
vi

Table of Contents

Page

Abstract .. iv

Table of Contents ... vi

List of Tables ...x

I. Introduction ...1

General Issue ..1

CubeSat Definition ...2

Spacecraft Design Sequence...3

Problem Statement..3

Investigative Questions ..4

Research Objectives ...4

Methodology...5

Assumptions ...5

Implications ..6

Preview ...7

II. Literature Review ..8

Chapter Overview ...8

CubeSats ...8

Systems Engineering Design Process ...10

Model Based Systems Engineering ..14

Systems Modeling Language Overview ...16

Reference Architecture ...17

Small Unmanned Aircraft System Reference Architecture ..19

x

List of Tables

Page

Table 1. Systems Engineering Design Process [5] ... 11

Table 2. Functions of the Design Process [5] ... 12

Table 3. Space Mission Engineering Process [3].. 27

Table 4. System Requirement Review Finalized Output Documents............................... 30

Table 5. CubeSat Development Process [15] ... 33

Table 6. Included Regulatory Documentation .. 42

Table 7. Systems Language Glossary ... 44

Table 8. Insufficient Link Margin (Space Vehicle to Ground Station) Parameters.......... 61

Table 9. Sufficient Link Margin (Space Vehicle to Ground Station) Parameters 62

1

A REFERENCE ARCHITECTURE FOR CUBESAT DEVELOPMENT

I. Introduction

General Issue

Working with spacecraft is a complex endeavor, based in the most dynamic

environment known to man. The area of operations for spacecraft is constantly changing

and evolving, and the operators of these incredible systems have to constantly be on

guard in order to react to both adversaries and the complex physics of the orbital regime

alike. To meet these operational needs spacecraft have historically been designed in an

exquisite and unique manner, with mostly one-of-a-kind engineering to provide a set of

mission capabilities. Designing a spacecraft that has the capabilities and operational

profile necessary to succeed in this environment is exceedingly difficult, and this

difficulty is compounded enormously when the design of satellites moves away from

one-of-a-kind system design and into large scale vehicle reproduction. It is relatively easy

to smooth out the quirks and shortcomings when there is a single vehicle. When there are

potentially hundreds of interconnected vehicles, such as a CubeSat constellation, then any

inconsistencies become glaringly obvious and can undermine the entire system. Proper

spacecraft design is of the utmost importance in order to prevent and mitigate as many of

these issues as possible, before anything is built or fielded on orbit.

2

CubeSat Definition

 CubeSats were formally defined in 1999 at California Polytechnic State

University to create a universal standard for the development of “pico-satellites,” many

orders of magnitude smaller than other satellites of the time [1]. CubeSats follow an

additive system of cubic units, and multiple units (or “U’s”) can be combined to create a

progressively larger satellite. Each unit of a CubeSat is a 10 centimeter cube, with a mass

of no more than 1.33 kg; each addition of a unit to a CubeSat defines the class of vehicle

it is: 1 unit is a 1U CubeSat, 3 units is a 3U CubeSat, and so on [1]. The standardization

of CubeSat dimensions, and the different size classes, allowed for the design of a

mechanism to carry and ultimately dispense many CubeSats in a single launch; this

allows more payloads, designers, and operators to benefit from a single launch than ever

was possible before [1].

The CubeSat Program was created to promote a reduced barrier to entry in space

vehicle design and operation. While this was initially taken on whole heartedly by the

academic community as a way to teach students the basics of spacecraft design, the

commercial benefits of CubeSats were quickly illuminated thereafter. A CubeSat could

foreseeably be used as a lower cost testbed for a prototype technology, allowing for an

organization to test emerging technology in the actual intended operating conditions

rather than a best approximation here on Earth. However, a CubeSat does not need to be

limited to being solely a test platform. Accordingly, a CubeSat could be the main

mission, and thought is being given to the creation of large CubeSat constellations (a

3

network of CubeSats in Earth’s orbit) by some interested organizations. These thoughts

are investigated further in chapter II.

Spacecraft Design Sequence

AFIT has a Spacecraft Design Sequence, comprised of three courses: ASYS 531,

ASYS 631, and ASYS 632, all completed in this order. At the beginning of ASYS 531,

Space Mission Analysis and Systems Design, the students are given a mission that they

will then develop certain artifacts for. These artifacts include foundational pieces of the

mission such as the concept of operations, stakeholder needs, mission requirements,

space vehicle requirements, cost estimates and risk estimates [2]. These artifacts will are

carried forward to ASYS 631, Spacecraft Systems Engineering, where different

subsystem solutions are presented in order to understand the parts of a satellite and how

these parts may be used to provide a capability and satisfy the documentation from ASYS

531 [2]. ASYS 632, Satellite Design and Test, offers “a comprehensive overview of the

design, manufacture, and testing of complex space systems,” all derived from the

documentation from ASYS 531 and the subsystem knowledge from ASYS 631 [2]. These

courses are synchronized to create a viable mission and spacecraft design, and show

students how to derive everything needed to create a spacecraft from a set of stakeholder

needs.

Problem Statement

As satellite procurement moves towards mass-production of smaller CubeSats, the

Department of Defense needs to form a design baseline to better align with systems

4

engineering approaches used in the commercial sector, such as rapid prototyping and

model-based systems engineering (MBSE). With commercial launch opportunities

opening up and US adversary development advancing exponentially, the DoD cannot

afford to lose a step in its development cycle. A systematic approach to the cultivation of

an organization wide reference architecture can give engineers the advanced starting

point that they need to consistently create viable CubeSat designs and mission solutions.

Investigative Questions

 The research herein is based upon a general process of Space Vehicle Design, and

there are a few investigative questions that guide the subsequent findings:

1. How can engineers reduce the design time of a desired mission and system for

CubeSats?

2. Is it possible to produce traceable and defensible system designs on a consistent

basis?

3. Is there a way to accelerate the learning process involved with Space Vehicle

Design?

These questions have most likely been asked by many engineers in a wide variety of

CubeSat design teams, and are the framing basis for the objectives of the research

outlined below.

Research Objectives

The objectives for this research are to reduce CubeSat design time while still

adhering to the AFIT spacecraft design sequence and allowing students to learn,

5

determine common CubeSat components/functions, incorporate parametric analysis of

satellite design properties, and to contain the work done in a systems engineering model

for further project development. Using a common MBSE tool will allow for the design

borne out of the reference architecture to actually be created, and will ultimately align

with best practices in the commercial CubeSat community.

Methodology

The research will analyze the general space vehicle design process, incorporating

MBSE techniques and practices in order create a Reference Architecture within an MBSE

tool. The tool will be used by students and researchers at AFIT to create better satellite

designs in a much quicker manner. The tool will incorporate common design themes

found in CubeSat design and production, to include a notional library of functions,

components, and parametric evaluation. The modeling tool will be used by students,

faculty, and researchers at AFIT to apply MBSE techniques to CubeSat design while

advancing the current state of the art.

Assumptions

The modeling tool developed herein will be useful to all who are trying to build a

CubeSat, but it is assumed that users are familiar with the aspects of satellite mission

design and the systems engineering process. The modeling software used is Cameo

Systems Modeler, and the accompanying files are coded in MathWorks’ MATLAB. The

modeling tool is not intended for small satellites or one-of-a-kind satellites, and as such

may not be as useful for these operations. The Grissom 6U CubeSat bus is an AFIT in-

6

house design that meets the Cal Poly specifications outlined earlier in this chapter, and

will be the foundation of the reference architecture in the development process.

