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Abstract

This thesis develops and analyzes a procedure to determine the optimal inspect-

ion interval that maximizes the limiting average availability of a stochastically de-

grading component operating in a randomly evolving environment. The component

is inspected periodically, and if the total observed cumulative degradation exceeds

a fixed threshold value, the component is instantly replaced with a new, statisti-

cally identical component. Degradation is due to a combination of continuous wear

caused by the component’s random operating environment, as well as damage due

to randomly occurring shocks of random magnitude. In order to compute an opti-

mal inspection interval and corresponding limiting average availability, a nonlinear

program is formulated and solved using a direct search algorithm in conjunction

with numerical Laplace transform inversion. Techniques are developed to signifi-

cantly decrease the time required to compute the approximate optimal solutions.

The mathematical programming formulation and solution techniques are illustrated

through a series of increasingly complex example problems.
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OPTIMAL PERIODIC INSPECTION OF A STOCHASTICALLY

DEGRADING SYSTEM

1. Introduction

All systems experience gradual deterioration over time until they must ulti-

mately be repaired or replaced. In order to maintain these systems, engineers and

analysts must decide when and how to inspect and maintain them. The study of

optimal maintenance planning provides a quantitative basis for maintenance deci-

sions and is of interest to industrial, governmental, and military organizations. In

most typical scenarios, optimal maintenance is concerned with maintaining a system

in a manner that maximizes some measure or benefit, or minimizes the long-run

average cost. Models for optimal maintenance planning often employ probability

and stochastic process theory in an attempt to model realistic complexities which

are inherent in many components, sub-systems, and systems.

Until recently, many optimal maintenance models have lacked sufficient detail

to account for the complex interactions of degradation mechanisms that determine

component lifetime distributions. Consequently, many of the potential gains of op-

timal maintenance models remain untapped. While the models considered in this

thesis are general, and therefore apply to a wide array of scenarios, the application

area of focus for this research is the United States Air Force’s maintenance policies.

The United States Air Force maintains equipment ranging from multi-billion

dollar weapons platforms, such as the B-2 stealth bomber, to the most mundane tools

and facilities. Optimizing the inspection intervals for Air Force equipment is a fertile

area with the potential to reduce costs dramatically while simultaneously increasing

operational availability. Optimal maintenance theory is especially needed in the

current environment where senior Air Force leadership has challenged all Air Force
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maintenance processes to increase availability by an average of 20% while achieving

a simultaneous 10% decrease in cost by the year 2011. This research provides a

previously non-existent capability to link availability and cost together in a single

model producing an approximate optimum inter-inspection interval that maximizes

the limiting average availability while satisfying a prespecified budget.

Current U.S. Air Force policies mandate the implementation of reliability-

centered maintenance, which specifies that all Air Force organizations maintaining

equipment must have a plan to consider the reliability measures of the components

for which they are responsible to maintain. Most often, reliability engineers in these

organizations use statistical data, often collected from an analogous system, to fit

a Weibull distribution to estimate the necessary reliability measures which are then

used to determine inter-inspection intervals. The cost of this maintenance policy

is determined at some later time, and an iterative refinement process ensues before

converging on a compromise between cost and availability. Moreover, the current

methods used to determine if existing inspection-interval lengths can be extended are

even more simplistic. An informal survey found that the most common method used

by Air Force depot engineers to extend inspection intervals is to set aside several

systems for inspection at the increased interval of interest. When inspected after

this prolonged period of time, the systems were closely inspected to see a posteriori

if any damage was outside acceptable limits.

For currently fielded systems, system managers acknowledge that 90% of the

reliability characteristics of a system are set by the time 10% of the program dollars

are expended. Therefore, it is critical that analytical tools are available as early

as possible in the acquisition process. While the assumptions behind any model

(mathematical or otherwise) cannot be completely validated, an educated initial

value for an appropriate inter-inspection interval that maximizes availability would

be a useful starting point for engineers. An application area of particular interest
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to the Air Force is to use this starting point when determining inspection intervals

during the logistics supportability analysis required before a system can be fielded.

An accurate understanding of a component’s reliability has special meaning

in a military context. Military applications require equipment to operate in the

harshest conditions and must have reliability measures sufficient to both protect lives

and accomplish the required mission. In order to illustrate and further motivate

the relevance of this thesis, an application concerning the maintenance of Radar

Absorbing Material (RAM) is next presented.

Low observable (LO) technologies make weapons systems difficult to detect,

track, and engage. These weapons systems, termed stealth assets, are vital to the

future of the Air Force and have been combat-tested in several operations includ-

ing Operation Desert Storm, Operation Allied Force and Operation Iraqi Freedom.

Stealth aircraft are particularly valuable against high-value targets, which are often

either out of range of conventional aircraft or too heavily defended for conventional

aircraft to strike. This critical role in combat operations will increase in impor-

tance in the coming years, as Russian-built surface-to-air missile systems, such as

the SA-10, SA-12, SA-15, and SA-20 appear on the open market. These integrated

air defense systems are highly mobile, networked, and possess an entire suite of anti-

aircraft engagement mechanisms. Because of these capabilities, surface-to-air missile

strikes, and counter-ground jamming, combined with conventional strike aircraft,

will not be adequate to gain and maintain air supremacy. Clearly, low observable

technology will play a vital role in both low and high-intensity operations.

While LO technology mitigates detection from many sensors, such as heat

seekers (infrared), sound detectors, and even the human eye, the ability to reduce the

radar cross section (RCS) is a key component of stealth. There are two approaches

to reduce the passive radar cross section: shaping to minimize backscatter, and using

RAM coating for energy absorption and cancelation. While both these mechanisms
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have proven effective in reducing RCS, the maintenance requirement associated with

RAM is often an area of concern.

Not only are these materials extremely sensitive to the ambient environment,

they must maintain precise tolerances for an entire array of electrical properties in

order for the entire system to effectively reduce a system’s RCS. Therefore, the effect

of environmental exposure has a direct impact on aircraft RCS and consequently air-

craft survivability. This concern persists even in the most benign environments, as

optimal flying conditions have been shown to induce noticeable wear on RAM [137].

Sunny weather, rain, and sandy environments all cause RAM to degrade linearly at

different rates. The B-2, for example, must be stored in a climate-controlled hangar

to mitigate RAM near-field reflectivity loss. Near-field reflectivity is an important

measure of RAM performance and can be measured at a specific location. Measur-

ing near-field reflectivity per periodic inspections by maintenance personnel is more

cost effective than measuring the overall RCS degradation, which requires an entire

aircraft to be tested in a specialized facility.

Environment-dependent wear alone cannot adequately characterize the RAM

deterioration process. Shocks also provide an extremely important degradation

mechanism. For example, in-air refueling stops are short periods of time that can

cause rapid damage when the refueling aircraft’s boom scratches the sensitive LO

surfaces. Other shocks include bird strikes and maintenance personnel touching the

RAM surface. The linear wear rates for near-field reflectivity loss are easily mea-

sured experimentally. Shock damage is also measurable from individual maintenance

records, and shock arrival rates are readily obtained from historical data in current

maintenance databases.

Due to the deterioration process described above, RAM must be routinely

inspected and replaced. Since RAM deterioration can only be measured when in-

spected, failures are said to be hidden or non self-announcing. The inspection inter-

val is very sensitive with regard to cost and operational availability since in order to
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inspect RAM deterioration, an aircraft must be removed from operational use. An

overly small inspection interval could be operationally and financially expensive, but

too lax an inspection interval could potentially result in a compromise of aircraft

survivability and risk of loss of an extremely costly asset.

A stochastic model developed by Kharoufeh et al. [67] is well-suited for the

RAM degradation process and presents reliability and availability measures for a

component subject to degradation from a simultaneous combination of linear wear

from a random environment and from random shocks. The combination of these

two degradation mechanisms gives this model considerable flexibility in addressing a

wide-range of applications as many systems are maintained by inspections conducted

according to a fixed, deterministic interval. Concerning the previous example, with

correctly identified parameters for the shock and wear, and an appropriate opti-

mization model, it is possible to compute an optimal inter-inspection interval that

maximizes the limiting average availability of a stealth weapons system.

Availability is, in the most general sense, the proportion of time that a compo-

nent or system is available to be used for its intended purpose. Naturally, availability

is an important measure of concern in many applications and is generally desired to

be as high as possible. While the model of Kharoufeh et al. [67] has wide applicability

and provides a mechanism to understand the impact of a particular selection of the

inter-inspection interval on reliability and availability measures, no previous research

has developed a methodology to maximize the limiting average availability through

selection of the inter-inspection interval for a model that considers degradation due

to environment-induced wear and random shocks.

1.1 Problem Definition and Methodology

This thesis will develop an appropriate cost function and formal nonlinear

program to maximize the limiting average availability of a component subject to

linear wear and random shocks. The decision variable of interest is the fixed length of
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the inter-inspection interval. An appropriate optimization technique will be selected

and implemented through an accessible set of computer codes. Finally, several test

cases will be constructed to illustrate the optimization technique in practice.

However, in order for the methodology to be useful in an industrial or mili-

tary setting, it must be able to obtain an answer in a reasonable amount of time.

Therefore, the research objectives of this thesis are: (1) to construct the necessary

optimization methodology to maximize availability, and (2) to produce this answer

in the least amount of time possible.

To accomplish these two objectives, the stochastic degradation model devel-

oped by Kharoufeh et al. [67] will be reviewed. Next, a cost function will be developed

which considers the long-run cost per cycle due to component replacement, inspec-

tions, and downtime. The objective function of [67] and the associated cost function

combine to form a nonlinear program. However, because the representation for the

limiting average availability is provided only in the form of a Laplace transform,

real-domain derivative information is not available, and a solution requires the use

of Laplace transform inversion techniques. For this reason, many standard optimiza-

tion techniques are inadequate; thus derivative-free algorithms (particularly pattern

search) are considered.

Since the objective function producing the limiting average availability is com-

putationally intensive, a study was conducted to reduce the run times of its most

frequently called subfunctions: the matrix exponential and the Laplace transform

inversion algorithm. Four methods to compute the matrix exponential were studied

and a Laplace transform inversion algorithm was selected. A complexity analysis

was conducted on the direct computation of the limiting average availability and

cost computations. This leads to the development of a method that dramatically

reduces run times as the number of environmental states and system maximum life-

time increase. All computational methods and the overall optimization problem are

illustrated through five test-cases.
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1.2 Thesis Outline

The next chapter includes a brief survey of the vast literature in the field of op-

timal maintenance. Starting with the first transition of ideas from other disciplines

into an optimal maintenance context, the review surveys three frequently used sto-

chastic deterioration mechanisms and the literature on optimal replacement. The

literature reviewed will describe the history and variations of currently used optimal

maintenance models, with an emphasis on the historical thread that develops into

the model examined in this thesis. The goal of this survey is to provide the reader

the necessary background to understand the particular contributions of the thesis

in their historical context. This chapter highlights the need for an implementable

optimization methodology to determine the optimal period of time to wait between

inspections to maximize limiting average availability for a given budget constraint

and associated cost function.

The formal notation and mathematical model are developed in chapter 3. The

first section describes the notation and formulation of the stochastic degradation

model developed by Kharoufeh et al. [67], which presents reliability and availability

measures for a system that degrades according to a simultaneous combination of

linear wear and random shocks. The second section describes the development of a

cost function that considers the long-run cost per cycle of each inspection. In the

third section, a formal, constrained nonlinear programming formulation is presented.

Chapter 4 discusses the solution methodology used to solve the nonlinear pro-

gram presented in chapter 3. This chapter starts with a discussion of potential

solution methodologies and their degree of applicability to the nonlinear program

in question. In particular, non-derivative-based search procedures are considered

with pattern search chosen as the best overall optimization procedure. In order to

decrease the run time of the optimization procedure, algorithmic refinements are

made to the matrix exponential and the Laplace transform inversion algorithm. The

1-7



chapter also presents the development of a numerical method to dramatically reduce

run times for the chosen methodology.

Chapter 5 presents the results of several numerical experiments. The limiting

average availability is computed using pattern search methods with four different

methods to calculate the matrix exponential. The result from this experiment is

the most suitable matrix exponential method, which is then used in a second ex-

periment to isolate the gains provided by a new method developed to decrease the

computational run time. The thesis is concluded in chapter 6 by summarizing the

main results and discussing the contributions of this research, and making some final

recommendations as well as suggestions for future research directions.
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2. Review of the Literature

This chapter provides an overview of the literature related to the area of

operations research termed optimal maintenance, with an emphasis on optimal re-

placement models and availability optimization. Optimal maintenance is a well-

established field within operations research concerned with maintaining a component

in a manner that maximizes profit or minimizes cost.

This review begins with a discussion of motivations for implementing optimal

maintenance and its general methodology followed by a discussion of the history of

optimal maintenance models. Since the foundation of any maintenance model relies

on the underlying deterioration process and failure behavior of the component, three

common degradation models are reviewed: shock models, wear models and com-

pound models that consider degradation from both shock and wear. After covering

degradation models, optimal replacement models for both preventive and corrective

maintenance are reviewed. That section concludes with a discussion of recent models

for availability analysis of complex components.

All components degrade over time and actions must be taken to keep equipment

operating for its intended purpose. These actions include both preventive actions

undertaken at regular intervals to prevent an unacceptable loss of performance and

corrective actions taken to restore a failed component to an operational state. In

both cases, maintenance actions can be accomplished at fixed intervals or based on

conditions concerning the component of interest.

In this review, a component describes any system or subsystem that is modeled

and evaluated as a single entity. Thus, a system that consists of multiple components,

yet works towards a single objective can be considered a component in order to

reflect the aggregate system-level behavior. Thus, the detailed interactions between

the various subcomponents can be neglected.
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In many industries, costs associated with the allocation of resources to mainte-

nance are very significant, and maintenance personnel comprise a significant number

of the total workforce. The potential impact of maintenance at the level of opera-

tions and logistics is considerable, and the financial implications of maintenance can

be substantial. Therefore, models are required to gain greater insight into mainte-

nance processes in order to better set inspection intervals and understand process

dynamics.

Optimal maintenance models have diverse application areas, including crack

growth ([123] and [100]), airframes [112], offshore structures, coastal flood barriers

subject to erosion [125], and many other industrial and military settings. While ex-

tensive effort has been devoted to developing simulation models, as surveyed by Cza-

jkiewicz [49], simulation modeling does not give insight into the underlying structure

of maintenance problems and may provide inaccurate answers, while simultaneously

shielding the source of these errors. Further, even with recent advances in processor

speed, simulations can take long periods of time to compute an approximate an-

swer, as compared to the seconds required to compute an exact answer by analytical

methods.

2.1 The History of Optimal Maintenance

The beginning of modern optimal maintenance is closely correlated to the

beginning of operations research in general which was developed during the second

World War. The foundations of the first optimal maintenance models came from

actuarial research performed in Switzerland in the early 20th century. This research

focused on determining the number of annual accessions required to maintain a finite

body of policyholders [82]. Lotka [82] adapted this research through the use of the

theory of renewals to address industrial replacement problems. Lotka’s research was

followed by more applications of renewal theory and actuarial models to structural

reliability and fatigue failure applications. The crossover from other disciplines into
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optimal maintenance theory continued, as theory originally developed for population

analysis and problems in genetics was applied to a number of industrial problems.

During the second World War, the fields of reliability and optimal mainte-

nance were studied with renewed interest as both the industrial economy and aca-

demic community focused on assisting the war effort. During this time, work by

Weibull [142] focused on approximating probability distributions to model the fail-

ure mechanics of materials and introduced the well-known Weibull distribution for

use in modeling component lifetimes. Shortly thereafter, Davis [50] demonstrated

that the exponential distribution worked well for modeling many components. Today,

the exponential distribution remains the distribution of choice for many maintenance

modeling problems, as it has been demonstrated to aptly model the real-world. It

is also the only distribution to possess the memoryless (or Markov) property, which

allows for easy aggregation of failure rates of subcomponents to determine the failure

rate of the overall component.

Maintenance models increased dramatically in complexity in the 1960s as the

study of preventive maintenance as a research discipline began to appear in the

literature. Researchers such as Barlow [28], Proschan [29], Jorgenson [65], McCall

[87], Radner [65], and Hunter [28] contributed extensively to the early development

of maintenance optimization models. Applications in this era focused on systems

with potentially catastrophic failures, such as nuclear power plants and optimal

maintenance for intercontinental ballistic missiles [65]. The increased complexity of

many of these models required the relaxation of the exponential distribution, and

research expanded to include semi-markov processes [122].

Current research uses stochastic processes to describe the failure-generating

mechanisms of optimal maintenance models. Renewal theory remains the prevalent

method used to model stochastic failure processes. Despite the broadening scope

of modern research to include more complex components, many studies have shown

that renewal theory is capable of accommodating these complexities. The following
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sections will survey the current literature in optimal maintenance starting with a

review of the underlying deterioration process and failure behavior of components in

optimal maintenance models.

2.2 Degradation Mechanisms

Stochastic degradation models are mathematical models which attempt to de-

scribe a component’s deterioration over time. There are two primary mechanisms

presented in the literature for modeling a component’s aging process over time:

the use of existing lifetime distributions or mathematical modeling of the physical

dynamics that cause the failure behavior. Lai and Xie [75] provide an overview

of model aging and dependence characteristics in reliability and survival analysis.

Existing distributions fall into the broad categories classified by how their failure

rate changes over time: increasing, decreasing, or constant. Since the foundation of

any maintenance model relies on the underlying degradation process of the system

or component under consideration, the following section will review three primary

degradation models actively used in current research: shock models, wear models

and compound damage models.

Shock models are effective in describing a component whose degradation is the

result of a collection of distinct stresses, termed shocks, applied at discrete points in

time. The literature provides a wide variety of methods to describe the frequency of

occurrence, and magnitude of damage caused by shocks. Most commonly, however,

probability distributions are used to model damage magnitude, and shocks arrive

according to a Poisson process. There are two broad areas of the failure mechanisms

into which shock models can be classified: cumulative damage shock models and

maximum shock models. Cumulative damage models consider a failure to occur

when the sum of the effects of random shocks over time exceeds a particular threshold

value. In contrast, components described by maximum shock models fail when the

magnitude of a single shock exceeds a particular threshold value.
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Early Poisson shock models are presented by Esary et al. [54] and Ross [110].

Shanthikumar and Sumita [115] present a more complex shock model in which shock

magnitudes are correlated with the length of the interval to the next shock. Two

years later, Sumita and Shanthikumar [129] extended their previous model with

the development of a cumulative shock model. Rangan and Sarada [108] present the

earliest paper found during this survey that uses a non-homogeneous Poisson process

to model the shock arrival process.

Mallor and Santos [84] classify general shock models used for component re-

liability. They also present application areas, noting that extreme and cumulative

shock models may be appropriate descriptions for the fracture of brittle materials

and for damage due to earthquakes or volcanic activity. They employ Laplace trans-

forms to provide the distribution function of the component failure time and its

mean value. R̊ade [107] presented a shock model with a finite number of identical

components, each receiving shocks arriving occurring to a Poisson process. He used

this model to calculate the time-dependent probability to failure for each identical

component. Nakagawa [96] developed a replacement policy for R̊ade’s system of

identical components, which exchanges a given component before failure if the total

number of failed components is more than a fixed number, n, and which replaces the

system if all n components have failed. Nakagawa determined the optimal number,

n, that minimizes the expected cost. Igaki et al. [62] consider a state-dependent

shock model influenced by an external system, in which both the interarrival time

and the magnitude of the shock are determined by a Markov process. Ebrahimi [53]

presents a model subject to shocks governed by a Poisson process, where damage

accumulates additively and the component fails if the total damage exceeds a certain

capacity or threshold. His results allow for the comparison of two random processes

by stochastic ordering.

While shock models can adequately model many components, they require the

application of stresses at finite intervals of time. Wear models, however, can model
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the continuous effect of deterioration over time. Wear models were introduced histor-

ically later than shock models by Esary et al. [54], which proved that if the lifetime

distribution H(t) of a device is subject to shocks governed by a Poisson process with

the probability Pk of surviving k shocks, and if the discrete distribution is increasing

failure rate average (IFRA), then H(t) is also IFRA. The class of IFRA life distrib-

utions plays a fundamental role in reliability theory. A distribution function H with

survival function H̄ = 1 − H is said to have an increasing failure rate average if

H(0) = 0 and H̄−1(t) is decreasing for t > 0. Singpurwalla [119] provides a survey

of models that use the effects of a common environment as a basis for generating

dependent lifetimes for components in a system.

Çinlar [45] introduced a Markov additive process (MAP) to describe the failure

mechanism due to wear. Markov-additive processes (MAPs) are a class of Markov

processes which have important applications. A MAP {(X(t), J(t)) : t ≥ 0} is a bi-

variate Markov process whose transition probability measure is translation invariant

in the additive component X(t). Here X(t) is any independent CTMC from which

J(t) is an additive functional. Çinlar uses the unique structure of the MAP to prove

that, given a gamma process (a stochastic process with independent increments) with

a shape parameter that is a function of Brownian motion, the resulting lifetime is

distributed according to the Weibull distribution. Kharoufeh [66] presents a compact

transform expression for the failure distribution for wear processes of a component

degrading according to a Markovian environment inducing state-dependent continu-

ous linear wear. He accomplishes this by using the properties of a MAP and assuming

the wear process to be temporally homogeneous and that the environmental process

has a finite state space.

Though less discussed when compared to individual shock and wear models,

compound damage models consider the combined effect of wear and shocks on the

lifetime of a component. Only the model of Kharoufeh et al. [67] considers the

deteriorative effect of linear wear and random shocks simultaneously. Çinlar [45]
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derives the failure time distributions and associated properties for models subject to

continuous wear and shocks using a compound Poisson process. However, his results

are complex and do not provide a computation of availability measures. Klutke et

al. [71] presents availability measures for a component with random inspection times

and wear rates. Klutke and Yang [70] study components that deteriorate due to both

shocks and graceful degradation with periodic inspections, but do not consider the

effect of wear and shocks occurring simultaneously. Using regenerative arguments,

they derive an expression for the limiting average availability. Kiessler et al. [68]

studied inspected components with non-self-announcing failures, where the rate of

deterioration is governed by a Markov chain. They assumed environmental exposure

changes randomly over time and employed a Fourier series expansion to compute the

lifetime distribution and availability when the component is inspected according to

a periodic inspection policy.

Taken together, the shock, wear and compound damage models discussed

herein provide a number of mechanisms useful for modeling the deterioration of a

variety of systems. However degradation models provide only a means to understand

when components will fail and do not provide a mechanism to maintain them. To

that end, the next section will survey optimal maintenance primarily in the context

of optimal replacement models which maintain a system through replacing failed

components according to a wide range of policies.

2.3 Optimal Replacement Models

Optimal maintenance models have received a great deal of interest in the last

forty years, and numerous surveys of optimal maintenance have been contributed to

the operations research literature. The first was completed by McCall [87] in 1965,

which covered early preventive maintenance models and classified various preventive

maintenance policies by their common characteristics. That same year, the founda-

tional text of Barlow and Proschan [29] was published. Pierskalla and Voelker [104]
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and Osaki and Nakagawa [102] provided an update by surveying the optimal main-

tenance research accomplished in the 11 years elapsed since the publication of [87].

These papers were followed by the survey of Sherif and Smith [117] in 1981 that cat-

egorized 524 different optimal maintenance papers. This survey was followed eight

years later by Valdez-Flores and Feldman [131], who covered optimal maintenance

research since [104]. More recent surveys were presented by Cho and Parlar [43] in

1991, Murdock [93] in 1995, Dekker [51] in 1996 and Wang [138] in 2002.

Optimal maintenance models can be classified by the length of planning hori-

zon for the problem, the degree of effectiveness of each maintenance action, the

optimization criteria, and the nature of the degradation process and state space that

characterize the component [131]. A key distinguishing feature among these models

is the degree to which a component is repaired. A particular advantage of perfect

repair models is that they are able to take advantage of renewal theory, as presented

in [30] and [111]. This section will briefly survey non-replacement repair models

and will then emphasize and survey replacement models presented in the literature.

