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Abstract

In the outdoor measurement facility, a certain amount of real estate is owned

by the organization, and therefore can be groomed to keep clutter contributions to a

minimum. However, as the transmit signal travels further downrange, returns from

long-range clutter sources are inevitable and can have significant impact on mea-

surement accuracy. This research effort investigates the effectiveness of employing

nonlinear suppression (NLS) to abate long-range ambiguous clutter in these facili-

ties. In the simple two-pulse case, NLS requires a pulse repetition frequency which

divides the radar’s maximum range into two unambiguous ranges, and a transmit sig-

nal comprised of alternating nearly orthogonal pulses. Received signals are therefore

a composite of the pulse interacting with the unambiguous portion of the range, and

its complement interacting with the ambiguous. Matched filtering to the ambiguous

pulse focuses (compresses) the clutter energy, and those portions of the return with

magnitudes exceeding a threshold are set to zero. The process is completed by passing

the remaining signal through the inverse matched filter, then matched filtering to the

unambiguous pulse. The aim of NLS process is to remove as much ambiguous en-

ergy as possible while maintaining the maximum unambiguous energy. Thresholding

techniques used by Anderson [1] are utilized and expanded upon. Initial testing pro-

vides an extended proof-of-concept for coincident point scatterers representing target

and clutter sources. The process is finally applied to simulated measured data from

the National Radar Test Facitily(NRTF), where five cases representing various target

versus clutter signal power ratios are tested. Ratios are selected to cover the range

of clutter signals having 0.25 to 4 times the power of the target signal. Results show

promise for employing NLS in this arena, as one of the techniques studied retained on

average 95% of the target signal power while discarding 78% of the ambiguous signal

power.
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Nonlinear Suppression of

Range-Ambiguous Clutter for

Outdoor Radar Measurement Facilities

I. Introduction

Outdoor radar cross section (RCS) measurement facilities have a unique ca-

pability of being able to measure large (often non-scaled) targets. The tradeoff for

this flexibility lies in having a somewhat unstable clutter scene. While environmental

factors within the immediate vicinity of the range can be controlled, the long-range

clutter scene can be in a constant state of flux and provides a ready source of measure-

ment errors. The terrain in a desert environment, for example, changes at a steady

pace as sand blows and drifts. Unfortunately, unlike indoor ranges, the outdoor fa-

cility is unable to implement a simple background subtraction scheme to minimize

these ambiguous clutter areas. The National Radar Test Facility (NRTF) is one such

facility and is the sponsor of this work. The overarching research goal is to minimize

the received energy from long-range ambiguous clutter areas in hopes of enhancing

measurement fidelity.

Non linear suppression (NLS) is a technique introduced by Palmero et al in 1962

and was revisited extensively by Anderson in 2001 [1]. In previous works, NLS has

been used primarily to suppress clutter in target detection scenarios. While proven

effective in this arena, its usefulness has yet to be understood when applied to static

RCS measurements. Thus, this body of work represents an extension to the progress

made by Anderson and attempts to demonstrate NLS effectiveness in the outdoor

RCS measurement facility.

1.1 Conventions, Nomenclature and Limitations

All waveforms considered in this work are simulated in the MATLABr environ-

ment, and therefore a continuous-time signal s(t) is referred to by its sampled discrete-

1



time representation s[n]. All sampling during simulations is done at a minimum of

twice the Nyquist rate, which is defined in [3] as two times the signal bandwidth. Also,

please note that throughout this document, “target,” “target pulse”and “unambigu-

ous pulse” are used interchangeably, as are “clutter,” “clutter pulse” and “ambiguous

pulse.”

Finally, NRTF has provided the topic considered but methods proposed herein

are not currently implementable at their facility. Specifically, waveforms employed in

later chapters prove technique viability, but are not supported by hardware in place

at NRTF at the time of this work.

1.2 Organization

Chapter II acquaints the reader with the concept of range ambiguities and re-

counts in the author’s own words, Anderson’s development of the NLS process. Top-

ics covered also include thresholding techniques, waveform selection and performance

metrics.

Chapter III expands Anderson’s model to focus on the NRTF measurement en-

vironment. An extended proof-of-concept is presented which explores the effectiveness

of NLS using single point scatterer targets appearing at the same ambiguous range.

Performance is analyzed for multiple relative magnitudes between target and clutter

impulses. A sample image of measured data from NRTF is presented and a process

developed to use the image to create an unlimited number of “pseudo-measured” data

sets.

Chapter IV introduces possible techniques for adjusting thresholds, then evalu-

ates NLS performance using 1000 realizations for each of 5 input power ratios. Finally,

conclusions are drawn in Chapter V, as well as recommendations for future endeavors.

2



II. Nonlinear Suppression Basics

This chapter fills a basic toolbox which is needed to understand and apply non-

linear suppression (NLS). A brief discussion of range ambiguities is followed by

an introduction to NLS fundamentals. Thresholding techniques, waveform selection

and performance analysis from [1] are presented to complete the picture.

2.1 Range Ambiguities

To understand the theory of nonlinear suppression, an understanding of the

basic concept of range ambiguity is required. In a vast majority of radar applications,

a series of pulses is transmitted at a given pulse repetition interval (PRI), which has

a corresponding pulse repetition frequency (PRF). The PRI (Tp) is related to the

PRF (fp) by

Tp =
1

fp

. (2.1)

Figure 2.1 shows 6-pulses of a simple rectangular signal with a PRI of 500 ns and PRF

of 2 MHz. Figure 2.2 shows this signal interacting with two ideal point scatterers that

0 500 1000 1500 2000 2500 3000 3500

0

0.5

1

1.5

Time(ns)

|V
ol

ts
|

Figure 2.1: Transmitted Radar Signal with
PRF = 2MHz.

are located exactly Tp

2
apart. This figure provides a simple illustration of the concept

3



of range ambiguity. The first returned pulse (p1) has only target 1 (t1) information,

denoted by p1t1 in the lower plot of Fig.2.2. When p2 is received it not only contains

t1 information (p2t1) but also the interaction of p1 with t2 (p1t2) as well. In the case

of the second pulse, this p1t2 contribution is range-ambiguous, i.e., it appears at the

same range as t1 but actually exitis an additional cTp

2
meters downrange (c ≈ 3e8, the

speed of light).

Figure 2.2: Transmitted rectangular pulse interrogat-

ing two targets separated by a distance equal to Tp

2
.

