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AFIT/GE/ENG/06-08 

Abstract 

 

 The purpose of this research was to develop a fundamental framework for a new approach to 

multiframe translational shift estimation in image processing.  This thesis sought to create a new 

multiframe shift estimator, to theoretically prove and experimentally test key properties of it, and to 

quantify its performance according to several metrics.  The new estimator was modeled successfully and 

was proven to be an unbiased estimator under certain common image noise conditions.  Furthermore its 

performance was shown to be superior to the cross correlation shift estimator, a robust estimator widely 

used in similar image processing cases, according to several criteria.   

This research effort led to the derivation of a lower bound of estimation performance for the 

multiframe case.  This valuable data analysis tool extends current boundary derivations to include prior 

information about the random shifting, thereby providing a more precise performance boundary.   
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MULTIFRAME SHIFT ESTIMATION 
 
 
 

I. Introduction 

 

All imaging systems mounted on moving platforms suffer from stabilization 

issues.  Due to mounting imperfections a given imaging system is in a constant state of 

movement.  Such movement is generally unpredictable so it can be modeled as a random 

vector.  This means that the imaging system is pointing at a slightly different scene for 

each image acquisition period.  These global translational shift differences among data 

frames can be represented by horizontal and vertical dimension value pairs.   

The process of image registration involves estimating these random shifts and 

then removing them.  Registration is an important step for post processing and analysis 

techniques such as sequential frame playback (video), frame averaging, and 

microscanning.  Video playback can be a useful visual aid for identifying scene 

information in low light or high noise situations.  Without registration the playback can 

appear jittery or shaky, depending on the degree of random shifts present.  Registration 

can reduce this effect and stabilize the objects within the video.  Frame averaging is a 

helpful tool for reducing noise corruption.  Photon noise is typically modeled with a 

Poisson distribution with an average value of the scene without noise.  Averaging a set of 

noisy frames together generally results in a scene estimate with less noise corruption than 
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any single frame.  Without registration the misaligned frames average to a blurry result.  

Adding the registration step can properly line up the frames before averaging, yielding a 

result with more detail.  Microscanning is a scene estimation technique for acquiring 

higher spatial frequency content than what the imaging system is able to produce in a 

single frame.  It is particularly useful in situations of aliasing, where the scene contains 

frequency content that is too high for the imaging system to capture.  Sub-pixel 

registration, combined with interpolation and appropriate frame combination, allows 

some of the higher frequency content to be extracted from the aliased data frames.  Each 

of these post processing and analysis techniques work only as well as the registration 

algorithm allows.  Accurate registration yields better playback, averaging, and 

microscanning results than inaccurate registration does, and registration performance is 

directly dependent on the shift estimation that drives it.   

 

Existing shift estimation algorithms are based on a 2 frame approach.  One frame 

is used as a reference and the other frame is registered to it.  The result is a horizontal and 

vertical shift difference pair.  This 2 value vector is generally assigned to the second 

frame and the reference frame is artificially forced to be the origin.  Shift estimates for 

multiple frames are accomplished by repeating this process for different secondary 

frames, while always using the same reference frame (generally the first frame in the set).  

Since noise varies from frame to frame, this method yields estimates that are biased by 

the noise of the reference frame.  Robinson and Milanfar discuss the Approximate 

Minimum Average Square Difference, Approximate Maximum Direct Correlator, Linear 

Gradient-Based Method, and Multiscale (Pyramid) Gradient-Based Method estimators, 
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all of which estimate translational shifts between two frames (8:1189-1190).  Kuglin and 

Hines, as well as Gottesfeld Brown examine a phase correlation estimation technique 

which uses Fourier methods to determine the translational offset between two frames 

(4:163-165; 2:345-348).  Frischholz and Spinnler discuss a template matching approach 

to estimating the shift difference between two data frames (1:50-59).  Even a cursory 

survey of image registration literature strongly suggests that translational shift estimation 

theory is saturated by 2 frame based estimation approaches.  While this is a reasonable 

starting point for multiframe estimation scenarios, it can lead to performance that is 

highly image dependent (i.e. if the reference frame is unusually corrupted then the 

estimates might be biased by the image).  A more robust approach would seek to 

minimize such image dependence.   

 

In this paper a new multiframe shift estimation method is presented.  The 

algorithm is capable of sub-pixel estimation and is robust in the presence of noise.  

Mathematical modeling and justification for these claims are explained, and visual results 

are shown for further support.  Furthermore, the total mean-square error lower 

performance bound for the multiframe case is derived and compared to the performance 

of this estimator.  This tool offers justification for establishing points of diminishing 

returns for the number of frames used in this shift estimator. 
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II. Sensor Models 

 

Imaging System Model 

 

All imaging systems consist of several fundamental pieces.  If they are properly 

mathematically modeled and assembled, the entire system can be simulated.  The first 

piece is the true scene, or object, which represents what an ideal imaging system would 

see (no corruption due to noise, filtering, etc).  Light travels from the object to the sensor 

through the atmosphere.  Specific path conditions can vary, so an atmospheric transfer 

function is often computed.  This transfer function acts as a filter on the light, attenuating 

content at different visual frequencies.  The resulting light reaches the optical lens of the 

sensor.  The geometric shape of the lens governs the optical transfer function (OTF), 

which low pass filters the visual frequency content.  These two transfer functions are 

often combined (by the properties of convolution) to become a single transfer function 

(6:45).   

After passing through the sensor optics the filtered light falls upon the charge-

coupled device (CCD) array.  It is comprised of many small detectors which each 

generate an electrical charge proportional to the amount of light on it.  This charge is 

amplified and read out to a more permanent storage location where it can be accessed for 

post processing and analysis.   
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Since this is a digital signal processing problem, it is important to address the 

issue of proper sampling rates.  The light that falls upon the CCD array has been filtered 

such that there is a cut off spatial frequency fc above which no content exists.  According 

to the Nyquist sampling criteria, for all existing frequencies to be kept, a sampling 

interval of at least 1/(2 fc) must be used.  Visual frequency content is measured in inverse 

distance terms, so the Nyquist criteria actually dictates the necessary physical dimensions 

of the CCD array for proper sampling.  More specifically, the Nyquist criteria determines 

the necessary center to center spacings of the individual collection cells on the CCD 

array.  For the remainder of this thesis it will be assumed that the Nyquist sampling 

criteria is met, and therefore no aliasing is present. 

