
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2006

Active FPGA Security through Decoy Circuits Active FPGA Security through Decoy Circuits

Bradley D. Christiansen

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Christiansen, Bradley D., "Active FPGA Security through Decoy Circuits" (2006). Theses and Dissertations.
3316.
https://scholar.afit.edu/etd/3316

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholar.afit.edu%2Fetd%2F3316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3316?utm_source=scholar.afit.edu%2Fetd%2F3316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

ACTIVE FPGA SECURITY THROUGH DECOY CIRCUITS

THESIS

Bradley D. Christiansen, Major, USAF

AFIT/GE/ENG/06-15

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GE/ENG/06-15

ACTIVE FPGA SECURITY THROUGH DECOY CIRCUITS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Bradley D. Christiansen, Bachelor of Science

Major, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GE/ENG/06-15

ACTIVE FPGA SECURITY THROUGH DECOY CIRCUITS

Bradley D. Christiansen, Bachelor of Science

Major, USAF

iv

AFIT/GE/ENG/06-15

Abstract

Field Programmable Gate Arrays (FPGAs) based on Static Random Access

Memory (SRAM) are vulnerable to tampering attacks such as readback and cloning

attacks. Such attacks enable the reverse engineering of the design programmed into an

FPGA. To counter such attacks, measures that protect the design with low performance

penalties should be employed.

This research proposes a method which employs the addition of active decoy

circuits to protect SRAM FPGAs from reverse engineering. The effects of the protection

method on security, execution time, power consumption, and FPGA resource usage are

quantified. The method significantly increases the security of the design with only minor

increases in execution time, power consumption, and resource usage. For the circuits

used to characterize the method, security increased to more than one million times the

original values, while execution time increased to at most 1.2 times, dynamic power

consumption increased to at most two times, and look-up table usage increased to at most

seven times the original values. These are reasonable penalties given the size and

security of the modified circuits. The proposed design protection method also extends to

FPGAs based on other technologies and to Application-Specific Integrated Circuits

(ASICs).

In addition to the design methodology proposed, a new classification of tampering

attacks and countermeasures is presented.

v

Acknowledgments

Whoa! What a ride! At times, the terrain was very rugged. However, “My God

hath been my support; he hath led me through mine afflictions in the wilderness; and he

hath preserved me” (2 Nephi 4:20).

I express my sincere appreciation to my faculty advisor, Dr. Kim. His guidance

and encouragement were keys to the creation of this thesis. Kamsahamnida.

I thank Dr. Baldwin and Dr. Mullins for their review of, and recommendations for

improvement to, this document.

I appreciate the time and effort expended by Mr. Louis Floyd and Mr. Dan

Williams to proofread and comment about drafts of the manuscript.

I am very grateful for the care and concern shown for my family by Mr. Mike

Bristow, Mr. John Duncan, and Mr. Dan Williams during this difficult period. They and

their prayers were a great support to us.

I am eternally grateful to have such a great wife. Her love and belief in me have

carried me through these eighteen months. She has endured more than I during this

period, and her achievements have been greater, especially in the care and development

of our children. She is the primary reason our children greet me with a smile and open

arms. I am grateful to have received the love of my wife and children to remind me of

the truly important treasures of life.

 Bradley D. Christiansen

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents... vi

List of Figures ..x

List of Tables .. xii

1. Introduction...1

1.1 Motivation ...1

1.2 Problem Statement...3

1.3 Research Scope..3

1.4 Research Contributions ...4

1.5 Thesis Preview...4

2. Background..6

2.1 Chapter Overview..6

2.2 FPGA Defined ...6

2.3 Definition of Terms ...9

2.4 Reverse Engineering Tutorial..11

2.5 Attacks...13

2.6 Protections/Countermeasures ..17

2.7 Classification of Attacks and Countermeasures ..20

2.7.1 Introduction .. 20

2.7.2 Previous Works .. 22

2.7.3 Classification of Threats... 26

vii

2.7.4 Classification of Countermeasure Security Levels................................... 29

2.8 Related Circuit Protection Research..31

2.9 Summary..32

3. Methodology...33

3.1 Chapter Overview..33

3.2 Problem Definition ..33

3.2.1 Goals and Hypotheses .. 33

3.2.2 Approach .. 35

3.3 System Boundaries ..38

3.4 System Services...39

3.5 Workload ...41

3.6 Performance Metrics ...41

3.7 Parameters ...42

3.7.1 System .. 42

3.7.2 Workload .. 42

3.8 Factors ...43

3.9 Evaluation Technique..45

3.10 Experimental Design ...46

3.11 Analyze and Interpret Results ...47

3.12 Summary..47

4. Design Algorithm..49

4.1 Chapter Overview..49

4.2 Combination Lock ...49

viii

4.3 Decoy Circuit Generation from Truth and State Tables......................................52

4.3.1 Combinational Circuit .. 54

4.3.2 Sequential Circuit ... 63

4.4 Decoy Circuit Generation from Boolean Equations..66

4.5 Decoy Circuit Generation from Gate-level Representation69

4.6 Decoy Circuit Generation from Existing VHDL...72

4.7 Decoy Circuit Generation through Partial Scrambling77

4.8 Summary..84

5. Results and Analysis ...87

5.1 Chapter Overview..87

5.2 Security..87

5.2.1 Combination Lock .. 91

5.2.2 Combinational Circuit .. 92

5.2.3 Sequential Circuit ... 93

5.2.4 VHDL and Partial Scrambling ... 97

5.3 Execution Time ...98

5.3.1 Combination Lock .. 98

5.3.2 Combinational Circuit .. 99

5.3.3 Sequential Circuit ... 101

5.3.4 VHDL and Partial Scrambling ... 101

5.4 Power Consumption ..102

5.4.1 Combination Lock .. 103

5.4.2 Combinational Circuit .. 105

ix

5.4.3 Sequential Circuit ... 107

5.4.4 VHDL and Partial Scrambling ... 109

5.4.5 Observations ... 109

5.5 Resource Usage ...110

5.5.1 Combination Lock .. 111

5.5.2 Combinational Circuit .. 111

5.5.3 Sequential Circuit ... 115

5.5.4 VHDL and Partial Scrambling ... 117

5.6 Combining a Combination Lock with Modified Circuits..................................117

5.7 Summary..119

6. Conclusions and Recommendations ...121

6.1 Chapter Overview..121

6.2 Conclusions of Research ...121

6.3 Significance of Research ...122

6.4 Recommendations for Action..122

6.5 Recommendations for Future Research...123

6.6 Summary..124

Appendix: Data Analysis Tables ..125

Bibliography ..136

Vita ..141

x

List of Figures

Figure Page

1. Downed F-117A. ... 1

2. Captured EP-3E. .. 2

3. Altera Stratix Logic Element. .. 7

4. Generalized FPGA interconnect. ... 8

5. Cross sections of unprogrammed and programmed antifuses. 8

6. FPGA with SRAM switches.. 9

7. Black Box attack.. 14

8. Cloning attack.. 14

9. Power consumption plot of DES implementation. .. 15

10. Reverse engineering an ASIC.. 16

11. Use of an encrypted configuration file. ... 19

12. On-FPGA PROM... 19

13. Rearranging design modules.. 20

14. Matrix classification. ... 27

15. Methodology design flow. ... 36

16. System and component under test. .. 38

17. Eight-state Combination Lock. .. 53

18. Full adder schematic. ... 55

19. Modified full adder schematic. .. 62

20. Three-bit up counter schematic. .. 63

xi

Figure Page

21. Page 3 of 4 of the modified counter schematic.. 67

22. Original gate-level representation.. 70

23. Modified gate-level representation. ... 71

24. Four-bit priority encoder schematic... 74

25. Modified four-bit priority encoder schematic.. 78

26. Schematic of result=a*b+c. .. 79

27. Page 1 of partial scrambling schematic. .. 85

28. Page 2 of partial scrambling schematic. .. 86

29. Security vs. varying extra inputs. .. 89

30. Security vs. varying copies. ... 89

31. Security vs. varying extra outputs. .. 90

32. Quartus II PowerPlay Power Analyzer Tool. .. 103

33. Combinational circuits’ static power consumption. .. 106

34. Correlation between pin count and static power.. 110

35. Combinational circuits’ LUT increase for circuits 1-4.. 112

36. Combinational circuits’ LUT increase for circuits 5-8.. 113

37. Combinational circuits’ pin increase. .. 114

xii

List of Tables

Table Page

1. Attacks and countermeasures. ... 21

2. IBM security level scheme. ... 23

3. Design steps and attacks they counter. .. 38

4. Failure mode combinations.. 40

5. Full adder truth table.. 54

6. Expanded full adder truth table.. 55

7. Expanded full adder truth table with complete top half. ... 57

8. Final expanded full adder truth table. .. 57

9. Three-bit up counter state table. .. 63

10. Copies 1 and 2 of modified counter... 64

11. Copies 3 and 4 of modified counter... 65

12. Resulting truth table from Boolean equation modification. 68

13. Resulting state table from gate-level modification. ... 72

14. Priority encoder truth table. ... 73

15. Resulting truth table for partial scrambling. .. 80

16. Combinational multiplexer input and output combinations. 80

17. Combination Locks’ security contributions... 91

18. Analysis of Combination Locks’ security contributions. .. 92

19. Combinational circuits’ security metrics. .. 93

20. Analysis of combinational circuits’ security contributions. 94

xiii

Table Page

21. Sequential circuits’ security metrics. ... 95

22. Analysis of sequential circuits’ security contributions. ... 96

23. Original and scrambled existing VHDL circuits’ security. 97

24. Security metrics of original and partially scrambled circuits. 98

25. Combination Locks’ maximum clock frequencies. ... 98

26. Results of Combination Locks’ maximum frequency analysis table. 99

27. Combinational circuits’ execution times. .. 100

28. Results of combinational circuits’ execution time analysis table. 101

29. Existing VHDL designs’ execution times. .. 101

30. Partially scrambled and original circuits’ execution times...................................... 102

31. Combination Locks’ power consumption.. 103

32. Results of Combination Locks’ static power analysis table. 104

33. Results of Combination Locks’ dynamic power analysis table............................... 104

34. Combinational circuits’ power consumption... 105

35. Results of combinational circuits’ static power analysis table. 107

36. Results of combinational circuits’ dynamic power analysis table........................... 107

37. Sequential circuits’ power consumption.. 108

38. Results of sequential circuits’ static power analysis table....................................... 108

39. Results of sequential circuits’ dynamic power analysis table. 108

40. VHDL circuits’ power consumption. .. 109

41. Partially scrambled circuits’ power consumption.. 109

xiv

Table Page

42. Combination Locks’ resource usage.. 111

43. Results of Combination Locks’ LUT analysis table.. 111

44. Combinational circuits’ resource usage... 112

45. Results of combinational circuits’ LUT analysis table.. 114

46. Results of combinational circuits’ pin analysis table. ... 115

47. Sequential circuits’ resource usage.. 115

48. Results of sequential circuits’ LUT analysis table. ... 116

49. Results of sequential circuits’ pin analysis table. .. 117

50. VHDL circuits’ resource usage. .. 117

51. Partially scrambled circuits’ resource usage.. 117

52. Combination Lock and modified full adder... 118

53. Combination Lock and modified counter. ... 118

54. Combination Lock and modified VHDL circuit.. 118

55. Analysis of Combination Locks’ maximum frequencies. 125

56. Analysis of Combination Locks’ static power consumptions. 125

57. Analysis of Combination Locks’ dynamic power consumptions. 126

58. Analysis of Combination Locks’ LUT usages... 126

59. Analysis of combinational circuits’ execution times... 127

60. Analysis of combinational circuits’ static power consumptions. 128

61. Analysis of combinational circuits’ dynamic power consumptions. 129

62. Analysis of combinational circuits’ LUT usages... 130

xv

Table Page

63. Analysis of combinational circuits’ pin usages. .. 131

64. Analysis of sequential circuits’ static power consumptions. 132

65. Analysis of sequential circuits’ dynamic power consumptions............................... 133

66. Analysis of sequential circuits’ LUT usages. .. 134

67. Analysis of sequential circuits’ pin usages. ... 135

1

ACTIVE FPGA SECURITY THROUGH DECOY CIRCUITS

1. Introduction

1.1 Motivation

As an F-117A Nighthawk stealth fighter made its way to its target on 27 March

1999 [FAS00], enemy forces pieced together its flight path, from takeoff to the target

area. Using knowledge from previous Nighthawk strikes, possible returns from low-

frequency radars, and the hint from a dropped bomb, the enemy was able to down the

aircraft with a surface-to-air missile (cf., Figure 1). Fortunately, the pilot safely ejected

and was rescued before being captured. The decision had to be made whether to destroy

the remains of the plane to protect its stealth technology [Lam02] and the specialized

circuits used in the flight control system.

 Figure 1. Downed F-117A. Note the HO
 designation for Holloman AFB, NM,
 home of the F-117As. [FAS00]

2

Almost two years later, as a U.S. Navy EP-3E Aires II surveillance aircraft was

conducting a routine mission in international airspace, a Chinese fighter bumped the

EP-3E’s wing, necessitating an emergency landing in Chinese territory (cf., Figure 2)

[New01]. Although the crew was trained to destroy sensitive equipment in the event of

capture [DoD01], the equipment may not have been sufficiently destroyed before landing

to preclude Chinese exploitation. Among the systems that might have been exploited by

the Chinese was the Link-11 secure communications system [Smi01]. It is also possible

that classified circuits were also compromised.

 Figure 2. Captured EP-3E. Note the chipped propeller
 blade at (2) and the missing radome at (3). [Tri01]

The above examples illustrate the need to protect critical technologies in military

systems. The United States Air Force goes to great lengths to maintain technological

superiority, avoid technological surprise, and achieve a return on investment from

advanced technology development. Protecting integrated circuit designs found in

weapons systems helps to achieve those goals [AFR05]. Such protection enables a

weapon system to have a long life without compromising its capabilities. Additionally, a

protected design can prevent an adversary from increasing his knowledge base and

advancing his technology [HuS99].

3

Field-programmable gate arrays (FPGAs) are increasingly taking the place of

application-specific integrated circuits (ASICs) due to their flexibility, increasing

densities [Act02], and lower non-recurring engineering costs. Reprogrammable FPGAs

are attractive for applications with requirements that change over time, where changes

need to be implemented quickly, or for quickly fielding a new product. As more

commercial systems are designed with FPGAs rather than ASICs, an increasing number

of military systems will also contain FPGAs.

FPGAs have some intrinsic vulnerabilities, including the possibility of extracting

the circuit design through reverse engineering [AFR05]. In the corporate arena,

protecting a design on an FPGA from reverse engineering helps maintain a competitive

edge, market share, and revenues. Securing a design in a military application maintains

its technological advantage, prevents the exploitation of a design by an adversary, and

consequently can save lives.

1.2 Problem Statement

The challenge, then, is to devise methods of protecting designs on FPGAs that

completely eliminate reverse engineering vulnerabilities or, at a minimum, introduce

delays that make reverse engineering impractical. A worthwhile new design protection

method balances increased security against increased implementation costs, decreased

system performance, and increased operations and maintenance costs [AFR05].

1.3 Research Scope

The purpose of this research is to devise a method to secure integrated circuit

designs implemented in FPGAs and then evaluate its effectiveness. A novel process is

4

proposed to protect designs specified using truth or state tables, with Boolean equations

or that are already implemented in VHDL (Very high-speed integrated circuit Hardware

Description Language). The proposed design methodology will produce secure

application-specific integrated circuits, as well as secure FPGA designs. This procedure

is demonstrated using several common circuits. The power consumption, execution

times, and resource usage of the original and modified circuits are measured and

compared.

1.4 Research Contributions

This research proposes a new attack classification scheme that combines of cost

and time. A countermeasure classification system easily correlated to the attack

classification is also developed.

In addition, the research contributes an innovative technique that provides

significant protection to FPGA and ASIC designs against reverse engineering. The

performance penalty to apply this technique to FPGA designs are only minor increases in

execution time and power consumption. Increased resource requirements can be

accommodated with the generally available excess FPGA resources.

The design methodology is demonstrated using circuits described in various ways

from Boolean equations to VHDL. Additionally, the flexibility of the algorithm to

modify only a portion of a circuit is illustrated.

1.5 Thesis Preview

Chapter 2 provides background information on FPGAs and reverse engineering,

gives definitions, lists and classifies attacks and countermeasures, and presents relevant

5

existing research. Chapter 3 describes the testing methodology and provides an overview

of the proposed circuit modification process. Chapter 4 gives the details of the proposed

design methodology by illustrating it with several examples. Chapter 5 presents the test

results and analyses. Chapter 6 presents a summary, explains the significance of the

research, and makes recommendations for further study.

6

2. Background

2.1 Chapter Overview

The purpose of this chapter is to provide sufficient background for the reader to

understand the context of the research. After covering FPGA architectures, the terms

tampering and reverse engineering are defined, followed by a brief tutorial about reverse

engineering. Finally, FPGA design threats and possible countermeasures to these threats

are presented, as well as a threat and countermeasure classification scheme.

2.2 FPGA Defined

A field-programmable gate array (FPGA) is a computer chip that a user can

program in the field to accomplish a particular function. For example, a user could

program an FPGA to be a general purpose microprocessor or to encrypt or decrypt data.

FPGAs are generally divided into cells called configurable logic blocks (CLBs), which

may contain the following:

• look-up tables (LUTs) to accomplish logic functions, such as

Y = (B AND D) XOR C,

• arithmetic logic gates to implement other logic functions or to combine

outputs from LUTs,

• multiplexers to select particular outputs, and

• storage elements (memory) such as D flip-flops.

Figure 3 shows a portion of a CLB. CLBs are interconnected with wires that can be

7

 Figure 3. Altera Stratix Logic Element. This is one tenth of a
 Logic Array Block (Altera's nomenclature for a CLB). [Alt05]

programmed to provide specific paths between CLBs or to input or output pins as shown

in Figure 4 [BrR96, Xil05].

Programmable elements are controlled by switches that determine the function of

that building block. The switches are generally either antifuses or SRAM (static random

access memory) elements. An antifuse is a ‘sandwich’ configuration consisting of an

insulator between two conductors. The insulator electrically isolates the conductors when

the antifuse is not programmed. When the antifuse is programmed by applying a voltage,

the insulator provides a low-resistance path between the conductors. Figure 5 shows an

unprogrammed antifuse (a) and a programmed antifuse (b). The boxed area of (b) shows

where the connection between the two conductors has been made. Antifuse FPGAs are

8

Figure 4. Generalized FPGA interconnect. Adapted from [BrR96].

Figure 5. Cross sections of unprogrammed and programmed antifuses. [Act06]

one-time-programmable, while SRAM FPGAs are reprogrammable. The appropriate

value to either activate or deactivate a particular path or function is stored in an SRAM

element. Figure 6 shows SRAM switches configured to connect two logic blocks through

two interconnections and a multiplexer. An SRAM element loses its programming

(theoretically) when power is disconnected. To program an FPGA, a configuration file

(also called a bit stream) is usually created in a software application. This configuration

9

Figure 6. FPGA with SRAM switches. [BrR96]

file is downloaded directly to the FPGA or to a memory device (flash memory or a

PROM – programmable read-only memory). The memory stores the configuration file

and programs an SRAM-based FPGA at start-up since the SRAM switches lose their

state after a loss of power. The bits in the configuration file dictate the switch settings

[BrR96, WGP04].

2.3 Definition of Terms

It is important to understand the definitions of the following terms as they are

used in this research.

Tampering is defined as activities that secretly, dishonestly, or interfere or intrude

without consent [Pri05]. Such activities, accomplished through direct physical or remote

electronic access, include destruction, modification, observation, and theft of integrated

circuits [IEEE93]. The theft could be of the entire chip for use in another system or of

10

the design for duplication and distribution. The entire circuit, or just a portion thereof,

could be destroyed, modified, or observed. The observation of a circuit, possibly in

conjunction with modifications, could reveal private information or proprietary

algorithms, technologies, or processes.

As the following examples show, tampering has varying levels of difficulty and

complexity.

• If physical access is achieved, an entire chip could be stolen, or, with more

effort, the circuit design itself could be stolen.

• Modifying an ASIC directly may be more difficult than remotely

modifying a reprogrammable FPGA.

• The entire chip could be destroyed or, with more sophisticated tools, a

specific area of the chip could be targeted for destruction.

• The leads of a chip could be probed or, at an increased level of

complexity, the signals within a circuit could be observed.

Reverse Engineering, a subset of tampering, is defined as methods, processes, and

analyses used to recreate a design from a final product [Ang06] or other process outputs

[Geo05], to create a “representation at a higher level of abstraction” [J-STD95], or to

determine the technology that is used [Geo05].

In general, reverse engineering requires more effort and resources than tampering

alone. For example, deciphering a secret key in a cryptographic system is tampering, but

discovering how the algorithm is implemented would be reverse engineering. Likewise,

obtaining an unencrypted FPGA configuration file and using it to program other FPGAs

11

would be tampering, while deciphering the configuration file would be reverse

engineering. Tampering to observe an integrated circuit is a prerequisite for analyses that

would use the observations to recreate the design.

Being a subset of tampering, reverse engineering also occurs at varying levels. At

one level, a cryptographic implementation may be discovered. At another level, the

fabrication processes and technology used in that implementation might be determined.

Thus, a secure FPGA design would prevent interference with its operation,

intrusion into its functionality, its replication, and the determination of its fundamental

technology.

Anti-Tampering and Anti-Reverse Engineering are actions taken to hinder or

prevent tampering and reverse engineering.

2.4 Reverse Engineering Tutorial

Since the goal of the proposed design methodology is to produce an FPGA design

resistant to reverse engineering, it is appropriate to review the stages of a reverse

engineering process. The following list of stages, which apply specifically to ASICs, is

excerpted from [CEL99]. Following this list of stages, the application of these stages to

FPGAs is discussed.

According to [CEL99], the following stages of the reverse engineering process

were identified at the Argonne National Laboratory’s 1998 Reverse Engineering

Workshop.

1. Sample preparation: An ASIC must be cross-sectioned or chemically

etched to reveal its internal construction. Since this step is destructive,

12

great care must be taken to avoid damaging the components of interest.

Several samples may be required, as well as several iterations of slicing or

etching subsequent layers and the next stage [AnK96].

2. Image acquisition: Once the internal construction is revealed, it must be

imaged, section by section. The images of the sections are pieced together

for a complete image. A scanning electron microscope may be required,

depending on the size of the transistors.

3. Geometric description: Geometric data is extracted from the image file

and converted to a geometric data stream. Information about the

technology employed to realize the circuit is necessary for the conversion

of the image to geometric data.

4. Transistor netlist: From the geometric data, transistors are identified

through design-rule checkers.

5. Gate-level netlist: Specific gates are identified from collections of

transistors. For example, AND or NOR gates may be identified. Since

gates generally have the same geometry, pattern-matching enables the

process to be automated.

