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Abstract

In the context of close ground combat, the perception of Battle Damage Assess-

ment (BDA) is closely linked with a soldier’s engagement decisions and has significant

effects on the battlefield. Perceived BDA is also one of the most complex and uncertain

processes facing the soldier in live combat. As a result, the modeling and simulation

community has yet to adequately model the perceived BDA process in combat mod-

els. This research effort examines the BDA process from a perception standpoint and

proposes a methodology to collect the pertinent data and model this perception in the

Army’s current force-on-force model, CASTFOREM. A subject matter expert survey

design and a method to model the BDA process as a Discrete Time Markov Chain

are proposed. Bayesian inference is used to update probability distributions at each

time step considering the situational parameters available to the soldier at the time of

an assessment. Comparisons between the known simulation distributions and those

developed from simulated survey responses suggest an adequate number of subject

matter experts to be polled.
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BDA ENHANCEMENT METHODOLOGY

USING

SITUATIONAL PARAMETER ADJUSTMENTS

I. Introduction

1.1 Background

The research presented in this thesis is sponsored by the Training and Doctrine

Command (TRADOC) Analysis Center (TRAC). TRAC performs analysis to help

shape the future of the Army and Department of Defense (DoD) over a five to fifteen

year horizon, focusing on such areas as analysis of alternatives, organization and op-

erations, and modeling and simulation (M&S) development and maintenance. During

an analysis of alternatives, TRAC found their representation of battle damage assess-

ment (BDA) in force-on-force models inadequate and set to initiate a BDA Project.

The primary goal of the TRAC BDA project is to effectively represent the BDA pro-

cess in combat models. TRAC is also responsible for the Army’s main force-on-force

model, the Combined Arms Support Task Force Evaluation Model (CASTFOREM),

and wished to improve it by employing the Air Force Institute of Technology (AFIT)

to develop a new BDA methodology. The goal of this research is to provide a flexible

methodology which TRAC can implement not only in CASTFOREM, but also other

models such as CombatXXI, the future replacement for CASTFOREM.

This chapter will present an introduction to BDA concepts followed by a dis-

cussion of how CASTFOREM models BDA currently. Subsequently, the problem at

hand will be formulated and scoped for this research.

1.2 BDA Concepts

Most of the current military doctrine regards BDA as an air-centric warfare

component. However, this research specifically deals with BDA using ground weapon
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systems in real time (i.e. during an engagement). Accordingly, much of the doctrine

applies to the problem at hand only in a broad sense. The DoD defines BDA as

The timely and accurate estimate of damage resulting from the applica-
tion of military force, either lethal or nonlethal, against a predetermined
objective. Battle damage assessment can be applied to the employment of
all types of weapon systems (air, ground, naval, and special forces weapon
systems) throughout the range of military operations... [12]

BDA is part of the combat assessment (CA) process which is, in turn, part of

the joint targeting cycle shown in figure 1.1. BDA, munitions effectiveness assessment

Figure 1.1: Joint Targeting Cycle [3]

(MEA), and future target nominations or re-attack recommendations make up CA.

BDA occurs in three phases; physical damage assessment (Phase I), functional damage

assessment (Phase II), and target system assessment (phase III). Each phase extends

the information from the last phase, to make a further determination of battle damage

and its effects. The DoD [12] defines the three phases of BDA as follows:

2



Phase I - Physical Damage Assessment An estimation of the quantitative ex-

tent of physical damage (through the application of military force) to a target

element, based on observed or interpreted damage.

Phase II - Functional Damage Assessment A continuation of phase I assess-

ments. The estimate of the effect physical damage has on a target’s functional

or operational capability.

Phase III - Target System Assessment An aggregation of phase II effects result-

ing in a judgement of theater-wide weapons system capabilities and a determi-

nation of the enemy’s ability to wage war.

The focus of this study is on Phase I and II BDA.

1.2.1 Kill Types. The Joint Munitions Effectiveness Manual (JMEM) de-

fines a list of 45 kill types in combat operations. A list of some possible kill states is

presented in Table 1.1.

Table 1.1: JMEM Kill Types

Aircraft Control kill Personnel kill
Catastrophic kill (K-kill) Phase kill
Catastrophic on Ground kill (COG-kill) Power Supply kill
Communications kill Prevent Launch kill (PL-kill)
Data Processing kill Prevent Mission kill (PM-kill)
Expedient Interdiction kill Prevent Takeoff kill (PTO-kill)
Firepower kill (F-kill) Short Range Sur.-to-Air Firepower kill
Incapacitation kill Structural kill
Long Range Sur.-to-Air Firepower kill Support Functions kill
Mission Control kill Surface-to-Air Firepower kill
Mission kill (MSN-kill) Thorough Interdiction kill
Mobility kill (M-kill) Time Out-of-Action kill(TOA-kill)

Many of these kill types are not independent or exclusive of one another (i.e.

a target may have more than one kill type at a time). Further, some kill types

do not apply to Army (land) engagements or cannot be ascertained visually. Most

3



importantly, however, CASTFOREM only models a subset of these kill types and, as

such, will scope the consideration of the research.

CASTFOREM models the following kill types:

Mobility kill (M-kill) A target is subject to an M-kill if it is incapable of executing

controlled movement and the damage is not repairable by the crew on the bat-

tlefield. Failure to function may be caused by the incapacitation of the crew or

damage to propulsion or control equipment.

Firepower kill (F-kill) A target is subject to an F-kill if it is incapable of delivering

controlled fire from the main armament and the damage is not repairable by

the crew on the battlefield. The loss of this function may be caused by the

incapacitation of the crew or damage to the main armament and its associated

equipment.

Communications kill (C-kill) A target is subject to a C-kill if it is incapable of

sustained communications with other battlefield entities and the damage is not

repairable by the crew on the battlefield. The loss of this function may be

cause by crew incapacitation or damage to communications equipment. A C-

kill cannot be easily perceived visually and as such will not be considered in this

research.

Sensor kill (S-kill) A target is subject to an S-kill if it is incapable of using its

sensors, offensive or defensive, and the damage is not repairable by the crew on

the battlefield. The loss of this function may be caused by crew incapacitation

or damage to sensors themselves. An S-kill cannot be easily perceived visually

and as such will not be considered in this research.

Catastrophic kill (K-kill) A target is subject to a K-kill if it sustains both an M-

and F-kill and is damaged to the extent that is not economically repairable. A

K-kill is more likely to be apparent to the crew of a weapon system because of

the resulting fires/detonation of ammunition.

4



No-kill If the target has not sustained any kill type and is capable of performing all

combat functions it is referred to as No-kill. This is most often referred to as

No Damage (ND) in CASTFOREM.

Any combination of M-, F-, C-, or S-kills are possible while K-kill and No-kill

are singular states. For example, a target can sustain an MF-kill (i.e. the target has

mobility and firepower kills only), but cannot have a MK-kill. For the purposes of

this research kill type will be referred to as kill state.

The Army Material Systems Analysis Activity (AMSAA) provides the data

required to derive mutually exclusive probabilities for all feasible combinations of kill

types used in the simulation. It is important to note that CASTFOREM does not

distinguish between reasons for a kill. For example a vehicle might sustain an M-kill

because its tracks are displaced, the engine was damaged, or the soldier driving was

killed, but CASTFOREM only knows that the vehicle has an M-kill.

1.3 AMSAA Heuristic

CASTFOREM currently uses a heuristic developed by AMSAA to model BDA.

The heuristic is based on the perception of the soldier in combat and is shown in

Figure 1.2 on the following page.

The heuristic begins with the firer performing the first shot and an initial eval-

uation of the target state as K-killed or not K-killed. It assumes that the observer

can perceive a K-kill with probability 1. As a result, if at any point in the heuristic

the target is assessed as a K-kill, the engagement simulation ends. The firer evalu-

ates non-K-kill targets again with a 0.33 probability of detecting the correct level of

damage and 0.67 probability of having unknown damage. A second shot is performed

and assessed in the same manner with probability of correct detection increased to

0.67. The heuristic ends after three shots where non-K-killed targets are evaluated

accurately with probability 1.

The AMSAA heuristic contains several inadequacies that need to be addressed.
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3

Current Model

Target generated
by CASTFOREM

(Primarily vehicle, not
soldier or group of

soldiers) 

Target
detected and
identified?

Target engaged
firer performs

first shot

Actual state
k- killed?

Target evaluated
as k-killed

Target evaluated as
M, F, MF or ND?

Target evaluated
as unknown

Firer performs
second shot

yes

no

End of the Heuristic

Target evaluated
as k-killed

Actual state
k- killed?

yes

no

Actual state
k- killed?

no

Target evaluated as
M, F, MF or ND?

Firer performs
third shot

Target evaluated
as k-killed

yes

Target evaluated
as M, F, MF or ND

CURRENT AMSAA HEURISTIC

Target evaluated
as unknown

yes

no

yes

no

yes

no

Figure 1.2: Current AMSAA Heuristic

1. Assuming that a K-kill is perceived with probability 1, intuitively, does not

make sense. Though a K-kill is the easiest kill state to see visually, having no

error in this determination trivializes the difficulty of BDA during live combat.

2. The assignment of probabilities to detection of the correct kill level (less than

K-) as 0.33, 0.67, and 1 for each successive shot, respectively, is rather arbitrary.

Realistically, there is no guarantee of detecting the correct kill state after some

number of shots.

3. The algorithm does not take the firer’s perception of the targets actions into

account. Situational factors, such as the target’s movement or if it is engaging

friendly forces, will obviously affect the assignment of a kill state to an enemy

target.

4. No probabilities are associated with assessing the target to specific kill types

(e.g. M, F, MF, K, etc.). Further, an assessment as unknown results in the
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same action (another shot) as assessing the target as less-than-K. Consequently

having an unknown assessment may be unnecessary.

5. The heuristic lacks any representation of indirect fire, including mortar, missile,

or air attacks.

6. Environmental factors such as weather, time of day, range, sensor, terrain, and

obscurants are not taken into account. Clearly, these factors would affect or

degrade the firers ability to make an accurate assessment.

1.4 Research Objectives

The objectives of this research are as follows:

1. Develop a methodology to model the BDA process from a perception standpoint

that addresses the inadequacies of the current heuristic.

2. Develop an efficient SMEs survey instrument that will produce the form of data

needed for the proposed methodology and give TRAC an initial situational BDA

data set.

3. Propose a technique to implement the methodology into a combat model.

1.5 Method of Approach

For the purposes of CASTFOREM, this research focuses on the collection and

processing of BDA information during an ongoing engagement. The typical situation

involves a dismounted soldier or gunner and his decision to fire again based on sensory

and environmental information. The main goal is to develop a mathematical model

which can be implemented in CASTFOREM that accurately represents the real time

BDA process. It will focus on the firer’s perception of the battlefield scenario and

his assignment of a kill state based on the information available. To accomplish this,

a set of event trees will be built to characterize the possible situations that could

occur on the battlefield. Situations (i.e. end nodes of the trees) will then form a set of

parameters that will frame questionnaires for subject matter experts. The responses
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will yield an initial data set subsequently used to develop probability distributions for

kill types conditioned on the situational parameters.

Since the model will be from the firer’s perspective, the kill types that CAST-

FOREM models must be reduced to those that can be perceived visually. C-kill and

S-kill will not enter consideration in the model because no tractable method exists to

visually asses these kill types on the battlefield. This leaves four basic kill types (M-

kill, F-kill, K-kill, and ND) and one kill combination (MF-kill). The model will assign

probabilities of assessing a target as each of these kill types, based on the scenario

facing the firer.

1.6 Organization

This thesis is divided into five chapters. Chapter I presented the research

topic, the background behind it, and its motivation. Further, CASTFOREMs current

method for modeling BDA and its limitations were discussed and a brief overview of

the new approach was discussed.

Chapter II will review the relevant literature on BDA and combat modeling as

well as present an overview of the CASTFOREM engagement process. Chapter III

details the methodology used for data collection, develops the mathematical foun-

dations for the proposed BDA model, and suggests an strategy for implementation

into a combat-simulation model. Chapter IV provides a statistical evaluation of the

methodology using survey data. Lastly, Chapter V presents the conclusions and rec-

ommendations of this work and suggests future research in this area.
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II. Literature Review

2.1 Introduction

Modeling BDA explicitly in combat models is a relatively young concept. By ex-

cluding the BDA process from combat simulations, enemy battle damage was treated

as a known quantity. Of course, the BDA process contains a great deal of uncertainty

and can heavily influence the flow of an engagement. The effects of the BDA process

on a military conflict are significant, and in the arena of close combat the process is

both gravely important and largely uncertain. In the heat of battle, BDA is dynamic

and the wrong determination may lead to a unit’s demise.

While little has been done to explain the BDA process in general, even less exists

to describe the intricacies of close combat. Most of the literature addresses the effects

of timeliness and accuracy of BDA on an air campaign and its respective targeting

process. Though the BDA process for air operations is widely different in time frame

(e.g. assessments are generally made after a mission) it shares a similar uncertain

nature with close combat situations. This chapter surveys the relevant BDA issues

(e.g. information gain, uncertainty) as well as the methodologies proposed to model

it in combat simulation models. Further the CASTFOREM methodologies related to

engagement and BDA are reviewed.

2.2 BDA Information

The value of BDA information in combat situations has expanded greatly since

Operation Desert Storm in the early 1990’s. The increased tempo of operations in

a new era of warfare along with the increasing use of precision guided munitions

(PGMs) make BDA information critical to the efficient application of forces. Yost

and Washburn [21] expound on this concept in relation to allocating assets on the

modern battlefield.

Baird et al. [1] researched the value of information gain on the battlefield. Their

work included a study of how accuracy, timeliness, and completeness of information,

including BDA, target type, and target location, affected the number of munitions
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expended in a simulation. A regression model approach showed intuitive results; the

largest gain in effectiveness was obtained from the interaction of high accuracy and

more timely data.

Manor and Kress [15] present an algorithm for engaging targets with incomplete

BDA information. The results show that engaging the targets using a greedy strategy

(i.e. shooting at the least prior engaged target) maximizes the effectiveness per round.

Though the greedy approach maximizes this objective, success in actual combat does

not depend on effectiveness per round. This differs from the current Army modeling

technique by re-targeting after each shot and reflects the differing goals of the models.

Song [17] also investigated the value of BDA information to make ballistic missile

defense systems more effective. Though the model dealt with missile defense, it

stressed the importance of BDA information for decision making in a time-critical

environment, a similar situation to close combat. Additionally, Song notes the role of

information in dealing with the uncertainty of a cognisant enemy.

2.3 Information and Uncertainty

The method proposed in this thesis models BDA from a perceptional standpoint

in order to capture uncertainty in the process. The uncertainty involved in the BDA

process has been stated extensively in outlining the shortcomings of conflicts in recent

years [18]. This uncertainty stems not only from the adversary, but also from friendly

force miscues. The amount of communications and integration required among coali-

tion forces to execute effective BDA makes the process extremely complex and prone

to error, leading to missed (or assumed dead) targets and over-killed targets [18].

Modeling the BDA process is essentially an exercise in modeling perceived infor-

mation and uncertainty. As such, the method proposed for this research relies on the

link between information theory and the human thought process. Jaynes [9] connects

human reasoning to Laplace’s model of common sense, and in turn, to the concepts
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of maximum entropy and Bayesian inference. Jaynes [7] [14] [8] has also completed

extensive work on maximum entropy as well as its connections to Bayes theorem [10].

Jelinek [11] used Markov chains to model uncertainty in combat operations.

BDA is a function of perceived information and its uncertainty. Gaver et al. [6] dealt

with the incorporation of uncertainty in perception information into combat models.

Combat perceptions were modeled stochastically to capture the inherent uncertainty

in combat information.

2.4 BDA Modeling Concepts

Several tchniques for modeling BDA have been developed in recent years, though

none specifically for combat simulation models. Franzen [2] created a BDA model

for air campaign targeteers based on a Bayesian belief network. The Bayseian net

incorporated the addition of information into the BDA process after a target is struck.

Subject matter experts (SMEs) estimated initial conditional probabilities, which were

updated using the data learning property of Bayesian nets. Though this method is

centered around air operations, it offers some parallels to the proposed method in

using Bayesian techniques to determine probabilities of damage.

Gaver and Jacobs [4] developed a Shoot-Look-Shoot approach to engaging targets

and a simple formulation of the BDA problem. The formulation treated targets

simply as alive or dead and gave conditional probability distributions of perceiving

the correct state given the ground truth. Tradeoffs between probability of kill (pk)

and BDA information accuracy were investigated for several tactics including Shoot-

Look-Shoot and deterministically shooting two shots. In a piggyback effort, Gaver and

Jacobs [5] showed the effects of BDA accuracy in the Shoot-Look-Shoot construct on

a service queue of possible targets. This iterative process of engaging a target closely

resembles the algorithm used in current Army combat models. Though the BDA

problem formulation is simplistic (i.e. targets are either alive or dead), it stands as a

good example of a probabilistic modeling technique for the BDA process.
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The BDA modeling technique proposed in this research uses Markov chains to

capture uncertainty in what might happen after firing at a target and Bayesian infer-

ence to link perceived information about the target to some probability distribution of

kill states. This method will be implemented within the construct of CASTFOREM

and as such warrants a brief overview of the pertinent modules within the model.

2.5 CASTFOREM

CASTFOREM is the Army’s current force-on-force model intended to simulate

conflicts of 60 minutes or less. Conflicts take place between two main forces, Blue

(friendly), and Red (enemy) respectively. It is an agent-based model comprised of

organizational entities independently interacting according to their logic set (i.e. in-

telligence), comprised of orders and decision tables. The model executes interactions

at the weapon system level and can simulate complex systems such as communi-

cations and logistics networks. Furthermore, CASTFOREM can operate at several

levels of fidelity depending on the size of individual unit modeled (e.g. single soldier

vs. weapon system with a crew).

During a conflict, entities within the simulation interact in many different ways

according to their logic set. The BDA process in CASTFOREM is interdependent

with most of these modules, but relies heavily upon only a select few: target search and

acquisition, probability of hit (PH) calculations, probability of kill (PK) calculations,

and the response algorithms for both firer and target (i.e. the engagement).