 

( ) ( ) ( ) ( ), , , ,d x y o x y h x y n x y⎡ ⎤= ∗ +⎣ ⎦    (1) 

 
The data generated by an imaging system can be decomposed into several 

components.  Equation 1 shows a very basic relationship between the true scene o(x,y) 

and the collected data d(x,y).  In this model d(x,y) is based on a photon counting process 

for a single frequency, and is therefore a matrix of positive integers.  The total system 

noise is represented by n(x,y), and the combined impulse responses of the path and 

optical system that the light traveled through is given by h(x,y).  The convolution of 

o(x,y) and h(x,y) represents the spatial frequency attenuation that occurs as a result of the 

atmospheric transfer function and the OTF, and is often denoted i(x,y) with the 

understanding that o(x,y) is the true scene without any loss of spatial frequency 

information, or blurring, and i(x,y) is the blurred version of o(x,y).  It is assumed that the 
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Nyquist sampling criteria is met with regards to the collector spacing on the CCD array 

and the maximum spatial frequency in i(x,y).  In other words, the CCD array is able to 

fully capture all spatial frequencies present in i(x,y), thereby preventing any image 

aliasing.  Equation 2 condenses equation 1 with this abbreviation and adds numerical 

subscript indices to indicate the data frame index and corresponding noise.   

 

( ) ( ) ( )1 1, , ,d x y i x y n x y= +     (2) 

 

A translational shift offset of (α,β) between two frames is accounted for by including shift 

values in the appropriate dimensions, as shown in equation 3.  It is important to note that 

the noise is different for each frame, as indicated by the subscript notation.   

( ) ( ) ( )2 2, , ,d x y i x y n x yα β= − − +    (3) 

 

Minimum Mean-Square Error Estimator 

 

Having created a basic model for the data, it is necessary to estimate the shift 

differences between two data frames.  The process for finding a minimum mean-square 

error (MSE) estimator involves creating the mean-square error cost function and then 

minimizing it with respect to the offset between the two frames.  It is important to note 

that minimum MSE is referring to the minimization of error between the estimation and 

the truth, not to be confused with any other possible definitions of minimum MSE in 
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estimation theory.  Equation 4 shows the mean-square error cost function associated with 

a CCD array of dimensions MxN, where (δx,δy) is the offset.   

 

( ) ( ) ( )( )2

1 2
1 1

, , ,
M N

x y x y
x y

C d x y d x yδ δ δ δ
= =

= − + +∑∑   (4) 

 

Expanding this cost function permits further simplification, as shown in equation 5.   

 

( ) ( ) ( ) ( ) ( )
1 2

2 2
1 2

1 1
, , 2 , , ,

M N

x y x y x y
x y

C d x y d x y d x y d x yδ δ δ δ δ δ
= =

⎡ ⎤= − + + + + +⎣ ⎦∑∑  (5) 

 

The first term can be eliminated from the minimization process since it is not dependent 

on (δx,δy), the parameters used to accomplish the maximization of C.  The third term is 

technically dependent on (δx,δy), however it will not change significantly if we assume 

circular convolution, small shifts, or that new information entering the frame from the 

edges has similar intensity to existing information.  The middle term remains as the only 

expression significantly dependent on (δx,δy).  By removing the negative sign and the 

unnecessary scalar, it can be simplified such that the MMSE estimator is the expression 

that maximizes equation 6.   

 

( ) ( ) ( )2 1 2
1 1

, , ,
M N

x y x y
x y

C d x y d x yδ δ δ δ
= =

= + +∑∑   (6) 
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By substituting equations 2 and 3, equation 6 can be rewritten as equation 7.   

 

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2
1 1

2

1

1 2

, [...

, ,

, ,

, ,

, , ]

M N

x y
x y

x y

x y

x y

x y

C

i x y i x y

i x y n x y

i x y n x y

n x y n x y

δ δ

δ α δ β

δ δ

δ α δ β

δ δ

= =

=

+ − + −

+ + +

+ + − + −

+ + +

∑∑

   (7) 

 

Assuming that the noise is spatially uncorrelated and has a zero mean, such as 

Gaussian noise, the expectation operator further simplifies the cost function.  Equations 

8, 9, and 10 are a result of this assumption. 

 

( ) ( ) ( ) ( )2 2, , , , 0x y x yE i x y n x y i x y E n x yδ δ δ δ⎡ ⎤ ⎡ ⎤+ + = + + =⎣ ⎦ ⎣ ⎦  (8) 

 

( ) ( ) ( ) ( )1 1, , , , 0x y x yE i x y n x y i x y E n x yδ α δ β δ α δ β⎡ ⎤ ⎡ ⎤+ − + − = + − + − =⎣ ⎦⎣ ⎦  (9) 

 

( ) ( ) ( ) ( )1 2 1 2, , , , 0x y x yE n x y n x y E n x y E n x yδ δ δ δ⎡ ⎤ ⎡ ⎤⎡ ⎤+ + = + + =⎣ ⎦⎣ ⎦ ⎣ ⎦  (10) 

 

Substituting equations 8, 9, and 10 into equation 7 yields equation 11. 

 

( ) ( ) ( )2
1 1

, , ,
M N

x y x y
x y

E C E i x y i x yδ δ δ α δ β
= =

⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦∑∑   (11) 
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This is merely the autocorrelation of the image with lags (δx-α,δy-β), and is maximized 

when δx=α and δy=β.  Therefore, under the assumption that the noise is uncorrelated and 

zero mean, the MMSE shift estimate is the set of parameters that maximizes the 2 

dimensional cross correlation of the two data frames.  Furthermore the expected value of 

the cross correlation of d1(x,y) and d2(δx+x,δy+y) equals the autocorrelation of the 

underlying true scene with lags (δx-α,δy-β), which means that the expected value of the 

estimator is the true shifts.   

 

Probability Based Image Modeling 

 

Digital images can be modeled as a random process, where each pixel is a random 

variable.  For a particular scene all pixels are governed by the same general probability 

distribution form, but each pixel distribution has unique parameters.  These parameters 

are a function of the underlying noiseless true scene.  More specifically, for each pixel, 

the mean of the distribution is the value of the corresponding true scene pixel.  Modeling 

an image as a joint distribution function provides a way to compute the total probability 

of collecting a particular data frame from a true scene.  Assuming that the pixels of an 

image are independent random variables, the probability of receiving a particular data 

frame is the product of all the individual probabilities of the pixels within that data frame.   

Two common distributions often used in this modeling approach are the Poisson 

distribution and the Gaussian distribution.  Photon arrival is a Poisson random process.  
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Therefore in situations where most of the noise is a result of the light collection process, 

equation 12, which defines the total probability of receiving data frame D from true scene 

i with Poisson noise and random translational shifts of (α,β), is a reasonable distribution 

choice. 

