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Abstract 

It is proposed to develop a framework of detecting and analyzing small and 

widespread changes in specific dynamic characteristics of several nodes.  The 

characteristics are locally measured at each node in a large network of computers and 

analyzed using a computational paradigm known as the Relaxation technique.  The goal 

is to be able to detect the onset of a worm or virus as it originates, spreads-out, attacks 

and disables the entire network.  Currently, selective disabling of one or more features 

across an entire subnet, e.g. firewalls, provides limited security and keeps us from 

designing high performance net-centric systems.  The most desirable response is to 

surgically disable one or more nodes, or to isolate one or more subnets.    

The proposed research seeks to model virus/worm propagation as a spatio-

temporal process.  Such models have been successfully applied in heat-flow and evidence 

or gestalt driven perception of images among others.  In particular, we develop an 

iterative technique driven by the self-assessed dynamic status of each node in a network.  

The status of each node will be updated incrementally in concurrence with its connected 

neighbors to enable timely identification of compromised nodes and subnets.  Several key 

insights used in image analysis of line-diagrams, through an iterative and relaxation-

driven node labeling method, are explored to help develop this new framework. 
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An Iterative Relaxation Approach for Anomaly Detection and Preventive Measures 

in Computer Networks 
 
 

I.  Introduction 

1.1 Background 

Relaxation is an iterative computational paradigm used in many spatio-temporal 

problems such as: the study of heat-flow in a bounded space, evidence based incremental 

perception of images, resource allocation, and constraint propagation in inference 

networks.  This thesis describes the development of a framework to model the 

propagation of virus and worms in a computer network using the Relaxation techniques.  

We assume that the network is comprised of several functionally heterogeneous nodes 

with varied degrees of mutual trust relationship amongst them.  Simple simulations have 

been used to illustrate the point; however, large-scale experimental verification is not 

included in the scope of the present study.   

The propagation tactics of viruses and worms in a network closely resemble the 

sequential processes inherent to heat-flow in bounded space.  These processes can be 

characterized by a set of isolated heat sources and a well defined set of immutable spatial 

location also known as boundary conditions.  The objective is to compute the steady state 

distribution of temperature in the volume and the transient behavior at each location after 

a heat source has been introduced into the volume.   

Several fortified nodes in a network define the boundary conditions; the un-

secured ones constitute a medium of propagation, and each of the infected nodes play the 

role of a heat source.  The propagation itself is modeled as a diffusion or conduction 
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process whose dynamics are characterized by pair-wise trust and traffic between any two 

connected nodes in the network.  Thus, the scope of studies in virus propagation bears a 

similarity to the modeling and analysis of heat-flow.  The relaxation paradigm, once 

again, has been successfully applied to heat-flow computations, principally due to the 

inherent potential for parallel computation made feasible by this approach.   

The principle concept that govern the physics of heat flow in a bounded volume, 

free from active sources or sinks, states that the temperature will reach a steady state such 

that the spatio-temporal changes will eventually vanish (or become minimal), except at 

locations where there is a source or a sink.  Thus given a synaptic snapshot of the 

temperature across the field, one could predict the temperature in the next time frame, 

based only on the spatial derivatives of the local temperature and the effect of any local 

sources/sinks, as follows:   

2 2

2 2 ( , ; ) ( , ; )dT T x y t s x y t
dt x y

⎛ ⎞∂ ∂
= + +⎜ ⎟∂ ∂ ⎠⎝

. 

The term ( , ; )s x y t represents the heat source.  It is to be emphasized that the spatial 

derivatives are computed as a highly localized operation.  Further reduction of this 

equation lends it self to the form: 

[ , ; ( 1) ] [ , ; ] [ , ; . ]T x y t k dt T x y t k dt R x y k dtε+ + = + ⋅ + ⋅ , 

 where, the term  [ , ; . ]R x y k dt  is known as the residual error at location (x,y), whose 

value is exactly the same as the right hand side of the previous expression.  A non-zero 

value indicates that the system has not reached local equilibrium.  The scalar multiplier ε  

must be chosen carefully to allow the constraints to propagate across the grid;   higher 
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values would promote rapid convergence based on local constraints, and smaller values 

would permit T(x,y;t+1) to be influenced by constraints originating from distant points.  

Note dt is very small compared to one.   

The computation of self-assessed health indicators of each node is not as simple 

as the heat flow process introduced above.  The difficulties originate from the fact such 

indicators are discrete in value and the spatial derivatives must be suitably modeled over 

the discrete space of nodes, i.e. node-indices.  The discrete values of a scalar or vector 

measurement at each node is generally constrained by the corresponding measurements at 

its immediately connected neighboring nodes, in a manner that is governed by the nature 

of relationship between itself and each of its neighbor.  Then, given the estimate of the 

state of affairs at each neighboring node and the node in question, one could estimate the 

extent to which the estimates agree or disagree.  A quantitative assessment of such 

disagreement (residual incompatibility) is to be reckoned by adjusting the local estimate 

(at the present node).  Such a procedure must be performed at all nodes iteratively in 

locked-steps until the residual conflicts vanish at all nodes. That is, the goal is to obtain 

local concurrence everywhere to produce a globally stable field of locally consistent 

assessments.    

The above generalization is illustrated with a concrete example known as a line 

labeling algorithm for image understanding in the world of trihedral blocks.  In the 

example provided later in the work, one can observe how label propagation can be aided 

with the use of a compatibility matrix at each node to determine a node’s state from its 

neighbors.  This matrix provides the information of how connections are made, and 
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which users communicate within the network.  Our description of the line labeling 

problem and relaxation technique will be limited to the extent necessary to help explore 

and explain the basic elements of studying the dynamic state of nodes in a computer 

network, as a virus or worm propagates.  The section on literature survey enlists a 

number of papers where the relaxation technique has been applied successfully.  Our 

objective has been to provide the reader with parallels between the two problems and to 

model/analyze network security in a way that has not been realized before.  

We draw parallels from a classic problem in computer vision known as discrete 

labeling of line drawings in a trihedral blocks world.  In simple terms, the line labeling 

process assigns one of four possible interpretations to each line segment in an image, 

subject to the constraints that arise in corners where at most three edges concur.  While 

the method is easily explained as a sequential process, the underlying evidence-driven 

perceptual grouping is highly conducive for distributed and parallel computation.  We 

seek to emphasize that the local measurement made everywhere across the network are in 

fact mutually constrained by global context, refer to Chapter 4 for more details on these 

methods.  In addition, a rich set of relationships, which if understood fully, can be 

exploited to develop a globally consistent inference about the network based only on 

dense localized measurements.  

We propose to categorize the nodes in a network into one of several possible 

personalities.  In a network of limited scope, such as a small office, these nodes are 

envisioned to be one of:  work-station user privilege, work-station with super user 

privilege, a mail-server, a ftp-server, a print-server, simple-router, a gate-way, a ntp-
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server, etc.  Often, one physical computer may serve more than one of the above 

personalities.  In that case, we would trivially model such nodes as virtual nodes.  

Initially we assume that all nodes are assigned a label indicating an uninfected state.  The 

simplest possible way of labeling the health of a node is envisioned to include: 

uninfected-and-secured, uninfected-and-vulnerable, infected-contained, infected-

contagious, and dysfunctional.   

Preliminary analysis indicates that most common network installations are made 

of nodes whose personalities can be mapped to a finite set of functionalities / services 

offered by the nodes.   At least in principle, it is possible to enumerate the relationship 

between any two nodes in a network, and measure the occurrence a definite operation on 

a node and its potential impact on the node’s health as well as its connected neighbors. 

We must be more innovative in defining “connectedness” or “neighbors” to suit the 

context.  For example, two nodes communicating through sftp may cause a tunnel 

between two subnets potentially permitting infection unnoticed by the firewalls! 

Let 1 2 3, , ,... LA A A A  be L distinct mutually exclusive labels that can be assigned to a node 

characterizing its current state of health.  One of these states, we will take into account an 

undecidable state as well.   Let p( A |i) be the probability that the state A  is assumed by a 

node i.  Then given two nodes i and j, we could write the compatibility between those 

values as a set of mutual constraints in the form:    

( | ) ( , , , , ( ), ( )) ( | ); , .
i

k k

j N
i C i j d i d j p j L

λ

λ λ λ
∈

∆ = ⋅ ∈∑ ∑A A A  
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Where ( | )i∆ A  is the change in confidence at node i in state A  and C is the compatibility 

between i and j their respective states A  and λ .  iN  is the neighborhood of i.  From the 

equation,  ( , , , , ( ), ( ))C i j d i d jλA  can be further factored into the form 

( , ) ( , , , , ( ), ( ))H IR i j R i j d i d jλD A .  In the expression, HR  captures the effect of a 

hierarchical relationship between nodes.  IR  models the relationship between infection 

symptoms at each node taking into account their dynamics, ( )d i and ( )d j .  One would 

expect if an administrator of a network is infected, the infection would easily pass down 

to any user under the administrator’s control.  In the reverse sense though, any user 

would not be able to easily infect the administrator because of the hierarchical 

relationship between administrator and user, thus ( , ) ( , )H HR i j R j i≠ .  To predict the next 

most feasible state of node i, the normal of the labels can be divided by the current 

confidence, plus the change in label confidence.  This yields the equation below, for 

updating the label of the node: 

( 1) ( | )[1 ( | )]( | )
( | )

k k
k

k

p i iP i
p i

+ + ∆
=

∑
A

A AA
A  

Suppose a workstation with super-user login has been infected.  Then, the 

underlying cause (a worm) has maximum chance of infecting the other stations.  In 

contrast, if the infected workstation is that of a less privileged user (perhaps due to a 

downloaded program, or file import) it does not have the same impact on the machines 

the user might subsequently access.  This is particularly true when local network traffic is 

governed by a star-network with a firewall at the hub.  The problem becomes serious if 
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the worm infected file has been introduced first to a file server, before it was opened for 

execution.  In that case, some privileged workstation on the network may, by-design, be 

able to execute (accidentally by a super-user) the infected file.  Thus, an imported file 

resident on file server is more lethal than an imported file resident on a user-workstation.  

Stated otherwise, the number of files created on a node over certain duration on a node, 

may have an impact on the health of its neighbors in the immediate future.  Conversely, 

the existence of a firewall/virus scan on the hub annihilates the spreading.  Several ideas 

similar to this will be enumerated individually to establish the baseline of compatibility 

of self-assessed health of nodes, taking into account the interaction between the 

TCP/UDP ports open on these nodes, and the services that are performed by each node. 

Predicting where an infection will spread to is the next step in preventing a virus 

from encompassing a network.  Virus propagation can be thought of as a heat flow 

problem.  A source node is initially infected and neighboring nodes soon become infected 

as well.  These “neighboring” nodes do not need to be physical neighbors, but neighbors 

in the sense that communication occurs between them on a normal basis.  Just as a heat 

source in a room will gradually heat the entire room up to a maximum heat capacity, 

limited by boundary walls and their temperatures, a virus will spread through a network 

until it reaches set boundaries and conditions.  An automated virus, know as a worm is 

the quickest way an attack can spread through a network.   

Worms pose a larger threat than a single attacker does, mainly because the rate a 

worm spreads through a network is much faster than any person can gain access or 

control of the same number of computers.  Since worms are automated, worm code 



 

8 

determines what communication ports will open, how the worm’s payload is delivered, 

and once a host is infected, how to find more hosts.  All of this can be done at rapid rate 

until the entire network is compromised.  Furthermore, worms are persistent and 

therefore a network’s defenses must be almost flawless, with all computers on that 

network having strong defenses as well.  One weak link in a network and a worm can 

break in and still compromise each node on the network since most computers have a 

“trust” policy with other systems in the same network.  Finally, although an “intelligent” 

worm has not yet been created, it is only a matter of time before one that can learn and 

adapt to its environment is created, instead of using set paths and backdoors to enter a 

host. 

1.2 Problem Statement 

The problem we seek to attack is as follows: Identify a minimal set of parameters 

that can be measured locally at each node, to indicate the symptoms of a cyber attack.  

Identify a set of pair-wise relationships between nodes in a network that help characterize 

how attacks spread.  Propose a computational strategy to perform a distributed 

computation with the locally measured symptoms, and help a global decision if a network 

is under attack.  Finally, we look to address practical issues that will govern the 

acceptance and widespread usage of the resulting recommendations in the existing 

network. 

1.3 Research Objectives/Questions/Hypotheses 

The objective of this research is to model virus propagation, similar to the heat 

flow diffusion method, using relaxation.  This work will also build a foundation to exploit 
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the network traffic among various nodes to monitor the overall health of a network.  

Nearly every large-scale application involves some form of networked or distributed 

resources.  Even a mundane task like scheduling a meeting has become automated 

through access to the remote calendars.  Isolation through disconnecting from the 

network or closing all ports is not practical.  Having open ports to a network is a must, 

but the vulnerability of computer ports needs to be monitored and secured.  In future 

research, implementation of the model would use a field programmable gate array 

(FPGA)-based distributed firewalls (FPDF) to monitor and control network traffic 

actively in real-time.  “Distributed” means that the proposed method is implemented in 

situ in each node in a network.  The inevitability of using heterogeneous computer 

networks, and the issues associated with legacy systems, are well addressed by this 

approach.   

For example, if a hardware firewall is the gatekeeper in a bank, the proposed 

mechanism is like a vault keeper.  Each vault keeper knows exactly who the permitted 

users are, including authorized proxies.  The system performs tasks beyond a typical 

firewall.  It provides the basic block to implement a distributed system for network 

intrusion detection.  In addition, it would insulate each machine from outsiders by 

concealing vulnerable information such as OS type, version, and patch-level, which are 

often the key for machine specific attacks.  If an anomaly is detected, the FPDF can 

intervene and deny incoming or outgoing traffic.  The device can also alert other nodes in 

the network about the compromise and update the health of the overall network.  Often, 

the core operations at this stage are to compare a string to the most recently encountered 
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strings, as well as list of known virus elements.  The list is dynamic.  These are 

operations that have been efficiently implemented in FPGAs, which permit parallelism.  

These content matching servers, as they are called, perform well for normal network 

traffic.  However, they fail against encrypted traffic, since the data signature matching 

cannot be performed. 

The relaxation technique, applied to a computer network, assumes: locally 

consistent operations everywhere results in a globally consistent system [11].  Each node 

in a network determines its status by its own state and the states of its neighboring nodes 

and then takes appropriate security measures.   