Returned signal pulses (red) are labelled to illustrate
foldover of range-ambiguous energy. For example, p2t1
+ p1t2 is pulse 2 interacting with target 1 plus the am-
biguous return of pulse 1 interacting with target 2.

The illustration in Fig. 2.2 nicely frames the concept of maximum unambiguous

range, Run, which is defined as the range beyond which targets appear as second time

around echoes [3]. Unambiguous range is given by

Run =
c

2fp

. (2.2)

4



Stated perhaps more simply, as long as the extent in range being considered is less

than Run, no second time around (range-ambiguous) echoes will exist. Applying

Eqn. (2.2) to the waveform in Fig. 2.1 results in a maximum unambiguous range of

75 meters.

It would seem at this point that the problem is solved: simply reduce the

PRF to a rate which ensures no second time around echoes exist. While effective

in eliminating ambiguities, measurement range time is extremely expensive. Thus,

reducing the PRF makes this proposition cost-prohibitive and further drives the need

to explore options like NLS.

2.2 Nonlinear Suppression (NLS) Fundamentals

The NLS framework is readily understood using a simple two-pulse illustration.

Let s[n] represent the transmit signal, which has a PRF such that the maximum range

visible by the radar is Rmax = 2Run. Two unique waveforms are alternately applied

when creating s[n]. For example, one pulse is coded using linear frequency modulation

(LFM) with an up-chirp (LFMup), and the next by LFM with a down-chirp (LFMdn).

! Waveform selection is NOT ARBITRARY. Details on the process are
found in Section 2.4.

An illustration of s[n] interacting with one target and one clutter source is

illustrated by Fig. 2.3. The received signal in this scenario has both target and clutter

information superimposed within each pulse. Due to the total scene being divided into

2Run, if the received pulse rm[n] contains LFMup-coded target data, it also contains

LFMdn-coded clutter data. The alternating pattern of s[n] then dictates that rm+1[n]

contains LFMdn-coded target and LFMup-coded clutter data. This pattern continues

to alternate for the duration of the received signal.

Nonlinear suppression requires a matched filter in the receiver for each uniquely

coded pulse in the transmit signal. In this scenario, one is matched to LFMup, denoted

by hLFMup and the second to LFMdn (hLFMdn). The first step in processing received

5



Figure 2.3: Alternating LFM transmit signal and com-
posite return signal. For target and clutter point scat-
terers spaced as shown, each composite received pulse
contains a combination of alternately-coded target and
clutter data.

data using NLS is to match filter to the pulse containing the ambiguous information,

as seen in Fig. 2.4. If implemented in an actual radar, the switch shown would likely

be toggled by a delay-line, adjusted relative to the range of interest. This process

simply tracks which waveform is interacting with the ambiguous portion of the range.

After the first matched filter h, the next block in Fig 2.4 represents the nonlin-

earity designed to suppress range-ambiguous data. During this nonlinear operation,

any portion of the filtered received signal ỹm[n] exceeding a threshold α is set to zero,

ideally removing all ambiguous signal energy. This technique is used extensively in [1]

and is referred to as the hole-punching function, Γα(ỹm[n]), given by

Γα(ỹm[n]) =





0 if |ỹm[n]| > α

ỹm[n] otherwise

, for m = 0 , 1. (2.3)

This nonlinear function is graphically illustrated by Fig. 2.5.

6



Figure 2.4: Two channel nonlinear suppression scheme. As labelled, a delay line
tracks which waveform interacts with the ambiguous terrain and toggles the switch
appropriately. The first matched filter (h) compresses the ambiguous pulse and the
nonlinearity ideally removes all ambiguous signal energy. The inverse filter (h−1)
restores the remaining unambiguous pulse before a final matched filter focuses the
desired target signal.

Figure 2.5: Hole-punch nonlin-
earity. When |ỹm[n]| > α, ỹm[n] is
set to zero.
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Considering the upper channel of Fig. 2.4, the step following the nonlinearity

reverses the effects of the first matched filter using an inverse filter (h−1), the conjugate

reflection filter for h [1]. This filter de-focuses the remaining clutter signal energy

and restores the desired target portion of the signal to its original received form,

completing the NLS process. The final processing in Fig. 2.4, which is not part of

the NLS operation, is a filter matched to the target waveform. This represents the

sole matched filter a receiver chain would normally utilize had NLS not been added

to the “front end” of the system. If implemented properly, at this point the majority

of the clutter signal energy has been removed, while maintaining maximum target

signal integrity. At this point it is apparent that the success of this entire process

relies heavily on the thresholding technique.

2.3 NLS Thresholding Techniques

With a basic understanding of NLS in hand, special attention is given to the

process of thresholding. Three techniques are presented by Anderson [1] for use in

two-channel NLS: the constant threshold, locally constant threshold and local average

threshold (LAT). While Anderson immediately discards the constant threshold, the

latter pair are explored in great detail. No declaration is made as to which is most

effective and performance of each proved nearly identical for multiple phase-coding

schemes. As a result, the LAT is arbitrarily chosen for thresholding in this work. The

local average is simply a scaled average magnitude of ỹm[n], the composite received

signal match filtered to the ambiguous waveform, over 2b+1 samples. The point-wise

LAT α[n] is given by:

α[n] =
a

2b + 1

n+b∑

k=n−b

|ỹm[k]|, for m = 0, 1. (2.4)

Since ỹm[n] is matched to the clutter signal, regions containing strong clutter re-

sponses are sharply focused (energy concentrated in a relatively few samples). The
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local average exploits these peaks by taking an average magnitude over several sur-

rounding samples. This averaging sets the threshold below the strong clutter areas,

precipitating their removal. Near the ends of ỹm[n], the average is calculated using

fewer samples. The scale factor a and sampling factor b are adjusted to optimize LAT

effectiveness.

! Please note that the sum (2b+1) is referred to herein as the “sampling
width” throughout the remainder of this document. This is not to be confused
with Nyquist sampling or the actual radar’s sampling rate.