Selection of the Grissom bus does not limit the utility of the tool, and it is readily

extensible to meet the needs of different busses and platforms outside of AFIT. The

necessary scope of the research is simply to include the Grissom bus for subsequent AFIT

research. The tool is designed to integrate within the AFIT Space Vehicle Design

Sequence; many of the techniques and procedures found herein are specific to the Air

Force Institute of Technology, but there is value to be had in the modeling tool itself for

other organizations, as well as many learning opportunities that are beneficial to all of

those in the CubeSat community at large.

Implications

The tool will require an input of requirements documentation created during a

standard Preliminary Design Review (PDR), and then will be used in the subsequent

systems acquisitions phase of the design process (to include a Critical Design Review and

a Production Readiness Review), as well as in keeping a digital model of upcoming AFIT

CubeSat missions in which the Grissom bus will be used. In addition to aligning AFIT

with commercial best practices, this digital baseline model of the 6U Grissom bus will

allow research to develop in many divergent paths, but all still be based upon a similar

foundation.

A tool based upon a similar foundation gives AFIT a unique ability to instruct

students in the art of spacecraft design in a classroom, yet allows students to evolve into

7

researchers and apply what they have learned to take the model in a litany of directions.

The model can be added to and kept updated to always reflect the most accurate

representation of the common foundation, the Grissom bus, and can also be used to track

the progress of every Grissom based research project with respect to their own design

requirements. While the Grissom bus is the foundation of this particular effort, the

reference architecture can easily adapt to a different bus. The elements in the architectural

design are compatible with many different possible CubeSat bus configurations, and

would be of use to any organization looking to reduce their design time, maintain a

digital model of their system, and have a complete set of components traced to their

requirements.

Preview

This chapter has outlined the objectives and motivation for this thesis. Chapter II

describes a reference architecture in more detail, and the common needs and processes

within CubeSats. Chapter III explains the methodology used in designing the reference

architecture and a brief detailing of the modeling tool used. Chapter IV describes the

results and creation of the reference architecture. Finally, the conclusions, potential

applications, and recommendations for future research is presented in Chapter V.

8

II. Literature Review

Chapter Overview

The purpose of this chapter is to review current research on using Model Based

Systems Engineering to create a baseline model for a system domain or product line, also

known as a reference architecture. This chapter shall further define a CubeSat and its

contemporary use, what a reference architecture is, an example of a reference architecture

in the Small Unmanned Aircraft Systems domain, and key systems engineering topics. It

will conclude with an overview of previous work done on CubeSat Reference

Architectures.

CubeSats

 Traditionally, satellites are designed in a very limited run of production models, if

even more than one of a kind is being built. Intuitively, if a team is only going to build

one operational model of a system then they must perform an extensive run of testing

(both physical/digital using modeling and simulation) to ensure that the system is going

to work once fielded. If there is only ever going to be one chance at getting something

right, then it must be practically guaranteed to work. The cost of these programs can

become extremely prohibitive, especially when the costs of all of the different segments

(hardware, software, launch, etc.) are added up. All of the testing required to validate the

design could drive the price up exponentially, especially as system complexity increases.

 CubeSats, on the other hand, are relatively inexpensive and easily produced. The

rigor of testing can be balanced with the reduced consequences of failure. Robert Twiggs,

9

co-creator of the CubeSat Design Specification, asserts in Space Mission Engineering:

The New SMAD, that failure, to an extent, is acceptable in the efforts to push technology

forward [3]. These potential failures, while costly up front, ultimately drive costs down

due to the valuable information that is brought back. To a large organization in the space

domain, an investment below $500,000 for a CubeSat would be a relative drop in the

bucket in comparison to traditional research and development efforts. For a university

effort Twiggs ventures that the all-inclusive cost of a CubeSat should be less than

$100,000, which presents incredible value for the university in both education and

research-based perspectives [3]. The adoption of the standard CubeSat form factor by the

commercial sector has also opened up a myriad of launch options and ridesharing

opportunities, further bringing the cost down for users.

 The value of CubeSats extends beyond research, though, as evidenced by some

contemporary work in industry. SpaceX, in a 2016 FCC filing, announced their intention

of setting up a constellation of CubeSats in Low Earth Orbit to provide broadband

internet to the entire globe [4]. Constellations are not a new technique; many

communications satellites are set up in these networks to provide approximately global

coverage. These constellations typically number no more than a dozen satellites, yet the

proposed CubeSat constellation from SpaceX is set to contain more than 10,000 in a few

different shell orbits around the Earth [4]. This allows SpaceX to distribute the capability

being delivered among the entire network rather than a small number of satellites, and in

this manner it also allows them to dilute the risk. In a constellation of 12 satellites any

10

single failure could cause the whole constellation to fail; a constellation of thousands

would present far fewer opportunities for a single failure to degrade the entire network.

 The idea of a distributed capability is based on a set of devices with heterogenous

functional classes that integrate together to form a single cohesive network. These

distributed capability constellations allow the network to provide a similar capability as

the larger, more individually complex satellites at a much lower risk profile. CubeSats are

uniquely suited to this endeavor due to their size and ease of reproducibility. Each failure

is not prohibitively expensive to fix, based upon the economies of scale of producing

another CubeSat. Furthermore, single satellite failures do not need to be fixed

immediately, the gap can be covered by another satellite of a similar function class in the

constellation until a constellation resupply launch can occur.

 With their birth in the educational world and subsequent adaptation to commercial

interest, the CubeSat form factor developed in 1999 is a unique and powerful tool to be

used by any organization seeking to claim a slice of the space domain. There is much that

can be done with a CubeSat, and potential uses will continue to appear as more

organizations are beginning to experiment with their development. With benefits in

education, research, and commercial capability the CubeSat will be a valuable asset to

many organizations globally.

Systems Engineering Design Process

Problem solving, at the most basic level, involves looking at a problem and then

defining all of the things that need to be done to solve the problem. Once the needs have

been defined then it must be decided how those needs can then be satisfied, followed by

11

the mechanism for meeting the needs. Then it is necessary to define a way to ensure that

all of the parts of the solution work together without interfering with each other, and

finally a way to verify if the system even does what it is supposed to do. This abstract

problem-solving definition can be refined into the Systems Engineering Design Process,

detailed in the following steps:

Table 1. Systems Engineering Design Process [5]

1. Define the problem to be solved

2. Define and evaluate alternative concepts for solving the problem

3. Define the system level design problem being solved

4. Develop the system functional architecture

5. Develop the system physical architecture

6. Develop the system allocated architecture

7. Develop the interface architecture

8. Define the qualification system for the system

Interestingly enough, this is not a progressive series of steps, and all of these

efforts must be taken upon concurrently and iteratively to achieve the best result of

system design. This is best evidenced by the necessary table of outputs and inputs for the

design process.

12

Table 2. Functions of the Design Process [5]

Design function Major inputs Major outputs

Define the problem to be

solved

Concerns and complaints

by the stakeholders

Available data from

stakeholders

Definitions of measures of

effectiveness and desired

ranges

Constraints

Define and evaluate

alternate concepts for

solving problems

Ideas for concepts from all

interested parties

Recommended Concept(s)

Objective hierarchy and

value parameters for

meta-system

Define the system level

design problem being

solved

Stakeholders’ inputs Stakeholders’ requirements

Operational concept

Develop the system

functional architecture

Stakeholders requirements

Operational concept

Functional architecture

Develop the system

physical architecture

Stakeholders requirements Physical architecture

Develop the system

allocated architecture

Stakeholders requirements

Functional architecture

Physical architecture

Allocated architecture

Develop the interface

architecture

Draft allocated architecture Interface architecture

Define the qualification

system for the system

Stakeholders requirements Qualification system

design documentation

Within the AFIT Space Vehicle design sequence all of these steps are met, and in

fact it is interesting to note that the steps themselves are iterative and concurrent. In

13

ASYS 531 the course will go through all of these steps to produce all of the major

outputs listed above, all predicated on a set of stakeholder needs. These stakeholder needs

are written using the terminology of the stakeholder, and it is up to the engineers to

communicate with the stakeholders and derive a set of system requirements in definitive

language. For example, a need from a CubeSat stakeholder may read, “The satellite needs

to fit inside the dispenser we already have.” The engineer must determine what dispenser

the stakeholder has, then rewrite the requirement to define exactly how large the satellite

may be. A properly written requirements statement uses definitive statements such as

shall to identify what is needed out of a stakeholder need, “The space vehicle shall be

properly sized as a 6U satellite in accordance with 6U CubeSat Design Specification

dated 04/20/16 [6].”