 

The states of a node are:  

1) Fully secure with no vulnerabilities, since the system is not connected to the 
network  

2) Secure, but with known and monitored vulnerabilities, such as open ports  
  (Ideal state) 

3) Thought to be fully secure, but contains vulnerabilities (worse case of false 
security, default initial configuration setting) 

4) Not secure with known and unmonitored vulnerabilities 
5) Not secure and open to everything purposely, such as a Honeypot 

 

In a fully implemented system, all states will be used to describe a node’s status in a 

network.  If node #1 has known vulnerabilities (e.g., two open ports), while another 

system on the network has three vulnerabilities that are monitored and not monitored, 

system #1 has six possible ways of becoming infected or compromised in a “trust” based 

network.  Without in-depth traffic monitoring, the status of node #1 should set to level 3 

to reflect a possible attack through the node #2.  With monitoring however, the security 
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policies can be changed to monitor for specific known vulnerabilities through node #2, 

while also checking traffic patterns for anomalies; possibly revealing other 

vulnerabilities.  A more in depth review of the relaxation technique will be covered in 

Chapter 4. 

1.4 Research Focus 

This research focuses on establishing parallels between network virus 

propagation, heat flow and image labeling, topics that have been thoroughly studied and 

modeled in computer vision.  The extent at which this topic would be effective in 

computer networks remains to be explored.  In part, the reason for concern lies with the 

fact that a continuous function, such as heat-diffusion, does not readily import into the 

context of computer networks, which are largely characterized as a field of discrete 

events.  Instead of viewing the problem as a discrete time, continuous function 

framework, it may be beneficial to model the problem as a discrete event or discrete-

space framework.  An example of such an instance is a Necker-cube, seen in Figure 1.  

One cannot discern from the image if the corner is supposed to be perceived as the rear 

bottom left or the front bottom left.  By analyzing neighboring nodes and creating rules, a 

correct orientation of the cube can be observed. 
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Figure 1: Necker Cube – Is the dot at the rear bottom left or the front bottom left? 

Two stable interpretations can be perceived.  Each interpretation is a stable labeling by the rules referred 
to in Figure 10, but the problem does not a have a unique solution.  If  it is stated that only the inside of the 
bottom of the cube can be observed in the figure, then this evidence drives the perspective of the dot to be 
located in the rear bottom left corner.  This concept of evidence-driven labeling can be related to computer 
networks and gathering information from nodes. 
 

1.5 Investigative Questions 

Using a method proven from computer vision, but never applied to network 

security poses some questions.  The method will improve virus detection, but to what 

extent?  Also, after implementation, will the additional hardware in the network pose 

network performance and reliability problems that could affect the time it takes for the 

device to switch from one state to another?  Although a hardware based system should be 

a great improvement over software detection systems, the added features the hardware 

can perform may offset these gains, but by how much? 

One potential performance problem may result from placing the monitoring 

device in series between the node and its network.  This device may cause enough delay 

that a user notices it.  Scanning each packet in-depth could impose delays in the network 

traffic.  Analysis of traffic throughput before and after the implementation of the 

hardware will measure the impact of this hardware. 
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A reliability problem will occur when the FPGA determines an attack is 

“successful,” or has passed the detection hardware and infected an end node.  In the case 

of a false positive, the device would still reprogram itself to act as a reverse firewall, 

preventing any data from leaving the infected node.  If an attack causes the device to 

become a reverse firewall, it effectively becomes a DoS (denial of service) attack.  The 

user cannot use the node to reach any outside node.  It is unknown at this time if the 

detection scheme allows DoS attacks, but the detection scheme should account for this 

potential problem. 

  A final problem is FPGA reprogramming time.  If the number of gates in the 

FPGA prohibits the switching between two independent circuits, then the FPGA must be 

reprogrammed for each function.  When the hardware detects an attack has breached the 

system, the FPGA reprograms itself to act as a reverse firewall.  The problem arises 

during the time it must make this transition.  During the transition, if the reprogramming 

takes too long, the worm/virus may have infected the system and propagated to another 

system in the network. When changing back to passive mode, the transition time is not as 

critical because the system must be disinfected and secured before the machine is allowed 

to connect with the network again. 

While these questions will be discussed, simple simulations can only be used to 

illustrate the point.  Until a large-scale experimental verification is performed, an exact 

measure of the performance gain cannot be produce.  While the large-scale evaluation is 

beyond the scope of this work, the answers to the posed questions will be speculated later 

through the examples provided.  
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1.6 Approach 

Providing examples of image analysis and labeling techniques will help draw 

parallels between labeling images and labeling computer networks.  Then the relaxation 

methods can be transferred to virus propagation with some modifications.  Eventually 

though, to develop a device that protects against worms and viruses, while still allowing 

users access to services, several rules and methods need to be followed.  An ideal device 

would employ countermeasures to automatically prevent the attack from continuing, but 

these countermeasures should not influence the user to a degree that renders the machine 

useless to them for extended periods.  The analysis of connections to a node would 

reduce the negative impact of countermeasures on the system.  Applying this technique 

with relaxation would allow users to slow the spread of worms and notify other nodes in 

the network of potential attacks.  While this work does not cover how to slow or stop the 

spread of an attack, it does demonstrate the techniques used to predict where the virus / 

worm would spread to next, so the spread can be prevented by other means.  The 

relaxation approach is used in this research to determine the health of the nodes in a 

network. 

1.7 Assumptions/Limitations 

In this research, worms are assumed to be capable of evading current network 

security techniques by spreading rapidly with little or no detection.  Creators of operating 

systems will develop systems with features that have flaws and exploits.  While patches 

will be available when an exploit is found, some of these will not be applied in time, 

increasing the chance of vulnerability across the network.   
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The device proposed for future work is not operating system dependant.  If it 

were, it would limit its application on next generation operating systems.  A router may 

provide advanced security measures, but it cannot be fully customized for the systems 

that connect to it.  Individual pieces of hardware are more customizable, and since traffic 

patterns vary greatly between users, this allows for independence from other user traffic 

patterns. 

1.8 Implications 

Monitoring statistics of incoming and outgoing node traffic is much more 

beneficial than monitoring the network as a whole.  Each user’s traffic patterns can be 

monitored and provides a more detailed analysis of activity to and from a machine.  This 

technique is not as beneficial for static worms and viruses, since detecting them is simply 

a matter of matching signatures.   

Dynamic worms and viruses, however, find it more difficult to gain access to a 

system.  A dynamic worm must enter the network and monitor the incoming traffic to a 

specific system.  It would not be able to monitor the network traffic as a whole, since 

machines within a switched network do not see the same traffic.  The worm must have a 

specific target and be more advanced to blend with the traffic to and from the node.  In 

most router-based detection systems, only incoming traffic is monitored.  With the 

proposed plan, outgoing traffic from a system is also monitored.  Therefore, a dynamic 

worm would have to blend with the incoming and outgoing traffic to be undetected.   

Since matching and monitoring would be performed in external reprogrammable 

hardware, the end system would not have to use any of its memory or processing power 
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exclusively for security.  This allows more resources to be used for local computations 

rather than on network traffic analysis, as in a software based detection system.     

1.9 Thesis Overview 

In Chapter 2, fundamental components of computer worms are introduced along 

with their attack patterns, evasion techniques, payload methods, and future.  Also 

included is current research on Honeypots for intrusion detection on networks.  Chapter 3 

covers hardware implementations in current research and architectural aspects of attack 

resilient networks.  Chapter 4 describes the details of line labeling and using relaxation to 

analyze an image.  These techniques are then applied to a computer network example.  

Future research topics, for network labeling and hardware implementations, are covered 

in Chapter 5.  The final chapter presents the research conclusions along with the 

significance of this research. 
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II. Literature Review 

2.1 Chapter Overview 

This chapter explains the fundamental components of computer worms, along 

with their attack patterns, evasion techniques, payload methods, and future.  Several 

worm simulations are provided to demonstrate how quickly a network can be 

compromised, with varying levels of security.  In addition to worm techniques, current 

research using Honeypots for intrusion detection on networks is also covered.  The intent 

is to identify a set of suspicious activities that can and should be appropriately monitored.   

Our simulations, using the publicly available Symantec Worm Simulator [30], 

reveal that the worms exploit vulnerabilities at all levels: Single nodes, group of trusted-

friends, firewalls, routers, print-servers, etc.  The symptoms are different at each of these 

personalities, but combined there is only a finite number.  In addition, it can be 

envisioned that a hardware system that prevents abnormal activity and unusual high rates 

of traffic will prevent the spread of a worm and ease the administrator’s burden of 

disinfecting a larger number of systems, allowing more time to apply patches to fix 

security holes in the operating systems.    

2.2 Description 

To further enhance network security, techniques from Honeypots are used to 

monitor network traffic and activity, detect intrusions, and protect systems.  

Reprogrammable hardware can perform these processes in a stand-alone system.  Others 

have done work in these areas, but none have combined all these techniques into a single 

research topic.  In section five of this research, these ideas and techniques, will be used to 
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propose a platform for future network security devices and a more effective way to 

prevent malicious attacks on networks.  To appreciate why these security techniques 

should be combined though, understanding how a worm attacks and gains control of a 

system will be covered first.  

2.3 Computer Worms 

Understanding how quickly worms spread and gain access to systems is 

fundamental to network security and determining how to prevent spreading.  The rate at 

which a worm spreads in a network is much faster than a human can gain control of the 

same number of computers.  Individual nodes cannot provide enough information to 

determine the rate at which a worm may spread.  When the information from individual 

nodes is combined with the actions and statistics from others, a useful measure of the 

network state can be gained and how fast a worm is spreading can be learned.  There are 

a number of features, which will be covered later, that can be measured locally.  Analysis 

of these can help determine if an attack has occurred.  Although these measures cannot be 

used to trigger an alarm for an attack, they can be used to verify if anything has already 

occurred and provide forensic value. 

Since a worm is automated, the worm code determines which ports open, how the 

worm’s payload is delivered, and once a host is infected, how to find more hosts.  All of 

these tasks are performed at an extremely rapid rate until the entire network is 

compromised.  Furthermore, worms are persistent and therefore a network’s defenses 

must be strong with all computers on that network having strong defenses as well. One 

weak link in a network is all a worm needs to compromise the entire network, since 
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within the network most computers “trust” each other.  Finally, even though an 

“intelligent” worm has not been created yet, it is only a matter of time before one that can 

learn and adapt to its environment is created.  A worm has been described as [32]: 

“a program that travels from one computer to another but does not attach itself to 

the operating system of the computer it “infects.”  It differs from a “virus,” which is also 

a migrating program, but one that attaches itself to the operating system of any computer 

it enters and can infect any other computer that uses files from the infected computer.”   

A simpler and updated definition is [22]:   

“An independently replicating and autonomous infection agent, capable of 

seeking out new host systems and infecting them via the network.”  

 

2.3.1 Basic Components of a Worm 

In a worm system, there are usually five components: Reconnaissance, Attack, 

Communication, Command, and Intelligence [23].  A worm must at least have an attack 

component. 

• Reconnaissance:  To expand infection and add hosts, a worm network must 

seek out other network nodes to infect.  Reconnaissance is responsible for 

gaining access to other computers by exploiting security “holes” of other 

systems.  The steps a worm may take are similar to a single attacker using port 

scans and service sweeps.  These methods can determine what services are 

running on the machine and sometimes what type of system is being scanned.  

Reconnaissance can also be performed in a passive mode.  By monitoring IP 

stacks or analyzing applications instead of performing scans, a worm remains 

unnoticed, while still discovering key systems.  After determining the system 

type and a corresponding vulnerability, the system can be attacked. 
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• Attack:  Attack components are the most dominant parts of worms and the 

most revealing.  Worms gain entry to a system using standard remote exploits 

such as buffer overflows, cgi-bin errors, or Trojan horse techniques [23].  

Most worms attack a specific platform and operating system and look for a 

limited number of known exploits to reduce the size of the worm so as not to 

overwhelm the network.  With increasing network speeds, larger worms can 

be expected to have more exploits and be able to attack multiple platforms. 

 

• Communication:  For worms to spread, they need some way to communicate 

or transfer information between nodes.  Information about vulnerabilities or 

mapping information must be sent by hosts or from a central location to nodes 

performing reconnaissance.  These communication channels can be socket 

based (server and client) and use a variety of transport protocols or even 

email.  Non-socket-based channels can be observed with a network traffic 

monitor.  This way, signals blend into the normal network traffic and are more 

difficult to detect.  Another way for worm nodes to communicate is through a 

central location such as a Web page.  Anyone connecting to that page may 

also be infected, expanding the worm network at the same time. 

 

• Command:  A worm’s usefulness can be increased after being interconnected 

by a command interface (either interactive or indirect) [22].  Along with the 

communications component, a hierarchy of nodes can circulate commands 

and expand the host’s intentions.  A "back door" is also commonly used to 

regain control of the system, without having to perform reconnaissance and 

the actual attack again. 

 

• Intelligence:   The true potential of the worm is reached when the nodes act 

together.  The intelligence component exploits the knowledge contained in the 

nodes, which can be organized into a database of sorts.  This database could 
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be a list of IP addresses or hostnames.  Information for the database can be 

built in a number of ways, such as via email upon infection, special packets, 

or by some service for worm nodes [22].  This intelligence network is 

important to the worm, but it is also a vulnerability that can be compromised 

if the database is found and eliminated. 

 

Analyzing these five components shows that they can all be monitored in at least a 

passive way.  Something is always being transmitted or even just read, either with 

scanning or passive measures.  Since files or IP stacks are being accessed, this is 

something that is countable.  The number of times these are read can be used to 

determine if a large amount of scanning is occurring, or if the amount is normal.  As will 

be explained later, these components lend themselves to finite measurable events and can 

give indication of an attack.  These measurements should be used judiciously though to 

prevent false alarms and develop a reliable system for detecting attacks.      

 
2.3.2 Scanning and Attack Patterns 

How a worm is spread is a function of how aggressively it attacks.  If a worm 

randomly scours the Internet, it will not be very efficient.  The worm will likely not cause 

much damage or survive for an extended period.  Too narrow of an attack will cause 

more harm to that network, but may not spread very far beyond it to have a large impact 

on the rest of the Internet.  Typical attack patterns include random scanning, random 

scans using lists, island hopping, directed attacks, and hit-list scanning [22]. 

 A worm node that randomly chooses a network to scan, usually chooses a 

network with a block of 65,000 hosts (a /16 network) or 256 hosts (a /24 network).  
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However, pools of addresses on the Internet tend to cluster between 128/8 and 220/8.  To 

be effective, the worm must focus on hosts that are accessible and potentially vulnerable 

to its exploits.  Random generation is more likely to pick a network that is lightly 

populated.  For example, several class-A networks below 127/8 are virtually unused 

except for researchers studying Internet security patterns and traffic [22].  The final 

element that is important to a random scan is the use of a good random number generator.  