6. Module-level description: With the gates identified, modules such as

multiplexers and full adders can be abstracted.

7. Register-transfer and behavioral descriptions: Further abstraction

generates a register-transfer-level representation and eventually a

13

behavioral description. (In 1999, the technology to produce these

interpretations was not available.)

Reverse engineering an FPGA design uses stages similar to those listed above. If

the FPGA is antifuse-based, it has to be cross-sectioned and imaged. For an SRAM-

based FPGA, sample preparation and image acquisition determine the contents of the

SRAM elements that act as switches. (The process of discovering the state of an SRAM

is discussed further in Section 2.5.) The processes of generating a geometric description

and a transistor netlist are equivalent to correlating each switch with an FPGA

interconnect intersection or CLB element. With that correlation information, gates and

modules can be composed.

An FPGA can also be reverse engineered from its unencrypted configuration file.

In such a case, obtaining the FPGA bit stream is equivalent to the sample preparation

stage for an ASIC. A correlation similar to the one above is done between the bits of the

file and entities on the FPGA, and the process continues with the reconstruction of gates

and modules.

2.5 Attacks

Partly due to its flexibility and its programming method, an FPGA is vulnerable to

reverse engineering (i.e., the determination of the implemented circuit design). Various

methods can derive the functionality of a programmed FPGA. These methods include

[WGP04]:

a. Black Box Attacks: All possible inputs are applied and the outputs are

observed as illustrated in Figure 7.

14

Figure 7. Black Box attack.

b. Readback Attacks: The FPGA’s configuration data is read directly from

the FPGA.

c. Cloning Attacks: An attacker eavesdrops on the transmission of the

configuration file from memory to the FPGA and uses the stolen file to program a clone

FPGA as shown in Figure 8.

Figure 8. Cloning attack.

d. Reverse-Engineering an unencrypted configuration: This is done after

attack (b) or (c) above.

e. Side-Channel Attacks: These attacks include power consumption

analysis, timing analysis, electromagnetic (EM) radiation analysis, and injecting faults to

reveal functionality. Figure 9 shows the power consumption plot of a Data Encryption

Standard implementation, which clearly shows 16 rounds of the algorithm.

15

Figure 9. Power consumption plot of DES implementation. [RRC04]

f. Physical Attacks: Since SRAM cells are not entirely erased when power is

disconnected, physical attacks via accessing them include mechanical probing, accessing

the test scan path, removing layers of a chip, and using electron microscopes. However,

physical attacks against antifuse FPGAs do not seem practical since much of the chip

must be destroyed by cross-sectioning or by removing multiple layers to reveal a single

antifuse connection.

The methods for determining the value that is or was in an SRAM element

deserve additional discussion. Non-destructive methods include:

• IDDQ (quiescent power-supply current) testing measures the supply current

to a device after applying a series of test vectors. An abnormal

measurement would indicate that the device has been stressed and that its

operating characteristics have changed [Gut01].

• Measuring the substrate and gate currents observes the amount of stress a

device has experienced [Gut01].

16

• Using the circuitry intended for device testing, such as JTAG boundary

scan [Gut01].

• Voltage contrast imaging detects logic levels and voltages through the

examination of the differences in the brightness of the voltage intensity

image [SoA93].

One invasive technique uses a focused ion beam (FIB) workstation to drill minute access

holes for probing deeply buried entities. The FIB workstation can also inject metal probe

points for easier device examination [Gut01]. Although the literature does not describe

the use of these methods of attack against SRAM FPGAs, it is conceivable that they

could be used to determine the programming of such a device [WGP04].

The attacks that could also be used against ASICs include black box, side-

channel, and physical attacks [RRC04]. For example, with the destruction of only six

chips, an Intel 80386 was reverse engineered in two weeks using the specific physical

attack described in the Reverse Engineering Tutorial section above [AnK96]. Figure 10

illustrates the third stage in the reverse engineering process, where an integrated circuit

image is converted to a geometric data format such as Graphic Design Station II (GDSII).

Figure 10. Reverse engineering an ASIC. [ACA02]

17

2.6 Protections/Countermeasures

There are various approaches to protect a design on an FPGA or to mitigate the

effects of its theft and reproduction. Policy and law protections such as patents and

copyrights allow private companies to sue an alleged thief for damages. To aid in

proving ownership in the event a design is stolen, the original producer might embed a

watermark in the design [JYP03]. Export control laws attempt to maintain a nation’s

technological advantage. Security classifications and laws that prescribe punishments for

espionage and treason also attempt to protect a nation’s technological capital. If

classified knowledge is compromised, a non-disclosure agreement (NDA), which is

generally executed to obtain a security clearance, may have been breached. NDAs are

also signed before a manufacturer grants access to its FPGA bit stream design [WGP04]

or to the mapping between switches and function elements.

If these policy protections are subverted, months or years could elapse before a

theft is discovered, by which time significant damage may have already been done. Such

was the case with atomic bomb secrets stolen from Los Alamos and given to the Soviet

Union [FBI06]. In the corporate arena, by the time such a theft is discovered, a

company’s market share may have already been lost to a company in a foreign nation that

not only refuses to enforce patents but also encourages such piracy. Likewise, a

disgruntled former employee of Company X could begin employment with Company Y

and describe how a watermark might be removed from a design stolen from Company X.

With these subversions, stronger protections are warranted for high-value assets.

Encryption has long been utilized to protect messages. However, even encryption

18

algorithms will eventually be cracked as was the case of the Data Encryption Standard

[EFF98]. As described in FIPS 140-2, there are also physical protections such as

containers, tamper-evident coatings, and circuitry that detects and responds to

unauthorized access [NIS02]. One example of a FIPS 140-2 Security Level 4 device is

the IBM 4758 PCI Cryptographic Coprocessor [IBM06]. The circuitry of this device is

surrounded by a mesh that detects physical penetrations and abnormal environmental

conditions in parameters such as temperature and radiation. The response to such an

attack is the erasure of critical secret data.

There are countermeasures stronger than policy that can protect the design of a

circuit programmed into an FPGA. These include [WGP04]:

a. The complexity of state-of-the-art FPGAs, which mitigates a black box

attack.

b. A security bit can prevent a readback attack. However, it is possible that

fault injection may defeat this countermeasure. Applying unusual voltages or voltage

transients could reset the security bit [AnK96]. If fault injection is a possibility, the

FPGA should be placed in a secure environment.

c. Encrypting, as in Figure 11, and/or storing the configuration file in

memory resident on the FPGA, as in Figure 12, can prevent cloning attacks. Encryption

also prevents reverse engineering a file. (The devices described in [Xil05], however, can

decrypt an encrypted configuration file.)

19

Figure 11. Use of an encrypted configuration file. Adapted from [Kea01].

Figure 12. On-FPGA PROM.

d. Techniques to prevent side-channel attacks include inserting random

values to mask secret information, smoothing power traces, and changing logic at the

transistor level.

e. To prevent physical attacks on SRAM FPGAs, memory retention should

be reduced as much as possible through methods such as periodically inverting the bits,

applying an opposite current, inserting dummy cycles, or rearranging the data using

dynamically reconfigurable FPGAs as in Figure 13.

20

Figure 13. Rearranging design modules.

Table 1 summarizes the attacks and countermeasures discussed above Though

the attacks and countermeasures listed are not necessarily specific to FPGA designs,

some of the methods have been used against or on underlying FPGA technologies, such

as SRAM. Attacks and countermeasures with respect to embedded systems have also

been examined [RRC04].

2.7 Classification of Attacks and Countermeasures

2.7.1 Introduction

An attacker who tampers with an integrated circuit can harm both the developer

and the user of the circuit. If the effects of tampering are widespread, the developer is

damaged by a reputation for circuit malfunctions. Furthermore, revenue could be lost if

the design is copied and distributed, since the developer does not recoup the research and

development costs. Likewise, the user may be denied service due to destructive

tampering of a circuit or lose information that was supposedly secure due to observation

of a circuit. In security and defense applications, lives could be lost due to tampering or

reverse engineering. A tampering attack could result in a malfunction that causes a

21

Table 1. Attacks and countermeasures. [WGP04]

Attack Used against
FPGAs?

Countermeasure Available in
commercial

FPGAs?
Black Box Yes Inherent FPGA size and

design complexity
Yes

Readback
(Security bit
possibly overcome
with fault injection)

Yes
(Not
specifically)

Employ a security bit
(Secure environment)
See 1 and 2 below

Yes
(User-specific)
See 1 and 2 below

Cloning Yes
Reverse-Engineer
the configuration
file

Yes
1. Encrypt the
configuration file
2. Store the
configuration file in
FPGA

1. Yes
2. Varies

Physical Little
specifically
published

Reduce the memory-
retention effects

Not specifically

Side-Channel Yes A. Insert random values
B. Smooth the power
traces
C. Change the logic

Not specifically

vehicle to crash or the loss of the designed technological advantage of a weapon or

countermeasure.

Countermeasures are employed to thwart such tampering attacks. These methods

vary in cost and effectiveness. Thus, an understandable classification is needed to apply

appropriate protection mechanisms against perceived threats. However, there are no

universally accepted classifications of threats and protection levels for integrated circuits.

In fact, there is no IEEE standard that addresses either of these classifications. This

section presents a classification of tampering threats and a corresponding classification of

protection levels.

22

In [ADD91], Abraham et al. propose a classification of attackers based on the

attacker’s knowledge and available resources. They also present a security level scheme

that appears to be loosely correlated with the attacker classification. Anderson and Kuhn

apply the attacker classification to specific attack examples in [AnK96] and [AnK97].

Actel Corporation in [Act02] also references [ADD91] to compare the security offered by

their FPGAs to that offered by other manufacturers’ devices.

The following subsection explains the IBM classifications and describes the usage

of these classifications in other applications. Threats against ASICs and FPGAs are also

presented and classified. Examples of countermeasures are given, along with a security

level classification correlated to the threat classification. Alternate classifications based

on the time required to crack a design are also given.

2.7.2 Previous Works

To define the potential physical threats against the Transaction Security System,

attackers are categorized as [ADD91]:

Class I (clever outsiders)—They are often very intelligent but may have
insufficient knowledge of the system. They may have access to only moderately
sophisticated equipment. They often try to take advantage of an existing
weakness in the system, rather than try to create one.

Class II (knowledgeable insiders)—They have substantial specialized technical
education and experience. They have varying degrees of understanding of parts
of the system but potential access to most of it. They often have access to highly
sophisticated tools and instruments for analysis.

Class III (funded organizations)—They are able to assemble teams of specialists
with related and complementary skills backed by great funding resources. They
are capable of in-depth analysis of the system, designing sophisticated attacks,
and using the most sophisticated analysis tools. They may use Class II
adversaries as part of the attack team.

23

Security levels which correlate to the resources (time, money, knowledge) required to

conduct an attack on a system are also defined. Table 2 summarizes their security levels.

Table 2. IBM security level scheme. Adapted from [ADD91].

Definition
Security

Level Knowledge/Skills Tools/Equipment
Tool or

Total Cost Notes
ZERO —— —— —— No special

security features
LOW —— Common lab or

shop tools —— Some security
features

MODL Some specialized
knowledge

More expensive $500 - $5,000
(tools) ——

MOD Some special
skills and
knowledge

Special tools and
equipment

$5,000 -
$50,000 (tools)

Attack time-
consuming, but
successful

MODH Special skills and
knowledge;
adversarial team
effort

Available, but
expensive to buy
and operate

$50,000 -
$200,000 or
more

Attack could be
unsuccessful

HIGH Team of
specialists

Highly
specialized,
which may have
to be built

$1,000,000 or
more

Known attacks
unsuccessful;
attack success in
question

Even though both an attacker classification and a protection level scheme are

defined, the correlation between the two is not clear. It appears that the LOW security

level corresponds to a Class I attacker, the MOD security level could correspond to a

Class II attacker, and the HIGH security level corresponds to a Class III attacker. In

addition, the security levels MODL and MODH do not clearly fall between the outsiders

of Class I and the insiders of Class II and between the insiders of Class II and the funded

organizations of Class III, respectively. Thus, how is an outsider classified who is more

than clever but less than a funded organization?

24

The IBM attacker categorization has been used to classify several example attacks

[Ank96]. The IBM scheme defines Class I as the application of low and high voltages,

and power and clock transients, which can be applied non-invasively. For example,

directing UV light at the security lock cell of an EPROM, or removing a smartcard chip

with a knife, nitric fuming acid, and acetone are Class I attacks. A Class II attack

removes each chip layer, imaging it using the Schottky effect and an electron beam, and

reconstructing the collection of images with image processing software. Another Class II

attack uses a focused ion beam (FIB) workstation to actively attack a chip. Although the

use of the FIB workstation is considered Class II, a Class I attacker could rent time on

such machines. A Class III attacker is one whose resources are such that “chip contents

cannot be kept from” the attacker [AnK96].

Class distinctions do not hold when an attacker can access equipment available

predominantly to an attacker of a higher class. For example, a Class I attacker can rent

time on a FIB workstation, a tool predominantly available to a Class II attacker.

Furthermore, the insider threat is not considered, and Class II is also applied to academics

who apparently have no privileged information.

Actel Corporation references [ADD91] in [Act02], but it is not entirely clear

whether the reference is to IBM’s attacker classification or security level scheme. Actel

definitions of security levels are close, though not exact, restatements of IBM’s security

level definitions. However, Actel uses numbers and + or - for the security levels rather

than names as IBM did. In addition, the words “Class” and “Level” are interchanged.

With this modification of IBM’s attacker classification and/or security level scheme,

25

Actel claims that conventional SRAM FPGAs are Class or Level 1, SRAM FPGAs with

DES encryption are Level 2, and Actel products are Level 2+. A Level 3 example is not

given, and the insider threat is not addressed.

[ETS05] applies the IBM classification to attackers of bus encryption hardware.

The classification is presented in the context of smartcard memories but was used only

sparingly [NPS03]. Others assert the IBM classification should not be used to describe

the tamper-proof level of wireless sensor networks, but rather, the level should be defined

in terms of network availability [PaS05].

Attacks have also been categorized using privacy, integrity, or availability attacks

[RRC04]. Another classification divides attacks among physical, side-channel, and

software attacks. Countermeasures are presented and correlated with the second attack

classification, but they are not classified with a security level [RRC04].

These previous classifications have obstacles to their understandability and use.

Classifying the insider threat, as well as the outsider with moderate resources but no

private information, has been a challenge. Also problematic has been the distinction

between classes when a member of one class has access to tools of another class. If both

attack/attacker classification and countermeasure security level classification are given,

the correlation between them is generally absent. The attacker classification is often used

to determine a security level. Whatever the obstacles, there are not universally accepted

classifications of threats and countermeasure security levels and a correlation between the

two.

26

2.7.3 Classification of Threats

To overcome the shortfalls of the previous classifications, the following matrix

categorization is proposed. This categorization uses the attacks, not attackers, based on

the resources and time required to successfully accomplish the attack. In this way, the

dissolution of classes does not occur when a member of one class uses tools of another.

The proposed classification also accounts for the insider threat and the outsider with

moderate resources but no inside knowledge. Finally, a correlation can easily be made to

protection levels, as discussed in the next subsection.

It is appropriate to classify the attacks and not the attackers. For example, a

bullet-proof vest should work whether a gun is fired by a child or a senior citizen. An

automatic teller machine should thwart an attack whether perpetrated by a drug addict or

by the mafia.

Attacks are classified according to both cost and time, and the classification is

depicted graphically in Figure 14. In some respects, cost and time can be considered

independent. However, since the application of additional resources (personnel,

equipment, etc.) at an additional cost may reduce the time required for a successful

attack, this relationship is indicated by the blue arrow in Figure 14 that shows that as the

cost increases, time may decrease. Insider knowledge is removed as a class, but this

variable is depicted by the three orange arrows in Figure 14, indicating that such

information may reduce the cost, time, or both. Insider knowledge may include

information about designs and/or processes. The potential for damage from an insider

information-enabled attack is increased due to the access available [Ver01]. According

27

Figure 14. Matrix classification.

to the 2005 CSI/FBI Computer Crime and Security Survey, incidents from the inside

occur about as often as incidents from the outside [GLL05].

A qualitative explanation of the cost levels follows.

• Low-cost attack: A successful attack requires limited resources

(equipment, knowledge, and personnel). The attack could be executed

within an academic laboratory containing only ordinary equipment or

possibly at home. Examples of low-cost attacks include black box, fault-

injection [AnK96], protocol failure [AnK97], and smartcard physical

attacks [AnK96]. Assuming the appropriate access is obtained, perhaps by

the end user, reading back and cloning an unencrypted bitstream could

also cost very little.

• Medium-cost attack: Moderate resources are required for a successful

attack. Specialized academic and corporate laboratories probably contain

the required equipment. More people can be applied to the attack, since

28

the benefits are expected to be greater. Power and timing analyses,

determining SRAM contents, and ASIC reverse engineering are examples

of medium-cost attacks.

• High-cost attack: These attacks entail vast resources, such as are available

to governments and organized crime. Many people, perhaps in multiple

locations engage in the attack, since success has implications for years to

come. Funds could also be spent to acquire insider knowledge. Examples

of these attacks include reverse engineering a bitstream and physically

attacking an antifuse FPGA [WGP04].

The time categories are described next.

• 0-5 years: Little time is required or invested for an attack to ensure an

appropriate return on the investment. This timeframe provides the highest

profit margin if an attack is successful. Reading back and cloning an

unencrypted bitstream, given the requisite opportunity, requires little time.

For example, an Intel 80386 was reverse engineered in two weeks.

• 5-50 years. Despite the length of time required for success, an attack may

proceed based on the expected payoff. Reverse engineering a bitstream

could take longer than 5 years. Given a large enough design on an FPGA,

more than five years could be expended to determine the values remaining

in the SRAM elements that were programmed.

29

• 50+ years. Weapons systems generally have life spans of less than 50

years, so providing protection against a 50-year-long attack provides a

comfortable measure of security. A black box attack could last longer

than 50 years, if the circuit has a great amount of inputs, has bi-directional

inputs and outputs, and is constructed with state machines [WGP04].

Fifty years or more could be required to locate 2-5% of millions of

antifuses [Act06].

2.7.4 Classification of Countermeasure Security Levels

From the above categorization of threats, a classification of security levels can be

easily made. The security level of an anti-tampering action corresponds to the

classification of the attack. For example, a countermeasure that ensures an attack

requires more than fifty years for success is a 50-plus-year security measure, and a

countermeasure is High-cost if it entails great expense for a successful attack. In this

way, the security level of an action correlates to the resources and time required for a

successful attack. This meets the goal of Anderson and Kuhn: “the level of tamper

resistance offered by any particular product can be measured by the time and cost penalty

that the protective mechanisms impose on the attacker” [AnK97].

An example of a Low-cost countermeasure is the use of complex FPGAs and

designs to prevent black box attacks. Another example of a Low-cost countermeasure is

setting the security bit to prevent readback. If the security bit can be compromised with

fault injection and a secure location houses the design, Medium cost or higher could be

imposed depending on the location.

30

Storing the FPGA configuration file in an on-FPGA PROM is another example of

a Medium-cost security measure, since attacks similar to SRAM physical attacks would

be required to extract the file from the PROM.

One High-cost security measure is bitstream encryption to prevent cloning and

reverse engineering. Rearranging design modules to frustrate SRAM physical attacks is

another potentially High-cost measure, since more resources would have to be applied to

discover the scarce traces of memory contents.

In addition to the higher cost of attacking an SRAM FPGA that uses dynamic

reconfiguration, the length of time required could be greater than five years. Another

countermeasure that could impose an attack length of greater than five years is

configuration file encryption.

Employing on-FPGA PROM for configuration file storage may provide less than

a five-year delay. A security bit to prevent readback may also provide protection for less

than five years. However, a secure location for placing an FPGA could be designed to

repel unauthorized entry for at least five years, if not fifty.

Although the use of complex designs and FPGAs is low-cost, it requires a

significant amount of time to perform a black box attack against such a design or FPGA.

Due to this time constraint, an attacker would probably consider an attack with a lower

time requirement.

Security measures designed to require extensive resources and a considerable

amount of time to break include the protection of nuclear weapons [AnK96]. It would be

a great benefit to humanity for those security measures to be updated when necessary and

31

to succeed even when faced with an attack from within. This highlights the need for a

classification system to ensure designs are adequately secured against perceived threats.

The leak of insider information of appropriate quality and quantity will decrease

the security level of a design. A design considered to be of High cost and require ten

years to crack could be reduced to medium cost or require only four years to crack, or

both, with the proper knowledge. Steps to mitigate the effects of unauthorized disclosure

of proprietary information include the compartmentalization of knowledge among

developers and restricting of access to the development of products. Expending

additional resources for an attack may also reduce the time required for success.

The proposed classification provides a mapping of attacks and countermeasures

so that appropriate measures can be employed to counter perceived threats. Efforts to

refine the time and cost estimates of particular attacks are still needed. As Anderson and

Kuhn state, “Estimating these penalties is clearly an important problem, but is one to

which security researchers, evaluators and engineers have paid less attention than perhaps

it deserves” [AnK97].

2.8 Related Circuit Protection Research

Current research in circuit protection deals mostly with methods other than

modifying the circuit itself, such as encryption and physical access prevention. A review

of the literature has not revealed any work in decoy circuits for protection. As far as can

be ascertained, this research is the first of its kind dealing with the use of decoy circuits to

protect digital circuit designs.

32

2.9 Summary

This chapter contains background information concerning FPGAs, attacks against

these devices, and countermeasures that can protect these devices from the attacks. The

architecture and programming of FPGAs are described. Definitions of tampering and

reverse engineering are presented. Reverse engineering is further explained with a

tutorial. Attack examples and countermeasures are listed and illustrated. Finally, a

framework for classifying the attacks and countermeasures is offered.

33

3. Methodology

3.1 Chapter Overview

This chapter presents the methodology for implementing and testing the proposed

anti-reverse engineering scheme. The results of the tests performed characterize the

effects of the design modification procedure in terms of security, FPGA resources

consumed, execution time, and power usage. An overview of the actual design

modification process is given. The details of the process are described in Chapter 4.

3.2 Problem Definition

3.2.1 Goals and Hypotheses

This research proposes a new scheme of anti-tampering through decoy circuits,

and determines the effect of a proposed design modification methodology on the security,

execution time, power consumption, and chip area utilization of a given circuit. Multiple

circuits are produced using this methodology. The security, execution time, chip area

utilization, and power consumption of the resultant circuits are measured and compared

with the original circuits’ values of these parameters.