 

( ) ( ) ( ) ( )

( )

, ,,
| ,

, !

D x y i x y

x y

i x y e
P d D

D x y

α β

α β
α β

− − −

= =
− −∏∏   (12) 

 

At light levels where the Poisson distribution becomes nearly symmetric (i.e. more than 

100 photons per pixel) the shape of the Poisson distribution becomes similar to that of the 

Gaussian distribution.  Therefore the Gaussian distribution is often used to approximate 

Poisson noise.  If light levels are somewhat constant throughout the image then a single 

variance parameter can be used to approximate the individual pixel standard deviations.  

Equation 13 shows the total probability of receiving data frame D from true scene i, 

where σn is the standard deviation of the noise and (α,β) are the random translational 

shifts.   

 

( )
( ) ( )( )22

1 , ,
21| ,

2
n

D x y i x y

x y n

P d D e
α β

σα β
πσ

− − − −

= =∏∏   (13) 

Since the likelihood of the Gaussian distribution is maximized at the mean, minimizing 

the MSE maximizes the likelihood of the Gaussian model.  Therefore the estimator in 

equation 11 is the maximum likelihood estimator in the presence of Gaussian noise.  

Since the expected value of the data is the true scene, one of the data frames can be used 
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as a true scene estimate in the Gaussian model, and the other data frame can be used as 

the data with a shift relative to the scene estimate.  Therefore, since the cross correlator 

estimates the true shifts (on average) for zero mean noise such as this, it minimizes the 

cost function in equation 4 and is therefore an unbiased shift estimator in the presence of 

Gaussian noise. 
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III. Multiframe Shift Estimator Algorithm 

 

Existing multiframe shift estimation algorithms are effectively only a series of 2 

frame shift estimators.  For a set of K data frames, a single reference data frame is 

selected and the remaining K-1 data frames are registered to it.  The performance of this 

method is highly dependent on the reference data frame chosen, and therefore can yield 

poor results if the reference data frame is unusually corrupted by noise.  Furthermore, 

since each data frame is uniquely corrupted, any reference data frame chosen will skew 

performance by the noise present in that frame.  This approach to multiframe shift 

estimation fails to use all available information.  A better approach is one that exploits the 

fact that shift estimates will vary depending on which frame is used as a reference data 

frame.   

 

Initial Approach To Solution 

 

In order to compute meaningful shift estimates, all estimators must choose an 

origin to provide a common reference for the shift values.  2 frame based multiframe 

estimators force the reference data frame to be located at the origin and yield estimates 

(for the remaining data frames) that are relative to the reference data frame.  Multiple sets 

of shift estimates, where each set contains shift estimates for the entire data set using a 

different reference data frame, can be compared by aligning the sets to the same reference 

point.  This can be accomplished by normalizing each set to be zero mean in both shifting 
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dimensions.  Figure 1 shows several examples of this for 10 frames of data, using the first 

and second frames as the references with the cross correlation shift estimator.   
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Figure 1.  Examples of 2 frame based multiframe shift estimation using the cross 
correlation shift estimator where K equals 10.  The black diamond indicates the mean of 

the scatter. 
 

If this technique is repeated for the same data set, using a different reference data frame 

each time, two K by K matrices are populated (one for the horizontal shift estimates and 

the other for the vertical shift estimates) where K is the total number of data frames.  

Continuing from the example in figure 1, figure 2 demonstrates the resulting 10 sets of 

shift estimates (with respective means removed) plotted together.  Here the small 

differences in shift estimates (due to using different reference data frames) are visible.  
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Since each data frame is uniquely corrupted by noise, rendering a slightly different set of 

relative shift estimates when used as the reference data frame, the shift estimates form 

clusters surrounding the true shift values.   
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Figure 2.  Example of K 2 frame based multiframe shift estimations where a different 
reference data frame is used for each estimation, and where K equals 10.  Bold x 

characters indicate the mean of each cluster of shift estimates. 
 

As the number of data frames used in this technique increases, the clusters become more 

densely populated.  The new shift estimates are the means of the clusters, and have a 

mean of zero in both shifting dimensions.   
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This new multiframe shift estimator is practically implemented by using an 

unbiased 2 frame shift estimator to estimate shift differences between all combinations of 

2 data frames.  As described before, this can also be thought of as using a 2 frame based 

multiframe shift estimator K2 times for a data set of K frames, using a different reference 

data frame each time.  Each set of shift estimates (estimates for the entire data set using a 

particular reference data frame) is normalized to have a mean at the origin.  Graphically 

this yields K clusters of K estimates each.  The mean of each cluster is stored as the final 

estimate.   

 

Mathematical Model 

 

The mathematical model for this new multiframe shift estimator begins with an 

unbiased 2 frame shift estimator capable of estimating vertical and horizontal 

translational shifts between the 2 frames.  This estimator is referred to as the initial 

estimator, and is modeled as M(i,j)=(vertical estimate,horizontal estimate) or 

M1(i,j)=(vertical estimate) and M2(i,j)=(horizontal estimate).  Inputs (i,j) are the indices 

of the two data frames being registered, where i is the (index number of the) reference 

data frame and j is the (index number of the) data frame being registered to it.  The 

vertical and horizontal estimate outputs are each real numbers with a unit of one pixel 

(i.e. vertical shift = 1.2 indicates a vertical shift difference of 1.2 pixels) and a maximum 

absolute value of one half the total number of pixels per dimension (i.e. for data with 

dimensions 256 by 256 a vertical or horizontal shift estimate of 350 is not possible, since 
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a shift of that size would indicate that there is no overlapping content between the two 

data frames being registered).  Output sign convention is slightly different than the 

standard 2 dimensional sign convention, and is described in Figure 3. 

 

Data Frame 1
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Figure 3.  Sign convention of the new multiframe shift estimator model. 

 

The initial estimator performs shift estimates for all combinations of 2 data frames in the 

set of K data frames.  This is efficiently represented in equation 14 where shift estimates 

for each dimension populate a K by K matrix.  Each row represents the result of a 2 

frame based multiframe shift estimation. 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

1,1 1, 2 1,
2,1 2,2 2,

,1 , 2 ,

1,1 1, 2 1,
2,1 2, 2 2,

,1 , 2 ,

M M M K
M M M K

M K M K M K K

M M M K
M M M K

M K M K M K K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (14) 

 

The mean of each row is subtracted from all members of its row, as shown in equation 

15. 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

dim dim dim dim
1 1

dim dim dim dim
1 1

1 11,1 1, 1, 1,

1 1,1 , , ,

K K

i i

K K

i i

M M i M K M i
K K

M K M K i M K K M K i
K K

= =

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
− −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎛ ⎞ ⎛ ⎞⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑

    (15) 

 

The mean of each cluster is acquired by computing the mean of each column of equation 

15.  This results in 2 vectors of length K, representing the final shift estimates for all K 

data frames, where the mean of the shift estimates for both dimensions is zero, and where 

each vector contains the shift estimates for a particular dimension.  Equation 16 shows 

this step and condenses the operation into a more compact equation.  