If a poor random number generator is used, some networks may not be scanned at all and 

of the networks that are scanned, the scan will not be evenly distributed.  Worms that use 

the random scan technique include Ramen and Code Red I worms.  While weak random 

number generators held these worms back, a properly implemented random scan can 

achieve close to total coverage of the Internet in a small period of time [22].  A drawback 

to this scanning method is it tends to create highly visible and noisy traffic, which reveals 

its presence.   

 Random scanning using lists is similar to random scanning, but the worm carries a 

list of numbers to aid in the generation of networks.  The list contains known assigned 

address spaces.  This improves the worm’s efficiency by focusing on locations where 

hosts are most likely to be located.  Furthermore, since analysts often use unused address 

space to detect and track worms, a worm that avoids these spaces will be undetected 

longer.  If the network is empty or only has a few hosts, the worm will still scan all the 

addresses but would be limited by timeout values based on failed connections.  This can 

severely slow a worm’s spreading progress.  This preset list of numbers can also be used 

to predict the spread of a worm if the list is widely known.    
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 Island hopping is another way a worm scans a network.  Once all the resources 

are consumed in a network, the worm would move to the next “island” or random 

network block.  This method has been very effective by implementing a weighted scan.  

About 50% of the time, the local network is scanned, 37% of the time the scan would 

move to a larger network that encompasses the current one, and 13% of the time a 

random network is chosen.  Worms using this technique include Code Red II and Nimda, 

which lasted on the Internet for up to eight months [22].  These worms achieved a high 

degree of network penetration and exploited the trust policy in the networks.  Since these 

worms usually exhaust a single network and then start to spread, when they are caught 

soon enough, they can be contained to that network and ultimately stopped.  One possible 

way of determining if island hopping occurs, is by a node remembering the most recent 

100 packets and the time between them.  The last 10 subnets accessed would also provide 

valuable information.  Then analyzing the modality of the list of most recent packets sent 

to nodes, would determine if a set number of connections are always occurring.  If the 

modality of the list is close to one, it could be concluded that only a few connections are 

being made consistently.  A modality of 100 would tell us that each connection has been 

to a different node each time.  This could be an attack trying to spread itself to as many 

nodes as possible.  Checking the modality of the subnet list would also help determine if 

island hopping is occurring and to which subnet it is happening the most.  

 Another type of scanning and attack is directed at a particular network.  A worm 

of this type could be part of a focused information warfare effort to penetrate a certain 

network for information or to simply compromise the network’s security, causing 
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services to be disabled as preventative measures.  Worms of this type can attack as soon 

as it is introduced, which would catch the target network off guard.  However, the 

strength of the worm has not been built up and therefore can be easily filtered by IP 

address.  The other type of worm has a waiting period which allows time for other more 

vulnerable networks to be compromised.  Then, those networks can work together to 

attack the particular network of interest.  This type of worm may have the size and 

strength it needs, but while it was building resources it may have been identified and 

defenses developed. 

 The final method is hit-list scanning, where an initial scan of nodes determines 

which ones are most vulnerable.  A list is generated which contains the addresses and 

information of the nodes vulnerable to the worm, which focuses attack.  Once 

compromised, a child worm gets half of the list and the other half stays with the parent 

[22].  With each iteration, the worm’s efficiency improves.  One of the problems with this 

type of attack is with the initial scan.  Since the worms are looking for a particular 

weakness, this can be detected on network monitors and alert the community.  Further, as 

the worm moves through the network it may eventually use up all network bandwidth.  

However, if the hit list were sorted so that larger bandwidth networks were hit first, 

network congestion could be reduced. 

 Once again, scanning and attack patterns perform specific types of activities that 

can be observed and quantified.  For example, with island hopping, the destination of 

most recent packets and the time between them can determine if an attack is occurring.  

This technique would also work for a directed attack, but the measurements would be 
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different.  The most recent subnet list would not change, but the rate at which 

connections are made would most likely be larger than usual to a particular network.  

Detecting a random scan would have characteristics of a quick connection rate, but the 

destinations of packets would be larger than usual, but still have a finite set.  Specific 

subnets would not be destinations either, since unused address spaces would purposely be 

avoided.  

 

2.3.3 Payload Methods 

Once a worm has gained access to a target system, there are several ways to 

deliver the malicious code to the newly infected node.  The first is direct injection, but 

this method is easily blocked using a firewall on unused ports for most connections. With 

a firewall, the initial connection would likely have been blocked as well.  If the 

connection is not blocked, direct injection can reuse the connection to deliver the payload 

and no other services need to be setup on the system.  This reduces the complexity of the 

worm and masks its presence by not invoking additional services.   

The second method is a child to parent request.  Suppose a child worm has access 

to a node; the child can request that the parent send the worm payload.  Code in the 

parent node then acts as a small server, which fulfills the requests of the child worms.  

Similar to the direct injection method, these so-called back propagation [22] requests can 

be blocked using a firewall or NAT (network address translation) device that does not 

allow connections to the parent network.   
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Finally, a central source delivery method updates and adds new capabilities to 

worms easily.  A single location, such as a web site, can host all the files of the worm.  

Changing any of those files affect future instances of the worm.  If the files are 

compromised, the life of the worm can be significantly reduced.  Compromise may occur 

if the site is be shut down or corrupted files replaces the current files, causing the worm 

to destroy itself.  

 

 2.3.4 Future of Worms 

As embedded devices depend more on network connections, worms will not be 

limited to traditional desktop computers and their operating systems.  Embedded devices 

and appliances will also become targets.  Many of these devices have services to 

configure them and there may be programming errors in these services or fundamental 

security flaws in the configurations.  These devices include cable/DSL modems, routers, 

switches, or even appliances such as network printers and cell phones.  Almost any 

device that can connect to the Internet will be a target.  The attack may not be directed at 

these devices necessarily, but they could be used as storage devices for the worm’s files 

or to divert attention away from the primary attack on a network.   

Worms usually only attack a single type of system and use the same method to spread 

between machines, or in other words are mono-morphic.  Static worms, although simple 

to implement and effective, are becoming less effective due to antivirus programs and 

other network devices which can detect static worms.  “Intelligent” worms, however, can 

learn how to enter a system and hide.  The Samhain projects purpose is to design this 
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more effective Internet worm.  Samhain lists seven requirements and guidelines for a 

more powerful worm [38]: 

1. Portability across operating systems and hardware architectures.  If a worm can 

exploit vulnerabilities in each type of system, the number of targets can be 

maximized. 

2. Invisibility from detection.  A worm than can hide has a much better chance of 

being able to spread and not endanger the worm network. 

3. Independence from manual intervention.  While the worm already spreads on its 

own, it should also be able to learn on its own and adapt to its surroundings in the 

network. 

4. Automatic updates.  Besides learning new techniques, worms should also be able 

to update their own database of exploits. 

5. Integrity of the worm host must be preserved.  If a worm is detected, it should not 

allow its executables to be examined by others. 

6. Avoid static signatures.  Polymorphism allows a worm to avoid signature-based 

detection methods. 

7. Overall worm net usability.  The worm’s network should be able to focus and 

achieve a specific task. 

 

Even if such a “super” worm, were created, size is still an issue.  While network speeds 

are increasing, a worm with large files and overhead will prevent itself from spreading 

throughout a network.  No worm yet has incorporated all these methods, but some can be 

found in more recent worms such as variants of the Slapper worm.  These worms use 

common web server process names such as httpd to hide.  An updatable worm called the 

Windows Leaves worm retrieves updates distributed on the Internet.  The damage and 

chaos such a worm could cause is easily imagined.  The next section discusses several 
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current worms and provides examples of how quickly they spread throughout a simulated 

network. 

2.4 Worm Simulation 

Several worm simulation studies were performed using a publicly available tool 

called the Worm Simulator, from Symantec Research Labs [30].  Worm Simulator allows 

a user to graphically view the spread of six different worms, the rate of infection, and the 

time for the worm to reach its maximum potential before systems are either cleaned or 

patched by network administrators.  This tool shows how quickly a worm can spread and 

on average how long it takes for a network to be patched against a worm’s exploit.  Of 

the six worms available in the simulator, the Blaster, MyDoom, Sasser, and Slammer 

worms were selected.  In the simulations of each worm, the networks are divided into 

four equally sized sections.  For reference purposes, I have defined each square as a 

quadrant and the relative position in the network using the north, south, east, west 

directions.  Therefore, the north quadrant is the top network in the figures.  The simulator 

demonstrates how quickly a worm will spread in four similar networks with differing 

security policies. These policies include:  

1. No security (East quadrant) - Almost all of the nodes are vulnerable to the worm, 

and machines are patched very slowly. 

2. Only firewall security (West quadrant) - The network is protected by a perimeter 

firewall, but a small number of users are allowed to connect by VPN, which is not 

protected by the firewall.  In addition, a high number of systems in this network 

are vulnerable and machines are patched slowly. 

3. Strong host security and network security (South quadrant) - Similar to the 

previous network except it has a better internal security policy and fewer of the 



 

29 

nodes are vulnerable, many machines are patched against the worm before they 

are infected, and most of the machines are patched quickly after they are infected. 

4. Only host security (North quadrant) - This network has the same solid internal 

security policy as the third network, but does not have a perimeter firewall.  Only 

a small percentage of the nodes in this company are vulnerable.  Although, since 

the network has no firewall, nodes will initially become infected, but patching of 

uninfected nodes is fast and patching of infected nodes is even faster [30].  

 

In Figure 2, a screenshot of the Worm Simulator portrays these four subnets and the 

overall percentage of infection for the network as a whole.  The amount of time that 

passes is also displayed, so that an idea of how rapidly a selected worm will spread can 

be seen and when system patching has been completed. 

 

Figure 2: Screenshot of Symantec Worm Simulator 
 In screenshot is to demonstrate how information about the worm is presented to the user of the publicly 
available program.  For this particular example, the MyDoom Worm was selected from the six preset 
datasets and allowed to run.  The simulator illustrates that after twelve days, 33% of the 7,440 nodes are 
infected among the four networks.  The two, less secure, networks have mostly been compromised, while 
the other networks have continuously applied patches to vulnerable systems. 
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2.4.1 Blaster Worm Simulation 

 The Blaster worm exploits the DCOM RPC (Distributed Component Object 

Model of the Remote Procedure Protocol) vulnerability using TCP port 135 on Windows 

2000 and XP machines.  Even though Windows NT and Server 2003 machines are also 

vulnerable to this exploit, the worm is not designed to replicate in those operating system 

environments.  When a machine is compromised, the worm attempts to download the 

msblast executable file into the system32 directory and execute it.  It then attempts to 

perform a DoS attack on the Microsoft Windows Update Web server, to prevent users 

from applying patches to the computer.  Additional features of this worm include 

checking to see if the system is already infected, and can generate additional IP 

addresses.  The creation of the IP addresses are determined by an algorithm where 60% 

are randomly generated and the other 40% are made to infect other systems in the current 

subnet.  This worm also has a payload trigger so the executable is run if the date is 

between the 16th and the end of the month or if the date is between August 16th and 

December 31st.   

Several key events occurred during the worm’s lifespan and the patching process.  

Initial infection from a home VPN connection occurred at hour 22, where only 0.9% of 

machines had been patched.  After one day, almost the entire home network was 

compromised and a subnet within a corporate network has been engulfed.  The worm has 

also spread to several nodes of another network was well.  By day six, peak infection was 

reached in the firewalled only network, while other networks have the attack under 

control.  After one month, all infections were removed.  According to the worm 
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simulator, over three months later, all four network’s systems have finally been patched.  

In Figure 3, the percentages of network infection and patching rates have been acquired 

from the simulator and can be seen for the 1,849 nodes simulated.  Under a week’s time, 

the worm reached its full potential.  Only networks that applied patches regularly and 

maintained the best security policies remained reasonably secure.  Even some of the 

systems with the “best security policy” networks still managed to be infected and were 

allowed to spread the worm. 
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Figure 3: Blaster Worm Cleaned, Patched, and Infected Rates 
From this data, it can be seen that the initial infection rate of the Blaster Worm was similar to the patch 
rate.  Therefore, if the worm had not leveled off in spreading the infection, half of the systems may have 
been infected, while the other half was patched.  The important part of this graph is how long it took to 
fully patch all the systems.  It took around 80 days, to apply the patch to all systems.  In this time, if the 
worm could have entered into another network, there may have been a second wave of infections.      

 

 

 2.4.2 MyDoom Worm Simulation 

The MyDoom worm is not so much an operating exploit, as it is a social 

engineering exploit.  Users receive an email with an attachment containing the worm, and 
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when opened the worm reads the email addresses of a file and mass-mails itself to the 

recipients.  File attachment extensions include:  .bat, .cmd, .exe, .pif, .scr, or .zip.  After 

the computer is infected, the worm sets up a backdoor using TCP ports 3127 through 

3198.  These open ports allow an attacker to connect to the computer and use it as a 

proxy to gain access to its network resources or download and execute arbitrary files.  In 

addition, the infected system has a 25% chance that the worm will perform a Denial of 

Service (DoS) on February 1, 2004 starting at 16:09:18 UTC.  If the worm does not start 

a DoS attack, it will not mass mail itself.  It has a trigger date to stop spreading and 

performing DoS-attacks on February 12, 2004.  After this date, the backdoor component 

still continues to function and allows access to attackers.   

In the simulation, both networks with lower security policies became almost fully 

infected with the worm.  Networks that had constant attention from administrators and 

updates did not have many infections of the worm.  This shows that if enough attention is 

given to a network, even if systems become compromised from worm activity, there is a 

chance to prevent deep infection.  A goal of this research is to devise a network scheme 

that becomes self aware of infections or malicious activity so that administrators do not 

have to constantly watch network traffic and disinfect systems when an outbreak occurs.  

Even though the two more secure networks did not become overrun with the worm, 

network administrators played an active part in patching and removing infections from 

the systems in the non-overrun networks and did not use automated tools.  

Figure 4 shows that initial infection occurred on day two, and on day five the 

percentage of dormant nodes reached a maximum.  The worm was first spread to a 
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number of computers, while other systems contained the worm in a dormant state.  These 

systems most likely contained the worm in an email they received, but the attachment had 

not been open and executed yet.  The maximum percentage of infection was reached on 

day fourteen, when the two less secured networks had a majority of their nodes 

compromised and dormant nodes had mostly been activated or patched.  On day 

seventeen, which represents January 26th 2004, the trigger date was reached and all 

infected nodes stop spreading and returned to a “clean” state, waiting to be patched.  

