, while others require development. When feasible, analytical models for system

performance are created to model the multiple techniques used in concert. These

models determine whether a system incorporating a given set of FT techniques will

meet the goals. These models are introduced in Chapter V. An iterative process is

used to determine the most effective set of FT techniques.

Once the required set of fault tolerance techniques has been identified, a system

architecture is created to implement the techniques. At this stage, it is not necessary

to develop functional or circuit level models of the architecture. Goals two and three

examine the problems of implementing the architecture at lower levels. Instead, the

product of this step consists of a concept of operations and a description of the

required fault tolerance methods. The final step considers how the FDT design may

be compared to a conventional computer architecture.

For Goal 1.1, yield is the primary quantifiable metric. Results for individual

components are computed analytically and compared to Monte Carlo simulation re-

sults obtained with MatlabR©. Analytical models for complicated architectures such

as the overall cache memory or CPU become extremely complex due to multiple de-

pendencies. For these situations, yield results are obtained using MatlabR© simulation.

Goals 1.2 and 1.3 use an analytical approach. It is sufficient to show the proposed

system architecture is feasible to build, and can meet the design objectives of Goal

1.1.

4.2.2 Scope and Parameters. Analysis of the system is limited to the proces-

sor. It is assumed that the remainder of the system is constructed from reliable silicon

CMOS components. Thus, the analysis evaluates the ability of the system to imple-

119



ment an application CPU reliably in the presence of defects and operational faults.

The parameters of the system include initial fabrication device defect probability,

operational permanent fault rate, and operational soft error rate.

4.3 Goal 2: Design the Functional Architecture

The general approach to goal two is through a combination of analysis and sim-

ulation. The functional architecture is designed, and analytical models are developed

for hardware overhead and yield. Yield expressions at the module level are validated

by comparing analytical results with simulation results from MatlabR©. Results for the

entire cache and processor architecture are obtained through Monte Carlo simulation

in Matlab R©. The results of goal two are presented in Chapters VIII and IX.

4.3.1 Tasks. To meet the research objectives of Goal 2, the following tasks

are defined:

1. Identify required capabilities (from Goal 1.1)

2. Develop functional architecture.

3. Develop analytical models for yield and hardware cost.

4. Determine the yield of the cache and overall FDT processor.

The first step depends on the results of Goal 1. The system architecture from

Goal 1 defines the functions the lower level architecture must implement. Once de-

fined, the functional architecture is developed. This step develops a logic level, device

independent, model of a FDT processor which shows the architecture supports the

required fault tolerance capabilities and identifies differences between the proposed

FDT architecture and a conventional microprocessor. Device independent yield and

hardware cost estimates are used to compare the FDT architecture to conventional,

non-fault tolerant, architectures.

120



4.3.2 Evaluation. Monte Carlo simulation is the primary method used to

evaluate the yield performance of the FDT processor. Having chosen a defect model

and developed the functional model, simulation is used to show the required yield

target can be achieved. Hardware cost model validation is done analytically from the

bottom up, using primitive models to build more complicated structures up to the

processor level. As discussed in the previous section, Goal 2.2 is evaluated analytically.

4.4 Goal 3: Map the Functional Architecture to Emerging Technologies

The approach to this goal is primarily analytical, since detailed information on

potential device technologies is limited. The results supporting this goal are presented

in Chapter X.

4.4.1 Tasks. To achieve the research objectives of Goal 3, the following

tasks are defined:

1. Examine the capabilities of the emerging device technologies. QCA is selected

as the target technology.

2. Develop or adapt simple logical operations and other structures using the target

technology.

3. Determine how the yield and hardware cost models from the previous goals must

be modified to apply to the target device technology.

4. Develop estimators for size, power, performance.

5. Establish the minimum size, speed, and defect probability characteristics for the

emerging technologies to compete with silicon CMOS.

The first step examines the capabilities of the emerging device technologies and

justifies the selection of QCA as the target. Starting from simple, Boolean logic

gate building blocks, conceptual designs for the key fault tolerance techniques used

in the FDT processor are developed. QCA Designer is used where appropriate to

develop the physical layouts for fault tolerant circuits. During this process, the unique

121



characteristics of QCA that result in an implementation that differs from conventional

CMOS are identified.

Finally, the last step in the research returns to the top level. The lessons learned

throughout the research process as the system architecture was specified, developed at

the digital level, and mapped to proposed technologies. Chapter XI addresses the “big

picture” questions defined in Section 3.4.1. The performance and overhead models

first developed at the system level, and expanded down to the device level, are used

to determine the minimum device characteristics necessary to compete successfully

with conventional silicon CMOS architectures.

4.4.2 Evaluation. Analysis is again the primary method of accomplishing

this goal. Hardware layouts for the key fault tolerance techniques are developed to

show function and form the basis for hardware cost estimation. Analytical yield

models are constructed analytically, and compared using Matlab R© and MathCadR©.