2.5.1 Target Search and Acquisition. In order for a blue entity, such as an

armored personnel carrier (APC), to engage a target, it must first create a list of

targets by searching the battle space. A general flow chart of the search process is

given in Figure 2.1 on the next page.

The simulation provides target detection and combat identification (CID) us-

ing direct view optics (DVO), image intensifiers, television (TV), and infrared (IR)
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Figure 2.1: Flow Chart of Search Logic [19]
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sensors. CASTFOREM handles this search process and CID though the ACQUIRE

model.

The ACQUIRE model simulates the physics involved in entities viewing a tar-

get. It uses several mathematical models to determine how visible a target is to an

observer, taking into account current atmospheric, environmental, and physical con-

ditions. Atmospheric conditions might include weather (e.g. day/night, cloud cover,

humidity) or dust and smoke. These conditions are accounted for in the Combined

Obscuration Model for Battlefield Induced Contaminates (COMBIC). The environ-

mental conditions represent such things as line of sight (LOS), range to the target,

and the nature of the tactical area (forest, desert, urban, etc). Lastly, the observer’s

field of regard, sensor type, target type, and movement (both observer and target)

characterize physical conditions. ACQIURE combines the effects of atmospheric, en-

vironmental, and physical conditions on CID of a target and makes a determination.

The ACQUIRE model provides an output at one of four levels for target acqui-

sition. The levels are defined in [19] as:

Detection A target of military interest has been acquired.

Classification A type of target (e.g. wheeled, tracked, stationary) has been detected

and an aimpoint can be determined on the detected target.

Recognition The target class (e.g. tank versus APC) can be resolved on the detected

target.

ID Call The observer thinks he has sufficient resolution on the detected target to

make an identification, which may or may not be correct (e.g. T-72 tank, M2A3

Bradley).

The entity keeps a list of target candidates and their respective acquisition levels

within its field of regard (FOR) at any one time. This list is rank ordered, based on

several parameters including proximity, target contrast, and threat. An entity will

choose the most logical target for engagement and proceed according to its logic set.
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It is important to note that an engagement may occur at any of the acquisition levels

due to knowledge of which force (Blue or Red) controls the area where the target was

detected.

2.5.2 PH/PK Calculation. When shots are exchanged between entities,

CASTFOREM must first determine if the target was hit (i.e. PH). If the round

impacts the target the model must subsequently determine the appropriate level of

damage (i.e. PK). CASTFOREM handles PH and PK in different ways depending

on the type of entity involved. A vehicle and its crew are assessed as one in that kills

may result from either damage to the vehicle or an injury to its operator. Mounted

personnel (i.e. on a vehicle) share PH calculations with their vehicle but assess PK

independently. Based on the level of detail in a particular model run, dismounted

personnel may be treated as aggregated or individually.

CASTFOREM represents a vehicle as two cell approximations of its turret and

hull as depicted in Figure 2.2. S1 through S4 are examples of impact points determined

Figure 3-88
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Figure 2.2: Two Cell Approximation of CASTFOREM Unit [19]

using the vehicle silhouette, an aimpoint bias, and round dispersion. Impact points

S1 and S4 are misses, S2 is a hull hit, and S3 is a turret hit.
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A vehicle’s silhouette is simply the two dimensional projection of the vehicle

from a side view, taking cover into account. Generally, the center of mass for the

silhouette is the unbiased aimpoint for a particular shot. CASTFOREM biases the

aimpoint for the round and then models round dispersion as a bivariate normal distri-

bution, centered on the new biased point. AMSAA provides data for weapon system

aimpoint biases and munition specific dispersion information. Figure 2.3 displays an

example of this system. So, each round is a draw from its specific bivariate normal

Figure 3-90
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Figure 2.3: Silhouette, Aimpoint Bias, and Dispersion [19]

distribution and hits are recorded for those draws that land on the target silhouette.

After determining that a particular round hits its target, damage must be as-

signed to the entity through PK calculations. The impact assessment assigns damage

to several target systems and evaluates the effects on the targets’ combat capabilities.

Targets that lose one or more capabilities due to damage will have kill types asso-

ciated with them. Damage here should be thought of as Ground Truth rather than

BDA perceptions.

PK determinations are handled in two different ways for dismounted personnel.

Determining PK data for aggregated dismounted personnel is a function of the size

of the unit, round type, range from the impact, and their tactical posture at the

time of the round impact. CASTFOREM can also perform attrition of personnel as
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individual entities. For this resolution, dismounted soldiers are physically represented

as sets of cylinders, depicted in Figure 2.4 and Figure 2.5 on the next page.

Figure 3-92
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Figure 2.4: Dismounted Soldier Representation (Side View) [19]

If a soldier is hit, the damage depends on exactly where and how the round

passes through the body. For example, a shot to the trunk may cause a K-kill while

a shot in the legs might result in a M-kill. How much of the body is hit (e.g. center

of mass vs. graze) also affects how damage is assigned. CASTFOREM uses an inca-

pacitation kill to address the situation where soldiers can perform for a limited time

after receiving wounds. Soldiers are allowed combat functionality for one of four time

periods before being removed from the simulation: 5 seconds, 30 seconds, 5 minutes,

or 30 minutes (depending on the severity of the wounds). In essence, the less body

mass a round passes through, the more incapacitation time is given to the soldier.

2.5.3 Firer/Target Response Algorithms. An engagement in CASTFOREM

consists of one entity firing a sequence of rounds at an enemy entity. Within each
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Figure 2.5: Dismounted Soldier Representation (Top View) [19]

engagement, the firer and target have response algorithms to complete the interactions

after PH and PK calculations are complete.

The target, upon receiving impact damage as described above, is given the

chance to respond to taking fire, unless the target sustained a K-kill. The target

uses its response-to-fire decision tables to simulate a response which may include

suppressed combat effectiveness. Additionally, other actions may be taken, such as

moving, covering, retreating, or a number of other actions.

The firer, after impact of its round, first attempts to perceive the level of damage

inflicted on the target. This is where the BDA algorithm is performed. If the desired

level of damage is perceived, the firer uses its end-of-engagement decision tables to

determine the entity’s next action. The next action might consist of engaging another

target within the FOR, moving to a collection point, or communicating with command

entities. Figure 2.6 on the following page shows an example flow chart of the end-of-

engagement logic flow.
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If the desired level of damage is not perceived, the firer may take another shot

to achieve its goal, if it is allowed. CASTFOREM allows only up to three shots in

succession in any one engagement due to a modeling decision. The model wishes

to prevent firing too many rounds at one single target, and therefore expending the

available ammunition on a small set of targets.

2.6 conclusion

In this chapter, a brief overview of the concepts related to the BDA process

was provided. This research will be the most detailed representation of real time

BDA in close combat to date. As a result, the literature is not well established in

this area. First, a review of BDA as an information currency was explored. Then,

precedents for using information theory and modeling uncertainty as a stochastic pro-

cess were presented. Additionally, several former techniques for modeling BDA were

stated. Lastly, the relevant CASTFOREM engagement methodologies were described

in detail.
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III. Methodology

3.1 Introduction

The BDA process has found much difficulty in accurately translating its com-

plexities into a model. As a result, the process has been modeled poorly or completely

left out of most combat models. In the following sections, a methodology to effectively

model the BDA process will be mapped out from data collection to implementation.

This chapter first presents a method to collect the appropriate data. Second,

a methodology for modeling the BDA process as a Markov Process is presented.

Then, a method for updating the process based on observed conditions using Bayesian

inference is shown. Subsequently, the application and integration of the methodology

to the combat model are proposed. Finally, example calculations are completed to

illustrate the method.

3.2 Data Collection

Since no precedent exists for real time BDA in combat simulation models, devel-

opment of an adequate initial data set is needed. To develop an accurate representa-

tion of the BDA process, data needs to be from the firer’s, (i.e. soldier’s) perception.

Since the scope of this project is mostly vehicles engaging other vehicles (i.e. tanks,

APCs, trucks, etc.), a set of event trees was developed to fully represent the possible

actions and physical damage. These trees served to frame a set of survey questions

for subject matter experts (SMEs).

3.2.1 Survey Participants. To develop the appropriate data, it is important

to survey veterans of live combat as SMEs. The SMEs should include a collection of

Army combat veterans from various career fields. The SMEs combat experience is

extremely important to understanding the thought process of a shooter (i.e. someone

on the trigger) while engaging a target, performing BDA, and subsequently deciding

to fire again. Further, their experience in viewing targets having various levels of

damage will be integral to collecting the pertinent data.
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3.2.2 Survey Design. The SMEs will provide qualitative predictions for

actions and visible damage after targets take fire. Before detailing the proposed

survey questions and perspective responses, several terms referred to in this section

must be defined.

Event More specifically called an Elementary Event, it is the particular action or

level the target being assessed presents; essentially analogous to an outcome of

a chance event.

Event Set A set of mutually exclusive and collectively exhaustive events a target

can assume (e.g. Engaging, Not Engaging).

Situation The particular combination or intersection of events that a target possesses

at the time of an assessment.

Kill State Referred to by DoD as Kill Type, it is the type of kill (ND, M, F, MF,

or K) assigned to the target during an assessment. The kill types are both

mutually exclusive and collectively exhaustive.

It is important to note, that the form of data collected in survey responses

reflects the modeling technique presented in this research. Different methodologies

would require different survey structures. In that light, this survey was designed

specifically to obtain the data relevant to modeling the BDA process as a Markov

chain with Bayesian updates.

Survey participants will be asked to assign qualitative values to several events

given a situation which included the target type and its respective kill state. Fig-

ure 3.1 on the next page shows an example of a response table (for a tank) that the

SME would complete.

Movement, Engaging Targets, Activity, Turret, Hull, and Tracks are all event

sets. Movement, Engaging Targets, and Activity refer to observations of the target’s

tactical responses. The Turret, Hull, and Tracks event sets measure the (visible)

physical damage on each component of the tank. The event sets respective events
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Actions
•         Movement

N M A Physical Damage N M A
•         Turret

o       No Damage
o       Light Damage
o       Heavy Damage

o       Toward your position
o       Away from your position
o       Parallel to your position
o       None •         Hull

o       No Damage
o       Light Damage
o       Heavy Damage

•         Engagement
o       Engaging Targets

•         Activity
o       Seeking Cover •         Tracks

o       No Damage
k o       Light Damage

o       Heavy Damage

o       Taking a Firing Position
o       Personnel Abandoning the Tan
o       Other/No Action  

Figure 3.1: Sample Response Table

(e.g. No Damage, Light Damage, or Heavy Damage for Turret) are mutually exclusive

and collectively exhaustive, meaning only one of the events in each set may happen

to the target at any time.

Within each of the event sets, the SME is required to mark the events with one

of three qualitative assessments: events the soldier would never see (N column), ones

he might see (M column), or those he would always see (A column).

Response tables differed according to the enemy vehicle type tailored to the

appropriate vehicle components. The survey also provided schematic diagrams of the

enemy vehicles for soldiers to illustrate specific points of interest and space to add

important events or event sets that were excluded from the response tables. A copy

of the questionnaire is provided for the reader in appendix A.

3.3 Modeling the BDA Process as a Markov Chain

A system changing randomly over time can be represented as a sequence of

random variables, X = {Xn, n ≥ 0}, where Xn denotes the state of the system at

time n. If, for all n, Xn must exist in the finite set, S = {1, 2, . . . ,m}, {Xn, n ≥ 0}

is called a time series stochastic process with state space S. This process can further

be modeled as a Discrete Time Markov Chain (DTMC) if it satisfies the following

conditions.
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1. For all n ≥ 0, Xn = in ∈ S with probability 1. That is, the system must exist

in one of its states (kill types) at all times.

2. For all n ≥ 0, Xn+1 = in+1, Xn = in, Xn−1 = in−1, . . . , X0 = i0 ∈ S,

P{Xn+1 = j|Xn = in, Xn−1 = in−1, . . . , X0 = i0} = P{Xn+1 = j|Xn = in}

That is, the the probability of a state at time (n + 1) depends only on the nth

state. This is known as the Markovian property.

Further, the DTMC {Xn, n ≥ 0} is time homogeneous if the conditional probabilities,

P{Xn+1 = j|Xn = i} do not depend on n. This time homogeneity can be expressed

mathematically as

pij(n) = pij ∀ n ≥ 0 i, j ∈ S

where pij represents P{Xn+1 = j|Xn = i}. Now, let P = [pij] denote the one

step transition probability matrix for the DTMC {Xn, n ≥ 0}. For the case where

S = {1, 2, . . . ,m}, P can be represented as

P =



p11 p12 . . . p1,m−1 p1m

p21 p22 p2,m−1 p2m

...
. . .

...

pm−1,1 pm−1,2 pm−1,m−1 pm−1,m

pm1 pm2 . . . pm,m−1 pmm


for which ∑

j∈S

pij = 1 ∀ i ∈ S.

This means that, since {Xn, n ≥ 0} is a DTMC, P is, by definition, stochastic.

Modeling the BDA process as a DTMC gives the advantage of using transient analysis

to determine shot dependent probability distributions for each assessment.
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3.3.1 Transient Analysis of a DTMC. In order to perform transient analysis,

the DTMC must be fully characterized with P and an initial distribution for X0. Let

a(0) be defined as

a(0) = (a
(0)
i ) ∀ i ∈ S.

That is, a(0) represents a row vector of the initial distribution (pmf) of X0. Now, with

P and a(0), the distribution of Xn at any time n can be calculated. First, let

a
(n)
j = p{Xn = j} =

∑
i∈S

P{Xn = j|X0 = i}P{X0 = i} ∀ j ∈ S (3.1)

be the probability of {Xn, n ≥ 0} existing in state j at time n which can be represented

in vector form by a(n). Further, let

p
(n)
ij = P{Xn = j|X0 = i} i, j ∈ S

denote the n step transition probability from i to j. Recall that P is the one step

transition probability matrix. If P2 represents the two step transition matrix, it

follows that the case for some n steps is

P(n) = [p
(n)
ij ]

= Pn.

So it follows from Equation 3.1 that

a(n) = a(0)P(n). (3.2)

The transient analysis is not limited to conditioning on the initial distribution.

The distribution a(n) is easily calculated from the distribution at any intermediate

time k. The result is an analogue of Equation (3.2).

a(n) = a(k)P(n−k). (3.3)
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For a more rigorous demonstration of transient analysis of a DTMC, the reader is

directed to [13].

3.3.2 Representation of The BDA Process. Now, this research aims to model

the BDA process as a DTMC, {Xn, n ≥ 0} where Xn denotes the assessment after

the nth shot, with state space S = { ND,M,F,MF,K} (i.e. the set of kill states). To

determine P for this process, consider that only certain state transitions (is to js) are

feasible in reality.

From a ground truth standpoint, assume that within a single engagement (made

up of one or more consecutive shots), the target cannot regress in damage due to

actions such as repairs. This is a reasonable assumption because major system repairs

will not occur (or at least are highly unlikely) in the heat of a battle. This assumption

means that once a target sustains one type of kill, the target must have at least that

kill state in the next shot iteration. To illustrate, let Xn be the true state of the

target after nth shot. A target cannot transition from X1 = M kill state to X2 = F

kill state, because Xn = F-kill implies that the target is F-killed only, and thus could

not have transitioned from M-kill at n − 1. If the target sustained F-kill damage at

n = 2 it would instead transition to X2 =MF kill state to include the M-kill from X1.

As a result, a target may only transition to a subset of the possible kill states on a

second shot from any given kill state on a first shot. For instance, if a target sustains

an F-kill on the first shot (n = 1) it may only transition into F-, MF-, or K-kill states

after a second shot (n = 2). Table 3.1 shows the possible transitions from each kill

state.

Table 3.1: Possible Kill State Transitions

Kill State (Xn = i) Feasible Kill State Transitions (Xn+1 = j)
ND ND, M, F, MF, K
M M, MF, K
F F, MF, K

MF MF, K
K K
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With no knowledge of what may result from an additional shot on a target,

assigning equal probabilities to each feasible transition is justified by the principle of

maximum entropy within information theory.

Information entropy was developed by Shannon, who used it as a way to measure

the amount of uncertainty in the outcome of a chance event. The entropy, denoted

by H, of a random variable X is a function of the set of probabilities, p1, p2, . . . , pr,

corresponding to the r possible states X can take on. H is stated mathematically

in [16] as

H = −K
r∑

i=1

pi log pi

where K is a positive constant and log(∗) is any logarithmic function. H can take

on many forms depending on the definition of K to scale entropy and give it a unit

of measure. Thus, entropy can be stated without dimensions as H = −
∑

pi log pi.

One significant property of Shannon’s entropy is that entropy is maximized when a

probability distribution is uniform.

Information entropy parallels thermodynamic entropy, where it denotes the

amount of randomness in a system. Jaynes [7] proposed that thermodynamics demon-

strated only an instance of information theory and entropy. Thus, the principle of

maximum entropy was extended from thermodynamics as a mathematical basis for

Laplace’s principle of insufficient reason. The principle of maximum entropy states

that the least biased model is the one that maximizes entropy (uncertainty) while

remaining consistent with the prior information.

Now, consider maximizing entropy for the discrete probability distribution above

(p1, p2, . . . , pr). Mathematically this problem is stated as

max f(p1, p2, . . . , pr) = −
r∑

k=1

pk ln pk

s.t.
r∑

k=1

pk = 1. (3.4)
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This maximization can be solved by the method of Lagrange multipliers.

∂

∂pk

(f + λg) = 0

∂

∂pk

[
−

r∑
k=1

pk ln pk + λ

(
r∑

k=1

pk − 1

)]
= 0

−(ln pk + 1) + λ = 0

pk = eλ+1 (3.5)

Since Equation (3.5) depends only on λ, each pk is equal. Consequently, because

of the constraint in Equation (3.4), pk = 1/r, proving that a uniform distribution

maximizes entropy when no prior information is available.

Now by adding prior information, such as the feasible transitions in Table 3.1 on

page 26, the distributions with maximum entropy are those that are uniform across

these feasible transitions . As a result, the one step transition probability matrix is

represented as

P =

ND M F MF K

ND

M

F

MF

K



1/5 1/5 1/5 1/5 1/5

0 1/3 0 1/3 1/3

0 0 1/3 1/3 1/3

0 0 0 1/2 1/2

0 0 0 0 1


which is stochastic and time homogeneous because {Xn, n ≥ 0} is a DTMC. At the

beginning of an engagement, the target is assumed to have kill state ND and as such

a(0) =
[

1 0 0 0 0
]
.