2.4 Waveform Selection

Essential to NLS effectiveness is employing groups of signals with highly dis-

persed cross-correlation and sharply focused autocorrelation responses. As shown

in Chapter III, sharply focussed autocorrelation allows clutter signal energy to be

pinpointed and subsequently removed by the hole-punch nonlinearity with minimal

disruption of the target pulse. The well dispersed cross-correlation further enhances

this effectiveness by spreading desired target signal energy, again providing minimal

disruption of the target pulse. Anderson goes to great lengths to characterize perfor-

mance of numerous phase-coding techniques, which include Gold codes, M-Sequences

and those generated by a simulated annealing algorithm. Touted as providing“near

optimum” results, Anderson uses LFM-coded signals to characterize baseline perfor-

mance [1]. Therefore, waveforms used in all testing scenarios that follow are limited

to LFM.

2.5 Performance Analysis

The toolbox is nearly complete, as NLS fundamentals, thresholding and wave-

forms are in place. The final step is to pull everything together to characterize per-

formance. Anderson developed a vital evaluation model for NLS, shown with minor

modifications for clarity in Fig. 2.6. This model provides a solid foundation for several

useful metrics. Model inputs are the received ambiguous (clutter) signal rA[n] on the
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upper channel and unambiguous (target) signal rU [n] on the lower. Following Ander-

son’s design, these signals contain purely ambiguous and unambiguous range data,

respectively, and are created by coding distinct range intervals with unique pulses.

Both signals are passed through a filter matched to the ambiguous (clutter) waveform,

hA, given by

hA[n] = s∗A[−n], (2.5)

as defined in [2], and where sA[n] is the transmitted ambiguous waveform. The

lower channel now contains a dispersed target-only response, which after taking its

magnitude and applying the scale factor a′ is termed the ideal threshold, αI :

αI [n] = a′|ỹU [n]|, (2.6)

where ỹU [n] = sU [n] ∗ hA[n], and ∗ represents convolution.

! It is important to note that the ideal threshold is for performance
evaluation only, in contrast to the local average threshold, which is considered
an applied technique.

Since all operations at this point are linear, the summation of ỹU [n] and ỹA[n] is

equivalent to a received composite signal match filtered to the ambiguous waveform.

This summation may now be used along with αI to create what Anderson calls the

hole-punch vector [1], defined as

Vα[n] =





0 if |ỹU [n] + ỹA[n]| > αI [n]

1 otherwise.

(2.7)

Next, the series of zeros and ones contained in Vα[n] are multiplied point-by-

point (the ¯ operator) with both ỹU [n] and ỹA[n]. The zeros correspond to elements

where the composite signal exceeded αI . The sum of these hole-punched signals is

passed through the conjugate reflection filter to produce the signal yN [n], which is

10



Figure 2.6: NLS Performance Evaluation Model

equivalent to the output of an operational NLS channel. Flanking yN [n] in Fig. 2.6

are the ambiguous output yA[n] and the unambiguous output yU [n].

The first of Anderson’s performance metrics is a ratio of the unambiguous (Pu)

to ambiguous (Pa) signal powers:

Pu

Pa

=

∑N−1
n=0 |yU [n]|2∑N−1
n=0 |yA[n]|2 . (2.8)

At first glance it may appear as if something is missing in eqn. (2.8), as power is

defined as signal energy over a time interval. Since both target and clutter power are

calculated over the same interval, these time units cancel. This ratio of Pu

Pa
is often

compared to the same ratio at the input of the radar, given by

Input
Pu

Pa

=

∑N−1
n=0 |rU [n]|2∑N−1
n=0 |rA[n]|2 . (2.9)

Both ratios are referred to in the appropriate context as the “power ratio.” Comparing

the input power ratio to the NLS output power ratio provides the first indication of

NLS effectiveness.
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The final two metrics are the Suppressed Power Ratio-Ambiguous (SPRA) given

by

SPRA =
Pa|T=α

Pa|T=∞
=

∑N−1
n=0 |yA[n]|T=α|2∑N−1
n=0 |yA[n]|T=∞|2

, (2.10)

and the Suppressed Power Ratio-Unambiguous (SPRU), given by

SPRU =
Pu|T=α

Pu|T=∞
=

∑N−1
n=0 |yU [n]|T=α|2∑N−1
n=0 |yU [n]|T=∞|2

. (2.11)

Both the SPRA and SPRU are a ratio of power after NLS using the ideal threshold,

to power using an infinite threshold. The latter case is equivalent to bypassing the

hole-punching operation altogether, and ensures the filter “coloration” effects are

included when making a head-to-head comparison of the results. SPRU values near 1

are desirable as this indicates the majority of power from the target pulse is retained.

Similarly, an SPRA approaching 0 reveals the majority of the undesired clutter energy

is removed. It may be helpful to think of these metrics as percentages. For the SPRU,

a value of 0.96 indicates that 96% of the target signal power is retained, and an SPRA

of 0.22 reveals 78% of clutter signal power is rejected.

Given performance metrics are in place, as are the basic tenets of nonlinear

suppression, a sufficient foundation now exists to extend previous research and apply

NLS to the outdoor measurement environment.

12



III. NLS in the RCS Range Environment

This chapter explores the effectiveness of nonlinear suppression (NLS) for co-

incident point scatterers of various relative magnitudes. An additional per-

formance metric is introduced, which provides a means to more accurately adjust

thresholds. A process is developed to utilize a single snapshot of measured data to

create as many data sets as needed for testing scenarios.

3.1 Expanding the Model

During the proof-of-concept phase presented in Anderson’s Chapter II [1], he

did not present instances where single point scatterer target and clutter sources are at

the exact same unambiguous range. The extremely stable environment of the outdoor

measurement facility nearly guarantees an appreciable range-ambiguous return from

long-range clutter will appear at the same range as the target for a multitude of pulse

repetition frequencies (PRFs). Therefore, an extension of Anderson’s proof-of-concept

for point scatterers is in order. This time, target and clutter appear co-incident when

the clutter return is folded over.

Figure 3.1 (a) shows the focused (match-filtered or autocorrelation) response of

a point scatterer which represents a radar cross section (RCS) measurement target.

Figure 3.1 (b) is the dispersed (mismatch-filtered or cross-correlation) response of a

second point scatterer of the same magnitude, which represents the range-ambiguous

clutter return.

A total of five InputPu

Pa
power ratios are considered: −6 dB, −3 dB, 0 dB,

3 dB, and 6 dB. These values provide scenarios ranging a from target return having

4 times the power of the clutter return, down to a target having 0.25 times the power.