The security of the circuits is defined as the time required to conduct a brute

force, black box attack on the FPGAs. This time is calculated by dividing the number of

required cycles by a frequency and the appropriate scaling factor to express a value in

years. To calculate the number of cycles required for an original circuit, all possible

input combinations are considered. Thus, if m is the number of original inputs and S is

the number of sequential elements in the circuit, the number of required cycles for the

original circuit is 2m+S (S=0 for a combinational circuit). The number of cycles required

34

to conduct a black box attack on a modified design is the sum of half the number of

possible input combinations to a Combination Lock (explained later) and the product of

half the number of input combinations to the modified circuit and the possible output

combinations in length equal to the total number of outputs. That is, the cycles required

to conduct a black box attack on a modified design (Amod) is

)length of nscombinatiooutput)(2(
2
1

2
1

mod qnlA pSm ++= ++ (1)

where l is the number of Combination Lock input combinations, p is the number of

additional inputs, n is the number of original outputs, and q is the number of additional

outputs. The number of cycles required for a modified combinational circuit is expected

to be at least 4 times the cycles required for an original circuit (of 3 total inputs and 2

total outputs), in addition to 1.68x107 cycles for the smallest combination lock circuit

considered. With increases in the numbers of inputs, outputs, and copies added to a

circuit, the security is expected to increase exponentially. An increase in the number of

possible combination lock input combinations, due to increases in the numbers of inputs

and states, is also expected to exponentially increase the security of a modified circuit.

A slight increase is expected in the execution time of the resulting FPGA designs.

However, this increase is not expected to be worse than approximately ten gate delays –

one or two LUTs. This translates to a minor clock frequency decrease, or only one clock

cycle penalty at the original circuit’s frequency. This increase is mainly due to a

multiplexer introduced into the modified circuit. The execution time is expected to

increase by nearly a constant amount over an original circuit’s execution time, even with

increases in the numbers of added inputs, outputs, and circuit copies.

35

Both the area and power consumption are expected to increase less than

approximately 400% when adding one extra input and one copy. Adding an input would

suggest a doubling of the area of the original circuit. Making a copy of the circuit with

an extra input would suggest a further doubling, for a total of a 400% increase in area,

and thus power consumption. However, logic functions are implemented in FPGA look-

up tables (LUTs), and one LUT in the original design may have the capacity to accept the

extra input without consuming another resource. As inputs, outputs, and copies are added

to a circuit, the area and power are expected to increase linearly.

3.2.2 Approach

Various steps are taken in the methodology to ensure a secure FPGA design.

These reduce an FPGA design’s susceptibility to reverse engineering. However, the

increased operation costs are reasonable for the security achieved as a result of the

methodology.

The design flow is illustrated conceptually in Figure 15. An original circuit is

copied multiple times and scrambled. (Although the word ‘copy’ is used, the scrambled

circuits are not exact duplicates of each other.) Scrambling adds extraneous inputs and

outputs. The scrambled circuit produces correct outputs based on predetermined

extraneous inputs. For example, if two extraneous inputs are added, then Scrambled

Copy 1 may only produce the correct value for output 2 when the extraneous input is 102,

and Scrambled Copy 2 may only produce the correct value for output 2 when the

extraneous input is 002, etc. The extraneous output values are chosen to confuse and

produce multiple patterns so the original output pattern is hidden among many possible

36

Figure 15. Methodology design flow.

patterns. The scramblings are such that all original outputs are produced for a given

extraneous input combination (for example, 002 or 102), although each correct output may

be produced by a different copy. To select the correct output, additional Selection Inputs

and a multiplexer (MUX) are added. The Selection Inputs determine the copy from

which to choose a particular output. The Selection Inputs are synchronized at runtime

with the extraneous inputs. For example, when the extra input is 102, the Selection Inputs

cause the MUX to select output 2 from Scrambled Copy 1 and output 1 from Scrambled

Copy 2. A Combination Lock state machine (inspired by [MIT01]) is added to increase

the effort needed in a black box attack. The correct sequence of inputs to the

Combination Lock causes the assertion of a signal that enables the MUX. Finally, the

37

Scrambled Copies are intertwined to produce confusion, subject to the constraint that the

intertwining does not exceed the expected increase in execution time stated above.

Intertwining is achieved by placing elements of one circuit among elements of others and

by crossing paths. Explicit intertwining is not investigated in this study. Implicit

intertwining may occur as the design software allocates FPGA resources. For example,

the design application may assign portions of different circuits to the same CLB.

The proposed methodology is for designs that can be described using truth tables

or Boolean equations, designs with gate-level representations, designs already written in

VHDL, or designs which require only a portion of the design to be modified.

The various steps of the design flow aid in countering the attacks listed in

Chapter 2. Table 3 lists the design steps and the attacks they counter. Although the

readback and cloning attacks are not directly countered with the design methodology,

understanding a reverse-engineered configuration file obtained with those two attacks is

thwarted. Gaining knowledge of the scramblings, the input synchronization, and the

correct Combination Lock key is a significant challenge.

Even though significant security for a design is attained with the methodology,

the research hypothesis is the performance impacts are reasonable. To determine this, the

security, execution time, power consumption, and chip area utilization values of several

original circuits are gathered and processed according to the methodology. The

parameter values of the resulting circuits are collected and compared with the original

circuits’ values.

38

Table 3. Design steps and attacks they counter.

Attacks

Design Step
B

la
ck

 B
ox

R
ev

er
se

-
en

gi
ne

er
in

g
co

nf
ig

ur
at

io
n

fil
e

Ph
ys

ic
al

Si
de

-c
ha

nn
el

Notes
Copying X X Power and EM analyses

and probing more tedious.
Scrambling

X X X X

More inputs and outputs increase
reverse-engineering time and
number of combinations to try.
Power and EM analyses and
probing more difficult.

Selection X X Sequencing increases complexity
of analysis.

Combination
Lock X X Prevents operation. Time-

consuming to physically disable.
Intertwining X X Power and EM analyses and

probing more difficult.

3.3 System Boundaries

Figure 16 depicts the system under test, which consists of the methodology and an

FPGA. The component under test (shaded in Figure 16) is the methodology – the

Christiansen-Kim Security Algorithm for FPGAs (ChKSAF, pronounced “check safe”).

The input to the system is a circuit, and the output is a circuit modified according to the

algorithm.

Figure 16. System and component under test.

39

The study is limited to SRAM FPGAs, but the methodology easily extends to

antifuse FPGAs, and should extend to ASICs as well. Since the goal of this research is to

produce a viable design methodology that yields a significant increase in security without

major adverse consequences to speed, power, and area usage, small and simple circuits

are processed with the algorithm to keep the problem manageable. Although the

proposed design modification algorithm can be automated, which study is not herein, the

modifications are produced by hand.

3.4 System Services

The general service provided by the system is a secure FPGA design that

functions as the original circuit does. The system either fails or succeeds at producing a

design that functions correctly. If the modified circuit does not perform correctly, it is

not worth placing in a system since it won’t produce the correct output. Only

successfully functioning designs are considered in this study.

With a successfully functioning design, the system may succeed or fail at

providing acceptable security, execution time, chip area utilization, and power

consumption. Table 4 lists the combinations of these outcomes with the metrics listed in

order of importance from left to right. The color code indicates the number of successes

in the outcome combinations – blue for four success, green for three successes, yellow for

two successes, orange for one success, and red for no successes. When there is a failure

in any of the four measurements, the designer must decide whether there is sufficient

excess from the successful metrics that can be traded to the initially unsuccessful metrics

to meet their goals. Alternatively, the designer could implement system changes that

40

Table 4. Failure mode combinations.

Security Execution time Power Area Outcome
Success Success Success Success Ideal
Success Success Success Failure Trade space or system changes?
Success Success Failure Success Trade space or system changes?
Success Failure Success Success Trade space or system changes?
Failure Success Success Success Trade space or system changes?
Success Success Failure Failure Trade space or system changes?
Success Failure Success Failure Trade space or system changes?
Success Failure Failure Success Trade space or system changes?
Failure Success Success Failure Trade space or system changes?
Failure Success Failure Success Trade space or system changes?
Failure Failure Success Success Trade space or system changes?
Success Failure Failure Failure Trade space or system changes?
Failure Success Failure Failure Trade space or system changes?
Failure Failure Success Failure Trade space or system changes?
Failure Failure Failure Success Trade space or system changes?
Failure Failure Failure Failure Failure

accept the particular goal failure, such as allowing a longer delay from the circuit.

Without acceptable security in a modified circuit, the system must reprocess the original

circuit with different parameters to achieve the desired security. When the security goal

is not met, but there exists sufficient excess from other goals’ successes, the algorithm

may be modified to achieve security success along with the other successes. When the

security goal has been met and other goals have not been met, trading excess security (if

available) for the other parameters may be possible. A failure to meet the execution time

goal may render the modified circuit useless, even though acceptable security is provided.

A failure to meet the power consumption goals may require additional system power

supplies and cooling, or less scrambling, which could in turn affect the security. Failing

to meet the area constraint may indicate the need for a larger FPGA or the need to

partition the circuit between FPGAs (which the ChKSAF algorithm does not address).

41

The area and power measurements are closely correlated, so a success/failure in one is

likely a success/failure in the other.

3.5 Workload

The primary workload submitted to the system is two small, simple circuits

described by their truth and state tables – one combinational and one sequential. This

primary workload characterizes the effects of additional copies, inputs, and outputs on a

design. Though small and simple, these circuits are likely components of any system

design. Thus, they will demonstrate the soundness of the methodology.

Two additional workloads are submitted to the system. One is a small and simple

circuit already written in VHDL to demonstrate the algorithm’s use on an existing VHDL

design. The other implements the function cbaresult +×= to illustrate the

methodology’s partial scrambling.

3.6 Performance Metrics

The performance of the system is evaluated by calculating the security, and

simulating the execution time, chip area utilization, and power consumption of the

original and modified circuits. The security is the time required to conduct a brute force,

black box attack on the FPGAs. The numbers of original inputs and outputs, the numbers

of extraneous inputs and outputs added, the number of states in the Combination Lock,

and the number of inputs to the Combination Lock are variables in this calculation.

Execution time is collected to show the methodology does not produce a significant

increase (more than the delay through two LUTs) in execution time compared to the

original circuits. Chip area is measured to estimate whether a design fits on a given

42

FPGA and is reported in the units provided by the FPGA software that converts a circuit

schematic and/or VHDL code to an FPGA programming file. Power consumption is

measured so a designer can decide if its level is acceptable or not.

3.7 Parameters

3.7.1 System

The following are the parameters identified for the system:

a. The number of copies of the original circuit.

b. The number of additional inputs to add to the circuit copies (for added

confusion).

c. The number of additional outputs to add to the circuit copies (for added

confusion).

d. The number of states in the Combination Lock state machine.

e. The number of additional inputs for a Combination Lock key.

f. The FPGA design software.

Power consumption and area are significantly affected by the number of copies

made. Security is expected to be exponentially sensitive to the numbers of additional

inputs and outputs added and the number of states in the Combination Lock. The FPGA

design software may affect the execution time, power, and area metrics, although those

affects are not known.

3.7.2 Workload

The following are the parameters identified for the workload:

a. The number of gates.

43

b. The number of flip-flops.

c. The number of feedback loops.

d. The number of circuit inputs.

e. The number of circuit outputs.

f. The length of the critical path.

g. The area used.

h. The power consumed.

Even though workload parameters f, g, and h are mainly determined by

parameters a through e, they are listed above for completeness. The numbers of inputs

and outputs significantly affect the security of a circuit. Power consumption and area

utilization are significantly affected by the numbers of gates and flip-flops. The numbers

of gates and flip-flops also considerably affect execution time. Scrambling, and thus

security, is sensitive to workload parameters a, b, and c.

3.8 Factors

The factors, selected from the lists of parameters, that will be varied in the

primary workload are:

a. The number of copies made of the original circuit, with two levels – 2 copies

and 4 copies.

b. The number of inputs added to the circuit copies (for added confusion), with

two levels – 1 extra input and 2 extra inputs.

c. The number of outputs added to the circuit copies (for added confusion), with

two levels – 1 extra output and 2 extra outputs.

44

d. The workload parameters, with two levels set by the selection of one

combinational circuit and one sequential circuit.

e. The number of states in the Combination Lock, with two levels – 8 states and

16 states.

f. The number additional inputs for a Combination Lock key, with two levels – 3

inputs and 4 inputs.

Factors a, b, c, e, and f affect the amount of security provided by the design

methodology, the area used, and power consumed. Higher numbers are expected to

provide more security. The number of copies significantly affects the area utilized and

power consumed, both of which are anticipated to be greater with a larger number of

copies. Two and four copies are chosen to determine whether two copies provide

sufficient protection within given power and/or area constraints. The higher numbers of

factors c, e, and f are expected to produce a slight increase in the area used and power

consumed (compared to an original circuit with large numbers of inputs and outputs).

The number of additional inputs to add to circuit copies may impact execution time, but

the effect is expected to be minimal for both levels. Determining the Combination Lock

key is expected to be more difficult with more states and inputs. The workload

parameters determine the complexity of implementing the algorithm. Again, only two

small and simple circuits are supplied as the main workload to characterize the effects of

the factors, with additional workloads to demonstrate the methodology’s application to an

existing VHDL design and to only a portion of a circuit.

45

3.9 Evaluation Technique

The security provided by the system is analytically calculated. The result of the

calculation is compared with the security measure of the original circuit (2m+S divided by

the frequency and number of seconds in 365 days). Analytical analysis is used to

determine the time for an adversary to crack an FPGA design since there are insufficient

time and resources to characterize all possible ways an adversary might crack the design.

Employing and expanding (1), the calculation to determine the security (in years) of a

modified circuit is

sec/yr 000,536,31/MHz 500

)(2)2(
2
1

),,,,,,,(
1 qnpSmsi k

SsqpnmkiT
+−+++

= (2)

where i is the number of inputs to the Combination Lock, s is the number of states in the

Combination Lock, m is the number of original inputs, S is the number of sequential

elements in the circuit, p is the number of additional inputs, k is the number of copies, n

is the number of original outputs, and q is the number of additional outputs. A frequency

of 500 MHz is chosen since this frequency is typically available in commercial devices.

The expression to the left of the plus sign in the numerator accounts for determining the

key to the Combination Lock. The division by two is for an average. To the right of the

plus sign is the time to produce all output combinations.

Execution time is simulated in Altera’s Quartus II Version 5.1 Build 176

10/26/2005 SJ Web Edition. Simulation is chosen due to the relative ease of collecting

the execution times for over two dozen circuits.

46

As with execution time, the utilized area and power consumption of a design are

reported in the vendor FPGA design software. Simulation is chosen for collecting area

and power consumption values for the same reasons as stated above.

3.10 Experimental Design

Three full factorial experiments are used – one to determine the effects of

different numbers of states and inputs in the Combination Locks alone and the two others

to determine the effects on the two primary workload circuits. For the Combination Lock

experiment, four circuits are evaluated for security, area, power, and execution time.

Sixteen modified primary workload circuits, along with the originals, are evaluated to

determine the effects of extra inputs, outputs, and copies.

Three, rather than one, full factorial experiments are run for several reasons.

First, a full factorial experiment of all factors would be too large, requiring 64 modified

circuits. Partitioning the factors separately determined the effects on the Combination

Locks and the modified designs. Second, different Combination Locks can be used with

the same circuit, depending on the security requirement. As illustrated in (2), security

increases due to the Combination Lock and the scrambled circuit. Finally, the

combinational and sequential primary workload circuits are not compared against each

other due to the different number of outputs and the inherent area difference due to

registers in the sequential circuits.

For this study, the measurements from a Combination Lock and a modified design

module are assumed to be additive. The FPGA design software provides a method to

partition modules so they are optimized and placed separately. Testing this assumption is

47

accomplished by combining three modified circuits with a Combination Lock, but

without using the partition capability.

From the measurements, the effects of the factors and their interactions can be

determined. It is interesting to compare the security gained from the two levels of copies

in relation to the costs (increased execution time, power consumption, area) of each level.

The assumption of exponential growth in security is verified by plotting (2) for different

variable values. The assumptions of a nearly constant increase in execution time, and

linear increases in area and power are verified by comparing the measurements of the

original circuits with the measurements of the modified circuits.

3.11 Analyze and Interpret Results

Exponential and linear regressions are used to extrapolate results to other circuits

and other levels of the chosen factors. The execution times indicate whether the modified

design satisfies the timing constraints of the original design. The area and power

measurements specify if the modified design can fit on a given FPGA and meet the

power requirements. Most importantly, the security values determine whether the design

methodology is worthwhile.

3.12 Summary

This chapter describes a systematic approach for the study of a design

methodology. As a first step, the goals of the research are identified and drive the

determination of the rest of the approach. The strategy to complete the study is

described. The system, including the system under test and the component under test, is

identified and its services are listed with their respective outcomes. Execution time,

48

security, power consumption, and area utilization are chosen as the performance metrics.

From the parameters listed, factors are chosen with associated levels. The evaluation

technique is mostly simulation but security is calculated analytically. A full factorial

design is used and the factor effects are analyzed.

49

4. Design Algorithm

4.1 Chapter Overview

This chapter contains the details of the design modification algorithm. Methods

of modification for designs described by truth or state tables and by Boolean Equations,

in a gate-level representation, and in existing VHDL code are provided. The method for

scrambling only a portion of a design is also described.

Altera’s Quartus II Version 5.1 Build 176 10/26/2005 SJ Web Edition is used to

create and simulate the designs described below. All designs target the Altera Stratix II

EP2S15F672C5 FPGA for compilation.

4.2 Combination Lock

Combination Locks are sequence-recognizer state machines that require a

designer-specified input key to transition to the next state. If the proper key for a state is

not input, the state machine returns to the beginning state. For example, a required

sequence might be 5, 1, 8, 6, for a four-state Combination Lock. Thus, 5 is the required

input to transition from state one to state two, 1 is the required input to transition from

state two to state three, etc. A Combination Lock can be constructed with any number of

inputs and states. This study considers Combination Locks with three or four inputs and

eight or sixteen states. Once the final state is reached and the appropriate key is entered

for this state, the state machine asserts the ‘success’ pin, which is connected to the

multiplexer enable pin. The key sequence acts as a password to enable the rest of the

circuit. The state machine remains in the final state and continues to assert ‘success’

unless reset is asserted, which sends the state machine to the initial state.

50

The following is the VHDL code for a Combination Lock with eight states and

three inputs.

-- original state machine code from Doug Hodson's
-- L:\eng students\Seetharaman\CSCE687\RapidCode.zip\scomp.vhd
-- [Hod05]
library ieee;
use ieee.std_logic_1164.all;

entity s8i3 is
port(clock : in std_logic;
 reset : in std_logic;
 input1 : in std_logic;
 input2 : in std_logic;
 input3 : in std_logic;
 success : buffer std_logic
);
end s8i3;

architecture rtl OF s8i3 IS
type state_type is (one, two, three, four, five, six, seven,

eight
);
signal state: state_type;

begin

process (clock, reset)
begin
if reset = '1' then
 success <= '0';
 state <= one;
elsif clock'event AND clock = '1' then

case state is
 when one =>
 success <= '0';
 if (input1 = '0') AND (input2 = '0') AND (input3 =

'1') then -- “001” is the key to transition to state two
 state <= two;
 else
 state <= one;
 end if;

 when two =>
 success <= '0';
 if (input1 = '0') AND (input2 = '1') AND (input3 =

'0') then -- “010” is the key to transition to state three
 state <= three;
 else
 state <= one;
 end if;

51

 when three =>
 success <= '0';
 if (input1 = '0') AND (input2 = '1') AND (input3 =

'0') then
 state <= four;
 else
 state <= one;
 end if;

 when four =>
 success <= '0';
 if (input1 = '0') AND (input2 = '1') AND (input3 =

'1') then
 state <= five;
 else
 state <= one;
 end if;

 when five =>
 success <= '0';
 if (input1 = '0') AND (input2 = '1') AND (input3 =

'1') then
 state <= six;
 else
 state <= one;
 end if;

 when six =>
 success <= '0';
 if (input1 = '0') AND (input2 = '1') AND (input3 =

'1') then
 state <= seven;
 else
 state <= one;
 end if;

 when seven =>
 success <= '0';
 if (input1 = '1') AND (input2 = '0') AND (input3 =

'0') then
 state <= eight;
 else
 state <= one;
 end if;

 when eight =>
 if success = '0' then
 if (input1 = '1') AND (input2 = '1') AND

(input3 = '0') then
 success <= '1';
 state <= eight;
 else
 state <= one;

52

 end if;
 else
 success <= '1';
 state <= eight;
 end if;

 when others =>
 success <= '0';
 state <= one;

end case;

end if;

end process;

end rtl; -- end Combination Lock

The resulting state machine as depicted by Quartus II is in Figure 17. State one is

at the top and state eight is at the bottom. As long as the correct key for each state is

entered, the state machine progresses from top to bottom. If an invalid key is entered, the

state machine returns to state one. A reset at anytime sends the machine to state one.

4.3 Decoy Circuit Generation from Truth and State Tables

The following subsections describe how the methodology applies to a full adder

(a combinational circuit) and a three-bit counter (a sequential circuit) that are described

by their truth and state tables. Once the truth or state table is obtained, the methodology

• adds extra inputs, outputs, and copies;

• decides what extraneous input combinations produce correct output;

• decides the placement of the correct outputs in the expanded table;

• fills the remainder of the table;

• minimizes the resulting functions; and

• transfers the minimized functions to VHDL.

53

Figure 17. Eight-state Combination Lock.

54

The following scramblings are performed by hand. Suggestions for implementing the

process in a script are given.

4.3.1 Combinational Circuit

The truth table for a full adder is given in Table 5. Three bits – A, B, and the

carry-in (Cin) – are added, resulting in Sum and carry-out (Cout) bits. Figure 18 shows a

schematic of a full adder constructed with AND and OR gates. The schematic could be

drawn with fewer gates by using XOR gates. However, AND and OR gates are used to

maintain consistency with the circuit modifications that follow.

Table 5. Full adder truth table.

A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Based on security requirements, (2) determines the numbers of inputs, outputs,

and copies to add. Suppose it is decided to add one copy, one input, and two outputs.

Table 6 shows the results of that decision. The output tables of both copies are shown.

Out13 represents output 3 from copy 1.

For simplicity, the input A is assigned to In2, B to In3, and Cin to In4. Thus, the

extra input Xi1 is assigned to In1. These assignments could be made randomly, but that

would likely only confuse the designer and not an adversary. On his first attempt, an

adversary will most likely not build the exact table created by the designer. An adversary

55

cout~0

cout~2

cout~3

sum~0

sum~1

sum~3

sum~6

sum~9

sum~10
a

b

cin

sum

cout

Figure 18. Full adder schematic.

Table 6. Expanded full adder truth table.

In1 In2 In3 In4 Out11 Out12 Out13 Out14 Out21 Out22 Out23 Out24
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

may construct an initial truth table and manipulate it until a pattern results such that the

pattern only depends on the extra inputs, i.e., the extra inputs are in the leftmost columns

of the table.