With the DTMC fully characterized, any a(n) may be calculated by transient analysis.
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3.4 Updating a(n) Using Bayesian Inference

Now suppose a(n) is conditioned on situational parameters. Using Bayesian In-

ference, an updated distribuiton vector, a′(n), can be calculated using the information

present at the time of the assessment.

Bayes Theorem can be developed easily, using the definition of conditional prob-

ability. In general

P{A ∩B} = P{A|B}P{B} = P{B|A}P{A}

Simple algebra yields Bayes Theorem.

P{A|B} =
P{B|A}P{A}

P{B}

The Law of Total Probability states that for a set {Aj : j = 1, 2, . . .} that are

mutually exclusive and collectively exhaustive

P{B} =
∑

j

P{B|Aj}P{Aj}.

Combining the Law of Total Probability with Bayes Theorem yields

P{Ai|B} =
P{B|Ai}P{Ai}∑

J

P{B|Aj}P{Aj}

producing the ability to compute the posterior probability P{Ai|B} for all i ∈ J .

For a more in depth review of Bayes’ Theorem or the Law of Total Probability,

the reader is directed to [20].

3.4.1 Calculation of the Updated Vector, a′(n). Let Bn denote that a partic-

ular situation (i.e. intersection of events) occurred for the nth shot and a′(n) denote

the distribution of {Xn|Bn}. Now, the event sets for the nth shot can be represented
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as

Movement ≡ Mnb

Engagement ≡ Enb

Activity ≡ Anb

Turret ≡ Tnb

Hull ≡ Hnb

Tracks ≡ Trnb

where Mnb denotes the occurrence of b within the Movement event set for shot n. For

example, if a soldier perceives that a target that is moving after the first shot it is

represented M1,Y es. So

Bn = {Mnb ∩ Enb ∩ Anb ∩ Tnb ∩Hnb ∩ Trnb}.

For the update P{Bn} must be calculated. There are several ways to deal with

this intersection of events which will be discussed further. For now, assume that

P{Bn}, or more specifically P{Bn|Xn}, can be calculated. So the calculation for

some a′(n) is

a′
(n)

=
[

P{Xn = ND|Bn} . . . P{Xn = K|Bn}
]

=

[
P{Bn|Xn=ND}P{Xn=ND}∑
j∈E

P{Bn|Xn=j}P{Xn=j} . . . P{Bn|Xn=K}P{Xn=K}∑
j∈E

P{Bn|Xn=j}P{Xn=j}

]
. (3.6)

To develop a′(n), the conditional event probabilities, P{Bn|Xn = ND}, must be ob-

tained from the survey data.

3.4.2 The Calculation of P{Bn}. The calculation of P{Bn} is central to

updating a′(n), so the method used to calculate P{Bn} is of utmost importance.

Making no assumptions, any intersection probability can be calculated by the chain
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rule as

P{A ∩B ∩ C} = P{A|B ∩ C}P{B|C}P{C}.

Now, Bn is the intersection of six separate events so calculating P{Bn} with no

assumptions makes the problem somewhat intractable. However, several types of

assumptions could be made to ease the burden of calculating many conditional prob-

abilities.

The most simplifying assumption would be to assume that each event set is

independent of the others. This implies that the occurrence within the Movement

event set does not affect the probabilities of events within Engagement, Turret, or

any of the other event sets. As a result, the probability of a situation can be calculated

P{Bn} = P{Mnb}P{Enb}P{Anb}P{Tnb}P{Hnb}P{Trnb}

=
∏

(∗)∈Bn

P{(∗)nb} (3.7)

where (∗)nb is each respective event occurrence in the situation Bn.

Realistically, the assumption of independence among all event sets does not

make sense. The likelihood of certain actions will be affected by physical damage.

For example, a soldier is more likely to perceive a target moving, given he perceived

the tracks to have no damage. So to avoid extensive calculations, a set of assumptions

will be made

1. Event sets pertaining to Physical Damage are independent of each other.

2. Each event set in Actions is dependent on all the Physical Damage event sets.

3. Event sets pertaining to Actions are conditionally independent of each other

given the physical damage present.
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The above assumptions allow the probability of a situation to be calculated as

P{Bn} = P{M ∩ E ∩ A ∩ T ∩H ∩ Tr}

= P{M ∩ E ∩ A|T ∩H ∩ Tr}P{T ∩H ∩ Tr}

= P{M ∩ E ∩ A|T ∩H ∩ Tr}P{T}P{H}P{Tr}

= P{M |T ∩H ∩ Tr}P{E|T ∩H ∩ Tr}P{A|T ∩H ∩ Tr}P{T}P{H}P{Tr}

(3.8)

where subscripts are excluded for brevity. The conditional probabilities needed for

Equation (3.8) can be calculated easily from the survey data.

3.4.3 Numerical Representation of the Data. Using the data available,

probabilities of observing events are determined given a target’s current kill state.

The first task is to assign probability distributions to each of the event sets for all

singular SMEs depending on his completed response tables. Mutual exclusivity and

collective exhaustiveness of the events within each set allow us to develop numerical

distributions. Assigning numerical values to responses marked Always and Never (0

and 1, respectively) is trivial. However, for those event sets where the respondent

deems all or some of the events possible (i.e. Might), a different situation arises.

Given that each event in this situation is marked similarly as Might, the assignment

of equal probabilities to each is the most logical decision by the principle of maximum

entropy.

As an example, if a soldier marked the Activity event set with the responses

displayed in Table 3.2 then the event Seeking Cover is assigned 0 probability, while

Table 3.2: Example Event Set Response

Event Response
Seeking Cover Never

Taking Firing Position Might
Personnel Abandoning Might

Other/No Actions Might
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Taking a Firing Position, Personnel Abandoning, and Other/No Actions would each

have a 1/3 probability. This inherently gives a individual’s distribution of an event

set.

Now, using each individual’s responses, a distribution representative of all the

survey participants can be developed. The calculation is simply an average across all

individual distributions.

To illustrate, let Table 3.2 on the previous page be one soldier’s response and

Table 3.3 be another soldiers response. This gives two distribution vectors, say d1

Table 3.3: Additional Example Event Set Response

Event Response
Seeking Cover Might

Taking Firing Position Might
Personnel Abandoning Never

Other/No Actions Might

and d2 respectively.

d1 =
[

0 1/3 1/3 1/3
]

d2 =
[

1/3 1/3 0 1/3
]

Averaging d1 and d2 yields the population distribution

d̄ =
[

1/6 1/3 1/6 1/3
]

for the Activity event set.

This method can easily be extended across all event sets for multiple survey

responses. Now let dη,i, η ∈ {1, 2, . . . , N}, denote the vector obtained for the ηth

survey response for the ith kill state, and d̄i be the average of the N vectors

d̄i =
1

N

N∑
η=1

dη,i
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. So the distributions of all event sets for each kill state can be calculated in this

manner. and used to determined the P{Bn|Xn = j}s in Equation (3.6).

3.5 Integration with Combat Models

Modeling the BDA process as a DTMC and updating the distribution vectors

by Bayesian inference have been shown mathematically in the previous section. Now

a procedure to integrate the mathematical representation into a combat model will

be developed.

The combat models that concern this research use decision tables. These deci-

sion tables use the current values of several parameters in a logical flow to determine

the distribution that an entity’s next action should be drawn from. In this light, the

logic flow for the current representation of the BDA process within an engagement is

shown in Figure 3.2.

(A)
Firer performs a 
shot on a target 

entity 

(C)
Is perceived 

situational data 
available?

(H)
Assign visible actions and 
physical damage based 
on target entity status

(D)
Gather situational data 

from the target and 
update  distribution

(E)
Make a perceived BDA 

determination 
(Random Number Draw)

(F)
Is the perceived damage 
level the desired damage 

level?

(B)
Determine if previous 

shots were performed and 
create prior distribution 

(G)
Determine ground truth 

damage level (Kill Type) for 
target entity

End Heuristic

Yes

Yes

No

No

Enter Heuristic

Figure 3.2: Method Integration Logic Flow

34



The combat model enters the process upon an entity engaging a target which

proceeds to fire a shot at the target in node A. From there, two streams of information

split off and develop in parallel. Nodes B, C, and D are the firer’s perception and

nodes G and H represent the target’s ground truth. From the ground truth side, the

targets damage and true kill state are determined through PH and PK calculations

in node G. Node H uses the kill state to generate actions and physical damage for the

target. From the firer’s perspective, node B takes all the information from any prior

shots and calculates the a(n) vector. The firer then decides decides whether situational

parameter data is available for this shot at node C. If it is, the engaging entity uses its

sensors to gather actions and physical damage from the target at node D (generated

at node H). From these situational parameters, an updated a′(n) is calculated. Now,

at node E the firer makes a determination of the kill state by drawing a random

number and using either a(n) or a′(n) as a BDA distribution. Finally at node F, if

the perceived BDA kill state is more than or equal to the desired BDA kill state,

the model exits the heuristic. Otherwise, the firer returns to node A and repeats the

process.

3.6 Example Calculations

To illustrate the data development, transient analysis of the DTMC, and up-

dating using Bayesian Inference, example calculations will be shown in the context of

the logic shown in Figure 3.2 on the preceding page. For the purposes of simplicity,

only the event sets pertaining to Actions (i.e. Movement, Engagement, and Activity)

will be considered so that mutual independence can be assumed. Also, for the sake

of brevity, the data calculations are based on five survey responses. The scenario will

consist of a Blue tank engaging a Red tank.

Survey responses were simulated for five soldiers. As an example, the responses

for a tank in kill state ND are shown in Table 3.4 on the next page. The responses

are coded A for events the soldier would always see, M for those he might see, and N

for events he would never see.
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Table 3.4: Simulated Survey Responses for Tank at No Damage

Response Number
Event Set Event 1 2 3 4 5
Movement Yes M M A N M

(M) No M M N A M
Engagement Yes M M M N M

(E) No M M M A M
Activity Seeking Cover N M M M M

(A) Taking Firing Position M M M M M
Personnel Abandoning N M N N N

Other/No Actions M M M M M

From the responses, distributions (dηND) are developed for each soldier and

averaged across the five responses giving d̄ND following the method described in

Section 3.4.3. The distributions created from the data in Table 3.4 are displayed in

Table 3.5. Each of the table entries pertain to an element of dη,ND. For example

Table 3.5: Probabilities Obtained from Simulated Data in Table 3.4

Response Number (η)
Event Set Event 1 2 3 4 5 d̄ND

Movement Yes 0.5 0.5 1.0 0.0 0.5 0.5
(M) No 0.5 0.5 0.0 1.0 0.5 0.5

Engagement Yes 0.5 0.5 0.5 0.0 0.5 0.4
(E) No 0.5 0.5 0.5 1.0 0.5 0.6

Activity Seeking Cover 0.0 0.25 0.33 0.33 0.33 0.25
(A) Taking Firing Position 0.5 0.25 0.33 0.33 0.33 0.35

Personnel Abandoning 0.0 0.25 0.0 0.0 0.0 0.05
Other/No Actions 0.5 0.25 0.33 0.33 0.33 0.35

d1,ND(ASeekingCover) = 0.

The probabilities displayed in the d̄ND column are the conditional distributions

of the events given a kill state of ND. The conditional probabilities for the remaining

kill states are calculated in the same manner as the ND case and given in Table 3.6 on

the next page.

So, imagine a blue tank deems a red tank as a viable target and decides to

shoot at it (Node A). As previously stated, without prior knowledge, the red tank is
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Table 3.6: Event Probability Vectors for Simulated Data

Event Set Event d̄ND d̄M d̄F d̄MF d̄K

Movement Yes 0.500 0.000 0.700 0.000 0.000
(M) No 0.500 1.000 0.300 1.000 1.000

Engagement Yes 0.400 0.600 0.000 0.000 0.000
(E) No 0.600 0.400 1.000 1.000 1.000

Activity Seeking Cover 0.250 0.066 0.300 0.066 0.100
(A) Taking Firing Position 0.350 0.367 0.167 0.000 0.000

Personnel Abandoning 0.050 0.367 0.233 0.567 0.000
Other/No Actions 0.350 0.200 0.300 0.367 0.900

assumed to have an ND kill state before the engagement, so

a(0) =
[

1 0 0 0 0
]

and as a result (at node B)

a(1) = a(0)P

=
[

0.2 0.2 0.2 0.2 0.2
]
.

After the shot, the target is assigned damage and a kill state (node G). Con-

sequently actions and physical damage are determined by the model (node H). The

intersection of these events makes up the situation, B1. In this case

B1 = {MNo ∩ EY es ∩ ATakingF iringPosition}.

If the Blue tank can perceive the situational parameters (node C) then a′(n) can

be calculated (node D). First, calculate the P{B1|X1 = i}s for i ∈ S by simply mul-

tiplying the appropriate conditional probabilities (from Table 3.6) together according

to Equation (3.7). The row entitled P{B1|X1 = i} in Table 3.7 on the following page

shows these intersection probabilities.
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Table 3.7: Calculations for a′(1)

Kill State (i)
Event Set Event ND M-kill F-kill MF-kill K-kill
Movement No 0.500 1.000 0.300 1.000 1.000

Engagement Yes 0.400 0.600 0.000 0.000 0.000
Activity Other/No Actions 0.350 0.200 0.300 0.367 0.900

P{B1|X1 = i} 0.0778 0.0066 0.0000 0.0000 0.0000

a′(1) 0.9222 0.0778 0.0000 0.0000 0.0000

Now, using the law of total probability, find P{B1} by summing the conditional

situation probabilities multiplied by its respective kill state probability.

∑
j∈S

P{B1|X1 = j}P{X1 = j} =
∑
j∈S

P{B1|X1 = j}a(1)
j

= (0.0778)(0.2) + (0.0066)(0.2) + (0)(0.2)

+(0)(0.2) + (0)(0.2)

= 0.0169

Finally, calculate the a′(1) using Equation (3.6). Equation (3.9) demonstrates example

calculations for the probability of an ND kill state given the situation, and Table 3.7

lists all of the a′(1) vector probabilities.

P{X1 = ND|B1} =
P{B1|X1 = ND}P{X1 = ND}

P{B1}
(3.9)

=
(0.0778)(0.2)

0.0169

= 0.9222

At this point (node E), the blue tank gunner has 0.9222 and 0.0778 probabilities

of determining the red tank to be in the ND or M kill states, respectively. However,

there is zero probability that the target has F, MF, or K kill states. Assume a

random draw by the combat model yields the perceived BDA as {X1 = M}. This

would represent an overestimation of battle damage.
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If the desired BDA is an M-kill (node F) the Blue tank would exit the heuristic.

If not, the gunner fires another shot at the red tank (return to node A) and the process

is repeated. This time, however, the initial distribution before the second shot, a′(1),

is known, so a(2) is calculated accordingly.

a(2) = a′
(1)

P

This process is repeated until the Blue tank perceives adequate BDA for its target or

the number of shots exceeds the engagement limit.

3.6.1 Calculating Conditional Probabilities. Now if all event sets were used

for the above example, calculating the P{Bn|Xn = i}s would be accomplished using

the assumptions in 3.4.2 and the appropriate conditional probabilities needed for this

situation would be dictated by the physical damage observed in the situation.

The probabilities for the Physical Damage event sets are given in Table 3.8

These probabilities are needed explicitly in Equation (3.8). Now suppose for the

Table 3.8: Event Probability Vectors for Simulated Data

Event Set Event d̄ND d̄M d̄F d̄MF d̄K

Turret No Damage 0.725 0.717 0.133 0.033 0.100
(T ) Light Damage 0.275 0.267 0.433 0.408 0.425

Heavy Damage 0.000 0.017 0.433 0.558 0.475
Hull No Damage 0.408 0.383 0.342 0.358 0.000
(H) Light Damage 0.358 0.333 0.342 0.358 0.450

Heavy Damage 0.233 0.283 0.317 0.283 0.550
Tracks No Damage 0.792 0.083 0.688 0.050 0.067
(Tr) Light Damage 0.192 0.408 0.288 0.425 0.467

Heavy Damage 0.017 0.508 0.013 0.525 0.467

previous example, B1 is instead

B1 = {MNo ∩ EY es ∩ ATakingF iringPosition ∩ TNoDamage ∩HNoDamage ∩ TrLightDamage}.
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As a result, the appropriate conditional probabilities needed to obtain P{B1|i}

are

P{MNo|TNoDamage ∩HNoDamage ∩ TrLightDamage},

P{EY es|TNoDamage ∩HNoDamage ∩ TrLightDamage}, and

P{ATakingF iringPosition|TNoDamage ∩HNoDamage ∩ TrLightDamage}

for each kill state. Recall that the survey responses are represented in the form of

dη,i vectors containing the ηth soldier’s event probabilities for kill state i. In general,

conditional probabilities can be calculated from data in this form by

P{C|D} =

N∑
η=1

P{C}ηP{D}η

N∑
η=1

P{D}η

=

N∑
η=1

dη,i(C)dη,i(D)

N∑
η=1

dη,i(D)

(3.10)

where C and D are any event.

As an example, P{MNo|TrLightDamage} will be calculated for the ND kill state.

Table 3.9 on the following page is an extension of Table 3.5 used in the above example.

Recall that the table entries pertain to elements of dη,ND.

Now, following Equation (3.10)

P{MNo|TrLightDamage} =

5∑
η=1

dη,i(MNo)dη,i(TrLightDamage)

5∑
η=1

dη,i(TrLightDamage)

=
(0.5)(0) + (0.5)(0.5) + (0)(0.5) + (1)(0.5) + (0.5)(0)

0 + 0.5 + 0.5 + 0.5 + 0

= 0.5
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Table 3.9: Probabilities for Individual Soldiers

Response Number (η)
Event Set Event 1 2 3 4 5
Movement Yes 0.5 0.5 1 0 0.5

(M) No 0.5 0.5 0 1 0.5
Engagement Yes 0.5 0.5 0.5 0 0.5

(E) No 0.5 0.5 0.5 1 0.5
Activity Seeking Cover 0 0.25 0.333 0.333 0.333

(A) Taking Firing Position 0.5 0.25 0.333 0.333 0.333
Personnel Abandoning 0 0.25 0.000 0.000 0.000

Other/No Actions 0.5 0.25 0.333 0.333 0.333
Turret No Damage 0.5 0.5 1 0.5 1
(T ) Light Damage 0.5 0.5 0 0.5 0

Heavy Damage 0 0 0 0 0
Hull No Damage 0.5 0.5 0.5 0.5 0.5
(H) Light Damage 0.5 0.5 0 0.5 0.5

Heavy Damage 0 0 0.5 0 0
Tracks No Damage 1 0.5 0.5 0.5 1
(Tr) Light Damage 0 0.5 0.5 0.5 0

Heavy Damage 0 0 0 0 0

so in this very simplistic case P{MNo} does not change by adding the condition. With

more survey responses, however, the probability will likely change according to the

physical damage present.