Once these requirements are derived the top-level stakeholders’ requirements

document can be formed. This is not the end all and be all of the requirements to build a

system, and as time goes on and more systems knowledge is gained then more

requirements will be written to refine the top-level requirements. Using the derived

requirements to build the functional, physical, allocated, and interface architecture is an

interdependent process, and getting an initial condition of the spacecraft system is the

purpose of ASYS 531. Finally, the last step is developing a qualification system, using a

verification and validation matrix. Verification is the process of ensuring that all of the

components of the system are built to specification and meet all of the requirements

outlined for the system [5]. Validation is the process of ensuring that the system meets all

of the needs outlined by the stakeholders, a sanity check to determine if the right system

14

was built [5]. It is possible that the nature of the stakeholders needs got misinterpreted or

have evolved throughout the process, so it is important to validate the reasons that this

system is even being built.

Model Based Systems Engineering

A system is defined as a “collection of hardware, software, people, facilities, and

procedures organized to accomplish some common objectives [5].” All of these things

can be represented within the output artifacts of the systems design process outlined

above; this is a lot to think about at once when all of those components are folded in

together, and when addressed head on it can look ugly and confusing. Simply trying to

grasp all of these parts, however, is the minds attempt at informally modeling the system

in an approachable manner [7]. Mental modeling, or informal modeling, is acceptable for

personal understanding, but once the system design needs to be shared with other people

it would be exceedingly difficult to explain and define every personal decision made. To

avoid this, the systems engineering community at large has adopted a set of languages to

talk with one another about things that they are modeling, such as the Unified Modeling

Language (UML) and its linguistic sibling Systems Modeling Language (SysML) [5]. An

engineer can quickly become fluent in these modeling languages, and then systems

knowledge can easily be shared to a mutual level of understanding. Once the languages

are understood and ideas can be transferred between engineers with similar

understanding, it stands that the system can start being defined using the language.

Systems are defined in both a physical and conceptual manner using models. A

model is an abstraction of reality that begins by explaining the needs that a system should

15

meet, and then drilling down deeper to show how the system is going to meet those needs

[5]. As the engineers get further into the system design process the elements of the model

become more complex and hold more detail about the system. Models can be used to

compare design alternatives that meet the same set of needs, verify that a design meets

the given set of requirements, and depending upon the nature of the model it can even be

used in simulation activity [5, 7].

Within the model there are specific things that must be present to provide an

acceptable representation of what constitutes the system. In addition to the artifacts

derived from the systems design process, the model must also have the associated

functions of the system, components and subsystems, and expected inputs and outputs.

All of the documentation from above will inform the design choices within the model,

and the model will continue to evolve as the system is better understood by the creators.

The activities of the system can be looked at as the manner in which a problem or need

shall be solved. These activities are refined by system functions that show exactly how

the activity shall occur. For example, an activity of a CubeSat would be that it

communicates with its ground station. The refining function would be the precise manner

in which it does so, to include component related specifics such as how it shall slew,

when to begin communicating, when to end, and so on until activity completion.

The components of the system are identified to a certain level of abstraction,

contingent upon the needs of the engineer. The components can be created notionally,

such as identifying the need for an onboard processor, or they can be specific and identify

the type, performance parameters, physical characteristics and so forth. The choice

16

associated with a specific component is a design decision which must be weighed against

requirements and evaluated for compatibility, performance, and other desired objectives

based upon mission and stakeholder needs.

Systems Modeling Language Overview

 Systems Modeling Language, or SysML, can be used to provide a graphical

representation of important aspects of a model, including structure, behavior,

requirements and parametrics [8]. SysML was created and is managed by the Object

Management Group, and is an extension of the Unified Modeling Language [8]. SysML

is the language used to describe the model of a system, and is expressed graphically using

nine different diagrams. SysML can show how the system is structured by using a Block

Definition Diagram, where the parts of the system are shown in a hierarchical order

flowing down from the total system to the subsystems and components. It can show how

a system behaves by using an Use-Case Diagram, and also show what specific actions

the system performs by using an Activity Diagram. Diagrams will be discussed as they

are introduced in Chapter IV when the Reference Architecture is detailed.

These diagrams are created by using elements, specific pieces of a model that can

be connected together and related to other elements. The basic foundation of SysML is

the block, which can be used in many ways to show the structure of a system. A block

can be a component of a system with associated value properties, or a composite of a

multitude of blocks that are woven together and connected to create a representation of a

subsystem or the system at large. Blocks can also represent activities or actions that the

system is capable of doing. SysML organizes a model by using a series of packages to

17

contain specific information. These packages operate like folders, and they can contain

both diagrams and the model elements that make up these diagrams. The strength of

SysML is the ability to convey specific relationships between all of the different elements

in the model. SysML has structural tie ins that link between the different model elements

and can show how they interface with one another or how they are otherwise related.

Delligatti states that the final part needed to model a system is a tool, configured

in the selected modelling language, to display all of the model elements and diagrams in a

cohesive manner [8]. The tool in use at the Air Force Institute of Technology is Cameo

Systems Modeler. Cameo is produced by No Magic, Inc, and is a SysML based

modelling tool commonly used across many domains to display information, collaborate,

simulate, manage requirements and many other systems packages [9]. This modeling tool

is used for the architectural work completed throughout this thesis. While all of the

artifacts generated throughout will be made through Cameo, they will be written using

SysML and as such could be recreated in any other SysML based modelling tool.

Reference Architecture

Many models have been built to fit many different needs, but it would seem to be

inefficient to create a new model for every new project when an organization has

common stakeholders, goals, hardware, and facilities. It may be more efficient to have a

common baseline that takes into account many of the aspects of the organization, and

gives the engineers a more advanced starting point than they would otherwise have. This

is the purpose of a reference architecture. A reference architecture is a cumulation of

knowledge that gives guidance and rules for structuring, classifying, and organizing a

18

model, and can ultimately “capture the accumulated architectural knowledge of

thousands of man years of work” [10]. Maier and Rechtin posit that “if engineering is the

art and science of technical problem solving, systems architecting happens when you do

not yet know what the problem is [11].” Architecture is foundational to cultivating a

guided approach to problem solving that allows for consistent application of principles

necessary for project success.

It stands to reason that a reference architecture only works if there is going to be

many congruent points between projects. Internally, an enterprise may have a reference

architecture to show all of its employees how they expect products to be created or how

their business practices are to work. There may be a domain specific reference

architecture to ensure that all products being developed in a domain have similar

foundations to ensure greater consistency. In a specific domain the reference architecture

must then capture the links to all of the relevant “standards, legislation, domain

constraints, and mandatory frameworks [10].” There are external drivers of a reference

architecture that make it beneficial to have one as well, such as increased interoperability,

rapid adaptability, and shorter time to market for an individual product [10].

The effort to make a reference architecture is not to ensure that one project is

done to an acceptable degree. Reference architectures are made so that many more

models and projects capture the best of prior designs, and then to allow for the

reinvestment of modelling knowledge back into the architecture to ensure that the

reference architecture is always growing and evolving. This allows the reference

architecture to not only incorporate existing architecture efforts, but to maintain an eye

19

towards the future and develop innovative new products [10]. It is in the opinion of the

author that reference architectures are going to become even more useful as the DoD, and

world as a whole, move towards cloud computing and decentralized project management.