Replacement or renewal refers to maintenance models in which a given component

is placed into a state after repair equal to the condition the component was in at the

start of the process.

The first alternative to replacement or perfect repair is termed minimal repair.

Minimal repair was introduced by Barlow and Hunter [28] and refers to models

in which maintenance actions return a component to a state that is stochastically

identical to the state just prior to failure. Thus with minimal repair the failure rate

is identical before and after a repair operation. Minimal repair is often motivated

by considering the increased cost of replacing a component, when compared to that

of a simple repair. Several minimal repair models are discussed in the literature

[113, 18, 118].

As a combination of perfect and minimal repair, imperfect repair is incorpo-

rated into models in which maintenance does not renew a component to its original
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state. First presented by Brown and Proschan [36], imperfect repair is surveyed

later by Pham and Wang in [139]. The associated mathematics of imperfect repair

is more involved, as standard renewal theory does not apply. Several papers present-

ing results for imperfect repair are surveyed. Recent research considering imperfect

repair includes Bruns [37], who studies a repairable component with Markovian de-

terioration and imperfect repair options and presents optimal strategies to minimize

long-run costs. Biswas et al. [33] model a component which is maintained through

a periodic inspections with maintenance accomplished by a combination of imper-

fect and perfect repair. They combine the maintenance mechanisms by replacing a

failed component after a fixed number of imperfect-repairs. Cha et al. [41] compare

steady-state availabilities of two different components subject to imperfect repair

policies. They make comparisons of the steady-state availability based on imperfect

repair policies. Kijima and Nakagawa [69] present replacement policies for a shock

model with imperfect preventive maintenance.

Replacement models can be classified as either preventive or corrective. Cor-

rective maintenance considers all maintenance actions performed in response to a

component failure. Preventative maintenance is concerned with actions performed

to decrease the probability of unplanned failure. In order for preventive maintenance

to be viable, the cost of a preventive repair must be less than the cost of repairing

a failure.

There are two primary types of preventive maintenance policies: block replace-

ment and age replacement. Under a block replacement policy, maintenance actions

are performed at fixed and deterministic time intervals. Under an age replacement

preventive maintenance policy, maintenance is initiated when a component has accu-

mulated a certain amount of operational time. The survey papers mentioned before,

especially [87] and [104], cover many variations of preventive maintenance models,

with an emphasis on single unit components. Research in the area of age replacement

policies is primarily concerned with the optimal operational time a component is al-
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lowed to accumulate before initiating a maintenance action. Common assumptions

to accommodate the use of basic renewal theory include that the time required to

replace a failed component is considered negligible and that a component is repaired

perfectly (i.e. repaired to a new state). Numerous cost models have been presented

to determine the optimal replacement age, most notably by Ascher and Feingold [19],

Aven and Bergman [26] and Nachlas [94].

Block replacement is concerned with implementing a policy of maintenance at

regularly spaced intervals without regard to the age of the component. Block replace-

ment problems are popular, partially due to the fact that they are often easier to

implement mathematically and operationally. Barlow and Proschan [30] proved that

a block replacement policy results in less failures than an age replacement policy,

even though block replacement requires more replacements and consequently incurs

higher cost. Wortman et al. [144] determined that deterministic block replacement is

preferable to random replacement. The literature discusses many preventive mainte-

nance variations of block replacement, many with the purpose of presenting policies

that decrease the cost of frequent replacement or simplify the mathematical expres-

sions incurred by block replacement. For example, Barlow and Hunter [28] consider

a minimal-repair preventive maintenance model with block replacement. Shaked

and Zhu [114] summarize and survey various preventive maintenance models that

use renewal theory to develop the mathematical framework for block replacement

policies.

Models have also been presented that combine preventive and corrective main-

tenance, such as the work by Nachlas and Cassady [95], who seek to determine an

optimal balance between preventive maintenance and corrective maintenance. Some

papers present and analyze both corrective and preventive maintenance as potential

maintenance strategies, while placing emphasis on a particular recommendation.

While block replacement models suffer from the potential to prematurely re-

place components and age replacement policies require knowledge of the cumulative
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operational time for the component under consideration, inspection models are ap-

plicable when the state of a component is known only during an inspection. Many

inspection models use a control limit policy, which determines if a component should

be replaced upon inspection if a failure or cumulative degradation level is detected.

Control limit policies often use the state of the component at a current inspection

to determine the optimal time until the next inspection. The potential disadvantage

of inspection policies is that the component under consideration remains in a failed

state until the next inspection, and the cost of a component in a down state must

be considered.

One of the first inspection models presented was by Luss [83] in 1976, where

the state of a component is modeled by several levels of deterioration and the cost of

replacement after a failure is higher than before. Zuckerman [146] reviews inspection

models and presents an optimal inspection interval and replacement rule with consid-

eration for the associated costs when degradation is due to a Poisson shock process.

The research presented by Wortman et al. [144] evaluates two different inspection

policies for non-self announcing failures that occur as a result of a Poisson shock

process. Abdel-Hameed [10] studies reliability measures when degradation occurs

according to a Markov process and inspection intervals are fixed. More recently,

Vaurio [136] presents an inspection model with replacements occurring according to

an age replacement policy.

Optimal maintenance models can be classified as concerned with the mainte-

nance of either a single unit or of multiple units. Barlow and Proschan [29] introduce

many single-unit models and authored the classic textbook used for the mathemat-

ical theory of reliability. Nakagawa and Osaki [97] followed this with an optimal

replacement model that considers a limited number of spares. Multiple-unit main-

tenance models often suffer from a state-space explosion problem. While much has

been demonstrated concerning multiple unit maintenance models using simulation,

recent research uses dynamic programming and other techniques to reduce the com-
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plexity incurred by an expanding state size. Ben Ari and Gal [31] use a dynamic

programming approach to find an optimal replacement policy for a multi-component

system. Flynn et al. [56] present an optimal replacement model using a stochastic

dynamic program with the goal of finding the optimal balance between the cost of

component replacement and the cost of component failure. Branch-and-bound pro-

vides an alternative to dynamic programming for solving multi-component reliability

problems, as presented by Chung and Flynn [44].

Availability is commonly used as a performance measure in optimal mainte-

nance models, and is broadly defined as the fraction of time a component is in an

operational state over the total time. The optimization of availability is both an

active area of current research and a fertile ground for future work. Maintaining

a component for optimum availability is a key concern in many military and op-

erational settings. The following is a survey of the optimal maintenance literature

concerned with optimizing and measuring availability for stochastically degrading

components.

Wortman and Klutke [145] examine the availability of a maintained component,

where the rate of deterioration is governed by an random environment. With the ob-

jective of exploring the influence of random deterioration on component availability,

they provide a result that exposes the relationship between the remaining lifetime,

environment, and repairs. Furthermore, the authors develop simple bounds that can

be used to choose inspection rates that guarantee a specified level of availability.

The principal result requires no specific distributional assumptions.

Early availability models include Ahmed and Schenk [15] and Srinivasan and

Ramachandra [126]. In 1978 Ahmed and Schenk [15] used optimal control theory to

obtain the optimal policies for a component with variable failure and repair rates,

as well as variable maintenance and downtime costs. Their optimization model con-

sidered the cost of repair, as well as the downtime cost. They used their method to

consider both static and dynamic optimal maintenance policies and note that the
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optimal maintenance policy is highly dependent on the failure rates of the individual

system components. Srinivasan and Ramachandra [126] applied Kalman filtering

techniques to reliability smoothing and used these to compute instantaneous avail-

ability as a function of time. From this they were able to approximate the sampling

interval and the measurement variance for a specific maintenance policy. They also

proved that estimates of point availability converge in the steady-state.

Other optimization problems have been presented more recently. Reineke et

al. [109] calculate an age replacement time in order to maximize interval availabil-

ity. They extend this with models that optimize either the limiting availability or

the cost rate of complex components. Cassady et al. [39] present a model that

approximates the replacement age in order to maximize the average availability us-

ing experimental design and regression analysis. More recently Cassady, Pohl, and

Jin [40] presented an availability optimization model that applies to a general class

of two-state repairable components by determining a set of availability importance

measures. Through five examples, they demonstrate that focusing on the reduction

of component failures provides greater benefit than increasing the speed of equipment

repair. The authors then established a set of three optimization models that cap-

ture the trade-offs between improving availability performance and the investments

required to achieve that improvement.

This chapter has covered a broad survey of the literature of optimal mainte-

nance relevant to this thesis. First, the history of optimal maintenance was dis-

cussed, followed by an overview of the relevant literature of three key degradation

measures: degradation due to shocks, degradation due to wear, and degradation due

to compound models combining the effects of shocks and wear. Then the defining

characteristics of optimal maintenance models were discussed with a primary em-

phasis on replacement models. Availability was presented as a useful measure to

maximize in optimal maintenance models, and several papers were reviewed with

associated models that optimize availability. The next chapter will focus on the par-
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ticular degradation model used in this thesis: a compound model considering wear

due to a random environment and shocks arriving according to a Poisson process

with a general damage distribution and an associated cost function that considers

costs of replacement, downtime, and inspections.
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3. Mathematical Model and Dynamics

In order to optimize the limiting average availability by selecting an appro-

priate inter-inspection interval, it is necessary to obtain explicit representations for

both the availability and cost measures. The former is provided by Kharoufeh et

al. [67], who derive the lifetime distribution as well as the limiting average availabil-

ity for a component subject to linear wear and random shocks. In their paper, the

authors explicitly derive the system’s lifetime distribution and mean time to failure,

as well as an equation for the limiting average availability. Due to the relevance of

their results to this research, their main results are briefly reviewed.

3.1 Stochastic Degradation Model

Consider a component evolving in a random environment that transitions ac-

cording to a Markov chain in continuous time. Degradation is due to the combina-

tion of two damage mechanisms: environment-dependent linear wear and random

shocks. Degradation accumulates monotonically until an inspection detects cumula-

tive damage in excess of a fixed threshold, at which point the component is instantly

replaced with one in new condition. The maintenance policy is to inspect the cumu-

lative degradation of the system periodically at a fixed interval of length τ and to

replace the component if degradation is found to be beyond a fixed threshold value.

Assume the environment is composed of a finite set of states, each correspond-

ing to a particular constant linear wear rate. All wear rates are assumed to be

positive, which implies that every environmental state must continuously induce

some finite linear wear per unit time on the component. The second degradation

mechanism considers random shocks with a random arrival rate and a single general

distribution for the damage caused by each shock. Shocks are assumed to arrive

according to a Poisson process with rate parameter, λ where λ is a positive scalar.

The overall effect of each shock is considered to be small relative to the degradation
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process, but the cumulative effect of many shocks can be significant. It is also possi-

ble that shocks, unlike wear, may cause zero damage. The wear process is assumed

to be stochastically independent of the shock process.

Component inspections are assumed to be instantaneous and perfect, in that

there is no measurement error in determining the state of the system. Failures are

hidden in that the state of the system can only be discerned during an inspection.

A soft failure occurs when the total cumulative degradation exceeds some fixed

threshold value, x. The time at which this threshold is crossed can be considered

the component’s useful service life. Immediately upon inspection, a failed component

is instantly replaced by a new identical component. Partial repairs are not allowed.

The environment-dependent rate of wear is modulated by a continuous-time,

stationary, ergodic continuous-time Markov chain (CTMC), Z, where {Zt : t ≥ 0}.

Further, the finite set of environmental states is S = {1, 2, . . . , l}, where l is the

dimension of the state-space. Each state has a corresponding linear wear rate. Thus

Z forms a finite, continuous-time Markov chain that is assumed to fully characterize

the ambient environment. The transitions are governed by an infinitesimal generator

matrix Q with an initial distribution α. The transition probability functions for Z

are denoted by

πi,j(t) = Pr {Zt = j | Z0 = i} , i, j ∈ S.

For each state j ∈ S there is a corresponding positive wear rate r(j). Together,

the wear rates form a vector r of dimension l. These wear rates are placed along

the diagonal of a matrix of zeros to form the diagonal matrix RD = diag{r}. The

ratio of the damage threshold, x, to the minimum wear rate is denoted by Λ, and

is considered the maximum component lifetime. This is because Λ represents the

time to failure if the component were subject to only the most benign damaging

environment until failure and endured no damage from shocks. Λ is formally defined
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by

Λ =
x

min{r(i) : i ∈ S}
. (3.1)

The total accumulated wear Wt at time t is defined by

Wt =

∫ t

0

r(Zu) du.

Shocks arrive according to a Poisson process, {Nt : t ≥ 0}, with rate λ.

The sequence of independent and identically distributed (i.i.d.) random variables,

{Yn : n = 1, 2, . . . }, represents the individual random shock magnitude each with

cumulative distribution function (c.d.f.) FY . The Laplace-Stieltjes transform F̃Y (u)

of FY (y) is given by,

F̃Y (u) =

∫ ∞

0

e−uy dFY (y),

and the diagonal matrix F̃D(u) is defined to be

F̃D(u) = diag{F̃Y (u)}.

The total accumulated damage βt at time t is

βt =
Nt∑

n=0

Yn,

and the total degradation Xt at time t, can then be expressed as

Xt = Wt + βt.

The time required for Xt to first reach level x is denoted by the nonnegative

random variable Tx; i.e.,

Tx ≡ inf{t : Xt ≥ x}.
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Since no partial repairs are possible, the degradation process {Xt : t ≥ 0} monotoni-

cally increases until the first inspection after Tx or the start of the next replacement

interval. Furthermore, the bivariate stochastic process {(X(t), Z(t)) : t ≥ 0} fully

characterizes the state of the system at time t. Since Xt is monotonically increasing

and all wear rates are positive, the event in which total cumulative damage is below

the threshold is equivalent to the event in which total time elapsed is less than the

time of failure, or

{Xt ≤ x} ⇐⇒ {Tx ≥ t}. (3.2)

The process describing the status of the component currently in use is the

stochastic process {ψ(t) : t ≥ 0} given by

ψ(t) =

1 ifXt < x

0 ifXt ≥ x

.

Thus, ψ(t) describes the state of the system at time t and is recognized as a right

continuous up/down stochastic process. The nth component lifetime is denoted by

Ln with a corresponding time of failure designated by Fn. Since the state of the

system is only discerned at each inspection, the nth replacement epoch Rn occurs at

the first inspection after the nth failure time, or

Rn = min{k : kτ > Fn}, n = 0, 1, 2, . . . .

with R0 defined to be 0.

The entire process is graphically depicted through the sample paths displayed

in Figure 3.1. Without loss of generality, assume that the environment considered

in Figure 3.1 can be adequately described by three states. In this example, the

first environment has the most corrosive associated linear wear rate, while the third

environmental state has the most benign rate of wear. Besides demonstrating the
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Figure 3.1 Sample paths of Xt and Zt.

cumulative deterioration process as a combination of linear wear and random shocks

subject to a control limit policy, the sample path analysis demonstrates that succes-

sive lifetimes do not form an i.i.d. sequence of random variables unless they begin

their lifetimes in identical initial environmental states. Moreover, the dependency of

failure and replacement epochs on component lifetimes is clear.

Also of interest is the embedded process representing the state of the environ-

ment at the nth replacement epoch, {ξn : n ≥ 0}. Since there are a finite number of

states, ξn forms an irreducible embedded discrete time Markov chain (DTMC) on S

with transition probability matrix P and stationary distribution p. An important

result reported in [67] is that {(ξn, Rn) : n ≥ 0} forms a Markov renewal process.

This is formally stated in Theorem 3.1 and a formal proof is available in [67]. This

theorem is necessary in order to use an availability equation that requires a renewal

process since the sequences {Fn : n ≥ 0} and {Rn : n ≥ 0} do not form a set of i.i.d.
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component lifetimes unless the replacement epoch occurs when the environment is

in the same initial state.

Theorem 3.1 The bivariate process {(ξn, Rn) : n ≥ 0} is a Markov renewal process,

and the continuous-time process {ψ(t) : t ≥ 0} is Markov-regenerative w.r.t {(ξn, Rn) :

n ≥ 0}

Let E [·] denote the expectation operator, and Ei [·] denote the conditional

expectation E [· | Z0 = i]. The limiting average availability is defined by Leemis in

[76] as,

Ā = lim
t→∞

t−1

∫ t

0

E [ψ(w)] dw. (3.3)

Theorem 3.2, which was proved by Kiessler et al. [68:704], expresses the limiting

average availability as a direct consequence of the renewal reward theorem. The-

orems 3.1 and 3.2 allow for the limiting average availability to be represented as

the expected time to the first failure divided by the expected time to the first re-

placement, only if these expected values are conditioned on the initial state of the

environment.

Theorem 3.2 The limiting average availability is given by

Ā(τ) = lim
t→∞

t−1

∫ t

0

E [ψ(w)] dw =

∑l
i=1 pi Ei [F1]∑l
i=1 pi Ei [R1]

. (3.4)

where pi = limn→∞ Pr {ξn = i} with i = 1, 2, . . . , l.

In order to compute equation (3.4) Kharoufeh et al. [67] derived explicit representa-

tions for Ei [F1] and Ei [R1] in terms of Q, λ, F̃Y (u), RD, x and τ .

The distribution function of the total random lifetime of the system is defined

as

G(x, t) ≡ Pr {Tx ≤ t}
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and the component lifetime distribution conditioned on the initial state i, is denoted

as Gi(·) ≡ G(· | Z0 = i). The conditional distribution function can be written as,

Gi(x, t) ≡ Pr {Tx ≤ t | Z0 = i} , i ∈ S.

Kharoufeh et al. [67] show that the failure time distribution satisfies a system

of linear first-order partial differential equations. They solve this system using trans-

form methods, yielding the Laplace-Stieltjes transform of the lifetime distribution.

For further details, the reader is referred to [67]. This distribution can be used to

determine the Laplace-Stieltjes transform of the conditional and unconditional mean

lifetime with respect to x and also determine the conditional expectation of the first

replacement epoch.

Component conditional and unconditional lifetime distributions are stated in

Theorem 3.3. In this theorem, α denotes the initial state probability vector, e

denotes a column vector of ones, and ei denotes the ith column in an identity matrix

of dimension l.

Theorem 3.3 The Laplace-Stieltjes transform of the unconditional and conditional

first lifetime distributions, G(x, t) and Gi(x, t), with respect to x are, respectively,

G̃(u, t) = 1−α exp
((

Q + λ(F̃D(u)− I)− uRD)
)
t
)

e (3.5)

and

G̃i(u, t) = 1− eT
i exp

((
Q + λ(F̃D(u)− I)− uRD)

)
t
)

e. (3.6)

Theorem 3.1 requires that the expected times to first failure and first replace-

ment must be conditioned on the initial environmental state, necessitating an ex-

pression for the transition probability matrix P for the DTMC {ξn : n ≥ 0}. The
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(i, k)th element of P is

pi,k =

γ∑
n=1

πi,k(nτ) Pr {R1 = nτ | Z0 = i} (3.7)

where, γ is the number of inspection intervals required to exceed the maximum

component lifetime, or

γ ≡ min{n ≥ 1 : nτ ≥ Λ}. (3.8)

Since γ determines the number of terms which must be summed according to equa-

tion (3.7), its size is very important to the overall computation speed. For use in a

computational setting, the ceiling function can equivalently be used to define γ as

γ = dΛ/τe . (3.9)

The probability Pr {R1 = nτ | Z0 = i} is given by

Pr {R1 = nτ | Z0 = i} = Gi(x, nτ)−Gi(x, (n− 1)τ) ≡ ∆i(x, nτ). (3.10)

Due to the structure of the process, the expected time of the first failure is

Ei [F1] = E [Tx | Z0 = i] . (3.11)

By applying the definition of expectation and employing the properties of Laplace

transforms to (3.6), the Laplace-Stieltjes transform of (3.11) becomes

Ẽ [Tu] = α
(
uRD −Q− λ

(
F̃D(u)− I

))−1

e (3.12)

with the conditional representation,

Ẽi [Tu] = eT
i

(
uRD −Q− λ

(
F̃D(u)− I

))−1

e, (3.13)
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as shown in [67].

The sole expression remaining to determine the limiting average availability is

the conditional expected time for the first replacement to occur. By proving that Tx

is bounded above by x/r1, where r1 = min{r(i) : i ∈ S} is the minimum linear wear

rate, and by conditioning, Kharoufeh et al. [67] compute Ei [R1] as,

Ei [R1] = τ

(
γ −

γ−1∑
n=0

Gi(x, nτ)

)
. (3.14)

With expressions for the expected time of the first failure, and the expected

time for the first replacement, the limiting average availability can now be computed.

From Theorem 3.2 and the various components defined above, the limiting average

availability can be expressed as

Ā(τ) =

∑l
i=1 pi Ei [F1]∑l
i=1 pi Ei [R1]

=

∑l
i=1 pi

(
L−1

{
u−1eT

i

(
uRD −Q− λ

(
F̃D(u)− I

))−1

e

})
∑l

i=1 pi τ
(
γ −

∑γ−1
n=0 L−1

{
u−1G̃i(u, nτ)

}) (3.15)

where L−1 {·} is the inverse Laplace transform operator.

3.2 Cost Function Development

The objective of this research is to maximize the limiting average availability as

represented in equation (3.15) by selection of the inter-inspection interval (τ) while

remaining within an arbitrary budget constraint B and incorporating a realistic cost

scheme. Further, for this computation to be operationally useful, it is necessary to

compute the maximum limiting average availability with minimal computation time.

This optimization will be accomplished by defining a formal nonlinear program us-

ing equation (3.15) as the objective function, constrained by cost and boundaries
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imposed by problem structure. Computational performance improvements are dis-

cussed in chapters 4 and 5.

In order to maximize availability for a particular inspection interval, it is nec-

essary to consider a set of costs relevant to industrial or military applications that

remain within an associated budget, B. The renewal reward theorem [111] allows for

consideration of the long-run costs. Three long-run costs per each cycle are consid-

ered: (1) fixed cost of replacing a failed component CR, (2) cost of downtime CD and

(3) per-inspection cost CI . The expected cycle time is equivalent to the expected

time to the first replacement or,

l∑
i=0

pi Ei [R1] .

When divided by the expected cycle time, the sum of these three long-run costs forms

the long-run expected cost per cycle, which is limited by the availability improvement

budget constraint, B. The long-run cost per cycle is,

CR + CI + CD

E [R1]
.

The replacement cost, CR, is understood as the cost to replace a failed com-

ponent. Since a replacement marks the end of a cycle, this cost occurs exactly once

per cycle and is therefore a fixed quantity, not dependent on τ . In most industrial

settings this cost is much higher than the per-inspection cost and often higher than

the cost per unit of downtime. Furthermore, this cost represents an aggregate of the

labor and material costs involved in replacing a component.

A cost vital to industry and defense is the cost incurred per unit time for com-

ponent to be in a non-operational state. In an industrial setting, this cost per unit

of downtime could be the revenue lost from a machine producing needed inventory.

In a military setting, this downtime could be the operational cost of not having the
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use of a mission-critical protection mechanism. The cost per unit of downtime, cD

varies widely depending on the criticality of the component. The total long-run cost

of downtime CD in a particular cycle is the cost per unit of downtime multiplied by

the expected elapsed time between a system failure and the start of the next cycle.

Thus, CD is given,

CD = cD E [R1 − F1] = cD E [R1]− cD E [F1] .

Therefore, the greater the expected elapsed time between a hidden failure and the

next inspection, the greater the long-run cost of downtime. A smaller τ presumably

ensures a smaller downtime cost as more frequent inspections decrease the expected

time from a failure to the next inspection.

The final long-run cost considered is the long-run expected cost per inspection

CI , which occurs only when the cycle time is large enough, or if R1 > τ . The long-

run number of inspections in a cycle is the expected length of the cycle divided by

the deterministic inter-inspection interval length. Since partial inspections have no

meaning, the remainder of this quotient must be excluded. If a single inspection costs

cI , then the expected total cost due to inspections in a given cycle is cI multiplied

by the expected number of inspections within a given cycle. Mathematically, the

inspection cost can be expressed using the floor function b·c as

CI = cI

⌊
E [R1]

τ

⌋
.