Both ideal and local average thresholding are considered. A third method, termed

multiple local average threshold (MLAT) is tested as well. MLAT may be literally

interpreted as simply establishing the local average threshold (LAT) and performing

the hole-punching operation, then repeating the thresholding/hole-punching process
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(a) (b)

Figure 3.1: (a) Focused (match-filtered) unambiguous pulse.
(b) Dispersed (mismatch-filtered) ambiguous pulse.

several times. The aim is to incrementally remove the ambiguous signal energy in an

attempt to retain as much of the unambiguous energy as possible.

Figure 3.2 shows the composite signal match-filtered to the ambiguous waveform

along with the ideal threshold. The zoom window illustrates how succinctly this

method follows the contours of the composite signal. Recall that every portion of

the composite signal above the threshold will be set to zero during the hole-punching

operation of NLS.

While designed to evaluate performance using the ideal threshold, Anderson’s

evaluation model of Fig 2.6 is modified slightly to accommodate the applied thresh-

olding techniques as well. This is possible since the composite received signal is

artificially created by “folding over” ambiguous with unambiguous pulses, which are

needed individually as inputs to the model. As shown in Fig. 3.3 for the single local

average threshold (SLAT), the composite signal is now used to find the threshold α,

and the remaining process is untouched. The model (not shown) is nearly identical

for the MLAT, with a loop added to accommodate iteration of the thresholding and

hole-punching operations.
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Figure 3.2: Composite signal (InputPu

Pa
= 0.00dB)

match-filtered to ambiguous pulse with overlaid ideal
threshold.

Figures 3.4 through 3.8 show results of a single-pass LAT followed by succes-

sive iterations of the MLAT, all for Input Pu

Pa
= 0.00 dB. Threshold scale factors and

sampling width were optimized in all cases for a favorable (minimized) suppressed

power ratio-ambiguous (SPRA). Note in Fig. 3.4 that the threshold falls below the

composite signal sidelobes for much of the duration. NLS based on this threshold

not only reduces ambiguous signal energy, but could remove a considerable amount

of unambiguous signal energy as well. In contrast, the MLAT thresholds in Figs. 3.5

through 3.7 leave a majority of sidelobes completely intact and therefore result in

increased unambiguous signal integrity. Table 3.1 gives final performance for both

methods, where the ∆Pu

Pa
term reflects the improvement or degradation in the power

ratio after NLS. In this instance, the MLAT technique yields a marked improvement,

as Pu

Pa
at the output exceeds the single pass increase by 1.31 dB. Recall SPRA values

approaching zero indicate nearly all ambiguous signal energy is removed and sup-

pressed power ratio-unambiguous (SPRU) values near one represent a largely intact

unambiguous pulse.
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Figure 3.3: NLS performance evaluation model modi-
fied for the single local average threshold.

Figure 3.4: Composite signal (InputPu

Pa
= 0.00dB)

match-filtered to ambiguous pulse with overlaid sin-
gle local average threshold.
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Figure 3.5: Composite signal (InputPu

Pa
= 0.00dB)

match-filtered to ambiguous pulse with overlaid first
pass MLAT.

Figure 3.6: Composite signal (InputPu

Pa
= 0.00dB)

after first hole-punching operation with overlaid sec-
ond pass MLAT.
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Figure 3.7: Composite signal (InputPu

Pa
= 0.00dB)

after second hole-punching operation with overlaid
third pass MLAT.

Figure 3.8: Composite signal (InputPu

Pa
= 0.00dB)

match-filtered to ambiguous pulse after complete
MLAT.

18



While not quantitatively assessed, Figs. 3.9 and 3.10 reveal by inspection that

the single and multiple LAT techniques produce very similar results in the InputPu

Pa
=

0.00 dB case. For a more robust comparison, Fig. 3.11 is a cumulative magnitude

difference (|∆|) between the individual results of each thresholding technique and

the match-filtered unambiguous target pulse. This focused target pulse is used for

comparison since it represents the“pure return” (ie no range-ambiguities) attainable

if the PRF were cut in half. When plotted, a lower cumulative difference indicates

a waveform that better matches the contour of the target-only pulse. The difference

tracing for the composite signal match-filtered to the unambiguous pulse is shown for

completeness and to accent the power of NLS.

NLS is now performed for all Input Pu

Pa
ratios proposed earlier. In each case,

threshold scale factors and sampling widths are adjusted to maximize the SPRU.

Table 3.2 shows the results of all methods. Both thresholding techniques produce

and improvement in output Pu

Pa
, and at times show performance nearing the ideal

threshold. Overall, it appears that the MLAT technique may offer some improvement

over the single threshold in cases where the target return is stronger than clutter, but

performs poorly in the high clutter power scenarios.

Until now the decision to maximize SPRU (to retain maximum target power)

or minimize SPRA (to reject maximum clutter power) has been completely arbitrary.

A balance can be struck between keeping a minimum clutter signal energy while

maintaining maximum contribution from the target pulse. If the measurements are

taken with the simple intent of gathering RCS magnitude data (versus an imaging

Table 3.1: NLS single point scatter target performance for single LAT

vs. MLAT, (InputPu

Pa
= 0.00dB).

Single Local Ave Thresh Multi Local Ave Thresh

InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA ∆Pu

Pa
(dB) SPRU SPRA

0.00 +9.66 0.778 0.084 +10.97 0.983 0.079
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Figure 3.9: Comparison of unambiguous signal

and composite signal (InputPu

Pa
= 0.00dB) after sin-

gle LAT NLS, both match-filtered to unambiguous
waveform.

Figure 3.10: Comparison of unambiguous sig-

nal and composite signal (InputPu

Pa
= 0.00dB) af-

ter MLAT NLS, both match-filtered to unambiguous
waveform.
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Figure 3.11: Cumulative point-by-point |∆| for
all thresholding techniques. The |∆| is measured
from a match-filtered target pulse, and reveals
how well NLS-processed waveforms follow the con-
tour of “pure” data. All thresholds are adjusted
for maximum SPRU.

Table 3.2: Ideal Threshold vs. Single Local Average and Multiple Local
Average Threshold Performance On Single Point Scatterer Target and Clutter.
Thresholds in all cases adjusted to maximize SPRU.

