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Abstract 

A set of fast and robust electronic video stabilization algorithms are 

presented in this thesis. The first algorithm is based on a two-dimensional 

feature-based motion estimation technique. The method tracks a small set of 

features and estimates the movement of the camera between consecutive 

frames. An affine motion model is utilized to determine the parameters of 

translation and rotation between images. The determined affine 

transformation is then exploited to compensate for the abrupt temporal 

discontinuities of input image sequences. Also, a Frequency domain 

approach is developed to estimate translations between two consecutive 

frames in a video sequence. Finally, a jitter detection technique has been 

developed to isolate vibration affected subsequences from an image 

sequence. The experimental results of using both simulated and real images 

have revealed the applicability of the proposed techniques. In particular, the 

emphasis has been to develop real time implementable algorithms, suitable 

for unmanned vehicles with severe payload constraints. 
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Fast Video Stabilization Algorithms 

1. I. Introduction 

1.1 Problem Statement 

Assume a camera rigidly mounted on a vehicle in motion. If the 

motion of the vehicle is smooth, so will be the corresponding image 

sequence taken from the camera. In the case of small unmanned aerial 

imaging system, and off road navigating ground vehicles, the onboard 

cameras experience sever jitter and vibration. Consequently, the video 

images acquired from these platforms have to be preprocessed to eliminate 

the jitter induced variations before human analysis. The task at hand is to 

detect the jitter and eliminate its effect. It is composed of two subtasks: First, 

to develop a reliable method to detect in real-time the subsequence affected 

by jitters. Second, to develop a strategy to interpolate the images, without 

sacrificing detail (dismount targets). 

1.2 Research Goal 

 Motion in video images is caused by either the object motion or the 

camera movement. Digital (electronic) image stabilization (DIS/EIS) system 
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endeavor to produce a compensated video sequence so that image motion 

due to the camera’s undesirable vibration or juggles can be removed [1].  

The goal of this research is to introduce a new approach to stabilize image 

sequence. The newly developed algorithm provides a fast and robust 

stabilization system, and alters real-time performance. 

1.3 Applications of DIS 

Modern (contemporary) light weight digital camera, camcorders, 

CCD sensing arrays, and next-generation mobile phone with visual display, 

etc., are principal candidates in need of automatic image stabilization. They 

are prone to inevitable and undesirable camera motion during the image 

capturing process. It would be worthwhile to have a digital image sequence 

stabilization scheme that can further stabilize the image sequence for 

improving the subjective quality of the video sequence obtained. Moreover, 

an image stabilization algorithm is reported to be beneficial to the coding 

efficiency of video signals [6]. It also has been used for the computation of 

egomotion [17, 18], detection and tracking of Independently Moving Objects 

(IMOs)  [20, 21, 22], and video compression [19]. 

The developed algorithm is being implemented for Unmanned Arial 

Vehicle (UAV) surveillance applications. 
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1.4 Organization of the Study 

This thesis is organized into five chapters. The first chapter presents 

the introduction, problem statement, the goal of the research, and finally it 

summarizes the three types of image stabilization methods.  Chapter two 

reviews some related previous works. Chapter three presents fundamental 

concepts in the field of image processing which are necessary to understand 

the methodology used to solve the problem being studied. Chapter four 

explains the methodologies and the techniques used to implement the 

various algorithms. Chapter five documents the data resulted from the 

algorithms test. Chapter six summarizes the research, including limitations 

and areas of future work. 

1.5 Image Stabilization Methods 

There are three types of image stabilizers currently available [23]: 

Digital Image Stabilization (DIS), Optical Image Stabilization (OIS), and 

Mechanical Image Stabilization (MIS). 

1.5.1 Digital Image Stabilization 

Digital Image Stabilization (DIS) systems use electronic processing to 

control image stability. The DIS system starts working once the image hits 

the light-sensing chip, the Charge Coupled Device (CCD). If, through its 
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sensors, the system detects what it thinks is camera vibration, it responds by 

slightly moving the image so that it remains in the same place on the CCD. 

For example, if the camera vibrations to the right, the image moves to the 

left to compensate, thus eliminating the vibration [23].  

There are two ways DIS works to reduce the perceived movement of 

the image. One method increases the size of the image by digitally 

"Zooming" in on the image so that it is larger than the CCD. By making the 

image larger, the system can "pan and scan" within the image to counter the 

movement created by the vibration. Because this system must digitally zoom 

in on the image to slightly increase its size, it decreases the picture 

resolution somewhat. The other method of electronic stabilization uses an 

oversized CCD. The video image covers only about 90 percent of the chip's 

area, giving the system space in which to move the image. When the image 

is stable, the chip centers the image on the CCD. If the camera vibrates to 

the right, the image has the space to roam to the left to compensate for the 

vibration, keeping the subject of the image in exactly the same place on the 

CCD, thus eliminating the vibration.  

Detecting the vibration is key to the effectiveness of the system. DIS 

systems use one of two ways to detect shaky video. Either they detect 

movement within the image as recorded on the CCD or they detect the actual 

movement of the camera. The first method of detection analyzes the changes 



 

5 

between the fields in each image. A specially designed feature of the camera 

stores the odd and even fields of the video frame and look for changes 

between them. If parts of the image change in one field but not the other, it 

indicates that the subject in the field of view is moving but not the 

background. If however, the entire image changes from one field to the next, 

it most likely means there is camera vibration and the camera must correct 

the image. To correct the camera vibration, the camera's electronics detect 

the direction of the movement and shifts the active field so that it meshes 

with the memorized field. A major disadvantage of this system is that if 

there is a large object moving in the frame, it may be interpreted as camera 

vibration and the camera will attempt to stabilize the subject causing a 

blurring of the image and reduction in picture resolution. The camera can 

also use motion sensors to detect camera vibration. Because this method 

senses movement in the camera not the image, the movement of a subject in 

the image cannot fool it. However, it will sometimes react at the beginning 

of an intentional camera movement (such as a pan) and will take a short 

moment to realize that you are moving the camera on purpose. Instead of a 

smooth pan, the image will freeze and then leap into the pan suddenly [23]. 



 

6 

1.5.2 Optical Image Stabilization 

The Optical Image Stabilization (OIS) system, unlike the DIS system, 

manipulates the image before it gets to the CCD. When the lens moves, the 

light rays from the subject are bent relative to the optical axis, resulting in an 

unsteady image because the light rays are deflected. By shifting the IS lens 

group on a plane perpendicular to the optical axis to counter the degree of 

image vibration, the light rays reaching the image plane can be steadied [15]. 

Since image vibration occurs in both horizontal and vertical 

directions, two vibration-detecting sensors for yaw and pitch are used to 

detect the angle and speed of movement. Then the actuator moves the IS 

lens group horizontally and vertically thus counteracting the image vibration 

and maintaining the stable picture. The Shift-IS component is located within 

the lens groups and is most effective for lower frequency movements caused 

by platform vibration or wind effect without increasing the overall size and 

weight of the master lens. Figure 1-1 shows an illustration of this type of 

image stabilization. 
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Figure 1-1: Optical Image Stabilization [15] 

 

1.5.3 Mechanical Image Stabilization 

Mechanical image stabilization involves stabilizing the entire camera, 

not just the image. This type of stabilization uses a device called “Gyros”. 

Gyros consist of a gyroscope with two perpendicular spinning wheels and a 

battery pack. Gyroscopes are motion sensors. When the gyroscopes sense 

movement, a signal is sent to the motors to move the wheels to maintain 
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stability. The gyro attaches to the camera’s tripod socket and acts like an 

"invisible tripod" [13]. 

 

Figure 1-2: Gyroscopic Stabilizer [13] 

Figure 1-2 shows a picture of a gyroscopic stabilizer. The vibration 

gyro was improved by employing a tuning fork structure and a vibration 

amplitude feedback control [33]. They are heavy, consume more power, and 

are not suitable for energy sensitive and payload constrained imaging 

applications. 
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2. II. Literature Review  

Many methods for video stabilization have been reported over the past 

few years.  Most proposed methods compensate for all motion [2, 18, 20, 24, 

25, 26], producing a sequence where the background remains motionless. 

Other techniques only subtract the 3D rotation of the camera [27, 28, 29] 

generating a de-rotated sequence. However, these methods can be 

distinguished by the models adopted to estimate the camera motion [9]. 

Several two-dimensional and three-dimensional stabilization schemes are 

described in [24]. For 2D models, in general all the estimated affine motion 

parameters are compensated for, i.e., gross motion is removed from the input 

sequence [20, 25, and 21].  Stabilization in 3D is achieved by re-rotating the 

frames, generating a translation-only sequence, or a sequence containing 

translation and low-frequency rotation. Yao et al. [29] Compensate for 3D 

rotation by tracking multiple visual cues, like distant points and horizon 

lines, using an extended Kalman filter for the estimation of the 3D motion 

parameters of interest. Both kinematics and kinetic models suitable for 

determining the smooth and oscillatory rotational motion components are 

considered, so that smoothed rotation can be also obtained. A vehicle model 

is also used in [27] to filter the high-frequency components of the rotational 
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parameters.  A flow-based motion estimator applied to points on the horizon 

(distant points) is used to estimate the rotational parameters, and the solution 

is recursively refined to obtain smoothed motion. Two-dimensional models 

are used by [17, 18, 19, and 22]. Another method in [19] seeks to use linear 

segments from the input images and align them with the absolute vertical 

direction, which can be provided by an inertial sensor, eliminating the need 

to estimate the rotation around the optical axis. Stabilization is achieved by 

compensating for 2D linear translation, which minimizes the disparity 

between two successive frames.  

Fast implementations of 2D stabilization algorithms are presented in 

[25, 20, and 21]. Hansen et al. [25] describe the implementation of an image 

stabilization system based on a mosaic-based registration technique. Burt et 

al. [20] describe a system which uses a multi-resolution, iterative process 

that estimates affine motion parameters between levels of Laplacian pyramid 

images. From coarse to fine levels, the optical flow of local patches of the 

image is computed using a cross-correlation scheme. The motion parameters 

are then computed by fitting an affine motion model to the flow [9]. 

Some studies follow frequency domain algorithms to estimate motion 

between two images [30, 31, and 32]. The Fourier transform properties of 

relocated images are used to estimate rotation and translation. Frequency 

domain methods for estimating shifts in the image plane are based on the 
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fact that a shift in spatial domain can be expressed as a phase shift in 

frequency domain. Two shifted images differ only by a linear phase 

difference [30, 31]. These methods can be extended to include (planar) 

rotation and scale using polar coordinates [32] with the advantage that shift, 

rotation and scale can be estimated separately. The main limitation of 

frequency domain methods is that they are restricted to global shifts and 

rotations in the image plane, and scale [11]. If the scene is composed of 

multiple, independently moving objects, then, the method will not provide 

adequate performance. 

A fast and robust implementation of a digital image stabilization 

algorithm presented in this thesis is based on the 2D model described in [1]. 

The developed algorithm is similar to the other algorithms based on 

the 2D rigid motion model [29]. But instead of using extensive feature-

tracking, our parametric motion model is obtained by tracking only a small 

set of features to characterize the underlying motion vectors and produce 

equally good performance. 

 The algorithm is applied to translational and rotational camera motion 

separately. 
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3.    III. Background 

This chapter presents basic ideas behind image stabilization, and 

introduce various analytical tools used in literature for building a simple 

vibration compensation systems. In particular, we investigated the problem 

using three approaches: (1) levelsets based shape analysis, (2) feature points 

based jitter detection and, (3) Fourier transform based approach.   

3.1  Image Sampling 

Before an image can be manipulated using various image processing 

techniques, it must be spatially sampled. The process of sampling an image 

is the process of applying a two-dimensional grid to a spatially continuous 

image to discretize it into a two-dimensional array of elements. 

Figure 3-1 shows a sampled image containing a total of NM sampled 

elements using a rectangular grid. Any type of sampling grid can be used, 

but the rectangular grid is by far the most common because of its 

relationship to two-dimensional arrays. The fundamental unit of a sampled 

image is a picture element and is typically referred to as a pixel. The value 

of each pixel is equal to the average intensity of the continuous spatial image 

covered by that pixel. 
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Figure 3-1: Spatially sampled image containing  N x M picture elements 

The result of sampling produces a two-dimensional array of numbers 

that are directly proportional to the intensity levels of the continuous spatial 

image.  Real-time video data is usually digitized over a 320x240, 640x480, 
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768x525, or 1600x1200 grid according to the context. Many of these size-

resolution combinations were chosen to be compatible with the spatial size 

of NTSC video and to meet the storage size requirements of digital memory. 

Image size that are powers of two exist because of the requirements for 

computing the Fast Fourier Transform (FFT), to be considered later. 

 

3.2 Quantization 

Besides spatial sampling, the intensity level at each pixel must also be 

digitized into a finite set of numbers. The process of digitization converts an 

analog intensity value into a set of digital numbers that represent the 

intensity levels in the image. The quantity of numbers used to represent the 

intensities in a continuous tone image determines the final quality of the 

digitization process. This set of numbers is referred as the gray levels or 

grayscales of an image. 

Since an image is the spatial distribution of light energy, the numbers 

assigned to gray levels of a digitized image can take only positive values. 

Figure 3-2 (a) gives a 4x4 sub-image taken from an image. Figure 3-2 (b) 

gives the corresponding grayscale, with the value of 0 assigned to black and 

each grayscale value increasing in intensity until the value of 255 is reached, 

corresponding to white. 
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Figure 3-2: An example of  (a) a sampled and digitized 4x4 sub-image  and (b) its 

corresponding grayscale 

3.3 Converting Gray-scale Images to Binary Image Using 
Thresholding 

 
Thresholding is an image processing technique for converting a 

grayscale or color image to a binary image based upon a thresholding value. 

If a pixel in the image has an intensity value less than the threshold value k 

(i.e., f(x,y)<k), the corresponding pixel in the in the resulting image is set to 

0 (black). Otherwise, if the pixel intensity value is greater or equal to the 



 

16 

threshold intensity k (i.e., f(x,y)≥k), the resulting pixel is set to 255 (white). 

