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Abstract 

Field Programmable Gate Arrays (FPGAs) based on Static Random Access 

Memory (SRAM) are vulnerable to tampering attacks such as readback and cloning 

attacks.  Such attacks enable the reverse engineering of the design programmed into an 

FPGA.  To counter such attacks, measures that protect the design with low performance 

penalties should be employed. 

This research proposes a method which employs the addition of active decoy 

circuits to protect SRAM FPGAs from reverse engineering.  The effects of the protection 

method on security, execution time, power consumption, and FPGA resource usage are 

quantified.  The method significantly increases the security of the design with only minor 

increases in execution time, power consumption, and resource usage.  For the circuits 

used to characterize the method, security increased to more than one million times the 

original values, while execution time increased to at most 1.2 times, dynamic power 

consumption increased to at most two times, and look-up table usage increased to at most 

seven times the original values.  These are reasonable penalties given the size and 

security of the modified circuits.  The proposed design protection method also extends to 

FPGAs based on other technologies and to Application-Specific Integrated Circuits 

(ASICs). 

In addition to the design methodology proposed, a new classification of tampering 

attacks and countermeasures is presented. 
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ACTIVE FPGA SECURITY THROUGH DECOY CIRCUITS 
 
 

1.  Introduction 

1.1  Motivation 

As an F-117A Nighthawk stealth fighter made its way to its target on 27 March 

1999 [FAS00], enemy forces pieced together its flight path, from takeoff to the target 

area.  Using knowledge from previous Nighthawk strikes, possible returns from low-

frequency radars, and the hint from a dropped bomb, the enemy was able to down the 

aircraft with a surface-to-air missile (cf., Figure 1).  Fortunately, the pilot safely ejected 

and was rescued before being captured.  The decision had to be made whether to destroy 

the remains of the plane to protect its stealth technology [Lam02] and the specialized 

circuits used in the flight control system. 

 
 Figure 1.  Downed F-117A.  Note the HO 
 designation for Holloman AFB, NM, 
 home of the F-117As.  [FAS00] 
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Almost two years later, as a U.S. Navy EP-3E Aires II surveillance aircraft was 

conducting a routine mission in international airspace, a Chinese fighter bumped the 

EP-3E’s wing, necessitating an emergency landing in Chinese territory (cf., Figure 2) 

[New01].  Although the crew was trained to destroy sensitive equipment in the event of 

capture [DoD01], the equipment may not have been sufficiently destroyed before landing 

to preclude Chinese exploitation.  Among the systems that might have been exploited by 

the Chinese was the Link-11 secure communications system [Smi01].  It is also possible 

that classified circuits were also compromised. 

 
 Figure 2.  Captured EP-3E.  Note the chipped propeller 
 blade at (2) and the missing radome at (3).  [Tri01] 
 
 

The above examples illustrate the need to protect critical technologies in military 

systems.  The United States Air Force goes to great lengths to maintain technological 

superiority, avoid technological surprise, and achieve a return on investment from 

advanced technology development.  Protecting integrated circuit designs found in 

weapons systems helps to achieve those goals [AFR05].  Such protection enables a 

weapon system to have a long life without compromising its capabilities.  Additionally, a 

protected design can prevent an adversary from increasing his knowledge base and 

advancing his technology [HuS99]. 
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Field-programmable gate arrays (FPGAs) are increasingly taking the place of 

application-specific integrated circuits (ASICs) due to their flexibility, increasing 

densities [Act02], and lower non-recurring engineering costs.  Reprogrammable FPGAs 

are attractive for applications with requirements that change over time, where changes 

need to be implemented quickly, or for quickly fielding a new product.  As more 

commercial systems are designed with FPGAs rather than ASICs, an increasing number 

of military systems will also contain FPGAs. 

FPGAs have some intrinsic vulnerabilities, including the possibility of extracting 

the circuit design through reverse engineering [AFR05].  In the corporate arena, 

protecting a design on an FPGA from reverse engineering helps maintain a competitive 

edge, market share, and revenues.  Securing a design in a military application maintains 

its technological advantage, prevents the exploitation of a design by an adversary, and 

consequently can save lives. 

1.2  Problem Statement 

The challenge, then, is to devise methods of protecting designs on FPGAs that 

completely eliminate reverse engineering vulnerabilities or, at a minimum, introduce 

delays that make reverse engineering impractical.  A worthwhile new design protection 

method balances increased security against increased implementation costs, decreased 

system performance, and increased operations and maintenance costs [AFR05]. 

1.3  Research Scope 

The purpose of this research is to devise a method to secure integrated circuit 

designs implemented in FPGAs and then evaluate its effectiveness.  A novel process is 
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proposed to protect designs specified using truth or state tables, with Boolean equations 

or that are already implemented in VHDL (Very high-speed integrated circuit Hardware 

Description Language).  The proposed design methodology will produce secure 

application-specific integrated circuits, as well as secure FPGA designs.  This procedure 

is demonstrated using several common circuits.  The power consumption, execution 

times, and resource usage of the original and modified circuits are measured and 

compared. 

1.4  Research Contributions 

This research proposes a new attack classification scheme that combines of cost 

and time.  A countermeasure classification system easily correlated to the attack 

classification is also developed. 

In addition, the research contributes an innovative technique that provides 

significant protection to FPGA and ASIC designs against reverse engineering.  The 

performance penalty to apply this technique to FPGA designs are only minor increases in 

execution time and power consumption.  Increased resource requirements can be 

accommodated with the generally available excess FPGA resources. 

The design methodology is demonstrated using circuits described in various ways 

from Boolean equations to VHDL.  Additionally, the flexibility of the algorithm to 

modify only a portion of a circuit is illustrated. 

1.5  Thesis Preview 

Chapter 2 provides background information on FPGAs and reverse engineering, 

gives definitions, lists and classifies attacks and countermeasures, and presents relevant 
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existing research.  Chapter 3 describes the testing methodology and provides an overview 

of the proposed circuit modification process.  Chapter 4 gives the details of the proposed 

design methodology by illustrating it with several examples.  Chapter 5 presents the test 

results and analyses.  Chapter 6 presents a summary, explains the significance of the 

research, and makes recommendations for further study. 
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2. Background 

2.1  Chapter Overview 

The purpose of this chapter is to provide sufficient background for the reader to 

understand the context of the research.  After covering FPGA architectures, the terms 

tampering and reverse engineering are defined, followed by a brief tutorial about reverse 

engineering.  Finally, FPGA design threats and possible countermeasures to these threats 

are presented, as well as a threat and countermeasure classification scheme.   

2.2  FPGA Defined 

A field-programmable gate array (FPGA) is a computer chip that a user can 

program in the field to accomplish a particular function.  For example, a user could 

program an FPGA to be a general purpose microprocessor or to encrypt or decrypt data.  

FPGAs are generally divided into cells called configurable logic blocks (CLBs), which 

may contain the following: 

• look-up tables (LUTs) to accomplish logic functions, such as 

Y = (B AND D) XOR C, 

• arithmetic logic gates to implement other logic functions or to combine 

outputs from LUTs,  

• multiplexers to select particular outputs, and  

• storage elements (memory) such as D flip-flops. 

Figure 3 shows a portion of a CLB.  CLBs are interconnected with wires that can be 
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 Figure 3.  Altera Stratix Logic Element.  This is one tenth of a  
 Logic Array Block (Altera's nomenclature for a CLB).  [Alt05] 
 
 
programmed to provide specific paths between CLBs or to input or output pins as shown 

in Figure 4 [BrR96, Xil05]. 

Programmable elements are controlled by switches that determine the function of 

that building block.  The switches are generally either antifuses or SRAM (static random 

access memory) elements.  An antifuse is a ‘sandwich’ configuration consisting of an 

insulator between two conductors.  The insulator electrically isolates the conductors when 

the antifuse is not programmed.  When the antifuse is programmed by applying a voltage, 

the insulator provides a low-resistance path between the conductors.  Figure 5 shows an 

unprogrammed antifuse (a) and a programmed antifuse (b).  The boxed area of (b) shows 

where the connection between the two conductors has been made.  Antifuse FPGAs are 
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Figure 4.  Generalized FPGA interconnect.  Adapted from [BrR96]. 

 
 

 
Figure 5.  Cross sections of unprogrammed and programmed antifuses.  [Act06] 

 

one-time-programmable, while SRAM FPGAs are reprogrammable.  The appropriate 

value to either activate or deactivate a particular path or function is stored in an SRAM 

element.  Figure 6 shows SRAM switches configured to connect two logic blocks through 

two interconnections and a multiplexer.  An SRAM element loses its programming 

(theoretically) when power is disconnected.  To program an FPGA, a configuration file 

(also called a bit stream) is usually created in a software application.  This configuration 
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Figure 6.  FPGA with SRAM switches.  [BrR96] 

 

file is downloaded directly to the FPGA or to a memory device (flash memory or a 

PROM – programmable read-only memory).  The memory stores the configuration file 

and programs an SRAM-based FPGA at start-up since the SRAM switches lose their 

state after a loss of power.  The bits in the configuration file dictate the switch settings 

[BrR96, WGP04]. 

2.3  Definition of Terms 

It is important to understand the definitions of the following terms as they are 

used in this research.  

Tampering is defined as activities that secretly, dishonestly, or interfere or intrude 

without consent [Pri05].  Such activities, accomplished through direct physical or remote 

electronic access, include destruction, modification, observation, and theft of integrated 

circuits [IEEE93].  The theft could be of the entire chip for use in another system or of 
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the design for duplication and distribution.  The entire circuit, or just a portion thereof, 

could be destroyed, modified, or observed.  The observation of a circuit, possibly in 

conjunction with modifications, could reveal private information or proprietary 

algorithms, technologies, or processes. 

As the following examples show, tampering has varying levels of difficulty and 

complexity.   

• If physical access is achieved, an entire chip could be stolen, or, with more 

effort, the circuit design itself could be stolen. 

• Modifying an ASIC directly may be more difficult than remotely 

modifying a reprogrammable FPGA.   

• The entire chip could be destroyed or, with more sophisticated tools, a 

specific area of the chip could be targeted for destruction.   

• The leads of a chip could be probed or, at an increased level of 

complexity, the signals within a circuit could be observed. 

Reverse Engineering, a subset of tampering, is defined as methods, processes, and 

analyses used to recreate a design from a final product [Ang06] or other process outputs 

[Geo05], to create a “representation at a higher level of abstraction” [J-STD95], or to 

determine the technology that is used [Geo05]. 

In general, reverse engineering requires more effort and resources than tampering 

alone.  For example, deciphering a secret key in a cryptographic system is tampering, but 

discovering how the algorithm is implemented would be reverse engineering.  Likewise, 

obtaining an unencrypted FPGA configuration file and using it to program other FPGAs 
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would be tampering, while deciphering the configuration file would be reverse 

engineering.  Tampering to observe an integrated circuit is a prerequisite for analyses that 

would use the observations to recreate the design. 

Being a subset of tampering, reverse engineering also occurs at varying levels.  At 

one level, a cryptographic implementation may be discovered.  At another level, the 

fabrication processes and technology used in that implementation might be determined. 

Thus, a secure FPGA design would prevent interference with its operation, 

intrusion into its functionality, its replication, and the determination of its fundamental 

technology. 

Anti-Tampering and Anti-Reverse Engineering are actions taken to hinder or 

prevent tampering and reverse engineering. 

2.4  Reverse Engineering Tutorial 

Since the goal of the proposed design methodology is to produce an FPGA design 

resistant to reverse engineering, it is appropriate to review the stages of a reverse 

engineering process.  The following list of stages, which apply specifically to ASICs, is 

excerpted from [CEL99].  Following this list of stages, the application of these stages to 

FPGAs is discussed. 

According to [CEL99], the following stages of the reverse engineering process 

were identified at the Argonne National Laboratory’s 1998 Reverse Engineering 

Workshop. 

1. Sample preparation:  An ASIC must be cross-sectioned or chemically 

etched to reveal its internal construction.  Since this step is destructive, 
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great care must be taken to avoid damaging the components of interest.  

Several samples may be required, as well as several iterations of slicing or 

etching subsequent layers and the next stage [AnK96]. 

2. Image acquisition:  Once the internal construction is revealed, it must be 

imaged, section by section.  The images of the sections are pieced together 

for a complete image.  A scanning electron microscope may be required, 

depending on the size of the transistors. 

3. Geometric description:  Geometric data is extracted from the image file 

and converted to a geometric data stream.  Information about the 

technology employed to realize the circuit is necessary for the conversion 

of the image to geometric data. 

4. Transistor netlist:  From the geometric data, transistors are identified 

through design-rule checkers. 

5. Gate-level netlist:  Specific gates are identified from collections of 

transistors.  For example, AND or NOR gates may be identified.  Since 

gates generally have the same geometry, pattern-matching enables the 

process to be automated. 

6. Module-level description:  With the gates identified, modules such as 

multiplexers and full adders can be abstracted. 

7. Register-transfer and behavioral descriptions:  Further abstraction 

generates a register-transfer-level representation and eventually a 
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behavioral description.  (In 1999, the technology to produce these 

interpretations was not available.) 

Reverse engineering an FPGA design uses stages similar to those listed above.  If 

the FPGA is antifuse-based, it has to be cross-sectioned and imaged.  For an SRAM-

based FPGA, sample preparation and image acquisition determine the contents of the 

SRAM elements that act as switches.  (The process of discovering the state of an SRAM 

is discussed further in Section 2.5.)  The processes of generating a geometric description 

and a transistor netlist are equivalent to correlating each switch with an FPGA 

interconnect intersection or CLB element.  With that correlation information, gates and 

modules can be composed. 

An FPGA can also be reverse engineered from its unencrypted configuration file.  

In such a case, obtaining the FPGA bit stream is equivalent to the sample preparation 

stage for an ASIC.  A correlation similar to the one above is done between the bits of the 

file and entities on the FPGA, and the process continues with the reconstruction of gates 

and modules. 

2.5  Attacks 

Partly due to its flexibility and its programming method, an FPGA is vulnerable to 

reverse engineering (i.e., the determination of the implemented circuit design).  Various 

methods can derive the functionality of a programmed FPGA.  These methods include 

[WGP04]: 

a. Black Box Attacks:  All possible inputs are applied and the outputs are 

observed as illustrated in Figure 7. 



 

14 

 
Figure 7.  Black Box attack. 

 
 

b. Readback Attacks:  The FPGA’s configuration data is read directly from 

the FPGA. 

c. Cloning Attacks:  An attacker eavesdrops on the transmission of the 

configuration file from memory to the FPGA and uses the stolen file to program a clone 

FPGA as shown in Figure 8. 

 
Figure 8.  Cloning attack. 

 
 

d. Reverse-Engineering an unencrypted configuration:  This is done after 

attack (b) or (c) above. 

e. Side-Channel Attacks:  These attacks include power consumption 

analysis, timing analysis, electromagnetic (EM) radiation analysis, and injecting faults to 

reveal functionality.  Figure 9 shows the power consumption plot of a Data Encryption 

Standard implementation, which clearly shows 16 rounds of the algorithm. 
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Figure 9.  Power consumption plot of DES implementation.  [RRC04] 

 

f. Physical Attacks: Since SRAM cells are not entirely erased when power is 

disconnected, physical attacks via accessing them include mechanical probing, accessing 

the test scan path, removing layers of a chip, and using electron microscopes.  However, 

physical attacks against antifuse FPGAs do not seem practical since much of the chip 

must be destroyed by cross-sectioning or by removing multiple layers to reveal a single 

antifuse connection. 

The methods for determining the value that is or was in an SRAM element 

deserve additional discussion.  Non-destructive methods include: 

• IDDQ (quiescent power-supply current) testing measures the supply current 

to a device after applying a series of test vectors.  An abnormal 

measurement would indicate that the device has been stressed and that its 

operating characteristics have changed [Gut01]. 

• Measuring the substrate and gate currents observes the amount of stress a 

device has experienced [Gut01]. 
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• Using the circuitry intended for device testing, such as JTAG boundary 

scan [Gut01]. 

• Voltage contrast imaging detects logic levels and voltages through the 

examination of the differences in the brightness of the voltage intensity 

image [SoA93]. 

One invasive technique uses a focused ion beam (FIB) workstation to drill minute access 

holes for probing deeply buried entities.  The FIB workstation can also inject metal probe 

points for easier device examination [Gut01].  Although the literature does not describe 

the use of these methods of attack against SRAM FPGAs, it is conceivable that they 

could be used to determine the programming of such a device [WGP04]. 

The attacks that could also be used against ASICs include black box, side-

channel, and physical attacks [RRC04].  For example, with the destruction of only six 

chips, an Intel 80386 was reverse engineered in two weeks using the specific physical 

attack described in the Reverse Engineering Tutorial section above [AnK96].  Figure 10 

illustrates the third stage in the reverse engineering process, where an integrated circuit 

image is converted to a geometric data format such as Graphic Design Station II (GDSII). 

 
Figure 10.  Reverse engineering an ASIC.  [ACA02] 
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2.6  Protections/Countermeasures 

There are various approaches to protect a design on an FPGA or to mitigate the 

effects of its theft and reproduction.  Policy and law protections such as patents and 

copyrights allow private companies to sue an alleged thief for damages.  To aid in 

proving ownership in the event a design is stolen, the original producer might embed a 

watermark in the design [JYP03].  Export control laws attempt to maintain a nation’s 

technological advantage.  Security classifications and laws that prescribe punishments for 

espionage and treason also attempt to protect a nation’s technological capital.  If 

classified knowledge is compromised, a non-disclosure agreement (NDA), which is 

generally executed to obtain a security clearance, may have been breached.  NDAs are 

also signed before a manufacturer grants access to its FPGA bit stream design [WGP04] 

or to the mapping between switches and function elements. 

If these policy protections are subverted, months or years could elapse before a 

theft is discovered, by which time significant damage may have already been done.  Such 

was the case with atomic bomb secrets stolen from Los Alamos and given to the Soviet 

Union [FBI06].  In the corporate arena, by the time such a theft is discovered, a 

company’s market share may have already been lost to a company in a foreign nation that 

not only refuses to enforce patents but also encourages such piracy.  Likewise, a 

disgruntled former employee of Company X could begin employment with Company Y 

and describe how a watermark might be removed from a design stolen from Company X. 

With these subversions, stronger protections are warranted for high-value assets.  

Encryption has long been utilized to protect messages.  However, even encryption 
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algorithms will eventually be cracked as was the case of the Data Encryption Standard 

[EFF98].  As described in FIPS 140-2, there are also physical protections such as  

containers, tamper-evident coatings, and circuitry that detects and responds to 

unauthorized access [NIS02].  One example of a FIPS 140-2 Security Level 4 device is 

the IBM 4758 PCI Cryptographic Coprocessor [IBM06].  The circuitry of this device is 

surrounded by a mesh that detects physical penetrations and abnormal environmental 

conditions in parameters such as temperature and radiation.  The response to such an 

attack is the erasure of critical secret data. 

There are countermeasures stronger than policy that can protect the design of a 

circuit programmed into an FPGA.  These include [WGP04]: 

a. The complexity of state-of-the-art FPGAs, which mitigates a black box 

attack. 

b. A security bit can prevent a readback attack.  However, it is possible that 

fault injection may defeat this countermeasure.  Applying unusual voltages or voltage 

transients could reset the security bit [AnK96].  If fault injection is a possibility, the 

FPGA should be placed in a secure environment. 

c. Encrypting, as in Figure 11, and/or storing the configuration file in 

memory resident on the FPGA, as in Figure 12, can prevent cloning attacks.  Encryption 

also prevents reverse engineering a file.  (The devices described in [Xil05], however, can 

decrypt an encrypted configuration file.) 
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Figure 11.  Use of an encrypted configuration file.  Adapted from [Kea01]. 