( )dim, 1,...,k KM dataframe dataframe  represents the new multiframe shift estimator, where 

dim is the dimension of operation, k refers to the data frame whose shift is being 

estimated, and dataframe1,…,dataframeK are the estimator inputs.   
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( )

( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

dim, 1

dim dim
1 1

dim dim2
1 1

dim dim
1

dim dim
12

dim dim
1

,...,

1 1, ,

1 , ,

1, 1,

2, 2,1

, ,

k K

K K

i j

K K

i j

K

j

K

j

K

j

M dataframe dataframe

M i k M i j
K K

K M i k M i j
K

K M k M j

K M k M j
K

K M K k M K j

= =

= =

=

=

=

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
⎡ ⎤

⋅ −⎢
⎢
⎢
+ ⋅ −⎢

= ⎢
⎢+
⎢
⎢+ ⋅ −⎢
⎣ ⎦

∑ ∑

∑ ∑

∑

∑

∑

( ) ( )dim dim2
1 1 1

1 , ,
K K K

i i j
K M i k M i j

K = = =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡ ⎤⎛ ⎞⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑∑

  (16) 

 

Further simplifications can be made an important property is true of the initial 

estimator.  This property (equation 17) states that, for shift difference estimation between 

2 data frames, switching the reference data frame results only in a sign change of the 

estimate.  If this property is true then the matrices (populated by the initial estimator) in 

equation 14 gain the property such that each is equal to the negative of its own transpose.  

If equation 17 is true then equation 18 is also true.  It states that the shift estimate of a 

data frame with itself yields zero in both dimensions.  This means that the diagonals of 

the matrices in equation 14 equal zero.   

 

( ) ( ), ,M i j M j i= −     (17) 



19 

 

( ), 0M i i =      (18) 

 

Finally, if equation 17 is true then a corollary property becomes true.  Equation 19 states 

that the sum of all values in each matrix is zero. 

 

( )dim
1 1

, 0
K K

i j
M i j

= =

=∑∑     (19) 

 

Substituting this equality into equation 16 simplifies the expression for the final shift 

estimates to be as described in equation 20.   

 

( )

( ) ( )

( )

( )

dim, 1

dim dim2
1 1 1

dim2
1

dim
1

,...,

1 , ,

1 , 0

1 ,

k K

K K K

i i j

K

i

K

i

M dataframe dataframe

K M i k M i j
K

K M i k
K

M i k
K

= = =

=

=

⎡ ⎤⎛ ⎞⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

=

∑ ∑∑

∑

∑

  (20) 

 

This means the initial shift estimates do not need to be normalized prior to averaging the 

columns. 
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 This new multiframe shift estimator is independent of any underlying random 

shifting model.  If prior information is known about the type of random shifting 

occurring, it can be factored into the choice of initial estimator for this new multiframe 

shift estimator.   

 

Speed Of Implementation 

 

Implementation of the new multiframe shift estimator involves selecting an 

unbiased 2 frame initial shift estimator, computing the shift differences between all 

combinations of 2 data frames, and averaging all results with respect to dimensionality 

and frame index.  If equation 17 holds then significant speed improvements can be made.  

It has been shown that the cross correlation operation is an unbiased 2 frame shift 

estimator and it satisfies equation 17.  Based on its merits, the cross correlation shift 

estimator is an excellent candidate for the initial estimator.   

Since equation 17 is true of the cross correlator, implementation becomes much 

faster.  Rather than performing K2 estimations with the initial estimator, only the upper 

triangular portion of the two initial shift estimate matrices must be filled.  The symmetry 

in the matrices reduces the number of estimations from K2 to (K2-K)/2 because the 

diagonal of each matrix equals zero, and because only the upper (or lower) triangle of the 

matrices needs to be populated since the opposing triangle equals its negative transpose.  

After populating the initial shift estimate matrices, final estimates are computed by 

averaging the columns. 
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Unbiased Property 

 

For this thesis bias is defined as the mean-square error (MSE) of the estimator 

without noise.  This value is computed by centering the mean of the shift estimates on the 

mean of the true shift values, calculating the distance squared between each true shift 

value and it’s corresponding shift estimate (for each dimension), summing these squared 

distances, and dividing the sums (one for each dimension) by the number of data frames 

used.  Equation 21 models this metric as dim,KMSE  where K is the number of data frames 

used, and where itrueshiftdim,  is comprised of 2 vectors of length K containing the true 

shift values for each dimension and data frame.   

 

2

dim, dim,
1 1

dim, dim,
1

dim,

K K

j jK
j j

i i
i

K

trueshift M
trueshift M

K K

MSE
K

= =

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟− − −
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠=

∑ ∑
∑

 (21) 

 

Equation 20 shows that the multiframe estimate is an average of unbiased 

estimates of the shifts.  If the initial estimator is unbiased then the new multiframe shift 

estimator is also unbiased.  The cross correlation estimator is unbiased.  Therefore, if the 

cross correlation estimator is used as the initial estimator, the new multiframe estimator is 

unbiased.  Furthermore, as K gets larger, the MSE of the estimates compared to the true 
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shifts approaches zero.  This property can be demonstrated experimentally by simulating 

data, estimating the random shifts, comparing the truth to the estimates to acquire MSE 

information for each experiment, and averaging the MSE information over all the 

experiments to determine if any bias is present in the estimator.   

 

The first step in simulating data is to select a true scene.  This matrix of positive 

real integers is the uncorrupted Nyquist sampled digital representation of a scene.  It is 

then filtered by the average atmospheric transfer function and optical transfer function 

using fast Fourier techniques.  The result is randomly shifted according to the 2 

dimensional Gaussian distribution with a mean at the origin and with variances of 2 

pixels for both dimensions.  Fast Fourier techniques are used to perform circular shifts 

and the result is cropped to smaller dimensions to eliminate unrealistic border effects.  