Thus, it is used to create  a binary image, or an image with only 2 colors, 

black (0) and white (255). This can be formulated as follows: 

0 ( , )
( , )

255 ( , )
f x y k

f x y
f x y k

<⎧
= ⎨ ≥⎩

 ( 3-1) 

The last equation can be generalized as follows: 

( , )
( , )

( , )
a

b

G f x y k
f x y

G f x y k
<⎧

= ⎨ ≥⎩
 ( 3-2) 

where, Ga and Gb are the desired two gray levels in the threshold image. 

The process of thresholding as described by equation 8 reduces a 

multilevel image to a two gray-level image containing gray levels Ga and Gb. 

Equation ( 3-2) can be expanded to include more than one threshold value as 

follows: 

1

1 2

2 max

       0 ( , )
( , )         ( , )

            ( , )

a

b

c

G f x y k
f x y G k f x y k

G k f x y G

≤ <⎧
⎪= ≤ <⎨
⎪ ≤ <⎩

 ( 3-3) 

where, Gmax is the maximum allowable gray level of the image f(x,y) (255 in 

case of 8-bit gray-scaled image). And k1, and k2 are threshold values. 
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3.4 Histogram 

The brightness characteristic of an image can be concisely described 

with a tool known as the brightness histogram. The brightness histogram 

describes the frequency distribution of the gray levels of pixels within a 

digital image. It provides a graphical representation of how many pixels 

within an image fall into a given image. 

A histogram appears as a graph with “brightness” on the horizontal 

axis from 0 to 255 (for an 8-bit gray scale) and “number of pixels” on the 

vertical axis.  To find the number of pixels having a particular brightness 

within an image, we simply look up the brightness on the horizontal axis, 

follow the bar graph up, and read off the number of pixels on the vertical 

axis. Because all pixels must have some brightness value defining them, the 

number of pixels in each brightness column adds up to the total number of 

pixels in the image.  

Let’s assume that an image has been digitized and sampled into N 

pixels, each of which has been quantized into n levels in the range d0 ,d1 ,… , 

dn-1. Figure 3-3 shows the histogram of this image. 
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Figure 3-3: Image histogram 

The function h(dk)= The number of pixels with a gray level equals dk 

and is written as : 

h(dk)=Nk ( 3-4) 

where, dk is the gray  level  and  Nk  is  the number of pixels with a  gray 

level = dk. 

3.5 Cumulative Histogram 

The cumulative histogram is another variation of the histogram in 

which the vertical axis gives not just the number of the pixels at that gray 

level, but rather gives the number of the pixels at that level plus the number 

of pixels with smaller values of gray level. 

Using the same assumptions as in the last section, the cumulative 

histogram of the image is shown in Figure 3-4. 
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Figure 3-4: Cumulative histogram 

 

             The function H(dk) =  The number of pixels with a gray level 

equal to or less than dk. Hence, 

0 0

( ) ( )
k k

k i i

i i

H d h d N
= =

= =∑ ∑  ( 3-5) 

0

( )
k

k i

i

H d N
=

=∑  ( 3-6) 

 

Both histogram and cumulative histogram are step functions. 

The cumulative histogram H(dk) increases from 0 to N, being the 

number of pixels in the image, since 
1

0

n

i

i

N N
−

=

=∑ . 
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3.6 Invariant Moments 

In general, the moments of a function are commonly used in 

probability theory. However, several desirable properties that can be derived 

from moments are also applicable to image analysis. 

 

Definition:  The set of moments of a bounded function f(x,y) of 

two variables is defined by: 

( , )j k
jkM x y f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫  ( 3-7) 

where, j and k take on all nonnegative integer values. 

As j and k take on all nonnegative integer values, they generate an 

infinite set of moments. Furthermore, this set is sufficient to specify the 

function f(x,y) completely. In other words, the set {Mjk} is unique for the 

function f(x,y), and only f(x,y) has that particular set of moments. 

The parameter j+k is called the order of the moment. There is only 

one zero-order moment, 

00 ( , )M f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫  ( 3-8) 
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There are two first-order moments and correspondingly more 

moments of higher orders. 

The coordinates of the center of gravity of an object are: 

10

00

,Mx
M

=  ( 3-9) 

              
01

00

My
M

=  ( 3-10) 

where, 

10 ( , )M x f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫  ( 3-12) 

01 ( , )M y f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫
 ( 3-13) 

 

3.7 Spatial Moments of Binary Images and Level Sets 

The spatial moments of an object in an image are statistical shape 

measures that give statistical measures related to an object’s characteristics. 

00 ( , )M f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫  
( 3-11) 
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The zero-order spatial moment is computed as the sum of the pixel 

brightness values in an image. In the case of binary image, this is simply the 

number of pixels in the object, because every object pixel is equal to 1 

(white). Therefore, the zero order spatial moment of a binary object is its 

area. For a gray-scaled image, an object’s zero-order spatial moment is the 

sum of its pixel brightness. 

The first order spatial moments of an object contain two independent 

components x and y. They are the  x and  y  sums of the pixels brightness in 

the object, each multiplied by its respective x or y coordinate location in the 

image.  

In the case of a binary image, the first-order x spatial moment is just 

the sum of the x coordinates of the object’s pixels, because every object 

pixel is equal to 1 (white). Likewise, the y spatial moment is the sum of the 

y coordinate of the object’s pixels.  For a gray-scaled image, an object’s first 

order spatial moments are as defined above. The first-order spatial moments 

of an object represent the object’s mass and how it is spatially distributed. 

The two most common image object measurements that use spatial 

moments are object area and center of mass (a.k.a centroid). As stated 

above, an object’s area is computed as it’s zero-order spatial moment. An 

object’s center of mass can be computed as the first-order spatial moments 

(x and y) divided by the zero order moment, or the object area. 
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There are two forms of the center of mass, one that considers pixels to 

have uniform weight, as in a binary image, and one that weights pixels based 

on their brightness values.  The second form considers pixels that are black 

to have a weight = 0, those that are white to have a weight = 255, and pixels 

with brightness in between to have a weight corresponding to their 

respective gray-levels. 

The definitions for the center of mass measures are as follows: 

 

Brightness-Weighted Center of Mass: 

The balance point (x,y) of the object where there is equal brightness 

above, below, left, and right. If we think of the pixels in an object as having 

a weighted dependent upon their brightness, then the brightness weighted 

center of mass is the point where the object will perfectly balance on the tip 

of a point, as shown in Figure 3-5. 
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Center of mass

 

Figure 3-5: Center of mass of a gray-scale image 

  

 

x
Sum of objects x-pixel coordinates  pixel brightness Center of Mass  =  

Number of pixels in object
×

y
Sum of objects y-pixel coordinates  pixel brightness Center of Mass  =  

Number of pixels in object
×

 

For a binary image, the pixel brightness will be equal to 1. So, for a 

binary image: 

x
Sum of objects x-pixel coordinates  Center of Mass  =  

Number of pixels in object
 

y
Sum of objects y-pixel coordinates  Center of Mass  =  

Number of pixels in object  

Figure 3-6 shows the center of mass for a binary object. 
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Figure 3-6: Center of mass of a binary image 

 

For an NxM gray-scaled image, equation ( 3-7) can be changed to 

discrete version as follows: 

1 1

0 0

( , )
M N

j k
jk

y x

M x y f x y
− −

= =

=∑∑  ( 3-14) 

And for an NxM binary image, equation ( 3-7)  reduces to: 

1 1

0 0

( ( , ) 1)
M N

j k
jk

y x

M x y f x yδ
− −

= =

= −∑∑  ( 3-15) 

Equation ( 3-8)  can also be changed to the  following: 

1 1

00

0 0

( , )
M N

y x

M f x y
− −

= =

=∑∑  
( 3-16) 

Likewise, equation ( 3-9) can be changed as follows: 
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1 1

10

0 0

( , )
M N

y x

M xf x y
− −

= =

=∑∑  ( 3-17) 

And, equation ( 3-10)  can be changed as follows: 

1 1

01

0 0

( , )
M N

y x

M yf x y
− −

= =

=∑∑  ( 3-18) 

Finally, the center of gravity of an image will be: 

1 1

0 010
1 1

00

0 0

( , )

( , )

M N

y x
M N

y x

xf x y
Mx
M

f x y

− −

= =
− −

= =

= =
∑∑
∑∑

 
( 3-19) 

1 1

0 001
1 1

00

0 0

( , )

( , )

M N

y x
M N

y x

yf x y
My
M

f x y

− −

= =
− −

= =

= =
∑∑
∑∑

 ( 3-20) 

We can also compute higher-order spatial moments. For instance, the 

second-order moments produce object orientation information. Spatial 

moments of an order that is greater than two produce abstract information 

that is difficult to tie specifically to physical object characteristics.  
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3.8 Motion Analysis 

3.8.1 Image Translation 

The basic model of disparity between two images is translation. 

Translation is used to move regions of an image intact to other locations 

within the image. Typically, it indicates that an object in the foreground has 

moved. If the translation operations moves a region outside the area defined 

by the original image, then a new image must be created that encompasses 

the original image plus the translated region. Image translation is defined as 

follows: 

new old

new old

x x x
y y y
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

+
+  ( 3-21) 

where, xold, yold are the pixel coordinates of an arbitrary point in the region to 

be translated; and, xnew, ynew are the coordinates of its location after of the 

translation is complete. The values Δx, and Δy define the amount of 

translation in the x and y directions, respectively. For each pixel within a 

region to be translated, Equation ( 3-21) is applied to produce a new set of 

translated coordinates. In translating a region, the original image is first 

copied to the output image and then the region to be translated is moved to 

its new position within the image using Equation ( 3-21). If the pixels within 

the original region to be translated are left unchanged, the translation process 
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becomes equivalent to an image copy. If, on the other hand, the original 

region to be translated is filled with a constant gray level (erased), the 

translation operation becomes equivalent to a move operation. Figure 3-7  

shows an example of a translation. 

 

 

Figure 3-7: Translation example 

Translation by integer pixel values is straight forward. However, 

translation by subpixels must be realized using bilinear interpolation. 
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3.8.2 Image Rotation 

Rotation is one of the fundamental models of linear spatial 

transformations between two images. It is characterized by two parameters: 

center of rotation, and the rotation angle. 

Consider a counter-clockwise rotation of the camera. The net effect is 

a clockwise rotation of all pixels to a new location. 

cos sin
sin cos

new old

new old

x x
y y

θ θ
θ θ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

( 3-22) 

 

where, θ is the angle of rotation. 

Further analysis will indicate that: 

cos sin
sin cos

new old

new old

x x
y y

θ θ
θ θ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 
( 3-23) 

 

where the quantity x  indicates an average value. 

Then, 

cos sin
sin cos

new new old old

new new old old

x x x x
y y y y

θ θ
θ θ

− −−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

( 3-24) 

 

It is often convenient and more desirable to analyze and characterize the 

motion of individual objects in the scene, including their observed 

rotation(s).  The expression (3-24) above facilitates such a mechanism. 
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From (3-22) and (3-2) we conclude that: 

cos sin
sin cos

new old old new old

new old old new old

x x x x x
y y y y y

θ θ
θ θ

− −−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( 3-25) 

 

 

(0,0)

A

B

(a) 
 

(b) 

(0,0)

A’

B

(c) 

 

(a) (b)
        Camera rotation centered at (0,0)

(a) (c)
        Object "A" has rotated and then translated to A'.

↔

↔

Figure 3-8 Rotation Example 
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Composite motion comprised of both geometrical translation and 

rotation of a region within an image about its geometrical center Mx, My, is 

expressed as: 

cos sin
sin cos

x xnew old

y ynew old old new

M Mx x
M My y

θ θ
θ θ

⎧ ⎫− ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎪ ⎪= − +⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 ( 3-26) 

 

The geometrical center (centroid) of the region as we have seen before 

is given by: 

1

1 N

x i
i

M x
N =

= ∑  ( 3-27) 

and 

1

1 N

y i
i

M y
N =

= ∑  ( 3-28) 

where, xi and yi are the coordinates for each pixel in the region to be 

translated and the parameter N is defined as the number of pixels within the 

region being translated.  

Equation ( 3-26) can also be used to rotate an entire image about the 

particular point xo, yo by setting Mx= xo, My= yo. Once the rotation is 

completed, the image is then translated back to its original position xo, yo. 
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3.8.3 Image Scaling 

Another common type of geometrical operation is that of scaling. 

Scaling provides a means of reducing or enlarging the size of an image. 

Desired regions within an image can magnified to spatially enlarge features 

that would otherwise be difficult to observe. Geometrical image scaling is 

defined mathematically in equation ( 3-29) 

0
0

xnew old

ynew old

x x
y y

σ
σ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 ( 3-29) 

To scale a total image, xold, yold are defined over the coordinates of the 

entire image, and for region scaling xold, yold are defined by the pixels within 

the region to be scaled. For σx and σy > 1, the output image will be an 

enlarged version of the input image, while for σx and σy < 1 the scaled output 

image is a reduced version of the input image. For either σx or σy negative, 

the image is rotated about the axis of the negative scaling parameter. For 

example if σx=-3, σy=1, the image is increased by three and is flipped about 

the x axis. Geometric scaling in particular requires the use of interpolation 

prior to scaling an image. Interpolation will be discussed later in this 

chapter.  
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3.8.4 Image Skewing 

The next basic model of shape change or disparity is skewing 

(deformation) or shear change. Figure 3-9 shows an image of a rectangle that 

has been skewed to the right in the x direction by an angle of α. Figure 3-10 

shows the same image skewed to the lower direction of the y-axis by an 

angle of α.  

The skewing geometrical transformation is defined by 

cos sin
sin cos

new old

new old

x x
y y

α α
α α

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 ( 3-30) 

where, α is the deformation angle. 

x

y

0

0

N-1

M-1

x

y

0

0

N-1

M-1

α

 

Figure 3-9: Image deformation to the right in the x-axis direction 
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x

y

0

M-1

x

y

0

0

N-1

M-1

α

0 N-1

 

Figure 3-10: Image deformation to the lower direction of y-axis 

Suppose an ellipse shaped disc were to be rotated by an axis parallel 

to its surface, whose orientation is not parallel to the major or minor axes, 

the resulting new contour will exhibit a shape conducive to be analyzed by 

this model.  
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3.9 Image Interpolation 

A large number of geometric transformations, such as translation, 

rotation, and shearing will map pixels to a new position that is no longer an 

integer and so not on the original sampling grid. Figure 3-11 illustrates that a 

rotation of the image requires the evaluation of intensity at points that were 

not on the original grid. 