4.5 Goal 4: Develop an analytical model for NAND Multiplexing

The approach to this goal is analytical. The mathematics resulting from this

analysis are in Chapter VI. The mathematical model is validated using MatlabR©

simulation and the PRISM tool [NPK04]. Confidence intervals are computing using

the method described in Chapter VI.

122



V. Tools and Models

This chapter introduces yield and hardware cost models for the fault tolerance meth-

ods used in the FDT computer. Several common module-level techniques such as

R-modular redundancy and modular reconfiguration are illustrated. A new tech-

nique, TMR-protected reconfiguration, is proposed. TMR-R combines the benefits of

TMR and modular reconfiguration and is be used extensively in later chapters. Math-

ematical models for common memory fault tolerance techniques are shown, including

error correcting codes and spare rows/columns.

In addition to yield, models for hardware cost are introduced. The hardware

cost model is intended for yield modelling rather than area estimation, but does prove

useful in estimating hardware overhead. The hardware cost models are introduced

in Section 5.5. NAND multiplexing, a fault tolerance technique, is described only

briefly. A detailed mathematical model is developed in Chapter VI.

5.1 Yield Models

5.1.1 Basic Yield Models. Summary works of yield modelling are found in

[Kor89,KK98]. These models create analytical probability models of the distribution

of defects on the wafer, and of the impact of defects on overall device function. Let

X be a random variable denoting the number of faults in the chip. For a circuit with

no fault tolerance, the yield is simply the probability that no defects occur. Thus,

chip yield, Ychip, is simply

Ychip = P (X = 0) . (5.1)

For circuits with fault tolerance capabilities, the circuit can operate correctly

whenX > 0. More complicated yield models have been developed for these situations.

5.1.2 Clustering. Various models have been developed to account for a non-

uniform distribution of defects on a wafer and the resulting impact on yield. The most

common statistical models are the Poisson model and the Negative Binomial model.

123



The Poisson model approximates a binomial distribution for large N and small p. The

Poisson model assumes independence between defects resulting in an unclustered dis-

tribution of defects on the wafer. In real fabrication processes, however, defects tend

to cluster together. Many defect distributions have been proposed, including gamma,

triangle, delta, and exponential distributions, and are summarized in [MVM90]. The

Gamma distribution is widely used, and has been shown to be a good fit to real world

data [Cun90]. Averaging of the Poisson yield expression over the range of values for

the number of defects per chip, λ, distributed according to the Gamma distribution,

leads to the negative binomial distribution for chip yield.

Using the Poisson distribution,

P (X = k) =
e−λλk

k!
, k ≥ 0, (5.2)

and the chip yield is

Ychip = P (X = 0) = e−λ. (5.3)

For a chip composed of multiple modules,

P (X = k) =
e−λN(Nλ)k

k!
, k ≥ 0, (5.4)

where N is the number of modules in the chip, and λ is the number of defects per

module (or per device, depending on the level of abstraction). Yield in this form is

simply

Ychip = P (X = 0) = e−Nλ. (5.5)

To derive the yield expression using clustered defects, a compounding procedure

is used. Compounding considers λ as a random variable rather than a constant. Let

l be this defect rate. Starting from the expression for unclustered (Poisson) yield as a

124



function of the defect rate (5.2), the defect distribution of the chip with clustering is

P (X = k) =

∞
∫

0

P (X = k|l) · fL (l) dl (5.6)

where fL(l) is the compounder or mixing function [KK98]. The Gamma distribution

uses two parameters, λ and α, and

fL (l) =
αα

λαΓ (α)
· λα−1 · e−αl/λ. (5.7)

The clustering parameter, α typically ranges from 0.3 to 10. As α → ∞,

the distribution approximates a Poisson distribution. Evaluating (5.6) using this

distribution yields the negative binomial distribution for the number of defects in the

chip,

P (X = k) =
Γ (α+ k)

k!Γ(α)
· (λ/α)k

(1 + λ/α)α+k
. (5.8)

Thus, the yield of a chip with no fault tolerance using a clustered defect model

is

Ychip = P (X = 0) = (1 + λ/α)−α . (5.9)

For chips with multiple modules, the clustered yield is

Ychip = (1 +Nλ1/α)−α , (5.10)

where λ1 is the probability of failure of a single device (i.e., transistor), and N is the

number of modules in the chip.

125



5.1.3 Multiple Components. For the Poisson case, the yield of a chip con-

taining multiple independent components is found by simply multiplying the yields

of the individual components.

Ychip =
∏

i

Yi. (5.11)

For the case of clustered defects, the compounding procedure from (5.6) is used,

but care must be taken to perform a single compounding step for the entire chip rather

than separate compounding steps for each module, as the clustering of faults in one

module is not independent of clustering in the other modules [Nik96, Sta93, NV99].