Recall the situation in this example

B1 = {MNo ∩ EY es ∩ ATakingF iringPosition ∩ TNoDamage ∩HNoDamage ∩ TrLightDamage}.

Following the above procedure P{B1} for each kill state and the resulting a′(1) vec-

tor are displayed in Table 3.10. Adding the physical damage conditions drastically

Table 3.10: P{B1} and a′(1) Using Physical Damage Conditions

Kill State (i)
ND M-Kill F-Kill MF-Kill K-Kill

P{B1|i} 0.0439 0.2100 0.0000 0.0000 0.0000

a′(1) 0.1731 0.8269 0.0000 0.0000 0.0000
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changes the probabilities in a′(1). In the first example the Blue tank gunner had

0.9222 and 0.0778 probabilities of determining the red tank to be in the ND or M kill

states, respectively. Now by adding the physical damage conditions, the probabilities

are 0.1731 and 0.8269 for ND and M. So, it is easy to see why the dependence of

perceived actions on the perceived physical damage is important.

3.7 Conclusion

The BDA process in real time is a very complex and as such has not been well

modeled in the past. This chapter presents a top to bottom approach in developing an

adequate BDA representation for direct engagement models. First, a method to collect

the adequate data for real time BDA in close combat was proposed. Representation

of the BDA process as a Markov Chain was developed and a methodology to update

the nth shot distribution vector was discussed. Next, a strategy to implement the

methodology into a combat simulation model was introduced. The chapter concludes

by providing calculations for a simple example scenario.
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IV. Results and Analysis

4.1 Introduction

Modeling the BDA process as a DTMC with updates by Bayesian inference is

an effective way to capture its complicated nature in real time. The most important

issue with this model is that the updates are entirely data dependent. The updates are

performed directly using the conditional probabilities computed from survey responses

and, as a result, are only useful if the probabilities are (relatively) representative of

the population.

This chapter will first present an analysis of the number of surveys collected

(N) and how it affects singular event probabilities as well as the properties of the

updated a′(n). From this analysis a sample size will be suggested for an example

implementation of the methodology. The example analysis will include calculations

of the event probabilities and the update to a′(n) for a three shot engagement sequence

and consider a case where situational information is unavailable.

4.2 Effects due to the Number of Survey Responses

The conditioning of some distribution vector a(n), to give a′(n), depends directly

on the survey data obtained. This dependence stems from computing the conditional

event probabilities (i.e. probabilities of events given a kill state) from the survey

responses and using Bayes’ Theorem to update the distribution vector. It follows

that the updated distribution will vary with the data collected.

The survey responses can be thought of as a sample of N from the population of

all soldiers. Calculating the probabilities of events for Physical Damage and Actions

is simply an average across all N responses to obtain

d̄i =
1

N

N∑
η=1

dη,i

.
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The (strong) law of large numbers states that, for any sequence of random

independently and identically distributed (iid) random variables Yη, η ∈ {1, 2, . . . , N}

with known and finite mean µY

P
{

lim
N→∞

ȲN = µY

}
= 1 (4.1)

where

ȲN =
1

N

N∑
η=1

Yη.

So the analogous case here can be stated

P
{

lim
N→∞

d̄N,i = dµ,i

}
= 1

where dµ,i is the vector of true event probabilities given a kill state i. By extension,

the updated probability distribution of BDA estimated from N survey responses, â′(n),

will also approach its true values as N approaches ∞.

The intuitive result here is that more survey responses will yield better estimates

of dµ,i and subsequently a′(n). However a practical target number of survey responses

required for the modeling methodology is of great interest. Since both d̄i and the

resulting â′(n) are easily observable, this issue can be handled from two angles. Both

estimates will be explored via simulation.

4.2.1 Simulation of Survey Responses. To suggest a target number of survey

responses (N), data must be produced to give insight into an adequate number of

surveys for which the model will be effective. As such, a simulation technique was

developed for this purpose.

To simulate survey responses, underlying probabilities were set to compare ran-

dom numbers against. Within each Physical Damage event set, probabilities of a

respondent marking events as possible were determined to give intuitive proportions

of survey responses. Probabilities of marking events in the Action event sets were
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conditioned based on how the Physical Damage portion is filled out. The data simu-

lated is meant to be intuitive (e.g. P{MY es|Xn = M} will be small) to lend credibility

to the analysis.

Survey responses were simulated using the Matlabr programming language.

First, a vector of 17 random numbers was generated. The physical damage portion

of the survey is filled by comparing the random numbers to the probabilities of the

respondent marking an event possible. The actions are filled depending on the re-

sponse to the Physical Damage event sets. The result is a vector of 1 s and 0 s which

represent the respondent marking events as possible.

The binary vector is transformed into N s, M s, and As and further into event

probabilities (dηis) by placing equal probability into any events marked possible. An

event set with only one event marked possible is assigned probability of 1. If two

events are marked possible, each receives 0.5 and so on following the principle of

maximum entropy. The case where an event set is null (no events marked possible)

results in a random draw among the possible distributions.

The set of N total survey responses is used to estimate the probabilities of

events given physical damage and further in updating a(n) to a′(n). The Matlabr

code used to simulate these responses, perform calculations, and plot data can be

found in Appendix B.

4.2.2 Effect of N on the Event Probabilities. The conversion of survey

responses into event probabilities and their direct contribution to the calculations of

an update has been discussed. Recall that the event probabilities contained in d̄i will

approach their true values as the number of survey responses N approaches ∞.

The Central Limit Theorem (CLT) implies that a standardized sum of random

variables will approach a standard normal distribution. For the sequence of iid random
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variables, Yη, η = 1, 2, . . . , N, with known µY and σY

lim
N→∞

P

 Ȳ − µY

σY

/√
N
≤ z

 = Φ(z) (4.2)

where ȲN denotes the sample mean, and Φ(z) is the value of the standard normal

cumulative distribution function at z.

As a result, the elements of d̄i(∗) can be treated with normal distribution theory.

One result is that the event probabilities determined by averaging survey data will

approach the true values because the standard error of any ȲN has the property

lim
N→∞

σY

N
= lim

N→∞
σȲ = 0. (4.3)

As an example, the true distribution of individual responses for dη,ND(TNoDamage)

(i.e. P{TNoDamage|Xn = ND}) is known because the survey responses are simulated.

This distribution is

P{dη,ND(TNoDamage) = ∗} =



∗ = 0 : w.p. 0.0310

∗ = 1/3 : w.p. 0.0285

∗ = 1/2 : w.p. 0.5605

∗ = 1 : w.p. 0.3800

with known µdη,ND(TNoDamage) = 0.6695 and σ2
dη,ND(TNoDamage)

= 0.0747. Now,

d̄ND(TNoDamage) → 0.6695 as the number of survey responses, N → ∞ by Equation

(4.1). Figure 4.1 on the following page plots the standard error of d̄ND(TNoDamage)

for this distribution against numbers of survey responses and displays the behavior

predicted in Equation (4.3). Technically a target number of survey responses could

be calculated for a specified bound(s) on the estimate d̄ND(TNoDamage). Realistically,

however, the distribution will not be known in advance and d̄ND(TNoDamage) will be

the only estimate available for dµ,ND(TNoDamage).
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Figure 4.1: σd̄ND(TNoDamage), versus number of survey responses, N

A practical solution is to simulate survey responses from this distribution and

observe the event probability reach a relatively stable estimate of the true event prob-

ability. Figure 4.2 on the next page shows a continuous calculation of d̄ND(TNoDamage)

as N increases. Because the response distribution is known, a comparison can be made

with the true value of µdη,ND(TNoDamage), 0.6695, denoted by the reference line.

This type of simulation exercise could certainly be performed for each event

probability. However, the dependence of Actions on Physical Damage would indi-

cate the presence of several interactions causing a drastic increase in the number of

probabilities that need examination. As a result, such an investigation would prove

impractical. Because of the dependence, a more efficient way to observe the effect of

N on the model is to compare the estimated and true distributions of Xn, â′(n) and

a′(n) respectively.

4.2.3 Effect of N on the Moments of a′(n). A common method to compare

two distributions is to investigate their respective moments. The moments themselves

do not specify a distribution, but rather, the characteristic function (a function of

the moments) does. Distributions known, or assumed to be of the same form (e.g.
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Figure 4.2: Simulated d̄ND(TNoDamage) versus number of survey responses, N

nominal discrete in this case) may be compared on the basis of moments for this

reason. Indeed, many hypothesis tests do just that by estimating parameters from

data to draw conclusions about the distribution of a sample.

The two most commonly used moments of a distribution are the mean (i.e.

expected value) and the variance. The mean is a raw moment (about the origin) and

signifies location. Variance is the second central moment (about the mean) and is a

measure of dispersion. The third and fourth order central moments measure skewness

(symmetry) and kurtosis (peakedness) respectively.

The methodology is heavily dependent on data, so any variability or biases

present in the survey responses will be reflected in the moments of a′(n). BDA has

a nominal discrete distribution with nominal classes and, as a result, the concepts

of a (conditional) expected value and variance of Xn, given a situation (E[Xn|Bn]

and V ar[Xn|Bn] respectively) do not have intuitive meaning. The nominal nature

of the distribution means that the kill states show neither a proportional quantity

(cardinality) nor rank (ordinality). To calculate any moments for the distribution,

the kill states must be given a cardinal support. An example of a discrete distribution
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with a cardinal support would be a standard six sided die, for which E[∗] and V ar[∗]

can be calculated easily.

For the purposes of this demonstration, let the kill states take the following

support.

ND ≡ 1

M ≡ 2

F ≡ 3

MF ≡ 4

K ≡ 5

Since the mapping is completely arbitrary, the expected value and variance of a′(n)

(or â′(n)) do not have a direct interpretation.

It is well known that for any discrete random variable Y with a known proba-

bility distribution, the expected value and variance can be calculated as

E[Y ] =
∑

y

yP{Y = y}

V ar[Y ] =
∑

y

(y − E[Y ])2P{Y = y}

= E[Y 2]− (E[Y ])2

where

E[Y 2] =
∑

y

y2P{Y = y}

is the second moment of Y a about the origin.

Recall that â′(n) approaches the true distribution for increasing N. A single â′(n)

simultaneously reflects the entire body of survey responses for dependent and inde-

pendent event probabilities alike. Since the survey responses are simulated the true

value of any a′(n) can be calculated and compared against the estimated distribu-
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tion. Exploring every possible intersection of events (432) would make the analysis

intractable, so a subset of situations (Bns) was selected to represent a cross section

of the possible intersections.

To see the effect of the number of responses on E[Xn|Bn] and V ar[Xn|Bn],

survey responses were simulated sequentially. At each new value of N, the distribution

after the first shot was updated to give â′(1) for each of the situations.

Ba = {MNo ∩ ENo ∩ AOther/NoAction ∩ TNoDamage ∩HNoDamage ∩ TrNoDamage}

Bb = {MY es ∩ EY es ∩ ASeekingCover ∩ TNoDamage ∩HLightDamage ∩ TrNoDamage}

Bc = {MNo ∩ ENo ∩ ATakingF iringPosition ∩ TNoDamage ∩HLightDamage ∩ TrLightDamage}

Bd = {MY es ∩ ENo ∩ APersonnelAbandon ∩ THeavyDamage ∩HNoDamage ∩ TrLightDamage}

Be = {MNo ∩ ENo ∩ AOther/NoAction ∩ TLightDamage ∩HHeavyDamage ∩ TrHeavyDamage}

where B∗ represents Situation ∗ and the numeric subscript (1) is omitted for brevity.

For each of the five situations, the expected value and variance were calculated

analytically from â′(1). Recall, both E[Xn|Bn] and V ar[Xn|Bn] should approach their

true values as the number of survey responses increases by law of large numbers.

Figure 4.3 and 4.4 on the following page show the expected value, µ̂, and the variance,

σ̂2, plotted against the number of survey responses for Bb and Be. The reference lines

indicate the true values of the respective moments. Of the five situations investigated,

Situation b approaches its true values for the smallest values of N and Situation e

requires the largest values of N. In Figure 4.3, Situation b approaches its true values

for µ and σ2 to within simulation noise very quickly; just over N = 100 survey

responses. Figure 4.4 shows that µ and σ2 for Situation e approach their reference

lines more slowly. E[Xn|Be] and V ar[Xn|Bn] reach acceptable levels for N = 700

survey responses. However, a case could certainly be made for N = 1000+ survey

responses, given that both moments appear to further trend toward their reference
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Figure 4.3: µ̂ and σ̂2 versus Survey Responses, N (Situation b)

100 200 300 400 500 600 700 800 900 1000
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Number of Survey Responses, N

µ 
H

at

100 200 300 400 500 600 700 800 900 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Number of Survey Responses, N

V
ar

ia
nc

e,
 σ

2  H
at

Figure 4.4: µ̂ and σ̂2 versus Survey Responses, N (Situation e)

lines for N ≥ 850. Situations a, c, and d performed somewhere in between Situations

b and e. Sample data and plots for all of the situations may be found in Appendix C.

4.2.4 Effect of N on â′(n). Recall that the moments of â′(n) have no direct

interpretation because of the nominal nature of the kill states. To avoid giving kill

states an arbitrary support one might think of â′(n) as a point in space, or otherwise

stated

â′(n) ∈ R5.
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The true distribution also occupies a point in R5, so the distributions may be compared

by calculating the distance between the points they represent.

In multidimensional space, different forms of distance from the origin can be

calculated by a p-norm, || · ||p and represented as

||y||p = (|y1|p + |y2|p + . . . + |yn|p)1/p p ≥ 1 y ∈ Rn. (4.4)

The 2-norm is known as the euclidian norm

||y|| =
√
|y1|2 + |y2|2 + . . . + |yn|2

=
√

yTy (4.5)

and can be used to measure the straight line distance between points in space. In the

case of â′(n) and a′(n)

||a′(1) − â′(1)|| =
√

(a
(n)
ND − â

(n)
ND)2 + . . . + (a

(n)
K − â

(n)
K )2

=

√∑
i∈S

(a
(n)
i − â

(n)
i )2. (4.6)

The result of Equation (4.6) inherently represents how different the distributions

are and captures all of the moment information into a single value. Again, as N

becomes large, â′(n) will approach the true distribution and give the result

lim
N→∞

||a′(n) − â′(n)|| = 0.

So to compare distributions ||a′(1)− â′(1)|| was calculated for increasing values of

N. The same set of survey data and situations (a−e) as above were used. Figure 4.5 on

the next page display the plots for Situations b and e, respectively. Both situations

show similar results to the moment plots. Situation b shows very small values of

||a′(1) − â′(1)|| for any N > 150. Again, as in the moment plots, Situation e displays a
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Figure 4.5: ||a′(1) − â′(1)|| versus Survey Responses, N

much larger difference of â′(n) from a′(n) and indicates at least N = 700 for acceptable

results. Situations a, c and e show results between those obtained for Situation b and

e. Their plots of ||a′(1) − â′(1)|| versus N can be seen in Appendix C

Both methods of comparing â′(n) to a′(n) result in similar proposed values for N.

This similarity suggests that either method is adequate to determine a target number

of survey responses.

4.3 Example Data Analysis

To fully illustrate the methodology, a complete example implementation form

data collection to model implementation will be completed. First a data set of sur-

vey responses will be obtained (simulated) with N = 700 suggested in the previous

section. Next the set of survey responses will be converted to the appropriate event

probabilities. Lastly the algorithm will be run for a three shot engagement sequence

within a combat simulation model providing the necessary calculations.

4.3.1 Calculation of Conditional Event Probabilities. Now, the qualitative

values, contained in the N = 700 survey responses must be transformed into estimates
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of the conditional event probabilities, contained in d̄i. First, the qualitative values

(Ns, Ms, and As) marked on the surveys must be mapped to their respective event set

probabilities. For each event set within a qη,i, the most likely distribution is derived

from the principle of maximum entropy giving dη,i. Once all of the dη,is are mapped,

the d̄i are calculated by

d̄i =
1

N

N∑
η=1

dη,i ∀ i ∈ S

The event probabilities for each kill state, dη,i, estimated from the N = 700

simulated survey responses are given in Table 4.1. The probabilities in this table are

Table 4.1: Conditional Event Probabilities for Simulated Data

Kill State (i)
Event Set Event ND M-kill F-kill MF-kill K-kill
Movement Yes 0.5064 0.0764 0.5071 0.0307 0.0693

(M) No 0.4936 0.9236 0.4929 0.9693 0.9307
Engagement Yes 0.5064 0.5014 0.0743 0.0336 0.0579

(E) No 0.4936 0.4986 0.9257 0.9664 0.9421
Activity Seeking Cover 0.3575 0.1030 0.3983 0.0675 0.0696

(A) Taking Firing Position 0.3465 0.3082 0.0669 0.0549 0.0692
Personnel Abandoning 0.0908 0.3963 0.2831 0.1411 0.4263

Other/No Actions 0.2051 0.1925 0.2517 0.7365 0.4349
Turret No Damage 0.6750 0.6590 0.0879 0.0167 0.0448
(T ) Light Damage 0.3014 0.3162 0.4100 0.3974 0.4133

Heavy Damage 0.0236 0.0248 0.5021 0.5860 0.5419
Hull No Damage 0.6569 0.5231 0.5493 0.1119 0.2850
(H) Light Damage 0.3176 0.4045 0.3700 0.3498 0.4014

Heavy Damage 0.0255 0.0724 0.0807 0.5383 0.3136
Tracks No Damage 0.6610 0.0336 0.5400 0.0393 0.0543
(Tr) Light Damage 0.3167 0.4864 0.4407 0.3843 0.4393

Heavy Damage 0.0224 0.4800 0.0193 0.5764 0.5064

the marginal probabilities averaged across all N soldiers. The conditional probabilities

for Actions given all possible intersections of Physical Damage are excluded here for

brevity.