For this set of experiments a simulated point source is used because it has high contrast 

(higher contrast tends to yield better shift estimates).  The true scene has dimensions of 

64 pixels by 64 pixels and the final simulated data frame has dimensions of 32 pixels by 

32 pixels.  Figure 4 shows the true scene cropped to 32 pixels by 32 pixels but without 

any corruption.  Using this method of simulation, 500 unique sets of data were generated 

for each K between 3 and 20, totaling 103,500 uniquely shifted data frames.  The new 

multiframe shift estimator, using the cross correlation initial estimator, generated shift 

estimates for each of the 500 data sets per K.  The estimated shifts were compared to the 

true shift values to compute the MSE metric, and the 500 MSE metrics per K were 

averaged.  Figure 5 shows the average MSE (per dimension) as a function of the number 

of data frames used.   
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True Scene: Simulated Point Source
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Figure 4.  Simulated point source used to generate data and experimentally measure any 
bias in new multiframe shift estimator.   

 

It also shows the best fitting curve of the form * *( ) * *b K d KMSE K a e c e− −= +  for each data 

set to demonstrate convergence toward zero.  This functional form is used because it 

closely follows the trend of the data and is a simple form to mathematically manipulate.  

As the independent variable increases the MSE converges to zero.  Therefore, with no 

noise present, the estimator is unbiased as K grows large. 
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4 6 8 10 12 14 16 18 20 0 

0.005 

0.01 

0.015 

Modeling for Bias vs Data Frames
Dimension 1

K (# of data frames used)

Bias (MSE of estimator in dimension 1) 

Measured Bias

 
f(x) = 0.029e -0.313*x + 0.009e -0.043*x 
   (MSE of curve fit = 9.472e-008) 

4 6 8 10 12 14 16 18 20 0 

0.005 

0.01 

0.015 

Modeling for Bias vs Data Frames
Dimension 2

K (# of data frames used)

Bias (MSE of estimator in dimension 2) 

Measured Bias

 
f(x) = 0.025e -0.303*x + 0.010e -0.049*x 
   (MSE of curve fit = 4.028e-008) 

 

Figure 5.  Simulated point source used to generate data and experimentally measure any 
bias in new multiframe shift estimator.   
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IV. Comparison With Existing Algorithms 

 

Lower Bound Of Performance 

 

A well documented and broadly respected performance limit in the field of 

estimation theory is the total mean-square error of the estimator.  This is the lowest 

possible total mean-square error that any unbiased estimator can achieve for a given 

distribution model.  It can be used to show that the lower bound on shift error improves 

with adding frames, and it can infer the relative performance improvement obtainable.  

Van Trees derives it by modifying the nonrandom parameter boundary derivation such 

that prior information is accounted for.  Equation 22 shows the total information matrix 

JT where JD is the information matrix based on the data and derived in the nonrandom 

parameter case, and JP is the prior information.  JD is also known as Fisher’s information 

matrix (FIM) which is used to compute the Cramer Rao lower bound (CRLB) of 

variance.   

 

T D P= +J J J      (22) 

 

Van Trees defines the elements of JP as  

 

( )2 ln
ijP

i j

p
J E

A A
⎡ ⎤∂

= − ⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

a A
    (23) 
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and states that the “diagonal elements in the inverse of the total information matrix are 

lower bounds on the corresponding mean-square errors” (9:84) as shown in equation 24, 

where ii
TJ  is the ith diagonal element of the inverse of JT.   

 

2
i

ii
TE a Jε⎡ ⎤ ≥⎣ ⎦      (24) 

 

In the multiframe shift estimation problem the lower performance bound can be 

determined as a function of the number of data frames used, the parameters of the random 

shifting model, and the gradient information of the true scene.  Since there are two 

dimensions of random translational movement it is necessary to use the multiple 

parameter model of JD.  The elements of JD are defined in equation 25 (9:79).   

 

( )( )2
|ln |

ijD
i j

p
J E

A A

⎡ ⎤∂
= − ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

r a R A
   (25) 

 

It is assumed that any necessary conditions for equation 24 to be true are met (9:79-80).   

 

The random translational shifts of a set of data can be modeled as the joint 

likelihood function P(α,β|D) where α and β represent the horizontal and vertical random 

translational shifts, respectively, and D is the true scene.  This expression can be 

rewritten by applying Bayes theorem, as shown in equation 26. 
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( ) ( ) ( )
( )

| , ,
, |

P D P
P D

P D
α β α β

α β =    (26) 

 

The natural log operator further simplifies this function, as shown in equation 27. 

 

( ) ( )
( ) ( )( ) ( )( ) ( )( )

| , ,
ln ln | , ln , ln

P D P
P D P P D

P D
α β α β

α β α β
⎛ ⎞
⎜ ⎟ = + −
⎜ ⎟
⎝ ⎠

 (27) 

 

In the first term the translational shifts are not treated as random variables but rather 

parameters of the true scene, which is modeled as a random matrix.  More specifically, 

the first term models the true scene as the average value of random noise.  The FIM is 

computed from this term, which means that the lower bound of the variance is image 

dependent.  The Poisson distribution becomes nearly symmetric when its parameter 

becomes large, and begins to take on a shape similar to the Gaussian distribution.  If there 

is sufficient light in a particular pixel (i.e. more than 100 photons) then the Gaussian 

distribution can be used to approximate the noise.  Therefore the likelihood function of 

the first term is modeled as follows: 

 

( )
( ) ( )( )2

,
2

1

, ,
1| , exp

22

k k kK
m n

k nn

D m n f m n
P D

α β
α β

σπσ=

⎛ ⎞− − −
⎜ ⎟

= ⎜ ⎟
−⎜ ⎟

⎝ ⎠

∑
∏  (28) 
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σn is the standard deviation of the noise, Dk is data frame k, and f(m-αk,n-βk) is the true 

scene shifted by the true shift values of data frame k.  The log likelihood expression is  

 

( )( )
( ) ( ) ( )( )2

2
1 ,

ln | ,

1ln 2 , ,
2

K

n k k k
k m nn

P D

K D m n f m n

α β

πσ α β
σ =

⎡ ⎤
= − − − − −⎢ ⎥

⎣ ⎦
∑ ∑

 (29) 

 

where the first term is just a constant.  The partial derivative operator is also known as the 

gradient, and must be broken into 3 steps in order to fully account for all combinations of 

the shift parameters.  In all three cases, the constant term disappears and the gradient of 

the second term is all that remains, resulting in the following three equations: 

 

( )( )

( )

2

2

2
1 ,

ln | ,

1

i j

K

k
k m nn i j i j

P D

f f fD f

α β
α α

σ α α α α=

∂
∂ ∂

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎢ ⎥= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑

  (30) 

 

( )( )

( )

2

2

2
1 ,

ln | ,

1

i j

K

k
k m nn i j i j

P D

f f fD f

α β
β β

σ β β β β=

∂
∂ ∂

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎢ ⎥= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑

  (31) 
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( )( )

( )

2

2

2
1 ,

ln | ,

1

i j

K

k
k m nn i j i j

P D

f f fD f

α β
α β

σ α β α β=

∂
∂ ∂

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎢ ⎥= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑

  (32) 

 

For conciseness of notation the substitutions ( )kk nmff βα −−= ,~  and 

( )nmDD kk ,=  are made.  Since the shift values are treated as parameters, and since they 

are different for each data frame, the gradient operations are expressed in a more general 

form.  The expression greatly simplifies when the expectation operator is applied to the 

log likelihood function.  This is because the only random element of the function is Dk, 

which has a mean of the true scene.  Therefore the expected value of ( )fDk
~

−  is zero, 

leaving only the gradient information of the true scene.   