Ideal Threshold

InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA

-6.02 +8.42 0.996 0.143
-2.97 +8.30 0.996 0.147
0.00 +8.31 0.996 0.147
3.02 +8.30 0.996 0.147
6.02 +9.4 0.996 0.114

Single Local Ave Thresh

∆Pu

Pa
(dB) SPRU SPRA

⇒ +7.99 0.996 0.158
⇒ +5.53 0.996 0.279
⇒ +5.54 0.996 0.279
⇒ +5.53 0.996 0.279
⇒ +5.53 0.996 0.279

Ideal Threshold

InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA

-6.02 +8.42 0.996 0.143
-2.97 +8.30 0.996 0.147
0.00 +8.31 0.996 0.147
3.02 +8.30 0.996 0.147
6.02 +9.4 0.996 0.114

Multi Local Ave Thresh

∆Pu

Pa
(dB) SPRU SPRA

⇒ +2.43 0.996 0.570
⇒ +4.32 0.996 0.368
⇒ +7.11 0.997 0.194
⇒ +7.11 0.997 0.194
⇒ +5.53 0.996 0.279

21



application), a fourth useful metric is the total power ratio (TPR), given by

TPR =
Pu|T=α + Pa|T=α

Pu|T=∞
=

∑N−1
n=0 |yU [n]|T=α|2 +

∑N−1
n=0 |yA[n]|T=α|2∑N−1

n=0 |yU [n]|T=∞|2
. (3.1)

The TPR simply shows how the total power of the NLS channel output compares

to the power in the unambiguous pulse, which can be considered truth data the

NLS process is attempting to approach. TPR values of 1 are ideal, values less than 1

reveal excessive signal energy removed during NLS and values greater than 1 too little.

Analyzing the TPR in concert with the SPRU provides the most complete picture. A

TPR and SPRU near 1 would indicate the best possible NLS performance.

The simulations represented in Table 3.2 are re-run, adjusting threshold scaling

and sampling width to bring the TPR as near to unity as possible. Results are shown

in Table 3.3. The value of considering the TPR when adjusting threshold constants is

evident in the considerable improvement across the board in ∆Pu

Pa
. When compared

to optimizing based on SPRU alone, the ratio increased an average of 5.73 dB. Note

that in both the ideal and MLAT simulations, the ratio improves as clutter power

increases. While a curious observation, care must be taken to consider the whole

picture, as SPRU values have decreased at the same time. The lesson is that while

there is an appearance of improved performance with increased clutter strength, the

reality may be that only the ratio Pu

Pa
has improved. An improved Pu

Pa
is by itself a

favorable outcome in target detection, but could prove costly in terms of accuracy

in RCS measurements. Further supporting this theory is the fact that the SPRU is

considerably degraded at the same time.

In all instances, MLAT NLS now outperforms the single pass suppression, with

an increase in ∆Pu

Pa
values ranging from 1.58 dB to 5.49 dB better than the single

pass. Note also that‘ MLAT SPRU remains much nearer the desired value of 1, and

the SRPA nearer to 0 in all cases. Figure 3.12 shows nice improvement in waveform

accuracy for all methods when adjusting thresholds based on the TPR and SPRU. As
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compared to thresholding based solely on the SPRU, the cumulative |∆| final values

for all techniques are roughly cut in half.

After examining nonlinear suppression as applied to coincident point scatterers,

the process appears to have great promise in the RCS measurement setting. With

thresholding techniques further refined, the next step is to explore the measured data

provided by the sponsor and prepare it for further simulations.

Table 3.3: Ideal Threshold vs. Single Local Average and Multiple Local Average
Threshold Performance On Single Point Scatterer Target and Clutter. TPR = 1.00
in all Instances.

Ideal Threshold

InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA

-6.02 +17.79 0.939 0.016
-2.97 +16.33 0.957 0.022
0.00 +14.45 0.970 0.035
3.02 +13.63 0.979 0.042
6.02 +12.63 0.987 0.054

Single Local Ave Thresh

∆Pu

Pa
(dB) SPRU SPRA

⇒ +9.52 0.693 0.077
⇒ +10.05 0.837 0.083
⇒ +10.29 0.917 0.086
⇒ +9.03 0.944 0.118
⇒ +9.00 0.971 0.122

Ideal Threshold

InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA

-6.02 +17.79 0.939 0.016
-2.97 +16.33 0.957 0.022
0.00 +14.45 0.970 0.035
3.02 +13.63 0.979 0.042
6.02 +12.63 0.987 0.054

Multi Local Ave Thresh

∆Pu

Pa
(dB) SPRU SPRA

⇒ +15.01 0.893 0.028
⇒ +13.45 0.921 0.042
⇒ +12.35 0.952 0.055
⇒ +11.12 0.964 0.074
⇒ +10.58 0.982 0.086

3.2 Exploring the Range Walk

Figure 3.13 shows an actual range walk collected at 10GHz. Data is collected by

transmitting k pulses and hardware gating the received signal k times at 1 nanosecond

increments. As a result, the plot shown represents 120, 000 (that is, k = 120, 000) data

points, displayed as range vs. RCS magnitude in decibels. Using a simple range equa-

tion R = cTp

2
from [3], an apparent target is found at roughly 15, 100 ns or 2, 263 me-

ters. Incidentally, no target was present when these measurements were taken - the

23



Figure 3.12: Cumulative point-by-point |∆| for
all thresholding techniques. The |∆| is measured
from a match-filtered target pulse, and reveals how
well NLS-processed waveforms follow the contour of
“pure” data. All thresholds adjusted for optimum
TPR.

return seen comes from the Radar VHF/UHF Measurement System (RVUMS), a mo-

bile system that was the range the day the data was collected. Had a target been

present, it would have appeared near the 19, 000 ns mark. Further downrange, the

clutter begins at approximately 45, 000 ns (6, 745 meters) and ends at 100, 500 ns

or 15, 739 meters. As labeled, this region will be referred to as the clutter hump.

An illustration of the ground-bounce measurement scene at the National Radar Test

Facility (NRTF) is depicted in Fig. 3.14. The interaction with the rise in elevation

corresponds to the start of the clutter hump in Fig. 3.13. Photographs of one of the

radar measurement facilities at NRTF are shown in Figs. 3.15 and 3.16.
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Figure 3.13: Range walk image collected with 10 GHz carrier, 85 ns pulse width.
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Figure 3.14: A not-to-scale conception of an outdoor radar measurement facility at
NRTF. After interrogating the target, transmit signal eventually interacts with the
rise in elevation.