The longer the periodic inspection interval, the lower the long-run cost due to inspec-

tions. Conversely, frequent inspections cause high inspection costs. In this manner,

the per-inspection cost penalizes frequent inspections. In an industrial setting, a

single per-inspection cost is often far lower than the cost of down-time and the cost

of replacement.
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Since successive unit lifetimes form an i.i.d. sequence of random variables only

if they are placed into service in identical environmental states, the conditional ex-

pectations for the first failure and first replacement must be multiplied by the sta-

tionary probabilities pi and summed to produce the unconditional expected times

to first failure and first replacement. By the renewal reward theorem, the long-run

cost is the sum each of the expected costs per cycle divided by the expected cycle

length, which is,

∑l
i=1 pi

(
CR + cD Ei [R1]− cD Ei [F1] + cI

⌊
Ei[R1]

τ

⌋)
∑l

i=1 pi Ei [R1]
. (3.16)

It is important to note that this cost function is not convex, since the inspection cost

is not a continuous function with respect to τ . Moreover, since equations for Ei [F1]

and Ei [R1] are represented only in the form of Laplace transforms, equation (3.16)

is not guaranteed to be smooth or continuous. As will be discussed in chapter 4, this

precludes the application of traditional nonlinear optimization techniques.

3.3 Mathematical Programming Formulation

In order to maximize the limiting average availability as represented in equa-

tion (3.15) by selection of the inter-inspection interval, the following nonlinear pro-

gram was constructed. The objective function requires x, RD, F̃D(u), λ and Q to be

defined a priori and evaluates the limiting average availability as a function of the

decision variable, τ , the deterministic inspection interval. The full objective function

is,

Ā(τ) =

∑l
i=1 pi

(
L−1

{
u−1eT

i

(
uRD −Q− λ

(
F̃D(u)− I

))−1

e

})
∑l

i=1 pi τ
(
γ −

∑γ−1
n=0 L−1

{
u−1G̃i(u, nτ)

})
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which can be written more compactly as

Ā(τ) =

∑l
i=1 pi Ei [F1]∑l
i=1 pi Ei [R1]

.

3.3.1 Constraints

In order to form a complete optimization problem, bounds on τ were computed

for the limiting average availability as presented by the stochastic degradation model.

It was proved by [55] that Tx is bounded by Λ. Moreover, when τ reaches Λ, the value

of γ is unity, and the expected time for the first replacement epoch, as presented

in equation (3.14), is also Λ. As the value of τ increases past Λ by some positive

valued quantity δ, the value of γ remains at one since one inspection interval is large

enough to cover Λ or,

γ =

⌈
Λ

Λ + δ

⌉
= 1, ∀ δ ≥ 0.

Therefore, for some τ1 ≥ Λ where τ1 = Λ + δ, equation (3.14) becomes

Ei [R1] = τ1

(
γ −

γ−1∑
n=0

Gi(x, nτ)

)
= Λ + δ. (3.17)

Therefore, the denominator of Ā(τ) increases proportionally to δ and Ā(τ) ap-

proaches zero since the numerator is constant with respect to τ . However, inspecting

the system after a failure has occurred with probability one, does not make sense

in an operational context. Thus, the upper bound of τ is set to Λ and Ei [R1] is

consequently less than or equal to Λ.

In order to maximize the limiting average availability, it is necessary to un-

derstand availability measures as τ approaches zero. In words, inspecting infinitely

often generates an availability of one. This is understood in that, as τ gets smaller,

the expected time until the next replacement approaches the expected time to the

next failure and failures cease to be hidden in that they are instantly detected. How-

ever, while τ can get very small, it will always be positive with a finite B. This is
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due to the inversely proportional relationship between CI and τ . Inspection cost ap-

proaches infinity as τ gets small. That the decision variable remains finite over the

interval of interest is an important property for several optimization methodologies.

Even though both the objective function and the cost constraint must be

treated as black-box functions, both satisfy the Lipschitz condition, which is neces-

sary to prove convergence for a number of derivative-free optimization methods. A

function f : I → R is said to be Lipschitz continuous if there exists a constant K > 0

such that, |f(x)− f(y)| ≤ K|x− y| for all x, y in the interval I. By definition, Ā(τ)

produces values in the region [0,1]. As established, the interval of R for this problem

is restricted to (0,Λ]. Thus for any τ1 and τ2 in (0,Λ],

∣∣Ā(τ1)− Ā(τ2)
∣∣ ≤ 1

and the denominator is bounded by,

|τ1 − τ2| < Λ.

Therefore, with the Lipschitz constant 0 < K <∞,∣∣Ā(τ1)− Ā(τ1)
∣∣

|τ1 − τ2|
<

1

Λ
< K τ1, τ2 ∈ (0,Λ],

the objective function is Lipschitz continuous.

By the constraints imposed on τ , Ei [R1] ≤ Λ. For a finite τ , Rn > Fn and the

expected cycle time will be positive as long as τ is nonzero. Therefore, Ei [R1]−Ei [F1]

will always be some finite number. Moreover, the finite budget constraint ensures the

long-run cost is always finite. Thus, the cost constraint is also Lipschitz continuous

since
|C(τ1)− C(τ2)|
|τ1 − τ2|

< K τ1, τ2 ∈ (0,Λ].
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3.3.2 Nonlinear Programming Formulation

With the constraints and the decision variable defined, the full nonlinear pro-

gram can be stated as

Maximize Ā(τ) =

∑l
i=1 pi Ei [F1]∑l
i=1 pi Ei [R1]

(3.18)

subject to

∑l
i=1 pi

(
CR + CD(Ei [R1]− Ei [F1]) + CIbEi[R1]

τ
c
)

∑l
i=1 pi Ei [R1]

≤ B

0 < τ ≤ Λ

This chapter has summarized the results of the stochastic degradation model

presented by Kharoufeh et al. [67], in which degradation was the result of random

shocks and environment-dependent linear wear. From this paper, the availability and

reliability measures were presented and discussed. Then, a cost model to consider

the long-run costs using the renewal reward theorem was developed. Constraints on

τ were discussed and developed. The availability and reliability measures from the

stochastic degradation model and the the cost constraint function were combined to

formulate a nonlinear program.

However, the equations for Ei [F1] and Ei [R1] can be only represented us-

ing Laplace transforms and must consequently be numerically inverted to compute.

Moreover, the transition probability matrix P requires computing the component

lifetime distribution which also requires the numerical Laplace transform inversion.

This presents considerable challenges and precludes the use of many standard op-

timization techniques. The next chapter will discuss a solution methodology and

optimization strategies to solve the nonlinear program of section 3.3.
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4. Solution Procedures

This chapter discusses the approach used to approximately solve the nonlinear

programming problem presented in section 3.3. First, standard solution procedures

for typical optimization problems are discussed. While modifications to these pro-

cedures for nonsmooth objective functions are promising, they are generally not

well-suited for an objective function that exists only in the form of a Laplace trans-

form. However, solutions may be obtained by using generalized pattern search, an

approach that requires neither smooth functions nor derivative information and has

proven convergence properties. After a discussion of pattern search, an algorithm

directly implementing the analytical model of chapter 3 to compute the limiting

average availability Ā is presented, followed by several strategies to improve compu-

tational performance. These result in an improved iterative algorithm for maximizing

Ā(τ) with a truncation method that dramatically decreases the computational re-

quirements necessary to solve the original optimization problem. Finally, in order

to better improve computational performance, two of the most often computed and

consequently most computationally expensive algorithms are discussed: the matrix

exponential and the Laplace transform inversion algorithm.

The optimization problem of Section 3.3 seeks to compute the maximum of the

limiting average availability Ā(τ) on the interval (0,Λ] by selection of the value of τ

that maximizes Ā(τ), denoted by τ ?. Since the objective and cost functions are not

necessarily smooth or even continuous, traditional necessary and sufficient conditions

for optimality may not apply. Since the problem is nonconvex and treated as a black

box, convergence to a global optimizer cannot be guaranteed [127]. Therefore, the

variable τ ? is assumed be only a local maximizer, which means that, for some ε > 0,

Ā(τ ?) ≥ Ā(τ) for all τ ∈ (0,Λ] satisfying ‖τ − τ ?‖ < ε.

As discussed in chapter 3, the objective function in equation (3.18) involves

a Laplace transform and contains a generally defined c.d.f. This adds considerable
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complexity to the overall optimization problem, since numerical methods must be

used to compute inverse Laplace transforms and derivative information is not avail-

able. Moreover, the objective function may not be smooth, since no such assumption

is made on the c.d.f.

Clearly, an analytical solution to (3.18) is preferred, in which elementary cal-

culus yields a simple expression for the optimal τ . It is sometimes possible to apply

partial fraction decomposition to a Laplace transform-based function in order to fa-

cilitate analytic inversion using Laplace transform tables. However, in this research,

an analytical representation for neither the first replacement epoch (Ei [R1]) nor the

first failure epoch (Ei [F1]) was attainable; consequently, numerical methods were

required to compute both the objective function and the nonlinear cost constraint.

Many numerical algorithms exist for solving unconstrained optimization prob-

lems with differentiable functions, including gradient descent, Newton’s method,

quasi-Newton methods, and conjugate gradient methods. These techniques require

an initial feasible point and use derivative information to generate a sequence of

iterates that converge to a point satisfying certain optimality conditions. Extensions

to these methods for constrained problems also appear throughout the literature

(see [32], for example). If derivatives are not available, a common practice is to ap-

proximate them with finite differences. However, their use still assumes that deriv-

atives exist, even though they are not available. Modifications of derivative-based

methods for nonsmooth functions also exist [106, 103, 64, 63], but they generally re-

quire an explicit objective function to exist at every point on the interval of concern

in the real domain.

Heuristics, such as local search, greedy algorithms, simulated annealing, ant

colony optimization, tabu search and genetic algorithms (e.g., see [90]), are useful

for problems in which other methods cannot be applied. They treat the objective

function as a black box and are useful in practice for improving the objective function

value; however, useful convergence properties are extremely rare [91], and the random
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nature of some of these methods would undoubtedly generate trial points τ close to

zero, incurring unnecessary computational expense due to the associated large values

of γ.

Among the multitude of direct search methods, three other approaches were

considered: Nelder-Mead, golden section search, and generalized pattern search

(GPS). Nelder-Mead is a flexible numerical method for optimizing multidimensional

unconstrained problems and belongs to the more general class of direct search algo-

rithms [98]. Further, Nelder-Mead is a commonly used for nonlinear optimization

problems and known to perform well when the objective function is difficult or expen-

sive to compute, not smooth, or when function evaluation is noisy [101]. Nelder-Mead

can work effectively in these situations because it only uses function evaluations to

reach a solution. Nelder-Mead has been shown to converge to the optimal solution

when applied to strictly convex functions in one and two dimensions [74], but not in

the general case. In fact, counter-examples exist [88] that show that Nelder-Mead

cannot even guarantee convergence to a first-order stationary point.

Golden section search is a method specifically for locating the minimum point

of a continuous function on a fixed interval. It requires no information about the

derivative of the function. Golden section search starts with a function evaluation

f(x) at some point x in the larger of the two intervals (a, b) or (b, c). If f(x) < f(b),

then x replaces the midpoint b, and b becomes an end point. If f(b) < f(x), then

b remains the midpoint with x replacing one of the end points. Regardless of the

outcome, the width of the bracketing interval will decrease. The procedure is re-

peated until the final width achieves a desired tolerance. If the new test point x is

chosen to be the specific proportion of (3 −
√

5)/2 (known as the golden section)

along the larger sub-interval, measured from the mid-point b, then function values

can be re-used, and the number of function values to achieve a desired level of accu-

racy is minimized. However, the method converges slowly, cannot handle nonlinear
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constraints, and is not extendable to multiple dimensions. For further details, the

reader is referred to [105].

GPS is a derivative-free method originally introduced by Torczon [130] for

unconstrained problems, who proved convergence of a subsequence of iterates to

first-order stationary point. It has known convergence properties for a variety of

problem classes, even when the objective function is nonsmooth [22]. Generalized

pattern search methods iteratively search a set of points around the current iterative

point for one that improves the objective function value. Because pattern search

methods do not require derivative information to search this set of points, they

are commonly used when evaluation of the objective function is expensive or when

accurate approximation of derivatives is problematic. Consequently, pattern search

can be applied to the problem in (3.18), even though the objective function requires

inversions of several Laplace transforms.

Due to the shortcomings of the other methods described in this section, GPS

was chosen as the optimization method for this thesis. The next section describes

the algorithm in greater detail, and in a manner similar to that of [12] and [22].

Convergence results are discussed shortly thereafter.

4.1 Generalized Pattern Search

Consider the general nonlinear minimization problem,

min
x∈Ω

f(x), (4.1)

where Ω = {x ∈ Rn : ` ≤ Ax ≤ u}, f : Rn → R and A ∈ Qm×n is a rational matrix.

Moreover, ` and u are the lower and upper bounds of the constraints where ` and

u are ∈ {Rm ∩ {±∞}} and ` ≤ u.

GPS algorithms generate a sequence of iterates {xk} in Rn with nonincreasing

objective function values. Each iteration is divided into an optional search step and
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a local poll step. Both the search and poll steps evaluate points on a mesh in

order to find a mesh point with an improved function value. The mesh is constructed

as a lattice of points in Rn, based on a finite set of directions D that form a positive

spanning set and a mesh size parameter ∆k > 0 that controls the fineness of the

mesh. In this case, a positive spanning set refers to a set of vectors such that any

vector in the space to be represented by a nonnegative linear combination of the

vectors in the set.

By definition, nonnegative linear combinations of the elements of the set D

span Rn. The directions that form D can be arbitrarily chosen provided that each

direction dj ∈ D, j = 1, 2, . . . , |D|, dj = Gz̄j, where G ∈ Rn×n is a nonsingular

matrix and z̄j ∈ Zn is an integer vector. At iteration k, the mesh is centered around

the current iterate xk ∈ Rn and its fineness is parameterized through the mesh size

parameter ∆k. The mesh can then be represented as

Mk =
{
xk + ∆kD z : z ∈ Z|D|+

}
(4.2)

where Z+ is the set of nonnegative integers. Note that in (4.2), the columns of the

matrix D form the set D.

In the search step, GPS can evaluate any finite set of mesh points, and a num-

ber of strategies exist for generating trial points, including random search, genetic

algorithms, Latin hypercube search, or orthogonal arrays. One popular strategy is to

construct and optimize a surrogate function. A surrogate acts as an approximation

to the objective function, but at a fraction of the cost. The use of surrogates often

yields significant improvement in the objective function value early in the iteration

process. For further details on surrogate functions, the reader is referred to [35].

If the search step fails to provide an improved mesh point, the poll step is

invoked. The poll step is more rigidly defined and evaluates the neighboring mesh

points for the current iterate. Use of positive spanning directions in the construction
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of these neighboring points provides the theoretical basis for the convergence of GPS.

The poll set at iteration k can be expressed as

{xk + ∆kd : d ∈ Dk}, (4.3)

where Dk ⊆ D is also a matrix whose columns positively span Rn. The poll set is

therefore composed of mesh points neighboring the current iterate xk in the directions

of the columns of Dk, a multiple ∆k away from the current iterate.

If the search and poll step both fail, the incumbent solution is said to be a

mesh local optimizer and the mesh is then refined by setting the mesh size parameter

∆k+1 = θwk∆k, (4.4)

where θ > 1 is rational and wk ∈ {w−, w− + 1, . . . ,−1} for some w−. An incumbent

point xk is replaced by xk+1 only if f(xk+1) < f(xk), and xk+1 is termed an improved

mesh point. If an improved mesh point is found in either step, then the mesh is

either retained or coarsened by increasing the mesh size parameter according to

equation (4.4) for some wk ∈ {0, 1, . . . , w+}. It follows that for any k ≥ 0 there

exists an integer rk ∈ Z such that ∆k = θrk∆0. A simplified GPS algorithm for

maximization is presented in Algorithm 1, in which wk = 0. Algorithm 1 is presented

as a maximization problem, which in general can simply be considered by minimizing

the negative value of an objective function one is seeking to maximize.

The convergence analysis of pattern search is well-established in [21] and [130]

and requires several assumptions. In order to discuss the convergence properties

of GPS, several assumptions are necessary. First, all iterates produced by GPS

must lie in a compact set [47]. This very common assumption holds as long as

{x ∈ Ω : f(x) ≤ f(x0)} is compact. Second, if the matrix G = I (as is usually the

case), then the constraint matrix A must be rational. The final necessary assumption

is that f(x0) < ∞ for x0 ∈ Rn. Torczon [130] proved that, under the assumptions
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Let: D = {d1, d2, . . . , d|D|} ⊂ Rn be a positive spanning set
Given: x0 ∈ Rn, ∆0 > 0, θ > 1
for k = 0, 1, . . . do

if ∃ d ∈ D such that f(xk + ∆kd) > f(xk) then
xk+1 ← xk + ∆kd
∆k+1 ← ∆k

else
xk+1 ← xk

∆k+1 ← (1/θ)∆k

end if
end for

Figure 4.1 Algorithm 1: A basic GPS maximization algorithm for unconstrained
problems.

discussed above, the mesh size parameter satisfies lim infk→+∞∆k = 0. This leads

to the main convergence result proved in [22] and restated as Theorem 4.1.

Theorem 4.1 If x̂ is any limit of a refining subsequence, and if d is any direction

in D for which f at a poll step was evaluated infinitely often in the subsequence,

and if f is Lipschitz near x̂, then the generalized directional derivative of f at x̂ in

the direction d is nonnegative.

Theorem 4.1 is a directional result only, and is unsufficient for convergence to a

stationary point. However, since the optimization problem considered in this thesis

has only one decision variable, D = {−1, 1} is the entire set of normalized positive

spanning directions in R and Theorem 4.1 applies to both of them. Audet [20] proved

convergence to a Clarke [46] first-order stationary point in the one-dimensional case

for unconstrained problems. A similar argument based on [14] can be made to show

convergence under mild conditions in the one-dimensional case to a local minimizer.

GPS was extended in [78] and [79] to problems with bound and linear con-

straints, respectively. To handle these constraints while maintaining convergence

properties, infeasible points are discarded without being evaluated, and search di-

rections are chosen so as to conform to the geometry of the nearby constraint bound-
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aries. In one dimension, conforming directions are moot, since there are only two

normalized directions. Extending GPS to general nonlinear constraints requires aug-

mentation of the algorithm, such as in [80], [24], and [23]; however, in one direction,

this becomes moot for the same reason as that for linear constraints. Thus, in one

dimension, it is sufficient to use the basic GPS algorithm while ignoring infeasible

points.

The NOMADm optimization software [11, 13], written in Matlabr was used

to implement the pattern search procedure used in this thesis. NOMADm is specifi-

cally designed to numerically solve nonlinear and mixed variable optimization prob-

lems via an implementation of the class of mesh adaptive direct search (MADS)

algorithms. GPS is a subclass of MADS [25], in which poll directions are restricted

to a uniformly bounded finite set. In fact, in one dimension MADS and GPS essen-

tially coincide.

The mathematical model presented in chapter 3 must be converted into a

Matlab function that produces Ā(τ) for the NOMADm optimizer. This is ac-

complished by first directly implementing the equations of chapter 3 into a single

Matlab function. However, naively computing the equations in their necessary or-

der proved too computationally expensive and resulted in excessive run times. This

motivated the need to investigate a number of computational improvements which

are discussed in section 4.3.

4.2 Numerical Computation of Ā(τ)

Recall from chapter 3 that computation of Ā(τ) requires values for p, Ei [F1]

and Ei [R1]. First, a direct analytical implementation is presented that simply com-

putes the equations in the necessary order to first obtain P , which leads to the

vector of stationary probabilities p. Subsequently, the conditional expected time

to the first failure Ei [F1] and first replacement Ei [R1] are computed. Direct com-
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putation turns out to be extremely computationally expensive, especially when the

dimension of Q or the value of Λ is large. Thus, several computational techniques

were developed and incorporated in an attempt to improve the algorithm. This is

followed by a more detailed analysis of two functions which account for the majority

of the computational complexity: the matrix exponential and Laplace transform.

In order to compare the computational complexity of various algorithms analy-

sis, techniques have been developed to understand complexity growth for very large

input values. The most common notation used in complexity analysis is referred to

as big-oh and is defined as follows [121]. Given any two functions f and g, then f(n)

is O(g(n)) if there exist positive constants C and k such that:

f(n) ≤ Cg(n) whenever n > k, and {n, k} ⊆ Z.

While big-oh notation provides insight into the relative rates of growth between al-

gorithms, it does not describe the actual characteristics for best and average cases

for individual run times. First, many algorithms are simply too complex to analyze

mathematically since they are often comprised of many sub-functions implemented

in different languages. Second, it is difficult to qualitatively account for memory

management and the interaction between hardware architectures and specific codes.

For example, complexity analysis cannot factor in the effect on paging as virtual

memory usage grows. Third, asymptotic complexity analysis does not give insight

into the average run time. Fourth, asymptotic complexity analysis does not give

any indication of the run time or efficiency of a particular algorithm, only an un-

derstanding of how complexity growth varies with increasing input. For example,

one algorithm may be extremely fast and another cripplingly slow at a particular

computation but have the same algorithmic order. Because of the disadvantages

discussed above, only computational benchmarks comparing the actual run times of

distinct algorithms, when combined with asymptotic complexity analysis, provide

good insight into the relative performance between algorithms.
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Directly computing the mathematical model presented in section 3.1 to solve

the nonlinear program is extremely computationally expensive. The full algorithm is

listed in Algorithm 2. It is comprised of five different stages, each with a particular

computational result. The first stage populates the transition probability matrix P

according to equation (3.7). The complexity of this stage is O(l2γρ(l)) if O(ρ(l))

is the state-dependent computational burden for the particular matrix exponential

algorithm needed to calculate πi,k(t). This stage is the most computationally complex

in the algorithm. Within the third nested loop there are two Laplace inversion calls

and one matrix exponential call on lines 6 and 7 of Algorithm 2, which account

for the primary computational expense of the entire algorithm. For this reason,

algorithms for these two function calls are examined carefully in section 4.4.

The complexity analysis above reveals sensitivity to the state-size when build-

ing the transition probability matrix P . For each element of P , equation (3.7)

must be computed. The variable γ defined by equation (3.8) represents the number

of inspections that can occur if the stochastically degrading component reaches its

maximum possible lifetime. The maximum lifetime Λ is x/r1. Therefore if Λ is much

larger than τ , γ is also large. Since equation (3.7) involves a summation of γ terms,

the overall computational expense is very sensitive to this quantity.

Stage 2 of the algorithm, described on lines 13-16, computes the stationary

distribution p of P . This is simply the solution to the equations,

πj =
∑
i∈S

πipij

∑
i∈S

πi = 1

presented in [72]. These steps are easily implemented and do not incur much com-

putational cost.