 

( )( )

( )

( )

2

2

2
1 ,

2

2
,

ln | ,

1

1

i j

K

k
k m nn i j i j

k
mn i j i j

E P D

f f fE D f

f f fE D f E

α β
α α

σ α α α α

σ α α α α

=

⎡ ⎤∂
− ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎢ ⎥⎢ ⎥= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦⎣ ⎦

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟= − − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ ∑

1

2
,

K

k n

m nn i j

K f f
σ α α

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂

= ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑

∑

 (33) 

 

( )( )
2

2
,

ln | ,
m ni j n i j

K f fE P D α β
β β σ β β

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞∂ ∂ ∂
− = ⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

∑   (34) 
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This information is more clearly and completely represented in matrix form in 

equation 35 where the substitutions 
i

ff
i

αα
~~

=
∂
∂  and 

i
ff

i
ββ

~~
=

∂
∂  are made for more notation 

brevity.  In this form all possible combinations of two gradients are accounted for (i.e. 

gradient of true scene with respect to αi shift times gradient of true scene with respect to 

βj shift).   

 

( )
( )( )

1 1 1 2 1 1 1 1

2 1 2 2

1

1 1 1 1

1
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2

, , , , ,
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K K
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m n m n
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f f f f f f f f f f

f f f f

K f f f f

f f f f

f f f f
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α α α α

α α α α

β α β β

β α β β

α β
α β

σ

⎡ ⎤∂⎢ ⎥= −
⎢ ⎥∂⎣ ⎦

=

∑ ∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

J

,
K

m n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

 (35) 

 

The FIM for Gaussian noise is originally derived by Robinson and Milanfar (8:1186-

1187). 

The second term in equation 27 accounts for any prior knowledge of the 

translational shifts.  Unlike JD, here the translational shifts are treated as random vectors 

which can be statistically modeled.  For this derivation a Gaussian distribution is used to 
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describe the translational shifts.  Equation 36 expresses the random translational shifts in 

a general 2 dimensional Gaussian form.  

 

( )
2 2

2 2
1

1, exp exp
2 2 2

K
k k

k

P
α β α β

α βα β
πσ σ σ σ=

⎛ ⎞⎛ ⎞− −
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∏   (36) 

 

This model assumes that the shifts occur with a mean of zero.  Furthermore, this model 

allows for different variances to govern each dimension of shifting.  The natural log 

operator simplifies the expression to become the sum of 2K+1 terms where all but one 

contain a random variable, as shown in equation 37.   

 

( )( ) ( )
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2 2

2 2
1

2 2

2 2
1 1

ln , ln 2
2 2

1 1ln 2
2 2
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P K

K

α β
α β

α β
α β

α βα β πσ σ
σ σ

α βπσ σ
σ σ

=

= =

⎡ ⎤− −
= − + +⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤

= − − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑ ∑
  (37) 

 

The partial derivative operators distribute to each term, immediately eliminating the 

constant term.  Once again the results are dependent on the reference of the derivatives.  

Equations 38-42 show the results of all possible combinations of derivative operators.   

 

( )( )
2

2 2

1ln ,
i

P
α

α β
α σ
∂ −

=
∂

    (38) 
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( )( )
2

2 2

1ln ,
i

P
β

α β
β σ
∂ −

=
∂

    (39) 

 

( )( ) ( )
2

ln , 0
i j

P i jα β
α α
∂

= ≠
∂ ∂

  (40) 

 

( )( ) ( )
2

ln , 0
i j

P i jα β
β β
∂

= ≠
∂ ∂

   (41) 

 

( )( )
2

ln , 0
i j

P α β
α β
∂

=
∂ ∂

    (42) 

 

Many results are conveniently canceled out, leaving only 2K non-zero results.  These 

terms pass through the expectation operator and finally result in the following two very 

simple expressions:   

 

( )( )
2

2 2

1ln ,
i

E P
α

α β
α σ

⎡ ⎤∂
− =⎢ ⎥∂⎣ ⎦

    (43) 

 

( )( )
2

2 2

1ln ,
i

E P
β

α β
β σ

⎡ ⎤∂
− =⎢ ⎥∂⎣ ⎦

    (44) 

 

Using the same matrix notation form as before, JP is 
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⎢ ⎥
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⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

J  (45) 

 

The third term in equation 27 is the easiest to solve of the three.  Since the data 

does not contain shift parameters, the partial derivative operators with respect to the shift 

parameters cancel out this term completely.   

 

Given that image noise is Gaussian with a mean of the true scene, and given that 

the random translational shifts occur according to a Gaussian model with a mean of zero, 

the final expression for the total mean-square error of the multiframe shift estimation 

scenario is  
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It can be shown that 
i xf fα =  and 

i yf fβ =  for all i.  In other words, since all α values are 

in the same dimension, taking the gradient of an image with respect to any α value is the 

same as taking a gradient with respect to the dimension of α.  The same is also true of β.  

This property simplifies the final result to be as shown in equation 47, where the diagonal 

elements of the inverse of matrix JT are the estimation performance bounds for all 

random shifts.  This performance boundary is estimator independent and therefore 

represents the best possible performance that any estimator can achieve. 
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If the variance of the shifts is large then the prior information effectively cancels 

out, leaving JT equal to the FIM, which yields the Cramer Rao lower bound (CRLB) of 

variance.  However since the FIM is based only on the data, it is a lower bound than the 

actual performance bound (which could only be computed if all random elements of the 

imaging process were included).  In the case of the new multiframe shift estimator the 

CRLB is useful since the estimator does not assume a particular (non-uniform) shifting 

model.  This means that the estimator assumes the shifting variance is infinite (or rather 

that the shifting distribution is uniform).   

Estimator Variance 

 

Equation 47 provides a reference for estimator variance comparison.  