 
 

 
Figure 12.  On-FPGA PROM. 

 

d. Techniques to prevent side-channel attacks include inserting random 

values to mask secret information, smoothing power traces, and changing logic at the 

transistor level. 

e. To prevent physical attacks on SRAM FPGAs, memory retention should 

be reduced as much as possible through methods such as periodically inverting the bits, 

applying an opposite current, inserting dummy cycles, or rearranging the data using 

dynamically reconfigurable FPGAs as in Figure 13. 
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Figure 13.  Rearranging design modules. 

 
 

Table 1 summarizes the attacks and countermeasures discussed above  Though 

the attacks and countermeasures listed are not necessarily specific to FPGA designs, 

some of the methods have been used against or on underlying FPGA technologies, such 

as SRAM.  Attacks and countermeasures with respect to embedded systems have also 

been examined [RRC04]. 

2.7  Classification of Attacks and Countermeasures 

2.7.1  Introduction 

An attacker who tampers with an integrated circuit can harm both the developer 

and the user of the circuit.  If the effects of tampering are widespread, the developer is 

damaged by a reputation for circuit malfunctions.  Furthermore, revenue could be lost if 

the design is copied and distributed, since the developer does not recoup the research and 

development costs.  Likewise, the user may be denied service due to destructive 

tampering of a circuit or lose information that was supposedly secure due to observation 

of a circuit.  In security and defense applications, lives could be lost due to tampering or 

reverse engineering.  A tampering attack could result in a malfunction that causes a 
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Table 1.  Attacks and countermeasures.  [WGP04] 

Attack Used against 
FPGAs? 

Countermeasure Available in 
commercial 

FPGAs? 
Black Box Yes Inherent FPGA size and 

design complexity 
Yes 

Readback 
(Security bit 
possibly overcome 
with fault injection) 

Yes 
(Not 
specifically) 

Employ a security bit 
(Secure environment) 
See 1 and 2 below 

Yes 
(User-specific) 
See 1 and 2 below 

Cloning Yes 
Reverse-Engineer 
the configuration 
file 

Yes 
1. Encrypt the 
configuration file 
2. Store the 
configuration file in 
FPGA 

1. Yes 
2. Varies 

Physical Little 
specifically 
published 

Reduce the memory-
retention effects  

Not specifically 

Side-Channel Yes A. Insert random values 
B. Smooth the power 
traces 
C. Change the logic 

Not specifically 

 

vehicle to crash or the loss of the designed technological advantage of a weapon or 

countermeasure. 

Countermeasures are employed to thwart such tampering attacks.  These methods 

vary in cost and effectiveness.  Thus, an understandable classification is needed to apply 

appropriate protection mechanisms against perceived threats.  However, there are no 

universally accepted classifications of threats and protection levels for integrated circuits.  

In fact, there is no IEEE standard that addresses either of these classifications.  This 

section presents a classification of tampering threats and a corresponding classification of 

protection levels. 
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In [ADD91], Abraham et al. propose a classification of attackers based on the 

attacker’s knowledge and available resources.  They also present a security level scheme 

that appears to be loosely correlated with the attacker classification.  Anderson and Kuhn 

apply the attacker classification to specific attack examples in [AnK96] and [AnK97].  

Actel Corporation in [Act02] also references [ADD91] to compare the security offered by 

their FPGAs to that offered by other manufacturers’ devices. 

The following subsection explains the IBM classifications and describes the usage 

of these classifications in other applications.  Threats against ASICs and FPGAs are also 

presented and classified.  Examples of countermeasures are given, along with a security 

level classification correlated to the threat classification.  Alternate classifications based 

on the time required to crack a design are also given. 

2.7.2  Previous Works 

To define the potential physical threats against the Transaction Security System, 

attackers are categorized as [ADD91]: 

Class I (clever outsiders)—They are often very intelligent but may have 
insufficient knowledge of the system.  They may have access to only moderately 
sophisticated equipment.  They often try to take advantage of an existing 
weakness in the system, rather than try to create one. 
 
Class II (knowledgeable insiders)—They have substantial specialized technical 
education and experience.  They have varying degrees of understanding of parts 
of the system but potential access to most of it.  They often have access to highly 
sophisticated tools and instruments for analysis. 
 
Class III (funded organizations)—They are able to assemble teams of specialists 
with related and complementary skills backed by great funding resources.  They 
are capable of in-depth analysis of the system, designing sophisticated attacks, 
and using the most sophisticated analysis tools.  They may use Class II 
adversaries as part of the attack team. 
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Security levels which correlate to the resources (time, money, knowledge) required to 

conduct an attack on a system are also defined.  Table 2 summarizes their security levels. 

Table 2.  IBM security level scheme.  Adapted from [ADD91]. 

Definition 
Security 

Level Knowledge/Skills Tools/Equipment 
Tool or  

Total Cost Notes 
ZERO —— —— —— No special 

security features 
LOW —— Common lab or 

shop tools —— Some security 
features 

MODL Some specialized 
knowledge 

More expensive $500 - $5,000 
(tools) —— 

MOD Some special 
skills and 
knowledge 

Special tools and 
equipment 

$5,000 - 
$50,000 (tools) 

Attack time-
consuming, but 
successful 

MODH Special skills and 
knowledge; 
adversarial team 
effort 

Available, but 
expensive to buy 
and operate 

$50,000 - 
$200,000 or 
more 

Attack could be 
unsuccessful 

HIGH Team of 
specialists 

Highly 
specialized, 
which may have 
to be built 

$1,000,000 or 
more 

Known attacks 
unsuccessful; 
attack success in 
question 

 

Even though both an attacker classification and a protection level scheme are 

defined, the correlation between the two is not clear.  It appears that the LOW security 

level corresponds to a Class I attacker, the MOD security level could correspond to a 

Class II attacker, and the HIGH security level corresponds to a Class III attacker.  In 

addition, the security levels MODL and MODH do not clearly fall between the outsiders 

of Class I and the insiders of Class II and between the insiders of Class II and the funded 

organizations of Class III, respectively.  Thus, how is an outsider classified who is more 

than clever but less than a funded organization? 
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The IBM attacker categorization has been used to classify several example attacks 

[Ank96].  The IBM scheme defines Class I as the application of low and high voltages, 

and power and clock transients, which can be applied non-invasively.  For example, 

directing UV light at the security lock cell of an EPROM, or removing a smartcard chip 

with a knife, nitric fuming acid, and acetone are Class I attacks.  A Class II attack 

removes each chip layer, imaging it using the Schottky effect and an electron beam, and 

reconstructing the collection of images with image processing software.  Another Class II 

attack uses a focused ion beam (FIB) workstation to actively attack a chip.  Although the 

use of the FIB workstation is considered Class II, a Class I attacker could rent time on 

such machines.  A Class III attacker is one whose resources are such that “chip contents 

cannot be kept from” the attacker [AnK96]. 

Class distinctions do not hold when an attacker can access equipment available 

predominantly to an attacker of a higher class.  For example, a Class I attacker can rent 

time on a FIB workstation, a tool predominantly available to a Class II attacker.  

Furthermore, the insider threat is not considered, and Class II is also applied to academics 

who apparently have no privileged information. 

Actel Corporation references [ADD91] in [Act02], but it is not entirely clear 

whether the reference is to IBM’s attacker classification or security level scheme.  Actel 

definitions of security levels are close, though not exact, restatements of IBM’s security 

level definitions.  However, Actel uses numbers and + or - for the security levels rather 

than names as IBM did.  In addition, the words “Class” and “Level” are interchanged.  

With this modification of IBM’s attacker classification and/or security level scheme, 
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Actel claims that conventional SRAM FPGAs are Class or Level 1, SRAM FPGAs with 

DES encryption are Level 2, and Actel products are Level 2+.  A Level 3 example is not 

given, and the insider threat is not addressed. 

[ETS05] applies the IBM classification to attackers of bus encryption hardware.  

The classification is presented in the context  of smartcard memories but was used only 

sparingly [NPS03].  Others assert the IBM classification should not be used to describe 

the tamper-proof level of wireless sensor networks, but rather, the level should be defined 

in terms of network availability [PaS05]. 

Attacks have also been categorized using privacy, integrity, or availability attacks 

[RRC04].  Another classification divides attacks among physical, side-channel, and 

software attacks.  Countermeasures are presented and correlated with the second attack 

classification, but they are not classified with a security level [RRC04]. 

These previous classifications have obstacles to their understandability and use.  

Classifying the insider threat, as well as the outsider with moderate resources but no 

private information, has been a challenge.  Also problematic has been the distinction 

between classes when a member of one class has access to tools of another class.  If both 

attack/attacker classification and countermeasure security level classification are given, 

the correlation between them is generally absent.  The attacker classification is often used 

to determine a security level.  Whatever the obstacles, there are not universally accepted 

classifications of threats and countermeasure security levels and a correlation between the 

two. 
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2.7.3  Classification of Threats 

To overcome the shortfalls of the previous classifications, the following matrix 

categorization is proposed.  This categorization uses the attacks, not attackers, based on 

the resources and time required to successfully accomplish the attack.  In this way, the 

dissolution of classes does not occur when a member of one class uses tools of another.  

The proposed classification also accounts for the insider threat and the outsider with 

moderate resources but no inside knowledge.  Finally, a correlation can easily be made to 

protection levels, as discussed in the next subsection. 

It is appropriate to classify the attacks and not the attackers.  For example, a 

bullet-proof vest should work whether a gun is fired by a child or a senior citizen.  An 

automatic teller machine should thwart an attack whether perpetrated by a drug addict or 

by the mafia. 

Attacks are classified according to both cost and time, and the classification is 

depicted graphically in Figure 14.  In some respects, cost and time can be considered 

independent.  However, since the application of additional resources (personnel, 

equipment, etc.) at an additional cost may reduce the time required for a successful 

attack, this relationship is indicated by the blue arrow in Figure 14 that shows that as the 

cost increases, time may decrease.  Insider knowledge is removed as a class, but this 

variable is depicted by the three orange arrows in Figure 14, indicating that such 

information may reduce the cost, time, or both.  Insider knowledge may include 

information about designs and/or processes.  The potential for damage from an insider 

information-enabled attack is increased due to the access available [Ver01].  According  
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Figure 14.  Matrix classification. 

 
 
to the 2005 CSI/FBI Computer Crime and Security Survey, incidents from the inside 

occur about as often as incidents from the outside [GLL05]. 

A qualitative explanation of the cost levels follows. 

• Low-cost attack:  A successful attack requires limited resources 

(equipment, knowledge, and personnel).  The attack could be executed 

within an academic laboratory containing only ordinary equipment or 

possibly at home.  Examples of low-cost attacks include black box, fault-

injection [AnK96], protocol failure [AnK97], and smartcard physical 

attacks [AnK96].  Assuming the appropriate access is obtained, perhaps by 

the end user, reading back and cloning an unencrypted bitstream could 

also cost very little. 

• Medium-cost attack:  Moderate resources are required for a successful 

attack.  Specialized academic and corporate laboratories probably contain 

the required equipment.  More people can be applied to the attack, since 
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the benefits are expected to be greater.  Power and timing analyses, 

determining SRAM contents, and ASIC reverse engineering are examples 

of medium-cost attacks. 

• High-cost attack:  These attacks entail vast resources, such as are available 

to governments and organized crime.  Many people, perhaps in multiple 

locations engage in the attack, since success has implications for years to 

come.  Funds could also be spent to acquire insider knowledge.  Examples 

of these attacks include reverse engineering a bitstream and physically 

attacking an antifuse FPGA [WGP04]. 

 

The time categories are described next. 

• 0-5 years:  Little time is required or invested for an attack to ensure an 

appropriate return on the investment.  This timeframe provides the highest 

profit margin if an attack is successful.  Reading back and cloning an 

unencrypted bitstream, given the requisite opportunity, requires little time.  

For example, an Intel 80386 was reverse engineered in two weeks. 

• 5-50 years.  Despite the length of time required for success, an attack may 

proceed based on the expected payoff.  Reverse engineering a bitstream 

could take longer than 5 years.  Given a large enough design on an FPGA, 

more than five years could be expended to determine the values remaining 

in the SRAM elements that were programmed. 
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• 50+ years.  Weapons systems generally have life spans of less than 50 

years, so providing protection against a 50-year-long attack provides a 

comfortable measure of security.  A black box attack could last longer 

than 50 years, if the circuit has a great amount of inputs, has bi-directional 

inputs and outputs, and is constructed with state machines [WGP04].  

Fifty years or more could be required to locate 2-5% of millions of 

antifuses [Act06]. 

2.7.4  Classification of Countermeasure Security Levels 

From the above categorization of threats, a classification of security levels can be 

easily made.  The security level of an anti-tampering action corresponds to the 

classification of the attack.  For example, a countermeasure that ensures an attack 

requires more than fifty years for success is a 50-plus-year security measure, and a 

countermeasure is High-cost if it entails great expense for a successful attack.  In this 

way, the security level of an action correlates to the resources and time required for a 

successful attack.  This meets the goal of Anderson and Kuhn: “the level of tamper 

resistance offered by any particular product can be measured by the time and cost penalty 

that the protective mechanisms impose on the attacker” [AnK97]. 

An example of a Low-cost countermeasure is the use of complex FPGAs and 

designs to prevent black box attacks.  Another example of a Low-cost countermeasure is 

setting the security bit to prevent readback.  If the security bit can be compromised with 

fault injection and a secure location houses the design, Medium cost or higher could be 

imposed depending on the location. 
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Storing the FPGA configuration file in an on-FPGA PROM is another example of 

a Medium-cost security measure, since attacks similar to SRAM physical attacks would 

be required to extract the file from the PROM. 

One High-cost security measure is bitstream encryption to prevent cloning and 

reverse engineering.  Rearranging design modules to frustrate SRAM physical attacks is 

another potentially High-cost measure, since more resources would have to be applied to 

discover the scarce traces of memory contents. 

In addition to the higher cost of attacking an SRAM FPGA that uses dynamic 

reconfiguration, the length of time required could be greater than five years.  Another 

countermeasure that could impose an attack length of greater than five years is 

configuration file encryption. 

Employing on-FPGA PROM for configuration file storage may provide less than 

a five-year delay.  A security bit to prevent readback may also provide protection for less 

than five years.  However, a secure location for placing an FPGA could be designed to 

repel unauthorized entry for at least five years, if not fifty. 

Although the use of complex designs and FPGAs is low-cost, it requires a 

significant amount of time to perform a black box attack against such a design or FPGA.  

Due to this time constraint, an attacker would probably consider an attack with a lower 

time requirement. 

Security measures designed to require extensive resources and a considerable 

amount of time to break include the protection of nuclear weapons [AnK96].  It would be 

a great benefit to humanity for those security measures to be updated when necessary and 
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to succeed even when faced with an attack from within.  This highlights the need for a 

classification system to ensure designs are adequately secured against perceived threats. 

The leak of insider information of appropriate quality and quantity will decrease 

the security level of a design.  A design considered to be of High cost and require ten 

years to crack could be reduced to medium cost or require only four years to crack, or 

both, with the proper knowledge.  Steps to mitigate the effects of unauthorized disclosure 

of proprietary information include the compartmentalization of knowledge among 

developers and restricting of access to the development of products.  Expending 

additional resources for an attack may also reduce the time required for success. 

The proposed classification provides a mapping of attacks and countermeasures 

so that appropriate measures can be employed to counter perceived threats.  Efforts to 

refine the time and cost estimates of particular attacks are still needed.  As Anderson and 

Kuhn state, “Estimating these penalties is clearly an important problem, but is one to 

which security researchers, evaluators and engineers have paid less attention than perhaps 

it deserves” [AnK97]. 

2.8  Related Circuit Protection Research 

Current research in circuit protection deals mostly with methods other than 

modifying the circuit itself, such as encryption and physical access prevention.  A review 

of the literature has not revealed any work in decoy circuits for protection.  As far as can 

be ascertained, this research is the first of its kind dealing with the use of decoy circuits to 

protect digital circuit designs. 
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2.9  Summary 

This chapter contains background information concerning FPGAs, attacks against 

these devices, and countermeasures that can protect these devices from the attacks.  The 

architecture and programming of FPGAs are described.  Definitions of tampering and 

reverse engineering are presented.  Reverse engineering is further explained with a 

tutorial.  Attack examples and countermeasures are listed and illustrated.  Finally, a 

framework for classifying the attacks and countermeasures is offered. 
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3.  Methodology 

3.1  Chapter Overview 

This chapter presents the methodology for implementing and testing the proposed 

anti-reverse engineering scheme.  The results of the tests performed characterize the 

effects of the design modification procedure in terms of security, FPGA resources 

consumed, execution time, and power usage.  An overview of the actual design 

modification process is given.  The details of the process are described in Chapter 4. 

3.2  Problem Definition 

3.2.1  Goals and Hypotheses 

This research proposes a new scheme of anti-tampering through decoy circuits, 

and determines the effect of a proposed design modification methodology on the security, 

execution time, power consumption, and chip area utilization of a given circuit.  Multiple 

circuits are produced using this methodology.  The security, execution time, chip area 

utilization, and power consumption of the resultant circuits are measured and compared 

with the original circuits’ values of these parameters. 

The security of the circuits is defined as the time required to conduct a brute 

force, black box attack on the FPGAs.  This time is calculated by dividing the number of 

required cycles by a frequency and the appropriate scaling factor to express a value in 

years.  To calculate the number of cycles required for an original circuit, all possible 

input combinations are considered.  Thus, if m is the number of original inputs and S is 

the number of sequential elements in the circuit, the number of required cycles for the 

original circuit is 2m+S (S=0 for a combinational circuit).  The number of cycles required 
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to conduct a black box attack on a modified design is the sum of half the number of 

possible input combinations to a Combination Lock (explained later) and the product of 

half the number of input combinations to the modified circuit and the possible output 

combinations in length equal to the total number of outputs.  That is, the cycles required 

to conduct a black box attack on a modified design (Amod) is 

)length  of nscombinatiooutput )(2(
2
1

2
1

mod qnlA pSm ++= ++   (1) 

where l is the number of Combination Lock input combinations, p is the number of 

additional inputs, n is the number of original outputs, and q is the number of additional 

outputs.  The number of cycles required for a modified combinational circuit is expected 

to be at least 4 times the cycles required for an original circuit (of 3 total inputs and 2 

total outputs), in addition to 1.68x107 cycles for the smallest combination lock circuit 

considered.  With increases in the numbers of inputs, outputs, and copies added to a 

circuit, the security is expected to increase exponentially.  An increase in the number of 

possible combination lock input combinations, due to increases in the numbers of inputs 

and states, is also expected to exponentially increase the security of a modified circuit. 

A slight increase is expected in the execution time of the resulting FPGA designs.  

However, this increase is not expected to be worse than approximately ten gate delays – 

one or two LUTs.  This translates to a minor clock frequency decrease, or only one clock 

cycle penalty at the original circuit’s frequency.  This increase is mainly due to a 

multiplexer introduced into the modified circuit.  The execution time is expected to 

increase by nearly a constant amount over an original circuit’s execution time, even with 

increases in the numbers of added inputs, outputs, and circuit copies. 
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Both the area and power consumption are expected to increase less than 

approximately 400% when adding one extra input and one copy.  Adding an input would 

suggest a doubling of the area of the original circuit.  Making a copy of the circuit with 

an extra input would suggest a further doubling, for a total of a 400% increase in area, 

and thus power consumption.  However, logic functions are implemented in FPGA look-

up tables (LUTs), and one LUT in the original design may have the capacity to accept the 

extra input without consuming another resource.  As inputs, outputs, and copies are added 

to a circuit, the area and power are expected to increase linearly. 

