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Abstract

As conventional silicon Complementary Metal-Oxide-Semiconductor (CMOS)

technology continues to shrink, logic circuits are increasingly subject to errors in-

duced by electrical noise and cosmic radiation. In addition, the smaller devices are

more likely to degrade and fail in operation. In the long term, new device technolo-

gies such as quantum cellular automata and molecular crossbars may replace silicon

CMOS, but they have significant reliability problems. Rather than requiring the cir-

cuit to be defect-free, fault tolerance techniques incorporated into an architecture

allow continued system operation in the presence of faulty components.

This research addresses construction of a reliable computer from unreliable de-

vice technologies. A system architecture is developed for a “fault and defect tolerant”

(FDT) computer. Trade-offs between different techniques are studied, and the yield

of the system is modelled. Yield and hardware cost models are developed for the fault

tolerance techniques used in the architecture.

Fault and defect tolerant designs are created for the processor, and its most

critical component, the cache memory. A content-addressable memory (CAM)-based

cache design is developed. Simulation results show the cache achieves 90% yield with

device failure probabilities of 3×10−6, three orders of magnitude better than non fault

tolerant caches of the same size. The entire processor achieves 70% yield with device

failure probabilities exceeding 10−6. The hardware redundancy required to achieve

this performance is approximately 15 times that of a non-fault tolerant design. While

large compared to fault tolerant designs used today, this architecture allows the use

of devices much more likely to fail than silicon CMOS. Given the size improvements

predicted for future device technologies, the hardware overhead may be acceptable.

As part of the work to develop reliable models for fault tolerance techniques, an

improved model is developed for NAND Multiplexing, a cornerstone fault-tolerance

iv



technique based upon large levels of redundancy. The model is the first exact model

for NAND Multiplexing with small and medium amounts of redundancy. Previous

models are extended to account for dependence between the inputs and produce more

accurate results. An example shows the required hardware redundancy is reduced by

50%.

v
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Fault and Defect Tolerant Computer Architectures:

Reliable Computing With Unreliable Devices

I. Introduction

1.1 Background

In 1965, Gordon Moore observed that the number of transistors on a microchip

doubled every 12 months [Moo65]. He predicted this rate of increase would likely

continue at least until 1975. As it happened, this prediction has actually held true for

forty years, becoming the most famous “law” in microelectronics. And yet, almost

from its inception, there are those who have predicted the end of Moore’s Law. They

cite ever higher technical barriers and predict progress cannot be maintained beyond

the next process generation. However, solutions have always been found to these prob-

lems, extending the life of the the silicon Complementary Metal-Oxide-Semiconductor

(CMOS) transistor.

In spite of progress, there are fundamental limits on how small a Metal-Oxide-

Semiconductor Field Effect Transistor (MOSFET) can be made. The oxide layer that

separates the gate from the channel is already only atoms thick. Within the next

several process generations, this layer will be only a single atom thick. At this size,

controlling the flow of current through the transistor becomes extremely difficult. The

use of alternative materials, such as Hafnium Oxide [Bou03] may extend the life of

the MOSFET by a generation, but in the end, new device families will be required.

Moore’s Law may not end, but its future will likely lie with devices other than

silicon CMOS. Single electron transistors (SET), quantum cellular automata (QCA),

rapid single flux quantum logic (RSFQ), and carbon nanotube transistors are all being

studied as potential replacements for the silicon MOSFET. Each of these devices has

been demonstrated on a small scale. While these devices have the potential to be

smaller, faster, and consume less power than silicon CMOS, they bring their own
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disadvantages. These devices are difficult to fabricate reliably, more susceptible to

electrical noise, more likely to fail in operation, and can even require special cooling

(e.g., via liquid nitrogen).

Even with conventional CMOS, it is becoming more difficult to fabricate reliable

circuits. Quantum effects are becoming important in device performance and conven-

tional scaling rules used to design Very Large Scale Integrated (VLSI) circuits are

nearing their limits. The small numbers of atoms in the channels of modern transis-

tors means that even small variations in the number of dopant atoms will significantly

change its operating characteristics. In addition, the lithographic techniques used to

create circuit patterns are reaching their limits, making it more difficult to create

the necessary distinct features. Thus, even with conventional silicon CMOS, it is

becoming more difficult and costly to produce smaller, higher performance circuits.

1.1.1 The Problem of Yield. The fundamental challenge in semiconductor

fabrication has always been to produce microchips with ever an increasing number

of devices in a reliable and economical manner. The conventional paradigm invests

enormous amounts of money and resources into fabrication facilities to create chips

with few defects. A wafer of chips is fabricated, cut apart, and tested. Those that do

not function correctly are discarded. The percentage of correctly functioning chips is

known as the yield . Modern silicon fabrication yields typically range from 60-85%.

With the exception of memory chips and other specialized circuits, most cir-

cuits are not designed to operate correctly in the presence of defective transistors

or interconnect wiring on the chip. Even one defect can render the chip unusable.

Thus, the defect rate of individual devices must be kept extremely low, requiring pre-

cise control over the fabrication process. Each new generation of fabrication facilities

costs more than the last, with modern fabrication lines costing in excess of a billion

dollars [DeJ98].
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The yield of a process can be simply modelled. If defects occur independently,

the probability, Pfunctional, of a defect-free chip composed of N transistors, each de-

fective with probability Pdef , is

Pfunctional = (1 − Pdef )
N . (1.1)

For a modern microprocessor containing N = 100 × 106 transistors, a typical

defect rate is Pdef = 10−9. Thus, the probability of a defect free chip is Pfunctional =

0.905. Increase in the defect probability to Pdef = 10−8, however, and the yield falls

to 36.8%.

As the number of transistors on each chip has increased, the difficulty of testing

for correct operation has increased as well. Modern microprocessors contain more

than 100 million transistors, so testing each device for correct operation is not feasible.

Thus, the field of VLSI testing has developed to find ways to quickly and efficiently

verify chips. Each manufacturer strikes a balance between the time and money spent

testing chips and the penalty for shipping defective devices to a customer.

1.1.2 The Problem of Errors. In addition to being more difficult to fabricate

initially, smaller CMOS devices are more susceptible to failures in operation. For

example, electromigration makes chips more likely to permanently fail over time. In

addition, smaller devices are more influenced by electrical noise in power supplies and

by radiation strikes. Alpha particles, neutrons, heavy ions, and electrons have long

been a problem for devices operating in space. When cosmic radiation strikes a device,

a small electrical pulse is created that may cause logic errors in the device. While

the effects on the device are not permanent, these soft errors can alter the results

of a computation or cause a program crash. Long-term or high intensity radiation

exposure can cause permanent damage.

Although computer architects have largely ignored radiation effects for terres-

trial applications, they will have to deal with these problems in the future. Indeed, Mi-
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crosoft recently proposed the use of Error-Correcting Code-protected RAM for general

purpose computers running the upcoming Windows Vista operating system [Cou06].

Smaller devices have smaller node capacitances and will be affected by radiation and

noise. So while process engineers may solve some problems and continue to provide

low defect rates, the problems caused by noise and radiation cannot be easily solved

at the foundry.

1.2 Renewed Interest in Fault Tolerant Computing

Given the difficulty and cost required to fabricate reliable devices, it is reason-

able to ask whether a reliable microchip can be fabricated from inherently unreliable

devices. Whether constructed from new technologies such as quantum cellular au-

tomata or from advanced silicon CMOS, devices in the future will likely suffer higher

fabrication defect rates, permanent failures after fabrication, and temporary soft er-

rors in operation. So rather than requiring all devices to be reliable all of the time, is

it possible to construct a circuit that can tolerate these device errors?

As it happens, the problem is not new. Early computers were constructed from

vacuum tubes which were prone to failure. In fact, Mean-Time-Between-Failures

(MTBF) was often measured in hours. Computer architects overcame these problems

by incorporating redundancy into the design, including Triple Modular Redundancy

(TMR) and multiplexing [vN56]. Essentially, TMR performs an operation three times

and uses the “best two out of three” results to produce a correct output.

Fault tolerance and defect tolerance became less important following the advent

of the integrated circuit. The need for defect tolerance (i.e., the ability to operate

with devices that are defective at fabrication) was reduced since microchips could be

fabricated reliably and had very low failure rates in operation. Fault tolerance (i.e.,

the ability to operate in the presence of soft errors) continued to be important for

devices used in space applications as well as in areas where reliability was critical (e.g.,

nuclear power plants, certain military uses, etc.). But with the increasing cost and

difficulty of creating reliable devices, interest in fault and defect tolerance is returning.
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More recently, the field of reconfigurable computing has emerged as an enabling

technology. Reconfigurable computing typically uses programmable logic devices such

as a Field Programmable Gate Array (FPGA). Field programmable logic devices pro-

vide a computing fabric that can be modified during operation to implement different

circuit functions. Run-time reconfiguration of an FPGA has been used for defect

and fault tolerance. If a portion of the microchip becomes defective, the application

circuit is reconfigured to use other portions of the FPGA.

1.3 Statement of Purpose

1.3.1 Research Focus. The goal of this research is to develop a computer

architecture to compute reliably using device technologies that are less reliable than

current silicon CMOS. The research involved several areas: fault tolerant computing,

defect tolerant computing, reconfigurable computing, VLSI circuit design and test,

and computer architecture. The outcome of this research is largely independent of

the underlying device technology, assuming only that the devices are smaller, more

difficult to fabricate, and more subject to operational failures than current silicon

CMOS.

1.3.2 Applications. This research enables application circuits to function

correctly even when implemented on device technologies prone to soft and hard errors.

It is an enabling technology in nanoscale CMOS (i.e., CMOS with feature sizes of less

than 100 nanometers) and other new device technologies. Without this capability,

it will be impossible to economically build reliable circuits with these technologies.

Defect tolerant architectures indirectly improve the yield of conventional fabrication

processes, and thereby lower manufacturing and test costs. In the past, the validity

of Moore’s Law relied on progress from device and process engineers; it will soon also

require support from the computer architect.

Initially, the first use of this research will be in space and military applications

where reliability is critical. FPGAs are heavily used in these areas, and a great deal of
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research has been directed to making them more reliable. Aspects of this research are

easily implemented with FPGAs. Thus, it is relevant even with today’s silicon CMOS

devices. As process size decreases, silicon CMOS will be less reliable, making progress

in the other areas essential to reliable computing. As discussed in later chapters, it

may be impossible to build chips from non-CMOS technologies without incorporating

defect and fault tolerance.

1.4 Defect Tolerant Computing

This section briefly examines the problem as well as potential solutions. A

reliable computer requires the ability to both detect and correct failures. Section

1.4.1 summarizes the layers of hardware abstraction for research, while Section 1.4.2

presents a notional architecture for a FDT computer. This general model is explained

in later chapters and used as the operating paradigm for the FDT computer. Devel-

opment of this paradigm, or concept of operations, is one of the goals of this research.

The goals are listed in detail in Chapter III.

1.4.1 Potential Solutions. The problem of system reliability can be ad-

dressed at several levels. There are those who debate the necessity of incorporating

fault and defect tolerance at the architectural level, citing the past successes of the

device engineers at low defect fabrication. Figure 1.1, shows three areas of long-term

technology research: “non-classical” CMOS technologies, alternative device families,

system architectures [Bou03]. Reliability can be achieved at the device level, but may

become prohibitively expensive. As shown in the figure, defect tolerant computing

addresses the problem of reliable computing at the architectural level.

As discussed in Section 1.3.2, defect tolerant computing is a viable research area

regardless of the device technology used in the future. While process engineers may be

successful at producing circuits with high yield, it is likely to be extremely expensive.

Defect tolerant microchips can be fabricated with less rigorous process controls, at

much lower cost. The computer architect would be given a tool to make tradeoffs
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Figure 1.1: Emerging Technology Vectors [HBZB02]. Succes-
sors to silicon CMOS are being examined at many levels. The
goal of this research is to address fault and defect tolerance at
the architectural level.

between the costs (e.g, performance, power, area, economic) of redundant hardware

and the cost of low defect fabrication. To make these tradeoffs, methods must be

developed to tolerate defects and faults, and to quantify costs and benefits.

A defect and fault tolerant computer is subject to many kinds of errors and

requires support by both static techniques as well as dynamic reconfiguration. Soft

errors are temporary in nature, and can be effectively handled through hardware-based

redundancy techniques such as triple-modular redundancy (TMR), duplication-with-

comparison (DWC), or concurrent error detection (CED). Hard errors are permanent,

and result from degradation of devices over time. To mask these errors, hardware

reconfiguration can move the application circuit from defective devices onto other

functional areas of the chip. Reconfiguration can be done by the chip itself, or at

higher levels such as in a Built-In Operating System (BIOS) or operating system

(OS). Depending on the device technology used, the computer architect can apply
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Table 1.1: Defect and Fault Tolerance at Different Levels. A
FDT computer may implement defect and fault recovery support
at multiple levels. Tradeoffs must be made when deciding which
features to implement at each level.

Level Description Potential Solutions

System OS or BIOS health monitoring, dynamic routing
Processor reconfiguration, permanent fault diagnosis,

health monitoring/repair, dynamic routing
Component (e.g., EXE unit) TMR, reconfiguration
Module (e.g., Adder) TMR, reconfiguration
Gate NAND Multiplexing, Majority Voting
Device Transistor reliability improvements

solutions at one or more levels, as shown in Table 1.1. These ideas are discussed in

later chapters.

1.4.2 A Notional Architecture. This section presents a notional model of a

FDT computer and shows how a reliable processor can be fabricated from an unreliable

process technology. This general model will be expanded and used as the operating

paradigm for the FDT computer. Figure 1.2 shows the steps in fabrication testing

and operation of the processor.

Testing is done in two phases: fabrication and normal operation. After initial

fabrication, each chip is tested and defects are located. The defects are evaluated to

determine whether the chip can be used for the intended application. If too many

defects exist, the chip is discarded. If not, the application circuit is mapped onto the

device and placed into normal operation.

In normal operation, the chip continually monitors its health to detect errors.

Soft errors are corrected using redundancy techniques. Permanent failures are cor-

rected by reconfiguring the application circuit and reaccomplishing the calculation

if necessary. In this way, the microchip can operate reliably, until the number and

location of faults exceeds the chip’s ability to recover.
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Figure 1.2: System Architecture of a FDT Computer. Steps
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1.5 Summary

The field of defect tolerant computing is seeing renewed interest. Developing an

economical, efficient strategy at the device and architectural levels to use future device

technologies is a laudable goal. Defect tolerant computing will be a valuable tool for

the electronics industry in extending Moore’s Law for the next several decades.

The remainder of this document presents a fault and defect tolerant computer

architecture. Chapter II discusses the causes of the problem, challenges to be faced,

and technologies that provide the basis for a solution. Chapter III defines three

specific research goals and explains the contributions of this research. Chapter IV

outlines the research methodology, and shows how the research goals were achieved.

Research results are presented in Chapters V through X. Chapter V proposes

mathematical models for yield and hardware cost of the fault tolerance techniques

used in the architecture. Chapter VI derives the first ever accurate analytical model

for NAND multiplexing at moderate levels of redundancy. Chapter VII proposes a

high level architecture for the fault and defect tolerant (FDT) computer. Chapter

VIII develops the architecture for the FDT cache memory. Chapter IX develops

the architecture of the remainder of the processor, and demonstrates the effective-

ness of the fault tolerance strategies. Chapter X shows how these techniques can be

implemented using non-silicon CMOS device technologies. Chapter XI presents con-

clusions and recommendations for future research. Appendix A includes additional

background information on reconfigurable computing and programmable logic devices

as well as information on two key technologies which may be used in defect tolerant

computing. Finally, Appendix B proposes three follow-on phases for a long-term

research program in this area.
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II. Background

2.1 Overview

Overcoming the challenges of designing a defect tolerant computer requires the

synthesis of several research areas. This chapter provides more detail on the problem

area as well as supporting research which will be useful. This chapter is arranged as

follows:

• Section 2.2 investigates problems associated with continued scaling of conven-

tional silicon CMOS, potential solutions, and the impact on conventional com-

puter architectures designed to use these devices.

• Section 2.3 introduces several device technologies that may eventually replace

silicon CMOS. These devices, which include Single Electron Transistors (SETs),

Quantum Cellular Automata (QCA), DNA self-assembled devices, and molec-

ular crossbars, offer continued size scaling, but have significant limitations to

overcome to achieve reliable computing.

• Section 2.4 summarizes Fault Tolerance (FT) techniques and typical applica-

tions. Fundamental FT approaches and methods are described, as are methods

for modelling effectiveness.

• Section 2.5 examines radiation effects on CMOS devices.

• Section 2.6 summarizes current research in Fault Tolerant Architectures. Several

researchers have proposed high level architectures for reliable computing with

unreliable components.

2.2 Challenges in Nanometer Scale CMOS

Reduction in the size of silicon CMOS devices continues in accordance with

Moore’s Law as it has for the past forty years [Moo65]. The conventional planar

silicon complementary metal-oxide-semiconductor (CMOS) process will continue to

dominate the mainstream semiconductor market for at least the next ten years. As
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devices continue to shrink, however, new challenges must be overcome. Quantum

effects are beginning to dominate device performance, and conventional scaling rules

that have worked well in the past are nearing their limits. As has happened in

the past, pessimists are predicting the end of conventional CMOS in the foreseeable

future. Scientists and engineers continue to devise new and innovative techniques to

overcome these difficulties. This section examines some of the difficulties involved

with scaling CMOS into the sub-100 nanometer range, potential impacts on yield

and performance, and looks at several of the proposed solutions. Topics include

short channel effects, quantum effects on device operation, fabrication problems due

to process control and limitations in lithography, and other challenges. Proposed

solutions include halo doping, silicon on insulator transistors, high-K dielectrics, new

transistor designs, strained silicon and damascene interconnect.

2.2.1 The Silicon Roadmap. The term nanometer scale CMOS is typically

used to refer to a CMOS process with feature sizes of less than 100 nanometers.

Several definitions of process size exist. Historically, the process size has referred to the

smallest feature that could be formed using lithography. In the past, this was also the

transistor gate length. More recently, sublithographic processes have been developed

that create gate lengths of one half the smallest lithographic feature size. Another

definition is the size of a standard Dynamic Random Access Memory (DRAM) cell,

which depends on the spacing between adjacent metal lines, called ‘pitch,’ as shown in

the left diagram in Figure 2.1. For microprocessors (MPU) and Application Specific

Integrated Circuits (ASIC), pitch definitions are based upon the distance between

adjacent polysilicon or metal lines, as shown in the middle and right portions of

Figure 2.1. The International Technology Roadmap for Semiconductors (ITRS) is

published by a group of major semiconductor manufacturers. For convenience, the

ITRS defines node size as the DRAM half pitch .

A typical N-type Metal-Oxide-Semiconductor Field Effect Transistor (MOS-

FET) is shown in Figure 2.2. The MOSFET is a switch that controls the flow of
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Figure 2.1: CMOS Node Size Definitions [Sem03]. The size
of a transistor typically refers to the gate length. Pitch size is
another useful definition.
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Figure 2.2: Cross Section of a Typical MOSFET.

current between the source and drain by modulating the voltage on the gate elec-

trode. Fabrication begins with a wafer of intrinsic silicon, which is relatively free

from impurities. The bulk region in which the transistor will be placed is doped with

p-type impurities to create a region with an excess of electron holes. Next, a thin

silicon dioxide (SiO2) gate oxide layer is created between what will become the source

and drain. A polysilicon or metal gate electrode is created on top of the gate oxide

layer. Finally, the source and drain regions are created by adding n-type impurities to

create regions with extra electrons. The region beneath the gate becomes the channel,

through which current will flow when the transistor is turned on.

To operate the NMOSFET, a positive voltage is applied to the gate electrode.

Although no current can flow between the gate and the channel region due to the
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gate oxide insulator, a capacitive charge builds up as electrons in the bulk region

are drawn up toward the Silicon-Silicon Dioxide boundary under the gate. After the

threshold voltage is reached, sufficient numbers of electrons build up in the channel

region to overcome the default p-type doping of the bulk and make the region n-

type. This inversion layer between the source and drain forms a conductive channel

through which current can flow. Removing the charge from the gate electrode allows

the capacitive charge to drain from the channel and the electron concentration to

return to the normal p-type levels, shutting off the flow of current.

The operating characteristics of the MOSFET are determined by the device

dimensions, materials used, and dopant concentrations. To model device performance,

constant scaling rules fix the ratios between dimensions and the rate of increase in

dopant concentration as the overall device size shrinks. This process has worked very

well for decades, but as process size shrinks into the nanometer regime, constant

scaling rules no longer produce acceptable performance. Quantum effects and high

electric fields become significant, and operation of the device changes. These problems

must be overcome if scaling is to continue.

Each year, the ITRS establishes goals for the semiconductor industry by defining

the desired process characteristics. The roadmap also identifies problems that must

be overcome to achieve these goals, as well as current progress. A portion of the

ITRS 2003 roadmap is shown in Table 2.1. Currently, the 90nm process, shown in the

year 2004 column, is entering widescale usage. Lithographic limits are roughly 53nm,

although sublithographic techniques allow physical gate lengths of 37nm. As gate

length decreases, other dimensions must scale as well. Gate oxide thickness, Tox, must

shrink from 1.2nm down to 0.5nm. Dopant junction depth, Xj, must decrease from

30nm down to less than 11nm. Channel doping, N, must increase from 4 ∗ 1018cm−3

to over 2 ∗ 1019cm−3. Significantly, leakage currents, Ioff , will continue to increase,

raising static power consumption. Each of these parameters presents challenges. In

fact, there are no known solutions to several of the problems identified in the roadmap.

While researchers have always managed to find solutions to extend the roadmap, the
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Table 2.1: ITRS Roadmap 2003 [Sem03]. Goals for CMOS
characteristics are laid out by a semiconductor industry group.
Many of the technologies needed to attain these goals have not
been developed.

Year of Intro 2004 2007 2010 2013 2016

Node Size (nm) 90 65 45 32 22
Printed gate length Lg (nm) 53 35 25 18 13
Physical Lg (nm) 37 25 18 13 9
Max Power (W) 158 189 218 251 288
Transistors 193M 386M 773M 1.546G 3.092G
Clock Speed (GHz) 4.17 9.285 15.08 22.9 39.7
Interconnect Levels 10-14 11-15 12-16 12-16 14-18
Gate Oxide Thickness (nm) 1.2 0.9 0.7 0.6 0.5
Junction Depth rj (nm) 30 20 15 11
Channel Doping (cm−3) 4 ∗ 1018 6 ∗ 1018 1.2 ∗ 1019 2 ∗ 1019

Power supply voltage Vdd (V) 0.9/1.2 0.8/1.1 0.7/1.0 0.6/0.9 0.5/0.8
Ioff (nA/µm) 50 70 100 300 500
Ion (mA/µm) 1110 1510 1900 2050 2400

issues are becoming increasingly difficult, and it may ultimately become impossible

or simply too expensive to continue to shrink silicon CMOS. Potential successors to

silicon CMOS are discussed in Section 2.3. The remainder of this section discusses

the specific problems that occur in scaling silicon CMOS, as well as some potential

solutions.

2.2.2 Circuit Effects.

2.2.2.1 Short Channel Effects. Transistors in mass production are

typically long channel devices; the effective channel length (L′) is much larger than

the maximum depletion region depth (Wm). A typical MOSFET is shown in Figure

2.3. The dotted lines denote the edges of the depletion regions formed at the PN

junctions. As channel length decreases, the long channel circuit models used to predict

performance begin to break down. Short channel effects include threshold voltage

roll-off in the linear region, drain-induced barrier lowering (DIBL), and bulk punch
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Figure 2.3: Detailed cross section of a typical MOSFET, show-
ing several important parameters that determine device charac-
teristics

through [Sze02]. The two main impacts are on threshold voltage and leakage current.

Most of the solution strategies address one or both of these two effects.

2.2.2.2 Threshold Voltage. In theory, to reduce power consumption

and increase speed, it is desirable to decrease both the threshold voltage, Vt, and

the power supply voltage, Vdd. The threshold voltage cannot be reduced indefinitely

because inverse subthreshold slope, a measure of the transistor turn-off rate versus

gate voltage, is largely driven by thermally activated diffusion and is relatively inde-

pendent of Vdd and channel length, L [TBC+97]. In addition, lower threshold voltage

makes the transistors more susceptible to noise and ionizing radiation-induced logic

errors (i.e., soft errors), and increases the off-state leakage current. The increase in

leakage current is significant, increasing up to ten fold for every 0.1V reduction in Vt.

A minimum Vt of 0.3-0.4V will likely be required to keep leakage currents at accept-

able levels. Threshold voltage tends to roll-off as short channel effects become more

significant due to charge sharing. The standard threshold voltage equation [Sze02, Eq.

6.45] is

Vt ≈ VFB + 2ψB +

√

2εsqNA(2ψB + VBS)

Co

(2.1)

where VFB is the flat band voltage, ΨB is the electrostatic potential difference between

EF , the Fermi Energy, and Ei, the intrinsic energy, and Co is the oxide capacitance.

NA is the substrate doping concentration, q is the elementary electron charge, εs is
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the permittivity of silicon, and VBS is the potential difference between the bulk and

source. Drain-Induced Barrier Lowering (DIBL) reduces Vt and increases the sub-

threshold current. Ultimately, the gate loses control over the channel. The reduction

in threshold voltage can be shown [Sze02, Eq. 6.47] as

∆VT = −qNAWmrj

CoL
(−1 +

√

1 +
2Wm

rj

) (2.2)

where Wm is the junction depth in the channel, rj is the junction depth in the source

and drain, and L is the channel length. To keep the shift in Vt small, a designer

can decrease Wm, but this will ultimately create an increase in leakage current due

to quantum tunnelling between the gate and the substrate. The junction depth, rj,

can be reduced, but this will also increase leakage currents due to tunnelling between

the source/drain and substrate. Another option is to increase the gate capacitance,

Co. All of these options have their own challenges. Good transistor design requires

careful balance of dimensions and doping levels to achieve good performance at the

lowest feasible operating voltage and with the smallest leakage currents. Balancing

these parameters is becoming more challenging as device size shrinks. Careful control

of the threshold voltage is important lest the device no longer function as a transistor.

2.2.2.3 Constant Scaling Rules. The usual method of avoiding short

channel effects as gate length decreases is to scale other device parameters as well,

according to a set of constant scaling rules, as shown in Table 2.2. Device dimensions

are scaled relative to each other, which keeps the electric fields as they would be in a

long channel device. This technique has worked well in the past, but is beginning to

approach limits. In particular, as device dimensions decrease, problems begin to arise

due to increasingly high dopant concentrations required in the channel, and quantum

tunnelling due to the high electric fields in the source and drain, very shallow junction

depths, and thin gate oxide thicknesses.
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Table 2.2: Constant Field Scaling Rules [Sze02]. As the tran-
sistor size shrinks, many other factors scale as well, often with
negative consequences.

Multiplying
MOSFET device and Factor

Determinant circuit parameters (κ > 1)

Scaling Assumptions Device dimensions (d, L,W, rj) 1/κ
Doping concentrations (NA, ND) κ
Voltage (V ) 1/κ

Derived scaling behavior Electric field (ε) 1
of device parameters Carrier velocity (v) 1

Depletion layer width (W) 1/κ
Capacitance (C = εA/d) 1/κ
Inversion layer charge density (Qn) 1
Drift current (I) 1/κ
Channel resistance (R) 1

Derived scaling behavior Circuit delay time (τ ∼ CV/I) 1/κ
of circuit parameters Power dissipation per circuit (P ∼ V I) 1/κ2

Power-delay product per circuit (Pτ) 1/κ3

Circuit density (∼ 1/A) κ2

Power density (P/A) 1
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Figure 2.4: Normalized Delay vs. Vt/Vdd Ratio of a CMOS
inverter [TBC+97]. Transistor switching speed tends to slow as
the device size gets smaller.

2.2.2.4 Power Supply Voltage. One element that cannot be scaled in

accordance with the constant scaling rules is power supply voltage, Vdd . To reduce

the susceptibility of the devices to noise, it is desirable to maintain Vt even as the

power supply voltage decreases. Thus the ratio of Vdd to Vt goes down as process

size shrinks. This decreases the switching speed of the transistors and their ability to

drive other devices. Figure 2.4 shows the normalized simulated delay per stage of a

1.5V, 0.1µm CMOS inverter versus the Vt/Vdd ratio. The delays are normalized to 10

ps at Vt/Vdd = 0. As the threshold voltage approaches the power supply voltage, the

delay of the inverter increases parabolically.

2.2.2.5 High Field Effects. A consequence of maintaining a higher

Vdd than specified in the constant scaling rules is an increase in the electric fields in

the device. For a 0.1 µm device, the electric field in the gate oxide can be greater

than 5MV/cm, and greater than 1MV/cm in the silicon substrate. Such severe bend-

ing of the energy bands in a small distance allows quantum tunnelling between the

source/drain and substrate, which leads to an increase in leakage current. In addi-

tion, electron mobility decreases under high electric fields due to phonon scattering
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and surface roughness at the Si−SiO2 interface. Reduction in mobility reduces device

switching speed.

2.2.2.6 Quantum Effects on Device Operation. As device sizes shrink,

the current density in the inversion layer increases as well, increasing almost ten

orders of magnitude as the gate oxide thickness decreases from 36 angstroms to 15

angstroms [TBC+97]. As the gate oxide thickness decreases, quantum tunnelling

begins to occur between the gate and the substrate. Under these conditions, the

electrons in the inversion layer can be treated as a 2D electron gas. Electrons in the

inversion layer occupy discrete energy levels. In device operation, the lowest energy

level in the conduction band is above EC , the normal edge of the conduction band

for the channel layer (with no applied gate voltage). Higher potential is necessary to

bring electrons into the conduction band, thus increasing the threshold voltage of the

transistor.

2.2.2.7 Gate Oxide Thickness. As devices shrink, the required gate

oxide thickness decreases as well. Gate-Source current leakage can be appreciable

whenever the source is biased, whether the gate is biased or not. In addition, quantum

tunnelling effects create a leakage current between the gate and substrate and the

gate and drain. For a 0.1µm MOSFET at 1.5V, the gate oxide thickness should be

30 angstroms [TBC+97], which is only 10 atoms of silicon. A further decrease in

gate oxide thickness causes leakage current to grow exponentially. Below about 20

angstroms, oxide tunnelling current becomes unmanageable [TBC+97]. This limits

channel length to roughly 25-50 nm, a limit that is already being reached. One

solution to this problem, the replacement of the silicon dioxide dielectric with alternate

materials, is discussed in Section 2.2.3.4.

2.2.2.8 Dopant Fluctuations. As devices get smaller, the number of

dopants in the channel can drop to the level of only hundreds. Statistical averages no

longer apply, and variations in dopant concentrations from device to device (or from
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run to run) can have significant effects on threshold voltage, device speed, and circuit

drive capability. The standard deviation of the threshold voltage due to variations in

the number of channel impurities is

σV t =
q

Cox

√

NAWdm

3LW

(

1 − xs

Wdm

)3/2

, (2.3)

where Cox is the oxide capacitance, NA is the substrate doping concentration, Wdm

is the maximum channel depletion region depth, L is the channel length, W is the

channel width, and xs is the thickness of an undoped surface layer under the gate

[TBC+97]. The xs parameter comes from a proposed solution, known as retrograde

channel doping, discussed in Section 2.2.3.2.

2.2.2.9 Interconnect Delay. As devices shrink, interconnect delay be-

comes an increasingly large fraction of the overall circuit delay. The relative delays of

logic gates, local interconnect, and global interconnect is shown in Figure 2.5 [Sem03].

As process size shrinks, gate delay and local interconnect delay becomes a smaller

fraction of overall delay. Global interconnect delay comes to dominate, although the

effect can be reduced through the use of repeaters to increase driving current over

long distances across the chip.

Wire propagation delay, τ , is

τ = RLw

(

CL +
1

2
CLw

)

, (2.4)

where R is resistance per unit wire length, C is capacitance per unit wire length,

Lw is wire length, CL is load capacitance [TBC+97]. As device sizes shrink (i.e., Lw

gets smaller), R increases due to the smaller cross section of the wires, while C and

CL usually stay constant. To keep the delay small, the RC time constant must be

reduced.

One method is to reduce the wire capacitance, C, through the use of low K

dielectrics, such as polyimide or F-doped SiO2, around metal lines. Another method
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Figure 2.5: Increasing Effects of Interconnect Delay [Sem03].

uses metal with a lower resistivity than aluminum, such as copper. A damascene

process is used in this case, and is similar to that used for metal gates (cf., Section

2.2.3.4). Finally, resistance in the wires can be reduced by increasing their cross sec-

tional thickness, mostly for the case of upper metal levels used for global interconnect.

While in the past clock speed has been largely limited by device switching speed, in-

terconnect delay will become more of a problem in the future. Some designs already

require more than one clock cycle to send a signal a long distance across the chip.

Interconnect delay will be an important design consideration in the future.

2.2.2.10 Radiation Effects. As process size shrinks, the devices become

more prone to errors caused by the impact of alpha particles and high energy neutrons,

electrical noise, as well as fluctuations in the power supply voltage. These effects are

discussed further in Section 2.5.

2.2.3 Potential CMOS Solutions. This section examines several proposed

solutions to the problems discussed in Section 2.2.2.
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2.2.3.1 Lithography. Lithography is the process used to create features

during fabrication. Fabrication of a microchip is done in several stages, starting with

an initial wafer of silicon. At each stage, light is shined through a mask (similar to a

photographic negative) to create the patterns that define the circuit structure. These

patterns determine where impurity doping is done, as well as where metal lines and

polysilicon gates are formed. Optical lithography has two main challenges: accurate

placement and alignment of the masks, and minimum feature size.

Accurate placement of the masks is vital to creating a functional circuit. A

fabrication process can involve more than twenty masks, each of which must be aligned

on the microchip with extremely high precision. Misalignment of the mask can easily

result in the destruction of the entire wafer. As the process size shrinks, the masks

must be aligned with ever greater precision. Current mask aligners must be carefully

shielded from vibration and are becoming increasingly expensive.

The other challenge facing designers is limitations of optical lithography. The

smallest feature that can be produced is typically a function of the wavelength of light

used. Below this resolution, features of the mask become smeared due to diffraction.

VLSI designers create design rules at each process size that specify how large features

must be and how closely lines can be placed for fabrication. As the process size

shrinks, the number of rules has increased into the hundreds, greatly increasing the

complexity of VLSI design.

Modern production systems use a KrF excimer laser to produce light at λ =

248nm. Research systems using ArF lasers at 193nm allow resolutions down to 180nm.

Few expect optical lithography to be useful for sub-100nm processes [TBC+97], al-

though hybrid techniques combining optical lithography with chemical etching and

other techniques may allow features below 100nm. Techniques such as near-field

phase correction, ashing-trimming, and the use of sacrificial layers allow patterning

of features smaller than the wavelength of light used. One sublithographic patterning

technique is illustrated in Figure 2.6 [CCH+03]. Parts (a) and (b) illustrate how the
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Figure 2.6: Sublithographic Patterning enables creation of
feature sizes smaller than the wavelength of the light used in
lithography [CCH+03].

photoresist pattern is decreased in thickness by oxide plasma ashing (i.e., burning

away part of the resist). Parts (c) and (d) illustrate how the oxide itself is trimmed

via chemical etching using hydrofloric acid. As cited in [CCH+03], these techniques

have been used to reduce 500nm line widths down to below 20nm [ACKH01].

Possible replacements for optical lithography are X-Ray lithography, parallel

electron beams, extreme ultraviolet lithography, and ion beams. The most promis-

ing technology is likely using X-rays. Figure 2.7 shows 80nm lines patterned using

synchrotron X-Ray lithography. Research in near-contact X-ray lithography shows

features can be patterned to 30nm. This should be sufficient for MOSFETs down to

the perceived limits in size. The biggest challenge to overcome for X-ray lithography

is the fabrication of the mask. Thin membranes (2-5 µm) of silicon or silicon com-

pounds such as Si3N4 or SiC must be patterned with an X-ray absorbing material

such as gold. Whereas optical lenses allow the reduction in size of mask features, X-

ray masks must be fabricated at a 1:1 ratio. As a result, the mask has an extremely

low tolerance for defects. In addition, the mask must be placed very close to the wafer

surface, requiring very flat masks and planar wafer surfaces.

Another potential technology is electron beam lithography, used in the research

environment for many years. The challenge in this case is throughput, as the Gaussian

probes used can be focused on a spot of only a few nanometers at a time [TBC+97].
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Figure 2.7: 80nm Lines Patterned with X-Ray Lithography
[TBC+97]. The mask wafer gap was 25µm.

2.2.3.2 Process Technology. Several process technology improvements

have recently been shown to decrease the variation of threshold voltage and other

parameters. This section discusses the use of halo doping, retrograde channel doping,

Thin Film Transistors (TFT) and Silicon On Insulator (SOI) transistors.

Halo Doping Halo doping reduces the effect of the source and drain electric fields on

the channel region. This allows the gate to more effectively control the channel.

As shown in Figure 2.8 , pockets of high doping are introduced at the edges of

the source and drain at the time of source/drain doping via ion implantation.

These regions are only partially depleted during device operation, and thus

shield the channel from further penetration of the high fields. The depletion

regions for a conventional MOSFET were shown by dotted lines in Figure 2.3.

The effective reduction in channel length caused by encroachment of the source

and drain depletion regions into the channel is shown by ∆. Halo doping reduces

this value. One problem with halo doping is that rapid thermal annealing, one
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Figure 2.8: Halo Doping is one technique used to minimize
the short channel effects in silicon CMOS [TBC+97].

of the typical steps in the fabrication process, is made more difficult as care

must be taken not to allow the halo doped areas to diffuse into the surrounding

silicon.

Retrograde Channel Doping Retrograde channel doping is under investigation

for use below 0.2µm. It employs non-uniform doping in the vertical direction to

reduce short channel and impurity concentration effects on threshold voltage.

Figure 2.9 shows an example band diagram and doping profile. No doping is

introduced in the channel at shallow depths, but begins at xs = Wdm, the max-

imum depletion region depth. The band diagram at the top shows the FET at

the onset of inversion. By altering the doping profile, the energy bands are bent

such that more electrons enter the inversion layer at the channel surface at a

lower voltage. As a result, threshold voltage is reduced. For the same gate de-

pletion width, Wdm, the surface electric field and the total depletion charge for

the retrograde channel is one half that of a uniformly doped channel [TBC+97].

The second benefit of retrograde channel doping is that threshold voltage vari-

ation due to impurity concentrations can be reduced. The equation for the

standard deviation in threshold voltage due to channel doping is

σV t =
q

Cox

√

NAWdm

3LW

(

1 − xs

Wdm

)3/2

. (2.5)
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Figure 2.9: Retrograde channel doping reduces the effects of
impurities on threshold voltage [TBC+97]. Energy band dia-
gram is shown at the top of the figure, and doping concentration
is shown at the bottom.
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Note that when xs = Wdm as in the retrograde case, the term goes to zero.

Thus, the effects of process variation on threshold voltage due to impurity con-

centration can be removed.

Silicon On Insulator Much research has been done on silicon on insulator (SOI)

and thin-film transistors (TFT). Originally, SOI was used for radiation-hardening

applications, but is increasingly under investigation for general purpose appli-

cations. SOI can be grouped into two types: fully-depleted SOI (FD-SOI) and

partially-depleted SOI (PD-SOI). In FD-SOI, the depletion region of the source

and drain goes to the bottom of the silicon layer to the underlying insulator.

In PD-SOI, it does not. In the PD-SOI case, care must be taken to avoid the

floating body effect, which results in a potentially significant leakage current

between the source and drain due to a forward-biased body-to-source junction

when Vds is high [TBC+97, page 497]. This effect can be eliminated through

proper layout and the use of body contacts.

2.2.3.3 Device Design. In addition to process and material improve-

ments, research is being conducted into new transistor designs. These designs attempt

to overcome limitations in lithography and allow more effective control of the channel.

Two research areas are vertical transistors, and two/three-gate transistor designs.

Vertical Transistors. In the vertical transistor, channel length is

controlled by epitaxy instead of lithography (Figure 2.10). FETs with effective gate

lengths of less than 4 nm have been fabricated in labs [Ris02]. One challenge to be

overcome is that of large leakage currents.

Two/Three Gate Transistors. Three types of double-gate FETs

(DGFETs) are under investigation. The main advantage of multi-gate designs is to

reduce the effect of the drain field on the channel, mitigating short channel effects.

For the same channel thickness, the DGFET can be scaled to approximately 2-3 times
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Figure 2.10: Vertical Transistor [Ris02]. Alternative transis-
tor designs have been proposed to overcome some scaling prob-
lems.
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Figure 2.11: Two Gate FET Designs [Won02] provide more
efficient control of current flow.

shorter channel length [Won02]. Another benefit is that threshold voltage variation

between devices is smaller than for single-gate FETs.

As shown in Figure 2.11, the primary difference between the designs is in ori-

entation. Each of three device structures has advantages. In the figure, ‘S’ and ‘D’

represent the source and drain, respectively. Type I devices have a horizontal channel,

whose thickness is controlled by epitaxy rather than lithography. Small thicknesses

are more readily controlled via epitaxy than lithography. Type II and III devices have

the most compact footprint, and are under investigation for DRAM applications. In

all of these devices, fabrication is more difficult than for conventional planar FETs.

Aligning the two gates above the channel is much more difficult than for the single

gate self-aligned process.

2.2.3.4 Materials. Replacement of the traditional materials used in

conventional CMOS design with more advanced materials has been shown to reduce

the negative effects of scaling. This section discusses Strained silicon, High K di-

electrics, metal gates, and damascene interconnect.
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Relaxed Graded Si1-yGey layer (y= 0. to 0.3)

Relaxed Si0.7Ge0.3 layer

Strained Si100 Angstroms

1 um

Figure 2.12: Typical NMOS Strained Silicon FET. Strained
Silicon MOSFETs are currently entering production [HNE+02].

Strained Silicon. Strained silicon is already used by Intel [Gep02,

HNE+02, WHG92, WWC+03, Boh03, GAA+03]. With this technique, electron and

hole mobility is increased by inducing tensile strain or compression in different silicon

layers using various alloys of SixGe1−x, as illustrated in Figure 2.12. Typical alloy

compositions are from 10-30% Ge, although some attempts have been made to make

PMOSFETs out of 50% Ge [TBC+97,HNE+02]. A variety of different alloy compo-

sitions and structures have been reported [Gep02,Ser03,TBC+97,HNE+02,WHG92,

WWC+03,Boh03,GAA+03].

The typical architecture for a strained-silicon NMOSFET induces a strain in

the silicon channel layer. Germanium atoms replace some of the silicon atoms below

the surface. A thin layer of Silicon is grown on top of the Si-Ge layer. Since Ge is

larger than Si, the lattice constant of the Si-Ge layer is correspondingly higher than

the Si layer. This creates a lattice mismatch between the Si and Si-Ge layers. The Si

layer is thus strained in the horizontal direction, and compressed in the vertical. IBM

researchers report an increase in electron mobility of over 60% [Gep02], with 25-30%

improvements in device speed.

Mobility is increased due to a change in the energy band structures. The Si

atoms are further apart in the horizontal direction than in unstrained Si, which reduces
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SiGe 1.6 m
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6 30%
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5 28.5%

Figure 2.13: PMOS and NMOS Strained Silicon Structures
[WHG92]. The left diagram is a buried-strain device used for
PMOS, while the right diagram is a surface-strained device used
for NMOS.

the number of collisions with phonons [Gep02, page 30]. Two alternative designs

for PMOS and NMOS FETs are shown in Figure 2.13. For a PMOS device, the

atoms should be compressed to increase hole mobility. Researchers have done this by

compressing the Si layer externally [Boh03,GAA+03], or by using the SiGe layer as the

hole channel, as shown in the left part of the figure [TBC+97]. For a NMOS device,

the strained silicon layer is used for the channel, as shown in the right side figure.

In an oxide-gated sample, with 70 angstroms oxide thickness and a buried strained-

Si channel, high electron mobilities in excess of 2200cm2/V−sec can be maintained

at an electron density of 3 ∗ 1012cm−2 [TBC+97, page 497] (versus the more typical

1450cm2/V−sec for unstrained silicon). Hole mobilities in excess of 800cm2/V−sec
can be maintained (versus 505cm2/V−sec for unstrained).

Intel has recently introduced another method [Boh03,GAA+03] for use in 90nm

CMOS processing, as illustrated in Figure 2.14. In their approach, strain is created in

the NMOS channel by using a 75nm silicon nitride (Si3N4) capping layer on top of the

NMOSFET to create a tensile strain on the channel layer underneath(Figure 2.14).
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Figure 2.14: Intel’s Strained Silicon Approach [Boh03].

For PMOS devices, selective epitaxial growth of SiGe is done for the source and drain

regions, which create a compressive strain on the silicon channel layer. Intel reports

a greater than 50% hole mobility increase for a 17% Ge composition [GAA+03].

Strained silicon presents several challenges in fabrication. The growth conditions

used must be optimized for strained materials. Intel’s approach requires selective SiGe

epitaxy. Care must be taken to avoid strain relaxation, such as the restriction to low

temperatures (< 800K) in later processing steps. In addition, scaling limits may

become a significant factor, as layer thicknesses must be greater than roughly 30

angstroms lest quantum effects become significant.

High K Dielectric Materials. High gate capacitance is a key factor

in controlling the flow of current through the channel, threshold voltage, and leakage

currents. Obtaining high gate capacitance requires a very thin oxide layer, which

increases quantum tunnelling and current leakage. Replacement of silicon dioxide

with alternative materials can provide the same capacitance with thicker layers. Gate

capacitance is

C =
εA

d
(2.6)
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Table 2.3: Properties of Selected High K Dielectrics [Won02].
The high dielectric constants of these materials allows the use
of thicker gate oxide layers. Unfortunately, many of the mate-
rials have problems with high leakage current relative to silicon
dioxide.

Dielectric Dielectric Bandgap Conduction Leakage Thermal
Constant (eV) band offset Current stability
(bulk) (eV) w.r.t w.r.t Si

SiO2

Silicon Dioxide
(SiO2)

3.9 9 3.5 N/A > 1050C

Silicon Nitride
(Si3N4)

7 5.3 2.4 > 1050C

Aluminum Oxide
(Al2O3)

∼ 10 8.8 2.8 102 − 103× ∼ 1000C,
RTA

Tantalum Pentox-
ide (Ta2O5)

25 4.4 0.36 Not ther-
mody-
namically
stable
with Si

Lanthanum Oxide
(La2O3)

∼ 21 6 2.3

Hafnium Oxide
(HfO2)

∼ 20 6 1.5 104 − 105× ∼ 950C

Zirconium Oxide
(ZrO2)

∼ 23 5.8 1.4 104 − 105× ∼ 900C

where A is the gate area, d is the oxide thickness, and ε is the electrical permittivity

of the oxide [Sze02]. As the device area is scaled smaller, there are two options to

maintain gate capacitance. The oxide thickness could be decreased as well, which

allows quantum tunnelling and increased leakage currents. In addition, a material

with a higher permittivity can be used in place of the silicon dioxide. Table 2.3 shows

several materials under investigation for this purpose.

The use of a material such as tantalum pentoxide (Ta2O5), with a dielectric

constant of 6.4 times that of silicon dioxide (εt = 6.4εs), allows a oxide layer (dt) that

is 6.4 times as thick to create the same gate capacitance (Cox), while reducing the

effects of quantum tunnelling. This relationship is shown by
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Cox =
εsA

ds

=
εtA

dt

=
6.4εsA

6.4ds

. (2.7)

Intel is investigating the use of Zirconium oxide (ZrO2) [Ser03]. It is made by

depositing ZrCl4 onto the wafer, and then introducing steam. One disadvantage of

using these materials is the requirement for lower temperatures in later processing

steps. Much research remains to be done before these materials can be incorporated

into mass production.

Metal Gates. Another potential technology is the use of metal for

the gate instead of the more conventional doped polysilicon (poly). This is beneficial

for several reasons: first, boron used in the doping of the polysilicon gate can penetrate

into the channel, unintentionally introducing dopants into the channel and affecting

the threshold voltage; Second, metal gates create an extremely small depletion region

compared to poly. With poly, this depletion region adds to the parallel plate distance

in the gate capacitance equation, reducing the capacitance. The smaller depletion

region due to the metal gate allows a thicker gate oxide, reducing quantum tunnelling

and leakage current. Finally, lower fabrication temperatures can be used versus those

for poly deposition. This is desirable when high-K dielectrics are used, which can

break down at higher temperatures.

Choices for the gate metal include aluminum, tungsten, molybdenum, ruthenium-

tantalum alloys, and SiGe and SiC alloys. The big differences between the metals are

in the work functions, which will in part determine the threshold voltage of the tran-

sistors. The NMOS and PMOS devices should ideally have gate metals with different

work functions, or at least one that is approximately mid-gap for both [WFS+99, page

551].

Several challenges must be overcome to use metal gates. One of the most im-

portant is the potential for reactions with underlying oxides, which can be overcome

through the use of a damascene gate process. An example of a damascene process
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Figure 2.15: Damascene Gate Cross Section [YSN+00].

is shown in Figure 2.15. In this process, Ta2O5 is used as the gate oxide, while alu-

minum is used as the primary gate metal. Titanium Nitrate (TiN) is used to line the

tub where the gate aluminum will be placed. This separates the two materials, and

ensures the aluminum does not react with the Ta2O5 or leach into the channel below.

Steps in the fabrication process of a metal gate FET follows, and are shown

graphically in Figure 2.16.

1. After shallow trench isolation is performed, a dummy gate oxide and dummy

gate are grown using Si3N4 and polysilicon (Diagram one in the figure).

2. Sidewalls are grown from Si3N4 (Diagram 2).

3. Ion implantation is used to form the source and drain (Diagram 2).

4. A Pre-Metal Dielectric (PMD) film is deposited and polished using chemical-

mechanical polishing (CMP) (Diagram 3).

5. Wet etching is done using hot H3PO4, then chemical dry etching is used to

remove the dummy gate and gate dielectric. Care is taken to avoid etching the

sidewalls or Si substrate (Diagram 4).

6. A new gate oxide (SiO2 or Ta2O5) is grown (Diagram 5).

7. TiN or similar metal is used as a barrier or glue metal (Diagram 5).
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Figure 2.16: Damascene Gate Fabrication Process [YSN+00].

8. The gate electrode of W or Al is deposited using low-pressure chemical vapor

deposition or DC magnetron sputtering (Diagram 5).

9. Chemical mechanical polishing is used to planarize the final structure (Diagram

6).

2.2.4 Limitations of the Current Design Paradigm. As discussed in the

previous sections, continued scaling of silicon CMOS will be difficult. This section

discusses the impacts of these problems at the system and economic levels. The

following effects are already being observed:

• Variations in Device Performance,

• Increased Power Consumption,

• Lower Yield,

• Increased Cost, and

• Increased Soft Error rates.
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Variations in Device Performance. As discussed earlier, smaller devices are con-

structed from fewer atoms. Small variations in dopant concentrations can have

a large effect on the performance of each transistor. Variations in doping can

cause the transistor to switch slower than other devices, decrease its ability to

drive other devices, or cause it not to function at all. Testing the circuit for

correct operation is becoming increasingly difficult and time consuming. Para-

metric errors caused by slow transistors can be very difficult to detect as they

are often only observed on the worst case propagation paths. The end result of

variations in doping is a decrease in production yield and overall reliability.

Increased Power Consumption. The quantum tunnelling effects and resulting leak-

age currents greatly increase the static power dissipation of the transistors. In

the past, MOSFETs had very low static power dissipation, only dissipating ap-

preciable amounts of power while switching. This will not be the case with

smaller devices. Thus circuits will dissipate power whenever they are powered,

regardless of whether they are being used. Designers will be under pressure to

reduce the power supply voltage and threshold voltage to reduce power dissipa-

tion. This will make devices more susceptible to soft errors.

Even when not directly affecting reliability, power consumption must be a key

concern in the design of fault and defect tolerant circuits. One of the primary

methods of fault tolerance is redundancy via hardware duplication. The designer

must account for the power consumed by redundant hardware.

Lower Yield. In a simple reliability model,

Pfunctional = (1 − Pdef )
N , (2.8)

the reliability of the entire processor depends on the reliability of each transistor

in the device. The challenges described in this section will reduce the probability

that each transistor will work reliably.
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Increased Cost. In the past, tremendous effort has been expended to tightly control

the fabrication process. Current fabrication facilities cost roughly $2 billion.

Each successive generation of fabrication facility costs two to three times more

than the last. Faced with this increasing cost, designers may be forced to accept

less controlled processes, with higher defect rates. In this case, designers will be

forced to adopt defect tolerance even for use with conventional silicon CMOS.

Soft Errors. Even if nanoscale CMOS devices can be fabricated with low defect

rates, they will still be subject to increasing rates of soft errors caused by solar

radiation and electrical noise. Many current memory devices already include

parity bits or error correcting codes to allow correction of single event upsets

(SEUs) that flip the bit value of memory bit. Currently, commercial processors

do not need to detect or correct SEUs occurring in logic and its associated

register memory. Research efforts in this field are discussed in Section 2.6.2.

The challenges facing the continued reduction in CMOS process size into the

nanometer regime are significant. Constant scaling rules that have worked well for

the last thirty years can no longer be used due to the increasingly significant effects

of quantum tunnelling. A variety of solutions are under development, which may

extend the utility of conventional planar silicon CMOS for the next decade. Even with

these advances, low defect rates will be difficult to achieve, and operational devices

will be subject to increasing numbers of soft errors. Whereas system reliability has

been obtained primarily at the device level for many years, the time will come when

computer architects must build reliability into their designs at the architectural level.

2.3 New Device Technologies

In the long term, new device types are likely to replace silicon CMOS. This is

not unexpected, as silicon CMOS is but one of at least four device technologies used

to implement digital logic (i.e., relays, vacuum tubes, bipolar junction transistors, and

now field effect transistors). Indeed, with more than forty years of use, silicon CMOS

has had the longest life of any of these technologies. Advancement of each technology
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Table 2.4: Emerging Logic Device Families [HBZB02]. Several
technologies are under investigation as replacements to silicon
MOSFETs.

Device Single Rapid Single Quantum Carbon Molecular
Electron Quantum Flux Cellular Nanotube Devices

Transistor Logic Automata Devices

Types 3-terminal Josephson Electronic QCA FET 2-terminal &
Junction & Magnetic QCA 3-terminal
Inductance

Loop
Advantages Density, High Speed, Density, Density, Density,

Power, “Potentially No Interconnect Power Potential
Function Robust” in signal path, Interconnect

Speed, Power Benefits
Challenges Dimension Low Temps, Low fanout, Difficult Thermal &

Control, Difficult Room temp to fabricate, Environmental
Noise, to fabricate operation, Properties Stability,

Poor drive feedback from poorly 2-term devices,
capability other devices understood Need new archs

Maturity Demonstrated Demonstrated Demonstrated Demonstrated Demonstrated

continues until it is replaced by newer technologies with better performance, size, or

other characteristics.

Several potential replacements for silicon CMOS are being investigated. Re-

search in most of these devices is in the early stages, and it is not yet possible to

manufacture them in large numbers or as reliably as current commercial devices. A

common characteristic of these devices is they are more prone to defects than current

silicon CMOS. Adoption of these devices may be accelerated through the use of defect

tolerance techniques. While not yet mature, these technologies show the potential to

overcome some of the limitations of silicon CMOS. This section discusses several of

the alternative technologies.

2.3.1 Next Generation Devices. Table 2.4 shows several emerging tech-

nologies [HBZB02]. Important characteristics, capabilities, and challenges of these

technologies are discussed in this section.

2.3.1.1 Molecular Crossbars. Molecular devices are a promising tech-

nology. Molecular logic devices are based upon electron transport through a single

molecule [HBZB02,WK00]. Most experiments to date have been with two-terminal
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devices, although three terminal devices are now being proposed. The two-terminal

devices being studied are typically composed of thousands of molecules in parallel,

operating as digital switches or as analog diodes.

Molecular switches are most commonly constructed from a single molecular

layer sandwiched between two lithographically patterned metal lines. The molecular

material between the crossing metal lines can be one of several different materials,

most commonly electrically configurable bistable molecules such as the rotaxane and

catenane families of molecules pursued by Hewlett-Packard and UCLA [CWB+99,

PJS+01]. While the junctions are currently one layer thick in the Z axis, they are

roughly 104 atoms across in the X and Y directions. In theory, the devices should

scale with the width of the metal lines. thus, molecular devices have the potential for

very high density.

The molecular switch can be modelled as a diode with a switchable threshold

(i.e., turn-on) voltage. The switches are set or reset by electrochemical reduction or

oxidation of the sandwiched molecules. Application of a positive programming voltage

changes the operating characteristics of the molecular junction, opening or closing

the switch. Once programmed, the status of a junction can be read by applying

a negative voltage [KW02]. Molecular crossbars can be used for both memory and

logic. Simple AND, OR and NOT gates have been fabricated using resistor-diode

designs [ZS02,CWB+99].

One long term vision for molecular electronics combines both molecular memo-

ries and logic devices. Researchers have yet to fabricate large numbers of these devices,

but propose to organize molecular switches in crossbar structures [ZS02,LKC04]. A

crossbar design is shown in Figure 2.17. The array is created by two orthogonal planes

of parallel metal lines. A molecular switch is created at each intersection. Current ex-

periments have created arrays of 4x4 or 8x8 elements [LKC04]. These crossbar arrays

have been programmed as multiplexers and demultiplexers as well as a 4x4 memory

array.
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Bistable Junction

Upper Plane

Lower Plane

Figure 2.17: The molecular crossbar paradigm consists of per-
pendicular sets of parallel wires with bistable junctions at each
intersection [ZS02]

The interconnect requirements for molecular circuits is extremely demanding.

The junctions themselves are very small. Thus, designs using molecular devices must

make the most efficient use of interconnect. This makes the use of regular, array-based

structures the most likely design, indicating that logic functions will likely be memory-

based [HBZB02]. Logic functions will be implemented as pre-calculated truth tables

stored in molecular memory and accessed via dense, self-assembled interconnect.

Since the oxidation reactions are reversible, molecular devices will be reconfig-

urable. When used as programmable logic devices, molecular devices have several

advantages over CMOS:

• High density

• Fewer devices needed to store configuration bits

• Fewer wires

In a CMOS FPGA, six or seven transistors are used to store each configuration

bit. A molecular device can store the configuration bit in a single junction. In
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addition, fewer wires required in a molecular design. In CMOS, two wires are used

for address lines to configure a switch, while two more data lines are needed to read it.