Therefore, a single compounding step is performed using the average number of faults

in the complete chip, or

λchip =
∑

i

λi. (5.12)

To simplify the integration, which contains different λ values for the different

modules, scaling constants are used, or

δi =
λi

λchip

, (5.13)

where δi is the probability of observing a fault due to component i.

In practice, the integrals developed using compounding for multiple modules are

difficult to solve analytically and numerical integration is commonly used. In many

cases, these integrals involve multiplying very large numbers of elements by very small

probabilities. Accuracy is limited to the precision of the floating point representations

used in computer software. Extended precision floating point libraries can be used

to increase the accuracy of analytical results [LL05,Var05]. More commonly, Monte

Carlo simulations of the memories are used to estimate yield.

126



5.2 Fault Models

Memory yield models sometimes include multiple types of faults. Some memory

models only consider memory cell faults that disable a single memory bit in the array.

Other models add multiple memory bit failures (i.e., a single fault disables two or more

memory bits), as well as row and column faults (i.e., a single fault disables an entire

row or column of memory cells). Herein, faults are modelled at the single-transistor

level. In a typical memory cell, a single transistor fault disables the memory cell. If

the fault occurs in a row or column decoder, it disables the entire row or column.

For combinational logic, a variety of fault models have been proposed. Von

Neumann faults [vN56] invert the logical state of a logic gate. Stuck-at zero (one)

faults force the output of the gate to a logic low (high) value. Some models incorporate

parametric faults that change the timing or current flow characteristics of the circuit.

Any faults in combinational logic are assumed to disable that module.

At the device level, faults can occur in the transistors or interconnects. In many

yield models, interconnect faults are combined with nearby devices and modelled

together. Thus, device defect probability, λ1, includes both events: device failure and

associated interconnect, or,

P (Combined device failure) = λ1 = P (device fails ∨ interconnect fails). (5.14)

This model is most appropriate for device technologies in which the probability

of transistor (or switch) failure is much greater than interconnect failure. For other

technologies, interconnect faults cannot be assumed to be distributed evenly among

devices. Thus, wiring must be modelled as well and more complicated models are

required. An example of how the models change for one such technology, quantum

cellular automata (QCA), is shown in Chapter X. For the FDT processor, described

in Chapters VII, VIII, and IX, the device-centric model is used instead.

127



5.3 Key Fault Tolerance Techniques

Reliability is one of several competing requirements in cache design. In a typical

cache, performance is the key design criteria. Capacity is another key goal. These

two factors are often at odds with the redundancy-based techniques used for fault

tolerance. Extra hardware is used to provide spare rows or columns as well as to

provide error detection and correction capabilities reduces the capacity of the cache.

In addition, increased propagation delay due to path length increases latency. There-

fore, the goal of fault tolerant cache design is to achieve acceptable manufacturing

yields and operational reliability with the least amount of redundant hardware. For

this reason, a variety of techniques have been developed to model defects and the

performance of fault tolerance techniques. This section summarizes several of the key

techniques.

5.3.1 NAND Multiplexing. von Neumann Multiplexing (VNM), also known

as NAND Multiplexing, was first proposed in [vN56]. Analytical models for NAND

Multiplexing performance at low levels of redundancy were developed in [HJ02]. After

identifying flaws with the initial analytical model, statistical simulation was used to

estimate performance in [NPK04,BS04b]. This research has derived the first accurate

model for the performance of NAND multiplexing at moderate levels of redundancy.

This detailed model is described in Chapter VI. A similar technique for three-input

majority gates, MAJ-3 Multiplexing, is examined in [RB05].

Multiplexing can be more effective than RMR for applications in which large

amounts of redundancy can be supported. Multiplexing replicates an operation in

both a parallel and a serial manner. Signals are replicated to create bundles of N

parallel signals. Operations are repeated in M stages: one executive stage followed

by one or more restorative units [vN56]. As the number of operations in parallel, N ,

is increased, or the number of stages used, M , is increased, the probability of correct

output improves.

128



Multiplexing has limited practical application in situations where the entire

logic chain cannot be replicated in parallel N times. For example, it is not feasible to

replicate the bit or word lines to a memory cell N times. Thus, the N output lines

of a module protected by multiplexing are usually reduced to a single line using a

majority gate. Oftentimes, the reliability of this majority gate limits the benefit of

NAND Multiplexing or MAJ-3 Multiplexing in a manner similar to RMR. Thus, for

NAND Multiplexing,

YV NM = YV Nmod · Ymajgate, (5.15)

where Ymajgate is from (5.5), with the appropriate value for Nmajgate.