3.2.2  Approach 

Various steps are taken in the methodology to ensure a secure FPGA design.  

These reduce an FPGA design’s susceptibility to reverse engineering.  However, the 

increased operation costs are reasonable for the security achieved as a result of the 

methodology. 

The design flow is illustrated conceptually in Figure 15.  An original circuit is 

copied multiple times and scrambled.  (Although the word ‘copy’ is used, the scrambled 

circuits are not exact duplicates of each other.)  Scrambling adds extraneous inputs and 

outputs.  The scrambled circuit produces correct outputs based on predetermined 

extraneous inputs.  For example, if two extraneous inputs are added, then Scrambled 

Copy 1 may only produce the correct value for output 2 when the extraneous input is 102, 

and Scrambled Copy 2 may only produce the correct value for output 2 when the 

extraneous input is 002, etc.  The extraneous output values are chosen to confuse and 

produce multiple patterns so the original output pattern is hidden among many possible  
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Figure 15.  Methodology design flow. 

 
 
patterns.  The scramblings are such that all original outputs are produced for a given 

extraneous input combination (for example, 002 or 102), although each correct output may 

be produced by a different copy.  To select the correct output, additional Selection Inputs 

and a multiplexer (MUX) are added.  The Selection Inputs determine the copy from 

which to choose a particular output.  The Selection Inputs are synchronized at runtime 

with the extraneous inputs.  For example, when the extra input is 102, the Selection Inputs 

cause the MUX to select output 2 from Scrambled Copy 1 and output 1 from Scrambled 

Copy 2.  A Combination Lock state machine (inspired by [MIT01]) is added to increase 

the effort needed in a black box attack.  The correct sequence of inputs to the 

Combination Lock causes the assertion of a signal that enables the MUX.  Finally, the 
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Scrambled Copies are intertwined to produce confusion, subject to the constraint that the 

intertwining does not exceed the expected increase in execution time stated above.  

Intertwining is achieved by placing elements of one circuit among elements of others and 

by crossing paths.  Explicit intertwining is not investigated in this study.  Implicit 

intertwining may occur as the design software allocates FPGA resources.  For example, 

the design application may assign portions of different circuits to the same CLB. 

The proposed methodology is for designs that can be described using truth tables 

or Boolean equations, designs with gate-level representations, designs already written in 

VHDL, or designs which require only a portion of the design to be modified. 

The various steps of the design flow aid in countering the attacks listed in 

Chapter 2.  Table 3 lists the design steps and the attacks they counter.  Although the 

readback and cloning attacks are not directly countered with the design methodology, 

understanding a reverse-engineered configuration file obtained with those two attacks is 

thwarted.  Gaining knowledge of the scramblings, the input synchronization, and the 

correct Combination Lock key is a significant challenge. 

Even though significant security for a design is attained with the methodology, 

the research hypothesis is the performance impacts are reasonable.  To determine this, the 

security, execution time, power consumption, and chip area utilization values of several 

original circuits are gathered and processed according to the methodology.  The 

parameter values of the resulting circuits are collected and compared with the original 

circuits’ values. 
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Table 3.  Design steps and attacks they counter. 

Attacks 

Design Step 
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Notes 
Copying   X X Power and EM analyses 

and probing more tedious. 
Scrambling 

X X X X 

More inputs and outputs increase 
reverse-engineering time and 
number of combinations to try. 
Power and EM analyses and 
probing more difficult. 

Selection X X   Sequencing increases complexity
of analysis. 

Combination 
Lock X  X  Prevents operation.  Time- 

consuming to physically disable. 
Intertwining   X X Power and EM analyses and 

probing more difficult. 
 

3.3  System Boundaries 

Figure 16 depicts the system under test, which consists of the methodology and an 

FPGA.  The component under test (shaded in Figure 16) is the methodology – the 

Christiansen-Kim Security Algorithm for FPGAs (ChKSAF, pronounced “check safe”).  

The input to the system is a circuit, and the output is a circuit modified according to the 

algorithm. 

 
Figure 16.  System and component under test. 
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The study is limited to SRAM FPGAs, but the methodology easily extends to 

antifuse FPGAs, and should extend to ASICs as well.  Since the goal of this research is to 

produce a viable design methodology that yields a significant increase in security without 

major adverse consequences to speed, power, and area usage, small and simple circuits 

are processed with the algorithm to keep the problem manageable.  Although the 

proposed design modification algorithm can be automated, which study is not herein, the 

modifications are produced by hand. 

3.4  System Services 

The general service provided by the system is a secure FPGA design that 

functions as the original circuit does.  The system either fails or succeeds at producing a 

design that functions correctly.  If the modified circuit does not perform correctly, it is 

not worth placing in a system since it won’t produce the correct output.  Only 

successfully functioning designs are considered in this study. 

With a successfully functioning design, the system may succeed or fail at 

providing acceptable security, execution time, chip area utilization, and power 

consumption.  Table 4 lists the combinations of these outcomes with the metrics listed in 

order of importance from left to right.  The color code indicates the number of successes 

in the outcome combinations – blue for four success, green for three successes, yellow for 

two successes, orange for one success, and red for no successes.  When there is a failure 

in any of the four measurements, the designer must decide whether there is sufficient 

excess from the successful metrics that can be traded to the initially unsuccessful metrics 

to meet their goals.  Alternatively, the designer could implement system changes that  
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Table 4.  Failure mode combinations. 

Security Execution time Power Area Outcome 
Success Success Success Success Ideal 
Success Success Success Failure Trade space or system changes?
Success Success Failure Success Trade space or system changes?
Success Failure Success Success Trade space or system changes?
Failure Success Success Success Trade space or system changes?
Success Success Failure Failure Trade space or system changes?
Success Failure Success Failure Trade space or system changes?
Success Failure Failure Success Trade space or system changes?
Failure Success Success Failure Trade space or system changes?
Failure Success Failure Success Trade space or system changes?
Failure Failure Success Success Trade space or system changes?
Success Failure Failure Failure Trade space or system changes?
Failure Success Failure Failure Trade space or system changes?
Failure Failure Success Failure Trade space or system changes?
Failure Failure Failure Success Trade space or system changes?
Failure Failure Failure Failure Failure 

 

accept the particular goal failure, such as allowing a longer delay from the circuit.  

Without acceptable security in a modified circuit, the system must reprocess the original 

circuit with different parameters to achieve the desired security.  When the security goal 

is not met, but there exists sufficient excess from other goals’ successes, the algorithm 

may be modified to achieve security success along with the other successes.  When the 

security goal has been met and other goals have not been met, trading excess security (if 

available) for the other parameters may be possible.  A failure to meet the execution time 

goal may render the modified circuit useless, even though acceptable security is provided.  

A failure to meet the power consumption goals may require additional system power 

supplies and cooling, or less scrambling, which could in turn affect the security.  Failing 

to meet the area constraint may indicate the need for a larger FPGA or the need to 

partition the circuit between FPGAs (which the ChKSAF algorithm does not address).  
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The area and power measurements are closely correlated, so a success/failure in one is 

likely a success/failure in the other. 

3.5  Workload 

The primary workload submitted to the system is two small, simple circuits 

described by their truth and state tables – one combinational and one sequential.  This 

primary workload characterizes the effects of additional copies, inputs, and outputs on a 

design.  Though small and simple, these circuits are likely components of any system 

design.  Thus, they will demonstrate the soundness of the methodology. 

Two additional workloads are submitted to the system.  One is a small and simple 

circuit already written in VHDL to demonstrate the algorithm’s use on an existing VHDL 

design.  The other implements the function cbaresult +×=  to illustrate the 

methodology’s partial scrambling. 

3.6  Performance Metrics 

The performance of the system is evaluated by calculating the security, and 

simulating the execution time, chip area utilization, and power consumption of the 

original and modified circuits.  The security is the time required to conduct a brute force, 

black box attack on the FPGAs.  The numbers of original inputs and outputs, the numbers 

of extraneous inputs and outputs added, the number of states in the Combination Lock, 

and the number of inputs to the Combination Lock are variables in this calculation.  

Execution time is collected to show the methodology does not produce a significant 

increase (more than the delay through two LUTs) in execution time compared to the 

original circuits.  Chip area is measured to estimate whether a design fits on a given 
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FPGA and is reported in the units provided by the FPGA software that converts a circuit 

schematic and/or VHDL code to an FPGA programming file.  Power consumption is 

measured so a designer can decide if its level is acceptable or not. 

3.7  Parameters 

3.7.1  System 

The following are the parameters identified for the system: 

a. The number of copies of the original circuit. 

b. The number of additional inputs to add to the circuit copies (for added 

confusion). 

c. The number of additional outputs to add to the circuit copies (for added 

confusion). 

d. The number of states in the Combination Lock state machine. 

e. The number of additional inputs for a Combination Lock key. 

f. The FPGA design software. 

Power consumption and area are significantly affected by the number of copies 

made.  Security is expected to be exponentially sensitive to the numbers of additional 

inputs and outputs added and the number of states in the Combination Lock.  The FPGA 

design software may affect the execution time, power, and area metrics, although those 

affects are not known. 

3.7.2  Workload 

The following are the parameters identified for the workload: 

a. The number of gates. 
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b. The number of flip-flops. 

c. The number of feedback loops. 

d. The number of circuit inputs. 

e. The number of circuit outputs. 

f. The length of the critical path. 

g. The area used. 

h. The power consumed. 

Even though workload parameters f, g, and h are mainly determined by 

parameters a through e, they are listed above for completeness.  The numbers of inputs 

and outputs significantly affect the security of a circuit.  Power consumption and area 

utilization are significantly affected by the numbers of gates and flip-flops.  The numbers 

of gates and flip-flops also considerably affect execution time.  Scrambling, and thus 

security, is sensitive to workload parameters a, b, and c. 

3.8  Factors 

The factors, selected from the lists of parameters, that will be varied in the 

primary workload are: 

a. The number of copies made of the original circuit, with two levels – 2 copies 

and 4 copies. 

b. The number of inputs added to the circuit copies (for added confusion), with 

two levels – 1 extra input and 2 extra inputs. 

c. The number of outputs added to the circuit copies (for added confusion), with 

two levels – 1 extra output and 2 extra outputs. 
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d. The workload parameters, with two levels set by the selection of one 

combinational circuit and one sequential circuit. 

e. The number of states in the Combination Lock, with two levels – 8 states and 

16 states. 

f. The number additional inputs for a Combination Lock key, with two levels – 3 

inputs and 4 inputs. 

Factors a, b, c, e, and f affect the amount of security provided by the design 

methodology, the area used, and power consumed.  Higher numbers are expected to 

provide more security.  The number of copies significantly affects the area utilized and 

power consumed, both of which are anticipated to be greater with a larger number of 

copies.  Two and four copies are chosen to determine whether two copies provide 

sufficient protection within given power and/or area constraints.  The higher numbers of 

factors c, e, and f are expected to produce a slight increase in the area used and power 

consumed (compared to an original circuit with large numbers of inputs and outputs).  

The number of additional inputs to add to circuit copies may impact execution time, but 

the effect is expected to be minimal for both levels.  Determining the Combination Lock 

key is expected to be more difficult with more states and inputs.  The workload 

parameters determine the complexity of implementing the algorithm.  Again, only two 

small and simple circuits are supplied as the main workload to characterize the effects of 

the factors, with additional workloads to demonstrate the methodology’s application to an 

existing VHDL design and to only a portion of a circuit. 
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3.9  Evaluation Technique 

The security provided by the system is analytically calculated.  The result of the 

calculation is compared with the security measure of the original circuit (2m+S divided by 

the frequency and number of seconds in 365 days).  Analytical analysis is used to 

determine the time for an adversary to crack an FPGA design since there are insufficient 

time and resources to characterize all possible ways an adversary might crack the design.  

Employing and expanding (1), the calculation to determine the security (in years) of a 

modified circuit is  

sec/yr 000,536,31/MHz 500

)(2)2(
2
1

),,,,,,,(
1 qnpSmsi k

SsqpnmkiT
+−+++

=    (2) 

where i is the number of inputs to the Combination Lock, s is the number of states in the 

Combination Lock, m is the number of original inputs, S is the number of sequential 

elements in the circuit, p is the number of additional inputs, k is the number of copies, n 

is the number of original outputs, and q is the number of additional outputs.  A frequency 

of 500 MHz is chosen since this frequency is typically available in commercial devices.  

The expression to the left of the plus sign in the numerator accounts for determining the 

key to the Combination Lock.  The division by two is for an average.  To the right of the 

plus sign is the time to produce all output combinations. 

Execution time is simulated in Altera’s Quartus II Version 5.1 Build 176 

10/26/2005 SJ Web Edition.  Simulation is chosen due to the relative ease of collecting 

the execution times for over two dozen circuits. 
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As with execution time, the utilized area and power consumption of a design are 

reported in the vendor FPGA design software.  Simulation is chosen for collecting area 

and power consumption values for the same reasons as stated above. 

3.10  Experimental Design 

Three full factorial experiments are used – one to determine the effects of 

different numbers of states and inputs in the Combination Locks alone and the two others 

to determine the effects on the two primary workload circuits.  For the Combination Lock 

experiment, four circuits are evaluated for security, area, power, and execution time.  

Sixteen modified primary workload circuits, along with the originals, are evaluated to 

determine the effects of extra inputs, outputs, and copies. 

Three, rather than one, full factorial experiments are run for several reasons.  

First, a full factorial experiment of all factors would be too large, requiring 64 modified 

circuits.  Partitioning the factors separately determined the effects on the Combination 

Locks and the modified designs.  Second, different Combination Locks can be used with 

the same circuit, depending on the security requirement.  As illustrated in (2), security 

increases due to the Combination Lock and the scrambled circuit.  Finally, the 

combinational and sequential primary workload circuits are not compared against each 

other due to the different number of outputs and the inherent area difference due to 

registers in the sequential circuits. 

For this study, the measurements from a Combination Lock and a modified design 

module are assumed to be additive.  The FPGA design software provides a method to 

partition modules so they are optimized and placed separately.  Testing this assumption is 
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accomplished by combining three modified circuits with a Combination Lock, but 

without using the partition capability. 

From the measurements, the effects of the factors and their interactions can be 

determined.  It is interesting to compare the security gained from the two levels of copies 

in relation to the costs (increased execution time, power consumption, area) of each level.  

The assumption of exponential growth in security is verified by plotting (2) for different 

variable values.  The assumptions of a nearly constant increase in execution time, and 

linear increases in area and power are verified by comparing the measurements of the 

original circuits with the measurements of the modified circuits. 

3.11  Analyze and Interpret Results 

Exponential and linear regressions are used to extrapolate results to other circuits 

and other levels of the chosen factors.  The execution times indicate whether the modified 

design satisfies the timing constraints of the original design.  The area and power 

measurements specify if the modified design can fit on a given FPGA and meet the 

power requirements.  Most importantly, the security values determine whether the design 

methodology is worthwhile. 

3.12  Summary 

This chapter describes a systematic approach for the study of a design 

methodology.  As a first step, the goals of the research are identified and drive the 

determination of the rest of the approach.  The strategy to complete the study is 

described.  The system, including the system under test and the component under test, is 

identified and its services are listed with their respective outcomes.  Execution time, 
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security, power consumption, and area utilization are chosen as the performance metrics.  

From the parameters listed, factors are chosen with associated levels.  The evaluation 

technique is mostly simulation but security is calculated analytically.  A full factorial 

design is used and the factor effects are analyzed. 
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4.  Design Algorithm 

4.1  Chapter Overview 

This chapter contains the details of the design modification algorithm.  Methods 

of modification for designs described by truth or state tables and by Boolean Equations, 

in a gate-level representation, and in existing VHDL code are provided.  The method for 

scrambling only a portion of a design is also described. 

Altera’s Quartus II Version 5.1 Build 176 10/26/2005 SJ Web Edition is used to 

create and simulate the designs described below.  All designs target the Altera Stratix II 

EP2S15F672C5 FPGA for compilation. 

4.2  Combination Lock 

Combination Locks are sequence-recognizer state machines that require a 

designer-specified input key to transition to the next state.  If the proper key for a state is 

not input, the state machine returns to the beginning state.  For example, a required 

sequence might be 5, 1, 8, 6, for a four-state Combination Lock.  Thus, 5 is the required 

input to transition from state one to state two, 1 is the required input to transition from 

state two to state three, etc.  A Combination Lock can be constructed with any number of 

inputs and states.  This study considers Combination Locks with three or four inputs and 

eight or sixteen states.  Once the final state is reached and the appropriate key is entered 

for this state, the state machine asserts the ‘success’ pin, which is connected to the 

multiplexer enable pin.  The key sequence acts as a password to enable the rest of the 

circuit.  The state machine remains in the final state and continues to assert ‘success’ 

unless reset is asserted, which sends the state machine to the initial state. 
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The following is the VHDL code for a Combination Lock with eight states and 

three inputs. 

-- original state machine code from Doug Hodson's 
-- L:\eng students\Seetharaman\CSCE687\RapidCode.zip\scomp.vhd 
-- [Hod05] 
library ieee; 
use  ieee.std_logic_1164.all; 
 
entity s8i3 is 
port( clock   : in std_logic; 
  reset   : in std_logic; 
  input1 : in std_logic; 
  input2 : in std_logic; 
  input3 : in std_logic; 
  success : buffer std_logic 
 ); 
end s8i3; 
 
architecture rtl OF s8i3 IS 
type state_type is ( one, two, three, four, five, six, seven, 

eight 
  ); 
signal state: state_type; 
 
begin 
 
process ( clock, reset ) 
begin 
if reset = '1' then 
 success <= '0'; 
 state <= one; 
elsif clock'event AND clock = '1' then 
 
case state is 
 when one => 
  success <= '0'; 
  if (input1 = '0') AND (input2 = '0') AND (input3 = 

'1') then -- “001” is the key to transition to state two 
   state <= two; 
  else 
   state <= one; 
  end if; 
 
 when two => 
  success <= '0'; 
  if (input1 = '0') AND (input2 = '1') AND (input3 = 

'0') then -- “010” is the key to transition to state three 
   state <= three; 
  else 
   state <= one; 
  end if; 
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 when three => 
  success <= '0'; 
  if (input1 = '0') AND (input2 = '1') AND (input3 = 

'0') then 
   state <= four; 
  else 
   state <= one; 
  end if; 
 
 when four => 
  success <= '0'; 
  if (input1 = '0') AND (input2 = '1') AND (input3 = 

'1') then 
   state <= five; 
  else 
   state <= one; 
  end if; 
 
 when five => 
  success <= '0'; 
  if (input1 = '0') AND (input2 = '1') AND (input3 = 

'1') then 
   state <= six; 
  else 
   state <= one; 
  end if; 
 
 when six => 
  success <= '0'; 
  if (input1 = '0') AND (input2 = '1') AND (input3 = 

'1') then 
   state <= seven; 
  else 
   state <= one; 
  end if; 
 
 when seven => 
  success <= '0'; 
  if (input1 = '1') AND (input2 = '0') AND (input3 = 

'0') then 
   state <= eight; 
  else 
   state <= one; 
  end if; 
 
 when eight => 
  if success = '0' then 
   if (input1 = '1') AND (input2 = '1') AND 

(input3 = '0') then 
    success <= '1'; 
    state <= eight; 
   else 
    state <= one; 
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   end if; 
  else 
   success <= '1'; 
   state <= eight; 
  end if; 
 
 when others => 
  success <= '0'; 
  state <= one; 
 
end case; 
 
end if; 
 
end process; 
 
end rtl; -- end Combination Lock 

The resulting state machine as depicted by Quartus II is in Figure 17.  State one is 

at the top and state eight is at the bottom.  As long as the correct key for each state is 

entered, the state machine progresses from top to bottom.  If an invalid key is entered, the 

state machine returns to state one.  A reset at anytime sends the machine to state one. 