 

Figure 3-11: Illustration that a rotation of the image requires interpolation 

 

Interpolation is a process of generating a value of a pixel based on its 

neighbors. Neighboring pixels contribute a certain weight to the value of the 

pixel being interpolated. This weight is often inversely proportional to the 

distance at which the neighbor is located.  
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There are several different types of interpolation methods. Nearest 

neighbor interpolation is the simplest method and basically makes the pixels 

bigger. The value of a pixel in the new image is the value of the nearest pixel 

of the original image.  The other interpolation methods also include bilinear 

interpolation and bicubic interpolation. The interpolation method that is used 

in our DIS is bilinear interpolation. Bilinear interpolation determines the 

value of a new pixel based on a weighted average of the 4 pixels in the 

nearest 2x2 neighborhood of the pixel in the original image. Figure 3-12 

shows four neighboring pixels surrounding the pixel (x,y) to be interpolated. 

 

 

Figure 3-12: Bilinear Interpolation 
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In Figure 3-12, we assumed u and v are the integer parts of x and y, 

respectively, bilinear interpolation is defined by 

, 1, , 1 1, 1( , ) ( , ) ( 1, ) ( , 1) ( 1, 1)u v u v u v u vf x y W f u v W f u v W f u v W f u v+ + + += + + + + + + +

( 3-31) 

where, 

, ( 1 )( 1 )u vW u x v y= + − + −  

1, ( )( 1 )u vW x u v y+ = − + −  

, 1 ( 1 )( )u vW u x y v+ = + − −  

1, 1 ( )( )u vW x u y v+ + = − −  

The bilinear interpolation has an anti-aliasing effect and therefore 

produces relatively smooth edges. 



 

38 

4.    IV. Methodology 

A General method for DIS includes two modules: motion estimation 

module and motion compensation module. The motion estimation module 

calculates global motion vector of input frame relative to reference frame. 

Then, the motion compensation module processes input frame according to 

motion vector and stabilizes observed images. Figure 4-1 shows a block 

diagram of such a system.  

 

Figure 4-1: DIS Model 

With the advantage of low energy consumption, light weight and 

compact size, DIS technique offers excellent performance in the case of low 

frequency and small amplitude system vibrations. 

4.1 Motion Estimation Module 

The DIS proposed in this thesis is based on the following assumptions 

that: each frame in the given image sequence is distinct, and the image 

instability is the result of translation, rotation, skewing and scaling between 

frames.  
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     Through analyzing image frames, the motion vectors (including 

amounts of translation, rotation and scaling), which are the basis of 

compensation processing, can be calculated. Motion estimation between 

frames is usually based on a rigid motion model as follows: 

0 cos sin cos sin
0 sin cos sin cos

xnew old

ynew old

x x x
y y y

σ α α θ θ
σ α α θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

+
+

( 4-1) 

The above given model is explained in the following text. In the 

formula, xnew, xold are horizontal coordinates of corresponding pixels in input 

frame and reference frame; ynew, yold are vertical coordinates of 

corresponding pixels in input frame and reference frame; Δx, Δy are 

translation amounts between two frames; θ and α are the rotation and 

deformation angles between two frames respectively. The two factors σx, σy 

are the scaling factors. 

Equation ( 4-1) can be rewritten as follows: 

new old

new old

x x y
A

y y y
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

+
+  ( 4-2) 

where, A is a sequence of rotation, scaling and angular deformation. 

And it can be decomposed in the form: 
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0 cos sin cos sin
0 sin cos sin cos

S D R

x

y

A A A A
σ α α θ θ

σ α α θ θ

=

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 

Matrix A is a 4x4 matrix. So, it is in the form: 

11 12

21 22

a a
A

a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Hence, 

11 12

21 22

0 cos sin cos sin
0 sin cos sin cos

x

y

a a
a a

σ α α θ θ
σ α α θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 

0 cos( ) sin( )
0 sin( ) cos( )

x

y

σ α θ α θ
σ α θ α θ

⎡ ⎤ − −⎡ ⎤
= ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦

 

cos( ) sin( )
sin( ) cos( )

x x

y y

σ α θ σ α θ
σ α θ σ α θ

− −⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

( 4-3) 

By solving Equation ( 4-3),  

2 2
11 12x a aσ = + ( 4-4) 

2 2
21 22y a aσ = +          ( 4-5)   

12 11( ) atan2( , )a aα θ− = ( 4-6) 

21 22( ) atan2( , )a aα θ+ = ( 4-7) 
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To find the values of α and θ, we need to solve Equation ( 4-6) and 

Equation ( 4-7) simultaneously,  

12 11 21 222 atan2( , ) atan2( , )a a a aα = +  

             12 11 21 22atan2( , ) atan2( , )
2

a a a aα +
=  ( 4-8) 

By substituting the value of α into Equation ( 4-7),  

12 11 21 22atan2( , ) atan2( , )
2

a a a aα −
=  ( 4-9) 

Now, we have six variables to estimate, these values are show in Table 4-1. 

Table 4-1: Motion vectors variables 

Motion Vectors Description 

σx The scaling factor in x axis 

σy The scaling factor in y axis 

θ Rotation angle 

α Deformation angle 

Δx Translation in x axis 

Δy Translation in y axis 

 

Our aim is to estimate the elements of A and the translation vector 

(Δx,Δy) from two given images. Since  σx, σy, α, and θ are functions of the 

elements of A, then it is sufficient to find the value of A to get the values of 
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σx, σy, α, and θ. Because we have six unknowns, then we need six equations 

to be solved simultaneously.  

Assume nx is a feature point in an image at time=t where n is the 

image number. And assume nx ′  is the same feature point in the same image 

at time=t+1 where n is the image number. We have agreed before in 

Equation ( 3-30) that: 

n nx Ax C′ = +  (4-10) 

where, 
n

n
n

x
  x =

y
′⎡ ⎤

′ ⎢ ⎥′⎣ ⎦
 , 

n
n

n

x
  x =

y
⎡ ⎤
⎢ ⎥
⎣ ⎦

   and   
x

C
y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

+
+  

In order to estimate the value of A and C, we need 6 images; that is 

three images at time=t and the same 3 images but at time=t+1. This can be 

written mathematically as follows 

1 1x Ax C′ = +  

2 2x Ax C′ = +  

3 3x Ax C′ = +  

These equations can also be expanded to the following equations: 

1 11 1 12 1

1 21 1 22 1

x a x a y x
y a x a y y
′ = + +
′ = + +

+
+  
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2 11 2 12 2

2 21 2 22 2

x a x a y x
y a x a y y
′ = + +
′ = + +

+
+  

3 11 3 12 3

3 21 3 22 3

x a x a y x
y a x a y y
′ = + +
′ = + +

+
+  

These equations can be solved simultaneously to find the values of a11, a12, 

a21, a22, Δx and Δy. The above computation can be expressed in the form of 

matrix algebra as follows: 

'
1 1 111

'
2 2 122

'
3 33

'
1 1 211

'
2 2 222

'
3 33

1
1
1

1
1
1

x y ax
x y ax
x y xx

x y ay
x y ay
x y yy

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

+

+

 (4-11) 

Which is of the form: 

p Pa=  

The above equation reveals several important facts. First, a minimum of 

three points must be known in each image. Second, these points should not 

be collinear. If they are collinear, then P can not be inverted. When more 

than three points are known in the images, then standard pseudo inverse 

computation computes an optimal estimate of a  such that: 

1( )t ta P P P p−=  
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4.1.1 Image Segmentation 

Segmentation is the process of partitioning an image into regions or 

subimages. The region or the subimage here is defined as a group of pixels 

with similar properties. These properties include same graylevel or textures 

… etc. We will use graylevel as the property to distinguish between the 

subimages. The simplest representation of a segment is a binary valued 

image, where each pixel is assigned a value ‘1’ if it is in the region, and a ‘0’ 

otherwise. 

Segmented images must satisfy the following two properties: 

1. Distinctness : 

No pixel is shared by two regions. That is 

 
             for  ,    1,  ... ,  ;

                                         
i jR R i j k

i j

= ∅ =

≠

∩
     

where, R is a subimage and k is the maximum number of subimages 

intended to create.    

2. Completeness: 

All pixels in the image must be assigned to one of the k regions.     

That is 

1 2 ...               
                                       

kR R R I=∪ ∪
 

where, I is the original image intended to be segmented. 
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The first property states that regions are disjoint sets and the second 

property states that the entire image I must be covered by the regions Ri , 

i=1, 2, …, k. 

One of the simplest methods to segment an image is to apply 

thresholding. Thresholding is a method for image segmentation. The 

cumulative histogram of the image is used to determine the proper value of 

the threshold. The general equation to create some binary images from a 

gray-scaled image can be written as follows: 

1     ( , )
0      ( , )

n
n

n

f x y k
B

f x y k
<⎧

= ⎨ ≥⎩
 (4-12) 

where, Bn is a binary image, kn is the threshold value used in the 

segmentation to create this binary image and f(x,y) is a gray-scaled image. 

One could iteratively try to determine the best threshold kn by a systematic 

trial and error process. Also, well established decision techniques can be 

applied to estimate an optimal threshold kn, when the parametric model of 

the underlying distribution (histogram) is known. 

In our work, we have chosen a level-sets based approach to selecting up to 

six thresholds to divide image into six binary images. This approach is 

explained in the following text.  

In order to determine the proper value of kn , the image will be divided into 

regions according to the gray levels. The cumulative histogram is a useful 
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tool to determine the threshold values needed in the segmentation. To find 

the best threshold values, the y-axis of the cumulative histogram which 

represents the number of pixels should be divided into the same number of 

subimages needed to create. In our DIS algorithm, the number of binary 

subimages is six. So, the y-axis should be divided into six portions.  

Assume we have a cumulative histogram of an image plotted in 

Figure 4-2. 

 

 

Figure 4-2: Cumulative Histogtam of an image 
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In this example, six binary images can be created by using a modified 

version of Equation (4-12) as follows: 

1

1

1       ( , )
0       ( , )

n n
n

n n

k f x y k
B

k f x y k
−

−

< ≤⎧
= ⎨ < ≤⎩

 

The threshold values (k1, k2, k3, k4, k5, and k6) can be calculated as follows: 

1( )n nk H D−=  

where, 

n
n ND

m
×

=  

where, n is the threshold number and it can take values from 1 to the number 

of binary subimages, at least six in this context. N is the total number of 

pixels in the image. And m is the desired number of binary subimages.  

The segmentation process discussed earlier will result in 6 binary 

subimages. All these subimages will be used to estimate the value of motion 

vectors (σx, σy, α, θ, Δx, and Δy). Among the six subimages, each time we 

will use 3 subimages to estimate the motion vectors. So, the resultant 

number of motion vectors will be: 

6 6! 20
3 (6 3)! 3!
⎛ ⎞

= =⎜ ⎟ − ×⎝ ⎠
 

Hence, we will have 20 motion vectors. A question arises here, which one of 

these motion vectors should be used?  
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To determine the best motion vector, we are using a statistical tool 

called “clustering”. To prepare our data to be clustered and then ready for 

analysis, the θ and α values should be plotted in x-axis and y-axis 

respectively. Then, a clustering technique will be used to analyze these data. 

The following section explains in detail the idea of “clustering” and why we 

need it here. 

4.1.2 Data Clustering  

Clustering is a classical topic in statistical data analysis and machine 

learning. There is much research work discussing clustering methods [5]. It 

is defined as the process of grouping a set of objects into classes of similar 

objects. We can show this with a simple graphical example as in Figure 4-3. 

 

Figure 4-3: Data Clustering example [34]. 
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The most well known similarity measures are based on distances, such 

as Euclidean distance and Manhattan distance. There are many algorithms 

can be used to implement data clustering. In this thesis, a graph theoretic 

algorithm will be used to do the job. Graph theoretic algorithm for clustering 

is a technique based on modified Kruskal’s algorithm. The purpose is to take 

the advantage of the simplicity of tree structure, which can facilitate efficient 

implementations of much more sophisticated clustering algorithms. There 

are many variations in the family of graph theoretic algorithms, such as 

Minimal Spanning Tree (MST) based method, Cut algorithm, and 

Normalized Cut/Spectral methods. In general, the idea of graph theoretic 

algorithms is the following: firstly, it constructs a weighted graph upon the 

points in the high-dimensional space, with each point being a node, we will 

use (θ,α) as nodes and the distance value between any two nodes being the 

weight of the edge connecting the two nodes. Then, it decomposes the graph 

into connected components in some way, and calls those components as 

clusters or forests. We mainly focus on an MST-based clustering algorithm 

using Kruskal’s algorithm. Kruskal’s algorithm is used to create minimum 

spanning tree and it works as follows: 

1. Consider the edges from shortest to longest. 

2. Take the first (smallest) edge and then consider the next edge. 

3. Take an edge if it does not make a cycle. 
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4. If you still have edges then go to step 1. 

In our case here, we will not continue to create a full minimum 

spanning tree because this is not our goal. Instead, we will stop whenever we 

have an optimum cluster which satisfies our conditions. The conditions we 

set to be satisfied are two: 

a. The cluster (forest) should contain all the subimages. 

b. The distance between any two nodes in the cluster should not exceed 

10% of the largest distance between the nodes. 

Eventually, we will get a cluster with some nodes. Assume F is the 

chosen cluster, then F={n1, n2, …, nn}, where, ni is a node in (θ,α) graph. 

We know that every node here is calculated using 3 subimages as we 

have seen earlier. 

Because every node is constructed by three subimages, then assume: 

  n1  = (p1, q1, r1) 

  n2  = (p2, q2, r2) 

  … 

  nn  = (pn, qn, rn) 

where,  pi, qi and ri, are subimages. 