Thus, NAND Multiplexing is very effective when large amounts of redundancy

can be used (i.e., more than 100 fold). NAND Multiplexing may be necessary for de-

vice technologies with defect rates greater than 10−5. However, as was demonstrated

in this research, other fault tolerance techniques requiring fewer resources are suffi-

cient in the range of 10−9 < λ1 < 10−5. To compete with silicon CMOS, redundancy

requirements must be kept as low as possible. For this reason, RMR and reconfigura-

tion are used in preference to multiplexing in the FDT processor architecture proposed

herein.

5.3.2 R-Modular Redundancy. R-modular redundancy is widely used and

replicates the logic module R times [SNF04]. For the most common method, Triple

Modular Redundancy, R = 3. A majority voter compares the outputs of the modules

and outputs the most common value. For RMR to work correctly, at least (R+ 1)/2

of the modules must function correctly. In addition, the majority voter must function

as well. The analytical expression for yield, not accounting for clustering, is

YRMR = Pmajgate · Pmajmods (5.16)

129



where Pmajgate is the probability the majority gate functions. Unless device level

reliability improvements are possible in the device technology, Pmajgate has the same

λ1 as other modules, and is modelled by (5.5) or (5.10) with N equal to the number of

devices in the majority gate. A survey of majority gate designs is found in [BQA03].

Pmajmods is the probability the majority (i.e., at least (R + 1)/2) of the modules

function, and is

Pmajmods =
R
∑

i=⌈R
2 ⌉









R

i



P i
mod (1 − P mod )R−i



. (5.17)

5.3.3 Modular Reconfiguration. Reconfiguration assumes the logic module

can be implemented in more than one location on the chip. Testing determines a

fault-free location to implement the module. In programmable logic devices, the

application logic module can be implemented once, in a location chosen from the

set of functional configurable logic modules. Reconfiguration can also be done in a

fixed circuit by implementing R instances of the application logic module. Testing

determines which of the R instances is functional. One of these functional modules is

selected to connect to the rest of the circuit.

While flexible, programmable logic devices require a large amount of overhead

due to redundant interconnections, configuration registers, and other circuitry. For

a high-speed processor, the switched-module approach provides some fault tolerance

with overhead similar to RMR. An example of modular reconfiguration is shown in

Figure 5.1. The probability an application module using switched-module reconfigu-

ration is correctable is

Preconf = Pswitch · P (M), (5.18)

where Pswitch is the probability the switching circuit functions correctly and P (M) is

the probability at least one of the R modules functions, or

130



…

…

Select

Registers

Module R…

Output 1

Module 1

1

0

0

Figure 5.1: Modular reconfiguration has minimal overhead
requirements to implement interconnect and switching. It is
a very effective method of fault tolerance for moderate defect
rates.

P (M) = 1 − P (M) = 1 − (1 − Pmod)
R. (5.19)

It is also possible to combine reconfiguration with RMR by using reconfiguration

to select R functional modules from a group of R+S modules and passing the results

to a majority voter. The probability this module is correctable is

PRMRreconf = Pmajgate · Pmajconnected, (5.20)

where Pmajgate is the probability the majority gate functions, and Pmajconnected is the

probability the majority of the R connected modules function.

5.3.4 TMR-Protected Reconfiguration. Finally, RMR can be combined with

module reconfiguration. Here, R modules are implemented of which T are connected

to a majority gate. This technique provides additional protection against soft er-

131



rors. Herein, triple modular redundancy (TMR) protected reconfiguration (TMR-R)

is used. An example of TMR-R is shown in Figure 5.2.

The yield of a TMR-R module is

YTMRR = Pswitchworks · Patleast2modswork, (5.21)

where Pswitchworks is the yield of the 3-input majority gate and the input selectors,

and

Patleast2modswork =
R
∑

k=2





R

k



Y k
mod (1 − Ymod)

R−k. (5.22)

To reduce power consumption, unused modules should be disconnected from

power sources.

5.3.5 Threshold Gate Logic. Threshold logic gate (TLG) circuits have re-

ceived some attention for fault tolerance and neural networks applications [LC67,

Rei00]. Theoretically, TLG circuits can be made arbitrarily fault-tolerant using small

to moderate amounts of redundant hardware while Boolean circuits cannot [Rei00].

Threshold logic gates can implement any Boolean function and could replace conven-

tional Boolean gates. However, threshold logic design differs greatly from Boolean

design, and new design and synthesis tools will be required [BQA03]. For the near to

mid-term, computers will continue to be constructed from Boolean logic gates.

5.4 Memory Array Fault Tolerance

Several fault tolerance techniques used in computer memories are discussed in

this section. They will be used in the design of the FDT cache in Chapter VIII.