Stages 3 and 4 compute equations (3.13) and (3.14) which produce Ei [F1]

and Ei [R1], respectively. Equation (3.13) is implemented on lines 17 to 19 and

equation (3.14) is implemented on lines 20-26. The primary driver for computational
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1: Input: τ
2: γ ← dx/(r1τ)e
3: for i = 1 to l do
4: for k = 1 to l do
5: for j = 2 to γ do
6: π ← expm(Qjτ)

7: Xj ←
(
L−1

{
u−1G̃i(u, jτ)

}
− L−1

{
u−1G̃i(u, (j − 1)τ)

})
πi,k

8: end for
9: π ← expm(Qτ)

10: Pi,k ←
∑
X + πi,k

(
L−1

{
u−1G̃i(u, τ)

})
11: end for
12: end for
13: P̂← P− I
14: Set all elements in the last column of P̂ to one
15: Initialize p and set the last element to one
16: p← p P̂−1

17: for i = 1 to l do

18: Set the ith element of E [F1] to L−1

{
u−1ei

(
uRD −Q− λ(F̃D(u)− I))

)−1

e

}
19: end for
20: for i = 1 to l do
21: for j = 1 to γ − 1 do

22: Sj ← L−1
{
u−1G̃i(u, jτ)

}
23: end for
24: Set the ith element of E [R1] to τ(γ −

∑
S)

25: end for
26: A← (p E [F1])/(p E [R1])

Figure 4.2 Algorithm 2: Direct algorithm for evaluating Ā(τ).
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complexity in these two stages is the Laplace transform inversion algorithm which

is examined in section 4.4. The complexity of stage 1 is much greater than either of

these stages, even though the asymptotic complexity of the numerical computation to

evaluate equation (3.14) is only of order O(l(γ−1)). The final stage of Algorithm 2 is

to bring together Ei [R1], Ei [F1] and p to compute the limiting average availability Ā

for a particular τ . Equation (3.4) is computed on line 26 without much computational

expense.

4.3 Computational Enhancements

Algorithm 2 was presented as the objective function for NOMADm and several

numerical experiments were performed, each resulting in excessively long run times,

even for small state sizes. This motivated the need for a more efficient implemen-

tation of the objective function. This section documents several strategies taken to

reduce the computational complexity of Algorithm 2, since this should reduce overall

run times for the optimization procedure.

The first strategy was to focus on implementing a series of general compu-

tational improvement techniques. Matlab is an interpretive language with more

computational overhead than an associated compiled language. Consequently, there

are several techniques that take advantage of the way Matlab executes code to

vastly improve efficiency. These techniques include the use of functions, vectoriza-

tion, and use of the most appropriate operator.

One early improvement made was to place all code into functions. Matlab

code executes more quickly when implemented in a function rather than a script.

Every time a script is used, the entire script is loaded into memory and evaluated

one line at a time with a large amount of overhead processing. Functions, on the

other hand, are compiled into pseudo-code and loaded into memory once, with pri-
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vate variables accessible only to the current function. Therefore, the more often a

procedure is called, the greater the advantage of using a function instead of a script.

As Matlab is designed to operate on matrices, it is important to use vector

operations whenever possible. Vectorization can increase computational speed by

several orders of magnitude. For example, while for loops are intuitive, they take

much longer to execute, since each line must be sent separately to the processor. If a

vector operation is used instead, Matlab processes this operation as a single com-

mand. Vectorization was most helpful in the Laplace transform inversion algorithm

where several for loops were replaced by different vector commands.

An example of replacing an inefficient operator with one more suited to the

computation at hand was to replace the inv command on line 16 of Algorithm 2

with the matrix right division operator. This exchanges the full LAPACK inversion

algorithm for a custom Matlab procedure that exploits the structure of the matrix

to find the most efficient method of solving the linear system (such as Gaussian

elimination with partial pivoting if the matrix is square).

The second strategy used to increase computational speed was to carefully

analyze locations of heavy computational cost and more efficiently implement them.

This included relocating computations from the more frequently called sections of

Algorithm 2 to a pre-processing block that is only executed once per function call.

NOMADm provides for the use of a parameter file that loads at the start of a run, and

each value that requires computation only once was moved to this file. Since memory

retrieval is much faster than computations, even seemingly small computations were

moved into this file.

The Matlab profiler measures the computational cost of each line of code.

When applied to the Matlab implementation of Algorithm 2, line 7 was discov-

ered to be a key computational cost with two different inversion calls. Since the

difference between the two calls was one iteration, this line was changed to evaluate

one inversion call and to take the differences all in one step outside the third nested
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loop of stage one in Algorithm 2. This led to a subsequent analysis showing that,

by adjusting the indices of the inner loop, one expm call could be removed from the

second nested loop of this same stage. A similar analysis was conducted throughout

all sub-functions.

While these strategies focused on making Algorithm 2 run more quickly, the

third strategy focused on changing the algorithm itself to improve efficiency. From

Matlab profiler measurements, it was clear that most computational cost was com-

ing, as expected, from the third nested loop of stage 1. Upon observation, the

difference between each function call and the next quickly approached zero and de-

creased exponentially. This formed the central idea for the third strategy, to truncate

this series at a given tolerance level ε, effectively turning Algorithm 2 from a direct

method to an iterative one. The resulting truncation method provided savings pro-

portional to increasing l and Λ. The truncation method can dramatically reduce the

number of terms which must be summed by approximating the (i, k)th element of

P according to

pi,k =

γ∑
n=1

πi,k(nτ)Pi[R1 = nτ ]

≈
N∑

n=1

πi,k(nτ) (Gi(x, nτ)−Gi(x, (n− 1)τ))

where N < γ is chosen so that Gi(x,Nτ)−Gi(x, (N−1)τ) ≤ ε. A sensitivity analysis

was conducted and the value ε = 10−4 was chosen in order to improve computational

speed to the maximum degree possible, while not introducing noticeable error.

4.4 Matrix Exponential and Laplace Transforms

The final strategy for improving computational performance was to analyze the

two most costly functions: the matrix exponential and the inverse Laplace transform.
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1: Input: τ
2: Precalculate: E [F1] for all states
3: Set: γ = dx/(r1τ)e, p
4: for w = 1 to l do
5: Clear α and set the nth element of α to 1
6: for k = 1 to l do
7: for n = 1 to γ do
8: π ← Matrix Exponential of Qt

9: Xn ← L−1
{
u−1G̃i(u, nτ)

}
10: Pn ← πw,k

11: if Xn −Xn−1 ≤ ε then
12: Break
13: end if
14: end for
15: pw,k ←

∑γ
r=2 [(Xr −Xr−1)Pr] + P1X1

16: end for
17: end for
18: P̂ ← P − I
19: Set each element of the last column of P̂ to one
20: p← p/P̂
21: for i = 1 to l do
22: for n = 1 to (γ − 1) do

23: Sn = L−1
{
u−1G̃i(u, nτ)

}
24: end for
25: Set the ith element of E [R1] to τ(γ −

∑
S)

26: end for
27: Availability ← −(p E [F1])/(p E [R1])
28: Cost ← (p (cD(E [R1]− E [F1]) + cIbE [R1] /τc+ cRe))/(p E [R1])− B

Figure 4.3 Algorithm 3: Improved algorithm to compute Ā(τ).
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The following subsection reviews the associated numerical methods for each of these

functions.

4.4.1 Computation of the Matrix Exponential

In order to numerically calculate the availability measures discussed in section

3.1, it is necessary to obtain the transition probability matrix for {ξn : n ≥ 0},

which is computed according to equation (3.7). The matrix exponential is also

a necessary operation to compute a component lifetime, per equation (3.3). The

matrix exponential is defined by

eQ t ≡
∞∑

k=0

(Q t)k

k!
. (4.5)

In order to compute the values of P per equation (3.7), equation (4.5) must

be numerically computed for each unique combination of states and for each unique

value of τ from 1 up to γ. The limiting complexity of matrix exponential evaluations

isO(l2γ) or potentially varying cubically with the input. Therefore, for environments

with even moderate state sizes (e.g., more than 5) and moderately-sized values of

γ, the matrix exponential is a key driver of computational requirements. For this

reason, a thorough analysis of the matrix exponential was conducted.

Numerous techniques for computing the matrix exponential have been pre-

sented in the literature [99, 133, 72, 128, 42, 92]. Moler and Van Loan [92] in

particular surveyed nineteen different methods. A common method shared by many

solutions uses matrix-scaling and powering to first form eQt. Ordinary differential

equation (ODE) solvers, can compute the matrix exponential directly without ex-

plicitly forming eQt. According to [135], the stability of the matrix exponential is

sensitive to perturbations in Q, with the norm of Q being the most critical measure

of stability. According to [135], if Q is a defective matrix (i.e., Q does not have a full

set of eigenvectors), then the matrix exponential is relatively poorly conditioned.
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Several methods were examined for computing the matrix exponential, each

with a distinct set of properties. Specifically, these methods include a simple Tay-

lor series expansion, the method of eigenvalues and eigenvectors, the uniformization

method and the Padé approximation via repeated scaling and squaring. Computing

the matrix exponential using these four different methods serves two primary pur-

poses. First, since the matrix exponential is critical to the overall cost of computing

Ā(τ), it is important to use the most stable and efficient method available. Second,

by using four different methods, it is possible to compare results and mitigate the

risk of a particular method causing unacceptable error propagation or instability.

Computation of the matrix exponential via Taylor series is the most simple, but

often slowest and least accurate method studied. According to the classic text [57],

it is only useful for theoretical comparisons. Moler and Van Loan [92] demonstrate

that this implementation is subject to catastrophic cancellation as truncation errors

are greatly magnified as the factorial of the denominator increases. Despite these

shortcomings, the simplicity of the Taylor series method facilitates error analysis

and provides a lower-bound from which to understand other methods. A simple

expression from which to calculate bounds on the Taylor series truncation error is

given in [81]. Furthermore, the Taylor series method illustrates the classic definition

for the matrix exponential and exposes pitfalls of computational round-off error.

The theory of the Taylor series method is straightforward. From elementary

calculus, for any matrix Υ and scalar t one may compute eΥt by the sum of powers,

eΥt =
∞∑

k=0

(Υt)k

k!
. (4.6)

The most simple way to deal with equation (4.6) is to add terms until there is no

machine-detectable contribution by subsequent terms. The marginal contribution of

each term is defined by the matrix F and the cumulative sum of the expansion is

defined by the matrix E. By establishing a non-strict boundary and using the matrix

4-17



F← I
k ← 1
while ‖F‖1 > 0 do

E← E + F
F← QF/k
k ← k + 1

end while

Figure 4.4 Algorithm 4: Matrix exponential via Taylor series.

1-norm (i.e., the largest column sum), the condition ‖F‖1 > 0 stops computation

when all components of F are zero to machine precision. The MathWorks corporation

provides a simple Matlab implementation of the Taylor series method which is

summarized in Algorithm 4. Results of the Taylor series method for five different

example problems are presented in chapter 5.

Matrix exponentiation via eigenvalues and eigenvectors is discussed in [72]

and [128]. It is most stable with a small state size and when Υt has distinct eigen-

values [128]. Unlike the Taylor series and uniformization methods, the method of

eigenvalues and eigenvectors can handle large values of t, as is often the case for re-

liability applications. However, a small matrix size is preferred, since the size of the

matrix significantly impacts the cost of determining eigenvectors and eigenvalues.

The method of eigenvalues and eigenvectors is built on the relationship that

the matrix exponential of a diagonal matrix is the diagonal matrix of element expo-

nentials. Consequently, the matrix exponential is easily computed if the eigenvalues

of Q are known. Assume Q ∈ Rn×n has n distinct eigenvalues νj, j = 1, 2, . . . , n.

Then by definition [89], if Q is not defective (i.e., it has a full set of eigenvectors),

then

Qjsj = νjsj, j = 1, 2, . . . , n,

or

Q = SΓS−1, (4.7)
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where Γ = diag {ν1, ν2, . . . , νn} and S is the full matrix of eigenvectors in where

the jth column is the right eigenvector sj corresponding to the eigenvalue νj, j =

1, 2, . . . , n. Exploiting the properties of diagonal matrices, equation (4.7) can be

written more generally [72] as,

Qk = SΓkS−1. (4.8)

Accordingly, equation (4.5) can be written as,

eQt = SS−1 +
∞∑

r=1

S
Γrtr

r!
S−1

= S

[
I +

∞∑
r=1

Γrtr

r!

]
S−1

= SeΓtS−1. (4.9)

Equation (4.9) is simple to calculate, since Γr = diag {νr
1 , ν

r
2 , . . . , ν

r
n} , and since the

matrix exponential of a diagonal matrix is the diagonal matrix of element exponen-

tials, it follows that

eΓt = diag
{
eν1t, eν2t, . . . , eνnt

}
. (4.10)

In Matlab, the eigenvalues and eigenvectors can be easily computed using the built-

in function eig, which uses a series of LAPACK routines to compute the eigenvalues

and eigenvectors, depending on the properties of Q. For details, see the LAPACK

user’s guide [16].

The main advantage of the method of eigenvalues and eigenvectors [134] is that

once the eigenvalues and eigenvectors are determined, the probability distribution

can be quickly calculated for any value of t in one matrix-vector multiplication.

However, in this research, the transient solution is required only at the single terminal

point. The primary weakness for this method is that Q must not be defective

and according to [128], a small condition number cond(S) of S (where cond(S) ≡
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[V,D]← eig(Q)
E← V diag {exp(diag {D})} /V

Figure 4.5 Algorithm 5: Matrix exponential via eigenvalues and eigenvectors.

‖S‖ ‖S−1‖) is required to prevent small rounding errors from compounding. Moler

and Van Loan [92] demonstrate the effect of large condition numbers of S with

numerical examples. A Matlab implementation of this method is summarized in

Algorithm 5. Results from the implementation of this algorithm are presented in

chapter 5.

The uniformization method (also called Jensen’s method) is thoroughly dis-

cussed in the literature [34, 72, 99, 128, 73, 85]. One of the key strengths of uni-

formization is its simple implementation. It often outperforms other methods [128]

and performs especially well when Q is large [73]. Furthermore, uniformization re-

quires only modest memory allocation and provides an extremely stable and efficient

method of computing the matrix exponential [72]. The primary disadvantage is that

large values of νt cause considerable roundoff errors. According to Kulkarni [72], if

νt > 250, e−νt is potentially less than the smallest computable floating point number

which is often on the order of 10−300.

The key requirement for uniformization is that the diagonal elements of Q be

bounded; i.e., if ηjj is the jth diagonal element of Q, j = 1, 2, . . . , n, then

‖ηjj‖ ≤ ν <∞ (4.11)

must hold for each state j and for some ν > 0. If equation (4.11) holds, Q is said to

be uniformizable, which is always the case if the state space is finite.

Kulkarni presents the following procedure in [72]. First, set ν to

ν = max
1≤i≤l

{−ηii} , (4.12)

4-20



and define the discretized stochastic transition probability matrix Υ as

Υ ≡ I +
1

ν
Q, (4.13)

which produces Q = ν(Υ− I). Since, by the properties of exponentials,

eQt = etνΥ−tνI = e−tν e(tν)Υ,

the uniformization equation is expressed as

Υ(t) = exp {Qt} =
∞∑

k=0

Υke−νt (νt)
k

k!
(4.14)

where the infinite sum in equation (4.14) contains the Poisson probability mass

function,

Pr {N(t) = k} =
(νt)k

k!
exp (−νt) .

A distinct advantage of uniformization is that it lends great control over trun-

cation error. Stewart [128] presents theoretical bounds for the truncation error, yet

due to machine round-off errors, the computed result may be much greater than

these bounds. However, Stewart [128] states that roundoff error is generally not a

problem since numerical operations involve no negative numbers without subtraction

and ‖Υ‖ ≤ 1. In order to determine at which value M to truncate the sum, so that

error does not exceed some value ε, the Poisson distribution can be used [72] in the

equation,
M∑

k=0

(νt)k

k!
e−νt > 1− ε. (4.15)

The uniformization method, shown in Algorithms 6 and 7, was implemented

in Matlab as presented in [99] and [128]. Algorithm 6 determines the value of M in

lines 4 through 9, the value of Υ according to equation (4.13) in line 10, and the value

of ν according to (4.12) in line 3. Algorithm 6 is called only once per calculation
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of Ā(τ). The uniformization equation (4.14) is implemented in Algorithm 7 and is

called with every matrix exponential call. Further code was implemented on the

recommendation of [99] to condition the output to ensure that Υ retains properties

of a stochastic matrix. Stewart [128] shows that the complexity of the uniformization

method is O(n2) and requires M(l + nz) multiplications, where nz is the number of

nonzero elements in Υ.

Input: τ , Q, ε
Set: K = 0, υ = 1 and σ = 1
ν ← max(− diag {Q})
η ← (1− ε)/(exp(−ντ))
while σ ≤ η do
K ← K + 1
υ ← (υντ)/K
σ ← σ + υ

end while
Υ← (ν−1)(νI + Q)

Figure 4.6 Algorithm 6: Determine uniformization parameters.

Input: τ , ν ,Υ ,n
Set: y = I
for k = 1 to n do

y ← (yΥντ)/k
π ← π + y

end for
E← exp (−ντ) π

Figure 4.7 Algorithm 7: Matrix exponential via Uniformization.

The final matrix exponentiation method is the Padé approximation via re-

peated scaling and squaring. This method is the default executed by the Matlab

expm command and is the one recommended by Moler and and Van Loan [92]. The

Padé approximation, without a method to control roundoff error, suffers the same

fate as the Taylor series method in that roundoff error worsens as ‖Q‖ t increases [27].
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This error can be mitigated by exploiting a property of the exponential function,

exp(Q) = exp(Q/n)n. (4.16)

A value of n can be chosen to be a power of two for which exp(Q/n) can be accu-

rately computed [92]. From this, the matrix exp(Q/n)n can be formed by repeated

squaring. Thus, this mechanism scales Q by a power of two to reduce the norm

to order one, computes a Padé approximation to the matrix exponential, and then

repeatedly squares to undo the effect of scaling.

A development of the Padé approximation follows. The (a, b) Padé approxi-

mation to the matrix exponential is, by definition [17], the unique rational function,

Ra,b(Qt) ≡
Na,b(Qt)

Da,b(Qt)
, (4.17)

corresponding to constants a and b. The (a, b) approximants are known as [61],

Na,b(Qt) =
a∑

j=0

(a+ b− j)!a!
(a+ b)!j!(a− j)!

(Qt)j, (4.18)

and

Da,b(Qt) =
b∑

j=0

(a+ b− j)!b!
(a+ b)!j!(b− j)!

(−Qt)j. (4.19)

According to [128], when a = b the Padé approximation becomes the diagonal

Padé approximation method, in which case equation (4.17) and equation (4.18)

become

Ra,a =
Na,a(Qt)

Na,a(−Qt)
(4.20)

with,

Na,a(Qt) =
a∑

j=0

(2a− j)!a!
(2a)!j!(a− j)!

(Qt)j. (4.21)
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The diagonal Padé approximation is more stable than other choices, since in Markov

chain problems, the eigenvalues of the initial-value problem are found in the left

half-plane, causing error in the approximates of Ra,b(Qt) [92]. If a > b, cancelation

problems can lead to large roundoff errors, and if a < b, Da,b(Qt) may be badly con-

ditioned [92]. Furthermore, a higher-order method is obtained with the same amount

of computation, since the same amount of work is needed to compute Raa(Qt), and

this approximation has order 2b > a+ b.

Equation (4.21) can be implemented efficiently as,

Raa =



I + 2

(Qt)

a/2−1∑
k=0

c2k+1(Qt)
2k

a/2∑
k=0

c2k(Qt)
2k − (Qt)

a/2−1∑
k=0

c2k+1(Qt)
2k

if a is even

−I− 2

(Qt)

(a−1)/2∑
k=0

c2k(Qt)
2k

(a−1)/2∑
k=0

c2k+1(Qt)
2k −

(a−1)/2∑
k=0

c2k(Qt)
2k

if a is odd

(4.22)

where ci is defined by,

c0 ≡ 1 ci ≡ ci−1
a+ 1− i

i (2a+ 1− i)
, i = 1, 2, . . . .

As described above, a major disadvantage of using the Padé method is that

the accuracy of the approximation decreases with distance from the origin and thus

degrades with the increasing size of ‖Qt‖2. However, if for a and b are sufficiently

large, or if the eigenvalues of Qt are negative, then the nonsingularity of Da,b(Qt) is

assured [92]. Therefore, Padé approximation can be used if ‖Qt‖ is not too large.

Moler and Van Loan [92] perform a comparative analysis of the efficiency of

the Padé and Taylor approximants and analyze their relative compatibility with the

squaring and scaling method. They find that the combination of the Padé approx-
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Require: Scale Qt by power of 2 so that ‖Qt‖ < 1/2
Input: Qt
Set: b = 6, a = True, c = 1/2
{Compute Padé approximation for exp(Qt)}
X ← Qt
E← I + cQt
D← I− cQt
for k = 2 to b do
c← c(b− k + 1)/k(2b− k + 1)
X ← QtX
ψ ← cX
E← E + ψ
if a is True then

D← D + ψ
else

D← D− ψ
end if
Set a to the Boolean conjugate of its current value

end for
E← D/E
{Undo scaling by repeated squaring}
for k = 1 to s do

E← E2

end for

Figure 4.8 Algorithm 8: Padé Approximation via squaring and scaling.

imation with repeated squaring and scaling is the most stable and computationally

efficient method. Moreover, the Matlab expm command employs the Padé approx-

imation via repeated squaring and scaling. Matlab’s implementation cites [92] and

[59], with guidance from Ward [140], as is detailed in Appendix A. Their procedure

is demonstrated in Algorithm 8.

4.4.2 Numerical inversion of Laplace transforms

In order to compute the numerical inversion of the Laplace transforms in equa-

tion (3.15), a method provided by Abate and Whitt in [5] was chosen. In [5] two

inversion algorithms are presented, both variants of the Fourier-series method. The
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Fourier-series method is the term used to describe the process of implementing the

Fourier series of an associated periodic function to numerically integrate via trape-

zoidal integration. The error for this algorithm is bounded only partially by using

the Poisson summation formula to identify the discretization error associated with

the alternating series in the algorithm provided by the trapezoidal rule.

The inverse Laplace transform is defined as,

L−1
{
f̂(s)

}
= f(t) =

1

2πi

∫ a+i∞

a−i∞
estf̂(s) ds, (4.23)

where f̂(s) is the Laplace transform of the function f(t), and i =
√
−1. If f(t) is

a real-valued function, the right-hand side of equation (4.23) can be expressed per

[52] as
2eat

π

∫ ∞

0

Re
[
f̂(a+ iu)

]
cos(ut) du (4.24)

where Re[·] denotes the real part of a complex number.

In practice, explicitly computing equation (4.24) is difficult and often not pos-

sible, requiring the use of numerical methods. There is a significant body of work in

the literature on various techniques to numerically evaluate equation (4.24) such as

[132, 8, 7, 6, 9, 5, 58, 3, 4, 2, 141, 1]. Most of these articles apply the finite fourier

cosine transform, which relates directly to the Laplace transform. Dubner and Abate

introduced an approximation formula in their seminal paper [52], using this method

to approximate equation (4.24) to any desired accuracy according to the following

formula,

f(t) ≈
∞∑

n=0

eatgn(t)

=
2eat

T

[
1

2
Re

{
f̂(a) +

∞∑
k=1

Re

{
f̂

(
a+

kπi

T

)}
cos

(
kπ

T
t

)}]
(4.25)
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where gn(t) is one of an infinite number of even periodic functions, each with pe-

riod 2T . Equation (4.25) is actually the the trapezoidal rule [38] applied to equa-

tion (4.24), which is the foundation upon which most numerical Laplace transform

inversions are implemented.

However, numerous other methods have been implemented both by extending

the method of [52] into multiple dimensions and attempting to use other methods

such as Laguerre functions [141]. However, methods employing Laguerre functions

perform poorly on problems with large values of t, and further problems are intro-

duced by their non-geometric convergence [120].

In this thesis, Laplace transforms are inverted using an algorithm of Abate and

Whitt [5], which uses a variant of the Fourier-series method specifically tailored to

Laplace transforms of probability distributions. Abate and Whitt [5] present two

distinct methods to invert equation (4.24). The first uses the Bromwich integral

[116], the Poisson summation formula, and the Euler summation, while the second

uses the Post-Widder formula, the Poisson summation formula, and the Stehfest

enhancement [2].