For molecular devices, only two wires are needed for both functions [KW02]. Fewer

wires means less routing, with fewer locations for defects to occur.

Molecular devices, as might be expected, have several limitations to be over-

come. One of the problems with these devices is the difficulty in creating invert-

ing devices [ZS02]. While more complex, inverting structures have been demon-

strated [KW02], they are larger and more complicated than noninverting devices.

Another problem is the lack of signal gain [LMSL05], which limits the ability of a

molecular logic gate to drive other devices. Nanoscale wiring is also a challenge, as

lithography will not be able to create the thin wires necessary to produce levels of inte-

gration greater than CMOS. Alternative methods of creating the lines are under devel-

opment, including nanoimprint, interference lithography, and self-assembly [LMSL05].

One possible use for molecular devices is in hybrid systems combined with sub-

100 nm CMOS [LMSL05]. The problem of low voltage gain can be overcome by

using attached MOSFETs as drivers to amplify the output of the molecular switch.

The Complementary Molecular (CMOL) architecture overlays a molecular crossbar

on top of an underlying standard CMOS device [LMSL05]. Connections between the

two levels are made using vias, as illustrated in the top diagram of Figure 2.18).

Rotation of the crossbar array relative to the CMOS, shown in the bottom part

of the figure, reduces the need for precise alignment and allows for addressing of

individual molecular rows and columns with CMOS circuits that are much larger in

size [LMSL05]. The CMOL team predicts that this method will allow the creation of

device densities in excess of 1012cm−2, at least three orders of magnitude higher than

CMOS [LMSL05, page 3.11]. A CMOL FPGA was recently proposed in [SL05].

Chemical self-assembly has been proposed as a low-cost method to fabricate

molecular devices [ZS02]. Self-assembly may allow the fabrication of devices with a

higher density than silicon CMOS at a much lower cost. The disadvantage is that self-
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Figure 2.18: A Generic CMOL circuit overlays a molecular
crossbar on top of a standard CMOS device [LMSL05]. The
top part of the figure shows the vias connecting the molecular
crossbar array to the underlying CMOS devices. The bottom
part shows the rotation of the crossbar relative to the CMOS
layer that allows more more precise connections.
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assembly is innately a statistical process, and is subject to defects at a much higher

rate than conventional CMOS [ZS02,KW02]. Indeed, it has been proposed that the

development of molecular devices and defect-tolerant architectures must proceed in

tandem [HBZB02]. To build a functional circuit from a crossbar structure containing

many defects, the devices must be tested, defects located, and the final circuit config-

ured to use only the operational devices. The crossbar structure is well suited to this

approach, as long as sufficient redundant rows and columns are available. Methods for

achieving defect tolerance in this manner will be discussed in Section 2.6. Molecular

memories are well suited to the reconfiguration approach, as the physical area of a

configuration bit is no larger than the intersection between the two metal lines. In a

conventional CMOS FPGA, a configuration bit requires approximately twenty times

this area [KW02]. Current FPGAs do not compete well with fixed-design Application

Specific Integrated Circuits (ASIC) in terms of layout area required to implement a

design. This is because a huge amount of area is required to implement the configu-

ration memory bits. The Teramac reconfigurable architecture devotes approximately

90% of its area to configuration memory [KW02]. Molecular memories reduce this

area requirement tremendously. For this reason, the reconfigurable row-column array

based architecture may be ideally suited for defect tolerant computing with molecular

devices. It is partly for this reason that FPGAs are chosen as a starting architecture

for this research. FPGAs will be discussed in detail in Section A.1.2.

2.3.1.2 Single Electron Transistors. Single electron transistors (SETs)

are constructed much like larger MOSFETs, but have a channel that is so small that

only a single electron can occupy the channel at a time [Ris02,T+96]. SETs are three

terminal devices like normal FETs, in which current is controlled electrostatically.

SETs are fabricated on a substrate of metal or an insulator (i.e., Silicon-On-Insulator

(SOI)). The PN junctions are replaced by high-resistivity tunnel junctions. After one

electron has entered the channel, its electric charge prevents any other electrons from

entering the channel until it has tunnelled out of the channel.
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Figure 2.19: A Single Electron Transistor fabricated as SOI
with tunnel junctions [Ris02].

Operation of SETs is similar to larger MOSFETs, although there are some

differences. Because only one electron is in the channel, these devices are very sensitive

to electrical noise and have slower switching speeds [Ris02]. SETs are currently very

difficult to fabricate reliably and only small numbers of devices have been produced.

In addition, cryogenic cooling is currently required [HBZB02], a significant limitation

to widespread use.

2.3.1.3 Carbon Nanotube Devices. Carbon nanotubes have been under

heavy research over the last several years. A carbon nanotube is a molecule composed

of many atoms of carbon in a hollow cylindrical arrangement. Nanotubes typically

have a diameters from 1-20 nm and lengths from 100nm to several microns [HBZB02].

Varying the diameter and the arrangement of the atoms can greatly influence the

electrical properties of the nanotube, allowing it to be a conductor, insulator, or

semiconductor. When used as a semiconductor, varying the diameter also varies the

bandgap of the material. Nanotubes can also be doped with impurities, allowing the

creation of PN junctions. Field effect transistors can be constructed from nanotubes

[MSS+98], and arrays of FETs have been created [CAA01].

The biggest limitation on carbon nanotube devices is control of production of

the nanotubes [Bou03]. All the known processes to produce carbon nanotubes produce

nanotubes of all sizes and lengths. To make devices, the nanotubes must be separated

into groups of similar size and behavior. This process is currently done manually in
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Figure 2.20: A Carbon Nanotube FET fabricated as SOI with
tunnel junctions [Bou03].

labs using scanning tunnelling microscopes. For large scale production of transistors,

methods must be developed to control the fabrication of the carbon nanotubes.

2.3.1.4 Quantum Cellular Automata. The QCA paradigm is differen-

tiated from CMOS by the locality of interaction in which each cell talks only with its

nearest neighbors [HBZB02]. Communication occurs via electromagnetic fields and

quantum tunnelling rather than charge flow in the conductor. Custom boolean gates

have been designed using QCA [AOT+99]. A QCA is an array of quantum dot cells.

Each cell is comprised of four dots located at the vertices of a square, as shown in

Figure 2.21. When the cell is charged with two excess electrons, they occupy diagonal

sites as a result of mutual electrostatic repulsion. The two states are used to represent

logic ‘0’ and ‘1’, shown in the left and right sides of the figure, respectively. A polar-

ization change in a QCA cell is induced by causing an electron to switch positions in

one of the dots by applying an electric field.

The fundamental QCA logic device is the three input majority gate, shown in

Figure 2.22. The right side of the figure shows the voltages at the edges of the central

cell with the inputs A = B = C = 1. The output is read by applying a voltmeter at
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Figure 2.21: Quantum Cellular Automata. Two possible
states for the electrons in the Quantum Cell [AOT+99].
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Figure 2.22: QCA Majority Gate. The right diagram shows
the electric fields applied to induce the proper input states.
[AOT+99].

the rightmost cell. The majority gate can also be used to form boolean logic gates. It

can be programmed to act as an AND or OR gate by fixing one of the three inputs.

QCA devices have the potential for very high density. Interconnect is created

with lines of QCA cells. QCA designs for a memory cell and a full adder are shown

in Figure 2.23. Unfortunately, current QCA devices require cryogenic temperatures

and have small drive capabilities, limiting fanout. Designs utilizing feedback require

further investigation.

Additional information on QCA is provided in Section 10.3.
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Figure 2.23: QCA Memory Cell and Adder Designs [FNS01].

2.3.1.5 DNA Self-Assemble Devices. A potential solution to the litho-

graphy problem is the use of self-assembly. DNA-guided self-assembled devices have

recently been proposed [DVP+04]. A computer architecture using these types of de-

vices was proposed in [DPTV04]. This technique takes advantage of the ability of

DNA to form pairs of complementary strands. Proper selection of DNA elements

guides the placement of semiconducting, conducting, and insulating rods to form

three dimensional structures that implement logical devices or look-up tables.

The DNA assembly process is by nature difficult to control precisely, and is a

statistical process. The proposed design paradigm is once again “build a bunch of

devices, then discover which ones work.” Defect rates for these types of devices is

currently around 2% [DVP+04, page 1216]. Proposed uses for these devices include a

form of Content Addressable Memory (CAM). A simple adder could be constructed by

creating large number of DNA devices, each of which is coded to respond to a certain

input arguments (a query). This type of design is called an oracle. The devices

randomly assemble, each implementing an addition operation of two arbitrary inputs.

The oracle operates by querying the devices with the problem inputs (i.e., “What

is 3+5?”). Only the DNA-assembled devices which were constructed to implement
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those two operands would respond by raising a flag signal. The oracle would then

query the device raising the flag to determine the answer. Of course, it is possible

that none of the randomly assembled addition devices implement a particular pair of

inputs, so large numbers of devices may be required to provide responses to all input

combinations with an acceptable probability.

2.3.1.6 Other Potentials. The feasability of Rapid Single Flux Quan-

tum logic has already been demonstrated. RSFQ is dynamic logic based on a su-

perconducting quantum effect in which the storage and transmission of flux quanta

defines device operation. The RSFQ device is a superconducting ring that contains a

Josephson junction plus an external resistive shunt [HBZB02, page 34]. The storage

element is the superconducting ring, while the switching element is the Josephson

junction. RSQF logic uses the presence or absence of the flux quanta in the supercon-

ducting loop to represent a logical state. The circuit operates by closing the Josephson

junction, ejecting the stored flux quanta. This generates a quantized voltage pulse

that can be used to trigger other RSQF devices.

RSFQ has the potential to be extremely fast, with predicted speeds from 100-

750GHz [HBZB02]. RSFQ also has several disadvantages. RSFQ currently requires

the use of low temperature superconducting Josephson junctions ( 5K). In addition, it

is predicted that size may be a limiting factor. Operation is limited by the maximum

magnetic penetration depth in the device, which depends on size. One estimate for

the minimum size for RSFQ devices is 100 nm for low temperature superconductors,

and 500nm for high temperature superconductors [Com00].

2.3.2 Common Features of Developmental Devices. It is impossible to pre-

dict whether any of these technologies will be widely adopted. The physics of these

devices must be better understood, and solutions must be found to the limitations of

the current prototype devices. To compete with current silicon CMOS, any potential

replacement must compete favorably in device density, speed, and power consump-

tion. It must also be economically feasible to justify the cost of shifting production
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from CMOS to a new technology. It is likely that these technologies will first be used

for special purpose applications, perhaps in combination with conventional CMOS.

2.4 Fault Tolerance

This section provides a general review of fault tolerance techniques. Real sys-

tems are built from components that are subject to failure. Components that func-

tioned when the system was new can degrade and fail in operation. In addition, given

the complexity of digital systems, it is possible that the design of the system is flawed

and does not produce correct results in all situations. The system designer has two

choices: attempt to design a system that cannot fail, or design a system that tolerates

failures. As discussed in the previous sections, tremendous effort has been expended

in the past to design systems that do not fail. But as systems become more complex,

it is increasingly difficult to guarantee correctness. For this reason, fault tolerance

enables the use of systems that otherwise would have failed.

This section is organized in three parts: Section 2.4.1 introduces key fault tol-

erance definitions. Section 2.4.2 discusses the major strategies and concepts used in

fault tolerance. Finally, Section 2.4.3 discusses hardware-based techniques for fault

tolerance. These techniques form the foundation of this research.

2.4.1 Faults and Testing Concepts. This section introduces the key def-

initions in fault tolerance. Fault types provide an understanding of what kinds of

failures occur in digital circuits. The device testing process is introduced, with em-

phasis on the difficulty in testing large circuits. Finally, methods for characterizing

the reliability of the overall system are examined.

2.4.1.1 Key Definitions.

Error is a manifestation of a fault in the system, in which the current logical state

differs from the correct state.
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Fault is an anomalous physical condition. Causes include design errors, manufactur-

ing defect, device deterioration, electrical noise, or other environmental factors.

Failure denotes an inability to perform a desired function because of errors in the

system caused by one or more faults. A failure can mean an incorrect result,

no result at all, or the violation of a design parameter (e.g., a correct result

returned too late to be of use).

Fault Tolerance is the ability of a system to perform an intended function in the

presence of errors caused by one or more faults. These faults may be temporary

(e.g., caused by electrical noise) or permanent (e.g., device degradation), and

may occur at any time during system manufacture or operation.

Defect Tolerance is a subset of fault tolerance, limited to faults that were present

in the system at its initial fabrication or assembly. Defect tolerance is the ability

of a system to perform an intended function in the presence of errors caused by

one or more manufacturing faults.

2.4.1.2 Fault Types. Design of a fault tolerant system requires under-

standing of the ways the system can fail. It is necessary, therefore, to characterize

fault types that can occur and estimate their impact, severity, and probability of

occurrence. Then a fault tolerance technique can be chosen to detect, isolate, and

recover from the fault.

Faults can be characterized temporally:

• Transient faults are temporary and non-recurring. Errors observed due to tran-

sient faults are called soft errors. The rate at which soft errors occur in operation

is called the Soft Error Rate (SER).

• Intermittent faults are temporary, but recur in operation.

• Permanent faults are also called hard faults. Errors due to permanent faults are

usually repeatable and are called hard errors. A manufacturing defect can be

considered a hard fault, although in some cases its effects are intermittent.
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Depending on the fault type, its effects can be observed and characterized at

the digital or logical level, as well as at the circuit level. Not all defects result in

faults; likewise, not all faults result in errors or failure [Raj92]. The goal of testing is

to determine which faults cause failures in the system, and then test for those faults.

Fault effects can be classified in many ways. Two common classifications are logical

faults and parametric faults. Logical faults produce errors in the logical or Boolean

state of the system. Three common logical faults are Stuck At faults, von Neumann

faults, and Bridging faults. Stuck At faults occur when the input or output of a gate

is literally stuck at a particular logic value (i.e., ‘1’ or ‘0’). A von Neumann fault

occurs when a input or output is inverted from the correct value [vN56]. Bridging

faults commonly occur between adjacent signal lines, and cause the value of one of

the lines to match the value of the other.

Faults can also specific to a key aspect of the circuit architecture. For example,

FPGA architectures have faults not found in other devices. Similar to bridging faults,

programmable interconnect open and short faults occur in connections between inter-

connect lines in the FPGA. These connections can be stuck open or closed, and can

affect the operation of the FPGA in unusual ways thereby changing the operation of

the application circuit [RN95].

Parametric faults change the performance of the system, but may not induce

logical errors. An example is the timing fault which is sometimes caused when defects

in a transistor cause it to switch slower than designed. A timing fault may manifest

itself as an error if the result of a circuit is not available until after the clock edge

latches an incorrect result. Current faults occur when the circuit draws too much

current, due either to leakage or a short circuit.

2.4.1.3 VLSI Test. Testing of VLSI circuits for correct function is a

difficult and time consuming process. For simple circuits (e.g., an 8 bit adder), it is

possible to perform exhaustive testing where every possible input is applied and the

correctness of the output is verified. Similarly, state machines can be forced into every

53



state and all transitions verified. For more complex circuits, it is infeasible to apply

every possible input vector or force the state machines into every state. In this case a

subset of all the possible test patterns is used. Careful selection of the test patterns

provides the maximum possible test coverage with the fewest test vectors.

Faults can occur at any node within a device. It is normally only possible to

observe the circuit through the output pads, although sometimes special test pads

are included in the layout. Even so, the number of points at which circuit operation

can be observed is small compared to the number of inaccessible internal nodes. A

circuit path is sensitized to a fault if a set of inputs can propagate the fault effect to

an observable output. The general approach to test pattern generation considers each

possible fault and how its impact can be propagated to an observable output. Input

test vectors are chosen such that a fault can be detected on the output pins.

The number of test vectors can rapidly become extremely large. Fortunately,

many faults produce the same incorrect output when a particular test vector is applied.

These faults are called equivalent , and one test can detect all of the faults in each

equivalent set. In this manner, the total number of test vectors is reduced, while still

maintaining fault coverage.

To test more complex circuits, designers can add additional circuitry to support

testing. The most common technique is boundary scan testing. The industry standard

for boundary scan is IEEE standard 1149.1, also known as JTAG (for Joint Test Action

Group). The basic idea of a boundary scan is to introduce a memory scan cell at each

input and output (I/O) pin [Raj92]. The boundary scan cells are interconnected to

form a chain. The chain is connected to an input pin and output pin which allows test

vectors to be shifted serially onto the chip and test results to be shifted off. In addition

to I/O cells, the circuit can connect to internal storage elements as well. These cells

are transparent to normal operation of the circuit. During testing, however, the scan

chain can load test vectors into the device and capture the results so that they can
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be shifted out. In this manner, it is possible to access and test internal nodes in the

chip using a small number of test pins.

The JTAG pins are sometimes used for other purposes. Field Programmable

Gate Arrays (FPGAs) often use the JTAG pins to shift configuration data into the

chip. FPGAs are discussed in more detail in Section A.1.2.

Microchips are typically tested at fabrication by special automated test equip-

ment. It is also possible to embed test circuitry on the chip itself to allow the chip

to generate its own test patterns and report faults. This technique is called Built-In

Self Test (BIST).

2.4.1.4 Reliability Measurements. The impact of defects and other

faults on system performance can be quantified. First, the yield of the manufacturing

process is defined as the percentage of produced chips that function correctly . Modern

silicon CMOS processes have yields in the range from 60-90%. Since as many as 40%

of production chips contain one or more faults, the effectiveness of the test process is

key in finding defective chips before they are shipped. Test coverage is the fraction of

faults that are detected by applied test vectors. While time consuming, application

of more test vectors results in a higher test coverage. This can greatly decrease the

probability of defective chips being falsely accepted. The probability, P (α), that a

defective chip is accepted is

P (α) = 1 − Y 1−η (2.9)

where η is the test coverage, and Y is the yield of the process.

Suppose a given manufacturing process has 90% yield [Raj92]. The chips are

subject to testing that provides 80% fault coverage (i.e., the tests find 80% of the

possible faults). Therefore, roughly 2% of the chips are defective and not detected by

the test process. Clearly, it is desirable to provide the highest possible test coverage

to minimize the number of defective chips which are shipped to the customer. In this

simple example, fault tolerance was not considered. It will be shown later that fault
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tolerance techniques can increase the yield by correcting errors that would otherwise

cause the chip to fail.

At the system level, several reliability concepts can now be defined.

Reliability, R(t), is the conditional probability a system can perform its designed

function at time t, given it was operational at t = 0.

Point Availability, A(t), is the probability that a system can perform its designed

function at time t. Availability is sometimes expressed as a steady-state value,

either as a probability the system functions correctly at any given instant, or as

an amount of down time over an interval (e.g., two minutes of down time per

year).

Mean-Time-To/Between-Failures (MTTF/MTBF). MTTF/MTBF is the ex-

pected time until system failure.

Mean-Time-To-Repair (MTTR). MTTR is the expectation of how long it takes

to return a failed system to operation.

Coverage. The coverage of a fault tolerance technique is the probability a circuit is

functional given a particular fault occurs (i.e, P (Functional|Fault)).

Functional. The circuit performs its design function without errors.

For example, suppose that components fail at a constant rate. Reliability, then,

can be expressed as

R (t) = e−λt, (2.10)

where λ is the sum of the failure rates of the components [AL81]. Mean time between

failures is simply

MTBF =

∞
∫

0

R (t) dt (2.11)
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When fault tolerance techniques are incorporated, the reliability of the system

is [Nel90]

Rsystem = P
(

Ē
)

+ P (F |E)P (E), (2.12)

where E is the fault event, Ē is the no-fault event, and F is the event that the circuit

functions correctly.

A related IC failure rate metric is the failure unit (FIT) defined as one failure

in 109 device hours [Raj92].

2.4.2 Fault Tolerance Strategies. All fault tolerance techniques incorporate

redundancy, or hardware or computations not normally required for system function.

Redundancy can be either spatial or temporal. The general goal of fault tolerance

is to increase the probability of correct function while minimizing some cost func-

tion. Design factors considered may include performance, production cost, design

complexity, circuit area, power consumption, and test complexity.

Fault Tolerance strategies include one or more stages [Nel90]:

• Error Detection.

• Fault Masking. Dynamic correction of generated errors.

• Fault Confinement/Containment. Prevention of error propagation across de-

fined boundaries.

• Fault Diagnosis. Identification of the faulty module responsible for a detected

error.

• System Reconfiguration and Repair. Elimination or replacement of a faulty

component, or a mechanism to bypass it.

• System Recovery. Correction of the overall system to a state acceptable for

continued operation.

These stages will be discussed in the following sections.
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2.4.2.1 Error Detection. Error detection is done either online, while

the system is in normal operation, or offline. In offline detection, normal operation is

suspended at specified intervals while error detection is performed. Error detection in

memory is done easily most commonly using parity bits . Error detection in logic is

more difficult, using input encoding, shifting, and other methods. Coding theory can

be used for data transmission on the chips (e.g., Reed-Solomon codes, convolution

codes, etc. [Skl01]).

Common checking techniques for error detection are:

Replication Checks. The system performs an operation more than one time and

compares the results.

Timing Checks. Raises an exception when the operation takes longer than a spec-

ified limit to complete. This method is well suited to detect parametric errors.

Reversal Checks. From the output, the system attempts to determine the inputs

to the operation. This method is appropriate for reversible operations (e.g.,

check a square root function by squaring the output).

Coding Checks. Based on redundancy in the representation of the object. This

method is often used to detect memory errors (e.g., parity checks, etc.)

Reasonableness Checks. Compares the output against a set of expected values.

This method is also called a range check (e.g., for a computation producing

a direction, the result should be [0 − 359] degrees). Reasonableness checks are

more commonly used in the application or in the operating system. For example,

the operating system commonly checks the ranges of memory address requests

to prevent an application from accessing memory outside its assigned memory

space.

Structural Checks. Performed on data structures at the application or operating

system level.
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Diagnostic Checks. Offline testing performed by stimulating the system with spe-

cific test vectors designed to detect faults.

2.4.2.2 Fault Masking. A system that uses fault masking produces

even in the presence of errors. In this way, faults are masked from observers outside

the system. Examples include Triple-Modular Redundancy (TMR), Majority Voting,

and von Neumann Multiplexing. These techniques are discussed in Section 2.4.3.

2.4.2.3 Fault Diagnosis. Once an error is detected, fault diagnosis can

be used to isolate the cause of the fault to a particular module or device. Fault diag-

nosis is a necessary step to the application of another stage, System Reconfiguration

and Repair.

2.4.2.4 Fault Confinement/Containment. Fault Confinement/Con-

tainment limits the impact of a fault to a small area or portion of the system. The

goal is to limit the damage a fault does to the system operation and to minimize the

recomputation to recover from the fault. A typical method is to break the operation

of the system into atomic operations [AL81]. If a module detects a fault, the entire

atomic operation is recomputed.

In the system architecture, containment boundaries are established in two ways:

each module checks its own outputs, or each module checks its own inputs. Care must

be taken to cover faults occurring at the interfaces themselves.

2.4.2.5 System Reconfiguration and Repair. System Reconfiguration

and Repair changes the structure of the system to recover from detected faults. One

technique uses redundant modules. When a module fails, the system disables the

faulty module and activates a replacement module. In reconfigurable computing sys-

tems based on programmable logic devices (PLDs), the application logic on the PLD

is reconfigured and re-routed to avoid the faulty portions of the PLD.
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Replacement units can be either ‘hot’ or ‘cold’. Hot spares operate concurrently

with the rest of the circuit prior to the fault and need no initialization when a failover

occurs. A cold spare is either not powered, or is used for other tasks, and requires

initialization when it is put into use. Initialization time is a key factor in performance

for cold spares.

2.4.2.6 System Recovery. System Recovery returns the system to a

previous correct state or to a recover point. Processors, for example, can be rolled

back to a previous instruction and register state.

Backward error recovery restores the system state to a previous known, error-

free state. This method is effective when recovering from unknown errors. Since

computations must be recalculated, there is sometimes a significant performance

penalty [AL81]. Furthermore, it may not be possible to recover to an error-free

state. An example of backward error recovery is Single Instruction Retry (SIR). Used

at the processor level, SIR re-executes an instruction that produces an error. SIR is

sometimes used at the processor level to overcome soft errors.

Forward error recovery corrects an error without recalculation. For this to work,

the failure mechanism must be well understood and predictable. Methods to correct

each fault type are then developed. Forward error recovery, then, is more difficult and

less effective at handling unknown errors.

2.4.3 Hardware Techniques for Fault Tolerance. This section introduces sev-

eral fault tolerance techniques that provide fault tolerance at the hardware level. They

are used at the individual gate level, at the module level, and higher. For several of

these techniques effectiveness models have been developed. These models are impor-

tant as they quantify the effectiveness of proposed techniques and designs. The tech-

niques introduced in this section are R-Modular Redundancy, Cascaded Tri-Modular

Redundancy, NAND Multiplexing, Duplication With Comparison, Concurrent Error

Detection, and Reconfiguration.
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2.4.3.1 R-Modular Redundancy. R-modular Redundancy (RMR) im-

plements R units working in parallel and compares the outputs with a majority gate.

When R = 3, the technique is called Tri-Modular Redundancy (TMR). A RMR

module behaves identically to the original module, but has a higher probability of

producing the correct output. The hardware cost for this improvement is Rn + M ,

where n is the number of devices in the original module, and M is the number of

devices needed to construct the majority gate.

In a performance model of RMR, a chip is composed of Ntotal devices organized

into modules, each containing Nc devices [FNS01]. Each device fails with a probability

pf . The probability the chip fails is minimized under the condition Ncpf ≪ 1. Each

module functions correctly if every device in it is functional, or when

Pmodule,works = (1 − pf )
Nc ≈ e−Ncpf (for pf ≪ 1). (2.13)

The probability the module fails when Ncpf ≪ 1, is

Pmodule,fails = (1 − Pmodule,works) = Ncpf . (2.14)

A group consisting of R modules and a majority gate functions correctly when

at least (R + 1)/2 modules are functional. The probability that the mmods = (R +

1)/2 modules are functional is Pmmods,works. The probability that the majority gate

functions correctly is

Pmajgate,works ≈ e−mBpf (2.15)

where B is the number of outputs of each of the R modules and the majority gate.

The majority gate is composed of mB devices, where m is some constant.

Assuming the majority gate and R modules fail independently, the probability

that the group of modules fails is thus

Pgroup,fails = 1 − Pmmods,worksPmajgate,works. (2.16)

61



This equation can be expanded and simplified as

Pgroup,fails ≈ 1 − Pmmods,works(1 −mBpf )

≈ 1 − Pmmods,works + Pmmods,worksmBpf (2.17)

≈ Pmmods,fails +mBpf

The probability that a majority of R modules fails is

Pmmods,f =





R

(R− 1) /2



P (R−1)/2Q(R+1)/2 + . . .+





R

1



PQ(R−1) +





R

0



QR

(2.18)

where P ≡ Pmodule,fails and Q = 1−P . When Q≪ 1, (2.18) reduces to the first term,

and by using (2.14), (2.17) becomes

Pgroup,fails ≈ C (Ncpf )
(R+1)/2 +mBpf ,where C =





R

(R− 1) /2



 . (2.19)

The number of devices in a group is RNc +mB, so the total number of groups is

Ngroups = Ntotal/(RNc +mB). The probability that the whole chip with Ntotal devices

fails (when Pgroup,fails ≪ 1) is approximately

Pchip,fails ≈ Ngroups × Pgroup,fails =
Ntotal

RNc +mB

[

C (Ncpf )
(R+1)/2 +mBpf

]

. (2.20)

Solving for dPchip,fails/dNc = 0 gives the optimum module size (Nc) for a given

pf , which when substituted into (2.20), yields the minimum failure probability.

RMR can be quite effective. Figure 2.24 shows the maximum tolerable individ-

ual device defect rate versus amounts of redundancy (i.e., R) for a test design [FNS01].

In this figure, ε = 0.1 is the maximum acceptable failure probability for the chip (i.e.,

ε = 1 − Y ield). B is the number of outputs from each of the R modules and the

majority gate. The device overhead to implement the majority gate is m = 20. For
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Figure 2.24: RMR Performance (Max allowable pf versus Re-
dunancy, R) [FNS01].

a design with no redundancy (i.e., R = 1), the design meets yield requirements only

if the individual defect rate is pf ≈ 10−13. Incorporating RMR with R = 5 raises the

allowable defect rate to pf ≈ 10−9. Thus, the same probability of chip reliability can

be achieved with devices four orders of magnitude less reliable

2.4.3.2 Cascaded Tri-Modular Redundancy. RMR benefits can be

increased by connecting RMR or TMR modules in series. The outputs of three TMR

modules can be connected to a majority gate to make a second order TMR module,

or Cascaded TMR (CTMR) module. The probability of correct output with a CTMR

module of the ith order is P
(i)
w , or

P (i)
w = (1 − pf )

mB
[

(

P (i−1)
w

)3
+ 3

(

P (i−1)
w

)2 (
1 − P (i−1)

w

)

]

(2.21)

where mB is the number of devices in the majority gate [FNS01]. However, there is

no advantage to using CTMR for units containing small numbers of devices, although

improvement is possible for CTMR units with large values of Nc. Three improvement

regions are identified [FNS01].
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1. Ncpf > ln 2, redundancy affords no advantage.

2. 10−3 . Ncpf < ln 2, redundancy is most effective.

3. Ncpf < 10−3, only first order redundancy offers an advantage.

In region (2), effectiveness scales exponentially with the order of CTMR used.

The failure probability is

P
(i)
fail ∝ (Ncpf )

2i. (2.22)

For region (3), effectiveness scales in accordance with the ratio mB/Nc. The

failure probability for this region is

P
(i)
f ≈







Ncpf , for i = 0

mB
Ntotal

Ncpf = mB
Nc
P

(0)
f , for i = 1, 2, . . .

(2.23)

2.4.3.3 NAND Multiplexing. NAND Multiplexing was originally pro-

posed by John von Neumann in 1956 [vN56]. In early computers, logical functions

were realized using vacuum tubes. These devices were prone to failure, and the mean

time before failure of a vacuum tube computer was quite low. von Neumann showed

that when the probability of gate failure is sufficiently small, and errors are indepen-

dent, a high probability of a correct result can be achieved using NAND multiplexing.

A NAND Multiplexor reliably performs the boolean NAND operation in the

presence of errors that change the operation of the device. A ‘von Neumann fault’

[vN56] inverts the correct output of a NAND gate. The NAND multiplexor circuit

performs the NAND operation redundantly, as shown in Figure 2.25, increasing the

probability of correct output over a single NAND gate.

Logic signals in the multiplexing technique are implemented by bundles of sig-

nals. For example, a NAND gate may have two inputs, X and Y , and one output, Z.

Each signal is implemented as a bundle of N signals. If there are no errors in a signal,

all N lines in the bundle have the same value. If errors are present, some fraction of
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the lines have the opposite value. A threshold, ∆ ∈ (0, 0.5) is defined such that when

no more than ∆N of the lines in the bundle are stimulated (i.e., logic ‘true’ or ‘1’),

the logical value of the variable represented by the bundle is interpreted to be ‘false’

or ‘0’. Likewise, at least (1 − ∆)N lines must be asserted for the logic value of the

variable represented to be considered ‘true’ or ‘1’. If the number of asserted lines in

the bundle is between these two thresholds (∆N, (1 − ∆)N), the state is undecided,

and a malfunction is declared.

The NAND Multiplexor is composed of two parts: the Executive Stage and one

or more Restorative Stages. Each restorative stage is nothing more than two executive

stages in series. In most cases, adding more restorative stages or increasing the bundle

size N makes the NAND operation more reliable.

The Executive Stage contains two parts: a row of N NAND gates in parallel,

and a Permutation Unit (i.e., block ‘U’). The initial input signals X and Y are

implemented as two bundles of N signals. The output of the NAND operation is the

bundle Z, which also contains N signals. Prior to the introduction of any errors, all

of the signals in each bundle should match the “correct” values (i.e., Xi = Xj ∀ i, j
and Yi = Yj ∀ i, j). If errors have occurred, some fraction of these lines will contain

the logical inverse of the correct value. Without loss of generality, logical true, ‘1’, is

defined to be the “correct” value for X and Y , and thus ‘0’ is the correct output Z.

Let (X,Y, Z) have (kx0 = x̄N, ky0 = ȳN, kz0 = z̄N) stimulated signals. Thus, the

three-tuple (x̄, ȳ, z̄) is the probability each variable is stimulated, while kx0, ky0, kz0

represent the number of stimulated lines in each respective bundle for stage 0.

In the permutation unit, U, the X and Y bundles are randomly permuted and

combined into N XiYj pairs. For example, if N = 4, one possible permutation is

X2Y3, X0Y1, X3Y0, X1Y2. These XY pairs are the inputs to the N NAND gates. For a

von Neumman error, each NAND gate is subject to an error which inverts the correct

logical output with probability ε.
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Figure 2.25: NAND Multiplexer

A model of NAND multiplexing has been developed [vN56,HJ02,NPK04] which

determines the distribution of the stochastic variable z̄ in terms of given x̄ and ȳ. von

Neumann [vN56] determined for large N , the output probability z̄ is a stochastic vari-

able with an approximately normal distribution. The upper bound of the probability

of gate failure that can be tolerated is εmax ≈ 0.0107. The tolerable threshold proba-

bility is actually εmax = (3 −
√

7)/4 ≈ 0.08856 [EP98]. Beyond this (i.e., ε > εmax),

the failure probability of the NAND multiplexor system is larger than some fixed,

positive lower bound, regardless of the bundle size N . Furthermore, for small N, the

number of stimulated outputs of the executive stage is theoretically a binomial dis-

tribution, although is disputed [NPK04], due to a lack of independence between lines

in the output bundle.

A model of NAND multiplexing performance that incorporates the dependence

between lines in the output bundle has been developed. The results of this research

are found in Chapter VI.

Several system architectures use NAND multiplexing [SNF04,HJ03]. By com-

bining fault masking from NAND multiplexing with fault recovery from reconfigura-

tion, a processor can tolerate defect probabilities as high as 10−2 [HJ03]. A processor

can be made 90% reliable over ten years of operation, with a defect rate of 10−4 and a

redundancy of only R = 50 [SNF04]. Due to the high levels of redundancy required,

66



NAND multiplexing has been of limited use. As process sizes get smaller and more

devices become available, the technique may see wider use.

2.4.3.4 Duplication With Comparison. Duplication With Comparison

[dLKNH+04] detects faults using redundant modules. Much like a majority gate,

this approach replicates hardware modules. Unlike majority voting, DWC does not

attempt to correct an error, but rather detects its presence signals an error handler

to the potential fault.

A simple DWC system compares the outputs of two modules. If the outputs

differ, an error flag is raised. DWC is of limited utility when used alone, since it

is not possible to identify which of the two modules is in error. To overcome this

limitation, DWC is sometimes combined with another technique, Concurrent Error

Detection [LCR03].

2.4.3.5 Concurrent Error Detection. Concurrent Error Detection(CED)

detects a fault without stopping circuit operation. While DWC detects faults in the

system, CED detects which blocks are fault free [dLKNH+04, LCR03]. Figure 2.26

shows the basic concept for a combined DWC/CED scheme. The circuit data outputs

are denoted out1 and out0. Three flag signals are used, one to signify a fault has been

detected (i.e., the outputs do not match), and two flags to denote the operational

state of each of the two logic modules.

After the DWC comparator detects an error, CED determines which module

produced the fault. The most common methods are bitwise inversion, recomput-

ing with shifted operands(RESO), and recomputing with swapped operands(REWSO)

[dLKNH+04,LCR03].

A detailed diagram of the RESO concept is shown in Figure 2.27 [dLKNH+04,

LCR03]. During normal operation, the A and B inputs are passed through multi-

plexers to the combinational logic in dr0 and dr1. A clock signal stores the results

of the two modules for later comparison. If the two outputs are equivalent, both
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Figure 2.26: Combined Duplication With Comparison
(DWC)/Concurrent Error Detection(CED) fault detection
scheme [dLKNH+04].

output flags enable dr0 and enable dr1 are raised and both outputs are used by later

modules. During this second cycle, the operands are shifted prior to use so errors

from permanent faults in the combinational logic are different from those obtained in

the original calculations. Comparing the results can be used to identify which module

is in error. The final Enable dr output flags is then set to tell later modules which

input to use.

The benefit of this approach is error detection and isolation is done in only one

additional clock cycle. However, a fault occurring in the encoding, decoding, or voter

logic produces false positives even when both combinational modules are functional.

This problem can be overcome through the combination of DWC/CED modules in

larger fault tolerant modules using TMR or other techniques.

2.4.3.6 Reconfiguration. Reconfiguration also can achieve fault tol-

erance in hardware. Reconfiguration relies on the ability of hardware to modify its

configuration to implement different logical structures. It is most commonly im-

plemented in programmable logic devices such as Field Programmable Gate Arrays

(FPGAs). The FPGA implement application circuits by programming RAM-based
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Figure 2.27: Combined Duplication With Comparison
(DWC)/Concurrent Error Detection(CED) fault detection op-
eration. Data propagation during normal operation is shown on
the left, and in fault detection mode on the right [dLKNH+04].

Configurable Logic Blocks (CLB) and setting interconnect switches to connect them.

The structure of FPGAs is discussed in more detail in Appendix A.1.2.

Application circuits implemented in FPGAs typically provide better perfor-

mance than those implemented in software on general purpose processors (GPP).

The study of these architectures is often referred to as Reconfigurable Computing and

is discussed in Appendix A.2.

Reconfiguration is also used to provide fault tolerance. Reconfigurable devices

have a large number of configurable logic blocks (CLBs). Provided that the applica-

tion design does not use all available configurable resources (i.e., CLBs and routing),

unused resources can be used to provide hardware redundancy. If portions of the

hardware implementing the application circuit fail, the FPGA can be reconfigured to

move the affected portions of the application circuit to the spare resources. Recon-

figuration overcome manufacturing defects was demonstrated in the Teramac system

constructed by Hewlett-Packard [HKSW98]. Teramac was implemented using 864

inexpensive, low-quality, FPGAs. Upon system configuration, each FPGA was tested
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and defects located. A detailed map of roughly 220,000 defects was obtained, and the

application architecture was mapped onto the remaining operational CLBs and cor-

rect operation of the Teramac computer was demonstrated. Teramac did not attempt

to detect or correct faults that occurred after the system was initially configured, but

the concept can be extended to cover hard faults occurring during system operation.

Comparison of reconfiguration to other hardware FT techniques is made based

on the upper limit on pf , the defect probability per device, that can be tolerated

[NSF01,FNS01, LMSP98]. The probability a CLB composed of Nt transistors, each

of which fail with probability pf , functions correctly is

Pclb,w = (1 − pf )
Nt . (2.24)

An arbitrary number, Nc, of CLBs are connected together to form an atomic

fault tolerant block (AFTB). Since an AFTB can be reconfigured to perform some

operation even if one of the component CLBs is faulty, the probability that an AFTB

functions properly, Paftb,w, is the sum of the probabilities of zero and one CLB failure,

or

Paftb,w = (Pclb,w)Nc + (Pclb,w)Nc−1(1 − Pclb,w). (2.25)

The failure probability for the AFTB is

Paftb,f = 1 − Paftb,w. (2.26)

If NA AFTBs are combined in clusters to perform higher level functions (e.g.,

adders, memories, etc.), the probability a cluster fails [FNS01] is

Pcluster,f = 1 − (Paftb,w)NA . (2.27)
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Suppose R of these clusters are combined into a supercluster and the overall

computer can diagnose faults in the clusters. If the processor uses the output of a

functional cluster, as long as at least one of the R clusters functions correct results are

achieved. The probability at least one of the R clusters in the supercluster functions

correctly is

Psc,w = 1 − (Pcluster,f )
R. (2.28)

The total number of superclusters on the chip, Nsc, is

Nsc =
Ntotal

R ·Nt ·Nc ·NA

. (2.29)

Finally, the probability the entire chip functions is

Pchip,w = (Psc,w)Nsc . (2.30)

It is assumed in this example that each cluster can be tested and defective

clusters disabled. In reality, limitations on interconnect resources make the problem

more complicated. Fault tolerance modelling of reconfigurable systems is an area for

further study.

Figure 2.28 shows the performance of reconfiguration versus RMR and NAND

multiplexing [FNS01]. In this example, Nc is the number of superclusters in the

design, determined by the granularity of the configurable units. The plots show the

maximum allowable device failure probability, pf , versus the level of redundancy,

R. The top three lines represent reconfiguration; the middle three lines are NAND

multiplexing; and the bottom three lines are RMR. Reconfiguration is able to use

devices with failure probabilities several orders of magnitude higher than RMR or

NAND multiplexing for any particular level of redundancy. While the model used is

fairly simple, it is clear that reconfiguration provides good fault tolerance at levels of

redundancy lower than those required by other methods.
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Figure 2.28: Comparison of three hardware FT methods (Max
allowable pf versus Redundancy, R) [FNS01].

Reconfiguration, however, provides no protection against soft errors. For this

reason, a fault and defect tolerant computer (FDTC) should implement other fault

tolerance techniques in addition to reconfiguration. This research will explore ways

to combine these strategies.

2.5 Radiation Effects

Circuit operation can be affected by environmental factors such as cosmic radi-

ation, thermal noise, and power supply fluctuations. These factors sometimes induce

errors in digital logic, change the value of bits stored in memory, and cause devices

to degrade and suffer permanent failures. In the past, these effects only had a signif-

icant impact on microchips used in space applications. But as process size shrinks,

these effects are becoming significant even for terrestrial users, and soon computer

architects will no longer be able to ignore their impact.

This section examines the common effects of radiation and other environmental

factors on the performance of electronic devices.
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• Section 2.5.1 examines the causes of radiation-induced faults.

• Section 2.5.2 examines how devices are affected.

• Section 2.5.3 describes how the effects change as the process size decreases.

• Section 2.5.4 examines potential solutions, both at the process and design level.

Due to the large number of storage devices present, Field Programmable Gate

Arrays (FPGA) are particularly susceptible to Single Event Upsets and other soft

errors. FPGA-specific effects are covered in Appendix A.1.2.5.

2.5.1 Causes. In modern 90nm CMOS, the area per memory bit is a mere

1µm2 [KH04]. By 1962, it was predicted that when channel length fell below 1µm,

a single cosmic ray particle strike could short circuit the source and drain terminals,

disrupting circuit operation [KH04].

The first errors directly attributed to cosmic rays occurred in 1975, when space-

craft electronics malfunctioned during a “magnetically-quiet time,” meaning the fail-

ure was not due to magnetic charging of the spacecraft. By 1978, soft errors were

observed in dynamic memory devices at ground level. Memory contents had changed

some time after being written. Although no damage was observed in the circuit, when

new data was stored errors would reappear at different locations. A memory value

error due to single particle strike is called a Single Event Upset (SEU).

Leading causes of radiation effects include alpha particles and cosmic rays

[HSA94]. Cosmic rays are typically protons, but also include alpha particles and

heavy atoms with energy levels up to 500MeV. The most common radiation sources

in the atmosphere, however, are high energy neutrons. Neutrons are naturally present

in the atmosphere and are imparted energy through the impact of cosmic rays and

the decay of radioactive nuclei [KH04]. Neutron energies range from 20-300MeV.

2.5.1.1 Alpha Particles. Alpha particles are emitted from a small

number of radioactive impurities found in the plastic packages of microchips as well

as in the microchip itself [KH04]. Plastics and other materials in the packaging
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contain several parts per million of Uranium-238 and Thorium-232. Alpha particle

flux rates for current process technologies are about 0.001α/cm2−hr [KH04] and the

Soft Error Rate (SER) due to alpha particles does not vary significantly with altitude.

SER decreases over time as the impurities decay. SER due to alpha particle strikes

is significant–one soft error per day in a 4 kbit DRAM chip, but can be reduced

with better packaging materials and shielding between the plastic package and the

chip [KH04].

Radioactive impurities are the source of the alpha particles. In 1995, Boron-10

was identified as a significant cause of SEUs [KH04]. It caused as many as 80% of

the SEUs in a 0.25µm SRAM chip. In addition, impurities in the interconnect metals

create alpha particles; the silicon wafer itself contains a small number of radioactive

impurities.

2.5.1.2 Neutrons. High energy neutrons are generated in the at-

mosphere by the impact of high energy cosmic ray particles. Neutrons do not carry an

electric charge, but when they strike a silicon microchip, the impact energy can cause

electron-hole pair formation. The energy required to create a hole pair is dependent

on the bandgap of the semiconductor; for silicon it is 3.6eV.

Cosmic rays decrease exponentially with the amount of shielding applied to the

chip [KH04]. The atmosphere acts as a natural shield, decreasing SER by three orders

of magnitude from aircraft flight altitudes to sea level. Thus, SEUs caused by neutrons

are more prevalent in space and aircraft applications than at sea level. Neutron density

varies with altitude, being particularly high from 10-40km. The maximum intensity

is at 15km. Sea level neutron density is roughly 20 neutrons/cm2−hr (with energies

> 10MeV ). However, not every neutron striking the surface of the silicon chip strikes

a proton. Since the most of the space occupied by an atom is the electron cloud, only

one out of 40,000 neutrons striking the surface hits a silicon nucleus in the first 10µm

of depth [KH04].
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Table 2.5: Short and long term radiation effects on microelec-
tronic devices.

Transient effects Source Method

Rapid annealing of minority carrier
lifetime

Particle Displacement

Transient currents Particle/Photon Ionization
Latching conditions in bistable cir-
cuits

Particle/Photon Ionization

Long-Lived Effects

Increased defect concentration Particle/Photon Displacement
Decreased carrier lifetime, mobility,
concentration

Particle/Photon Displacement

Altered population of traps Particle/Photon Ionization
Oxidation-reduction reactions Particle/Photon Ionization

2.5.2 Effects. Radiation causes both short and long term impacts on elec-

tronic devices. This section summarizes several of the most significant effects as

observed in materials, transistors, and the system architecture. These effects are

common to all ASICs, including FPGAs. The application-level impact on FPGAs is

covered in Appendix A.1.2.5

2.5.2.1 Effects on Materials. Several effects relevant to CMOS logic

circuits are shown in Table 2.5. The effects are categorized by their duration (i.e.,

transient or long-term), their source (i.e., high energy particle impact such as alpha

particles or neutrons), and the method of damage (i.e., ionization of atoms and re-

sulting hole-pair generation, or physical displacement of atoms in the silicon lattice).

Most long term effects accumulate over time, and are most significant in high

radiation environments such as space. Permanent failure of devices can occur due to

prolonged radiation exposure. While radiation hardened design is outside the scope

of this research, it will be assumed an appropriate level of radiation hardening is

used to prevent long term effects. The most significant effects for general purpose

applications, at sea level, in aircraft, and in space, are transient effects.
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2.5.2.2 Effects on Devices. Transient effects in microelectronic devices

are caused by concentrated bursts of electric charge generated at random locations

in the substrate and collected by the drain diodes in MOSFETs. The charge transfer

can be enough to change the logic state of a node in the circuit. A circuit node in

90nm CMOS stores about 1-10fC of charge [KH04]. Alpha particles carrying 3-10MeV

correspond to 100fC of charge, well in excess of the amount needed to generate a SEU.

Not all the generated charge is collected by the drain. Most of the electron-hole pairs

recombine or are collected by reverse-biased PN junctions shorted to the power rail.

The fraction of charge collected by the circuit is defined as the collection efficiency .

The amount of charge necessary to change the output of a device is called the critical

charge, or QCRIT .

Depending on their design, circuits are affected by alpha particles and neutrons

to different extents. In SRAM cells with lower values of QCRIT , alpha particles con-

tribute to SER as much as neutrons. For devices with higher QCRIT values (due to

larger device area), neutrons usually dominate. The relative influence of the two types

of soft error determines the overall SER for the device.

The electrical pulse generated by the impact of an alpha particle or neutron

may not affect the output state of the local transistor, a higher level logic gate, or

the system. A typical single event upset (SEU) lasts about 100ps, and if the charge

disturbance is less than the noise margin for the device the charge pulse will not effect

the output of the logical gate. If it exceeds the noise margin, it can cause an inverter

to change state. If connected in a feedback loop such as in a latch or flip flop, the

error in the first inverter is passed on to the second inverter, changing the memory

state of the device.

In a combinational circuit, many transient effects dissipate prior to the end of

the clock cycle and the latching of results and are said to be masked. Therefore, the

soft error rate (SER) observed at the module or system level is often less than the
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SER at the device level. The higher level SER is derated to remove soft errors that

are masked. Three common types of masking are

• Logical masking occurs when the output of a gate is controlled by the input not

subject to the soft error. For example, a NAND gate with inputs of ‘0’ and ‘1’

would not be affected by a soft error on the ‘1’ input since it does not change

the output.

• Temporal masking occurs when the noise on the input of a latch or flip-flop is

outside of the clocking window and does not change the state of the memory.

• Electrical masking results from the limited bandwidth (i.e., switching speed)

of devices. Transients with bandwidths greater than the cutoff frequency of

the device are attenuated and the pulse amplitude visible on the output of the

transistor may be reduced below the threshold of the next device in series. Thus

the effect may be limited to a few serial logic gates.

2.5.2.3 Effects on Systems. Many soft errors are masked and do not

affect the output or state of the overall system. The soft errors may or may not be

detectable, and may or may not be correctable. For example, many modern memories

contain parity bits to detect errors. Some memories implement error correcting codes

to correct single bit errors. The following SERs have been observed in memory devices

[KH04,Xil03]:

• Neutron induced soft errors in a 256kbit SRAM on a commercial aircraft resulted

in an SER of 1 error per 80 days.

• Alpha particle strikes at a rate of several per cm2 − hr led to an SER of 1/day

in a 4kbit DRAM.

• A supercomputer with 156Gbit of DRAM failed several times per day.

• The SER in pacemakers is about the same errors caused by background neutron

radiation.
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• The European Space Agency’s Freja satellite experiences > 200 SEUs/day.

More than 40 proton-induced latchup events were observed in three years in

orbit.

Logic errors are more difficult to detect and correct and will soon dominate chip

level SER in ASICs [KH04]. Testing of real processors has not yet shown this to be a

major problem, but with further process scaling, soft errors in logic will soon become

more prevalent.

2.5.3 Relation to Process Scaling. The impact of process scaling on soft

error rate is difficult to predict as it depends on many competing factors. Many

studies have been done to determine the effect of voltage and size scaling on SER and

to find ways to keep the overall SER down. Even if the bit level SER is kept down,

the exponential growth in the number of devices on a chip can result in a system level

SER that grows as process size shrinks.

At sea level, scaling effects in SER are an aggregate of alpha particle, high

energy neutron, and thermal neutron effects. Power supply voltage is also a factor.

SER has been shown to increase by a factor of two when power supply voltage was

decreased from 1.2V to 0.8V [KH04]. Device size plays a role, as the critical charge,

QCRIT , decreases by K2 with the constant scaling rules . At the same time, the

collection area decreases with size, lowering SER. The collection efficiency decreases

with increased substrate doping and reduced bias voltages, decreasing SER.

Theoretical predictions show SER due to alpha particle strikes remains relatively

constant with scaling. Experimental measurements have produced minor variations,

but in general agree with the theoretical predication.

For neutrons, experimental results vary widely. For example, one study shows

a 50% decrease in SER in SRAM cells from 0.5µm to 0.25µm, but a 300% increase

from 0.25µm to 0.14µm [KH04]. Another study reports an increase of 8% per process

generation from 0.25µm to 90nm [KH04]. This variation may be explained by dispro-

portionate scaling of QCRIT with respect to collector efficiency.
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Technology trends, then, indicate a moderate increase in SER/bit or SER/latch

with process scaling [KH04]. Due to careful modeling of SEUs, process improve-

ments, and device hardening, this trend has not been manifest in production devices.

Whether SER can be held constant with scaling remains to be seen.

2.5.4 Solutions. Several strategies can overcome the effects of soft errors

on digital circuits. The fabrication process can be controlled to reduce the numbers

of radioactive impurities. Better modelling and characterization techniques can be

developed to accurately model the impacts of design and process changes on SER.

Finally, architectural changes can be incorporated to detect and overcome faults.

Many process improvements have already been incorporated to reduce the soft

error rate. When Boron-10 was discovered to be a cause of soft errors, boro-phospho-

silicate glass was removed from the fabrication process. In addition, increasing the

purity of silicon wafers will reduce the number of radioactive impurities.

The use of Silicon On Insulator (SOI) also reduces soft error rate. SOI devices

have lower junction capacitances and better noise isolation since the thinner substrates

present a lower collection volume and thus collect less charge during a particle strike.

It has been shown that SER can be reduced by a factor of five or more through use

of SOI. Further radiation hardening techniques can decrease SER by as much as 100

times. Care must be taken in design, however, as the forward biasing of the substrate

is more significant in SOI, which creates a parasitic bipolar transistor whose signal

can be amplified in the circuit and contribute to soft errors. In the worst case this

can cause SER to exceed bulk CMOS.

It is also important to be able to accurately quantify and model the effects of

radiation on devices. Accurate design trade-offs cannot be made without an under-

standing of the impact of design changes on SER. Most radiation modelling has been

targeted toward bulk CMOS using conventional materials. As new materials such

as copper interconnect, high k dielectric materials, and silicon-germanium strained

silicon come into use, modelling of SEU effects becomes more difficult. Some of these
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materials increase SER. First order modelling shows neutron SER increases with the

mass density of the materials present. Copper, tantalum, tungsten, and cobalt in

CMOS fabrication may increase SER by a factor of two or more [KH04].

Simulation of SEU effects is difficult, with complexity growing exponentially

with the size of the circuit. Even testing is difficult to perform as the impact rates

of alpha particles and neutrons is very low. Accelerated testing is often performed

by bombarding a microchip for a short time with white neutron or proton beams at

a higher rate than found in the environment. Results are then scaled with time to

match a lower radiation rate for a long time period.

Architectural changes can make the circuit more tolerant to soft errors. Many

memory designs incorporate parity bits and error correcting codes (ECC) to detect

or correct single bit errors in memory arrays. ECC is very effective, as relatively few

SEUs result in the upset of two or more adjacent memory bits. Interleaved memory

designs can separate bits checked together by ECC, reducing the probability that of

a multi-bit error.

2.6 Fault Tolerant Architectures

2.6.1 Fault and Defect Tolerant Systems. This section examines several

recent experimental and hypothetical system architectures incorporating fault toler-

ance. These systems can be broadly classified in four categories:

• Error Tolerant Systems

• Defect Tolerant Systems

• Fault Tolerant FPGA-Based Systems

• Array-Based Multiprocessor Systems

2.6.1.1 Error Tolerant Systems. Certain applications do not require

accurate computation [BGM04]. For example, video compression and some signal

processing algorithms produce approximations rather than exact results. In many

80



cases, errors in a computation result is acceptable, since it would go unnoticed amid

the inaccuracies inherent in the application algorithm.

This type of application may be well suited for error-prone chips implemented

with molecular crossbars or other devices. Errors in the control logic in the circuit

would still be unacceptable, as the processor may lock up or crash. Likewise, errors in

data-producing module such as adders and multipliers would be unacceptable when

producing results for the control flow of the program. But errors in the data output

may be tolerated. In these cases, the system designer can trade off performance versus

reliability, resulting in a design that operates very fast (either singly, or using many

processors in parallel on a dense chip) at the cost of accuracy.

2.6.1.2 Defect Tolerant Systems. Teramac, constructed by Hewlett-

Packard in 1998, is a defect tolerant computer [HKSW98,Cla98]. Teramac is a mas-

sively parallel computer constructed from inexpensive, defect-prone FPGAs. Con-

structed using 864 identical FPGAs, only 217 of the chips passed fabrication testing.

The remaining 75% were provided for free by the manufacturer, as they would other-

wise have been discarded as defective. In all, over 220,000 defects were identified in

the FPGAs. After constructing the computer from the 864 FPGAs, the system was

powered up and a test configuration was loaded onto the FPGAs. Defect locations

and types (logic and interconnect) were mapped and provided to a specially-built ap-

plication compiler, which placed and routed the final multiprocessor architecture onto

the FPGAs. Teramac demonstrated correct operation using defective components.

The Teramac project showed it is possible to build a powerful computer from

defective components, given sufficient routing resources. It was also shown the com-

munications resources do not have to be regular in structure, so long as they provide

a sufficiently high degree of connectivity. Finally, Teramac identified interconnect

resources as the most critical aspect of the design [HKSW98]. Future molecular com-

puters will require tremendous amounts of communications bandwidth to connect the

various parts of the circuit.
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2.6.1.3 Fault Tolerant FPGA-Based Systems. Space-Based Radar is a

fault tolerant systems being developed using FPGAs. Designed by the Jet Propulsion

Laboratory and the Air Force Research Laboratory, the system will provide onboard

processing of radar data [LCC+04], as well as:

• Provide a capability to reconfigure the FPGAs to support algorithm updates

after launch.

• Provide graceful degradation of capabilities while operating in a radiation-

intense environment for a period of at least three years.

• Be tolerant of the space radiation environment, while achieving a given reliability

and availability.

The architecture of the processor is a tightly-coupled reconfigurable computer

consisting of a FPGA front end connected to a digital signal processor back end. For

fault tolerance, the system incorporates modular TMR, replicating the entire FPGA

processor three times and comparing the results. A separate Fault Management

Unit controls the operation of the three FPGA processors, as well as implementing

periodic scrubbing of the configurations, and periodic off-line testing of the FPGAs.

In addition, a failed FPGA can be disabled completely.

Future design iterations of the system will include redundancy at lower levels

(i.e., circuit, gate, and module levels). Other fault tolerance techniques under con-

sideration include algorithm-based fault tolerance, time redundancy, and information

redundancy [LCC+04].

The Center for Reliable Computing at Stanford University is developing a two

FPGA architecture that provides error detection and autonomous self-repair without

external intervention [MHS+04]. Each FPGA design includes internal Concurrent

Error Detection (CED) circuitry. Many faults and errors can be corrected internally

using standard fault tolerance techniques. For suspected configuration bit errors due

to SEUs, one FPGA reads and compares the configuration of the other. Scrubbing

techniques are used to repair SEUs in the configuration.
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Permanent fault recovery is provided by relocating portions of the application

design to unused columns in the FPGA. Pre-compiled alternate configurations are

loaded at random, moving columns to different locations. The operation producing

the error is retried using different configurations until the error disappears. The

column not used in the final configuration is deemed the defective column. This

method of fault diagnosis claims to be simpler and faster than other techniques such

as Roving Self-Test and Repair (STAR) [MHS+04] (cf., Section 2.6.3.3).