For all simulations, the range is broken up into two ambiguous range swaths,

shown on Fig. 3.13 as occurring every 60, 000 ns starting at 60, 100 ns. Going back

to Eqn. (2.2), the appropriate PRF for this arrangement is found by first calculating

the range at the end of the first swath.

c(60, 100ns)

2
= 8, 985m (3.2)

Substitute this value for Run in Eqn. (2.2) to solve for a PRF of approximately

16.6 KHz. Range gates are illustrated by green boxes in Fig. 3.13, which help to

further define the problem at hand. Typical range gates are set at target range

plus two times the target’s maximum radius, plus some additional engineer-defined

cushion. Targets with extensive cavities, for example, may be given a wider range

gate to allow for all cavity returns to propagate back to the radar. A target with a

maximum radius of 15 meters yields a nominal range gate of target range +30 meters,

which corresponds in time to target range (in time) +100 ns. Within the majority

of the first swath the noise floor remains relatively constant at around −35 dB. At

around 45, 000 ns the ground first comes into view which is manifested by the start

of the clutter hump shown in Fig. 3.13. Returns from ground clutter in this second

swath are enclosed in the second green box, and result in a RCS considerably higher

than the noise floor, peaking at approximately −20 dB.
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Figure 3.15: This photo is taken looking downrange
at NRTF, and gives a good perspective of the rise in
elevation which contributes to the clutter problem.

Figure 3.16: Aerial photo of NRTF RCS measurement
facility.
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Figure 3.17: Mapping Technique for Data Image Matrix

3.3 Data Generation

Unfortunately, complex data from the sponsor radar was unavailable at the time

of this work. In an effort to create multiple, realistic received radar signals, Fig. 3.13

is assumed to represent the impulse response of the terrain’s reflectivity, h′[n]. While

no phase data can be captured from the image, relative magnitudes of representative

point scatterers are readily extracted. To use the range walk data in creating a

representative received signal r[n], the contents of Fig. 3.13 are read into a MATLABr

workspace using the “imageread” command. Next, data points are backed out by

isolating the nearly pure red pixels from the remaining space. In the resulting matrix

column location represents range and RCS magnitude (in decibels) is represented in

row location. Figure 3.17 is an illustration on a smaller scale of what the matrix

might look like. All non-zero values are red pixel (range walk data) locations which

may be mapped as shown to the appropriate magnitude. The illustration of Fig. 3.17

finds the mean magnitude (in dB) value for two columns.

In an effort create multiple data sets, this mean along with a standard deviation,

both on a linear scale, are calculated for all data columns. Fidelity is limited by

pixel size of the original image in this process, so while the measured data used

to create Fig. 3.13 contains a sample every nanosecond (roughly 120, 000 samples),

this “pseudo-measured” data has only 875 samples, or approximately 1 data point for

every 137 nanoseconds. As a result, the mean vector, have, and the standard deviation

vector σ, both contain 875 data points. Using these vectors, an infinite number of
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Figure 3.18: Gaussian Magnitude Distribution for
Representative Column of the Data Image Matrix

data sets may be formed by employing a Gaussian magnitude distribution for each

vector pair (have[1] and σ[1], for example). Figure 3.18 shows this process for one

data image column. The column vector of linear magnitudes shown are the mapped

locations of red pixels from the data image column under consideration. The mean

and standard deviation are computed for this range of values, and used to create

the distribution shown in blue. This process is repeated to create magnitude values

for all 875 samples. For completeness and to introduce complex values which are

representative of actual radar signals, a uniform phase distribution, φ, is applied as

well. The entire process is captured by:

h′[n] = H[n]ejφ[n], (3.3)

where H[n] ∼ N(have[n], σ[n]) and φ ∼ U(0, 2π].

Figure 3.19 shows 1000 such realizations of h′[n] along with the original data

image. This figure was created not by an average of all realizations, but each plotted

one at a time without erasing the previous tracings. The intent is to show the range

of simulated data falling mostly within the bounds of the image used to create it,

which it does.

29



Figure 3.19: Original data image with 1000 realizations of simulated terrain
data overlaid.

Now, recall a single data value exists for every 137 nanoseconds in range. It

should be noted that a representation more true to the actual environment would

have data at every nanosecond increment. Rather than introduce added uncertainty

by estimating the remaining data, zero padding was implemented. To maintain ap-

propriate spacing in range, each h′[n] is zero-padded with 136 zeros after each known

value. This new vector, h[n] is called the terrain impulse response (TIR).

The received radar signal is created by simply convolving a transmit signal, s[n]

with the TIR:

r[n] = s[n] ∗ h[n]. (3.4)

Since magnitudes of h[n] were extracted from a range vs. magnitude realization, no

further accounting of range or power scaling is considered.
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Figure 3.20: Original range walk vs. simulated walk produced by
random realization of h(n) and full radar processing.

As a simple test to further validate h[n], an attempt is made to recreate the orig-

inal range profile in Fig. 3.13. A random realization of the TIR is used, along with an

un-coded rectangular pulse, with baseband carrier for s[n], to create a representative

r[n]. The hope is that match-filtering this received signal will produce a second range

profile very similar to the data given. Results of this test are shown in Fig. 3.20. A

subtle, yet important difference from Fig. 3.19 is that in this image, radar processed

data is compared to the original image versus the TIR. Visual examination confirms

the desired Gaussian amplitude distribution, as most of the data lies along the mean,

with an occasional data point falling outside the bounds of the original data’s range.

The terrain is now well characterized and has been used to successfully recreate

a range profile using full radar processing. With no target in place at measurement

time, the next logical step is to artificially add one to the terrain data.
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3.4 Adding a Target Profile

A single point-scatterer would be an easy target representation, but terribly

unrealistic for most azimuth angles of most measurement targets. Taking several

point scatterers at reasonable separations provides a better representation, but one

that is still easily implemented. For example, if an aircraft is measured nose-on with a

horizontal polarization, four primary scattering regions would likely contribute to the

overall RCS, as illustrated by the stars in Fig. 3.21: radar bulkhead, cockpit, leading

wing edges and a combination of aft control surfaces and engine cavity. The overlaid

range profile shown in the figure comes from actual measured data of a fighter-size

aircraft, and has been blended with NRTF measured data at the appropriate range, as

shown in Fig. 3.22. It is assumed that received target signals will have a high enough

signal-to-noise ratio (SNR) that the target profile as shown can stand alone. In other

words, the portion of the TIR where the target is inserted contains only target data

without any added noise. Finally, no phase variation is added over the target portion

of the TIR.