56

Again for simplicity, the output Cout1 is assigned to Out11, Sum1 to Out12,

Cout2 to Out21, and Sum2 to Out22. Similar to the input assignment, these outputs could

be assigned randomly, but their order in an adversary’s table is not significant – columns

can be easily swapped.

Now it is randomly decided when each output – Cout1, Sum1, Cout2, Sum2 – is

correct. When Xi1=0, it is decided that Sum1 is correct from Copy1 and Cout2 is correct

from Copy 2. When Xi1=1, it is decided that Cout1 is correct from Copy 1 and Sum2 is

correct from Copy 2. Correct output is now available whether Xi1 is 0 or 1. Deciding

which extraneous input combinations produce correct output is not necessary with only

one extra input – correct output is produced for both values of the extra input.

Next, the empty spaces in the top half of the expanded table are filled with ones

and zeros. This could be accomplished randomly. Alternatively, specific decoy circuit

output values could be entered. Table 7 shows the input and output assignments, the

correct outputs Sum1 and Cout2 (shaded), and the top half cells filled. Cout2 represents

Cout from Copy 2. The Sum2 and Cout1 spaces are filled using the following procedure.

Table 8 depicts the last table manipulation and the final expanded truth table. The

top, left portion (shaded) of the output table is copied to the bottom, right portion

(shaded) along the solid line, and the top, right portion (not shaded) is copied to the

bottom left portion (not shaded) along the dashed line. Sum is correct from Sum2

(bolded) and Cout is correct from Cout1 (underlined) when Xi1=1. This duplication of

the portions of the output table enables many possible output combinations and provides

multiple decoy patterns.

57

Table 7. Expanded full adder truth table with complete top half.

Xi1 A B Cin Cout1 Sum1 Out13 Out14 Cout2 Sum2 Out23 Out24
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0 0 1 0 0
0 0 1 1 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0 0 1 0 1
0 1 0 1 1 0 1 1 1 0 0 0
0 1 1 0 0 0 0 0 1 0 1 0
0 1 1 1 1 1 1 1 1 0 1 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Table 8. Final expanded full adder truth table.

Xi1 A B Cin Cout1 Sum1 Out13 Out14 Cout2 Sum2 Out23 Out24
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0 0 1 0 0
0 0 1 1 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0 0 1 0 1
0 1 0 1 1 0 1 1 1 0 0 0
0 1 1 0 0 0 0 0 1 0 1 0
0 1 1 1 1 1 1 1 1 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1
1 0 0 1 0 1 1 1 0 1 0 0
1 0 1 0 0 1 0 0 1 1 1 0
1 0 1 1 1 0 1 0 1 0 1 0
1 1 0 0 0 1 0 1 0 1 0 0
1 1 0 1 1 0 0 0 1 0 1 1
1 1 1 0 1 0 1 0 0 0 0 0
1 1 1 1 1 0 1 0 1 1 1 1

The completed truth table values are now copied to a text file and arranged in the

“.pla” format. The following is an example of this format for Cout1. The # sign

indicates a comment, which describes the significance of the line.

58

.i 4 # Four inputs

.o 1 # One output

.ilb xi1 a b cin # Names of the four inputs – left column is
xi1, right column is cin

.ob cout1 # Name of the one input

.p 16 # Sixteen products or entries in the table
0000 0 # Truth table
0001 0
0010 1
0011 1
0100 0
0101 1
0110 0
0111 1
1000 0
1001 0
1010 0
1011 1
1100 0
1101 1
1110 1
1111 1
.e # End .pla for Cout1

The manipulation of the truth tables takes place in Microsoft Excel. However, the

original truth table could be entered directly into a .pla file and a script could be written

to perform the truth table manipulations above and the manipulations that follow.

Once the truth table for an individual output (for example, Cout1) is in a .pla file,

the sum-of-product minimizer RONDO v.1.1 [Mis01] reduces the number of products in

the table. The command rondo filename is executed from a Windows command prompt.

The default quality of the minimization is “implicit reduction + heuristic CC (reasonable

trade-off)”.

The result of rondo fa-212-cout1.pla is

RONDO v.1.1 output for command line: "-q2 -v0 fa-212-11.pla"
Minimization performed Fri Feb 03 18:02:18 2006
Quality: "implicit reduction + heuristic CC (reasonable trade-

off)"
Initial statistics: Cubes = 16 Literals = 64
Final statistics: Cubes = 4 Literals = 10
Input file reading and variable reordering time = 0.00 sec
SOP minimization time = 0.00 sec

59

.i 4

.o 1

.p 4
-1-1 1 # (A AND Cin) # Xi1 and B not used
--11 1 # (B AND Cin)
111- 1 # (Xi1 AND A AND B)
001- 1 # (NOT Xi1 AND NOT A AND B)
.e # End minimized .pla for Cout1

This represents the function Cout1=(A AND Cin) OR (B AND Cin) OR (Xi1

AND A AND B) OR (NOT Xi1 AND NOT A AND B). The input columns correspond

to the columns of the original .pla file. A zero in an input cell represents the inverse

(NOT) of that input. An input is not used in a product if a dash is in that input’s position.

After each output from the final expanded truth table is minimized, the resulting

functions are input into a VHDL file. Along with the inputs to and outputs of the

minimized functions, the multiplexer select and enable inputs are declared. The ‘enable’

input is the ‘success’ output of a Combination Lock. The multiplexer is also constructed

in the file containing the minimized functions. An example of a completed VHDL file

follows. Double dashes precede comments.

-- Brad Christiansen
-- 21 Nov 05. modified 30 Jan 06

library ieee;
use ieee.std_logic_1164.all;

entity fa212 is
 port (
 i3, i4, i5 : in std_logic;
 i1, i2 : in std_logic;
 enable : in std_logic; -- enable for muxes
 sel1, sel2 : in std_logic;
 sel3, sel4 : in std_logic;
 o1, o2 : out std_logic;
 o3, o4 : out std_logic
);
end fa212;

architecture behavior of fa212 is
signal out11, out12, out13, out14, out21, out22, out23, out24 :

std_logic;

60

begin
 out11 <= (i1 AND i3 AND i5)
 OR (i1 AND i2 AND i3 AND i4)
 OR (NOT i1 AND NOT i2 AND i3 AND NOT i5)
 OR (NOT i2 AND i3 AND i4 AND i5)
 OR (i1 AND NOT i2 AND NOT i3 AND i4 AND NOT i5)
 OR (NOT i1 AND NOT i3 AND NOT i4 AND i5)
 OR (NOT i1 AND i2 AND NOT i3 AND i4 AND NOT i5)
 OR (i1 AND i2 AND i4 AND i5);

 out21 <= (NOT i1 AND i3 AND i5)
 OR (i1 AND NOT i2 AND i3 AND NOT i5)
 OR (i1 AND NOT i2 AND i3 AND i4)
 OR (NOT i1 AND i2 AND i3 AND i4)
 OR (i1 AND NOT i3 AND NOT i4 AND i5)
 OR (i1 AND i2 AND NOT i3 AND i4 AND NOT i5)
 OR (NOT i1 AND NOT i2 AND NOT i3 AND i4 AND NOT i5)
 OR (NOT i1 AND i2 AND i4 AND i5);

 out12 <= (NOT i1 AND i2 AND i3 AND i4 AND i5)
 OR (NOT i1 AND i2 AND NOT i3 AND i4 AND NOT i5)
 OR (i1 AND NOT i2 AND i4 AND i5)
 OR (i1 AND NOT i2 AND NOT i3 AND i4)
 OR (NOT i2 AND NOT i3 AND i4 AND i5)
 OR (i1 AND i2 AND NOT i3 AND NOT i4)
 OR (NOT i1 AND i2 AND i3 AND NOT i4 AND NOT i5)
 OR (i2 AND NOT i3 AND NOT i4 AND i5)
 OR (NOT i1 AND NOT i2 AND NOT i3 AND NOT i4 AND NOT

i5)
 OR (i1 AND NOT i2 AND NOT i3 AND i5);

 out22 <= (i1 AND i2 AND i3 AND i4 AND i5)
 OR (i1 AND i2 AND NOT i3 AND i4 AND NOT i5)
 OR (NOT i1 AND NOT i2 AND NOT i3 AND i4)
 OR (NOT i2 AND NOT i3 AND i4 AND i5)
 OR (NOT i1 AND NOT i2 AND i4 AND i5)
 OR (i1 AND i2 AND i3 AND NOT i4 AND NOT i5)
 OR (NOT i1 AND i2 AND NOT i3 AND NOT i4)
 OR (i2 AND NOT i3 AND NOT i4 AND i5)
 OR (i1 AND NOT i2 AND NOT i3 AND NOT i4 AND NOT i5)
 OR (NOT i1 AND NOT i2 AND NOT i3 AND i5);

 out13 <= (NOT i1 AND NOT i2 AND i3)
 OR (NOT i2 AND i3 AND i4)
 OR (i1 AND NOT i3 AND NOT i4)
 OR (i1 AND NOT i3 AND i5)
 OR (i2 AND NOT i3 AND NOT i4)
 OR (i1 AND NOT i4 AND i5)
 OR (NOT i1 AND i2 AND i4 AND i5);

 out23 <= (i1 AND NOT i2 AND i3)
 OR (NOT i2 AND i3 AND i4)
 OR (NOT i1 AND NOT i3 AND NOT i4)
 OR (NOT i1 AND NOT i3 AND i5)

61

 OR (i2 AND NOT i3 AND NOT i4)
 OR (i1 AND i2 AND i4 AND i5)
 OR (NOT i1 AND NOT i4 AND i5);

 out14 <= (i1 AND NOT i2 AND i3 AND i4)
 OR (i1 AND i3 AND NOT i4 AND i5)
 OR (i2 AND i3 AND NOT i5)
 OR (NOT i1 AND NOT i3 AND NOT i4 AND i5)
 OR (i2 AND NOT i3 AND i4)
 OR (i1 AND i2 AND NOT i5)
 OR (NOT i1 AND i4 AND NOT i5)
 OR (NOT i2 AND NOT i4 AND i5);

 out24 <= (NOT i1 AND NOT i2 AND i3 AND i4)
 OR (NOT i1 AND i3 AND NOT i4 AND i5)
 OR (i2 AND i3 AND NOT i5)
 OR (i1 AND NOT i3 AND NOT i4 AND i5)
 OR (i2 AND NOT i3 AND i4)
 OR (i1 AND i4 AND NOT i5)
 OR (NOT i1 AND i2 AND NOT i5)
 OR (NOT i2 AND NOT i4 AND i5);

process(enable, sel4, sel3, sel2, sel1) – the multiplexer
begin
if enable = '1' then

 if sel4 = '0' then
 o4 <= out14;
 else
 o4 <= out24;
 end if;

 if sel3 = '0' then
 o3 <= out13;
 else
 o3 <= out23;
 end if;

 if sel2 = '0' then
 o2 <= out12;
 else
 o2 <= out22;
 end if;

 if sel1 = '0' then
 o1 <= out11;
 else
 o1 <= out21;
 end if;

else -- without the ‘else’ clause, a latch is made
 o4 <= '0';
 o3 <= '0';
 o2 <= '0';

62

 o1 <= '0';

end if;
end process;

end behavior; -- End modified full adder

For a sense of the changes that have occurred to the simple circuit of Figure 18,

the modified circuit is shown in Figure 19. Again, Figure 19 is not meant to be

understood (besides the size of the components in the figure, the algorithm is meant to

distort understanding).

out11~0
out11~1

out11~3
out11~4

out11

out12~0
out12

out13~0

out13~2
out13

out14~0

out14~2

out14

out21~0

out21~1

out21~2

out21~3
out21~4

out21~6

out21~7

out21

out22~0

out22~2

out22~5

out22~7
out22~8

out22

out23~0

out23~3

out23

out24~0

out24~2

out24~4

out24

o4~0

0

1

o3~0

0

1

o2~0

0

1

o1~0

0

1

o4~1

0

1

0

o3~1

0

1

0

o2~1

0

1

0

o1~1

0

1

0
a

b

cin

xi1

enable

sel1

sel2

sel3

sel4

o1

o2

o3

o4

Figure 19. Modified full adder schematic.

Explicitly intertwining the circuits is not necessary when modifying a circuit

described by its truth or state table. The intertwining in this case occurs as consequence

of the process, specifically the addition of extra outputs and the design software’s

assignment of multiple outputs to a single LUT. In the case of this small circuit, the

63

output pair Out11 and Out21 is assigned to one FPGA LUT. The others pairs (Out12 and

Out22, Out13 and Out23, Out14 and Out24) are also assigned to their own LUTs.

4.3.2 Sequential Circuit

A sequential circuit described by a state table is transformed in a similar manner

to the combinational circuit. The main differences pertain to the inclusion of registers for

feedback.

For this study, a three-bit up counter is modified with the algorithm. The original

state table for this circuit is in Table 9. The outputs X, Y, and Z become the inputs A, B,

and C on the next clock cycle. The circuit advances from 0 to decimal 7, returns to 0, and

repeats. A schematic of the counter is in Figure 20. The rectangles are the registers (D

flip-flops). In Figure 20, out1 is A, out2 is B, and out3 is C.

Table 9. Three-bit up counter state table.

A B C X Y Z
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

out1~0

out1~1

out1~4

out1~5out2~0

out2~1

out2~2
out2~reg0

D

ENA

Q
PRE

CLR

out3~reg0

D

ENA

Q
PRE

CLR

out1~reg0

D

ENA

Q
PRE

CLR

clock

out1

out2

out3

Figure 20. Three-bit up counter schematic.

64

To illustrate the effects of two extra inputs and four copies on correct output

placement and selection and on circuit size, the modification of the three-bit counter with

two extra inputs, one extra output, and four copies follows. Table 10, with copies 1 and

2, and Table 11, with copies 3 and 4, show the results of

• adding the extra inputs, outputs, and copies;

• deciding what extraneous input combinations produce correct output;

Table 10. Copies 1 and 2 of modified counter.

Xi1 Xi2 A B C Out11 X1 Out13 Z1 Out21 X2 Out23 Z2
0 0 0 0 0 1 1 0 1 1 1 0 1
0 0 0 0 1 1 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0 0 0 0 1 1
0 0 0 1 1 0 0 1 0 1 0 0 0
0 0 1 0 0 1 1 0 0 0 1 0 1
0 0 1 0 1 1 0 1 0 1 1 1 0
0 0 1 1 0 0 1 0 0 1 1 0 1
0 0 1 1 1 1 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0 0 1 1 1
0 1 0 1 1 0 1 1 0 0 0 0 0
0 1 1 0 0 1 1 1 1 0 1 1 1
0 1 1 0 1 0 1 0 1 1 0 1 0
0 1 1 1 0 1 1 0 0 1 0 0 1
0 1 1 1 1 0 0 1 1 0 0 0 0
1 0 0 0 0 1 1 0 1 1 1 0 1
1 0 0 0 1 0 1 1 0 1 0 0 1
1 0 0 1 0 0 0 1 1 1 0 0 0
1 0 0 1 1 1 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0 1 1 1 0 0
1 0 1 0 1 1 1 1 0 1 0 1 0
1 0 1 1 0 1 1 0 1 0 1 0 0
1 0 1 1 1 0 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1 1 1 0 1 1
1 1 0 0 1 1 0 0 0 0 0 0 1
1 1 0 1 0 0 1 1 1 0 0 0 0
1 1 0 1 1 0 0 0 0 0 1 1 0
1 1 1 0 0 0 1 1 1 1 1 1 1
1 1 1 0 1 1 0 1 0 0 1 0 1
1 1 1 1 0 1 0 0 1 1 1 0 0
1 1 1 1 1 0 0 0 0 0 0 1 1

65

Table 11. Copies 3 and 4 of modified counter.

Xi1 Xi2 A B C Out31 Out32 Y3 Out34 Out41 Ou4t2 Y4 Out4
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 1 0
0 0 0 1 0 1 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1 0 1 1 0 1
0 0 1 0 0 1 0 1 0 0 0 1 1
0 0 1 0 1 0 1 1 0 1 1 0 1
0 0 1 1 0 0 0 1 0 1 0 0 1
0 0 1 1 1 0 1 1 1 0 0 0 0
0 1 0 0 0 1 0 1 1 0 1 0 1
0 1 0 0 1 0 0 0 0 1 0 1 1
0 1 0 1 0 0 1 0 1 0 1 1 0
0 1 0 1 1 0 1 1 1 0 0 0 0
0 1 1 0 0 1 0 1 1 0 1 0 1
0 1 1 0 1 0 0 0 0 1 0 1 1
0 1 1 1 0 1 0 0 1 1 0 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 1 0 1 1 0 0
1 0 0 1 0 0 1 1 0 1 0 1 1
1 0 0 1 1 1 1 0 1 0 1 1 0
1 0 1 0 0 0 0 1 1 1 0 1 0
1 0 1 0 1 1 1 0 1 0 1 1 0
1 0 1 1 0 1 0 0 1 0 0 1 0
1 0 1 1 1 0 0 0 0 0 1 1 1
1 1 0 0 0 0 1 0 1 1 0 1 1
1 1 0 0 1 1 0 1 1 0 0 0 0
1 1 0 1 0 0 1 1 0 0 1 0 1
1 1 0 1 1 0 0 0 0 0 1 1 1
1 1 1 0 0 0 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1 1 0 0 0 0
1 1 1 1 0 1 0 1 0 1 0 0 1
1 1 1 1 1 0 0 0 1 0 0 1 0

• deciding the placement of the correct outputs in the expanded table; and

• filling the remainder of the table.

Notice that the input combinations Xi1Xi2=01 and Xi1Xi2=11 produce the

correct output (shaded). The combinations Xi1Xi2=00 and Xi1Xi2=10 are an alternate

choice. Also note that X is correct from copy 1 when Xi1Xi2=01 and from copy 2 when

Xi1Xi2=11, Y is correct from copy 4 when Xi1Xi2=01 and from copy 3 when

66

Xi1Xi2=11, and Z is correct from copy 2 when Xi1Xi2=01 and from copy 1 when

Xi1Xi2=11.

Each output column is transferred to a .pla file, minimized, and entered into a

VHDL file. For the outputs that are feedback, they are typed as ‘BUFFER’ rather than

‘OUT’ objects as is the case of the combinational circuit. The multiplexer is coded so it

is constructed before the registers. The registers are built with the code

 PROCESS(clock)
 BEGIN
 if rising_edge(clock) then
 o1 <= out1;
 o2 <= out2;
 o3 <= out3;
 o4 <= out4;
 END if;
 END PROCESS;

The signals ‘out1’ through ‘out4’ are the outputs of the multiplexer to the registers and

correspond to the selection from Out11, Out21, Out31, and Out41 through Out14, Out24,

Out34, and Out44, respectively. The signals ‘o1’ through ‘o4’ are the outputs to the pins

and the feedback inputs to the circuit.

Page 3 of 4 of the resulting modifications is shown in the schematic of Figure 21.

Pages 1 and 2 are similar. Page 4 contains the registers and output pins. As with

Figure 19, this figure is included to convey a sense of the changes effected, not to

produce an understanding of the changes.

4.4 Decoy Circuit Generation from Boolean Equations

Modifying a circuit described by its Boolean equations is very similar to

modifying a truth or state table. Suppose the original circuit has the outputs X and Y that

are functions of the inputs A, B, and C. Let X=f(A, B, C) and Y=j(A, B, C). Suppose

67

2' h0 --

2' h1 --

2' h2 --

2' h0 --

2' h1 --

2' h2 --

2' h0 --

2' h1 --

2' h2 --

2' h0 --

2' h1 --

2' h2 --

out41~24

out41~25

out41~28

out41

out42~0

out42~1

out42~5
out42~6

out42~8

out42

out43~3

out43~5

out43~6

out43~9
out43~10

out43~13

out43
out44~1

out44~4

out44~9

out44~11

out44

Equal~0

A[1..0]

B[1..0]
OUT

EQUAL

sel1[1..0]

Equal~1

A[1..0]

B[1..0]
OUT

EQUAL

Equal~2

A[1..0]

B[1..0]
OUT

EQUAL

out1~0

0

1

out1~1

0

1

out1~2

0

1

Equal~3

A[1..0]

B[1..0]
OUT

EQUAL

sel2[1..0]

Equal~4

A[1..0]

B[1..0]
OUT

EQUAL

Equal~5

A[1..0]

B[1..0]
OUT

EQUAL

out2~0

0

1

out2~1

0

1

out2~2

0

1

Equal~6

A[1..0]

B[1..0]
OUT

EQUAL

sel3[1..0]

Equal~7

A[1..0]

B[1..0]
OUT

EQUAL

Equal~8

A[1..0]

B[1..0]
OUT

EQUAL

out3~0

0

1

out3~1

0

1

out3~2

0

1

Equal~9

A[1..0]

B[1..0]
OUT

EQUAL

sel4[1..0]

Equal~10

A[1..0]

B[1..0]
OUT

EQUAL

Equal~11

A[1..0]

B[1..0]
OUT

EQUAL

out4~0

0

1

out4~1

0

1

out4~2

0

1

out1

0

1

0

enable

out2

0

1

0

out3

0

1

0

out4

0

1

0

o3~reg0_OUT1

out41~0_OUT1

out41~24_OUT1

o4~reg0_OUT1

out41~25_OUT1

out41~27_OUT1

out41~22_OUT1

out41~18_OUT1

out41~14_OUT1

out41~9_OUT1

out41~2_OUT1

out41~5_OUT1

o2~reg0_OUT1

out42~0_OUT1

out42~1_OUT1

out31~11_OUT1

out42~5_OUT1

out42~6_OUT1

out41~11_OUT1

out31~13_OUT1

out21~10_OUT1

out31~8_OUT1

out41~16_OUT1

out43~3_OUT1

out43~5_OUT1

out43~8_OUT1

out43~9_OUT1

out21~9_OUT1
out43~13_OUT1

out21~15_OUT1

out21~6_OUT1

out43~1_OUT1

out31~18_OUT1

out44~9_OUT1

out11~11_OUT1

out31~12_OUT1

out31~15_OUT1

out21~0_OUT1

out13~0_OUT1

out31_OUT1

out21_OUT1

out11_OUT1

out32_OUT1

out22_OUT1

out12_OUT1

out33_OUT1

out23_OUT1

out13_OUT1

out34_OUT1

out24_OUT1

out14_OUT1

out1_OUT1

out2_OUT1

out3_OUT1

out4_OUT1

Figure 21. Page 3 of 4 of the modified counter schematic.

two extra inputs, one extra output, and four copies are to be added to the original circuit.