Even though those systems still had a backdoor open, the worm did not spread itself, nor 

continued to infect other machines, so the worm and infection was considered inactive. 
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Figure 4: MyDoom Cleaned, Patched, Dormant, and Infected Rates 
The information gathered from the worm simulator shows that initially about one-tenth of nodes are: 
infected but in a dormant state, infected and spreading the virus, and one-tenth have also been patched.  
This leaves 70% of nodes untouched so far.  After day five, which represents February 1, 2004, these 
dormant nodes start the DOS attack and other infected nodes continue spreading until February 12th, 
represented by day seventeen.  On this day, all attacks stop and infections are considered “clean” until 
patched. 
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2.4.3 Slammer Worm Simulation 

The Slammer worm demonstrates how quickly a worm can spread before any 

detection or patching can occur.  Even though this worm only targets systems running 

Microsoft SQL Server 2000 and Microsoft Desktop Engine (MSDE) 2000, it searches for 

these services by continuously sending out traffic to randomly generated IP addresses in 

an attempt to make a connection.  By doing so, it performs a DoS attack on a network due 

to the large number of packets it sends out.  In the simulation of 500,000 nodes, only 

75,000 are vulnerable to this worm throughout the world.  In the more focused example 

of a company network of 1,850 nodes, many of these vulnerable nodes are infected 

within a matter of seconds.  The rest of the vulnerable nodes are not infected because the 

worm itself causes so much network traffic, preventing itself from spreading.  

Furthermore, the random generations of IP addresses do not cover the entire network in 

that time.   

Two minutes after initial infection, the simulator showed that 25 of the 1,849 

nodes had already been infected and one minute later 25 more are infected.  Nine minutes 

into the simulation, the worm reaches its maximum potential and an entire small network 

is infected.  The problem with this rapid spread is that it consumed all network resources 

and choked itself, limiting the spread of infection to roughly 100 nodes.  Patching did not 

even start until eighteen minutes after the initial infection and the network took several 

days to become fully patched.  The data in Figure 5 shows how the infection spread in a 

matter of minutes before any patches were applied.  If the worm had not sent out so much 
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data, which caused enough network congestion to prevent its own spread, other networks 

may have been infected before patching was initiated. 

 

Figure 5: Slammer Worm Cleaned, Patched, and Infection rates 
This worm, unlike the previous ones shown, reaches peak infection in minutes rather than hours or days.  
The drawback to this technique is it consumes its own network bandwidth too quickly and prevents the 
spread to other networks outside of its own domain.  Patching is not even half way complete until day eight.  
The overall network is fully patched around day fourteen. 
   

 

2.4.4 Sasser Worm Simulation 

 The Sasser Worm is investigated because it scans random IP addresses for 

systems with the LSASS exploit, found in unpatched Windows XP and 2000 machines.  

After the worm has found a system it can connect to and exploit, the worm attempts to 

create a mutex to see if the system is already infected.  If the system is not infected, it 

adds itself to the RUN key of the registry so it will run on each start-up of the computer.  

The worm uses the AbortSystemShutdown API to prevent the computer from being 

shutdown or restarted.  To spread the worm to other hosts, it creates an FTP server on 
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TCP port 5554 and uses an algorithm to select the IP addresses it will infect next.  The IP 

address is completely random 52% of the time, 23% of the last three octets of the IP 

address are changed, and 25% of the time only the last two octets are changed to random 

numbers.  Since this worm uses 128 threads, the system it infects will dedicate most of its 

CPU time to the worm and become unusable by the user.  Although older Windows 

operating systems (95/98/ME) cannot be infected with the worm, the worm can run on 

these machines and infect other systems.   

Simulation of this worm showed it infected one network completely, and then 

hours later, infected another because of its random IP address generation.  The Sasser 

Worm spread very rapidly once it had access to a network.  Within two days, the least 

secure network is fully compromised, while other networks began patching procedures.  

Seven days later, while some systems had been patched, the initially compromised 

network infected another system on a network, which had been overwhelmed with 

infection as well.  The initial compromised network did not receive a significant patching 

procedure until day twenty, where the second network was still moderately infected.  

This can be seen in Figure 6, the percentage of nodes infected exceeds the patched nodes 

twice.  The initial infection was slowed by an increase in patched nodes, but the second 

network infection happens rapidly and exceeds the number of patched systems again, 

until administrators catch up and apply patches to more systems.  If the other two 

networks did not have higher quality security policies and apply updates on a regular 

basis, these networks would have also been compromised deeper and much quicker by 

the two other infected network generating random IP addresses to spread the worm.   
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Figure 6: Sasser Worm Clean, Patched, and Infection rates 
Two waves of infections occur with the Sasser Worm in this simulation.  The first wave is when one of the 
less secure networks is fully compromised.  Some patching of this network occurs before the worm is 
spread to the next network, but not enough to prevent another outbreak.  The graph shows that the infection 
rate greatly outweighs the rate at which patching occurs.  If all the networks had a slow patching method, 
one would expect to see four separate peaks in the graph, showing that the percentage of nodes increased 
drastically each time the worm spread to a new network.  Eventually though, the more secure networks 
were immune from the worm, and the other networks began patching procedures to bring the outbreak 
under control. 

 

  With a network anomaly detection system, the rate the worm spread to the second 

network would have been decreased drastically, since the first initial connection 

generated a rapid spread in the network once a machine was compromised.  In a network 

such as these, machines do not connect to other LAN machines on a regular basis.  When 

this irregular action occurs, the anomaly detection and prevention unit would prevent this 
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attack from spreading by recognizing the irregular connections and the rate the systems 

try to connect with others. 

2.5 Honeypots 

Honeypots are distinctly different from firewalls and intrusion detection systems 

[18].  They do not solve a specific problem; “they are a highly flexible tool whose value 

lies in unauthorized or illicit use of that resource [29].”  This is a general definition, since 

almost all honeypots work the same.  In an ideal network, a honeypot will not see any 

traffic and therefore, is not productive to the network.  In a real world network though, 

any interaction with a honeypot is almost certainly unauthorized or malicious activity.  

Applying this to a self-aware network would allow the honeypot to alert the other 

neighboring systems of the vulnerability, since the compromised system would fail to 

update its own state.  To further increase the value of honeypots, several honeypots on a 

network, which are aware of each other, could communicate periodically to attract 

attention to themselves.  This would increase the chances of malicious content noticing 

these “less secure” systems and attempt to compromise them.     

 

2.5.1 Advantages and Disadvantages 

Even though honeypots are simple in concept, they are a valuable asset and have 

many advantages, such as collecting small data sets of high value, capturing new tools 

and tactics, and using minimal resources.  Instead of collecting several thousands of alerts 

a day, a honeypot only collects small amounts of critical information.  This information 
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can then be analyzed further for security detailed security threats.  Analyzing this data is 

much easier and cheaper, since common traffic information has not been collected. 

 The design of a honeypot allows it to capture all data sent to it.  Since there are no 

complex algorithms to develop or signatures to update, older hardware with minimum 

specifications for the operating system can handle an entire class B network.  Because the 

concept and technology is simple, there will be less of a chance for configuration errors.  

That is also why this technology works well in encrypted or IPv6 environments, unlike 

other security technologies such as intrusion detection systems.   

Like all technologies, there are disadvantages, and that is why honeypots need to 

work with existing security measures.  Honeypots capture all activity that it encounters, 

so unless the attack interacts directly with the honeypot, no information captured and 

analyzed.  Another risk of deploying a honeypot is the possibility of it becoming 

compromised and used against its own network.  “Depending on the type of honeypot 

deployed, the risk could be no more than the risk of an IDS sensor failing [29].”  How 

large the risk of being compromised, comes down to what category of honeypots will be 

used. 

 

2.5.2 Types of Honeypots 

There are two general categories of honeypots [29], low-interaction and high-

interaction honeypots.  Low-interaction honeypots emulate services and operating 

systems, which prevents full interaction.  This emulation can range from just a physical 
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appearance, such as an FTP login listening on port 21, or a more interactive emulation 

with a variety of additional FTP commands.  Low-interaction honeypots have minimal 

risk and are simple and easy to maintain.  Specter, Honeyd, and KFSensor [29] are some 

examples of low-interaction honeypots that allow easy selection of the operating systems 

and services you want to emulate and monitor.  These programs never allow access to the 

operating system, so the attacker cannot use the system against the network.  “The main 

disadvantages with low interaction honeypots is that they log only limited information 

and are designed to capture known activity. [29]”  Furthermore, it is easier for an attacker 

to detect a low-interaction honeypot.  A skilled attacker will eventually detect their 

presence. 

High-interaction honeypots, such as Symantec Decoy Server and Honeynets, are 

systems that are more complex.  Instead of emulating services, they use real operating 

systems and applications.  This allows the attacker to use all their skills and tools as if 

they were attacking an actual productive system.  The knowledge and information gained 

from monitoring the attack, gives one a better understanding of the attackers intents.  

Since a high-interaction honeypot is an open environment, it captures all activity, even 

unexpected behavior.  For example, “honeynets have captured encoded back door 

commands using a non-standard IP protocol (specifically IP protocol 11, Network Voice 

Protocol).  [29]” However, high-interaction honeypots also increase the risk of attackers 

using the real operating system for attacks.  To prevent this, fail-safe measures must be in 

place to stop an attack or disconnect the machine from the network, inhibiting other 

productive machines from compromise.  In most cases, high-interaction honeypots can do 
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anything low-interaction honeypots can.  The benefits of using a high-interaction 

honeypot to collect more information must be weighed against the complexity of setup, 

and the risk to the entire network if compromised. 

 

2.5.3 Value of Honeypots 

In general, there are three ways a honeypot can prevent network attacks.  “Sticky” 

honeypots, such as the LaBrea Tarpit [29], are low-interaction and can help defend 

against automated attacks by slowing scan rates, potentially even stopping them.  These 

automated attacks usually randomly scan entire networks searching for vulnerable 

systems to take over and use to spread themselves.  By interacting with the attack, sticky 

honeypots slow the attack down.  One TCP trick that is used to slow an attack, is setting 

the windows size to zero [29].  Honeypots can also be used confuse an attacker and waste 

their time and resources on a non-productive system.  In the meantime, the organization 

can detect this activity and respond to the attack or try to trace them.  On the other hand, 

if the use of honeypots is made available to the community, then this may deter attackers 

since they would be unsure of if a system is worth attacking.  

Detection is the next critical purpose of a honeypot.  In any establishment, there is 

bound to be some type of loophole or failure in the system.  By quickly detecting and 

reacting to an attack, the damage caused can be sustained.  With other technologies, such 

as logs or IDS, they generate too much data for one to sort through and determine if an 

attack is currently happening.  For efficient and quick detection, low-interaction 

honeypots make the best solutions.  
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Response is the final important value of a honeypot.  “Production systems, such 

as an organization's mail server, are so critical that even though it has been hacked, 

security professionals may not be able to take the system down and do a proper forensic 

analysis.  [29]”   With this in mind, leaving a system up and running continuously 

pollutes any data on that server used to analyze the attack.  A honeypot though, can be 

taken offline anytime a forensic analysis is needed, since there it has no productive value.  

High-interaction honeypots are most useful for response since they collect the most 

detailed information of an attack. 

 Honeypots, although simple in nature, are an important part of gathering 

information on attacks and should be integrated into today’s networks.   “For centuries, 

military organizations have depended on information to better understand whom their 

enemy is and how to defend against them.  Information security is no different [29]”.  

Honeypots address this need.  Either by monitoring a company’s network space, or large 

unused address spaces on the internet, the information collected can help us gain 

knowledge and understanding for future attacks. 

2.6 Summary 

  Fundamental components of computer worms, along with their attack patterns, 

evasion techniques, payload methods, and future have been discussed in this chapter.  

The worm simulations performed reveal that worms exploit vulnerabilities at all levels of 

security.  Secured networks are vulnerable until fully patched, since some worms use 

social networking to propagate themselves.  Research using Honeypots is also introduced 

to identify a set of suspicious activities that can and should be appropriately monitored.  
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These activities may seem like an infinite set, but through simulation is determined that 

there are only a finite, albeit large, number of specific types. 

In the following chapter, research work has shown that attacks can be delayed, if 

not prevented all together in certain situations, using a combination of hardware based 

intrusion detection systems and network monitoring.  Devising a hardware based network 

monitoring device allows all processing of packets and analysis of those packets to be 

performed allow an end-user’s system to be easily and reliably quarantined from the rest 

of the network.  When an operating system controls the monitoring of its own security 

services, this leads to a single point of failure.  Once the system is compromised, any 

feedback from that system cannot be trusted.  Without external monitoring and detection, 

a system’s self-analysis of security using software proves nothing.  Only a hardware 

solution either built into the system or external to the system that can monitor its activity, 

can determine if the system is behaving abnormal and has been attacked. 
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III. Architectural Elements of Attack Resilient Networks  

3.1 Chapter Overview 

 Hardware solutions for network security are starting to appear more frequently in 

today’s modern networks.  Some of these solutions are similar to host based virus 

scanners, searching for a fixed signature in traffic patterns.  When viruses become 

dynamic in nature though, these methods will not be reliable.  Existing methods involve 

some kind of periodic updates.  Usually the local agent is responsible for keeping systems 

current.  Even these databases have a latency; for a good reason.  Substantial 

improvement can be made if the update can be augmented by a decentralized means.  Our 

relaxation based framework makes it possible. 

Attack resilient systems allow users of a network to continue normal everyday 

tasks, other than the functions that have become disabled, while only disrupting the nodes 

that are violating normal protocol.  To a limited extent, nodes are being equipped with 

attack resilient compatibilities using software agents.  For example, anti-virus with 

updates at every reboot and in conjunction with forced reboot.  There is a drawback in 

such an approach, that the software agent has to run on a potentially infected node.  One 

way to strengthen the guarding process is to use hardware.  Contemporary research on 

hardware based solutions is covered in this chapter along with components that could be 

used towards an attack resilient network.  These hardware systems have two underlying 

advantages over software measures: isolation and partitioning of the sentry while 

protecting the node and resource allocation.  More on attack resilient systems will be 
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described in this section, but with the bulk of security removed from the node, the node’s 

resources can be used for other tasks or simply accelerating common tasks. 

3.2 Hardware-based Prevention and Detection 

 Hardware-based threat detection and analysis has been the subject of modern 

research.  Hardware, such as a Network Intrusion Detection System (NIDS) has been 

used to string match against incoming packets.  These devices compare the incoming 

packet payloads to signatures of hostile data.  Research has shown that hardware or 

FPGA (Field Programmable Gate Array)-based string matchers out-perform a software-

based system by up to 600 times for large patterns [13].   

 Common NID and prevention systems use predefined signatures to search 

network traffic.  Since string matching is the most computationally expensive step of the 

detection process, NIDS’ only apply this technique to the most suspicious packets.  A 

popular NIDS is Snort (www.snort.org), which checks port numbers, packet headers, and 

flags to ensure a given packet has a high likelihood of containing malicious data before 

performing string matching.  Software scanners are not fast enough to monitor traffic 

with the resources provided by the system.  Hardware can make use of parallelism to 

perform deep packet inspection with high throughput [20]. 