A column relocation strategy limits the number of defects that can be tolerated.

When a permanent fault is detected, an entire column is marked defective, which limits

the number of faults that can be repaired. If the FPGA contains M column, with

N columns being used by the application, only M − N spare columns exist. As few

as M − N faults (i.e., one per column) can render the system unusable. This is a

limitation primarily due to the column-based reconfiguration architecture of the Xilinx

FPGAs used by the project. Alternate FPGA designs can remove this limitation.

Another limitation of the approach is the pre-defined alternative configurations,

which target faults in the CLBs rather than in the interconnect. The alternative

configurations must pass signals across unused columns. If the fault lies in one of the

configuration memory cells in a switchbox matrix, in a pass transistor, or is in the

wiring itself, the faulty component may be used by the alternative configuration, even

though the column itself is not used. This is an area that needs to be addressed.

2.6.1.4 Theoretical Array-Based Systems. Some systems are based

upon massively parallel multiprocessor systems with configurable interconnect net-

works. A multi-stage interconnect network was proposed by [ACD+02]. In this sys-

tem, the processing nodes are FPGAs, connected in a large multi-stage switch network

containing a high level of redundant links and two levels of fault tolerance. System

level fault tolerance removes a failing FPGA node from use and transfers its function

to another node. The switch network is reconfigured to route the inputs and outputs

from the old node to the new one. The second layer of fault tolerance reconfigures
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the FPGAs themselves. Each FPGA provides spare CLBs in each column. Alternate

FPGA configurations are used to move the application design from faulty to working

CLBs. As a final option, entire columns can be moved [MHS+04].

2.6.2 Fault Tolerant FPGAs. This section examines research efforts to con-

struct more reliable FPGAs. Fault tolerance techniques have been proposed as meth-

ods to overcome manufacturing defects, thereby increasing yield, as well as making

operatal FPGAs less subject to SEU-induced errors and other failures.

One of the first papers to address the problem of increasing yield in FPGAs

through redundant resources was [HTA94]. Although the research focused on CMOS

FPGAs, several key challenges were identified that will prove equally relevant to fu-

ture fault and defect tolerant computers implemented with other device technologies.

The most important is the burden placed on the users of the chip. The capabilities

and performance of each chip will vary greatly depending on the number, type, and

locations of defects. Each device must be individually tested after fabrication to de-

termine funcationality, and whether the intended application design can be mapped to

the defect-free resources. Yield will be much more difficult to predict than in current

ASICs, as single defects will no longer render the entire chip useless.

The standard yield equation for ASICs [HTA94] is

Y =

(

1 +
λ

α

)−α

, (2.31)

where α is a clustering parameter to account for the fact that defects often occur

in close proximity on the wafer. This factor produces higher yields than would be

expected from a uniform distribution of defects. The mean number of defects in the

chip area, λ, is

λ = A× d (2.32)

where A is the chip area, and d is the defect density (in defects per unit area).
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FPGAs with one or more defective resources (i.e., either CLBs, switching ele-

ments, or configuration memory cells) can still be used. Thus, it is more appropriate

to measure cell yield , the fraction of FPGA CLBs that are usable [HTA94]. In the

simple cell yield model, the primary resource under consideration is the CLB, while

interconnect resources are assigned to the CLB cells. Depending on where a defect

occurs, it can disable one or more cells (i.e., CLBs and associated interconnect) in

the FPGA, since FPGAs contain interconnect resources that span multiple cells. An

interconnect fault affecting one or more column lines may disable an entire column of

CLBs. The probability a defect disables an entire column or row of cells is Pcol and

Prow. Likewise, a defect affecting the configuration or power distribution portions of

the FPGA can disable the entire device. The probability a defect disables the entire

array is Parray, while the probability that an occurring defect disables a single cell is

Pcell. These probabilities are relative to each other, with Pcell+Prow+Pcol+Parray = 1.

Thus, cell yield is

λ = [Acell · (i · j · Parray + i · Prow + j · Pcol + Pcell) + Aoverhead(i, j)] × d, (2.33)

where Acell is the area of a single cell (i.e., the CLB and its portion of the interconnect

matrix), Aoverhead(i, j) is the area of configuration logic for the entire FPGA, and d is

the defect density (in defects per unit area) [HTA94].

Cell yield can be increased using segmented or hierarchical interconnects. By

breaking row and column lines into segments, a fault on one segment affects fewer

CLBs. This has the effect of lowering Prow and Pcol. For this reason, segmented routing

will continue to be included in future FPGA designs as fault tolerance becomes more

of a consideration.

Another design consideration relevant to fault tolerant FPGAs is the channel

design for routability [RN95]. A method for finding the optimal channel design (i.e.,

channel widths and segmentation) was developed using simulated annealing. By com-

paring the fault tolerance of an FPGA architecture synthesized for routability and
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performance to that of an FPGA architecture designed for improved fault tolerance

using the new technique, a 6% increase in the number of faults that could be tolerated

was realized.

The remainder of this section addresses the following categories of improving

reliability in FPGAs:

• Circuit level improvements,

• Logic block designs,

• Fault tolerant interconnect,

• Spare logic blocks interspersed in the array, and

• Spare rows and columns of logic blocks.

2.6.2.1 Circuit Level Improvements. Xilinx produces a line of radia-

tion hardened FPGAs that include a thin epitaxial layer in the fabrication process

to reduce the susceptibility to Single Event Latchups [Xil03]. A variety of VLSI

layout techniques are used in radiation-hardened circuit design to provide increased

protection at the cost of special materials, increased design times, and larger circuit

size. Radiation hardened processes typically lag behind conventional processes by

one or two generations, so radiation-hardened FPGAs provide less capability than

commercial FPGAs.

Rather than applying these techniques to the entire device, several papers have

proposed alterations to the VLSI layout of the FPGAs configuration cells as a method

of increasing the resistance to SEUs [Wan04, SGV+04]. This method is sometimes

called radiation “hardening by design.” This method allows the use of conventional

CMOS fabrication processes.

Radiation-hardened memory cell designs use resistor-capacitor pairs to filter

Single Electron Events (SEE) [Wan04]. As shown in Figure 2.29, resistors R1 and R2

are added in series with the gate capacitances of the two inverters (M1-M3 and M2-

M4). The resistor-capacitor pairs form a filter on the input lines entering the inverters,
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Figure 2.29: Radiation hardened SRAM cell using Resistor-
Capacitor filtering [Wan04].

filtering out the high frequency components of a SEE. This technique does not require

redundant transistors, but may require large resistors. As process size shrinks and

node capacitance decreases, resistor values must increase to maintain the correct

RC time constant to filter the high frequency components of a SEE. For example,

in 0.25µm processes resistance values in the megaohm range are necessary, and the

addition of these large resistors may cause an unacceptable increase in switching

delays due to the larger RC time constant and the increased time needed to charge

the gate electrodes of each transistor [Wan04].

A second technique observes that the typical configuration bitstream of an

FPGA is composed of 87% zeros [SGV+04]. Thus, the design of the SRAM memory

cell can be optimized to be more resistant against 0 → 1 SEUs than 1 → 0. The new

SRAM cell is called Asymmetric SRAM (ASRAM). The ASRAM-0 cell design has a

lower leakage current and increased soft error immunity when storing a ‘0’ bit. In an
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Figure 2.30: The Asymmetric-0 SRAM cell provides increased
SEU protection when storing a 0 bit [SGV+04].

ASRAM cell, the threshold voltages, Vt, of the transistors are chosen to minimize the

leakage current in the ‘usual’ state. An ASRAM cell is illustrated in Figure 2.30. The

circuit structure is the same as a standard memory cell. The upper right and lower

left transistors have a higher threshold voltage than the other two transistors in the

feedback loop. When storing a ‘0’, the node labelled Q is at Vss = 0V . Thus, there

may be a small leakage current from Vdd across the upper right transistor to node

Q. Likewise, node Q′ is at Vdd. A small leakage current exists from node Q′ to Vss

across the lower left transistor. Increasing the threshold voltage for these two tran-

sistors will reduce the leakage current at the expense of a small performance penalty.

The ASRAM-0 cells used in the experiment reduced leakage energy consumed by the

configuration SRAMs by a factor of 18 compared to standard balanced SRAMs.

A final design technique incorporates redundant transistors to provide immunity

to single event upsets [CNV96]. The design is called Dual Interlocked Memory Cell .

The concept is illustrated in Figure 2.31. In this design, redundancy in the memory

latches stores a second copy of the data state. Thus, one latch provides a “state

restoring feedback” function to the other in case of an SEU. In this diagram, IA1 and
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Latch 1

Latch 2

IB1IA1

OA1 OB1

IB2IA2

OB2OA2

Figure 2.31: The conceptual view of the DICE Memory cell
[CNV96].

IB1 correspond to the D and D inputs to latch 1, while OA1 and OB1 are the Q and

Q outputs.

The circuit diagram for the DICE SRAM cell is shown in Figure 2.32. The four

nodes X0 − X3 store the state of the cell. Logic ‘1’ is ‘1010’, and logic ‘0’ is stored

as ‘0101’. Transistors N4-N7 form transmission gates to enable or disable read/write

access to the cell. The design of the feedback loops is such that a SEU occurring at

one of the nodes Xi can temporarily affect the logic state of Xi+1 (in the case of a

negative upset pulse, converting a 1 → 0) or Xi−1 (in the case of a positive upset,

converting 0 → 1). However, the SEU will not affect the logic state stored in the other

feedback loop. Thus, the other two nodes are isolated from the effects of the SEU.

The logic perturbation is removed after the transient ends due to the state-reinforcing

feedback function of the other two nodes.

The DICE cell protects against a SEU affecting only one node but requires 12

transistors versus the six of a standard SRAM cell. If the particle impact generates

pulses at two nodes in the same logic state (e.g., X1 and X3), the immunity is lost

and an SEU occurs. This probability can be kept low if the transistor drain areas of

the two nodes are suitably spaced on the VLSI layout. This will become difficult as

process size decreases, however.
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Figure 2.32: DICE Memory cell is immune to SEUs [CNV96].

2.6.2.2 Logic Block Designs. Over the years, many researchers have

investigated changing the FPGA configurable logic block to provide the maximum

flexibility and functionality with the minimum amount of overhead (i.e., redundant

interconnection). Over time, the four-input lookup table logic block has become

standard commercial practice. More recently, alterations to the CLB structure to

increase fault tolerance have been proposed. This section highlights several of these

projects.

The Field Programmable Transistor Array (FPTA) can be viewed as a FPGA

with extremely fine granularity; the hardware is configurable at the transistor level.

The FPTA array of transistors is interconnected by programmable switches [Sto99,

KZJS00,SZK+01]. More interconnect resources are provided than in a larger grained

FPGA, although not every possible connection is possible. A proposed node ar-

chitecture for the FPTA is shown in Figure 2.33. The FPTA cell consists of eight

transistors and 24 programmable interconnect points. The cell corresponds to the
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Figure 2.33: Node design for a Field Programmable Transistor
Array. Similar in function to an FPGA, the FPTA has a much
finer granularity [Sto99].

CLB in a FPGA. The FPTA consists of an array of cells in surrounded by a mesh of

programmable interconnect.

Due to the fine granularity, the FPTA is more flexible than a FPGA and capable

of implementing a wider range of application circuits. On the other hand, the FPTA

has a much higher interconnect and configuration overhead. If the 24 programmable

switches in Figure 2.33 are implemented using four transistors each, 96 transistors

would be required to control the eight application transistors. While an example of a

FPTA has been fabricated for research purposes, the tremendous overhead required

makes it unlikely the FPTA will be widely adopted for CMOS processes. The FPTA

architecture may prove useful with technologies such as molecular switches, which can

implement the memory bits very efficiently.
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Table 2.6: Stuck-Open and Stuck-Closed transistors in the
multiplexer can be detected using the voltage level of the output.
A simple voltage detector is formed from two inverters with
different threshold voltages [PCL+02]. A fault is indicated when
Inverter 1 = VDD and Inverter 2 = GND.

Vout Inverter 1 Inverter 2
GND < Vout < VT1 VDD VDD

VT1 < Vout < VT2 VDD GND
VT2 < Vout < VDD GND GND

Another fine-grained CLB design has CLB granularity at the level of individual

gates [SP03]. The architecture is designed to support research in evolutionary algo-

rithms (also known as genetic algorithms). Evolutionary algorithms are used with

partial reconfiguration to progressively modify the application circuit to improve per-

formance (and recover from faults). While research is ongoing, current results indicate

genetic algorithms might be useful for fault tolerance. In addition, fine-grained FP-

GAs provide more flexibility and better fault recovery capability than coarser-grained

(i.e., LUT-based) CLB designs [SP03].

A third modification to the CLB design detects transistor faults in the CLB

[PCL+02]. As shown in Table 2.6, a simple circuit detects abnormal voltage levels

that signify stuck-closed and stuck open faults in the transistors of the multiplexers in

the CLB. The checking circuit is constructed from two inverters connected in parallel

to the output of the multiplexer. The two inverters use transistors with specially

selected threshold voltages. LUT memory faults are detected using a built-in current

sensor to detect anomalous current flows.

This technique can detect single transistor stuck-open or stuck-closed errors.

A simple CLB design used in experiments consisted of 300 transistors. Ninety-six

additional transistors were required to implement the fault detection circuits, for an

overhead of 32%.
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2.6.2.3 Fault Tolerant Interconnect. The use of extra interconnect

resources to provide fault recovery has often been proposed [HTA94,HD98,HTL04b,

HTL04c,HTL04a,HSN+93]. Sufficient redundant interconnect can eliminate the need

to relocate CLBs when a fault occurs in interconnect lines or switch matrices [HD98].

It may even be possible to switch from faulty interconnect lines to non-faulty resources

without using a router.

2.6.2.4 Spare Logic Blocks. Fault tolerance can also be achieved using

spare configurable logic blocks scattered throughout the FPGA. The redundant CLBs

are no different from the other CLBs, but are not normally used by the placement

software during initial placement of the application design. When a failure is detected

in a CLB, the spare is activated. Depending on the location of the spare relative to

the faulty CLB, the configuration contained in the faulty CLB is either transferred

to the spare, or multiple CLBs are shifted to new locations. Depending on the design

of the FPGA and its interconnect structure, the routing of signals between the CLBs

may change substantially. Simple moves are accomplished by shifting the appropriate

configuration bits, while more complex routing changes will require a router.

Topologies for the placement of spares include placing a spare CLB at the end

of each row and column of the array [KI94,HD98]. This idea was extended to include

a torus structure by connecting the end of each row back to its beginning, and the

top of each column to its bottom [DI01]. A 2x2 node covering structure requires no

modification of the configuration bit files, while switching of the the wiring internal

to the nodes is done automatically to replace a faulty CLB inside the node [Els03].

Two other approaches include “king-shifting” and “horse-shifting” algorithms,

named after chess pieces [DKI99]. As shown in Figure 2.34, king-shifting places a spare

at the center of a 3x3 cluster. It can be used to replace any of the eight surrounding

CLBs. In horse-shifting, the spare can only replace vertically or horizontally adjacent

cells. In terms of the number of spares required, king shifting is more efficient, since
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Figure 2.34: Spare CLB locations for king shifting (a) and
horse shifting (b). In king shifting, the spare can replace any
adjoining cell, while in horse shifting, the spare can only replace
vertically or horizontally adjacent cells (no diagonals) [DKI99].

one spare is used for every eight usable cells, while in the horse method, one spare is

used for every five cells.

2.6.2.5 Spare Rows and Columns. Redundant CLB arrangements also

include sparing entire rows or columns [HSN+93,HTA94,MHS+04]. The column relo-

cation method is attractive because it can be implemented with current commercial

FPGAs, which allow partial reconfiguration by columns (See Section A.1.3). In a

typical scheme, each alternate configuration is pre-routed, and the partial bit files are

stored [MHS+04]. When a CLB failure is detected, the application module using the

column containing the faulty CLB is moved to the spare column. The system uses

pre-routed alternate configuration. This scheme is described in more detail in Section

2.6.1.

This section describes numerous techniques for post-detection fault recovery.

For these techniques to be useful, it must be possible to both detect the error, diagnose

the cause, and identify the failed resource (i.e., CLB, interconnect, switch matrix,
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Figure 2.35: With column shifting, the original configuration
places a spare column to the right side of the array (left). Fol-
lowing a fault in column 3, function D is moved to the spare
column (right). A variation on the technique would shift both
D and C to the right [MHS+04].

CMC, etc). Methods for detecting and diagnosing faults in FPGAs are described in

the next section.

2.6.3 FPGA Testing. As with other forms of VLSI testing (cf., Section

2.4.1), FPGA testing has become more complicated and time consuming as the num-

ber of devices on the chip increases. Typically, chips undergo manufacturing tests at

the completion of the fabrication process. A sequence of test vectors is applied to each

chip to detect functional and parametric faults. With conventional fault detection,

chips containing faults are discarded.

The architecture of a FPGA is by design redundant, containing a large array

of regular structures. Even with many faults, the remaining resources on the FPGA

can be used, albeit at a reduced capacity. Therefore, defect tolerance is a way of

increasing yield , and fault diagnosis becomes as important as fault detection. Fault

diagnosis locates and characterizes the detected fault, allowing the FPGA design

software to avoid the defective resources (e.g., CLB, switch element, interconnect)

during application placement and routing.

FPGA fault detection and diagnosis can also be done during operation. FP-

GAs used in space and other radiation intensive applications degrade and fail during
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operation. Fault diagnosis enables the continued use of the remaining resources in

the FPGA. This approach has already seen use in long term space missions [Rat04].

When a fault has been diagnosed, a new bit file for the application design is generated

avoiding the defective resource and sent to the spacecraft via radio.

Many of the test strategies discussed in this section take advantage of the

FPGA’s reconfigurability to support the test process. Unlike ASICs, which have a

fixed, limited amount of logic available to support testing, the FPGA can implement

much larger test structures in the CLB array, which are subsequently overwritten by

the application circuit. Fault and defect tolerant computers of the future will likely

include reconfigurability, and have similar capabilities. Thus, the test techniques de-

scribed in this section will have application to not just modern FPGAs, but future

fault and defect tolerant computers based on non-CMOS technologies.

The remainder of this section is divided into three parts:

• Classification of test approaches and common fault models.

• FPGA fault detection.

• FPGA fault diagnosis.

2.6.3.1 Classification of Approaches. Test engineers want to achieve

maximum test coverage with minimal testing time. Exhaustive testing, whereby every

possible input combination is tested against every state of the state machine, is im-

possible with large devices. A good understanding of how the devices are likely to fail

allows the test engineer to design an efficient test set that provides the best coverage

with the fewest number of test vectors. A new dimension is added for FPGAs: the

need to test with the fewest configurations of the FPGA.

An excellent overview of FPGA test approaches is contained in [DI03]. FPGA

test engineers use a variety of fault models. Academic researchers, in contrast, are

somewhat limited in their ability to develop accurate circuit level fault models, as

FPGA vendors do not typically provide details of the internal structures of CLBs and
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the circuits used to program and control FPGA operation [DI03]. Therefore, many

academic studies in this field use hybrid models combining functional fault models and

stuck-at fault models. When detailed knowledge of a FPGA resource is not available,

functional fault models represent a resource as a black box and detect errors at the

digital level. Where more specific knowledge is available (e.g., interconnect resources

are typically described in detail by FPGA vendors), more detailed fault models can

be used. In this case, stuck-at, open circuit, short circuit, and bridging faults are

often used.

FPGA testing is typically divided into two stages: fault detection and fault

diagnosis. Fault detection detects errors caused by faulty FPGA resources. Fault

diagnosis localizes the fault to a specific resource that can be marked and avoided.

Testing is done at the time of manufacture as well as during use in an application

system. In-system testing can be done off-line, during which operation of the appli-

cation circuit is suspended, or on-line , which is done while the application circuit

continues operation.

A good fault detection/diagnosis approach should have the following qualities:

• Maximal test coverage.

• Fewest number of test vectors and test configurations of the FPGA.

• If possible, method should target current FPGA architectures, without requiring

HW changes.

• If HW changes are used, they should minimize HW overhead such as extra

configuration memory.

• Should not assume that certain resources are fault free (i.e., do not test CLBs,

assuming that the interconnect is fault free).

• Faults in each different resource type should be included (i.e., in addition to

CLBs, also consider interconnect, switch matrices, configuration memory, I/O

blocks, programming circuits, etc.)
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2.6.3.2 Fault Detection. Fault detection in FPGAs can be divided

into three categories [DI03]:

• Testing by reconfiguring the FPGA to implement test circuits.

• Testing by modifying the FPGA’s architecture.

• Parametric testing using variations in timing and current consumption to detect

faults.

The most common test approach is the first method, which uses test circuitry

created by configuring the FPGA’s programmable logic. Several papers propose mod-

ifications to the FPGA architecture to better support this type of testing. Few re-

searchers have examined IDDQ testing, which uses variations in the power supply

current, IDD, to detect short circuits, slow switching speeds, and other problems that

may not cause logic errors detectable by normal means.

Fault detection typically targets each of the major resource types on the FPGA.

The tester must verify the correct operation of each of the CLBs, interconnect lines,

switch matrices, I/O blocks, configuration memory cells, and configuration control

circuitry.

Most approaches to CLB testing examine a single CLB and then repeated for

the entire CLB array. Exhaustive testing of a CLB requires an unacceptable number

of test vectors (i.e., 2I+O+C , where I is the number of input lines to the CLB, O is the

number of outputs, and C is the number of configuration bits in the CLB). Therefore,

minimizing the number of test configuration used is critical [HL96, SKCA96]. Since

FPGA manufacturers do not publish the details of their CLB designs, most academic

studies of CLB testing use functional fault models. Different numbers of “minimum

test configurations” have been proposed, from 21 [HL96] to four [WT99]. The effec-

tiveness of these test approaches depends on how accurately the assumed fault model

models real faults in the CLB.
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When testing the entire array of CLBs, most techniques assume the interconnect

resources have been tested and are reliable [DI03]. The most basic test approach tests

each CLB in sequence, connecting its inputs and outputs directly to the pins of the

FPGA [HL96]. Test vectors are supplied externally. Multiple CLBs can be tested in

parallel, limited by the number of I/O pins available.

Rather than controlling tests from an external source, Built-In Self Test can

be used [SMSP97, SKCA96]. Unlike conventional BIST, which incorporates custom

hardware onto an ASIC to support testing, FPGA BIST implements the test con-

troller with programmable logic. A portion of the CLB array is configured as the test

controller, and tests other CLBs in the array. The advantage of this BIST approach is

testing can be controlled on-chip, with no additional test-specific hardware resources.

However, a highly flexible interconnect structure is required to adequately test all of

the configurable resources.

Testing of interconnection resources has not received as much attention as logic

blocks. Interconnect testing falls into two categories: BIST-based testing, and non-

BIST testing. Interconnect BIST is similar to logic BIST [SWHA98]. Some CLBs are

configured as test pattern generators, while others analyze the outputs of the devices

under test (DUT). Several configurations of the test must be done in sequence to

test the entire FPGA interconnect fabric. Of course, BIST-based testing requires

component CLBs to be fault free.

Non-BIST based testing of the interconnect is controlled from an external source

[RPFZ98]. Renovell proved only three configurations are needed to test for single

faults in a switch box, as shown in Figure 2.36. In this simple switch box, two

wires enter the switch from each direction. The only allowable connections between

lines labelled ‘1’ are with other ‘1’ lines. The ‘0’ lines can only be connected to the

other ‘0’ lines. Test configurations for larger switch boxes are generated in a similar

manner. Real FPGAs have more complicated switch box designs. In addition to the
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Figure 2.36: Renovell showed that only three configurations
are needed to test a switch block for single faults [RPFZ98].

interconnect lines and switch boxes, the connecting blocks linking the interconnect

with the CLBs must be tested as well [RPFZ99].

Modifications to the FPGA architectures better support fault detection. Con-

figuration shifting , for example, moves test structures from one area of the FPGA

to another, testing portions of the FPGA in sequence. Likewise, the configuration

memory cells in the CLBs linked in series allow the configurations of one CLB to be

shifted to the next [DI99,DI00,DI01]. Thus, a test configuration is loaded onto the

FPGA only one time, and shifted to the other CLBs under the control of an external

test unit, or automatically by the FPGA itself.

2.6.3.3 Fault Diagnosis. Fault diagnosis is an extension of fault de-

tection, and most of the proposed techniques are extensions of the techniques from

the previous section. In fault detection, a large number of devices could be tested in

parallel with a single flag to report the error in any of the devices. Fault diagnosis

requires identification of the specific location of the fault and its impact on overall

FPGA function.
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As with fault detection, most work has addressed diagnosis of faults in CLBs

and the interconnect network. Most of the techniques use the programmability of the

resources rather than proposing changes to the architecture to support test.

The BIST approach was extended by configuring alternate rows as blocks un-

der test and output response analyzers [SLA97]. A second configuration swaps the

arrangement so one row is the output response analyzer and the next is the block un-

der test. All of the CLBs in a row are tested in parallel, so after two configurations,

all of the CLBs have been tested. When a fault is detected, the row of the fault is

available, but not the column. At this point, a third configuration is loaded, rotating

the test structure 90 degrees in the array to test the columns. The third and fourth

configurations are identical to the first and second, but rotated to test the columns

instead of the rows. Thus after four configurations, the row and column of a faulty

CLB is uniquely determined.

The Roving Self-Test Areas (RSTAR) is an on-line test method performed

during circuit operation, without disturbing the operation of the application cir-

cuit [ASH+99,ASSE00,AES01,ASE04]. Similar to the configuration shifting method

[DI99], RSTARs moves the self-test area across the configurable array. Fault latency ,

the interval between the occurrence of a fault and its detection, is thus bounded by

the interval required to test the entire FPGA.

The basic concept of the RSTARS technique is shown in Figure 2.37. A portion

of the FPGA array is initially assigned to be the horizontal and vertical STARS blocks.

During operation of the application circuit in the remaining blocks, the VSTAR and

HSTAR test unused portions of the array. When testing is complete, the HSTAR

and VSTAR are relocated to new locations. One complete scan of each is enough to

test the entire FPGA. While only the HSTAR (or the VSTAR) is needed to scan the

CLBs, scans in both directions are used to locate faults in the interconnect.

The test is controlled by an external processor that is assumed to be reliable,

called the Test and Reconfiguration Controller (TREC). The TREC can be imple-
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Figure 2.37: The Roving STARS technique uses Self Test ar-
eas that are relocated across the FPGA array during on-line
testing [ASE04].

mented as an embedded processor on the FPGA, or externally using a separate ASIC.

The relocation of the application circuit and STARS is done using pre-compiled partial

configuration bit files controlled by the TREC. For a left-right sweep, the RSTARS

approach needs N/2 swaps to move the columns across the array. To perform both a

horizontal and vertical sweep across the entire FPGA, N swaps are needed. Runtime

routing is not typically used to compute new configurations, although it can be done

later if alternative configurations avoiding faulty resources are not available in pre-

compiled form. This can be done while the main circuit continues operation, since

STARS testing is done in unused areas of the chip [AES01].

Logic block testing in RSTARS is done by grouing six cells to uniquely determine

the faulty CLBs (each cell is notional, and may actually larger than a single CLB).

Six rotations of the configuration is sufficient to test all the cells. The concept is

illustrated in Figure 2.38. In the figure, ‘T’ denotes a Test Pattern Generator, ‘O’ is

the Output Response Analyzer, and ‘B’ is the Block Under Test.

Interconnect is tested in a similar manner, using different patterns of blocks,

separated by some distance. A partially-exhaustive test pattern is used, but rotates

on every test pass so the time required to perform a test is kept within bounds. Fault

coverage is high after several passes, but fault latency is increased since it requires

several passes before a test vector occurs that detects the fault.
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Figure 2.38: The Roving STARS technique uses six rotations
test units to determine which CLB is faulty. ‘T’ denotes a Test
Pattern Generator, ‘O’ is the Output Response Analyzer, and
‘B’ is the Block Under Test [ASSE00].

An additional RSTAR concept is the Partially Usable Block (PUB). RSTARS

identifies the failure mode of the CLB, and what partial function it is capable of

providing. For this to be successful, runtime routing is mandatory.

At the system level, the RSTARS approach proposes a three-tiered fault han-

dling approach [AES01]. Following the location of a faulty resource, the TREC may:

1. Leave the STARS parked where they are, allowing the application circuit to

continue operation in the rest of the array.

2. Apply precompiled or newly computed alternate configurations using spare

CLBs and resources throughout the array.

3. When the spares are exhausted, de-allocate resources reserved for the RSTARS

and use them in alternative configurations. This reduces later test capability,

but allows graceful degradation.

The RSTARS system has been demonstrated in a limited manner on commer-

cially available ORCA FPGAs. The test algorithm is effective at detecting and iso-

lating faults, although the overhead incurred to perform the testing is significant. In

addition, the requirement for an external control unit is a limitation of the system, as

is the large number of alternate configuration bit files that must be stored. Without

the pre-compiled bit files, routing around failed resources must be done at runtime.

The RSTARS approach uses a slightly modified conventional router to avoid faulty
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resources. Routing time is therefore likely to be significant. If devices fail frequently,

routing may not complete before the next error occurs, causing system failure.

Finally, other methods also diagnose faults in FPGAs. Readback of the configu-

ration memory can be used to localize the faults. TMR in the context of FPGAs was

proposed by [DMP+98]. Fault diagnosis in I/O blocks was examined in [RWCG02].
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III. Research Goals

This chapter presents the four goals of this research. The methodology for achieving

these goals is addressed in the next chapter.

3.1 Motivation

Chapter II made several important observations that will shape future computer

architectures:

• For silicon CMOS, Moore’s Law may no longer apply within the next several

process generations.

• Both silicon CMOS and potential replacement technologies will be more difficult

to fabricate reliably, and more likely to fail in operation.

• Fault tolerance is a viable way to use unreliable device technologies in commer-

cial as well as space and military applications.

• Architectural fault tolerance can provide a lower cost alternative to fabricating

devices with extremely low defect rates.

• Conventional fault tolerance involves temporal or spatial redundancy, which

must be carefully balanced against available area and power in real devices.

• Methods need to be developed to combine fault tolerance, reconfigurable com-

puting, and computer architecture technologies together to address this problem.

3.1.1 Four Goals. As a foundational effort in fault tolerant computer archi-

tecture at AFIT, this research defines a fault and defect tolerant computer, determines

how it is different from a conventional computer, and identifies capabilities that must

be present to achieve reliability goals. Relating this back to the device technolo-

gies, it determines the minimum reliability characteristics needed to compete with

conventional CMOS. From this general goal, four explicit goals are defined:

Goal 1: Develop a system architecture for the FDT computer, propose a concept of

operations (CONOPS), identify required capabilities.
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Figure 3.1: The three primary goals develop the FDT archi-
tecture from the system down to the device level.

Goal 2: Design a functional architecture and demonstrate it supports the functions

identified in the previous goal.

Goal 3: Develop techniques to map the FDT architecture onto emerging technolo-

gies (e.g., molecular crossbars, quantum cellular automata (QCA), etc.) and

characterize their reliability.

Goal 4: Extend the mathematical models for fault tolerance techniques.

The relationship between the first three goals is shown in Figure 3.1. Goal

four is an enabling goal. The initial step in the research approach specifies a top-

level architecture to determine required capabilities, and maps the architecture onto

progressively lower levels. At each stage, fault tolerance effectiveness and overhead

are examined. All four goals support the overall purpose: create a foundation for

reliable computing using unreliable devices.
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3.2 Goal 1: Develop the FDT System Architecture

“Develop the system architecture for the FDT computer, propose a concept of

operations (CONOPS), identify required capabilities.”

3.2.1 Questions Addressed. The output of this goal is an architecture for a

“fault and defect tolerant computer.” as well as addressing the following questions:

• What constitutes a fault and defect tolerant (FDT) computer?

• How is a FDT computer different from a conventional computer?

• What functions should a FDT computer be able to perform?

• How would a FDT computer operate?

• What fault and defect tolerance techniques must the FDT computer include?

• How will a FDT computer be compared against a conventional computer?

• If the FDT computer implements reconfiguration, how would it resemble a mod-

ern FPGA? How must it be different?

In general terms, a FDT computer is built from devices with a higher individ-

ual device defect rate and a higher operational failure rate than conventional silicon

CMOS. Unlike a conventional processor, the FDT processor requires some level of

fault and defect tolerance to achieve acceptable manufacturing yields and system

reliability. Unlike modern fault tolerant systems which primarily target operational

failures, FDT computers tolerate both manufacturing defects and operational failures.

Operational failures in a FDT computer may occur more frequently than in current

fault tolerant systems. Thus, the service provided by the FDT computer is reliable

application programs execution in the presence of manufacturing defects, operational

permanent faults, and operational soft errors.

The FDT computer can be compared to a conventional computer with several

metrics, as defined in Chapter II:
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• Defect Tolerance

– Yield

– Maximum Allowable Defect Probability (MADP)

• System Fault Tolerance

– Availability

– Reliability

– Mean-Time-Before-Failure (MTBF)

– Mean-Time-To-Repair (MTTR)

– Maximum allowable Soft Error Rate (SER)

• Performance

– Application speedup (or slowdown)

– Maximum system clock speed

• Overhead

– Amount of hardware redundancy

– Die area

– Amount of power increase

As the focus of this research is at the architecture rather than device level,

limited information is available to develop performance and overhead estimates. Thus,

defect tolerance is the primary metric used for goal one. Hardware overhead is also

considered for goals two and three.

3.2.2 Quantifiable Goals. It is now possible to define quantifiable goals for

the fault and defect tolerant computer architecture to be developed in this research.

Goal 1.1: Develop the system architecture for a FDT processor capable of meet-

ing the following evaluation metrics:
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• Provide a manufacturing yield of > 70% for a process technology with an individ-

ual device defect probabilities greater than 10−6 for a representative microproces-

sor containing one million logic transistors and 100 million cache transistors.

• Provide architectural fault tolerance support for soft errors and single event up-

sets occurring in memory.

Goal 1.2: Develop a FDT system concept of operation (CONOPS) and demon-

strate it supports the performance criteria.

Goal 1.3: Develop mathematical models to demonstrate that the combined capa-

bilities achieve desired performance criteria.

The choice of target values is intended to be representative of modern computer

architectures and fabrication processes. The yield figure is chosen as a typical value

for standard CMOS. Current CMOS processes have device defect rates typically less

than 10−6, thus 10−6 to 10−3 represents a range of emerging technologies with defect

rates inferior to current fabrication limits. The value of 10−6 serves as a minimum

threshold. The values for logic gates and cache transistors were chosen to represent a

typical modern microprocessor.

3.3 Goal 2: Design the Functional Architecture

“Design a functional architecture and demonstrate it supports the capabilities

identified in the system architecture.”

3.3.1 Questions Addressed. Goal two moves the system architecture devel-

oped in the first goal to a functional or logical level. Thus, a functional architecture

capable of supporting the fault and defect tolerance techniques specified in the system

architecture is developed. This goal addresses the following questions:

• How will the FDT processor architecture differ from a conventional microproces-

sor?

• How will the FDT processor operate?
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• How will it be configured at startup?

• How will it reconfigured in operation?

• How will it be tested?

• What level of fault tolerance does the FDT processor provide against defects,

operational permanent faults, soft errors, and SEUs?

• What is the overhead incurred compared ASIC implementations of a micro-

processor?

The service provided by the functional architecture is the ability to implement a

general purpose processor, while incorporating the fault tolerance techniques specified

in goal one.

Performance metrics for the functional architecture of goal two are similar to

those of the system level, although information is now available to develop estimates

for performance and overhead. The following metrics are used:

• Defect Tolerance (i.e., yield, MADP)

• Overhead (e.g., hardware, die area, power)

Information on device technology is not available at this stage. Thus, estimates are

based on logical gate counts and other methods that do not rely on device character-

istics.

3.3.2 Quantifiable Goals. This goal has two parts: design the FDT proces-

sor; and develop models for its performance and overhead. In this manner, it will be

possible to show that the FDT processor implements the functions required by the

system architecture of goal one and meets the system reliability requirements.

Goal 2.1: Develop the architecture of the FDT processor such that it supports

the capabilities identified in the system architecture.

Fault detection. The FDT processor should be able to detect and diagnose:
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• Hard faults in the application and fault tolerance logic.

• Soft errors in the application logic.

• SEUs in the cache memory.

Fault masking. If fault masking is incorporated at the hardware level, the FDT

processor should be able to provide the fault coverage specified in the system

architecture (Goal 1).

Fault diagnosis. The FDT processor should be able to diagnose the location of a

fault, down to the level of granularity of the smallest reconfigurable unit (e.g.,

down to the column for a column-wise reconfigurable mesh). While not an

explicit focus of this research, test methodology should be discussed at a high

level.

Fault isolation. As required by the system architecture, the FDT processor should

be able to limit the impact of a fault on the overall system to some portion of

the system.

Fault recovery. The FDT processor should have the following fault recovery capa-

bilities:

• When a fault is detected, the FDT processor should support fault recovery

to a known state and allow resumption of operation.

• If required by the system architecture, the FDT processor should support

dynamic reconfiguration at the specified level of granularity.

Goal 2.2: Develop analytical estimators for overhead and performance of the

FDT processor versus a conventional architecture. Develop estimators (independent

of device technology) for hardware overhead and manufacturing yield.
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3.4 Goal 3: Map the Functional Architecture onto Emerging Technolo-

gies

“Develop techniques to map the FDT architecture onto emerging technologies

(e.g., molecular crossbars, quantum cellular automata (QCA), etc.).”

3.4.1 Questions Addressed. This goal examines the implementation of the

FDT computer at the device level. The functional architecture created in the previous

goal will likely be implemented as conventional digital logic. As such, it can be

mapped to any device technology that implements boolean logic operations. The

emerging device technologies examined in Chapter II have capabilities different from

modern CMOS and may be able to implement some aspects of the FDT processor more

effectively than CMOS. Thus, the overhead incurred by the fault tolerant architecture

cannot be derived by simply examining the circuit at the digital logic level (i.e., by

counting gates). An examination of the problem at the device level is needed to

develop detailed comparisons between the technologies. The focus is thus not on

whether or not the FDT processor can be implemented using one of the emerging

device types, but rather how it would be implemented, what unique benefits it would

obtain, and how it compares to a conventional CMOS implementation.

The research addresses the following questions:

• How would the fault tolerance techniques used in the FDT processor be imple-

mented with non-CMOS technologies?

• How would hardware cost, yield, power, and speed be estimated using non-

CMOS device technologies?

• Compared to modern CMOS, how much smaller/more power efficient/faster will

the new device technologies have to be to overcome the overhead induced by

the fault tolerant circuitry?

• Can the unique characteristics of the new technologies overcome some of the

overhead?
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• Based on current predictions, is it feasible to implement the FDT processor

architecture? If not, can minimum limits be defined for the device technologies

that must be exceeded to allow “real world” use of these devices?

This step limits examination to particular fault tolerance techniques, indepen-

dent of the architecture developed in the first two goals. The service provided is the

ability to implement the fault tolerance building blocks using one or more device tech-

nologies. At this level, it becomes possible to improve the estimators for performance

and overhead first developed at the functional level. As such, the performance metrics

at this stage are:

• Performance (e.g., speedup relative to CMOS), and

• Overhead (e.g., die area, power consumption).

3.4.2 Quantifiable Goals. The third goal has two parts: demonstrate that

the emerging technologies can implement the FDT processor; and develop models for

performance and overhead.

Goal 3.1: Demonstrate analytically how the fault tolerance techniques used in

the FDT processor may be implemented using one or more of the following emerging

device technologies:

• Quantum Cellular Automata,

• Molecular Crossbars, or

• Nanoscale Silicon CMOS.

Goal 3.2: Develop a methodology for estimating the FDT processor hardware

area, power consumption, and operating speed when implemented using one or more

of the aforementioned technologies.

Goal 3.3: Determine the minimum performance characteristics of a device tech-

nology necessary to fabricate a processor with the characteristics described in Goal 1.

The minimum performance characteristics include:
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• Maximum Allowable Defect Probability (MADP),

• Size,

• Switching speed, and

• Power consumption.

Quantum Cellular Automata is the target technology for this goal. As device

technologies are still under development, the purpose of this goal is not to simulate

or characterize the entire FDT processor. Rather, the aim is to demonstrate how the

FDT processor implementation on the device technologies differs from conventional

CMOS, and how the difference affects overhead and performance estimates.

The second part of goal three develops estimators for hardware area, power

consumption, and operating speed used at the architectural level. First order esti-

mates are developed that can be used to make design tradeoffs. This research creates

estimators based upon device characteristics currently available.

The final part of goal three returns to the overall system architecture to deter-

mine whether construction of a reliable microprocessor may one day be feasible using

these device technologies. Previous work in this area has largely been to demonstrate

device operation. Researchers have acknowledged fabrication and reliability problems,

observing that some level of fault tolerance will be necessary at the architectural level

for reliable operation. For these technologies to be adopted, system level performance

must equal or match that of modern silicon CMOS. In this goal, a MADP target will

be established, below which the devices will not compete with conventional silicon

CMOS.

3.5 Goal 4: Develop an accurate analytical model for NAND Multi-

plexing

“Develop an accurate analytical model for von Neumann Multiplexing at small

and moderate levels of redundancy.”
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3.5.1 Questions Addressed. This goal supports the first three goals by

improving the model for a fault tolerance technique that could be used in the FDT

processor architecture. NAND Multiplexing has not seen widespread use in current

applications due to its requirement for large levels of redundant hardware. At the low

defect rates common to modern processes, less aggressive fault tolerance techniques

are sufficient. NAND Multiplexing is more effective than other techniques in the

extreme defect ranges, from 10−5 to 10−2. For technologies much smaller than silicon

CMOS but much more defect prone, the overhead may be acceptable.

An approximation for the performance of NAND Multiplexing at large levels of

redundancy was proposed by von Neumann in [vN56]. Since then, other models have

been proposed for small and medium levels of redundancy. However, these models are

incomplete and in some cases erroneous (cf., Chapter II). Due to the large number of

devices in a microprocessor, even a small error in a yield estimate for a single device

can become an unusable result at a larger scale. Thus, an accurate model is essential

to determine how NAND Multiplexing can be used at the large scale.

The research addresses the following questions:

• Why is the model developed by [HJ02] incorrect, as claimed by [NPK04]?

• What is the actual analytical model?

• What use does NAND Multiplexing have in the FDT processor?

3.6 Research Contributions

Study of these problems will make the following contributions:

• A system architecture for a FDT computer, combining fault tolerance techniques

at several levels of abstraction.

• Determine required performance properties of the FDT computer.
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• Determine the partitioning of fault detection, diagnosis, and recovery tasks re-

quired to implement DT/FT functionality between modules on the chip, BIOS,

and the operating system.

• Develop techniques to map the generic FDT processor onto various device tech-

nologies.

• Develop yield models for the FDT processor using FT/DT techniques.

• Develop an accurate analytical model for NAND Multiplexing, a basic fault

tolerance techniques, at small and medium levels of redundancy.

3.7 Summary

This chapter establishes the goals of this research. Four goals are established,

developing an architecture for a fault and defect tolerant computer from the top level

architecture down to the device level. Quantifiable metrics are established to gauge

success. The next chapter examines the methodology used to address these goals.
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IV. Methodology

This chapter explains the methodology used to achieve the research goals. The major

tasks in each goal are defined, task dependencies are highlighted, and the methodology

for achieving the objectives are presented. In addition, scoping assumptions are given

to bound the effort.

4.1 Problem Scope

This research spans several disciplines and areas of electrical engineering. The

problem combines computer architecture and device technology, traditionally indepen-

dent fields. Several assumptions and starting conditions are made to focus research:

Technology independence. As no device technology has emerged as the clear choice

to replace silicon CMOS, this research is as independent of device technology

as possible. The main research focus is at the architectural level. As devel-

oped in Chapter V, the yield and hardware cost models are based on devices

(i.e., transistors) and do not explicitly model wires and other structures. These

techniques are extended to a particular device technology in Chapter X, illus-

trating the changes that must be made to incorporate the key capabilities and

limitations of a target technology.

Hardware Scope. Modern computers are made of several components connected on

circuit boards. It is reasonable to assume that dual-technology systems will be

built: a high performance non-silicon technology for the processor, while support

hardware is implemented using CMOS microchips. Thus, the microprocessor is

the focus of research. However, the techniques proposed are equally applicable

to other large circuits.

Key Performance Criteria. While operational failures and soft errors will be a

problem, the first challenge to overcome is manufacturing yield. The FDT

processor developed in this research includes some functionality to detect and

correct these types of faults, but the focus of analysis is on yield rather than

reliability.
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4.2 Goal 1: Develop the FDT System Architecture

The general approach to this goal is analytical. By examining and modelling

various combinations of fault tolerance techniques, system yield models are developed.

Trade-offs between the various fault tolerance techniques, implemented at different

levels of the architecture, are investigated. From this information, the system ar-

chitecture and CONOPS are defined, and fault tolerance techniques selected. The

theoretical models show that the system yield requirements can be met.

Goal one is addressed in the high level architecture described in Chapter VII.

Supporting yield and hardware cost models are developed in Chapter V.

4.2.1 Tasks. To meet the research objectives of goal one, several tasks are

defined:

1. Propose initial system concept of operation (CONOPS).

2. Determine the appropriate set of fault tolerance techniques.

(a) Identify possible fault tolerance techniques.

(b) Develop analytical model for yield.

(c) Determine whether system meets performance goals.

(d) Adjust set of fault tolerance techniques and repeat Steps 2a-2d.

3. Develop the detailed system architecture implementing the identified fault tol-

erance techniques.

4. Develop criteria to compare FDT computers to each other and to conventional

computers.

5. Analyze the effectiveness of the top level system.

The first step proposes an initial system level concept of operations for the FDT

computer. As discussed in Chapter I, fault tolerance techniques can be incorporated

into the system architecture at multiple levels, from the device level up to the op-

erating system and application layers. The FDT processor proposed in Chapter VII
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combines several fault tolerance techniques to achieve the system design objectives.

This step examines the different techniques available, how the techniques might op-

erate in support of each other, and determines an initial set to examine in detail.

The next step determines the set of fault tolerance techniques needed to achieve

the performance goals. In some cases, analytical models for the techniques already

exist, while others require development. When feasible, analytical models for system

performance are created to model the multiple techniques used in concert. These

models determine whether a system incorporating a given set of FT techniques will

meet the goals. These models are introduced in Chapter V. An iterative process is

used to determine the most effective set of FT techniques.

Once the required set of fault tolerance techniques has been identified, a system

architecture is created to implement the techniques. At this stage, it is not necessary

to develop functional or circuit level models of the architecture. Goals two and three

examine the problems of implementing the architecture at lower levels. Instead, the

product of this step consists of a concept of operations and a description of the

required fault tolerance methods. The final step considers how the FDT design may

be compared to a conventional computer architecture.

For Goal 1.1, yield is the primary quantifiable metric. Results for individual

components are computed analytically and compared to Monte Carlo simulation re-

sults obtained with MatlabR©. Analytical models for complicated architectures such

as the overall cache memory or CPU become extremely complex due to multiple de-

pendencies. For these situations, yield results are obtained using MatlabR© simulation.

Goals 1.2 and 1.3 use an analytical approach. It is sufficient to show the proposed

system architecture is feasible to build, and can meet the design objectives of Goal

1.1.

4.2.2 Scope and Parameters. Analysis of the system is limited to the proces-

sor. It is assumed that the remainder of the system is constructed from reliable silicon

CMOS components. Thus, the analysis evaluates the ability of the system to imple-
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ment an application CPU reliably in the presence of defects and operational faults.

The parameters of the system include initial fabrication device defect probability,

operational permanent fault rate, and operational soft error rate.

4.3 Goal 2: Design the Functional Architecture

The general approach to goal two is through a combination of analysis and sim-

ulation. The functional architecture is designed, and analytical models are developed

for hardware overhead and yield. Yield expressions at the module level are validated

by comparing analytical results with simulation results from MatlabR©. Results for the

entire cache and processor architecture are obtained through Monte Carlo simulation

in Matlab R©. The results of goal two are presented in Chapters VIII and IX.

4.3.1 Tasks. To meet the research objectives of Goal 2, the following tasks

are defined:

1. Identify required capabilities (from Goal 1.1)

2. Develop functional architecture.

3. Develop analytical models for yield and hardware cost.

4. Determine the yield of the cache and overall FDT processor.

The first step depends on the results of Goal 1. The system architecture from

Goal 1 defines the functions the lower level architecture must implement. Once de-

fined, the functional architecture is developed. This step develops a logic level, device

independent, model of a FDT processor which shows the architecture supports the

required fault tolerance capabilities and identifies differences between the proposed

FDT architecture and a conventional microprocessor. Device independent yield and

hardware cost estimates are used to compare the FDT architecture to conventional,

non-fault tolerant, architectures.
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4.3.2 Evaluation. Monte Carlo simulation is the primary method used to

evaluate the yield performance of the FDT processor. Having chosen a defect model

and developed the functional model, simulation is used to show the required yield

target can be achieved. Hardware cost model validation is done analytically from the

bottom up, using primitive models to build more complicated structures up to the

processor level. As discussed in the previous section, Goal 2.2 is evaluated analytically.

4.4 Goal 3: Map the Functional Architecture to Emerging Technologies

The approach to this goal is primarily analytical, since detailed information on

potential device technologies is limited. The results supporting this goal are presented

in Chapter X.

4.4.1 Tasks. To achieve the research objectives of Goal 3, the following

tasks are defined:

1. Examine the capabilities of the emerging device technologies. QCA is selected

as the target technology.

2. Develop or adapt simple logical operations and other structures using the target

technology.

3. Determine how the yield and hardware cost models from the previous goals must

be modified to apply to the target device technology.

4. Develop estimators for size, power, performance.

5. Establish the minimum size, speed, and defect probability characteristics for the

emerging technologies to compete with silicon CMOS.

The first step examines the capabilities of the emerging device technologies and

justifies the selection of QCA as the target. Starting from simple, Boolean logic

gate building blocks, conceptual designs for the key fault tolerance techniques used

in the FDT processor are developed. QCA Designer is used where appropriate to

develop the physical layouts for fault tolerant circuits. During this process, the unique

121



characteristics of QCA that result in an implementation that differs from conventional

CMOS are identified.

Finally, the last step in the research returns to the top level. The lessons learned

throughout the research process as the system architecture was specified, developed at

the digital level, and mapped to proposed technologies. Chapter XI addresses the “big

picture” questions defined in Section 3.4.1. The performance and overhead models

first developed at the system level, and expanded down to the device level, are used

to determine the minimum device characteristics necessary to compete successfully

with conventional silicon CMOS architectures.

4.4.2 Evaluation. Analysis is again the primary method of accomplishing

this goal. Hardware layouts for the key fault tolerance techniques are developed to

show function and form the basis for hardware cost estimation. Analytical yield

models are constructed analytically, and compared using Matlab R© and MathCadR©.

4.5 Goal 4: Develop an analytical model for NAND Multiplexing

The approach to this goal is analytical. The mathematics resulting from this

analysis are in Chapter VI. The mathematical model is validated using MatlabR©

simulation and the PRISM tool [NPK04]. Confidence intervals are computing using

the method described in Chapter VI.
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V. Tools and Models

This chapter introduces yield and hardware cost models for the fault tolerance meth-

ods used in the FDT computer. Several common module-level techniques such as

R-modular redundancy and modular reconfiguration are illustrated. A new tech-

nique, TMR-protected reconfiguration, is proposed. TMR-R combines the benefits of

TMR and modular reconfiguration and is be used extensively in later chapters. Math-

ematical models for common memory fault tolerance techniques are shown, including

error correcting codes and spare rows/columns.

In addition to yield, models for hardware cost are introduced. The hardware

cost model is intended for yield modelling rather than area estimation, but does prove

useful in estimating hardware overhead. The hardware cost models are introduced

in Section 5.5. NAND multiplexing, a fault tolerance technique, is described only

briefly. A detailed mathematical model is developed in Chapter VI.

5.1 Yield Models

5.1.1 Basic Yield Models. Summary works of yield modelling are found in

[Kor89,KK98]. These models create analytical probability models of the distribution

of defects on the wafer, and of the impact of defects on overall device function. Let

X be a random variable denoting the number of faults in the chip. For a circuit with

no fault tolerance, the yield is simply the probability that no defects occur. Thus,

chip yield, Ychip, is simply

Ychip = P (X = 0) . (5.1)

For circuits with fault tolerance capabilities, the circuit can operate correctly

whenX > 0. More complicated yield models have been developed for these situations.

5.1.2 Clustering. Various models have been developed to account for a non-

uniform distribution of defects on a wafer and the resulting impact on yield. The most

common statistical models are the Poisson model and the Negative Binomial model.
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The Poisson model approximates a binomial distribution for large N and small p. The

Poisson model assumes independence between defects resulting in an unclustered dis-

tribution of defects on the wafer. In real fabrication processes, however, defects tend

to cluster together. Many defect distributions have been proposed, including gamma,

triangle, delta, and exponential distributions, and are summarized in [MVM90]. The

Gamma distribution is widely used, and has been shown to be a good fit to real world

data [Cun90]. Averaging of the Poisson yield expression over the range of values for

the number of defects per chip, λ, distributed according to the Gamma distribution,

leads to the negative binomial distribution for chip yield.

Using the Poisson distribution,

P (X = k) =
e−λλk

k!
, k ≥ 0, (5.2)

and the chip yield is

Ychip = P (X = 0) = e−λ. (5.3)

For a chip composed of multiple modules,

P (X = k) =
e−λN(Nλ)k

k!
, k ≥ 0, (5.4)

where N is the number of modules in the chip, and λ is the number of defects per

module (or per device, depending on the level of abstraction). Yield in this form is

simply

Ychip = P (X = 0) = e−Nλ. (5.5)

To derive the yield expression using clustered defects, a compounding procedure

is used. Compounding considers λ as a random variable rather than a constant. Let

l be this defect rate. Starting from the expression for unclustered (Poisson) yield as a
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function of the defect rate (5.2), the defect distribution of the chip with clustering is

P (X = k) =

∞
∫

0

P (X = k|l) · fL (l) dl (5.6)

where fL(l) is the compounder or mixing function [KK98]. The Gamma distribution

uses two parameters, λ and α, and

fL (l) =
αα

λαΓ (α)
· λα−1 · e−αl/λ. (5.7)

The clustering parameter, α typically ranges from 0.3 to 10. As α → ∞,

the distribution approximates a Poisson distribution. Evaluating (5.6) using this

distribution yields the negative binomial distribution for the number of defects in the

chip,

P (X = k) =
Γ (α+ k)

k!Γ(α)
· (λ/α)k

(1 + λ/α)α+k
. (5.8)

Thus, the yield of a chip with no fault tolerance using a clustered defect model

is

Ychip = P (X = 0) = (1 + λ/α)−α . (5.9)

For chips with multiple modules, the clustered yield is

Ychip = (1 +Nλ1/α)−α , (5.10)

where λ1 is the probability of failure of a single device (i.e., transistor), and N is the

number of modules in the chip.
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5.1.3 Multiple Components. For the Poisson case, the yield of a chip con-

taining multiple independent components is found by simply multiplying the yields

of the individual components.

Ychip =
∏

i

Yi. (5.11)

For the case of clustered defects, the compounding procedure from (5.6) is used,

but care must be taken to perform a single compounding step for the entire chip rather

than separate compounding steps for each module, as the clustering of faults in one

module is not independent of clustering in the other modules [Nik96, Sta93, NV99].

Therefore, a single compounding step is performed using the average number of faults

in the complete chip, or

λchip =
∑

i

λi. (5.12)

To simplify the integration, which contains different λ values for the different

modules, scaling constants are used, or

δi =
λi

λchip

, (5.13)

where δi is the probability of observing a fault due to component i.

In practice, the integrals developed using compounding for multiple modules are

difficult to solve analytically and numerical integration is commonly used. In many

cases, these integrals involve multiplying very large numbers of elements by very small

probabilities. Accuracy is limited to the precision of the floating point representations

used in computer software. Extended precision floating point libraries can be used

to increase the accuracy of analytical results [LL05,Var05]. More commonly, Monte

Carlo simulations of the memories are used to estimate yield.
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5.2 Fault Models

Memory yield models sometimes include multiple types of faults. Some memory

models only consider memory cell faults that disable a single memory bit in the array.

Other models add multiple memory bit failures (i.e., a single fault disables two or more

memory bits), as well as row and column faults (i.e., a single fault disables an entire

row or column of memory cells). Herein, faults are modelled at the single-transistor

level. In a typical memory cell, a single transistor fault disables the memory cell. If

the fault occurs in a row or column decoder, it disables the entire row or column.

For combinational logic, a variety of fault models have been proposed. Von

Neumann faults [vN56] invert the logical state of a logic gate. Stuck-at zero (one)

faults force the output of the gate to a logic low (high) value. Some models incorporate

parametric faults that change the timing or current flow characteristics of the circuit.

Any faults in combinational logic are assumed to disable that module.

At the device level, faults can occur in the transistors or interconnects. In many

yield models, interconnect faults are combined with nearby devices and modelled

together. Thus, device defect probability, λ1, includes both events: device failure and

associated interconnect, or,

P (Combined device failure) = λ1 = P (device fails ∨ interconnect fails). (5.14)

This model is most appropriate for device technologies in which the probability

of transistor (or switch) failure is much greater than interconnect failure. For other

technologies, interconnect faults cannot be assumed to be distributed evenly among

devices. Thus, wiring must be modelled as well and more complicated models are

required. An example of how the models change for one such technology, quantum

cellular automata (QCA), is shown in Chapter X. For the FDT processor, described

in Chapters VII, VIII, and IX, the device-centric model is used instead.
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5.3 Key Fault Tolerance Techniques

Reliability is one of several competing requirements in cache design. In a typical

cache, performance is the key design criteria. Capacity is another key goal. These

two factors are often at odds with the redundancy-based techniques used for fault

tolerance. Extra hardware is used to provide spare rows or columns as well as to

provide error detection and correction capabilities reduces the capacity of the cache.

In addition, increased propagation delay due to path length increases latency. There-

fore, the goal of fault tolerant cache design is to achieve acceptable manufacturing

yields and operational reliability with the least amount of redundant hardware. For

this reason, a variety of techniques have been developed to model defects and the

performance of fault tolerance techniques. This section summarizes several of the key

techniques.