4.3  Decoy Circuit Generation from Truth and State Tables 

The following subsections describe how the methodology applies to a full adder 

(a combinational circuit) and a three-bit counter (a sequential circuit) that are described 

by their truth and state tables.  Once the truth or state table is obtained, the methodology 

• adds extra inputs, outputs, and copies; 

• decides what extraneous input combinations produce correct output; 

• decides the placement of the correct outputs in the expanded table; 

• fills the remainder of the table; 

• minimizes the resulting functions; and 

• transfers the minimized functions to VHDL. 
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Figure 17.  Eight-state Combination Lock. 
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The following scramblings are performed by hand.  Suggestions for implementing the 

process in a script are given. 

4.3.1  Combinational Circuit 

The truth table for a full adder is given in Table 5.  Three bits – A, B, and the 

carry-in (Cin) – are added, resulting in Sum and carry-out (Cout) bits.  Figure 18 shows a 

schematic of a full adder constructed with AND and OR gates.  The schematic could be 

drawn with fewer gates by using XOR gates.  However, AND and OR gates are used to 

maintain consistency with the circuit modifications that follow. 

Table 5.  Full adder truth table. 

A B Cin Cout Sum
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 
 
Based on security requirements, (2) determines the numbers of inputs, outputs, 

and copies to add.  Suppose it is decided to add one copy, one input, and two outputs.  

Table 6 shows the results of that decision.  The output tables of both copies are shown.  

Out13 represents output 3 from copy 1. 

For simplicity, the input A is assigned to In2, B to In3, and Cin to In4.  Thus, the 

extra input Xi1 is assigned to In1.  These assignments could be made randomly, but that 

would likely only confuse the designer and not an adversary.  On his first attempt, an 

adversary will most likely not build the exact table created by the designer.  An adversary  
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Figure 18.  Full adder schematic. 

 
Table 6.  Expanded full adder truth table. 

In1 In2 In3 In4 Out11 Out12 Out13 Out14 Out21 Out22 Out23 Out24
0 0 0 0         
0 0 0 1         
0 0 1 0         
0 0 1 1         
0 1 0 0         
0 1 0 1         
0 1 1 0         
0 1 1 1         
1 0 0 0         
1 0 0 1         
1 0 1 0         
1 0 1 1         
1 1 0 0         
1 1 0 1         
1 1 1 0         
1 1 1 1         

 
 
may construct an initial truth table and manipulate it until a pattern results such that the 

pattern only depends on the extra inputs, i.e., the extra inputs are in the leftmost columns 

of the table. 
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Again for simplicity, the output Cout1 is assigned to Out11, Sum1 to Out12, 

Cout2 to Out21, and Sum2 to Out22.  Similar to the input assignment, these outputs could 

be assigned randomly, but their order in an adversary’s table is not significant – columns 

can be easily swapped. 

Now it is randomly decided when each output – Cout1, Sum1, Cout2, Sum2 – is 

correct.  When Xi1=0, it is decided that Sum1 is correct from Copy1 and Cout2 is correct 

from Copy 2.  When Xi1=1, it is decided that Cout1 is correct from Copy 1 and Sum2 is 

correct from Copy 2.  Correct output is now available whether Xi1 is 0 or 1.  Deciding 

which extraneous input combinations produce correct output is not necessary with only 

one extra input – correct output is produced for both values of the extra input. 

Next, the empty spaces in the top half of the expanded table are filled with ones 

and zeros.  This could be accomplished randomly.  Alternatively, specific decoy circuit 

output values could be entered.  Table 7 shows the input and output assignments, the 

correct outputs Sum1 and Cout2 (shaded), and the top half cells filled.  Cout2 represents 

Cout from Copy 2.  The Sum2 and Cout1 spaces are filled using the following procedure. 

Table 8 depicts the last table manipulation and the final expanded truth table.  The 

top, left portion (shaded) of the output table is copied to the bottom, right portion 

(shaded) along the solid line, and the top, right portion (not shaded) is copied to the 

bottom left portion (not shaded) along the dashed line.  Sum is correct from Sum2 

(bolded) and Cout is correct from Cout1 (underlined) when Xi1=1.  This duplication of 

the portions of the output table enables many possible output combinations and provides 

multiple decoy patterns. 
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Table 7.  Expanded full adder truth table with complete top half. 

Xi1 A B Cin Cout1 Sum1 Out13 Out14 Cout2 Sum2 Out23 Out24
0 0 0 0 0 0 0 1 0 0 0 1 
0 0 0 1 0 1 0 0 0 1 1 1 
0 0 1 0 1 1 1 0 0 1 0 0 
0 0 1 1 1 0 1 0 1 0 1 0 
0 1 0 0 0 1 0 0 0 1 0 1 
0 1 0 1 1 0 1 1 1 0 0 0 
0 1 1 0 0 0 0 0 1 0 1 0 
0 1 1 1 1 1 1 1 1 0 1 0 
1 0 0 0         
1 0 0 1         
1 0 1 0         
1 0 1 1         
1 1 0 0         
1 1 0 1         
1 1 1 0         
1 1 1 1         

 
 

Table 8.  Final expanded full adder truth table. 

Xi1 A B Cin Cout1 Sum1 Out13 Out14 Cout2 Sum2 Out23 Out24
0 0 0 0 0 0 0 1 0 0 0 1 
0 0 0 1 0 1 0 0 0 1 1 1 
0 0 1 0 1 1 1 0 0 1 0 0 
0 0 1 1 1 0 1 0 1 0 1 0 
0 1 0 0 0 1 0 0 0 1 0 1 
0 1 0 1 1 0 1 1 1 0 0 0 
0 1 1 0 0 0 0 0 1 0 1 0 
0 1 1 1 1 1 1 1 1 0 1 0 
1 0 0 0 0 0 0 1 0 0 0 1 
1 0 0 1 0 1 1 1 0 1 0 0 
1 0 1 0 0 1 0 0 1 1 1 0 
1 0 1 1 1 0 1 0 1 0 1 0 
1 1 0 0 0 1 0 1 0 1 0 0 
1 1 0 1 1 0 0 0 1 0 1 1 
1 1 1 0 1 0 1 0 0 0 0 0 
1 1 1 1 1 0 1 0 1 1 1 1 

 
 

The completed truth table values are now copied to a text file and arranged in the 

“.pla” format.  The following is an example of this format for Cout1.  The # sign 

indicates a comment, which describes the significance of the line. 
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.i 4   # Four inputs 

.o 1   # One output 

.ilb xi1 a b cin  # Names of the four inputs – left column is 
xi1, right column is cin 

.ob cout1  # Name of the one input 

.p 16   # Sixteen products or entries in the table 
0000 0  # Truth table 
0001 0 
0010 1 
0011 1 
0100 0 
0101 1 
0110 0 
0111 1 
1000 0 
1001 0 
1010 0 
1011 1 
1100 0 
1101 1 
1110 1 
1111 1 
.e   # End .pla for Cout1 

The manipulation of the truth tables takes place in Microsoft Excel.  However, the 

original truth table could be entered directly into a .pla file and a script could be written 

to perform the truth table manipulations above and the manipulations that follow. 

Once the truth table for an individual output (for example, Cout1) is in a .pla file, 

the sum-of-product minimizer RONDO v.1.1 [Mis01] reduces the number of products in 

the table.  The command rondo filename is executed from a Windows command prompt.  

The default quality of the minimization is “implicit reduction + heuristic CC (reasonable 

trade-off)”. 

The result of rondo fa-212-cout1.pla is 

# RONDO v.1.1 output for command line: "-q2 -v0 fa-212-11.pla" 
# Minimization performed Fri Feb 03 18:02:18 2006 
# Quality: "implicit reduction + heuristic CC (reasonable trade-

off)" 
# Initial statistics: Cubes = 16  Literals = 64 
# Final   statistics: Cubes = 4  Literals = 10 
# Input file reading and variable reordering time = 0.00 sec 
# SOP minimization time = 0.00 sec 
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.i 4 

.o 1 

.p 4 
-1-1  1  # (A AND Cin) # Xi1 and B not used 
--11  1  # (B AND Cin) 
111-  1  # (Xi1 AND A AND B) 
001-  1  # (NOT Xi1 AND NOT A AND B) 
.e  # End minimized .pla for Cout1 

This represents the function Cout1=(A AND Cin) OR (B AND Cin) OR (Xi1 

AND A AND B) OR (NOT Xi1 AND NOT A AND B).  The input columns correspond 

to the columns of the original .pla file.  A zero in an input cell represents the inverse 

(NOT) of that input.  An input is not used in a product if a dash is in that input’s position. 

After each output from the final expanded truth table is minimized, the resulting 

functions are input into a VHDL file.  Along with the inputs to and outputs of the 

minimized functions, the multiplexer select and enable inputs are declared.  The ‘enable’ 

input is the ‘success’ output of a Combination Lock.  The multiplexer is also constructed 

in the file containing the minimized functions.  An example of a completed VHDL file 

follows.  Double dashes precede comments. 

-- Brad Christiansen 
-- 21 Nov 05.  modified 30 Jan 06 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity fa212 is 
 port ( 
  i3, i4, i5 : in std_logic; 
  i1, i2 : in std_logic; 
  enable : in std_logic; -- enable for muxes 
  sel1, sel2 : in std_logic; 
  sel3, sel4 : in std_logic; 
  o1, o2 : out std_logic; 
  o3, o4 : out std_logic 
 ); 
end fa212; 
 
architecture behavior of fa212 is 
signal out11, out12, out13, out14, out21, out22, out23, out24 : 

std_logic; 
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begin 
 out11 <= (i1 AND i3 AND i5)  
  OR (i1 AND i2 AND i3 AND i4)  
  OR (NOT i1 AND NOT i2 AND i3 AND NOT i5)  
  OR (NOT i2 AND i3 AND i4 AND i5)  
  OR (i1 AND NOT i2 AND NOT i3 AND i4 AND NOT i5)  
  OR (NOT i1 AND NOT i3 AND NOT i4 AND i5)  
  OR (NOT i1 AND i2 AND NOT i3 AND i4 AND NOT i5)  
  OR (i1 AND i2 AND i4 AND i5); 
 
 out21 <= (NOT i1 AND i3 AND i5)  
  OR (i1 AND NOT i2 AND i3 AND NOT i5)  
  OR (i1 AND NOT i2 AND i3 AND i4) 
  OR (NOT i1 AND i2 AND i3 AND i4)  
  OR (i1 AND NOT i3 AND NOT i4 AND i5)  
  OR (i1 AND i2 AND NOT i3 AND i4 AND NOT i5) 
  OR (NOT i1 AND NOT i2 AND NOT i3 AND i4 AND NOT i5)  
  OR (NOT i1 AND i2 AND i4 AND i5); 
 
 out12 <= (NOT i1 AND i2 AND i3 AND i4 AND i5)  
  OR (NOT i1 AND i2 AND NOT i3 AND i4 AND NOT i5)  
  OR (i1 AND NOT i2 AND i4 AND i5) 
  OR (i1 AND NOT i2 AND NOT i3 AND i4)  
  OR (NOT i2 AND NOT i3 AND i4 AND i5)  
  OR (i1 AND i2 AND NOT i3 AND NOT i4) 
  OR (NOT i1 AND i2 AND i3 AND NOT i4 AND NOT i5)  
  OR (i2 AND NOT i3 AND NOT i4 AND i5)  
  OR (NOT i1 AND NOT i2 AND NOT i3 AND NOT i4 AND NOT 

i5) 
  OR (i1 AND NOT i2 AND NOT i3 AND i5); 
 
 out22 <= (i1 AND i2 AND i3 AND i4 AND i5)  
  OR (i1 AND i2 AND NOT i3 AND i4 AND NOT i5)  
  OR (NOT i1 AND NOT i2 AND NOT i3 AND i4) 
  OR (NOT i2 AND NOT i3 AND i4 AND i5)  
  OR (NOT i1 AND NOT i2 AND i4 AND i5)  
  OR (i1 AND i2 AND i3 AND NOT i4 AND NOT i5) 
  OR (NOT i1 AND i2 AND NOT i3 AND NOT i4)  
  OR (i2 AND NOT i3 AND NOT i4 AND i5)  
  OR (i1 AND NOT i2 AND NOT i3 AND NOT i4 AND NOT i5) 
  OR (NOT i1 AND NOT i2 AND NOT i3 AND i5); 
 
 out13 <= (NOT i1 AND NOT i2 AND i3)  
  OR (NOT i2 AND i3 AND i4)  
  OR (i1 AND NOT i3 AND NOT i4) 
  OR (i1 AND NOT i3 AND i5)  
  OR (i2 AND NOT i3 AND NOT i4)  
  OR (i1 AND NOT i4 AND i5) 
  OR (NOT i1 AND i2 AND i4 AND i5); 
 
 out23 <= (i1 AND NOT i2 AND i3)  
  OR (NOT i2 AND i3 AND i4)  
  OR (NOT i1 AND NOT i3 AND NOT i4) 
  OR (NOT i1 AND NOT i3 AND i5)  
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  OR (i2 AND NOT i3 AND NOT i4)  
  OR (i1 AND i2 AND i4 AND i5) 
  OR (NOT i1 AND NOT i4 AND i5); 
 
 out14 <= (i1 AND NOT i2 AND i3 AND i4)  
  OR (i1 AND i3 AND NOT i4 AND i5)  
  OR (i2 AND i3 AND NOT i5) 
  OR (NOT i1 AND NOT i3 AND NOT i4 AND i5)  
  OR (i2 AND NOT i3 AND i4)  
  OR (i1 AND i2 AND NOT i5) 
  OR (NOT i1 AND i4 AND NOT i5)  
  OR (NOT i2 AND NOT i4 AND i5); 
 
 out24 <= (NOT i1 AND NOT i2 AND i3 AND i4) 
  OR (NOT i1 AND i3 AND NOT i4 AND i5) 
  OR (i2 AND i3 AND NOT i5) 
  OR (i1 AND NOT i3 AND NOT i4 AND i5) 
  OR (i2 AND NOT i3 AND i4) 
  OR (i1 AND i4 AND NOT i5) 
  OR (NOT i1 AND i2 AND NOT i5) 
  OR (NOT i2 AND NOT i4 AND i5); 
 
process(enable, sel4, sel3, sel2, sel1) – the multiplexer 
begin 
if enable = '1' then 
 
 if sel4 = '0' then 
  o4 <= out14; 
 else 
  o4 <= out24; 
 end if; 
 
 if sel3 = '0' then 
  o3 <= out13; 
 else 
  o3 <= out23; 
 end if; 
 
 if sel2 = '0' then 
  o2 <= out12; 
 else 
  o2 <= out22; 
 end if; 
 
 if sel1 = '0' then 
  o1 <= out11; 
 else 
  o1 <= out21; 
 end if; 
 
else -- without the ‘else’ clause, a latch is made 
 o4 <= '0'; 
 o3 <= '0'; 
 o2 <= '0'; 
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 o1 <= '0'; 
 
end if; 
end process; 
 
end behavior; -- End modified full adder 

For a sense of the changes that have occurred to the simple circuit of Figure 18, 

the modified circuit is shown in Figure 19.  Again, Figure 19 is not meant to be 

understood (besides the size of the components in the figure, the algorithm is meant to 

distort understanding). 
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Figure 19.  Modified full adder schematic. 

 

Explicitly intertwining the circuits is not necessary when modifying a circuit 

described by its truth or state table.  The intertwining in this case occurs as consequence 

of the process, specifically the addition of extra outputs and the design software’s 

assignment of multiple outputs to a single LUT.  In the case of this small circuit, the 
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output pair Out11 and Out21 is assigned to one FPGA LUT.  The others pairs (Out12 and 

Out22, Out13 and Out23, Out14 and Out24) are also assigned to their own LUTs. 

4.3.2  Sequential Circuit 

A sequential circuit described by a state table is transformed in a similar manner 

to the combinational circuit.  The main differences pertain to the inclusion of registers for 

feedback. 

For this study, a three-bit up counter is modified with the algorithm.  The original 

state table for this circuit is in Table 9.  The outputs X, Y, and Z become the inputs A, B, 

and C on the next clock cycle.  The circuit advances from 0 to decimal 7, returns to 0, and 

repeats.  A schematic of the counter is in Figure 20.  The rectangles are the registers (D 

flip-flops).  In Figure 20, out1 is A, out2 is B, and out3 is C. 

Table 9.  Three-bit up counter state table. 

A B C X Y Z
0 0 0 0 0 1 
0 0 1 0 1 0 
0 1 0 0 1 1 
0 1 1 1 0 0 
1 0 0 1 0 1 
1 0 1 1 1 0 
1 1 0 1 1 1 
1 1 1 0 0 0 
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Figure 20.  Three-bit up counter schematic. 
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To illustrate the effects of two extra inputs and four copies on correct output 

placement and selection and on circuit size, the modification of the three-bit counter with 

two extra inputs, one extra output, and four copies follows.  Table 10, with copies 1 and 

2, and Table 11, with copies 3 and 4, show the results of 

• adding the extra inputs, outputs, and copies; 

• deciding what extraneous input combinations produce correct output; 

Table 10.  Copies 1 and 2 of modified counter. 

Xi1 Xi2 A B C Out11 X1 Out13 Z1 Out21 X2 Out23 Z2 
0 0 0 0 0 1 1 0 1 1 1 0 1 
0 0 0 0 1 1 0 0 1 0 1 1 0 
0 0 0 1 0 1 0 0 0 0 0 1 1 
0 0 0 1 1 0 0 1 0 1 0 0 0 
0 0 1 0 0 1 1 0 0 0 1 0 1 
0 0 1 0 1 1 0 1 0 1 1 1 0 
0 0 1 1 0 0 1 0 0 1 1 0 1 
0 0 1 1 1 1 1 0 0 0 1 0 0 
0 1 0 0 0 1 0 1 1 0 1 1 1 
0 1 0 0 1 0 0 0 1 1 0 0 0 
0 1 0 1 0 0 0 0 0 0 1 1 1 
0 1 0 1 1 0 1 1 0 0 0 0 0 
0 1 1 0 0 1 1 1 1 0 1 1 1 
0 1 1 0 1 0 1 0 1 1 0 1 0 
0 1 1 1 0 1 1 0 0 1 0 0 1 
0 1 1 1 1 0 0 1 1 0 0 0 0 
1 0 0 0 0 1 1 0 1 1 1 0 1 
1 0 0 0 1 0 1 1 0 1 0 0 1 
1 0 0 1 0 0 0 1 1 1 0 0 0 
1 0 0 1 1 1 0 0 0 0 0 1 0 
1 0 1 0 0 0 1 0 1 1 1 0 0 
1 0 1 0 1 1 1 1 0 1 0 1 0 
1 0 1 1 0 1 1 0 1 0 1 0 0 
1 0 1 1 1 0 1 0 0 1 1 0 0 
1 1 0 0 0 0 1 1 1 1 0 1 1 
1 1 0 0 1 1 0 0 0 0 0 0 1 
1 1 0 1 0 0 1 1 1 0 0 0 0 
1 1 0 1 1 0 0 0 0 0 1 1 0 
1 1 1 0 0 0 1 1 1 1 1 1 1 
1 1 1 0 1 1 0 1 0 0 1 0 1 
1 1 1 1 0 1 0 0 1 1 1 0 0 
1 1 1 1 1 0 0 0 0 0 0 1 1 
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Table 11.  Copies 3 and 4 of modified counter. 