 Implementing a system that scans the full payload of packets presents several 

challenges.  First, the location of a targeted signature in a packet payload could appear at 

any position in traffic, so if a string matcher is not intelligent or only starts matching at 

the beginning of a packet, malicious code can go undetected.  Furthermore, signatures 

could span multiple packets or be interleaved among multiple traffic flows.  String 
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matching would have to keep track of the packet flow along with the sequence of the 

packets to reconstruct the flow and match the fragmented code to a signature [9].  

Contemporary research has provided a means of meeting some of these challenges, by 

keeping packets in a cue and re-ordering them when the last packet has been received.  

Research work which has started to solve some of these problems is described in the next 

section. 

3.3 Relevant Research 

 Relevant research, in the area of virus detection with hardware, includes work 

with FPGA-based string matching, an open source NIDS called Snort, that provides test 

data for performance comparison, and a Java based hardware design tool kit (JHDL) used 

to implement a module generator.  Current research work in string matching has been 

performed by Sidhu and Prasanna [13] to accelerate grep (a command used to find lines 

in file(s) with particular text or regular expressions) searches with FPGAs.  Their 

compilation strategy quickly converts a regular expression into an FPGA circuit.  The 

regular expression is then compiled into a Nondeterministic Finite Automaton (NFA) and 

then directly implemented with FPGA hardware.  In software methods, a Deterministic 

Finite Automaton (DFA) must be derived from the NFA.  This hardware method 

decreases compilation time and simplifies the process, especially as the regular 

expression increases in size.  Table 1 and Table 2 show the comparisons of performance 

for these two methods.  As shown, when the regular expression size and data transfer size 

increases, the FPGA has the clear advantage over the software implementation.  For the 

hardware method, the largest sized regular expression throughput improves between 300 
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and 500 times over the software method, depending on data transfer size.  Both methods 

were executed on a Pentium III (750Mhz) computer running Redhat Linux 2.7.3-10.  The 

hardware circuit was implemented on a PCI-based board with a Virtex XCV1000 FPGA, 

housed in the computer. 

Table 1: FPGA vs. software regular expression performance on 1MB data set sent in 
1kB chunks [13]  

Size of Regular 
Expression (# of 

non-Meta 
characters)  

Hardware 
Latency 

(ms) 

Software 
Latency 

(ms) 

Hardware 
Throughput 

kB/s 

Software 
Throughput 

kB/s 

Hardware 
CPU 

Utilization 

Software 
CPU 

Utilization

47  < 1 < 1 390 432 33.9% 11.2% 
435  < 1 3.2 340 197 33.6% 67.6% 
844  < 1 37.6 381 23.5 34.3% 91.9% 
1420  < 1 104 284 8.9 28.4% 96.3% 
2689  < 1 240 291 4.63 24.7% 98.3% 
4971  1.2 970 331 0.99 43.7% 99.4% 

  

Table 2: FPGA vs. software regular expression performance on 16MB data set sent 
in 16kB chunks [13] 

Size of Regular 
Expression (# of 

non-Meta 
characters)  

Hardware 
Latency 

(ms) 

Software 
Latency 

(ms) 

Hardware 
Throughput 

kB/s 

Software 
Throughput 

kB/s 

Hardware 
CPU 

Utilization 

Software 
CPU 

Utilization

47  < 1 < 1 862 884 19.3% 11.8% 
435  < 1 50.9 870 278 18.1% 97.3% 
844  < 1 602 824 24 16.3% 98.3% 
1420  < 1 978 826 14.9 19.3% 99.6% 
2689  < 1 1930 838 7.58 20.1% 99.6% 
4971  7.38 8400 784 1.72 38.5% 99.8% 
Snort examines network traffic, and logs intrusion events.  Since it is open source, 

rules can be added or deleted to improve detection or performance relatively.  Snort 

provides the rule-set, which a module generator extracts and creates a regular expression 

to match extracted strings.  Since Snort is updated with rules, the circuits must be 



 

48 

optimized to make use of the resources available on the FPGA while still matching as 

many patterns as possible. 

Another tool used in their research was JHDL (Java Hardware Descriptive 

Language).  JHDL is a Java-based design tool consisting of a set of Java libraries to 

perform programmatic structural design.  Circuits are created by calling constructors for 

the corresponding JHDL object and passing wire objects as constructor arguments that 

are connected to the ports of the circuit.  After connection, these circuits are verified with 

the JHDL simulator and an EDIF (Electronic Design Interchange Format) net-list created 

for Xilinx place and route software.   

Other related research includes using programmable logic devices (PLDs) to 

perform the regular expression matching.  A system using three components has been 

implemented at the Applied Research Laboratory [20], in Missouri, to protect networks 

from Internet worms and virus attacks.  The system is comprised of a Data Enabling 

Device (DED), a Content Matching Server (CMS), and a Regional Transaction Processor 

(RTP).  These components scan every packet that enters and exits the network.  

Signatures are kept updated by an administrator via a table on the CMS, this in turn 

programs the DEDs to scan for the new signatures.  In the DED, packets are scanned with 

the FPX (field programmable port extender) and processing is done on a Xilinx Virtex 

XCV2000E FPGA.  “Layered protocol wrappers parse the headers and payloads of 

packets using high-speed circuits implemented as combinational logic and state machines 

in the FPGA.[20]”  To take action on malicious activity the DED contacts the RTP, 

which after consulting a database, determines the appropriate action the DED should 
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take.  DEDs are installed at aggregation points so that traffic flows through at least one of 

these devices before being routed to other networks or the Internet.  A single RTP can 

administer up to 100 DEDs and long, distinct strings are used so false positives are 

minimized.   

This system, using finite automata to scan for regular expressions and Bloom 

filters for fixed length strings, can  identify up to 10,000 unique fixed-length strings with 

a bloom filter on a single FPX card.  The number of expressions searched grows 

approximately linearly with the amount of the FPGA logic on the device.  Both methods 

used by the system can process data up to 600Mbps.  With four modules in parallel, 

scanning speed increases to 2.4Gbps.  The number of terms to be searched does not affect 

throughput as long as the set of matching signatures fit in the FPGA after being 

synthesized.  While this setup only scanned traffic in one direction, the system could be 

modified to scan the content of traffic in both directions, which would allow the system 

to detect the presence of confidential or classified materials and block its release.  

3.4 Potential Indicators of Malicious Activities 

Instead of scanning for signatures, another solution is discussed in “Throttling 

Viruses: Restricting propagation to defeat malicious mobile code,” [34] which slows the 

spread of viruses by placing network connections to new computers in a delay queue.  

This method is more tolerant to non-malicious non-normal traffic.  False positives are 

delayed, but still tolerated, whereas malicious code or worms that connect at higher rates 

are penalized more.  When a new connection is initiated, it is added to a delay queue, 

where it waits for the second system to process it.  A new connection is determined by 
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comparing the connection to a short list of recent connections.  The sensitivity of this 

system can be set by varying the length of the list to compare against.  By implementing 

this method in an external network monitoring device between the user and the network, 

processes can be analyzed quicker and not use system resources.  If users on both ends 

have a similar device, malicious code is slowed down even further as outgoing and 

incoming connections are both delayed.  For false positives, this is a minor inconvenience 

compared to a fast moving worm that causes much more damage.  This method best 

prevents fast spreading viruses or worms, such as Warhol worms, which try to make 

multiple connections in a very short time [22].  With slow moving viruses, this method 

will not be as beneficial, but it will still slow the spread.  To be most effective, both the 

sending and receiving machines should have a device as described and the initial 

connection would be delayed at both ends.  Continued connections would eventually be 

considered normal and permit a user to operate without delay. 

3.5 System Behavioral Description 

 An ideal attack resilient network would not need to interact with a user to prevent 

the spread of an infection.  In the standalone hardware, anomaly detection/prevention, 

network monitoring, and status updating should be performed.  Incoming and outgoing 

traffic should be monitored from a statistical standpoint, any traffic that does not fit into a 

users “normal” traffic pattern is flagged.  The information to create these “patterns” could 

be retrieved from printer logs, network logins, remote application logs, network traffic 

based on port usage (e.g. e-mail, ftp connections, web browser, secure shell 

connections.), and file server logs.  Additional information can be gained from other log 
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sources not related to the user’s computer.  Combining building access logs, user’s roles 

in a company, telephone calls (VOIP), and other physical access methods, more detailed 

“typical” traffic patterns can be created for an individual [21].  The benefit to this 

approach, from the viewpoint of the user’s system, is that monitoring traffic is operating 

system independent, and should not be easily detected by an outside source.  If an 

anomaly is detected, the hardware can intervene and deny incoming or outgoing traffic.  

The device should also alert other nodes in the network about the compromise and update 

the health of the overall network.  Often, the core operations at this stage are to compare 

a string to the most recently encountered strings, as well as list of known virus elements.  

String matching should not be relied on for future applications, since encryption will not 

allow string matching to be performed and virus signature will become dynamic.  Instead, 

a system based on a solid learning background and anomaly detection should be 

considered. 

3.6 Summary 

 This chapter described how hardware solutions are used to prevent virus attacks 

by string matching methods.  While these methods are sufficient for now with static virus 

signatures, when viruses become dynamic in nature, the methods will not be reliable.  

That is why the architectural elements of an anomaly detection system were also 

described in this chapter.  We also listed a number of measurable indicators.  These 

behavioral elements of an attack resilient system would allow users of a network to 

continue normal everyday tasks, while only disrupting the nodes that are violating normal 

protocol.  By normal protocol, it is meant a user’s normal traffic pattern, whether that is 
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only through computer usage or even accessing other areas of their organization.  With 

roaming profiles, these usage statistics can be loaded into the programmable hardware at 

each station and still monitor that particular user.  When an infection does occur though, 

one cannot only rely on the hardware alone.  Predicting where a virus will spread to next 

will also help to quarantine users and reduce the spread of the malicious attack.  To be 

able to predict where a virus may spread to next though, we turn to known studies on 

heat-flow/constraint propagation techniques to aid the approach. 
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IV. Label Propagation and Network Labeling  

4.1 Chapter Overview 

As explained in the foregoing chapters, a most desirable feature of a high-

performance attack resilient system would have the following: 

1. A partitioned function between the OS (the item being protected) and the 
protecting mechanism. 

 
2. The protection mechanism should be programmable, i.e. updatable, and 

operate at real-time speeds. 
 
3. Capable of detecting insidious anomalies as a routine mechanism. 
  
4. Use collaborative measures to determine if anomalies are wide spread. 

Such determinations would require fusing localized measurements from one or more 

nodes of interest; hence, some incremental computations would be necessary.  Then it 

must be emphasized, communication between cooperative sharing of localized 

measurements should be separated from normal network traffic.  Underlying required 

communication must take into account the possibility of a corrupt node on the path (i.e. 

gateway).  It is not unreasonable to communicate wirelessly or by other measures.  With 

these given features, we are motivated to develop a framework of iterative estimations of 

well-being and normalcy using localized measurements from a limited neighborhood.   

This chapter expands some basic tools using relaxation techniques, which have 

been established in computer vision for edge labeling.  Using the abstract idea of label 

propagation, the rules created to label and propagate the node statuses through a 

computer network are explained.  Since this research focused on developing the anomaly 

detection scheme and how the system would behave, creating these systems is left for 
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future research topics.  Additional topics needed to complete the anomaly detection 

system are discussed in this chapter and possible solutions introduced. 

4.2 Relaxation Synopsis 

 Relaxation has been used in image analysis to extrapolate parts of an image that 

are either unknown or have a weak standing compared to other neighboring points.  

Computer vision techniques improve edge operator measurements by adjusting them 

based on measurements of neighboring edges [2].  This method can also be applied 

towards monitoring and updating the security status of a computer network.  To apply the 

technique, local conditions must be observed everywhere within the network and then 

each node must be classified based on its status.  By then applying a compatibility matrix, 

the confidence of the current status will be updated.  Through several iterations, the 

network will converge to a globally consistent status.  To gain an understanding of how a 

global status can be achieved in computer networks, one must understand the relaxation 

technique applied in computer vision first. 

   

4.2.1 Image Analysis 

The relaxation technique interactively segments an image by making fuzzy or 

probabilistic classification “decisions” in parallel.  Adjustments are made in successive 

iterations based on the decisions made in the preceding iteration at neighboring points 

[27].  Parallel processing improves the processing speed since the relaxation approach is 

order independent and typically, only a few iterations are necessary.  The approach is to 

recognize local edge patterns, which cause the confidence in an edge to be modified.  
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There are three possibilities [26]:  confidence of an edge can be increased, decreased, or 

unchanged.  An edge relaxation algorithm is in Figure 7.  Important parts of the algorithm 

are step 2, computing the nature of local support or concurrence, and step 3, modifying 

edge confidence. 

0. Compute the initial confidence of each initial edge, C0(e), as the normalized 
gradient magnitude normalized by the maximum gradient magnitude in the image. 

1. K=1; 
2. Compare each edge type based on the confidence of edge neighbors; 
3. Modify the confidence of each edge Ck(e) based on its edge type and its previous 

confidence Ck-1(e); 
4. Test the Ck(e)’s to see if they have all converged to either 0 or 1.  If so, stop; else, 

increment k and go to 2 

Figure 7: Edge Relaxation Algorithm [2] 

Edge classification relies on the notation for edges in Figure 8.  The edge type is a 

concatenation of the left and right vertex types, where vertex types are computed from 

the strength of edges emanating from the vertex [2].   

 

Figure 8: Edge Notation [2] 
Each shaded area represents a pixel, whose coordinates are listed.  The dark lines represent a pair-wise 
difference between the pixels they separate.  In this snapshot, we seek to estimate the collective support 
(lack thereof) for the segment E, whose present value is to be updated.. 
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The local support provided to each piecewise measurement can be analyzed into one of 

four possibilities in each end.  There are sixteen distinct cases, arranged in a matrix form 

in Table 3.  The end result of segmentation seeks a contour.  In other words, if an element 

like “E” were to be in the final result, it must be accompanied by an element at each end.  

A closer examination of contours in a 4-connected geometry, as the one shown here, 

reveals that each segment will be supported by exactly one segment at each end in most 

cases.  Also, in some rare cases, one end may have more (one-to-many or many-to-one) 

i.e. 1−∗  or 1∗− , where (2,3)∗ = .  Examples of the relaxation technique applied to 

images are shown in Figure 9 [2].  The images on the left, have edges with normalized 

magnitudes greater then 0.25.  Images on the right show the results after five iterations.  

Weak edges have many gaps in the boundaries for the images on the left, but the 

confidences of the weak edges are increased, due to neighboring edges and the rules in 

Table 3. 