Nothing is designed and managed in a single location in a large program in the DoD, and

the common language and vision applied in a reference architecture that is used across

the program would greatly enhance the capability to produce a better product.

Architecture of a system should not be a result of designing the system, it needs to

be carefully thought out and planned before a system can begin being modeled because

the architecture ensures that the system is also meeting the business needs of the

organization [12]. The reference architecture can exist at multiple levels of abstraction at

the same time [10]. When it comes to organizing the architecture, it must then be

separated into its hierarchical levels of abstraction to ensure that guidance is given

appropriately at each level. These levels of abstraction correspond with the enterprise at

the highest level, the organization at the middle, and the actual system at the lowest level

[12]. This ensures that the same guidance and constraints flows between all of the parts of

the hierarchy and promotes consistency across all efforts.

Small Unmanned Aircraft System Reference Architecture

 A reference architecture for Small Unmanned Aircraft Systems (SUAS) was

developed for use in the AFIT Graduate Specialization Track in Unmanned Systems

Design, Development, and Flight Test [13]. The reference architecture is intended to

emphasize “a disciplined, repeatable process using Model-Based Systems Engineering

(MBSE)” while also increasing student learning and the ability to transition between

20

relevant organizations [13]. Jacques and Cox developed the architecture within Cameo

Systems Modeler, and use the architecture at the objective level as described by the Army

Research, Development, and Engineering Command [12], focused primarily on specific

product output for the SUAS specialization track.

 The SUAS reference architecture contains a Basic Ground Station Model, a Basic

Multi-Rotor System Model, Functional and Component Libraries for common elements,

and sample build using the architecture. In addition, the SUAS reference architecture also

includes parametric diagrams in order to do mathematical analysis on the design choices

of the user. Jacques and Cox take a low level, build-to approach in their reference

architecture, giving users the ability to build to a design specification using the provided

model elements. Users of the SUAS architecture will be able to design their mission and

system using the reference architecture, but more focus is given to the system design of

the SUAS rather than incorporating any high-level supporting artifacts.

Jacques and Cox used their reference architecture to supplement a culture of rapid

prototyping, with the reference architecture used as a springboard for pushing innovation

out of the researchers at a much faster pace. A common starting point and guiding vision

for their architecture helps their interdisciplinary teams of researchers design, build, and

test SUAS with more time spent on producing a quality product, and less time spent

designing a novel architectural framework [13]. Empirically, the more time spent with

attention towards quality design should ultimately yield a better product; a reference

architecture gives engineers the guidance and constraint to ensure that the product fits the

predetermined vision.

21

Jacques and Cox were able to capture a decade’s worth of experience in the

SUAS field inside their reference architecture, and this will ultimately grow as more

knowledge is gained in the field. As the architecture is used the lessons learned will be

reinvested back into the model, and this knowledge transfer and evolution will fuel rapid

innovation to meet the necessarily high demands of the rapid prototyping environment.

Relevant CubeSat Reference Architecture Research

 Kaslow et al. built a Cubesat Reference Model (CRM) providing a logical

architecture to form the basis for many different CubeSat missions [14]. Their

architecture describes three levels of architectural foundation that are necessary to

capture the whole domain: the enterprise level, the space and ground segment, and the

space and ground subsystem. This is similar to the enterprise-organization-system

structure of Army RDECOM, but has been adapted to be space domain specific [12].

 Kaslow et al. also used Cameo Systems Modeler to develop their CRM, using

their approach to logical architecture as a way to provide a framework for future CubeSat

developers. The goal of the reference model was to remove the burden of creating an

acceptable architecture at a high level. Figure 1 indicates the structure for the CubeSat

domain as described by Kaslow et al.

22

Figure 1. Kaslow et al. CubeSat Domain and Mission Enterprise [14]

 Kaslow et al. used a block definition diagram to demonstrate the hierarchy of

elements within the domain. They depict the CubeSat Mission Enterprise as being

composed of a Space Segment, a Ground Segment, Ground Station Services, and

Transport, Launch, and Deploy Services. This directed composition serves to indicate

that if any of those elements are missing the CubeSat Mission Enterprise would no longer

exist; they are critical components of its structure. Furthermore, they are able to identify

what must be developed by the CubeSat Project in greater detail, as shown by Figure 2.

23

Figure 2. Kaslow et al. CubeSat Space Segment [14]

Much like in Figure 1, Kaslow et al. have described all of the parts that a CubeSat

is composed of, and in this particular Block Definition Diagram they have also chosen to

distinguish between the Mission Payload and the Spacecraft Bus (shown by the dashed

line). This is done to show the necessary structure/components of a CubeSat (the

Spacecraft Bus) and the on-orbit mission structure/components (the Mission Payload).

This same process was also continued to formulate the composition for the Ground

System Segment as well, using similar organization.

Kaslow et al. determined that this logical architecture would provide guidance for

CubeSat developers to begin to formulate their own mission specific architectures,

knowing that their model did not have and could not have the specificity required to

support every type of mission [14]. It provides a top-level guide to how a CubeSat

24

enterprise is organized, and some of the external parties to the entire system as well.

Their model is a starting point for mission specific teams to incorporate their unique

knowledge to formulate their own reference architectures.

Upon investigation, the CubeSat Reference Model is missing much of the low-

level exposition that was included in the SUAS Reference Architecture. A thorough

reference architecture in this domain ought to include the high-level documentation and

views of the CRM and the low-level componentry and functionality of the SUAS

reference architecture. Combining the distinct approaches of these two architectures

would yield a thorough model of the intended domain.

Summary

In summary, Chapter II defined the Systems Engineering design process and how

it intertwines with the Spacecraft Design sequence at AFIT. The chapter gave a brief

overview of the Systems Modeling Language and the appropriate use of the language to

create models. The models that are created using SysML are hosted on a tool that is

written in that modeling language, and these tools are used to create diagrams and

elements to properly convey all of the information about a given model. It is tedious to

create a unique model for every different system, so the chapter also explored the concept

of a Reference Architecture, which provides a common vision, guidance, and constraints

to focus the modelling and design efforts of a new project. A system specific reference

architecture for Small Unmanned Aircraft Systems was examined, and a top-level

reference architecture for a CubeSat Reference Model extended this exploration.

25

III. Methodology

Chapter Overview

 The purpose of Chapter III is to describe the process behind the creation of a

reference architecture for use by AFIT students in the Space Vehicle Design sequence.

The reference architecture will take into account all of the background knowledge

described in Chapter II. The current inputs to the Space Vehicle Design sequence will be

described, as well as the desired system outputs from the proposed tool. The reasons for

choosing a reference architecture as the desired form will be discussed. Once the system

inputs and outputs have been identified, the process of creating a model to facilitate the

desired output operations will be explored. A description of the intended use of the

reference architecture within the Space Vehicle Design sequence will be identified.

System Inputs

 At this point, there have been no labels placed upon the tool to be designed to

supplement the Space Vehicle Design sequence at AFIT. The tool is to be designed to

meet the objective as outlined in Chapter I, using Model Based Systems Engineering to

reduce the time needed to design a space vehicle mission. The scope of the tool must be

narrow enough that students are still able to go through requirements derivation and first

pass iterative design, but large enough that the students can design and produce a wide

variety of viable designs.