5.3.1 NAND Multiplexing. von Neumann Multiplexing (VNM), also known

as NAND Multiplexing, was first proposed in [vN56]. Analytical models for NAND

Multiplexing performance at low levels of redundancy were developed in [HJ02]. After

identifying flaws with the initial analytical model, statistical simulation was used to

estimate performance in [NPK04,BS04b]. This research has derived the first accurate

model for the performance of NAND multiplexing at moderate levels of redundancy.

This detailed model is described in Chapter VI. A similar technique for three-input

majority gates, MAJ-3 Multiplexing, is examined in [RB05].

Multiplexing can be more effective than RMR for applications in which large

amounts of redundancy can be supported. Multiplexing replicates an operation in

both a parallel and a serial manner. Signals are replicated to create bundles of N

parallel signals. Operations are repeated in M stages: one executive stage followed

by one or more restorative units [vN56]. As the number of operations in parallel, N ,

is increased, or the number of stages used, M , is increased, the probability of correct

output improves.
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Multiplexing has limited practical application in situations where the entire

logic chain cannot be replicated in parallel N times. For example, it is not feasible to

replicate the bit or word lines to a memory cell N times. Thus, the N output lines

of a module protected by multiplexing are usually reduced to a single line using a

majority gate. Oftentimes, the reliability of this majority gate limits the benefit of

NAND Multiplexing or MAJ-3 Multiplexing in a manner similar to RMR. Thus, for

NAND Multiplexing,

YV NM = YV Nmod · Ymajgate, (5.15)

where Ymajgate is from (5.5), with the appropriate value for Nmajgate.

Thus, NAND Multiplexing is very effective when large amounts of redundancy

can be used (i.e., more than 100 fold). NAND Multiplexing may be necessary for de-

vice technologies with defect rates greater than 10−5. However, as was demonstrated

in this research, other fault tolerance techniques requiring fewer resources are suffi-

cient in the range of 10−9 < λ1 < 10−5. To compete with silicon CMOS, redundancy

requirements must be kept as low as possible. For this reason, RMR and reconfigura-

tion are used in preference to multiplexing in the FDT processor architecture proposed

herein.

5.3.2 R-Modular Redundancy. R-modular redundancy is widely used and

replicates the logic module R times [SNF04]. For the most common method, Triple

Modular Redundancy, R = 3. A majority voter compares the outputs of the modules

and outputs the most common value. For RMR to work correctly, at least (R+ 1)/2

of the modules must function correctly. In addition, the majority voter must function

as well. The analytical expression for yield, not accounting for clustering, is

YRMR = Pmajgate · Pmajmods (5.16)
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where Pmajgate is the probability the majority gate functions. Unless device level

reliability improvements are possible in the device technology, Pmajgate has the same

λ1 as other modules, and is modelled by (5.5) or (5.10) with N equal to the number of

devices in the majority gate. A survey of majority gate designs is found in [BQA03].

Pmajmods is the probability the majority (i.e., at least (R + 1)/2) of the modules

function, and is

Pmajmods =
R
∑

i=⌈R
2 ⌉









R

i



P i
mod (1 − P mod )R−i



. (5.17)

5.3.3 Modular Reconfiguration. Reconfiguration assumes the logic module

can be implemented in more than one location on the chip. Testing determines a

fault-free location to implement the module. In programmable logic devices, the

application logic module can be implemented once, in a location chosen from the

set of functional configurable logic modules. Reconfiguration can also be done in a

fixed circuit by implementing R instances of the application logic module. Testing

determines which of the R instances is functional. One of these functional modules is

selected to connect to the rest of the circuit.

While flexible, programmable logic devices require a large amount of overhead

due to redundant interconnections, configuration registers, and other circuitry. For

a high-speed processor, the switched-module approach provides some fault tolerance

with overhead similar to RMR. An example of modular reconfiguration is shown in

Figure 5.1. The probability an application module using switched-module reconfigu-

ration is correctable is

Preconf = Pswitch · P (M), (5.18)

where Pswitch is the probability the switching circuit functions correctly and P (M) is

the probability at least one of the R modules functions, or
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Figure 5.1: Modular reconfiguration has minimal overhead
requirements to implement interconnect and switching. It is
a very effective method of fault tolerance for moderate defect
rates.

P (M) = 1 − P (M) = 1 − (1 − Pmod)
R. (5.19)

It is also possible to combine reconfiguration with RMR by using reconfiguration

to select R functional modules from a group of R+S modules and passing the results

to a majority voter. The probability this module is correctable is

PRMRreconf = Pmajgate · Pmajconnected, (5.20)

where Pmajgate is the probability the majority gate functions, and Pmajconnected is the

probability the majority of the R connected modules function.

5.3.4 TMR-Protected Reconfiguration. Finally, RMR can be combined with

module reconfiguration. Here, R modules are implemented of which T are connected

to a majority gate. This technique provides additional protection against soft er-
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rors. Herein, triple modular redundancy (TMR) protected reconfiguration (TMR-R)

is used. An example of TMR-R is shown in Figure 5.2.

The yield of a TMR-R module is

YTMRR = Pswitchworks · Patleast2modswork, (5.21)

where Pswitchworks is the yield of the 3-input majority gate and the input selectors,

and

Patleast2modswork =
R
∑

k=2





R

k



Y k
mod (1 − Ymod)

R−k. (5.22)

To reduce power consumption, unused modules should be disconnected from

power sources.

5.3.5 Threshold Gate Logic. Threshold logic gate (TLG) circuits have re-

ceived some attention for fault tolerance and neural networks applications [LC67,

Rei00]. Theoretically, TLG circuits can be made arbitrarily fault-tolerant using small

to moderate amounts of redundant hardware while Boolean circuits cannot [Rei00].

Threshold logic gates can implement any Boolean function and could replace conven-

tional Boolean gates. However, threshold logic design differs greatly from Boolean

design, and new design and synthesis tools will be required [BQA03]. For the near to

mid-term, computers will continue to be constructed from Boolean logic gates.

5.4 Memory Array Fault Tolerance

Several fault tolerance techniques used in computer memories are discussed in

this section. They will be used in the design of the FDT cache in Chapter VIII.

5.4.1 Error Correcting Codes. Forward Error Correction is often used in

memories where soft errors and Single Event Upsets (SEUs) occur due to radiation

or electrical noise. ECC can correct errors induced through both transient events as

well as manufacturing defects. The most common approach uses simple parity bits

132



Majority

Gate

Module 1

Module 2

Module 3

Module 4

Reg

Reg

Reg

Reg

Reg

Reg

…

Module R

Output 1

Select Registers

Figure 5.2: TMR-protected modular reconfiguration combines
the benefits of reconfiguration with the soft error protection of
TMR.
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or Hamming codes. Modern microprocessors from AMD and Intel both use forms of

Error Correcting Codes (ECC) in their cache to detect and correct single bit errors

with minimal impact on operation. One simple method to model the performance of

ECC on yield is

YECC = Peccw
W (5.23)

where W is the number of ECC words in the cache, and Peccw is the probability that

a single ECC word contains a correctable number of errors. This probability is

Peccw =
c
∑

i=c−t





c

i



 pbit
i (1 − pbit)

c−i (5.24)

where c is the number of bits in each ECC code word, pbit is the probability each

memory bit will be functional, and t is the error correcting capability of the code

used. In most simple ECC schemes, t = 1. In the simplest parity codes, t = 0,

meaning the code can detect a single bit error in the code word, but cannot isolate

the error location. In this case, the processor must recover from the error in a different

way (e.g., hardware exception). For t = 1, the code can isolate the location of the

error and correct it.

More complicated codes such as the extended Golay and Bose-Chadhuri-Hoc-

quenghem (BCH) codes [Skl01,LDJC83], provide better detection/correction perfor-

mance at the cost of increased hardware complexity and increased latency. Access

time is usually a key concern for cache design and codes that can be decoded quickly

are desirable. Parallelized implementations of some encoders/decoders have been im-

plemented for extended Golay and other codes [BMH00,LDJC83], but add significant

amounts of additional hardware. While the reliability of the memory array is im-

proved, the reliability of the encoder/decoder module actually decreases due to the

increase in the number of devices that can fail. Thus, there must be a balance of code

complexity versus performance for a particular design.
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5.4.2 Global Spares/Content Addressable Memories. The simplest memory

fault tolerance approach uses global spares. In this case, a number of spare bits are

available to replace faulty bits, with little or no restriction on their placement or use.

In this idealized form, the yield of a chip can be modelled as

YGS =
b+s
∑

i=b





b+ s

i



 pi
bit (1 − pbit)

b+s−i, (5.25)

where b is the number of bits in the cache, s is the number of spare bits, and pbit is

the probability a memory bit is functional, or

pbit = eNbλ1 , (5.26)

where Nb is the number of devices in a memory bit (i.e., cell). Nb = 8 in a typical

dual read port memory architecture. The value for λ1 is the mean number of defects

per transistor.

It is usually not practical to implement spares with no limitations on their

use. Restrictions on interconnect, fan-in, and fan-out typically limit spares to certain

sections of the memory. The closest practical implementation of global spares is the

Content-Addressable Memory [Lo93,Lo94]. In this approach, each memory cell stores

the memory address in addition to the data bit(s). With each memory access, all

CAM cells compare their stored address to the input address. The address will match

for a single CAM cell. This cell performs the desired read or write operation. CAM

architectures can suffer from slower speeds due to large fan-ins depending on the

device technology. These problems may not be as significant for non-CMOS device

technologies of the future.

5.4.3 Spare Rows and Columns. The most common memory fault tolerance

technique uses spare rows and/or columns in the memory array. Post-manufacturing

testing determines the locations of faults, and spare rows/columns permanently re-
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place faulty elements. This can be done through laser fusing, or dynamically through

registers. The yield equations for a memory containing spare rows (or spare columns),

is similar to the equation for global spares,

YSR =
r+sr
∑

i=r





r + sr

i



 pi
row (1 − prow)r+sr−i (5.27)

where r is the number of required rows, sr is the number of spare rows available

(without assuming they are functional a priori), and prow is the probability a row is

functional. This probability is

prow = eNbλ1Nr , (5.28)

where Nb is the number of devices per memory bit, λ1 is the mean number of defects

per device, and Nr is the number of memory bits per row.

Some architectures use both spare rows and spare columns. Closed form ana-

lytical expressions for this approach have not been found, but several approximations

have been proposed. In [KK97], st replaces sr in (5.27), where st is the sum of the

spare rows and columns. Another approximation, uses st = sr · sc [CPL+03]. In

practice, statistical simulation is commonly used to evaluate the performance of these

architectures.

5.5 Hardware Cost Models

Hardware cost models are used primarily to provide input information to the

yield models. The hardware cost models are also used to estimate relative “cost”

of fault tolerance hardware in terms of devices or chip area. A similar method of

transistor counting is used to develop a model of the MIPS 32 bit RISC microproces-

sor [MP00]. Starting from primitives, more complicated structures are created. From

these models, it is possible to estimate the number of transistors in the entire proces-
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sor. This technique is used directly to estimate the number of devices in the non fault

tolerant processor and improved FDT processor in Chapter IX.

Area estimation is more complex as it must consider interconnect lines. The

area occupied by a circuit depends greatly on layout, the number of signals, and

the distances that must be crossed. In addition, interconnect estimation is strongly

dependent on device technology. For example, modern silicon CMOS uses several

layers of vertically separated interconnect lines, connected by vias. Increasing the

number of layers reduces the overall area. In other technologies, multiple layers are not

possible. For these reasons, cost comparisons at the architectural level are performed

at the logical level (i.e., independently of device technology).

In Chapter X, the models are mapped onto a specific device technology, quantum

cellular automata. Here, the device counting models are extended to include the

interconnect. This has significant effects on both yield models and hardware area

estimation.

5.5.1 Primitives. The hardware model used in the next several chapters

is based on silicon CMOS. For example, an inverter requires two transistors; a two-

input NAND gate requires four. Table 5.1 summarizes the primitives used to construct

larger circuits.

From the primitives, several larger circuits are used later. First, the A− to−2A

Address Decoder with Enable Input has a cost of

Cdec = 2A · CNAND(A+ 1) + (A+ 1) · CNOT , (5.29)

where A is the number of bits in the address. The decoder is used in the non fault

tolerant cache design.
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Table 5.1: Hardware cost primitives [Wak90, Man88]. The
default unit is the transistor.

Module Symbol HW Cost

Inverter CNOT 2
NAND2 CNAND2 4
NOR2 CNOR2 4
x-input NAND CNAND(x) 2x
x-input NOR CNOR(x) 2x
Buffer Cbuffer 4
XOR2 CXOR2 16
Transmission Gate Ctgate 2
SR Latch CSRLatch 8
D Flip Flop, Pos. Edge Triggered Cdff 22

Multiplexers are used in many circuits. The design of the X-to-1 by Wout mul-

tiplexer is from [Wak90]. The hardware cost is

Cmux = log2(X) · CNOT +Wout · (CNAND(X) +X · CNAND(1 + log2(X))), (5.30)

where X is the number of inputs to select from, and Wout is the number of bits selected

in parallel. This is useful when busses are used, as in the 32 bit processor design in

Chapter IX.

Similarly, the design of the 1-to-X by Wout demultiplexer with Enable E is from

[Man88]. The hardware cost expression is

Cdemux = Wout ·X · CNAND(log2(X) + E) + log2(X) · CNOT , (5.31)

where X is the number of outputs, and Wout is the width of the bus. E = 1 if an

enable input is required.

Memory elements are used throughout the design. The Wout bit register with

common enable line is also from [Man88]. Its cost is

Creg opt(Wout) = Wout · (Cdff + 3CNAND2) + CNOT , (5.32)
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where Wout is the number of bits to be stored. This version uses a single enable line

for all bits. Sometimes it is desirable to enable each bit individually. In this case, the

hardware cost becomes

Creg nonopt(Wout) = Wout · (Cdff + 3CNAND2 + CNOT ). (5.33)

Majority gates are a basic element in both RMR and TMR-R. The R-input

Majority gate (i.e., MAJ-R) design is from [HPS75]. A variation of this type of gate

is commonly found in the mirror adder. Its hardware cost is

Cmajgate = 4Wout ·





R

R+1
2



 , (5.34)

where R is the number of inputs, and Wout is the number of output bits in parallel.

5.5.2 Fault Tolerance Circuits. The hardware cost of a circuit protected

with R-modular Redundancy is

CRMR = WoutCmajgate(R) +R ·Nmod, (5.35)

whereWout is the number of bits in the module’s output, R is the number of redundant

modules, and Nmod is the number of devices in the module to be protected.

The hardware cost for a circuit protected with Modular Reconfiguration is

Creconf = (WoutCNOR(R) + Creg opt(R) +WoutR Ctgate) +R ·Nmod, (5.36)

where Wout is the number of bits in the module output, R is the number of redundant

modules, and Nmod is the number of devices in the module to be protected.
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The hardware cost of a circuit protected with TMR-protected reconfiguration

is

CTMRR = (WoutCmajgate(3)+Creg opt(3R−6)+(3R−6)Wout Ctgate)+R ·Nmod, (5.37)

where Wout is the number of bits in the module output, R is the number of redundant

modules, and Nmod is the number of devices in the module to be protected.

5.6 Summary

This chapter develops yield and hardware cost models for the fault tolerance

techniques used in the fault and defect tolerant processor. Analytical models for

CMOS yield prediction are adapted for RMR, modular reconfiguration, and TMR-

R. In addition, the most common memory fault tolerance techniques, ECC, global

sparing, and row/column sparing are summarized. TMR-R, a new fault tolerance

technique combining the benefits of modular reconfiguration with the soft error pro-

tection provided by TMR, is introduced. A hardware cost model is introduced and

yield expressions are developed for the key fault tolerance techniques. These models

are used later to predict the yield and overhead requirements of the FDT processor.

140



VI. von Neumann Multiplexing

This chapter develops the first exact analytical model for the performance of von

Neumann (NAND) Multiplexing, an important fault tolerance technique first created

in 1956 [vN56]. To date, all of the models for the effectiveness of this technique have

been approximations. An analytical model was recently proposed by Han and Jonker

[HJ02], but found to produce inaccurate results. This model has been examined, the

errors found, and an improved model produced to correctly predict the performance of

this technique. MATLAB simulations have verified the correctness of this improved

model. Thus, researchers now have the first accurate performance model for this

fault tolerance technique. This result supports Goal 4, providing tools and models to

support fault tolerant system development.

6.1 Introduction

The miniaturization of silicon CMOS transistors has advanced roughly in step

with Moore’s Law for forty years. Device sizes continue to shrink as new solutions

are found to fabrication problems. The end of Moore’s Law has been foretold for

almost as long, as physics challenges become increasingly difficult to overcome. Since

transistors are made from finite numbers of atoms, there is a limit to the minimum

size of a conventional MOS transistor. Indeed, that limit is perhaps only a decade

away. Already quantum tunnelling effects are beginning to significantly impact device

operation, increasing leakage currents, as well as making it more difficult for the gate

to control the flow of current in the transistor.

For some time, alternative technologies have been examined as a replacement

for silicon CMOS. In addition to hybrid silicon devices such as dual-gate and vertical

gate transistors, new device types such as single-electron transistors and molecular

crossbars have been proposed. Although none of these devices has yet emerged as

the successor for conventional CMOS, they have several things in common. As a

penalty for small size, the devices are more difficult to fabricate, more subject to

manufacturing defects, and more likely to suffer from failures during operation.
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To make use of these devices, the underlying architecture must be able to detect

and tolerate errors while producing correct results. A variety of techniques have been

proposed to do this, typically involving the incorporation of redundant devices into

the circuit, or the use of reconfigurable logic to move the application circuit away

from defective devices. One such redundancy technique, NAND Multiplexing was first

proposed by von Neumann [vN56], and modelled for large amounts of redundancy.

An analytical model for smaller amounts of redundancy was proposed by Han and

Jonker [HJ02,HJ03]. Norman et al. [NPK04,BS04b] observed that this model does not

account for dependence between the redundant inputs, and proposed a probabilistic

model checker-based approach to model performance. A second analytical model was

proposed early in [SNF04], but set aside in favor of the binomial model from [HJ02].

This chapter presents the first exact analytical model for the the performance of

von Neumann Multiplexing at moderate levels of redundancy. The new combinatoric

model accounts for dependence between the inputs to the NAND gates. This new

model is somewhat similar to a recent combinatoric model presented for Three-Input

Majority Multiplexing [RB04,RB05]. However, it appears that one type of error was

omitted in [RB05], that is accounted for in the model in this chapter. In addition,

three additional types of faults are modelled: output stuck-at-zero, output stuck-at-

one, and input stuck-at-zero. The results of the combinatorics model are compared

with results obtained via MATLAB simulation as well as the probabilistic model

checker PRISM [NPK04,PNK04,BS04b,BS04a]. The improved model in this chapter

model is up to 20% more accurate than all known previous analytical models and the

PRISM simulator, and produces results several times faster than PRISM.

6.2 von Neumann Multiplexing

6.2.1 Overview. In early computers, logical functions were realized using

vacuum tubes. These devices were prone to failure, and the mean time before failure

of a computer constructed of vacuum tubes was quite low. Research began in the area

of fault tolerance and, in 1952, John von Neumann investigated the possibility of per-
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forming reliable operations with unreliable components through redundancy [vN56].

Two methods were investigated, majority voting and multiplexing. Both methods use

a group of logical gates (any of which can fail) in place of a single unreliable gate.

Von Neumann showed that if the probability each gate fails is sufficiently small, and

the errors in each gate are independent, a high probability of a correct result can be

achieved.

6.2.1.1 The NAND Multiplexing Unit. The purpose of the NAND

Multiplexer is to reliably perform the boolean NAND operation in the presence of

errors that change the operation of the device. A ‘von Neumann fault’ [vN56] inverts

the correct output of a NAND gate. The NAND Multiplexer circuit performs the

NAND operation redundantly (see Figure 6.1), increasing the probability of correct

output over that of a single NAND gate.

In the Multiplexing technique, logic signals are represented by bundles of signals.

For example, a NAND gate may have two inputs, X and Y , and one output, Z. Each

signal is represented by a bundle of N signals. If there are no errors in a signal, all

N lines in the bundle have the same value. If errors are present, some fraction of the

lines have the opposite value. A threshold, ∆ ∈ (0, 0.5) is defined such that when no

more than ∆N of the lines in the bundle are stimulated (i.e., logic ‘true’ or ‘1’), the

logical value of the variable represented by the bundle is interpreted to be ‘false’ or

‘0’. Likewise, at least (1 − ∆)N lines must be asserted for the logical value of the

variable represented to be considered ‘true’ or ‘1’. If the number of asserted lines in

the bundle is between these two thresholds (∆N, (1 − ∆)N), the state is undecided,

and a malfunction is assumed.

The NAND Multiplexer is composed of two parts: the Executive Stage and one

or more Restorative Stages. Each restorative stage is nothing more than two executive

stages connected in series. In most cases, adding more restorative stages or increasing

the bundle size N makes the NAND operation more reliable.
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Figure 6.1: NAND Multiplexer

The Executive Stage contains two parts: a row of N NAND gates in parallel, and

a Permutation Unit (i.e., block ‘U’). The initial input signals X and Y are represented

by two bundles of N signals. The output of the NAND operation is the bundle Z,

which will also contain N signals. Prior to the introduction of any errors, all of the

signals in each bundle should match the “correct” values (i.e., Xi = Xj ∀ i, j and

Yi = Yj ∀ i, j). If errors have occurred, some fraction of these lines will contain the

logical inverse of the correct value. Without loss of generality, logical true, ‘1’, is

defined to be the “correct” value for X and Y , and thus ‘0’ is the correct output

Z. Let (X,Y, Z) have (kx0 = x̄N, ky0 = ȳN, kz0 = z̄N) stimulated signals. Thus,

the triplet (x̄, ȳ, z̄) is the probability each variable is stimulated, while kx0, ky0, kz0

represent the number of stimulated lines in each respective bundle for stage 0.

In the permutation unit, U, the X and Y bundles are randomly permuted and

combined into N XiYj pairs. For example, if N = 4, one possible permutation is

X2Y3, X0Y1, X3Y0, X1Y2. These XY pairs are the inputs to the N NAND gates. For

the von Neumann error, each NAND gate is subject to an error which inverts the

correct logical output with probability ε.

The goal of previous work [vN56,HJ02,NPK04,SNF04] was to determine the dis-

tribution of the stochastic variable z̄ in terms of given x̄ and ȳ. Von Neumann [vN56]
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concluded that, for large N , the output probability z̄ is a stochastic variable with

an approximately normal distribution, and the upper bound for the probability of

gate failure that could be tolerated is εmax ≈ 0.0107. Recent work showed that the

tolerable threshold probability for any formula constructed from NAND2 gates is

εmax = (3 −
√

7)/4 ≈ 0.08856 [EP98]. Beyond this (i.e., ε > εmax), the failure proba-

bility of the NAND Multiplexer system will be larger than some fixed, positive lower

bound, regardless of the bundle size N . Furthermore, for small N , the number of

stimulated outputs of the executive stage is theoretically a binomial distribution, al-

though this was disputed by [NPK04,BS04b], citing the lack of independence between

the lines of the output bundle. Herein, it is proven that the lines of the output bun-

dles are not independent, and we introduce new mathematics to accurately model the

system. A combinatorics-based approach was recently used to model MAJ-3 multi-

plexing [RB05].

6.2.2 Han and Jonker Analytical Model. In the Han and Jonker model

[HJ02], the error distribution for the NAND Multiplexing technique was developed

by examining each NAND gate in the executive stage independently. The model is also

used in [SNF04]. A binomial distribution described the number of asserted outputs

from the executive unit, and a Markov chain modelled the output distribution after

multiple stages.

The following presentation of that model follows [HJ02]. The probability of the

output of a single NAND gate being stimulated is

z̄ = (1 − x̄ȳ) + ε(2x̄ȳ − 1). (6.1)

This equation is valid for von Neumann errors. Other error types have a similar

form. Each gate’s inputs were assumed to be chosen independently. In this case, the

N parallel gates function as a Bernoulli sequence. The probability distribution for
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the sum of the stimulated outputs is a binomial distribution given by

P (k) =

(

N

k

)

z̄k(1 − z̄)N−k, k ≥ 0, (6.2)

where k is the number of stimulated outputs.

For simplicity, the input probabilities for the first stage were assumed to be

equal (x̄0= ȳ0 and kx0=ky0=k0). For each stage m, x̄m= kxm/N . Thus, z̄m can be

rewritten as a function of the number of stimulated X inputs and z̄ becomes z̄(km),

the probability any NAND gate’s output is stimulated (given kxm−1 and kym−1 lines

in the X and Y bundle were asserted), or

z̄(km−1) = (1 − ε) − (1 − 2ε)

(

km−1

N

)2

. (6.3)

Next, (6.2) can be rewritten as

P (km|km−1) =

(

N

km

)

z̄km(km−1)(1 − z̄(km−1))
N−km . (6.4)

The probability of km stimulated outputs for stage m is thus

P (km) =
N
∑

km−1=0

P (km|km−1)P (km−1). (6.5)

The conditional probabilities from (6.4) can be stored in a (N + 1) × (N + 1)

matrix Ψ as

Ψ =

















P (0|0) P (1|0) . . . P (N |0)

P (0|1) P (1|0) . . . P (N |1)

. . . . . . . . . . . .

P (0|N) P (1|N) . . . P (N |N)

















. (6.6)

Since the stages of the NAND Multiplexer are a Markov process [HJ02], the

output distribution of any stage of the system is dependent only on the distribution
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of the previous stage. Thus, the Ψ matrix along with the initial input distribution

P0 determines the output distribution of any stage m.

Given an initial fixed input distribution

P0 = [p0, p1, p2, ...pN ] (6.7)

where pi is the probability that i inputs are stimulated,

P1 = [P (0), P (1), . . . P (N)] = P0Ψ. (6.8)

Generalizing for any stage m,

Pm = P0Ψ
m. (6.9)

6.2.3 Sadek, Nikolic, and Forshaw’s Analytical Expression. Sadek, et al.,

discuss a variation on NAND Multiplexing, called Parallel Restitution [SNF04]. The

authors proposed an analytical model for the number of stimulated outputs of the

execution unit prior to error introduction, SZ , and after errors are introduced, SQ.

The expression

P (SZ = z) =

(

N
kxm

)(

kxm

N−z

)(

N−kxm

kym−N+z

)

(

N
kxm

)(

N
kym

) , (6.10)

is directly from [vN56]. Here, kxm and kym are the number of stimulated inputs in the

input bundles. Without providing details, the authors consider the effects of single,

double, and triple errors to obtain

P (SQ= i) =
N
∑

z=0

P (SZ =z) (1−ε)N−|z−i| ε|z−i|

×





∣

∣

∣

N
2

(

1 − z−i
|z−i|

)

− z
∣

∣

∣

|z − i|



 .

(6.11)
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These expressions are set aside in favor of the binomial model [HJ02] due to the

computational complexity for larger values of N .

6.3 Dependency Between the Outputs of the NAND Array

This section demonstrates that the binomial distribution does not apply for

P (km|km−1), since the outputs of the N NAND gates are not independent [NPK04].

The difference between “with replacement” and “without replacement” selection for

Xi and Yi is explained, and the outputs Zi and Zj are proven to be dependent, thus

making the use of the binomial distribution invalid. These concepts lay the foundation

for the development of a new model in the next section that accounts for dependence.

Consider a NAND Multiplexer composed of N parallel gates in each ofM stages,

where M = 1 + 2α and α is the number of restorative stages. Let Xi and Yi be the

events that the inputs to the ith gate of the current stage are stimulated. Likewise, Zi

is the event that the ith gate’s output is stimulated (prior to errors). Let x̄i and ȳi be

the probabilities that the Xi and Yi inputs are stimulated (i.e., logic ‘1’). The number

of stimulated inputs in stage m’s X bundle is kxm, while the number of stimulated

inputs in stage m’s Y bundle is kym.

The probability that the Zi output is stimulated is z̄i = 1 − x̄iȳi. The intro-

duction of von Neumann errors inverts each output with the probability of ε. Let Ei

be the event that the ith gate in the current stage suffers a von Neumann error that

inverts its output, and Ēi be the event that an error does not occur. Next, Qi is the

event that the ith gate’s output is stimulated (after errors are introduced).

Let ∧ denote set intersection. Accounting for von Neumann errors, the proba-

bility of gate z̄i’s output being stimulated is

P (Qi) = P (Zi ∧ Ēi) + P (Z̄i ∧ Ei). (6.12)
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Using conditional probabilities, this becomes

P (Qi) = P (Zi|Ēi)P (Ēi) + P (Z̄i|Ei)P (Ei). (6.13)

Substituting P (Qi) = q̄i and P (Ēi) = ε, this becomes

q̄i = (1 − x̄i ȳi) + ε(2x̄i ȳi − 1). (6.14)

Assume an initial input of kx0 = ky0 = 0.9N . Thus for the first stage, x̄i =

x̄j = ȳi = ȳj,∀ i 6= j and (6.14) becomes

q̄ = (1 − x̄ ȳ) + ε(2x̄ ȳ − 1). (6.15)

If q̄i = q̄j,∀i 6= j and q̄i and q̄j are independent, then SQ, the number of stim-

ulated outputs from this stage, has a binomial distribution with parameters N and

q̄.

Thus, the probability of having exactly k outputs stimulated (after errors) is

P (SQ = k) =





N

k



 q̄k(1 − q̄)N−k. (6.16)

However, q̄i and q̄j are not independent, and the binomial distribution does not apply.

To prove this assertion, a preliminary theorem is presented.

Theorem 1: P (Xi) = P (Xj) , ∀ i, j ∈ 1..N for both “with replacement” (WR)

and “without replacement” (WOR) cases

Proof. For the WR case, the number of 1s in the N element input bundle for stage

m is always kxm. Thus P (Xi) = kxm/N,∀ i ∈ 1..N . For the WOR case, P (Xi) is

P (Xi) =
β

χ
(6.17)
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where β is the number of arrangements of N − 1 elements, given that Xi = 1, and χ

is the number of arrangement of N elements, of which kxm are stimulated. This can

be written as

P (Xi) =





N − 1

kxm − 1









N

kxm





=
kxm

N
. (6.18)

Thus, P (Xi) = P (Xj) for both WR and WOR cases.

Theorem 2: Xi and Xj,∀ i 6= j, are not independent.

Proof. Proof by contradiction. If Xi and Xj were independent, then P (Xi ∧ Xj) =

P (Xi)P (Xj).

By Theorem 1, P (Xi) = P (Xj) = kxm/N . Again using combinatorics, P (XiXj) =

β/χ. In this case, β is the number of arrangements of the remaining N−2 bits given

Xi = Xj = 1, and χ is the number of arrangements of all N bits, of which kxm are

stimulated. This reduces to

P (XiXj) =

(

N−2
kxm−2

)

(

N
kxm

) =
kxm(kxm − 1)

N(N − 1)
. (6.19)

Clearly, P (XiXj) 6= P (Xi)P (Xj), and thus Xi and Xj are not independent.

For the binomial distribution to model SQ accurately, two conditions must be

met: (1) P (Qi) = P (Qj), ∀ i, j; and (2) Qi and Qj must be independent. Theorem 2

showed the independence requirement is not met for Xi. Next, it will be shown that

independence does not hold for Zi and ultimately Qi.

Theorem 3: Zi and Zj are not independent.
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Proof. As before, this is proof by contradiction. If Zi and Zj were independent,

P (Zi ∧ Zj) = P (Zi)P (Zj). First consider that

P (Zi) = 1 − P (Z̄i) = 1 − P (Xi ∧ Yi). (6.20)

It is evident that Xi and Yi are group-wise independent, so

P (Zi) = 1 − P (Xi)P (Yi) = 1 − kxm

N

kym

N
. (6.21)

Now,

P (Zi ∧ Zj) = 1 − P (Zi ∧ Zj). (6.22)

Applying De Morgan’s Law, P (Zi ∧ Zj) = P (Z̄i ∨ Z̄j),

P (Zi ∧ Zj) = 1−P (Z̄i ∨ Z̄j)

= 1−(P (Z̄i) + P (Z̄j)−P (Z̄i ∧ Z̄j)). (6.23)

But Z̄i ∧ Z̄j = 1 only when Xi = Xj = Yi = Yj = 1. Thus, P (Z̄i ∧ Z̄j) =

P (XiXjYiYj). Recognizing group independence, (6.22) is separated into

P (Z̄i ∧ Z̄j) = P (XiXj)P (YiYj). (6.24)

P (XiXj) was derived in (6.19). Substituting kxm with kym, P (YiYj) takes the

same form. Thus,

P (Z̄i ∧ Z̄j) =
kxm(kxm − 1)

N(N − 1)

kym(kym − 1)

N(N − 1)
. (6.25)

Substituting (6.25) into (6.23) results in
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P (Zi ∧ Zj) = 1−2

(

kxm

N

kym

N

)

+

(

kxm(kxm−1)

N(N−1)

kym(kym−1)

N(N−1)

)

. (6.26)

Now, to determine P (Zi)P (Zj), (6.21) is used, which yields

P (Zi)P (Zj) =

(

1 − kxm

N

kym

N

)2

= 1− 2
kxm

N

kym

N
+

(

kxm

N

kym

N

)2

. (6.27)

Comparing (6.26) and (6.27), P (Zi ∧ Zj) 6= P (Zi)P (Zj), and therefore Zi and

Zj are not independent.

Theorem 4: Qi and Qj are not independent.

Proof. If Qi and Qj are independent, then P (Qi ∧Qj) = P (Qi)P (Qj). From (6.12),

P (Qi) = P (Zi ∧ Ēi) + P (Z̄i ∧ Ei)

= P (Zi)P (Ēi) + P (Z̄i)P (Ei). (6.28)

Multiplying P (Qi)P (Qj),

P (Qi)P (Qj) = [P (Zi)P (Ēi) + P (Z̄i)P (Ei)]

·[P (Zj)P (Ēj) + P (Z̄j)P (Ej)]

= P (Zi)P (Zj)P (Ēi)P (Ēj)

+P (Z̄i)P (Zj)P (Ei)P (Ēj)

+P (Zi)P (Z̄j)P (Ēi)P (Ej)

+P (Z̄i)P (Z̄j)P (Ei)P (Ej). (6.29)
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Derivation of P (QiQj) proceeds similarly as

P (QiQj) = P (ZiZjĒiĒj) + P (Z̄iZjEiĒj)

+P (ZiZ̄jĒiEj) + P (Z̄iZ̄jEiEj)

= P (ZiZj)P (Ēi)P (Ēj)

+P (Z̄iZj)P (Ei)P (Ēj)

+P (ZiZ̄j)P (Ēi)P (Ej)

+P (Z̄iZ̄j)P (Ei)P (Ej). (6.30)

From Theorem 3, P (ZiZj) 6= P (Zi)P (Zj), and thus in general (6.29) 6= (6.30).

It is not necessary to prove (6.29) 6= (6.30) for all combinations of kx,N , and ε. As

a counterexample, using typical values of N = 100, ε = 0.01, and kx0 = ky0 = 0.9N ,

P (Q1Q2) ≈ 0.037 and P (Q1)P (Q2) ≈ 0.038. Thus, P (Q1Q2) 6= P (Q1)P (Q2) and Qi

and Qj are not independent.

6.4 Updated Distribution Model

Since Qi and Qj are not independent, the binomial distribution should not be

used to model P (SQ = i). In this section, a new model is derived that accounts for

the dependency.

6.4.1 Derivation of SZ. To determine P (SQ = i), the number of stimulated

outputs after errors are introduced, P (SZ = i) is first derived, followed by a summa-

tion of conditional probability expressions. It is easier to work with the number of

zeros in the output rather than the number of ones (i.e., using NAND gates, there is

only one combination of X and Y inputs that yields Z = 0, whereas there are three

combinations of inputs that yield Z = 1. By counting with the number of zeros in-

stead of ones, there will be fewer terms in the summation expression). Thus, SC is
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the number of non-stimulated outputs, or

SC =
N
∑

i=1

Z̄i. (6.31)

Note that SC = N−SZ and P (SC = i) = P (SZ =N − i). This will be useful

later. P (SC = i) is the number of arrangements of the X and Y bundles resulting in

SC = i divided by the total number of arrangements of the X and Y bundles.

For the denominator, each bundle has N inputs, of which kxm and kym are

stimulated. The number of arrangements of the X bundle, βx, is

χx =

(

N

kxm

)

. (6.32)

The number of arrangements of the Y bundle, χy, is derived similarly.

Since X and Y are group-wise independent, the total number of arrangements

of both bundles is simply the product of χx and χy, or

χ =

(

N

kxm

)(

N

kym

)

. (6.33)

To compute the numerator, β, observe that for Zi = 0 a NAND gate requires

that Xi = Yi = 1. Computing the number of ways to arrange the kxm stimulated

inputs in the X bundle is done in the same way as in (6.32). Having fixed the X

arrangements, look inside the group of kxm logic ones. For P (SC = i), i of the Y inputs

corresponding to this group must be logic one. Thus the number of arrangements of

Y is

βY inX1 =

(

kxm

i

)

. (6.34)

154



Now consider the remaining N−kxm members of the Y bundle, of which kym−i
of the inputs are logic one. The number of arrangements of this subgroup is

βY inX0 =

(

N − kxm

kym − i

)

. (6.35)

The entire numerator, β, is thus the product of (6.32), (6.34), and (6.35). The

denominator is (6.33) and the complete equation for P (SC = i), the number of non-

stimulated (i.e., logic zero) outputs, is

P (SC = i) =

(

N
kxm

)(

kxm

i

)(

N−kxm

kym−i

)

(

N
kxm

)(

N
kym

) . (6.36)

Observing that P (SC = i) = P (SZ = N − i), the equation for P (SZ = i)

becomes

P (SZ = i) =

(

N
kxm

)(

kxm

N−i

)(

N−kxm

kym−N+i

)

(

N
kxm

)(

N
kym

) (6.37)

for N − i ≤ kxm and kym −N + i ≤ N − kxm. Otherwise, P (SZ = i) = 0.

The derivation is similar to other models. P (SC) corresponds to ρ in [vN56].

However, von Neumann goes on to approximate ρ for large N and the derivations

diverge at this point. P (SZ) corresponds to P (w|e1, e2) for MAJ-3 Multiplexing in

[RB05].

6.4.2 Derivation of the distribution of SQ. Having derived an expression

for the output distribution prior to the injection of the von Neumann errors, we now

build an expression for the distribution of SQ, the number of stimulated outputs after

errors are injected, by summing conditional probabilities.

To compute P (SQ = i), it is necessary to account for all of the combinations of

X and Y bundles, as well as von Neumann errors, that result in SQ = i. For example,

SQ = i can be obtained when SZ = i and no errors change the output bits. It is also

possible to obtain SQ = i when SZ = i − 1 and there is one von Neumann error on

155



a Zk = 0 output that results in Qk = 1 (thereby increasing the count SQ by one). It

is also possible to obtain SQ = i when SZ = i + 1 and one von Neumann error on a

Zk = 1 output results in Qk = 0 (decreasing the count SQ by one). Furthermore, the

same result can be obtained with larger numbers of errors. Let SP be the number of

outputs Zk = 0 suffering from a von Neumann error yielding Qk = 1. Similarly, SN is

the number of outputs Zk = 1 suffering from a von Neumann error yielding Qk = 0.

In general,

SQ = SZ + SP − SN . (6.38)

P (SQ = i) can be written as

P (SQ= i) = P (SZ =0 ∧ SN =0 ∧ SP =i)

+ P (SZ =0 ∧ SN =1 ∧ SP =i+ 1)

+ ...

+ P (SZ =0 ∧ SN =N − i ∧ SP =N)

+P (SZ =1 ∧ SN =0 ∧ SP =i− 1)

+ P (SZ =1 ∧ SN =1 ∧ SP =i)

+ ...

+ P (SZ=1 ∧ SN=N− i+1 ∧ SP =N)

+...

+P (SZ =N ∧ SN =N − i ∧ SP =0) . (6.39)

Many of the terms in (6.39) are zero. For example, P (SZ =k∧SN = l∧SP =m) =

0 when SN > SZ or SP > N − SZ . P (SZ = k ∧ SN = l ∧ SP = m) can be specified

using conditional probabilities as

P (SZ = k ∧ SN = l ∧ SP = m) = (6.40)

P (SZ = k)P (SN = l ∧ SP = m |SZ = k ) . (6.41)
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Suppose that errors occur on the Zi outputs independently. The probability of

von Neumann error is fixed for all Zi as ε and occurs independently on Zi = 1 bits

to create negative errors (i.e. logic one bits flipped to logic zero), and on Zi = 0 bits

to create positive errors (i.e., logic zeros flipped to become logic one). Since ε is fixed

for each gate, the binomial distribution applies. Thus, (6.41) can be written as

P (SZ =k ∧ SN =l ∧ SP =m) =

P (SZ =k)P (SN =l |SZ =k )P (SP =m |SZ =k ) =

P (SZ =k)

(

k

l

)

εl(1 − ε)k−l

(

N−k
m

)

εm(1 − ε)N−k−m.

(6.42)

Finally, (6.39) can be written as a summation where

P (SQ=i) =

N
∑

j=0

j
∑

k=0

P (SZ =j)P (SN =k ∧ SP =i+k−j |SZ = j ).

(6.43)

Note that P (SQ=i) = 0 when SN > kzm, SP > N − kzm, or i+ k − j < 0.

A simple transformation of (6.43) yields P (SQm|SQm−1), which is used to com-

pute the elements in the Ψ matrix. The equation is

P (kqm=i|kqm−1) = P (SQm=i|SQm−1) =

N
∑

j=0

j
∑

k=0

P (SZ =j|SQm−1)P (SN =k ∧ SP =i+k−j |SZ =j )

(6.44)
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Table 6.1: NAND Truth Table for Relevant Errors
Inputs Outputs

X Y Z VN oSA0 oSA1 iSA0 iSA1

0 0 1 0 0 1 1 1

0 1 1 0 0 1 1 0

1 0 1 0 0 1 1 1

1 1 0 1 0 1 1 0

where P (SZm|SQm−1) is a generalization of (6.37). Observing that kxm=kqm−1=

SQm−1, P (SZm|SQm−1) can be written as

P (SZm = i|SQm−1) =

(

N
kxm

)(

kxm

N−i

)(

N−kxm

kym−N+i

)

(

N
kxm

)(

N
kym

) . (6.45)

Note that P (SQm|SQm−1) corresponds to P (s|w) in [RB05]. The authors’ defin-

ition for error is one that inverts the correct output, just as in this chapter. However,

the equation for P (s|w) does not account for positive errors (i.e., logic zeros flipped to

logic ones, or SP ). The equation for P (s|w) is easily fixed using the method described

in this section.

6.5 New Fault Types: Input and Output Stuck-At Faults

Having derived an expression for P (SQ = i) for von Neumann faults, expressions

for other types of logical errors can be formulated. Output stuck-at errors, when they

occur, force the output of the NAND gate to either logic one (oSA1) or zero (oSA0).

Input stuck-at errors can occur on either the X or the Y input. This section considers

the case of a single input error on the gate’s X input. Table 6.1 shows the truth table

for the error-free NAND gate (column Z), as well as erroneous outputs obtained under

the five error types.

6.5.1 Output Stuck-At Faults. The method of deriving P (SQ = i) for the

two output stuck-at faults is similar to that used for the von Neumann error. Since
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SP = 0 for oSA0 errors, (6.38) can be simplified. Likewise, for oSA1 errors, SN = 0

and many of the terms in (6.39) are zero. For the oSA0 error, (6.39) becomes

P (SQ= i) = P (SZ = i ∧ SN =0)

+ P (SZ = i+ 1 ∧ SN = 1)

+ ...

+ P (SZ = N ∧ SN =N − i) . (6.46)

For the oSA1 error, (6.39) becomes

P (SQ= i) = P (SZ = i ∧ SP =0)

+ P (SZ = i− 1 ∧ SP = 1)

+ ...

+ P (SZ = 0 ∧ SN = i) . (6.47)

As in the case of the von Neumann error, the errors are assumed to be inde-

pendent of the X and Y inputs, and thus (6.46) and (6.47) can be separated into

conditional probabilities as

P (SZ = k ∧ SN = l) =

P (SZ = k)P (SN = l |SZ = k ) =

P (SZ = k)

(

k

l

)

εl(1 − ε)k−l (6.48)

for oSA0, and

P (SZ = k ∧ SP = m) =

P (SZ = k)P (SP = m |SZ = k ) =

P (SZ = k)

(

N − k

m

)

εm(1 − ε)N−k−m (6.49)
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for oSA1.

Finally, (6.46) and (6.47) can be written as a summation as

P (SQ = i) =

N
∑

j=0

P (SZ = j)P (SN = j − i |SZ = j ) =

N
∑

j=i

P (SZ = j)P (SN = j − i |SZ = j ) (6.50)

for oSA0, and

P (SQ = i) =

N
∑

j=0

P (SZ = j)P (SP = i− j |SZ = j ) =

i
∑

j=0

P (SZ = j)P (SP = i− j |SZ = j ) (6.51)

for oSA1.

The conditional probabilities P (SQ = i|SQm−1) used in Ψ are derived from (6.50)

and (6.51) by replacing P (SZ =j) with P (SZ =j|SQm−1) as was done for (6.45).

6.5.2 Input Stuck-At-Zero. As shown in Table 6.1, the Q output of the iSA0

error matches that of the oSA1 error. The faults affect the circuit in the same way.

Thus, P (SQ = i) for the iSA0 fault is also (6.51).

6.5.3 Input Stuck-At-One. Computation of P (SQ = i) for the iSA1 error

is much more complicated than for the other cases. The technique described for the

previous errors computed P (SZ = i) using a combinatorics method (6.37), and then

applied the effects of error. For the iSA1 error, the combinatorics approach cannot

be used, since errors occur prior to the permutation unit, and thus the number of X

and Y inputs arriving at the NAND gates are not known.
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The probability that any particular output will be stimulated is

P (Qi) = P (Zi ∧ Ē) + P (Ȳi ∧ E). (6.52)

Although this value is constant for all i, P (Qi) = P (Qj),∀i 6= j, the inputs

are not independent, and therefore the resulting distribution for SQ is not a binomial

distribution.

While a solution will not be presented for this problem, some work has been

done in the area of dependent Bernoulli trials that may be applicable. One avenue of

investigation uses the multivariate characteristic function [Spr79] to develop a prob-

ability density function. Another paper proposes a full-likelihood procedure [GB95].

Both of these techniques generate a large number of conditional probability terms as

the bundle size N increases, and are not computationally feasible. For the present,

simulation techniques produce acceptably accurate results in a reasonable time.

6.6 Simulation

To test the validity of the improved model for von Neumann faults, as well as the

new models for oSA0, oSA1, and iSA0 faults, a MATLAB simulation was constructed.

This section describes the simulation, and compares the accuracy of the new models

against the MATLAB simulation, as well as the two analytical models [HJ02,SNF04]

and the probabilistic model checker PRISM [NPK04,PNK04,BS04b].

6.6.1 Simulation Setup. The MATLAB simulation duplicates the operation

of a NAND Multiplexer for a large number of iterations to compute desired test

statistics. For each iteration, an initial N element vector is created for the X and

the Y inputs. Assuming x̄ = 0.9, kx0 = 0.9N of the elements in each bundle are

stimulated (i.e., ‘1’). The initial vectors
−→
X0,

−→
Y0 are randomly permuted. For the von

Neumann error, and the two output stuck-at errors, the NAND operation is performed

on each pair of elements in the two vectors to create an output vector
−→
Z0. Next, an N
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element error vector is created, with the probability ε that each element is in error.

The error vector is combined with the ‘correct’ output vector
−→
Z0 to create the final

output vector
−→
Q0, either by inverting the elements of

−→
Z0 that suffer errors (in the case

of von Neumann errors), or forcing their values to either ‘1’ or ‘0’ in the case of the

output stuck-at faults. For the input stuck-at-0 error, the error vector is applied to

the
−→
Y0 vector prior to the NAND operation.

The sum of the stimulated outputs in
−→
Q0, kz0 = i, is computed and the ap-

propriate bin in a histogram variable (totali, i ∈ 0..N) is incremented. When the

simulation is complete, the histogram array variable is divided (element by element)

by the number of iterations to yield the final probability density function for that

particular stage.

The operation of the MATLAB simulation’s permutation unit, U, for the ‘with

replacement’ case used by the original analytical model [HJ02], and the ‘without

replacement’ case used by the improved analytical model and the PRISM simulation

[NPK04], is different. For the WR case,
−→
Xm and

−→
Ym vector inputs to later stages,

m, are determined element by element, with x̄m,j = kxm/N, j ∈ 1..N being the

probability that the jth input line in the
−→
X vector for stage m is stimulated, given

that kzm−1 outputs from the previous stage were stimulated. For example, given

N = 20, if the first NAND stage results in kz0 = 16, then x̄1,j = 16/20,∀j ∈ 1..N .

Since each bit is determined randomly, kx1 may not equal kz0. Instead, kx1 has a

binomial distribution with a mean of kz0.

For the WOR case, the
−−−→
Zm−1 vector from the previous stage, m−1, is permuted

to create the new vectors
−→
Xm and

−→
Ym. Thus kzm−1 = kxm = kym. This important

distinction is the cause of the difference between the results of the WR and WOR

cases.

In addition to the output probability density function for each stage, the MAT-

LAB simulation computes the expected percentage of incorrect outputs (EPIO), and

the probability that the number of errors is less than 10% of the bundle (PEL10).
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The EPIO is simply the mean of z̄ for stage m. PEL10 is the sum of the probabilities

PEL10m = P (km < 0.1N) =

⌊0.1N⌋
∑

j=0

Pm(j). (6.53)

Simulations were run over a range of error probabilities ε, as well as bundle

sizes N (e.g., 20, 40, 100), number of stages M (3 to 15), and error types (i.e., ‘von

Neumann’, ‘iSA0’, ‘oSA1’, and ‘oSA0’). For each case, the analytical predictions are

calculated using the Han and Jonker binomial technique [HJ02], Sadek’s analytical

expression [SNF04], and the combinatorial technique proposed herein.

For most combinations of parameters, the simulation ran for 20,000 iterations.

Each run of 20,000 iterations was broken into 100 groups of 200 iterations to construct

95% confidence intervals on the estimates for the PDF and PEL10 statistics. The

choice of 20,000 iterations was sufficiently large to yield acceptably small confidence

interval for each statistic in most cases. For several cases, trials of 2 million iterations

were run to obtain tighter confidence intervals. To compute the confidence intervals

for the PDF, the sample mean, p̄, and variance, s2, for every P (SQ = i) was computed

for each of the 100 groups. Since the number of groups is large, it is assumed the

mean values follow a normal distribution with unknown mean and variance. The

100(1 − α)% confidence interval, p̄ ± E, for the mean of (P (SQ = i)) is computed

using the Student’s t distribution [All90] where

E = tN−1,α/2 ×
s√
N
. (6.54)

The PRISM probabilistic model checker [PNK04,BS04a] was also used to com-

pute PDF and PEL10 estimates. A PRISM model consists of a description of the

system to be modelled, as well as a set of properties to be checked against the model.

The model and its operation are described in [NPK04]. The default run-time para-

meters were used for the PRISM program. Where practical, the same scenarios were
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Figure 6.2: Output PDF for 7th Restorative Stage(M=15) for
N=20 [WR vs. WOR models]

used in both the PRISM simulation and the MATLAB simulation, and their results

compared. The results of the simulations are discussed in the next section.

6.6.2 Simulation Results.

6.6.2.1 von Neumann Case. The output distribution for the seventh

restorative stage (i.e., M=15) for N = 20 and ε = 0.03 is shown in Figure 6.2. Clearly,

there is a difference between the WR and WOR results. The analytical prediction

from [HJ02] (labelled ‘Binom’) closely matches the WR case. Figure 6.3 shows the

results for the new analytical predication and the PRISM simulation for the same

scenario. The combinatoric model proposed in this chapter (labelled ‘Combin’) closely

matches the WOR case. PRISM approximates the WOR case, but some differences

can be observed.

The probability that the number of errors will be less than 10% (PEL10) of

the bundle size for one restorative stage (i.e., M=3), N = 40, and von Neumann

errors, is shown in Figure 6.4. The PEL10 data versus the number of stages (M) is
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Figure 6.3: Output PDF for 7th Restorative Stage(M=15) for
N=20 [PRISM and Combin. Models]

shown in Figure 6.5. The binomial model from [HJ02] follows the WR simulation,

while the combinatoric model correctly follows the WOR curve. Figure 6.6 shows

the 95% confidence intervals for reliability. Both analytical predictions fall within

the 95% confidence intervals of the modelled system (i.e., WR or WOR). The PEL10

parameter is important to modelling the overall reliability of a processor using NAND

Multiplexing. It will be shown later that even small errors in this value have a huge

impact in estimating the level of redundancy necessary to achieve a specified reliability.

The next three plots (Figures 6.7, 6.8, and 6.9) show the differences between

the WOR simulation, Sadek’s analytical expressions, the PRISM simulation, and the

new analytical model. Longer runs of 2 million iterations are used, and the resulting

95% confidence intervals are overlaid. For all three statistics, the combinatoric model

produces values within the 95% confidence interval of the simulation. Both Sadek’s

analytical model and the PRISM simulation produced results outside the confidence

interval.
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Figure 6.4: Reliability vs Error Probability (N=40)
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Figure 6.5: Reliability vs Number of Stages (N=40)
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N = 20
E = vonN
ε = 0.03
α = 0.05
NumIters = 2M

1 3 5 7 9 11 13 15
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Number of Stages (M)

D
iff

er
en

ce
 in

 P
(E

rr
) 

<
 1

0%

PRISM
Combin
Sadek
WOR
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As originally discussed in [NPK04], the expected percentage of incorrect out-

puts shows a divergence between the WR and WOR models. Figure 6.10 shows the

original [HJ02] and improved analytical models. Although not shown, the analytical

models closely match the simulation results for the WR and WOR cases respectively.

The curves in this figure show that the original model can often underestimate the

reliability of the NAND Multiplexer, particularly as the number of stages and the

error probability increases.

In summary, for the von Neumann error it has been shown that incorporating

the dependence between the outputs of the NAND gates produces a more accurate

model. Further, the simulation validates the Markov relationship proposed in Han

and Jonker’s original model. Figures 6.11 and 6.12 show the reliability of the NAND

Multiplexer based on the improved model.

6.6.2.2 Stuck-At Faults. The simulation results for the other error

types validated the improved analytical model. The analytical model from [HJ02]
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Figure 6.13: Reliability vs Number of Stages (oSA1)

was used after substituting the new equations for z̄ for the three error types (oSA0,

oSA1, and iSA0). As before, the original analytical model was found to match the

WR case, while the combinatoric model correctly follows the WOR case.

The results for the Output Stuck-At-One fault are shown in Figure 6.13. The

plot of PEL10 vs. the number of stages, M , for oSA1 is similar to Figure 6.12 and

thus omitted. The results for the Output Stuck-At-Zero fault are shown in Figures

6.14 and 6.15. The results for the Input Stuck-At-Zero fault were identical to those

of the oSA1 error.

6.6.2.3 Algorithmic Complexity. Approximate run times for the vari-

ous methods are shown in Table 6.2. The simulations were run on a 2.8GHz Pentium

4 with Hyperthreading enabled and 2GB of RAM. While not shown in Table 6.2, the

Ψ matrix for N = 100 can be computed in roughly 3.5 hours. Computing the PDF

for such a large bundle size in PRISM would require much longer. Therefore, the

combinatorics-based analytical model becomes significantly faster relative to PRISM

as bundle size N increases.
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Table 6.2: PDF Computation Times for N = 40,M = 15
Simulation vN oSA0 oSA1

JH < 1 min < 1 min < 1 min
GR 5 min 2 min 2 min

PRISM 8 hrs
MATLAB Sim (20K iterations) 20 min 20 min 20 min

6.7 An Application

NAND Multiplexing can be used to design fault tolerant nanoelectronic systems.

When nanoelectronic devices such as single electron transistors or carbon nanotube

transistors become feasible to mass produce, it will be possible to construct microchips

with large numbers of devices (1010−1012), albeit with higher device failure rates than

in silicon CMOS. These additional devices can be used for redundancy-based fault

tolerance techniques such as NAND Multiplexing. The overall system might use

fault tolerance techniques such as NAND Multiplexing as well as reconfiguration to

overcome transient and permanent errors that occur during operation. To support

reconfiguration, a fault tolerant processor would likely be constructed from an array

of simple processing elements. The processor would be mapped onto a portion of the

nodes, and reconfigured if any node suffers permanent failure. Both reconfiguration

and NAND Multiplexing require large numbers of redundant devices, and the accurate

estimation of the required redundancy necessary to achieve a desired reliability will

be crucial in the design of these systems.

Accurate computation of the reliability of NAND Multiplexing is key, as small

errors can have a huge impact on the estimate for overall system reliability when mas-

sive numbers of devices are used. Consider a simple (l = 32)-bit processor composed of

n = 1000 processing nodes [HJ02]. The underlying device technology results in errors

with probability ε = 10−4. The desired overall reliability of the system is Rc ≥ 0.9.

Each processor node contains M = 15 stages of logic and incorporates NAND Multi-

plexing. The designer wants to determine whether a bundle size of N = 50 is sufficient

to guarantee the required reliability. Reliability of a single bit after M = 15 stages is
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PEL10. Reliability of a l-bit processing node is thus

Rp = PEL10l. (6.55)

Since the chip has n nodes, overall reliability is

Rc = Rn
p . (6.56)

The PEL10 value calculated using the binomial method is PEL10JH =

0.999254763, and using the combinatorics method is PEL10GR = 0.999999847. Al-

though the values are only 0.08% different, when raised to the nl-th power, the dif-

ference in the resulting reliability estimates is significant. For the binomial method,

Rc ≈ 4.3577 × 10−11, while for the combinatoric method Rc = 0.99511. In this case,

use of the binomial method leads to the incorrect conclusion that the system does not

meet the reliability requirement. The designer may unnecessarily increase the bundle

size, adding to the hardware cost of the design. Calculating PEL10 for increasing

bundle sizes until Rc > 0.9, the binomial prediction requires N ≥ 88, while the com-

binatoric method requires only N ≥ 45. Thus, the combinatoric method achieves the

required reliability with approximately half the hardware.

6.8 Conclusion

A new method is proposed to predict the reliability of NAND Multiplexing, a

fault-tolerance technique based on large-scale duplication of fault-prone devices. A

combinatorics-based method was used to derive the output distribution for moderate

bundle sizes, N . This technique represents the first accurate analytic model for NAND

multiplexing for moderate amounts of redundancy, improving on previous methods

by accounting for dependence between the signals of the input bundles.