Let D and E be the extra inputs. Let the outputs from Copy 1 be Out11, Out 12, and

Out13, and the outputs from Copy 2 be Out21, Out22, and Out23, etc. Let Out41 and

68

Out31 be X when DE=002 and 102, respectively. Let Out13 and Out23 be Y when

DE=002 and 102, respectively. Then,

Out41=X’=(NOT D AND NOT E AND f(A, B, C)) OR

(NOT D AND E AND g(A, B, C)) OR (D AND h(A, B, C, E)) (3)

where g and h are arbitrary functions. Similarly,

Out31=X’’=(D AND NOT E AND f(A, B, C)) OR

(D AND E AND g(A, B, C)) OR (NOT D AND h(A, B, C, E)). (4)

Also,

Out13=Y’=(NOT D AND NOT E AND j(A, B, C)) OR

(NOT D AND E AND k(A, B, C)) OR (D AND l(A, B, C, E)) (5)

where k and l are arbitrary functions. Similarly,

Out23=Y’’=(D AND NOT E AND j(A, B, C)) OR

(D AND E AND k(A, B, C)) OR (NOT D AND l(A, B, C, E)). (6)

The resulting condensed truth table is in Table 12.

Table 12. Resulting truth table from Boolean equation modification.

 Out Out Out Out
DE ABC 11 12 13 21 22 23 31 32 33 41 42 43
00 j f
01 b k c l h g
10 j f
11 c l b k g h

Pairs of remaining outputs are created with arbitrary functions of the example

form

Out11=(NOT D AND b(A, B, C, E)) OR (D AND c(A, B, C, E) (7)

69

and

Out21=(D AND b(A, B, C, E)) OR (NOT D AND c(A, B, C, E)) (8)

where b and c are arbitrary functions. Thus, where b is ANDed with NOT D in Out11, b

is ANDed with D in Out21. See Table 12 for the placement of b and c in the resulting

truth table.

To select the correct outputs, the signals to the multiplexer select Copies 4 and 1

for X and Y, respectively, when DE=002, and Copies 3 and 2 for X and Y, respectively,

when DE=102.

4.5 Decoy Circuit Generation from Gate-level Representation

A gate-level representation can be treated as a black box to which decoy and

selection circuitry can be added. Functions such as g, k, and b in the previous section are

implemented as the decoy circuits. The selection circuitry consists of AND, OR, and

NOT gates, like the operators added above to transform X into X’ and X’’. Multiplexers

are also part of the selection circuitry and select the copy from which a correct output is

produced.

Suppose Figure 22 contains the original circuit to protect. (Not all necessary

signals are shown.) X and Y are combinational functions of inputs A and B and output Y

which is also labeled C at the input to the combinational block.

Suppose one copy, one extra input (D), and one extra output (Z) are added for

protection. Let X be correct from Copy 1 when D=0 and from Copy 2 when D=1. Let Y

be correct from Copy 1 when D=1 and from Copy 2 when D=0. Z is produced by

choosing one of two outputs from the added decoy circuitry block.

70

CLRN

D
PRN

Q

DFF

inst5

VCC
A INPUT

VCC
B INPUT

XOUTPUT

YOUTPUT

original combinational

inst

A INPUT
B INPUT
C INPUT
X OUTPUT
Y OUTPUT

I/O Type

C

Figure 22. Original gate-level representation.

The results of these decisions are in Figure 23. All signals are not included, most

notably the register clock and multiplexer select signals. Copy 1, the top Copy, is

between the inverter and the feedback line from Y, the output of the register. Copy 2 is

below the feedback line. Note that the combinational blocks of Copy 2 are redundant and

are included only to illustrate the logical flow and fewer lines have to be followed to

understand the routing. The outputs from the combinational blocks of Copy 1 can be

routed to the AND gates of Copy 2, just as D and NOT D are. This illustrates how area

(and power) can be reduced for an algorithmic modification. Note that for each output,

there are four AND gates, two OR gates, and a multiplexer added. The delay for each

output in an FPGA might be increased by a LUT to implement the AND and OR gates

and multiplexer. In an ASIC, the delay for each output increases by one AND gate, one

OR gate, and a multiplexer. Another item to notice is the additional hardware separates

the combinational logic and register. Placing additional hardware, for example, the

multiplexer, on the output side of the register requires additional registers, since the

inputs to the multiplexer would have to be registered. A final note is that the outputs X

71

Figure 23. Modified gate-level representation.

72

and Z can also be registered and fed back to the extra combinational block for additional

confusion.

The resulting abbreviated state table is in Table 13. The names of the outputs

(origX, extraY, extraZ1, etc.) correspond to the names of the outputs from the

combinational blocks in Figure 23.

Table 13. Resulting state table from gate-level modification.

 Out Out
D ABC 11 12 13 21 22 23
0 origX extraY extraZ1 extraX origY extraZ2
1 extraX origY extraZ2 origX extraY extraZ1

In this case of circuit modification, explicit intertwining would be useful to

intermingle portions of the two combinational blocks. The design software may

accomplish a degree of intertwining, but will likely not be to a sufficient level.

4.6 Decoy Circuit Generation from Existing VHDL

VHDL code that implements a four-bit priority encoder is modified using the

algorithmic principles already demonstrated. The encoder functions as follows. If the

most significant input bit is 1, the output is 112. If the most significant input bit is 0 and

the second-most significant input bit is 1, the output is 102. If the two most significant

inputs are 0 and the third-most significant bit is 1, the output is 012. The other two input

combinations result in an output of 002. Table 14 summarizes the relationships

described. An X in this table represents a “don’t care”, meaning the output does not

depend on, or doesn’t care about, that particular input value.

73

Table 14. Priority encoder truth table.

Input Output
000X 00
001X 01
01XX 10
1XXX 11

The original VHDL code for the encoder follows.

-- From Dr. Yong C. Kim [Kim05]
library IEEE;
use IEEE.std_logic_1164.all;

entity pri_encoder is
port(a : in std_logic_vector(3 downto 0);
 c : out std_logic_vector(1 downto 0));
end pri_encoder;

architecture algorithmic of pri_encoder is
begin
process(a)
begin
 if(a(3) = '1') then
 c <= B"11";
 elsif (a(2) = '1') then
 c <= B"10";
 elsif (a(1) = '1') then
 c <= B"01";
 elsif (a(0) = '1') then
 c <= B"00";
 else
 c <= B"00";
 end if;
end process;
end algorithmic; -- End original encoder

A schematic of the priority encoder, as produced by the design software, is in

Figure 24.

To scramble the encoder, one input, two outputs, and one additional copy are

added. The input vector a is declared with five elements, from a(4) as the most

significant bit (msb) to a(0) as the least significant bit (lsb). a(2) is the extra input. The

74

c~0

0

10

c~1

0

11

c~2

0

11

a[3..0]

c[1..0]

Figure 24. Four-bit priority encoder schematic.

overall circuit output vector is labeled out1 and has four elements, from out1(3) to

out1(0). Since there are two copies, two vectors internal to the circuit and corresponding

to out1 are declared as VHDL ‘signals’. Their labels are c1 and c2, for Copy 1 and Copy

2. The elements of these vectors are the inputs to the multiplexers, whose outputs are the

elements of out1. out1(2) serves as the most significant output bit, out1(0) will be the

other output bit, and out1(1) and out1(3) will be the extra outputs. When a(2)=0, c1(0)

and c2(2) are correct. Similarly, when a(2)=1, c1(2) and c2(0) are assigned to be correct.

For the remaining signals, functions of a(4), a(3), a(1), and a(0) are created. a(2) cannot

be an operand of the decoy functions since it turns on one copy or the other. When

a(2)=0, c1(1) is the sum of a full adder (included as a deception), c2(3) is the carry out of

a full adder, c1(2) and c1(3) are arbitrary combinational functions, and c2(1..0) is the

difference of a(1..0) and a(4..3). When a(2)=1, the c1’s and c2’s are exchanged in the

previous sentence. The resulting VHDL code follows.

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity pri_encoder is
port (

75

 a : in std_logic_vector(4 downto 0); -- change from 4
to 5 inputs

 enable : in std_logic;
 out1 : out std_logic_vector(3 downto 0); -- change from 2

to 4 outputs
 sel0, sel1 : in std_logic;
 sel2, sel3 : in std_logic
);
end pri_encoder;

architecture algorithmic of pri_encoder is
signal c1 : std_logic_vector(3 downto 0); -- c1 for copy 1;

change from 2 to 4 outputs
signal c2 : std_logic_vector(3 downto 0); -- add second copy; c2

for copy 2; change from 2 to 4 outputs
begin

 process(a)
 begin
 -- copy 1
 -- let a(2) be extra input
 -- let c(2) be msb, c(0) be lsb, c(3) extra output, c(1)

extra output
 -- let c1(0) be correct when a(2) = 0
 -- let c2(2) be correct when a(2) = 0
 if (a(2) = '0') then
 if (a(4) = '1') then
 c2(2) <= '1';
 c1(0) <= '1';
 elsif (a(3) = '1') then
 c2(2) <= '1';
 c1(0) <= '0';
 elsif (a(1) = '1') then
 c2(2) <= '0';
 c1(0) <= '1';
 elsif (a(0) = '1') then
 c2(2) <= '0';
 c1(0) <= '0';
 else
 c2(2) <= '0';
 c1(0) <= '0';
 end if;
 c1(1) <= (a(3) XOR a(1)) XOR a(0); -- function of a(4),

a(3), a(1), a(0) -- not of a(2); sum of FA
 c1(2) <= (a(4) OR (a(3) NAND a(1))) NOR NOT a(0); --

function of a(4), a(3), a(1), a(0) -- not of a(2)
 c1(3) <= (a(4) AND a(3)) NOR (a(1) XOR a(0)); -- function

of a(4), a(3), a(1), a(0) -- not of a(2)

 c2(3) <= ((a(3) XOR a(1)) AND a(0)) OR (a(3) AND a(1)

); -- function of a(4), a(3), a(1), a(0) -- not of a(2); cout of FA
 c2(1 downto 0) <= a(1 downto 0) - a(4 downto 3); --

function of a(4), a(3), a(1), a(0) -- not of a(2)

76

 -- copy 2
 -- let c1(2) be correct when a(2) = 1
 -- let c2(0) be correct when a(2) = 1
 elsif (a(2) = '1') then
 if (a(4) = '1') then
 c1(2) <= '1';
 c2(0) <= '1';
 elsif (a(3) = '1') then
 c1(2) <= '1';
 c2(0) <= '0';
 elsif (a(1) = '1') then
 c1(2) <= '0';
 c2(0) <= '1';
 elsif (a(0) = '1') then
 c1(2) <= '0';
 c2(0) <= '0';
 else
 c1(2) <= '0';
 c2(0) <= '0';
 end if;
 c2(1) <= (a(3) XOR a(1)) XOR a(0); -- function of

a(4), a(3), a(1), a(0) -- not of a(2); sum of FA
 c2(2) <= (a(4) OR (a(3) NAND a(1))) NOR NOT a(0); --

function of a(4), a(3), a(1), a(0) -- not of a(2)
 c2(3) <= (a(4) AND a(3)) NOR (a(1) XOR a(0)); --

function of a(4), a(3), a(1), a(0) -- not of a(2)

 c1(3) <= ((a(3) XOR a(1)) AND a(0)) OR (a(3) AND

a(1)); -- function of a(4), a(3), a(1), a(0) -- not of a(2); cout of FA
 c1(1 downto 0) <= a(1 downto 0) - a(4 downto 3); --

function of a(4), a(3), a(1), a(0) -- not of a(2)
 end if;
 end process;

process(enable, sel3, sel2, sel1, sel0)
begin
if enable = '1' then

 if sel3 = '0' then
 out1(3) <= c1(3);
 else
 out1(3) <= c2(3);
 end if;

 if sel2 = '0' then
 out1(2) <= c1(2);
 else
 out1(2) <= c2(2);
 end if;

 if sel1 = '0' then
 out1(1) <= c1(1);
 else
 out1(1) <= c2(1);

77

 end if;

 if sel0 = '0' then
 out1(0) <= c1(0);
 else
 out1(0) <= c2(0);
 end if;

else
 out1 <= "0000";

end if;
end process;

end algorithmic; -- End modified encoder

Figure 25, showing the schematic of the modified encoder, is included for

comparison to Figure 24.

4.7 Decoy Circuit Generation through Partial Scrambling

To demonstrate partial scrambling of only a portion of a circuit, the product in the

function cbaresult +×= is secured according to the methodology already

demonstrated. Partial scrambling is useful in circumstances when only a portion of a

circuit requires protection and protecting the entire circuit only serves to add unnecessary

overhead.

The VHDL code for the above function follows. The operands a, b, and c are

two-bit vectors, and result is a four-bit vector. The product of a and b is also a four-bit

vector.

-- Brad Christiansen
-- 8 Feb 06
-- Partial scrambling

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity partial is

78

Figure 25. Modified four-bit priority encoder schematic.

1'
 h

1
--

1'
 h

1
--

c2
~0

0 1
1

c1
~0

c1
~1

c1
~2

ad
d~

0

A[
2..

0]

B[
2..

0]

OU
T[

2..
0]

AD
DE

R

c2
~1

0 1
0

c2
~2

0 1
1

c2
~3

c2
~4

c2
~5

c2
~7

c1
~3

c1
~4

c1
~5

pr
oc

es
s0

~0

0 1

pr
oc

es
s0

~1

0 1

pr
oc

es
s0

~2

0 1

pr
oc

es
s0

~3

0 1

pr
oc

es
s0

~4

0 1

pr
oc

es
s0

~5

0 1

pr
oc

es
s0

~6

0 1

pr
oc

es
s0

~7

0 1

ou
t1

~0

0 1

ou
t1

~1

0 1ou
t1

~2

0 1ou
t1

~3

0 1

ou
t1

~4

0 1

0

ou
t1

~5

0 1

0

ou
t1

~6

0 1

0

ou
t1

~7

0 1

0

en
ab

le

se
l0

se
l1

se
l2

se
l3

a[
4.

.0
]

ou
t1

[3
..0

]

79

 port (
 a, b, c : in std_logic_vector(1 downto 0);
 result : out std_logic_vector(3 downto 0)
);
end partial;

architecture behavior of partial is
 begin
 result <= a * b + c;
end behavior; -- End VHDL for result=a*b+c

Figure 26 contains the circuit schematic produced by Quartus II. The scrambled

circuit takes the place of the multiplier in Figure 26. To scramble the product of a and b,

two copies are made with one extra input bit (xi) and one extra output bit (v). Note that xi

requires an input pin, but v is internal to the scrambled circuit and does not require an

output pin. When the extra input is 0, the four bits of the correct product come from

Copy 1 (msb), Copy2, Copy 2, and Copy 1 (lsb). Copy 1 produces v1 and Copy 2

produces v2. When the extra input is 1, the correct product bits come from the alternate

copies: Copy 2 (msb), Copy 1, Copy 1, Copy 2 (lsb). In this case, Copy 1 produces v2

and Copy 2 produces v1. The correct output is labeled w (msb), x, y, and z (lsb).

Table 15 contains a condensed truth table of these relationships.

2' h0 --

mult~0

A[1..0]

B[1..0]
OUT[3..0]

MULTIPLIER

add~0

A[3..0]

B[3..0]
OUT[3..0]

ADDER

a[1..0]

b[1..0]

c[1..0]

result[3..0]

Figure 26. Schematic of result=a*b+c.

80

Table 15. Resulting truth table for partial scrambling.

 Out Out
xi ab 11 12 13 14 15 21 22 23 24 25
0 w extraX v1 extraY z extraW x v2 y extraZ
1 extraW x v2 y extraZ w extraX v1 extraY

To select the correct output of the scrambled circuit that is input to the adder, five

outputs are chosen: w, x, y, z, and either v1 or v2. This selection requires five select input

bits – one select bit for each output since there is a choice between two outputs, one from

each of the two copies. To choose the four of the five that are passed to the adder, a type

of combinational multiplexer is implemented. This combinational multiplexer provides

for any of the five (4C5) combinations of four outputs to be selected. Since there are five

combinations, three select input bits are required for this combinational multiplexer, in

addition to the five select input bits already mentioned. All eight possible combinations

of the three select inputs could be used as inputs to the combinational multiplexer. This

would allow the same output combination to be selected by different combinations of

select inputs or for output permutations to be selected. However, using all eight possible

combinations adds additional hardware. The combinations of select inputs and associated

output combinations of the combinational multiplexer are shown in Table 16.

Table 16. Combinational multiplexer input and output combinations.

Select inputs Output combinations
000 w (out1) x (out2) v (out3) y (out4)
001 w (out1) x (out2) v (out3) z (out5)
010 w (out1) x (out2) y (out4) z (out5)
011 w (out1) v (out3) y (out4) z (out5)
100 x (out2) v (out3) y (out4) z (out5)

Others 0 0 0 0

81

An alternative to the five two-input multiplexers and the five-input/four-output

combinational multiplexer is a ten-input/four-output combinational multiplexer. The ten

inputs would be either the xi=0 row or the xi=1 row in Table 15. The difficulty when

performing the scrambling by hand is the number of four-bit combinations possible from

the ten inputs – 80. The number of required select input bits is reduced to seven, rather

than a total of eight. With either alternative, all possible output combinations should be

selectable, so that all outputs appear valid to an adversary.

There are two reasons for selecting four of the five outputs, and not passing the

fifth. The first is to make the extra output (v in the case above) believable. If the extra

output is not an input to another portion of the overall circuit, then that output can be

identified as invalid. Second, rather than passing the extra output out of the scrambled

portion for another sub-circuit to handle, the extra output is handled within the scrambled

portion by not selecting it at the combinational multiplexer.

The decisions above result in the following VHDL code.

-- Brad Christiansen
-- 8 Feb 06
-- Partial scrambling

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity partial is
 port (
 a, b, c : in std_logic_vector(1 downto 0); --

operands
 xi : in std_logic; -- extra input
 enable : in std_logic; -- MUX enable
 sel1, sel2, sel3, sel4, sel5 : in std_logic; -- MUX

selects
 downselect : in std_logic_vector(2 downto 0); -- to

downselect from 5 outputs to 4

82

 result : out std_logic_vector(3 downto 0) --
=a*b+c

);
end partial;

architecture behavior of partial is
 signal a_temp, b_temp : std_logic_vector(2 downto 0); -- to

extend a and b so they can be added
 signal v1, v2, w, x, y, z, extraW, extraX, extraY, extraZ :

std_logic; -- for valid and invalid outputs
 signal temp_sub : std_logic_vector(1 downto 0); -- for

difference of a and b
 signal temp_add : std_logic_vector(2 downto 0); -- for

addition of a and b
 signal temp_mult : std_logic_vector(3 downto 0); -- for

multiplication of a and b
 signal out11, out12, out13, out14, out15 : std_logic; --

outputs from Copy 1
 signal out21, out22, out23, out24, out25 : std_logic; --

outputs from Copy 2
 signal out1, out2, out3, out4, out5 : std_logic; -- output

1 from Copy 1 or 2, etc.
 signal final_out : std_logic_vector(3 downto 0); -- final

output of partial scrambling

 begin
 temp_mult <= a*b;
 w <= temp_mult(3);
 x <= temp_mult(2);
 y <= temp_mult(1);
 z <= temp_mult(0);

 temp_sub <= a-b;
 extraW <= temp_sub(1);
 extraX <= temp_sub(0);

 a_temp <= '0' & a; -- concatenate '0' as msb
 b_temp <= '0' & b;
 temp_add <= a_temp + b_temp;
 extraY <= temp_add(1);
 extraZ <= temp_add(0);

 v1 <= (a(1) AND a(0)) OR (b(1) XOR b(0)); -- one of

two extra output choices
 v2 <= (a(1) NAND a(0)) NOR (b(1) XNOR b(0)); -- the

other extra output choice

 process(xi)
 begin
 if xi = '0' then
 out11 <= w;
 out12 <= extraX;
 out13 <= v1;
 out14 <= extraY;

83

 out15 <= z;
 out21 <= extraW;
 out22 <= x;
 out23 <= v2;
 out24 <= y;
 out25 <= extraZ;
 else
 out11 <= extraW;
 out12 <= x;
 out13 <= v2;
 out14 <= y;
 out15 <= extraZ;
 out21 <= w;
 out22 <= extraX;
 out23 <= v1;
 out24 <= extraY;
 out25 <= z;
 end if;
 end process;

 process(enable, sel1, sel2, sel3, sel4, sel5)
 begin
 if enable = '1' then

 if sel1 = '0' then
 out1 <= out11;
 else
 out1 <= out21;
 end if;

 if sel2 = '0' then
 out2 <= out12;
 else
 out2 <= out22;
 end if;

 if sel3 = '0' then
 out3 <= out13;
 else
 out3 <= out23;
 end if;

 if sel4 = '0' then
 out4 <= out14;
 else
 out4 <= out24;
 end if;

 if sel5 = '0' then
 out5 <= out15;
 else
 out5 <= out25;
 end if;

84

 else
 out1 <= '0';
 out2 <= '0';
 out3 <= '0';
 out4 <= '0';
 out5 <= '0';

 end if;
 end process;

 process(downselect) -- selecting 4 outputs from 5 (5

choose 4 = 5 combinations)
 begin
 if downselect = B"000" then
 final_out <= out1 & out2 & out3 & out4;
 elsif downselect = B"001" then
 final_out <= out1 & out2 & out3 & out5;
 elsif downselect = B"010" then
 final_out <= out1 & out2 & out4 & out5;
 elsif downselect = B"011" then
 final_out <= out1 & out3 & out4 & out5;
 elsif downselect = B"100" then
 final_out <= out2 & out3 & out4 & out5;
 else -- don't repeat combinations or worry

about permutations; adds hardware
 final_out <= B"0000";
 end if;
 end process;

 result <= final_out + c;
end behavior; -- End partial scrambling

Quartus II produces the schematic (page 1 of 2) shown in Figure 27 from the

VHDL code above. Page 2 of the schematic is in Figure 28. The circuit in Figure 27 and

the multiplexer in Figure 28 replace the multiplier in Figure 26.

4.8 Summary

This chapter explains and illustrates the scrambling methodology in detail. The

Combination Locks are described and an example is given. The steps to scramble a

circuit are listed and demonstrated. These steps include

• adding extra inputs, outputs, and copies;

• deciding what extraneous input combinations produce correct output;

85

Figure 27. Page 1 of partial scrambling schematic.

1'
 h

1
--

1'
 h

1
--

1'
 h

0
--

1'
 h

0
--

3'
 h

0
--

3'
 h

1
--

3'
 h

2
--

3'
 h

3
--

3'
 h

4
--

m
ul

t~
0

A[
1..

0]

B[
1..

0]
O

UT
[3.

.0
]

MU
LT

IP
LI

ER

a[
1.

.0
]

b[
1.

.0
]

v1
~0

v2
~0

ad
d~

0

A[
2..

0]

B[
2..

0]

O
UT

[2.
.0

]

AD
DE

R

v1
~1

v2
~1

ad
d~

1

A[
2..

0]

B[
2..