For every node ni, the size of the subimage with the minimum size 

(w) will be used to calculate the final motion vectors as follows: 
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where, 

1...
min( ( ), ( ), ( ))i i i ii n

w size p size q size r
=

=  
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At the end of this phase of the DIS algorithm, we have the 

estimated motion vectors (σx, σy, α, θ, Δx, and Δy) which are necessary in 

the next phase which is “Motion Compensation”. 
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4.2 Motion Compensation Module 

The result of the motion estimation process described in the last 

section is capable of computing the motion vectors between two frames. The 

objective of motion compensation is to keep some kind of history of the 

motion estimates in order to create a stabilized sequence. We have seen that 

the DIS proposed is based on a hypothesis that the image instability in image 

sequence is the result of translation, rotation, skewing and scaling between 

frames. So, by knowing these motion vectors which are estimated in the last 

section, an image can be constructed. 

An image can be constructed using the hypothesis in Equation (4-10): 

n nx Ax C′ = +  

where, A as calculated in the last section: 

ˆ ˆˆ ˆˆ ˆcos( ) sin( )
ˆ ˆˆ ˆˆ ˆsin( ) cos( )

x x

y y

σ α θ σ α θ

σ α θ σ α θ

⎡ ⎤− −
= ⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 

and  

ˆ
ˆ
x

C
y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

+
+  

As we know already, pixels of an image occupy integer coordinates. 

We can note from Equation (4-10) that the destination pixels may lie 
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between the integer coordinates. So, in order to create an image from these 

pixels, destination pixels are interpolated at the integer coordinates. 

4.3 Frequency Domain Approach To Estimate Image Translation 

This section introduced the Fourier transform based approach to 

estimate image translation between two images. 

4.3.1 Introduction 

So far in this thesis, we have considered only one kind of image 

representation. For the most part, the images have recorded brightness as a 

function of position. In practice, there are many different ways in which 

image data can be presented. These changes of representation are useful to 

analyze certain characteristics of the images more efficiently. Some kinds of 

transformation produce representations which, although different from the 

original data, are completely equivalent to it in terms of the information 

contained. These so-called domain transforms, of which the Fourier 

transform is by far the most important, allow images to be treated in ways 

entirely different from those used on the original data. 
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4.3.2 Transforming Domain 

Domain transforms provide alternative ways of describing an image. 

Instead of recording brightness as a function of position, we can choose a 

completely different presentation of the image.  

In Fourier transform, the image is stored as a set of spatial frequency 

values together with their associated amplitudes and phase. The point is that 

instead of brightness as a function of position, the Fourier representation is  

a complex valued function of spatial frequency. In the frequency domain, 

changes in image position produce a noticeable changes in the phase of each 

spectral component. The phase change can be quantitively measured, and 

used to characterize the motion. 

4.3.3 Fourier Transform of an Image 

As we are only concerned with digital images, we will use the 

Discrete Fourier Transform (DFT). The DFT is the Fourier Transform 

variation used in digital processing.  

The Fourier transform of a M x N image is shown mathematically as: 

π
π θ π

⎛ ⎞− − − +⎜ ⎟
⎝ ⎠

= =

= − < ≤∑∑
1 1 2

0 0
( , ) ( , ) ,

ux vyM N j
M N

x y
H u v h u v e ( 4-19) 

 where, h(x,y) is the image to be transformed and H(x,y) is the transformed 

one. 
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It is also possible to transform image from the frequency domain back 

to the spatial domain. This is done with an inverse Fourier transform as 

follows: 

π ⎛ ⎞− − +⎜ ⎟
⎝ ⎠

= =

= ∑∑
1 1 2

0 0
( , ) ( , )

ux vyM N j
M N

x y
h x y H u v e ( 4-20) 

In the frequency domain, u represents the spatial frequency along the 

original images axis and v represents the spatial frequency along the y axis. 

In the center of the image u and v have their origin.  

The Fourier transforms deals with complex numbers. The magnitude 

is expressed as: 

2 2( , ) ( , ) ( , )H u v R u v I u v= + ( 4-21) 

and phase as: 

1 ( , )( , ) tan
( , )

I u vu v
R u v

θ − ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
( 4-22) 

where, R(u,v) is the real part and I(u,v) is the imaginary. 

The frequency is dependent on the pixel location in the transform. The 

further from the origin it is, the higher the spatial frequency it represents. 

The computation of the Fourier transform stores the real and 

imaginary spectral components in arrays, starting with positive frequency 

values followed by negative frequency values. Figure 4-4 shows an example 
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of the magnitude spectrum from a one-dimensional DFT, showing that the 

negative frequency components follow the positive frequency components. 

 

 

Figure 4-4: Uncentered magnitude spectrum 

Normally when plotting spectral components using the Cartesian 

coordinate system, negative frequency components are plotted first followed 

by the positive frequency components. The first half and last half of the 

array of Fourier components must be swapped. This can be done by 

multiplying every pixels in the image by (-1)x+y , that is: 

( , ) ( , )( 1)x yf x y f x y +⇒ − ( 4-23) 

Equation ( 4-23) is the centering property of the DFT. 

Figure 4-5 shows the output from the DFT after application of the centering 

property. 
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Figure 4-5: The Centered magnitude spectrum 

Figure 4-6 shows the uncentered magnitude spectrum of an image 

containing a white object. Figure 4-7 shows the DFT spectrum of the same 

image after application of the centering property.  

 

Figure 4-6: Uncentered spectrum of an image 
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Figure 4-7: The centered spectrum after using centring property of DFT. 

4.3.4 Translation  Estimation 

In this chapter, a frequency domain method is investigated for 

estimating the translation between two images.  

The motion between a reference image and the second is assumed to 

be a pure translation. Considering such kind of displacement between two 

images the motion may be simply described by two parameters: horizontal 

and vertical shifts. 
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In the Fourier transform domain relation between two mutually 

shifted images can be expressed as follows: 

2 ( )

2 1 1( , ) ( , ) ( , )
j au bv

Nf x y f x a y b F u v e
π

+
= − − ↔ (4-24) 

where, f1(x,y) is the reference image and f2(x,y) is the shifted one. F1(u,v) is 

the Fourier transform of f1(x,y). It is known from Fourier transform 

properties that a spatial shift results in multiplication. 

What we want here is to find out the values of a and b in equation 

(4-24) because they represent the vertical and horizontal shifts.  

We know from equation (4-24) that: 

π
+

=
2 ( )

2 1( , ) ( , )
j au bv

NF u v F u v e  (4-25) 

Dividing Equation (4-25)  by F1(u,v) : 

π
+

=
2 ( )2

1

( , )
( , )

j au bv
NF u v e

F u v
 (4-26) 

The right hand side term on this equation is a complex number and it 

can be split into two parts: the real part R(u,v) and the imaginary part S(u,v). 

The phase of this complex number can be calculated as follows: 

θ =( , ) atan2( ( , ), ( , ))u v S u v R u v  (4-27) 

The phase also can be found as follows: 

2( , ) ( )u v au bv
N
πθ = +  (4-28) 



 

61 

So, for every point in the frequency domain, there is a phase as in 

Table 4-2. 

Table 4-2: Phase of every point in u-v plane 

u-v plane points Phase 

(u1,v1) θ(u1,v1) 

(u2,v2) θ(u2,v2) 

… … 

(uN,vN) θ(uN,vN) 
 

By finding the phase of every point using Equation (4-28) and finding 

the square mean error of these phases, we get: 

( )
2

1

2 ( , )
N

i i i i
i

E au bv u v
N
π θ

=

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑ (4-29) 

The error should be kept minimal. So, 

( )
2

1

2 ( , )
N

i i i i
i

E au bv u v
N
π θ

=

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑ =minimum (4-30) 

0, 0E E
a b

∂ ∂
= =

∂ ∂
 (4-31) 

( )
1

2 22 ( , ) . 0
N

i i i i i
i

E au bv u v u
a N N

π πθ
=

∂ ⎡ ⎤= + − =⎢ ⎥∂ ⎣ ⎦
∑  (4-32) 

( )
1

2 22 ( , ) . 0
N

i i i i i
i

E au bv u v v
b N N

π πθ
=

∂ ⎡ ⎤= + − =⎢ ⎥∂ ⎣ ⎦
∑  (4-33) 
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2 2
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1 1 1

2 2 2N N N

i i i i i
i i i

au bu v u
N N N
π π π θ

= = =

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
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∑ ∑ ∑  (4-34) 

2 2
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1 1 1

2 2 2N N N

i i i i i
i i i

u v a bv v
N N N
π π π θ

= = =

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
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∑ ∑ ∑  (4-35) 
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u u v u
aN N
b

u v v v
N N

π π θ

π π θ

= = =

= = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
 (4-36) 

The last equation gives the values of a and b which we are looking for. 

4.3.5 Rotation and Scaling Estimation 

The underlying computations to estimate rotation and scaling in 

Fourier domain are not as simple as in translation estimation. The 

complexities of the model poses a serious question about the efficiency of 

finding rotation and scale change in frequency domain vs. the same in spatial 

domain. Such challenges stem from the fact that: 

Given, ( , ) ( , )f x y F u v←⎯→ , then: 

( cos sin , sin cos ) ( cos sin , sin cos )f x y x y F u v u vθ θ θ θ θ θ θ θ+ − + ←⎯→ −  

So, the rotation in the spatial domain is also rotation in the frequency 

domain but in the opposite direction as shown in Figure 4-8. 
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Figure 4-8: Rotation estimation. (a) Frequency values of a reference image. (b) 

Frequency values of the rotated image (θ=25 degrees) [37] 

So, using this method will not simplify the rotation estimation. Same thing is 

applied in the case of scaling based on the fact that scale change in the 

spatial domain is also scale change in the frequency domain. This can be 

expressed as follows: Given ( ) ( )f x F w←⎯→ , then 1( ) wf ax F
a a

⎛ ⎞←⎯→ ⎜ ⎟
⎝ ⎠

. 

 

4.4 Affine-Motion Inversion Scheme for Jitter Detection 

In this section, a new approach to detect jitters in a sequence of video 

frames is introduced. The approach seeks to model the underlying changes a 

series of 2D affine transforms between consecutive video frames, without 
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resorting to a three dimensional interpretation of the physical factors that 

give a rise to the changes. 

The affine transformation is represented by a set of invariants to be 

estimated by weighted geometric moments of each observed image. In 

particular, the image-plane will be viewed as a collection of non-overlapping 

concentric regions of varying weights of interest. Thus, the moments will be 

calculated using a geometric-location weighted and intensity weighted 

computations. 

The approach proposed is a simplified strategy to decide if the 

disparity between a video frame and its predecessor is due to a smooth 

motion or an erratic jitter. Six moments-based descriptors and the gray level 

histogram are used to arrive at that decision. Individual parameters used for 

such decision include: the change in direction in the apparent motion of the 

weighted center of gravity, the discontinuities in the angular velocity of the 

eigen-vectors of the scatter matrix (second order moments), and the 

dynamics of the focus-of-expansion of the observed ego-centric optical flow 

field. These computations are progressively complex. They will be 

implemented at different temporal sampling rate, i.e., the simplest method 

will be applied to every frame while the advanced method will be applied to 

every other frame, etc. 
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The basic method computes six numbers: M00, M01, M10, M11, M20, and 

M02.Which are defined as: 

,
( , ) ( , )i j

ij
x y

M x y w x y f x y= ∑  ( 4-37) 

The image f(x,y) and the weights w(x,y) are expressed on a 640x480 

grid to be indexed as -320 ≤ x <320, and -240 ≤ y <240, reflecting a zero-

centered image plane. A standard Gaussian function is used for w(x,y) with 

an arbitrary chosen half-power radius of 128. Then, w is computed as: 

2 2

2-
2( , )  , 128

x y

w x y e σ σ
⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠= =  ( 4-38) 

The centroid of an image is generally the simplest descriptor of the 

image, which is depicted by: 

( ) ( )10 01, , ,x y M Mμ μ = � �  ( 4-39) 

Or  

( ) ( )2 2
y, , arctan2( , ) ; .x y xrμ μ μθ μ μ μ μ π θ π= + − < ≤ ( 4-40) 

The gravity adjusted second order moments,  20 02 11,  and M M M� � �  are 

defined as:  

,

,

( ) ( ) ( , ) ( , )

( , ) ( , )

i j
x y

x y
ij

x y

x y w x y f x y
M

w x y f x y

μ μ− −
=
∑

∑
�  ( 4-41) 

It is useful to represent them in the form:  
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2
1 2 1 1120 11

1 2 1 22
1 2 2 2211 22

cos cos cos sin0
; , ;  and,  .

sin sin cos sin0
M M
M M

θ θ θ θλ
π θ θ π λ λ

θ θ θ θλ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= − < ≤ ≥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

� �
� �

( 4-42) 

The factorization given above represents the scatter composition of 

the spatial data. The eigen-values and the eigen-vectors describe the 

underlying shape more succinctly.   Thus, each frame ( , ; )f x y t represented by 

a vector, 1 2 1 2( ) ( , , , , , ; ) ,Tt r tμ μθ λ λ θ θ=Φ  in addition to the standard and weighted 

histograms: [ ],h g and [ ],wh g respectively.  

 In general a smoothly varying image sequence must entail smooth 

variations in these parameters.  For example, a constant motion of the 

aircraft above an otherwise static landscape would entail gradual variation in 

( , )rμ μθ  indicating a constant velocity or constant acceleration.  This can be 

verified by computing the first and second derivatives (with respect to time) 

of these spatio-temporal parameters, , rμ μθ ,..., etc.  Jitters are indicated by 

sudden discontinuities in velocities due to impulsive or transient forces. The 

simplest approach to detecting abrupt discontinuities in a function is to apply 

a derivative operator, and decide positive if the output magnitude is above a 

certain threshold. The threshold may have to be determined adaptively.  

Presence of high frequency signals and noisy data pose serious 

challenge to this approach. Thus, it is useful to preprocess the data to cancel 
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the effect of noise. Then, we run the risk of de-emphasizing a valid edge 

data, due to the low pass filtering nature of such preprocessing steps. We 

have chosen to apply a robust multiresolution technique, called Laplacian of 

Gaussian, also know as 2 G∇ ∗ . 

It is essentially a finite impulse response digital filter, whose 

continuous (analog) impulse response is of the form: 

   
2

2
2

2
2( , )

x

h x e
x

σσ
−∂

= ∗
∂

 ( 4-43) 

The function looks like an inverted Mexican hat as shown in Figure 4-9. 