4.3.2 Three Shot Engagement Sequence. To illustrate the transient analysis

of the DTMC and updating using Bayesian Inference, the implementation logic will
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be followed for a typical engagement in CASTFOREM: a three shot sequence for a

blue (friendly) tank firing upon a red (enemy) tank.

So, imagine a blue gunner deems a red tank as a viable target and decides to

shoot at it. Recall a(n) denotes the probability vector of {Xn, n ≥ 0} at time n and

the initial distribution (without prior knowledge) is

a(0) =
[

1 0 0 0 0
]

because the red tank is assumed to have an kill state of ND before the engagement.

Additionally recall P is the transition probability matrix

P =

ND M F MF K

ND

M

F

MF

K



1/5 1/5 1/5 1/5 1/5

0 1/3 0 1/3 1/3

0 0 1/3 1/3 1/3

0 0 0 1/2 1/2

0 0 0 0 1


.

and as a result

a(1) = a(0)P

=
[

0.2 0.2 0.2 0.2 0.2
]

that is, the prior distribution of X1.

At this point the model decides (by random number draw) that the Blue tank

gunner will perceive situational data. In parallel, the model has determined ground

truth kill state to be ND (unknown to the Blue gunner) via PH and PK calculations.

Perceived actions and physical damage are determined by the model using a vector

of random numbers to draw from the appropriate conditional event set distributions.

55



A simulated random vector yields the the situational data, B1 given by

B1 = {MNo ∩ ENo ∩ AOther/NoAction ∩ TNoDamage ∩HNoDamage ∩ TrLightDamage}.

which the Blue tank gunner will perceive.

The perceived events, along with their respective probabilities are listed in Ta-

ble 4.2. The probabilities corresponding to the Actions in B1 are conditioned on the

Table 4.2: Observed Events and Conditional Probabilities (Shot 1)

Kill State (i)
Events ND M-kill F-kill MF-kill K-kill

Physical TNoDamage 0.6750 0.6590 0.0879 0.0448 0.0167
Damage HNoDamage 0.6569 0.5231 0.5493 0.2850 0.1119

TrLightDamage 0.3167 0.4864 0.4407 0.4393 0.3843
Actions MNo 0.4694 0.9315 0.5587 0.9010 1.0000

(Conditioned) ENo 0.4483 0.4946 0.8691 0.9219 0.8929
AOther/NoActions 0.2174 0.1911 0.2444 0.4625 0.7500
P{B1|X1 = i} 0.00642 0.01476 0.00252 0.00215 0.00048

a′(1) 0.24379 0.56043 0.09582 0.08173 0.01822

settings of Physical Damage.

First, the conditional probabilities of the situation P{B1|X1 = i} are calculated

for each kill state using Equation (3.8). This is simply the product of the event

probabilities listed in Table 4.2. For example calculate the probability of this situation

given X1 =M

P{B1|X1 = M} = P{MNo|TNoDamage ∩HNoDamage ∩ TrLightDamage}

·P{ENo|TNoDamage ∩HNoDamage ∩ TrLightDamage}

·P{AOther/NoActions|TNoDamage ∩HNoDamage ∩ TrLightDamage}

·P{TNoDamage} · P{HNoDamage} · P{TrLightDamage}

= (0.9315)(0.4946)(0.1911)(0.6590)(0.5231)(0.4864)

= 0.01476
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Then by the law of total probability

P{B1} =
∑
j∈S

P{B1|X1 = j}P{X1 = j}

=
∑
j∈S

P{B1|X1 = j}a(1)
j

= (0.00642)(0.2) + (0.01476)(0.2) + (0.00252)(0.2)

+(0.00215)(0.2) + (0.00048)(0.2)

= 0.00527.

Finally, calculate the a′(1) using Equation (3.6). Equation (4.7) demonstrates

example calculations for the probability of an M kill state given the situation, and

Table 4.2 on the previous page lists all of the a′(1) vector probabilities.

P{X1 = M|B1} =
P{B1|X1 = ND}P{X1 = ND}

P{B1}
(4.7)

=
(0.01476)(0.2)

0.02364

= 0.56043

Now the model has an updated distribution for X1. Based on the technique
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Because this is the second shot, the updated distribution for the first round is

known to be a′(1), so a(2) is calculated using the information available.

a(2) = a′(1)P (4.8)

=

ND M F MF K

ND M F MF K[
0.24379 0.56043 0.09582 0.08173 0.01822

]


1/5 1/5 1/5 1/5 1/5

0 1/3 0 1/3 1/3

0 0 1/3 1/3 1/3

0 0 0 1/2 1/2

0 0 0 0 1


=
[

0.048759 0.235568 0.080701 0.308377 0.326596
]

Again, the model decides that the gunner can observe the situational data. The

model then generates the events associated with the perceived situation, B2, from a

vector of random numbers. Now

B2 = {MY es ∩ ENo ∩ ASeekingCover ∩ TLightDamage ∩HNoDamage ∩ TrLightDamage}

and the events are shown in Table 4.3 on the following page with their respective

probabilities. The subsequent calculations to obtain P{B2|X2 = j}, j ∈ S and a′(2)

(also displayed in Table 4.3 on the next page) are analogous to those of the first shot.

The prior distribution is calculated similarly to Equation (4.8) as

a(3) =
[

0.027688 0.042012 0.283387 0.320903 0.32601
]
.
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Table 4.3: Observed Events and Conditional Probabilities (Shot 2)

Kill State
Events ND M-Kill F-Kill MF-Kill K-Kill

Physical TNoDamage 0.3014 0.3162 0.4100 0.4133 0.3974
Damage HNoDamage 0.6569 0.5231 0.5493 0.2850 0.1119

TrLightDamage 0.3167 0.4864 0.4407 0.4393 0.3843
Actions MNo 0.4684 0.0785 0.5067 0.0769 0.0238

(Conditioned) ENo 0.5107 0.5026 0.9254 0.9520 0.9667
AOther/NoActions 0.3684 0.1119 0.3975 0.0773 0.0774
P{B2|X2 = i} 0.00553 0.00036 0.01850 0.00029 0.00003

a′(2) 0.13844 0.04297 0.76710 0.04638 0.00511

As in the previous two shots, the model decides that the Blue tank gunner may

perceive situational data. Additionally B3 is generated by the model.

B3 = {MNo ∩ENo ∩APersonnelAbandoning ∩TLightDamage ∩HLightDamage ∩TrHeavyDamage}

The events in B3 and their respective conditional probabilities are displayed in

Table 4.4. P{B3} and a′(3) can be calculated in the same manner as for the first and

second shots and are also shown in Table 4.4.

Table 4.4: Observed Events and Conditional Probabilities (Shot 3)

Kill State
Events ND M-Kill F-Kill MF-Kill K-Kill

Physical TLightDamage 0.3014 0.3162 0.4100 0.4133 0.3974
Damage HLightDamage 0.3176 0.4045 0.3700 0.4014 0.3498

TrHeavyDamage 0.0224 0.4800 0.0193 0.5064 0.5764
Actions MNo 0.5698 0.9187 0.5071 0.9394 0.9664

(Conditioned) ENo 0.6395 0.5083 0.9574 0.9249 0.9486
APersonnelAbandoning 0.1105 0.4078 0.2465 0.4153 0.1377

P{B3|X3 = i} 0.00009 0.01169 0.00035 0.03032 0.01011

a′(3) 0.00018 0.03607 0.00728 0.71437 0.24210

4.3.3 Engagement Sequence with missing information. The result stated

in Equation (3.3) from transient analysis allow this methodology to deal with cases
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where situational parameters cannot be observed. Suppose in the above engagement

no perception data was available to the gunner after the second shot, but after the

third shot he perceives situational information again.

The values of P{B3|X3 = i} do not change for this case but rather the prior

distribution shifts. The calculations in this case differ from those in the above sequence

only in the way a(3) is obtained. With no information gained after the second shot,

a(3) is calculated from the last known distribution a′(1) by

a(3) = a′(1)P(2)

=
[

0.00975 0.08827 0.03665 0.26936 0.59596
]

to give the prior distribution for Bayes’ Theorem.

Now a′(3) is calculated in the same manner as above in Equation (4.7) and yields

a
′(3)
1 =

[
0.00006 0.06772 0.00084 0.53588 0.39551

]
.

where the subscript (1) indicates a′(1) as the last distribution updated with situational

parameters. The difference between a
′(3)
1 and a′(3) reflects the information lost by not

gaining perceptional data on the second shot.

4.4 Conclusion

This chapter provides an analysis of the BDA enhancement methodology. First,

the issue of how many survey responses are required for the methodology was dis-

cussed and a recommendation of sample size determined by simulation using several

metrics. Secondly, a full example implementation of the methodology was accom-

plished using a three shot engagement sequence. Lastly an example calculation with

missing information was completed.
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V. Recommendations and Future Research

5.1 Introduction

This thesis deals with the complexity of the BDA process for close combat

situations and the difficulties in modeling it. The research has three objectives:

1. Develop a new methodology to model the BDA process which addresses the

inadequacies of the current heuristic.

2. Produce a data collection method (i.e a survey) that will collect the necessary

data for the modeling technique.

3. Propose a technique to implement the methodology into a combat model.

The first objective was completed by modeling BDA as a stochastic process,

more specifically as a discrete time Markov chain (DTMC). The uncertain nature of

BDA is captured within the DTMC model. The information gained through bat-

tlefield perception was modeled via Bayesian inference, using the result of transient

analysis, a pmf kill state vector, as a distribution of prior probabilities.

The second objective was accomplished by designing a survey to collect data

pertinent to the proposed methodology. A set of event trees was developed to enu-

merate those perception events that most affect a determination of BDA. These trees

helped to frame the questions that will be asked of combat subject matter experts.

The third objective was completed by developing a logical modeling flow con-

struct of the engagement process and placing the proposed methodology within it.

Further, an analysis of how many survey responses will be needed to implement

the methodology was performed. The results of the DTMC with Bayesian updating

suggest that the number of survey responses should be maximized but that several

hundred will give adequate results.

5.2 Modeling Issues

There are several modeling decisions that need discussion regarding the rep-

resentation of the BDA process as a DTMC with Bayesian updating. First, the
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methodology as presented in this research incorporates more detail than is currently

modeled by CASTFOREM and the differences must be considered. Second, during

an engagement, the model must make determinations of whether the entity will shoot

again or exit the engagement. There are several techniques that the model might use

to deal with these problems.

5.2.1 Level of Detail in the Methodology. This methodology was designed

with CASTFOREM in mind. However, this research has included a greater level of

detail than explicitly modeled in CASTFOREM at this time. This was done to ensure

that the model was flexible enough be effective as CASTFOREM evolves, and further

to transition into the Army’s next generation combat simulaiton model, Combat XXI.

The flexibility of this methodology is one of best attributes, since as much or as little

information as the user desires can be considered.

Currently, CASTFOREM models very little in the way of perception informa-

tion. For the BDA enhancement methodology, Movement and Engagement are the

only two event sets modeled by CASTFOREM at this time. As a result, the remain-

ing event sets must be dealt with in one of several ways. First, the Activity event set

and those pertaining to Physical Damage might be ignored. Second, the event sets

not explicitly modeled might be selected by a random number generator, based on

the ground truth state of the target. Probabilities obtained from the survey responses

could be used for this purpose. Either way will yield an improved BDA heuristic for

CASTFOREM, but the full capabilities of the methodology are achieved using more

detail.

5.2.2 Engagement Exit Criterion. The combat model’s decision to exit or

proceed with an engagement is a very important issue. Overestimation and underes-

timation of BDA on the battlefield are a result of uncertainty in the model and have

effects on the results of a simulated conflict. These effects might include how many

targets an entity prosecutes, how quickly a entity runs out of ammunition, or even
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the survivability of the entity within the simulation. To achieve realism, the model

must have adequate exit criteria.

One technique would be to select a BDA goal (e.g. reach K-kill) at the beginning

of each engagement. A random number would be drawn after each shot (with update)

and the kill state would be determined by the a′(n) vector. If the selection of Xn

meets or exceeds the BDA goal the model exits the BDA process. This allows for

incorrect estimation of a target’s kill state due to the uncertainty on the battlefield.

For instance, in an engagement sequence, the tank gunner may determine BDA as

an MF-kill after the first shot when, in fact, ground truth is an M-kill or perceive an

M-kill when ground truth is K-kill.

Another technique would involve having a goal corresponding to threshold of

density at or above a kill state (e.g. at least 90% in the M-, MF-, and K-kill states).

The gunner would fire until this goal was reached and the target would be presumed

as at least an M-kill. In the example engagement sequence presented in Section 4.3.2,

the gunner would stop after the third shot because > 0.98 of the density in a′(3) is

contained in M-, MF-, and K-kill states. This would likely result in over-killing the

target, or shooting more rounds than necessary in many engagements. This result

actually captures reality quite well, as soldiers are more apt to underestimate BDA

due to the (survivability) risks involved.

Yet another technique would create some function to incorporate the tradeoffs

between achieving a BDA goal on the current target and engaging another (possibly

more important) target. If some critical value was not met during the engagement

the entity would exit the process and engage a more critical target. As an example,

suppose, in an engagement sequence, that the tank gunner perceives that the target is

M-killed after the first shot but would like to achieve a K-kill. However, a new enemy

poses an immediate and more serious threat to the tank. The model might decide to

move to the higher priority target based on this information.
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The technique chosen to provide exit criteria for an engagement will certainly

shape the implementation of the methodology into a combat simulation model. As

a result, this choice is of utmost importance to the decision maker and should be

considered carefully.

5.3 Model Assumptions and Strengths

The methodology relies on several assumptions that allow a mathematically

valid model of the BDA process. The main assumptions that underly the DTMC

with updating approach are as follows:

1. The event sets contain mutually exclusive events.

2. The probability of a situation, or intersection of events can be calculated.

3. The probability of the next state depends only on the current state. That is,

the Markovian property.

4. The conditional probabilities dependent on the current state are time homoge-

neous. That is, the stationary property.

The strengths of this modeling technique are extensive. Specifically, it addresses

several of the shortfalls of the current AMSAA heuristic (reference Section 1.3). An

item already discussed is incorporating uncertainty into the model. Allowing the

target to jump between any two perceived states and having the assessing soldier

perceive incorrect BDA is an important aspect of the model.

Another issue the BDA model resolves is the incorporation of situational factors

into an assessment. The model directly makes use of the perception information

available to a soldier performing an assessment, providing a realistic representation of

the decision process. By using information contained in the situational parameters,

meaningful probabilities are assigned to assessing a target at a kill state.

Though not specifically addressed in this research, dealing with indirect fire

could be easily accomplished with this approach. Modeling the process as a DTMC
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provides avenues to deal with missing data, a likely situation for indirect fire. Though

the model has numerous strengths and advantages over the previous AMSAA heuris-

tic, it still holds many avenues for improvement and further study.

5.4 Recommendations for future research

This thread of research provides numerous continuation and related topics that

are of interest. Since this marks the first BDA model of its kind, surely improvement

opportunities are available. The most immediate value-added would come from adding

a module that captures the degradation of BDA capability due to hindering factors.

These factors might include weather, time of day, range to the target, the sensor being

used, or obscurants (e.g. dust and smoke). Clearly any of these may affect the quality

of the perceived information.

Another improvement would involve an exploration of the dependence relation-

ships among event sets. Through collection of real data from combat SMEs, the

assumptions made in the methodology could be challenged and modified if necessary.

This would likely occur in conjunction with development of decision tables for use in

a combat model.

Additionally, this research has dealt entirely within the construct of Army force-

on-force combat models. The incorporation of uncertainty perceived information

translates well to the BDA process in any realm (air, sea, or land). As a result,

this methodology could prove useful in other DoD simulations with similar decision

processes and should be investigated.

Lastly, any number of improvement techniques might be applied to this method-

ology. The threads above represent just a fraction of the possible topics that can be

reached with this research.
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Appendix A. SME Survey Design

The following pages present the proposed data collection method. SMEs will be

determined by the Army per their rules and regulations.
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Battle Damage Assessment Questionnaire 
 
 

Position Code: __________________  Position Name: __________________ 
 
Years Experience: ________________ 
 
Have you ever performed real time BDA in a combat situation?     Yes   /    No 
 
If yes, on which target types have you performed BDA?  (Please check all that apply, adding any 
not listed.) 
 

Tank Artillery Piece
APC
Truck
Infantry Soldier  

 
 
Instructions 
 

For each question you will be presented a scenario and be asked to identify key things that 
you might see in that situation.  There will be three sets of check boxes beside each item labeled 
“N” “M” and “A”.  Items that you would never or rarely expect to see in the situation should be 
checked in the “N” column.  Check items you might see in the “M” column and finally check 
critical items that you would always expect to see in the “A” column.   You may also use the 
space provided to explain your thought process or add items not listed. 

You should assume that you are at ID level using the most capable sensor available to 
you.  Try to be as complete as possible. 
 
 
The following are definitions of battle damage assessment (BDA) kill types that you may be 
asked to describe.   These definitions applicable to vehicles but the concepts extend to 
dismounted troops as well. 
 
M-kill (Mobility): A target is subject to an M-kill if it is incapable of executing controlled 
movement and the damage is not repairable by the crew on the battlefield.  Failure to function 
may be caused by the incapacitation of the crew or damage to propulsion or control equipment.  
 
F-kill (Firepower): A target is subject to an F-kill if it is incapable of delivering controlled fire 
from the main armament and the damage is not repairable by the crew on the battlefield.  The loss 
of this function may be caused by the incapacitation of the crew or damage to the main armament 
and its associated equipment. 
 
K-kill (Catastrophic):  A target is subject to a K-kill if it sustains both an M- and F-kill and is 
damaged to the extent that is not economically repairable.  A K-kill is more likely to be apparent 
to the crew of a weapon system because of the resulting fires/detonation of ammunition.  