Xi1 Xi2 A B C Out31 Out32 Y3 Out34 Out41 Ou4t2 Y4 Out4 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 0 0 1 0 1 0 
0 0 0 1 0 1 0 1 1 0 1 1 0 
0 0 0 1 1 0 1 1 0 1 1 0 1 
0 0 1 0 0 1 0 1 0 0 0 1 1 
0 0 1 0 1 0 1 1 0 1 1 0 1 
0 0 1 1 0 0 0 1 0 1 0 0 1 
0 0 1 1 1 0 1 1 1 0 0 0 0 
0 1 0 0 0 1 0 1 1 0 1 0 1 
0 1 0 0 1 0 0 0 0 1 0 1 1 
0 1 0 1 0 0 1 0 1 0 1 1 0 
0 1 0 1 1 0 1 1 1 0 0 0 0 
0 1 1 0 0 1 0 1 1 0 1 0 1 
0 1 1 0 1 0 0 0 0 1 0 1 1 
0 1 1 1 0 1 0 0 1 1 0 1 0 
0 1 1 1 1 0 0 1 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 1 0 1 0 1 1 0 0 
1 0 0 1 0 0 1 1 0 1 0 1 1 
1 0 0 1 1 1 1 0 1 0 1 1 0 
1 0 1 0 0 0 0 1 1 1 0 1 0 
1 0 1 0 1 1 1 0 1 0 1 1 0 
1 0 1 1 0 1 0 0 1 0 0 1 0 
1 0 1 1 1 0 0 0 0 0 1 1 1 
1 1 0 0 0 0 1 0 1 1 0 1 1 
1 1 0 0 1 1 0 1 1 0 0 0 0 
1 1 0 1 0 0 1 1 0 0 1 0 1 
1 1 0 1 1 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 1 0 1 1 0 1 1 
1 1 1 0 1 1 0 1 1 0 0 0 0 
1 1 1 1 0 1 0 1 0 1 0 0 1 
1 1 1 1 1 0 0 0 1 0 0 1 0 

 
 

• deciding the placement of the correct outputs in the expanded table; and 

• filling the remainder of the table. 

Notice that the input combinations Xi1Xi2=01 and Xi1Xi2=11 produce the 

correct output (shaded).  The combinations Xi1Xi2=00 and Xi1Xi2=10 are an alternate 

choice.  Also note that X is correct from copy 1 when Xi1Xi2=01 and from copy 2 when 

Xi1Xi2=11, Y is correct from copy 4 when Xi1Xi2=01 and from copy 3 when 



 

66 

Xi1Xi2=11, and Z is correct from copy 2 when Xi1Xi2=01 and from copy 1 when 

Xi1Xi2=11. 

Each output column is transferred to a .pla file, minimized, and entered into a 

VHDL file.  For the outputs that are feedback, they are typed as ‘BUFFER’ rather than 

‘OUT’ objects as is the case of the combinational circuit.  The multiplexer is coded so it 

is constructed before the registers.  The registers are built with the code 

  PROCESS(clock) 
  BEGIN 
   if rising_edge(clock) then 
    o1 <= out1; 
    o2 <= out2; 
    o3 <= out3; 
    o4 <= out4; 
   END if; 
  END PROCESS; 

The signals ‘out1’ through ‘out4’ are the outputs of the multiplexer to the registers and 

correspond to the selection from Out11, Out21, Out31, and Out41 through Out14, Out24, 

Out34, and Out44, respectively.  The signals ‘o1’ through ‘o4’ are the outputs to the pins 

and the feedback inputs to the circuit. 

Page 3 of 4 of the resulting modifications is shown in the schematic of Figure 21.  

Pages 1 and 2 are similar.  Page 4 contains the registers and output pins.  As with 

Figure 19, this figure is included to convey a sense of the changes effected, not to 

produce an understanding of the changes. 

4.4  Decoy Circuit Generation from Boolean Equations 

Modifying a circuit described by its Boolean equations is very similar to 

modifying a truth or state table.  Suppose the original circuit has the outputs X and Y that 

are functions of the inputs A, B, and C.  Let X=f(A, B, C) and Y=j(A, B, C).  Suppose  
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Figure 21.  Page 3 of 4 of the modified counter schematic. 

 

two extra inputs, one extra output, and four copies are to be added to the original circuit.  

Let D and E be the extra inputs.  Let the outputs from Copy 1 be Out11, Out 12, and 

Out13, and the outputs from Copy 2 be Out21, Out22, and Out23, etc.  Let Out41 and 
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Out31 be X when DE=002 and 102, respectively.  Let Out13 and Out23 be Y when 

DE=002 and 102, respectively.  Then,  

Out41=X’=(NOT D AND NOT E AND f(A, B, C)) OR  

(NOT D AND E AND g(A, B, C)) OR (D AND h(A, B, C, E)) (3) 

where g and h are arbitrary functions.  Similarly,  

Out31=X’’=(D AND NOT E AND f(A, B, C)) OR  

(D AND E AND g(A, B, C)) OR (NOT D AND h(A, B, C, E)). (4) 

Also,  

Out13=Y’=(NOT D AND NOT E AND j(A, B, C)) OR  

(NOT D AND E AND k(A, B, C)) OR (D AND l(A, B, C, E)) (5) 

where k and l are arbitrary functions.  Similarly,  

Out23=Y’’=(D AND NOT E AND j(A, B, C)) OR  

(D AND E AND k(A, B, C)) OR (NOT D AND l(A, B, C, E)). (6) 

The resulting condensed truth table is in Table 12. 

Table 12.  Resulting truth table from Boolean equation modification. 

  Out Out Out Out 
DE ABC 11 12 13 21 22 23 31 32 33 41 42 43 
00   j    f   
01  b  k c  l h   g   
10    j f     
11  c  l b  k g   h   

 
 

Pairs of remaining outputs are created with arbitrary functions of the example 

form  

Out11=(NOT D AND b(A, B, C, E)) OR (D AND c(A, B, C, E)  (7) 
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and 

Out21=(D AND b(A, B, C, E)) OR (NOT D AND c(A, B, C, E))  (8) 

where b and c are arbitrary functions.  Thus, where b is ANDed with NOT D in Out11, b 

is ANDed with D in Out21.  See Table 12 for the placement of b and c in the resulting 

truth table. 

To select the correct outputs, the signals to the multiplexer select Copies 4 and 1 

for X and Y, respectively, when DE=002, and Copies 3 and 2 for X and Y, respectively, 

when DE=102. 

4.5  Decoy Circuit Generation from Gate-level Representation 

A gate-level representation can be treated as a black box to which decoy and 

selection circuitry can be added.  Functions such as g, k, and b in the previous section are 

implemented as the decoy circuits.  The selection circuitry consists of AND, OR, and 

NOT gates, like the operators added above to transform X into X’ and X’’.  Multiplexers 

are also part of the selection circuitry and select the copy from which a correct output is 

produced. 

Suppose Figure 22 contains the original circuit to protect.  (Not all necessary 

signals are shown.)  X and Y are combinational functions of inputs A and B and output Y 

which is also labeled C at the input to the combinational block. 

Suppose one copy, one extra input (D), and one extra output (Z) are added for 

protection.  Let X be correct from Copy 1 when D=0 and from Copy 2 when D=1.  Let Y 

be correct from Copy 1 when D=1 and from Copy 2 when D=0.  Z is produced by 

choosing one of two outputs from the added decoy circuitry block. 
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Figure 22.  Original gate-level representation. 

 

The results of these decisions are in Figure 23.  All signals are not included, most 

notably the register clock and multiplexer select signals.  Copy 1, the top Copy, is 

between the inverter and the feedback line from Y, the output of the register.  Copy 2 is 

below the feedback line.  Note that the combinational blocks of Copy 2 are redundant and 

are included only to illustrate the logical flow and fewer lines have to be followed to 

understand the routing.  The outputs from the combinational blocks of Copy 1 can be 

routed to the AND gates of Copy 2, just as D and NOT D are.  This illustrates how area 

(and power) can be reduced for an algorithmic modification.  Note that for each output, 

there are four AND gates, two OR gates, and a multiplexer added.  The delay for each 

output in an FPGA might be increased by a LUT to implement the AND and OR gates 

and multiplexer.  In an ASIC, the delay for each output increases by one AND gate, one 

OR gate, and a multiplexer.  Another item to notice is the additional hardware separates 

the combinational logic and register.  Placing additional hardware, for example, the 

multiplexer, on the output side of the register requires additional registers, since the 

inputs to the multiplexer would have to be registered.  A final note is that the outputs X  
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Figure 23.  Modified gate-level representation. 
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and Z can also be registered and fed back to the extra combinational block for additional 

confusion. 

The resulting abbreviated state table is in Table 13.  The names of the outputs 

(origX, extraY, extraZ1, etc.) correspond to the names of the outputs from the 

combinational blocks in Figure 23. 

Table 13.  Resulting state table from gate-level modification. 

  Out Out 
D ABC 11 12 13 21 22 23 
0  origX extraY extraZ1 extraX origY extraZ2 
1  extraX origY extraZ2 origX extraY extraZ1 

 
 

In this case of circuit modification, explicit intertwining would be useful to 

intermingle portions of the two combinational blocks.  The design software may 

accomplish a degree of intertwining, but will likely not be to a sufficient level. 

4.6  Decoy Circuit Generation from Existing VHDL 

VHDL code that implements a four-bit priority encoder is modified using the 

algorithmic principles already demonstrated.  The encoder functions as follows.  If the 

most significant input bit is 1, the output is 112.  If the most significant input bit is 0 and 

the second-most significant input bit is 1, the output is 102.  If the two most significant 

inputs are 0 and the third-most significant bit is 1, the output is 012.  The other two input 

combinations result in an output of 002.  Table 14 summarizes the relationships 

described.  An X in this table represents a “don’t care”, meaning the output does not 

depend on, or doesn’t care about, that particular input value. 
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Table 14.  Priority encoder truth table. 

Input Output
000X 00 
001X 01 
01XX 10 
1XXX 11 

 
 

The original VHDL code for the encoder follows. 

-- From Dr. Yong C. Kim [Kim05] 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity pri_encoder is 
port( a : in  std_logic_vector(3 downto 0); 
      c : out std_logic_vector(1 downto 0)); 
end pri_encoder; 
 
architecture algorithmic of pri_encoder is 
begin 
process(a) 
begin 
    if(a(3) = '1') then 
 c <= B"11"; 
    elsif (a(2) = '1') then 
 c <= B"10"; 
    elsif (a(1) = '1') then 
 c <= B"01"; 
    elsif (a(0) = '1') then 
 c <= B"00"; 
    else 
 c <= B"00"; 
    end if; 
end process; 
end algorithmic; -- End original encoder 

A schematic of the priority encoder, as produced by the design software, is in 

Figure 24. 

To scramble the encoder, one input, two outputs, and one additional copy are 

added.  The input vector a is declared with five elements, from a(4) as the most 

significant bit (msb) to a(0) as the least significant bit (lsb).  a(2) is the extra input.  The  
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Figure 24.  Four-bit priority encoder schematic. 

 
 

overall circuit output vector is labeled out1 and has four elements, from out1(3) to 

out1(0).  Since there are two copies, two vectors internal to the circuit and corresponding 

to out1 are declared as VHDL ‘signals’.  Their labels are c1 and c2, for Copy 1 and Copy 

2.  The elements of these vectors are the inputs to the multiplexers, whose outputs are the 

elements of out1.  out1(2) serves as the most significant output bit, out1(0) will be the 

other output bit, and out1(1) and out1(3) will be the extra outputs.  When a(2)=0, c1(0) 

and c2(2) are correct.  Similarly, when a(2)=1, c1(2) and c2(0) are assigned to be correct.  

For the remaining signals, functions of a(4), a(3), a(1), and a(0) are created.  a(2) cannot 

be an operand of the decoy functions since it turns on one copy or the other.  When 

a(2)=0, c1(1) is the sum of a full adder (included as a deception), c2(3) is the carry out of 

a full adder, c1(2) and c1(3) are arbitrary combinational functions, and c2(1..0) is the 

difference of a(1..0) and a(4..3).  When a(2)=1, the c1’s and c2’s are exchanged in the 

previous sentence.  The resulting VHDL code follows. 

library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity pri_encoder is 
port (  
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 a : in  std_logic_vector(4 downto 0); -- change from 4 
to 5 inputs 

 enable : in std_logic; 
 out1 : out std_logic_vector(3 downto 0); -- change from 2 

to 4 outputs 
 sel0, sel1 : in std_logic; 
 sel2, sel3 : in std_logic 
); 
end pri_encoder; 
 
architecture algorithmic of pri_encoder is 
signal c1 : std_logic_vector(3 downto 0); -- c1 for copy 1; 

change from 2 to 4 outputs 
signal c2 : std_logic_vector(3 downto 0); -- add second copy; c2 

for copy 2; change from 2 to 4 outputs 
begin 
 
 process(a) 
 begin 
 -- copy 1 
 -- let a(2) be extra input 
 -- let c(2) be msb, c(0) be lsb, c(3) extra output, c(1) 

extra output 
 -- let c1(0) be correct when a(2) = 0 
 -- let c2(2) be correct when a(2) = 0 
 if (a(2) = '0') then 
     if (a(4) = '1') then 
   c2(2) <= '1'; 
   c1(0) <= '1'; 
     elsif (a(3) = '1') then 
   c2(2) <= '1'; 
   c1(0) <= '0'; 
     elsif (a(1) = '1') then 
   c2(2) <= '0'; 
   c1(0) <= '1'; 
     elsif (a(0) = '1') then 
   c2(2) <= '0'; 
   c1(0) <= '0'; 
     else 
   c2(2) <= '0'; 
   c1(0) <= '0'; 
     end if; 
 c1(1) <= (a(3) XOR a(1)) XOR a(0); -- function of a(4), 

a(3), a(1), a(0) -- not of a(2); sum of FA 
 c1(2) <= (a(4) OR (a(3) NAND a(1))) NOR NOT a(0); -- 

function of a(4), a(3), a(1), a(0) -- not of a(2) 
 c1(3) <= (a(4) AND a(3)) NOR (a(1) XOR a(0)); -- function 

of a(4), a(3), a(1), a(0) -- not of a(2) 
 
 c2(3) <= ( ( a(3) XOR a(1) ) AND a(0) ) OR ( a(3) AND a(1) 

); -- function of a(4), a(3), a(1), a(0) -- not of a(2); cout of FA 
 c2(1 downto 0) <= a(1 downto 0) - a(4 downto 3); -- 

function of a(4), a(3), a(1), a(0) -- not of a(2) 
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 -- copy 2 
 -- let c1(2) be correct when a(2) = 1 
 -- let c2(0) be correct when a(2) = 1 
 elsif (a(2) = '1') then 
     if (a(4) = '1') then 
   c1(2) <= '1'; 
   c2(0) <= '1'; 
     elsif (a(3) = '1') then 
   c1(2) <= '1'; 
   c2(0) <= '0'; 
     elsif (a(1) = '1') then 
   c1(2) <= '0'; 
   c2(0) <= '1'; 
     elsif (a(0) = '1') then 
   c1(2) <= '0'; 
   c2(0) <= '0'; 
     else 
   c1(2) <= '0'; 
   c2(0) <= '0'; 
     end if; 
  c2(1) <= (a(3) XOR a(1)) XOR a(0); -- function of 

a(4), a(3), a(1), a(0) -- not of a(2); sum of FA 
  c2(2) <= (a(4) OR (a(3) NAND a(1))) NOR NOT a(0); -- 

function of a(4), a(3), a(1), a(0) -- not of a(2) 
  c2(3) <= (a(4) AND a(3)) NOR (a(1) XOR a(0)); -- 

function of a(4), a(3), a(1), a(0) -- not of a(2) 
 
  c1(3) <= ((a(3) XOR a(1)) AND a(0)) OR (a(3) AND 

a(1)); -- function of a(4), a(3), a(1), a(0) -- not of a(2); cout of FA 
  c1(1 downto 0) <= a(1 downto 0) - a(4 downto 3); -- 

function of a(4), a(3), a(1), a(0) -- not of a(2) 
 end if; 
 end process; 
 
process(enable, sel3, sel2, sel1, sel0) 
begin 
if enable = '1' then 
 
  if sel3 = '0' then 
   out1(3) <= c1(3); 
  else 
   out1(3) <= c2(3); 
  end if; 
 
  if sel2 = '0' then 
   out1(2) <= c1(2); 
  else 
   out1(2) <= c2(2); 
  end if; 
 
  if sel1 = '0' then 
   out1(1) <= c1(1); 
  else 
   out1(1) <= c2(1); 
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  end if; 
 
  if sel0 = '0' then 
   out1(0) <= c1(0); 
  else 
   out1(0) <= c2(0); 
  end if; 
 
else 
 out1 <= "0000"; 
 
end if; 
end process; 
 
end algorithmic; -- End modified encoder 

Figure 25, showing the schematic of the modified encoder, is included for 

comparison to Figure 24. 

4.7  Decoy Circuit Generation through Partial Scrambling 

To demonstrate partial scrambling of only a portion of a circuit, the product in the 

function cbaresult +×=  is secured according to the methodology already 

demonstrated.  Partial scrambling is useful in circumstances when only a portion of a 

circuit requires protection and protecting the entire circuit only serves to add unnecessary 

overhead. 

The VHDL code for the above function follows.  The operands a, b, and c are 

two-bit vectors, and result is a four-bit vector.  The product of a and b is also a four-bit 

vector. 

-- Brad Christiansen 
-- 8 Feb 06 
-- Partial scrambling 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity partial is 
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Figure 25.  Modified four-bit priority encoder schematic. 
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 port ( 
  a, b, c : in std_logic_vector(1 downto 0); 
  result : out std_logic_vector(3 downto 0) 
 ); 
end partial; 
 
architecture behavior of partial is 
 begin 
  result <= a * b + c; 
end behavior; -- End VHDL for result=a*b+c 

Figure 26 contains the circuit schematic produced by Quartus II.  The scrambled 

circuit takes the place of the multiplier in Figure 26.  To scramble the product of a and b, 

two copies are made with one extra input bit (xi) and one extra output bit (v).  Note that xi 

requires an input pin, but v is internal to the scrambled circuit and does not require an 

output pin.  When the extra input is 0, the four bits of the correct product come from 

Copy 1 (msb), Copy2, Copy 2, and Copy 1 (lsb).  Copy 1 produces v1 and Copy 2 

produces v2.  When the extra input is 1, the correct product bits come from the alternate 

copies:  Copy 2 (msb), Copy 1, Copy 1, Copy 2 (lsb).  In this case, Copy 1 produces v2 

and Copy 2 produces v1.  The correct output is labeled w (msb), x, y, and z (lsb).  

Table 15 contains a condensed truth table of these relationships. 
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Figure 26.  Schematic of result=a*b+c. 
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Table 15.  Resulting truth table for partial scrambling. 