 

 

Figure 4-9: Inverted Mexican hat signal 
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We compute: 

( ) ( ) ( )g n h n f n= ⊕  

( ) ( ( ))S n sign g n=  

( ) ( ) ( 1)E n S n XOR S n= −  

where, g(n) is the generated signal used for detection, h(n) is the digital filter 

whose equation is ( 4-43), S(n) is a sign function which can be expressed as 

follows: 

0 0
( )

1 0

x
sign x

x

<⎧
⎪= ⎨
⎪ ≥⎩

 ( 4-44) 

E(n)=1, whenever there is an edge. The procedure must be repeated at 

least for six σ, i.e., h(x, σ0), h(x, σ0r), h(x, σ0r2), …etc. where r=1.1. The 

reason why we have at least six  σ’s, is to accommodate wide range of 

variations in the imaging conditions. The typical values of h(x) for various 

scales and resolutions are shown in Table 4-3 and plotted in Figure 4-10.  
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Table 4-3: The digital filter used in the jitter detection process 

Mask Mask values 

h1 -0.8094 -0.10289 0.3861 0.112726 0.008549 0.000209 0 0 

h2 -0.6849 -0.32967 0.24046 0.292063 0.114655 0.02239 0.002402 0.000147

h3 -0.72272 -0.27137 0.317401 0.246125 0.06186 0.006962 0.000382 0 

h4 -0.64948 -0.37242 0.150245 0.306644 0.175519 0.05371 0.009892 0.001147

h5 -0.74284 -0.23582 0.347275 0.214785 0.04177 0.003404 0 0 

h6 -0.68486 -0.32973 0.240357 0.292101 0.114727 0.022418 0.002406 0.000148
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Figure 4-10: The digital filter plot used in the jitter detection process 

 

If a zero-crossing is found in at least three σ’s, this gives an indication of 

existence of jitter. The next zero-crossing of these σ’s indicates the end of 

the jitter. All frames between these two consecutive zero-crossing instances 

are to be dropped and replaced by a suitable postprocessed  images. We 

choose a simple method which take the first and the last images in the 

sequence, to generate a smoothly varying image sequence. This image 

sequence is computed  by the FFT estimator described in section 4.3.  
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5.     V. Results and Analysis 

This chapter describes the experimental setup and the results obtained 

in testing all algorithms developed in this thesis. 

The results of the affine model fitting algorithm to estimate motion 

vectors will be discussed first. The second section describes the test results 

for the frequency domain method to estimate the inter-frame translation in 

an image sequence. Finally, the effectiveness of jitter detection technique 

will be demonstrated. 

5.1    Affine Based Approach for Motion Estimation 

This approach was tested in a simulation setup and a practical 

experiment. The goal of the simulation was to evaluate the performance in a 

controlled environment with exact knowledge about the shift and rotation 

values between two images in an image sequence. This enables us to 

evaluate the performance and sensitivity of the algorithm. We have also 

tested the algorithm on a real world imagery without any modifications 

5.1.1 Simulation   

The scene we used in the simulation was the same scene used in the 

experimental section. However, the principale difference stems from the way 
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we preprocessed the image frames.  For the simulated testing, each image 

was padded with a black (all zeros) pixels background. In contrast, the 

realistic testing considers the image data without adding a well defined 

boundary conditions. 

For the simulation, we started from an image shown in Figure 5-1. It 

is of size 700 x 400 pixels with a zero-padded background making the total 

size of image 720 x 480 pixels.  

 

Figure 5-1: Reference image 

Two images were constructed by shifting and rotating the original 

image. These two images were then used as inputs to the algorithm to 

estimate the motion vectors between each image and the original image. The 

first image shown in Figure 5-2 is constructed by shifting the original image 

by 19 pixels in the positive x-axis direction. 
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Figure 5-2: The constructed image by shifting the original image by 19 pixels 

When only shifts are applied, the motion vectors estimation produces 

perfect results. Table 5-1 shows the estimated vectors. 

Table 5-1: Estimated Motion Parameters for Pure Image Translation 

Value 
Parameter 

Actual Estimated 

ˆ xσ  1 1 

ˆ yσ  1 1 

θ̂  0 0 

α̂  0 0 

x̂Δ  19 19 

ŷΔ  0 0 
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The second image shown in Figure 5-3 is constructed by rotating the 

original image by θ = 0.0524 radians. The rotation was centered at the center 

of the image grid. 

 

 

Figure 5-3: The constructed image by rotating the original image by 0.0524 radians 

When rotation is applied, as shown in Figure 5-3, the rotation angle is 

accurately estimated but with not well estimated shifts. Table 5-2 shows the 

actual parameters along with the estimated ones. 
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Table 5-2: Estimated Motion Parameters for Pure Image Rotation 

Value 
Parameter 

Actual Estimated 

ˆ xσ  1 0.95496 

ˆ yσ  1 1.0236 

θ̂  0.0524 0.0577 

α̂  0 0.0126 

x̂Δ  0 31.662 

ŷΔ  0 -18.287 

 

The errors in the shift estimation are due to the interpolation 

approximation made when rotating the image. 

Finally, the original image in Figure 5-1 and the two estimated motion 

vectors in Table 5-1 and Table 5-2 are used as inputs to the reconstruction 

part of the algorithm. Figure 5-4 and Figure 5-5 show the reconstructed 

images from the estimated motion parameters in Table 5-1 and Table 5-2 

respectively. 
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Figure 5-4: Reconstructed image from Table 5-1 

 
Figure 5-5: Reconstructed image from Table 5-2 
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The precision of the image in Figure 5-4 was sufficient to have a good 

reconstruction. However, the image in Figure 5-5 is in acceptable precision 

except for the shifts. 

5.1.2 Experiment 

As described in the last section, the images used in the experimental 

testing are a real world images without any preprocessing. Two images 

taken at time=t and time=t+1 were to be considered. These two images are 

shown in Figure 5-6 and Figure 5-7  respectively. 
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Figure 5-6: Image taken at time = t 

 

 
Figure 5-7: Image taken at time = t+1 

Because of the small amount of motion between the two consecutive 

images, the non-overlapping part between them is small. Figure 5-8 shows 

an inverted version of the difference between the two images. 
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Figure 5-8: Difference between image at time= t and image at tim= t+1 

 

Unlike the simulation section, we will have an inside and more deep 

look at the algorithm in this section. Firstly, we will start by plotting the 

histogram and the cumulative histogram of the image at time=t which is the 

start point of the segmentation process. The histogram and the cumulative 

histogram are shown in Figure 5-9 and Figure 5-10 respectively. Figure 5-10 

also shows the gray levels of the six segmented subimages B1 to B6. Figure 

5-11 shows these subimages. 
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Figure 5-9: Image Histogram 
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Figure 5-10: Cumulative Histogram 
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Subimage B1  Subimage B2 

  

Subimage B3 Subimage B4 

  

Subimage B5 Subimage B6 

Figure 5-11: Binary subimages resulted from segmentation process 
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After extracting the binary subimages, the correlation of rotation angle 

θ and deformation angle α is plotted to determine the proper group of 

subimages that should be used to calculate the motion vectors. Figure 5-12 

shows rotation-deformation angles plot. 
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Figure 5-12: Rotation-Deformation angles 

 

By using the approach described in section 3.1.6, we can find the best 

set of subimages which can be used to calculate the motion vectors. Table 

5-3 shows the final estimated motion vectors.  
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Table 5-3: Estimated motion vectors 

Parameter Value 

ˆ xσ  1.0009 

ˆ yσ  1.0145 

θ̂  0.014805 

α̂  0.003251 

x̂Δ  -1.7065 

ŷΔ  -11.281 

 

At this point, we can use the estimated motion vectors to reconstruct 

the image at time=t+1. Figure 5-13 show the reconstructed image. 

 
Figure 5-13: Reconstructed image at time=t+1 

The original image at time=t+1 in Figure 5-7 and the reconstructed 

image in Figure 5-13 shows some differences.  Figure 5-14 shows these 

differences.  
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Figure 5-14: Difference between image at time=t+1 and the constructed image 

 

In order to get more precise motion vector estimates, the difference 

between the image at time=t+1 and the constructed image must be 

minimized.  
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5.2   Frequency Domain Approach to Estimate Image Translation 

Following the same scheme used in the previous section to evaluate 

an algorithm, two types of test are conducted. We will have a simulation and 

an experiment for the same reason mentioned previously.  

5.2.1 Simulation 

For the part of simulation, we used the image shown in Figure 5-15 as 

an original image. This image is of size 620 x 400 pixels with a zero-padded 

background, making the total size of 720 x 480 pixels. A new image has 

been constructed by applying image translation effect to the original image. 

Figure 5-16 shows this constructed image. 

 

Figure 5-15: Original image 
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Figure 5-16: Constructed image by shifting the original image 

These two images are used as inputs to the FFT motion estimator to 

estimate the motion translation between the constructed image and the 

original image. The FFT estimator gave perfect results during the process of 

simulation. It could produce the exact values of translations.  Table 5-4 

shows this result. 

Table 5-4: Estimated motion translation of the simulated images 

Value 
Parameter 

Actual Estimated 

xΔ  -15 -15 

yΔ  -40 -40 

 



 

88 

5.2.2 Experiment 

As in the previous section, in this part of FFT estimator’s evaluation, a 

more realistic sequence of images is used as inputs. Figure 5-17 and Figure 

5-18 show two images that are taken from a video stream.  

The translation between these two images is to be estimated using 

FFT estimator developed. It has been assumed that the rotation and scaling 

factors between these two images are very small and hence can be neglected. 

In this case, the image at time=t+1 can be totally reconstructed using the 

estimated translations. 

 

 

Figure 5-17: Image at time=t 
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Figure 5-18: Image at time=t+1 

 

We have seen that the shift parameter Δx and Δy can be computed as 

the slope of the phase difference between the two images.  The first step here 

is to plot the phase difference of the two images.  Figure 5-19  shows such 

plot. 
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Figure 5-19: Phase difference of images at time=t and time=t+1 

 

The parameter Δx is the shift in u-direction. It is computed by 

eliminating the effect of shift in v-direction. This is done by plotting the 

phase difference along u-axis and setting v=0 as in Figure 5-20. Same 

method is used to get the parameter Δy. 
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Figure 5-20: Phase difference in u-axis 
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Figure 5-21: Phase difference in v-axis 
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As mentioned earlier, the slope of phase differences in each axis 

represent the estimated shift parameters. Table 5-5 shows the final results. 

Table 5-5: FFT estimated motion translation of the simulated images 

Parameter Value 

xΔ  -27 

yΔ  13 

 

In order to evaluate the results obtained, a new image can be 

constructed from image at time=t and the estimated motion translation then 

compared to the image at time=t+1. Figure 5-22 shows the constructed 

image. 

 

 

Figure 5-22: Reconstructed image from translation estimated values 
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Figure 5-23 shows the error in difference between the constructed 

image and the image at time=t+1. This difference has been inverted for 

better viewing. 

 

 

Figure 5-23: The difference between the constructed image and image at time = t+1 

 

We can notice that the estimated values are precise enough to produce 

a good constructed image. 

 Only translation was considered. The other motion vectors like 

rotation and scaling which are to be investigated in a future work using the 

Fourier Domain approach.  
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5.3 Jitter Detection Algorithm  

This section presents experimental results obtained from a video 

sequence. The image frame sequence is of size 320 x 240 pixels and 

contains 336 frames in length. The frame rate is 28 frames per second. 

The video is used as input to the developed jitter detection algorithm. 

The Motion parameter θ values of the sequence are depicted in Figure 5-24. 
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Figure 5-24: The motion parameter θ of the frames sequence 



 

95 

The output of convolving this signal with the multi-resolution LoG 

filters shown in Figure 5-25. 

 

 

Frame Number

Jitter 
Start: 101
End: 127

Duration: 26 frames

Jitter 
Start: 218
End: 242

Duration: 24 frames

 

Figure 5-25: Convolution output of θ and  

It shows the existence of two jitters. The first jitter starts at frame 101 

and lasts for 26 frames. The second jitter starts at frame 218 and lasts for 24 

frames. Unfortunately, still images are not the proper way to display 

dynamic process like video stabilization. But, the result can be shown as a 

sequence of still images. Figure 5-26 and Figure 5-27 show the frame 

images of these two video jitters.  



 

96 

 
Frame  99 

 
Frame  100 

 
Frame 101 

 
Frame  102 

 
Frame  103 

 
Frame  104 

 
Frame  105 

 
Frame  106 

 
Frame  107 

 
Frame  108 

 
Frame  109 

 
Frame  110 

 
Frame  111 

 
Frame  112 

 
Frame  113 

 
Frame  114 

 
Frame  115 

 
Frame  116 

 
Frame  117 

 
Frame  118 

 
Frame  119 

 
Frame  120 

 
Frame  121 

 
Frame  122 

 
Frame  123 

 
Frame  124 

 
Frame  125 

 
Frame  126 

Figure 5-26: The frames of the first jitter 
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Frame  219 Frame  220 Frame  221 Frame  222 

 
Frame  223 Frame  224 Frame  225 Frame  226 

 
Frame  227 Frame  228 Frame  229 Frame  230 

 
Frame  231 Frame  232 Frame  233 Frame  234 

 
Frame  235 Frame  236 Frame  237 Frame  238 

 
Frame  239 Frame  240 Frame  241 Frame  242 

Figure 5-27: The frames of the second jitter 
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Frame 101 must be registered with frame 126. Same thing should be 

done to frame 218 and frame 242. Either image registration algorithms 

developed in this thesis can be used to do this task. FFT approach has been 

selected to do such job. Table 5-6 shows the resulted estimated motion 

parameters. 

Table 5-6: Estimated Motion Vectors for the two jitters 

Parameter Estimated 
Value Parameter Estimated 

Value 
xΔ  -38 xΔ  -26 

yΔ  17 yΔ  11 

Frame 101 to Frame 127 Frame 218 to Frame 242 

 

The next step now is to reconstruct images according to the estimated 

motion vectors. We can note that only the image translations were estimated, 

that is because the FFT motion estimator is selected to estimate the motion 

vectors. This is acceptable because of the nature of the dataset under testing. 