0]

O
UT

[2.
.0

]

AD
DE

R

v1v2 ou
t1

1

0 1

xi

ou
t1

2

0 1

ou
t1

3

0 1

ou
t1

4

0 1ou
t1

5

0 1 ou
t2

1

0 1 ou
t2

2

0 1

ou
t2

3

0 1

ou
t2

4

0 1ou
t2

5

0 1

ou
t1

~0

0 1

se
l1

ou
t2

~0

0 1

se
l2

ou
t3

~0

0 1

se
l3

ou
t4

~0

0 1

se
l4

ou
t5

~0

0 1

se
l5

ou
t1

0 1

0

en
ab

le

ou
t2

0 1

0

ou
t3

0 1

0

ou
t4

0 1

0

ou
t5

0 1

0

E
qu

al
~0

A[
2..

0]

B[
2..

0]
O

UT

EQ
UA

L

do
wn

se
le

ct
[2

..0
]

E
qu

al
~1

A[
2..

0]

B[
2..

0]
O

UT

EQ
UA

L

E
qu

al
~2

A[
2..

0]

B[
2..

0]
O

UT

EQ
UA

L

E
qu

al
~3

A[
2..

0]

B[
2..

0]
O

UT

EQ
UA

L

E
qu

al
~4

A[
2..

0]

B[
2..

0]
O

UT

EQ
UA

L

fin
al

_o
ut

~0

0 1

0

fin
al

_o
ut

~1

0 1

0

fin
al

_o
ut

~2

0 1

0fin
al

_o
ut

~3

0 1

0

fin
al

_o
ut

~4

0 1

fin
al

_o
ut

~5

0 1

fin
al

_o
ut

~6

0 1

fin
al

_o
ut

~7

0 1

fin
al

_o
ut

~8

0 1

fi
na

l_
ou

t~
9

0 1

fin
al

_o
ut

~1
0

0 1

fin
al

_o
ut

~1
1

0 1

fin
al

_o
ut

~1
2

0 1

fin
al

_o
ut

~1
3

0 1

fin
al

_o
ut

~1
4

0 1

fin
al

_o
ut

~1
5

0 1

ou
t1

_O
U

T1

ou
t2

_O
U

T1

ou
t3

_O
U

T1

ou
t4

_O
U

T1

E
qu

al
~0

_O
U

T

fi
na

l_
ou

t~
12

_O
U

T1

fi
na

l_
ou

t~
13

_O
U

T1

fi
na

l_
ou

t~
14

_O
U

T1

fi
na

l_
ou

t~
15

_O
U

T1

86

2' h0 --

add~2

A[3..0]

B[3..0]
OUT[3..0]

ADDER

c[1..0]

result[3..0]

f inal_out[3..0]

SEL

DATAA

DATAB

OUT1

MUX21

f inal_out~12_OUT1

f inal_out~13_OUT1

f inal_out~14_OUT1

f inal_out~15_OUT1

out1_OUT1

out2_OUT1

out3_OUT1

out4_OUT1

Equal~0_OUT

Figure 28. Page 2 of partial scrambling schematic.

• deciding which outputs are correct, which are extraneous, and when;

• creating extraneous decoy functions; and

• producing the design in VHDL or a schematic.

Demonstration includes scrambling combinational and sequential circuits from truth and

state tables, designs expressed by Boolean equations, and gate-level representations of

designs. In addition, transforming existing VHDL code and modifying only a portion of

a circuit are illustrated.

87

5. Results and Analysis

5.1 Chapter Overview

This chapter presents the performance metrics, whether calculated or collected

from the circuit simulations. Each of the following sections reports one performance

metric. The subsections report the metric for a particular set of circuits. The metrics are

primarily analyzed to quantify the effects on performance. The subsections also include

metrics for the VHDL and partial scrambling demonstrations, so that the metrics from the

original and modified circuits may be compared.

5.2 Security

The security metric is of primary interest since the goal of this research is to

produce a method to protect FPGA designs from reverse engineering.

From (2), the security contributed by a Combination Lock is 2/)2(si , where i is

the number of inputs to the Lock and s is the number of states in the Lock. The security

contribution from a scrambled circuit is)(2 1 qnpSm k +−++ , where S is the number of

sequential elements, m is the number of original inputs, p is the number of additional

inputs, k is the number of copies, n is the number of original outputs, and q is the number

of additional outputs.

Given the design methodology explanation in Chapter 4, the operands of the

addition in (2) are explained in light of the methodology. The 2i in the 2/)2(si term for

the Combination Lock contribution accounts for the total number of bit combinations of i

inputs. Since each of s states receives 2i possible bit combinations, 2i is raised to the

88

power of s. For example, with i=2, there are 22=4 possible bit combinations – 002, 012,

102, 112. With s=3, the first state could receive any of the 4 bit combinations, the second

state could receive any of the 4 bit combinations, and the third state could receive any of

the four bit combinations, so 64)2(4444 323 ===×× . This quantity is divided by two

for the average number of random trials required to successfully find the correct sequence

of inputs.

For the scrambled circuit contribution ()(2 1 qnpSm k +−++), only half of the input

combinations are required to completely specify the truth or state table, since the top

portions of the output table are copied to the bottom portions (cf., Subsection 4.3.1.).

Thus, two is raised to the power of m+S+p-1. For each input combination, each of k

copies produces n+q outputs from which to select the final output of the circuit. Since

each final output can come from any of the k copies, the total possible combinations of

outputs are kn+q. For example, with m+p=4 (S=0), only 24-1=8 input combinations are

required to fill the output columns of the truth table. With k=3 and n+q=4, one circuit

output can come from three possible copies, another output can come from three possible

copies, etc., so 8133333 4 ==××× . Thus, there are 648818 =× possible output

combinations.

Figures 29, 30, and 31 plot (2), as well as exponential trendlines, for varying

values of p, k, and q. The other variables are held constant at i=3, s=8, m=n=30, and S=0.

A conservative yet moderately sized example is desired for the plots, so 30 is chosen for

m and n, and zero is chosen for S since an Intel 80386 has 42 inputs, 72 outputs, and eight

32-bit general purpose registers (among others). The security metric for an

89

R2 = 1

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

1 2 3 4 5

Extra Inputs

Se
cu

rit
y

(y
ea

rs
)

Security
Expon. (Security)

Figure 29. Security vs. varying extra inputs.

R2 = 0.9744

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1.00E+18

2 3 4 5 6

Copies

Se
cu

rit
y

(y
ea

rs
)

Security
Expon. (Security)

Figure 30. Security vs. varying copies.

i=3, s=8
m=n=30, S=0
k=2, q=1

i=3, s=8
m=n=30, S=0
p=1, q=1

Note: The vertical scale is logarithmic.

90

R2 = 1

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

4.00E+09

1 2 3 4 5

Extra Outputs

Se
cu

rit
y

(y
ea

rs
)

Security
Expon. (Security)

Figure 31. Security vs. varying extra outputs.

Intel386™ DX microprocessor is 242+256/500 MHz/31,536,000 sec/yr = 3.23E+73 years

(500 MHz is used so that this metric is consistent with the metrics that follow).

The range of Figures 29 and 30 begins at 146 years. With only five extra inputs,

the plot of Figure 29 ends at 2,340 years. The plot of Figure 30 ends at 9.03E+16 years

for six copies. The plot in Figure 31 begins at 4.21E+07 years, and with only five extra

outputs, ends at 3.41E+09 years.

The R2 values greater than 0.95 shown on each plot indicate a good fit to the

plotted data for the exponential trend lines. These signify that security increases

exponentially with the numbers of extra inputs, copies, and extra outputs.

i=3, s=8
m=n=30, S=0
k=3, p=1

91

With the plots of Figures 29, 30, and 31, it is easy to see how the application of

the design methodology can transform a 0-5-year, Low-cost design into a design with a

5-50-year, Medium-cost, or greater, security level.

5.2.1 Combination Lock

The security contributions of the Combination Locks are listed with each Lock’s

factors in Table 17. Beneath “Config” are the configurations of the Combination Locks;

the configurations are denoted with “CL” followed by the number of states and then by

the number of inputs. “States” and “Inputs” in Table 17 are, respectively, the number of

states in and the number of inputs to the Combination Lock state machine. “Cycles” is

determined with the Combination Lock portion of (2), 2/)2(si .

Table 17. Combination Locks’ security contributions.

Config States Inputs Cycles Security Contribution
(years)

CL8-3 8 3 8.39X106 5.32E-10
CL8-4 8 4 2.15X109 1.36E-07
CL16-3 16 3 1.41X1014 8.93E-03
CL16-4 16 4 9.22X1018 5.85E+02

Table 18 analyzes the effects of the numbers of states and inputs and their

interaction on the security contribution of the Combination Locks. The mean

performance is in the “I (mean)” column and “Total/4” row (highlighted). The effects of

the numbers of states and inputs and their interaction are listed in their respective

columns in the “Total/4” row (highlighted). These values indicate nearly equal effects on

the security metric of a Combination Lock. The reason that these values are effectively

equal is that their determination is dominated by the value in the “yi” column and “4”

row. The importance of the number of states is indicated by SSA/SST, the effect of the

92

Table 18. Analysis of Combination Locks’ security contributions.

 Effect
i I A (states) B (inputs) AB yi

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (cycles) (yi-ybar)^2
CL8-3 1 -1 -1 1 8.389E+06 5.317E+36
CL8-4 1 -1 1 -1 2.147E+09 5.317E+36

CL16-3 1 1 -1 -1 1.407E+14 5.316E+36
CL16-4 1 1 1 1 9.223E+18 4.785E+37
Total 9.2235E+18 9.2235E+18 9.2232E+18 9.2232E+18 9.2235E+18 =sum

Total/4 2.3059E+18 2.3059E+18 2.3058E+18 2.3058E+18 2.3059E+18 =ybar

 SST= SSA= SSB= SSAB=
 6.380E+37 2.127E+37 2.127E+37 2.127E+37

 SSA/SST= SSB/SST= SSAB/SST=
 33.3347% 33.3327% 33.3327%

number of inputs by SSB/SST, and the effect of their interaction by SSAB/SST. The

values of these derived quantities indicate that all effects are nearly equally important to

the security contribution offered by a Combination Lock.

5.2.2 Combinational Circuit

Table 19 lists the security of the scrambled combinational circuits with an eight-

state, three-input Combination Lock and each circuit’s factors. The original full adder’s

security metric (2m/500 MHz/31,536,000 sec/yr) is included in the first row of the table

for comparison to the modified circuits’ security metrics. The “Circuit” column lists the

configurations of the circuits, which are denoted with a “C” for combinational, followed

by a single digit for each of the number of copies, extra inputs, and extra outputs, and

“cl” to indicate the use of a Combination Lock. For example, C421cl is the

combinational circuit with four copies, two extra inputs, one extra output, and a

Combination Lock. With the Combination Lock, the security improvements over the

original circuit are six orders of magnitude.

93

Table 19. Combinational circuits’ security metrics.

C0 Original m=3 n=2 5.0736E-16

Circuit
Copies

(k)
Inputs

(p)
Outputs

(q)
CL states

(s)
CL inputs

(i)
Security
(years)

Normalized
to original

C211cl 2 1 1 8 3 5.3200E-10 1.04858E+06
C212cl 2 1 2 8 3 5.3201E-10 1.04859E+06
C221cl 2 2 1 8 3 5.3201E-10 1.04859E+06
C222cl 2 2 2 8 3 5.3202E-10 1.04860E+06
C411cl 4 1 1 8 3 5.3203E-10 1.04864E+06
C412cl 4 1 2 8 3 5.3213E-10 1.04883E+06
C421cl 4 2 1 8 3 5.3206E-10 1.04870E+06
C422cl 4 2 2 8 3 5.3226E-10 1.04908E+06

Table 20 analyzes the effects of varying the numbers of copies, extra inputs, and

extra outputs. The “i (config)” column shows the circuit configurations that produced the

values in the “yi” column. The “cl” suffix in Table 19 is absent in Table 20 since the

security contributions of scrambled circuits without Combination Locks are analyzed.

The bottom row of values indicates that the number of copies (SSA/SST) in a scrambled

circuit affects the circuit’s security contribution more than any other primary factor or

interaction. The second greatest influence on a scrambled circuit’s security contribution

is the number of extra outputs (SSC/SST). The last significant effect on a circuit’s

security contribution is the interaction of the number of copies and the number of extra

outputs (SSAC/SST), which is not surprising given the first two significant effects.

5.2.3 Sequential Circuit

The security metrics of the scrambled sequential circuits and an eight-state, three-

input Combination Lock are listed with each circuit’s factors in Table 21. The original

three-bit up counter’s security metric (2m+S/500 MHz/31,536,000 sec/yr) is included in

the first row of the table for comparison to the modified circuits’ security metrics. The

“Circuit” column lists the configurations of the circuits, which are denoted with an “S”

94

Table 20. Analysis of combinational circuits’ security contributions.

95

Table 21. Sequential circuits’ security metrics.

S0 Original m=0 n=3 3 5.0736E-16

Circuit
Copies

(k)
Inputs

(p)
Outputs

(q) S
CL states

(s)
CL inputs

(i)
Security
(years)

Normalized
to original

S211cl 2 1 1 4 8 3 5.3202E-10 1.04860E+06
S212cl 2 1 2 5 8 3 5.3206E-10 1.04870E+06
S221cl 2 2 1 4 8 3 5.3203E-10 1.04864E+06
S222cl 2 2 2 5 8 3 5.3213E-10 1.04883E+06
S411cl 4 1 1 4 8 3 5.3226E-10 1.04908E+06
S412cl 4 1 2 5 8 3 5.3408E-10 1.05267E+06
S421cl 4 2 1 4 8 3 5.3252E-10 1.04960E+06
S422cl 4 2 2 5 8 3 5.3616E-10 1.05676E+06

for sequential, followed by a single digit for each of the number of copies, extra inputs,

and extra outputs, and “cl” to indicate the use of a Combination Lock. For example,

S421cl is the sequential circuit with four copies, two extra inputs, one extra output, and a

Combination Lock. The S values of the modified circuits depend on q through the

relationship Smod=Sorig+q. As with the scrambled combinational circuits, the scrambled

sequential circuits with the smallest Combination Lock have six orders of magnitude

improvement.

The analysis of the effects of varying the numbers of copies, extra inputs, and

extra outputs in the scrambled sequential circuits is in Table 22. The “i (config)” column

shows the circuit configurations that produced the values in the “yi” column. The “cl”

suffix in Table 21 is absent in Table 22 since the security contributions of scrambled

circuits without Combination Locks are analyzed. As with the scrambled combinational

circuits, the greatest effects on the security contributions are, in descending order, the

number of copies (SSA/SST), the number of extra outputs (SSC/SST), and the interaction

of these two factors (SSAC/SST). The percentages in Table 22 are slightly different than

those in Table 20 due to the value of Smod depending on q.

96

Table 22. Analysis of sequential circuits’ security contributions.

97

It is interesting to note the differences in SSC/SST, the effect of the number of

outputs, between Tables 20 and 22. Table 20’s SSC/SST value is 20.773%, while the

SSC/SST in Table 22 is 25.516%. The 12 −++ pSm factor in (2) accounts for this difference,

since the value of Smod depends on the number of extra outputs. Table 22’s value of

SSAC/SST exhibits a similar increase of approximately five percentage points over

Table 20’s SSAC/SST value. The sequential SSA/SST decreases with increases in

SSC/SST and SSAC/SST.

5.2.4 VHDL and Partial Scrambling

Table 23 presents the original and modified encoders’ security metrics. The

Combination Lock is the small, eight-state, three-input circuit.

Table 23. Original and scrambled existing VHDL circuits’ security.

Original m=4 n=2 16 1.0147E-15

Copies Inputs
(extra)

Outputs
(extra) Cycles Security Contribution

(years)
Security w/CL

(years)
2 1 2 256 1.6235E-14 5.3202E-10

Scrambling alone produces a ten-fold increase in security. Adding the

Combination Lock provides an additional increase of four orders of magnitude.

The security metrics of the original and partially scrambled circuits are listed in

Table 24. The multiplier is isolated from the rest of the circuit, since the multiplier is the

portion of the circuit modified. To calculate the security of the entire modified circuit,

(2) is customized so that the number of scrambled multiplier cycles is multiplied by the

number of possible combinations from the two-bit input c, in this case, 22=4 possible

combinations.

98

Table 24. Security metrics of original and partially scrambled circuits.

Original 6 4 64 4.0589E-15
Multiplier m=4 n=4

Copies Inputs
(extra)

Outputs
(extra) Cycles Security Contribution

(years)
Security w/CL

(years)
2 1 1 512

Input c 2 4
Total 2048 1.2988E-13 5.3213E-10

Scrambling the multiplier alone increases the security by a factor of 32. Adding

the eight-state, three-input Combination Lock increases the security by another factor of

4,000.

5.3 Execution Time

Execution time metrics are collected from a Quartus II compilation report,

specifically the design’s “.tan.rpt” file. The compilations are not optimized for speed.

For combinational circuits, pin-to-pin delay (tpd) is collected. The maximum clock

frequency (fmax) is collected for sequential circuits.

5.3.1 Combination Lock

The maximum clock frequency of each Combination Lock is listed in Table 25.

Table 25. Combination Locks’ maximum clock frequencies.

Config States Inputs fmax (MHz)
CL8-3 8 3 379.36
CL8-4 8 4 354.36
CL16-3 16 3 385.8
CL16-4 16 4 271.08

Table 26 shows the results of the analysis of the maximum frequencies of the

Combination Locks. Table 55 in the Appendix is the entire analysis table. From

Table 26, one can see that the number of inputs has the greatest effect on fmax (SSB/SST).

99

Table 26. Results of Combination Locks’ maximum frequency analysis table.

SSA/SST= SSB/SST= SSAB/SST=
17.6378% 58.3159% 24.0463%

The reason that this effect is the greatest on fmax may be that, with more inputs, more

logic is required to test whether the input is correct and the state machine can advance to

the next state. More logic translates to a longer delay, and thus a slower clock frequency.

Interestingly, the effect of the interaction between the number of states and the number of

inputs (SSAB/SST) is greater than the effect of the number of states alone (SSA/SST).

This may be due to the significant effect that the number of inputs alone has on fmax.

5.3.2 Combinational Circuit

The combinational circuits’ pin-to-pin delays are listed in Table 27. Although the

execution times are generally increasing with increasing numbers of copies, inputs, and

outputs, the hypothesis that the increase in execution time is nearly constant cannot be

rejected. In the eight cases of modified combinational circuits, each circuit has at most

one additional level of LUT in the critical path. If a circuit much larger than the full

adder is modified according to the algorithm, it is expected that the additional delay

incurred would be through one or two LUTs and would be on the order of the additional

delays listed in Table 27. This additional delay would be insignificant in relation to the

delay of the original large circuit. This one- or two-LUT increase in delay for an FPGA

might translate to an additional delay of ten or so gates. This delay for a large ASIC

would be minor compared to the execution time of the original circuit.

100

Table 27. Combinational circuits’ execution times.

C0 Original m=3 n=2 10.118
 Inputs Outputs tpd Normalized

Circuit Copies (extra) (extra) (ns) to original
C211 2 1 1 9.857 0.9742
C212 2 1 2 10.607 1.0483
C221 2 2 1 10.851 1.0724
C222 2 2 2 10.884 1.0757
C411 4 1 1 10.752 1.0627
C412 4 1 2 11.737 1.1600
C421 4 2 1 12.129 1.1988
C422 4 2 2 11.338 1.1206

The reason for circuit C211 having a lower execution time than the original

relates to the FPGA resources used, their location, and the routing between them. This is

the same reason circuit C422 is slightly faster than circuit C421 and circuit C411 is

slightly faster than circuits C221 and C222.

The results of the analysis table for the combinational circuits’ execution times

are in Table 28. The entire analysis is in Table 59 in the Appendix. (A, B, and C

correspond to copies, inputs, and outputs, respectively, as in Tables 20 and 22.) The

number of copies (SSA/SST) has the greatest effect on the execution time of the

combinational circuits. This effect follows since the number of copies determines the

number of levels of multiplexers required, and additional logic is implemented to

compare the multiplexer select signals. Why the second most significant effect is the

interaction of the number inputs and the number of outputs, rather than the number of

inputs alone, is not understood. Perhaps, the increase in inputs and outputs contributes to

routing congestion. The number of inputs is the third most significant effect for good

reason. An increase in the number of inputs impacts the amount of logic in the modified

101

Table 28. Results of combinational circuits’ execution time analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
50.597% 18.131% 3.422% 0.308% 1.244% 22.279% 4.020%

circuit, and additional logic results in longer paths and delays and increases in execution

time.

5.3.3 Sequential Circuit

For the original and modified counters, fmax is 400 MHz, the maximum frequency

of the targeted FPGA. Although this frequency is less than the one used in (2), there are

devices in the targeted FPGA’s family capable of 500 MHz. The lower frequency of the

targeted FPGA does not invalidate the results in the Security section. The modified

circuits’ maximum clock frequencies are the same as the original circuit’s frequency

because the example circuits are likely too small to impact the clock frequency. The

execution times of the combinational and sequential circuits are not compared since their

metrics are different.

5.3.4 VHDL and Partial Scrambling

The execution times of the original and modified VHDL design are listed in

Table 29. The increase in the modified circuit is due to an additional LUT on the critical

path.

Table 29. Existing VHDL designs’ execution times.

VHDL Original m=4 n=2 9.701
 Inputs Outputs tpd Normalized

Copies (extra) (extra) (ns) to original
2 1 2 10.592 1.092

102

The execution times of the partially scrambled circuit and its original are shown

in Table 30. The increase in the modified circuit is due to the FPGA resources used, their

location, and the routing between them, since both circuits have four LUTs between the

input and output on the critical path.

Table 30. Partially scrambled and original circuits’ execution times.

Partial Original 6 4 11.062
 Inputs Outputs tpd Normalized

Copies (extra) (extra) (ns) to original
2 1 2 13.623 1.232

5.4 Power Consumption

Power consumption is measured in Quartus II. Simulation files cycle twice

through all possible original input combinations. For example, there are eight possible

input combinations to the original full adder. Two cycles are used since a modified

circuit has two paths to correct output, one in the upper half of the truth table and the

other in the lower half of the truth table. For example, with two extra inputs, correct

output is obtained when the extra input is 012 or 112. The simulations are also used to

ensure the modified circuits function correctly. When simulating the original design, two

cycles are used to maintain consistency across tests. The time between rising (or falling)

edges is 40 ns, or 25 MHz. Thus, the full adder circuits are simulated for 320 ns (since

output transitions occur on both rising and falling input edges) and the counter circuits

are simulated for 640 ns (since output transitions only occur on rising clock edges).

Signal activity in the simulation is captured and analyzed by the Quartus II

PowerPlay Power Analyzer Tool. Toggle rates are set at 20% as shown in Figure 32.