  Out Out 
xi ab 11 12 13 14 15 21 22 23 24 25 
0  w extraX v1 extraY z extraW x v2 y extraZ
1  extraW x v2 y extraZ w extraX v1 extraY  

 
 

To select the correct output of the scrambled circuit that is input to the adder, five 

outputs are chosen: w, x, y, z, and either v1 or v2.  This selection requires five select input 

bits – one select bit for each output since there is a choice between two outputs, one from 

each of the two copies.  To choose the four of the five that are passed to the adder, a type 

of combinational multiplexer is implemented.  This combinational multiplexer provides 

for any of the five (4C5) combinations of four outputs to be selected.  Since there are five 

combinations, three select input bits are required for this combinational multiplexer, in 

addition to the five select input bits already mentioned.  All eight possible combinations 

of the three select inputs could be used as inputs to the combinational multiplexer.  This 

would allow the same output combination to be selected by different combinations of 

select inputs or for output permutations to be selected.  However, using all eight possible 

combinations adds additional hardware.  The combinations of select inputs and associated 

output combinations of the combinational multiplexer are shown in Table 16. 

 
Table 16.  Combinational multiplexer input and output combinations. 

Select inputs Output combinations 
000 w (out1) x (out2) v (out3) y (out4) 
001 w (out1) x (out2) v (out3) z (out5) 
010 w (out1) x (out2) y (out4) z (out5) 
011 w (out1) v (out3) y (out4) z (out5) 
100 x (out2) v (out3) y (out4) z (out5) 

Others 0 0 0 0 
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An alternative to the five two-input multiplexers and the five-input/four-output 

combinational multiplexer is a ten-input/four-output combinational multiplexer.  The ten 

inputs would be either the xi=0 row or the xi=1 row in Table 15.  The difficulty when 

performing the scrambling by hand is the number of four-bit combinations possible from 

the ten inputs – 80.  The number of required select input bits is reduced to seven, rather 

than a total of eight.  With either alternative, all possible output combinations should be 

selectable, so that all outputs appear valid to an adversary. 

There are two reasons for selecting four of the five outputs, and not passing the 

fifth.  The first is to make the extra output (v in the case above) believable.  If the extra 

output is not an input to another portion of the overall circuit, then that output can be 

identified as invalid.  Second, rather than passing the extra output out of the scrambled 

portion for another sub-circuit to handle, the extra output is handled within the scrambled 

portion by not selecting it at the combinational multiplexer. 

The decisions above result in the following VHDL code. 

-- Brad Christiansen 
-- 8 Feb 06 
-- Partial scrambling 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity partial is 
 port ( 
  a, b, c : in std_logic_vector(1 downto 0); -- 

operands 
  xi : in std_logic; -- extra input 
  enable : in std_logic; -- MUX enable 
  sel1, sel2, sel3, sel4, sel5 : in std_logic; -- MUX 

selects 
  downselect : in std_logic_vector(2 downto 0); -- to 

downselect from 5 outputs to 4 
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  result : out std_logic_vector(3 downto 0) -- 
=a*b+c 

 ); 
end partial; 
 
architecture behavior of partial is 
 signal a_temp, b_temp : std_logic_vector(2 downto 0); -- to 

extend a and b so they can be added 
 signal v1, v2, w, x, y, z, extraW, extraX, extraY, extraZ : 

std_logic; -- for valid and invalid outputs 
 signal temp_sub : std_logic_vector(1 downto 0); -- for 

difference of a and b 
 signal temp_add : std_logic_vector(2 downto 0); -- for 

addition of a and b 
 signal temp_mult : std_logic_vector(3 downto 0); -- for 

multiplication of a and b 
 signal out11, out12, out13, out14, out15 : std_logic; -- 

outputs from Copy 1 
 signal out21, out22, out23, out24, out25 : std_logic; -- 

outputs from Copy 2 
 signal out1, out2, out3, out4, out5 : std_logic; -- output 

1 from Copy 1 or 2, etc. 
 signal final_out : std_logic_vector(3 downto 0); -- final 

output of partial scrambling 
 
 begin 
  temp_mult <= a*b; 
  w <= temp_mult(3); 
  x <= temp_mult(2); 
  y <= temp_mult(1); 
  z <= temp_mult(0); 
 
  temp_sub <= a-b; 
  extraW <= temp_sub(1); 
  extraX <= temp_sub(0); 
   
  a_temp <= '0' & a; -- concatenate '0' as msb 
  b_temp <= '0' & b; 
  temp_add <= a_temp + b_temp; 
  extraY <= temp_add(1); 
  extraZ <= temp_add(0); 
 
  v1 <= (a(1) AND a(0)) OR (b(1) XOR b(0)); -- one of 

two extra output choices 
  v2 <= (a(1) NAND a(0)) NOR (b(1) XNOR b(0)); -- the 

other extra output choice 
 
  process(xi) 
  begin 
   if xi = '0' then 
    out11 <= w; 
    out12 <= extraX; 
    out13 <= v1; 
    out14 <= extraY; 
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    out15 <= z; 
    out21 <= extraW; 
    out22 <= x; 
    out23 <= v2; 
    out24 <= y; 
    out25 <= extraZ; 
   else 
    out11 <= extraW; 
    out12 <= x; 
    out13 <= v2; 
    out14 <= y; 
    out15 <= extraZ; 
    out21 <= w; 
    out22 <= extraX; 
    out23 <= v1; 
    out24 <= extraY; 
    out25 <= z; 
   end if; 
  end process; 
   
  process(enable, sel1, sel2, sel3, sel4, sel5) 
  begin 
   if enable = '1' then 
 
    if sel1 = '0' then 
     out1 <= out11; 
    else 
     out1 <= out21; 
    end if; 
 
    if sel2 = '0' then 
     out2 <= out12; 
    else 
     out2 <= out22; 
    end if; 
 
    if sel3 = '0' then 
     out3 <= out13; 
    else 
     out3 <= out23; 
    end if; 
 
    if sel4 = '0' then 
     out4 <= out14; 
    else 
     out4 <= out24; 
    end if; 
 
    if sel5 = '0' then 
     out5 <= out15; 
    else 
     out5 <= out25; 
    end if; 
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   else 
    out1 <= '0'; 
    out2 <= '0'; 
    out3 <= '0'; 
    out4 <= '0'; 
    out5 <= '0'; 
 
   end if; 
  end process; 
 
  process(downselect) -- selecting 4 outputs from 5 (5 

choose 4 = 5 combinations) 
  begin 
   if downselect = B"000" then 
    final_out <= out1 & out2 & out3 & out4; 
   elsif downselect = B"001" then 
    final_out <= out1 & out2 & out3 & out5; 
   elsif downselect = B"010" then 
    final_out <= out1 & out2 & out4 & out5; 
   elsif downselect = B"011" then 
    final_out <= out1 & out3 & out4 & out5; 
   elsif downselect = B"100" then 
    final_out <= out2 & out3 & out4 & out5; 
   else -- don't repeat combinations or worry 

about permutations; adds hardware 
    final_out <= B"0000"; 
   end if; 
  end process; 
 
  result <= final_out + c; 
end behavior; -- End partial scrambling 

Quartus II produces the schematic (page 1 of 2) shown in Figure 27 from the 

VHDL code above.  Page 2 of the schematic is in Figure 28.  The circuit in Figure 27 and 

the multiplexer in Figure 28 replace the multiplier in Figure 26. 

4.8  Summary 

This chapter explains and illustrates the scrambling methodology in detail.  The 

Combination Locks are described and an example is given.  The steps to scramble a 

circuit are listed and demonstrated.  These steps include 

• adding extra inputs, outputs, and copies; 

• deciding what extraneous input combinations produce correct output; 
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Figure 27.  Page 1 of partial scrambling schematic. 
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Figure 28.  Page 2 of partial scrambling schematic. 

 
• deciding which outputs are correct, which are extraneous, and when; 

• creating extraneous decoy functions; and  

• producing the design in VHDL or a schematic. 

Demonstration includes scrambling combinational and sequential circuits from truth and 

state tables, designs expressed by Boolean equations, and gate-level representations of 

designs.  In addition, transforming existing VHDL code and modifying only a portion of 

a circuit are illustrated. 
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5.  Results and Analysis 

5.1  Chapter Overview 

This chapter presents the performance metrics, whether calculated or collected 

from the circuit simulations.  Each of the following sections reports one performance 

metric.  The subsections report the metric for a particular set of circuits.  The metrics are 

primarily analyzed to quantify the effects on performance.  The subsections also include 

metrics for the VHDL and partial scrambling demonstrations, so that the metrics from the 

original and modified circuits may be compared. 

5.2  Security 

The security metric is of primary interest since the goal of this research is to 

produce a method to protect FPGA designs from reverse engineering. 

From (2), the security contributed by a Combination Lock is 2/)2( si , where i is 

the number of inputs to the Lock and s is the number of states in the Lock.  The security 

contribution from a scrambled circuit is )(2 1 qnpSm k +−++ , where S is the number of 

sequential elements, m is the number of original inputs, p is the number of additional 

inputs, k is the number of copies, n is the number of original outputs, and q is the number 

of additional outputs. 

Given the design methodology explanation in Chapter 4, the operands of the 

addition in (2) are explained in light of the methodology.  The 2i in the 2/)2( si  term for 

the Combination Lock contribution accounts for the total number of bit combinations of i 

inputs.  Since each of s states receives 2i possible bit combinations, 2i is raised to the 
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power of s.  For example, with i=2, there are 22=4 possible bit combinations – 002, 012, 

102, 112.  With s=3, the first state could receive any of the 4 bit combinations, the second 

state could receive any of the 4 bit combinations, and the third state could receive any of 

the four bit combinations, so 64)2(4444 323 ===×× .  This quantity is divided by two 

for the average number of random trials required to successfully find the correct sequence 

of inputs. 

For the scrambled circuit contribution ( )(2 1 qnpSm k +−++ ), only half of the input 

combinations are required to completely specify the truth or state table, since the top 

portions of the output table are copied to the bottom portions (cf., Subsection 4.3.1.).  

Thus, two is raised to the power of m+S+p-1.  For each input combination, each of k 

copies produces n+q outputs from which to select the final output of the circuit.  Since 

each final output can come from any of the k copies, the total possible combinations of 

outputs are kn+q.  For example, with m+p=4 (S=0), only 24-1=8 input combinations are 

required to fill the output columns of the truth table.  With k=3 and n+q=4, one circuit 

output can come from three possible copies, another output can come from three possible 

copies, etc., so 8133333 4 ==××× .  Thus, there are 648818 =×  possible output 

combinations. 

Figures 29, 30, and 31 plot (2), as well as exponential trendlines, for varying 

values of p, k, and q.  The other variables are held constant at i=3, s=8, m=n=30, and S=0.  

A conservative yet moderately sized example is desired for the plots, so 30 is chosen for 

m and n, and zero is chosen for S since an Intel 80386 has 42 inputs, 72 outputs, and eight 

32-bit general purpose registers (among others).  The security metric for an  
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Figure 29.  Security vs. varying extra inputs. 
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Figure 30.  Security vs. varying copies. 

i=3, s=8 
m=n=30, S=0 
k=2, q=1 

i=3, s=8 
m=n=30, S=0 
p=1, q=1 

Note:  The vertical scale is logarithmic. 
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Figure 31.  Security vs. varying extra outputs. 

 
Intel386™ DX microprocessor is 242+256/500 MHz/31,536,000 sec/yr = 3.23E+73 years 

(500 MHz is used so that this metric is consistent with the metrics that follow). 

The range of Figures 29 and 30 begins at 146 years.  With only five extra inputs, 

the plot of Figure 29 ends at 2,340 years.  The plot of Figure 30 ends at 9.03E+16 years 

for six copies.  The plot in Figure 31 begins at 4.21E+07 years, and with only five extra 

outputs, ends at 3.41E+09 years. 

The R2 values greater than 0.95 shown on each plot indicate a good fit to the 

plotted data for the exponential trend lines.  These signify that security increases 

exponentially with the numbers of extra inputs, copies, and extra outputs. 

i=3, s=8 
m=n=30, S=0 
k=3, p=1 
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With the plots of Figures 29, 30, and 31, it is easy to see how the application of 

the design methodology can transform a 0-5-year, Low-cost design into a design with a 

5-50-year, Medium-cost, or greater, security level. 

5.2.1  Combination Lock 

The security contributions of the Combination Locks are listed with each Lock’s 

factors in Table 17.  Beneath “Config” are the configurations of the Combination Locks;  

the configurations are denoted with “CL” followed by the number of states and then by 

the number of inputs.  “States” and “Inputs” in Table 17 are, respectively, the number of 

states in and the number of inputs to the Combination Lock state machine.  “Cycles” is 

determined with the Combination Lock portion of (2), 2/)2( si . 

Table 17.  Combination Locks’ security contributions. 

Config States Inputs Cycles Security Contribution 
(years) 

CL8-3 8 3 8.39X106 5.32E-10 
CL8-4 8 4 2.15X109 1.36E-07 
CL16-3 16 3 1.41X1014 8.93E-03 
CL16-4 16 4 9.22X1018 5.85E+02 

 
 

Table 18 analyzes the effects of the numbers of states and inputs and their 

interaction on the security contribution of the Combination Locks.  The mean 

performance is in the “I (mean)” column and “Total/4” row (highlighted).  The effects of 

the numbers of states and inputs and their interaction are listed in their respective 

columns in the “Total/4” row (highlighted).  These values indicate nearly equal effects on 

the security metric of a Combination Lock.  The reason that these values are effectively 

equal is that their determination is dominated by the value in the “yi” column and “4” 

row.  The importance of the number of states is indicated by SSA/SST, the effect of the  
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Table 18.  Analysis of Combination Locks’ security contributions. 

 Effect   
i I A (states) B (inputs) AB yi  

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (cycles) (yi-ybar)^2
CL8-3 1 -1 -1 1 8.389E+06 5.317E+36 
CL8-4 1 -1 1 -1 2.147E+09 5.317E+36 

CL16-3 1 1 -1 -1 1.407E+14 5.316E+36 
CL16-4 1 1 1 1 9.223E+18 4.785E+37 
Total 9.2235E+18 9.2235E+18 9.2232E+18 9.2232E+18 9.2235E+18 =sum 

Total/4 2.3059E+18 2.3059E+18 2.3058E+18 2.3058E+18 2.3059E+18 =ybar 
       
 SST= SSA= SSB= SSAB=   
 6.380E+37 2.127E+37 2.127E+37 2.127E+37   
       
  SSA/SST= SSB/SST= SSAB/SST=   
  33.3347% 33.3327% 33.3327%   

 

number of inputs by SSB/SST, and the effect of their interaction by SSAB/SST.  The 

values of these derived quantities indicate that all effects are nearly equally important to 

the security contribution offered by a Combination Lock. 

5.2.2  Combinational Circuit 

Table 19 lists the security of the scrambled combinational circuits with an eight-

state, three-input Combination Lock and each circuit’s factors.  The original full adder’s 

security metric (2m/500 MHz/31,536,000 sec/yr) is included in the first row of the table 

for comparison to the modified circuits’ security metrics.  The “Circuit” column lists the 

configurations of the circuits, which are denoted with a “C” for combinational, followed 

by a single digit for each of the number of copies, extra inputs, and extra outputs, and 

“cl” to indicate the use of a Combination Lock.  For example, C421cl is the 

combinational circuit with four copies, two extra inputs, one extra output, and a 

Combination Lock.  With the Combination Lock, the security improvements over the 

original circuit are six orders of magnitude. 
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Table 19.  Combinational circuits’ security metrics. 

C0 Original m=3 n=2   5.0736E-16  

Circuit 
Copies 

(k) 
Inputs 

(p) 
Outputs

(q) 
CL states

(s) 
CL inputs

(i) 
Security 
(years) 

Normalized 
to original 

C211cl 2 1 1 8 3 5.3200E-10 1.04858E+06
C212cl 2 1 2 8 3 5.3201E-10 1.04859E+06
C221cl 2 2 1 8 3 5.3201E-10 1.04859E+06
C222cl 2 2 2 8 3 5.3202E-10 1.04860E+06
C411cl 4 1 1 8 3 5.3203E-10 1.04864E+06
C412cl 4 1 2 8 3 5.3213E-10 1.04883E+06
C421cl 4 2 1 8 3 5.3206E-10 1.04870E+06
C422cl 4 2 2 8 3 5.3226E-10 1.04908E+06

 

Table 20 analyzes the effects of varying the numbers of copies, extra inputs, and 

extra outputs.  The “i (config)” column shows the circuit configurations that produced the 

values in the “yi” column.  The “cl” suffix in Table 19 is absent in Table 20 since the 

security contributions of scrambled circuits without Combination Locks are analyzed.  

The bottom row of values indicates that the number of copies (SSA/SST) in a scrambled 

circuit affects the circuit’s security contribution more than any other primary factor or 

interaction.  The second greatest influence on a scrambled circuit’s security contribution 

is the number of extra outputs (SSC/SST).  The last significant effect on a circuit’s 

security contribution is the interaction of the number of copies and the number of extra 

outputs (SSAC/SST), which is not surprising given the first two significant effects. 

5.2.3  Sequential Circuit 

The security metrics of the scrambled sequential circuits and an eight-state, three-

input Combination Lock are listed with each circuit’s factors in Table 21.  The original 

three-bit up counter’s security metric (2m+S/500 MHz/31,536,000 sec/yr) is included in 

the first row of the table for comparison to the modified circuits’ security metrics.  The 

“Circuit” column lists the configurations of the circuits, which are denoted with an “S”  
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Table 20.  Analysis of combinational circuits’ security contributions. 
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Table 21.  Sequential circuits’ security metrics. 

S0 Original m=0 n=3 3   5.0736E-16  

Circuit 
Copies 

(k) 
Inputs 

(p) 
Outputs

(q) S
CL states

(s) 
CL inputs

(i) 
Security 
(years) 

Normalized 
to original 

S211cl 2 1 1 4 8 3 5.3202E-10 1.04860E+06 
S212cl 2 1 2 5 8 3 5.3206E-10 1.04870E+06 
S221cl 2 2 1 4 8 3 5.3203E-10 1.04864E+06 
S222cl 2 2 2 5 8 3 5.3213E-10 1.04883E+06 
S411cl 4 1 1 4 8 3 5.3226E-10 1.04908E+06 
S412cl 4 1 2 5 8 3 5.3408E-10 1.05267E+06 
S421cl 4 2 1 4 8 3 5.3252E-10 1.04960E+06 
S422cl 4 2 2 5 8 3 5.3616E-10 1.05676E+06 

 
 

for sequential, followed by a single digit for each of the number of copies, extra inputs, 

and extra outputs, and “cl” to indicate the use of a Combination Lock.  For example, 

S421cl is the sequential circuit with four copies, two extra inputs, one extra output, and a 

Combination Lock.  The S values of the modified circuits depend on q through the 

relationship Smod=Sorig+q.  As with the scrambled combinational circuits, the scrambled 

sequential circuits with the smallest Combination Lock have six orders of magnitude 

improvement. 