 As the Space Vehicle Design sequence is described in Chapter II, there is a

sequential flow through the three required courses. ASYS 531 is the first course, and the

26

basis of this course is mission design, culminating in a System Requirements Review

(SRR). Leading up to the SRR, student efforts are focused through the use of Space

Mission Engineering: The New Space Mission Analysis and Design [3]. Wertz et al. give

much of their attention to the concept of mission engineering as opposed to systems

engineering; given by the following sequence of events:

27

Table 3. Space Mission Engineering Process [3]

Step in Sequence Action

Define Objectives and Constraints Define the Broad (Qualitative) Objectives

and Constraints

Define the Principal Players

Define the Program Timescale

Estimate the Needs, Requirements, and

Constraints

Define Alternative Mission Concepts or

Designs

Define Alternative Mission Architectures

Define Alternative Mission Concepts

Define the Likely System Drivers and

Key Requirements

Evaluate the Alternative Mission

Concepts

Conduct Performance Assessments and

System Trades

Evaluate Mission Utility

Define the Baseline Mission Concept and

Architecture.

Revise the Quantitative Requirements and

Constraints

Iterate and Explore Other Alternatives

Define and Allocate System

Requirements

Define System Requirements

Allocate the Requirements to System

Elements

Wertz makes the distinction between mission engineering and systems

engineering in his definition of the space vehicle design process. Whereas Systems

Engineering theorists such as Maier, Rechtin, and Buede would argue that the process of

systems engineering is one performed in totality from cradle to grave, Wertz describes

28

systems engineering as simply requirements definition and validation [3]. To use Wertz’s

terminology, the mission engineering sequence is the primary focus prior to a System

Requirements Review. The approach taken at AFIT is more akin to the manner described

by Maier, Rechtin, and Buede and is focused through a Systems Engineering process that

closely follows the technical process of mission analysis, stakeholder needs, requirements

definition, and system requirements definition [5, 11]. ASYS 531, the first course, is the

source of all of the starting inputs for the proposed tool. The course products are as

follows:

 Concept of Operations

 Engineering System Requirements

 System Functional and Physical Partitioning

 System Integration

 Verification and Validation

 Technical Reviews

 Configuration and Interface Management

 Cost Analysis

 Risk Management

Not all of these products are part of the Systems Engineering Design Outputs

shown in Table 2, but that is acceptable since these are general outputs that are crucial to

any project development process across the spacecraft development industry. All of these

29

outputs are necessary when conducting an SRR. Distilling the above list into the outputs

of Table 2, the inputs into the system model are as follows:

30

Table 4. System Requirement Review Finalized Output Documents

PDR Output Definition

Concept of Operations (CONOPS) Describes how the system will fulfill the

stakeholder needs and objectives [14].

System Requirements All of the things that the system must have

or do in order to meet the needs of the

stakeholders.

Functional and Physical Partitioning Functional parts of the system are abstract

representations of whatever it is that the

system is going to do. Separating system

functions from physical attributes is

necessary to ensure that system behaviors are

accurately captured. During the PDR the

system is still notional, this document shall

be a first attempt and will not be complete.

Verification Documents Verification means that the system

requirements have been checked and all are

satisfied. While the final verification

methods are unknown at this point, this

document shall give a general idea as to the

methods in which the requirements will be

verified.

Validation Documents Validation means that the system is meeting

the needs of the stakeholders. Validating a

system entails proving that it is bridging the

capability gap shown in the stakeholders

needs document. This document shall give a

general idea at how the system shall validate

the stakeholders needs

31

Desired System Outputs

 These documents shown above form all of the information that must be taken on

by the proposed tool. The documents are not definitive, but are an excellent foundation

for the inclusion of more systems knowledge to accurately flesh out the ideas contained

within. The process of adding more substance to these initial documents will be done

through the proposed reference architecture.

In addition to complete versions of the above documents, the stakeholders in the

Space Vehicle Mission Design sequence need the system model to capture a completed

functional, physical, and interface architecture for the given mission. Furthermore, the

system needs to be centered around the in-house satellite bus developed at AFIT, the

Grissom bus, but should remain extensible to accommodate for future CubeSat buses.

The model needs to include common componentry that has all the defining parameter

types listed, and must be built in a way that captures current laws, policies, and

regulations as they pertain to CubeSat manufacture and use. The model needs to have

complete descriptions of mission activities and use cases for the satellite, to include any

interactions with external actors (such as other satellites not part of the mission profile,

entities, etc.).

Although the output for many different missions will of course be different and

mission dependent, the stakeholders at AFIT need this tool to be repeatable and able to

grow with time. A repeatable tool is of great use to the stakeholders to accelerate

learning, produce consistent and coherent decisions, and allow student users of the tool to

take it in a multitude of directions. This initial concentration of learning and subsequent

32

rapid diversification of development is fantastic for the ability of AFIT to teach, learn,

and innovate in this burgeoning domain.

This tool must then be applied to the physical CubeSat development process to

get the satellite actually built, or at least test componentry and integration efforts in

ASYS 632 Satellite Design and Test. This process is outlined in Table 5:

33

Table 5. CubeSat Development Process [15]

Step Project Phase Typical Timeframe

1 Concept Development 1-6 months

2 Securing Funding 1-12 months

3 Merit and Feasibility Review 1-2 months

4 CubeSat Design 1-6 months

5 Development and Submittal of Proposal 3-4 months

6 Selection and Manifesting 1-36 months

7 Mission Coordination 9-18 months

8 Licensing 4-5 months

9 Flight Specific Documentation Development 10-12 months

10 Ground Station Design, Development and Test 2-12 months

11 CubeSat Hardware Fabrication and Testing 2-12 months

12 Mission Readiness Review Half day

13 CubeSat to Dispenser Integration and Testing 1 day

14 Dispenser and Launch Vehicle Integration 1 day

15 Launch 1 day

16 Mission Operations Variable, up to 2 years

 The inputs of the tool must be turned into outputs that can be used in this process.

Most of these steps are covered in the AFIT Space Vehicle Design sequence, but even the

34

ones that are not covered (such as licensing) must be incorporated into the final tool so

that users can use the tool for research and products that will need it.

Selection of a Reference Architecture

 Creating some tool, template, or framework seemed like the clear path to take. It

would be straightforward to create a template based upon the Grissom bus, with

components that have already been vetted or tested. This may appear as a great solution,

but in an academic institution this is stifling to the learning of the students, and

completely detrimental to any research efforts that would be going on using the CubeSat.

Furthermore, with the rapid rate of technological advancement and maturation in the

CubeSat domain, any premade selections in a template would be obsolete within a

relatively short period of time. Students would have little options to differentiate

themselves from their peers, and little problem solving on the part of the students would

occur as a result.

While in each situation the problem is unclear, and ostensibly different in every

case, there is a clear commonality. Every student who is going to use this tool is coming

through AFIT, with all of the same tools at their disposal. Each student would have the

same foundation upon which to stand, so why not codify what that foundation is? Every

model of a conceptual system must undergo some process of architecting, otherwise the

model would be nonsensical and disorganized [7]. Giving the students an elevated

platform upon which to start will surely accelerate their design process, and will allow

the students to spend less time building the architecture themselves and more time

focusing on developing a viable mission design and CubeSat.

60

satisfying the mission specific functional behavior described in the concept of operations.

This mission specific behavior is can be detailed in diagrams such as a State Machine

Diagram, shown in Figure 13. The State Machine Diagram gives solution agnostic

descriptions of how the satellite is supposed to behave, and is a visual description of the

CONOPS.

Figure 13. Project Firefly State Machine Diagram

 With all of the mission engineering finished, components and hardware needed to

be selected and integrated into the model. The components and hardware for this mission

had already been selected after the Preliminary Design Review, and further efforts show

that these components are in fact able to be integrated into the model and have the

requirements allocated to them. All of these efforts were captured inside the reference

architecture, and now they can be used to document the utility of parametric diagrams in

the reference architecture.