1) An enemy artillery piece has taken fire and it sustains an F-kill.  Please mark the 
appropriate box for each of the actions or characteristics that you might see given the 
situation.  If it is true that the artillery piece is an F-kill, check items you would never or 
rarely see in the “N” column, items you might see under the “M” column, and items you 
would always see in the “A” column.   

 
Below are some pictures of enemy artillery that you may use to mark or illustrate your 
expectations of the assessment. 
 

 
 

Actions N M A Physical Damage N M A
•         Engaging targets •         Gun Barrel

o       Yes o       No Damage
•         Activity o       Light Damage

o       Seeking Cover o       Heavy Damage
o       Taking a Firing Position •         Chassis/Platform
o       Personnel Abandoning the Piece o       No Damage
o       Other/No Action o       Light Damage

o       Heavy Damage  
 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



2) An enemy APC has taken fire but it does not sustain a kill.  Please mark the appropriate 
box for each of the actions or characteristics that you might see given the situation.  If it is 
true that the APC has not sustained a kill, check items you would never or rarely see in 
the “N” column, items you might see under the “M” column, and items you would always 
see in the “A” column.  

 
Below are some pictures of enemy APCs that you may use to mark or illustrate your 
expectations of the assessment 

 

 
 
Actions N M A Physical Damage N M A

•         Movement •         Weapons Systems
o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks/Wheels
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the APC o       Light Damage
o       Other/No Action o       Heavy Damage  

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 



3) An enemy truck has taken fire and it sustains an M-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the truck is an M-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.  

 
Below are some pictures of enemy trucks that you may use to mark or illustrate your 
expectations of the assessment 
 

 
 

Actions N M A Physical Damage N M A
•         Movement •         Body

o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Wheels

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover
o       Taking a Firing Position
o       Personnel Abandoning the Truck
o       Other/No Action  

 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



4) An enemy APC has taken fire and it sustains a K-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the APC is a K-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.  

 
Below are some pictures of enemy APCs that you may use to mark or illustrate your 
expectations of the assessment 

 

 
 
Actions N M A Physical Damage N M A

•         Movement •         Weapons Systems
o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks/Wheels
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the APC o       Light Damage
o       Other/No Action o       Heavy Damage  

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



5) An enemy artillery piece has taken fire and it sustains a K-kill.  Please mark the 
appropriate box for each of the actions or characteristics that you might see given the 
situation.  If it is true that the artillery piece is a K-kill, check items you would never or 
rarely see in the “N” column, items you might see under the “M” column, and items you 
would always see in the “A” column.   

 
Below are some pictures of enemy artillery that you may use to mark or illustrate your 
expectations of the assessment. 
 

 
 

Actions N M A Physical Damage N M A
•         Engaging targets •         Gun Barrel

o       Yes o       No Damage
•         Activity o       Light Damage

o       Seeking Cover o       Heavy Damage
o       Taking a Firing Position •         Chassis/Platform
o       Personnel Abandoning the Piece o       No Damage
o       Other/No Action o       Light Damage

o       Heavy Damage  
 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



6) An enemy tank has taken fire and it sustains a K-kill.  Please mark the appropriate box for 
each of the actions or characteristics that you might see given the situation.  If it is true 
that the tank is a K-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.   

 
Below are some pictures of enemy tanks that you may use to mark or illustrate your 
expectations of the assessment 

 
Actions N M A Physical Damage N M A

•         Movement •         Turret
o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engagement o       No Damage
o       Engaging Targets o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the Tank o       Light Damage
o       Other/No Action o       Heavy Damage  

 
 
Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



7) An enemy truck has taken fire and it sustains a K-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the truck is a K-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.  

 
Below are some pictures of enemy trucks that you may use to mark or illustrate your 
expectations of the assessment 
 

 
 

Actions N M A Physical Damage N M A
•         Movement •         Body

o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Wheels

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover
o       Taking a Firing Position
o       Personnel Abandoning the Truck
o       Other/No Action  

 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



8) An enemy APC has taken fire and it sustains an F-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the APC is an F-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.   

 
Below are some pictures of enemy APCs that you may use to mark or illustrate your 
expectations of the assessment 

 

 
 
Actions N M A Physical Damage N M A

•         Movement •         Weapons Systems
o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks/Wheels
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the APC o       Light Damage
o       Other/No Action o       Heavy Damage  

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



9) An enemy tank has taken fire but it has not sustained a kill.  Please mark the appropriate 
box for each of the actions or characteristics that you might see given the situation.  If it is 
true that the tank did not sustain a kill, check items you would never or rarely see in the 
“N” column, items you might see under the “M” column, and items you would always see 
in the “A” column.   

 
Below are some pictures of enemy tanks that you may use to mark or illustrate your 
expectations of the assessment 

 
Actions N M A Physical Damage N M A

•         Movement •         Turret
o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engagement o       No Damage
o       Engaging Targets o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the Tank o       Light Damage
o       Other/No Action o       Heavy Damage  

 
 
Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 



10) An enemy truck has taken fire but does not sustain a kill.  Please mark the appropriate 
box for each of the actions or characteristics that you might see given the situation.  If it is 
true that the truck has not sustained a kill, check items you would never or rarely see in 
the “N” column, items you might see under the “M” column, and items you would always 
see in the “A” column.   

 
Below are some pictures of enemy trucks that you may use to mark or illustrate your 
expectations of the assessment 
 

 
 

Actions N M A Physical Damage N M A
•         Movement •         Body

o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Wheels

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover
o       Taking a Firing Position
o       Personnel Abandoning the Truck
o       Other/No Action  

 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



11) An enemy APC has taken fire and it sustains an M-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the APC is an M-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.  

 
Below are some pictures of enemy APCs that you may use to mark or illustrate your 
expectations of the assessment 

 

 
 
Actions N M A Physical Damage N M A

•         Movement •         Weapons Systems
o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks/Wheels
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the APC o       Light Damage
o       Other/No Action o       Heavy Damage  

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



12) An enemy tank has taken fire and it sustains an M-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the tank is an M-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.  

 
Below are some pictures of enemy tanks that you may use to mark or illustrate your 
expectations of the assessment 

 
Actions N M A Physical Damage N M A

•         Movement •         Turret
o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engagement o       No Damage
o       Engaging Targets o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the Tank o       Light Damage
o       Other/No Action o       Heavy Damage  

 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



13) An enemy artillery piece has taken fire but does not sustain a kill.  Please mark the 
appropriate box for each of the actions or characteristics that you might see given the 
situation.  If it is true that the artillery piece did not sustain a kill, check items you would 
never or rarely see in the “N” column, items you might see under the “M” column, and 
items you would always see in the “A” column.   

 
Below are some pictures of enemy artillery that you may use to mark or illustrate your 
expectations of the assessment. 
 

 
 

Actions N M A Physical Damage N M A
•         Engaging targets •         Gun Barrel

o       Yes o       No Damage
•         Activity o       Light Damage

o       Seeking Cover o       Heavy Damage
o       Taking a Firing Position •         Chassis/Platform
o       Personnel Abandoning the Piece o       No Damage
o       Other/No Action o       Light Damage

o       Heavy Damage  
 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



14) An enemy tank has taken fire and it sustains an F-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the tank is an F-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.   

 
Below are some pictures of enemy tanks that you may use to mark or illustrate your 
expectations of the assessment 

Actions N M A Physical Damage N M A
•         Movement •         Turret

o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Hull

•         Engagement o       No Damage
o       Engaging Targets o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover •         Tracks
o       Taking a Firing Position o       No Damage
o       Personnel Abandoning the Tank o       Light Damage
o       Other/No Action o       Heavy Damage  

 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________



15) An enemy truck has taken fire and it sustains an F-kill.  Please mark the appropriate box 
for each of the actions or characteristics that you might see given the situation.  If it is true 
that the truck is an F-kill, check items you would never or rarely see in the “N” column, 
items you might see under the “M” column, and items you would always see in the “A” 
column.   

 
Below are some pictures of enemy trucks that you may use to mark or illustrate your 
expectations of the assessment 
 

 
 

Actions N M A Physical Damage N M A
•         Movement •         Body

o       Toward your position o       No Damage
o       Away from your position o       Light Damage
o       Parallel to your position o       Heavy Damage
o       None •         Wheels

•         Engaging targets o       No Damage
o       Yes o       Light Damage

•         Activity o       Heavy Damage
o       Seeking Cover
o       Taking a Firing Position
o       Personnel Abandoning the Truck
o       Other/No Action  

 

Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



For soldiers it does not make sense to use the M-, F- and K-kill types described in the directions 
at the beginning of this survey.  Instead we will classify an enemy soldier as Incapacitated if he 
cannot continue the mission, assault, or defend.  Incapacitation may include fatality but does not 
necessarily imply that the enemy is dead. 
 

16) An enemy soldier has taken fire and he sustains an incapacitation-kill.  Please mark the 
appropriate box for each of the actions or characteristics that you might see given the 
situation.  If it is true that the soldier is incapacitated, check items you would never or 
rarely see in the “N” column, items you might see under the “M” column, and items you 
would always see in the “A” column.  

 
Actions N M A

•         Movement Physical Damage N M A
o       Toward your position •         Head
o       Away from your position o       Wounded
o       Parallel to your position o       Not Wounded
o       None •         Torso

•         Engaging targets o       Wounded
o       Yes o       Not Wounded

•         Activity •         Limbs
o       Seeking Cover o       Wounded Arms 
o       Taking a Firing Position o       Wounded Legs
o       Falling to the Ground o       No Wounds
o       Other/No Action  

 
 
Please use the space below to comment on your choices and/or add things that are not listed. 

______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________



Degradation Questions 
 
Now consider making assessments with different sensors.  Most likely each sensor is sensitive to 
different factors that will degrade your ability to see the target and make an assessment.   You 
will be asked to mark how much each factor degrades the given sensor.   
 
Key: 
N: No Degradation  
H: Half Degradation  
F: Full Degradation 
Comments: Use the space given to describe how the factor affects the sensor.   
 
Complete the following tables concerning different sensor types. For example if your sensor is 
unaided visual, ambient light may have a full degradation effect.  Comments would include that 
nighttime (low/no ambient light) impairs your ability to see.  If there are additional factors that do 
not appear on the list, add them and answer in the same manner. 
 
IR/Thermal 

Factor N H F Comments 

Ambient Light         

Humidity         

Obscurants         

Range to Target         

Weather         

Movement while Assessing         

          

          
 
Unaided Visual 

Factor N H F Comments 

Ambient Light         

Humidity         

Obscurants         

Range to Target         

Weather         

Movement while Assessing         

          

          
 



TV/Aided Visual 

Factor N H F Comments 

Ambient Light         

Humidity         

Obscurants         

Range to Target         

Weather         

Movement while Assessing         

          

          
 

 



Appendix B. MATLAB Code for Simulation of Survey Responses

1 function [] = MasterSimulation()

2 % MasterSimulation: a function to simulate survey responses, calculate

3 % estimated and true a’(n) vectors, record data, and

4 % create plots

5 %

6 % Calls: ReadSimulationProbabilities, ReadTrueProbabilities,

7 % SurveyResponseMatrix, PlotDataConvergence, DTMC, GetSituation,

8 % DataCalcuations, GetStats, N_Plots, EngageSequence

9 %

10 %**************************************************************************

11 % Author: Michael Carras

12 % michael.carras@afit.edu

13 %--------------------------------------------------------------------------

14 % Created: 2006

15 % Last Modified: 9 March 2006

16 %**************************************************************************

17 %

18 % VARIABLES (Global/Main)--------------------------------------------------

19 % Pio_PhysicalDamage - Simulation probabilities for binary response

20 % vector of physical damage

21 % CondPio_Actions - Conditional simulation probabilities for binary

22 % response vector of actions given phys damage

23 % Ptrue_All - True marginal event probabilities

24 % CondPtrue_Actions - True conditional ‘‘Action’’ Probabilities

25 % NumResponse - Number of survey responses

26 % ResponseMatrix - Matrix containing all survey responses

27 % aPnTrue - True a’ vector

28 % a_nTrue - True a vector

29 % Situation - Matrix of situations tested

30 % sit - Current situation counter

31 % B_n - Current siutation

32 % Bn_pd - Pointer to correct row of conditional action

33 % probabilities

34 % P_BnaTrue - True conditional probabilities for current

35 % situation

36 % P_BnTrue - True marginal probabilities for current situation

37 % temp - temporary vector holding intersection probs

38 % tempSum - sum of temp

39 % PlotData - Matrix with data for plots

40 % Mean - Mean BDA based on a’

41 % Var - Variance of BDA based on a’

42 % SD - Standard Deviation of BDA based on a’

43 % CV - Coefficint of variation based on a’

44 % -------------------------------------------------------------------------
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45

46 % Closes all open plots and turns warning displays off

47 warning off all

48 close all

49

50 % Read simulation Probabilities and True Probabilities

51 [Pio_PhysicalDamage,CondPio_Actions] = ReadSimulationProbabilities();

52 [Ptrue_All,CondPtrue_Actions] = ReadTrueProbabilities();

53

54 % Set the number of responses here

55 NumResponse = 1000;

56

57 % generate survey responses

58 [ResponseMatrix] = SurveyResponseMatrix(NumResponse,...

59 Pio_PhysicalDamage,CondPio_Actions,0);

60

61 % Plot convergence of data

62 PlotDataConvergence(ResponseMatrix,NumResponse);

63

64 % initialize variables

65 aPnTrue = [1 0 0 0 0];

66 a_nTrue = DTMC(aPnTrue);

67

68 % retrieve B_n’s

69 [Situation] = GetSituations();

70

71 % create data for plots

72 for sit = 1:5

73

74 B_n = Situation(sit,:);

75

76 Bn_pd = 1+(B_n(4)-9)+3*(B_n(5)-12)+9*(B_n(6)-15);

77 P_BnaTrue = squeeze([CondPtrue_Actions(Bn_pd,B_n(1),:),...

78 CondPtrue_Actions(Bn_pd,B_n(2),:),...

79 CondPtrue_Actions(Bn_pd,B_n(3),:)]);

80

81 P_BnTrue = [P_BnaTrue; ...

82 Ptrue_All(:,B_n(4))’; ...

83 Ptrue_All(:,B_n(5))’;...

84 Ptrue_All(:,B_n(6))’];

85

86 temp = prod(P_BnTrue,1).*a_nTrue;

87 tempSum = sum(temp);

88 aPnTrue = temp/tempSum;
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89

90 [PlotData] = DataCalculations(NumResponse,B_n,ResponseMatrix,aPnTrue);

91 [Mean,Var,SD,CV] = GetStats(aPnTrue);

92 PlotData = [PlotData;[1,aPnTrue,Mean,Var,SD,CV,0]] ;

93 xlswrite(’Ch4PlotData.xls’,PlotData,sit,’b2’);

94

95 N_Plots(PlotData,sit,NumResponse);

96

97 end

98

99 EngageSequence(ResponseMatrix,Ptrue_All,CondPtrue_Actions)

100 end

101 %**************************************************************************

102

103

104 % Sub functions

105 %**************************************************************************

106 function[Pio_PhysicalDamage,CondPio_Actions]=ReadSimulationProbabilities()

107 % ReadSimulationProbabilities: a function to read in the probabilities of

108 % simulated surevey responses from an excel spreadsheet

109

110 Pio_PhysicalDamage = xlsread(’SurveyProbs.xls’,’p_0’,’b2:j6’);

111

112 CondPio_Actions(:,:,1) = xlsread(’SurveyProbs.xls’,’p_0’,’b18:i44’);

113 CondPio_Actions(:,:,2) = xlsread(’SurveyProbs.xls’,’p_0’,’b46:i72’);

114 CondPio_Actions(:,:,3) = xlsread(’SurveyProbs.xls’,’p_0’,’b74:i100’);

115 CondPio_Actions(:,:,4) = xlsread(’SurveyProbs.xls’,’p_0’,’b102:i128’);

116 CondPio_Actions(:,:,5) = xlsread(’SurveyProbs.xls’,’p_0’,’b130:i156’);

117

118 end

119

120

121 %**************************************************************************

122 function [Ptrue_All,CondPtrue_Actions] = ReadTrueProbabilities();

123 % ReadSimulationProbabilities: a function to read in true probabilities of

124 % events from and excel spreadsheet

125

126 Ptrue_All = xlsread(’SurveyProbs.xls’,’p_0’,’b11:r15’);

127

128 CondPtrue_Actions(:,:,1) = xlsread(’SurveyProbs.xls’,’p_0’,’k18:r44’);

129 CondPtrue_Actions(:,:,2) = xlsread(’SurveyProbs.xls’,’p_0’,’k46:r72’);

130 CondPtrue_Actions(:,:,3) = xlsread(’SurveyProbs.xls’,’p_0’,’k74:r100’);

131 CondPtrue_Actions(:,:,4) = xlsread(’SurveyProbs.xls’,’p_0’,’k102:r128’);

132 CondPtrue_Actions(:,:,5) = xlsread(’SurveyProbs.xls’,’p_0’,’k130:r156’);
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133

134 end

135

136

137 %**************************************************************************

138 function [ResponseMatrix] = SurveyResponseMatrix(NumResponse,...