The analysis of the effects of varying the numbers of copies, extra inputs, and 

extra outputs in the scrambled sequential circuits is in Table 22.  The “i (config)” column 

shows the circuit configurations that produced the values in the “yi” column.  The “cl” 

suffix in Table 21 is absent in Table 22 since the security contributions of scrambled 

circuits without Combination Locks are analyzed.  As with the scrambled combinational 

circuits, the greatest effects on the security contributions are, in descending order, the 

number of copies (SSA/SST), the number of extra outputs (SSC/SST), and the interaction 

of these two factors (SSAC/SST).  The percentages in Table 22 are slightly different than 

those in Table 20 due to the value of Smod depending on q. 
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Table 22.  Analysis of sequential circuits’ security contributions. 
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It is interesting to note the differences in SSC/SST, the effect of the number of 

outputs, between Tables 20 and 22.  Table 20’s SSC/SST value is 20.773%, while the 

SSC/SST in Table 22 is 25.516%.  The 12 −++ pSm  factor in (2) accounts for this difference, 

since the value of Smod depends on the number of extra outputs.  Table 22’s value of 

SSAC/SST exhibits a similar increase of approximately five percentage points over 

Table 20’s SSAC/SST value.  The sequential SSA/SST decreases with increases in 

SSC/SST and SSAC/SST. 

5.2.4  VHDL and Partial Scrambling 

Table 23 presents the original and modified encoders’ security metrics.  The 

Combination Lock is the small, eight-state, three-input circuit. 

Table 23.  Original and scrambled existing VHDL circuits’ security. 

Original m=4 n=2 16 1.0147E-15  

Copies Inputs 
(extra) 

Outputs
(extra) Cycles Security Contribution

(years) 
Security w/CL 

(years) 
2 1 2 256 1.6235E-14 5.3202E-10 

 
 
Scrambling alone produces a ten-fold increase in security.  Adding the 

Combination Lock provides an additional increase of four orders of magnitude. 

The security metrics of the original and partially scrambled circuits are listed in 

Table 24.  The multiplier is isolated from the rest of the circuit, since the multiplier is the 

portion of the circuit modified.  To calculate the security of the entire modified circuit, 

(2) is customized so that the number of scrambled multiplier cycles is multiplied by the 

number of possible combinations from the two-bit input c, in this case, 22=4 possible 

combinations. 
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Table 24.  Security metrics of original and partially scrambled circuits. 

Original 6 4 64 4.0589E-15  
Multiplier m=4 n=4    

Copies Inputs 
(extra) 

Outputs
(extra) Cycles Security Contribution

(years) 
Security w/CL 

(years) 
2 1 1 512   

Input c 2  4   
Total   2048 1.2988E-13 5.3213E-10 

 
 
Scrambling the multiplier alone increases the security by a factor of 32.  Adding 

the eight-state, three-input Combination Lock increases the security by another factor of 

4,000. 

5.3  Execution Time 

Execution time metrics are collected from a Quartus II compilation report, 

specifically the design’s “.tan.rpt” file.  The compilations are not optimized for speed.  

For combinational circuits, pin-to-pin delay (tpd) is collected.  The maximum clock 

frequency (fmax) is collected for sequential circuits. 

5.3.1  Combination Lock 

The maximum clock frequency of each Combination Lock is listed in Table 25. 

Table 25.  Combination Locks’ maximum clock frequencies. 

Config States Inputs fmax (MHz)
CL8-3 8 3 379.36 
CL8-4 8 4 354.36 
CL16-3 16 3 385.8 
CL16-4 16 4 271.08 

 
 

Table 26 shows the results of the analysis of the maximum frequencies of the 

Combination Locks.  Table 55 in the Appendix is the entire analysis table.  From 

Table 26, one can see that the number of inputs has the greatest effect on fmax (SSB/SST).   
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Table 26.  Results of Combination Locks’ maximum frequency analysis table. 

SSA/SST= SSB/SST= SSAB/SST=
17.6378% 58.3159% 24.0463% 

 

The reason that this effect is the greatest on fmax may be that, with more inputs, more 

logic is required to test whether the input is correct and the state machine can advance to 

the next state.  More logic translates to a longer delay, and thus a slower clock frequency.  

Interestingly, the effect of the interaction between the number of states and the number of 

inputs (SSAB/SST) is greater than the effect of the number of states alone (SSA/SST).  

This may be due to the significant effect that the number of inputs alone has on fmax. 

5.3.2  Combinational Circuit 

The combinational circuits’ pin-to-pin delays are listed in Table 27.  Although the 

execution times are generally increasing with increasing numbers of copies, inputs, and 

outputs, the hypothesis that the increase in execution time is nearly constant cannot be 

rejected.  In the eight cases of modified combinational circuits, each circuit has at most 

one additional level of LUT in the critical path.  If a circuit much larger than the full 

adder is modified according to the algorithm, it is expected that the additional delay 

incurred would be through one or two LUTs and would be on the order of the additional 

delays listed in Table 27.  This additional delay would be insignificant in relation to the 

delay of the original large circuit.  This one- or two-LUT increase in delay for an FPGA 

might translate to an additional delay of ten or so gates.  This delay for a large ASIC 

would be minor compared to the execution time of the original circuit. 
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Table 27.  Combinational circuits’ execution times. 

C0 Original m=3 n=2 10.118  
  Inputs Outputs tpd Normalized 

Circuit Copies (extra) (extra) (ns) to original 
C211 2 1 1 9.857 0.9742 
C212 2 1 2 10.607 1.0483 
C221 2 2 1 10.851 1.0724 
C222 2 2 2 10.884 1.0757 
C411 4 1 1 10.752 1.0627 
C412 4 1 2 11.737 1.1600 
C421 4 2 1 12.129 1.1988 
C422 4 2 2 11.338 1.1206 

 
 
The reason for circuit C211 having a lower execution time than the original 

relates to the FPGA resources used, their location, and the routing between them.  This is 

the same reason circuit C422 is slightly faster than circuit C421 and circuit C411 is 

slightly faster than circuits C221 and C222. 

The results of the analysis table for the combinational circuits’ execution times 

are in Table 28.  The entire analysis is in Table 59 in the Appendix.  (A, B, and C 

correspond to copies, inputs, and outputs, respectively, as in Tables 20 and 22.)  The 

number of copies (SSA/SST) has the greatest effect on the execution time of the 

combinational circuits.  This effect follows since the number of copies determines the 

number of levels of multiplexers required, and additional logic is implemented to 

compare the multiplexer select signals.  Why the second most significant effect is the 

interaction of the number inputs and the number of outputs, rather than the number of 

inputs alone, is not understood.  Perhaps, the increase in inputs and outputs contributes to 

routing congestion.  The number of inputs is the third most significant effect for good 

reason.  An increase in the number of inputs impacts the amount of logic in the modified  



 

101 

Table 28.  Results of combinational circuits’ execution time analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST 
50.597% 18.131% 3.422% 0.308% 1.244% 22.279% 4.020% 

 

circuit, and additional logic results in longer paths and delays and increases in execution 

time. 

5.3.3  Sequential Circuit 

For the original and modified counters, fmax is 400 MHz, the maximum frequency 

of the targeted FPGA.  Although this frequency is less than the one used in (2), there are 

devices in the targeted FPGA’s family capable of 500 MHz.  The lower frequency of the 

targeted FPGA does not invalidate the results in the Security section.  The modified 

circuits’ maximum clock frequencies are the same as the original circuit’s frequency 

because the example circuits are likely too small to impact the clock frequency.  The 

execution times of the combinational and sequential circuits are not compared since their 

metrics are different. 

5.3.4  VHDL and Partial Scrambling 

The execution times of the original and modified VHDL design are listed in 

Table 29.  The increase in the modified circuit is due to an additional LUT on the critical 

path. 

Table 29.  Existing VHDL designs’ execution times. 

VHDL Original m=4 n=2 9.701  
 Inputs Outputs tpd Normalized 

Copies (extra) (extra) (ns) to original 
2 1 2 10.592 1.092 
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The execution times of the partially scrambled circuit and its original are shown 

in Table 30.  The increase in the modified circuit is due to the FPGA resources used, their 

location, and the routing between them, since both circuits have four LUTs between the 

input and output on the critical path. 

Table 30.  Partially scrambled and original circuits’ execution times. 

Partial Original 6 4 11.062  
 Inputs Outputs tpd Normalized 

Copies (extra) (extra) (ns) to original 
2 1 2 13.623 1.232 

 

5.4  Power Consumption 

Power consumption is measured in Quartus II.  Simulation files cycle twice 

through all possible original input combinations.  For example, there are eight possible 

input combinations to the original full adder.  Two cycles are used since a modified 

circuit has two paths to correct output, one in the upper half of the truth table and the 

other in the lower half of the truth table.  For example, with two extra inputs, correct 

output is obtained when the extra input is 012 or 112.  The simulations are also used to 

ensure the modified circuits function correctly.  When simulating the original design, two 

cycles are used to maintain consistency across tests.  The time between rising (or falling) 

edges is 40 ns, or 25 MHz.  Thus, the full adder circuits are simulated for 320 ns (since 

output transitions occur on both rising and falling input edges) and the counter circuits 

are simulated for 640 ns (since output transitions only occur on rising clock edges).   

Signal activity in the simulation is captured and analyzed by the Quartus II 

PowerPlay Power Analyzer Tool.  Toggle rates are set at 20% as shown in Figure 32. 
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Figure 32.  Quartus II PowerPlay Power Analyzer Tool. 

 
5.4.1  Combination Lock 

Combination Locks are simulated for one successful key sequence.  In the case of 

the eight-state Locks, the simulation time is 320 ns.  The sixteen-state Locks are 

simulated for 640 ns. 

The power consumption of the Combination Locks is listed in Table 31. 

Table 31.  Combination Locks’ power consumption. 

Config States Inputs Static (mW) Dynamic (mW) 
CL8-3 8 3 322.94 1.97 
CL8-4 8 4 322.97 2.1 
CL16-3 16 3 322.94 1.74 
CL16-4 16 4 322.98 1.77 
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The results of the analysis table for static power are in Table 32.  Table 56 in the 

Appendix contains the entire analysis.  Clearly the number of inputs (B) is the major 

factor in determining static power consumption. 

Table 32.  Results of Combination Locks’ static power analysis table. 

SSA/SST SSB/SST SSAB/SST 
1.9608% 96.0784% 1.9608% 

 

The dynamic power analysis results are listed in Table 33.  Table 57 in the 

Appendix is the entire analysis table.  Dynamic power consumption is greatly affected by 

the number of states (A), and hence, the amount of logic, in the Combination Lock.  The 

logic is where most switching activity is expected to occur.  The number of inputs (B) has 

only a minor effect on the dynamic power consumption. 

Table 33.  Results of Combination Locks’ dynamic power analysis table. 

SSA/SST SSB/SST SSAB/SST 
89.8053% 7.3310% 2.8637% 

 

The effect of the number of states on dynamic power is interesting in light of the 

dynamic power metrics in Table 31.  The eight-state Combination Locks consume more 

power dynamically than the sixteen-state Locks, even though sixteen states require more 

logic.  The reason for this apparent contradiction is the key sequence for the sixteen-state 

Locks has more stability than the eight-state Locks.  The eight-state key sequence is 1, 2, 

2, 3, 3, 3, 4, 6, and makes four of seven possible transitions – from 1 to 2 to 3 to 4 to 6 – 

in 320 ns.  The sixteen-state key sequence is 2, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 

12, and makes only five of fifteen possible transitions – from 2 to 4 to 6 to 8 to 10 to 12 – 

in 640 ns.  Thus, the eight-state Locks are switching a greater percentage of time than the 
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sixteen-state Locks, which explains the eight-state Locks’ greater dynamic power 

consumption.  With greater variation in both sequences, the sixteen-state Locks, with 

greater numbers of LUTs, are expected to have greater dynamic power consumption than 

the eight-state Locks. 

5.4.2  Combinational Circuit 

The power consumption of the full adder circuits is listed in Table 34. 

Table 34.  Combinational circuits’ power consumption. 

C0 Original m=3 n=2 322.9  3.76  
  Inputs Outputs Static Normalized to Dynamic Normalized to 

Circuit Copies (extra) (extra) (mW) original static (mW) original dynamic 
C211 2 1 1 323.13 1.0007 5.62 1.4947 
C212 2 1 2 323.22 1.0010 6.81 1.8112 
C221 2 2 1 323.19 1.0009 5.03 1.3378 
C222 2 2 2 323.29 1.0012 6.51 1.7314 
C411 4 1 1 323.27 1.0011 5.6 1.4894 
C412 4 1 2 323.38 1.0015 7.21 1.9176 
C421 4 2 1 323.3 1.0012 6.35 1.6888 
C422 4 2 2 323.4 1.0015 7.33 1.9495 

 
 
After arranging the circuits in the order C211, C221, C212, C222, C411, C421, 

C412, C422, the plot in Figure 33 is generated.  This ordering is due to the significance of 

the factors shown below in Table 35.  The number of inputs has the least significant 

effect so it is varied first.  For example, circuit C211 has one extra input and circuit C221 

has two extra inputs.  Then, the number of outputs is varied, so the order goes from 

circuit C221 with one extra output to circuit C212 with two extra outputs.  Finally, the 

number of copies is varied, so circuit C411 with four copies follows circuit C222 with 

two copies.  The R2 value indicates a good linear fit to the data.  The static power 

increases nearly linearly as inputs are added, then outputs, and finally copies.  The 

primary factor impacting static power is copies (compare circuits C211 and C411).  This  
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Figure 33.  Combinational circuits’ static power consumption. 

 
is due to the impact the number of copies has on resource allocation.  Adding an output 

has the second most significant effect (compare circuits C211 and C212).  Finally, the 

third most significant factor is adding inputs (compare circuits C211 and C221).  Adding 

an output increases the static power more than adding an input, as evidenced by the 

ordering of the circuits – from two copies, one extra input, one extra output (circuit 

C211), to two copies, two extra inputs, one extra output (circuit C221), to two copies, one 

extra input, two extra outputs (circuit C212). 

The dynamic power measurements do not lend themselves to a coherent ordering 

to produce a linear plot.  The ordering C221, C411, C211, C421, C222, C412, C212, 

C422, produces a linear plot with R2=0.917.  However, this ordering does not have a 

basis like the static power ordering. 



 

107 

As shown in Table 35, the order of significant factors affecting static power is the 

number of copies (A), the number of extra outputs (C), and the number of extra inputs 

(B).  (Table 60 in the Appendix contains the entire analysis.)  The number of copies is 

significant since an increase in the number of copies increases the number of required 

multiplexer select signals.  It is interesting that the number of inputs does not affect the 

static power measurements as it did with the Combination Lock. 

Table 35.  Results of combinational circuits’ static power analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
57.532% 6.894% 34.043% 1.362% 0.085% 0.000% 0.085% 

 
 
Table 36 lists the effects on the example circuits’ dynamic power consumption.  

(The entire analysis is in Table 61 in the Appendix.)  The number of outputs (C) is the 

most significant factor, followed by the number of copies (A), and the interaction (AB) of 

the numbers of copies and inputs.  The reason why the number of outputs has such an 

effect could be that most of the circuit switching activity occurs in the selection of copy 

outputs.  It is odd that the numbers of copies and inputs do not play a greater role, since 

they determine the amount logic in the modified circuit. 

Table 36.  Results of combinational circuits’ dynamic power analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
16.675% 0.001% 72.648% 8.134% 0.017% 0.304% 2.222% 

 

5.4.3  Sequential Circuit 

The power measurements of the up counters are listed in Table 37.  As with the 

combinational circuits, the same ordering (S211, S221, S212, S222, S411, S421, S412, 

S422) of the sequential circuits for the same reasons generates a linear plot.  The  
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Table 37.  Sequential circuits’ power consumption. 

S0 Original m=0 n=3 322.9  3.43  
  Inputs Outputs Static Normalized to Dynamic Normalized to 

Circuit Copies (extra) (extra) (mW) original static (mW) original dynamic 
S211 2 1 1 323.11 1.0007 3.96 1.1545 
S212 2 1 2 323.19 1.0009 4.6 1.3411 
S221 2 2 1 323.17 1.0008 4.34 1.2653 
S222 2 2 2 323.25 1.0011 5.55 1.6181 
S411 4 1 1 323.29 1.0012 4.43 1.2915 
S412 4 1 2 323.43 1.0016 5.13 1.4956 
S421 4 2 1 323.35 1.0014 4.5 1.3120 
S422 4 2 2 323.43 1.0016 5.46 1.5918 

 
 

significant factors and their order are the same for both the combinational and the 

sequential examples, namely copies, outputs, and inputs as shown in Table 38.  (The 

entire analysis is in Table 64 in the Appendix.)  The proportions of effects are different in 

the two classes of circuits.  The number of copies has the most significant effect on static 

power since the number of copies has a significant effect on the amount of resources a 

circuit requires. 

Table 38.  Results of sequential circuits’ static power analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
76.088% 4.052% 18.059% 0.450% 0.450% 0.450% 0.450% 

 
 
The results of the sequential circuits’ dynamic power analysis table are in 

Table 39.  Table 65 in the Appendix contains the entire analysis.  The three factors 

having the greatest effect are, in descending order, the number of outputs, the number of 

inputs, and the number of copies. 

Table 39.  Results of sequential circuits’ dynamic power analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
6.310% 16.495% 67.902% 4.767% 0.199% 3.797% 0.530% 
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5.4.4  VHDL and Partial Scrambling 

The existing VHDL and partially scrambled circuits are simulated for 640 ns 

each.  Table 40 shows the power measurements for the original and modified VHDL 

circuits.  The power measurements of the original and partially scrambled circuits are in 

Table 41.  The modified VHDL circuit’s more than 300% increase in dynamic power 

over the original circuit’s metric is due to its considerable increase in FPGA resources. 

Table 40.  VHDL circuits’ power consumption. 

VHDL Original m=4 n=2 322.94  1.56  
 Inputs Outputs Static Normalized to Dynamic Normalized to 

Copies (extra) (extra) (mW) original static (mW) original dynamic
2 1 2 323.27 1.001 4.88 3.128 

 

Table 41.  Partially scrambled circuits’ power consumption. 

Partial Original 6 4 323.08  4.27  
 Inputs Outputs Static Normalized to Dynamic Normalized to 

Copies (extra) (extra) (mW) original static (mW) original dynamic
2 1 2 323.49 1.001 4.74 1.11 
 
 
5.4.5  Observations 

There is a strong correlation between the number of pins used for a circuit and the 

static power consumed by that circuit.  Figure 34 illustrates this correlation.  This plot 

considers all circuits tested and duplicate measurements are deleted.  The reason for this 

correlation is due to the number of copies.  The number of copies impacts the number of 

required multiplexer select signals. 

Sorting the circuits according to pin count, as was done to produce Figure 34, 

results in combinational/sequential pairs of the same copy/extra input/extra output 

configuration.  These groupings lend credence to the hypothesis that the number of copies 
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Figure 34.  Correlation between pin count and static power. 

 
significantly impacts that number of pins required, which impacts the amount of static 

power dissipated. 

Sorting the tested circuits in order of dynamic power consumption leads to 

groupings of sequential circuits and groupings of combinational circuits.  These 

groupings seem to indicate that dynamic power dissipation is circuit-dependent. 

5.5  Resource Usage 

Resource usage metrics are collected from a Quartus II compilation report, the 

design’s “.map.rpt” file.  The compilations are not optimized for resource usage.  For all 

circuits, the numbers of LUTs and pins are collected.  For sequential circuits, the number 

of registers is also collected. 
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5.5.1  Combination Lock 

The resource usage of each Combination Lock is listed in Table 42.  The number 

of pins is solely dependent on the number of inputs.  Similarly, the number of registers 

depends only the number of states. 

Table 42.  Combination Locks’ resource usage. 