61

 Parametric diagrams in the reference architecture all have a similar structure,

shown in Figure 11, that allows users to take a set of system value properties and perform

calculations on them to ensure that requirements are being met and constraints aren’t

being broken. In this case, the requirement needing to be satisfied is “The Firefly Space

Vehicle shall have a positive link budget with a link margin greater than 6 dB.” As long

as the link margin is greater than 0 the CubeSat will be able to communicate with the

ground station, but an acceptable safety factor is added to ensure no loss in

communications, typically 6-10 dB required link margin [3].

Table 8. Insufficient Link Margin (Space Vehicle to Ground Station) Parameters

Model Element Parameter Unit

Orbital Altitude 700 Kilometers

SV Transmitter Power 4.77 Decibel-Watts

SV Transmitter Gain 1 Decibels

Frequency 455 Megahertz

Bitrate 4000 Bits-per-Second

GCS Receiver Gain 10 Decibel-Watts

GCS Antenna Noise 150 Kelvin

Noise Factor 7 Decibels

 If the link margin is less than 6dB then the output of the parametric diagram is a

Boolean result printed to the CDHS block, and this will show FALSE in an instance

table. The instance table in Figure 14 shows what the user will see in the ISIS Full

62

Duplex Transciever row if the parameters involved do not meet a link margin constraint

of 6dB:

Figure 14. Insufficient Link Margin Instance Table

If the values of the respective blocks are changed to provide a satisfactory link margin the

instance table will show a Boolean value of TRUE to indicate to the user that this specific

instance will satisfy the constraint. In this instance the Orbital Altitude was decreased, the

Frequency was increased, and the Ground Control Station Receiver Gain was increased.

Table 9. Sufficient Link Margin (Space Vehicle to Ground Station) Parameters

Model Element Parameter Unit

Orbital Altitude 621 Kilometers

SV Transmitter Power 4.77 Decibel-Watts

SV Transmitter Gain 1 Decibels

Frequency 940 Megahertz

Bitrate 4000 Bits-per-Second

GCS Receiver Gain 18 Decibel-Watts

GCS Antenna Noise 150 Kelvin

GCS Noise Factor 7 Decibels

63

These values are kept in the instance table for future reference if the user still wants to

work on the component value properties.

Figure 15. Sufficient Link Margin Instance Table

Summary

This chapter outlined the total hierarchy of the CubeSat Reference Architecture,

and outlined the Organizational Level Architecture and the System Level Architecture.

Both levels of architecture were explored and their contents detailed, with specific

attention shown to the flexibility of the model elements to adapt to the needs of the

specific mission sets of the user. The activity, language, and component libraries were

explored and their element hierarchies were outline to give clarity to the interconnected

nature of the reference architecture. The concept of readily available simulation in the

form of parametric diagrams was discussed, as well as the usefulness of instance tables.

64

V. Conclusions and Recommendations

Significance of Research

Any model that is created has some form of architecture attached to it, intentional

or otherwise. If the architecture is organized and planned with guided intent it can save

significant amounts of time for the user. AFIT has a systematic approach to teaching

students how to design a mission in space and how to create a hardware solution to meet

the designed mission. The AFIT Space Vehicle Design sequence does not happen in a

vacuum, and the time needed to create viable missions and spacecraft is extremely

valuable. AFIT students are expected to be taking other classes and working on other

assorted research ventures at most points during the sequence. Any time saved on the

design of the architecture of the system is time that can then be reapplied for better

mission understanding, component testing, hardware selection, and so on.

The time scale necessary to create this reference architecture is now proportional

to the amount of time saved by users not having to create their own system architecture,

and this can be reinvested into better system design. Furthermore, having a consistent and

reusable architectural baseline to apply over a multitude of potential mission scenarios

gives the AFIT Space Vehicle Design sequence wide latitude to capture knowledge

gleaned from the many iterations of the design sequence. As classes come through AFIT

and more students use the architecture, it will continue to grow and adapt to fit the future

needs of the institution.

An adaptable and evolving architecture is a necessary capability. The state of the

art in the space domain is increasing exponentially, and this reference architecture is

65

capable of growing with time and incorporating the advances of technology, standards,

policy, and common practices/techniques. The reference architecture is an open-ended

tool, and while it enables users to take the system design in many different directions it

also has a few elements that are specific to AFIT. These elements are readily extensible

to all parties interested in developing CubeSats, and there is still value in the ability of the

model to show system level and organizational level hierarchies and frameworks for use

by non-AFIT entities.

Investigative Questions Answered

 Chapter I introduced three investigative questions to guide the research efforts

throughout this process:

1. How can engineers reduce the design time of a desired mission and system?

2. Is it possible to produce traceable and defensible system designs on a consistent

basis?

3. Is there a way to accelerate the learning process involved with Space Vehicle

Design?

The first question is aided by the inherent repetition found in the CubeSat development

process. Since many of the events and process steps are similar from one build to another

it made sense to create a notional model of a CubeSat mission that could easily be

expanded upon with the mission specific details. Giving this advanced starting point to

engineers is a quick and useful manner in which to reduce the design time for a desired

mission and system. The foundation of the framework is capable of hosting a wide

variety of missions and builds, and the lessons learned from these builds can be

66

reincorporated to ensure that subsequent users remain on the forward edge of the

development process.

Given that the framework has already been created for the engineers, it gives an

integrated and intuitive workspace to create a fully traceable system design. All of the

elements in the framework are related to one another, and additions and changes can be

related to show the interconnectedness of the system. These relations form the network of

traceability from requirements to components, capabilities, and uses of the system. Being

able to show how a set of mission needs resulted in a specific system is valuable for the

design team to prove that the system they have built is the correct system for the

stakeholders and their mission, and the Reference Architecture that was built is the tool

with which all of these artifacts are captured and displayed.

The advanced starting point given to users is also a catalyst for the increased

comprehension of the general space vehicle design process and understanding of the

necessity to integrate clear and fluid systems engineering in a mission design. These

factors being impressed upon the students from an early stage in the educational process

truly accelerates their learning and results in the production of more knowledgeable space

professionals within a decreased timeframe. Ultimately the creation of a Reference

Architecture for the CubeSat domain was the simultaneous answer to all of these

questions, and gives users the capability to rapidly produce traceable and defensible

designs while enhancing the learning outcomes of the space vehicle design process.

67

Limitations

Currently the reference architecture has not been used to build a new mission

from the start of the Space Vehicle Design Sequence. The system was validated using

prior data to show that the system could produce the desired outputs, but the

componentry was already selected to create these outputs. The process of testing, failing,

and retesting components was not able to be captured as a result, and the functionality of

model elements such as instance tables were not able to be explored outside of this static

environment. These elements will be tested in dynamic environments in the near future at

AFIT.

Recommendations for Future Research

Incorporating the reference architecture into the AFIT Space Vehicle Design

sequence is the primary objective moving forward. Use of the reference architecture to

facilitate the introduction of key systems engineering concepts and best practices to new

students is essential, and early introduction (after mission engineering has happened)

would be of the most benefit to the students.

What benefits the architecture has also have to be measured with the reality the

architecture needs “operational testing.” It needs to be validated by using dynamic data

points, subject to the uncertainty inherent to real-time system design. Once the reference

architecture is used to capture componentry and system testing in a space vehicle design

and build sequence the ability of the reference architecture to show changes over time

would be put to the test, and this level of stress would reveal the capability to capture the

needs of the students. Thought needs to be given to establishing a set of measures to

68

determine the utility and effectiveness of a reference architecture in CubeSat design. In

addition to this, there could be added benefit in comparison of the reference architecture

to current satellite architectures and subject matter experts in the field. This would be a

powerful step towards validating that the initial content of the reference architecture is

structurally capable of becoming a full fledge satellite architecture.