Dropped frames were substituted by a reconstructed version of the last frame 

in the jitter. To give impression of a smooth transition between frames, the 

amount of translation in these frames were gradually increased until last 

frame of the jitter reached. Figure 5-28 and Figure 5-29 show the final 

results.  
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Figure 5-28: The frames of the first jitter after stabilization  
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Frame  219 Frame  220 Frame  221 Frame  222 
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Frame  231 Frame  232 Frame  233 Frame  234 

 
Frame  235 Frame  236 Frame  237 Frame  238 

 
Frame  239 Frame  240 Frame  241 Frame  242 

Figure 5-29: The frames of the second jitter after stabilization 
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As mentioned earlier in describing the jitter detection technique 

developed in this thesis, the missing part of the images resulted from images 

reconstruction, should be substituted from future frames. This should not be 

very difficult and it is recommended to be done as a future work for this 

thesis. 
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6. VI.   Conclusion 

6.1 Summary 

In this thesis, we have presented a video stabilization technique. The 

underlying technology of motion-estimation, jitter detection, and image 

registration, have been described. We presented the formulation we used to 

implement real-world video stabilization algorithms and the results obtained 

with these algorithms. We also presented the required analysis to fully 

develop the approach. An Affine-based approach that tracks a small set of 

features was used to estimate the movement of the camera between 

consecutive frames. Fourier transform was also used to demonstrate 

translation estimation between images. The resulting translation estimate 

was robust and fast. 

6.2 Limitations 

The displayed frames are always delayed by several units of time. In 

general, up to five frames of delay is both adequate and acceptable. In a 

realistic video acquired for 30 frames/second, this delay amount to 1/6 of a 
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second. Research studies on human perception of images indicate that this 

delay is not of adverse impact for routine tasks. 

When the scene is comprised of ground moving targets, interpolation 

based on the first and the last frame as used here, will not be adequate. A 

more complex technique will have to be developed. It is left for future 

development of this effort. 

6.3 Additional Remarks 

We have applied an expanded version of the jitter detection and 

compensation on a real world UAV data. The dataset and the experimental 

findings are not included in this document for logistic reasons. 

6.4 Future work 

Current work from this thesis can be extended to improve the 

performance and reduce the constraints on camera motion. Possible 

improvements include: 

1. Extending the FFT estimator to estimate rotation and other motion 

vectors besides translation. 

2. Adding a process to the jitter detector to compensate the missing parts 

of images which occur due to image reconstruction. 



 

104 

 

7. Appendix A 

 

This appendix lists the Matlab code developed in this research. 
 

affinmethod.m 
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
2 % Author: Capt. Mohammed A. Alharbi 
3 % Date  : 12-January-2006 
4 % Description:  
5 %   The function is the controller of the based affine  
6 %   transformation method to register two  
7 %   images. It takes two images and construct a third  
8 %   image %based on the calculated motion vectors. 
9 % Usage: 
10 %   image3=affinmethod(image,image2) 
11 % Input: 
12 %   image1  - the first RGB image at time=t 
13 %   image2  - the second RGB image at time=t+1 
14 % Output: 
15 %   image3  - the reconstructed image based on the  
16 %             estimated motion vectors  
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
18  
19 function [image3]=affinemthod(image1,image2) 
20  clear all;   
21  clc; 
22  [theta,alpha,sigmax,sigmay,c1,c2,sizes1,sizes2]=… 
23  main(image1,image2); 
24  E=FullTree(theta,alpha); 
25  nMST=MinSpanTree(E); 
26  dMAX=max(E(:,3)); 
27  MST=E(nMST,:); 
28  z=MST(:,3)<=dMAX*0.1; 
29  Clusters=MST(z,:); 
30  F=forests(Clusters(:,1:2));  
31  plotter(theta,alpha,Clusters); 
32  [properCluster,SubimagesNumbers]=findCluster2(Clusters,E); 
33  [alphabar,thetabar,sigmaxbar,sigmaybar,c1bar,c2bar]=… 
34  calcAverages(properCluster,sizes1,alpha,theta,… 
35  sigmax,sigmay,c1,c2) 
36 end 

 

main.m 
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
38 % Description:  
39 %   This function takes two images as inputs and calculated  
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40 %   the motion vectors between them 
41 % Usage: 
42 %   [Q1,Q2,Q3,Q4,Q5,Q6,sizes1,sizes2] = main(image,image2) 
43 % Input: 
44 %   image1  - the first RGB image at time=t 
45 %   image2  - the second RGB image at time=t+1 
46 % Output: 
47 %   Q1      - Rotation angle (theta)  
48 %   Q2      - Deformation angle (alpha) 
49 %   Q3      - Scaling factor in x-axis   
50 %   Q4      - Scaling factor in y-axis 
51 %   Q5      - Shift in x-axis  
52 %   Q6      - Shift in y-axis 
53 %   sizes1  - The size of binary images of the first image 
54 %   sizes2  - The size of binary images of the second image 
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
56  
57 function [Q1,Q2,Q3,Q4,Q5,Q6,sizes1,sizes2] =  
58 myfun(im1,im2) 
59      [M1,sizes1]=extract8features(im1,1);  
60      [M2,sizes2]=extract8features(im2,2); 
61      Qalpha=[]; 
62      Qtheta=[]; 
63      Qsigmax=[]; 
64      Qsigmay=[]; 
65      QC1=[]; 
66      QC2=[]; 
67      e=1; 
68      for i=1:6  
69        for j=i+1:6  
70          for k=j+1:6  
71                   X=[M1(2*i-1),M1(2*j-1),M1(2*k-…  
72                   1);M1(2*i),M1(2*j),M1(2*k)]; 
73                   Xbar=[M2(2*i-1),M2(2*j-1),M2(2*k- 
74                   …1);M2(2*i),M2(2*j),M2(2*k)]; 
75             Z=simequ2(X,Xbar);   
76  matrices 
77 [Q,Qalpha,Qtheta,Qsigmax,Qsigmay,QC1,QC2]=trans(Z,Qalpha 
78 ,Qtheta,Qsigmax,Qsigmay,QC1,QC2); 
79         end; 
80        end; 
81      end; 
82     Q1 = Qtheta; 
83     Q2 = Qalpha; 
84     Q3 = Qsigmax; 
85     Q4 = Qsigmay; 
86     Q5 = QC1; 
87     Q6 = QC2; 
88 end 

 

Extract6features.m 
89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
90 % Description:  
91 %   This function extracts six binary subimages out of an    
92 %   input image. Then, it outputs the sizes and the  
93 %   centroid of these binary images. 
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94 % 
95 % Usage: 
96 %   Extract6features(image1) 
97 % Input: 
98 %   image1     - an RGB image. 
99 % Output: 
100 %   centroids  - The centroid of the six binary subimages. 
101 %   Imsizes    - The sizes of the six binary images. 
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
103  
104 function [centroids,imsizes] = features(imfile,imno) 
105  writeimages=1; 
106  showimages=0; 
107  close all; 
108  I2 = imread(imfile); 
109  if isrgb(I2) 
110   I2=rgb2gray(I2); 
111  end 
112  h = imhist(I2); 
113  H=cumsum(h); 
114  [M,N]=size(I2); 
115  k=M*N;  
116  k1=k/6;  
117  k2=2*k/6; 
118  k3=3*k/6; 
119  k4=4*k/6; 
120  k5=5*k/6;  
121  k6=6*k/6; 
122  [val,indx]=min(abs(H-k1));   
123  k1hat=indx;                  
124  [val,indx]=min(abs(H-k2)); 
125  k2hat=indx; 
126  [val,indx]=min(abs(H-k3)); 
127  k3hat=indx; 
128  [val,indx]=min(abs(H-k4)); 
129  k4hat=indx; 
130  [val,indx]=min(abs(H-k5)); 
131  k5hat=indx; 
132  [val,indx]=min(abs(H-k6)); 
133  k6hat=indx; 
134  % The first binary image 
135  B1=I2; 
136  B1=double(I2<k1hat); 
137  B1=logical(B1); 
138  B1=~B1; 
139  imsizes(1)=sum(sum(B1)); 
140  % The second binary image 
141  B2=double(I2>k1hat&I2<k2hat); 
142  B2=logical(B2); 
143  B2=~B2; 
144  imsizes(2)=sum(sum(B2)); 
145  % The third binary image 
146  B3=double(I2>k2hat&I2<k3hat); 
147  B3=logical(B3); 
148  B3=~B3; 
149  imsizes(3)=sum(sum(B3)); 
150  % The fourth binary image 
151  B4=double(I2>k3hat&I2<k4hat); 
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152  B4=logical(B4); 
153  B4=~B4; 
154  imsizes(4)=sum(sum(B4)); 
155  % The fifth binary image 
156  B5=double(I2>k4hat&I2<k5hat); 
157  B5=logical(B5); 
158  B5=~B5; 
159  imsizes(5)=sum(sum(B5)); 
160  % The sixth binary image 
161  B6=double(I2>k5hat&I2<k6hat); 
162  B6=logical(B6); 
163  B6=~B6; 
164  imsizes(6)=sum(sum(B6)); 
165  if imno==1  
166   filename1='images\B11.bmp'; 
167   filename2='images\B21.bmp'; 
168   filename3='images\B31.bmp'; 
169   filename4='images\B41.bmp'; 
170   filename5='images\B51.bmp'; 
171   filename6='images\B61.bmp'; 
172  else 
173   filename1='images\B12.bmp'; 
174   filename2='images\B22.bmp'; 
175   filename3='images\B32.bmp'; 
176   filename4='images\B42.bmp'; 
177   filename5='images\B52.bmp'; 
178   filename6='images\B62.bmp'; 
179  end; 
180 if writeimages  
181  imwrite(B1,filename1); 
182  imwrite(B2,filename2); 
183  imwrite(B3,filename3); 
184  imwrite(B4,filename4); 
185  imwrite(B5,filename5); 
186  imwrite(B6,filename6); 
187 end; 
188 a=centroid(filename1); 
189 MM(1,1)=a(1); 
190 MM(2,1)=a(2); 
191 a=centroid(filename2); 
192 MM(1,2)=a(1); 
193 MM(2,2)=a(2); 
194 a=centroid(filename3); 
195 MM(1,3)=a(1); 
196 MM(2,3)=a(2); 
197 a=centroid(filename4); 
198 MM(1,4)=a(1); 
199 MM(2,4)=a(2); 
200 a=centroid(filename5); 
201 MM(1,5)=a(1); 
202 MM(2,5)=a(2); 
203 a=centroid(filename6); 
204 MM(1,6)=a(1); 
205 MM(2,6)=a(2); 
206 if showimages 
207  figure; 
208  imshow(B1);figure; 
209  imshow(B2);figure; 
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210  imshow(B3);figure; 
211  imshow(B4);figure; 
212  imshow(B5);figure; 
213  imshow(B6); 
214  end; 
215  centroids = MM; 
216 end 
 
 

centroid.m 
217 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
218 % Description:  
219 %   This function calculated the centroid of a binary  
220 %   image.  
221 % Usage: 
222 %   B_centroid = centroid(imfile) 
223 % Input: 
224 %   imfile     - The file name of the binary image. 
225 % Output: 
226 %   B_centroid – The calculated centroid. 
227 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
228  
229 function B_centroid = centro(imfile) 
230  im = imread(imfile); 
231  [rows,cols] = size(im); 
232  x = ones(rows,1)*[1:cols];   
233  y = [1:rows]'*ones(1,cols 
234  area = sum(sum(im)); 
235  meanx = sum(sum(double(im).*x))/area;  
236  meany = sum(sum(double(im).*y))/area;  
237  B_centroid = [meanx,meany]; 
238 end 
 
 

simeq2.m 
239 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
240 % Description:  
241 %   This function solves three simultaneous equations. 
242 % Usage: 
243 %   result = simeq2(co1,co2) 
244 % Input: 
245 %   co1    -  Coefficients of the first set of equations 
246 %   co2    -  Coefficients of the second set of equations 
247 % Output: 
248 %   result -  The result of the solved equations 
249 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
250  
251 function result=myfunc(co1,co2) 
252  x11=co1(1,1);  
253  x12=co1(1,2);  
254  x13=co1(1,3); 
255  y11=co1(2,1);  
256  y12=co1(2,2);  
257  y13=co1(2,3); 
258  x11bar=co2(1,1); 
259  x12bar=co2(1,2);  
260  x13bar=co2(1,3); 
261  y11bar=co2(2,1);   
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262  y12bar=co2(2,2); 
263  y13bar=co2(2,3); 
264  XX =[x11 y11 0 0 1 0; 
265  0 0 x11 y11 0 1; 
266  x12 y12 0 0 1 0; 
267  0 0 x12 y12 0 1; 
268  x13 y13 0 0 1 0; 
269  0 0 x13 y13 0 1]; 
270  b=[x11bar ;y11bar ;x12bar; y12bar ;x13bar ;y13bar ]; 
271  result = XX\b; 
272 end 
 

trans.m 
273 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
274 % Description:  
275 %   This function calculates the values of the scaling in     
276 %   x-axis and y-axis. Also, it calculates the values of    
277 %   the rotation angle and the deformation angle. Then, it  
278 %   reorganizes shift values and put them in matrices. It  
279 %   produces all vectors of motion as arrays. 
280 % Usage: 
281 %   [Qalphas,Qthetas,Qsigmaxs,Qsigmays,QC1s,QC2s] =  
282 %    trans(M,Qalpha,Qtheta,Qsigmax,Qsigmay,QC1,QC2) 
283 % Input: 
284 %    Qalpha  - Deformation angle. 
285 %    Qtheta  - Rotation angle. 
286 %    Qsigmax – Scaling factor in x-axis 
287 %    Qsigmay – Scaling factor in y-axis 
288 %    QC1     - Shift in x-axis 
289 %    QC2     - Shift in y-axis 
290 % Output: 
291 %    Qalphas  - Array of deformation angles. 
292 %    Qthetas  - Array of rotation angles. 
293 %    Qsigmaxs – Array of Scaling factors in x-axis 
294 %    Qsigmays – Array of Scaling factors in y-axis 
295 %    QC1s     - Array of Shifts in x-axis 
296 %    QC2s     - Array of Shifts in y-axis 
297 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
298  
299 function [Qalphas,Qthetas,Qsigmaxs,Qsigmays,QC1s,QC2s] =  
300  myfun(M,Qalpha,Qtheta,Qsigmax,Qsigmay,QC1,QC2) 
301  sigmax=sqrt(M(1)+M(2)); 
302  sigmay=sqrt(M(3)+M(4)); 
303  C1=M(5); 
304  C2=M(6); 
305  alphaminustheta=atan2(M(2),M(1)); 
306  alphaplustheta=atan2(M(3),M(4)); 
307  alpha=(alphaminustheta+alphaplustheta)/2; 
308  theta=alphaplustheta-alpha; 
309  Qalphas=[Qalphas ; alpha]; 
310  Qthetas=[Qthetas ; theta]; 
311  Qsigmaxs=[Qsigmaxs; sigmax]; 
312  Qsigmays=[Qsigmays; sigmay]; 
313  QC1s=[QC1s; C1]; 
314  QC2s=[QC2s; C2]; 
315 end 
 