5.4.1 Error Correcting Codes. Forward Error Correction is often used in

memories where soft errors and Single Event Upsets (SEUs) occur due to radiation

or electrical noise. ECC can correct errors induced through both transient events as

well as manufacturing defects. The most common approach uses simple parity bits

132



Majority

Gate

Module 1

Module 2

Module 3

Module 4

Reg

Reg

Reg

Reg

Reg

Reg

…

Module R

Output 1

Select Registers

Figure 5.2: TMR-protected modular reconfiguration combines
the benefits of reconfiguration with the soft error protection of
TMR.

133



or Hamming codes. Modern microprocessors from AMD and Intel both use forms of

Error Correcting Codes (ECC) in their cache to detect and correct single bit errors

with minimal impact on operation. One simple method to model the performance of

ECC on yield is

YECC = Peccw
W (5.23)

where W is the number of ECC words in the cache, and Peccw is the probability that

a single ECC word contains a correctable number of errors. This probability is

Peccw =
c
∑

i=c−t





c

i



 pbit
i (1 − pbit)

c−i (5.24)

where c is the number of bits in each ECC code word, pbit is the probability each

memory bit will be functional, and t is the error correcting capability of the code

used. In most simple ECC schemes, t = 1. In the simplest parity codes, t = 0,

meaning the code can detect a single bit error in the code word, but cannot isolate

the error location. In this case, the processor must recover from the error in a different

way (e.g., hardware exception). For t = 1, the code can isolate the location of the

error and correct it.

More complicated codes such as the extended Golay and Bose-Chadhuri-Hoc-

quenghem (BCH) codes [Skl01,LDJC83], provide better detection/correction perfor-

mance at the cost of increased hardware complexity and increased latency. Access

time is usually a key concern for cache design and codes that can be decoded quickly

are desirable. Parallelized implementations of some encoders/decoders have been im-

plemented for extended Golay and other codes [BMH00,LDJC83], but add significant

amounts of additional hardware. While the reliability of the memory array is im-

proved, the reliability of the encoder/decoder module actually decreases due to the

increase in the number of devices that can fail. Thus, there must be a balance of code

complexity versus performance for a particular design.

134



5.4.2 Global Spares/Content Addressable Memories. The simplest memory

fault tolerance approach uses global spares. In this case, a number of spare bits are

available to replace faulty bits, with little or no restriction on their placement or use.

In this idealized form, the yield of a chip can be modelled as

YGS =
b+s
∑

i=b





b+ s

i



 pi
bit (1 − pbit)

b+s−i, (5.25)

where b is the number of bits in the cache, s is the number of spare bits, and pbit is

the probability a memory bit is functional, or

pbit = eNbλ1 , (5.26)

where Nb is the number of devices in a memory bit (i.e., cell). Nb = 8 in a typical

dual read port memory architecture. The value for λ1 is the mean number of defects

per transistor.

It is usually not practical to implement spares with no limitations on their

use. Restrictions on interconnect, fan-in, and fan-out typically limit spares to certain

sections of the memory. The closest practical implementation of global spares is the

Content-Addressable Memory [Lo93,Lo94]. In this approach, each memory cell stores

the memory address in addition to the data bit(s). With each memory access, all

CAM cells compare their stored address to the input address. The address will match

for a single CAM cell. This cell performs the desired read or write operation. CAM

architectures can suffer from slower speeds due to large fan-ins depending on the

device technology. These problems may not be as significant for non-CMOS device

technologies of the future.

5.4.3 Spare Rows and Columns. The most common memory fault tolerance

technique uses spare rows and/or columns in the memory array. Post-manufacturing

testing determines the locations of faults, and spare rows/columns permanently re-

135



place faulty elements. This can be done through laser fusing, or dynamically through

registers. The yield equations for a memory containing spare rows (or spare columns),

is similar to the equation for global spares,

YSR =
r+sr
∑

i=r





r + sr

i



 pi
row (1 − prow)r+sr−i (5.27)

where r is the number of required rows, sr is the number of spare rows available

(without assuming they are functional a priori), and prow is the probability a row is

functional. This probability is

prow = eNbλ1Nr , (5.28)

where Nb is the number of devices per memory bit, λ1 is the mean number of defects

per device, and Nr is the number of memory bits per row.

Some architectures use both spare rows and spare columns. Closed form ana-

lytical expressions for this approach have not been found, but several approximations

have been proposed. In [KK97], st replaces sr in (5.27), where st is the sum of the

spare rows and columns. Another approximation, uses st = sr · sc [CPL+03]. In

practice, statistical simulation is commonly used to evaluate the performance of these

architectures.

5.5 Hardware Cost Models

Hardware cost models are used primarily to provide input information to the

yield models. The hardware cost models are also used to estimate relative “cost”

of fault tolerance hardware in terms of devices or chip area. A similar method of

transistor counting is used to develop a model of the MIPS 32 bit RISC microproces-

sor [MP00]. Starting from primitives, more complicated structures are created. From

these models, it is possible to estimate the number of transistors in the entire proces-

136



sor. This technique is used directly to estimate the number of devices in the non fault

tolerant processor and improved FDT processor in Chapter IX.