With a viable TIR in hand which includes an accurate target representation,

the next step is to create multiple data sets for varying target and clutter signal power

ratios. This data is eventually used to test the effectiveness of NLS on outdoor RCS

measurements.
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Figure 3.21: RCS Range Profile and Corresponding Scattering Locations for Measurement
Target
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Figure 3.22: Terrain impulse response with target inserted.
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IV. Applying NLS to Simulated NRTF Range Data

This chapter details the steps taken to create “pseudo measured” data sets which

are used in final simulations. Thresholding techniques are further refined based

on multiple measurements, and are used in final performance analysis.

4.1 Creating Final Data Sets

Five cases are again considered for nonlinear suppression (NLS) testing on the

simulated National Radar Test Facility (NRTF) range data. To this end, 1000 real-

izations of the terrain impulse response (TIR) are created for all 5 Input Pu

Pa
ratios

studied in Chapter III. The aim, for example, in the −6 dB case is to create 1000

realizations with an average Input Pu

Pa
= −6 dB. Recall the relative target amplitudes

are fixed (ie. no Gaussian variation), so all that is needed is an average Pa calculated

over a representative M = 1000 samples.

Pa ave =

∑M−1
m=0 Pa[m]

M
. (4.1)

With this value in hand, rU [n], the received unambiguous signal (and therefore Pu),

can be adjusted to attain the desired Pu

Paave
ratio simply by scaling the magnitude of

the target portion of the terrain impulse response, hT [n], by a constant D.

rU [n] = (DhT [n]) ∗ sU [n] (4.2)

Since rU [n] contains only the target response, it is considered the hardware-gated

received unambiguous pulse. The same time duration is used to simulate gating of

the ambiguous signal, rA[n] as well, and the sum of these represents the composite

received signal r[n].

r[n] = rU [n] + rA[n] (4.3)
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4.2 Setting Thresholds for Final Simulations

Since it is impractical due to sheer volume of simulations to optimize unique

threshold scaling constants and sampling widths for each of the 5000 h[n]’s, an averag-

ing technique is employed. For the ideal threshold, the scale factor a is adjusted to op-

timize the total power ratio (TPR) and suppressed power ratio-unambiguous (SPRU)

for a received signal generated from the mean TIR, have[n]. This value of a is then

used to find a unique ideal threshold, termed the floating threshold ᾱ, for all 1000

realizations of each input ratio, which in-turn are averaged to find ᾱFixed, the fixed

ideal threshold for each ratio. This threshold is then used to perform NLS on all 1000

realizations in each ratio set.

A second method is tested, which simply performs NLS using the floating thresh-

old ᾱ on each realization. Table 4.1 compares results of both methods. In nearly every

case, increase in Pu

Pa
at the output was greater for the floating method. Without ex-

ception, the floating threshold improved the SPRU, as values were nearer to one in

all instances. The suppressed power ratio-ambiguous (SPRA) metric is unremarkable

in this comparison, as no perceivable trend is noted. As is the case with the SPRU,

all SPRA values for each input ratio are extremely similar for each method.

Although improvement was marginal, an extension of the concept behind the

floating average threshold is used in the applied techniques of single local aver-

age (SLAT) and multiple local average thresholding (MLAT) as well. In both in-

Table 4.1: Fixed ideal threshold vs. floating ideal threshold performance on
distributed target and clutter sources.

Fixed Ideal Threshold

Ave InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA

-6.07 +6.06 0.939 0.224
-3.15 +6.17 0.948 0.222
-0.09 +6.18 0.938 0.220
2.88 +6.45 0.973 0.220
5.87 +6.50 0.967 0.219

Floating Ideal Threshold

∆Pu

Pa
(dB) SPRU SPRA

⇒ +6.10 0.943 0.223
⇒ +6.18 0.952 0.223
⇒ +6.23 0.941 0.220
⇒ +6.46 0.974 0.220
⇒ +6.49 0.968 0.220
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Table 4.2: Optimized values of
TPR and SPRU used in distributed
target and clutter NLS testing.

Ave InputPu

Pa
(dB) TPR SPRU

-6.08 1.49 0.96
-3.15 1.24 0.96
-0.10 1.10 0.96
2.88 1.05 0.98
5.87 1.03 0.98

stances, the scale factor and sampling width are adjusted for optimum TPR and

SPRU for the same series of hm[n] -generated received signals. It is conceded that

adjusting thresholds relative to the performance metrics is not feasible in reality, but

is done here to reveal potential best-case results.

In cases where the average InputPu

Pa
was negative (ie. clutter power stronger than

target), it becomes apparent that a TPR of 1 is impractical. As the TPR approaches

1+, the SPRU simultaneously trends away from 1, indicating too much target energy

is being removed. In all cases, an experimental balance is struck over multiple trials

to maximize SPRU while bringing the TPR as near to 1 as possible. Table 4.2

contains the final values the thresholds are adjusted to attain. As implemented in

the ideal threshold case, the final scale factor and sampling width values from the

optimized SLAT and MLAT are used to generate unique local average thresholds for

both techniques, using all h[n] s.

4.3 Final NLS Evaluation

Final NLS evaluation is conducted on the aforementioned 1000 -member data

sets for each Input Pu

Pa
. Table 4.3 shows the final results of the SLAT and MLAT

methods compared once again to data obtained using floating ideal thresholds.

While not the focus of this research, it is interesting that the ideal threshold

seems to perform poorly in these experiments. In fact, it is surpassed in ∆Pu

Pa
by the

other methods in 7 of 10 trials and is outperformed in SPRA for 6 of 10. The ideal
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Table 4.3: Floating ideal threshold vs. single local average and multiple local
average threshold performance on distributed target and clutter sources. All
data shown is an average of 1000 realizations.