Fulltree.m 
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316 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
317 % Description:  
318 %   This function creates a full tree graph of a given two  
319 %   sets of points. 
320 % Usage: 
321 %   [Q]=Fulltree(X,Y) 
322 % Input: 
323 %   X  - The x coordinates of the points to be converted in  
324 %        a fully tree graph. 
325 %   Y  - The Y coordinates of the points. 
326 % Output: 
327 %   Q  - Edges of the created full tree graph. 
328 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
329  
330 function [Q] = myfun(X,Y) 
331 z=1; 
332 for i=1:19 
333   for j=i+1:20 
334     Q(z,:)=[i j sqrt((X(i)-X(j))^2 + (Y(i)-Y(j))^2)];  
335     z=z+1; 
336   end 
337 end 
 

MinSpanTree.m 
338  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
339  % This function solves the minimal spanning tree problem  
340  % for a connected graph. 
341  % Input parameter:  
342  %   E(m,2) or (m,3) - the edges of graph and their weight; 
343  %     1st and 2nd elements of each row is numbers of  
344  %     vertexes; 
345  %     3rd elements of each row is weight of edge; 
346  %     m - number of edges. 
347  %     If we set the array E(m,2), then all weights is 1. 
348  % Output parameter: 
349  %   nMST - the list of the numbers of edges included  
350  %     in the minimal (weighted) spanning tree in the  
351  %including order. 
352  % Uses the greedy algorithm. 
353  % Author: Sergiy Iglin 
354  % e-mail: iglin@kpi.kharkov.ua 
355  % or: siglin@yandex.ru 
356  % personal page: http://iglin.exponenta.ru 
357  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
358 function nMST=MinSpanTree(E) 
359  [m,n,E] = Evalidation(E);  
360  En=[(1:m)',E];  
361  [Emin,nMST]=min(En(:,4)); nVer=[En(nMST,2:3)];  
362  En=En(setdiff([1:m],nMST),:);  
363  while length(nVer)<n,  
364   Encurr=[];  
365   for k=1:size(En,1),  
366    if sum(ismember(En(k,2:3),nVer))==1,  
367     Encurr=[Encurr;En(k,:)];  
368    end 
369   end 
370  if isempty(Encurr),  
371   error('The graph is not connected!') 
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372  end 
373  [Emin,imin]=min(Encurr(:,4));  
374  nEdge=Encurr(imin,1);  
375  nMST=[nMST,nEdge];  
376  nVer=unique([nVer,Encurr(imin,2:3)]);  
377  En=En(setdiff([1:size(En,1)],find(En(:,1)==nEdge)),:);  
378  end 
379  return 
380 end 
 

forests.m 
381 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
382 % Description: This algorithm builds forests out of a group  
383 % of nodes using Kruska’s algorithm. 
384 %    
385 % Usage: 
386 %        [Q]=forests(A). 
387 % Input: 
388 %        A  - A group on nodes.  
389 % Output: 
390 %        Q  - A graph consist of forest. 
391 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
392  
393 function [Q]=myfun(A) 
394 B=[]; 
395 k=max(A(:)); 
396 M = sparse(A(:,1),A(:,2),1,k,k); 
397 M=M+M'; 
398 M1 = zeros(size(M)); 
399 flag = 1; 
400 while flag 
401  M1=double((M+M*M)~=0); 
402    if isequal(M,M1) 
403      flag = 0; 
404    end 
405  M=M1; 
406 end 
407 M=unique(M,'rows'); 
408 M(all(~M,2),:)=[]; 
409 for (i=1:size(M,1)) 
410  a=find(M(i,:)); 
411   for (j=1:size(A,1)) 
412    if (length(intersect(a,A(j,:))) > 0) 
413     B=[B; A(j,:)]; 
414    end 
415   end 
416  B=[B; [0 0]]; 
417 end 
418 Q=B; 
 

Plotter.m 
419 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
420 % Description:  
421 %   This function plots a set of nodes in a graph. 
422 % Usage: 
423 %   Plotter(X,Y,zo) 
424 % Input: 
425 %   X   -  The x-coordinates of the nodes 
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426 %   Y   -  The y-coordinates of the nodes 
427 %  zo -  Distances between the nodes  
428 % Output: 
429 %   none 
430 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
431  
432 function myplot(X,Y,zo) 
433  plot(X,Y,'*'); 
434  axis equal 
435  ylim=[-2 2.5]; 
436  ylabel('alpha'); 
437  xlabel('theta'); 
438  t=[1:20]'; 
439  T=num2str(t); 
440  text(X,Y,T); 
441  for (i=1:size(zo,1)) 
442   s=zo(i,1); e=zo(i,2); 
443   line([X(s); X(e)], [Y(s) ;Y(e)]) 
444  end 
 

findcluster2.m 
445 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
446 % Description:  
447 %   The function finds the best group of nodes (binary  
448 %   subimages) that can be used to determine the motion  
449 %   vectors. 
450 % Usage: 
451 %   [m,subno] = findcluster2(n,E) 
452 % Input: 
453 %   n      -  The nodes (binary subimages) in the graph  
454 %   E      -  The cluster contains these nodes 
455 % Output: 
456 %   m      -  The nodes (binary subimages) that should be  
457 %             used to determine motion vectors. 
458 %   subno  -  The index of these nodes.   
459 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
460  
461 %The following function takes clusters matrix  
462 %It generates the data structure necssary to determine the 
463 % best cluster to use 
464 function [m,subno]=myfun(n,E) 
465  n=sortrows(n,3); 
466  maxdistance=0.3; 
467  m=[]; 
468  subno=[]; 
469  subnocell=cell(10,1); 
470  q=[]; 
471  for i=1:6 
472   for j=i+1:6 
473    for k=j+1:6 
474      q=[q; i,j,k]; 
475    end 
476   end 
477  end 
478  M=cell(10,1); 
479  Mi=1; 
480  current=n(1,:); 
481  M{1}=current; 
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482  subnocell{1}=union(q(current(1),:),q(current(2),:)); 
483  if size(subnocell{1},2)==5 
484   m=M{1}; 
485   subno=subnocell{1}; 
486   return 
487  end 
488  for i=2:size(n,1) 
489   notinserted=true; 
490   current=n(i,:); 
491   j=1; 
492   while j<=Mi & notinserted 
493    if  find(M{j}(:,1:2)==current(1)|…     
494      M{j}(:,1:2)==current(2)) 
495      MM=[]; 
496      MM=[M{j}; current];  
497      if clusthrecheck(E,MM)<=maxdistance 
498        M{j}=MM;   
499        subnocell{j}=union(subnocell{j},… 
500        union(q(current(1),:),q(curent(2),:))); 
501         if size(subnocell{j},2)==5 
502           m=M{j}; 
503           subno=subnocell{j}; 
504           return 
505         end 
506      end 
507     notinserted=false; 
508    end 
509   j=j+1; 
510   end 
511  if notinserted 
512  Mi=Mi+1; 
513  M{Mi}=current; 
514  subnocell{Mi}=union(q(current(1),:),q(current(2),:)); 
515   if size(subnocell{Mi},2)==5 
516     m=M{Mi};           
517     subno=subnocell{Mi}; 
518     return 
519   end 
520  end 
521 end 
 

calcaverages.m 
522 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
523 % Description:  
524 %   This function contains the average motion vector values  
525 %   for all selected binary subimages. 
526 % Usage: 
527 %   sigmaybar,c1bar,c2bar]=... 
528 %   calcaverages(propCluster,sizes,alpha,… 
529 %   theta,sigmax,sigmay,c1,c2) 
530 % Input: 
531 %   propCluster, 
532 %   sizes   -   The total size of each image. 
533 %   alpha   -   The deformation angle of each pair of  
534 %               images. 
535 %   theta   -   The rotation angle of each pair of images. 
536 %   sigmax  -   The Scaling factor in the x-axis. 
537 %   sigmay  -   The scaling factor in the y-axis. 
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538 %   c1      -   The shift in x-axis. 
539 %   c2          - The shift in the y-axis 
540 % Output: 
541 %   propCluster – The indices of the nodes that contains  
542                   the best binary images that can be used     
543                   to calculate motion vectors.   
544 %   sizes       - The total sizes of these binary images. 
545 %   alpha       - The averaged deformation angles of these  
546 %                 images. 
547 %   theta       - The averaged rotation angles of these  
548 %                 images. 
549 %   sigmax      - The averaged scaling factors in the x- 
550 %                 axes. 
551 %   sigmay      - The averaged scaling factors in the y- 
552 %                 axis 
553 %   c1          - The averaged shift in the x-axis 
554 %   c2          - The averaged shift in the y-axis 
555 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
556  
557 function [alphabar,thetabar,sigmaxbar,… 
558  sigmaybar,c1bar,c2bar]=... 
559  myfun(propCluster,sizes,alpha,theta,sigmax,sigmay,c1,c2) 
560  q=[]; 
561  w=[]; 
562  for i=1:6 
563   for j=i+1:6 
564    for k=j+1:6 
565     q=[q; i,j,k]; 
566    end 
567   end 
568  end 
569  pc=unique(propCluster(:,1:2)); 
570  si=q(pc,:); 
571  subsizes=sizes(si); 
572  for i=1:size(subsizes,1) 
573   w(i)=min(subsizes(i,:)); 
574  end 
575  w=w'; 
576  alphabar=sum(w.*alpha(pc))/sum(w); 
577  thetabar=sum(w.*theta(pc))/sum(w); 
578  sigmaxbar=sum(w.*sigmax(pc))/sum(w); 
579  sigmaybar=sum(w.*sigmay(pc))/sum(w); 
580  c1bar=sum(w.*c1(pc))/sum(w); 
581  c2bar=sum(w.*c2(pc))/sum(w); 
582 end 
 

Evalidation.m 
583  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
584  % The validation of array E - auxiliary function for  
585  % GrTheory Toolbox. 
586  % Author: Sergiy Iglin 
587  % e-mail: iglin@kpi.kharkov.ua 
588  % or: siglin@yandex.ru 
589  % personal page: http://iglin.exponenta.ru 
590  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
591  
592  function [m,n,newE] = Evalidation(E) 
593  if ~isnumeric(E), 
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594   error('The array E must be numeric!')  
595  end 
596  se=size(E);  
597  if length(se)~=2, 
598   error('The array E must be 2D!')  
599  end 
600  if (se(2)<2), 
601   error('The array E must have 2 or 3 columns!'),  
602  end 
603  if ~all(all(E(:,1:2)>0)), 
604   error('1st and 2nd columns of the array E must be  
605   positive!') 
606  end 
607  if ~all(all((E(:,1:2)==round(E(:,1:2))))), 
608   error('1st and 2nd columns of the array E must be…  
609   integer!') 
610  end 
611  m=se(1); 
612  if se(2)<3,  
613   E(:,3)=1;  
614  end 
615  newE=E(:,1:3); 
616  n=max(max(newE(:,1:2)));  
617  return 
618 end 
 

clusthrecheck.m 
619 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
620 % Description:  
621 %   This function check the maximum threshold between all  
622 %   nodes and it outputs the maximum value. 
623 % Usage: 
624 %   maxdis = clustercheck(E,a) 
625 % Input: 
626 %   E      -    The clusters to be checked. 
627 %   a      -    The distances between the nodes within  
628 %               clusters. 
629 % Output: 
630 %   maxdis -    The maximum distance between the nodes in a  
631 %               cluster 
632 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
633  
634  %This function check the maximum distance (threshold) 
635  %between all nodes in the cluster a 
636  function maxdis=myfun(E,a) 
637  q=unique(a(:,1:2)); 
638  w=[]; 
639  for i=1:size(q,1) 
640   for j=i+1:size(q,1) 
641    w=[w; q(i), q(j)]; 
642   end 
643  end 
644  [tf,loc] = ismember(w,E(:,1:2),'rows'); 
645  maxdis=max(E(loc,3)); 
646 end 
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moveitem.m 
647 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
648 % Description:  
649 %    This function removes a node from a cluster and puts  
650 %    it to another cluster. 
651 %    
652 % Usage: 
653 %    [src,dist]=moveitem(src,dist,vals) 
654 % Input: 
655 %    src  :  The source value. 
656 %    dist :  The distination. 
657 %    vals :  Values of all nodes in the clusters.  
658 % Output: 
659 %    src  :  The source value after removing. 
660 %    dist :  The distination after removing. 
661 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
662  
663 function [src,dist]=moveitem(src,dist,vals) 
664  [tf,loc] = ismember(vals,src(:,:),'rows') ; 
665  src=src(setdiff(1:size(src,1),loc),:); 
666  dist=[dist; vals]; 
667 end 
 

removerelated.m 
668 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
669 % Description:  
670 %   Remove loops in clusters. 
671 % Usage: 
672 %   [m,templist]=removerealted(m,templist,val) 
673 % Input: 
674 %   m        -  The nodes in the cluster. 
675 %   templist –  A temporary list used for switching nodes 
676 %   val      -  The values of these nodes. 
677 % Output: 
678 %   m        -  The nodes in the cluster after removing  
679 %               loops 
680 %   templist - A temporary list used for switching nodes 
681 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
682  
683 function [m,templist]=removerealted(m,templist,val) 
684  [r,c]=find(m(:,1:2)==val(1) | m(:,1:2)==val(2)); 
685  d=m(r,:); 
686  [m,templist]=moveitem(m,templist,d); 
687 end 
 