139 Pio_PhysicalDamage,CondPio_Actions,Ex)

140 % SurveyResponseMatrix: a function to simulate (NumResponse) number of

141 % survey responses by rendom numer draws

142 %

143 % Calls: DamageCondition, ConvertActions

144 %

145 % LOCAL VARIABLES ---------------------------------------------------------

146 % i - kill state counter

147 % iResponseMatrix - placeholder for ith layer of ResponseMatrix

148 % Rnd_io_pd - matrix of random numbers for physical damage

149 % Rnd_io_a - matrix of random numbers for actions

150 % n - Number of responses counter

151 % etaRnd_io_pd - nth row of Rnd_io_pd

152 % etaRnd_io_a - nth row of Rnd_io_a

153 % TempPio_pd - appropriate row of simulation probabilities

154 % Rsp_io_pd - binary vector of physical damage responses

155 % Rsp_num_pd - physical damage response in numerical form

156 % Weight_pd - Weight vector for actions to condition on

157 % physical damage

158 % TempPio_a - appropriate simulation probabilities for actions

159 % Rsp_io_a - binary vector of action responses

160 % Rsp_num_a - action response in numerical distribution form

161 % etaRsp_num - concatenation of action and pysical damage

162 % -------------------------------------------------------------------------

163

164 % Initialize ResponseMatrix

165 ResponseMatrix = zeros(NumResponse,17,5);

166

167 % Iterate thorough kill states

168 for i = 1:5

169 % initialize the response matrix for this kill state and generate

170 % random numbers

171 iResponseMatrix = zeros(NumResponse,17);

172 Rnd_io_pd = rand(NumResponse,9);

173 Rnd_io_a = rand(NumResponse,8);

174

175 for n = 1:NumResponse

176 % Get the random numbers for this reponse
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177 etaRnd_io_pd = Rnd_io_pd(n,:);

178 etaRnd_io_a = Rnd_io_a(n,:);

179

180 % Get the appropriate kill state physical damage event

181 % probabilities and compare against random numbers

182 TempPio_pd = Pio_PhysicalDamage(i,:);

183 Rsp_io_pd = etaRnd_io_pd <= TempPio_pd;

184

185 % convert the binary physical damage to numerical probability

186 % distributions and get the weight vector for action responses

187 [Rsp_num_pd,Weight_pd] = DamageCondition(Rsp_io_pd,i);

188

189 % Get appropriate kill state conditional probabilities and ocmpare

190 % them against random numbers

191 TempPio_a = squeeze(CondPio_Actions(:,:,i));

192 TempPio_a = Weight_pd*TempPio_a;

193 Rsp_io_a = etaRnd_io_a <= TempPio_a;

194

195 % convert the binary actions to numerical probability

196 % distributions

197 [Rsp_num_a] = ConvertActions(Rsp_io_a,i);

198

199 % place this reponse in the iResponseMatrix

200 etaRsp_num = [Rsp_num_a, Rsp_num_pd];

201 iResponseMatrix(n,:) = etaRsp_num;

202 end

203

204 % place the ith layer into ResponseMatrix

205 ResponseMatrix(:,:,i) = iResponseMatrix;

206

207 % write data to spreadsheet

208 if Ex == 0

209 xlswrite(’Ch4SimData.xls’,iResponseMatrix,i,’b2’);

210 elseif Ex == 1

211 xlswrite(’Ch4ExSimData.xls’,iResponseMatrix,i,’b2’);

212 end

213 end

214

215 end

216

217 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

218 function [Rsp_num_pd,Weight_pd] = DamageCondition(Rsp_io_pd,i);

219 % DamageCondition: function to convert binary rsponses to numerical ones

220 % and produce a conditioning weight vector for
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221 % actions

222 %

223 % LOCAL VARIABLES ---------------------------------------------------------

224 % tur_io, hul_io, trk_io - binary response pieces for turret, hull, tracks

225 % tur_num, hul_num, trk_num - numerical responses for turret, hull, tracks

226 % -------------------------------------------------------------------------

227

228 % break logical vectors into turret, hull, track pieces

229 tur_io = [Rsp_io_pd(1),Rsp_io_pd(2),Rsp_io_pd(3)];

230 hul_io = [Rsp_io_pd(4),Rsp_io_pd(5),Rsp_io_pd(6)];

231 trk_io = [Rsp_io_pd(7),Rsp_io_pd(8),Rsp_io_pd(9)];

232 tur_num = []; hul_num = []; trk_num = [];

233

234 % assign distribution to turret

235 tur_num(~tur_io)= 0;

236 switch sum(tur_io)

237 case(0)

238 switch i

239 case(1)

240 if rand < .75 tur_num = [1,0,0];

241 else tur_num = [.5,.5,0]; end

242 case(2)

243 if rand < .75 tur_num = [0,.5,.5];

244 else tur_num = [1/3,1/3,1/3]; end

245 case{3,4,5}

246 if rand < .75 tur_num = [0,0,1];

247 else tur_num = [0,.5,.5]; end

248 end

249 case(1)

250 tur_num(tur_io) = 1;

251 case(1)

252 tur_num(tur_io) = 1;

253 case{2}

254 tur_num(tur_io) = .5;

255 case{3}

256 tur_num(tur_io) = 1/3;

257 end

258

259 % assign distribution to hull

260 hul_num(~hul_io)= 0;

261 switch sum(hul_io)

262 case(0)

263 switch i

264 case{1,2,3}
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265 if rand < .75 hul_num = [1,0,0];

266 else hul_num = [.5,.5,0]; end

267 case(4)

268 if rand < .75 hul_num = [.5,.5,0];

269 else hul_num = [1/3,1/3,1/3]; end

270 case(5)

271 if rand < .75 hul_num = [0,0,1];

272 else hul_num = [0,.5,.5]; end

273 end

274 case(1)

275 hul_num(hul_io) = 1;

276 case{2}

277 hul_num(hul_io) = .5;

278 case{3}

279 hul_num(hul_io) = 1/3;

280 end

281

282 %assign distribution to tracks

283 trk_num(~trk_io)= 0;

284 switch sum(trk_io)

285 case(0)

286 switch i

287 case{1,3}

288 if rand < .75 trk_num = [1,0,0];

289 else trk_num = [.5,.5,0]; end

290 case{2,4}

291 if rand < .75 trk_num = [0,0,1];

292 else trk_num = [0,.5,.5]; end

293 case(5)

294 if rand < .75 trk_num = [1/3,1/3,1/3];

295 else trk_num = [0,.5,.5]; end

296 end

297 case(1)

298 trk_num(trk_io) = 1;

299 case{2}

300 trk_num(trk_io) = .5;

301 case{3}

302 trk_num(trk_io) = 1/3;

303 end

304

305 % assign output 1 (d_eta,i)

306 Rsp_num_pd = [tur_num, hul_num, trk_num];

307

308 % assign output 2 (weight vector)
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309 Weight_pd = zeros(1,27);

310 for k = 1:3

311 for h = 1:3

312 for t = 1:3

313 wt_pd = tur_num(t)*hul_num(h)*trk_num(k);

314 TempPos = t + 3*(h-1) + 9*(k-1);

315 Weight_pd(TempPos) = wt_pd;

316 end

317 end

318 end

319

320 end

321

322 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

323 function [Rsp_num_a] = ConvertActions(Rsp_io_a,i);

324 % ConverActions: function to convert binary rsponses to numerical ones

325 %

326 % LOCAL VARIABLES ---------------------------------------------------------

327 % mov_io, eng_io, act_io - binary response pieces for movement, engagement,

328 % activity

329 % mov_num, eng_num, act_num - numerical responses for movement, engagement,

330 % activity

331 % -------------------------------------------------------------------------

332

333 % break logical vectors into movement, engagement, activity

334 mov_io = [Rsp_io_a(1),Rsp_io_a(2)];

335 eng_io = [Rsp_io_a(3),Rsp_io_a(4)];

336 act_io = [Rsp_io_a(5),Rsp_io_a(6),Rsp_io_a(7),Rsp_io_a(8)];

337 mov_num = [];eng_num = []; act_num = [];

338

339 % assign distribution to movementn

340 mov_num(~mov_io) = 0;

341 switch sum(mov_io)

342 case(0)

343 switch i

344 case{1,3}

345 mov_num = [.5,.5];

346 otherwise

347 mov_num = [0,1];

348 end

349 case(1)

350 mov_num(mov_io) = 1;

351 case(2)

352 mov_num(mov_io) = .5;
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353 end

354

355 % assign distribution to engagement

356 eng_num(~eng_io) = 0;

357 switch sum(eng_io)

358 case(0)

359 switch i

360 case{1,2}

361 eng_num = [.5,.5];

362 otherwise

363 eng_num = [0,1];

364 end

365 case(1)

366 eng_num(eng_io) = 1;

367 case(2)

368 eng_num(eng_io) = .5;

369 end

370

371 % assign distribution to activity

372 act_num(~act_io)= 0;

373 switch sum(act_io)

374 case(0)

375 switch i

376 case(1)

377 if rand < .75 act_num = [.25,.25,.25,.25];

378 else act_num = [1/3,1/3,0,1/3]; end

379 case{2,4}

380 if rand < .75 act_num = [0,0,.5,.5];

381 else act_num = [0,0,1,0]; end

382 case(3)

383 if rand < .75 act_num = [1/3,0,1/3,1/3];

384 else act_num = [.5,0,.5,0]; end

385 case(5)

386 act_num = [0,0,0,1];

387 end

388 case(1)

389 act_num(act_io) = 1;

390 case{2}

391 act_num(act_io) = .5;

392 case{3}

393 act_num(act_io) = 1/3;

394 case{4}

395 act_num(act_io) = .25;

396 end
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397

398 % assign output (d_eta,i)

399 Rsp_num_a = [mov_num, eng_num, act_num];

400

401 end

402

403

404 %**************************************************************************

405 function [] = PlotDataConvergence(ResponseMatrix,NumResponse);

406 % PlotDataConvergence: function to plot how an event probability converges

407 % to its ‘‘true’’ probability

408 %

409 % LOCAL VARIABLES ---------------------------------------------------------

410 % P_Tnd - Probability of turret with no damage from

411 % ResponseMatrix

412 % pTrue_Tnd - True probability of turret with no damage

413 % -------------------------------------------------------------------------

414

415 % get responses for turret no damage

416 P_Tnd = squeeze(ResponseMatrix(:,9,1));

417

418 % create data points every 10 responses

419 for N = 10:10:NumResponse

420 d_Tnd(N/10) = mean(P_Tnd(1:N));

421 end

422

423 % set x axis support

424 x = 10:10:NumResponse;

425

426 pTrue_Tnd = ones(length(x),1)*0.66975;

427

428 % draw figure and set properties

429 figure(1)

430 plot(x,d_Tnd)

431 hold on

432 plot(x,pTrue_Tnd,’-k’)

433 hold off

434 ax1 = gca;

435 set(get(ax1,’XLabel’),’String’,’Number of Survey Responses, N’,...

436 ’FontName’,’times new roman’);

437 set(get(ax1,’YLabel’),’String’,’d_{ND}( {\itT_{NoDamage}} ) ’,...

438 ’FontName’,’times new roman’);

439 set(ax1,’FontName’,’times new roman’,...

440 ’YLim’,[0 1],...
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441 ’XLim’,[10 NumResponse])

442 grid on

443

444 end

445

446

447 %**************************************************************************

448 function [an] = DTMC(aPn)

449 % DTMC: function to multiply aPn and the transition probability matrix

450

451 % transition probability matrix, P

452 P=[.2, .2, .2, .2, .2;...

453 0, 1/3, 0, 1/3, 1/3;...

454 0, 0, 1/3, 1/3, 1/3;...

455 0, 0, 0, .5, .5;...

456 0, 0, 0, 0, 1];

457

458 an = aPn*P;

459

460 end

461

462

463 %**************************************************************************

464 function [Situation] = GetSituations()

465 % GetSituations: function to retrieve the correct actions and physical

466 % damage for plots

467 %

468 % LOCAL VARIABLES ---------------------------------------------------------

469 % ObsAct - matrix of all possible action combinations

470 % ObsPhysDam - matrix of all possible physical damage combos

471 % -------------------------------------------------------------------------

472

473 ObsAct = [1,3,5; ...1

474 2,3,5;...2

475 1,4,5;...3

476 2,4,5;...4

477 1,3,6;...5

478 2,3,6;...6

479 1,4,6;...7

480 2,4,6;...8

481 1,3,7;...9

482 2,3,7;...10

483 1,4,7;...11

484 2,4,7;...12
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485 1,3,8;...13

486 2,3,8;...14

487 1,4,8;...15

488 2,4,8;];%16

489 ObsPhysDam = [9,12,15;...1

490 10,12,15;...2

491 11,12,15;...3

492 9,13,15;...4

493 10,13,15;...5

494 11,13,15;...6

495 9,14,15;...7

496 10,14,15;...8

497 11,14,15;...9

498 9,12,16;...10

499 10,12,16;...11

500 11,12,16;...12

501 9,13,16;...13

502 10,13,16;...14

503 11,13,16;...15

504 9,14,16;...16

505 10,14,16;...17

506 11,14,16;...18

507 9,12,17;...19

508 10,12,17;...20

509 11,12,17;...21

510 9,13,17;...22

511 10,13,17;...23

512 11,13,17;...24

513 9,14,17;...25

514 10,14,17;...26

515 11,14,17;];%27

516

517 % set matrix of current situations

518 Situation = [ ObsAct(16,:) ,ObsPhysDam(1,:) ;...

519 ObsAct(1,:) ,ObsPhysDam(4,:) ;...

520 ObsAct(8,:) ,ObsPhysDam(13,:) ;...

521 ObsAct(11,:) ,ObsPhysDam(12,:) ;...

522 ObsAct(8,:) ,ObsPhysDam(26,:) ];

523

524 end

525

526

527 %**************************************************************************

528 function [PlotData] = DataCalculations(NumResponse,B_n,ResponseMatrix,aPnTrue)
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529 % DataCalcuations : function to calculate statistics for the survey

530 % responses

531 %

532 % Calls: DTMC, aPrimeCalc, GetStats

533 %

534 % LOCAL VARIABLES ---------------------------------------------------------

535 % N - The numbefr of responses that stats are based on

536 % Nrm2 - 2-norm of the difference between a’true and a’

537 % -------------------------------------------------------------------------

538

539 % initialize variables

540 aPn = [1 0 0 0 0];

541 a_n = DTMC(aPn);

542 PlotData = [];

543

544 % create data points for every 10 responses

545 for N = 10:10:NumResponse

546

547 % calcuate the updated a’ vector for each situation

548 [aPn] = aPrimeCalc(ResponseMatrix,a_n,N,B_n);

549

550 % calculate stats of the a’ vector

551 [Mean,Var,SD,CV] = GetStats(aPn);

552 Nrm2 = norm(aPn-aPnTrue);

553

554 % concatenate data

555 PlotData = [PlotData;[N,aPn,Mean,Var,SD,CV,Nrm2]] ;

556 end

557

558 end

559

560 % \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

561 function[aP] = aPrimeCalc(ResponseMatrix,an,N,B_n)

562 % aPrimeCalc: function to calculate the updated a’ vector based on the

563 % situation

564 %

565 % LOCAL VARIABLES ---------------------------------------------------------

566 % Psim_N - Simulated probabilities from N responses

567 % P_Bn - Probability of the situation B_n

568 % Prod_pd - product of the physical damage probabilities

569 % Sum_pd - sum of the physical damage products

570 % i - counter

571 % P_aNaN - probabilities of actions that are NaN

572 % Pcond_a - probabilities of actions conditioned on physical
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573 % damage

574 % aP - a’ vector

575 % -------------------------------------------------------------------------

576

577 % get the appropriate probabilities for the calculations

578 Psim_N = squeeze(sum(ResponseMatrix(1:N,:,:),1)/N);

579 P_Bn = [Psim_N(B_n(1),:);Psim_N(B_n(2),:);Psim_N(B_n(3),:);...

580 Psim_N(B_n(4),:);Psim_N(B_n(5),:);Psim_N(B_n(6),:)];

581 Prod_pd = squeeze(ResponseMatrix(1:N,B_n(4),:)...

582 .*ResponseMatrix(1:N,B_n(5),:)...

583 .*ResponseMatrix(1:N,B_n(6),:));

584 Sum_pd = sum(Prod_pd);

585

586 % cacluate the conditional probabilities of actions and make sure all are

587 % numbers

588 for i = 1:3

589 Pcond_a(i,:) = (sum(squeeze(ResponseMatrix(1:N,B_n(i),:))...

590 .*Prod_pd))./Sum_pd;

591 end

592 P_aNaN = isnan(Pcond_a);

593 Pcond_a(P_aNaN) = eps;

594

595 % calculate a’ (define temp and tempsum are same as in main)

596 temp = prod(Pcond_a,1).*an.*prod(P_Bn(4:6,:),1);

597 tempSum = sum(temp);

598 aP = temp/tempSum;

599

600 end

601

602

603 %**************************************************************************

604 function [Mean,Var,SD,CV] = GetStats(aP)

605 % GetStats: function to calculate analytical stats from the a’ vector

606 %

607 % LOCAL VARIABLES ---------------------------------------------------------

608 % SupportX_n - The support for BDA so mean, var, etc may be

609 % calculated

610 % -------------------------------------------------------------------------

611

612 % calculations

613 SupportX_n = [1 2 3 4 5];

614 Mean = aP*SupportX_n’;

615 Ebda2 = aP*SupportX_n’.^2;

616 Var = Ebda2 - Mean^2;
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617 SD = Var^.5;

618 CV = SD/Mean;

619

620 end

621

622

623 %**************************************************************************

624 function N_Plots(PlotData,sit,NumResponse)

625 % N_Plots: function to plot statistics of the a’ vector and compare them

626 % against the true values

627 %

628 % LOCAL VARIABLES ---------------------------------------------------------

629 % MnV - true mean plot data

630 % VarV - true variance plot data

631 % tit - title of the plots

632 % MnMin, MnMax - Plot limits of the mean

633 % VarMin, VarMax - plot limits of the variance

634 % ax1, ax2, ax3 - axes handles

635 % -------------------------------------------------------------------------

636

637

638 MnV = ones(length(PlotData)-1,1)*PlotData(length(PlotData),7);

639 VarV = ones(length(PlotData)-1,1)*PlotData(length(PlotData),8);

640

641

642 if sit == 1

643 tit = ’Situation \ita’;

644 MnMin = 0.5; MnMax = 2;

645 VarMin = 0; VarMax = 1;

646 elseif sit == 2

647 tit = ’Situation \itb’;

648 MnMin = 0.5; MnMax = 1.5;

649 VarMin = 0; VarMax = 0.5;

650 elseif sit == 3

651 tit = ’Situation \itc’;

652 MnMin = 1.5; MnMax = 2.5;

653 VarMin = 0; VarMax = 1;

654 elseif sit == 4

655 tit = ’Situation \itd’;

656 MnMin = 2.5; MnMax = 3.5;

657 VarMin = 0; VarMax = 0.5;

658 else

659 tit = ’Situation \ite’;

660 MnMin = 3.5; MnMax = 5;
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661 VarMin = 0.2; VarMax = 1.8;

662 end

663

664 PlotData(length(PlotData),:)=[];

665

666 figure(2*sit)

667

668 subplot(1,2,1)

669 plot(PlotData(:,1),PlotData(:,7))

670 hold on

671 plot(PlotData(:,1),MnV,’-k’)

672 hold off

673 ax2 = gca;

674 set(get(ax2,’XLabel’),’String’,’Number of Survey Responses, N’,...