Area estimation is more complex as it must consider interconnect lines. The

area occupied by a circuit depends greatly on layout, the number of signals, and

the distances that must be crossed. In addition, interconnect estimation is strongly

dependent on device technology. For example, modern silicon CMOS uses several

layers of vertically separated interconnect lines, connected by vias. Increasing the

number of layers reduces the overall area. In other technologies, multiple layers are not

possible. For these reasons, cost comparisons at the architectural level are performed

at the logical level (i.e., independently of device technology).

In Chapter X, the models are mapped onto a specific device technology, quantum

cellular automata. Here, the device counting models are extended to include the

interconnect. This has significant effects on both yield models and hardware area

estimation.

5.5.1 Primitives. The hardware model used in the next several chapters

is based on silicon CMOS. For example, an inverter requires two transistors; a two-

input NAND gate requires four. Table 5.1 summarizes the primitives used to construct

larger circuits.

From the primitives, several larger circuits are used later. First, the A− to−2A

Address Decoder with Enable Input has a cost of

Cdec = 2A · CNAND(A+ 1) + (A+ 1) · CNOT , (5.29)

where A is the number of bits in the address. The decoder is used in the non fault

tolerant cache design.

137



Table 5.1: Hardware cost primitives [Wak90, Man88]. The
default unit is the transistor.

Module Symbol HW Cost

Inverter CNOT 2
NAND2 CNAND2 4
NOR2 CNOR2 4
x-input NAND CNAND(x) 2x
x-input NOR CNOR(x) 2x
Buffer Cbuffer 4
XOR2 CXOR2 16
Transmission Gate Ctgate 2
SR Latch CSRLatch 8
D Flip Flop, Pos. Edge Triggered Cdff 22

Multiplexers are used in many circuits. The design of the X-to-1 by Wout mul-

tiplexer is from [Wak90]. The hardware cost is

Cmux = log2(X) · CNOT +Wout · (CNAND(X) +X · CNAND(1 + log2(X))), (5.30)

where X is the number of inputs to select from, and Wout is the number of bits selected

in parallel. This is useful when busses are used, as in the 32 bit processor design in

Chapter IX.

Similarly, the design of the 1-to-X by Wout demultiplexer with Enable E is from

[Man88]. The hardware cost expression is

Cdemux = Wout ·X · CNAND(log2(X) + E) + log2(X) · CNOT , (5.31)

where X is the number of outputs, and Wout is the width of the bus. E = 1 if an

enable input is required.

Memory elements are used throughout the design. The Wout bit register with

common enable line is also from [Man88]. Its cost is

Creg opt(Wout) = Wout · (Cdff + 3CNAND2) + CNOT , (5.32)

138



where Wout is the number of bits to be stored. This version uses a single enable line

for all bits. Sometimes it is desirable to enable each bit individually. In this case, the

hardware cost becomes

Creg nonopt(Wout) = Wout · (Cdff + 3CNAND2 + CNOT ). (5.33)

Majority gates are a basic element in both RMR and TMR-R. The R-input

Majority gate (i.e., MAJ-R) design is from [HPS75]. A variation of this type of gate

is commonly found in the mirror adder. Its hardware cost is

Cmajgate = 4Wout ·





R

R+1
2



 , (5.34)

where R is the number of inputs, and Wout is the number of output bits in parallel.

5.5.2 Fault Tolerance Circuits. The hardware cost of a circuit protected

with R-modular Redundancy is

CRMR = WoutCmajgate(R) +R ·Nmod, (5.35)

whereWout is the number of bits in the module’s output, R is the number of redundant

modules, and Nmod is the number of devices in the module to be protected.

The hardware cost for a circuit protected with Modular Reconfiguration is

Creconf = (WoutCNOR(R) + Creg opt(R) +WoutR Ctgate) +R ·Nmod, (5.36)

where Wout is the number of bits in the module output, R is the number of redundant

modules, and Nmod is the number of devices in the module to be protected.

139



The hardware cost of a circuit protected with TMR-protected reconfiguration

is

CTMRR = (WoutCmajgate(3)+Creg opt(3R−6)+(3R−6)Wout Ctgate)+R ·Nmod, (5.37)

where Wout is the number of bits in the module output, R is the number of redundant

modules, and Nmod is the number of devices in the module to be protected.

5.6 Summary

This chapter develops yield and hardware cost models for the fault tolerance

techniques used in the fault and defect tolerant processor. Analytical models for

CMOS yield prediction are adapted for RMR, modular reconfiguration, and TMR-

R. In addition, the most common memory fault tolerance techniques, ECC, global

sparing, and row/column sparing are summarized. TMR-R, a new fault tolerance

technique combining the benefits of modular reconfiguration with the soft error pro-

tection provided by TMR, is introduced. A hardware cost model is introduced and

yield expressions are developed for the key fault tolerance techniques. These models

are used later to predict the yield and overhead requirements of the FDT processor.