103

Figure 32. Quartus II PowerPlay Power Analyzer Tool.

5.4.1 Combination Lock

Combination Locks are simulated for one successful key sequence. In the case of

the eight-state Locks, the simulation time is 320 ns. The sixteen-state Locks are

simulated for 640 ns.

The power consumption of the Combination Locks is listed in Table 31.

Table 31. Combination Locks’ power consumption.

Config States Inputs Static (mW) Dynamic (mW)
CL8-3 8 3 322.94 1.97
CL8-4 8 4 322.97 2.1
CL16-3 16 3 322.94 1.74
CL16-4 16 4 322.98 1.77

104

The results of the analysis table for static power are in Table 32. Table 56 in the

Appendix contains the entire analysis. Clearly the number of inputs (B) is the major

factor in determining static power consumption.

Table 32. Results of Combination Locks’ static power analysis table.

SSA/SST SSB/SST SSAB/SST
1.9608% 96.0784% 1.9608%

The dynamic power analysis results are listed in Table 33. Table 57 in the

Appendix is the entire analysis table. Dynamic power consumption is greatly affected by

the number of states (A), and hence, the amount of logic, in the Combination Lock. The

logic is where most switching activity is expected to occur. The number of inputs (B) has

only a minor effect on the dynamic power consumption.

Table 33. Results of Combination Locks’ dynamic power analysis table.

SSA/SST SSB/SST SSAB/SST
89.8053% 7.3310% 2.8637%

The effect of the number of states on dynamic power is interesting in light of the

dynamic power metrics in Table 31. The eight-state Combination Locks consume more

power dynamically than the sixteen-state Locks, even though sixteen states require more

logic. The reason for this apparent contradiction is the key sequence for the sixteen-state

Locks has more stability than the eight-state Locks. The eight-state key sequence is 1, 2,

2, 3, 3, 3, 4, 6, and makes four of seven possible transitions – from 1 to 2 to 3 to 4 to 6 –

in 320 ns. The sixteen-state key sequence is 2, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10,

12, and makes only five of fifteen possible transitions – from 2 to 4 to 6 to 8 to 10 to 12 –

in 640 ns. Thus, the eight-state Locks are switching a greater percentage of time than the

105

sixteen-state Locks, which explains the eight-state Locks’ greater dynamic power

consumption. With greater variation in both sequences, the sixteen-state Locks, with

greater numbers of LUTs, are expected to have greater dynamic power consumption than

the eight-state Locks.

5.4.2 Combinational Circuit

The power consumption of the full adder circuits is listed in Table 34.

Table 34. Combinational circuits’ power consumption.

C0 Original m=3 n=2 322.9 3.76
 Inputs Outputs Static Normalized to Dynamic Normalized to

Circuit Copies (extra) (extra) (mW) original static (mW) original dynamic
C211 2 1 1 323.13 1.0007 5.62 1.4947
C212 2 1 2 323.22 1.0010 6.81 1.8112
C221 2 2 1 323.19 1.0009 5.03 1.3378
C222 2 2 2 323.29 1.0012 6.51 1.7314
C411 4 1 1 323.27 1.0011 5.6 1.4894
C412 4 1 2 323.38 1.0015 7.21 1.9176
C421 4 2 1 323.3 1.0012 6.35 1.6888
C422 4 2 2 323.4 1.0015 7.33 1.9495

After arranging the circuits in the order C211, C221, C212, C222, C411, C421,

C412, C422, the plot in Figure 33 is generated. This ordering is due to the significance of

the factors shown below in Table 35. The number of inputs has the least significant

effect so it is varied first. For example, circuit C211 has one extra input and circuit C221

has two extra inputs. Then, the number of outputs is varied, so the order goes from

circuit C221 with one extra output to circuit C212 with two extra outputs. Finally, the

number of copies is varied, so circuit C411 with four copies follows circuit C222 with

two copies. The R2 value indicates a good linear fit to the data. The static power

increases nearly linearly as inputs are added, then outputs, and finally copies. The

primary factor impacting static power is copies (compare circuits C211 and C411). This

106

R2 = 0.9487

0.9900

0.9950

1.0000

1.0050

1.0100

C211 C221 C212 C222 C411 C421 C412 C422

Circuit

No
rm

al
ie

d
st

at
ic

 p
ow

er

Normalized Static Power
Linear (Normalized Static Power)

Figure 33. Combinational circuits’ static power consumption.

is due to the impact the number of copies has on resource allocation. Adding an output

has the second most significant effect (compare circuits C211 and C212). Finally, the

third most significant factor is adding inputs (compare circuits C211 and C221). Adding

an output increases the static power more than adding an input, as evidenced by the

ordering of the circuits – from two copies, one extra input, one extra output (circuit

C211), to two copies, two extra inputs, one extra output (circuit C221), to two copies, one

extra input, two extra outputs (circuit C212).

The dynamic power measurements do not lend themselves to a coherent ordering

to produce a linear plot. The ordering C221, C411, C211, C421, C222, C412, C212,

C422, produces a linear plot with R2=0.917. However, this ordering does not have a

basis like the static power ordering.

107

As shown in Table 35, the order of significant factors affecting static power is the

number of copies (A), the number of extra outputs (C), and the number of extra inputs

(B). (Table 60 in the Appendix contains the entire analysis.) The number of copies is

significant since an increase in the number of copies increases the number of required

multiplexer select signals. It is interesting that the number of inputs does not affect the

static power measurements as it did with the Combination Lock.

Table 35. Results of combinational circuits’ static power analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
57.532% 6.894% 34.043% 1.362% 0.085% 0.000% 0.085%

Table 36 lists the effects on the example circuits’ dynamic power consumption.

(The entire analysis is in Table 61 in the Appendix.) The number of outputs (C) is the

most significant factor, followed by the number of copies (A), and the interaction (AB) of

the numbers of copies and inputs. The reason why the number of outputs has such an

effect could be that most of the circuit switching activity occurs in the selection of copy

outputs. It is odd that the numbers of copies and inputs do not play a greater role, since

they determine the amount logic in the modified circuit.

Table 36. Results of combinational circuits’ dynamic power analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
16.675% 0.001% 72.648% 8.134% 0.017% 0.304% 2.222%

5.4.3 Sequential Circuit

The power measurements of the up counters are listed in Table 37. As with the

combinational circuits, the same ordering (S211, S221, S212, S222, S411, S421, S412,

S422) of the sequential circuits for the same reasons generates a linear plot. The

108

Table 37. Sequential circuits’ power consumption.

S0 Original m=0 n=3 322.9 3.43
 Inputs Outputs Static Normalized to Dynamic Normalized to

Circuit Copies (extra) (extra) (mW) original static (mW) original dynamic
S211 2 1 1 323.11 1.0007 3.96 1.1545
S212 2 1 2 323.19 1.0009 4.6 1.3411
S221 2 2 1 323.17 1.0008 4.34 1.2653
S222 2 2 2 323.25 1.0011 5.55 1.6181
S411 4 1 1 323.29 1.0012 4.43 1.2915
S412 4 1 2 323.43 1.0016 5.13 1.4956
S421 4 2 1 323.35 1.0014 4.5 1.3120
S422 4 2 2 323.43 1.0016 5.46 1.5918

significant factors and their order are the same for both the combinational and the

sequential examples, namely copies, outputs, and inputs as shown in Table 38. (The

entire analysis is in Table 64 in the Appendix.) The proportions of effects are different in

the two classes of circuits. The number of copies has the most significant effect on static

power since the number of copies has a significant effect on the amount of resources a

circuit requires.

Table 38. Results of sequential circuits’ static power analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
76.088% 4.052% 18.059% 0.450% 0.450% 0.450% 0.450%

The results of the sequential circuits’ dynamic power analysis table are in

Table 39. Table 65 in the Appendix contains the entire analysis. The three factors

having the greatest effect are, in descending order, the number of outputs, the number of

inputs, and the number of copies.

Table 39. Results of sequential circuits’ dynamic power analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
6.310% 16.495% 67.902% 4.767% 0.199% 3.797% 0.530%

109

5.4.4 VHDL and Partial Scrambling

The existing VHDL and partially scrambled circuits are simulated for 640 ns

each. Table 40 shows the power measurements for the original and modified VHDL

circuits. The power measurements of the original and partially scrambled circuits are in

Table 41. The modified VHDL circuit’s more than 300% increase in dynamic power

over the original circuit’s metric is due to its considerable increase in FPGA resources.

Table 40. VHDL circuits’ power consumption.

VHDL Original m=4 n=2 322.94 1.56
 Inputs Outputs Static Normalized to Dynamic Normalized to

Copies (extra) (extra) (mW) original static (mW) original dynamic
2 1 2 323.27 1.001 4.88 3.128

Table 41. Partially scrambled circuits’ power consumption.

Partial Original 6 4 323.08 4.27
 Inputs Outputs Static Normalized to Dynamic Normalized to

Copies (extra) (extra) (mW) original static (mW) original dynamic
2 1 2 323.49 1.001 4.74 1.11

5.4.5 Observations

There is a strong correlation between the number of pins used for a circuit and the

static power consumed by that circuit. Figure 34 illustrates this correlation. This plot

considers all circuits tested and duplicate measurements are deleted. The reason for this

correlation is due to the number of copies. The number of copies impacts the number of

required multiplexer select signals.

Sorting the circuits according to pin count, as was done to produce Figure 34,

results in combinational/sequential pairs of the same copy/extra input/extra output

configuration. These groupings lend credence to the hypothesis that the number of copies

110

R2 = 0.9718

322.5

322.6

322.7

322.8

322.9

323

323.1

323.2

323.3

323.4

323.5

323.6

4 5 6 7 7 10 11 11 12 12 13 13 14 14 14 15 15 15 16 17 18 18 19 19 20

Pins

St
at

ic
 P

ow
er

 (m
W

)

Static Power
Linear (Static Power)

Figure 34. Correlation between pin count and static power.

significantly impacts that number of pins required, which impacts the amount of static

power dissipated.

Sorting the tested circuits in order of dynamic power consumption leads to

groupings of sequential circuits and groupings of combinational circuits. These

groupings seem to indicate that dynamic power dissipation is circuit-dependent.

5.5 Resource Usage

Resource usage metrics are collected from a Quartus II compilation report, the

design’s “.map.rpt” file. The compilations are not optimized for resource usage. For all

circuits, the numbers of LUTs and pins are collected. For sequential circuits, the number

of registers is also collected.

111

5.5.1 Combination Lock

The resource usage of each Combination Lock is listed in Table 42. The number

of pins is solely dependent on the number of inputs. Similarly, the number of registers

depends only the number of states.

Table 42. Combination Locks’ resource usage.

Config States Inputs LUTs Registers Pins
CL8-3 8 3 13 9 6
CL8-4 8 4 16 9 7
CL16-3 16 3 25 17 6
CL16-4 16 4 28 17 7

The results of the analysis of the effects of the Combination Locks’ states and

inputs on LUT usage are in Table 43. Table 58 in the Appendix contains the entire

analysis. As expected, the number of states is the greatest contributor to the number of

LUTs required – more states require more logic.

Table 43. Results of Combination Locks’ LUT analysis table.

SSA/SST SSB/SST SSAB/SST
94.1176% 5.8824% 0.0000%

5.5.2 Combinational Circuit

The resources used by each test combinational circuit are listed in Table 44. As

expected, circuits with more copies, inputs, and outputs generally require more LUTs and

pins. Also as expected, the required area for a circuit with one extra input and two copies

is less than a 400 percent increase over the original circuit.

For a given number of copies, the increase in LUTs appears to be exponential.

See Figures 35 and 36. Figure 35 shows the increase in LUTs when considering only

112

Table 44. Combinational circuits’ resource usage.

C0 Original m=3 n=2 2 5
 Inputs Outputs Normalized to Normalized to

Circuit Copies (extra) (extra) LUTs original LUTs Pins original pins
C211 2 1 1 3 1.5 11 2.2
C212 2 1 2 4 2.0 13 2.6
C221 2 2 1 6 3.0 12 2.4
C222 2 2 2 9 4.5 14 2.8
C411 4 1 1 6 3.0 14 2.8
C412 4 1 2 8 4.0 17 3.4
C421 4 2 1 10 5.0 15 3.0
C422 4 2 2 14 7.0 18 3.6

R2 = 0.994

0

1

2

3

4

5

6

7

8

9

10

C211 C212 C221 C222

Circuit

LU
Ts LUTs

Expon. (LUTs)

Figure 35. Combinational circuits’ LUT increase for circuits 1-4.

circuits C211 through C222. Figure 36 considers circuits C411 through C422. Lines can

also be fit to the same data. However, the resulting R2 values are slightly lower than

those shown in Figures 35 and 36, but still greater than 0.95.

113

R2 = 0.9943

0

2

4

6

8

10

12

14

16

C411 C412 C421 C422

Circuit

LU
Ts LUTs

Expon. (LUTs)

Figure 36. Combinational circuits’ LUT increase for circuits 5-8.

The metrics for the circuits with two copies appear exponential as they increase

from 3 to 4 to 6 to 9. On the other hand, the data for the circuits with four copies appears

linear, except for the last value, as it increases from 6 to 8 to 10 to 14. More data is

required to conclusively decide whether the increase is exponential or linear.

If the circuits are ordered as in the Subsection 5.4.2, namely C221, C411, C211,

C421, C222, C412, C212, C422, a line fits well to the pin data in Table 44 (cf.,

Figure 37). The order is coherent since adding an input increases the pin count by one,

but adding an output increases the pin count by at least two – one for the output pin and

one for the multiplexer select signal.

The results of the analysis of the combinational circuits’ resource requirements

are in Table 45. Table 62 in the Appendix is the entire analysis. The number of inputs

114

R2 = 0.9644

0

2

4

6

8

10

12

14

16

18

20

C211 C221 C212 C222 C411 C421 C412 C422

Circuit

Pi
ns Pins

Linear (Pins)

Figure 37. Combinational circuits’ pin increase.

Table 45. Results of combinational circuits’ LUT analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
36.364% 46.023% 14.205% 0.568% 0.568% 2.273% 0.000%

(B) has the greatest impact on LUT usage, followed by the number of copies (A), and the

number of outputs (C). It is expected that the number of inputs has the greatest impact –

adding one extra input to a truth table doubles the size of the table. It is also logical that

number of inputs has a greater effect than the number of copies. Twice as many copies

should double the area. However, as demonstrated in Section 4.5, doubling does not

occur if internal circuit signals are routed appropriately.

115

Table 46 contains the results of the combinational circuits’ pin analysis. The

entire analysis is in Table 63 in the Appendix. The number of copies (A) has the greatest

effect on the number pins used, as stated in Subsection 5.4.5, due to the number of

multiplexer select signals required. The second greatest influence on the number of pins

used is the number of outputs (C), since increasing the number of outputs affects the

number of multiplexer select signals needed.

Table 46. Results of combinational circuits’ pin analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
62.025% 5.063% 31.646% 0.000% 1.266% 0.000% 0.000%

5.5.3 Sequential Circuit

The resource metrics for the sequential circuits are listed in Table 47. As

expected, the circuits with greater numbers of copies, extra inputs, and extra outputs

generally require more resources. Also as expected, the required area for a circuit with

one extra input and two copies is less than a 400 percent increase over the original circuit.

Table 47. Sequential circuits’ resource usage.

S0 Original m=0 n=3 3 4
 Inputs Outputs Normalized to Normalized to

Circuit Copies (extra) (extra) LUTs original LUTs Pins original pins
S211 2 1 1 4 1.333 11 2.75
S212 2 1 2 5 1.667 13 3.25
S221 2 2 1 9 3.000 12 3.00
S222 2 2 2 10 3.333 14 3.50
S411 4 1 1 7 2.333 15 3.75
S412 4 1 2 9 3.000 18 4.50
S421 4 2 1 12 4.000 16 4.00
S422 4 2 2 16 5.333 19 4.75

As with the combinational circuits, exponential curves fit better than lines to the

sequential LUT data. The R2 values for the lines are slightly lower than for the

116

exponential curves. More data is required to decide whether the increases in LUTs for

the sequential circuits are linear or exponential. A line fits well to the pin data in

Table 47, with an R2 value greater than that of Figure 37.

In addition to the metrics in Table 47, the number of registers in a circuit is also of

interest. The number of registers in the counter circuits depends only on the total number

of outputs. Hence, a modified circuit with one extra output has four registers and a

modified circuit with two extra outputs has five registers.

Table 48 lists the results of the LUT analysis table for the example sequential

circuits. The entire analysis table is Table 66 in the Appendix. Although in different

proportions than the combinational circuits’ analysis results, the major contributors to

counter LUT usage are, in descending order, the number of inputs (B), the number of

copies (A), and the number of outputs (C). The reasons for these effects are the same as

those stated in the previous subsection.

Table 48. Results of sequential circuits’ LUT analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
30.769% 58.173% 7.692% 0.481% 1.923% 0.481% 0.481%

The results of the sequential circuits’ pin analysis table are in Table 49. Table 67

in the Appendix is the entire analysis. Similar to the combinational circuits, the two most

significant factors in determining counter pin usage are the number of copies (A) and the

number of outputs (C). The reasons for these effects are the same as those stated in the

previous subsection.

117

Table 49. Results of sequential circuits’ pin analysis table.

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
72.973% 3.604% 22.523% 0.000% 0.901% 0.000% 0.000%

5.5.4 VHDL and Partial Scrambling

The resource usage metrics for the original and modified VHDL designs are listed

in Table 50. The increase in LUTs is 400%, which is reasonable for an extra input, two

copies, and two extra outputs. The pin count increases by 233%.

Table 50. VHDL circuits’ resource usage.

VHDL Original m=4 n=2 2 6
 Inputs Outputs Normalized to Normalized to

Copies (extra) (extra) LUTs original LUTs Pins original pins
2 1 2 8 4.0 14 2.333

Table 51 lists the resource usage metrics for the original and partially scrambled

circuits. The increase in LUTs is only 200%, even with the combinational multiplexer.

The pin count only doubled.

Table 51. Partially scrambled circuits’ resource usage.

Partial Original 6 4 8 10
 Inputs Outputs Normalized to Normalized to

Copies (extra) (extra) LUTs original LUTs Pins original pins
2 1 2 16 2.0 20 2.0

5.6 Combining a Combination Lock with Modified Circuits

To understand the effects of combining a Combination Lock with a modified

circuit, the sixteen-state, four-input Combination Lock (CL16-4) is added to three

different modified circuits. The circuit results in Table 52 are the full adder with two

copies, two extra inputs, and two extra outputs (C222). The counter results with four

118

copies, two extra inputs, and two extra outputs (S422) are shown in Table 53. Table 54 is

for the third circuit with the VHDL design modified to two copies, one extra input, and

two extra outputs.

Table 52. Combination Lock and modified full adder.

Circuit Timing
Simulation

time

Static
Power
(mW)

Dynamic
Power
(mW) LUTs Registers Pins

Modified full
adder
(C222) 10.884 ns 320 ns 323.29 6.51 9 0 14
Combination
Lock
(CL16-4) 271.08 MHz 640 ns 322.98 1.77 28 17 7
Combined 367.24 MHz 960 ns 323.31 4.14 36 17 15

Table 53. Combination Lock and modified counter.

Circuit Timing
Simulation

time

Static
Power
(mW)

Dynamic
Power
(mW) LUTs Registers Pins

Modified
counter
(S422) 400 MHz 640 323.43 5.46 16 5 19
Combination
Lock
(CL16-4) 271.08 MHz 640 322.98 1.77 28 17 7
Combined 326.05 MHz 1280 323.29 3.98 43 22 19

Table 54. Combination Lock and modified VHDL circuit.

Circuit Timing
Simulation

time

Static
Power
(mW)

Dynamic
Power
(mW) LUTs Registers Pins

Modified
VHDL 10.592 ns 640 323.27 4.88 8 0 14
Combination
Lock
(CL16-4) 271.08 MHz 640 322.98 1.77 28 17 7
Combined 298.33 1280 323.29 3.98 36 17 15

The clock frequency increases for the Combination Lock when combined with the

other circuits due to different routing and resource sharing. The clock frequency

119

decreases for the counter, but this can be remedied by partitioning the two modules and

providing separate clocks to the two modules.

In Tables 52 and 53, the LUT usage is one less than adding the LUT usages of

two components, due to resource sharing. In Table 54, the LUT usage is the sum of the

two LUT usages. The registers counts are also added together. The pin counts are not

summed, since some multiplexer select signals are also inputs to the Combination Lock.

The static power measurements of the components and the combination are within

0.5 mW of each other. The combination of the modules has lower dynamic power

consumption, but that may be due to the simulation file characteristics.

Overall, the combinations of the components meet the expectations for resource

usage and power dissipation. The timing issues can be addressed with partitioning.

5.7 Summary

This chapter gives the results of the tests and explanations of these results.

Significant increases in security can be achieved by applying the proposed circuit design

methodology to digital circuit designs, especially since security increases exponentially

with additional copies, inputs, and outputs. Although the execution times for the

combinational circuits are increasing, the additional level of delay is at most one LUT.

The modified sequential circuits maintain the clock frequency of the original sequential

circuit. More execution time data from larger circuits are needed to better characterize

the effects of the algorithm. Static power consumption appears to be linear with

increases in the size of the modified circuits, and is linearly correlated to design pin

count. Dynamic power dissipation depends on the specific circuit and simulation file.

120

More data are required to determine whether LUT usage increases linearly or

exponentially as circuit sizes increase. Pin count increases linearly and is most affected

by the number of copies.

The examples of this chapter and their test results illustrate the relatively low cost

of operating a design secured by the design modification algorithm. This low cost is a

great value given the substantial increase in security obtained.

The examples also illustrate the flexibility of the design methodology to be

applied in various ways to circuits described in various ways – complete or partial circuit

modification; and by truth or state tables, or already written in VHDL.

121

6. Conclusions and Recommendations

6.1 Chapter Overview

This chapter contains the conclusions of the research and their significance.

Recommendations for future research are also listed. Finally, a summary concludes the

chapter.

6.2 Conclusions of Research

This research found that there is not a standard classification for tampering attacks

and countermeasures. Previous classifications have weaknesses or have been

misinterpreted and misapplied. In addition, there is no clear correlation of

countermeasures to attacks.

Due to this finding, a classification of threats and countermeasures and their

correlation is proposed. The classification addresses some of the weaknesses of previous

classifications. Significant aspects of the classification are the categorization of attacks,

rather than attackers, and the use of both cost and time for the taxonomy. With the

proposed classification, attacks and countermeasures are correlated. However, there are

still no quantified costs and times for attacks nor similar measures for countermeasures.

This research developed a circuit design modification methodology that provides

significant security gains over an original circuit without considerable performance costs.