Three new errors are modelled: Output Stuck-At Zero, Output Stuck-At One,

and Input Stuck-At One. A MATLAB simulation validated the combinatorics model
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for the NAND Multiplexer and confirmed the correctness of the new model for all

four error types. The Markov nature of the underlying system proposed in [HJ02]

was validated. The analytical model produces PEL10 results that are up to 20%

more accurate than those from probabilistic model checkers [NPK04,BS04a], in less

than one tenth the time.

NAND Multiplexing has a variety of uses in nanotechnology, fault and defect

tolerant computing, and in space applications. NAND Multiplexing is one technique

to achieve reliable computation with unreliable component devices. The model pro-

posed in this chapter can be used to make intelligent design decisions between re-

dundancy and reliability to achieve acceptable reliability with the smallest number of

components.

While NAND Multiplexing has not been widely used due to its large overhead

requirements, this chapter has shown that it can function reliably at high defect

rates (i.e., λ1 > 10−5. Thus, NAND Multiplexing may see use in future nanodevice

technologies in which small size makes the overhead requirement acceptable. The

work of this chapter makes it possible to accurately model the performance of NAND

Multiplexing in the range of highest interest.
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VII. High Level Architectures

7.1 Introduction

This chapter examines the high level architecture of a fault and defect tolerant

CPU. It lists the desired, and often competing, performance characteristics of the

CPU and how the various fault tolerance techniques discussed in Chapter II can

be applied. A concept of operations for the fault and defect tolerant computer is

proposed, outlining manufacturing testing, startup configuration, runtime testing and

recovery, and soft error detection and recovery. This chapter provides the general

framework from which the cache and core CPU architectures will be developed in the

next chapters.

7.2 Desired Characteristics

The fault and defect tolerant CPU should have the following characteristics:

• High manufacturing yield.

• High long term reliability.

• Resistant to soft errors and single event upsets

• Testable.

• Low Power.

• Minimal Redundancy.

• High Speed.

The FDT computer must be able to run operating system and application soft-

ware reliably when constructed from devices that have manufacturing defects, opera-

tional failures, and soft errors at a rate much higher than a “conventional” computer.

It should have an acceptable manufacturing yield. Conventional computers achieve

this through careful manufacturing process control, which minimizes the number of

defects. An FDT computer may be fabricated with a technology with a much higher
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defect rate, and should be able to operate effectively with one or more hardware

defects. This can be done at the circuit, module, architectural, or software level.

Operational reliability is equally important. The FDT computer must be able

to continue to operate in the presence of operational hardware failures. The FDT

computer must be able to mask faults so they do not impact software operation, or

to detect the effects of the faults and recover from them at a minimal impact to

the application. In addition to hardware failures, soft errors and SEUs should be

detectable and correctable.

These three goals must be balanced against the requirements of testability,

power, cost, and runtime performance. It might be easy to improve reliability us-

ing very large amounts of redundant hardware. In practice, however, this increases

the size of the layout, manufacturing cost, and power consumption. It is also likely to

increase propagation delays and reduce the speed of the processor. Thus, trade-offs

must be made between the factors to achieve the best yield and reliability in the most

efficient manner.

The FDT computer is compared to conventional computers using the same crite-

ria used today. Application benchmark performance, purchase price, power consump-

tion, and reliability continue to be important. For a FDT computer to be practical, it

must compete with conventional CMOS processors in all of these areas. Along with

reliability comes ease of use. Fault and defect tolerance techniques should be trans-

parent to the user, performed at the hardware and operating system levels. Reliability

is a key concern, and customer confidence is critical to the widespread adoption of

non-CMOS technologies. For a long time, CMOS and its successor are likely to co-

exist and compete. It will take time for the customer community to accept the idea

of circuits that are not completely defect free. While there is some precedent that

shows customers will buy products with defects (e.g., memory chips), the idea of a

CPU with an unknown number of device defects may require a shift in paradigm.

177



7.3 Fault Tolerance Strategies

A FDT computer incorporates fault tolerance at several levels, improving over-

all system reliability at each step until an acceptable result is achieved. Table 7.1

summarizes techniques and the level of abstraction for which it is best suited.

7.3.1 Module/Circuit Level. The majority of fault tolerance capability will

likely be at the module or circuit level. In conventional CMOS technologies, manu-

facturing testing removes chips with hardware faults prior to operational use. Oper-

ational hardware faults are rare enough that replacement of large modules is feasible.

Soft errors and SEUs can often be handled at the operating system or application

level. In a future device technology, however, faults and errors will be more common,

and must be dealt with at lower levels.

7.3.1.1 Fault and Error Detection. The FDT processor will detect

faults at the module and circuit level using the following methods:

Duplication With Comparison/Concurrent Error Detection(DWC/CED).

Implemented at the level of small hardware modules, DWC and CED perform

an operation in parallel and compare results. Soft errors are detected easily, as

well as many hardware faults in either module. If a fault is detected, a hardware

exception is raised to allow the operating system to diagnose and recover from

the fault.

Error Correcting Codes. Often used to mask the effect of SEUs and faults, ECC

in memories can also be used to detect faults if the decoder signals an exception

when an error is detected.

Localized BIST. BIST can be done at several levels, either under local control or

at the chip level. Localized BIST may be useful in that it requires minimal

long distance interconnect, can be run quickly, and can perform repairs without

knowledge or intervention of the higher levels.
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Table 7.1: A fault and defect tolerant processor will likely
use many different fault tolerance techniques at several levels of
abstraction. Low level techniques are best suited for permanent
faults detection and recovery.

Technique Module Instruction Operating

System

Application

DWC HW/SW
Detection

HW/SW Detection SW Detec-
tion

CED/RWSO HW/SW
Detection

ECC HW/SW
Masking

HW/SW Masking HW/SW Mask-
ing

Timing Checks HW detection
RMR, VNM, TMR-
R, Reconfig

HW/SW
Masking

Spare Rows/Cols HW/SW
Repair

Pipeline register
ECC

HW/SW con-
finement

HW/SW confine-
ment

Local BISTR HW detection,
diagnosis, re-
pair

SIR SW detection, recov-
ery

EXE unit replication HW/SW detection
BIST Instructions HW detection, diag-

nosis
BISR Instructions HW repair
Memory scrubbing SW repair
Memory Address
Range Checking

HW/SW detec-
tion

SEU Rate Monitor-
ing

SW diagnosis/
repair

SW Replacement HW/SW repair
OS Cache control HW repair
OS BIST HW diagnosis
OS BISR HW repair
Checkpointing HW/SW recov-

ery
Reasonableness
Checks

SW detection

Reversal Checks SW detection
Modular Coding SW recovery
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Timing checks. Used to detect parametric faults (e.g., faults causing device switch-

ing speeds to be slower than required). This will likely be performed by local

BIST, with faults being signalled by raising an exception. Recovery would typ-

ically involve shutting down the faulty module and replacing it with a spare.

7.3.1.2 Masking. Fault masking is extremely important, as repair and

recovery under the explicit control of a higher level is often difficult and diminishes

performance. Several hardware fault masking techniques that will be useful at the

module level include:

R-Modular Redundancy/ Tri-Modular Redundancy. Conventional TMR and

RMR performed at the module level. The benefit of RMR depends on the size

of the hardware module and the number of outputs.

Modular Reconfiguration. As discussed in Section 5.3.3, reconfiguration can pro-

vide benefits over RMR when soft errors are infrequent. Increasing the number

of redundant modules generally increases FT performance. Modular reconfigu-

ration is done with larger modules, and fewer choices on interconnection than

an FPGA-like architecture, but requires significantly less overhead.

TMR-protected Reconfiguration. Combines the benefits of RMR and modular

reconfiguration. Multiple modules are implemented in hardware, and are con-

nected to a majority voter, which provides protection from soft errors.

Spare rows and columns. Spare rows and columns are modular reconfiguration as

applied to the memory structures.

Error Correcting Codes. ECC is very useful in memories to mask the effect of

SEUs. It can also protect control signals that propagate through the pipeline

stages in pipeline registers until they reach the intended stage. Fast codes are

important to minimize latency.

FPGA-like reconfiguration. FPGA-like architectures provide significant reliabil-

ity benefits due to the fine granularity in configurability. However, there is a
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significant impact on speed and hardware cost due to the overhead of redundant

interconnect and configuration hardware. Provided that suitable yield and reli-

ability can be obtained through coarse-grain reconfiguration (such as modular

reconfiguration) and other fault tolerance techniques, FPGA-like structures are

not likely to be adopted.

7.3.1.3 Diagnosis, Repair, and Recovery. Localized BIST/R can de-

termine which module is faulty. When possible, repair should be done without re-

quiring operating system involvement. The pipeline can be stalled while diagnosis is

performed, provided that testing can be done quickly. If the fault is not in a critical

part of the hardware (e.g., a fault in a floating point adder impacts floating point

instructions but would not require integer instructions to be halted), diagnosis and

repair can be handled at the operating system level. In this way, unrelated operations

can continue.

7.3.2 Instruction Level. Instruction level techniques include assembly lan-

guage instructions to perform FT functions as well as hardware support at the ar-

chitectural level of the CPU (e.g., FT support in the dynamic instruction scheduling

hardware or cache control logic).

7.3.2.1 Detection. Duplication with comparison (DWC) can be used

at the instruction level by having the pipeline scheduler issue the same instruction

twice and compare the results prior to the instruction commit phase. This is useful

for detecting soft errors lasting only a single clock cycle. Instruction DWC would not

detect hard faults, since the same result would be returned both times. However, if

the processor has multiple functional units (e.g., integer adders), the instruction can

be executed on different functional units to detect hard faults. Of course, the design

of the instruction scheduler becomes more complex.

Single Instruction Retry (SIR) is a similar technique but is called by exception

and used in conjunction with ECC. If an error is detected by an ECC decoder in a

181



pipeline register, the instruction can be flushed prior to committing the results to the

register file or to the cache. The scheduler would then reissue the instruction. If the

error was a soft error, the result would be correct on the second iteration. If the error

recurs, an exception can be raised and fault diagnosis and repair handled at a higher

level.

7.3.2.2 Masking. ECC can be used at the instruction level. Modern

processors are typically 64-bit architectures. In many cases, 64 bits are not required

(e.g., single precision floating point numbers require only 32 bits, and ASCII char

variables use only eight bits). ECC protected instructions could be created to protect

data in a manner transparent to the higher levels. For example, the 64 bit data word

can be encoded and stored in the cache. It would be decoded prior to arithmetic

operations and recoded prior to results storage. If a systematic code is used, the

uncoded word remains unchanged as part of the code word. Thus, operations can

be performed on just those bits, eliminating the need to decode the word at each

step. Updated code bits are recomputed only when necessary as determined by the

processor or the operating system.

7.3.2.3 Diagnosis. The instruction set may include special BIST in-

structions to assist in the test process. These instructions may be used by the op-

erating system to access internal registers or force connections to specific hardware

modules so that testing can be controlled.

The instruction set may also be augmented so instructions can be executed on

particular functional units in the ALU. This method of EXE unit replication can be

used by the operating system to rerun instructions on two or more functional units

so the results can be compared.

7.3.2.4 Repair. In addition to BIST instructions, the processor may

implement instructions for BISR. These instructions would be used by the operating

system to control modular reconfiguration, disconnecting faulty modules throughout
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the pipeline and connecting functional spares. The advantage of BIST and BISR

instructions is a conventional datapath can be used without adding a large number

of additional wires used only for testing.

The instruction scheduler can be used to repair faulty modules. It is possible to

develop a fault tolerant Tomasulo scheduler . If the processor possesses multiple func-

tional units of each type (e.g., multiple floating point adders, integer dividers, etc.),

the scheduler can be made aware of functional status of each unit, avoiding disabled

units. Thus, one architecture can be fabricated. Redundant hardware contributes to

application performance since the scheduler can issue instructions to these functional

units. At the same time, performance degrades gracefully if one or more units are

defective. Following yield testing, a processor with more operational units can be sold

as a higher performance processor versus one with fewer operational functional units.

7.3.3 Operating System Level. Many of the fault tolerance techniques in-

troduced at the lower levels require complicated control that is best implemented by

the operating system. Errors will typically trigger an exception which would invoke

the operating system BIST and BISR routines.

7.3.3.1 Detection. One method of error detection is memory address

range checking . The operating system could check memory addresses to ensure they

are in a valid range for the program (e.g., in the application memory space and

not the operating system protected memory). Invalid addresses can be the result

of application software error, malicious code, soft error, or hardware fault in the

processor. The latter two causes can trigger the operating system to run BIST/R

routines to determine the health of the processor and repair faulty modules.

7.3.3.2 Masking. Cache preloading is a task sometimes handled by

the operating system. This process can be extended to handle faults in the cache

memory. False and conflicting hits are described in Chapter VIII. These events

require one or more cache lines to be invalidated and reloaded from main memory.
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If the device technology is subject to high rates of permanent operational failures

(i.e., hard faults), the cache capacity should gracefully degrade as defects occur. The

operating system can be used to monitor cache size, changing its preloading strategy

as appropriate. Since the operating system is aware of the fault status of each cache

row, it can avoid faulty lines. This will reduce the complexity of the cache control at

the cost of performance, since the work is now done in software.

The operating system can also implement ECC. If not provided at the hardware

level, the operating system can provide ECC protection of application data transpar-

ently. One advantage of this technique is the code choice can be changed based on

the soft error rate in the environment. If the hardware provides a soft error rate

monitor, the operating system can switch ECC codes to provide a level of protection

that matches the need. If the soft error rate is low, ECC may be turned off to maxi-

mize performance. If the soft error rate is high, complicated ECC codes can be used

to provide better soft error protection (especially for critical areas of the operating

system), at the cost of slower performance.

7.3.3.3 Confinement. Operating system level checkpointing can iso-

late errors that occur in a particular module of code.

7.3.3.4 Diagnosis. Many of the techniques proposed require the op-

erating system to control testing and recovery. The operating system should include

BIST routines to isolate faults to a particular module or hardware unit. These routines

can be triggered by exception when errors are detected at lower levels, or periodically

by the operating system itself. The BIST routines run during idle cycles to minimize

impact to the application code.

7.3.3.5 Repair. The operating system can repair defects in several

ways:
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BISR routines. The operating system can include the routines to reconfigure or

disable faulty modules.

Memory scrubbing. Errors will accumulate in ECC words stored in memory due

to SEUs and hardware faults. The operating system or cache controller should

periodically scrub the memory contents to restore correct values.

Reconfiguration control. The operating system can control the operation of the

low level hardware protected by modular reconfiguration and FPGA-like recon-

figuration. Faulty modules are disabled, and replacement modules are turned

on and connected.

Dynamic routing. If a fine-grained reconfigurable architecture is used in the CPU,

the operating system can be used to reconfigure the design around faulty com-

ponents. Dynamic routing is very expensive in terms of performance, but could

provide very high reliability.

Software replacement. Software routines can replace faulty hardware modules.

For example, software versions of floating point routines could be substituted

by the operating system to replace faulty hardware units. The processor could

raise an exception when an executing instruction requires a failed hardware unit,

triggering the operating system to call the software version.

7.3.4 Application Level. Application level fault tolerance can detect and

recover from soft errors and hardware faults as well. Detection can be done through

the use of “reasonableness checks” and “reversal checks” as described in Chapter

II. Confinement and recovery techniques can be implemented using modular coding

and checkpointing. Upon detecting an error, the application calls operating system

routines to diagnose and recovery from the error. As a general rule, however, the FDT

processor should not rely on the application code to detect or recover from faults.
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Figure 7.1: Fault and defect tolerant computing is likely to
follow an evolutionary path. Techniques with moderate redun-
dancy requirements are preferred, provided the device technol-
ogy can be made suitably reliable. In the long term, extremely
unreliable technologies may be adopted but will require very
aggressive fault tolerance techniques such as von Neumann mul-
tiplexing.

7.4 Proposed Architecture

The evolution of computer architecture to adapt to new device technologies will

be a gradual process. While nonclassical architectures such as quantum computers

and neural nets may one day replace the von Neumann architecture, it is likely fault

and defect tolerant computer will be an adaptation of a modern conventional architec-

ture. One or more of the fault tolerance approaches described in this chapter will be

incorporated into a traditional design. Ideally, the fault tolerance capability is trans-

parent to the application developer. The choice of techniques and the level of fault

tolerance will largely depend on the requirements of the device technology. The most

successful future technology will likely be the one that requires the least modification

of a conventional architecture.

While von Neumann multiplexing was shown in Chapter VI to be highly ef-

fective, it requires large amounts of redundant hardware. To compete with CMOS,

a future device technology will have to be several orders of magnitude smaller than
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CMOS. Similarly, fine-grain reconfiguration is very effective, but at a large cost in

redundant hardware, as well as the performance cost of dynamic routing.

For these reasons, the remainder of this document will focus on a “mid-term”

architecture. While incorporating much more aggressive fault tolerance techniques

than modern CMOS-based designs, the architecture does not require the very large

levels of redundancy that are required to implement von Neumann multiplexing or

other techniques. The following chapters show that RMR, modular reconfiguration,

TMR-R, and other moderately expensive fault tolerance techniques can implement a

processor using devices with defect rates higher than 10−6, three orders of magnitude

higher than conventional CMOS. Beyond this point, the most aggressive techniques

are required.

The proposed fault and defect tolerant processor architecture is a 32-bit pipelined

RISC architecture, adapted from the classical MIPS design [PH98]. The top level ar-

chitecture is shown in Figure 7.2. The design has five pipeline stages, with separate

instruction and data caches. While not shown in the figure, the proposed design does

incorporate a full IEEE-754 compliant floating point unit. The architecture of the

unit is adapted from [MP00].

The general design approach maximizes the yield of each major module in the

processor through hardware fault tolerance techniques. Since the yield of the overall

CPU is bounded above by the yield of each module, care is taken to examine each

module in the processor.

While all of the fault tolerance methods described in this chapter may be

adopted, the most important techniques are those at the module and circuit level.

Given the relative frequency of defects, the probability any module will function with-

out circuit level fault tolerance is very low. Higher level fault tolerance only becomes

effective when some minimum level of reliability can be provided by the lower level

fault tolerance techniques. Thus, the design incorporates most of the module level

techniques. Most instruction, operating system, and application level fault tolerance
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Figure 7.2: The proposed fault and defect tolerant proces-
sor architecture is based on the classic single-issue MIPS 32 bit
pipelined RISC design [PH98]. While included in the FDT de-
sign, this diagram does not show the floating point unit.
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techniques are described notionally, but will not be modelled further in subsequent

chapters.

A minimal FDT design must incorporate the following techniques:

Module and circuit level:

• ECC

• Timing checks

• RMR/TMR

• TMR-protected reconfiguration

• Modular reconfiguration (including spare rows)

• Localized BIST/R

• Fault detection exceptions

Instruction and Operating System Level:

• SEU Rate monitoring

• Software replacement of Hardware functions

• Operating System BIST/R routines

The conceptual operation of the FDT processor is described in the next section.

7.5 Concept of Operation

This section covers four aspects of the FDT processor: yield testing, startup

configuration, runtime testing, and soft error detection and recovery.

7.5.1 Yield Testing. At time of fabrication, each chip must be tested to

ensure some minimal level of functionality. With an unreliable nanotechnology, defects

are highly likely to be present in each processor. Testing determines the location and

effect of the defects, and whether the fault tolerance built into the architecture can
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correct them. Chips that are unable to perform the required function are discarded.

Depending on where the defects occur, it may be possible to provide a diminished

level of functionality (e.g., reduced cache size or an EXE unit with fewer functional

units). These chips would be sorted and sold separately.

VLSI testing is a complicated field, and the specific testing methods are beyond

the scope of this research. Notionally, test techniques for conventional architectures

can be used to test the FDT processor. A design for testability approach will be

used to simplify the testing process by incorporating special test hardware into the

architecture, such as JTAG hardware, localized BIST/R units, and boundary scan

shift registers.

The test process must examine each module in the processor to determine func-

tionality. Functional units protected by RMR, TMR, modular reconfiguration, and

TMR-R are correctable if some minimum number of modules are fault-free (e.g., two

for TMR). Larger modules such as the cache memory are functional if the number of

faulty rows does not exceed the number of spares. Inevitably, some of the logic in the

processor will not be protected (i.e., the “chip kill logic”). For example, a fault in the

majority voter in a TMR module will likely disable the entire functional unit, even if

all three redundant modules are functional. The test strategy must, at a minimum,

examine all the chip kill logic in the processor.

During the test process, known defects should be mapped to create an initial

configuration for all modules protected by modular reconfiguration or TMR-R.

7.5.2 Startup Configuration. The processor contains a number of mod-

ules protected by modular reconfiguration and TMR-R. If the technology supports

nonvolatile memory storage, the settings for these modules can be programmed dur-

ing yield testing and modified only when new faults are determined. However, if

nonvolatile storage is not available, the configuration settings must be loaded upon

startup in a manner similar to the modern FPGA.
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Startup configuration should be controlled by hardware with a very high reli-

ability. The FDT processor is likely to have a number of defects and is unlikely to

be able to configure itself directly. A configuration loader should be implemented

either on the same chip as the processor, or on a separate chip. In either case, the

configuration loader should be implemented using highly reliable technology. If the

device technology supports it, reliability of the loader can be increased by increasing

the device size. If the reliability cannot be increased using the same technology as the

main processor, a separate configuration loader can be implemented in silicon CMOS.

The most straightforward approach to programming the configuration registers

is to use a long shift register, similar to that used in FPGAs. Each of the configuration

registers in the functional units protected by modular reconfiguration is connected in

series. In effect, the FDT processor is actually a very coarse-grained FPGA. The num-

ber of configuration bits will be much less than an FPGA, however, and configuration

time will be very short.

7.5.3 Runtime Testing. Runtime testing is important for two reasons: the

device technology may be subject to operational hard failures, and yield testing may

not locate all defects present at manufacture. Runtime testing allows the processor

to detect these errors, repair them when possible, and continue operation.

Runtime testing should be performed periodically during processor operation.

Test routines can be run at the local module level, and at the instruction level. The

test instructions would be stored in ROM, similar to the Power On Self Test (POST)

routines in modern computers. Localized testing could be done in parallel, with each

unit (e.g., the instruction cache, data cache, ALU, etc) testing itself. Instruction level

test would augment localized testing for those circuits not covered by local BIST.

If possible, the local BIST/R units will reconfigure their spares internally to

repair detected faults. If correction is not possible, an exception would be immediately

signalled. The operating system would then attempt to repair the fault. A fault may

be severe enough to render the pipeline inoperative (e.g., a fault in the majority voter
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providing TMR to the program counter incrementer). If the pipeline is inoperative,

a fault signal is output from the chip. While the effects are severe, the number of

devices in these critical portions of the chip are relatively small. For the instruction

cache, the number of critical devices is approximately 15,000 (cf., Chapter VIII).

7.5.4 Soft Error Recovery. Even if the rate of operational hardware faults

is low enough to reduce the need for runtime testing, soft errors and SEUs will be

common. The FDT processor must detect and correct these errors. Many effects are

masked by RMR and TMR-R, reducing the probability that incorrect results will be

latched into the pipeline registers and committed to the registers or cache. ECC will

mask the effects of SEUs that occur in the registers and cache.

The processor should monitor the rate of soft errors and single event upsets. As

the rate of SEUs increases, the operating system should scrub the cache memory more

often. Error correcting codes can protect against both hard and soft errors. Frequent

scrubbing increases the number of hardware faults that can be masked.

7.5.5 The Role of the Operating System. The operating system performs

the following functions:

• SEU rate monitoring

• SEU scrubbing

• Software replacement of hardware functions

• Operating system BIST/R routines

The operating system controls processor function and coordinates the activities

of the local BIST/R modules. It also reduces the hardware complexity of the BIST/R

modules by performing some of the work in hardware. In addition, it can provide

a software backup for the hardware BIST/R functions. In many cases, even if the

localized BIST/R module fails, the pipeline is still functional and the operating system

can override the hardware BIST/R.
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The operating system also provides routines to replace the floating point func-

tions if the hardware units are faulty. Failures in the floating point unit do not effect

pipeline operation, and are easily recoverable through software emulation, albeit at a

much longer execution time.

7.6 Conclusion

This chapter has outlined the high level architecture of the fault and defect

tolerant processor. It incorporates fault tolerance techniques at the modular, instruc-

tion, and operating system levels to increase yield and operational reliability for both

hard faults and soft errors. A notional concept of operations described the fabrication

and runtime testing, as well as how defects would be detected and recovered. The

next two chapters discuss the implementation details for the CPU, and show that

an acceptable yield can be achieved even with devices with failure rates as high as

10−6. As more than 90% of the devices in a modern microprocessor are in the cache

memory, it is examined first. Chapter VIII proposes an effective Content-Addressable

Memory design. The remainder of the CPU is examined in Chapter IX, and overall

chip yield is determined.
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VIII. Cache Memory

8.1 Introduction

In a modern microprocessor, register and cache memory accounts for as much

as 90% of the transistors on the die. Thus, memory reliability is a key factor in the

reliability of the overall processor. Fault and defect tolerance techniques are already

widely used to improve the yield of silicon CMOS memory chips. Spare columns are

used to increase manufacturing yield, while ECC is becoming common for soft error

tolerance. Indeed, Microsoft recently proposed the use of Error-Correcting Code-

protected RAM for general purpose computers running the Windows Vista operating

system [Cou06].

Most fault tolerant memory designs use fairly conservative fault tolerance tech-

niques. Only moderate levels of redundancy are needed to overcome device defect

rates in the range of 10−9 to 10−7. More aggressive techniques such as von Neumann

Multiplexing may be required to use future nanodevices with defect rates that may

be orders of magnitude higher.

This chapter develops the functional architecture of the cache memory in the

FDT processor, meeting the objectives of goal two. It examines the problem of cre-

ating a reliable microprocessor cache memory architecture using nanodevices with

defect probabilities in the range (10−7 to 10−3), focusing on the architectural level.

Thus, Boolean logic is used and reliability-improving gate design optimization is not

required. A novel fault tolerant Content Addressable Memory (CAM)-based archi-

tecture is proposed and analyzed for effectiveness versus a non-fault tolerant CAM

as well as a conventional cache architecture. While most previous work examines the

memory array in isolation, this research incorporates support and control circuitry to

create a more accurate model of the overall memory yield. Requiring approximately

15 times more devices than the conventional design, the new design is well suited

for future nanotechnologies. Simulation shows a 90% yield for process technologies

with defect rates as high as 4×10−6, three orders of magnitude higher than non-fault

tolerant designs.
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Table 8.1: Cache Characteristics

Cache Size 64KB 512KB 1MB
Block Size (Bytes) 64 64 64

Cache Lines (per bank) 512 4096 8192
Tag Bits per block 46 43 42
Total Data Bits 524,288 4,194,304 8,388,608
Total Tag Bits 47,104 352,256 688,128
Total Size (KB) 70 557 1112

8.2 Background

8.2.1 Cache Characteristics. Three cache sizes are considered: 64KB,

512KB, and 1MB. These sizes are representative of modern microprocessors. The

techniques described in this chapter are easily scalable to larger cache sizes. Each

cache is two-way set-associative and dual-ported. A summary of the cache character-

istics is shown in Table 8.1.

A block diagram of a typical memory is shown in Figure 8.1. The memory cell

array contains the largest number of devices, and has been the focus of much attention

to improve reliability. The address decoders, output buffers, access and timing control

circuits, Error Checking and Correction (ECC), and Built-In Self-Test/Self-Repair

(BIST/R) hardware consists of predominantly combinational logic.

8.2.2 Yield Modelling. The mathematical models used in this analysis are

found in Chapter V. Basic yield expressions are introduced in Section 5.1.1. Fault

types are discussed in Section 5.2. Clustering of defects is discussed in Section 5.1.2.

Yield of modules formed from multiple components is discussed in Section 5.1.3.

8.2.3 Hardware Fault Tolerance Techniques. The cache design relies pri-

marily on moderately redundant fault tolerance techniques (i.e., TMR, modular re-

configuration, TMR-R, and ECC). Models for the basic fault tolerance techniques are

discussed in Section 5.3. Memory fault tolerance is discussed in detail in Sections

5.4.2 and 5.4.3.
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Von Neumann multiplexing [vN56] was considered for the FDT cache design.

However, it requires large amounts of redundant devices in parallel and is not generally

beneficial unless the entire logic chain can be replicated in parallel. Von Neumann

multiplexing can protect large logic modules, combining the parallel result into a

single output signal with a majority gate. However, the reliability of this technique is

limited by the reliability of the majority gate. Given the large number of devices in the

cache, use of von Neumann multiplexing in is not economical for device technologies

with λ1 < 10−5. This chapter and Chapter IX show less expensive techniques are

capable of achieving high yields when λ1 < 10−5.

Threshold logic gate (TLG) circuits have also received some attention for fault

tolerance and neural networks applications [LC67,Rei00]. Theoretically, TLG circuits

can be made arbitrarily fault-tolerant using small to moderate amounts of redundant

hardware, while Boolean circuits cannot [Rei00]. Threshold logic gates can be made

to implement any Boolean function and could replace conventional Boolean gates.

However, threshold logic design differs greatly from Boolean design, and new design

and synthesis tools will be required [BQA03]. For the near to mid-term, computers

will continue to be constructed from Boolean logic gates.

8.2.4 Previous Fault Tolerant Memories. Several fault tolerant memory

designs have been proposed [Lo94,SSS02,CLM+03], including standard memory and

content-addressable designs. These designs typically target modern CMOS, which

has a relatively moderate defect probability.

A variety of memory designs have been proposed that combine several fault tol-

erance techniques into a single architecture. These designs typically use a combination

of spares and ECC to provide both manufacturing defect tolerance and runtime SEU

fault tolerance. A synergistic effect of this approach was first observed in [SK92]. In

that design, spare rows/columns were combined with ECC to result in yields that

were higher than either technique alone.
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8.2.5 Error Correcting Codes. Forward error correction is increasingly used

in both DRAM memories as well as in modern CPU caches. Error Correcting Codes

(ECC) can correct both hard faults and Single Event Upsets (SEUs). A large number

of codes exist, but those most useful can be implemented quickly and efficiently in

hardware. Simple codes, such as the (72,64) Hamming code, are used in the AMD

Athlon 64 [Adv05]. These codes can detect two errors in the 72 bit codeword and

correct any one error. Another class of codes are the simple Hamming codes, such as

the (7,4) code which can correct one error. Using slightly more hardware, the (24,12)

Extended Golay code can correct any three errors [LDJC83].

The use of ECC should not have a large impact on cache latency for small

codes, as there are fast parallel implementations of both the encoders and decoders

for extended Golay codes. One parallel implementation of the decoder requires only

617 logic gates (roughly 2400 devices) [BMH00]. A parallel encoder is easily designed

using the algorithm in [LDJC83] and requires 1744 devices. Memory ECC is discussed

further in Section 5.4.1.

8.2.6 Support Logic Fault Tolerance. When predicting the yield and relia-

bility of memories, it is equally important to consider the support modules in addition

to the memory array. From (5.11), it is evident the yield of the overall cache or chip

is bounded above by the yield of any individual module. The benefit of a highly

redundant and reliable memory array can be sabotaged by a control module with no

fault tolerance. Thus, it is equally important to model the performance of the control

logic, Built-In Self-Test (BIST) module, multiplexers, registers, and other hardware

in the cache. Memory elements such as registers can be protected in a manner similar

to the main memory array. If the device technology allows, support circuits can be

implemented with more reliable devices (e.g., by making these transistors physically

larger in the VLSI layout). If this is not possible, other fault tolerance techniques can

be used. The three most common techniques for combinational logic are R-Modular

Redundancy, Reconfiguration, and Multiplexing. Yield models for RMR are found in
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Section 5.3.2; modular reconfiguration is in Section 5.3.3; and TMR-protected mod-

ular reconfiguration is in Section 5.3.4.

8.2.7 Assumptions. As discussed in Chapter IV, several assumptions are

necessary prior to analysis. First, all devices are identical (i.e., reliability of key devices

is not increased by altering their size or physical characteristics). Second, majority

gates are implemented as simple Boolean circuits. Third, faults are modelled such

that a fault in any device in a module disables that module. Finally, two simple defect

clustering models are used: a non-clustered model (i.e., Poisson distribution), and a

large-scale clustered model (i.e., the negative binomial model [Kor89].)

8.3 Architectures for Comparison

This section analyzes the fault tolerance performance of two cache architectures

intended for low defect rate technologies. The key comparison parameter is Maximum

Allowable Defect Probability (MADP). MADP is defined as the maximum defect prob-

ability of the devices used in the cache, such that an acceptable manufacturing yields

and runtime reliability is achieved. This section first examines a typical cache in-

corporating no fault tolerance. Next, a typical CAM-based cache is analyzed whose

only fault tolerance is row sparing. Later in this chapter, an improved fault tolerant

CAM-based cache architecture is proposed and shown to possess a greater MADP.

8.3.1 Cache A: Non Fault Tolerant Fixed Design. This design is represen-

tative of a typical cache designed to implement maximum memory capacity with the

smallest number of devices. The required modules forming the cache are summarized

in Table 8.2. For each type, the number of modules required, as well as the number

of devices (i.e., transistors) is shown for each of the three cache sizes. In general,

the cache is made up of four memory modules, two each for tag and data. Each

memory module can be viewed as a three-dimensional block. The row and column

are determined by the address lines. For any address, 64 data bits are returned in

parallel and form the Z dimension. Thus, the size and numbers of the row and column
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Table 8.2: Cache A (No Fault Tolerance) Components

Mods Number of Devices per Mod
Cache Size 64KB 512KB 1MB

Control 1 100K 100K 100K
Data Mem Array 2 2.10M 16.8M 33.6M
Tag Mem Array 2 208.9K 1.57M 3.08M

Data Row Decoders 6 910 4,626 4,626
Data Col Decoders 6 910 2,064 4,626
Tag Row Decoders 6 396 910 2,064
Tag Col Decoders 6 170 910 910
Tag Comparators 4 882 828 810

2-to-1 by 64 Muxes 2 770 770 770
64 bit registers 3 2,178 2,178 2,178

1-to-2 by 64 Demux 1 514 514 514
Ncache 4.74M 36.86M 73.45M

decoders can be easily determined. For example, the 64KB cache requires two data

memory banks, each of 32KB. Each memory bank is a 64 by 64 by 64 array. Each

read and write port in each bank requires its own row and column decoders. Since a

set-associative cache has two data banks, the total number of row decoders is thus 6.

The larger caches require more complex decoders.

Since there is no redundancy, all Ncache transistors must function for the cache

to be functional. Yield is therefore (5.5) for the unclustered case, and (5.10) for the

clustered case. The number of transistors in the control module is an estimate, but

has little impact on overall cache yield. Yield is dominated by the large number of

devices in the memory arrays. Unless Ncontrol exceeds 106 devices, it does not have

significant impact on yield.

The unclustered yield of the three caches is shown in Figure 8.2. Since the yield

of the entire processor can be no greater than the yield of the cache module, the

region of concern is above Ymin = 0.9. In Chapter IX, the entire CPU is considered,

and the target yield becomes Ymin = 0.7. From the plot, it is evident that even small

caches possess a MADP of no more than λ1 = 10−7.
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Figure 8.2: Predicted unclustered (Poisson) yield for no fault
tolerance. Ymin = 0.9.

Table 8.3: Cache A (No Fault Tolerance) Maximum Allowable
Defect Probability

Cache Size 64KB 512KB 1MB
Ncache 4.74M 36.86M 73.45M

MADP (unclustered) 2.22 × 10−8 2.87 × 10−9 1.44 × 10−9

MADP (clustered) 2.53 × 10−8 3.16 × 10−9 1.60 × 10−9

Yield increases slightly when defect clustering is considered. For the 64KB

cache, these effects are shown in Figure 8.3. However, the improvement is minimal

at the top end of the curves where Y > 0.9. To determine MADP in practical cache

design, defect clustering can be ignored. Monte Carlo simulations results for Cache

A are summarized in Table 8.3.

8.3.2 Cache B: Basic CAM Design.

8.3.2.1 Design and Operation. This section describes the design of a

Content-Addressable Memory (CAM)-based cache architecture, models its yield, and

identifies the limiting performance factors. Figure 8.4 shows the basic architecture.

The implementation is fully-associative, and thus a cache word of 64 bytes can be
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placed in any of the CAM entries. Depending on the cache size, the CAM requires

1024, 8192, or 16384 entries, not including additional entries used as spares.

The cache has two read ports. To perform a read operation, the read address

is placed on either the A1 or A0 address bus. Each of the CAM words compares the

addresses on this bus with the address of their stored data. If the addresses match,

the data register is connected to the Data Out (DO) bus. The entire 512 bit cache

block is passed to a multiplexer, which selects the correct 64 bit word to pass out of

the cache.

The control module of the cache consists of three parts: a CAM Status Register

(CSR), the Next CAM Word Register (NCWR), and control logic. The CSR uses one

bit per CAM word to store the fault status. Upon startup and periodically during

operation, the Built-In Self-Test/Repair (BIST/R) module tests the status of each

CAM word. Faulty words are removed from use and replaced with the spare words

in the CAM array. The NCWR determines which CAM word to use for the next
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cache write operation. The cache uses a modified least-recently used strategy for

block replacement. The control logic block includes the remaining combinational and

sequential logic to manage cache operation.

The final two blocks in the cache are the CAM Word Decoder and the BIST/R

module. The CAM Word decoder is a 10-to-1024 bit address decoder that selects a

CAM cell for writing. The BIST/R performs initial testing to determine the fault

status of each of the CAM words. It cycles through the CAM words, testing the

registers, comparators, and output transmission gates for correct operation. Fault

status is stored both in a register in each CAM word as well as the CSR in the control

module.

Figure 8.5 shows the design of a single CAM word. The CAM word consists of

registers to store the tag and data fields, as well as word status (e.g., valid and dirty

bits, plus an additional bit to store the fault status of the CAM word). Some signals

are omitted for clarity. Since the word incorporates no fault tolerance circuitry, a

single faulty device will result in the entire CAM word being labelled as faulty.

Transmission gates connect the CAM word to a common output bus. To limit

the number of devices in the CAM word, all 512 bits in the CAM data word are
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returned on the appropriate data bus when a hit occurs. A key limitation of this

approach is that a fault in one of these transmission gates may disable the entire

CAM array.

All of the CAM words are connected to the data buses, but in normal operation

no more than one word will ever match a requested address except in the case of Single

Event Upset (SEU). If two or more words do match, a conflicting hit occurs. One lim-

itation of this particular architecture is the control unit cannot determine which CAM

words are returning the hit. For a conflicting hit, the control unit must invalidate the

entire cache, retest to determine if any of the CAM words have permanent faults, and

reload the cache. A more serious problem is the possibility of a false hit, in which a

SEU flips a bit in the tag memory such that a single row incorrectly matches a read

request. False hits are undetectable in this architecture. The FDT cache architecture

(developed later) corrects both problems. It also reduces the probability of false hits,

and includes circuits to isolate the CAM words generating false and conflicting hits,

allowing only the affected words to be invalidated.
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Finally, the 1-to-8 demultiplexer is used for cache writes. The memory archi-

tecture uses 64-bit words. Thus, a single cache write will change only 64 bits in the

512 bit CAM word. The demultiplexer enables the Write Enable lines for the proper

64 register flip-flops.

The cache can be either write-back or write-through. In environments subject

to SEUs, a write-through architecture is preferred. If a SEU changes a bit in a tag

address stored in the cache, a requested cache block may not be found on a subsequent

cache read. A false miss occurs, causing an unnecessary load from main memory but

resulting in no data loss. It is also possible for the SEU to change a tag such that one

or two CAM words incorrectly match a cache read request. This architecture requires

the entire cache to be invalidated, but this can be done safely as the write-through

architecture guarantees a valid copy in main memory.

Also note that this cache architecture does not include Forward Error Correction

(FEC) to detect or correct SEUs in the data block. SEUs cannot be detected and

soft error tolerance will be very poor.

The estimated number of devices in Cache B (the simple CAM) is shown in

Table 8.4.

8.3.2.2 Fault Tolerance Analysis. This section analyzes the manufac-

turing yield of the simple CAM-based cache architecture.

There is very little fault tolerance capability in this version of the cache archi-

tecture. The CAM array possesses spare rows that can be used without restriction.

Memory models for Global Spares are applicable for the CAM array. The remainder of

the cache can be modelled using (5.3) and (5.11) for modules without fault tolerance.

The transmission gates connecting each CAM word to the output buses must be

handled differently from the remainder of the CAM word. In this case, it is useful to

extend fault analysis from the Boolean level to the device level. Two common failure

modes of transistors are fail-open and fail-closed faults. With a fail-open fault, one of
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Table 8.4: Cache B (Simple CAM) Device Count

Number of Devices per Mod
Cache Size 64KB 512KB 1MB
CAM Word 27,766 27,766 27,766

CAM Array (no spares) 28.4M 227.5M 454.9M
CAM Array (10% spares) 31.3M 250.2M 500.4M

CAM Word Decoder † 49,176 491,550 1.05M
Output Muxes 10,252 10,252 10,252

Output Registers 4,356 4,356 4,356
BIST/R 20,000 - 80,000

Control Logic 20,000 - 80,000
CAM Status Register† 40,572 324,432 648,828

NCW Register † 376 478 478
Control Module (total) 61K-121K 345K-385K 669K-709K
Ncache (10% spares) ≈ 31.4M ≈ 228.3M ≈ 502.2M

†: Assuming 10% spare rows.

the two transistors in the transmission gate cannot close, and thus a strong connection

between the CAM word and the data bus cannot be made. The CAM word cannot be

used to store data, but it is possible to disable the word and replace it with one of the

spares in the array. A more serious problem is the fail-closed fault. With this fault,

the register in the CAM word is always connected to the data bus line, resulting in

bus contention when another CAM word tries to drive the bus. The result may be

a short between power and ground and an indeterminate logic state on the line. A

fail-closed fault on any of the transmission gates connecting to a data bus line will

effectively disable the whole line even if it occurs in an unused CAM word.

Assuming the worst case fail-closed faults, modelling of cache yield requires the

bus transmission gates be included in the “no fault tolerance” support logic section

rather than the global spares CAM word analysis. For the Poisson case, the overall

cache yield is thus

YcacheB = P (C) · P (T ) · P (S), (8.1)

206



10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
0

10
1

10
2

10
3

10
4

10
5

λ
1

M
in

 S
pa

re
 R

ow
s

Cache B: Minimum Number of Spare Rows Target Y=0.9, No Chip Kills

64KB, α=0.3

64KB, α=200

512KB, α=0.3

512KB, α=200

1024KB, α=0.3

1024KB, α=200
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where P (C) is the probability the CAM array is correctable (i.e., possesses at least R

functional CAM words), P (T ) is the probability no bus transmission gates are faulty,

and P (S) is the probability that the remaining support logic is functional.

Ignoring the bus transmission gates for now, global sparing using spare CAM

words is very effective for a MADP of roughly 10−5 (Figure 8.6). The target yield of

90% can be achieved using a relatively small number of spare rows. For λ1 > 10−5,

the required number of spare rows grows exponentially and requires an unacceptable

number of redundant devices. Note that this figure does not include chip kill effects

of failing bus transmission gates. A failure in any bus TGATE will disable the entire

bit column. Since no fault tolerance is included, this disables the entire CAM array.

Adding spare rows increases the probability of a chip kill event and rapidly counteracts

any benefit. When bus chip kill events are included, the plots in Figure 8.6 become

much steeper and the slope increases to infinity. This affects overall cache yield. As

shown in Figure 8.7, use of more than 10% spare rows provides diminishing benefit.
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For device technologies with λ1 < 10−5, this type of CAM array provides ac-

ceptable yields. Simulation results for the 1MB CAM array, not including support

circuits, are shown in Figure 8.8. The two left lines show a CAM with no spare rows

for the unclustered (Poisson) and the clustered cases. Yield is less than 90% even for

defect rates of 10−9. The other two lines show yield for the CAM with 8192 spare

rows (i.e., 100% spares).

Most fault tolerant memory research concentrates on techniques which add

spares to the main memory array. In this cache, however, the limiting factor is

the support logic and the transmission gates rather than the CAM words.

The remaining devices in the cache (i.e., the support logic) possess a MADP of

much less than the value of the CAM array. Figure 8.9 shows the yield of the support

logic for both the Poisson case and that of defect clustering. Due to the large number

of devices not protected by fault tolerance techniques, the MADP for the three cache

sizes range from roughly 10−7 to 10−6, much less than the defect tolerance capability

of the CAM array with sufficient spare rows.
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Figure 8.8: Examining only the CAM array without consid-
ering chip kills in the bus transmission gates, adding spare rows
has a significant benefit to MADP.

An even more significant limitation comes from the transmission gates connect-

ing the CAM array to the output bus. Even the small 64KB cache with no spares

requires more than 2.1 million devices to make the connections. This total domi-

nates the number of devices in the remaining no fault tolerance section of the cache.

The yield of the transmission gate section of the cache is shown in Figure 8.10. The

MADP of the three caches ranges from roughly 10−9 to 10−7. These results are only

marginally better than those of Cache A. Thus, without significant attention to the

support logic and overall architecture, a fault tolerant memory core has little impact

on overall cache yield.

8.3.2.3 Simulation. Cache B yield was simulated using MATLAB R©

to verify the accuracy of the analytical expressions for the Poisson models for the

non-clustered case. The simulation initially calculates the number of devices in each

module and in the entire cache. During each iteration of the simulation, a random

number of faults are generated using the negative binomial distribution, with the
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proper clustering parameter, α, and scaling parameter p based on the number of

devices in the cache. For α > 10, the negative binomial distribution approximates

the Poisson. These faults are randomly distributed across the cache using a uniform

distribution appropriate for large-scale defect clustering. Each module is examined

for correctable faults. The entire cache is functional if all the modules are correctable,

and at least rr of the tr CAM rows are correctable. At least 2000 iterations were run

for each simulation. The average yield and 90% confidence intervals were computed

and the confidence intervals confirm the average yield is within 1% of the true value.

The overall yield of cache B, combining the three sections, is shown in Figure

8.11. The MADP for a 90% yield is summarized in Table 8.8 at the end of the

chapter. Comparing the results for Cache B to those of Cache A (incorporating no

fault tolerance), Cache B provides only a small benefit to MADP for the medium and

large caches. For the small 64KB cache, MADP is actually worse than the non-fault

tolerant cache. The large number of devices required to implement the transmission

gate connections and the CAM word select decoder effectively overcome the benefit

of redundancy.

8.4 FDT Cache Memory Overview

This section proposes a new design for the CAM-based cache, called Cache C,

incorporating improvements to correct the deficiencies of the basic CAM described

in the previous section. The new design and operation of the improved cache is

described, and its yield analyzed. This section provides a summary of the design,

including schematics and hardware cost figures. Operation and test of the cache are

discussed in Section 8.5. The design is discussed in detail in Section 8.6, including

detailed analysis of ECC code choices, bus design, and support logic fault tolerance.

Yield simulation results are given in Section 8.8.

The CAM-based cache described in the previous section suffers from three key

drawbacks: the design uses a large number of devices in areas unprotected by fault

tolerance schemes; the bus design allows a single fail-closed defect in a transmission
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Figure 8.11: The combined yield of the basic CAM cache,
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gate to disable an entire line in the output bus; and there is no tolerance for soft errors

or single-event upsets (SEUs) in the control module or the tag and data memory in

the CAM array. Furthermore, there is no way to determine the sources of conflicting

hits, and no way to recover without invalidating the entire cache.

The architecture in this section corrects these deficiencies. The overall approach

is to make best use of the CAM array’s ability to replace failed components with spare

rows by moving logic from the support and control sections into the CAM array, where

it is easily protected using spare rows. Highlights of the CAM word design include:

the use of the extended Golay (24,12) code for SEU protection; replication of the

output bus signals to protect against failures in the transmission gates; internally-

enabled transmission gate multiplexing to reduce the number of output bus signals

required; and the use of an internal CAM Word address comparator rather than a

monolithic external address decoder.
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Figure 8.12: The improved CAM architecture incorporates
ECC in the data memory and control registers, distributes the
function of the CAM word decoder among the rows in the CAM
array, and replicates each bus line R times to reduce the prob-
ability an output line will be disabled.

8.4.1 CAM Top Level Design. The top level architecture of Cache C is

shown in Figure 8.12. In addition to ECC in the CAM array, it adds ECC protection

for the registers used in the control and BIST/R modules. The ECC coders and

decoders for the data memory are external to the CAM array and are protected by

triple modular redundancy (TMR). Finally, the R replicas of each signal are combined

into a single logic signal using OR gates, with inputs protected by transmission gates

controlled by the new Bus Line Status (BLS) registers. In this way, if a bus TGATE

suffers a fail-closed fault, that column can be disconnected from the OR gate using

the TGATE at the gate input. Thus, as long as at least one of the R columns has no

faults, the signal can be corrected.

The implementation is fully-associative, and thus a cache word of 64 bytes can

be placed in any of the CAM entries. Depending on the cache size, the CAM requires

1024, 8192, or 16384 entries, not including additional entries used as spares. The

cache has two read ports. To perform a read operation, the read address is placed on

either the A1 or A0 address bus. Each of the CAM words compares the addresses on

this bus with the address of their stored data. If the tag addresses match, internal
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cates each bus line R times. The extended Golay (24,12) code is
used to encode each of the eight 64 bit words in a CAM row into
six 24 bit codewords. The upper 8 bits of the sixth codeword
are zero, and are not stored. The same approach is used for the
tag bits.

multiplexors inside each CAM word select the registers of the desired encoded word

to connect to the Data Out (DO) bus.

Normal operation of the fault tolerant CAM cache is similar to Cache B, with

only a slightly longer latency due to the fast parallel ECC encoders/decoders.

8.4.2 CAM Word Design. The improved CAM word design is shown in

Figures 8.13 and 8.14. The CAM word consists of registers to store the tag and data

fields, as well as word status (e.g., valid and dirty bits, plus an additional bit to store

the fault status of the CAM word).

The (24,12) extended Golay code protects against hardware faults and SEUs in

the tag and data registers. Each of the eight 64 bit words in a CAM row are encoded

into five 24 bit codewords and one 16 bit codeword. The upper 8 bits of the sixth

codeword are zero and are not stored. Thus, the eight 64 bit data words in a cache
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parators are used.

block require 1088 bits of storage. Likewise, 118 coded bits store the 58 bit uncoded

tag.

A 1-to-8 demultiplexor is used for cache writes, as the memory architecture uses

64-bit words. Thus, a single cache write changes only 136 bits in the 1088 bit CAM

word. The demultiplexor enables the Write Enable lines for the proper 136 register

flip-flops.

Transmission gates connect the CAM word to the output bus. To limit the

number of bus lines, the comparator/transmission gate (TGATE) modules in Figure

8.14 act as a multiplexor to select a single 136 bit codeword to place on the data bus.

Eight three-bit comparators hardwired to the proper offset in the cache line enable the

desired group of 136 TGATES. Driver buffer gates are included after the TGATES to

restore signal levels and increase speed. Each bus line is replicated R times to protect

against faults in the bus connection TGATES. CE and OE enable logic is replicated

to prevent faults in these gates from connecting the row to all R lines of a bus line

simultaneously.
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Table 8.5: Cache C Device Count

Number of Devices per Mod
Cache Size 64KB 512KB 1MB

CAM Word ‡† 58,898 63,704 63,722
CAM Array (10% spares) 66.38M 574M 1.148B
ECC Encoders (data/tag) 62,304

ECC Decoders (data) 91,440
Control BLS Regs/ORs/Regs 3,060 6,100 6,100
Data BLS Regs/ORs/Regs 93,024 175,712 175,712

BIST/R 253,756
Control Logic 253,756

CAM Status Register † 81,216 649K 1.30M
NCW Reg/ECC coders † 13,660 13,762 13,796
Control Module (total) 348.6K 916K 1.57M

Chip Kill Devices † 15,880 15,982 16,016

Ncache† 67.23M 576M 1.151B
†: Assuming 10% spare rows
‡: Including bus transmission gates

The control module uses the CAM Word (CW) comparator to select a single

CAM word. This is useful for testing and in the event of a conflicting hit. For a

conflicting hit, the control module can determine which rows match the tag and in-

validate only those rows. Without this capability, the entire cache must be invalidated

and reloaded.

8.4.3 Hardware Cost. Hardware costs for the FDT cache design were calcu-

lated using the techniques developed in Chapter V. The estimated number of devices

in Cache C is shown in Table 8.5. The device total is dominated by the number of

devices in the CAM array. As with Cache B, 10% sparing is used.

8.5 Operation and Testing

8.5.1 Normal Operation. Normal operation of Cache C is very similar to

that of Cache B with the exception of the additional propagation delay to encode

and decode the data and tag words. Using ECC should not have a large impact on

cache latency, as there are fast parallel implementations of both the encoders and
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decoders for extended Golay codes [BMH00, LDJC83]. One parallel design for the

extended Golay decoder uses 617 logical gates (roughly 2468 devices) [BMH00]. A

parallel encoder is easily designed using the algorithm in [LDJC83] and requires 1744

devices.

The CAM Word decoder used during cache writes is replaced by an address

comparator in each CAM word. In this way, a failure in the decoder disables a

single CAM row rather than the entire CAM. The output multiplexers are moved

into the CAM word for the same reason. As shown in Figure 8.14, rather than using

a multiplexer to select the desired 64 bit (uncoded) word from the 512 bit cache block

(uncoded), eight registers are connected to a single output bus line by transmission

gates. Eight three-bit comparators hardwired to the proper offset in the cache line

enable the desired group of 144 TGATES. Driver buffer gates are included after the

TGATES to restore signal levels and increase speed.

8.5.2 Cache-Specific Error Behaviors. A cache can be either write-back

or write-through. In environments subject to SEUs, a write-through architecture is

preferred. If a SEU changes a bit in a tag address stored in the cache, a requested

cache block may not be found on a subsequent cache read. A false miss occurs,

causing an unnecessary load from main memory, but results in no data loss. A false

hit occurs when an SEU in a tag bit causes a CAM word to incorrectly match a cache

read request. If two or more CAM words match the request a conflicting hit occurs.

8.5.3 Testing and Recovery. Testing of the cache is done in three phases.

The first phase tests the support modules (i.e., control, BIST/R, encoders, decoders,

etc.) for faults. The second phase tests the control and data busses. For the control

signals, at least one of the R replicas of each signal must be functional or the cache is

uncorrectable. For the data signals, the error correcting code overcomes faults in the

output registers, the TGATE/OR modules, BLS registers, R signal replicas, and the

CAM array data registers. The BIST/R module tests which output signals can be
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corrected using the bus replica signals and ECC code. Finally, the third phase tests

the CAM array.

Testing of a CAM row includes all of the logic shown in Figure 8.13 including

the output bus transmission gates. The extended Golay code corrects up to 3 faulty

bits in every 24 bit code word in the data registers. The BIST/R reserves one bit of

correction capability to correct Single Event Upsets (SEUs) during operation. The

remaining two bits of error correction can be used to overcome manufacturing faults.

Of the tr total CAM rows, at least rr must be functional or the cache is declared

uncorrectable.

False hits, conflicting hits, and false misses are handled as follows. Tag words

are encoded using the (24,12) extended Golay code. All read or write tags are encoded

before being sent to the CAM Array. Decoding is not required, as comparisons are

done on the coded words. Handling of false misses is identical to the previous CAM

cache. A write-through cache design should be used to ensure a valid copy of the data

is in main memory. If a tag word suffers a SEU, a cache read for that block generates

a false miss and the block is reloaded from main memory. The erroneous cache block

is overwritten by subsequent load operations.

Conflicting and false hits are handled more effectively than the previous CAM

cache. Probabilities of false and conflicting hits are minimized by encoding the tag

bits using an ECC. With a Hamming distance of eight, at least eight bits in a 24 bit

codeword must be in error to generate another valid codeword. Additional protection

is provided for conflicting hits. When the conflicting hit occurs, two or more CAM

rows generate hit signals and attempt to drive the data bus. The control module

detects the invalid voltage levels during bus contention, suspends operation, and lo-

cates the specific CAM words causing the hits. The CAM Word (CW) address selects

each CAM row individually. Thus, only the CAM words matching the tag generating

the conflicting hit are invalidated, minimizing downtime and eliminating the need to

invalidate the entire cache. The BIST/R module tests the suspect CAM rows to de-
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termine if the cause was temporary (i.e., SEU or soft error), or is a permanent failure.

In the latter case, the CAM row is marked nonfunctional and removed from use.

The testing approach is aggressive, and requires the BIST/R to examine the

output busses and the CAM words together. To reduce test complexity, an alternative

approach tests the CAM rows separately from the output busses, and uses the ECC

capability for either the data registers or for the output busses and registers, but not

both. This require either more spare rows in the CAM array or the use of additional

fault tolerance logic in the output registers to avoid adding roughly 9800 devices to

the chip-kill portion of the design. If test times allow, however, maximal use of the

ECC capability is preferable.

For each CAM word, the BIST/R tests the registers, comparators, and output

TGATES for correct operation. Fault status is stored both in a register in each CAM

word as well as the CSR in the control module. Both the BIST/R and the control

module use TMR-protected module reconfiguration.

Status of the CAM words is stored in the CAM Status Register (CSR) in the

control module. As shown in Figure 8.12, the control module of the cache consists of

four parts: a CAM Status Register (CSR), the Next CAM Word Register (NCWR),

an ECC encoder/decoder, and control logic. Upon startup, and periodically during

operation, the Built-In Self-Test/Repair (BIST/R) module tests each CAM word.

Faulty words are replaced with spare words in the CAM array. The NCWR determines

which CAM word to use for the next cache write operation. The cache uses a modified

least-recently used strategy for block replacement. The control logic block includes

the remaining combinational and sequential logic to manage cache operation. The tr

bits are encoded using the (24,12) extended Golay code to protect against faults and

SEUs in the CSR. The Next CAM Word Register (NCWR) is so small that ECC is

not required.

Fault status of the output bus signals is stored in the Bus Line Status (BLS)

registers. As shown in Figure 8.15, the registers disconnect faulty bus signals from the
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OR gates combining the functional signals. This approach requires fewer gates than

an R-to-1 multiplexer, as well as providing additional protection against transmission

gate faults. For example, CAM row 1 output bit X can connect to column A but not

to column B. CAM row 2 output bit X can connect to column B but not to column

A. With a multiplexer, only one of these two columns can be used as output bit X.

Rather than requiring all rr utilized rows to connect to the same column, the OR

gate means both columns A and B can be used.