Config States Inputs LUTs Registers Pins
CL8-3 8 3 13 9 6 
CL8-4 8 4 16 9 7 
CL16-3 16 3 25 17 6 
CL16-4 16 4 28 17 7 

 
 

The results of the analysis of the effects of the Combination Locks’ states and 

inputs on LUT usage are in Table 43.  Table 58 in the Appendix contains the entire 

analysis.  As expected, the number of states is the greatest contributor to the number of 

LUTs required – more states require more logic. 

Table 43.  Results of Combination Locks’ LUT analysis table. 

SSA/SST SSB/SST SSAB/SST
94.1176% 5.8824% 0.0000% 

 

5.5.2  Combinational Circuit 

The resources used by each test combinational circuit are listed in Table 44.  As 

expected, circuits with more copies, inputs, and outputs generally require more LUTs and 

pins.  Also as expected, the required area for a circuit with one extra input and two copies 

is less than a 400 percent increase over the original circuit. 

For a given number of copies, the increase in LUTs appears to be exponential.  

See Figures 35 and 36.  Figure 35 shows the increase in LUTs when considering only  
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Table 44.  Combinational circuits’ resource usage. 

C0 Original m=3 n=2 2  5  
  Inputs Outputs  Normalized to  Normalized to

Circuit Copies (extra) (extra) LUTs original LUTs Pins original pins 
C211 2 1 1 3 1.5 11 2.2 
C212 2 1 2 4 2.0 13 2.6 
C221 2 2 1 6 3.0 12 2.4 
C222 2 2 2 9 4.5 14 2.8 
C411 4 1 1 6 3.0 14 2.8 
C412 4 1 2 8 4.0 17 3.4 
C421 4 2 1 10 5.0 15 3.0 
C422 4 2 2 14 7.0 18 3.6 
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Figure 35.  Combinational circuits’ LUT increase for circuits 1-4. 

 
circuits C211 through C222.  Figure 36 considers circuits C411 through C422.  Lines can 

also be fit to the same data.  However, the resulting R2 values are slightly lower than 

those shown in Figures 35 and 36, but still greater than 0.95. 
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Figure 36.  Combinational circuits’ LUT increase for circuits 5-8. 

 
The metrics for the circuits with two copies appear exponential as they increase 

from 3 to 4 to 6 to 9.  On the other hand, the data for the circuits with four copies appears 

linear, except for the last value, as it increases from 6 to 8 to 10 to 14.  More data is 

required to conclusively decide whether the increase is exponential or linear. 

If the circuits are ordered as in the Subsection 5.4.2, namely C221, C411, C211, 

C421, C222, C412, C212, C422, a line fits well to the pin data in Table 44 (cf., 

Figure 37).  The order is coherent since adding an input increases the pin count by one, 

but adding an output increases the pin count by at least two – one for the output pin and 

one for the multiplexer select signal. 

The results of the analysis of the combinational circuits’ resource requirements 

are in Table 45.  Table 62 in the Appendix is the entire analysis.  The number of inputs 
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Figure 37.  Combinational circuits’ pin increase. 

 
Table 45.  Results of combinational circuits’ LUT analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
36.364% 46.023% 14.205% 0.568% 0.568% 2.273% 0.000% 

 
 

(B) has the greatest impact on LUT usage, followed by the number of copies (A), and the 

number of outputs (C).  It is expected that the number of inputs has the greatest impact – 

adding one extra input to a truth table doubles the size of the table.  It is also logical that 

number of inputs has a greater effect than the number of copies.  Twice as many copies 

should double the area.  However, as demonstrated in Section 4.5, doubling does not 

occur if internal circuit signals are routed appropriately. 
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Table 46 contains the results of the combinational circuits’ pin analysis.  The 

entire analysis is in Table 63 in the Appendix.  The number of copies (A) has the greatest 

effect on the number pins used, as stated in Subsection 5.4.5, due to the number of 

multiplexer select signals required.  The second greatest influence on the number of pins 

used is the number of outputs (C), since increasing the number of outputs affects the 

number of multiplexer select signals needed. 

Table 46.  Results of combinational circuits’ pin analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
62.025% 5.063% 31.646% 0.000% 1.266% 0.000% 0.000% 

 
 
5.5.3  Sequential Circuit 

The resource metrics for the sequential circuits are listed in Table 47.  As 

expected, the circuits with greater numbers of copies, extra inputs, and extra outputs 

generally require more resources.  Also as expected, the required area for a circuit with 

one extra input and two copies is less than a 400 percent increase over the original circuit. 

Table 47.  Sequential circuits’ resource usage. 

S0 Original m=0 n=3 3  4  
  Inputs Outputs  Normalized to  Normalized to

Circuit Copies (extra) (extra) LUTs original LUTs Pins original pins 
S211 2 1 1 4 1.333 11 2.75 
S212 2 1 2 5 1.667 13 3.25 
S221 2 2 1 9 3.000 12 3.00 
S222 2 2 2 10 3.333 14 3.50 
S411 4 1 1 7 2.333 15 3.75 
S412 4 1 2 9 3.000 18 4.50 
S421 4 2 1 12 4.000 16 4.00 
S422 4 2 2 16 5.333 19 4.75 

 
 
As with the combinational circuits, exponential curves fit better than lines to the 

sequential LUT data.  The R2 values for the lines are slightly lower than for the 
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exponential curves.  More data is required to decide whether the increases in LUTs for 

the sequential circuits are linear or exponential.  A line fits well to the pin data in 

Table 47, with an R2 value greater than that of Figure 37. 

In addition to the metrics in Table 47, the number of registers in a circuit is also of 

interest.  The number of registers in the counter circuits depends only on the total number 

of outputs.  Hence, a modified circuit with one extra output has four registers and a 

modified circuit with two extra outputs has five registers. 

Table 48 lists the results of the LUT analysis table for the example sequential 

circuits.  The entire analysis table is Table 66 in the Appendix.  Although in different 

proportions than the combinational circuits’ analysis results, the major contributors to 

counter LUT usage are, in descending order, the number of inputs (B), the number of 

copies (A), and the number of outputs (C).  The reasons for these effects are the same as 

those stated in the previous subsection. 

Table 48.  Results of sequential circuits’ LUT analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
30.769% 58.173% 7.692% 0.481% 1.923% 0.481% 0.481% 

 
 
The results of the sequential circuits’ pin analysis table are in Table 49.  Table 67 

in the Appendix is the entire analysis.  Similar to the combinational circuits, the two most 

significant factors in determining counter pin usage are the number of copies (A) and the 

number of outputs (C).  The reasons for these effects are the same as those stated in the 

previous subsection. 
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Table 49.  Results of sequential circuits’ pin analysis table. 

SSA/SST SSB/SST SSC/SST SSAB/SST SSAC/SST SSBC/SST SSABC/SST
72.973% 3.604% 22.523% 0.000% 0.901% 0.000% 0.000% 

 

5.5.4  VHDL and Partial Scrambling 

The resource usage metrics for the original and modified VHDL designs are listed 

in Table 50.  The increase in LUTs is 400%, which is reasonable for an extra input, two 

copies, and two extra outputs.  The pin count increases by 233%. 

Table 50.  VHDL circuits’ resource usage. 

VHDL Original m=4 n=2 2  6  
 Inputs Outputs  Normalized to  Normalized to

Copies (extra) (extra) LUTs original LUTs Pins original pins 
2 1 2 8 4.0 14 2.333 

 

Table 51 lists the resource usage metrics for the original and partially scrambled 

circuits.  The increase in LUTs is only 200%, even with the combinational multiplexer.  

The pin count only doubled. 

Table 51.  Partially scrambled circuits’ resource usage. 

Partial Original 6 4 8  10  
 Inputs Outputs  Normalized to  Normalized to

Copies (extra) (extra) LUTs original LUTs Pins original pins 
2 1 2 16 2.0 20 2.0 

 

5.6  Combining a Combination Lock with Modified Circuits 

To understand the effects of combining a Combination Lock with a modified 

circuit, the sixteen-state, four-input Combination Lock (CL16-4) is added to three 

different modified circuits.  The circuit results in Table 52 are the full adder with two 

copies, two extra inputs, and two extra outputs (C222).  The counter results with four 
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copies, two extra inputs, and two extra outputs (S422) are shown in Table 53.  Table 54 is 

for the third circuit with the VHDL design modified to two copies, one extra input, and 

two extra outputs. 

Table 52.  Combination Lock and modified full adder. 

Circuit Timing 
Simulation 

time 

Static 
Power 
(mW) 

Dynamic 
Power 
(mW) LUTs Registers Pins 

Modified full 
adder 
(C222) 10.884 ns 320 ns 323.29 6.51 9 0 14 
Combination 
Lock 
(CL16-4) 271.08 MHz 640 ns 322.98 1.77 28 17 7 
Combined 367.24 MHz 960 ns 323.31 4.14 36 17 15 

 

Table 53.  Combination Lock and modified counter. 

Circuit Timing 
Simulation 

time 

Static 
Power 
(mW) 

Dynamic 
Power 
(mW) LUTs Registers Pins 

Modified 
counter 
(S422) 400 MHz 640 323.43 5.46 16 5 19 
Combination 
Lock 
(CL16-4) 271.08 MHz 640 322.98 1.77 28 17 7 
Combined 326.05 MHz 1280 323.29 3.98 43 22 19 

 

Table 54.  Combination Lock and modified VHDL circuit. 

Circuit Timing 
Simulation 

time 

Static 
Power 
(mW) 

Dynamic 
Power 
(mW) LUTs Registers Pins 

Modified 
VHDL 10.592 ns 640 323.27 4.88 8 0 14 
Combination 
Lock 
(CL16-4) 271.08 MHz 640 322.98 1.77 28 17 7 
Combined 298.33 1280 323.29 3.98 36 17 15 

 

The clock frequency increases for the Combination Lock when combined with the 

other circuits due to different routing and resource sharing.  The clock frequency 
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decreases for the counter, but this can be remedied by partitioning the two modules and 

providing separate clocks to the two modules. 

In Tables 52 and 53, the LUT usage is one less than adding the LUT usages of 

two components, due to resource sharing.  In Table 54, the LUT usage is the sum of the 

two LUT usages.  The registers counts are also added together.  The pin counts are not 

summed, since some multiplexer select signals are also inputs to the Combination Lock. 

The static power measurements of the components and the combination are within 

0.5 mW of each other.  The combination of the modules has lower dynamic power 

consumption, but that may be due to the simulation file characteristics. 

Overall, the combinations of the components meet the expectations for resource 

usage and power dissipation.  The timing issues can be addressed with partitioning. 

5.7  Summary 

This chapter gives the results of the tests and explanations of these results.  

Significant increases in security can be achieved by applying the proposed circuit design 

methodology to digital circuit designs, especially since security increases exponentially 

with additional copies, inputs, and outputs.  Although the execution times for the 

combinational circuits are increasing, the additional level of delay is at most one LUT.  

The modified sequential circuits maintain the clock frequency of the original sequential 

circuit.  More execution time data from larger circuits are needed to better characterize 

the effects of the algorithm.  Static power consumption appears to be linear with 

increases in the size of the modified circuits, and is linearly correlated to design pin 

count.  Dynamic power dissipation depends on the specific circuit and simulation file.  
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More data are required to determine whether LUT usage increases linearly or 

exponentially as circuit sizes increase.  Pin count increases linearly and is most affected 

by the number of copies. 

The examples of this chapter and their test results illustrate the relatively low cost 

of operating a design secured by the design modification algorithm.  This low cost is a 

great value given the substantial increase in security obtained. 

The examples also illustrate the flexibility of the design methodology to be 

applied in various ways to circuits described in various ways – complete or partial circuit 

modification; and by truth or state tables, or already written in VHDL. 
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6.  Conclusions and Recommendations 

6.1  Chapter Overview 

This chapter contains the conclusions of the research and their significance.  

Recommendations for future research are also listed.  Finally, a summary concludes the 

chapter. 

6.2  Conclusions of Research 

This research found that there is not a standard classification for tampering attacks 

and countermeasures.  Previous classifications have weaknesses or have been 

misinterpreted and misapplied.  In addition, there is no clear correlation of 

countermeasures to attacks. 

Due to this finding, a classification of threats and countermeasures and their 

correlation is proposed.  The classification addresses some of the weaknesses of previous 

classifications.  Significant aspects of the classification are the categorization of attacks, 

rather than attackers, and the use of both cost and time for the taxonomy.  With the 

proposed classification, attacks and countermeasures are correlated.  However, there are 

still no quantified costs and times for attacks nor similar measures for countermeasures. 

This research developed a circuit design modification methodology that provides 

significant security gains over an original circuit without considerable performance costs.  

Thus, the reverse engineering vulnerability of an FPGA design can be significantly 

reduced without corresponding penalties to its operation.  This research also provides a 

proof of concept for the algorithm by modifying and testing several circuits, to include 

the modification of only a portion of a circuit.  The modified sequential circuits maintain 
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the original circuit’s clock frequency.  The execution time of the modified combinational 

circuits increases by the delay of one level of LUTs at most over the original execution 

time.  Static power consumption, the main component of power consumption in the tests 

conducted, increases linearly with the number of circuit copies or pins.  Pin count 

increases linearly with increases in modified circuit size.  LUT usage may increase 

linearly or exponentially – more data are required to determine the growth rate.  The tests 

show that the increase in the number of LUTs is at or below what might be expected for 

added copies, inputs, and outputs. 

6.3  Significance of Research 

The proposed classification provides a method to apply appropriate 

countermeasures to perceived threats.  With properly classified threats, suitable measures 

can be applied to counter those threats. 

The circuit design modification methodology protects critical technologies and 

information.  This in turn maintains the nation’s technological advantage and provides 

many years of weapons systems use. 

6.4  Recommendations for Action 

It is recommended that the Air Force Research Laboratory’s (AFRL) Anti-

Tamper – Software Protection Initiative (AT-SPI) Technology Office evaluate the merit 

of the proposed methodology.  The portions of the methodology found to have merit 

should be implemented by the Department of Defense. 
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6.5  Recommendations for Future Research 

Based on the knowledge and experience gained from this study, there are several 

areas that can be explored further. 

The lack of quantified costs and durations of attacks and countermeasures 

indicates a need to collect such metrics.  These metrics can refine the proposed 

classification and the application of appropriate countermeasures to threats. 

Scripts or a program could be written to automate the processing of circuits 

according to the proposed design modification algorithm. 

The use of bidirectional pins is not addressed in this study.  Incorporating 

bidirectional pins into the algorithm would be useful. 

The application of the methodology to ASICs would uncover any ASIC-specific 

implementation problems. 

Applying the algorithm to larger circuits and testing their security by attacking the 

modified circuits are additional avenues to pursue.  A specific large-circuit issue is the 

scrambling of multiple modules of VHDL.  Each module could be scrambled and 

interfaced with other individually scrambled modules.  An alternative is to treat the 

collection of modules as a single black box. 

The explicit intertwining of valid circuits with decoy circuits was not specifically 

addressed in this study.  Studying this technique further could aid in other aspects of anti-

reverse engineering. 

Finally, additional research could extend the design algorithm to pipelined 

circuits.  Specifically, scrambling and interfacing each stage or deciding what portions of 
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the circuit must be modified are of interest.  The application of the procedure to larger 

circuits and explicit intertwining may be useful in pipelined designs. 

6.6  Summary 

This chapter presents the conclusions of this research and its significance, 

focusing on the classification of threats and countermeasures and the design modification 

algorithm.  It is recommended that AFRL’s AT-SPI Technology Office evaluate the 

algorithm.  Further study, including the refinement of cost and time values of attacks and 

countermeasures and the application of the design methodology to ASICs and multicycle 

designs, is also proposed. 

The proposed design modification method is found to be economical in terms of 

the security gained and performance costs incurred. 
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Appendix:  Data Analysis Tables 

Table 55.  Analysis of Combination Locks’ maximum frequencies. 

 Effect   
i I A (states) B (inputs) AB yi  

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (fmax) (yi-ybar)^2
CL8-3 1 -1 -1 1 379.36 1005.5241 
CL8-4 1 -1 1 -1 354.36 45.0241 
CL16-3 1 1 -1 -1 385.8 1455.4225 
CL16-4 1 1 1 1 271.08 5862.9649 
Total 1390.60 -76.84 -139.72 -89.72 1390.60 =sum 

Total/4 347.65 -19.21 -34.93 -22.43 347.65 =ybar 
       
 SST= SSA= SSB= SSAB=   
 8368.936 1476.096 4880.420 2012.420   
       
  SSA/SST= SSB/SST= SSAB/SST=   
  17.6378% 58.3159% 24.0463%   

 

Table 56.  Analysis of Combination Locks’ static power consumptions. 

 Effect   
i I A (states) B (inputs) AB yi  

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (mW) (yi-ybar)^2
CL8-3 1 -1 -1 1 322.94 0.0003063 
CL8-4 1 -1 1 -1 322.97 0.0001562 
CL16-3 1 1 -1 -1 322.94 0.0003063 
CL16-4 1 1 1 1 322.98 0.0005062 
Total 1291.83 0.01 0.07 0.01 1291.83 =sum 

Total/4 322.9575 0.0025 0.0175 0.0025 322.9575 =ybar 
       
 SST= SSA= SSB= SSAB=   
 0.001275 0.000025 0.001225 0.000025   
       
  SSA/SST= SSB/SST= SSAB/SST=   
  1.9608% 96.0784% 1.9608%   
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Table 57.  Analysis of Combination Locks’ dynamic power consumptions. 

 Effect   
i I A (states) B (inputs) AB yi  

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (mW) (yi-ybar)^2 
CL8-3 1 -1 -1 1 1.97 0.005625 
CL8-4 1 -1 1 -1 2.1 0.042025 
CL16-3 1 1 -1 -1 1.74 0.024025 
CL16-4 1 1 1 1 1.77 0.015625 
Total 7.58 -0.56 0.16 -0.10 7.58 =sum 

Total/4 1.895 -0.140 0.040 -0.025 1.895 =ybar 
       
 SST= SSA= SSB= SSAB=   
 0.0873 0.0784 0.0064 0.0025   
       
  SSA/SST= SSB/SST= SSAB/SST=   
  89.8053% 7.3310% 2.8637%   

 

Table 58.  Analysis of Combination Locks’ LUT usages. 

 Effect   
i I A (states) B (inputs) AB yi  

(config) (mean) 8=-1, 16=1 3=-1, 4=1 (interaction) (LUTs) (yi-ybar)^2
CL8-3 1 -1 -1 1 13 56.25 
CL8-4 1 -1 1 -1 16 20.25 
CL16-3 1 1 -1 -1 25 20.25 
CL16-4 1 1 1 1 28 56.25 
Total 82.0 24.0 6.0 0.0 82.0 =sum 

Total/4 20.5 6.0 1.5 0.0 20.5 =ybar 
       
 SST= SSA= SSB= SSAB=   
 153.0 144.0 9.0 0.0   
       
  SSA/SST= SSB/SST= SSAB/SST=   
  94.1176% 5.8824% 0.0000%   
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Table 59.  Analysis of combinational circuits’ execution times. 
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Table 60.  Analysis of combinational circuits’ static power consumptions. 
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Table 61.  Analysis of combinational circuits’ dynamic power consumptions. 
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Table 62.  Analysis of combinational circuits’ LUT usages. 
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Table 63.  Analysis of combinational circuits’ pin usages. 
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Table 64.  Analysis of sequential circuits’ static power consumptions. 

 



 

133 

Table 65.  Analysis of sequential circuits’ dynamic power consumptions. 
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Table 66.  Analysis of sequential circuits’ LUT usages. 

 



 

135 

Table 67.  Analysis of sequential circuits’ pin usages. 
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