Furthermore, as different groups of students within the space vehicle design

sequence are subject to different constraints the model would be able to be taken in

multiple directions at once. This would be the best way to validate the ability of the

reference architecture to be used in concurrent projects, especially with different groups

using the architecture to model different mission sets. Using the architectural framework

to model multiple missions, knowing that these missions came from the same originating

architecture, should yield many artifacts for the architecture to grow upon.

The Small Unmanned Aircraft System Reference Architecture is beginning to

incorporate elements of autonomy into its capability suite, and this is another direction

that could be taken with the CubeSat Reference Architecture [13]. While the benefits are

numerous, autonomy is difficult to implement well in many situations, and is even more

so in space. Modeling autonomous functions, behaviors, and states within the architecture

would be beneficial to understanding the manner in which it could reliably be created and

implemented within the space domain.

A long-term research goal would be the integration of a visual modelling software

such as Systems Tool Kit (STK). STK can create space vehicles and other domain

elements to visualize orbits, sensors, location, and many more aspects related to satellite

69

operations. Incorporating template STK models into the reference architecture, and then

using STK to model the way that a satellite moves and operates based upon different

parameters would be a valuable capability to show changes in a three-dimensional

representation of the satellite.

The biggest future research opportunity for the architecture is to become the basis

for a mission that will actually be designed, built, and launched using the Grissom bus.

Having an AFIT CubeSat mission use this reference architecture “cradle to grave” would

be an ideal use of the tool, and would provide the users with plenty of capability to

maintain a model of the system and the mission at all times. This model could be given to

stakeholders and operators to increase system understanding, and would allow for

increased system knowledge from all parties.

Summary

Designing a CubeSat begins with understanding the mission that needs to be

performed and the functions needed to perform that mission; only then can the process

move on to capturing hardware decisions. A CubeSat Reference Architecture gives the

ability to connect mission definition elements to hardware choices, and provides clear

traceability between the two elements. The Reference Architecture captures all of the

architecting knowledge at AFIT and forms the architectural baseline for CubeSat

missions both within AFIT and in the general CubeSat design community. The Reference

Architecture is keeping in practice with Model Based Systems Engineering best practices,

and has the capability to evolve and grow in order to facilitate innovation and rapid

development within the CubeSat domain.

70

71

Appendix A. CubeSat Reference Architecture AFIT User’s Guide

Welcome!

This is not intended to teach you how to use Cameo Systems Modeler, rather to

focus and guide your efforts in designing a viable spacecraft platform using a reference

architecture. To learn how to use Cameo, please refer to ASYS 531 laboratory lessons.

There are a few documents that you need to have before you start using the CubeSat

Reference Architecture, primarily the Stakeholder Analysis Documentation. This

includes:

 Stakeholder Needs Document (SND)

 Derived Stakeholder Requirements Document (SRD)

o Optional: Space Vehicle Requirements Document (SVRD)

 Measures of Effectiveness (MOE)

 Technical Performance Measures (TPM)

 Key Performance Parameters (KPP)

 Constraints (budget, schedule, etc.)

 Concept of Operations (CONOPS)

All of these documents should be products of ASYS 531, Space Mission Analysis

and System Design. Furthermore, ASYS 531 students should also have first attempts at

creation of a functional, physical, and interface architecture, as well as potential

Verification and Validation concepts. All of these extra elements will add into the

72

reference architecture nicely, and will only give a greater starting point for system design.

Some additional elements such as State Machine Diagrams, mission specific Activity and

Use Case Diagrams, and Block Definition Diagrams are also useful, but not necessary. If

the above documents have been completed and signed off by the sponsor then you are

ready to go!

 Using the Content Diagram the model opened up to (where you probably saw this

User’s Guide), right-click the “Architectural Guidance” package inside the

Organizational Framework on the left

 Click “Select in Containment Tree.” This is showing you where to place the SND.

 Right click on the “Requirements” package inside the System Model and place

the SRD (and SVRD if you have it) inside.

 Use this opportunity to trace the Stakeholder Requirements Document to the

Stakeholder Needs document.

 Right click on the SRD and select “Specification,”

 When this pane opens up select “Relations.”

 The relations page will give you the option to create an outgoing relation, select

this and then select the “Trace” option.

 A pop-up of the model containment tree will now show, select the “Architectural

Guidance” package that you just put the SND inside of to trace the SRD to the

SND.

73

Maintaining requirements traceability is essential to performing verification and

validation, and this traceability will be able to eventually prove that all requirements have

been satisfied in one way or another. Be sure to trace every requirement to the need that it

was derived from. You will use this same method to satisfy requirements by connecting

the satisfying model element to the requirement.

 Right click on the model element that is satisfying a particular requirement

 Follow the same procedure as outlined above to get to the relations page

 Create an outgoing relation, this time select “satisfy”

 Connect the outgoing relation to the requirement that the model element is

meeting

All of these relationships can be shown in a requirements satisfaction table for

verification and validation purposes. A relationship table of any kind (trace, allocate,

refine, satisfy, etc.) can be shown to create a summary of all of the incoming and

outgoing relationships and can be key in understanding how the foundational

documentation of the satellite resulted in specific design choices being made.

Next it will be up to you to turn the SRD and SVRD into requirement model

elements in Cameo, if you have not already done so in ASYS 531. In addition, you must

go through the Laws, Policies, Regulations, and Technical Standards repositories and

parse those documents to get your regulatory set of requirements for the space vehicle.

Place all of these requirement elements into the “Requirements” package inside the Space

Vehicle Framework of the System Model. Trace these requirements to the block that the

document is attached to, not the document itself. This package is associated with the

74

Space Vehicle, so all requirements will tie into that block. Also put the CONOPS into the

“Concept of Operations” Package, separate from the requirements package. The

requirements from the CONOPS simply need to be traced back to the CNOPS. You can

check up on your progress and continually monitor it by creating a requirements table, it

will be helpful to keep this table and have a single diagram to look at to check your

requirements.

Once all of the requirements are created, outlined, and traced, go ahead and take

the designed mission parameters (altitude, duration, inclination, etc.) and input them into

the “Concept of Operations” Package using the “Orbital Parameters” block. Value

properties have already been created for the most common orbital parameters, thes

contain a default value of zero. You must input your desired mission parameters to the

value property slots that match each parameter. These parameters will be used for

parametric analysis later.

Now you may begin working on the functions of the space vehicle. Create

activity diagrams and use cases to show what is expected of the vehicle. There are

already activity diagrams and mission profiles for you to choose from in the Activity

Library. Use these as you wish, or expand upon them to fit your mission need. Describing

the activities and functions of your system may drive you to realize that there are more

requirements than you originally thought. As you create your activities add new

requirements to your list as necessary. Don’t forget to trace!

Once your activities are created you may move on to the components of your

space vehicle. As you have developed your knowledge of the different subsystems of a

75

CubeSat throughout ASYS 631 you will have arrived at certain components that lend

themselves best to the mission you have been tasked with. Looking at the component

library you can see that it is broken up into the relevant subsystems. Go into each

subsystem and fill in the value properties for each component that you intend to have on

your CubeSat. As before, the default values of these components are zero, so if there is a

component in the library that you do not plan to use it will not affect any calculations.

The payload section of the component library contains a blank payload block that is

connected to the space vehicle. There are several example payloads to guide your choices

as you fill in the blank payload block, but you must fill in the blank payload in order for it

to connect with the space vehicle block.

All of the components link together, and this can be seen in the Space Vehicle

Block Definition Diagram under Section 3 of the Space Vehicle Framework. As you

finish filling in all of your componentry you can now step out of the space vehicle and go

to the Ground Control Station Block to ensure that all of the information as it pertains to

ground system equipment is up to date. This will be important to perform parametric

calculations using the most accurate representation of the equipment at AFIT.