The ECC encoders and decoders for the tag and data memory are external to

the CAM array and protected by TMR. Finally, the R replicas of each signal in the

data and control bus are combined into a single logic signal using OR gates, with

inputs protected by transmission gates controlled by the new Bus Line Status (BLS)

registers (Figure 8.15). In this way, if a bus TGATE suffers a fail-on fault (i.e., a fault

that causes the device to be permanently on), that column can be disconnected from

the OR gate using the TGATE at the gate input. Thus, as long as at least one of the

R columns has no faults, the signal can be corrected.

221



8.6 Design Choices

This section describes the proposed design in detail. Several design alternatives

and their impacts on module and overall cache yield are examined. The design alter-

natives include: choice of error correcting code, replicated busses, logic module fault

tolerance, and row sparing requirements for the CAM array.

Overall yield is the product of the independent modules (5.11). The modules

can all be analyzed separately, with the exception of the bus logic and the CAM array

for reasons that will be explained in a later section.

8.6.1 Error Correcting Codes. The probability a single codeword can be

corrected is from (5.24),

YECC =
t
∑

k=0





C

k



 (1 − Ybit)
k (Ybit)

C−k , (8.2)

where c is the number of bits in the codeword (i.e., 24), Ybit is the probability a single

bit register will be functional, and t is the error correcting capability of the code (in

bits).

Seven coding schemes are examined to determine the most effective technique.

TMR simply replicates each of the data bits three times, and can correct one error

per three bit codeword. A (7,4) Hamming code with t = 1 encodes each 64 bit word

into 16 seven bit codewords. The next four alternatives are variations on the (24,12)

extended Golay code. Since the 64 bit output word is not evenly divisible by 12, four

bits remain after the first 60 bits are encoded in 5 codewords. The remaining four

bits can be either: left uncoded, encoded with the (7,4) Hamming code, tripled and

encoded with extended Golay, or zero-padded and encoded with the (24,12) extended

Golay code. In the latter case, eight of the 24 coded bits are always zero and do not

have to be stored in the registers. Finally, the (72,64) code used in the Athlon 64

data cache is also considered.
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The unclustered yield for a 64 bit uncoded cache word was derived analytically

and is shown in Figure 8.16. Maximum Allowed Defect Probability (MADP) is the

upper limit on mean device defect probability, λ̄1, such that a specified module yield

can be achieved (e.g., 90%). The extended Golay code options have higher MADP

values than TMR or the simple (7,4) Hamming code. The best results are obtained

by zero-padding the upper four bits of the 64 bit word and encoding using extended

Golay. The result is very similar to the approach in which the four bits are triplicated

and then encoded (i.e., making use of all 12 of the bits in the uncoded word). However,

the triplicated code still only corrects three errors. For the zero-padded approach, the

three bit error correction capability is applied to the 16 coded bits (since 8 are always

zero and can be omitted) rather than to a longer 24 bit codeword.

Extending these results to an entire 512 bit CAM row, the predicted yield for

a CAM row is shown in Figure 8.17. Again, the latter extended Golay approach

provides the best defect tolerance and is adopted for the design. For the extended

Golay code, t = 3. In this cache architecture, the error correction capability is split

between hard faults and SEUs in the registers. The BIST/R module reserves one bit

per codeword for SEU correction. Thus, for the remainder of the cache yield analysis,

t = 3 − 1 = 2.

8.6.2 Bus Design.

8.6.2.1 Description. The output signals in each CAM word are con-

nected to the common bus using TGATES controlled by the output enable signal.

Without fault tolerance, a single fail-on fault in any of the transmission gates can

result in more than one CAM word being connected to a column simultaneously. Bus

contention results in an indeterminate logic state on the output, effectively disabling

the entire column. The probability of a column disabling fault increases as the total

number of rows increases.
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A fault tolerant design based on R-fold column replication is shown in Figure

8.15. The R columns are combined using an OR gate. Faulty columns can be discon-

nected from the OR gate using the bottom TGATES, whose states are controlled by

the Bus Line Status Registers. This approach requires fewer gates than a R-to-1 mul-

tiplexer, as well as providing additional protection against transmission gate faults.

For example, suppose CAM row 1 output bit X can connect to column A but not

to column B. CAM row 2 output bit X can connect to column B but not to column

A. With a multiplexor, only one of these two columns can be used as output bit X.

Rather than requiring all rr utilized rows to connect to the same column, the OR

gate allows the use of both columns A and B.

One BIST/R improvement is made by considering faults at the device level

rather than the Boolean level. An example is shown in Figure 8.18. If fault modelling

includes both fail-closed and fail-open faults rather than simple failures, fail-open

faults can be tolerated in the transmission gates of CAM rows used to store data as

long as at least one of the R replicas of that output is both connectable to its signal

bus, and the bus is functional (i.e., has no other fail-closed faults in other rows). This

increases the probability an output signal bus is correctable, requiring fewer spare

CAM rows.

In addition to column replication, the data bus is also protected by ECC. Since

the decoders are placed outside the CAM array, ECC corrects faulty column busses

in addition to the CAM word data registers.

8.6.2.2 Bus Yield Models. Replication of the control and data output

busses prevents a single fail-closed defect in one of the transmission gates connecting

a CAM row to the bus from disabling the entire column. Analytical expressions for

the yield of the control bus are straightforward, and are shown in this section. The

expressions for the data bus are similar, but must also incorporate the effects of error

correction provided by the extended Golay code.
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Each bus signal is made up of three parts: module A contains the output register,

the Bus Line Select (BLS) status register, the OR gate for each signal, and the

TGATES connecting each replicated column to the OR gate. All of these devices

must function for the signal to be correctable. All of these devices must be functional

as well, since a fail-closed fault can connect a signal column permanently to the OR

gate. Module B contains the TGATES connecting the CAM words to the busses.

Failures in these TGATES can be tolerated, so long as at least one B module contains

no faults. The probability a bus signal is correctable is

Pbus = PmodAfunc · PmodBcorr. (8.3)

For module A, the yield expression is derived from (5.3). Module B represents

the R replicated columns of tr TGATES. At least one of these columns must contain

no faults for the bus to be correctable. That is,

PmodBcorr = 1 − PallRcolsfail = 1 − PR
onecolfails. (8.4)

.

The probability a single column fails is

Ponecolfails = 1 − Ponecolfuncs. (8.5)

The probability a column functions is found using (5.3) with the number of

devices derived from the number of TGATES in the tr rows, plus the NAND, NOR,

and NOT gates controlling the enable lines inside the CAM word. Faults in these

gates may cause the transmission gate to connect to the column.

The fault tolerance of a single output protected using the bus replication scheme

is shown in Figure 8.19. The plot shows only the unclustered (Poisson) defect model,

but looks very similar for the clustered case. For caches with 100% sparing (i.e.,
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Table 8.6: Maximum Allowed Defect Probability for 90%
Yield for Various Bus Options (unclustered).

Cache Size* 64KB 512KB 1MB
Control (no FT) 5.8×10−7 7.3×10−8 3.7×10−8

Control (CR)† 2.8×10−5 8.1×10−6 4.3×10−6

Data (no FT) 1.9×10−8 2.4×10−9 1.2×10−9

Data (CR) 1.1×10−6 6.0×10−7 6.0×10−7

Data (ECC) 1.8×10−6 2.3×10−7 1.1×10−7

Data (CR/ECC)† 4.7×10−5 1.0×10−5 5.1×10−6

* CAM spare rows = 10% of total.
† CR: Col Replication. R = 8 for 64KB,16 for 512KB/1MB.

tr = 2 · rr), the maximum allowable defect probability without bus replication is

between 10−8 and 3 × 10−7. Using bus replication, yield increases greatly for even

small numbers of redundant columns. For a factor of R = 8, MADP ranges from 10−4

to 10−3 for the three cache sizes. Larger levels of redundancy are not required for

these caches, as other modules in the architecture become the limiting factor rather

than the busses.

The predicted yields of five bus options are shown in Table 8.6. The results

shown are computed analytically for the Poisson case and assume that the ECC

decoders are functional. For the control bus, column replication increases MADP

by two orders of magnitude for the larger caches. For the data bus, ECC by itself

provides some benefit. Using both ECC and column replication increases the MADP

for the data bus even further, by three orders of magnitude for the larger caches.

Column replication provides significant yield improvement for these modules at

the cost of only a four to sixteen-fold increase in the number of bus TGATES. For the

1MB cache with 10% spare rows, approximately 40.7M devices are required for the

bus TGATES. As shown in Table 8.7 at the end of the chapter, the bus represents

only a small fraction of the overall device count.

8.6.3 ECC effect on CAM Array and Output Bus Yield. ECC is used to

correct faults occurring primarily in the data registers in the CAM words, but can also
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230



correct errors induced by the output switching TGATES in the CAM word, failed bus

lines in the data bus, and faults in the output registers. One approach for performance

modelling assumes ECC is only used internally for each CAM word (and not used for

the output bus or output registers), or vice versa. A more accurate model analyzes the

dependent probabilities of the registers internal to each CAM rows, the output bus

TGATES, and the output registers. Since the complexity of the architecture makes

this impractical, the most effective way to estimate the yield of the CAM array and

redundant bus scheme together with ECC is through simulation.

8.6.4 BIST/R and Control Modules. The number of devices in the control

and BIST/R modules are estimates. Analysis of the yield for the individual com-

ponents showed the generic control and BIST/R logic are the limiting cases when

NBISTR and Ncontrol are large. For simulation, each of the two modules are assumed

to be a single module of 50,000 devices. TMR-protected reconfiguration is used for

each module. It is also assumed each module has 128 outputs. If the actual number of

devices in the modules is smaller, or the modules can each be broken into two or more

independent submodules, yield would slightly improve. However, the ECC decoders

soon become the limiting factor, and even if the control and BIST/R modules are

ignored, overall yield does not improve significantly.

Three alternative fault tolerance approaches for the BIST/R module are shown

in Figure 8.20. Analysis of the control module and other logic modules is similar.

The number of devices in the BIST/R module is assumed to be NBISTR = 50, 000.

The number of outputs is assumed to be WBISTR = 128. From the figure, module-

based reconfiguration offers the best performance, but no protection against soft er-

rors. TMR-protected reconfiguration performs almost as well as reconfiguration, but

provides additional protection against soft errors. For this reason, TMR-protected

reconfiguration (TMR-R) was chosen to protect the BIST/R module.

Analysis of the BIST/R module makes two assumptions: dependence between

the devices in the module, and overall module size, NBISTR. If the logic is not
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Figure 8.20: Module yield of the BIST/R. The use of TMR-
protected Reconfiguration provides yield almost equivalent to
module-based reconfiguration, plus additional protection against
soft errors.

dependent, the BIST/R module could be broken into two or more submodules, each

protected by its own fault tolerance scheme. The final line in Figure 8.20 shows the

effect of breaking the BIST/R module into five independent submodules, each using

TMR-protected reconfiguration. By assuming dependence, we perform a worst case

analysis.

The second assumption is the number of devices. Figure 8.21 shows the unclus-

tered model yield of the BIST/R module for four different defect rates (λ1), versus

module size, NBISTR. For λ1 = 10−6, Y ≈ 1 for NBISTR ≤ 2 × 10−5. Thus, accuracy

in the module size estimate is not critical unless NBISTR > 2 × 10−5. For λ1 > 10−6,

yield rolls off with much smaller values of NBISTR.

8.6.5 Other Modules. Similar analysis is performed on each of the remaining

modules in the cache. TMR protects the ECC encoders and decoders rather than

TMR-protected reconfiguration due to the relatively small number of devices in the

encoders (1744) and decoders (2468). In these cases, MADP is only slightly better for
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TMR-R than for TMR, at the cost of almost twice as much hardware added to the chip

kill section of the circuit. For example, for the single extended Golay encoder used

in the control module, MADPTMR = 9.464× 10−5 and MADPTMRR = 1.190× 10−4,

while Nck TMR = 432 and Nck TMRR = 844. Thus, the benefit to the module MADP

is deemed insufficient to justify the additional devices in Nck.

Extended Golay code is used to protect the CSR due to its large size (one bit per

CAM row). Due to the small number of bits stored, the NCWR is left unprotected.

rather than adding the additional switching needed to protect it with ECC.

8.7 Yield Simulation

The fault tolerance of the FDT cache design is tested through Monte Carlo sim-

ulation in Matlab. This section describes the results of the experiments to determine

average yield, as well as the required number of CAM rows.

8.7.1 Simulation Methodology. The simulation first estimates the number of

devices in each module. During each iteration, the simulator randomly generates the

number of defects in the cache using the negative binomial distribution, based on the

total number of devices in the cache, and with the clustering parameter α. Assuming
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Figure 8.22: Simulated yield of the 1024 CAM cache for both
clustered and Poisson defect models.

large-scale clustering, these defects are distributed uniformly among the devices in

the cache. The simulator examines each module to determine whether defects can be

corrected. Average yield is computed after running the simulation for at least 1000

iterations. The 90% confidence interval of the yield was computed to ensure error was

no more than 1.5%.

8.7.2 Cache C Results. The simulated yield of the 1MB cache is shown

in Figure 8.22. The CAM array has CAMrr = 16384, with 1639 spare rows (10%).

Both the unclustered (Poisson) and clustered yields are shown. While the yields differ

greatly as the defect probability, λ1, increases, the values are very close in the range of

greatest interest, where Y > 0.9. Thus, Poisson yield is a good approximation when

designing large circuits for production.

The cache yield is the product of the yields of the individual modules. Simulat-

ing the CAM array by itself determines how rows are required for YCAM ≥ 0.9. As

shown in Figure 8.23, adding spare rows increases the MADP of the CAM array and
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increases overall yield. Only a moderate number of spare rows (i.e., about 10%) are

required to achieve acceptable yields at defect rates of 10−6 . λ1 . 10−5.

Fault tolerant system design requires analysis of weak points and removal of

single points of failure. Table 8.7 summarizes the modules in the cache. Fault toler-

ance type, device count estimates, and simulated MADP results are shown for each

module, for unprotected chip kill logic, and for the entire cache.

The device requirements of the design are approximately 15 times that of an

equivalent non-fault tolerant cache. Thus, if an alternative device technology such

as the single electron transistor can be made at least 15 times smaller than current

CMOS, it is possible to implement this design in the same chip area as the base design

in CMOS.

Figures 8.24 and 8.25 show the simulation results for the improved CAM cache.

The fault tolerance of this cache architecture is significantly higher than either of the
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Table 8.7: FDT (Cache C) Module MADPs (Simulated)

Device Estimate MADP (UC)
Module 64KB 512KB 1MB 64KB 512KB 1MB
BIST/R or Control 253,756 7.943 × 10−6

Control ECC Enc 5,664 7.943 × 10−5

Control ECC Dec 7,620 6.31 × 10−5

Main ECC Encs 33,984 1.995 × 10−5

Main ECC Decs 91,440 1.259 × 10−5

Tag ECC Encs 28,320 2.512 × 10−5

CSR † 81.2K 649K 1.30M 3.162 × 10−4 1.778 × 10−4 1.778 × 10−4

Control Bus * † 180K 2.89M 5.76M 2.512 × 10−5 7.079 × 10−6 3.981 × 10−6

Data Bus * † 5.09M 81.3M 163M 3.981 × 10−5 8.913 × 10−6 4.467 × 10−6

CAM Array † 66.38M 574M 1.148B 3.981 × 10−6 3.548 × 10−6 3.162 × 10−6

Chip Kill 15,880 15,982 16,016 6.64 × 10−6 6.60 × 10−6 6.58 × 10−6

Entire Cache (CL)† 67.23M 576M 1.151B 1.59 × 10−6 1.78 × 10−6 1.59 × 10−6

Entire Cache (UC)† 67.23M 576M 1.151B 4.47 × 10−6 3.98 × 10−6 3.98 × 10−6

†: 10% spare rows * : R = 8 for 64KB cache, R=16 for 512KB/1MB

previous architectures. The MADP for a 90% cache yield is greater than 10−6 for all

three cache sizes. The simulation results are in agreement with the analytical results.

8.8 Conclusions

8.8.1 Comparison to Other Caches. The MADP figures for the three cache

architectures are summarized in Table 8.8. The maximum allowable defect probability

for the FDT cache design (i.e., Cache C) is three orders of magnitude greater than

the either of the other two architectures. As shown, defect clustering does not have

a large impact on yield because the focus is on the region where yield is greater

than 0.9, where the difference between clustered and nonclustered results is small. In

many cases, due to the probability distribution functions of the Poisson and negative

binomial models, yield is initially higher for the unclustered Poisson case than for the

clustered case.

8.8.2 Hardware Cost Comparison. The great increase in fault tolerance

comes at the cost of significant redundancy. Total device counts and redundancy ver-

sus the non-fault tolerant architecture are shown in Table 8.9. The level of redundancy

required for the improved cache design is large, but grows very slowly as cache size
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Table 8.8: Final MADP Results

Cache FT 64KB 512KB 1MB
A (CL) No FT 2.53 × 10−8 3.16 × 10−8 1.60 × 10−9

A (UC) No FT 2.22 × 10−8 2.87 × 10−8 1.44 × 10−9

B (CL) SR=10% 4.90 × 10−8 6.40 × 10−9 3.10 × 10−9

B (UC) SR=10% 4.10 × 10−8 5.00 × 10−9 2.5 × 10−9

C (CL) SR=10% 1.59 × 10−6 1.78 × 10−6 1.59 × 10−6

C (UC) SR=10% 4.47 × 10−6 3.98 × 10−6 3.98 × 10−6

Table 8.9: Total Device and Redundancy Requirements

Cache A B C
64KB Total FETs 4.74 × 106 3.14 × 107 6.72 × 107

Redundancy 1 6.63 14.19
512KB Total FETs 3.69 × 107 2.28 × 108 5.76 × 108

Redundancy 1 6.19 15.61
1MB Total FETs 7.35 × 107 5.02 × 108 1.15 × 109

Redundancy 1 6.84 15.66

increases. Thus, to compete with the conventional cache architecture implemented in

CMOS, an unreliable nanotechnology must be at least 15 times smaller to implement

a cache in the same area. Technologies with defect rates smaller than 10−6 require

less redundancy, and the required size decrease is smaller as well.

8.8.3 SEU Performance and Operational Reliability. In addition to improv-

ing manufacturing yield, this architecture offers protection against SEUs occurring in

the registers as well as permanent failures that develop during operation. The BIST/R

module reserves one bit of error correction capability per 24 bit ECC codeword in the

data and tag registers. Codewords that have no faults in the component registers or

associated bus logic apply the full correction capability (t = 3) to correct SEUs. The

cache uses a modified least-recently used replacement strategy, aging cache blocks are

eventually flushed, hopefully before more SEUs accumulate than can be corrected.

A final advantage of this architecture is its capacity degrades gracefully as hard

faults accumulate in the CAM array. Hard faults can be detected through the occur-

rence of false-hits and periodic self-testing. The impact of failing devices is initially
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masked through ECC and reconfiguration, and later by marking the CAM row faulty

and removing it from use. Thus, larger numbers of spare rows ensures a longer useful

service life.

8.8.4 The Big Picture. This chapter presented the design for a fault and

defect tolerant cache. The design provides a 90% yield for device technologies with

λ1 ≥ 10−6, three orders of magnitude higher than conventional silicon CMOS. The

design incorporates the entire cache, including the support circuitry. Although not

modelled, the design provides significant protection from SEUs.

This chapter partially answers the question: “How reliable must future device

technologies be to produce circuits that compete with modern CMOS?” The design

makes no special assumption it is possible to implement majority gates or other fault

tolerance logic any more reliably than the rest of the devices in the design. If the

design of the “chip kill” devices were optimized, it is possible to improve the MADP

of the device technology even further.

This chapter creates the functional architecture for the FDT processor cache.

It explores the problem of constructing cache memories resistant to manufacturing

defects, device failures, and single event upsets. This analysis incorporates the entire

cache instead of just the main memory array. The performance of two typical caches

was analyzed, shortcomings identified, and an improved CAM-based cache architec-

ture is proposed that overcomes these limitations. The resulting cache architecture

provides a yield of 90% for device technologies with device defect probabilities of 10−6,

three orders of magnitude higher than conventional silicon CMOS. The redundancy

required to achieve this performance is only 15 times that of the non-fault tolerant

design. These results establish targets for viable new device technologies.
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IX. Core Logic

9.1 Introduction

This chapter develops the functional architecture for the fault and defect tolerant

(FDT) processor. While the previous chapter examined the cache architecture, this

chapter examines the core logic of the processor, including the integer and floating

point logic, register files, and control logic.

Starting from the hardware cost model for a non-fault tolerant 32 bit CPU, the

fault and defect tolerant version is developed. The hardware cost is computed using

the techniques in Chapter V. Using this information, a MATLABR© simulation ana-

lyzes the yield of the fault tolerant design. The maximum allowable defect probability

(MADP) for the new design is determined for each cache size and defect clustering

case. Finally, yield and redundancy are compared with the initial version. The FDT

design meets the yield requirements of Goal 1.

9.2 Methodology

9.2.1 General Approach. The general approach for creating the fault toler-

ant CPU design is to partition the processor architecture down into discrete modules,

which are protected using one or more fault tolerance techniques.

The yield of a fault tolerant chip is determined in part by the number of devices

that cannot be protected through redundancy. This typically includes the majority

voters, configuration registers, and other hardware used to control redundant modules.

As a general approach, the total number of unprotected devices must be minimized.

Figure 9.1 shows the reduction in chip yield as the number of devices in the chip kill

section increases. For each tenfold increase in Nck, MADP90 decreases by an order of

magnitude

Excluding the cache, the FDT processor uses the following module-level fault

tolerance techniques:

• TMR
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Figure 9.1: The yield of the overall processor is partially de-
termined by the number of devices in the chip kill section.

• Modular Reconfiguration

• TMR-protected reconfiguration

The cache design is from Chapter VIII.

9.2.2 Assumptions. The assumptions from the previous chapter apply:

• All devices have the same probability of failure (i.e., device sizing is not used).

• Majority gates are implemented as Boolean circuits.

• Worst case fault models are used for each module. A fault in the module always

disables the module.

• Two fault clustering models are used: the non-clustered (Poisson), and the

large-scale clustered (Negative binomial) model [Kor89].

9.3 FDT CPU Design

9.3.1 Initial Architecture. The initial CPU design is a variant of the classic

MIPS 32 bit RISC CPU from [PH98]. Detailed hardware models are developed for the

MIPS CPU in [MP00] shown in Figure 9.2. The model uses the same device-counting
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Figure 9.2: Hardware cost models of the MIPS 32 bit CPU
were developed in [MP00].

approach proposed in Chapter V. It is adapted directly for use the with the FDT

design.

The non-fault tolerant hardware cost model is adapted directly from [MP00].

Starting from the bottom up, the mathematical equations for the components are

used to develop hardware cost estimates for each module. The results are shown in

Tables 9.1 and 9.2. One modification of the module was made: for ease of comparison,

the cache memory equations are replaced with the non-fault tolerant cache developed

in Chapter VIII. As discussed previously, the total number of devices in the processor

is dominated by the cache. Without cache memory, the CPU requires only 290,637

transistors. A further 9.5 million transistors are required to implement dual 64KB

caches.
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Table 9.1: The non Fault Tolerant 32 bit CPU is made up
of the following modules with associated hardware costs (Part
One) [MP00].

Module Name Nmod Description

PCenv 4,692 Program Counter environment
IRenv 602 Instruction Register environment
Daddr 180
FPemb 788 FP embedding muxes
EXenv 210,600 EXE unit environment

FXU 7,048 Fixed Point Unit
ALUenv 2,812 ALU environment
SHenv 1,932 Integer Shifter environment
Muxes & Drivers 2,304

FPU 198,940 Floating Point Unit
FCon 2,764 FPU Control
FPunp 12,914 Floating Point Unpacker
FXunp 866 Fixed Point Unpacker
Cvt 4 4
MulDiv 144,980 Multiplier/Divider

SigfMD 142,440 FP Significand Generator
drivers 3,480
flipflops 10,208
ROM 1,056
muxes 690
4/2 mul 114,108 Multiplier
116 bit adder 3,212
glue logic 462
Select FD 9,224

SignExpMD 1,270 FP Sign & Exponent Generator
SpecMD 112 FP Special Case Handler
flipflops 1,152

AddSub 9,092 FPU Integer Adder/Subtractor
FXrnd 7,006 Fixed Point Rounder
FPrnd 14,098 Floating Point Rounder
flipflops 2,064
drivers 5,160

FPXtr 1,152 Exchange Unit
drivers 3,400

SH4Lenv 1,720 Shift Left 4 environment
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Table 9.2: The non Fault Tolerant 32 bit CPU is made up
of the following modules with associated hardware costs (Part
Two) [MP00].

Module Name Nmod Description

RFenv 26,840 Register File environment
GPRenv 8,040 General Purpose Registers
SPRenv 10,434 Special Purpose Regs
FPRenv 8,366 Floating Point Regs

CAenv 1,558 Exception Cause environment
buffers 18,412
pipeline regs 7,840
FORW 17,458 Forwarding Unit

SFOR 2,320 Special Purpose Forwarding Unit
FFOR 3,976 Forwarding Unit
CON 11,162 Control Unit

IMC 4 Instruction Memory Controller
DMC 418 Data Memory Controller
MifC 1,300 Memory Interface Control

mux2 18
I$ifC 532 Instruction Cache Interface
D$ifC 750 Data Cache Interface

CE 388
stall 850 Stall Unit
preCon 2,880

ConRSR 2,362 Result Shift Regs control
flipflops 224
glue logic 6
DivCon 288 Divider Unit control

CON Mealy 672 Control Unit Mealy state machine
CON Moore 4,650 Control Unit Moore state machine

Instruction Cache (64 KB) 4.74M Non-FT cache design from Ch VIII
Data Cache (64 KB) 4.74M Non-FT cache design from Ch VIII

Total (w/o Caches) 290,637
Total (w/Caches) 9.77M
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9.3.2 Analytical Model. As developed in Chapter V, chip yield for the

unclustered model is the product of the yields of the component modules. Models

for cache yield are developed in the previous chapter. The yield expression can be

written as

Ycpu =

(

∏

k∈Mods

Yk

)

· Yicache · Ydcache. (9.1)

Expressions for the clustered defect model are computed using the compounding

procedure described previously. In practice, complicated structures contain depen-

dencies that make it impractical to develop analytical models. As before, analytical

models are created for the component modules when possible, but the overall CPU

yield is found through simulation.

From (9.1), the yield of the chip is bounded above by the most unreliable com-

ponent. Thus, each module should be analyzed and a fault tolerance technique chosen

such that yield and MADP are maximized. In addition, chip yield is bounded above

by the yield of the devices unprotected by fault tolerance (i.e., the chip kill devices).

Thus, CPU yield is

Ycpu ≤ e−Nckλ1 , (9.2)

where Nck is the sum of unprotected devices in the entire chip.

The fault tolerant version of the architecture is developed in several steps:

1. Partition the CPU into modules in a logical fashion, attempting to minimize

the number of inputs and outputs.

2. Compute the yield curves for each module using TMR, modular reconfiguration,

TMR-R, and no fault tolerance.

3. Choose the fault tolerance technique providing the best MADP90.
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Partitioning begins at the top level as shown in Figure 9.2. Yield improvement

is generally greatest for larger modules. However, the benefit is reduced as the number

of outputs is increased (i.e., Wout). If a suitable yield cannot be achieved using a large

module, the module is examined at a lower level, breaking it into multiple components

having fewer devices and fewer outputs.

The process is continued until no further benefit is achieved. For very small

modules, or those with a very large number of outputs, the highest yield is obtained by

leaving the module unprotected. The results of this partitioning are shown in Tables

9.3 and 9.4. The table shows the hierarchical modules defined in [MP00], number of

output lines in the module (Wout), and the number of devices in the module (Nmod).

The tables also show the selected fault tolerance technique, and the number of devices

that contribute to the chip kill total. As shown on the last line of Table 9.4, the total

number of chip kill devices is Nck = 89, 400 for a CPU with dual 64 KB caches. From

Figure 9.1, MADP90 can be initially estimated as MADP90 ≈ 10−6.

9.4 Yield Performance

9.4.1 Simulation Description. Yield of the FDT processor was estimated by

Monte Carlo simulation in the same manner as the cache in Chapter VIII. First, the

number of devices in each module are estimated. The total number of devices in the

CPU is calculated. The simulation then randomly generates the number of defects

in the chip using the appropriate clustering model, and distributes them uniformly

among the modules. Each module is examined to determine if the fault tolerance

hardware can correct the defect and the functional status of the chip is determined.

Repeating this process, average yield is computed. In addition, the 90% confidence

intervals for yield are computed as described earlier. Most simulations ran for 2000

iterations. This was sufficient to obtain average yields within 2% of the mean with

90% confidence.

CPU yield is calculated for four cache sizes: no cache, 64KB, 512KB, and 1MB.

Data and instruction caches are always the same size. Two clustering parameters
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Table 9.3: The Fault and Defect Tolerant CPU is made up of
the following modules. Nmod is the number of devices in each
component module, not the final FT protected module(Part
One).

Module Wout FT Type Nmod Nck

PCenv 160 Reconfig (R=3) 4,692 2,024
IRenv 301 TMR 602 384
Daddr No FT 180 180
FPemb No FT 788 788
EXenv

FXU
ALUenv 32 Reconfig (R=3) 2812 488
SHenv 32 TMR 1,932 384
Muxes & Drivers No FT 2,304 2,304

FPU
FCon 7 Reconfig (R=3) 2,764 188
FPunp 60 Reconfig (R=3) 12,914 824
FXunp 34 Reconfig (R=3) 866 512
Cvt No FT 4 4
MulDiv

SigfMD
drivers No FT 3,480 3,480
flipflops 638 Reconfig (R=2) 10,208 5,174
ROM No FT 1,056 1,056
muxes No FT 690 690
4/2 mul 58 TMR-R (R=7) 114,108 1,748
116 bit adder 116 Reconfig (R=3) 3,212 1,496
glue logic No FT 468 468
Select FD 58 Reconfig (R=3) 9,224 800

SignExpMD 14 Reconfig (R=3) 1,270 272
SpecMD 5 TMR 112 60
flipflops No FT 1,152 1,152

AddSub 71 Reconfig (R=3) 9,092 956
FXrnd 69 Reconfig (R=3) 7,006 932
FPrnd 69 Reconfig (R=3) 14,098 932
flipflops No FT 2,064 2,064
drivers No FT 5,160 5,160

FPXtr No FT 1,152 1,152
drivers No FT 3,400 3,400

SH4Lenv No FT 1,720 1,720
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Table 9.4: The Fault and Defect Tolerant CPU is made up of
the following modules. Nmod is the number of devices in each
component module, not the final FT protected module(Part
Two).

Module Wout FT Type Nmod Nck

RFenv
GPRenv 64 Reconfig (R=3) 8,040 872
SPRenv 32 Reconfig (R=3) 10,434 488
FPRenv 128 Reconfig (R=3) 8,366 1,640

CAenv 32 Reconfig (R=3) 1,558 488
buffers 765 TMR 18,412 9,180
pipeline regs 490 Reconfig (R=2) 7,840 4,760
FORW

SFOR 128 Reconfig (R=3) 2,320 1,640
FFOR 130 Reconfig (R=3) 3,976 1,664
CON

IMC No FT 4 4
DMC No FT 418 418
MifC

mux2 No FT 18 18
I$ifC 11 Reconfig (R=3) 532 236
D$ifC 18 Reconfig (R=3) 750 320

CE 3 TMR 388 36
stall No FT 850 850
preCon

ConRSR 90 Reconfig (R=3) 2,362 1,184
flipflops No FT 112 112
glue logic No FT 6 6
DivCon No FT 288 288

CON Mealy 13 Reconfig (R=3) 4,650 260
CON Moore No FT 672 672

Instruction Cache Special† varies 11,680
Data Cache Special† varies 11,680

Total 89,400
†: The design from [MP00] is replaced by that from Chapter VIII.
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Figure 9.3: Yield of the FDT CPU, with dual 64KB caches.
Ninety percent confidence intervals are shown. MADP70 is ap-
proximately 3 × 10−6, two orders of magnitude better than the
non fault tolerant design.

were used: α = 0.3 is used for clustering, while the Poisson (unclustered) distribution

was approximated using α = 200.

9.4.2 Simulation Results. The yield of the FDT CPU with dual 64KB caches

and no defect clustering is shown in Figure 9.3. Plots for the other cache size and

clustering combinations are similar. MADP is determined by the value of λ1 where

the yield crosses the target yield, either 90%, 80% or 70%.

Yield for the FDT CPU core (without caches) is shown in Figure 9.4. Use

of the clustered defect model results in higher yield than the unclustered model as

defect rate increases. However, in the range of interest (i.e., above 70%) the difference

between the two models is small. Thus, the Poisson model can often be used to quickly

approximate yield even when the device technology exhibits defect clustering.

The yields of all six cases is shown in Figure 9.5. Upon initial observation, CPU

yield does not seem to be dependent on cache size as the curves are very similar. This
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Figure 9.4: Yield of the FDT CPU core, not including caches.
For yields above 70%, the two models produce similar values for
MADP.

is due to two effects. First, cache yield does not vary much with cache size. Yield is

dominated by the number of devices in the chip kill regions of the cache rather than

the redundant blocks. Figure 9.6 shows the yields for all six trials on the same axes.

A second effect is the yield for the overall CPU is determined mainly by the

CPU core. Figures 9.7, 9.8, and 9.9 show the yields for the six cases. The solid blue

lines indicate the FDT CPU yield including both the core and the caches. The dashed

green lines indicate the yield of a single cache by itself. The dotted red line with ‘x’

symbols indicates the yield of the CPU core, which is independent of cache size. For

the unclustered model, CPU core yield is less than the yield of a single cache memory.

For the clustered model, the yield of the core is very close to that of a single cache.

Combined yield is less than either of the two components.

The fault and defect tolerance techniques used in the CPU core were effective

in matching the yield performance of the fault tolerant cache. Little benefit would
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than the caches. This reduces the difference between the curves
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Figure 9.7: Yield for the FDT CPU, including 64KB caches.
The plots show the unclustered cases (left) and clustered (right).
Combined CPU yield, shown with a blue solid line, is less than
either the CPU core (red x’s) or a single cache by itself (green
dashes).

be achieved through further improvement of the CPU core, as the overall CPU yield

would quickly become limited by the cache. For example,

Ychip ≈ Ycore · Ycache
2. (9.3)

If the MADP of the CPU core is increased significantly, Ycore ≈ 1 in the range

10−6 < λ1 < 10−5. Thus, the chip yield is limited by the reliability of the cache

memory, or

Ychip ≈ Ycache
2. (9.4)

The current design of the fault tolerant CPU core matches the yield of a single

cache very closely for the clustered defect case. The difference is greater for the

unclustered model, but still reduces the overall MADP70 by 3 × 10−6.

The MADP results are summarized in Table 9.5. The FDT processor performs

very well in terms of yield. For all six cases (three cache sizes and two clustering

models), MADP70 and MADP80 are greater than 1.778 × 10−6. In real terms, the
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Figure 9.8: Yield for the FDT CPU, including 512KB caches.
The plots show the unclustered cases (left) and clustered (right).
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Figure 9.9: Yield for the FDT CPU, including 1MB caches.
The plots show the unclustered cases (left) and clustered (right).
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Table 9.5: MADP results. Analytical results are shown for
the non-fault tolerant design. Simulation results are shown for
the FDT CPU.

CPU Design MADP90 MADP80 MADP70

NonFT, 64KB caches (UC) 1.078 × 10−8 2.291 × 10−8 3.649 × 10−8

NonFT, 64KB caches (CL) 1.289 × 10−8 3.390 × 10−8 6.982 × 10−8

NonFT, 512KB caches (UC) 1.424 × 10−9 3.015 × 10−9 4.819 × 10−9

NonFT, 512KB caches (CL) 1.704 × 10−9 4.462 × 10−9 9.262 × 10−9

NonFT, 1MB caches (UC) 7.173 × 10−10 1.518 × 10−9 2.425 × 10−9

NonFT, 1MB caches (CL) 8.576 × 10−10 2.238 × 10−9 4.641 × 10−9

FDT Core Only (UC) 1.413 × 10−6 3.162 × 10−6 4.467 × 10−6

FDT Core Only (CL) 1.585 × 10−5 3.538 × 10−6 7.079 × 10−6

64KB Cache (UC) 3.981 × 10−6 5.012 × 10−6 5.623 × 10−6

64KB Cache (CL) 1.585 × 10−6 3.981 × 10−6 6.310 × 10−6

512KB Cache (UC) 3.981 × 10−6 5.012 × 10−6 5.623 × 10−6

512KB Cache (CL) 1.778 × 10−6 3.548 × 10−6 6.310 × 10−6

1MB Cache (UC) 3.548 × 10−6 5.012 × 10−6 5.623 × 10−6

1MB Cache (CL) 1.585 × 10−6 3.548 × 10−6 6.310 × 10−6

Core & Dual 64KB (UC) 1.00 × 10−6 1.985 × 10−6 3.162 × 10−6

Core & Dual 64KB (CL) 1.00 × 10−6 2.239 × 10−6 3.981 × 10−6

Core & Dual 512KB (UC) 1.000×10−6 1.778 × 10−6 2.818 × 10−6

Core & Dual 512KB (CL) 5.623 × 10−7 1.995 × 10−6 3.981 × 10−6

Core & Dual 1MB (UC) 1.000 × 10−6 1.995 × 10−6 2.818 × 10−6

Core & Dual 1MB (CL) 5.623 × 10−7 1.995 × 10−6 3.981 × 10−6

FDT processor can be fabricated with devices with a failure rate of higher than 10−6

and still obtain yields of greater than 80%. Compared to the non fault tolerant design

in the top six rows, maximum allowable defect probabilities increases by two to three

orders of magnitude.

The hardware overhead required to achieve this yield increase is moderate. Table

9.6 shows the hardware costs for the original and FDT processor designs. The FDT

CPU core requires 4.47 times more devices than the original design. The redundancy

requirement for the caches is greater, as discussed in Chapter VIII. The FDT CPU

design is dominated by the number of devices in the cache, and thus the overall

redundancy requirement is between 13.89 and 15.64, depending on the cache size.

254



Table 9.6: Comparison of the hardware costs of the four dif-
ferent processor configurations. The non-fault tolerant cache
design is the design from Chapter VIII rather than the design
from [MP00].

Configuration Non-FT FDT Redundancy

No Cache 290,637 1,298,044 ×4.47
Dual 64KB Caches 9.77M 136M ×13.89

Dual 512KB Caches 74.0M 1.15B ×15.57
Dual 1MB Caches 147M 2.30B ×15.64

9.5 Conclusions

This chapter develops the functional architecture of the FDT processor based

on the requirements and concept of operations developed in Chapter VII. The an-

alytical models for the fault tolerance techniques discussed in the previous chapters

are adapted to create a model for the FDT processor. For comparison, the hardware

cost model for a non-fault tolerant CPU was adapted from [MP00]. This model forms

the basis of a new hardware cost model for the FDT processor.

The yield of the FDT processor is determined through statistical simulation

and shown to meet the requirements in Goal 1. A 32 bit microprocessor can be

implemented using device technologies with defect probabilities as high as 1.778×10−6,

with a redundancy requirement of approximately 15. This level of redundancy is

considerable, but feasible if the new device technology is more than 15 times smaller

than silicon CMOS.
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X. Device Mapping

10.1 Introduction

To this point, the architecture and fault tolerance models examined have been

hardware independent. The models operate at the level of Boolean logic gates and

higher. Cache and CPU results are based on hardware cost estimates for CMOS

technology (e.g., a NAND gate requires four transistors). Further, the models are

“switch-based,” and do not incorporate interconnect and other structures. While

this reasonable for CMOS and other technologies in which most failures occur in the

switches or can be otherwise evenly distributed between the switches, this approach

can produce overly optimistic results for other technologies.

At the same time, adapting the models for a specific device technology may

improve the result. For example, if the transistors in the fault tolerance hardware

(e.g., majority gates, configuration registers, etc.) can be made larger in a CMOS

process, circuit reliability can be improved. Thus, the reliability of a structure is not

dependent solely on the number of the transistors, but also their size. In addition,

other technologies can implement certain logical functions with fewer devices than

CMOS. Thus, fault tolerance hardware may have more efficient implementations and

higher yield.

A complete examination requires consideration of the device technology in ad-

dition to the logical design of the architecture. This chapter examines the challenges

of implementing the proposed fault tolerance techniques onto several emerging suc-

cessor technologies to silicon CMOS. One technology, QCA, is examined in detail

to show how the fault tolerant design should be adjusted from the original “device

independent” model. It addresses the three parts of Goal 3 below.

• Goal 3.1: Demonstrate how the proposed architecture may be implemented

using a non-CMOS device technology.

• Goal 3.2: Develop a methodology for estimating the hardware area, power con-

sumption, and operating speed.
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• Goal 3.3: Determine the minimum performance characteristics of the target

device technology necessary to fabricate a processor with the characteristics

described in Goal 1.

10.2 Technology Choices

The “device independent” model proposed in previous chapters works unmodi-

fied for conventional silicon CMOS. Likewise, it can be adapted with little modifica-

tion to nanotechnologies most similar to CMOS. These technologies should have the

following characteristics:

• The most common source of manufacturing defects are in the switching devices

(i.e., transistors).

• Other sources of defects, such as interconnect, should be distributable between

switching devices such that for any two modules, the ratio between the alternate

source and the switching devices is identical. For example, if module A has twice

as many transistors as module B, then the probability of failures in the module

A interconnect should be twice that of the interconnect in module B. Thus,

the parameter λ1 represents the average probability per device (including its

associated interconnect), rather than just the probability the transistor fails in

isolation.

Several technologies are well suited for the proposed model:

• Nanoscale CMOS (i.e., sub 100nm process size)

• Single Electron Transistors (SET) [GP98]

• Resonant Tunneling Diode Transistors (RTD) [GP98]

Other technologies are not as well suited for device-based yield modeling. The

models used thus far assume defects occur in the interconnect and other structures

evenly. This is appropriate for silicon CMOS, but can produce inaccurate results for

other technologies. One such technology is quantum dot cellular automata (QCA).
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In QCA, the basic unit of construction is the quantum dot cell. These cells

are used to construct both logical devices as well as the interconnect. All of these

cells can suffer defects and failures that produce errors in operation. Indeed, the vast

majority of quantum dots are used to create wires rather than gates. As the length

of the wires is dependent on layout as well as the number of switching devices, yield

estimates for wires cannot be based simply on the number of switching devices in the

module.

A great deal of QCA-related research has been done in recent years. While the

technology is far from maturity, it has advanced sufficiently so that simple logical

circuits can be designed. From these, it is possible to develop estimates for hardware

cost and area. For this reason, QCA is used as the target technology for the remainder

of this chapter. The next section provides additional background on QCA. Later, the

implementation of fault tolerance techniques for QCA are developed as well as yield

expressions and hardware cost.

10.3 QCA Background

10.3.1 QCA Basics. Quantum dot cellular automata were first proposed by

Lent and Porod [LTPB93]. As shown in Figure 10.1, the basic unit of construction for

QCA is the cell, consisting of four or six quantum dots arranged in a square [GP98].

Two of the four holes contain electrons, in opposite corners. Application of electric

charge causes the electrons to shift position to the opposite corners. Thus, it is

possible to represent Boolean states by the position of the two electrons in the QCA

cell. Information is transmitted by charge instead of current. For use in conventional

circuits, it is envisioned that current-based signals entering a QCA block will be

converted to logic states by drivers. Likewise, the QCA logic states on the outputs

will be converted back to electrical signals by electrometers [AOT+99].

If two or more QCA cells are placed close together, the charges interact with

each other. The location of the two electrons in one cell can cause a shift in the

location of the electrons in the adjoining cells. Potential barriers confine the charges
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Binary ‘0’ Binary ‘1’

Electron       Quantum Dot

Figure 10.1: QCA logical states are represented by the polar-
ity of the electrons. The left cell represents logic ‘0’, while the
right cell represents logic ‘1’ [NK01].

to the quantum dots. To change the location of the electrons, the barriers are reduced

through the application of an external electric charge. When the barrier is reduced,

the dots in the cell are free to change position based on electrical repulsion with the

electrons in the adjoining cells. No charge is transferred, and as a result, QCA has a

very lower power consumption.

The largest obstacles to QCA are the inability to operate a room temperature,

high defect rates, and slow speed. All of these obstacles may ultimately be overcome.

However, to be useful in large logic circuits, speed and operating temperature char-

acteristics must be equal to or better than silicon CMOS. For the remainder of this

chapter, it is assumed that operating speed and temperature are not a limiting factor,

but instead manufacturability and defect rates.

10.3.1.1 Operation. Logical state is represented by the location of

the electrons in the QCA cell (see Figure 10.1). The electrons in the quantum wells

are initially held in place by the high energy barriers. Through application of an

external electric field, barriers are lowered and the probability of tunnelling from one

well to another increases. The electrons move to the lowest energy state, in part

determined by the location of the electrons in adjoining cells. By combining cells,

logical operations can be performed.
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Cell 1 (input)

Cell 3 (input)Cell 2 (input)

Cell 4 (device cell)

Cell 5 (output)

Figure 10.2: Three-input majority gate is implemented in
QCA with only five cells [NK01]. The dotted line indicates a
repulsion force between two electrons. The electrons in the de-
vice cell are held in place by the forces of the electrons in cells
2 and 3.

The basic logic unit in QCA is the three input majority gate shown in Figure

10.2. The top, bottom, and left cells act as the inputs, while the central cell is the

computation cell. It assumes the polarization of the majority of the inputs. The

output cell on the right assumes this orientation, and the state can be carried to

other devices. Note that logical AND and OR gates are simply constructed by tying

one of the inputs to ‘0’ or ‘1’, respectively.

One difference between CMOS and QCA is the function of the clock in the

circuit [DK03]. In QCA, the clock provides the power to run the circuit, and lowers

the energy barriers between the cells to allow state changes. In effect, information is

pumped through the circuit by the clock signals.

A four phase clocking scheme is commonly used [HL01], with each phase shifted

by 90 degrees. The four clock phases are: switch, hold, release, and relax [NK01].

• Switch phase. Interdot potential barriers are raised so that cells become polar-

ized according to the state of their adjoining drivers.
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• Hold phase. Barriers are held high so that the cell remains polarized and fixed

in position to act as the input to the adjoining cells.

• Release phase. Barriers are lowered and the cells relax to unpolarized states.

• Relax phase. Barriers remain lowered and cells remain in the unpolarized state.

The clock signals thus control the flow of information through the circuit. One

unique aspect of QCA is an inherent latching action during the hold state. Clock

signals are provided by external electric fields. One proposal is the use of silicon clock

wires embedded in the substrate [HL01,NRK04]. Another proposal uses additional

adjoining QCA cells [TL99].

10.3.1.2 Types. Three types of quantum dot devices have been pro-

posed:

• Semiconductor

• Molecular

• Magnetic

Semiconductor QCA is the most common research device, and was first de-

scribed by Lent and Tougaw in 1994 [LT94]. Semiconductor QCA uses quantum

wells formed from aluminum, with tunnel junctions of AlOx [AOT+99]. The cells are

approximately 20nm in width. While easier to fabricate than other types, the large

size of semiconductor QCA requires extremely low temperatures to operate.

Molecular QCA offers the potential for smaller devices and room temperature

operation. It uses redox sites within a molecule and a bridging ligand as the junction

between them [LIL03]. Molecular QCA devices have not yet been fabricated, although

candidate molecules have been identified [GMI+99]. The size of the quantum dot is

envisioned as 1-5nm, with a cell size of 10nm [NK04,MHTL05].

A third alternative for QCA is magnetic, but it is currently envisioned as being

too slow for use (with switching speeds on the order of only 10kHz [Sem03]).
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10.3.1.3 QCA Manufacture. Fabrication of QCA devices is discussed

in [AOT+99,NK04,NRK04,DK03]. Three building blocks are required: the QCA cells,

a substrate upon which they can be attached, and support mechanisms (e.g., clock

lines and input/output current drive devices). Proof of concept devices have been

constructed [AOK+00, Sni98]. For semiconductor QCA, fabrication may be possible

using processes adapted from CMOS such as e-beam lithography to define structures

[AOT+99]. Fabrication begins with a silicon waferin which silicon clock wires are

formed. Next, electron beam lithography cuts trenches for the QCA cells into the

silicon. Finally, the wafer is soaked in a bath containing QCA molecules [Lie02,

HWLB02].

For molecular QCA, placement could be done by DNA tiles [NK04, NRK04].

These tiles form well defined shapes to which QCA cells can attach. Tiles are combined

together to form rafts. Molecular recognition could be used to differentiate locations

on the raft for cell attachment, forming arbitrary structures.

10.3.1.4 Area, Power, and Speed. The device density of QCA is much

higher than conventional CMOS. A semiconductor quantum cell is approximately

25nm by 25nm [GP98]. Theoretically, this results in a device density of 1011cm−2,

significantly higher than current CMOS. However, since this includes vacant cell loca-

tions, usable device density is much lower, and must include cells used for interconnect.

Power dissipation is predicted to be much lower than CMOS, since current

does not flow through the devices [GP98, NK01]. Power consumption is roughly

Pqca = 10−10 per device.

Speed of QCA devices is much faster than silicon CMOS. Speed comparisons

for several memory designs using QCA are found in [NF01]. Individual cell switching

speed for metal semiconductor QCA is Tqca = 2ps. For molecular QCA, switching

speed is estimated at Tqca = 0.02ps.

10.3.2 QCA Logic Design.
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10.3.2.1 Differences from CMOS. In most cases, logical devices and

circuits can be implemented in QCA with some modification [WJD03]. The following

sections show the implementation of logical building blocks from which large scale

circuits can be constructed. The most important differences from conventional CMOS

are:

• Wiring is constructed from QCA cells, and must be included in reliability analy-

sis.

• QCA is charge based, and cannot drive conventional electrical circuits. Input

and output circuits must be used.

• Complicated clocking is required to move information through the circuit.

• Hardware costs are often very different from the CMOS models proposed in

previous chapters.

• QCA possesses some new capabilities, such as the ability for perpendicular wires

to cross each other without interference. Likewise, QCA does not possess some

basic capabilities, such as the tri-state driver or transmission gate. Other struc-

tures must be used instead.

10.3.2.2 Basic Components. The basic logic gate is the majority gate

(Figure 10.2). AND and OR gates are formed by fixing one of the inputs at ‘0’ or

‘1’. Unlike CMOS, QCA inverters are more complicated than AND and ORs (Figure

10.3).

A wire crossing is shown in Figure 10.4. By rotating the cells in one wire,

perpendicular wire crossings are possible without interference. The rotated cells form

an inverter chain , which inverts the signal at every cell. One advantage of this

approach is that a signal can be split into both its unmodified and inverted form

using a single fanout [NK99].
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Fig. 7. QCA NOT or inverter gate. The cells positioned at 
Figure 10.3: QCA Inverter requires more cells than an AND
or OR gate [Wal05].

Figure 10.4: QCA wire crossings are possible by rotating the
cells in one wire by 45 degrees [Wal05].
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10.3.2.3 Memories. Memory implementation is more complex in

QCA. Limited memories, such as those useful for pipelined logic, are provided au-

tomatically by the wires themselves, due to the use of the four stage clocks. Longer

term storage is more complicated. Since cells polarize and depolarize according to

the external clock, the ‘memory bit’ must constantly stay in motion. One design is

the ring structure proposed in [OVLP05]. A design for an RS flip-flop is proposed

in [MHL05]. An SRAM cell design is in [NF01]. Other memory designs are compared

in [OVLP05,WVJD03]. In general, all of these designs require more hardware (QCA

cells) than the equivalent CMOS design (transistors).

10.3.2.4 Other Structures. Tri-state drivers and transmission gates do

not exist in QCA. Bus structures are still possible, however, through the use of an

OR array as shown in Figure 10.5. Each output signal is ANDed with an enable line.

This signal is ORed with all of the other outputs.

QCA architecture design is still in its early stages, and most designs are rela-

tively small. Designs for XOR gates, simple adders, and other basic devices have been

proposed [MTHL04, TL94, WWJ03]. A simple FPGA was described in [WVJD03].

Simple 12 is a very basic processor, consisting of little more than a 12 bit adder,

an 8-bit memory, and associated data path [NK99]. A 4 bit CPU was described

in [WMSJ05]. Most of these devices are simple “proof of concept” devices imple-

mented in simulation only, and thus not fabricated. They are useful for the develop-

ment of hardware cost models. These models are discussed in later sections.

10.3.3 QCA Defects. To model the yield and fault tolerance performance of

QCA circuits, device failures modes must be considered. This section examines two

areas: how QCA devices may fail, and how they are tested.

10.3.3.1 Failure Modes. QCA devices are subject to both soft and

hard errors. Soft errors can be caused by particle strike or incorrect design. Line

lengths are limited by the ability of the signal to propagate correctly from cell to cell.
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Out0
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OutR

EnableR
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Figure 10.5: Bus structures are possible in QCA using an
OR array. An enable line is AND’ed with the output signal
before entering an OR tree. The result is similar to the TGATE-
enabled bus used in previous chapters.
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A wire containing too many cells in a single clock zone may not propagate the state

correctly and induce a soft error [LT97]. Parasitic capacitance and crosstalk can also

cause problems between wires placed too closely [DK03].

Hard faults are commonly caused by manufacturing defects. Early defect stud-

ies were done by [GMI+99, Lie02, MHTL05]. Defects can occur in any of the three

major components of a QCA chip: the QCA cell logic, the support clock wiring, and

the input/output drive circuits. Most research focus has been on the QCA cells. Fab-

rication of individual QCA cells can be done with fairly low defect rates, on the order

of 10−5 [JLG+03]. For molecular QCA, it is envisioned that working devices can be

chemically filtered to remove defective devices prior to deposition onto the DNA sub-

strate. Thus, the most likely defects are likely to be in the deposition phase [THML04].

Although the defect rate is not available due to the immaturity in the technology, it

is likely to be in excess of 10−5.

The most likely faults are:

• Shifted cells. A cell placed only a half cell out of alignment can invert a signal

and cause it to fail. Thus, placement accuracies for molecular QCA will have

to be less than 1 nanometer [DK03].

• Missing cells.

• Extra cells.

• Rotated cells.

• Vertically displaced cells. This can occur if the substrate is not level [NRK04].

Detailed examinations of the effects of these errors on simple QCA device struc-

tures are found in [THML04, MHTL05, MOL05]. The most common effects are in-

creased delay, unwanted logical complement (i.e., a vonNeumann error), and logical

stuck at faults . Clustering of defects has not been examined, and thus the same large

scale defect clustering model used for CMOS is assumed for QCA.
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10.3.3.2 Testing. Design of test vectors for QCA circuits was ad-

dressed in [THML04, TMHL04]. Stuck At Fault testing was shown to be effective

at finding most faults in basic QCA circuits and the same techniques applicable for

CMOS testing can be used for QCA.

10.3.4 QCA Fault Tolerant Architectures. Given the reliability challenges

associated with QCA, several methods have been to provide fault tolerance at the

circuit level. Device sizing is possible, particularly for wires. Wider wires and gates

should be less subject to logical inversion faults [FT01]. A fault tolerant three-input

majority gate gates design is found in [THML04][Wei2005 ref10]. While the majority

operation itself is more reliable, interconnect faults are not considered.

Little work has been done thus far on architectural level fault tolerance in QCA.

A TMR Shifted Operand (TMRSO) 2-bit adder was proposed in [WWKO05]. This

design uses the wire pipelining capability of QCA to latch the inputs and pass it to

multiple adders. The output is computed three times and combined with a majority

voter. This is similar to the Recompute With Shifted Operands technique described in

Chapter II. The technique is useful for the adder circuit, but has limited applicability

to other operations.

10.4 Area, Power, and Speed Estimation

Having examined the background of QCA device technology, it is now possible

to develop estimators for the area, power, and speed of QCA circuits useful for yield

modeling. This section proposes new models for the area, power, and speed of QCA

circuits.

10.4.1 Differences from CMOS. The most significant difference between

QCA and silicon CMOS is the importance of wires. Since wires must be constructed

of QCA cells, the number of cells used in interconnect dominates the number of cells

used for the logic devices themselves. Thus, models for area, power, and speed cannot
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ignore interconnect. Wiring will therefore be included in all of the models proposed

in this chapter.

QCA possesses several unique advantages as well as disadvantages that must be

considered for logic design. Some logical gates can be fabricated with fewer resources

than in silicon CMOS, while other require more. Transmission gates and tri-state

drivers do not exist in QCA, and must instead be implemented with OR arrays .

Clocking circuitry and the input drivers and output electrometers will also con-

sume area and power, and may contribute to defects. Indeed, the minimum feature

size of the silicon clock wires contribute the overall area of the design of the ALU

in [NK04]. Considering only the QCA cells in the core, this design requires 0.55µm2

of area. If the silicon wires cannot be made as small as the QCA cells, the entire

design must expand to the size of the wires. In this case, the design expanded to

13.9µm2.

It is possible solutions will be found for the clock wiring size problem. If the

clock signal is distributed by QCA wires rather than silicon, the circuit may be made

much smaller, on the scale of the QCA devices themselves.

Estimation of QCA characteristics uses a node-based model as shown in Figure

10.6. A similar approach was first used for defect characterization in [MHL05]. In

addition to considering devices used in the logic gates themselves, the new QCA model

adds wiring structures. The following wire structures are used:

• Wire segment

• Wire corner (i.e., L-shaped)

• Wire fanout

• Wire crossing (i.e., intersection of two wires)

10.4.2 Area Estimation. The QCA chip will be composed of three modules:

• Input drivers to convert external current signals to QCA charge signals.
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Figure 10.6: Hardware estimation for QCA can be done using
a node-based model similar to that used in SPICE. For QCA,
wire structures must also be included [MHL05].

• Output electrometers to read the charge state of the QCA logic and convert to

current based signals used externally.

• QCA logic.

Thus, total area is defined as:

Achip = Adrivers + Aelectrometers + Aqca core (10.1)

The driver and electrometer circuits are silicon CMOS and will not be considered

further. As stated in the previous section, the area of the QCA core may be limited

by the minimum feature size of the clock network. The QCA core area is

Aqca core = max(Aqca, Aclock). (10.2)

It should be noted that a large clock distribution network will impact power,

speed, and reliability of the QCA core logic. If the circuit size is expanded due

to the silicon clock wires, the lengths of the QCA wires increases. Since the wires

are composed of more QCA cells (each of which can fail), reliability will decrease.