 
 

sortcluster.m 
688 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
689 % Description:  
690 %   This function sort the clusters according to their  
691 %   edges. 
692 % Usage: 
693 %   [c1]=sortcluster(c] 
694 % Input: 
695 %   c       -  Unsorted cluster.     
696 % Output: 
697 %   c1      -  Sorted cluster.  
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698 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
699  
700 function [c1]=ext(c) 
701  c1=[]; 
702  m=[]; 
703  h=1; 
704  i=1; 
705  while i<size(c,1) 
706    while c(i,1)~=0  
707     i=i+1; 
708    end 
709    temp=c(h:i-1,:); 
710    temp=sortmat(temp) 
711    m=[m;temp;0 0 0]; 
712    i=i+1; 
713    h=i; 
714   end 
715   c1=m; 
716 end 
 

 
con4.m 

717 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
718 % Description:  
719 %   Given a reference image and motion vectors, this  
720 %   function constructs a new image based on the reference  
721 %   image and motion vectors. 
722 % Usage: 
723 %   function [newImage]=con4(image1,theta,alpha,sx,… 
724 %   sy,c1,c2) 
725 % Input: 
726 %   image1    - The reference image. 
727 %   theta     - The rotation angle. 
728 %   alpha     - The deformation angle. 
729 %   sx        - The scaling factor in x-axis. 
730 %   sy        - The scaling factor in y-axis. 
731 %   c1        - The shift in x-axis. 
732 %   c2        - The shift in y-axis. 
733 % Output: 
734 %   newImage  - The new constructed image base on the  
735 %               reference image and the motion vectors. 
736 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
737  
738 function [newImage]=myfun(image1,theta,alpha,sx,sy,c1,c2) 
739  close all; 
740  A=[sx*cos(alpha-theta) sx*sin(alpha-theta);  
741  sy*sin(alpha+theta) sy*cos(alpha+theta)]; 
742  figure;  
743  imshow(image1); 
744  for x=1:size(image1,2) 
745   for y=1:size(image1,1) 
746     xpos=x*A(1)+y*A(2)+c1; 
747     ypos=x*A(3)+y*A(4)+c2; 
748     fx = floor(xpos);  
749     fy = floor(ypos); 
750     apha=xpos-floor(xpos);  
751     beta=ypos-floor(ypos); 
752     if ~(fx+1>size(f,2) | fy+1>size(f,1) | fx<1 | fy<1) 
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753       newImage(y,x) = ... 
754       image(fy, fx) *  (1 - apha)*(1 - beta)+... 
755       image(fy, fx+1) * apha*(1-beta) +... 
756       image(fy+1, fx) * (1-apha)*beta +... 
757       image(fy+1, fx+1) *apha*beta ; 
758     elseif 
759      (fx>0 && fy>0) && (fx==size(image1,2) ||… 
760       fy==size(image1,1)) 
761      && ~(fx>size(image1,2) || fy>size(image1,1))  
762       newImage(y,x) = image(fy, fx); 
763     else 
764       newImage(y,x) = 0;  
765     end        
766    end 
767  end 
768  figure; 
769  imshow(newImage,[]) 
770 end 
 
 

de5.m 
771 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
772 % Description:  
773 %   This function takes two images and plot the phase  
774 %   difference of FFT of them. 
775 % Usage: 
776 %   [m,n]=de5(im1,im2) 
777 % Input: 
778 %   im1    -  The first image. 
779 %   im2    -  The second image. 
780 % Output: 
781 %   m      -  The u values of the phase difference. 
782 %   n      -  The v values of the phase difference. 
783 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
784  
785 function [m,n]=myfun(im1,im2); 
786  close all 
787  F1=fft2(im1); 
788  F2=fft2(im2); 
789  F1=fftshift(F1); 
790  F2=fftshift(F2); 
791  P=F1./F2; 
792  Pph=angle(P); 
793  figure;  
794  imshow(Pph); 
795  s=size(im1,1);; 
796  z=s/2; 
797  Psurf=Pph.*(s/(2*pi)); 
798  PP=Psurf(z,:); 
799  PP=PP'; 
800  figure; plot(PP); 
801  QQ=Psurf(:,z); 
802  figure; plot(QQ); 
803  jp=z; 
804  while PP(jp+1)-PP(jp)<max(PP)*0.3 && jp<s 
805   jp=jp+1; 
806  end 
807  ip=z; 
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808  while PP(ip)-PP(ip-1)<max(PP)*0.3 && ip>2 
809   ip=ip-1; 
810  end 
811  jp=jp-1; 
812  P1=PP(ip:jp); 
813  m=PP; 
814  p=polyfit([ip:jp]',P1,1) 
815  f = polyval(p,[ip:jp]); 
816  figure; plot([ip:jp],P1,[ip:jp],f,'-r'); 
817  jq=z; 
818  while QQ(jq+1)-QQ(jq)<max(QQ)*0.25 && jq<s 
819   jq=jq+1; 
820  end 
821  iq=z; 
822  while QQ(iq)-QQ(iq-1)<max(QQ)*0.25 && jq>2 
823   iq=iq-1; 
824  end 
825  jq=jq-1; 
826  Q1=QQ(iq:jq); 
827  n=QQ; 
828  p=polyfit([iq:jq]',Q1,1) 
829  f = polyval(p,[iq:jq]); 
830  figure; plot([iq:jq],Q1,[iq:jq],f,'-r'); 
831 end 
 

conv1d.m 
832 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
833 % Description:  
834 %   This function takes two signals and plots the  
835 %   convolution of them. 
836 % Usage: 
837 %   conv1d(mask,q) 
838 % Input: 
839 %   mask  - The first signal (which is the digital filter) 
840 %   q     - The signal intended to be convoluted.  
841 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
842  
843 function myfun(mask,q) 
844  h1=mask(1,2:7); 
845  ds=[1 2 4]; 
846  sum1=0; 
847  z1=[];z2=[]; 
848  co=['r' ;'g'; 'k' ;'b' ;'c'; 'm'];  
849  cp=1; 
850  for (s=1:3) 
851   for (n=6*ds(s):(336-ds(s)*6)) 
852    for (k=2:6) 
853     sum1=sum1+(q(n+(k-1)*ds(s))+q(n-(k-1)*ds(s)))*h1(k); 
854    end 
855   z1(n)=h1(1)*q(n)+sum1; 
856   sum1=0; 
857  end 
858  h2=mask(2,2:9); 
859  sum1=0; 
860  for (n=8*ds(s):(336-ds(s)*8)) 
861   for (k=2:6) 
862    sum1=sum1+(q(n+(k-1)*ds(s))+q(n-(k-1)*ds(s)))*h2(k); 
863  end 
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864  z2(n)=h2(1)*q(n)+sum1; 
865  sum1=0; 
866  end 
867  plot(z1,co(cp)); 
868  hold on; 
869  cp=cp+1; 
870  plot(z2,co(cp)); 
871  cp=cp+1; 
872  end 
873  hold on; 
874  plot([0 400],[0 0],'k') 
875 end 
 

fullrangephi.m 
876 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
877 % Description:  
878 %   This function takes the values of rotation angles and  
879 %   out them as full range. 
880 % Usage: 
881 %   [q]=fullrangephi(phi,FramesNumber) 
882 % Input: 
883 %   phi          - The rotation angel. 
884 %   FramesNumber – The number of the frame which the phi  
885 %                  belong to.  
886 % Output: 
887 %   q            - A full-ranged alpha. 
888 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
889  
890 function [q]=myfun(phi,FramesNumber) 
891  q=[]; 
892  q(1)=phi(1); 
893  cdif=0; 
894 for (i=2:FramesNumber) 
895  dif=phi(i)-phi(i-1); 
896   if dif>2 
897     cdif=cdif-2*pi; 
898   end 
899   if dif<-2 
900    cdif=cdif+2*pi; 
901   end 
902  q(i)=phi(i)+cdif; 
903 end; 
 

jd.m 
904 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
905 % Description:  
906 %  This function takes plots the zero-crossing values that  
907 %  yield from convolution of the rotation angle and the  
908 %  mask. 
909 % Usage: 
910 %  jd(moments,mask)  
911 % Input: 
912 %   moments – The moments of the processed frames. 
913     mask    - The digital filter used in the convolution 
914 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
915  
916 function jd(moments,mask) 
917  phi=atan2(moments(:,2),moments(:,3)); 
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918  q=full_range_phi(phi,size(moments,1));  
919  plot(q); 
920  conv1d(mask,q) 
921 end 
 

get_moments.m 
 

922  
923 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
924 % Description:  
925 %   This function takes an image and calculates the moments  
926 %   of this image. 
927 % Usage: 
928 %   [weight,S00,M00,M01,M10,M11,M20,M02]=get_moments(img) 
929 % Input: 
930 %   img    - The input image. 
931 % Output: 
932 %   weight – The weight used to calculate the moments. 
933 %   M00    - The M00 moment. 
934 %   M01    - The M01 moment. 
935 %   M10    - The M10 moment. 
936 %   M11    - The M11 moment. 
937 %   M20    - The M20 moment.  
938 %   M02    - The M02 moment. 
939 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
940  
941 function [weight,S00,M00,M01,M10,M11,M20,M02]=myfun(img) 
942  ii=320; 
943  jj=240; 
944  w_sigma_len=105; 
945  for (i=1:ii) 
946   for (j=1:jj) 
947    u(j,i)=((i-ii/2)^2+(j-jj/2)^2)/(2*w_sigma_len^2); 
948   end; 
949  end; 
950  weight=255*exp(-1*u.^2); 
951  weight=u;   
952  im=double(im); 
953  S00=0; 
954  S10=0; 
955  S01=0; 
956  S11=0; 
957  S20=0; 
958  S02=0; 
959  for (x=1:ii) 
960   for(y=1:jj) 
961    cx=x-ii/2; 
962    cy=y-jj/2; 
963    S00=S00+im(y,x)*weight(y,x); 
964    S10=S10+cx * im(y,x) * weight(y,x); 
965    S01=S01+cy * im(y,x) * weight(y,x); 
966    S11=S11+cx*cy*im(y,x)*weight(y,x); 
967    S20=S20+cx*cx *im(y,x)*weight(y,x); 
968    S02=S02+cy*cy *im(y,x)*weight(y,x); 
969   end; 
970  end; 
971  M00=S00; 
972  M10=S10;  
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973  M01=S01; 
974  M11=S11;    
975  M20=S20; 
976  M02=S02; 
977 end 

 

Createmovie.m 
978 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
979 % Description:  
980 %   This function create a movie out of a set of images. 
981 % Usage: 
982 %   [avifilename]=Createmovie(A,frames_location) 
983 % Input: 
984 %      A               - Set of images. 
985 %      frames_location - The location of the images. 
986 % Output: 
987 %      avifilename     - The file name of the movie.   
988 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
989  
990 function [avifilename]=myfunc(A,frames_location) 
991  aviobj = avifile(avifilename,'fps',28);  
992  icon=[]; 
993  num=size(A,2); 
994  for (j=1:num) 
995   i=A(j); 
996   if i<10 
997   image1=strcat(frames_location,… 
998   'frame00',int2str(i),'.bmp') 
999   elseif i<100 
1000     image1=strcat(frames_location,'frame0',… 
1001     int2str(i),'.bmp') 
1002   else 
1003    image1=strcat(frames_location,'frame',… 
1004    int2str(i),'.bmp') 
1005   end   
1006  if ~ismember(i,[115:126,230:239]) 
1007   im=imread(image1);    
1008   imshow(im); 
1009   frame=getframe; 
1010   aviobj = addframe(aviobj,frame); 
1011  end 
1012 end 
1013 aviobj = close(aviobj); 
1014 end 
 

get_angle_dif.m 
1015 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
1016 % Description:  
1017 %   This function calculated the rotation angles difference  
1018     between two images. 
1019 % Usage: 
1020 %   [ang_dif]=get_angle_dif(im1,im2) 
1021 % Input: 
1022 %   im1     - The first image. 
1023 %   im2     - The second image. 
1024 % Output: 
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1025 %   ang_dif – The difference in rotation angles between the  
1026 %   two images. 
1027 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
1028  
1029 function [ang_dif]=myfunc(im1,im2) 
1030  [M00_1,M01_1,M10_1,M11_1,M20_1,M02_1]=get_moments(im1); 
1031  [M00_2,M01_2,M10_2,M11_2,M20_2,M02_2]=get_moments(im2); 
1032  F1=[M20_1 M11_1; M11_1 M02_1]; 
1033  F2=[M20_2 M11_2; M11_2 M02_2]; 
1034  [V1,D1] = eig(F1); 
1035  [V2,D2] = eig(F2); 
1036  ang1=atan2(V1(2,1),V1(1,1)); 
1037  ang2=atan2(V2(2,1),V2(1,1)); 
1038  ang_dif=ang2-ang1; 
1039 end 
 
 

vsplitter2.m 
1040 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
1041 % Description:  
1042 %   This function split a movie into images. 
1043 % Usage: 
1044 %   [im1]=vsplitter2(moviefilename,destinationfilename) 
1045 % Input: 
1046 %   moviefilename        - The movie’s file name. 
1047 %   destinationfilename  - The name of the extracted  
1048 %                          images. 
1049 % Output: 
1050 %   im1                  - The image file name. 
1051 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
1052  
1053 function [im1]=myfun(moviefilename,destinationfilename) 
1054  mov=aviread(moviefilename); 
1055  for i=1:size(mov,2) 
1056   im1=mov(i).cdata; 
1057   if i<10 
1058    filename=strcat(destinationfilename,int2str(i),'.bmp') 
1059    elseif i<100 
1060     filename=strcat(destinationfilename,int2str(i),'.bmp') 
1061     elseif i>=100       
1062      filename=strcat(destinationfilename,int2str(i),'.bmp') 
1063     end 
1064     imwrite(im1,filename); 
1065    end 
1066    end 
1067   end 
1068 end 
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