Table 3: Edge Type Rules 
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Figure 9: Edge relaxation example images [2] 

Images (a) and (c) are original raw edge data, where images (b) and (d) are results after five iterations of 
relaxation.  Using supporting neighbors with higher confidence in their labeling provided support for the 
weaker labeled pixels.  These weaker pixels eventually gained strength to continue a line in the image, or 
provide a gap between edges.  This type of neighboring support is also needed in computer networks.  
When a node is unsure of its own state, it can turn to neighboring nodes, with higher confidence, and 
determine what label fits best to support the surrounding neighbors.  

 

4.2.2 Network Analysis 

Applying the relaxation technique to network breach indicators, using pair-wise 

security/trust policies in effect, allows a node to determine if it is likely to be infected and 

need to be quarantined.  If several nodes in a subnet determine they are infected, while 

the neighboring nodes do not know their status, then using relaxation these “unknown” 

nodes will adjust themselves toward the infected state.  Likewise, if several subnets in a 

network have been marked as “infected,” neighboring subnets that are either “unknown” 

or have a “weak secure state” will adjust their status towards the non-secure/infected 

state.  This global dynamic adjustment of status allows a network or its subnets to 

converge to an overall security level.  
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Currently network users protect their systems with anti-virus products and 

personal firewalls that detect infections or intrusions on only their system.  Security 

products notify the user of the machine, and allow them to take manual or automatic 

action.  Once the program has removed the threat, the user is notified.  While this is 

occurring on one machine, the same threat may be attacking several more machines on 

the same network.  Each attack tries to compromise an individual system.  If all users on 

the network are running the same anti-virus programs (as in domain controlled network) 

the attack could be prevented more efficiently if once a system detected the threat, it 

notified other systems to be on alert for an attack, or even notified a centralized gateway 

of the attack so system wide resources could be used.  Creating a distributed detection 

and notification method allows other users on the network to be aware of potential 

infection.  Current software does not use this technique, which could prevent large 

outbreaks of viruses and even worms within a network.  For software to use distributed 

threat notification, each platform would need to run compatible software.  The 

heterogeneous nature of these systems makes it a challenge.  Within each platform, there 

may be multiple operating systems (e.g., Windows 3.1, 95, 98, 2000, XP, and Vista) 

which a single program will not run on.  To take advantage of a distributed detection and 

alert system for all systems on a network including legacy systems, a hardware solution 

that is operating system and platform independent is a more desirable option.  Before this 

hardware system can be designed though, certain labels and methods of label propagation 

must be defined beforehand. 
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4.3 Node Labeling and Propagation 

We now introduce the global analysis of localized information using a second 

example in vision.  The input is a line diagram, such as one shown in Figure 12.  A 

distinct label to each line segment, as to how it is interpreted, represents the final 

semantic interpretation.  There may be more than one interpretation of a scene, but the 

propagation of these labels, using rules, helps neighboring junctions to acquire labels 

consistent with the rest of the image.  A similar principle applies to computer networks, 

labeling a node and propagating the status to neighboring nodes, keeps the overall status 

of the network current.  Developing rules for label assignments is necessary to limit the 

possible ways a scene can be portrayed and to arrive at a valid interpretation.  

Before a flat image can be interpreted into a three dimensional image, the edges 

of the image must first be analyzed to determine the orientation in a plane.  A trihedral 

block world refers to the context where only three surfaces can meet to create a vertex; 

and, it includes simple objects such as cubes, boxes, tetrahedrons, do-decahedrons etc.  

Limiting the object to a trihedral polyhedron, without shadows or cracks, leads to only 

four line labels [38].  All lines are either a boundary line, with the object on either the left 

or right side of the line, or an interior line, which can be concave or convex.  Without 

including shadows and cracks, the line diagram of such scenes are fully characterized by 

junctions and corners whose configurations are limited to one of four types, namely an 

‘L’, ‘Y’, ‘T’, and an ‘Arrow’.  Each of these can manifest in one of several distinct 

configurations [38].  Figure 10 shows the possible line labels and junction types for 

trihedral polyhedron referenced in this research.       
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Figure 10: Line Labels and Junction labels for trihedral polyhedron 
Lines in computer vision can be split into two separate categories, interior lines and boundary lines.  
Within the interior lines category, a line can be broken down into a convex edge or a concave edge.  
Depending on the perspective of an image, a concave line will always protrude towards the viewer.  From 
these line types, four unique junctions can be created.  Not all line labels can be used with each junction, so 
rules will be created further in the chapter to limit the number of junctions an image can possess. 

 

Although a ‘Y’ shaped corner made of three line segments, can be labeled in 64 ways, 

there exist only three valid configurations of a ‘Y’ junction [38].  An ‘L’ junction will 

never be adjacent to a ‘Y’ junction.  A line joining an ‘L’ and ‘Arrow’ must be an 

occluding edge (i.e. two specific labels among four possible labels a line can be assigned 

with).  Using these junctions with the given labels results in an upper bound of 208 

possible junction labels.  Each line can have four possible labels, where an ‘L’ junction 

can have   42 = 16 labels, and an ‘Arrow’, ‘Y’, and ‘T’ each can have 43 = 64 ways to 

label them.  Only 18 of these combinations are physically possible though given the 

assumed limitations [38].  The direction of the arrows for the line labels represent which 
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side the object resides.  Facing in the direction of the arrow, the object is always 

considered to be on the right side and the background, or open space, is on the left side.  

Table 4 shows all the possible junction labels for a trihedral polyhedron with the limiting 

factors.  These labels will be applied to the two dimensional image to help determine a 

valid three-dimensional shape in space. 

Table 4: All 18 possible junctions for trihedral polyhedron 

 

From the table of all possible junctions, one may notice that there is only one possible 

labeling with a “+” in a Y junction.  There is also only one junction for an Arrow with an 

outside edge “ ”.  Images containing these junctions benefit from the decreased time it 

takes to analyze and consistently label the image.  Figure 11 is an example of how the 

labeling of a cube in space can be performed.  First (part B), the border lines are labeled 

first, so the interior lines can be isolated.  Next (part C), the Arrow junction’s shafts must 

be labeled as a “+,” since there are no other possible junctions for an Arrow with 

boundary lines, which were constrained by the first step.  Finally (part D), the Y junction 
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edges have already been labeled, but a check is still needed to make sure it is a valid label 

for a Y junction.  After this check, the object can be identified as a cube with the lightly 

colored side extending out of the paper the most.  Whereas in part A, the object could be 

seen as either a cube coming out of the page, or as a cube shaped hole cut into the page. 

 

 

Figure 11: Consistent Labeling Example 
 A) Original image, B) boundary lines applied, C) propagation of initial labeling conditions, D) final check 
and object analysis 

 

If an object is not floating in space and is in front of a background, then labeling 

all the boundary edges first may not be possible.  In this case, one label may allow the 

analysis to finish, while another label will fail to create legally labeled junctions.  

Depending on the order in which junctions are analyzed, the tree of alternatives needed to 

be searched can change shape.  A specific order can force a definite conclusion every 

time, but this does not always occur [6].  With the initially labeled image in Figure 12, 

junctions A, B, and C have one edge labeled already.  There are two valid Y junctions for 

this configuration, all “-” edges or 2 boundary edges and a “-” edge.  Both junctions must 

be considered towards a valid solution, but the order in which the junctions are analyzed 

can mean the difference between a two-branch tree and a multiple branch tree, as shown 

in Figure 13.   
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Figure 12: Two possible labels for the Y junctions of the cube [6] 
There are two possible labels for the Y junctions in this cube example that are valid.  Since neither of these 
junction labels are forced by neighboring junctions to converge on a single label, a search tree is required 
to follow all possible valid labels.   

 

For one search tree, the junctions A, B, and C are first analyzed since each already has 

one edge labeled, so the search tree will look like the first tree in Figure 13, with 

junctions analyzed in lexicographic order.  This tree branches out rapidly since each of 

the initial junctions have two possible solutions.  If the order were changed, so that after 

analyzing junction A, the next neighboring junction D is labeled, then a simpler tree is 

created.  By working around the perimeter of the cube with each sequential neighbor, the 

number of possible choices at each junction is reduced.  In any size drawing with any 

labeling method, the convention has always been to number the boundary junctions 

consecutively and visit these junctions first [6].  This exploits the extra constraints 

available from them.   
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Figure 13: Depending on the order of junction analysis, a complicated or simple tree 
is created to search for a valid solution. 

 

 The Waltz Algorithm [38] is another rapid labeling method that iterates toward a 

globally compatible label.  The method keeps a list of possible labels at each node, 

depending on neighboring nodes.  After the first junction has a list of valid labels, the 

next neighboring junction has a list created for it, but excludes labels that are not 

compatible with any of the previous junction’s labels.  In turn, the new neighbor also 

places additional constraints on the original junction.  Continuing this method to other 

nodes will eventually propagate and reduce the possible label lists for each junction.  The 

goal is to converge on a junction with only one possible label, which will then propagate 

back through the junctions to converge on a single labeling for each junction.  Analyzing 

an image with this method grows in a linear proportion with the number of lines in the 
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drawing.  Most junctions have only one unique labeling, after only two or three visits in 

large drawings.  

 In a general case though, relaxation labeling is an iterative procedure, with the 

goal of reducing labeling ambiguities and arriving at a global consistency.  With an initial 

labeling assignment, updates are performed based on a compatibility model.  Information 

is propagated, due to the iterative nature of the relaxation process, until all object’s labels 

are consistent or vary only slightly from its previous state.  This complex task of global 

labeling is accomplished by simple, local computations, which is the attractive feature of 

relaxation.  Although a single machine can accomplish this task, parallel architectures can 

take advantage of these individual local computations, and then converge on a global 

labeling much more rapidly.   

 The standard process of relaxation labeling [25] is based on a set of objects 

B 1{ ,..., }nb b= , and a set of labels {1,..., }mΛ = .  Each object of B will be labeled with 

exactly one label of Λ .  Using local measurement, a vector 
1

(0) (0) (0)( ,..., )
i im

T
ip p p=  is 

derived for each object bi such that (0)0 1ip λ≤ ≤  for i=1…n, and λ =1…m, and 

(0) 1ipλ λ =∑ , for i=1…n.  Each (0)
ip  is the former probability distribution of labels for 

the object bi.  To obtain an initially weighted labeling assignment for the objects of B, 

(0)
1p , (0)

2p ,…, (0)
np  can be concatenated and denoted (0) nmp R∈ .  The labels are also 

assumed to not be randomly chosen, but to have constraints expressed in the terms of an 

n x n matrix R [25]. 
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Each ijR is an m x m matrix of non-negative real-valued compatibility coefficients.  The 

strengths of compatibilities between λ on object bi and µ on object bj is measured by the 

coefficient ( , )ijr λ µ .  Higher values represent better compatibility, while lower values 

represent more incompatibility between the objects [25]. 
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Combining the constraints matrix with the compatibility matrix, results in an 

(n*m) x (n*m) matrix for a graph with n nodes and m unique labels.   
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  An initial input labeling to the relaxation algorithm would be appear in the form of 

1

(0) (0) (0)( ,..., )T T T
i np p p= .  This would be updated iteratively, according to the constraint 
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model, so global consistency would be achieved.  At step t, updating labels are performed 

by the following formula [25]: 

 

( ) ( )
( 1)

( ) ( )

1

t t
t i i

i m
t t

i i

p qp
p q

λ λ
λ

µ µ
µ

+

=

=

∑ , 

 where the denominator is simply a normalized factor, and the strength of support that is 

given to λ for being the correct label for bi, at step t is represented by: 

 
( ) ( )

1 1

( , )
n m

t t
i ij j

j

q r pµ µ
µ

λ µ
= =

= ∑∑  

Ideally, this process will iterate until the values do not change anymore, meaning a steady 

state has been reached.  In reality though, there will still be slight continuous variation in 

the values, or label probabilities, so a minimum difference would be set to provide a 

stopping point.  Also, in practical applications, the numbers of objects that interact are 

usually limited.  This is due to the fact that objects usually only interact in a small 

neighborhood, therefore reducing the matrix size, and the computational time needed to 

label all the objects.  Interacting within a small group of neighbors is also inherent with 

computer networks, so similar principles can also be applied.   

4.4 Canonical Node Types 

 Using the ideas from line labeling, first a set of interactive nodes are needed, then 

meaningful labels regarding their status are needed and finally a set of rules to follow 

must be created.  This section will setup a small interactive network and show how the 
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relaxation labeling methods will apply to network node labeling and virus propagation 

prediction.   

A typical university office network is considered for example.  It has are three 

types of computer users: administrators, office oriented users, and general users.  Each of 

these users interacts with each other in the network in the following ways:  All users have 

access to the mail server and they can be infected by an attachment, except 

administrators, who have a policy to never open an attachment from non-administrators 

without a thorough virus scan.  There is also a general file server, where office users can 

dump information and files, but do not execute programs or files from this location.  

Office users have their own file server, where they can transfer and execute programs 

from other office users.  General users have access to the general file server and can read 

and write data to this server.  These general users can be infected by other general users, 

office users, or even administrators, through e-mail or file server usage.  Office users can 

be infected by other office users, general users (only by e-mail), and administrators.  

Other administrators can only infect administrators.  In this situation though, a member of 

the administrator must bring an infected file from outside the network, to start the spread 

of infection within the administrator group. 

Figure 14 shows the network structure and communication tree.  In this scenario, 

it is also assumed that the actual file servers themselves cannot be infected, but only the 

files they host.  Also, it is assumed that only a single event occurs during each time 

interval.  In other words, only one email is sent, or one user accesses a single file.  This 
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allows one to follow through a simple sequential labeling example.  The actual process 

would allow multiple events to occur in parallel, but following an example is difficult.     

 

Figure 14: Network layout and user interaction for simulated scenarios 

Creating rules from the given assumptions and description would involve two 

nodes.  The method of how an infection can be passed from one to the other is subject to 

the local pair-wise security/trust in effect.  Table 5 illustrates, that there are seven ways 

that an infected email can be passed from one source to another.  In addition, in the same 

table, five ways an infected file can be transmitted are shown.  For actually propagating 

the virus in a network, it is essential to have a three-node infection label or two edges. 
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Table 5: Two-node virus propagation from e-mail and file execution 

 

In these tables, “+”denotes that it is possible for the infected user to propagate a virus to the user being 
infected.  A “0” represents that it is not possible to transmit the virus, either because of rules applied to the 
network, or the physical connections are not available. 