Likewise, power and switching speed will be negatively impacted. If the size of the
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Table 10.1: Hardware costs of basic QCA devices.

Device Cost Source

MAJ3 5 [Wal05]
AND, OR 5 [Wal05]
Inverter 9 [Wal05]
Wire Fanout 5 [Wal05]
Wire Corner 5 [Wal05]
Wire Crossing 5 [Wal05]
XOR2 263 [MHTL05]
Full Adder 138 [WWJ03]
SRAM-like memory cell 158 [WVJD03]
RS Flip Flop 66 [MHTL05]
D Flip Flop 198 estimated from 3 RS flip-flops

QCA circuit is limited by the minimum size of the clock wires, the circuit is said to

be clock area limited . Otherwise, the circuit is said to be cell area limited .

Table 10.1 shows the QCA cell hardware cost for several basic structures, as-

suming the design is cell area limited. From these structures, larger circuits can be

estimated.

10.4.2.1 Wire Estimation. Wire cost estimation is the most compli-

cated aspect of the hardware cost. The total cost of the wires is

Cwires = Cstraights + Ccorners + Cfanouts + Ccrossings, (10.3)

where Cstraights is the cost of all the straight wire segments, Ccorners is the cost of the

wire corners, Cfanouts is the cost of wire fanouts, and Ccrossings is the cost of all the

wire intersections. For all but the straight wires, cost is constant (cf., Table 10.1)

multiplied by the number of instances. For straight wire segments, each wire has a

different length, or

Cstraights =
∑

i∈W

Cwire(i), (10.4)
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where W is the set of all the wires in the module, and Cwire(i) is the cost of wire i.

While accurate estimation of wire length is possible for small circuits, it is

extremely difficult for larger circuits unless the actual layout is available. For fault

tolerance analysis, it is helpful to create estimates for wire costs without having to

create the actual circuit layouts. Thus, the average wire length can be defined as

AV GWIRE = ksilicon ·
∑

i∈W Cwire(i)

NumWires
, (10.5)

where W is the set of all wires, Cwire(i) is the cost of wire i, and ksilicon is a constant

to reflect the scaling required for clock area limited designs (i.e., ksilicon > 1).

Rather than dealing with thousands of individual wire lengths, the model will

be simplified to two types: short wires , which are used for all local interconnect, and

long wires , which depend on module size and are used for intermodule and global

connections. Short wires are independent of the size of the module. The hardware

cost for a short wire is simply the average wire length.

Cshortwire = AV GWIRE. (10.6)

For long wires, such as those used in TMR to connect the outputs of three

modules to the majority voter, length is highly influenced by the size of the module.

Length should be included in the hardware cost estimator. Thus, the model for a long

wire is defined as

Clongwire(i) = Lmodule(i) · ksilicon, (10.7)

where Lmodule(i) is the length of module i (in cells), and ksilicon is the silicon scaling

constant. Lmodule(i) is estimated by assuming that the module layout is square. Mod-

ule length is directly dependent on the number of cells in the module, Nmod. However,

since separation between cells is required, a large number of empty cells are found in

the module and must be counted as well. A new parameter, θqca, is the fraction of
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tiles in the module that are occupied by a QCA cell. Values of θqca depend on the

design, but will be between 0 < θqca ≤ 0.5. Thus, the estimated cost for a long wire

is

Clongwire(i) =

√

Nmod(i)

θqca

· ksilicon, (10.8)

where Nmod(i) is the number of devices in module i, and θqca is the cell fill fraction.

10.4.3 Power Estimation. Power and speed are estimated in a manner

similar to hardware cost. Unlike hardware cost, however, empty space does not need

to be accounted for. Power and speed are dependent solely on the number of QCA

cells in the module.

Pchip = Pdrivers + Pelectrometers + Pqca core (10.9)

As before, the drivers and electrometers are estimated using techniques for sili-

con CMOS, and are not discussed further. For the QCA logic, total power consump-

tion is estimated from the total number of QCA cells:

Pqca core = Ncore · Pqca, (10.10)

where Ncore is the number of QCA cells in the design, and Pqca is the estimated power

consumption of a single QCA cell. From Section 10.3.1.4, Pqca = 10−10W .

10.4.4 Speed Estimation. In silicon CMOS, the operating speed of a sequen-

tial circuit can be found by determining the propagation delay through the critical

path of the circuit (i.e., the path with the longest delay). The signal can pass through

multiple logic gates in a single clock cycle. From the delay estimate, the maximum

operating frequency can be determined. In a typical pipelined CPU, most of the hard-

ware in each stage is combinational, with results being fed to the pipeline registers.
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For QCA, the clock plays a more central role. In a sense, all circuits are clocked

circuits, since the four stage clock is used to ‘pump’ the information through the

circuit. Clocking is required to produce results in the logical gates, as well as move

information down wires. Long wires must be split into multiple clock zones to restore

the logic level and prevent errors. In addition, information can pass through no more

than one logical gate per cycle. Thus, the work accomplished per clock cycle in QCA

is likely to be much less than an equivalent CMOS circuit.

One design strategy for QCA clock circuits is a nested pipelining technique in

which the conventional pipelined CPU architecture is divided into many smaller clock

cycles. Logic flow in a single pipeline stage (e.g., the EXE stage) would be completed

in X clock cycles, at which point the results are latched and sent to the next stage.

For a Y stage pipeline, total execution of an instruction would require XY clock

cycles. Care must be taken in the design of each stage to ensure that all of the results

arrived at the pipeline register inputs at the same clock cycle. While this complicates

layout of the QCA circuit, it masks the effects of the pipelining from the CPU level

architecture, and mitigates negative CPU performance effects from a pipeline that

might otherwise be hundreds of layers deep.

Thus, the propagation delay of each pipeline stage should be matched, or

TIF = TID = TEX = TMEM = TWB. (10.11)

Delay balancing can be achieved through the careful use of long wires. Addition

clock segments would be added to ensure the signals arrive at the pipeline registers

at the same time. The overall delay for a CPU pipeline stage, Tpipeline, is the product

of the number of clock zones in the stage, Nclockzones, and the delay of a single clock

zone, Tclockzone,

Tpipeline = Nclockzones · Tclockzone (10.12)
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The actual clock speed for the QCA cells is determined by the maximum number

of QCA cells clocked in a single zone, N1zone and the switching speed of a single QCA

cell, Tsw, or

Tclockzone = N1zone · Tsw. (10.13)

From Section 10.3.1.4, Tsw = 0.02ps for molecular QCA. Thus, a single QCA

cell can switch at a speed of 5 × 1012Hz. As an example, assume that wire length is

limited to 25 cells in a single clock zone. Thus, switching time for a single clock zone is

25 ·Tsw = 5×10−13, for a maximum clock speed of 2 THz. If a pipeline stage is broken

into 50 logic and wire delay zones, the CPU pipeline speed is 2THz/50 = 40GHz.

10.5 A Defect Model for QCA

This section develops a model for the yield of a QCA module. Yield of a QCA-

based chip is

Ychip = Yqca core · Yclock · Ydrivers · Ysensors, (10.14)

where Yqca core is the yield of the QCA core logic, Yclock is the yield of the supporting

silicon clock circuits, Ydrivers is the yield of the input circuits that convert current-

based signals to charge-based signals, and Ysensors is the yield of the electrometers

that convert output signals back to current-based signals for use off the QCA chip.

The clock, driver, and sensor hardware are silicon CMOS based circuits, and can be

modelled with conventional techniques.

Yield of a QCA logic module depends on the following factors:

• Number and types of logic structures (i.e., MAJ3, AND, OR, etc.).

• Number, type, and length of wire structures (i.e., Fanouts, wire crossings, long

and short wires)
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Table 10.2: QCA circuits suffer from several types of defects,
each with a different probability

Defect Type Probability of Probability of Common Effects
Module Failure Cell Failure

Defective cell λcell λ1cell VN or SA faults
Missing cell λm λ1m VN or SA faults
Displaced cell (lat) λL λ1L VN or SA faults
Displaced cell (vert) λv λ1v VN or SA faults
Rotated cell λr λ1r VN or SA faults
Extra cell λe λ1e VN, SA, or wire coupling

• Area of the module layout

• Spacing of unrelated components (i.e., to prevent crosstalk)

• The probability each individual QCA cell is functional.

As discussed in Section 10.3.3.1, QCA logic can fail due to defective QCA cells

or faults in cell placement on the substrate. Table 10.2 lists the common defects. The

symbols represent the probability the module suffers a fault of this type.

The probability of each of these faults is directly proportional to the number of

cells in the module.

{λcell, λm, λL, λv, λr, λr} ∝ Nmod (10.15)

Unclustered yield of a module composed of QCA cells is thus

Yqca mod = e−Nmodλ1 , (10.16)

where Nmod is the number of cells in the module, and λ1 is the mean probability of

defect for a single cell. This probability adds the probabilities of the various types of

defects,

λ1 = λ1cell + λ1m + λ1L + λ1c + λ1r + λ1e. (10.17)

Yield of a module composed of the primitives in the top half of Table 10.1 is
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Ymod =
∏

k∈ModTypes

Yk (10.18)

where

ModTypes = {MAJ3s,NOTs, short wires, long wires, fanouts, wire crossings}.
(10.19)

The yield for all of the MAJ3 gates is computed as

YMAJ3s = (YMAJ3)
NumMAJ3s = e−Cmaj3·λ1·NumMAJ3s, (10.20)

where Cmaj3 is the number of QCA cells in the MAJ3 gate. Similar expressions exist

for the other primitive elements. Thus, the yield of complicated structures is derived

from basic building blocks. Yield expressions for QCA versions of TMR, modular

reconfiguration, and TMR-protected reconfiguration are derived in the next section.

10.6 Fault Tolerant Circuits for QCA

With some minor modification, the three fault tolerance schemes used in pre-

vious chapters are useful for QCA. This section illustrates the design of the circuits

and develops mathematical models for yield.

10.6.1 TMR. Triple modular redundancy is easily implemented in QCA.

The basic logic gate in QCA is the MAJ3 gate, implemented with only 5 QCA cells.

In CMOS, a MAJ3 gate requires 12 transistors. Thus, without regard to wiring, TMR

has the potential to perform better on QCA than in CMOS.

10.6.1.1 Circuit. The circuit diagram for QCA TMR looks similar to

that of CMOS. The fault tolerance model must include the wire segments. Figure

10.7 shows the QCA node layout of the input wiring.
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Figure 10.7: QCA 3-Module input layout. This circuit distrib-
utes the Win = 4 inputs to three modules. A similar layout will
also be used for Modular Reconfiguration and TMR-protected
Reconfiguration. The colors denote different signals rather than
clock zones, which are not shown.

Figure 10.8 shows the layout of the output wires and majority gates. Provided

that parallel wires are placed sufficiently far apart (according to the design rules),

defects are unlikely to affect multiple wires except at the wire crossings.

10.6.1.2 Yield Expressions. The yield expression for QCA TMR is

adapted from the TMR expression from Chapter V, and is

Ytmr = Ycktmr

3
∑

k=2





3

k



Ysupermod
k (1 − Ysupermod)

3−k, (10.21)

where Ycktmr is the hardware unprotected by redundancy. In this case, it is the input

wiring prior to the fanouts, and the output majority gates and wire crossings. Ysupermod

is the yield of a supermodule. The supermodule is defined as the logic module and

attached input and output wiring that are protected by a fault tolerance scheme. For

TMR, the supermodule contains the input wiring after the fanouts, and all of the the

output wiring excluding the wire crossings.

The yield of the chip kill logic is

Ycktmr = Ymaj3
Wout · Yckinputwires · Yckoutputwires, (10.22)
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Figure 10.8: QCA TMR Output layout. Color shading indi-
cates different wires rather than clock zones.
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where Wout is the number of signals in the output of the module, Ymaj3 is the yield of

a single MAJ3 gate, Yckinputwires is the yield of the input wires prior to and including

the fanouts, and Yckoutputwires is the yield of the output wire crossings. Since a fault

in a wire crossing can cause errors in signals going to multiple majority gates, a fault

here is considered to be a chip kill event. The design in Figure 10.8 is scalable with

Wout, and will have 3(Wout − 1)(Wout − 2) wire crossings. The yield is thus

Yckoutputwires = Ycrossing
3(Wout−1)(Wout−2) (10.23)

for the output wire crossings, and

Yckinputwires = Yshortwire
Win · Yfanout

2Win · Ycrossing
2(Win−1)(Win−2) (10.24)

for the input wires up to and including the last fanout. This section is composed of one

short wire and two fanouts per input wire, and 2(Win − 1)(Win − 2) wire crossings.

Win is the number of inputs to the module. Note that this is a new parameter, as the

yield of CMOS TMR depends only on the number of signals in the output.

As a design rule, the best layout will split the wires as early as possible. All

of the wiring after the fanouts becomes part of the supermodules, and therefore has

some fault tolerance protection. Wiring prior to the fanouts must be included in the

chip kill analysis.

Yield of the supermodule is simply

Ysupermod = Ymod · Yinwires · Youtwires, (10.25)

where Ymod is the yield of the module to be protected, Yinwires is the yield of the input

wires after the fanouts, and Youtwires is the yield of the output wires (not including

the wire crossings).
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In0 In1 In2 In3

Figure 10.9: QCA R-Module input layout. This circuit dis-
tributes the Win inputs to the R modules. This circuit is also
used for TMR-protected reconfiguration. Clock zones are not
shown.

Each of the input wires consists of one short wire, one long wire, and one corner.

Yield of the protected input wires is thus

Yinwires = Yshortwire
Win · Ylongwire(Nmod)

Win · Ycorner
Win . (10.26)

Similarly, the protected output wires are made up of short and long wire segments,

as well as several corners. Yield is thus

Youtwires = Yshortwire
2·3·Wout · Ylongwire(Nmod)

3Wout · Ycorner
2·3·Wout . (10.27)

Yield of QCA TMR is compared to conventional CMOS TMR in section 10.7.

10.6.2 Reconfiguration. The circuit for QCA reconfiguration is similar to

that of CMOS with some minor modifications. Since TGATES cannot be implemented

with QCA, an OR array is used instead.

10.6.2.1 Circuit. The input wire network for modular reconfiguration

is shown in Figure 10.9. It is similar to the layout for TMR, with the addition of

multiple fanouts to provide the R inputs.

The output network is shown in Figure 10.10. As in CMOS reconfiguration,

enable registers are used to connect the module outputs to the common bus. Unlike
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Figure 10.10: QCA Modular Reconfiguration Output Layout.
For this example, R = 3 and Wout = 2.

CMOS, which uses TGATES, QCA uses an OR array. Each enable signal is ANDed

with the appropriate output. These signals are then combined using (R-1) OR2s to

form the output bit.

10.6.2.2 Yield Expressions. Similar to the CMOS implementation,

the yield for QCA modular reconfiguration is

Yreconfig = Yckreconf

R
∑

k=1





R

k



Ysupermod
k (1 − Ysupermod)

R−k, (10.28)

282



where Ysupermod is the yield of the supermodule, and Yckreconf is the the yield of the

non-redundant hardware. This section includes the R configuration registers, R ·Wout

AND2 gates, and (R− 1)Wout OR2 gates. This expression is

Yckreconf = Yregister(1)
R · YAND2

R·Wout · YOR2
(R−1)Wout · Ymk inwires · Ymk outwires, (10.29)

where Ymk inwires is the yield of the unprotected wires in the input (i.e., the wires prior

to the fanouts), and Ymk outwires models the unprotected output wires.

The yield of the unprotected sections of the input wires includes a vertical short

wire segment, a horizontal long wire, and fanouts for each of the R ·Win segments. In

addition, there are (Win−1)(Win−2)(R−1) wire crossings. All of these segments are

included in the chip kill segment, as a failure affects more than one of the modules.

The expression becomes

Ymk inwires = (Yshortwire · Ylongwire(Nmod) · Yfanout)
Win(R−1)

·Ycrossing
(Win−1)(Win−2)(R−1). (10.30)

The expression for the unprotected segments in the output logic is

Ymk outwires = Yenablewires · YORarray, (10.31)

where Yenablewires is the yield of the wires used in the enable logic, and YORarray is the

yield of the wires used in the remaining OR array. Yenablewires is

Yenablewires = Ylongwire(Nmod)
R(R−1) · Yshortwire

2R·Wout · Ycrossing
R(R−1)Wout

·Yfanout
(R−1)Wout · Ycorner

R. (10.32)

Similarly, the expression for YORarray is

YORarray = Yshortwire
3R·Wout · Ylongwire(Nmod)

R·Wout · Ycorner
2R·Wout . (10.33)
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The yield of the supermodule is computed just as in TMR, or

Ysupermod = Ymod · Yinwires · Youtwires, (10.34)

where Ymod is the yield of the module, Yinwires is the yield of the wire segments after

the fanouts leading directly into the modules, and Youtwires is the yield of the wire

segments exiting the modules prior to the segments in the output chip kill section.

The expression for Yinwires is the same as for TMR, or

Yinwires = Yshortwire
Win · Ylongwire(Nmod)

Win · Ycorner
Win . (10.35)

The expression for the output wires is

Youtwires = Yshortwire
2·Wout · Ycorner

Wout . (10.36)

10.6.3 TMR-Protected Reconfiguration. TMR-protected reconfiguration op-

erates in the same manner as RMR, with a wider output bus to provide three outputs,

which are combined using a MAJ3 gate.

10.6.3.1 Circuit. The input section of the circuit is identical to that

used for modular reconfiguration in Figure 10.9. The output circuit is shown in Figure

10.11.

10.6.3.2 Yield Expressions. The yield expression for the QCA version

of TMR-protected reconfiguration is

Ytmrr = Yck tmrr

R
∑

k=2





R

k



Ysupermod
k (1 − Ysupermod)

R−k, (10.37)
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Figure 10.11: QCA TMR-Protected Reconfiguration Output
Layout for R = 3 and Wout = 2.
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where Ysupermod is the yield of the supermodule, and Yck tmrr is the yield of the unpro-

tected logic. This section consists primarily of the logic in the output OR array and

majority gates. The expression for Yck tmrr is

Yck tmrr = YORarray · Ymaj3
Wout . (10.38)

For the OR array, at least 2 of the R outputs must be correctable (for all Wout

bits). The expression is

YORarray = Ymk ORarray

3
∑

k=2





3

k



Y1col
k (1 − Y1col)

3−k, (10.39)

where Ymk ORarray is the yield of the unprotected segments in the OR array, and Y1col

is the yield of a single bundle of Wout output signals. The unprotected OR array

segments include all of the wire crossings and fanouts. They are considered to be part

of the chip kill section as failures impact multiple modules. The expression is

Ymk ORarray = Ycrossing
5Wout+5+3(Wout−1)(Wout−2)+3R(Wout−1) · Yfanout

R(5Wout−3). (10.40)

The yield for a single cluster of Wout output bits combines the R configuration

registers, the AND2 and OR2 gates from the enable logic, and short, long, and corner

wire segments. The expression becomes

Y1col = Yregister(1)
R · YAND2

R·Wout · YOR2
(R−1)Wout · Yshortwire

R2+R(1+Wout)

·Ylongwire(Nmod)
R·Wout · Ycorner

2R. (10.41)
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As with TMR and modular reconfiguration, yield of the supermodule combines

the yield of the logic module and local input and output wiring. The expression is

Ysupermod = Ymod · Yinwires · Youtwires. (10.42)

The yield of the local input wiring is the same as modular reconfiguration, or

Yinwires = Yshortwire
Win · Ylongwire(Nmod)

Win · Ycorner
Win . (10.43)

Finally, the yield expression for the local output wires is

Youtwires = Yshortwire
3·Wout · Yfanout

2·Wout · Ycorner
Wout · Ycrossing

(Wout−1)(Wout−2). (10.44)

10.7 Performance Comparison

This section compares the performance of the QCA fault tolerance expressions

to each other, as well as to the original CMOS models. Unlike the CMOS models,

QCA yield depends heavily on the physical layout and associated wire lengths. The

impact of QCA cell density is shown, as well as the negative effect of silicon clock

scaling. Finally, rules are proposed for fault tolerant QCA design.

10.7.1 Setup. These results are based on the analytical expressions devel-

oped in the previous sections. Defect clustering is not considered, but can be deter-

mined using the same compounding techniques used in the CMOS models. Instead,

the focus of this section is the relative performance of the three QCA fault tolerance

designs: TMR, modular reconfiguration, and TMR-protected reconfiguration, and

their CMOS equivalents.

Two wire models are examined. In the short wire model, wire lengths are the

average wire length as defined earlier. In the long wire model, short wires are used

for local interconnect, while long wires are used for intermodule connections. Wire

length depends on Nmod, θqca and ksilicon.
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Figure 10.12: Unclustered yield for TMR using the CMOS,
long-wire QCA, and short-wire QCA models. Performance of
the short wire model approximates the CMOS model.

10.7.2 Observations.

10.7.2.1 QCA TMR yield. Figure 10.12 shows the unclustered yield

for the three models of TMR. The module consists of 5000 devices (either QCA cells

or transistors), with four inputs and four outputs. From the figure it is evident that all

three models show improvement over the non fault tolerant module, with the CMOS

model producing the highest yield. The short wire QCA model produces results that

approach CMOS, while the long wire model predicts a lower yield. This is because

the number of wire crossings and other cells in the unprotected areas is large relative

to the overall number of devices in the structure, decreasing yield.

As the size of the modules increases, wiring overhead becomes small, and yield

is dominated by the devices in the modules themselves. Figure 10.13 shows the

maximum allowed defect probability (MADP) for 90% yield. In this case, as module

size increases both QCA wire models approach the performance of the CMOS model.

From the figure, the “break even” module size can be identified where the use of

TMR provides an improved yield over the unprotected module. For CMOS, the

break even point is Nmod = 76. For the long wire QCA model, the break even point
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Figure 10.13: Maximum Allowed Defect Probability for QCA
TMR. Performance is worse than the CMOS model for small
module sizes. As Nmod → ∞, the models converge since per-
formance is dominated not by the wiring but by the number of
devices in the modules.

is Nmod = 2955, indicating much larger module sizes are required for TMR to be

effective for QCA.

10.7.2.2 Effects of Input Width. The MADP for QCA TMR with four

different input widths, Win, is shown in Figure 10.14. Unlike the CMOS model, QCA

TMR is very sensitive to the number of bits in the input due to the susceptibility of

the design to failures in the fanouts in the input lines. Figure 10.15 shows that the

effect occurs in both the long wire and short wire models.

A similar effect occurs with modular reconfiguration, as shown in Figure 10.16.

MADP begins to fall off significantly as Win > 10.

The design for TMR-protected reconfiguration is not as strongly impacted by

increasing Win, as shown in Figure 10.17, due to the improved fanout design for the

inputs.
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Figure 10.14: Max allowed defect probability for QCA TMR
for four different input widths. Increasing Win requires a larger
module size for TMR to provide any benefit.

0 20 40 60 80 100 120
1 10

7

1 10
6

1 10
5

1 10
4

QCA TMR (Long wire)

QCA TMR (short wire)

TMR (CMOS)

No FT

TMR MADP

Input Width Win

M
A

D
P

Wout 4

Nmod 5 10
3

0.1=

ksilicon 1=

Figure 10.15: TMR MADP versus input width Win. The
CMOS model is independent of Win. For this example, QCA
TMR is ineffective for Win > 10.
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Figure 10.17: CMOS TMRR is unaffected by input width.
For QCA, the long wire model is significantly affected.

MADP for the three fault tolerance designs is shown together in Figure 10.18.

Both TMR and modular reconfiguration MADP falls as Win increases. While the

MADP of TMR-R falls as well, it is less strongly affected. Of the three designs,

TMR-R is best suited for circuits with a large number of inputs.

10.7.2.3 Output Width. The MADP of the TMR models versus in-

creasing output width Wout is shown in Figure 10.19. CMOS performance degrades

slowly with Wout in this example. QCA performance degrades very quickly for both

the short and long wire models.

The MADP for QCA TMR for four different output widths is shown in Figure

10.20. A similar plot for QCA modular reconfiguration is shown in Figure 10.21.

From the plots, it is evident that modular reconfiguration degrades less quickly than

TMR with larger output widths.
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Figure 10.18: MADP versus input width Win for the three
fault tolerance structures. TMR-R is the least impacted by in-
creasing input widths.
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Figure 10.19: MADP versus Output Width Wout. All mod-
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Figure 10.21: MADP of modular reconfiguration versus out-
put width, Wout. Reconfiguration is less impacted by output
width than TMR due to fewer wire crossings and lack of major-
ity gates.
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Figure 10.22: MADP versus output width Wout for the three
fault tolerance structures. Modular reconfiguration is the least
degraded by increasing the width of the outputs.

Figure 10.22 is the MADP of all three designs versus increasing Wout. While

all degrade with increasing Wout, modular reconfiguration has the slowest rate of

decrease, and is well suited for circuits with large numbers of outputs.

10.7.2.4 QCA Cell Density. QCA cell density is a new parameter,

scaling the average length of long wires depending on the size of the module. It

reflects that fact that empty spaces on the substrate are required to separate unrelated

devices. The MADP for QCA TMR versus cell density, θqca is shown in Figure 10.23.

Increasing the cell density for a given module size results in shorter length and width

dimensions for the module, and shorter long lines. Thus, yield and MADP improve.

The effect is most noticeable for small modules, since the relative change in long wire

length is not as significant for large values of Nmod.
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Figure 10.23: TMR MADP versus QCA cell density θqca. In-
creasing the density of QCA cells increases the MADP. The ef-
fect is more apparent for small modules.
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Figure 10.24: TMR Yield versus QCA cell density. The short
wire model does not account for θqca and does not change. For
the long wire model, density can determine whether TMR pro-
vides any benefit over a non fault tolerant design.

Figure 10.24 is an example of cell density as the determining factor in whether

TMR provides an improvement over an unprotected module. For a low density layout,

TMR results in a smaller yield than the unprotected design. A higher density layout

increases TMR yield above an unprotected design.

Increasing cell density can have a negative effect. Separation of unrelated wires

and gates decreases the probability a lateral displacement defect disrupts circuit op-

eration. Thus, placing cells closer together ultimately increases the defect probability,

λ1. While difficult to model, there will be a best density such that yield is maximized

by keeping wire lengths as short as possible but λ1 remains small.

10.7.2.5 Silicon Clock Scaling Factor. The silicon clock scaling factor,

ksilicon, is another parameter unique to QCA. It reflects the increase in the QCA design

required when the minimum feature size of the silicon clock wires determines the size

of the QCA layout. Increasing the scaling factor results in longer wires throughout

the QCA design, and has a negative impact on yield and MADP performance. This
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Figure 10.25: TMR MADP versus QCA silicon clock scaling
factor ksilicon. Fault tolerance performance decreases if the sili-
con clock lines require QCA scaling. If ksilicon > 1, longer QCA
lines are required, and yield decreases due to failures in the long
lines.

effect is shown in Figures 10.25 and 10.26. The MADP for long wire QCA TMR

decreases significantly as ksilicon increases from one to ten. The break even point

versus an unprotected approach appears to shift significantly to the right, implying

larger modules are required to achieve a benefit with TMR. However, the size of the

unprotected module will also increase due to clock scaling, moving the straight line

denoting the unprotected module down as well.

10.7.2.6 Redundancy. Both modular reconfiguration and TMR-prot-

ected reconfiguration can benefit from the addition of additional modules. In many

cases, there is an upper limit on the number of redundant modules before yield begins

to decrease due to the overhead in the switching hardware and wiring. For the example

shown in Figure 10.27, the best MADP is achieved by R = 5.
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Figure 10.26: TMR MADP for both CMOS and QCA models.
Two values of ksilicon are used. If scaling is required due to
the silicon clock lines, much larger module sizes are required to
achieve as benefit over the non-fault tolerant approach.
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Figure 10.27: Yield of QCA modular reconfiguration versus
R. For large modules, yield is improved by adding additional
modules. In each case, there is a point of diminishing return, be-
yond which additional modules actually decreases performance.

10.7.2.7 Comparison of Techniques. The relative benefit of the three

fault tolerance schemes depends on the specific configuration of module size, number

of inputs, and number of outputs. In Figure 10.28, for example, modules smaller than

Nmod = 10, 000 get no benefit from the fault tolerance circuits. For larger modules,

TMR-R provides the most benefit.

Comparison of the three QCA models against the original CMOS models shows

the impact of failures in the interconnect. Figure 10.29 shows that MADP for the

QCA circuits is in all cases less than the CMOS designs. Larger modules are required

to achieve a yield benefit. The figure also illustrates how the best fault tolerance

technique changes depending on the technology used. For this example, CMOS TMR

initially provides the greatest MADP in the region Nmod > 100, but is quickly replaced

by modular reconfiguration. For QCA, TMR-R provides the greatest MADP.
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Figure 10.29: Comparison of MADP for CMOS and QCA.
In all cases, QCA performance is less than CMOS, requiring
larger module sizes to be effective. Sometimes the choice of the
best fault tolerance approach is different for QCA than CMOS.
In this example, reconfiguration provides the highest yield for
CMOS for large modules, while TMR-R is the best choice for
QCA. For reconfiguration and TMR-R, R = 5.
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10.7.3 Designing for Fault Tolerance. Based on the analysis of the previous

section, it is possible to draw conclusions that will be helpful for designers of fault

tolerant QCA circuits.

Minimize wire lengths. While wires must sometimes be lengthened for clock syn-

chronization purposes (i.e., to cause multiple inputs to arrive at a gate at the

same time), wire length should be minimized to reduce the probability of wire

faults.

Minimize wire crossings. Faults in wire crossings can impact multiple modules,

causing chip kill effects. While unavoidable in a two-dimensional technology

such as QCA, careful layout can help to minimize the number of crossings.

Use narrow modules facing the output bus. The models in this section assumed

the modules are square. A rectangular layout with a narrow side facing the out-

put bus would result in shorter long wires in the bus and improved reliability.

Split input lines as early as possible. This maximizes the number of cells pro-

tected in the supermodules and reduces the number in the chip kill section of

the circuit prior to the fanouts.

Use large modules when possible. Larger modules generally benefit more from

fault tolerance. However, modules with large numbers of inputs and outputs

can eliminate the benefit. The best choices are modules with large size and few

inputs and outputs. Design partitioning is very important.

Consider Win and Wout when determining fault tolerance approach. The

choice between modular reconfiguration, TMR, and TMR-R depends not only

on module size, but on the number of inputs and outputs. As shown, the best

choice depends on all of these factors.

Balance cell layout density θqca against increasing λ1. Increasing density of the

layout will decrease the average wire lengths, but will increase the defect prob-

ability. A maximum density layout may not provide the best yield.
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10.8 Conclusions

This chapter examines the problem of implementing the fault tolerance schemes

described in previous chapters on a non-CMOS device technology. Many of the devices

technologies offered as a replacement for silicon CMOS are more difficult to fabricate,

and suffer higher defect rates. Adaptation of fault tolerance techniques to work with

these technologies is an essential step in practical adoption. Quantum cellular au-

tomata is one candidate technology. Logic structures and interconnect are formed

from the same QCA cells. Thus, cost, power, and yield models must all account for

the resources used in wiring.

This chapter also develops models for hardware cost, power, and speed for QCA

circuits. The problem of accurately estimating wire lengths prior to actual layout is

abstracted to two wire models: short wires, intended for local interconnect, and long

wires for intermodule communication. Long wire lengths depend on the module size,

Nmod, and two new parameters: θqca, the QCA cell fill density, and ksilicon, the silicon

clock scaling factor. Cell fill density adjusts the wire length estimate to reflect the

large number of vacant cells in the QCA substrate. The silicon clock scaling factor

accounts for an increase in QCA layout size if silicon clock wires are used. In this case,

minimum feature size can be determined by the lithographic process used to create

the wires rather than the size of the QCA cells. Clock scaling causes a significant

decrease in yield due to the large numbers of additional cells in the long wires.

Defect models for the three main fault tolerance schemes are developed. First,

QCA defects are examined and shown to be directly dependent on the number of

cells in the module, Nmod. Thus, the use of a single defect probability, λ1, is possible.

Circuit diagrams for TMR, modular reconfiguration, and TMR-protected reconfigu-

ration are developed for QCA. Yield expressions for these models are developed and

shown to be scalable for modules of different sizes and larger numbers of inputs and

outputs.
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The yield performance of the QCA fault tolerance models is more dependent on

layout than CMOS, as well as being dependent on additional factors such as number

of inputs, cell fill density, and silicon clock scaling factor. While the fault tolerance

techniques are beneficial to QCA circuits, design tradeoffs are significantly different

and require careful design. For example, high cell density increases yield by shortening

line lengths, while potentially decreasing yield due to increased defect rates caused

by close cell placement. From this, a set of design guidelines for fault tolerant QCA

circuits are proposed. The fault tolerance techniques described in previous chapters

are applicable to QCA, with some modification.
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XI. Conclusions and Recommendations

This research studies the problem of implementing a microprocessor using device tech-

nologies less reliable than modern silicon CMOS. While process scaling with silicon

CMOS is likely to continue for the next decade or more, fundamental limits do exist.

The end of silicon scaling is inevitable and other technologies must one day supplant

silicon CMOS. While no device technology has yet emerged as a clear successor, all

known alternatives are more difficult to manufacture than CMOS, suffering higher

rates of manufacturing defects and operational failure. To be useful, means must

be found to implement complex architectures with acceptable yield. Given the large

numbers of devices that will be available in the future, using a portion to provide

fault tolerance at the architectural level is possible.

11.1 Conclusions

The focus of this work is primarily at the architectural level. An architecture

for a fault and defect tolerant microprocessor was created and demonstrated to be

realizable using technologies much less reliable than silicon. Mathematical models

were developed for the processor and supporting fault tolerance techniques. Using

these techniques, the detailed functional architecture was developed.

11.1.1 Goal Status. The goals of this research, as described in Chapter III,

have been achieved.

To achieve goal one, a system architecture for the fault and defect tolerant mi-

croprocessor was proposed. A concept of operations, addressing yield testing, startup

configuration, operational testing, and fault detection and recovery was proposed.

Required functions were identified, and a means for comparing a fault and defect

tolerant architecture with conventional designs were examined.

Using Monte Carlo simulation, manufacturing yields of 70% are achievable with

device defect probabilities as high as 10−6, fully three orders of magnitude greater

than modern CMOS-based designs. Mathematical techniques to estimate yield were
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adapted from modern yield modelling techniques. Several of the limitations of these

techniques were discussed in Chapters V and X.

To achieve goal two, a functional architecture was developed. The cache memory

was the most critical part of the processor, and an effective architecture was proposed

to provide acceptable performance. Acceptable yields can be achieved for both the

cache memory and the overall processor.

For goal three, the primary fault tolerance techniques required by the FDT

processor were analyzed using QCA as the underlying technology. The techniques

can be used directly with QCA, although the benefits can be reduced or increased

due to unique characteristics of the device technology. Mathematical models for

yield and hardware cost were developed for QCA implementations of TMR, modular

reconfiguration, and TMR-R. Using these, it is possible to develop yield models for

an entire processor implemented in QCA. However, since the results depend greatly

on wiring lengths, more accurate estimators for wire length may be required.

Finally, goal four improves the mathematical models for classic fault tolerance

schemes. Chapter VI developed the first accurate model for von Neumann multiplex-

ing. The technique has a great deal of potential for use in device technologies that

are much smaller than silicon CMOS, but much less reliable. Accurate estimation of

the fault tolerance performance of this technique at moderate levels of redundancy is

now possible.

11.1.2 The Big Picture. Further work must be done to answer the biggest

question associated with this work: “How reliable must a device technology be to

implement a microprocessor?” It was proven that acceptable yields can be achieved

using devices with defect rates exceeding 10−6, using only 15 times the number of de-

vices required for the baseline design. Chapter VI demonstrated that high yields are

achievable with defect rates as high as 10−2 using aggressive fault tolerance techniques

such as von Neumann multiplexing (or other methods such as fine-grain reconfigu-

ration). The cost of fault tolerance in this range is high, as redundancy factors of
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100 times or more become necessary. Depending on the size improvement of a fu-

ture device technology relative to silicon CMOS, this penalty may or may not be

acceptable.

11.2 Contributions

Research contributions include:

1. The first accurate analytical model for von Neumann multiplexing [RBB06].

2. A new fault tolerance technique, TMR-protected reconfiguration, that combines

the benefits of TMR and modular reconfiguration.

3. A defect tolerant CAM-based cache architecture [RBMK06b,RBMK06a].

• Proposed the first known use of extended Golay code in fault tolerant cache

design.

• Created a novel bus replication technique to reduce chip kill effects, en-

abling the use of a large CAM.

• Unlike most work in memory fault tolerance, analyzed the entire cache

architecture.

• Demonstrated that 90% yields could be obtained with defect probabili-

ties greater than 10−6, three orders of magnitude better than conventional

designs.

4. A fault and defect tolerant processor architecture.

• Proposed a concept of operations and identified required capabilities.

• Developed an analytical model for the yield of the FDT processor.

• Demonstrated that 70% yield could be obtained with defect probabilities

greater than 10−6.

5. Demonstration of how fault and defect tolerance techniques can be applied to

QCA, a non-silicon based device technology.
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• Created QCA implementations of TMR, modular reconfiguration, and TMR-

R.

• Derived analytical expressions for the yield performance of these techniques

with QCA.

11.3 Recommendations for Future Research

The following recommendations are made for further research:

• Develop mathematical models for soft error performance and operational reli-

ability. As discussed in Chapter II, soft errors and SEUs are becoming more

common. While the FDT architecture incorporates protections at the hard-

ware level, the benefit was not quantified, and further work should be done to

determine whether operating requirements can be met.

• Investigate operating system and application level support for the fault and

defect tolerance techniques proposed in Chapter VII. New instructions and

operating system routines are required to support BIST/R functions. These

functions will add complexity to the processor design. The effect on reliabil-

ity and application performance should be quantified as another aspect of the

comparison with silicon CMOS.

• Investigate fine-grained reconfigurable architectures for use in FDT architec-

tures. FPGA-like architectures have been proposed for defect tolerant comput-

ing, offering large numbers of reconfigurable devices at a considerable cost in

overhead. In addition, significant challenges exist in online testing and runtime

partial reconfiguration of FPGAs. Solutions must be found before an FPGA-like

architecture can be used as a FDT processor.

• Investigate the impact of fault and defect tolerance on software performance. To

replace silicon CMOS, the new device technology must provide a performance

benefit. While the new devices will be smaller and faster than silicon CMOS

transistors, the fault tolerance overhead at the circuit and architectural levels
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may negate application level speedup. Given the tremendous cost involved in

switching technologies, the benefits of the new technology must be quantified

before an investment is made.

• Develop models for yield and hardware cost for other device technologies. Be-

sides QCA, other device technologies have been proposed as successors to silicon.

While device-level research continues in each of these technologies, fault toler-

ance research must also be done to determine overall suitability for use in large

circuits.

This research was directed primarily at the problem of manufacturing yield

for the DFT microprocessor. While soft error tolerance was addressed and included

in several aspects of the architecture, mathematical models should be developed to

quantify the benefits of these techniques. From this analysis, it can be determined if

the proposed techniques are sufficient for long term continuous operation.

Several of the techniques proposed in Chapter VII require the support of the

instruction set and operating system. Instructions sets and computer architectures

must be developed in conjunction with the operating system. Specifically, BIST/R

functions should be added to both the instruction set and the operating system.

Fine-grained reconfiguration, similar to that of modern FPGAs, have the po-

tential for much higher reliability than the medium-grained techniques used in this

architecture. However, fine-grained reconfiguration requires much higher levels of re-

dundancy. In addition, significant challenges must be overcome to use reconfiguration,

including dynamic routing, support for partial reconfiguration, and protection from

soft errors. Potential research goals in this area are included in Appendix B.

The fault tolerance methods used in the FDT processor introduce performance

overhead. Encoders and decoders used for ECC introduce direct delays on pipeline

performance, requiring slower clock speeds. Other architectural decisions, such as the

use of a CAM-based cache, introduce further penalties. In addition to high yield, the
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FDT processor must compete favorably with silicon CMOS in terms of application

performance. The impact of fault tolerance schemes should be studied as well.

Finally, further research should be done using specific device technologies. Chap-

ter X showed how fault tolerance performance can vary significantly depending on the

specific capabilities and limitations of the device technology. Consideration of these

factors is essential to determine whether a device technology should be adopted.
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Appendix A. Additional Background

This appendix provides additional background information on programmable logic

devices and reconfigurable computing. Programmable logic devices, including FP-

GAs, are one method of implementing reconfiguration. As described in Chapter II,

reconfiguration is a very effective method of fault tolerance. Modern FPGAs typically

allow reconfiguration at a finer level of granularity than that used in the modular re-

configuration approach in this document. Thus, there is some interest in using an

FPGA-like architecture for fault and defect tolerant architectures. This appendix

provides background on these devices.

• Section A.1 discusses Programmable Logic Devices (PLD); these circuits can be

configured to perform arbitrary logic functions. A key fault tolerance technique,

called reconfiguration, requires capabilities such as those provided by PLDs. The

regular, configurable structure of the PLD may be a key element in fault and

defect tolerant (FDT) computer system designs.

• Section A.2 introduces Reconfigurable Computing. Reconfigurable computing

systems use programmable logic devices to provide applications customized

hardware with better performance than that obtained by general purpose mi-

croprocessors. Many of the techniques developed for reconfigurable computing

will also be useful in defect tolerant computing.

A.1 Programmable Logic Devices

Programmable logic devices (PLD) are digital integrated circuits that contain

structures whose logical function can be set or programmed after device manufacture.

Early devices, such as programmable logic arrays (PLA), were fuse-based and once

programmed, could not be modified further. Newer devices, such as SRAM-based

Field Programmable Gate Arrays, can be reprogrammed “in the field” to change their

function any number of times. Early PLDs were limited in the number of devices that

could be implemented and thus were typically limited to small scale applications and
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use as “glue logic” to implement connections between larger, fixed-design Application

Specific Integrated Circuits (ASIC). As more advanced CMOS processes provided

more devices on a chip, FPGAs became more complicated, allowing larger designs

to be implemented. Current FPGAs can implement the equivalent of more than

one million boolean logic gates, and are being used to implement extremely complex

designs previously limited to ASICs.

PLDs have gained widespread use in electronics. The cost of an FPGA design

is typically much lower than that of an ASIC, and the design time is shorter. ASIC

designs can require months to fabricate after the initial digital design is created. If

design errors are found, the process must be repeated. One of the most common uses

for FPGAs is for Rapid Prototyping . A prototype digital design can be implemented

on an FPGA in hours, allowing iterations of the design to be tested and refined

extremely rapidly. In the past, the final design was converted to a VLSI layout

for implementation as an ASIC. Increasingly, the final design is left as an FPGA

implementation.

Programmable logic devices have, by design, very regular structures. Most

PLDs are composed of two-dimensional arrays of logic blocks whose function can be

programmed during configuration. Between the logic blocks, configurable interconnect

structures allow logic blocks to be connected as appropriate to implement whatever

design the user requires (cf., Figure A.1). Over the years, many alternative structures

have been proposed with block sizes of varying granularity from individual transistors

(e.g., Field Programmable Transistor Arrays [KZJS00]) up to entire processors.

The regular, configurable structure of PLDs is very similar to the likely archi-

tecture of the nanoscale devices that may one day replace silicon CMOS (cf., Section

2.3.1). The fine-grained array structure of the molecular crossbar devices discussed

in Section 2.3.1.1 are very similar to Programmable Logic Arrays (PLA), shown in

Figure A.2.
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Figure A.1: A Generic FPGA Structure, composed of a two-
dimensional array of programmable logic blocks, connected by
a mesh of programmable interconnect lines and switchboxes.
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Programmable OR array

Figure A.2: Programmable Logic Array [MC04], in many
ways very similar to the molecular crossbars discussed in Section
2.3.1.1.
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FPGAs have been widely used in spacecraft and other applications demanding

high reliability. In addition to the soft errors that change logic and memory values in

ASICs, FPGAs have the additional problem of errors in the configuration memories

that control the operation of the FPGA. Single Event Upsets (SEU) in an ASIC can

change values stored in memory but are typically limited in scope to a single operation

(i.e., the results of an ‘add’ operation may be corrupted, but the adder continues to

function correctly). With an FPGA, a SEU in the configuration memory can change

the operation of the adder entirely, rendering it useless. In addition, the percentage

of die area devoted to registers (e.g., for configuration bits) is typically much higher

in an FPGA than an ASIC. Thus, FPGAs are more sensitive to soft errors and SEUs

than ASICs. Research has recently been directed to developing FPGA architectures

more resistant to soft errors.

For this reason, the regular structures used in PLDs provide a good paradigm

for the development of fault and defect tolerant architectures. For the nanoscale

technologies that may potentially replace silicon CMOS, it will be difficult to precisely

control the fabrication process. Self-assembly techniques have been proposed to create

very dense, regular array structures that can be configured to perform application

logic, just as with a PLD.

This section introduces programmable logic devices and their use in fault toler-

ant applications.

• Section A.1.1 is a general introduction to the families of programmable logic.

• Section A.1.2 discussed FPGAs in detail, including their structure, design process,

and limitations. SEU effects on FPGAs are discussed, as well as several FPGA

architectures intended to better tolerate these errors.

• Section A.1.3 examines runtime reconfiguration of FPGAs. Modern FPGAs can

be partially reconfigured while the remainder of the device remains in operation.

This capability is useful in larger scale fault tolerant architectures.
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• Section A.1.4 discusses the problem of routing signals in a FPGA. The routing

problem is very complex and FPGA routers can require several hours to develop

the interconnect mapping for a design. Runtime reconfiguration is a desirable

capability for a fault tolerant architecture. Research efforts into dynamic or run-

time routing are in their infancy, but may ultimately provide a useful capability

for FDT architectures.

A.1.1 Families of Programmable Logic Devices. PLDs are devices whose

internal structure is determined by the manufacturer, but can be configured by the

end user to perform different functions. PLDs are typically simpler and smaller than

FPGAs, and the functions that can be implemented much smaller. PLDs are often

categorized according to their size and complexity of the design, leading to both

Simple PLDs (SPLD) and Complex PLDs (CPLD).

FPGAs occupy the middle ground between PLDs and ASICs. They are very

much like PLDs but are much larger, and can implement over a million logic gates.

The function of PLDs is typically set using fuses or antifuses. Often the changes

are irreversible, in which case the devices are called One-Time Programmable (OTP).

Memories constructed of one-time programmable fuses are sometimes called Program-

mable Read-Only Memories (PROM). Antifuses have a high resistance in their un-

programmed state (effectively an open-circuit connection). When a programming

voltage is applied, the antifuse switches to a low-resistance state, making an electrical

connection [MC04].

In addition to fuses and antifuses, programmable connections can be made with

Erasable Programmable Read Only Memory (EPROM) devices such as the floating

gate transistor, first introduced by Intel in 1971. These devices operate by storing an

electric charge on a floating gate between the normal MOSFET gate and the channel.

By applying a higher than normal voltage to the control gate, an electric charge can

be induced on the floating gate. When this programming voltage is removed the

charge on the floating gate remains and affects the operation of the transistor, acting
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as a memory. The EPROM cell is erased by applying ultraviolet light, which provides

the energy necessary for the electrons trapped in the floating gate to tunnel through

the gate oxide and back into the substrate.

The next improvement was the Electrically-Erasable Programmable Read Only

Memory (EEPROM). These devices are similar to EPROMs, but typically have a

thinner gate oxide through which electrons can tunnel at lower energies. A second,

standard MOSFET electrically erases and reprograms the cell. A slightly more ad-

vanced form of the EEPROM makes up modern Flash memory .

Finally, device configuration can be stored in Static Random Access Memory

(SRAM) or Dynamic Random Access Memory (DRAM). Both DRAM and SRAM re-

quire power to maintain state, and thus lose their contents when power is interrupted.

DRAM is not typically used in programmable devices, as the periodic recharging of

the memory transistors would be complex to control. Most modern FPGAs use SRAM

to store their configuration. SRAM is easily programmed, but has the disadvantage

of requiring a larger area. An SRAM memory cell (e.g., a flip-flop) requires six or

seven transistors, compared to the single transistor required by an EPROM. The area

required for configuration memories of a modern FPGA takes up a significant portion

of the overall die and limits the size of the device. A key advantage of molecular cross-

bars (cf., Section 2.3.1.1) is that configuration memory is formed by the molecular

material between two perpendicular interconnect lines. The configuration memory for

a programmable interconnect junction requires no additional area beyond the area of

the junction itself. The hypothetical molecular crossbar FPGA is likely to be much

more area-efficient than a modern CMOS FPGA.

Another alternative to CMOS SRAM configuration memory is magnetic RAM

(MRAM). MRAM is based on the magnetic tunnel junction, first developed by IBM

in 1974. MRAM has the potential to combine the high speed of SRAM, the storage

density of DRAM, and the nonvolatility of FLASH. MRAM memory devices have

been demonstrated, and are predicted to enter production in 2005 or 2006 [MC04].
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Figure A.3: Programmable Read Only Memory [MC04], com-
posed of an AND array with predefined connections, and an OR
array with configurable connections.

MRAM-based FPGAs are likely to become available before 2010, reducing several of

the limitations of current FPGAs.

Simple PLDs date back to 1970 with the introduction of the PROM. PROMs

consist of a predefined AND array, with a programmable OR array (cf., Figure A.3).

The programmable links can be implemented with fuses, antifuses, EPROMs, or EEP-

ROMs. Improvements to the PROM design resulted in Programmable Logic Arrays

(PLA) with programmable connections in both the AND and OR arrays, and the

Programmable Array Logic (PAL) which combines a programmable AND array with

a predefined OR array. PLAs can be used to implemented the widest range of logical

functions but are slower than PLAs and PROMs.

As the number of devices that can be implemented on a chip increase, PLDs

became larger. Complex Programmable Logic Devices (CPLD) have now replaced

SPLDs in widescale use. Architectures vary between manufacturers, but most CPLD
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designs combine a number of SPLD blocks together on one chip. Blocks are connected

by programmable interconnect and in this sense, CPLDs are the immediate ancestor

of the modern FPGA; the difference being that logic blocks in a FPGA are typically

formed from SRAM-based lookup tables rather than programmable logic arrays.

A.1.2 Field Programmable Gate Arrays. The first field programmable gate

arrays were developed in the early 1980s to address the gap between PLDs and ASICs.

PLDs could be configured by the user, but could not support large or complex func-

tions. ASICs can implement extremely large functions, but cannot be modified after

initial fabrication. Modern FPGAs use SRAM to store their configurations, and can

be easily reconfigured. They are now the most common type of programmable logic

device in production. The reliability problems incurred as silicon CMOS process size

shrinks will impact FPGA users, and thus FPGAs present an immediate application

for fault and defect tolerant computing research.

A.1.2.1 FPGA Structure. The structure of the FPGA is very dense

and highly regular. It consists of a two-dimensional array of logic blocks within a mesh

of programmable interconnects. The functions of each logic block can be configured,

as well as the connections between the logic blocks and the interconnect structure.

In this way, arbitrary logic functions can be implemented in a FPGA. A notional

architecture is shown in Figure A.4.

The internal structure of a Configurable Logic Block (CLB) can vary. Figure

A.5(b) shows the most common CLB structure of one or more RAM-based lookup

tables (LUT). Figure A.5(a) shows another alternative which provides a collection of

logical gates, multiplexers, and flip flops that can be connected in various ways to

implement logical functions. Complex devices can be incorporated into CLBs such as

adders, multipliers, or even entire processors. The amount of logic contained in the

CLB is known as the granularity of the FPGA.
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Figure A.4: A Generic FPGA Structure, composed of a two-
dimensional array of programmable logic blocks, connected by
a mesh of programmable interconnect lines.
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Figure A.5: FPGA Configurable Logic Blocks can be built
from different devices, depending on the desired level of granu-
larity [MC04].
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Gate level design Three-input Lookup Table

Figure A.6: Mapping of a Circuit to a FPGA lookup ta-
ble [MC04]. In this manner, any three-input, one output com-
binational function can be implemented.

SRAM-based lookup tables can implement any combinational logic function.

The truth table for a function is simply programmed into the lookup table. In Figure

A.6, a simple three input logical function is mapped to a three-input LUT. Config-

urable Logic Blocks are commonly composed of one or more lookup tables combined

with flip-flops to provide additional memory or storage, as shown in Figure A.7.

In addition to implementing combinational logic functions, the lookup tables in

the CLB can be used as memories. Figure A.8 shows three uses of a lookup table: to

implement a combinational function, as a 16-bit shift register, and as a 16x1 RAM.

Designers can construct larger memories by linking the LUTs in multiple CLBs.

FPGA manufacturers have attempted to find the optimum granularity for the

CLB. Ideally, a FPGA would be constructed from an array of individual transistors,

each connectable to form arbitrary structures. Unfortunately, the number of inter-

connect lines that would be required to do this render this approach infeasible and so

a compromise must be made that provides adequate flexibility to the designer while

minimizing the overhead of the interconnects. The three or four-input lookup table

has been adopted by most FPGA manufacturers. The Xilinx FPGA shown in Figure
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Figure A.7: Simple FPGA Configurable Logic Block com-
posed of one 3-input Lookup Table [MC04].
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Figure A.8: Detailed FPGA CLB Design, showing the three
uses of the 16x1 RAM [MC04].
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Figure A.9: Detailed FPGA CLB Design, showing component
Slices and Logic Blocks [MC04].

A.9 combines several LUTs into a logic cell, which are combined into a slice, which

are finally combined into the overall CLB.

Early FPGAs were formed from large arrays of CLBs with some additional

logic at the peripheries to handle off chip communication and configuration functions.

FPGAs incur significant area overhead due to the configuration memories and inter-

connect lines, and thus do not compete well with ASIC designs for large circuits. As

process sizes declined and more space became available on the die, FPGA designers

found additional functionality could be provided by embedding fixed-logic (i.e., ASIC)

cores on the same chip as the programmable array, as shown in Figure A.10. The

most common embedded cores are microprocessors and large memories. These cores

take up much less area and typically operate much faster than the equivalent circuit

implemented in CLBs in the FPGA fabric. Application designers use embedded cores

to obtain functionality that would not otherwise be possible on the FPGA.

FPGAs provide a considerable amount of interconnect resources. Figure A.11

shows the types of routing available in a Xilinx FPGA [Xil05]. FPGAs have a hi-

erarchical routing structure which provides maximum connectivity while minimizing

delays. The FPGA in the figure has long lines, hex lines, double lines, direct connec-
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Figure A.10: FPGA Architectures containing embedded cores
[MC04].

tions, and fast connects. In each channel in the CLB array, 24 long lines run the length

of the FPGA. 120 hex lines connect every third CLB. 40 double lines connect every

second CLB (as well as the adjacent CLB). 16 direct connections link adjacent CLBs

in all directions (vertically, horizontally, and diagonally). Finally eight fast connect

lines run internal to a CLB, connecting LUT outputs to LUT inputs. In addition to

these signal lines, dedicated clock distribution lines exist as well.

A.1.2.2 FPGA Design Process. Designing an application circuit for

a FPGA involves several complicated steps. Figure A.12 illustrates a design process

beginning with schematic capture. Hardware Description Languages (HDL) such as

the Very-High Speed Integrated Circuit (VHSIC) HDL, known as VHDL, are often

used in place of schematic capture for large designs.

Once a gate level netlist is generated, the FPGA design tools perform the fol-

lowing functions:
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Figure A.11: Modern FPGAs have a large number of inter-
connect lines of varying lengths [Xil05]. Black blocks represent
source Switch Matrices (SM). White blocks represent destina-
tion SMs. The grey blocks represent Configurable Logic Blocks
(CLBs) in the top diagram, and slices in the bottom. Thus,
every CLB in a row is connected to the horizontal long lines via
switch matrices. The fast connect lines at the bottom connect
slices inside the the CLB

Figure A.12: Typical FPGA Development Process [MC04].
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Mapping is the process of breaking apart the gate level design into LUT-level func-

tions that can be mapped into LUTs.

Packing places the LUTs and registers together in CLBs.

Placement assigns the packed CLBs to locations in the physical FPGA array.

Routing assigns interconnect lines between the CLBs, connecting all of the CLBs in

the design together, as well as to the input and output blocks.

Each of these steps can be time-consuming as the number of potential arrange-

ments at each step is very large. This large number of permutations in the mapping of

logic functions to CLBs, their placement in the FPGA, and the interconnect between

the CLBs, results in a very large search space. Thus, the placement and routing

process can require several hours to complete on a workstation level processor, and

requires large amounts of memory. Research to improve placement and routing is

summarized in Section A.1.4.

In a fault and defect tolerant FPGA, it is desirable to support reconfiguration

of the application circuit to replace faulty devices. While limited reconfiguration may

be done at the local level without rerouting the design, more global fault recovery will

require dynamic routing. This may be done either on the FPGA or by an associated

processor. Research in this area is discussed in Section A.1.4.3.

A.1.2.3 FPGA Configuration. The FPGA configuration file, also

called the bit file, contains the bit values of all of the LUTs, the programmable in-

terconnect registers, as well as special programming commands that control the load

process [MC04].

In a simple FPGA, configuration registers are connected as a long shift register

to support configuration, as shown in Figure A.13. The bit file is loaded in serial

through a programming pin, and the bits are shifted through the entire device. The

disadvantage with this method is that the entire FPGA must be configured at once.
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Figure A.13: FPGA Serial Configuration [MC04].

It is not possible to reconfigure portions of the FPGA. Modern FPGAs now support

partial reconfiguration. Partial reconfiguration is discussed further in Section A.1.3.

The shift register view of the configuration memory is a simplification. To imple-

ment the memories as a shift register, each bit would be implemented using a flip-flop,

chained together and clocked with a single clock. Since FPGAs contain large numbers

of configuration bits (e.g., a typical FPGA in 2003 contained 25 million configuration

cells [MC04]) and eight transistors required to implement a flip flop, the configura-

tion memory alone requires 200 million transistors. To reduce transistor overhead,

modern FPGAs use latches, which require only four transistors per bit, instead of flip

flops. Since level sensitive latches cannot be used to create shift registers, FPGAs

divide the bit file into frames of X bits. An X bit shift register is constructed from

flip flops, and each frame is loaded in series. After a frame is loaded, the X bits in

the shift register are sent in parallel to the X target configuration latches.