Experimentally acquiring the variance of the estimator involves selecting a true scene 

with gradient information that is greater than zero, and selecting an imaging system 

model that samples the scene well enough to prevent aliasing.  In order to observe 

differences in the estimator results it is necessary to vary the noise of each frame in a set 

of data, without changing the random shifts of each frame.  Figure 6 shows the results of 

this approach where a set of K data frames are uniquely corrupted by Gaussian noise 

(with a standard deviation of 3.5 photons) 500 times and the random translational shifts 

are estimated each time by the new multiframe shift estimator.  The same true scene 

(figure 4) and imaging system simulator as the estimator bias experiment is used for this 

experiment.  The average variance of the 500 shift estimates per data frame is retained, 

and those K values are averaged to become the empirically discovered estimator variance 
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for K data frames.  K is varied from 3 to 20 data frames with the expectation that the 

variance of the estimator will decrease as the number of data frames used in the 

estimation increases.  Finally, since only one set of random shifts is used in this 

experiment, and since the initial estimator performance can be influenced by individual 

sets of data, this entire experiment is run 50 times, changing the random translational 

shifts each time.   
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Figure 6.  Experimentally determined variance of the new multiframe shift estimator, 
compared to the total mean-square error lower bound of infinite shifting variance, for 3 to 

20 data frames, for estimation of the horizontal shift on frame 1 of the data set.  This 
bound is effectively the CRLB of estimation variance. 
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In figure 6 both the estimator performance and the bound are modeled by a double 

exponential functional form, which retains the general trend of the data, and allows for 

simple analysis since both are of the same form.  The gap between the performance and 

the bound (in figure 6) is a combined result of the type of image used, the failure of the 

cross correlation initial estimator to account for any prior shifting information, and the 

fact that the bound does not include scene estimation in its model. 

 

Analysis Of Results 

 

This performance bound offers a useful tool for finding points of diminishing 

returns of performance from adding frames.  For a given type of data this performance 

bound is computed and fit with a curve model.  The percent of improvement due to 

adding additional frames, relative to performance at a particular starting K value, can be 

quickly computed and offers the analyst practical insight into the potential improvement 

that can be gained by using more data frames in the estimation.  This same technique can 

be applied to the estimator performance.  Figure 7 shows several examples of this tool, 

using the estimator performance and performance bound shown in figure 6.  Figure 8 

shows the cumulative version of figure 7, where the improvement approaches 100% as K 

grows large.   
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Figure 7.  Percent improvement of the estimator performance and performance bound due 
to using more data frames in the estimation.  This is based on the estimator performance 
and performance bound in figure 6.  For instance, adding 10 data frames when starting 

with 3 will improve the potential performance bound much more significantly than 
adding 10 frames when starting with 50.   
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Figure 8.  Cumulative percent improvement of the estimator performance and 
performance bound due to using more data frames in the estimation.  This is based on the 
estimator performance and performance bound in figure 6, and is the cumulative result of 

the curves in figure 7. 
 

Point sources have higher gradients than any other realistic images of the same 

dimensions and amount of light.  According to equation 47 this means that point source 

images yield the lowest possible performance bounds.  Since figure 4 is a point source, 

then the performance bound in figure 6 is the lowest possible bound for 32 pixel by 32 

pixel images with the same total amount of light, making this bound image independent.   

 

In realistic situations the true scene is not known.  Therefore it is necessary to use 

an estimate of the true scene to compute the performance bound for a particular set of 
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data.  Common practice is to use either the frame average of a registered set of data or an 

individual data frame depending on the severity of noise corruption.   

 

Estimator Comparison Based On Likelihood Of Scene Estimate 

 

It has been shown that a data frame can be modeled as a joint random function, 

where the total likelihood of receiving a particular data frame is the product of all the 

individual probabilities of the pixels for the amount of light received, respectively.  

Equation 12 models a particular data frame according to the Poisson distribution.  

Equation 48 shows how the natural log operator simplifies this expression without 

altering its monotonicity.   
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ln | ,

, ln , , ln , !
x y
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α β

α β α β⎡ ⎤= − − − − − −⎣ ⎦∑∑  (48) 

 

The joint probability modeling approach provides a common frame of reference 

to compare scene estimates obtained from a single data set.  It is therefore reasonable to 

argue superiority of one scene estimate over another on the grounds of higher likelihood 

of occurrence.  For example, for two different scene estimations generated from the same 

data set, the scene estimation with a higher likelihood is the more probable estimate.   
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Since frame registration is a crucial part in scene estimation, and since 

translational shift estimation is the fundamental element of registration, this modeling 

approach provides a way to compare shift estimation performance of different shift 

estimators using real data.  Frame averaging is a simple and effective scene estimation 

method.  It involves translational shift estimation and removal (registration) followed by 

averaging across the registered data set.  Different translational shift estimators will 

ultimately yield different scene estimates.  Therefore, multiple shift estimators can be 

compared by using the frame averaging technique.  If one shift estimator ultimately 

yields a scene estimate with a higher likelihood than another, then that shift estimator 

performed better.   

 

Figure 9 shows the average results of 500 such comparisons for 3 to 30 frames.  

For each comparison and each number of frames a unique set of data is created with 

Poisson noise and Gaussian random shifting (variance of 2 pixels in both dimensions).  

The data set is registered using the new multiframe shift estimator (with cross correlation 

initial estimator) and the cross correlation multiframe shift estimator.  The registered data 

sets are then averaged across the number of frames to estimate the true scene.  Finally, 

the scene estimates are shifted such that they are centered on the true scene in order to 

maximize the likelihood functions that will be generated and to ensure that neither scene 

estimate is unfairly biased.  The true scene is the image with the highest likelihood of 

occurrence, therefore providing an upper bound of likelihood.  In this experiment the 

simulated 32 pixel by 32 pixel point source image of figure 4 is used. 
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Figure 9.  Average experimental log likelihood of the frame averaged scene estimate as a 
function of the number of frames.   