Floating Ideal Threshold

InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA

-6.08 +6.10 0.943 0.223
-3.15 +6.18 0.952 0.223
-0.10 +6.23 0.941 0.220
2.88 +6.46 0.974 0.220
5.87 +6.49 0.968 0.220

Single Local Ave Thresh

∆Pu

Pa
(dB) SPRU SPRA

⇒ +6.68 0.941 0.197
⇒ +6.77 0.955 0.206
⇒ +6.78 0.947 0.205
⇒ +6.60 0.933 0.223
⇒ +6.21 0.965 0.274

Floating Ideal Threshold

InputPu

Pa
(dB) ∆Pu

Pa
(dB) SPRU SPRA

-6.08 +6.10 0.943 0.223
-3.15 +6.18 0.952 0.223
-0.10 +6.23 0.941 0.220
2.88 +6.46 0.974 0.220
5.87 +6.49 0.968 0.220

Multi Local Ave Thresh

∆Pu

Pa
(dB) SPRU SPRA

⇒ +6.35 0.923 0.205
⇒ +6.41 0.917 0.206
⇒ +6.45 0.914 0.208
⇒ +6.43 0.924 0.227
⇒ +6.06 0.936 0.271

threshold did perform well in the SPRU metric, being nearer to 1 in all cases compared

to the MLAT, and 3 of 5 against the SLAT. This slip in performance relative to the

other methods is possibly explained by re-examining Fig. 3.2. A threshold following so

closely to the contour of the dispersed target pulse may create problems when applied

to distributed clutter sources. Gated signals which contain multiple clutter sources

provide increased opportunities for the composite signal to exceed the threshold when

match-filtered to the clutter waveform, which subsequently removes excessive data.

Figure 4.1 illustrates this concept with multiple potential sources of error enclosed by

circles.

When comparing the single- and multiple-thresholding techniques to each other,

it is quickly apparent that SLAT performance is superior if the intent is to simply

gather RCS magnitude data. The SPRU for the single threshold-processed data is

nearer to 1 for all input Pu

Pa
ratios and the SPRA is closer to 0 in 3 of 5. Finally,

the ∆Pu

Pa
is on average 0.268dB greater in the SLAT trials as well. While somewhat
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Figure 4.1: NLS using the floating ideal threshold for

one realization of h[n], input Pu

Pa
= −6dB. Circled regions

represent areas where potentially too much signal power
is removed due to the close mapping of the ideal threshold
to the dispersed target pulse.
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(a) (b)

Figure 4.2: Cumulative point-by-point |∆| for all thresholding techniques. The |∆|
is measured from a match-filtered target pulse, and reveals how well NLS-processed
waveforms follow the contour of “pure” data. All thresholds adjusted for optimum
TPR and SPRU.
(a) Average InputPu

Pa
= −6.08dB

(b) Average InputPu

Pa
= −3.15dB

counter-intuitive, Figs. 4.2 through 4.4 reveal that NLS using the MLAT technique,

while outperformed in nearly all metrics, may continue to have promise in imaging

applications. On the surface it appears on average that too much target energy and

not enough clutter energy is removed. The apparent benefit of the MLAT technique

is that these energies seem to be largely removed or maintained in the right places,

which is evident from the lower cumulative error seen in the figures.

In contrast to the experiments in Chapter III, the change in Pu

Pa
now decreases

as power of the clutter return increases for the ideal threshold cases. This time the

change does indeed appear to be indicative of improved performance, as SPRU values

show a decreasing trend and SPRA increases as the clutter becomes stronger.

The applied techniques of single and multiple local average thresholding in uni-

son follow but one trend: as clutter strength decreases, SPRA increases. This ten-

dency makes good sense intuitively, as a weakening clutter response will blend more

readily with the dispersed target response, and therefore be more difficult to remove.
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(a) (b)

Figure 4.3: Cumulative point-by-point |∆| for all thresholding techniques.

(a) Average InputPu

Pa
= −0.10dB

(b) Average InputPu

Pa
= 2.88dB

Figure 4.4: Cumulative point-by-
point |∆| for all thresholding tech-
niques. Average InputPu

Pa
= 5.87dB.
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The results presented make a strong case for the viability of using nonlinear

suppression in RCS measurements. If considering the SPRA and SPRU as simple

percentages as proposed in Chapter II, on average the MLAT technique removed 78%

of clutter power while maintaining 92% of target power. Better still are the single

thresholding technique results. An identical average of 78% clutter power is removed

with 95% target power retention.
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V. Conclusions

This chapter highlights material presented and the subsequent results. Finally,

suggestions for future research are presented which would further demonstrate

the benefit of nonlinear suppression (NLS) in the outdoor measurement facility.

5.1 Summary and Contributions

It is important to realize that in an actual measurement scenario, it is completely

impractical and even nonsensical to apply the ideal threshold. The ideal threshold

is only introduced here as part of performance evaluation. If implemented, the user

needs to collect a single unambiguous pulse for every azimuth of the target measured

to establish threshold values. This is obviously impractical, as it completely eliminates

the need for NLS. The purely unambiguous pulse response is indeed the truth data

that the process is attempting to recover.

On the other hand, NLS using multiple or single local average thresholding shows

considerable promise. Potentially, if complex data is saved for post-processing, a wide

range of input unambiguous to ambiguous power ratios (Pu

Pa
) can be characterized.

Conceivably, optimized threshold scaling and sampling widths for a given Pu

Pa
could be

developed using calibration targets of known RCS, and subsequently applied to future

measurement scenarios. An a priori estimate of the target’s radar cross section (RCS)

is obviously a must in this proposition. This estimate is potentially accomplished

by first taking spot measurements at a low pulse repetition frequency for several key

customer-defined threat sectors, in a calibration stage of sorts. Separately integrating

1000 ambiguous, followed by 1000 unambiguous pulses would mimic the data used

in this thesis, and could be used to select the appropriate optimized thresholding

constants.

NLS is not proposed as the only solution to mitigating long-range clutter at

outdoor RCS measurement facilities. However, it does provide a level of promise

worthy of further investigation.

43



5.2 The Way Ahead

Linear frequency modulated (LFM) waveforms, while lending themselves nicely

to this research, are likely not the best choice for RCS measurements which tend

to be frequency sensitive. Additionally, as eluded to in Chapter I, a continuous

LFM pulse is currently not even in the suite of available waveforms at the National

Radar Test Facility (NRTF). While a stepped LFM (pulse-to-pulse) is available for

increasing frequency, a decreasing step is not. A subsequent round of experiments

using phase-coding techniques such as Gold or simulated annealing-generated codes

would perhaps provide a more realistic, realizable approach for NRTF. In contrast to

LFM, these code families have multiple members which would allow for more than

two channels in the NLS model [1]. This flexibility would allow the user to increase

the PRF which decreases measurement times and ultimately saves dollars.
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