A.1.2.4 Limitations of Modern FPGAs. While providing tremendous

capabilities to the designer, FPGAs are subject to several important limitations. The

configuration and interconnect logic is a significant overhead, consuming a large area

on the die and resulting in operating speeds that are often slower than ASIC-based
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designs. The density of “user” devices on the FPGA is only 10-15% of an ASIC–a

spatial redundancy factor of 7-10 [FNS01]. In addition, in most designs not all the

CLBs can be used, leading to a ‘device packing’ redundancy multiplier (sometimes in

the range of 1.5).

The SRAM memory used to store the configuration is volatile, and must be

programmed before each use. The bit files used to configure the FPGAs are very large,

and programming is time consuming. Early FPGAs required the entire FPGA to be

programmed at once, requiring the application circuit to be stopped. Modern partially

configurable FPGAs remove this restriction, allowing the rapid reconfiguration of

parts of the FPGA while the rest of the device remains in operation.

In addition, current FPGAs are not fault tolerant and are very susceptible to

single event upsets in the configuration memories, which can change the operation of

the device or even cause it to suffer a permanent failure. Reconfiguration can provide

fault tolerance, but current routing algorithms are very time and memory intensive.

Although it has been proposed to allow the FPGA to dynamically re-route itself,

research in this area is only beginning to produce results [LVT04a]. Dynamic routing

is discussed in Section A.1.4.3.

Modern FPGAs are designed to provide the best performance for general pur-

pose applications (i.e., those not requiring fault tolerance). As CMOS sizes shrink

and soft errors become more common, commercial FPGAs will need to incorporate

protections to provide reliable operation.

A.1.2.5 SEU Effects in FPGAs. FPGAs are more susceptible to single

event upsets (SEUs) than ASICs. SEUs change the values of memory bits in flip

flops, registers, and other memory devices. Since ASIC functions are hard-wired, the

function of the device will not change due to an SEU. This is not the case with FPGAs,

which are subject to the additional problem of errors in the configuration memories

for the interconnections in the routing matrix as well as lookup table memories. A

SEU in either location changes the function of the FPGA, and will persist until
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the FPGA is reconfigured. This section describes how SEUs impact FPGAs as well

as mitigation techniques. Many of these techniques are being used in space-based

electronic systems. As device technology gets smaller and soft error rates increase,

these techniques will be applied to mainstream applications.

Single Electron Events (SEE) impact the operation of a FPGA in a variety of

ways. As with other devices, Single Event Transients can generate a short duration

voltage pulse that is carried through the circuit. If the pulse arrives at the input to a

flip flop during the clocking period, an incorrect value can be stored. Another common

problem is the Single Event Upset (SEU), which is most commonly observed in the

Configuration Memory Cells (CMC) [Xil03]. SEUs in CMCs change the operation of

the FPGA. SEUs less commonly occur in the FPGA programming or control circuitry

causing a Single Event Functional Interrupt (SEFI), which causes the FPGA to cease

responding to configuration commands and become temporarily unusable.

SEUs are not normally capable of causing damage to FPGAs [Xil04a]. Although

unlikely, a line connected to Vdd can be shorted to another line connected to Vss. The

short circuit between power and ground causes increased current flow, overheating

the metal lines and causing failure. Another problem associated with short circuits is

driver contention, in which multiple outputs are connected to the same bus. While

not generally harmful to the FPGA, driver contention results in increased power

consumption [CVR+03].

Although very unlikely, Single Event Functional Interrupts (SEFI) are a severe

problem. FPGAs have circuitry to control the configuration of the FPGA (e.g., Power

On Reset and the SelectMAP interface in Xilinx FPGAs) and its testing functions

(i.e., the JTAG circuitry). An SEU in one of the Power On Reset flip flops can cause

the FPGA to clear its entire configuration memory [Xil03, page 26], while a SEU in

the SelectMAP interface used for parallel load can disable access to the configuration

port and make it impossible to reconfigure the FPGA. The same problem can occur

in the JTAG bit-serial configuration port and disable the entire FPGA. The problem
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is not permanent, as correct function can be restored by applying control signals

external to the FPGA or cycling the power. The probability of SEFI is very low,

since the number of memory bits related to these functions is very small (e.g., only

four for the Power On Reset function). Experiments show typical SEFI-inducing SEU

rates for spaceborne FPGAs to be from 2×10−6 to 1×10−5 SEUs/device-day [Xil03].

Single Event Upset Rates (SEUR) in the configuration memory cells is much

higher [CVR+03]. Typical SEU rates for spaceborne applications of the Xilinx Virtex-

II 2V6000 FPGA are from 0.47 to 25 SEUs/device-day [Xil03]. In a worst-case sce-

nario, a single SEU results in an observable error in the application circuit. The

Mean Time Before Failure for the application circuit may be as low as 58 minutes.

Fortunately, many SEUs in the configuration memory cells do not impact the appli-

cation circuit. A typical application circuit depends on a fraction of the configuration

memory cells. Even designs using all of the available CLBs will use a fraction of the

routing resources and interconnect points in the switch matrices. In a typical design,

only 10% of the CMCs in the switch matrices are used for connections between signal

lines. SEUs in unused CMCs do not result in errors.

In addition to changing the function implemented by the CLB lookup tables,

SEUs can change the interconnect. Four types of interconnect faults in switch matrices

are [CVR+03]:

Open Connections in a signal line result in floating inputs to successive LUTs.

Antenna Connections reassign an output line to a different input line (e.g., instead

of connecting Aout to Ain, it is connected instead to Bin).

Short Circuits connect multiple input lines to a single output.

No Effect. The SEU modifies an unused CMC in the switch matrix, resulting in no

effect on the application circuit.

In addition to CLB lookup tables and interconnect switchboxes, SEUs affect

other parts of the FPGA. Modern FPGAs often have large Block RAMs. The pro-

grammable Input/Output blocks can be altered, changing the function from input to
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output and causing drive contention. Studies have shown the design of the typical I/O

block is more resistant to SEUs than other parts of the FPGA and is less susceptible

to SEUs [CVR+03].

SEU research falls into three categories: characterization and simulation of SEU

effects on FPGA oepration; diagnosis, avoidance, and recovery techniques that do not

involve changes in the FPGA architecture; and techniques that modify the FPGA

architecture.

SEU effects can be characterized by subjecting FPGAs to radiation [VCR+03,

VSC+04,CVR+03,BRSV04]. Experiments confirm the predictions the CMC and LUT

memories bits are most susceptible to SEUs, while I/O blockes are relatively immune.

The goal is to develop an understanding of radiation effects on process technologies

used to fabricate FPGAs and to combine this knowledge with simulation-based fault

modelling techniques to develop SEU-immune designs.

Simulation-based techniques model the effect of SEUs on application circuit

operation. Several projects investigate fault-injection techniques at the logic level

[AMZE04,CVR+03,BRSV04]. These techniques estimate the probability a SEU will

cause an error in the application circuit. The application circuit can be converted to

a VHDL description using the Xilinx NCD2VHD tool [CVR+03]. The Native Circuit

Description (NCD) file contains information about the configuration of the FPGA

and its configuration memory settings. After conversion to VHDL, SEUs are inserted

by flipping bit values of configuration memory cells. Simulating the circuit shows the

effect of the SEU on the application circuit.

Combining radiation testing with simulation allows identification of the specific

SEU causing a SEFI. By reading the configuration bitstream back out of the FPGA

and comparing it to the original, the bits changed by SEEs can be identified, although

it is not typically possible to do this until after several SEUs have occurred. Simulation

of the detected SEUs can determine which caused the design to fail. Susceptible

resources in the FPGA can be identified for radiation hardening.
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Fault diagnosis and recovery techniques can be used in a FPGA-based system.

FPGA manufacturers recommend TMR and scrubbing [Car01,Xil03]. Modern

FPGAs allow readback of their configuration bitstreams, which can be compared to

the original bit file to identify SEUs in the configuration memory. These SEUs are

corrected by reloading the original configuration, scrubbing the errors from the bit-

stream. Two scrubbing methods are read-compare-repair (i.e., called “closed loop”),

and continuous periodic reconfiguration (i.e., called “open loop”).

Through the use of scrubbing, a high availability can be maintained. In an

example spaceborne system, the Virtex FPGA is expected to be subject to a SEU

rate of 1 per hour [CFBC99]. Configuration of the entire FPGA requires 40ms, while

partial configuration of a single frame requires only 3µs. The Virtex architecture

allows the frame to be loaded in parallel without affecting the contents of flip flops

and associated memories, allowing the user circuit to be refreshed with no impact on

the operation of the user circuit. Open loop scrubbing can occur continuously at a

rate of 25 times per second. Thus, on average as many as 90,000 correction cycles

can be done between SEUs. With a 40ms recovery time to reconfigure the FPGA

following an error, the availability of the FPGA is 99.9989%.

The previous example assumes the device is continuously refreshing its config-

uration. While in configuration write mode, the FPGA is slightly more subject to

errors caused by an SEU in the configuration circuitry, although this probability can

be decreased by reducing the refresh rate, depending on the required availability and

expected SEU rate.

In addition to scrubbing, TMR can be used as a method of fault masking in user

applications [Car01] and can be inserted into combinational and sequential circuits.

Other techniques can reduce the impact of soft erros on clock distribution [Car01].

TMRTool is an automated tool to insert TMR into a non-redundant design [Car01].

Finally, SEU resistance of a FPGA can be increased by modifying the FPGA.

Some FPGA manufacturers offer radiation-hardened FPGA product lines using Silicon-
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On-Insulator fabrication and other special techniques. Researchers have proposed

modifications to configuration SRAM cells [Wan04, SGV+04]. In addition, TMR in

configuration memory was proposed by [BRSV04]. Fault tolerant FPGA designs are

discussed in Section 2.6.2.

A.1.3 Dynamic and Partial Reconfiguration. Early FPGAs were designed

to be configured at system startup, and not changed during application operation.

The entire FPGA was configured at once, resulting in large bit files and long configu-

ration times. Researchers studying reconfigurable computing and hardware/ software

co-design needed faster configuration times as well as the ability to configure a por-

tion of the FPGA while the rest remained in operation. The Xilinx XC6200 family,

developed in 1995, was the first widely available FPGA to support dynamic partial

reconfiguration. Since then, partial reconfiguration has become a common feature in

FPGAs.

This section describes the partial configuration capabilies of the Xilinx Virtex-II

series FPGA [Xil04b,Xil05]. Xilinx architectures are representative of commercial FP-

GAs. Different FPGA manufacturers have slightly different designs and capabilities.

This section describes the capabilities and limitations of modern partially configurable

FPGAs, and summarizes the design process.

A.1.3.1 Current Capabilities. The Xilinx FPGAs support column-

based partial reconfiguration. After initially configuring a design, the FPGA can be

partially reconfigured in groups of four slices (cf., Section A.1.2). All of the logic

resources contained in the reconfigurable module area are available for use, including

the I/O blocks, CLBs, tri-state buffers, Block RAMs, hard multipliers, and internal

routing [Xil04b].

There can be any number of reconfigurable modules on the FPGA, limited only

by the number of columns. Many designs implement a static section of logic, with one

or more reconfigurable modules. Communication between modules must be through
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Bus Macros , a “hard macro” placed at the interface between two modules to provide

inter-module communication. Each bus macro can contain four signal bits. Wider

signals are created by using multiple bus macros. The bus macros, placed manually

during development, are not moved by the placement and routing tools. The bus

macros are therefore a stable interface between the changing modules, allowing the

developers to work with “black boxes,” minimizing interactions between the modules.

All signals entering or leaving a module to other modules must be through the bus

macros.

Two development processes are supported: module-based and difference-based.

Module-based designs generate an entire bit file for each reconfigurable module. Dif-

ference based designs produce a much smaller bit file, describing only the differences

between a module and its replacement. Thus, reconfiguration time can be very fast.

Reconfiguration can be done either through the serial boundary scan (JTAG)

mode or Xilinx’ eight-bit parallel SelectMAP mode. Configuration is normally done

in online mode, with the remainder of the FPGA remaining in operation during

reconfiguration. Internal memory registers being reconfigured maintain their states

and allow communication of data between a module and its replacement. This also

allows for the configuration to be scrubbed to remove SEUs in an operating application

circuit.

A.1.3.2 Limitations. While powerful, Xilinx’ approach to partial re-

configuration has several significant limitations:

• All intermodule communication must be through the fixed bus macros.

• The location of a reconfigurable module is fixed, and must always be in the

same location (i.e., there is no capability to move the module to another part

of the FPGA, although identical modules can be placed in other locations).

335



• Implementations must be designed so static portions of the design don’t rely on

the state of the module under reconfiguration. Explicit registers and handshak-

ing may also be required.

• Signals transiting a reconfigurable module between two fixed modules must pass

through the bus macros. As with the other signals, they are unavailable during

reconfiguration of the module.

• Bitfile encryption cannot be used in partially configurable designs.

• Xilinx does not encourage changes in routing.

The last limitation is especially significant. Although possible, Xilinx’ documen-

tation for partial reconfiguration discourages routing changes [Xil04b]. Xilinx cites a

risk of internal contention for routing resources. The architecture supports reconfig-

uration of I/O blocks (i.e., interface types such as low-voltage Transistor-Transistor

Logic (TTL)), Block RAM contents, lookup table entries, and internal multiplexer

settings. Therefore, a certain amount of functionality can be changed between config-

urations. Support for routing changes must improve to better support reconfigurable

computing and dynamic routing applications.

A.1.3.3 Development Process. The development process for partially

reconfigurable designs is much less automated than conventional fixed designs. Logic

synthesis tools can generate the internal logic for each module, but the designer must

manually place modules on the FPGA, as well as the bus macros between them. In

addition, the Xilinx tools sometimes route signals across module boundaries, and the

documentation advises the user to visually examine the routing in the design tools to

verify the design. Signals which cross module (i.e., column) boundaries must then be

manually corrected.

The typical development process is

1. Top level specification and floorplanning. Reconfigurable modules are assigned

to specific areas on the FPGA fabric.
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2. Bus macros are placed.

3. Black box modules are designed separately, using schematic capture or HDL

synthesis.

4. Top level placement and routing is done for the entire design and its interfaces

to the modules.

5. Each reconfigurable module is placed and routed.

The partial reconfiguration capabilities of Xilinx FPGAs are significant, but fur-

ther improvement is necessary for advanced applications. The development process

is not as automated as for a fixed design, requiring more designer planning and in-

tervention. Entire columns must be configured at once, limiting the ability to make

small changes to the design to correct faults. A fault in one CLB in a column can be

corrected by reconfiguring the FPGA to move the module to another column. How-

ever, the entire column is removed from use, limiting the fault tolerance of the design.

Improvements in FPGA design to better support fault tolerance are investigated as

part of this research.

A.1.3.4 Configuration Improvements. A variety of techniques decrease

the configuration time for partially configurable FPGAs. In a run-time reconfigurable

computer, a large fraction of the total execution time is spent reconfiguring the FPGA

to perform different functions. Techniques reducing configuration time will also be

useful to a fault and defect tolerant computer. Most of these techniques have not

been implemented in commercial FPGAs.

Configuration Compression compresses the bit file to minimize transfer time.

The bitstream is decompressed on the FPGA.

Context Switching replicates configuration memory cells (CMC) in the FPGA. An

alternate configuration is loaded to the second group of CMCs while the first

group controls operation of the FPGA application circuit. The configuration
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Table A.1: Conventional Placement and Routing resource re-
quirements [LVT04b]

Step Memory Requirement Time Requirement
Logic Synthesis ∼ 10MB ∼ 1 Min

Mapping and Packing ∼ 10MB ∼ 1 min
Placement ∼ 50MB 1-2 mins

Route ∼ 60MB 2-30 mins

contexts are switched very rapidly. In this way, configurations are loaded in the

background while execution continues on the main context.

Configuration Prefetching is used at the system level to speculatively load a con-

figuration before it is needed [Hau98]. This prevents the application pipeline

from stalling while the new module is loaded.

Configuration Caching minimizes the transfer time to load bit files to the FPGA

[LCH00, DST99]. Old bit file information is stored on fast memory near the

reconfigurable array (typically on the FPGA itself).

Configuration Relocation/Defragmentation uses FPGA resources more efficiently

by relocating and compacting application modules on the FPGA array [CLC+02].

Just as computer and hard drive memory get fragmented into small pieces as

blocks are allocated and deallocated, fragmentation occurs in runtime reconfig-

urable FPGAs. Relocation moves operating modules to contiguous locations

and combines unused resources into large areas useful for larger application

modules. [Com99]

A.1.4 Placement and Routing. This section examines the two most difficult

tasks of the FPGA design process: placement and routing. As shown in Table A.1, the

placement and routing steps require the most memory and CPU cycles to perform, and

are the most difficult to implement on-chip in a fault and defect tolerant computer.

Conventional algorithms for routing are described, as well as research to implement

a router on the FPGA itself.
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A.1.4.1 Placement. Placement algorithms attempt to minimize a cost

(objective) function, while complying with placement constraints. Typical constraints

include [Cha94]:

• Locking certain I/O blocks as required by the user

• Aligning tri-state buffers that belong to the same bus along a long line

Typical cost functions include

• Minimization of total interconnect wire lengths

• Minimization of the number of configuration bits required

• Congestion reduction to ensure routability

• Minimization of connections across different regions on the chip

Several of these costs are difficult to estimate accurately prior to routing, and

thus estimates are used. For many FPGA design tools, the entire process is done in

two phases: a fast initial routing based on estimates, then further refinement based

on updated estimates.

One placement strategy uses a mincut-based placement algorithm followed by

simulated-annealing based placement [Cha94]. In mincut-based placement, locality is

exploited by clustering together portions of the circuit that are closely related. The

design is partitioned into two or more partitions, attempting to minimize the number

of lines connecting the two partitions. Each partition is itself partitioned, and the

process repeated. Finally, a minimal size partition is reached (related to the size of

the CLBs). The partitioning shows the required communication between CLBs.

Simulated annealing can overcome local minimums in the cost function that

may result from using a greedy algorithm. Simulated annealing starts with a feasible

solution and a temperature function, initially set very high. The solution is modified

randomly (e.g., through pairwise exchange of placement locations) and its cost func-

tion recomputed. If the cost function is better than the original, the new solution
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is adopted. Even if the cost function is worse than the original, the new solution is

adopted with some probability, which depends on the current temperature and the

difference between the previous cost function and the new cost function (∆E). The

probability of accepting the new placement, P (A), is

P (A) = e−
∆E
T . (A.1)

New solutions are generated at a particular temperature until no further im-

provements are observed. Once this equilibrium is reach, the temperature is dropped

and new solutions are tried again. At high temperatures, P (A) is close to one, so

most exchanges are accepted. As the temperature decreases, only small changes in

the cost value are accepted. The process is completed when no further improvements

are observed despite further reductions in temperature.

A.1.4.2 Conventional Routing. Conventional routing algorithms are

time and memory intensive. The Coarse Graph Expansion (CGE) algorithm [BRV92]

requires between 1.5 - 7 MB of memory and 215 seconds to route designs with only

100-586 logic blocks (and between 400-2100 connections). Table A.1 showed typical

placement and routing resource requirements for larger FPGAs [LVT04b].

FPGA routing is typically done in two phases: global routing and detailed rout-

ing [Cha94,BRV92]. Global routers assign loose paths to the nets, determining how

they navigate around the CLBs. The loose paths determine which areas a net will

traverse to get to its destination(s). The routing areas can be channels, segments

of channels, or switch boxes. The objective of the routing assignment might be to

shorten the path lengths, avoid congestion, or use fewer programming elements to

decrease delay in reconfiguration. Many routing algorithms exist, but in most FPGA

routers the key goal is to minimize the delay along the critical path. After global

routing has been completed, the detailed router assigns specific tracks to nets within

the routing regions and makes the final connections to the CLBs.
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Many common routing algorithms are derivatives of maze routing [LVT04b,

Cha94], first proposed in [Lee61]. Maze routers place each net using Dijkstra’s shortest

path algorithm. The maze router attempts to find the shortest path between two

points subject to the restriction that the route must follow vertical and horizontal

paths, and the routing areas includes obstacles that may force the router to detour.

Although computationally expensive, Lee’s algorithm finds the shortest path between

nodes (if one exists). However, since the router operates on one net at a time, the

order in which nets are routed is important. Due to congestion caused by previously

assigned nets, it is possible that the router may be unable to find a path for a net

to one or more of its destinations. One variation of the maze algorithm intended

to overcome this problem is Maze Routing with Rip-Up and Retry [Cha94]. In this

case, the router enters a rip-up mode to complete the connections. In rip-up mode,

previously routed nets blocking the current net are removed to eliminate obstacles.

Ripped-up nets can then be rerouted.

Another routing algorithm is Pathfinder [EMHB95]. This algorithm introduced

negotiated congestion. During each routing iteration, all nets are routed using shortest

paths, without regard to other nets (i.e., overuse of resources is allowed). After the

initial routing step is performed and two nets are found to use the same routing

resource, the router updates the cost of congested resources based on the amount of

overuse. All routes are then ripped up and routing is done again. The Versatile Place

and Route (VPR) tool uses a modified pathfinder algorithm [BRM99,BRM03].

Placement and routing are very complex processes and the algorithms used

greatly impact the performance and resource requirements (i.e., size) of the completed

design. It is also possible a routing algorithm will be unable to route the design. The

probability that a router can successfully route a design is called routability . Three

dominant factors affect the routability of an FPGA design [Cha94]:

• Pins per logic cell ratio, γ

• Pins per net ratio, β
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• Average wire length, L

The pins per logic cell ratio measures the amount of traffic entering and leaving

a CLB. Pins per net measures the degree of branching (i.e., fanout) of a multipin

connection. Both of these ratios are dependent on the application design, as well as

on the architecture of the FPGA. Average wire length depends mostly on the routing

tools.

These factors can be used to estimate the routability of a design in a homoge-

neous two-dimensional array [Cha94]. If all the nets are point-to-point connections

(i.e., β = 2), the average channel width, W , or the number of parallel interconnect

lines, is

W =
γL

2
. (A.2)

For multi-pin nets, the equation is modified to become

W =
1

2

[

γ ·
(

1 +
β − 2

β

)

L

]

. (A.3)

Using these equations, the router can quickly estimate the relative interconnect

requirements and determine if routing is likely to be successful. For example, after

placement, γ = 6.15 and β = 4.64. The router initially estimates an average wire

length to be L = 1.5 segments. The estimated channel width requirement from A.3

is W = 7.245. If the FPGA architecture only has 5 lines in each channel, routing

is unlikely to be successful. Routability estimation will be important in dynamic

routing (cf., Section A.1.4.3, in which the processing resources to perform routing are

limited).

Many routing algorithms and techniques propose improvements in routing time/

memory requirements, as well as performance of the final circuit. One technique

partitions the routing problem between multiple workstations to run in parallel [CS97].
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Others attempt to do routing on the FPGA itself, either prior to operation or during

runtime. Dynamic routing is discussed in the next section.

FPGAs can be designed to support faster routing. As described in [LVT04a],

the Programmable Logic and Switch Matrix (Plasma) architecture was designed to

allow the entire FPGA to be routed in three seconds. This was accomplished through

the use of very large amounts of interconnect, arranged in a hierarchical structure.

While routing is done very quickly, the Plasma architecture requires an even larger

amount of redundant interconnect the standard FPGAs.

FPGA routers can be used for defect tolerance. An algorithm was devel-

oped to route around faults in the programmable interconnect in antifuse-based FP-

GAs [RN95]. Through several test cases, 100% routing was achieved given sufficient

redundant interconnect. Three key factors determine routability under faulty condi-

tions: the existing placement (defining routing requirements), the channel architecture

(defining available routing resources), and the routing algorithm.

A.1.4.3 Dynamic Routing. Dynamic routing refers to routing per-

formed while the FPGA is in operation, either by the FPGA itself or by an attached

processor. Dynamic routing can simplify the distribution of combined hardware/soft-

ware applications running on reconfigurable computers, as well as to provide fault

and defect tolerance.

A dynamic router should have several key features:

• Minimal memory requirements.

• Fast runtime.

• Low-level control over individual wires.

• Hierarchical representation of the FPGA so localized routing can occur in par-

allel.

• The ability to incrementally add and remove connections.

343



Incremental Routing works without any prior knowledge of the mapped circuit’s

netlist [EB98]. To keep the memory size small, the algorithm keeps the “window”

of the FPGA available for re-routing relatively small (i.e., limiting the options and

sacrificing routability to keep memory requirements small). Incorporation of unused

logic blocks in the design increases routability by lowering the density of logic blocks

to routing resources.

The algorithm is purported to be sequential and compact, making it well suited

for execution on the FPGA itself. However, it does not guarantee routability, and it is

possible that the greedy algorithms will not result in a solution. Thus, the algorithm

could not be the sole method used in a fault and defect tolerant computer.

Conventional routers use a flat representation of the routing segments and

switches, which consumes a large amount of memory [KM02]. For dynamic or on-chip

routers, a better representation is desirable.

JBits is a runtime reconfiguration tool from Xilinx containing a runtime router

called JRoute [KM02]. JBits uses a wire database to store wire connectivities with

Java objects. The objects are stored in a device generic manner to reduce storage

requirements. Repetitive structures are included by reference, whereas conventional

routers commonly repeat descriptive information for each occurrence. Inter-tile con-

nectivity information is not stored statically in JBits, but is generated dynamically

during router operation which reduces memory requirements at the expense of ad-

ditional time to generate the connectivity data. Automatic dynamic routing is sup-

ported by JRoute/JBits. Defect tolerant routing is supported, as JRoute has the

ability to specify which wires and CLBs to use in the routing process. Thus, defective

resources can be removed from the list of usable resources.

The Riverside On-Chip Router (ROCR) paradigm provides a single hardware

specification which is dynamically routed by each FPGA before use. Thus, a sin-

gle software and a single hardware specification can be distributed. Just-In-Time

(JIT) compilation is used [LVT04a, LVT04b]. The project uses an “on-chip” router
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for FPGAs. Modern electronic appliances (e.g., cable boxes, satellite decoders, cell

phones, etc.) often contain FPGAs. Applications for these devices often combine soft-

ware running on a conventional processor with custom application-specific hardware

running on FPGAs (cf., Section A.2). The application is distributed as two parts:

software code and an FPGA bit file. Companies often field different hardware variants

of an appliance, each containing different FPGAs. In this paradigm, the application’s

hardware configuration must be regenerated for each FPGA in use, complicating the

distribution process.

ROCR is based on the Versatile Place and Router routability-driven router.

The algorithm, illustrated in Figure A.14, constructs a cost model consisting of a

basic cost, updated with historical congestion and current congestion costs [LVT04b].

Routing is done between switch matrices in the interconnect fabric. The algorithm

routes nets between switch matrices using a greedy, depth-first routing algorithm.

This technique claims to be faster than the traditional breadth-first method used in

VPR, but requires the addition of an “adjustment cost” to force ROCR to re-route

illegally mapped nets using a different initial path [LVT04b]. As in the Pathfinder

algorithm, nets are initially routed without regard to contention. If congestion is

discovered, the ROCR router rips up only the illegal routes. This improves routing

time considerably.

ROCR differs from conventional routers by using a smaller resource graph. The

regular design of the CLB-switch matrix connections allow routing between CLBs

to be represented instead by routing between switch matrices (which are fewer in

number than the surrounding CLBs). The result is a smaller directed resource graph

that can be routed faster and with less memory [LVT04a]. The nodes of the graph

represent switch matrices, and the edges represent interconnect resources. Two types

of edges are used to denote short and long routing lines. Similar to other FPGA

architectures, the FPGA design used with ROCR has short lines connecting adjoining

switch matrices used for local routing, while long lines skip every other switch matrix,

and are used for longer distance paths.
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Figure A.14: The Riverside On-Chip Routing algorithm
[LVT04a].
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Table A.2: Comparison of the resource requirements between
VPR and ROCR [LVT04b]

VPR ROCR
Memory Requirement 4-57.3MB ∼ 3.6MB
Runtime Requirement 0.5 − 1428 sec 0.2 − 13.8 sec

The ROCR routing algorithm significantly reduces runtime and memory re-

quirements, as shown in Table A.2. ROCR was compared to VPR for 17 benchmark

circuits and on average, ROCR was 10 times faster than VPR and used one tenth of

the memory [LVT04b]. ROCR produced designs only slightly less efficient than VPR,

utilizing 10% more routing resources. Performance of the ROCR circuits was better

than VPR, with critical paths 10% shorter than those routed by VPR.

A.2 Reconfigurable Computing

Field programmable gate arrays fill a gap between ASICs and PLDs by pro-

viding the capability to change hardware function to match a particular application.

This capability can be extended to the computer architecture itself by providing the

computer with the capability to change its hardware to suit applications. This concept

is called Reconfigurable Computing .

Design engineers have several options when implementing an application with

digital systems. At one end of the spectrum, the application can be implemented

entirely in software, to be executed on a general purpose microprocessor (GPP) .

Microprocessors provide a variety of relatively simple instructions and capabilities.

From these simple instructions, complex programs can be constructed to implement a

wide variety of applications. Flexibility comes at a cost, as general purpose processors

provide limited hardware support for any particular application. At the other end of

the spectrum, the application can be implemented entirely in hardware as an appli-

cation specific integrated circuit (ASIC). In this case, the hardware design is tailored

to the specific application to provide maximum performance. However, the ASIC

has limited use for other applications. In the middle of the spectrum, Application
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Specific Instruction Processors (ASIP) add specialized instructions and capbilities to

a general purpose processor to increase performance on a specific type of application.

Digital Signal Processors (DSP) are a type of ASIP, providing extra hardware support

for common signal processing operations such as the fast fourier transform. Another

example is graphics processors found in modern video cards.

While ASIPs provide some performance gain over general purpose processors,

these benefits are only gained for a set of pre-planned operations. With the devel-

opment of the FPGA, designers have a hardware device that can be reconfigured in

any number of ways to support a wide range of applications. These reconfigurable

computers combine the high performance of ASICs with the flexibility of a general

purpose processor.

By definition, a reconfigurable computer contains some amount of program-

mable logic. The functionality of this programmable logic can be changed during

the operation of the computer to suit the particular application being executed. The

entire architecture, or only a portion, may be configurable.

Reconfigurable computing is applicable to fault and defect tolerant computing.

Reconfiguration is one method of fault tolerance. If a portion of the hardware used

by an application circuit fails, reconfiguration can move the circuit to a different

part of the chip. Thus, a fault tolerant computer that uses reconfiguration is itself a

reconfigurable computer.

This section provides a brief introduction to reconfigurable computing. The mo-

tivations for reconfigurable computing are introduced, as well as typical applications.

Common system architectures for reconfigurable computers are described, and an ap-

plication development process for these systems. Development of mixed hardware

and software applications has created an entire research field, that of Hardware/Soft-

ware Codesign. Finally, several challenges involved in reconfigurable computing are

described, with emphasis on how they impact fault tolerant computing.
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A.2.1 Applications. Reconfigurable computing has drawn broad interest for

a variety of applications. The most widely known applications are signal processing

and cryptography. These applications often include operations that are very parallel in

nature and well suited to implementation in hardware. The reconfigurable computer

implements a large number of simple processing modules in parallel, and can operate

on much larger amounts of data than a serial program running on a general purpose

processor. While an ASIC implementation of the same circuit is often smaller and

faster than the FPGA implementation, the FPGA can be reconfigured later to perform

other applications or to fine tune the algorithm to match a changing problem.

Many space applications take advantage of the ability to reconfigure the hard-

ware during operation. Reconfigurable computers can be used on long term space

missions to provide better performance than a purely software implementation of an

application. Design changes can be sent to the spacecraft in flight to implement dif-

ferent applications. In addition, should part of the system fail in flight (e.g., due to

radiation or other damage), the FPGAs can be configured to replace damaged ASICs

(albeit at lower performance).

A.2.2 Typical Architectures. Reconfigurable computers support a variety of

architectures. Early reconfigurable computers attached an FPGA to a conventional

computer via a communications link. Later designs brought the configurable logic

closer, first as a coprocessor, then as a part of the main processor itself. The primary

difference in architectures is the amount of reconfigurable logic in the design, and the

extent to which it is integrated with the main processor.

The first reconfigurable computers were loosely coupled to a general purpose

computer. A typical architecture is shown in Figure A.15. This architecture is some-

times called the static logic model. FPGA configuration bit files can be very large,

and configuration time can be significant. In static logic architectures, the FPGA is

configured prior to application operation without reconfiguration during operation.

Communications bandwidth is limited, and thus loosely coupled architectures are
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Hardware

Figure A.15: A loosely coupled reconfigurable computer
has limited communication with the host computer’s memory.
[Roe97].

best suited for applications requiring limited communication with main memory or

the primary processor.

An example of a static logic system is the PeRLe system, developed by DEC

Paris [BRV89]. The system was based upon a 5x5 array of Xilinx 3090 FPGAs,

providing roughly 150,000 logical gates to the user. Applications for the system

include RSA cryptography, Laplace transforms, long multiplication, and a stereoscopic

vision system. In 1990, PeRLe set a speed record for RSA cryptography using 512-bit

keys, delivering roughly ten times the performance of a custom VLSI implementation.

This performance was largely a result of the ability to easily customize the algorithm

on the reconfigurable hardware.

Later reconfigurable computers brought the FPGA onto the motherboard as a

coprocessor. As shown in Figure A.16, the FPGA is connected to the memory bus,

significantly improving the communications bandwidth between the GPP and the

reconfigurable logic. Typical applications for these architectures combine software

code executing on the general purpose processor with an FPGA bit file. Portions of

the application are partitioned, usually by hand, between the GPP and the FPGA.

Those portions of the application which would benefit from hardware implementation

were placed on the FPGA, while the remainder is left as software. Interface code

and logic is inserted to allow communication of data and results. An example of the
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Figure A.16: A reconfigurable coprocessor is connected to the
computer’s primary memory but is not a part of the CPU itself
[Roe97].

coprocessor architecture is the CHAMP system, developed at AFRL. Other examples

include the PRISM system [AS93], the Transmogrifier system [Gal95], and Virtual

Computer Corporation’s EVC-1 [CTS95].

A fault tolerant computer architecture could use a coprocessor-based design for

use in spacecraft. One or more redundant FPGAs would be connected to the memory

bus. If one of the FPGAs used in the system fails, its function can be moved to one

of the redundant FPGAs.

Another notional reconfigurable architecture is shown in Figure A.17. In this

design, the reconfigurable coprocessor is incorporated onto the same microchip as the

microprocessor.

The programmable logic can be brought onto the main processor itself. A re-

configurable processor pipeline is shown in Figure A.18. In this design, the FPGA

unit implements custom operations such as the bit reversal operation, commonly used

in cryptography and signal processing. Termed a Dynamic Instruction Set Computer

(DISC), each application loads its own custom instructions [WH95]. As the configura-
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Figure A.17: RC hybrid processor containing both a reconfig-
urable array and fixed logic [MC04].

tion bit files can be large, configuration of the FPGA unit requires many clock cycles,

limiting the number of instructions that could be used. Advanced FPGA designs

providing configuration caching can store multiple configurations at once, enabling

rapid switching between configurations.

As a final step in integration, the entire processor could be implemented on

the configurable logic fabric. Due to the limited number of logic gates that could be

implemented on early FPGAs, it was not possible to implement an entire processor on

a single FPGA. Modern FPGAs provide the equivalent of more than a million gates,

and can implement entire processor designs. In addition, the nanoscale technologies

discussed in Section 2.3.1 will provide even larger numbers of devices. In the future,

the reconfigurable processor paradigm is likely to be more widely used.

A.2.3 Application Development. Application development is the most sig-

nificant challenge in reconfigurable computing. Most architectures combine custom

hardware implemented on a FPGA with software code executing on a general purpose
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Figure A.18: In a reconfigurable processor, the program-
mable logic is incorporated into the processor itself, possible as
a configurable execute unit (shown). In other implementations,
the entire processor may be implemented on the configurable
logic [Roe97].

processor. Simultaneous design of a software application with supporting hardware

is called hardware/software codesign .

Initially, most codesign development was done by hand. Computationally in-

tensive portions of the application are identified. Hardware implementations of these

sections are developed using schematic capture, or logic synthesis using a hardware

description language. Interface code is added to the software application to com-

municate with the hardware processor, and interface logic is added to the hardware

modules to read input data and write back results. This process is labor intensive

and requires the designer to have a detailed knowledge of the underlying hardware

architecture.

Research efforts have attempted to simplify the development of hardware/soft-

ware applications. The main goal is to not require the application designer to have

detailed knowledge of the underlying hardware architecture and to create portable

applications. The problem has proven difficult for two reasons: it is often difficult

to identify the sections of code best implemented in hardware, and it is difficult to

describe hardware functions with conventional high level languages.

353



High level languages provide constructs and operations based upon general pur-

pose processors, and are not well suited to describe hardware operations. Many

operations which have direct hardware implementations (e.g., reversing the order of

bits of an operand) are described by a long series of simple instructions. Automatic

replacement of a sequence of instructions with a simple hardware structure is diffi-

cult [Roe97].

At the same time, hardware description languages (HDL) are not ideal solu-

tions for application development. Behavioral HDLs describe hardware operations,

not object-oriented data structures and other concepts used in modern programming

languages. For this reason, many researchers have proposed hybrid hardware descrip-

tion languages that more closely resemble high level programming languages. These

languages would be similar to C or other HLL, and would be easily learned and used

by the software developer. At the same time, the hybrid HDL would concisely describe

hardware structures not possible with a conventional HLL. Two examples of C-based

hybrid HDLs are the Transmogrifier C project at the University of Toronto [Gal95],

and the Spyder project at the Swiss Federal Institute of Technology [IS95]. A more

recent approach based on standard Java is the JHDL project (short for “Just An-

other Hardware Description Language”) [BH98, HBH+99]. With hybrid HDLs, the

partitioning of the application between hardware and software must still be done by

hand.

Reconfigurable compilers would allow the specification of an application entirely

in a high level language [Roe97]. The compilation process is illustrated in Figure

A.19. Runtime profiling automatically identifies computationally intensive portions

of the application. These sections are converted to a hardware description language

representation and then synthesized for use in the FPGA. The output of the compiler

is a software executable file and hardware bit files to configure the FPGA.
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Figure A.19: Stages in a Reconfigurable Compiler [Roe97].
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A.2.4 Limitations. The three major limitations of reconfigurable computers

are device density, lack of development tools, and configuration overhead. All three

of these limitations are also relevant to defect and fault tolerant computing.

As discussed in previous sections, FPGAs require a considerable amount of

chip area to implement the configuration memories and interconnect lines. Thus, the

number of logic gates that can be provided to the application developer are much

less than that available with an ASIC. This limitation is becoming less of an im-

pediment as device density increases. In the future, molecular crossbar FPGAs and

other architectures may provide massive amounts of configurable logic to the designer.

The configurable logic may be used to implement custom hardware functions, fault

tolerance hardware, or a combination of both.

Application development is a significant problem. To be widely adopted by

applications programmers, detailed hardware knowledge should not be required. The

details of the hardware should be handled by the compiler and the operating system.

In a fault tolerant computer, reconfiguration should be handled by the chip itself, or

by the operating system, with minimal awareness by the application developer or the

user of the software.

Finally, configuration overhead has been a limiting factor for reconfigurable

computing. Early FPGAs did not support partial reconfiguration, requiring the entire

FPGA to be taken offline and reconfigured at once. Many modern FPGAs now sup-

port online partial reconfiguration, but reconfiguration time can still be a significant

portion of the overall execution time for an application. To compete with software

only implementations, the overhead involved with reconfiguration must be minimized.

Figure A.20 illustrates the components of application runtime for a reconfigurable

computer. While the hardware runtime is less than a software only implementation,

the reconfiguration overhead may actually result in a slower implementation.

Fault tolerant reconfigurable computers must minimize fault handling overhead

to compete with modern CMOS implementations. Dynamic routing, discussed in
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Figure A.20: Runtime Computation for a Reconfigurable
Computer. The runtime of a RC application must include con-
figuration time, and thus can be longer than the runtime of a
software-only application. A fault tolerant computer would in-
clude similar overhead, which must be kept small to compete
with traditional CMOS implementations [Roe97].

Section A.1.4.3, is computationally intensive. However, if the failure rate for the device

is sufficiently low, the performance penalty for dynamic routing may be acceptable.

If failure rates are high, the dynamic router may be called often, and the overall

performance penalty will likely be unacceptable.
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Appendix B. Long Term Group Research Goals

B.1 Four Research Phases

The primary focus of this research is to determine how reliable computing can

be accomplished using emerging device technologies that are more defect and fault

prone than modern silicon CMOS. Is it possible to build a reliable large-scale circuit

such as a microprocessor using devices with defect probabilities orders of magnitude

worse than CMOS? What minimum performance characteristics must these devices

possess to be a viable alternative to CMOS? This research addresses an emerging

need in aerospace electronics to provide reliable information technology in the hostile

environments future warfighters will face.

Building a fault and defect tolerant computer requires several enabling tech-

nologies, discussed in Chapter II. The most important will be:

• Hardware fault tolerance techniques

– Fault masking

– Fault detection and diagnosis

– Fault recovery

– Reconfiguration

• Programmable logic device technology

– Fault tolerant PLD architectures

– Fault detection and diagnosis in PLDs

– Partial and dynamic reconfiguration

– Online and On-Chip Routing (OCR)

• Computer architecture support

– System level fault recovery

– Dynamic routing support
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Figure B.1: Many enabling technologies will be combined to
create a system architecture for a fault and defect tolerant com-
puting.

– Operating System (OS) support

• Device technology

Reliable computing is a large problem, and addressing it begins by breaking

the problem up into several research phases. The first phase defines a FDT system

architecture and determines its required capabilities. The large collection of fault

tolerance concepts shown in Figure B.1 are synthesized into a coherent, multi-level

strategy for reliable system operation. From these required capabilities, limitations

in supporting technologies can be identified. Finally, supporting technologies can be

developed or improved.

Three additional research phases are proposed for follow-on research by a new

AFIT fault and defect tolerant computing group. Figure B.2 shows all four research

phases. Since reconfiguration will be a key capability for a FDT computer, the FDT

computer will likely be implemented on a reconfigurable mesh similar to a FPGA.

Given the limited fault tolerance capability of modern FPGAs, the second phase of

research will improve the FPGA architectures to better support FDT computing.

This will produce near term benefits for conventional FPGA applications.

The remaining phases develop significant new capabilities for fault tolerance

at the chip and system level. Phase three improves dynamic reconfiguration, which

currently exists in FPGAs in only limited form. Advancement is necessary to fully
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Figure B.2: Many enabling technologies will be combined to
create a system architecture for a fault and defect tolerant com-
puting.

achieve the fault tolerance benefits of reconfiguration. Phase four examines the use

of intelligent and mobile agents on the FDT processor to improve fault detection and

recovery and ultimately create a self-diagnosing and healing processor.

This dissertation addresses the first phase:

Develop the FDT System Architecture. Develop the system architecture for a

FDT computer. Define a concept of operation, identify required capabilities and

how they will work together to achieve system level fault tolerance. Identify

limitations in modern FPGAs that must be improved to support the required

FT capabilities.

The remainder of this chapter expands on the first research phase, outlining the

applicable background as examined in Chapter II, listing three specific goals, planned

contributions, and demonstration criteria to show the goals have been achieved. The

methodology for achieving these goals is the subject of the next chapter. Finally, the

overall group research plan includes the three follow-on research phases.
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B.1.1 Current Research Focus and Shortcomings. Most of the research

relevant to this area has addressed the following issues:

• CMOS scaling problems.

• Emerging device technologies to replace CMOS.

• Memory and logic devices constructed from emerging technologies.

• Computing architectures using emerging technologies.

• Fault tolerant FPGA-based architectures for aerospace applications.

To date, little work has been done on developing the system architecture of a

fault tolerant computer using these emerging technologies. Most of the recent research

implements fault tolerance techniques at the chip level or below and does not address

support at the operating system level or higher. While the reconfigurable architecture

of a FDT computer will likely resemble a modern FPGA, modifications are needed to

support fault detection and recovery, as well as to target emerging device types for

which the SRAM-based LUT architecture may be inefficient. These problems are the

focus of this research area.

This appendix describes the three follow-on phases in the long term AFIT re-

search effort in fault tolerant computing. These phases will expand upon the initial

system architecture developed in the first research phase, providing enabling tech-

nologies for the fault and defect tolerant computer architecture.

The four phases of study for the fault and defect tolerant computing group are:

Develop the FDT System Architecture. Develop the system architecture for a

FDT computer. Define a concept of operation, and identify required capabilities

and how they will work together to achieve system level fault tolerance. Identify

limitations in modern FPGAs that must be improved to support the required

FT capabilities.

Improve FPGA Architectures. Improve the fault tolerance of modern FPGAs for

use in aerospace applications.
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Enable Dynamic Reconfiguration. Improve tools and architectures supporting

large-scale dynamic reconfiguration to improve reconfigurability-based fault tol-

erance.

Enable Intelligent Agents. Expanding on the concept of roving testers implemented

on a small scale, develop a capable intelligent mobile agent to test the PLD and

relocate logic.

The four research phases address the problem of reliable computing at differ-

ent levels of abstraction. Figure B.3 shows the relations of the four areas to each

other. The higher levels of abstraction rely on capabilities provided by the lower

levels. Since FDT computers will incorporate reconfigurability as a primary fault tol-

erance strategy, modern FPGA architectures provide a starting point to evolve FDT

programmable architectures. Dynamic runtime reconfiguration must be improved at

both the hardware level and in the design tools. At the next level of abstraction, the

ability of the system to locate faults during operation must be improved. As part of

this research, the concept of intelligent agents is adapted to the FDT computer for

use in fault detection and diagnosis on the programmable array. Finally, at the top

level, the overall FDT system architecture combines the capabilities into a coherent

architecture that can compute reliably.

B.2 Phase 2: Improve Fault Tolerance in Current FPGAs

B.2.1 Applicable Background.

B.2.1.1 Literature Review. The following areas provide a background

of the problem:

• Classical fault and defect tolerance techniques,

• Fault and defect tolerance capabilities of conventional FPGAs, and

• Partial reconfiguration capabilities of conventional FPGAs.
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Figure B.3: Layers of Abstraction. Technologies enabling the
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B.2.1.2 Current Research Focus and Shortcomings. Most of the re-

search relevant to this area addresses the following issues:

• General FPGA testing.

• Online FPGA fault detection and diagnosis.

• Minimizing the number of test configurations.

• SEU effects on FPGAs.

• Radiation effects on FPGAs.

• Fault tolerant FPGA designs (e.g., CLB, interconnect fabric, configuration mem-

ories)

While work has been done for FPGAs, fault detection and isolation to a spe-

cific resource remains difficult and time consuming. Improved methods need to be

developed to rapidly detect and diagnose faults in large FPGAs.

Current FPGA architectures incorporate little fault tolerance capability beyond

large amounts of configurable resources (i.e., CLBs and interconnection resources).
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Current architectures do not attempt to increase the reliability of individual CLBs

due to the expense of the redundant hardware and associated power consumption.

While acceptable for terrestrial FPGAs, this approach increases susceptibility to single

event upsets (SEUs) and other radiation effects facing aerospace users. In the future,

these problems will become common in ground-based applications as well. The fault

tolerance capabilities of FPGAs should be improved while minimizing the area and

power impact of redundant hardware.

Runtime reconfiguration is a key capability for fault and defect tolerant comput-

ing. Current FPGAs provide limited partial reconfiguration capability. Improvements

to the architectures will allow future FPGAs to support local reconfiguration done

without support of the router, as well as large-scale reconfiguration under control of

the router (either on-chip or running on an external processor).

B.2.2 Questions Addressed.

• How can FPGA fault detection of diagnosis be improved?

• How can SEUs in the configuration memory be detected?

• How can permanent faults in the FPGA resources be detected?

• How can the tester differentiate between SEUs and permanent faults?

• How can the fault location and impact be determined?

• How can partially functional resources be re-used?

• What architectural changes can be made to improve fault detection and diag-

nosis?

• What architectural changes can be made to improve fault masking and recovery?

• What is the power and hardware overhead incurred by these improvements?

• How can the benefits and disadvantages associated with making these improve-

ments be quantified to allow design decisions to be made?
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B.2.3 General Goals. The goal of this phase is to improve the fault tolerance

capabilities of conventional FPGAs. From this major goal, three minor goals are

defined:

1. Develop improved online FPGA fault detection and fault diagnosis methodolo-

gies that require fewer reconfigurations than current techniques such Roving

STARS.

2. Develop a modified FPGA architecture with better fault masking and fault

recovery performance (when compared to standard FPGAs) against permanent

faults and soft errors occurring in CLBs, SMs, and interconnect.

3. Develop a modified FPGA architecture with better fault detection, masking and

fault recovery performance (when compared to standard FPGAs using config

readback and scrubbing) against SEUs in CMCs and LUT memory.

B.2.4 Research Contributions.

• Improved FPGA test methods to detect and diagnose faults, potentially involv-

ing changes to the FPGA architecture.

• Improved FPGA architectures to support fault detection and diagnosis of faulty

resources.

– Develop a FPGA architecture that can localize faults to a specific CLB,

switch matrix, or interconnect resource, with little or no impact on the

application circuit.

– Design a FPGA architecture that detects and isolates single event upsets

in the configuration memory cells at the local level.

– Design a FPGA CLB architecture that allows re-use of partially functional

resources.

• Increase the reliability of conventional FPGAs in the presence of soft and hard

errors with minimum additional hardware resources.
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– Develop CLB structures to improve fault tolerance while requiring no ad-

ditional routing resources. Smaller CMOS processes, as well as emerging

device technologies, will provide additional transistors to the FPGA de-

signer. Rather than being limited by transistor size, future FPGAs are

limited by the size of interconnect resources.

– Develop methods to relocate application CLBs from one location to an-

other, without support from a router.

– Develop FPGA configuration memory structures that operate more reliably

in the presence of single event upsets (i.e., bit flips).

– Develop improved HW resources devoted to testing.

• Determine how conventional FPGAs can be made to operate reliably in the

presence of soft and hard errors with minimum additional power consumption

– Determine how redundancy techniques can be incorporated into FPGA

structures while minimizing additional power consumption.

• Develop reliability models for FPGAs implementing FT/DT techniques.

B.2.5 Demonstration.

• Implement application circuits in VHDL, demonstrating operation of improved

test methods.

• Implement new FPGA design in VHDL to demonstrate operation and improved

reliability.

– Demonstrate normal configuration and operation.

– Demonstrate reliable operation in the presence of induced errors.

– Demonstrate ability to isolate error to a CLB or routing resource.

– Compare reliability predictions to simulation results.

• Implement portions of new CLB or configuration memory cell designs in SPICE

to demonstrate power requirements.
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B.3 Phase 3: Dynamic Reconfiguration

B.3.1 Applicable Background.

B.3.1.1 Literature Review. The following areas provide background

on the problem:

• Current FPGA routing algorithms,

• On-chip routing research, and

• Dynamic partial reconfiguration capabilities of current FPGAs.

B.3.1.2 Current Research Focus and Shortcomings. Most of the re-

search relevant to this area addresses the following issues:

• Improving the efficiency of conventional routers.

• Reducing the memory and time requirements for conventional routers.

• Performing the routing function on the FPGA as a method for device indepen-

dent application distribution in mixed hardware/software applications.

Modern FPGA routers require large amounts of memory and CPU resources

and are difficult to implement during application runtime. The Riverside On-Chip

Router (ROCR) proposes “Just-In-Time” compilation as a method of distributing a

mixed hardware/software applications to different hardware types as a single device-

independent specification. The ROCR is smaller than a conventional router, but

improvements must be made to implement it on a FDT processor. Current on-chip

routers are intended to run on a fixed core CPU on the FPGA, not on the FPGA

fabric itself. The on-chip router is not intended for fault tolerance applications, and

assumes the CPU is fault-free.

To maximize the benefit of reconfiguration as a fault tolerance technique, run-

time routing must be possible, both to maximize the re-use of functional resources

and performance of the application circuit. If implemented on the reconfigurable mesh
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itself, the runtime router must be small, fast, and efficient. It must be able to tolerate

faults within the hardware implementing the router.

B.3.2 Questions Addressed.

• How can runtime routing be used to increase the fault tolerance benefits of

reconfiguration?

• What are the minimum resource requirements to perform runtime routing?

• Is it feasible to perform runtime routing on the FPGA itself?

• What would be the performance impact to perform runtime routing?

• Can runtime routing be handled by the chip without the knowledge or involve-

ment of the application circuit?

• How can runtime routing be performed reliably on an architecture that can

suffer operational faults and soft errors?

B.3.3 General Goals. The goal is this area is to increase the benefit of

reconfiguration as a fault tolerance technique in FPGA-based systems by enabling

routing to be done during operation of the application system. Runtime routing allows

large-scale reconfiguration of the application circuit on a FPGA with faulty resources,

maximizing re-use of fault-free resource and improving overall system reliability.

From this major goal, three minor goals are defined:

1. Determine the minimum resource requirements to do On-Chip Routing (OCR)

on the FDT mesh (i.e., implement the router on the programmable logic array

rather than a fixed core CPU).

2. Implement an OCR that operates without the knowledge of the application

circuit running on the FDT mesh.

3. Improve the efficieny of the OCR so that it operates with minimum impact on

the application circuit running on the FDT mesh.
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This phase will require a thorough understanding of FPGA routers and archi-

tectures. Significant background work will need to be done before the AFIT group is

ready to make significant progress in this area.

B.3.4 Research Contributions.

• Demonstrate the feasibility of runtime routing on a programmable logic device.

• Predict the time and resource requirements to implement dynamic routing.

• Extend the dynamic reconfiguration capabilities of the proposed FDT design.

• Determine what extensions to the FDT node design must be made to implement

dynamic routing (e.g., multi-context configuration bits, extra interconnect, etc).

B.3.5 Demonstration.

• Implement a runtime router on a FPGA-based circuit.

• Develop a VHDL model to demonstrate dynamic routing on the FDT chip.

• Demonstrate impact of OCR on operating application circuit.

• Measure the hardware resource impacts and time impact to the application

circuit.
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B.4 Phase 4: Intelligent Agents

B.4.1 Applicable Background.

B.4.1.1 Literature Review. The following areas provide background

on the problem:

• Use of intelligent or mobile agents in fault and defect tolerant computing, and

• System-level fault detection and recovery.

B.4.1.2 Current Research and Shortcomings. Relatively little research

has been directed at configuration shifting as a method of FPGA testing. As discussed

in Chapter II, simple relocatable test blocks have been proposed, but they operate

under the direction of an external processor which controls operation and configura-

tion. Mobile or intelligent agents, a concept widely used in computer science, may be

adapted for use in fault detection and recovery on the FPGA. This idea has not yet

been explored.

B.4.2 Questions Addressed.

• Can the concept of mobile agents be adapted to fault tolerant computing to

improve fault detection, diagnosis, and recovery?

• Can testing of the FPGA or FDT mesh be done without a reliable core?

• Can the tester relocate itself on the configurable mesh to test the entire device?

• How could this be done without external control?

• How would the tester relocate application logic to recover from a fault?

B.4.3 General Goals. The major goal of this research phase is to develop an

intelligent mobile agent implemented in hardware on the programmable logic mesh to

perform fault detection and fault recovery tasks in parallel with normal application

operation. From this major goal, three minor goals are defined:
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1. Develop a HW intelligent agent that can perform fault detection and diagnosis

without the need for a reliable fixed core.

2. Develop a HW intelligent agent capable of relocating application logic (poten-

tially across long distances on the FDT mesh) to handle faults.

3. Develop a HW intelligent agent that can relocate itself on the FDT mesh.

B.4.4 Research Contributions.

• Determine how the intelligent agent can verify and ensure its own health prior

to start of testing.

• Determine a viable implementation of a system-wide fault recovery agent.

– Determine whether the best implementation is a single chip-wide agent

or multiple local agents. Determine the level of support required by the

operating system.

– Develop a mobile agent design capable of implementing these features.

– Determine the required characteristics, size and performance requirements.

• Determine modifications to the FDT mesh to support mobile agent operation

and relocation.

B.4.5 Demonstration.

• Implement intelligent agent in VHDL and C to control fault detection, diagnosis,

and repair/reconfiguration on the FDT mesh.

• Demonstrate key abilities of the intelligent agent:

– Reconfigures user logic to repair defects,

– Relocates itself, and

– Verifies its own health and correctness.
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B.5 Summary

The four research phases and the associated goals are intended to form the

basis of a new multi-year research group at AFIT. The four major research phases

are summarized in Table B.1. This appendix creates a plan for the overall research

program, and proposes an initial course of study addressing the first phase.
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Table B.1: The four research phases of the AFIT Fault and
Defect Tolerant Computing group.

Phase 1 Phase 2 Phase 3 Phase 4
Major Area FDT System

Architecture
Current FPGA
Architectures

Dynamic
Reconfiguration

Intelligent Agents
for FDT Comput-
ing

Research
Focus

Develop the system ar-
chitecture for a FDT
computer

Improve the FT of
conventional FPGAs

Increase benefit of re-
configuration by en-
abling runtime routing
in the FDT computer

Develop an intelligent
agent to perform fault
detection and recovery
in the FDT mesh.

Goal 1 Develop the system
architecture for a FDT
computer, proposes
CONOPS, ID required
capabilities

Develop improved
methods to detect
and diagnose faults,
minimizing overhead
(HW, routing, time,
and power)

Determine the mini-
mum resource require-
ments to do OCR on
the FDT mesh

Develop a HW intelli-
gent agent that:
Does not rely on a re-
liable fixed core

Goal 2 Design a FDT
node/routing ar-
chitecture capable of
supporting required
functions

Improve the FPGA ar-
chitecture’s ability to
mask, detect, and re-
cover from operational
permanent faults

Design an OCR that
operates without the
knowledge of the ap-
plication circuit

Can relocate logic
to re-use fault-free
resources

Goal 3 Develop techniques to
map FDT nodes onto
emerging technologies

Improve the FPGA
architecture’s ability
to detect and recover
from SEUs

Improve the efficiency
of the OCR so that
it operates with min-
imum impact on the
application circuit

Can relocate itself on
the FDT mesh
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This research addresses design of a reliable computer from unreliable device technologies. A system architecture is
developed for a “fault and defect tolerant” (FDT) computer. Trade-offs between different techniques are studied and
yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the
cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device

failure probabilities of 3 × 10−6, three orders of magnitude better than non fault tolerant caches of the same size. The

entire processor achieves 70% yield with device failure probabilities exceeding 10−6. The required hardware redundancy
is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture
allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model
is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy.
Previous models are extended to account for dependence between the inputs and produce more accurate results.
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