 

It is plainly visible from this experiment that the log likelihood of the scene 

estimation resulting from the new multiframe shift estimator is substantially better than 

that of the cross correlation multiframe shift estimator.  Furthermore, it is apparent that as 

the number of frames increases, the log likelihood of the scene estimation resulting from 

the new multiframe shift estimator increases, eventually converging to some value less 

than or equal to the log likelihood of the true scene.   
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Estimator Comparison Based On Likelihood Of Data Set 

 

If the true scene is not known, such as in a realistic data collection situation, then 

a slightly different comparison method must be used.  Just as an individual image can be 

modeled as a joint likelihood function, a set of data frames can also be modeled as a joint 

likelihood function.  Assuming that all data frames within a given set are independent of 

one another, and using the model already established for a single image with Poisson 

noise, the total probability of receiving a particular data set is  
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This model is very similar to equation 12, except that it computes the product of all the 

probabilities of each data frame occurring.  The log likelihood version of this model is 

very similar to equation 48, except that it adds all the individual log likelihoods of each 

data frame, as shown in equation 50. 
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 (50) 

 

For a particular shift estimator, the average of the registered frames is used as the 

true scene.  The log likelihood of the registered data set occurring is computed as a final 
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performance metric, representative of how well the shift estimator performs.  Accurate 

shift estimates yield higher individual data frame likelihoods.  Therefore higher overall 

data set likelihoods indicate better shift estimation.  Figure 10 shows experimental results 

comparing the new multiframe shift estimator and the cross correlation multiframe shift 

estimator.  The same data sets from the previous experiment are used.  Since this is an 

experiment and the true scene is actually known, an upper performance bound can be 

calculated.  For a data set of K frames the highest possible metric that can be acquired K 

times the log likelihood of the known true scene.  This boundary is shown in figure 10. 
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Figure 10.  Average log likelihood of a particular data set, using the frame averaged 
scene estimate as the true scene, as a function of number of frames. 
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It is clear in figure 10 that the new multiframe shift estimator (using cross correlation 

initial estimator) performs significantly better than the cross correlation multiframe shift 

estimator. 

 

Figure 11 illustrates the log likelihood results of a real data set of black and white 

photographs of a coin, located 12 inches from a 20 watt halogen lamp light source.  This 

data is from a handheld digital camera, and the random shifting (resulting from ordinary 

hand instabilities) occurs about the center of the coin.  An example data frame is shown 

in figure 12.  For this experiment data sets ranging in size from 3 to 50 frames are 

collected.  For each collection the new multiframe shift estimator (with cross correlation 

initial estimator) and the cross correlation multiframe shift estimator are used to estimate 

all translational shifts.  The total data set log likelihood for each collection is calculated 

(using frame averaging of the respective registered data sets as the scene estimate).  

Figure 11 clearly shows that, for this data set, the new multiframe shift estimator 

performs better than the cross correlation multiframe shift estimator.  Furthermore, it 

shows that as the number of data frames is increased, the the new multiframe shift 

estimator performs increasingly better compared to the cross correlation multiframe shift 

estimator.   

 



46 

10 20 30 40 50

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

x 10
6

K (Number Of Data Frames)

Lo
g 

Li
ke

lih
oo

d 
O

f D
at

a 
S

et

Comparison Of Data Set
Log Likelihoods

New Multiframe Shift Estimator
Cross Correlation Estimator

10 20 30 40 50

1

2

3

4

5

6

7
x 10

4

K (Number Of Data Frames)

D
iff

er
en

ce
 O

f L
og

 L
ik

el
ih

oo
ds

Comparison Of Data Set
Log Likelihoods

 

Figure 11.  Comparison of data set log likelihoods for 3 to 50 frames of real data.  The 
right graph shows the log likelihood difference between the two estimators, such that a 

higher positive difference indicates a higher likelihood of the new multiframe shift 
estimator.   
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Figure 12.  Sample data frame from real data set.  The data set contains black and white 
photographs of a nickel on a dark gray background.  The 20 Watt halogen lamp light 

source was located 12 inches from the coin, and the camera was located approximately 
24 inches from the coin. 
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V. Conclusion 

Random translational shifting is a common problem in data collected from 

imaging systems mounted on a moving or vibrating platform.  This shifting degrades the 

quality of information in the data, and complicates the scene estimation process.  

However, much of this corruption can be removed if reliable and accurate translational 

shift estimates are obtained.   

 

It has been shown that there exist estimators able to determine the translational 

shift difference between 2 frames of the same data set.  More specifically, it has been 

shown that the maximum likelihood estimator in the presence of Gaussian noise is the 

cross correlation shift estimator.  While there exists a broad variety of 2 frame shift 

estimation techniques, multiframe shift estimation theory is relatively undeveloped.  Most 

current multiframe shift estimation methods are merely a series of 2 frame based shift 

estimations.  This approach can suffer from skewed performance due to its image 

dependence, thereby motivating the development of a multiframe shift estimation 

approach that overcomes any image dependence.   

 

The new multiframe shift estimator presented in this report uses existing 2 frame 

based estimators to determine shift differences among a set of data frames, and applies 

prior knowledge of the shifting to remove any performance skewing due to particular 

image dependencies.  This results in estimates that are more accurate than the 

corresponding 2 frame based estimates of the shifts.  This new approach to multiframe 

shift estimation effectively uses more of the information in the data than the 2 frame 
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approach.  As a result it performs better as more data frames are included in the 

estimation process.  Furthermore, this new estimator does not add any bias to the initial 

estimator that drives it.  Therefore, if the initial estimator is unbiased (meaning that the 

expected value of the mean-square error is zero) then the corresponding new multiframe 

estimator is also unbiased.   

 

It has been shown that images and data sets can be modeled as joint random 

functions where the true scene is the mean of the noise.  This modeling approach allows 

performance of different shift estimators to be compared on the basis of total likelihood.  

In all experiments performed, the new shift estimator yielded results with a higher 

likelihood than the cross correlation estimator.   

 

The lower bound of performance is comprised of several parts.  The first part is a 

result of the data, where the translational shifts are treated as non-random parameters.  

The boundary that results from this part is the Cramer Rao lower bound of variance, and 

has been derived for the 2 frame estimation case by Robinson and Milanfar.  The second 

part of the performance bound accounts for the translational shifts as random parameters, 

and utilizes any prior information about the shifting.  The final result is a lower bound on 

the total mean-square error of a particular true scene, independent of any estimator.  The 

multiframe derivation of this shows that the performance bound asymptotically 

approaches zero as the number of frames used in the estimation increases.  This boundary 

equips the analyst with a helpful tool for determining how many frames to include in the 

estimation process.   
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Potential further research in this area includes modeling with aliasing, 

optimization for real time implementation, characterization of shifting without a zero 

mean, and performance comparison using initial estimators other than the cross 

correlator.   

 

This thesis offers the field of image processing a new approach to multiframe 

shift estimation.  Theoretical proof and experimental results show that this new approach 

is valid and useful for data analysis.  The performance boundary derivations in this thesis 

provide a frame of reference for all multiframe translational shift estimation problems.  

Current research in estimation theory for the field of image processing has moved 

forward as a result of this thesis. 
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