 

The infection comes from one node and is transmitted to another.  This newly infected 

node can then pass the virus on to another non-infected node.  Graph edges will represent 

the way the infection is spread.  In this example, edge infection types can be labeled two 

ways.  Infection transmitted by e-mail or by file transfer and execution through a file 

server.  Since there are two methods of infection, and a two edge labeling scheme, there 

are four different ways a three node communication can be labeled.  The original node 

can send a virus by e-mail to the middle node, which passes on the virus by e-mail to 

infect another node.  In scenario two, an infected user deposits a file to a server and 

another user accesses the file to become infected.  Then that user either leaves the file, or 

replaces it with another infected file, which then infects a third user.  The third and fourth 
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scenarios combine propagation effects.  Originally, the virus is transmitted by an e-mail, 

so recipient of the e-mail becomes infected and then accesses a file server and infects a 

file. This propagates the virus to a third user who accesses the file.  The final scenario is 

the opposite of the third.  Instead of the virus propagating by e-mail first, an infected user 

accesses a file server and infects a file that is soon accessed by a second user.  This newly 

infected user then sends an e-mail which includes the virus to another user.  Table 6 

shows all the possible labels with three interacting nodes. 

 A graph of the virus propagation, using the newly formed labels, could result in 

the entire network becoming infected if a weighting system is not put on the edges 

between users.  Creating a compatibility matrix of communication methods from a user, 

would reduce the possibilities where a virus could spread.  To further limit the possible 

virus propagation, a more detailed compatibility matrix would be created between each 

user, calculating the usage of e-mail as a communication means, or the type and number 

of files accessed by the user, which have also been accessed by other users.  From this, 

using iterative techniques, labeling which nodes are possibly infected and where the virus 

has spread to can be calculated.  In addition, the path of the virus can also be predicted 

from nodes that have not been affected, by use of their individual, yet weighted, 

compatibility matrices.  Once one node is identified, without a doubt, as being infected, 

the path from where the virus originated could also be predicted, using backtracking.  

Since the compatibility matrix represents the normal actions from a node, anything 

abnormal could be detected and help aid in the restructuring of the prediction path. 
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Table 6: Propagation paths  
a) A virus is passed by e-mail and then again by e-mail,   b) An infected file is deposited, then accessed and 
infects another user, who deposits another infected file which is accessed,    c) The virus is passed by e-
mail originally and then an infected file is deposited to the server that a user accesses,    d) A virus is 
contained in a file placed on the server, which is then accessed, and that infected user passes the virus via 
e-mail. 

 

The purpose of having at least a three user rule set is that when only two users are used, 

relaxation labeling can bounce between the two users, if their communication to each 

other is predominate over other connections.  Using the three rule layout prevents the 

compact loop of predicting continuous infection between only two nodes. 
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4.5 Infection Propagation Scenario 

To demonstrate the effectiveness of relaxation in a computer network, a small 

example will be used.  The main compatibility matrix can be created of how users 

communicate.  It can be analyzed in matrix form or converted to a graph.  Figure 15 

represents the graph form of communications in the simulated network, which for 

simplicity, represents the Necker cube example.  File servers have been removed from 

the figure to reduce line clutter, although actual communication will still take into 

account for these file servers.  From the figure, one is unsure how these users interact. 

 

Figure 15: Example network scenario for labeling and relaxation. 

For example, it appears that either General User 2 or Office User 6 could infect 

Administrator 1, but that is not the case, when the rules from Table 6 are applied.  Even 

after these rules are applied to the graph, every means of communication, e-mail and file 

execution, are not performed by each user.  To specify further, a compatibility matrix is 

created to show the common usage of communication means between users.  This 
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compatibility matrix could be created from a combination of user logs and network traffic 

logs.  For this example, a weight system from one through ten is applied to each 

communication method.  Table 7 shows each user’s compatibility matrix, whose weights 

sum to ten, with the highest number representing the most common outgoing 

communication means to the user.  Just as each user has a matrix that shows their most 

common outgoing interaction method, an incoming interaction method matrix can also be 

created for each user, from the outgoing compatibility matrix.  After defining a network  

Table 7: Compatibilities between users - Larger value represents most used 
interaction method 
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topology and compatibilities between nodes, a detailed graph of the network is shown in 

Figure 16.  From this figure, one can visualize the path with the most throughput, where a 

virus could spread.  Larger/bolder edges represent more common interaction modes 

between nodes.  These paths would provide the quickest spread if a virus took advantage 

of these communication methods.  Thinner edges show where a virus may be slow in its 

spreading capabilities 

 

Figure 16: Weighted connections, compatibility graph, and virus spreading events 
for the network example of relaxation methods 
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Now that user interaction rules have been defined, as well as a layout and 

compatibility matrix, assume Office User 7 has been infected with a virus.  Figure 16 also 

shows the events (E1, E2,...E5) that propagate the virus through the provided network.  

From the compatibility matrix, the most likely host to be infected next would be Office 

User 6.  The method of infection would be through the office file server (E1),  where 

User 7 would place a file, which User 6 would access and contract the infection.  User 6 

then has two possible connections, where the virus could spread.  Checking the rules 

show, that Administrator 1 is not in danger of becoming infected through User 6.  The 

only other user that User 6 has normal communications with is General User 5.  The 

rules show this is a valid connection, for both e-mail and file transfer.  The compatibility 

matrix then predicts that e-mail (E2) is the method the virus would most likely spread 

through to General User 5.  The only valid user General User 5 could possibly infect is 

General User 4.  From the compatibility matrix though, infection through e-mail and file 

transfer are equally likely.  In this case, two separate propagation cases must be 

considered.  By default, the way a virus is received, will also be the preferred method it is 

propagated, unless there is a large (greater than two) difference in the compatibility 

matrix weights.  To use this information, the neighboring user(s) of General User 4 must 

be analyzed for which is most likely to receive the virus.  Since User 4’s only choice to 

propagate is to General User 3 and the weight of e-mail propagation leaving General 

User 3 is higher, infection of User 4 is predicted to be through e-mail (E3).  The virus 

then would be passed on to General User 3 via e-mail (E4), if there were no interaction 
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to stop the spread of the virus.  In the described scenario, after a period of time, all the 

users, except the administrator would become infected.  Other network layouts and 

examples would not necessarily end in this fashion.  Parts of networks would be isolated, 

due to rules and propagation patterns.  Parallel iteration was not fully demonstrated in 

this example to keep confusion down, but through the relaxation algorithm, three decision 

trees would have been created from the originally infected Office User 7.  The virus could 

have propagated through three possible paths of commonly connected users: General 

User 2 (E1.1), General User 4 (E1.2), and from the provided example, Office User 6 

(E1).  In the same sense as predicting where a virus will be propagating, predicting where 

the virus has been is also possible.  Using the compatibility matrix, along with 

backtracking techniques, a predicted path could be followed to the origin of the virus.  

Since this method of forensics is “after the fact,” it is not covered in depth by the 

research. 

4.6 Future Modeling and Labeling Issues 

 While heat flow and relaxation have been widely studied topics, their techniques 

have not been applied to computer networks.  The extent, at which these proven methods 

would be effective in a real world network, would need to be measured.  The provided 

scenario in the previous section was an example of a simplified case.  Future research 

would take the network scenario and increase the number communication methods along 

with adding additional services such as a print server, separate file and application 

servers, and a web server.  Communication to other users over secure connections would 

increase complexity, but would more accurately model a large-scale network.  Including 
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a Honeypot in the network, would allow a node that ideally would never see traffic or 

become infected, but still monitor the health of the network.  This would essentially be a 

virus detection sensor, embedded into the network, while still providing valuable 

information without being a productive system to the users.  Infection methods would 

increase beyond the two provided in this research, infection via macros, java scripts from 

web pages, and self-propagating worms should be investigated.  This increased network 

model would also increase the size of the compatibility matrix for each user’s behavior 

pattern.  Implementing these compatibility matrices into hardware, for each user would 

allow the processing of this information to be independent of the end-user’s systems.  

These additional research topics would advance the virus prevention methods and 

decrease the spread in future systems. 

4.7 Summary 

As covered in this chapter, we make a compelling introduction for the use of 

iterative estimations in predicting virus propagation and have suggested a framework of 

relaxation techniques applied to the network security field.  However, we have yet to 

apply the technique in a large-scale network due to envisioned complexity and a limited 

timeframe.  An overview of relaxation, applied to image analysis and then transferred to 

network analysis, is provided to familiarize the reader with the computer vision topic.   

The rest of the chapter demonstrated and discussed the proposed method of 

applying line labeling techniques and relaxation to computer networks in order to predict 

virus propagation.  Through the provided example, it was shown that label propagation 

can be aided with the use of a compatibility matrix at each node.  This matrix provides 
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the information of how connections are made, and which users communicate within the 

network.  Although the background of line labeling and relaxation lie in computer vision, 

this research has provided parallels between the two topics for these methods to be 

applied to future network security applications.  Along with behavioral aspects a system 

incorporating these methods should follow, several complex problems that may arise in 

future work will be explained in the next chapter. 
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V. Future Research and Recommendations 

5.1 Chapter Overview 

The purpose of this chapter is to show where a hardware solution would fit into a 

current home or office network.  Instead of re-designing a current network, the device 

should be able to be inserted into the network with little interference to the current setup.  

This intermediate step is important towards a larger change in network security and 

analysis techniques.  In addition, this chapter provides a basis for future work and 

describes the theory behind an Anomaly Detection and Prevention Unit (ADPU) and its 

two-layer small-world network model.  Interaction between these devices is explained, so 

parts of the network can be isolated in case a threat compromises a host on the network.  

Even though examples of specific system components are described and provided, newer 

technology may better handle the designed architecture.  Limitations of the proposed 

components are also described. 

5.2 System Behavior 

Developing a system that can be used with current network configurations is an 

important factor for a new device to become accepted in the networking community.  To 

demonstrate how the device would be incorporated into current configurations, Figure 17 

shows a typical breakdown of two advanced networks.  The top level contains the 

Internet Service Provider, which has minimal filters for e-mail and spam.  Administrative 

security services make up the second level.  These services include hardware firewalls, 

intrusion detection systems, and group policies for domains.  The bottom layer contains 

machine specific (operating system, type, and version) security that must be implemented 
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on a per machine basis.  Implementing the device, that will be described later in the 

chapter in more detail, would be incorporated into a standard or advanced network in a 

block configuration.  It would not have to ingrain itself in current hardware, or need 

major revisions of current network configurations.  Figure 18 demonstrates how the 

advanced hardware detection and prevention system fits into the advanced office network 

model.  In the advanced hardware block, anomaly detection/prevention, network 

monitoring, and updating are performed.  Incoming and outgoing traffic are monitored 

from a statistical standpoint, any traffic that does not fit into a users “normal” traffic 

pattern is flagged.  This monitoring of traffic is operating system independent, and cannot 

be easily detected by an outside source.  However, the programmability permits machine 

specific remedies, including source-dependent exceptions.  Now that the basic execution 

strategy has been explained, the behavior model of this device can be covered in more 

depth.     
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Figure 17: Typical network block diagram 
Typical home and office networks contain three basic blocks of security.  These include operating system 
dependant programs such as anti-virus and personal firewalls.  The next higher level of security is 
contained in Administrator settings such as domain settings and the physical setup of the network.  This 
would include group policies and a hardware firewall built into a router.  The highest block of security 
(least user specific) is accomplished by filtering basic content at the Internet Service Provider.  The 
difference between a typical home/office network and a more advanced office network is that in the 
Network Administrator block, another device may be included to perform signature matching of traffic and 
filter out possible malicious packets before they can reach an end-user. 
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Figure 18: FPGA implemented network anomaly detection block diagram 
Inserting advanced detection and prevention hardware is done by simply adding another block to the 
typical network structure.  In this hardware block, monitoring, analysis, detection, and prevention can be 
performed on each individual end-user.  The status of each user would also be determined and neighboring 
advanced hardware would be notified of possible future malicious traffic. 



 

84 

The behavioral model of the system is based on a study of virus and anti-virus 

dynamics of a network [12].  Since the spreading dynamics of most viruses depend on the 

underlying network, a representative network model called the small-world network 

model shown in Figure 19 is used.  It is a ring lattice of L nodes, k nearest neighbors, and 

S shortcuts between random node pairs. 

 

Figure 19: Single Layer Small-World Network model with L=24, k=3, and S=4 [12] 

This basic model is modified into a two-layer model where the outer level is a cluster and 

the inner is a Superusers layer.  The cluster layer is where virus spreading occurs and the 

Superuser layer captures the anti-virus process.  The cluster layer, which is made up of 

end-users, receives warnings from the administrators/Superusers and takes precautionary 

measures as advised by the administrators.  This may be done by updating antivirus 

definitions or closely monitoring e-mail attachments.  End-users have bi-directional links 

between other end-users, but only one-way links coming from the administrators.  The 

administrative layer monitors and detects abnormal events through peers in the cluster 

layer.  If a virus is detected, the nodes in this layer inform their peers (other Superusers).  

Each Superuser sends warnings to the end-users under their administration (clusters) 

only.  Because of the one-way link to the cluster level, it is assumed that the Superuser 
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level cannot be infected by a virus.  Figure 20 shows how this two-layer model differs 

from the single layer.   

 

Figure 20: Two-layer Small-World Network model [12] 

 To determine the status of each node under a Superuser, a state machine records 

the condition of each node.  The states an end-user can be in are: Susceptible, Infected, or 

Immune.  Susceptible is the default state for a node when it is introduced into the network 

and when the network is not seeing any virus activity (steady state).  Superusers also have 

states, even though they cannot be infected.  The states of the Superuser level record anti-

virus information when an attack has occurred.  These states are: Unknown (which is 

default) or Known.  This model of system state is known as the SIM (Susceptible-

Infected-iMmune) model.  Similar models to this one are the SIS (Susceptible-Infected-

Susceptible) and the SIR (Susceptible-Infected-Removed) model [12].   

 The Anomaly Detection and Prevention Unit (ADPU) uses the SIR states for the 

end-users, so an infected (I-labeled) user can be removed and analyzed after infection.  
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Figure 21 shows an example of how the ADPU would be implemented in a typical 

network.  The system is placed inline with each end-user’s system.  Individual units 

 

Figure 21: Anomaly Detection and Prevention Unit implemented in a small network 

permit fine-grained detection customized for user specific traffic.  Another benefit is that 

a smaller set of behaviors can be learned.  The behavior will be more precise for a single 

user than for a LAN anomaly detection scheme.  Most commercial intrusion detection 

products perform detection at the router/switch level, which reduces cost and locates the 

hardware in one centralized location to update.  A problem with centralized detection is it 

is a single point of failure.  If the switch/router is compromised, the whole LAN is 

vulnerable.  Most IDSs do not monitor traffic within the LAN, only what is coming in 

from outside the network.  A major benefit of the ADPU is the monitoring of incoming 

and outgoing packets as well as packets within the network among “trusted” systems.  