Thus, the reverse engineering vulnerability of an FPGA design can be significantly

reduced without corresponding penalties to its operation. This research also provides a

proof of concept for the algorithm by modifying and testing several circuits, to include

the modification of only a portion of a circuit. The modified sequential circuits maintain

122

the original circuit’s clock frequency. The execution time of the modified combinational

circuits increases by the delay of one level of LUTs at most over the original execution

time. Static power consumption, the main component of power consumption in the tests

conducted, increases linearly with the number of circuit copies or pins. Pin count

increases linearly with increases in modified circuit size. LUT usage may increase

linearly or exponentially – more data are required to determine the growth rate. The tests

show that the increase in the number of LUTs is at or below what might be expected for

added copies, inputs, and outputs.

6.3 Significance of Research

The proposed classification provides a method to apply appropriate

countermeasures to perceived threats. With properly classified threats, suitable measures

can be applied to counter those threats.

The circuit design modification methodology protects critical technologies and

information. This in turn maintains the nation’s technological advantage and provides

many years of weapons systems use.

6.4 Recommendations for Action

It is recommended that the Air Force Research Laboratory’s (AFRL) Anti-

Tamper – Software Protection Initiative (AT-SPI) Technology Office evaluate the merit

of the proposed methodology. The portions of the methodology found to have merit

should be implemented by the Department of Defense.

123

6.5 Recommendations for Future Research

Based on the knowledge and experience gained from this study, there are several

areas that can be explored further.

The lack of quantified costs and durations of attacks and countermeasures

indicates a need to collect such metrics. These metrics can refine the proposed

classification and the application of appropriate countermeasures to threats.

Scripts or a program could be written to automate the processing of circuits

according to the proposed design modification algorithm.

The use of bidirectional pins is not addressed in this study. Incorporating

bidirectional pins into the algorithm would be useful.

The application of the methodology to ASICs would uncover any ASIC-specific

implementation problems.

Applying the algorithm to larger circuits and testing their security by attacking the

modified circuits are additional avenues to pursue. A specific large-circuit issue is the

scrambling of multiple modules of VHDL. Each module could be scrambled and

interfaced with other individually scrambled modules. An alternative is to treat the

collection of modules as a single black box.

The explicit intertwining of valid circuits with decoy circuits was not specifically

addressed in this study. Studying this technique further could aid in other aspects of anti-

reverse engineering.

Finally, additional research could extend the design algorithm to pipelined

circuits. Specifically, scrambling and interfacing each stage or deciding what portions of

124

the circuit must be modified are of interest. The application of the procedure to larger

circuits and explicit intertwining may be useful in pipelined designs.

6.6 Summary

This chapter presents the conclusions of this research and its significance,

focusing on the classification of threats and countermeasures and the design modification

algorithm. It is recommended that AFRL’s AT-SPI Technology Office evaluate the

algorithm. Further study, including the refinement of cost and time values of attacks and

countermeasures and the application of the design methodology to ASICs and multicycle

designs, is also proposed.

The proposed design modification method is found to be economical in terms of

the security gained and performance costs incurred.

125

Appendix: Data Analysis Tables

Table 55. Analysis of Combination Locks’ maximum frequencies.

 Effect
i I A (states) B (inputs) AB yi

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (fmax) (yi-ybar)^2
CL8-3 1 -1 -1 1 379.36 1005.5241
CL8-4 1 -1 1 -1 354.36 45.0241
CL16-3 1 1 -1 -1 385.8 1455.4225
CL16-4 1 1 1 1 271.08 5862.9649
Total 1390.60 -76.84 -139.72 -89.72 1390.60 =sum

Total/4 347.65 -19.21 -34.93 -22.43 347.65 =ybar

 SST= SSA= SSB= SSAB=
 8368.936 1476.096 4880.420 2012.420

 SSA/SST= SSB/SST= SSAB/SST=
 17.6378% 58.3159% 24.0463%

Table 56. Analysis of Combination Locks’ static power consumptions.

 Effect
i I A (states) B (inputs) AB yi

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (mW) (yi-ybar)^2
CL8-3 1 -1 -1 1 322.94 0.0003063
CL8-4 1 -1 1 -1 322.97 0.0001562
CL16-3 1 1 -1 -1 322.94 0.0003063
CL16-4 1 1 1 1 322.98 0.0005062
Total 1291.83 0.01 0.07 0.01 1291.83 =sum

Total/4 322.9575 0.0025 0.0175 0.0025 322.9575 =ybar

 SST= SSA= SSB= SSAB=
 0.001275 0.000025 0.001225 0.000025

 SSA/SST= SSB/SST= SSAB/SST=
 1.9608% 96.0784% 1.9608%

126

Table 57. Analysis of Combination Locks’ dynamic power consumptions.

 Effect
i I A (states) B (inputs) AB yi

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (mW) (yi-ybar)^2
CL8-3 1 -1 -1 1 1.97 0.005625
CL8-4 1 -1 1 -1 2.1 0.042025
CL16-3 1 1 -1 -1 1.74 0.024025
CL16-4 1 1 1 1 1.77 0.015625
Total 7.58 -0.56 0.16 -0.10 7.58 =sum

Total/4 1.895 -0.140 0.040 -0.025 1.895 =ybar

 SST= SSA= SSB= SSAB=
 0.0873 0.0784 0.0064 0.0025

 SSA/SST= SSB/SST= SSAB/SST=
 89.8053% 7.3310% 2.8637%

Table 58. Analysis of Combination Locks’ LUT usages.

 Effect
i I A (states) B (inputs) AB yi

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (LUTs) (yi-ybar)^2
CL8-3 1 -1 -1 1 13 56.25
CL8-4 1 -1 1 -1 16 20.25
CL16-3 1 1 -1 -1 25 20.25
CL16-4 1 1 1 1 28 56.25
Total 82.0 24.0 6.0 0.0 82.0 =sum

Total/4 20.5 6.0 1.5 0.0 20.5 =ybar

 SST= SSA= SSB= SSAB=
 153.0 144.0 9.0 0.0

 SSA/SST= SSB/SST= SSAB/SST=
 94.1176% 5.8824% 0.0000%

127

Table 59. Analysis of combinational circuits’ execution times.

128

Table 60. Analysis of combinational circuits’ static power consumptions.

129

Table 61. Analysis of combinational circuits’ dynamic power consumptions.

130

Table 62. Analysis of combinational circuits’ LUT usages.

131

Table 63. Analysis of combinational circuits’ pin usages.

132

Table 64. Analysis of sequential circuits’ static power consumptions.

133

Table 65. Analysis of sequential circuits’ dynamic power consumptions.

134

Table 66. Analysis of sequential circuits’ LUT usages.

135

Table 67. Analysis of sequential circuits’ pin usages.

136

Bibliography

[ACA02] Avery, L., J. Crabbe, S. Al Sofi, H. Ahmed, J. Cleaver, and D. Weaver.
“Reverse Engineering Complex Application-Specific Integrated Circuits
(ASICs),” Proceedings of the DMSMS 2002 Conference.
25-28 March 2002. http://smaplab.ri.uah.edu/dmsms02/proceed.htm,
18 January 2006.

[Act02] Actel Corporation. “Design Security with Actel FPGAs.” August 2002.
http://www.actel.com/documents/DesignSecurityPPT.pdf, 20 January 2006.

[Act06] Actel Corporation. “FuseLock: Security in Actel Antifuse FPGAs.”
Copyright 2006.
http://www.actel.com/products/rescenter/security/solutions/antifuse.aspx,
16 January 2006.

[ADD91] Abraham, D., G. Dolan, P. Double, and J. Stevens. “Transaction Security
System,” IBM Systems Journal, 30(2):206-209 (1991).
http://www.research.ibm.com/journal/sj/302/ibmsj3002G.pdf,
20 January 2006.

[AFR05] Air Force Research Laboratory. Research Proposal, AF 05.1 Topic
Descriptions, “Active Decoy Circuits.” Wright-Patterson AFB OH,
January 2005.

[Alt05] Altera Corporation. Stratix Device Handbook, Volume 1, version 3.3.
July 2005. http://www.altera.com/literature/lit-stx.jsp, 16 January 2006.

[Ang06] “Akuma Presents…Programming Jargon….”
http://www.angelfire.com/anime3/internet/programming.htm,
17 January 2006.

[AnK96] Anderson, R. and M. Kuhn. “Tamper Resistance – a Cautionary Note,” The
Second USENIX Workshop on Electronic Commerce Proceedings, 1-11.
Oakland CA, 18-21 November 1996.

[AnK97] Anderson, R. and M. Kuhn. “Low Cost Attacks on Tamper Resistant
Devices,” Security Protocols, 5th International Workshop, Proceedings,
Springer LNCS 1361, 125-136. Paris France, 7-9 April 1997.

[BrR96] Brown, S. and J. Rose. “FPGA and CPLD Architectures: A Tutorial,”
IEEE Design and Test of Computers, 42-57 (Summer 1996).

http://smaplab.ri.uah.edu/dmsms02/proceed.htm
http://www.actel.com/documents/DesignSecurityPPT.pdf
http://www.actel.com/products/rescenter/security/solutions/antifuse.aspx
http://www.research.ibm.com/journal/sj/302/ibmsj3002G.pdf
http://www.altera.com/literature/lit-stx.jsp
http://www.angelfire.com/anime3/internet/programming.htm

137

[CEL99] Chisholm, G., S. Eckmann, C. Lain, and R. Veroff. “Understanding
Integrated Circuits,” IEEE Design and Test of Computers, 26-37
(April-June 1999).

[DoD01] United States Department of Defense. DoD News Briefing, Rear Admiral
Craig R. Quigley DASD PA. 3 April 2001.
http://www.defenselink.mil/transcripts/2001/t04032001_t403dasd.html,
17 February 2006.

[EFF98] Electronic Frontier Foundation, “‘EFF DES Cracker’ Machine Brings
Honesty to Crypto Device: Electronic Frontier Foundation Proves That
DES Is Not Secure.” 17 July 1998.
http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980
716_eff_descracker_pressrel.html, 20 January 2006.

[ETS05] Elbaz, R., L. Torres, G. Sassatelli, P. Guillemin, C. Anguille, C. Buatois,
and J.B. Rigaud. “Hardware Engines for Bus Encryption: a Survey of
Existing Techniques,” Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE’05). 3: 40- 45.
7-11 March 2005.

[FAS00] Federation of American Scientists. Military Analysis Network, F-117A
Nighthawk. 23 April 2000.
http://www.fas.org/man/dod-101/sys/ac/f-117.htm, 10 January 2006.

[FBI06] Federal Bureau of Investigation. “The Atom Spy Case.”
http://www.fbi.gov/libref/historic/famcases/atom/atom.htm,
20 January 2006.

[Geo05] GeoConnections Secretariat. Geomatics Canada Intellectual Property,
Glossary of Selected Terms, 16 June 2005.
http://www.geoconnections.org/CGDI.cfm/fuseaction/policySupporting.see
File/id/95/print/Y/gcs.cfm, 17 January 2006.

[GLL05] Gordon, L., M. Loeb, W. Lucyshyn, and R. Richardson. 2005 CSI/FBI
Computer Crime and Security Survey, 2005.

[Gut01] Gutmann, P. “Data Remanence in Semiconductor Devices,” Proceedings of
the 10th USENIX Security Symposium. Washington DC, 13-17 August 2001.

http://www.defenselink.mil/transcripts/2001/t04032001_t403dasd.html
http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_descracker_pressrel.html
http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_descracker_pressrel.html
http://www.fas.org/man/dod�101/sys/ac/f�117.htm
http://www.fbi.gov/libref/historic/famcases/atom/atom.htm
http://www.geoconnections.org/CGDI.cfm/fuseaction/policySupporting.seeFile/id/95/print/Y/gcs.cfm
http://www.geoconnections.org/CGDI.cfm/fuseaction/policySupporting.seeFile/id/95/print/Y/gcs.cfm

138

[Hod05] Hodson, D. Class files, CSCE 687, Advanced Microprocessor Design
Laboratory. Graduate School of Engineering and Management, Air Force
Institute of Technology, Wright-Patterson AFB OH, Summer Quarter 2005.

[HuS99] Huber, A. and J. Scott. “The Role and Nature of Anti-Tamper Techniques
in U.S. Defense Acquisition,” Acquisition Review Quarterly, 355-367
(Fall 1999).

[IBM06] IBM. “IBM PCI Cryptographic Coprocessor.”
http://www-03.ibm.com/security/cryptocards/pcicc/overhardware.shtml,
20 January 2006.

[IEEE93] The Institute of Electrical and Electronics Engineers, Inc. IEEE
Recommended Practice for Futurebus+. IEEE Std 896.3-1993.
13 October 1993.

[J-STD95] The Institute of Electrical and Electronics Engineers, Inc. and Electronic
Industries Association. Trial-Use Standard: Standard for Information
Technology Software Life Cycle Processes: Software Development
Acquirer-Supplier Agreement. J-STD-016-1995. 30 September 1995.

[JYP03] Jain, A., L. Yuan, P. Pari, and G. Qu. “Zero Overhead Watermarking
Technique for FPGA Designs,” Proceedings of the 13th ACM Great Lakes
Symposium on VLSI, 147-152. Washington DC, 28-29 April 2003.

[Kea01] Kean, T. “Secure Configuration of a Field Programmable Gate Array,”
Proceedings of the 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’01), 259-260. 2001.

[Kim05] Kim, Y. “EENG 695 VHDL.” CD-ROM. 2005.

[Lam02] Lambeth, B. “Kosovo and the Continuing SEAD Challenge,” Aerospace
Power Journal, 8-21 (Summer 2002).
http://www.airpower.maxwell.af.mil/airchronicles/apj/apj02/sum02/sum02.h
tml, 10 January 2006.

[Mis01] Mishchenko, A. “Two Level Sum-of-Product Minimization.”
http://www.ee.pdx.edu/~alanmi/research/min/minSop.htm,
17 February 2006.

[MIT01] 6.004 Computation Structures. Lecture notes, Fall 2001.
http://6004.csail.mit.edu/Fall01/handouts/L07-4up.pdf, 17 February 2006.

http://www.airpower.maxwell.af.mil/airchronicles/apj/apj02/sum02/sum02.html
http://www.airpower.maxwell.af.mil/airchronicles/apj/apj02/sum02/sum02.html
http://www.ee.pdx.edu/~alanmi/research/min/minSop.htm
http://6004.csail.mit.edu/Fall01/handouts/L07-4up.pdf

139

[NPS03] Neve, M.; E. Peeters; D. Samyde; and J.-J. Quisquater. “Memories: a
Survey of their Secure Uses in Smart Cards,” Proceedings of the Second
IEEE International Security in Storage Workshop (SISW’03).
31 October 2003.

[New01] NewsMax.com. “Admiral Worried That China Is Holding U.S.
Servicemen.” 2 April 2001.
http://www.newsmax.com/archives/articles/2001/4/1/223300.shtml,
17 February 2006.

[NIS02] National Institute of Standards and Technology. Security Requirements for
Cryptographic Modules. FIPS PUB 140-2. 25 May 2001.
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf,
20 January 2006.

[PaS05] Park, T. and K. Shin. “Soft Tamper-Proofing via Program Integrity
Verification in Wireless Sensor Networks,” IEEE Transactions on Mobile
Computing, 4(3):297- 309 (May/June 2005).

[Pri05] Princeton University, WordNet® 2.1 Copyright 2005 by Princeton
University. http://wordnet.princeton.edu/perl/webwn, 17 January 2006.

[RRC04] Ravi, S., A. Raghunathan, and S. Chakradhar. “Tamper Resistance
Mechanisms for Secure Embedded Systems,” Proceedings of the 17th
International Conference on VLSI Design (VLSID’04), 605-611. 2004.

[Smi01] Smith, C. “China Broke U.S. Military Codes After Taking Plane.”
8 June 2001.
http://www.newsmax.com/archives/articles/2001/6/7/193114.shtml,
17 February 2006.

[SoA93] Soden, J. and R. Anderson. “IC Failure Analysis: Techniques and Tools for
Quality and Reliability Improvement,” Proceedings of the IEEE, 81(5):703-
715 (May 1993).

[Tri01] EP-3E image.
http://members.tripod.com/mwaviation/images/EP-3E%20damaged%20&%
20captured%20in%20China.jpg, 17 February 2006.

[Xil05] Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete
Data Sheet, version 4.5. 10 October 2005.
http://www.xilinx.com/bvdocs/publications/ds083.pdf, 17 February 2006.

http://www.newsmax.com/archives/articles/2001/4/1/223300.shtml
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://wordnet.princeton.edu/perl/webwn
http://www.newsmax.com/archives/articles/2001/6/7/193114.shtml
http://members.tripod.com/mwaviation/images/EP�3E damaged & captured in China.jpg
http://members.tripod.com/mwaviation/images/EP�3E damaged & captured in China.jpg
http://www.xilinx.com/bvdocs/publications/ds083.pdf

140

[Ver01] Verton, D. “FBI spy case highlights insider threat to corporate data,”
Computerworld. 21 February 2001.
http://www.computerworld.com/securitytopics/security/story/0,10801,57889
,00.html, 20 January 2006.

[WGP04] Wollinger, T., J. Guarjardo, and C. Paar. “Security on FPGAs: State-of-
the-Art Implementations and Attacks,” ACM Transactions on Embedded
Computing Systems, 3(3):534-574 (August 2004).

http://www.computerworld.com/securitytopics/security/story/0,10801,57889,00.html
http://www.computerworld.com/securitytopics/security/story/0,10801,57889,00.html

141

Vita

Bradley D. Christiansen was born in Provo, Utah, in May 1971. His parents

relocated soon thereafter to Payson, Utah, where they reared Brad. He graduated from

Payson High School in May 1989. In the Fall of that same year, Brad began his pursuit

toward a bachelor’s degree in electrical engineering at Brigham Young University (BYU)

in Provo, Utah. After his freshman year, Brad served a two-year Church mission to

Massachusetts among Portuguese-speaking people. Following his mission, he continued

his studies at BYU and participated in the Air Force Reserve Officer Training Corps. He

graduated and was commissioned a second lieutenant in the United States Air Force in

December 1995. Brad entered active duty in February 1996 and had several assignments

prior to being assigned to the Air Force Institute of Technology as a master’s degree

student in August 2004.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
23-03- 2006

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
March 2005 - March 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER
2005-088

4. TITLE AND SUBTITLE

Active FPGA Security Through Decoy Circuits

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Christiansen, Bradley D., Major, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/06-15

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/SNTA (AFMC), ATTN: Dr. Robert W. Bennington
 AT-SPI Technology Office,
 2241 Avionics Circle
 WPAFB OH 43433 Phone: 937-320-9068 Email: Robert.Bennington@wpafb.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Field Programmable Gate Arrays (FPGAs) based on Static Random Access Memory (SRAM) are vulnerable to tampering
attacks such as readback and cloning attacks. Such attacks enable the reverse engineering of the design programmed into an
FPGA. To counter such attacks, measures that protect the design with low performance penalties should be employed.

This research proposes a method which employs the addition of active decoy circuits to protect SRAM FPGAs from reverse
engineering. The effects of the protection method on security, execution time, power consumption, and FPGA resource usage
are quantified. The method significantly increases the security of the design with only minor increases in execution time,
power consumption, and resource usage. For the circuits used to characterize the method, security increased to more than one
million times the original values, while execution time increased to at most 1.2 times, dynamic power consumption increased
to at most two times, and look-up table usage increased to at most seven times the original values. These are reasonable
penalties given the size and security of the modified circuits. The proposed design protection method also extends to FPGAs
based on other technologies and to Application-Specific Integrated Circuits (ASICs).

In addition to the design methodology proposed, a new classification of tampering attacks and countermeasures is presented.

15. SUBJECT TERMS
Computer Security, Integrated Circuits, Digital Systems, Reverse Engineering, FPGA, Decoy Circuits

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Yong C. Kim, PhD (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 158 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636 ext 4620; email: Yong.Kim@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Active FPGA Security through Decoy Circuits
	Recommended Citation

	Brad Thesis Final Submitted.pdf
	AIR FORCE INSTITUTE OF TECHNOLOGY
	
	Abstract
	Acknowledgments
	Table of Contents
	
	List of Figures
	List of Tables
	1. Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Scope
	1.4 Research Contributions
	1.5 Thesis Preview

	2. Background
	2.1 Chapter Overview
	2.2 FPGA Defined
	2.3 Definition of Terms
	2.4 Reverse Engineering Tutorial
	2.5 Attacks
	2.6 Protections/Countermeasures
	2.7 Classification of Attacks and Countermeasures
	2.7.1 Introduction
	2.7.2 Previous Works
	2.7.3 Classification of Threats
	2.7.4 Classification of Countermeasure Security Levels

	2.8 Related Circuit Protection Research
	2.9 Summary

	3. Methodology
	3.1 Chapter Overview
	3.2 Problem Definition
	3.2.1 Goals and Hypotheses
	3.2.2 Approach

	3.3 System Boundaries
	3.4 System Services
	3.5 Workload
	3.6 Performance Metrics
	3.7 Parameters
	3.7.1 System
	3.7.2 Workload

	3.8 Factors
	3.9 Evaluation Technique
	3.10 Experimental Design
	3.11 Analyze and Interpret Results
	3.12 Summary

	4. Design Algorithm
	4.1 Chapter Overview
	4.2 Combination Lock
	4.3 Decoy Circuit Generation from Truth and State Tables
	4.3.1 Combinational Circuit
	4.3.2 Sequential Circuit

	4.4 Decoy Circuit Generation from Boolean Equations
	4.5 Decoy Circuit Generation from Gate-level Representation
	4.6 Decoy Circuit Generation from Existing VHDL
	4.7 Decoy Circuit Generation through Partial Scrambling
	4.8 Summary

	5. Results and Analysis
	5.1 Chapter Overview
	5.2 Security
	5.2.1 Combination Lock
	5.2.2 Combinational Circuit
	5.2.3 Sequential Circuit
	5.2.4 VHDL and Partial Scrambling

	5.3 Execution Time
	5.3.1 Combination Lock
	5.3.2 Combinational Circuit
	5.3.3 Sequential Circuit
	5.3.4 VHDL and Partial Scrambling

	5.4 Power Consumption
	5.4.1 Combination Lock
	5.4.2 Combinational Circuit
	5.4.3 Sequential Circuit
	5.4.4 VHDL and Partial Scrambling
	5.4.5 Observations

	5.5 Resource Usage
	5.5.1 Combination Lock
	5.5.2 Combinational Circuit
	5.5.3 Sequential Circuit
	5.5.4 VHDL and Partial Scrambling

	5.6 Combining a Combination Lock with Modified Circuits
	5.7 Summary

	6. Conclusions and Recommendations
	6.1 Chapter Overview
	6.2 Conclusions of Research
	6.3 Significance of Research
	6.4 Recommendations for Action
	6.5 Recommendations for Future Research
	6.6 Summary

	Appendix: Data Analysis Tables
	Bibliography
	Vita

	Brad SF298bdc3.pdf