Equation (4.24) can be evaluated by the trapezoidal rule with step size h =

π/2x and a = A/2x, yielding the following series,

fh(x) =
eA/2

2x
Re[f̂ ]

(
A

2x

)
+
eA/2

x

∞∑
k=1

(−1)k Re[f̂ ]

(
A+ 2kπi

2x

)
. (4.26)

Since equation (4.26) involves an infinite sum, Abate and Whitt [5] chose the Euler

summation acceleration technique due to its simplicity and adequate computational

efficiency. Defining sn(x) as the approximation to fh(x) in equation (4.26) via Euler

approximation techniques, sn(x) becomes

sn(x) =
eA/2

2x
Re[f̂ ]

(
A

2x

)
+
eA/2

x

n∑
k=1

(−1)kak(x), (4.27)
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where ak(x) is defined as

ak(x) = Re[f̂ ]

(
A+ 2kπi

2x

)
. (4.28)

Since the Euler summation is applied to m terms after an initial n, the full Euler

sum approximation is

E(m,n, x) =
m∑

k=0

(
m

k

)
2−msn+k(x), (4.29)

and Abate and Whitt [5] recommend the values m = 11 and n = 15. Equations

(4.27), (4.28) and (4.29) were implemented in the Matlab function invt.m, given

in Appendix C.

Because the Laplace transform inversion algorithm must be called with each

function call in the main availability computation (Algorithms 2 and 3), it is critical

to minimize the computational time of the inversion algorithm. The inputs to the

inversion procedure are: the function to be evaluated (in this case, the component

lifetime distribution function Gi(x, t)), the initial probability distribution vector ei

and the current inter-inspection interval τ . Since the computational complexity of

this algorithm does not vary with the input size, it is O(1).

Even with an asymptotic complexity of O(1), (the algorithm was implemented

in UBASIC by Abate and Whitt in [5]) it contains over 140 lines of code. In order

to reduce this computational expense, quantities that only needed to be computed

once were pre-calculated and placed outside of Algorithm 9. In [5], Abate and Whitt

recommended values for the constants for the Euler summation acting as an average

of the last m partial sums of a binomial probability distribution with parameters m

and p = 0.5. They applied the Euler summation to m terms after an initial n of

equation (4.29) and recommended values of m = 11 and of n = 16. For notational

simplicity and computational savings, they set the quantity 211 in equation (4.29) to
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Input: EG, z0, nτ
Load: χ, σ, u, c, µ, h, ν
ς ← G(χ,α, nτ, f(χ))/2
for k = 1 to ν do
ς ← ς + (−1)k G(χ+ khi,α, nτ, f(χ+ khi))

end for
Store ς as the first element of σ
for k = 1 to 12 do
n← ν + k
σ(k + 1)← σ(k) + (−1)nG (χ+ nhi,α, nτ, f(χ+ nhi))

end for
Output ← u(c · σ)/µ

Figure 4.9 Algorithm 9: Laplace transform inversion algorithm.

µ−1 and A = 8 ln(10). The quantity, (eA/2)/x in equation (4.27) is assigned to the

variable u and the quantity χ = A/(2x) and h = π/x.

In this chapter, typical optimization strategies were surveyed. Generalized

pattern search was presented as a suitable optimization algorithm, and a specific

Matlab implementation was discussed. A direct and improved algorithm for com-

puting Ā(τ) was presented with a discussion of three different computational im-

provement strategies applied to the computation of Ā(τ), with specific emphasis on

the matrix exponential and numerical Laplace inversion.

The next chapter illustrates the implementation of the solution procedures

presented here. After a description of the overall experiment, the pattern search

methodology used to maximize Ā(τ) will be discussed. Also, the results from the

matrix exponential study will be presented. Five different cases will be considered,

each with a distinct set of parameters. Primarily characterized by the number of

environmental states, the cases were designed to test the broad applicability of each

chosen methodology. A particular emphasis is placed upon the computational im-

provements obtained in each case by the use of the truncation method.

4-29



5. Numerical Results

This chapter summarizes and discusses the results of a series of numerical

experiments involving the maximization of Ā by selection of an appropriate inter-

inspection interval, τ . All numerical computations were performed in Matlab. The

NOMADm implementation of the GPS algorithm was used to solve for the approx-

imate optimum inter-inspection interval. Results are presented for five scenarios

involving degradation from environment-dependent linear wear and random shocks.

Two experiments were designed to illustrate the optimization problem and to

evaluate particular computational improvements. The first experiment evaluated

four different implementations of the matrix exponential algorithm in order to de-

termine the most efficient and stable implementation. The meaning of these terms

in the context of this research will be discussed below. The second experiment

examined the performance gains provided by the truncation method discussed in

chapter 4. The truncation method used only the most suitable matrix exponential

algorithm resulting from the previous experiments.

In numerical analysis, the stability of an algorithm refers to its accuracy. A

given algorithm is numerically stable if it produces a good approximation to the true

solution [77]. Since solutions produced in this thesis are numerical approximations,

stability will refer to the particular capability of an algorithm to arrive at a solution

consistently produced by algorithms of known stability. Often a given quantity can

be numerically computed in several different ways, all of which are algebraically

equivalent, but in practice yield different results because one method is more stable

than another. An algorithm will be termed unstable if it does not return an answer,

due to a undesired halt in code execution. If one algorithm is more efficient than

another, it more effectively uses computational resources (such as time and storage)

in order to perform a given computation [143]. In this research, efficiency is measured
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by a combination of algorithmic complexity and the elapsed run time required to

execute an algorithm.

Both experiments were conducted in the Matlab computing environment on

a Silicon Graphics (SGI) Origin 3900 maintained by the Air Force Aeronautical

Systems Center. The Origin 3900 is a large-scale server running the custom SGI

unix-based operating system IRIX with over 2048 processors providing a peak com-

putational power of 2.9× 1012 floating point operations per second (FLOPS). Each

processor is a SGI MIPS R16000 with a clock speed of 700 MHz and one gigabyte

of dedicated random access memory (RAM). A user is given exclusive access to each

allocated processor and its associated RAM for computational use. This is useful

when comparing the computational time required by individual runs, as there are

no fluctuating background processes interfering with benchmarks, as is the case on

a personal computer. The relative machine accuracy for floating point numbers on

the Origin 3900 using Matlab is 2.2204E−16. The primary benchmark to measure

a given algorithm’s performance was the clock-time elapsed during each individual

run, denoted by ρ.

Five different cases were constructed, each with a distinct combination of char-

acteristic parameters to fully test the algorithms presented over a wide range of

scenarios. These parameters are: the generator matrix for the environment with

an associated linear wear rate for each state, the shock distribution and Poisson

arrival rate, along with the critical damage threshold for the system. Parameters

were chosen in order to demonstrate the optimization algorithms over a wide range

of possibilities and are presented in the following sections in order of the associated

dimension of the random environment.

In the seven-, ten- and twenty-state cases, the transition rates present in the

generator matrix Q were randomly generated using the Matlab rand function.

To create a valid infinitesimal generator matrix, a Matlab script set the diagonal

elements to the negative of the sum of the remaining elements in the row. The
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Matlab rand function uses a modified version of Marsaglia’s [86] subtract with

borrow algorithm and can theoretically generate over 21492 values before repeating

itself. Other parameters were chosen in order to cover a range of distributions and

wear rates along with varying values of the maximum lifetime Λ = x/r1. This ratio is

of particular importance, since computational requirements are extremely sensitive

to Λ when combined with small values of τ .

In order to control and initiate batch runs, a series of scripts in the Perl com-

puter language were produced to prepare the file structure for each run and interface

with the MSRC load sharing facility (LSF) to submit jobs. Batch runs generating

replications were necessary, since the elapsed clock-time provides the computational

basis of comparison between any two algorithms, and there is an inherent noise due

to the physical characteristics of an individual processor that can be approximated

as random noise present in computational run times [60]. The effect of noise becomes

more pronounced as the number of different processors used in the experiment in-

creases. The noise present in computational run times on large-scale servers is due

to interactions from an number of processes [60]. Most prominent among these are

access to level-3 cache and differences in the characteristics of the various processors

performing runs in the server. Since a large-scale server contains a number of dif-

ferent processors, each with a unique actual processing speed, there is an inherent

noise in results, even when processors are dedicated to a particular user and all with

equal processing speeds.

For these reasons, a statistical analysis was conducted to determine the number

of runs required, and the main batch generation script generated 30 jobs for each

combination of method and environmental scenario. This number was chosen in or-

der to provide a sufficiently small confidence interval for the computational run time

while still working within the budget available for computing resources. After com-

pletion of all experiments, a shell script collected all data, which were then processed

and analyzed on a personal computer using a custom Matlab post-processing script.
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The first experiment evaluated four different methods to compute the matrix

exponential as discussed in chapter 4. These methods are the Taylor series, the

method of eigenvalues and eigenvectors (EE), the Uniformization method and the

Padé approximation via repeated squaring and scaling (PSS). Each scenario was

examined and evaluated for stability and computational efficiency. In order to de-

termine the relative efficiency of the various methods, a series of heteroscedastic,

two-tailed t-tests were conducted to test the null hypothesis that there is no statisti-

cal difference between the run times of any two given methods. Confidence intervals

for ρ were computed at a 0.05 level of significance. After completion of the analysis,

the most stable and computationally efficient matrix exponentiation method was

found to be the Padé approximation via repeated squaring and scaling.

The second experiment used the results of the first to specifically consider the

computational advantage provided by the truncation method. As in the first exper-

iment, 30 runs were conducted for the baseline and truncation method for all five

cases. The baseline performed the full, direct computation, while the truncation

method trimmed all successive terms smaller than 0.0001. Similarly, a heteroscedas-

tic two-tailed t-test was conducted to ensure any improvement in computational run

time due to truncation was statistically significant.

5.1 NOMADm Configuration

This section discusses the particular configuration of NOMADm used to pro-

duce the results of the numerical experiments presented in the following sections.

The overall optimization problem was set up to work with a main function file,

named availabilityCalc, which evaluates an iterate τ and returns the correspond-

ing objective Ā(τ) and cost function values. A file named availabilityCalc x0

simply returns the initial point which is the center of the maximum lifetime (Λ) of

the component. The feasible region (with respect to bound constraints) for the deci-

sion variable is defined in a file named availabilityCalc Omega. In order to reduce
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computational complexity, all calculations requiring only one evaluation were placed

in a separate parameter file availabilityCalc Param, which returns a Matlab

structure whose fields contain all parameters used to characterize a particular sce-

nario, plus any other calculations that may be computed in advance. The use of this

file had a dramatic effect on decreasing the overall run time.

The one-dimensional poll directions for this problem were chosen as {−1, 1},

and the poll set was evaluated only until an improvement is found, as opposed to

evaluating the entire set. The initial starting point τ0 was chosen to be the midpoint

of the feasible region (0,Λ], which seems reasonable because little information is

available concerning the structure of the optimization problem. While most opera-

tionally important values of τ are small relative to the maximum lifetime, starting

at a very small value of τ significantly increases computational cost unnecessarily.

This is because the component maximum lifetime Λ remains fixed, and small values

of τ dramatically increase γ and, consequently, the computational time. Since the

pattern search method works by forming a mesh which is reduced in size as the

algorithm progresses, it is much better to approach the optimal solution and take

large steps in the potentially wrong direction where τ values are larger.

As the MADS optimizer implemented by NOMADm is an iterative method,

termination was set to occur when the mesh size shrunk below a tolerance of 10−4,

based upon some preliminary empirical studies, or when the number of function

evaluations exceeded 50,000.

NOMADm’s speed of convergence is sensitive to the settings governing mesh

control. The initial mesh size was set to ∆0 = Λ/4 as a compromise between a step

sufficiently large to quickly approach the optimal τ , but not so large as to overshoot

and end with a small mesh in the computationally expensive region where τ is small.

The mesh refining factor was set to 0.5, and no mesh coarsening was employed.

The shock distribution parameters, shock arrival rate, and critical damage

threshold for each run are presented in exact representations in Table 5.1. Cost
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Table 5.1 Key run parameters.
States Shock Distribution Shock Mean λ x min(r) Λ
2 Exp(4) 0.25 0.5 1 0.25 4
5 Er(0.2,8) 40 0.25 100 1 100
7 U(0,10) 5 1 50 2.5 20
10 Er(0.5,4) 8 1 60 0.4 150
20 Gamma(2,4) 8 1 100 0.94 106

parameters were held constant in both experiments and in all five runs. The cost of

downtime per unit time was set to 0.5 units per unit time, the cost per-inspection was

set to 1 unit and the cost of replacement was set to a fixed 5 units. The generator

matrices, linear wear rates and Laplace-Stieltjes transforms for the shock damage

magnitude are presented individually in the sections that follow.

5.2 2-State Case

The two-state case, adapted from [67], models a system that transitions be-

tween two environment states S = {1, 2}, each with a distinct rate of linear wear.

Environmental transitions occur according to the infinitesimal generator matrix,

Q =

 −25/3 25/3

25/3 −25/3

 ,
and the following linear wear rates,

r =
[

13/12 1/4
]
.

The random damage magnitude due to shocks is assumed to be distributed expo-

nentially with rate 4, and the Laplace-Stieltjes transform of this distribution is given

by

F̃y(u) =
4.0

4.0 + u
.
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Figure 5.1 Availability (-) and cost (- -) for the 2-state case.

In this example, shocks arrive according to a Poisson process with rate para-

meter λ = 0.5. The critical damage threshold level, x, was set to 1.0. From the wear

rates presented above, the minimum wear rate is 0.25 and the damage threshold is

1.0 producing a maximum lifetime of 4 time units. The budget is set to 35. A plot

of the limiting average availability and cost over several values of τ is presented in

Figure 5.1.

The results from the matrix exponentiation experiment are displayed in Ta-

ble 5.2. All four matrix exponentiation methods produce the approximate optimal

inter-inspection time of τ ? = 1.69, with the Taylor series method slightly out of

agreement with the others. The Taylor series method did result in 24 function calls

to reach an approximate optimal solution while the other three only required 23

which suggests instability with the Taylor series method as discussed in chapter 4.
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Table 5.3 displays the p-values of the methods relative to each other. From

Table 5.2, we see that the EE method requires the smallest run time, followed by the

Uniformization method. This must be stated cautiously since the EE method uses

a quickly executing compiled LAPACK function to compute the eigenvectors and

eigenvalues. According to Table 5.3 the EE method’s computational advantage is

statistically significant at a high level of significance (at least on the order of 10−10).

Also notable, is that the Taylor series is the statistically the slowest method.

Table 5.2 Two-state matrix exponentiation results.
Uniformization EE Taylor PSS

τ ? 1.6971 1.6942 1.6877 1.6942
Ā(τ ?) 0.68989 0.68980 0.68957 0.68980

ρ 12.065 11.960 13.613 12.094
σρ 0.048449 0.048628 0.032390 0.081434

Table 5.3 Two-state matrix exponential p-value comparison.
EE Taylor PSS

Uniformization 1.73E−11 4.96E−68 1.14E−10
EE 2.75E−69 7.13E−10
Taylor 9.93E−47

For the 2-state case, there is no statistical difference between the computational

run times when contrasting the baseline and truncation method with an associate

p-value from the t-test of 0.15. Both methods found the approximate optimal τ in

around 12 seconds. This is expected, since Λ and the dimension of Q are both small,

the gain provided by the truncation method is not significant. It is also important to

note that the only measure showing a measurable difference among the thirty runs

is the computational run time. There is no detectible variance between the values

of τ ? or Ā(τ ?) in this or any of the following cases. The mean run time (ρ) for

the baseline method was 12.11 seconds in the interval from 12.09 to 12.12 seconds.

For the truncation method ρ was 12.09 seconds in the interval from 12.07 to 12.11

seconds.
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Table 5.4 Two-state truncation method and baseline comparison.
Full Sum Truncated Sum

τ ? 1.694213867 1.694213867
Ā(τ ?) 0.689801977 0.689801977

ρ 12.10796217 12.09131087
σρ 0.042446646 0.046830392

5.3 5-State Case

In the 5-state case, which is also adapted from [67], shocks arrive according to

a Poisson process with a rate parameter, λ = 0.25. The critical damage threshold

level is set at x = 100, and the overall budget for inspections, down-time, and

replacements is 2 units. The generator matrix is,

Q =



−0.500 0.125 0.125 0.125 0.125

0.400 −2.000 0.400 0.600 0.600

0.025 0.025 −0.100 0.025 0.025

0.050 0.050 0.050 −0.200 0.050

1.500 1.000 1.000 1.500 −5.000


.

The condition number of Q is on the order of 1017 which could cause stability prob-

lems with the matrix exponential calculations using either the Taylor series or the

EE method. The vector of linear wear rates corresponding to each state is

r = [ 1 2 3 4 10 ].

Since the minimum wear rate is one and x = 100 the system lifetime of 100 is much

longer than in the two-state case. This causes a larger computational burden, due

to the much larger value of γ when τ is small. The shock magnitudes are Erlang

distributed with parameters 0.2 and 8, such that the corresponding Laplace-Stieltjes
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Figure 5.2 Availability (-) and cost (- -) for the 5-state case.

transform of the shock distribution is

F̃y(u) =

(
0.2

0.2 + u

)8

.

A plot of the limiting average availability and cost over time for this case is presented

in Figure 5.2.

Table 5.5 Five-state matrix exponentiation results.
Uniformization EE Taylor PSS

τ ? 5.7961 5.7961 50.154 5.7961
Ā(τ ?) 0.75477 0.75580 0.20703 0.75580

ρ 867.64 852.74 85.81 865.33
σρ 4.34 5.41 0.672 10.2

Table 5.5 displays the five-state case matrix exponential results. It is imme-

diately clear that the Taylor series method, while much faster, is producing vastly

different results which implies instability and consequently the Taylor series method
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Table 5.6 5-state p-values for matrix exponentiation performance tests.
EE Taylor PSS

Uniformization 1.1E−16 7.0E−70 0.26
EE 8.4E−66 3.4E−7

Taylor 7.7E−57

cannot be considered a viable option for this case. The three remaining options

required 73 function evaluations compared to the 27 required by the Taylor series

method.

The p-values resulting from comparative t-tests between the run times of the

various matrix exponentiation methods are presented in Table 5.6. The fastest

method was EE, with the slowest Uniformization, even though all three were fairly

close with regard to ρ. There was no statistical difference between the run times of

the Uniformization and PSS method, while the difference between all other methods

was statistically significant. Again, as in the 2-state case, all three of the remaining

methods produced very similar results for τ ?, but the Uniformization method pro-

duced a slightly different value for Ā(τ ?). This suggests the Uniformization method

may be producing some slightly inaccurate solutions. Based upon this analysis, the

EE method is the most appropriate method for the five state case.

Results from the truncation experiment are listed in 5.7. The increased state

dimension and larger value of Λ resulted in more terms being truncated, with an

associated significant decrease in run time. The truncation method provided a 17%

improvement over the baseline method. From conducting a t-test, this difference was

highly statistically significant with a p-value on the order of 10−59. For the baseline,

the mean of ρ was found to be 859.62 sec in the confidence interval from 857.07 to

862.18 sec. For the truncation method the mean of ρ was found to be 715.67 sec in

the confidence interval from 713.81 to 717.53 sec.
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Table 5.7 5-state truncation method and baseline comparison.
Baseline Method Truncation Method

τ ? 5.796142578 5.796142578
Ā(τ ?) 0.755800236 0.755800236

ρ 859.63 715.67
σρ 7.15 5.19

5.4 7-State Case

The seven-state case models an environment with a moderate number of states.

The damage threshold is x = 50 units and the Poisson shock arrival rate is λ = 1.

The budget was set to 3.5 units with the same costs present in the other cases. The

generator matrix is,

Q =



−2.85 0.55 0.88 0.14 0.47 0.43 0.38

0.73 −1.99 0.17 0.01 0.06 0.23 0.78

0.31 0.69 −4.15 0.89 0.99 0.58 0.68

0.84 0.62 0.27 −3.54 0.58 0.76 0.46

0.57 0.79 0.25 0.30 −3.01 0.53 0.57

0.37 0.96 0.88 0.66 0.52 −4.17 0.79

0.70 0.52 0.74 0.28 0.33 0.21 −2.79


with wear rates increasing linearly,

r =
[

2.5 3.5 4.5 5.5 6.5 7.5 8.5
]
.

With a minimum wear rate of 2.5 and x = 50, Λ = 20 is moderately sized. The shock

magnitude distribution is uniform over the interval [0,10] with the corresponding

Laplace-Stieltjes transform,

F̃y(u) =
e−10u − 1

10u
.
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A plot of the approximate limiting average availability and cost over time for this

case is presented in Figure 5.3.
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Figure 5.3 Availability (-) and cost (- -) for the 7-state case.

The results from the matrix exponentiation experiment are displayed in Ta-

ble 5.8. Most notably, the EE method was completely unstable and consistently

caused an exception in Matlab for all thirty runs. Even though Q has a condition

number much smaller (on the order of 105) than the first two cases, it has two imagi-

nary eigenvalues which cause the errors. While the Uniformization and PSS methods

produced the same τ ? to machine precision, the Taylor series method produced a

slightly different value. Furthermore, NOMADm performed one less iteration with

the Taylor series method implemented. Uniformization and PSS had fairly close, but

still significantly different, run times with Uniformization as the fastest method. The

Taylor series method was significantly slower. The p-values for these comparisons

are shown in Table 5.9. Based on this analysis, Uniformization is the most suitable

matrix exponentiation method for this case.
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Table 5.8 7-state matrix exponentiation results.
Uniformization EE Taylor PSS

τ ? 1.864135742 N/A 1.866210938 1.864135742
Ā(τ ?) 0.261806575 N/A 0.261735112 0.26180678

ρ 958.1941171 N/A 1028.039258 964.0604266
σρ 6.407937487 N/A 4.518813375 8.108105053

Table 5.9 7-state p-values for matrix exponentiation performance tests.
Taylor PSS

Uniformization 3.5E−45 0.002969106
Taylor 5.9E−36

The truncation method showed a 52% improvement as presented in Table 5.10.

This difference was clearly statistically significant, with an associated p-value from

the comparative t-test on the order of 10−47. The mean value of ρ for the baseline

was 966.91 seconds in the confidence interval of [961.40,972.43] seconds and the mean

ρ-value for the truncation method was 465.15 seconds in the interval [464.27,466.03].

This improvement is due to the relatively large Λ and increased state size. As

the state size grows, the number of computations of equation (3.7) grows with the

square of the increase, and any gain made by the truncation method is magnified

with each computation.

5.5 10-State Case

The 10-state case serves as a more computationally intensive challenge with

which to test the various computational improvements. The shock arrival rate is

Table 5.10 7-state truncation method and baseline comparison.
Baseline Method Truncation Method

τ ? 1.864135742 1.864135742
Ā(τ ?) 0.26180678 0.261806778

ρ 966.9130686 465.1510443
σρ 15.42015957 2.459362772
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λ = 1, and the critical damage threshold is x = 60. The total budget was set to 2

units. The following generator of dimension 10 was constructed,

Q =



−3.86 0.06 0.49 0.51 0.07 0.49 0.41 0.93 0.37 0.53

0.39 −3.37 0.04 0.45 0.38 0.50 0.56 0.26 0.25 0.55

0.25 0.46 −3.93 0.33 0.37 0.84 0.27 0.20 0.92 0.28

0.35 0.86 0.33 −4.67 0.48 0.81 0.78 0.05 0.63 0.37

0.74 0.86 0.90 0.89 −6.18 0.86 0.39 0.61 0.88 0.06

0.65 0.47 0.31 0.76 0.34 −4.30 0.03 0.55 0.64 0.54

0.94 0.79 0.25 0.88 0.25 0.57 −5.41 0.10 0.80 0.84

0.83 0.66 0.43 0.46 0.58 0.61 0.56 −4.71 0.44 0.15

0.47 0.00 0.84 0.80 0.52 0.10 0.20 0.44 −3.55 0.17

0.63 0.13 0.18 0.13 0.16 0.16 0.09 0.07 0.10 −1.65



.

The linear wear rates were designed to represent environmental states whose

damage rates are increasing in a logarithmic fashion. The vector of rates is

r =
[

0.400 0.903 1.431 1.806 2.097 2.335 2.535 2.709 2.863 3.000
]
,

with the minimum linear wear rate of 0.400 and x = 60, the maximum lifetime is

Λ = 150.