140



VI. von Neumann Multiplexing

This chapter develops the first exact analytical model for the performance of von

Neumann (NAND) Multiplexing, an important fault tolerance technique first created

in 1956 [vN56]. To date, all of the models for the effectiveness of this technique have

been approximations. An analytical model was recently proposed by Han and Jonker

[HJ02], but found to produce inaccurate results. This model has been examined, the

errors found, and an improved model produced to correctly predict the performance of

this technique. MATLAB simulations have verified the correctness of this improved

model. Thus, researchers now have the first accurate performance model for this

fault tolerance technique. This result supports Goal 4, providing tools and models to

support fault tolerant system development.

6.1 Introduction

The miniaturization of silicon CMOS transistors has advanced roughly in step

with Moore’s Law for forty years. Device sizes continue to shrink as new solutions

are found to fabrication problems. The end of Moore’s Law has been foretold for

almost as long, as physics challenges become increasingly difficult to overcome. Since

transistors are made from finite numbers of atoms, there is a limit to the minimum

size of a conventional MOS transistor. Indeed, that limit is perhaps only a decade

away. Already quantum tunnelling effects are beginning to significantly impact device

operation, increasing leakage currents, as well as making it more difficult for the gate

to control the flow of current in the transistor.

For some time, alternative technologies have been examined as a replacement

for silicon CMOS. In addition to hybrid silicon devices such as dual-gate and vertical

gate transistors, new device types such as single-electron transistors and molecular

crossbars have been proposed. Although none of these devices has yet emerged as

the successor for conventional CMOS, they have several things in common. As a

penalty for small size, the devices are more difficult to fabricate, more subject to

manufacturing defects, and more likely to suffer from failures during operation.

141



To make use of these devices, the underlying architecture must be able to detect

and tolerate errors while producing correct results. A variety of techniques have been

proposed to do this, typically involving the incorporation of redundant devices into

the circuit, or the use of reconfigurable logic to move the application circuit away

from defective devices. One such redundancy technique, NAND Multiplexing was first

proposed by von Neumann [vN56], and modelled for large amounts of redundancy.

An analytical model for smaller amounts of redundancy was proposed by Han and

Jonker [HJ02,HJ03]. Norman et al. [NPK04,BS04b] observed that this model does not

account for dependence between the redundant inputs, and proposed a probabilistic

model checker-based approach to model performance. A second analytical model was

proposed early in [SNF04], but set aside in favor of the binomial model from [HJ02].

This chapter presents the first exact analytical model for the the performance of

von Neumann Multiplexing at moderate levels of redundancy. The new combinatoric

model accounts for dependence between the inputs to the NAND gates. This new

model is somewhat similar to a recent combinatoric model presented for Three-Input

Majority Multiplexing [RB04,RB05]. However, it appears that one type of error was

omitted in [RB05], that is accounted for in the model in this chapter. In addition,

three additional types of faults are modelled: output stuck-at-zero, output stuck-at-

one, and input stuck-at-zero. The results of the combinatorics model are compared

with results obtained via MATLAB simulation as well as the probabilistic model

checker PRISM [NPK04,PNK04,BS04b,BS04a]. The improved model in this chapter

model is up to 20% more accurate than all known previous analytical models and the

PRISM simulator, and produces results several times faster than PRISM.

6.2 von Neumann Multiplexing

6.2.1 Overview. In early computers, logical functions were realized using

vacuum tubes. These devices were prone to failure, and the mean time before failure

of a computer constructed of vacuum tubes was quite low. Research began in the area

of fault tolerance and, in 1952, John von Neumann investigated the possibility of per-

142



forming reliable operations with unreliable components through redundancy [vN56].

Two methods were investigated, majority voting and multiplexing. Both methods use

a group of logical gates (any of which can fail) in place of a single unreliable gate.

Von Neumann showed that if the probability each gate fails is sufficiently small, and

the errors in each gate are independent, a high probability of a correct result can be

achieved.

6.2.1.1 The NAND Multiplexing Unit. The purpose of the NAND

Multiplexer is to reliably perform the boolean NAND operation in the presence of

errors that change the operation of the device. A ‘von Neumann fault’ [vN56] inverts

the correct output of a NAND gate. The NAND Multiplexer circuit performs the

NAND operation redundantly (see Figure 6.1), increasing the probability of correct

output over that of a single NAND gate.

In the Multiplexing technique, logic signals are represented by bundles of signals.