Inline host monitoring also prevents a centralized point of failure while still monitoring 
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traffic.  If a single ADPU is compromised, the whole system is not jeopardized and the 

other units can still prevent systems from being attacked.   

 Unlike most IDSs, anomaly detection does not use signatures to detect attacks.  

Therefore, encryption will defeat it.  Anomaly detection can still detect where the 

connection is from, when it was made, and for how long, with or without encryption [31].  

In addition, connections can be related to the user’s habits throughout certain times of the 

day.   

5.3 Auxiliary Support Network 

 Connections between nodes allow them to communicate their network states.  

When a device detects abnormal malicious traffic, it can send advanced warning of the 

attack to its neighboring nodes.  Those nodes can transmit to their neighbors until the 

whole network has been informed of a potential attack.  Having regular network status 

updates, without main-line traffic congestion, is an effective way of relaying information.  

An additional benefit of communication between these network devices is users can 

troubleshoot connectivity problems.  Rather than having the status of each ADPU relayed 

through other switches in the primary connection mixed in with data packets, a direct and 

dedicated connection to a set number of neighbors can communicate the status much 

quicker.  This ad-hoc network approach will preserve clear and usable communication 

pipeline between security devices even if other network components are disabled.  A 

viable solution for the hardware is a wireless communication path, but certain interfering 

signals (e.g. cordless phones, wireless video cameras, or jamming devices) could prevent 

this technology from being used.  Other methods could be used such as phone lines, 
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transmission through power lines, and even a secondary cat-5 network dedicated only for 

security hardware communication.  With any of these methods, there are drawbacks, of 

adding additional lines, or interference.  In any case though, policies must be setup to 

determine how these devices will communicate and operate. 

5.4 System Policies 

 System policies can be divided using two scenarios.  The flow chart in Appendix 

1: Full Flow Chart of ADPU System shows all systems policies.  The two scenarios that 

describe this full system behavior are incoming activity, either from outside the network 

or an internal threat, and outgoing anomalous activity, which can have a destination 

outside of the network or to another host in the LAN. 

Suppose, as in Figure 22, incoming activity is detected but the ADPU has not 

determined if the end-user is infected or if it has prevented the attack from completing.  

The current state of that ADPU is “Unknown,” where the end-user node is now labeled as 

“Infected.” 
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Figure 22: Scenario 1 - Incoming Anomalous Activity 

Traffic is monitored from the end-user, but not allowed to connect to any node.  If the 

end-user is infected with a worm, most worms try to spread themselves by connecting 

rapidly to several different addresses.  This will be abnormal traffic and the ADPU can 

determine if the system is compromised.  If the outbound connections are not new or 

abnormal, the ADPU assumes the system is not infected.  It still continues to block 

traffic, however, until information is gathered from other ADPUs. The state of the node is 

set to “Susceptible,” whereas the ADPU is in an “Unknown” state.  The ADPU is set to 

“Known” once other ADPUs confirm they have updated their monitoring policy for 

traffic from the source.  Incoming traffic is monitored and either sent back or dropped.  

The end-user is disconnected from the rest of the network to prevent further infection if 

they are infected.  Notifying the other ADPUs that have made recent connections with 

this “infected” system allows those ADPUs to set a stricter monitoring policy for 
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outbound traffic.  Since the source address of the malicious activity is also sent to other 

ADPUs, traffic from this address is temporarily blocked. 

 Another scenario is abnormal activity traveling outbound from the end user as 

shown in Figure 23.  The ADPU has not yet determined if the end-user is transmitting 

malicious activity or if this is a new desired connection.  The current state of the ADPU is 

“Unknown” and the host is temporarily labeled as “Infected.”  Traffic from the end-user 

is delayed or blocked until the ADPU can identify if the abnormal connection is safe.  

The user may be notified and given the opportunity to allow this new traffic to continue.  

 

Figure 23: Scenario 2 - Outbound Anomalous Activity 

If there is an infection such as a worm, it will attempt to connect outside the 

network, without acknowledging the returned validation message.  A policy should be 

enforced similar to a password policy.  If a given number of connection attempts are 

made without correct credentials, the status of the ADPU will be set to “Known” and the 

node will be labeled “Removed.”  In the “Removed” state, traffic is blocked but not 
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monitored from the end-user.  Pertinent information, such as IP address, protocol, and 

time stamp, about the connection is sent to neighboring ADPUs.  Similar to the first 

scenario, the ADPU may not have detected the first attack packet.  To prevent further 

spread of malicious packets, other systems with recent connections to this “infected” 

system should implement a stricter monitoring policy for outbound traffic.  Inbound 

traffic is blocked to the “Removed” end-user until an administrator can determine if an 

attack was successful or the node has been cleared of malicious content. 

 Until all Anomaly Detection and Prevention Units have confirmed or updated 

their state to “Known,” no ADPUs in the network can return to their default state of 

“Unknown.”  This does not mean the end-user’s state returns to the default state (i.e., 

susceptible).  If an end-user is still infected, the ADPU may return to “Unknown” but will 

still be blocking outbound traffic and set the end-user state to “Removed.”  This means 

the node is removed from the network until the node has been analyzed for malicious 

content and treated.  An “Infected” system may return once an ADPU determines that no 

abnormal activity is occurring.  The only way for a “Removed” node to return to normal 

operation is to send a special immune packet and credentials to the ADPU, or have an 

administrator physically reset the “fuse” on the ADPU. 

 A final scenario that will trigger the “fuse” to disconnect an end-user is a denial of 

service (DoS) attack.  By sending a host abnormal activity or packets from multiple 

unknown sources, the ADPU would interpret these packets as a possible attack each time.  

This would disconnect the end-user from the network temporarily and if sent with the 

correct frequency, prevent the end-user from reconnecting to the network after the 
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ADPUs have determined there is no threat.  If a DoS attack comes from a “trusted” 

source, the traffic will be passed to the end-user if not abnormal in size or format.  If the 

trusted outside system has been infected and is performing a DoS on the end-user, it will 

most likely succeed by flooding the system with packets.  To prevent this type of attack 

from occurring, the ADPU will be configured to determine the rate at which connections 

are being made to the end-user.  As with worms, DoS attacks try to connect to a system 

as many times as possible to tie up the systems network resources [3].  To prevent DoS 

attacks, a system in the router/gateway itself should be employed to detect this type of 

activity and drop all packets related with it reliably.     

5.5 System Components 

The ADPU device needs at least one RJ-45 10/100/1000 Mbps Ethernet port to 

connect between the detection device and the LAN switch.  A second RJ-45 Ethernet port 

would be ideal to connect between the detection device and the end-user’s system, or a 

USB 2.0 connection would also work.  In addition to these ports, it also requires either a 

PCMCIA interface or header pins to have a wireless connection card integrated.  Current 

wireless protocols, such as 802.11n with MIMO (Multiple Input Multiple Output), will 

allow the highest range and data transfer capacity for the real-time ad-hoc network.  This 

is required to establish a quality communication link between each device and update the 

network status at wired network speed.  

For initial testing and setup purposes, a field programmable gate array (FPGA) 

should be used for easy hardware programmability, combined with the performance 

qualities of an application specific integrated circuit (ASIC).  Real-time monitoring is an 
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essential part of packet inspection because maintaining data flow is essential.  Post 

processing traffic is useful for examining how content is spread and what damage it will 

cause, but it is not an option for preventing malicious activity.   

Several programmable boards are capable of performing the task of the ADPU 

while also having the ability to be upgraded for future additions.  The datasheets for these 

boards can be found on their manufacturers websites and give detailed specifications of 

each.  One such evaluation board that can handle the requirements of this project is 

Embedded Planet’s EP82xxM version 1.0.  The board’s processor is a Freescale™ 

PowerQUICC™ II 82xx Processor and can operate in a stand-alone mode or plugged into 

a PCI bus [8].  This 32-bit reduced instruction set computer (RISC) processor includes an 

integrated PowerPC core.  It is particularly well suited for target systems using PCI 

interfaces in networking infrastructure, telecommunications, and other embedded market 

applications.  Features of the board, which make it suitable for the ADPU are: two fast 

Ethernet ports with their own physical addresses, an RS-232 monitoring port, RS-232 

serial port, upgradeable SDRAM (up to 256 MB) , and upgradeable Flash memory (up to 

64 MB).  A second board that is similar to the EP82xxM is the EP8248E.  It was 

designed to be inserted into a PCI slot, which could be beneficial if the ADPU were built 

into the network interface card or were used to replace the NIC [7]. 

Another board is the APS-ArmXF, powered by a Xilinx Virtex 1000E FPGA [36] 

with 1.5 million gates.  The ARM block contains a 200 MHz 32-bit ARM processor with 

32MB of SDRAM and 16MB of flash memory, upgradable to 1GB using the compact 

flash interface.  This board has the option of stacking up to three modular XF-blocks, 
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yielding a system with a total of 4.5 million gates for future additions to the ADPU [1].  

Although the ARM block only has one 10/100 Base-T Ethernet port, it does include two 

USB 2.0 ports with built in wireless LAN support to perform the ADPU’s necessary 

functions.  In addition to the hardware requirements, a small physical footprint is needed 

to be able to be placed inline with the end-users system and not take up workspace.  This 

board’s physical size is 3.8 inches by 4.5 inches, giving it the footprint size smaller than a 

CD case. 

A FPIPS (Field Programmable Intrusion Protection System), could use an 

embedded version of Linux in a FPGA-based device with two Ethernet ports acting as a 

bridge between the node and its network.  This bridge can act as a Firewall or even a 

reverse firewall, blocking traffic leaving a node and thus preventing an infection of other 

nodes.  The device could use signature detection for known vulnerabilities (worms, 

Trojans, and viruses) while obtaining updated information from attacks performed on the 

Honeynet.  With the FPGA acting as an Intrusion Prevention System (IPS), the status of 

the nodes on the network can trigger the actions in the FPGA by blocking outgoing ports 

or filtering incoming data more vigorously. 

If the system were to be implemented, an embedded real-time operating system 

such as uClinux [5] or MicroC/OS-II [17] could run on a FPGA.  Using this thin client 

system, an IDS (Intrusion Detection System) or a Honeypot is embedded in the FPGA 

between the rest of the network and the node, and acts as an early warning system for 

vulnerabilities and intrusions.  The Honeypot/IDS alerts the system directly as well as 

surrounding systems.  Information collected about vulnerability or how the hacker/worm 
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gained entry can be passed on to the other nodes of the network.  With this information, 

systems could close these ports to deny access should the attack spread.  Other options 

include, downloading a patch or checking online for security patches and fixes for the 

vulnerability.  A detection and prevention system will not stop attacks, but will prevent 

the spread of an attack, once inside the local network.  Antivirus and firewalls should still 

be used on each system to enhance security and if necessary, they may communicate with 

the device when they detect any activity, but a system similar to the one described above 

will allow early warning detection and prevention techniques to be used to safeguard 

systems and quarantine malicious attacks.   

The honeynet would provide the added benefit of monitoring any unused IP 

addresses.  Since the honeynet assumes the identity of a virtual computer at the unused IP 

address, this allows better detection of malicious attacks.  If a pre-detection system is 

compromised, the attacker must still penetrate an actual system.  By this time, the 

detection system will have alerted the actual system and its neighboring nodes of the 

attack, providing ample time to raise security policies, close unsecured ports, or turn on 

additional monitoring software to gain more knowledge about the attack. 

5.6 Summary 

This chapter discusses the system behavior, polices, and components as well as 

what is needed to have successful and real-time wireless communication between 

devices.  The basic behavior of this anomaly detection scheme originated from past 

research performed on the dynamics of virus and antivirus effects on a network.  

Expanding the network model from that research resulted in the multiple states the 
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ADPUs can assign the end-user systems and themselves to prevent an entire network 

from becoming infected.  To fully monitor malicious activity, incoming as well as 

outgoing activity need to be watched.  Abnormal activity leaving a machine is important 

to monitor because if malicious content has been introduced to the system through digital 

media instead of through the network, a user may not be aware their system is trying to 

spread the content to other systems on the network.  Having the ADPU monitor both 

incoming and outgoing content enables a system to be quarantined from the network to 

prevent spreading or infection.  It also allows for easy detection of which systems are 

infected with a malicious program or being used in a way that is not normal for the user, 

such as an internal threat. 

  

 



 

97 

VI. Conclusions 

6.1 Chapter Overview 

This chapter presents the conclusion of the research based on an extensive 

literature search, worm simulations, a network scenario simulation, and theoretical device 

implementation.  This chapter also discusses the immediate and long-term impact of the 

techniques from computer vision, applied to a new network security device, would 

contribute to the protection of computer networks.  In addition, recommendations are 

made to bring the theory of this proposed method to reality.   

6.2 Conclusions of Research 

From studying other research systems and what is currently on the market (i.e. 

anti-virus, firewalls, and IDS systems), theses system can usually indicate insidious 

agents before a widespread attack can gain momentum.  The problem is, these systems 

fail to take advantage of widespread events considered “false alarms.”  Simulating 

several networks still show that a worm can be a large threat to network traffic even with 

basic security measures in place.  Encrypted traffic will not be detected with current 

systems that perform signature matching.  Software solutions use system resources and if 

the operating system is already infected, the user may not know if the anti-virus or other 

threat protective software has been compromised.  This would lead to false readings or 

even no detection of malicious activity at all.  The implementation of a hardware solution 

would provide an additional layer of protection outside of the operating system 

environment and external to the host system.   
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6.3 Significance of Research 

This research studied the application of iterative, decision fusion methods to be 

applied to predicting virus propagation.  The work draws parallels between the two 

subjects and creates a bridge for cross-fertilization of ideas.  In addition, the research 

studied the theoretical application an anomalous network traffic system.  It identifies the 

components necessary for the network security system.  By performing traffic analysis 

external to the end-users system, hardware will not have to be updated when newer 

operating systems are created.  Reconfigurable hardware that monitors new connections 

and abnormal usage allows future network traffic to be encrypted for security reasons 

without designing a new hardware solution.   

6.4 Summary 

Through the proven methods of computer vision and image analysis, this research 

used those methods as a basis and expanded upon them for network security.  Predicting 

where an infection will spread to, is the next step in preventing a virus from 

encompassing a network.  A theoretical system incorporating these methods was also 

studied and alleged to improved anomaly detection and threat preventative system for 

computer networks.  Using the techniques described in this paper, along with the 

recommendations for hardware and setup, an inline distributive network monitoring 

device can be created to reduce future threats and the spreading of automated attacks 

within a network.  A system as described by this research will be useful not only for 

threats entering a network, but also internal or insider threats.  
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Appendix 1: Full Flow Chart of ADPU System 
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