The shock magnitude is Erlang distributed with a Laplace-Stieltjes transform

of

F̃y(u) =

(
0.5

0.5 + u

)4

.

A plot of the approximate limiting average availability and cost over various values

of τ is presented in Figure 5.4.

The results of the matrix exponentiation experiment for the 10-state were re-

vealing. As in the 7-state case, some of the eigenvalues of Q are imaginary which
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Figure 5.4 Availability (-) and cost (- -) for the 10-state case.

cause the EE method to fail. The Uniformization and Taylor series method both did

not provide solutions in the 10-state case, demonstrating instability due to cumu-

lative round off error and machine tolerance limits as discussed in chapter 4. Only

the PSS method converged with a τ ? of 0.75183 and an associated Ā(τ ?) of 0.94437.

The average run time was 31574.84 sec with standard deviation of 166.32 sec.

The results of comparing the truncation to the baseline for the 10-state case

are presented in Table 5.11. The truncation method requires 67% less computation

than the baseline and is significant with a p-value on the order of 10−71. The mean

value of ρ for the 10-state case is 31,764.53 seconds, with an associate confidence

interval of [31,675.62,31853.43]. The ρ for the truncation method has a mean of

10,637.64 seconds in the confidence interval of [10602.81,10672.47].
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Table 5.11 10-state truncation and baseline comparison.
Baseline Method Truncation Method

τ ? 0.751831055 0.751831055
Ā(τ ?) 0.944372809 0.944372809

ρ 31764.53 10637.64
ρ? 248.44 97.34

5.6 20-State Case

The twenty-state case was developed to stress the algorithmic improvements

presented in this thesis and model the state-size of a comprehensive, realistic, sce-

nario. The critical damage threshold is x = 100 and the total maintenance budget

is 1.2 units. The 20-dimension generator for this case is displayed in Tables 5.12 and

5.13.

Table 5.12 Twenty-state generator matrix (columns 1 through 10).



−10.07 0.07 0.60 0.30 0.56 0.02 0.81 0.37 0.52 0.95 . . .
0.72 −9.37 0.34 0.46 0.70 0.40 0.70 0.72 0.14 0.62 . . .
0.84 0.45 −10.38 0.50 0.29 0.80 0.44 0.29 0.32 0.46 . . .
0.82 0.21 0.12 −10.01 0.99 0.16 0.47 0.79 0.86 0.65 . . .
0.54 0.74 0.52 0.94 −10.04 0.31 0.88 0.21 0.43 0.98 . . .
0.36 0.58 1.00 0.65 0.50 −9.76 0.65 0.43 0.06 0.42 . . .
0.50 0.79 0.31 0.95 0.43 0.59 −10.01 0.63 0.89 0.98 . . .
0.33 0.08 0.51 0.46 0.52 0.05 0.21 −8.55 0.26 0.52 . . .
0.23 0.38 0.82 0.27 0.05 0.87 0.13 0.25 −8.58 0.54 . . .
0.60 0.20 0.30 0.07 0.96 0.73 0.54 0.66 0.22 −8.86 . . .
0.05 0.65 0.71 0.19 0.07 0.02 0.84 0.13 0.59 0.85 . . .
0.74 0.12 0.87 0.35 0.51 0.74 0.24 0.51 0.56 0.55 . . .
0.49 0.51 0.66 0.91 0.71 0.29 0.02 0.27 0.87 0.82 . . .
0.99 0.11 0.86 0.01 0.62 0.76 0.15 0.59 0.22 0.49 . . .
0.98 0.03 0.93 0.99 0.23 0.10 0.48 0.27 0.30 0.12 . . .
0.14 0.05 0.94 0.17 0.63 0.23 0.88 0.78 0.59 0.14 . . .
0.93 0.18 0.67 0.40 0.15 0.49 0.86 0.15 0.90 0.78 . . .
0.02 0.51 0.60 0.40 0.31 0.87 1.00 0.77 0.52 0.27 . . .
0.73 0.65 0.40 0.79 0.65 0.58 0.76 0.52 0.67 0.56 . . .
0.73 0.51 0.13 0.51 0.84 0.42 0.89 0.59 0.68 0.14 . . .
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Table 5.13 Twenty-state generator matrix (columns 11 through 20).

. . . 0.42 0.68 0.69 0.56 0.74 0.79 0.34 0.51 0.83 0.30

. . . 0.06 0.86 0.97 0.69 0.49 0.33 0.02 0.05 0.48 0.63

. . . 0.80 0.10 0.28 0.76 0.65 0.78 0.77 0.99 0.34 0.53

. . . 0.56 0.39 0.17 0.82 0.04 0.78 0.46 0.31 0.54 0.87

. . . 0.77 0.38 0.92 0.53 0.33 0.10 0.04 0.26 0.56 0.58

. . . 1.00 0.52 0.26 0.34 0.43 0.33 0.10 0.61 0.93 0.60

. . . 0.09 0.89 0.38 0.07 0.10 0.26 0.96 0.45 0.27 0.49

. . . 0.72 0.64 0.64 0.26 0.68 0.39 0.61 0.42 0.30 0.94

. . . 1.00 0.20 0.32 0.99 0.03 0.90 0.25 0.41 0.61 0.35

. . . 0.11 0.07 0.19 0.39 0.32 0.77 0.93 0.71 0.89 0.20

. . . −7.55 0.80 0.23 0.79 0.05 0.24 0.43 0.10 0.71 0.10

. . . 0.13 −8.53 0.22 0.87 0.37 0.45 0.05 0.38 0.20 0.65

. . . 0.70 0.89 −10.25 0.09 0.38 0.27 0.90 0.75 0.11 0.61

. . . 0.31 0.99 0.12 −9.65 0.34 0.42 0.98 0.15 0.74 0.81

. . . 0.06 0.40 0.54 0.84 −9.50 0.70 0.66 0.66 0.76 0.46

. . . 0.17 0.34 0.69 0.47 0.24 −7.80 0.73 0.24 0.28 0.09

. . . 0.19 0.32 0.72 0.60 0.08 0.83 −9.93 0.73 0.85 0.10

. . . 0.67 0.36 0.94 0.21 0.30 0.40 0.69 −10.34 0.62 0.87

. . . 0.39 0.62 0.01 0.52 0.18 0.65 0.36 0.47 −9.55 0.06

. . . 0.07 0.60 0.58 0.16 0.72 0.15 0.40 0.86 0.95 −9.91



The rates of linear wear were chosen to increase quadratically with the di-

mension of Q, as often occurs when environmental effects compound to create dam-

age. The following linear wear rates (to four decimal positions) were used: 0.6444,

1.9778, 4.2000, 7.3111, 11.3111, 16.2000, 21.9778, 28.6444, 36.2000, 44.6444, 53.9778,

64.2000, 75.3111, 87.3111, 100.2000, 113.9778, 128.6444, 144.2000, 160.6444, and

177.9778. Since the minimum linear wear rate is 17/18 and x is 100, Λ is 1800/17.

Shocks are gamma distributed with an arrival rate of λ = 1 and a Laplace-

Stieltjes transform,

F̃y(u) = (1 + 2u)4.

A plot of the limiting average availability and cost over time for this case is presented

in Figure 5.5.
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Figure 5.5 Availability (-) and cost (- -) for the 20-state case.

The results from the 20-state matrix exponential experiment show the com-

putational burden incurred by a generator of dimension 20. Again, the condition

number of Q is on the order of 1016; however, the real problem with the EE method

is the existence of imaginary eigenvalues that halt execution. The Taylor series

method, fails because of excessive round-off error returning an excessively large value

for expm(Qt) (the norm of which is on the order of 1051). This large number propa-

gates in the computations until the stationary probability distribution is calculated,

which requires a matrix division involving P̂ . In this case, P̂ is badly scaled with a

condition number of 1048, resulting in false values for the stationary transition prob-

abilities. The Uniformization method fails for similar reasons. This analysis shows

that the PSS method is best suited for the 20-state case.

The results from the comparison experiment between truncation and the base-

line for the 20-state case are presented in Table 5.14. Overall, there is a significant

decrease (with a p-value on the order of 10−78) in computational cost by 75%. The
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Table 5.14 20-state truncation method and baseline comparison.
Baseline Method Truncation Method

τ ? 6.990850031 6.990850031
Ā(τ ?) 0.270266593 0.270266593

ρ 39367.25 9859.15
σρ 128.39 32.47

number of function calls was 99 in both cases. The mean value of ρ for the baseline

case was 39367.25 seconds in the confidence interval of [39,321.31,39413.20] while

the mean ρ value using the truncation method was 9859.15 seconds in the interval

[9,847.53,9,870.77].

5.7 Summary

The numerical experiments on the matrix exponential computation demon-

strated the relative effectiveness of four different implementations. As a secondary

benefit, agreement in final solutions provided by the different matrix exponential

methods provided confidence in the results of the optimization. An analysis of the

results over all cases showed the Taylor series implementation was not sufficiently

stable and demonstrated, for this particular problem, that there is no advantage in

any of the five cases from implementing the Taylor series. Also, the possibility of

imaginary eigenvalues demonstrated that the EE method was also unsuitable, even

though it performed the fastest in the 2- and 5-state cases. If, however, the generator

can be shown to be Hermitian (i.e. to have all real eigenvalues), then the EE method

may be an excellent choice.

The two remaining methods, Uniformization and PSS were considered on the

basis of run time comparisons with the Uniformization method faster in the 7-state

and the PSS method faster in 5-state case. There was no statistical difference in the

2-state case. In the 10- and 20-state cases, the Uniformization method demonstrated

some instability. Therefore, based on the analysis above and the recommendations
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of [92], the PSS method is to be concluded the best option for this optimization

problem. This was also the conclusion of the MathWorks engineering staff in their

construction of the expm built-in function.

The numerical experiments contrasting the truncation method to the baseline

show that the truncation method is very effective with savings proportional to Λ, the

dimension of the generator, and the budget. However, each characterizing parameter

has an effect on the run time. There is a general trend, in that the truncation method

performs better as its associated gains can be magnified through increased state size

and increased maximum system lifetimes. This matches the complexity analysis in

that the algorithmic complexity is O(l2γ) with γ directly proportional to Λ for a

fixed τ .

Overall, both experiments demonstrated an effective method for maximizing

limiting average availability through selecting an appropriate inter-inspection inter-

val τ . The truncation method enables the approximate optimal τ ? to be computed

within a reasonable amount of time. However, run times are still considerable when

maximum lifetimes (Λ) and the dimension of Q are large. Research into additional

computational techniques could further reduce this run time, but the development of

a purely analytical technique could provide the true optimal τ ? with almost no com-

putational burden. This and other possible extensions to this research are discussed

in the next chapter.
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6. Conclusions and Future Research

The goal of this research was to present a methodology to determine the ap-

proximate optimum inter-inspection duration (τ) that maximizes the limiting aver-

age availability of a system while keeping the downtime, inspection and replacement

costs within an arbitrary budget for a system with deterioration due to environment-

dependent wear and random shocks. In order to be useful, this methodology must

provide consistent and accurate results in a reasonable amount of time. To this end,

a secondary goal of the research was to improve the computational performance of

the chosen methodology.

An optimization methodology using generalized pattern search was chosen

and implemented to compute the availability measure Ā(τ). Moreover, a numer-

ical method, the truncation method, was developed which provided computational

savings most directly proportional to the dimension of Q and the component’s max-

imum lifetime. The budget and other model parameters also impact the computa-

tional savings of the truncation method. Several standard methods were employed

to improve computational improvement. These included: vectorization, preprocess-

ing, and choosing the correct Matlab operators. In order to properly implement

the third method, a study of the matrix exponential computation was conducted to

determine the most proper method for this research. The results of this implemen-

tation were presented and discussed using five different cases, each with a distinct

set of parameters. The parameters were chosen in order to illustrate the means by

which to compute the approximate optimal inter-inspection duration and to evaluate

the associated performance of the optimization methodology over a wide-range of

potential problems. These numerical experiments demonstrated that the truncation

method presents significant potential for performance gains over the full-sum case

with no loss of solution quality (within the tolerance machine precision).
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It is recommended that the NOMADm pattern search code be used, along

with the strategies discussed to enhance computational performance of the objective

function including the truncation method. NOMADm was observed to be a capable

implementation of generalized pattern search. Moreover, NOMADm is distributed

without cost under the GNU General Public License and is available direclty from the

author. Other recommendations include using the specific one-dimensional Laplace

transform inversion algorithm provided by Abate and Whitt [5] and the matrix

exponential should be computed via the Padé approximation using repeated squaring

and scaling.

Although this research presents a complete methodology considering degrada-

tion due to environment-dependent wear and random shocks, much work remains.

For instance, to compute an approximate value for τ ?, the various parameters de-

scribing the environment (shock magnitudes and arrival rate, environment transition

rates, etc.) must be known. When these parameters are unknown, statistical esti-

mation procedures must be employed. A sensitivity analysis could reveal the most

critical parameters and provide insight into the impact that various environmental

parameters have on the limiting average availability and reliability measures. Fur-

ther techniques available to operations research analysts could determine the optimal

allocation of resources to impact the environmental parameters to maximize long run

availability or minimize cost.

Additional computational improvement techniques remain to be tested for com-

puting Ā(τ). In particular, since the primary computational expense when comput-

ing Ā(τ) is the population of the transition probability matrix, the application of

current research [124] in compressing transition probability matrices could prove

useful. Moreover, while all computations in this thesis were performed in Matlab,

implementing the methodology in a compiled language such as C++ or FORTRAN would

undoubtedly improve the overall run time by a significant margin. Further research
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comparing the results of this thesis to meta-heuristic methods could yield computa-

tionally fast solutions that also provide approximate optimal solutions.

Additional work on the analytic model could prove fruitful. If a closed-form

expression can be found for Ā(τ) in the time domain, the true optimal point could be

found in seconds. A pure analytical solution would also provide considerable insight

into the system dynamics. Also, if a mathematically rigorous solution methodol-

ogy can be developed to optimize the objective function in the complex domain,

numerical inversion would not be necessary, and the solution could consequently be

computed much faster and with greater precision. Additional insight on the dynam-

ics of the stochastic model could yield a maintenance policy more effective than the

deterministic inspect-and-replace policy presented in this thesis.

There is also great potential for applying this methodology to an actual opti-

mal maintenance setting. Much could be learned regarding the applicability of the

model from determining environmental transition rates, fitting distributions and pa-

rameters and comparing empirical experiments, simulation and calculated reliability

and availability measures. Moreover, since the most restrictive assumption is that

of a Markovian environment, there is a great deal of value in using the method of

Cox [48], who used phase-type distributions to model to approximate semi-Markov

environment as a Markovian one.
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Appendix A. Availability Calculation
1 function [fx,cx] = availabilityCalc(tau);

2 %availabilityCalc: function to calculate the availability of a Markovian shock

3 % and wear model as described in Kharoufeh, et al. (2006).

4 %

5 % Syntax:

6 % fx = availabilityCalc(tau);

7 % [fx,cx] = availabilityCalc(tau);

8 %

9 % Description:

10 % This Matlab program is used to compute conditional distributions and

11 % conditional expectations of random quantities from the Markovian

12 % shock and wear model in Kharoufeh, et al. (2006).

13 %

14 % References: Kharoufeh, J., Finkelstein, D., and D. Mixon (2006)

15 % Availability of inspected systems subject to Markovian wear

16 % and shocks. Technical report. Department of Operational

17 % Sciences. Air Force Institute of Technology.

18 %

19 % Calls: invt, unif, expm, ceil, min, ones, zeros, sum, CalcLoopCnt,

20 % getappdata, num2str, eye, disp, floor

21 %

22 %*******************************************************************************

23 % Copyright (c) 2006 by Timothy B. Booher

24 % ------------------------------------------------------------------------------

25 % Originally created, 2005.

26 % Last modified, 1 March 2006

27 %

28 % Author information:

29 % Timothy B. Booher, Capt, USAF

30 % Air Force Institute of Technology

31 % Department of Operational Sciences

32 % 2950 Hobson Way

33 % Wright-Patterson AFB, OH 45433

34 % Timothy.Booher@afit.edu

35 %*******************************************************************************

36 %

37 % ------------------------------------------------------------------------------

38 % VARIABLES (only for the availabilityCalc function):

39 %*INPUT*VARIABLES***************************************************************

40 % tau = the inter-inspection interval and decision variable

41 %*FUNCTION*VARIABLES************************************************************
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42 % l = overall dimension (number of states in Markovian environment)

43 % X = marginal PMF of R_1

44 % Q = infinitesimal generator matrix for random environment

45 % r = vector of wear rates for the Markovian environment

46 % lambda = shock arrival rate

47 % lim = the failure threshold (x in Kharoufeh et al.)

48 % ER_1 = the expected value (unconditional) of the time to the first

49 % replacement epoch

50 % EF_1 = the expected value (unconditional) of the first failure

51 % epoch

52 % Pt = transition probability function

53 % P = transition probability matrix (of the embedded DTMC)

54 % p = stationary distribution, p, of P

55 % z0 = e_i, vector of ones with an 1 in the ith position

56 % M = ratio of T_max to tau (must be less than one) the ceiling

57 % gamma = the number of inspection intervals necessary to cover x/r_1

58 % Param.Q = infinitesimal generator matrix

59 % Param.r = vector of wear rates

60 % Param.f = LST of the c.d.f. for the shock-damage magnitudes

61 % Param.lambda = shock arrival rate

62 % Param.lim = critical damage threshold

63 % Param.budget = fixed budget for long-run cost

64 % Param.cD = cost of downtime

65 % Param.cI = cost of each inspection

66 % Param.cR = cost of replacement

67 % Param.L = x/r_1

68 % Param.states = dimension of Param.Q

69 % Param.I = identity matrix of dimension Param.states

70 % Param.e1 = vector of elements (ith column of Param.I)

71 % P_hat = temp matrix used to calculate stationary probabilities

72 % {i,k,n} = index variables

73 % S = temp variable to store a summed sequence

74 %*************************************************************************

75 % Load Parameter Information

76 % ------------------------------------------------------------------------

77 Param = getappdata(0,’PARAM’);

78 disp([’Function call with \tau =’ num2str(tau)]);

79 X = []; P = [];

80 % ------------------------------------------------------------------------

81 % The code below is used to obtain the transition probability matrix P.

82 l = Param.states; % used to keep things simple

83 gamma = ceil(Param.lim/(min(Param.r)*tau));

84
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85 % this populates the transition probability matrix for the process that

86 % describes the state of the environment at each replacement

87 for i=1:l

88 z0=zeros(size(Param.Q(1,:)));

89 z0(i) = 1;

90 for k=1:l

91 for n = 1:gamma

92 Pt = expm(Param.Q*n*tau);

93 X(n) = invt(’getG’,z0,n*tau);

94 PV(n) = Pt(i,k);

95 if (Param.Method(1).Use == 1)

96 if ((n > 1) && ((X(n)-X(n-1)) <= Param.Method(2).Param))

97 break;

98 end

99 end

100 end

101 P(i,k) = sum((X(2:end)-X(1:(end-1)))*(PV(2:end)’))+ PV(1)*X(1);

102 end

103 end

104

105 % ------------------------------------------------------------------------

106 % Now compute the stationary distribution, p, of P

107 % ------------------------------------------------------------------------

108 P_hat = P - Param.I;

109 P_hat(:,l) = 1;

110 p = Param.p/P_hat;

111 % ------------------------------------------------------------------------

112

113 % ------------------------------------------------------------------------

114 % This routine is used to obtain ER_1

115 % ------------------------------------------------------------------------

116 ER_1 = zeros(1,l);

117 for i=1:l

118 for n=1:(gamma-1)

119 S(n)=invt(’getG’,Param.I(i,:),n*tau);

120 end

121 ER_1(i)= tau*(gamma - sum(S));

122 end

123 % ------------------------------------------------------------------------

124

125 % ------------------------------------------------------------------------

126 % Compute the limiting average availability

127 % ------------------------------------------------------------------------
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128 fx = -(p*Param.EF_1’)/(p*ER_1’);

129 % ------------------------------------------------------------------------

130 % Compute the final costs

131 % ------------------------------------------------------------------------

132 cterm = Param.cD*(ER_1 - Param.EF_1) ...

133 + Param.cI*floor(ER_1/tau) ...

134 + Param.cR*ones(1,l);s

135 cx = (p*cterm’)/(p*ER_1’) - Param.budget;

136 return;

137 % ------------------------------------------------------------------------

138 % uniformization

139 % ------------------------------------------------------------------------

140 function out = unif(tau,lambda,P,n,numStates)

141 pi = 0;

142 y = 1;

143 for k = 1:n

144 y = y*P*(lambda*tau)/k;

145 pi = pi + y;

146 end

147 out = exp(-lambda*tau)*pi;

148 return;

149

150 function [intLoopCnt, lambda, P] = CalcLoopCnt(tau, Q, epsilon, M)

151 K = 0; zi = 1; sigma = 1;

152 lambda = max(-diag(Q));

153 eta = (1-epsilon)/(exp(-lambda*tau));

154 while (sigma <= eta)

155 K = K + 1;

156 zi = zi*(lambda*tau)/K;

157 sigma = sigma + zi;

158 end

159 P = (lambda^(-1))*(lambda*eye(size(Q))+Q);

160 intLoopCnt = K;

161 return;

162

163 function E = expmdemo3(A)

164 %EXPMDEMO3 Matrix exponential via eigenvalues and eigenvectors.

165 % E = EXPMDEMO3(A) illustrates one possible way to compute the matrix

166 % exponential. As a practical numerical method, the accuracy

167 % is determined by the condition of the eigenvector matrix.

168 %

169 % See also EXPM, EXPMDEMO1, EXPMDEMO2.

170
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171 % Copyright 1984-2004 The MathWorks, Inc.

172 % $Revision: 1.1.6.3 $ $Date: 2004/08/16 01:37:28 $

173

174 [V,D] = eig(A);

175 E = V * diag(exp(diag(D))) / V;

176

177 return;

178

179 function E = expmdemo2(A)

180 %EXPMDEMO2 Matrix exponential via Taylor series.

181 % E = expmdemo2(A) illustrates the classic definition for the

182 % matrix exponential. As a practical numerical method,

183 % this is often slow and inaccurate.

184 %

185 % See also EXPM, EXPMDEMO1, EXPMDEMO3.

186

187 % Copyright 1984-2003 The MathWorks, Inc.

188 % $Revision: 1.1.6.2 $ $Date: 2004/04/10 23:24:39 $

189

190 E = zeros(size(A));

191 F = eye(size(A));

192 k = 1;

193 while norm(E+F-E,1) > 0

194 E = E + F;

195 F = A*F/k;

196 k = k+1;

197 end

198

199 return;

200

201 function E = expmdemo1(A)

202 %EXPMDEMO1 Matrix exponential via Pade approximation.

203 % E = EXPMDEMO1(A) is an M-file implementation of the built-in

204 % algorithm used by MATLAB for the matrix exponential.

205 % See Golub and Van Loan, Matrix Computations, Algorithm 11.3-1.

206 %

207 % See also EXPM, EXPMDEMO2, EXPMDEMO3.

208

209 % Copyright 1984-2003 The MathWorks, Inc.

210 % $Revision: 1.1.6.2 $ $Date: 2004/04/10 23:24:38 $

211

212 % Scale A by power of 2 so that its norm is < 1/2 .