For example, a NAND gate may have two inputs, X and Y , and one output, Z. Each

signal is represented by a bundle of N signals. If there are no errors in a signal, all

N lines in the bundle have the same value. If errors are present, some fraction of the

lines have the opposite value. A threshold, ∆ ∈ (0, 0.5) is defined such that when no

more than ∆N of the lines in the bundle are stimulated (i.e., logic ‘true’ or ‘1’), the

logical value of the variable represented by the bundle is interpreted to be ‘false’ or

‘0’. Likewise, at least (1 − ∆)N lines must be asserted for the logical value of the

variable represented to be considered ‘true’ or ‘1’. If the number of asserted lines in

the bundle is between these two thresholds (∆N, (1 − ∆)N), the state is undecided,

and a malfunction is assumed.

The NAND Multiplexer is composed of two parts: the Executive Stage and one

or more Restorative Stages. Each restorative stage is nothing more than two executive

stages connected in series. In most cases, adding more restorative stages or increasing

the bundle size N makes the NAND operation more reliable.

143



X0

X1

X2

XN
…

Y0

Y1

Y2

YN
…

X0

Y2

XN

Y1

X2

YN

X1

Y0

…
…

…

……
…

X

Y

U

Permutation

Unit

Executive Stage Restorative Stage(s)

…

…

X0

X1

X2

XN
…

Y0

Y1

Y2

YN
…

X3

YN

X1

Y0

XN

Y2

X2

Y1

…
…

…

……
…

X

Y

U

X0

X1

X2

XN
…

Y0

Y1

Y2

YN
…

X2

Y1

XN

Y0

X1

Y2

X0

YN

…
…

…

……
…

X

Y

U

Z

Figure 6.1: NAND Multiplexer

The Executive Stage contains two parts: a row of N NAND gates in parallel, and

a Permutation Unit (i.e., block ‘U’). The initial input signals X and Y are represented

by two bundles of N signals. The output of the NAND operation is the bundle Z,

which will also contain N signals. Prior to the introduction of any errors, all of the

signals in each bundle should match the “correct” values (i.e., Xi = Xj ∀ i, j and

Yi = Yj ∀ i, j). If errors have occurred, some fraction of these lines will contain the

logical inverse of the correct value. Without loss of generality, logical true, ‘1’, is

defined to be the “correct” value for X and Y , and thus ‘0’ is the correct output

Z. Let (X,Y, Z) have (kx0 = x̄N, ky0 = ȳN, kz0 = z̄N) stimulated signals. Thus,

the triplet (x̄, ȳ, z̄) is the probability each variable is stimulated, while kx0, ky0, kz0

represent the number of stimulated lines in each respective bundle for stage 0.

In the permutation unit, U, the X and Y bundles are randomly permuted and

combined into N XiYj pairs. For example, if N = 4, one possible permutation is

X2Y3, X0Y1, X3Y0, X1Y2. These XY pairs are the inputs to the N NAND gates. For

the von Neumann error, each NAND gate is subject to an error which inverts the

correct logical output with probability ε.

The goal of previous work [vN56,HJ02,NPK04,SNF04] was to determine the dis-

tribution of the stochastic variable z̄ in terms of given x̄ and ȳ. Von Neumann [vN56]

144



concluded that, for large N , the output probability z̄ is a stochastic variable with

an approximately normal distribution, and the upper bound for the probability of

gate failure that could be tolerated is εmax ≈ 0.0107. Recent work showed that the

tolerable threshold probability for any formula constructed from NAND2 gates is

εmax = (3 −
√

7)/4 ≈ 0.08856 [EP98]. Beyond this (i.e., ε > εmax), the failure proba-

bility of the NAND Multiplexer system will be larger than some fixed, positive lower

bound, regardless of the bundle size N . Furthermore, for small N , the number of

stimulated outputs of the executive stage is theoretically a binomial distribution, al-

though this was disputed by [NPK04,BS04b], citing the lack of independence between

the lines of the output bundle. Herein, it is proven that the lines of the output bun-

dles are not independent, and we introduce new mathematics to accurately model the

system. A combinatorics-based approach was recently used to model MAJ-3 multi-

plexing [RB05].

6.2.2 Han and Jonker Analytical Model. In the Han and Jonker model

[HJ02], the error distribution for the NAND Multiplexing technique was developed

by examining each NAND gate in the executive stage independently. The model is also

used in [SNF04]. A binomial distribution described the number of asserted outputs

from the executive unit, and a Markov chain modelled the output distribution after

multiple stages.

The following presentation of that model follows [HJ02]. The probability of the

output of a single NAND gate being stimulated is

z̄ = (1 − x̄ȳ) + ε(2x̄ȳ − 1). (6.1)

This equation is valid for von Neumann errors. Other error types have a similar

form. Each gate’s inputs were assumed to be chosen independently. In this case, the

N parallel gates function as a Bernoulli sequence. The probability distribution for

145