675 ’FontName’,’times new roman’);

676 set(get(ax2,’YLabel’),’String’,’\mu Hat’,...

677 ’FontName’,’times new roman’);

678 set(ax2,’FontName’,’times new roman’,...

679 ’YTick’,0:.1:5,...

680 ’YLim’,[MnMin MnMax],...

681 ’XLim’,[10 NumResponse])

682 grid on

683

684

685 subplot(1,2,2)

686 plot(PlotData(:,1),PlotData(:,8))

687 hold on

688 plot(PlotData(:,1),VarV,’-k’)

689 hold off

690 ax3 = gca;

691 set(get(ax3,’XLabel’),’String’,’Number of Survey Responses, N’,...

692 ’FontName’,’times new roman’);

693 set(get(ax3,’YLabel’),’String’,’Variance, \sigma^2 Hat’,...

694 ’FontName’,’times new roman’);

695 set(ax3,’FontName’,’times new roman’,...

696 ’YTick’,0:.1:2,...

697 ’YLim’,[VarMin VarMax],...

698 ’XLim’,[10 NumResponse])%

699 %

700 grid on

701 propertyeditor(’on’)

702

703 figure(1+2*sit)

704
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705 plot(PlotData(:,1),PlotData(:,11))

706 ax1 = gca;

707 set(get(ax1,’XLabel’),’String’,’Number of Survey Responses, N’,...

708 ’FontName’,’times new roman’);

709 set(get(ax1,’YLabel’),’String’,’||a‘ - a‘ Hat||’,...

710 ’FontName’,’times new roman’);

711 set(ax1,’FontName’,’times new roman’,...

712 ’YLim’,[0 .2],...

713 ’XLim’,[10 NumResponse])

714

715 grid on

716

717 end

718

719 %**************************************************************************

720 function [] = EngageSequence(ResponseMatrix,Ptrue_All,CondPtrue_Actions)

721 % EngageSequence: function to run through 3 shot engagement sequence

722 %

723 % Calls: DTMC, aPrimeCalc, GetStats

724 %

725 % LOCAL VARIABLES ---------------------------------------------------------

726 % Etas - N values of interest

727 % Seq_a, Seq_pd - sequence of actions and physical damage

728 % Engagement Data - matrix of a’ and stats for output

729 % -------------------------------------------------------------------------

730

731 % ensure the porper number of arguments

732 if nargin < 3

733 for i = 1:5

734 ResponseMatrix(:,:,i) = xlsread(’Ch4SimData.xls’,i);

735 end

736 Ptrue_All = xlsread(’SurveyProbs.xls’,’p_0’,’b11:r15’);

737

738 CondPtrue_Actions(:,:,1) = xlsread(’SurveyProbs.xls’,’p_0’,’k18:r44’);

739 CondPtrue_Actions(:,:,2) = xlsread(’SurveyProbs.xls’,’p_0’,’k46:r72’);

740 CondPtrue_Actions(:,:,3) = xlsread(’SurveyProbs.xls’,’p_0’,’k74:r100’);

741 CondPtrue_Actions(:,:,4) = xlsread(’SurveyProbs.xls’,’p_0’,’k102:r128’);

742 CondPtrue_Actions(:,:,5) = xlsread(’SurveyProbs.xls’,’p_0’,’k130:r156’);

743 end

744

745 % initialize variables

746 aPn = [1 0 0 0 0];

747 aPnTrue = [1 0 0 0 0];

748 Seq_a = [2,4,8; 2,3,7;2,4,8];
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749 Seq_pd = [10,14,17;9,13,16;10,14,17];

750 Etas = [25,50,100,250,500,1000];

751

752 % iterate through situations

753 for sit = 1:3

754

755 EngagementData = [];

756

757 % calculate a vector true values

758 if sit > 1

759 aPnTrue = aPnMatrix(length(aPnMatrix),:);

760 end

761 a_nTrue = DTMC(aPnTrue);

762

763 % define the situation

764 B_n = [Seq_a(sit,:), Seq_pd(sit,:)] ;

765 Bn_pd = 1+(B_n(4)-9)+3*(B_n(5)-12)+9*(B_n(6)-15);

766

767 % get the true probabilities

768 P_BnaTrue = squeeze([CondPtrue_Actions(Bn_pd,B_n(1),:),...

769 CondPtrue_Actions(Bn_pd,B_n(2),:),...

770 CondPtrue_Actions(Bn_pd,B_n(3),:)]);

771 P_BnTrue = [P_BnaTrue; ...

772 Ptrue_All(:,B_n(4))’; ...

773 Ptrue_All(:,B_n(5))’;...

774 Ptrue_All(:,B_n(6))’];

775

776 % calculate a’ true

777 temp = prod(P_BnTrue,1).*a_nTrue;

778 tempSum = sum(temp);

779 aPnTrue = temp/tempSum;

780

781 % iterate through N of interest

782 for i = 1:length(Etas)

783 if sit > 1

784 aPn = aPnMatrix(i,:);

785 end

786 a_n = DTMC(aPn);

787

788 % calculate a’ and stats for n of interest

789 N = Etas(i);

790 [aPn] = aPrimeCalc(ResponseMatrix,a_n,N,B_n);

791 [Mean,Var,SD,CV] = GetStats(aPn);

792 Nrm2 = norm(aPn-aPnTrue);
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793

794 % concatenate data

795 EngagementData = [EngagementData; [N,aPn,Mean,Var,SD,CV,Nrm2]] ;

796 end

797

798 % calculate stats for a’ true

799 [Mean,Var,SD,CV] = GetStats(aPnTrue);

800

801 % gather all data and write to excel spreadsheet

802 EngagementData = [EngagementData;[1,aPnTrue,Mean,Var,SD,CV,0]] ;

803 xlswrite(’Ch4EngagementData.xls’,EngagementData,sit,’b2’);

804

805 aPnMatrix = EngagementData(:,2:6);

806 end

807

808 end

809 %EOF
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Appendix C. Simulation Data for Sample Size Plots

Table C.1: Sample Points of â′(n) and Metrics for Situation a

Updated Distribution â′(n)

N ND M F MF K µ̂ σ̂2 ||a′(n) − â′(n)||
10 1.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.25743
50 0.88289 0.03237 0.08474 0.00000 0.00000 1.20184 0.33058 0.10968
100 0.83915 0.05715 0.10370 0.00000 0.00000 1.26455 0.40197 0.06094
150 0.80473 0.05210 0.14317 0.00000 0.00000 1.33845 0.51025 0.01602
200 0.79899 0.06039 0.14061 0.00000 0.00000 1.34162 0.50614 0.01280
250 0.80286 0.05300 0.13897 0.00516 0.00000 1.34644 0.53534 0.01219
300 0.81353 0.04812 0.13310 0.00525 0.00000 1.33006 0.51881 0.02439
350 0.80166 0.05821 0.13135 0.00717 0.00161 1.34886 0.55220 0.01435
400 0.81159 0.05568 0.12343 0.00791 0.00140 1.33186 0.53282 0.02651
450 0.82666 0.05009 0.11356 0.00772 0.00197 1.30824 0.51028 0.04458
500 0.81776 0.05093 0.12194 0.00727 0.00210 1.32501 0.53204 0.03241
550 0.81790 0.04834 0.12549 0.00626 0.00201 1.32613 0.53242 0.03106
600 0.81661 0.04646 0.12804 0.00677 0.00213 1.33135 0.54378 0.02917
650 0.81392 0.04893 0.12748 0.00705 0.00262 1.33553 0.55167 0.02653
700 0.80695 0.05426 0.12848 0.00769 0.00262 1.34477 0.56043 0.01963
750 0.80686 0.05160 0.13138 0.00744 0.00271 1.34754 0.56674 0.01811
800 0.81159 0.05127 0.12700 0.00724 0.00291 1.33860 0.55624 0.02445
850 0.80723 0.05193 0.13080 0.00736 0.00268 1.34632 0.56429 0.01868
900 0.80638 0.04897 0.13508 0.00704 0.00254 1.35039 0.57046 0.01674
950 0.79842 0.05251 0.14099 0.00555 0.00252 1.36124 0.57629 0.00746
1000 0.79244 0.05535 0.14393 0.00580 0.00248 1.37054 0.58565 0.00402
True 0.79203 0.05482 0.14118 0.00848 0.00349 1.37656 0.60983
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Figure C.1: Situation a Moments
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Figure C.2: Situation a Norm

106



Table C.2: Sample Points of â′(n) and Metrics for Situation b

Updated Distribution â′(n)

N ND M F MF K µ̂ σ̂2 ||a′(n) − â′(n)||
10 1.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.04125
50 0.99891 0.00109 0.00000 0.00000 0.00000 1.00109 0.00109 0.04032
100 0.98266 0.00826 0.00907 0.00000 0.00000 1.02641 0.04386 0.02260
150 0.96622 0.00534 0.02844 0.00000 0.00000 1.06221 0.11521 0.00324
200 0.97280 0.00535 0.02185 0.00000 0.00000 1.04904 0.09033 0.00622
250 0.97300 0.00472 0.02228 0.00000 0.00000 1.04928 0.09141 0.00600
300 0.97332 0.00457 0.02212 0.00000 0.00000 1.04880 0.09065 0.00635
350 0.97463 0.00464 0.02074 0.00000 0.00000 1.04611 0.08546 0.00824
400 0.97525 0.00542 0.01933 0.00000 0.00000 1.04408 0.08079 0.00972
450 0.96947 0.00483 0.02569 0.00000 0.00000 1.05622 0.10444 0.00111
500 0.97022 0.00465 0.02513 0.00000 0.00000 1.05491 0.10216 0.00202
550 0.96875 0.00488 0.02637 0.00000 0.00000 1.05762 0.10704 0.00024
600 0.97149 0.00463 0.02386 0.00003 0.00000 1.05242 0.09755 0.00382
650 0.97364 0.00472 0.02161 0.00003 0.00000 1.04803 0.08911 0.00693
700 0.97276 0.00429 0.02292 0.00003 0.00000 1.05021 0.09370 0.00541
750 0.97456 0.00466 0.02076 0.00003 0.00000 1.04626 0.08580 0.00818
800 0.97565 0.00422 0.02011 0.00003 0.00000 1.04451 0.08290 0.00943
850 0.97273 0.00458 0.02265 0.00003 0.00000 1.04998 0.09296 0.00555
900 0.97339 0.00459 0.02199 0.00003 0.00000 1.04866 0.09044 0.00648
950 0.97484 0.00437 0.02076 0.00003 0.00000 1.04597 0.08555 0.00839
1000 0.97533 0.00408 0.02056 0.00003 0.00000 1.04529 0.08454 0.00890
True 0.96875 0.00469 0.02652 0.00003 0.00000 1.05785 0.10781
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Figure C.3: Situation b Moments
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Table C.3: Sample Points of â′(n) and Metrics for Situation c

Updated Distribution â′(n)

N ND M F MF K µ̂ σ̂2 ||a′(n) − â′(n)||
10 0.34637 0.65363 0.00000 0.00000 0.00000 1.65363 0.22640 0.12213
50 0.21363 0.78203 0.00434 0.00000 0.00000 1.79070 0.17416 0.08089
100 0.22342 0.76945 0.00713 0.00000 0.00000 1.78372 0.18377 0.06616
150 0.27891 0.69748 0.00763 0.01598 0.00000 1.76069 0.29320 0.04126
200 0.27286 0.69868 0.00847 0.01230 0.00769 1.78327 0.35273 0.03534
250 0.27243 0.68326 0.01223 0.01923 0.01285 1.81683 0.44371 0.04179
300 0.27918 0.68459 0.01009 0.01762 0.00853 1.79174 0.39315 0.04617
350 0.28189 0.67436 0.01134 0.01970 0.01271 1.80697 0.44914 0.05465
400 0.27356 0.68706 0.00994 0.01805 0.01139 1.80664 0.42080 0.04054
450 0.26431 0.69615 0.01155 0.01407 0.01392 1.81714 0.42400 0.02897
500 0.24744 0.71487 0.01065 0.01415 0.01290 1.83019 0.40192 0.01334
550 0.25725 0.70378 0.00906 0.01852 0.01139 1.82303 0.41160 0.01963
600 0.25559 0.70598 0.00892 0.01922 0.01029 1.82263 0.40253 0.01742
650 0.25389 0.70829 0.00887 0.02003 0.00893 1.82182 0.39146 0.01536
700 0.25565 0.70557 0.00882 0.02152 0.00844 1.82152 0.39464 0.01737
750 0.25887 0.70049 0.01117 0.02100 0.00847 1.81971 0.39778 0.02092
800 0.25199 0.70939 0.01229 0.01850 0.00784 1.82081 0.37668 0.01174
850 0.25668 0.70234 0.01576 0.01659 0.00863 1.81815 0.38341 0.01746
900 0.25198 0.70461 0.01741 0.01570 0.01030 1.82772 0.39520 0.01298
950 0.25315 0.70065 0.01843 0.01806 0.00970 1.83051 0.40243 0.01538
1000 0.25319 0.69944 0.01738 0.02082 0.00918 1.83336 0.40867 0.01601
True 0.24252 0.71112 0.01860 0.02068 0.00708 1.83869 0.38156
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Figure C.5: Situation c Moments
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Table C.4: Sample Points of â′(n) and Metrics for Situation d

Updated Distribution â′(n)

N ND M F MF K µ̂ σ̂2 ||a′(n) − â′(n)||
10 0.00000 0.00000 0.93185 0.06815 0.00000 3.06815 0.06350 0.07507
50 0.00000 0.01401 0.91413 0.07186 0.00000 3.05785 0.08253 0.05937
100 0.00758 0.00639 0.88333 0.10269 0.00000 3.08113 0.13284 0.01631
150 0.00479 0.00599 0.87692 0.11230 0.00000 3.09672 0.12811 0.00976
200 0.00315 0.00501 0.89344 0.09840 0.00000 3.08709 0.10843 0.02680
250 0.00526 0.00371 0.90327 0.08361 0.00414 3.07765 0.11890 0.04223
300 0.00447 0.00372 0.90384 0.08513 0.00284 3.07814 0.11198 0.04188
350 0.00901 0.00637 0.89129 0.08920 0.00414 3.07310 0.14281 0.02967
400 0.00878 0.00823 0.88588 0.09225 0.00486 3.07619 0.14925 0.02387
450 0.00701 0.00688 0.87253 0.10985 0.00374 3.09644 0.15042 0.00396
500 0.00674 0.00622 0.87242 0.11084 0.00378 3.09870 0.14938 0.00372
550 0.00710 0.00593 0.88227 0.10054 0.00415 3.08871 0.14360 0.01536
600 0.00665 0.00709 0.87284 0.10868 0.00473 3.09775 0.15175 0.00380
650 0.00575 0.00670 0.86063 0.12071 0.00621 3.11492 0.16206 0.01463
700 0.00552 0.00615 0.85742 0.12466 0.00624 3.11995 0.16349 0.01967
750 0.00617 0.00604 0.85546 0.12611 0.00622 3.12017 0.16729 0.02203
800 0.00580 0.00570 0.85742 0.12528 0.00581 3.11959 0.16310 0.02012
850 0.00561 0.00546 0.85137 0.13111 0.00645 3.12732 0.16860 0.02848
900 0.00522 0.00539 0.84874 0.13450 0.00615 3.13098 0.16822 0.03277
950 0.00509 0.00496 0.84582 0.13680 0.00733 3.13632 0.17287 0.03644
1000 0.00605 0.00468 0.84803 0.13427 0.00697 3.13142 0.17375 0.03305
True 0.00675 0.00546 0.87067 0.11021 0.00691 3.10506 0.15926
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Figure C.7: Situation d Moments
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Table C.5: Sample Points of â′(n) and Metrics for Situation e

Updated Distribution â′(n)

N ND M F MF K µ̂ σ̂2 ||a′(n) − â′(n)||
10 0.00000 0.16416 0.00000 0.00000 0.83584 4.50751 1.23492 0.43192
50 0.00000 0.07093 0.00000 0.30101 0.62806 4.48620 0.67540 0.09430
100 0.00000 0.16643 0.00000 0.27351 0.56006 4.22720 1.17415 0.06679
150 0.00000 0.19009 0.00000 0.25672 0.55319 4.17300 1.28363 0.09481
200 0.00000 0.18495 0.00000 0.24670 0.56836 4.19846 1.26876 0.10005
250 0.00000 0.19229 0.00000 0.27936 0.52835 4.14376 1.27685 0.08585
300 0.00000 0.17693 0.01290 0.27574 0.53443 4.16766 1.22695 0.07518
350 0.00000 0.17401 0.01138 0.27405 0.54057 4.18118 1.21514 0.07275
400 0.00000 0.16971 0.01087 0.27694 0.54248 4.19220 1.19524 0.06739
450 0.00000 0.16524 0.01020 0.27626 0.54830 4.20761 1.17637 0.06412
500 0.00000 0.16126 0.00703 0.26923 0.56248 4.23293 1.16031 0.06739
550 0.00000 0.15074 0.00745 0.27497 0.56685 4.25793 1.11071 0.05798
600 0.00000 0.15590 0.00673 0.29146 0.54591 4.22738 1.12455 0.04675
650 0.00000 0.14393 0.00754 0.30937 0.53916 4.24377 1.06300 0.02924
700 0.00000 0.14338 0.00768 0.31642 0.53252 4.23808 1.05706 0.03012
750 0.00000 0.14233 0.00757 0.32659 0.52351 4.23128 1.04691 0.03560
800 0.00000 0.15099 0.00747 0.33144 0.51009 4.20063 1.08129 0.05192
850 0.00000 0.15081 0.00737 0.32116 0.52066 4.21168 1.08646 0.04287
900 0.00000 0.14057 0.00418 0.33116 0.52409 4.23876 1.03356 0.03455
950 0.00000 0.13527 0.00410 0.34215 0.51847 4.24383 1.00420 0.04093
1000 0.00000 0.12981 0.00291 0.33089 0.53639 4.27386 0.98354 0.01922
True 0.00107 0.12224 0.00173 0.32290 0.55206 4.30264 0.96079
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Figure C.9: Situation e Moments
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