213 [f,e] = log2(norm(A,’inf’));
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214 s = max(0,e+1);

215 A = A/2^s;

216

217 % Pade approximation for exp(A)

218 X = A;

219 c = 1/2;

220 E = eye(size(A)) + c*A;

221 D = eye(size(A)) - c*A;

222 q = 6;

223 p = 1;

224 for k = 2:q

225 c = c * (q-k+1) / (k*(2*q-k+1));

226 X = A*X;

227 cX = c*X;

228 E = E + cX;

229 if p

230 D = D + cX;

231 else

232 D = D - cX;

233 end

234 p = ~p;

235 end

236 E = D\E;

237

238 % Undo scaling by repeated squaring

239 for k=1:s, E = E*E; end

240

241 return;

A-6



Appendix B. Availability Parameters File
1 function Param = availability_Param

2 load RunData;

3 myCase = RunData.intState;

4 Param.Method = RunData.Method;

5

6 switch myCase

7 case {2}

8 % 2 state case

9 Param.Q = [-25/3 25/3;25/3 -25/3];

10 Param.r = [13/12 1/4];

11 Param.f = inline(’[4.0/(4.0+s) 4.0/(4.0+s)]’,’s’);

12 Param.lambda = 0.50;

13 Param.lim = 1.0;

14 Param.budget = 35;

15 Param.cD = 0.5;

16 Param.cI = 1;

17 Param.cR = 5;

18 case {5}

19 % 5 state case

20 Param.Q = [-0.5 0.125 0.125 0.125 0.125;

21 0.4 -2 0.4 0.6 0.6;

22 0.025 0.025 -0.1 0.025 0.025;

23 0.05 0.05 0.05 -0.2 0.05;

24 1.5 1 1 1.5 -5];

25 Param.r = [1 2 3 4 10];

26 Param.f = inline(’[1 1 1 1 1]*(0.20/(0.20+s))^8’,’s’);

27 Param.lambda = 0.25;

28 Param.lim = 100.0;

29 Param.budget = 0.7;

30 Param.cD = 0.5;

31 Param.cI = 1;

32 Param.cR = 5;

33 case {7}

34 % exponential with 7 states

35 Param.Q = [-2.8452 0.5466 0.8801 0.1365 0.4692 0.4329 0.3798

36 0.7271 -1.9859 0.1730 0.0118 0.0648 0.2259 0.7833

37 0.3093 0.6946 -4.1467 0.8939 0.9883 0.5798 0.6808

38 0.8385 0.6213 0.2714 -3.5355 0.5828 0.7604 0.4611

39 0.5681 0.7948 0.2523 0.2987 -3.0116 0.5298 0.5678

40 0.3704 0.9568 0.8757 0.6614 0.5155 -4.1742 0.7942

41 0.7027 0.5226 0.7373 0.2844 0.3340 0.2091 -2.7901];
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42 Param.r = [1 2 3 4 5 6 7]+1.5;

43 % uniform 0,10

44 Param.f = inline(’[1 1 1 1 1 1 1]*((exp(-s*10)-exp(-s*0))/(s*(10-0)))’,’s’);

45 Param.lambda = 1;

46 Param.lim = 50;

47 Param.budget = 3.5;

48 Param.cD = 0.5;

49 Param.cI = 1;

50 Param.cR = 5;

51 case {10}

52 % weibull with 10 states

53 Param.Q = [...

54 -3.861608355 0.058187848 0.494874756 0.508179212 ...

55 0.065313688 0.486398149 0.41364986 0.933229859 0.374292584 0.527482399

56 0.391617223 -3.367934425 0.038333157 0.452239667 ...

57 0.375144658 0.496060749 0.560410449 0.259379974 0.249102724 0.545645825

58 0.252783651 0.455725962 -3.93287784 0.325584439 ...

59 0.37352297 0.843194083 0.268677291 0.204171395 0.924875292 0.284342757

60 0.354381927 0.863086892 0.327882957 -4.669336947 ...

61 0.484022397 0.806198215 0.784254164 0.049208442 0.629499293 0.370802659

62 0.742977968 0.85519697 0.899468788 0.886479964 ...

63 -6.178942389 0.857785596 0.387870785 0.60616094 0.878308777 0.064692602

64 0.650832022 0.472255683 0.313730488 0.76126076 ...

65 0.342061094 -4.303955904 0.030983621 0.54634874 0.641674431 0.544809064

66 0.939793041 0.78692439 0.251676012 0.883766335 ...

67 0.252689256 0.565730368 -5.411183076 0.095837436 0.798390636 0.836375603

68 0.832799125 0.655982138 0.432989132 0.457406256 ...

69 0.584886917 0.611898522 0.558558528 -4.714868647 0.435026039 0.145321992

70 0.469977867 3.98896E-05 0.842382237 0.799202291 ...

71 0.523703594 0.102976522 0.200695572 0.442948328 -3.553446558 0.171520257

72 0.629865607 0.131237162 0.184488992 0.13407712 ...

73 0.163419046 0.158315917 0.087421885 0.066381959 0.095957798 -1.651165486];

74 Param.r = [0.4 0.9031 1.4314 1.8062 2.0969 2.3345 2.5353 2.7093 2.8627 3.0000];

75 stri = ones(1,10);

76 % mean = 2

77 % var = 1

78 % normally distributed

79 Param.f = inline([’[’ int2str(stri) ’]*(0.5/(0.5+s))^4’],’s’);

80 Param.lambda = 1;

81 Param.lim = 60;

82 Param.budget = 2;

83 Param.cD = 0.5;

84 Param.cI = 1;
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85 Param.cR = 5;

86 case {20}

87 Param.Q = [...

88 -10.068 0.068 0.599 0.302 0.562 0.018 0.813 0.369 0.519 0.953 0.425 0.681 ...

89 0.685 0.556 0.744 0.790 0.340 0.514 0.833 0.295;

90 0.722 -9.370 0.336 0.460 0.701 0.404 0.695 0.716 0.141 0.624 0.058 0.856 ...

91 0.974 0.689 0.489 0.331 0.019 0.046 0.476 0.632;

92 0.841 0.453 -10.381 0.503 0.285 0.800 0.441 0.286 0.316 0.458 0.797 0.097 ...

93 0.280 0.761 0.650 0.782 0.768 0.991 0.340 0.531;

94 0.821 0.211 0.118 -10.014 0.987 0.160 0.471 0.789 0.861 0.648 0.560 0.392 ...

95 0.174 0.824 0.042 0.777 0.458 0.310 0.542 0.871;

96 0.544 0.735 0.520 0.944 -10.037 0.312 0.881 0.205 0.433 0.979 0.771 0.376 ...

97 0.922 0.528 0.335 0.105 0.044 0.256 0.562 0.584;

98 0.364 0.577 0.995 0.650 0.501 -9.756 0.645 0.430 0.059 0.421 0.995 0.516 ...

99 0.260 0.342 0.433 0.329 0.100 0.610 0.925 0.603;

100 0.501 0.789 0.313 0.946 0.430 0.591 -10.015 0.629 0.886 0.976 0.090 0.894 ...

101 0.375 0.068 0.099 0.261 0.957 0.447 0.274 0.488;

102 0.330 0.083 0.506 0.464 0.516 0.054 0.212 -8.547 0.256 0.519 0.721 0.642 ...

103 0.645 0.264 0.681 0.388 0.609 0.418 0.296 0.943;

104 0.231 0.376 0.820 0.271 0.047 0.869 0.126 0.246 -8.582 0.543 0.997 0.203 ...

105 0.316 0.994 0.027 0.897 0.247 0.412 0.613 0.347;

106 0.605 0.201 0.299 0.069 0.965 0.728 0.536 0.657 0.224 -8.860 0.108 0.069 ...

107 0.192 0.385 0.321 0.767 0.930 0.714 0.891 0.200;

108 0.047 0.646 0.709 0.187 0.066 0.017 0.840 0.132 0.591 0.849 -7.546 0.800 ...

109 0.233 0.786 0.052 0.244 0.430 0.103 0.714 0.098;

110 0.737 0.124 0.869 0.349 0.510 0.744 0.240 0.513 0.564 0.546 0.133 -8.526 ...

111 0.220 0.870 0.370 0.455 0.049 0.380 0.202 0.652;

112 0.488 0.508 0.656 0.914 0.705 0.292 0.022 0.274 0.866 0.815 0.704 0.892 ...

113 -10.250 0.085 0.384 0.272 0.905 0.752 0.108 0.606;

114 0.986 0.106 0.862 0.014 0.625 0.756 0.148 0.587 0.220 0.486 0.306 0.992 ...

115 0.124 -9.647 0.336 0.423 0.978 0.149 0.738 0.811;

116 0.978 0.029 0.927 0.988 0.227 0.104 0.476 0.268 0.301 0.116 0.064 0.401 ...

117 0.538 0.845 -9.503 0.699 0.658 0.661 0.762 0.462;

118 0.142 0.051 0.939 0.174 0.631 0.227 0.878 0.784 0.587 0.143 0.174 0.341 ...

119 0.689 0.466 0.238 -7.801 0.727 0.237 0.279 0.094;

120 0.929 0.183 0.666 0.403 0.153 0.488 0.863 0.149 0.902 0.785 0.193 0.317 ...

121 0.720 0.599 0.081 0.825 -9.931 0.728 0.845 0.103;

122 0.016 0.510 0.598 0.399 0.311 0.873 0.996 0.773 0.524 0.269 0.670 0.364 ...

123 0.939 0.208 0.301 0.403 0.686 -10.340 0.624 0.875;

124 0.728 0.648 0.405 0.786 0.649 0.579 0.757 0.520 0.669 0.557 0.387 0.616 ...

125 0.008 0.517 0.180 0.652 0.363 0.470 -9.550 0.061;

126 0.734 0.510 0.134 0.506 0.836 0.421 0.886 0.587 0.677 0.136 0.070 0.597 ...

127 0.582 0.158 0.716 0.152 0.401 0.858 0.955 -9.915;];
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128 r = [0.4444 1.7778 4.0000 7.1111 11.1111 16.0000 21.7778 28.4444];

129 r = [r 36.0000 44.4444 53.7778 64.0000 75.1111 87.1111 100.0000];

130 Param.r = [r 113.7778 128.4444 144.0000 160.4444 177.7778];

131 Param.r = Param.r + 0.2;

132 % gamma distributed shock distribution

133 %theta = 1;

134 %k = 7

135 stri = ones(1,20);

136 Param.f = inline([’[’ int2str(stri) ’]*(1+2*s)^4’],’s’);

137 Param.lambda = 1;

138 Param.lim = 100;

139 Param.budget = 1.2;

140 Param.cD = 0.5;

141 Param.cI = 1;

142 Param.cR = 5;

143 otherwise

144 erstr = ’%g is not a specified state.’;

145 error(erstr,myCase)

146 r = 0;

147 end

148 Param.L = Param.lim/min(Param.r);

149 Param.states = length(Param.r);

150 Param.R_D = diag(Param.r);

151 Param.I = eye(Param.states);

152 Param.e1 = ones(Param.states,1); % Create column vector of ones

153 % now perform one set of calculations for the invt function

154 m=11; c=[]; ga=8; A=ga*log(10);

155 Param.mm=2^m;

156 Param.c = [1 11 55 165 330 462 462 330 165 55 11 1];

157 Param.u = exp(A/2)/Param.lim;

158 Param.x = A/(2*Param.lim);

159 Param.h = pi/Param.lim;

160 Param.su= zeros(m+2);

161 % calculate the p-values

162 Param.p = zeros(1,Param.states);

163 Param.p(1,Param.states) = 1;

164 % calculate the numerator

165 EF_1 = zeros(1,Param.states);

166 for i = 1:Param.states

167 EF_1(i) = invt(’getE’,Param.I(i,:),1.0, Param);

168 end

169 Param.EF_1 = EF_1;

170 return
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Appendix C. Laplace Inversion Code
1 %**************************************************************************

2 % invt: accomplishes numerical inversion of laplace transforms

3 % -------------------------------------------------------------------------

4 % Called by: IFS

5 % Calls: feval, dot, zeros

6 % VARIABLES:

7 % EG = full array (n x 1)

8 % z0 = individual item to trim (scalar)

9 % ntau = trimmed array

10 % c = index of individual item to trim (scalar)

11 % u = length of the full item to trim

12 % rho,qx,m,c,ga,mm,ntr,u,x,h,su,sm,f1 = algorithmic parameters

13 % k = index variable

14 % j = sqrt(-1)

15 %*******************************************************************************

16 % References:

17 % Abate, J. and W. Whitt (1995). Numerical inversion of the

18 % Laplace transform of probability distributions. ORSA

19 % Journal on Computing, 7, 36-43.

20 function f1 = invt(EG,z0,ntau, Param)

21 if (nargin < 4)

22 Param = getappdata(0,’PARAM’);

23 end

24 ntr=15;

25 sm= feval(EG,Param.x,z0,ntau,Param.f(Param.x),Param)/2;

26 for k=1:ntr

27 sm = sm + ((-1)^k)*...

28 feval(EG,Param.x+k*Param.h*j,z0,ntau,Param.f(Param.x+k*Param.h*j),Param);

29 end

30 Param.su(1)=sm;

31 for k=1:12

32 n = ntr+k;

33 Param.su(k+1) = Param.su(k) + ((-1)^n)*...

34 feval(EG,Param.x+n*Param.h*j,z0,ntau,Param.f(Param.x+n*Param.h*j),Param);

35 end

36 f1 = Param.u*(dot(Param.c,Param.su(1:12,1)’))/Param.mm;

37 return;

38 % ------------------------------------------------------------------------

39 % getE

40 % ------------------------------------------------------------------------

41 function out_getE = getE(s,z0,ntau,f_eval, Param)
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42 % R_D = diag(r);

43 F = diag(f_eval);

44 % I = eye(size(Q));

45 % e1 = ones(size(Q,1),1); % Create column vector of ones

46 if (nargin < 4)

47 Param = getappdata(0,’PARAM’);

48 end

49 % Compute the conditional expectation values of F_1.

50 z = (1/s)*(z0*inv(s*Param.R_D-Param.Q-Param.lambda*(F-Param.I)))*Param.e1*ntau;

51

52 % The desired value is the real part of z.

53 out_getE = real(z);

54 return;

55 % ------------------------------------------------------------------------

56 % getG

57 % ------------------------------------------------------------------------

58 function out_getG = getG(s,z0,ntau,f_eval, Param)

59 F = diag(f_eval);

60 if (nargin < 5)

61 Param = getappdata(0,’PARAM’);

62 end

63 A2 = expm((Param.Q+Param.lambda*(F-Param.I)-s*Param.R_D)*ntau);

64

65 % Compute the cdf values for given t (ntau).

66 z = (1/s)*(1-z0*A2*Param.e1); % get the cdf

67

68 % The desired value is the real part of z.

69 out_getG = real(z);

70 return;
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Appendix D. MADS Batch Execution
1 function [BestF,BestI,RunStats,RunSet] = mads_batch

2 %MADS_BATCH Sets up and runs the MADS algorithm without a GUI.

3 %

4 % Syntax:

5 % mads_batch

6 %

7 % Description:

8 % This function serves as a GUI-free alternative to NOMADm in setting

9 % up an optimization problem, setting various algorithm parameters and

10 % user options, and calling the MADS optimizer. It first sets all of the

11 % variables to their default values, which are clearly stated in the

12 % MADS_DEFAULTS file. To change a variable from its default value, the

13 % user must add a statement to this file to do so. Some variable

14 % statements are included here for convenience, which can be change

15 % manually.

16 %

17 % See also MADS_DEFAULTS, MADS

18

19 %*******************************************************************************

20 % Copyright (c) 2001-2005 by Mark A. Abramson

21 %

22 % This file is part of the NOMADm software package.

23 %

24 % NOMADm is free software; you can redistribute it and/or modify it under the

25 % terms of the GNU General Public License as published by the Free Software

26 % Foundation; either version 2 of the License, or (at your option) any later

27 % version.

28 %

29 % NOMADm is distributed in the hope that it will be useful, but WITHOUT ANY

30 % WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

31 % FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

32 % details.

33 %

34 % You should have received a copy of the GNU General Public License along

35 % with NOMADm; if not, write to the Free Software Foundation, Inc.,

36 % 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

37 % ------------------------------------------------------------------------------

38 % Originally created, 2001.

39 % Last modified, 1 March 2006 by Tim Booher

40 %

41 % Author information:
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42 % Mark A. Abramson, LtCol, USAF, PhD

43 % Air Force Institute of Technology

44 % Department of Mathematics and Statistics

45 % 2950 Hobson Way

46 % Wright-Patterson AFB, OH 45433

47 % (937) 255-3636 x4524

48 % Mark.Abramson@afit.edu

49 %*******************************************************************************

50

51 %*******************************************************************************

52 % Calls: mads_defaults, mads, < user initial points file >

53 % Variables:

54 % Defaults = structure of MADS default values (see mads_defaults)

55 % Options = structure for options settings (see mads_defaults)

56 % problemPath = location of user problem files

57 % Problem = structure of data for optimization problem

58 % newPath = logical indicating if path is not the Matlab path

59 % iterate0 = structure of data for the initial iterate (see mads)

60 % BestF = final best feasible solution found

61 % BestI = final least infeasible solution found

62 % RunStats = structure of MADS Run statistics (see mads)

63 %*******************************************************************************

64

65 % Set Options to their default values

66 clear variables

67 Defaults = mads_defaults(’Truth’);

68 Options = Defaults.Options;

69 Problem.nameCache = ’CACHE’;

70

71 % Specify Problem Files

72 problemPath = pwd;

73 Problem.File.F = ’availabilityCalc’; % functions file

74 Problem.File.O = ’availabilityCalc_Omega’; % linear constraints file

75 Problem.File.X = ’availabilityCalc_X’; % closed constraints file

76 Problem.File.I = ’availabilityCalc_x0’; % initial points file

77 Problem.File.N = ’availabilityCalc_N’; % discrete neighbor file (MVP only)

78 Problem.File.P = ’availabilityCalc_Param’; % parameter file

79 Problem.File.C = ’availabilityCalc_Cache.mat’; % previously created Cache file

80 Problem.File.S = ’availabilityCalc_Session.mat’; % previously created Session file

81 Problem.File.H = ’availabilityCalc_History.txt’; % iteration history text file

82 Problem.fType = ’M’; % type of functions file {M,F,C}

83 Problem.nc = 1; % number of nonlinear constraints

84
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85 % Set the path, and load any user-provided problem parameters

86 cwd = pwd; cd(problemPath);

87 if (exist(Problem.File.P,’file’) == 2)

88 Problem.Param = feval(Problem.File.P);

89 setappdata(0,’PARAM’,Problem.Param);

90 end

91

92 % Specify Choices for SEARCH

93 Options.Search(1).type = ’None’; % For choices, see mads_defaults

94 Options.Search(1).nIter = 0; % Number of iterations for Search #1

95 Options.Search(1).nPoints = 0; % Number of poll or sample points

96 Options.Search(1).file = ’’; % filename must include the full path

97 Options.Search(1).local = 0; % flag to turn on trust region

98 Options.Search(1).merit = 0; % flag to penalize clustered data

99 Options.Search(2).type = ’None’; % For choices, see mads_defaults

100 Options.Search(2).nIter = Inf; % Number of iterations for Search #2

101 Options.Search(2).nPoints = 0; % Number of poll or sample points

102 Options.Search(2).file = ’’; % filename must include the full path

103 Options.Search(2).local = 0; % flag to turn on trust region

104 Options.Search(2).merit = 0; % flag to penalize clustered data

105 Options.nSearches = 2;

106 Options.SurOptimizer = ’fmincon’;

107

108 % Specify Choices for POLL

109 Options.pollStrategy = ’Standard_2n’; % For choices, see mads_defaults

110 Options.pollOrder = ’Consecutive’; % For choices, see mads_defaults

111 Options.pollCenter = 0; % Poll around n-th filter point

112 Options.pollComplete = 0; % Flag for complete polling

113

114 % Specify Termination Criteria

115 Options.Term.delta = 1e-4; % minimum mesh size

116 Options.Term.nIter = Inf; % maximum number of iterations

117 Options.Term.nFunc = 50000; % maximum number of function evals

118 Options.Term.time = Inf; % maximum CPU time

119 Options.Term.nFails = Inf; % max number of consecutive Poll fails

120

121 % Choices for Mesh Control

122 Options.delta0 = 1; %Problem.Param.L/4; % initial mesh size

123 Options.deltaMax = Inf; % bound on how coarse the mesh can get

124 Options.meshRefine = 0.5; % mesh refinement factor

125 Options.meshCoarsen = 1.0; % mesh coarsening factor

126

127 % Choices for Filter management (for problems with nonlinear constraints)

D-3



128 Options.hmin = 1e-4; % minimum infeasible point h-value

129 Options.hmax = 1.0; % maximum h-value of a filter point

130

131 % Choices for EXTENDED POLL (for MVP problems)

132 Options.ePollTriggerF = 0.01; % f-value Extended Poll trigger

133 Options.ePollTriggerH = 0.01; % h-value Extended Poll trigger

134

135 % MADS flag parameter values

136 Options.loadCache = 1; % load pre-existing Cache file

137 Options.countCache = 1; % count Cache points as function calls

138 Options.runStochastic = 0; % runs problem as a stochastic problem

139 Options.scale = 2; % scale directions using this log base

140 Options.useFilter = 0; % filter (0=none, 1=multi-pt, 2=2-pt)

141 Options.degeneracyScheme = ’random’; % scheme for degenerate constraints

142 Options.removeRedundancy = 0; % discard redundant linear constraints

143 Options.computeGrad = 0; % compute gradient, if available

144 Options.saveHistory = 0; % saves MADS performance to text file

145 Options.plotHistory1 = 0; % plot MADS performance

146 Options.plotHistory2 = 0; % plot MADS performance real-time

147 Options.plotFilter = 0; % plot the filter real-time

148 Options.plotColor = ’k’; % color of history plot

149

150 % Set up figure handles for real-time plots

151 if (Problem.nc == 0)

152 Options.plotFilter = 0;

153 end

154 if (Options.plotFilter)

155 figure; Options.fplothandle = gca;

156 end

157 if (Options.plotHistory2)

158 figure; Options.hplothandle = gca;

159 end

160

161 % Get the initial iterates and call the optimizer

162 iterate0 = feval(Problem.File.I);

163 [BestF,BestI,RunStats,RunSet] = mads(Problem,iterate0,Options);

164

165 % Perform any user-defined post-processing (must have argument)

166 if (exist(Problem.File.P,’file’) == 2) && (nargin(Problem.File.P) < 0)

167 Param = feval(Problem.File.P,BestF); setappdata(0,’PARAM’,Param);

168 end

169 cd(cwd);

170 return
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Appendix E. GPS Constraints File

1 %*********************************************************************

2 % availability_Omega: User-supplied function for defining Omega, based on p.

3 % --------------------------------------------------------------------

4 % Variables:

5 % A = Coefficient matrix for bound and linear constraints

6 % l = Lower bounds for A*x for any iterate x

7 % u = Upper bounds for A*x for any iterate x

8 %*********************************************************************

9 function [A,l,u] = example_Omega(n);

10 Param = getappdata(0,’PARAM’);

11 A = eye(n);

12 l = [0.01];

13 u = [Param.L];

14 return;
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Appendix F. Initial Iterates File

1 function iterate = availabilityCalc_x0;

2 % iterate.p is a vector containing the values of the continuous variables

3 % iterate.x is a cell array containing the values of the categorical

4 Param = getappdata(0,’PARAM’);

5 iterate(1).x = Param.L/2; % start in the middle of the lifetime

6 iterate(1).p = {}; % null

7 return;
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Appendix G. MADS Batch Script
1 function myoutput = CallMadsBatch(intSt,i,rnum, origDir)

2 %CallMadsBatch: function to set parameters and call a mads batch run

3 %

4 % Syntax:

5 % CallMadsBatch(States, Method, RunID, OriginalDirectory);

6 %

7 % Description:

8 % This Matlab program

9 %

10 % Calls: mads_batch, int2str, disp, save, tic, toc

11 %

12 %*******************************************************************************

13 % Copyright (c) 2006 by Timothy B. Booher

14 % ------------------------------------------------------------------------------

15 % Originally created, 2005.

16 % Last modified, 14 January 2006

17 %

18 % Author information:

19 % Timothy B. Booher, Capt, USAF

20 % Air Force Institute of Technology

21 % Department of Operational Sciences

22 % 2950 Hobson Way

23 % Wright-Patterson AFB, OH 45433

24 % Timothy.Booher@afit.edu

25 %*******************************************************************************

26 %

27 % VARIABLES (only for the CallMadsBatch function):

28 %*INPUT*VARIABLES***************************************************************

29 % tau = the inter-inspection interval and decision variable

30 % intSt = the state

31 % i = the method parameter case

32 % rnum = a unique id number to describe the current run

33 % origDir = the directory with the location of the original run files

34 %*FUNCTION*VARIABLES************************************************************

35 % RunData.Method(n).Use = boolean (1,0) that states if the method should

36 % be used in case ’n’

37 % RunData.Method(n).Param = parameter for a particular method

38 % BestF,BestI,RunStats, RunSet = mads output variables (see mads.m)

39 % runTime.time = my record of the program run time

40 %*************************************************************************

41 % set parameter file
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42 RunData.intState = intSt;

43 % Method 1 truncation

44 % Method 2 Matrix exponential via Uniformization

45 % Method 3 Matrix exponential via eigenvalues and eigenvectors

46 % Method 4 Matrix exponential via Taylor series.

47 % Method 5 Matrix exponential via Pade approximation.

48 % run1 = baseline | run2 = trunc | run3 = unif | run4 = eig | run5 = Taylor | run6 = Pade

49 if (nargin > 3)

50 path(path,origDir)

51 end

52 blnUseFlops = true;

53 if blnUseFlops

54 if (exist(’C:\Program Files\ICL\WinPAPI\PAPI MATLAB Support\flops.dll’)~=3)

55 path(’C:\Program Files\ICL\WinPAPI\PAPI MATLAB Support\’,path);

56 disp(’path added for FLOPS’);

57 else

58 disp(’path addition not needed -- FLOPS in use’);

59 end

60 end

61 % save structure in .mat file

62 switch i

63 case 1

64 % RunData -- contains information on each run

65 % *$*$*$* RUN 1: Baseline *$*$*$*

66 % 1:gamma scaling | 2:truncation | 3:second loop tol | 4:uniformization

67 % ***** what methods do we want to run?

68 RunData.Method(1).Use = false;

69 RunData.Method(2).Use = false;

70 RunData.Method(3).Use = false;

71 RunData.Method(4).Use = false;

72 RunData.Method(5).Use = false;

73 % ***** what parameters needed for each method?

74 RunData.Method(1).Param = 0;

75 RunData.Method(2).Param = 0;

76 RunData.Method(3).Param = 0;

77 RunData.Method(4).Param = 0;

78 RunData.Method(4).Param = 0;

79 case 2

80 % *$*$*$* RUN 2: Truncation *$*$*$*

81 % ***** what methods do we want to run?

82 RunData.Method(1).Use = true;

83 RunData.Method(2).Use = false;

84 RunData.Method(3).Use = false;
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85 RunData.Method(4).Use = false;

86 RunData.Method(5).Use = false;

87 % ***** what parameters needed for each method?

88 RunData.Method(1).Param = 1e-4;

89 RunData.Method(2).Param = 0;

90 RunData.Method(3).Param = 0;

91 RunData.Method(4).Param = 0;

92 RunData.Method(5).Param = 0;

93 case 3

94 % *$*$*$* RUN 3: Uniformization *$*$*$*

95 % 1:gamma scaling | 2:truncation | 3:second loop tol | 4:uniformization

96 % ***** what methods do we want to run?

97 RunData.Method(1).Use = false;

98 RunData.Method(2).Use = true;

99 RunData.Method(3).Use = false;

100 RunData.Method(4).Use = false;

101 RunData.Method(5).Use = false;

102 % ***** what parameters needed for each method?

103 RunData.Method(1).Param = 0;

104 RunData.Method(2).Param = 1e-2;

105 RunData.Method(3).Param = 0;

106 RunData.Method(4).Param = 0;

107 RunData.Method(5).Param = 0;

108 case 4

109 % *$*$*$* RUN 4: expm via eigenvalues and eigenvectors *$*$*$*

110 % 1:gamma scaling | 2:truncation | 3:second loop tol | 4:uniformization

111 % ***** what methods do we want to run?

112 RunData.Method(1).Use = false;

113 RunData.Method(2).Use = false;

114 RunData.Method(3).Use = true;

115 RunData.Method(4).Use = false;

116 RunData.Method(5).Use = false;

117 % ***** what parameters needed for each method?

118 RunData.Method(1).Param = 0;

119 RunData.Method(2).Param = 0;

120 RunData.Method(3).Param = 0;

121 RunData.Method(4).Param = 0;

122 RunData.Method(5).Param = 0;

123 case 5

124 % *$*$*$* RUN 4: Matrix exponential via Taylor series. *$*$*$*

125 % 1:gamma scaling | 2:truncation | 3:second loop tol | 4:uniformization

126 % ***** what methods do we want to run?

127 RunData.Method(1).Use = false;

G-3



128 RunData.Method(2).Use = false;

129 RunData.Method(3).Use = false;

130 RunData.Method(4).Use = true;

131 RunData.Method(5).Use = false;

132 % ***** what parameters needed for each method?

133 RunData.Method(1).Param = 0;

134 RunData.Method(2).Param = 0;

135 RunData.Method(3).Param = 0;

136 RunData.Method(4).Param = 0;

137 RunData.Method(5).Param = 0;

138 otherwise

139 % *$*$*$* RUN 6: expm via Pade approximation *$*$*$*

140 % 1:gamma scaling | 2:truncation | 3:second loop tol | 4:uniformization

141 % ***** what methods do we want to run?

142 RunData.Method(1).Use = false;

143 RunData.Method(2).Use = false;

144 RunData.Method(3).Use = false;

145 RunData.Method(4).Use = false;

146 RunData.Method(5).Use = true;

147 % ***** what parameters needed for each method?

148 RunData.Method(1).Param = 0;

149 RunData.Method(2).Param = 0;

150 RunData.Method(3).Param = 0;

151 RunData.Method(4).Param = 0;

152 RunData.Method(5).Param = 0;

153 end

154 disp([’Starting batch run for state ’ int2str(intSt)]);

155 save RunData;

156

157 % call the run

158 tic;

159 [BestF,BestI,RunStats,RunSet] = mads_batch;

160 myoutput = toc;

161

162 % output results to a text file

163 intN = [int2str(intSt) int2str(i) int2str(rnum)];

164 strFN = [’mads_output’ intN];

165 % output results to a .mat file

166 save(strFN);

167

168 myoutput = BestF;

169

170 return;
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Appendix H. Post-processing Code
1 % Tim Booher

2 % 2 March 2006 -- This script postprocesses batch MADS data files

3 %

4 % First, data are conditioned, then placed in an excel file

5 clear all;

6 strRpt = ’results_final.xls’;

7 intMethods = 1:6;

8 runCount = 30;

9 states = [2 5 7 10 20];

10 stateSize = length(states);

11 workdir = pwd;

12 lm = length(intMethods);

13

14 TAU = zeros(stateSize,lm);

15 A = zeros(stateSize,lm);

16 FCALL = A;

17 C = A;

18 RTIME = A;

19 RUNTIMES = zeros(1,lm);

20 % collect the data

21 for intCurSt = states

22 k = find(states==intCurSt);

23 for myrun = 1:runCount

24 mr = int2str(myrun);

25 for j = intMethods

26 CurCol = find(intMethods==j);

27 cs = int2str(intCurSt); % current state

28 cm = int2str(j); % current method

29 mydir = [cs cm mr];

30 fname = [’mads_output’ cs cm mr ’.mat’];

31 disp(fname);

32 if (exist(fname)==2)

33 load(fname);

34 STATE(k).TAU(myrun,CurCol) = BestF.x;

35 STATE(k).A(myrun,CurCol) = -BestF.f;

36 STATE(k).C(myrun,CurCol) = -BestF.c;

37 STATE(k).FCALL(myrun,CurCol) = RunStats.nFunc;

38 STATE(k).RTIME(myrun,CurCol) = RunStats.time;

39 else

40 STATE(k).TAU(myrun,CurCol) = NaN;

41 STATE(k).A(myrun,CurCol) = NaN;
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42 STATE(k).C(myrun,CurCol) = NaN;

43 STATE(k).FCALL(myrun,CurCol) = NaN;

44 STATE(k).RTIME(myrun,CurCol) = NaN;

45 end

46 end

47 end

48 SUMT(k).TAU.HW = 1.96*(sqrt(var(STATE(k).TAU))/sqrt(runCount));

49 SUMT(k).TAU.Mean = mean(STATE(k).TAU);

50 SUMT(k).A.HW = 1.96*(sqrt(var(STATE(k).A))/sqrt(runCount));

51 SUMT(k).A.Mean = mean(STATE(k).A);

52 SUMT(k).C.HW = 1.96*(sqrt(var(STATE(k).C))/sqrt(runCount));

53 SUMT(k).C.Mean = mean(STATE(k).C);

54 SUMT(k).FCALL = mean(STATE(k).FCALL);

55 SUMT(k).RTIME.HW = 1.96*(sqrt(var(STATE(k).RTIME))/sqrt(runCount));

56 SUMT(k).RTIME.Mean = mean(STATE(k).RTIME);

57 SUMT(k).TVAR = var(STATE(k).RTIME);

58 RUNTIMES = [RUNTIMES; STATE(k).RTIME];

59 end

60

61 % output the data

62 AVGM = zeros(5,stateSize*lm);

63 RAW = zeros(runCount*5,stateSize*lm);

64 EXPM = zeros(stateSize*2,length(intMethods));

65 myCol = 0; expmrow = -1;

66 for j = states

67 k = find(states==j);

68 expmrow = expmrow + 2;

69 myExpmCol = 0;

70 for i = intMethods

71 curCol = find(intMethods==i);

72 myCol = myCol + 3;

73 myExpmCol = myExpmCol + 1;

74 AVGM(1,myCol-2) = SUMT(k).TAU.Mean(curCol)-SUMT(k).TAU.HW(curCol);

75 AVGM(1,myCol-1) = SUMT(k).TAU.Mean(curCol);

76 AVGM(1,myCol) = SUMT(k).TAU.Mean(curCol)+SUMT(k).TAU.HW(curCol);

77 AVGM(2,myCol-2) = SUMT(k).A.Mean(curCol)-SUMT(k).A.HW(curCol);

78 AVGM(2,myCol-1) = SUMT(k).A.Mean(curCol);

79 AVGM(2,myCol) = SUMT(k).A.Mean(curCol)+SUMT(k).A.HW(curCol);

80 AVGM(4,myCol-2) = SUMT(k).FCALL(curCol);

81 AVGM(4,myCol-1) = NaN;

82 AVGM(4,myCol) = NaN;

83 AVGM(3,myCol-2) = SUMT(k).RTIME.Mean(curCol)-SUMT(k).RTIME.HW(curCol);

84 AVGM(3,myCol-1) = SUMT(k).RTIME.Mean(curCol);
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85 AVGM(3,myCol) = SUMT(k).RTIME.Mean(curCol)+SUMT(k).RTIME.HW(curCol);

86 AVGM(5,myCol-2) = SUMT(k).TVAR(curCol);

87 AVGM(5,myCol-1) = NaN;

88 AVGM(5,myCol) = NaN;

89 EXPM(expmrow, myExpmCol) = SUMT(k).RTIME.Mean(curCol);

90 EXPM(expmrow+1, myExpmCol) = sqrt(SUMT(k).TVAR(curCol));

91 stRow = 1;

92 for rc = 1:runCount

93 RAW(stRow,myCol) = STATE(k).TAU(rc,curCol);

94 RAW(stRow+1,myCol) = STATE(k).A(rc,curCol);

95 RAW(stRow+2,myCol) = STATE(k).FCALL(rc,curCol);

96 RAW(stRow+3,myCol) = STATE(k).RTIME(rc,curCol);

97 RAW(stRow+4,myCol) = NaN;

98 stRow = stRow + 5;

99 end

100 end

101 end

102

103 xlswrite(strRpt, AVGM, ’summary’, ’B3’);

104 xlswrite(strRpt, RAW, ’raw’, ’B3’);

105 xlswrite(strRpt, EXPM, ’expm’, ’B3’);

106 xlswrite(strRpt, RUNTIMES, ’runtimes’, ’B3’);

107

108 disp(’done’);
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Appendix I. Plot Generator
1 function [A,cr,cd,ci,ERt,mym,tau] = Controller(intState)

2 % *************** Enumeration Tau Plotter ******************************

3 % Tim Booher -- timothy.booher@afit.edu

4 % 051018

5 % *************************************************************************

6 %intState = 2; % # of states in random environment

7 run_num = intState; % unique id to save files associated with this run

8 blnUseFlops = false;

9 blnOutputText = false; % create text file?

10 blnProdPlots = false; % produce plots

11 MOC = 2; % which method are we concerned with? (in plots)

12 inc = 25; % how many increments?

13 mult = 0.3; % how far from \tau = 0?

14 sp = 1; % what range of the overall \Lambda do we cover?

15 % RunInfo -- contains information on each run

16 % *********************************************************************

17 % *$*$*$* RUN 1 *$*$*$*

18 % ***** name for the run

19 RunInfo(1).runTitle = [num2str(intState) ’ state with uniformization’];

20 % ***** numerical id for the run

21 RunInfo(1).runID = 1;

22 % 1:gamma scaling | 2:first loop tol | 3:second loop tol | 4:uniformization

23 % ***** what methods do we want to run?

24 RunInfo(1).Method(1).Use = true;

25 RunInfo(1).Method(2).Use = false;

26 RunInfo(1).Method(3).Use = false;

27 RunInfo(1).Method(4).Use = false;

28 % ***** what parameters needed for each method?

29 RunInfo(1).Method(1).Param = 1e-3;

30 RunInfo(1).Method(2).Param = 1e-3;

31 RunInfo(1).Method(3).Param = 0;

32 RunInfo(1).Method(4).Param = 100;

33

34 % *************************************************************************

35 intIter = 0;

36

37 if blnUseFlops

38 if (exist(’C:\Program Files\ICL\WinPAPI\PAPI MATLAB Support\flops.dll’)~=3)

39 path(’C:\Program Files\ICL\WinPAPI\PAPI MATLAB Support\’,path);

40 disp(’path added for FLOPS’);

41 else
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42 disp(’path addition not needed -- FLOPS in use’);

43 end

44 end

45 % *************************************************************************

46 % create output file

47 if (blnOutputText)

48 fid = fopen([’output’ int2str(run_num) ’.csv’],’wt’);

49 fid2 = fopen([’watch’ int2str(run_num) ’.csv’],’wt’);

50 fid3 = fopen([’p_rpt’ int2str(run_num) ’.csv’],’wt’);

51 end

52 % *************************************************************************

53 % initiate loop over all methods

54 for i = 1:length(RunInfo)

55 if (blnUseFlops)

56 flops(0);

57 else

58 tic;

59 end

60 % *********************************************************************

61 % save RunInfo into .mat file

62 RunInfo(i).intState = intState;

63 RunData = RunInfo(i);

64 save RunData;

65 % *********************************************************************

66 % get inputs

67 Param = feval(’availabilityCalc_Param’);

68 setappdata(0,’PARAM’,Param);

69 Lambda = sp*Param.lim/min(Param.r);

70 % *********************************************************************

71 % build tau vector

72 tau = linspace(mult*Lambda/inc,Lambda-Lambda/(inc*mult),inc);

73 %lt = length(tau); % i think this can be ’inc’

74 A = []; cr = []; cd = []; ci = []; ERt = [];

75 % *********************************************************************

76 % Perform Iterations over all \tau

77 mym = 1:inc;

78 for m = 1:inc

79 if (Param.lim/(min(Param.r)*tau(m)) <= 1)

80 error(’\tau is too big relative to \Lambda -- add increments’);

81 break;

82 end

83 gamma = ceil(Param.lim/(min(Param.r)*tau(m)));

84 fprintf(1,’: %s :’,RunInfo(i).runTitle);
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85 fprintf(1,’ Iteration:\t %g of %g’,m,inc);

86 fprintf(1,’ \t tau: %g \t gamma: %g\n’,tau(m), gamma);

87 [A(m), cr(m), cd(m), ci(m), ERt(m)] = availabilityCalc(tau(m));

88 end

89 % *********************************************************************

90 % Output Performance Metrics to Systerm

91 if (~blnUseFlops)

92 ops(i) = toc;

93 else

94 [ops(i), mflops(i)] = flops;

95 end

96 % *********************************************************************

97 % calculate performance on any iteration other than 1 (baseline)

98 for j = 2:i

99 pim = 100*((ops(1)-ops(j))/ops(1));

100 mse = mean((AC{j}-AC{1}).^2);

101 if (blnOutputText)

102 fprintf(fid3,’%g, %g, ’, run_num, pim);

103 fprintf(fid3,’%g, %g’, mse, intIter);

104 end

105 end

106 % *********************************************************************

107 % Output Data to text file for post-processing -- used on remote unix

108 % system (HPC)

109 if (blnOutputText)

110 for b = 1:inc

111 fprintf(fid,’%g’,tau(b));

112 fprintf(fid,’, %g’,A(b));

113 fprintf(fid,’, %g’,C(b));

114 intM = [RunInfo(i).Method(1).Use RunInfo(i).Method(2).Use];

115 intM = [intM RunInfo(i).Method(3).Use RunInfo(i).Method(4).Use];

116 fprintf(fid,’, %s’,mat2str(intM));

117 fprintf(fid,’, %g’,run_num);

118 fprintf(fid,’\n’);

119 end

120 save([’output_’ int2str(run_num)], ’A’, ’C’, ’tau’);

121 end

122 end

123 % *************************************************************************

124 % Display final results

125 % *************************************************************************

126 % Produce Plots

127 if (blnProdPlots)
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128 figure; hold on;

129 myLineSpec{1} = ’-k’;

130 myLineSpec{2} = ’-or’;

131 myLineSpec{3} = ’-+g’;

132 myLineSpec{4} = ’--xc’;

133 myLineSpec{5} = ’--sm’;

134 myLineSpec{6} = ’--db’;

135 la = length(AC);

136 if (la > 6)

137 warning(’More methods used than linespecs available.’);

138 end

139 for j = 1:la

140 plotyy(tau,-AC{j},tau,CC{j});

141 end

142 ylabel(’Availability(\tau)’);

143 xlabel(’\tau’);

144 % legend(plts,legStr);

145 title([int2str(intState) ’-state case with ’...

146 int2str(inc) ’ increments’]);

147 grid on;

148 myx = get(gca,’xlim’); myy = get(gca,’ylim’);

149 myx = myx(1)+(myx(2)-myx(1))*(1/2);

150 myy = myy(1)+(myy(2)-myy(1))*(1/2);

151 % ********************************************************************

152 % calculate display improvement

153 % ********************************************************************

154 for j = 2:i

155 text(myx,myy,[’MSE Method ’ num2str(j) ’ = ’ num2str(mse)],...

156 ’BackgroundColor’,’white’);

157 text(myx,myy,[’Improvement Method ’ num2str(j) ’ = ’ num2str(pim)],...

158 ’BackgroundColor’,’white’);

159 text(myx,myy,[’Method ’ num2str(j) ’ Prm = ’ ...

160 num2str(RunInfo(j).Method(MOC).Param)],’BackgroundColor’,’white’);

161 end

162 end

163 if (blnOutputText)

164 fclose(fid); fclose(fid2); fclose(fid3);

165 end

166 return;
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Appendix J. Perl Batch Controller

1 #!/bin/perl -w

2 use Cwd; use File::Copy;

3 my $stdir = getcwd(); # get current directory

4 print "starting dir is $stdir\n";

5 my $nr = 1; my $i = 0; # initialize index

6 foreach $st (qw/2 5 7 10 20/) { # iterate over all states

7 @j = qw/5 10/; # array of times for each state

8 for ($k=1; $k <= 6; $k++) { # 6 different methods

9 for ($r=1; $r <= $nr; $r++) { # iterate over each run

10 $r = sprintf("%02d",$r); # format the last two digits

11 $rnum=$st.$k.$r; # unique id for each run

12 print "submitting $i:$st \t $rnum \t k: ($k) \t $j[$i]\n";

13 $myscript = <<"ENDSCRIPT";

14 #!/bin/sh

15 #BSUB -q regular

16 #BSUB -n 1

17 #BSUB -W $j[$i]:00

18 #BSUB -a SMP

19 #BSUB -J b_$rnum

20 #BSUB -o matlab_run_$rnum.out

21 #BSUB -e matlab_run_$rnum.out

22 #BSUB -P WPBAFITO25047ACM

23 matlab -nojvm -nodesktop -nosplash > matlab_run_$rnum.out << EOL

24 CallMadsBatch($st,$k,$r,$stdir);

25 EOL

26 ENDSCRIPT

27 mkdir($rnum,0777); # create a directory with full permissions

28 system "cp *.m $rnum/";

29 chdir $rnum; # place all files in that directory

30 $myfilename = "booher_job_$rnum.sh";

31 open DUMMYFILE, ">$myfilename"; print DUMMYFILE $myscript;

32 close DUMMYFILE;

33 system "bsub < $myfilename"; # submit the script to the lsf engine

34 chdir $stdir;

35 #print $rnum."\n";

36 }

37 }

38 $i+=1;

39 }

J-1



Bibliography

1. Abate, J., Choudhury, G., and Whitt, W. (1999). Computational Probability.
Kluwer, Boston.

2. Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting trans-
forms of probability distributions. Queueing Systems. Theory and Applications,
10, 5–87.

3. Abate, J. and Whitt, W. (1992). Numerical inversion of probability generating
functions. Operations Research Letters, 12, 245–251.

4. Abate, J. and Whitt, W. (1992). Solving probability transform functional equa-
tions for numerical inversion. Operations Research Letters, 12, 275–281.

5. Abate, J. and Whitt, W. (1995). Numerical inversion of Laplace transforms of
probability distributions. INFORMS Journal on Computing, 7, 36–43.

6. Abate, J. and Whitt, W. (1998). Calculating transient characteristics of the
Erlang loss model by numerical transform inversion. Communications in Sta-
tistics. Stochastic Models, 14, 663–680.

7. Abate, J. and Whitt, W. (1999). Computing Laplace transforms for numerical
inversion via continued fractions. INFORMS Journal on Computing, 11, 394–
405.

8. Abate, J. and Whitt, W. (1999). Infinite-series representations of Laplace trans-
forms of probability density functions for numerical inversion. Journal of the
Operations Research Society of Japan, 42, 268–285.

9. Abate, J., Whitt, W., and Hill, M. (1995). Numerical inversion of Laplace
transforms of probability distributions. ORSA Journal on Computing, 7, 36–
43.

10. Abdel-Hameed, M. (1995). Inspection, maintenance and replacement models.
Computers & Operations Research and their Application to Problems of World
Concern, 22, 435–441.

11. Abramson, M. (2006). NOMADm software. URL http://www.afit.edu/en/

enc/Faculty/MAbramson/nomadm.html.

12. Abramson, M., Audet, C., and Dennis, J., Jr. (2006). Nonlinear programming
by mesh adaptive direct searches. SIAG/Optimization Views-and-News, 17,
1–17.

13. Abramson, M. A. (2002). Pattern Search Filter Algorithms for Mixed Variable
General Constrained Optimization Problems. Ph.D. Thesis, Rice University.

BIB-1

http://www.afit.edu/en/enc/Faculty/MAbramson/nomadm.html
http://www.afit.edu/en/enc/Faculty/MAbramson/nomadm.html


14. Abramson, M. A. (2005). Second-order behavior of pattern search. SIAM
Journal on Optimization, 16, 515–530.

15. Ahmed, N. U. and Schenk, K. F. (1978). Optimal availability of maintainable
systems. IEEE Transactions on Reliability, 27, 41–45.

16. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.
(1999). LAPACK User’s Guide. SIAM, Philadelphia.

17. Arioli, M., Codenotti, B., and Fassino, C. (1996). The Padé method for comput-
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