Once you have identified your componentry you need to ensure that any

technical requirements are being met. If you have requirements that relate to performance

of a certain subsystem or component then you need to create that relation at this time.

 Right click on the component that is satisfying a particular requirement

 Go to the element specification, and click on relationships

 Create an outgoing relation, this time select “satisfy”

76

 Connect the outgoing relation to the requirement that the Space Vehicle

component is satisfying

Now that you have specified componentry for the Space Vehicle you can run

simulations upon your satellite to see if the specific values of your components meet

requirements. These simulations are already pre-configured, all you need to do is select

the simulation configuration control at the top of the model.

Figure 16. Simulation Configuration Management

 In this case the simulation is configured for a Space Vehicle Power Rollup, and

you can click on the drop-down arrow to change the configuration each parametric

equation. Simulations are performed upon the space vehicle as a whole, and are executed

through the parametric equations attached to the space vehicle. These parametric

equations are started by pressing the play button next to the simulation configuration

selected, and a window at the bottom of the Cameo screen shall pop up to show you how

the simulation is resulting. In this case, the simulation will show how much total power

the space vehicle will use in a given configuration. This configuration is then saved to an

Instance Table, found in Section 8 of the Space Vehicle Framework. These instance

tables can be used to show iterations of the components of the space vehicle, and is a

77

great way to show how failures or successes in the analysis of the components of the

space vehicle have driven change in the system.

 You have now used the reference architecture to create and outline your own

Space Vehicle. This is not a start to finish guide, many of the processes identified must be

iterated, often frequently, to arrive at an acceptable solution that satisfies all

requirements. However, by using this reference architecture you are putting yourself head

and shoulders above the standard document based approach, and you have a solid

foundation upon which to stand as you move forward with this system.

 If you have created any of your own parametric diagrams, please look to upload

them (with a simulation configuration) to the master copy of the reference architecture so

that others may benefit. Any other lessons learned are also greatly appreciated. This

reference architecture is a living, breathing, and evolving representation of all of the

systems knowledge here at AFIT, and it is up to you to keep it in a position where it is

able to allow you to innovate. If you do decide to upload your findings and lessons

learned into the diagram, please identify the updates that you have made and ensure that

you do not disrupt the normal functionality of the model when you include your

revisions.

78

Appendix B. Parametric Diagram MATLAB functions

Function 1: Satellite Link Margin (Link_Margin.m)

function [EBNO] = Link_Margin(frequency,altitude, Reciever_Gain, Transmit_Power,

Transmitter_Gain, bit_rate)

%Link Margin Calculation

% altitude must be in km, frequency must be in GHz, Receiver_Gain is in

% dB, Transmit_Power is in dB, Transmitter_Gain is in dB, bit_rate is in

% bits per second

% Free Space Losses

sin_roh = sind(6371/(6371+altitude)); %roh is the angular radius of earth

cos_eps = (sind(30)/sin_roh); %spacecraft elevation angle

lambda = 90-30-acosd(cos_eps); %nadir angle+angular radius+elevation angle

=90deg

transmit_distance = 6371*(sind(lambda)/sind(30)); %in km

Ls = 92.45 + 20*log(transmit_distance) + 20*log(frequency); %Free Space Loss

in dB form

% At this point calculate Atmospheric and Rain losses based upon mission

% parameters. From here on out they will be calculated as zero, given that

% free space loss is the largest loss factor and the other loss factors are

% usually negligible on a clear day

La = 0; %atmospheric loss (update using log chart based on your specific

mission)

Lr = 0; %rain loss (update using log chart based on your specific mission)

Lcomb = Ls + La + Lr; %Combined Losses in dB form

System_Temp = 21.3; %given in SMAD Table 13-10, units in dB-K

GT = Reciever_Gain - 10*log(System_Temp) ; %G/T Ratio in dB

EIRP = Transmit_Power + 0.5 + Transmitter_Gain; %Equivalent Isotropic

Radiated power in dB

Carrier_to_Noise = EIRP + GT - Lcomb +228.6 %carrier to noise ratio in dB

Rb = 10*log(bit_rate); %converts bit rate from bits per second to dB-Hz

79

EBNO = Carrier_to_Noise - Rb; %gives Eb/No predicted, will now compare to

give link margin

end

Function 2. Solar Array Area Validation (Power_Life.m)

function [Solar_Array_Area,Power_Beginning_Life,Power_End_Life,Te,Td] =

Power_Life(Power_Required,Orbit_Altitude,

Mission_Length,Solar_Efficiency,Degradation_Rate)

% Luke Farrell Nov 7 2019

% Gives beginning and end of life solar array power production density per square

% meter, required area of the solar array given power needs, and the time

% in eclipse (Te) and the time in daylight (Td) per orbital period

% Orbit Altitude in km, Mission Length in Years, Solar efficiency is a percentage,

 lambda = rad2deg(asin(6378.1/(Orbit_Altitude+6378.1))) ; %frequency

 Orbital_Period = 2*pi()*sqrt(((Orbit_Altitude+6378.1)^3)/398600) ; %orbital period in

seconds

 Te = (2*lambda)/360 ; %time in eclipse in seconds

 Td = Orbital_Period-Te ; %time in daylight in seconds

 Xd = 0.65 ; %power efficiency getting from solar panels to battery to load in daylight

 Xe = 0.85 ; %power efficiency getting from battery to load in eclipse

 Power_From_Solar_Array =

(((Power_Required*Te)/Xe)+((Power_Required*Td)/Xd))/Td ; %total amount of power

needed per orbit from solar panels

 Id = 0.72 ; %inherent degredation

 P0 = 1358*Solar_Efficiency ; %W/m2, power density output standard

 ang = deg2rad(23.5); %worst case sun incidence angle

 PBOL = P0*Id*cos(ang); %Power density per square meter at beginning of life

 Ld = (1-Degradation_Rate)^Mission_Length; %lifetime degradation

 PEOL = PBOL*Ld; %Power density per square meter at end of life

 Solar_Array_Area = Power_From_Solar_Array/PEOL

 Power_Beginning_Life = PBOL ;

 Power_End_Life = PEOL ;

end

80

Bibliography

[1] California Polytechnic, "CubeSat Design Specification (CDS)," CalPoly, San Luis

Obispo, CA, 2014.

[2] AFIT Graduate School of Engineering and Management, "Air Force Institute of

Technology," 28 August 2019. [Online]. Available:

https://www.afit.edu/docs/19-20%20Catalog.pdf.

[3] J. R. Wertz, D. F. Everett and J. J. Puschell, Space Mission Engineering: The New

Space Mission Analysis and Design, Hawthorne, CA: Microcosm Press, 2011.

[4] Space Exploration Holdings, LLC, "Federal Communications Commission

Licensing," 15 November 2016. [Online]. Available:

https://licensing.fcc.gov/cgi-

bin/ws.exe/prod/ib/forms/reports/swr031b.hts?q_set=V_SITE_ANTENNA_F

REQ.file_numberC/File%20Number/=/SATLOA2016111500118&prepare=&

column=V_SITE_ANTENNA_FREQ.file_numberC/.

[5] D. M. Buede and W. D. Miller, The Engineering Design of Systems: Models and

Methods, Hoboken, New Jersey: John Wiley and Sons, 2016.

[6] California Polytechnic, "6U CubeSat Design Specification," NASA, San Luis

Obispo, 2016.

[7] S. Mandutianu, M. Mehrdad and K. Donahue, "Conceptual Model for Space

Mission Systems Design," Jet Propulsion Laboratory, Pasadena, California,

2009.

[8] L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling Language,

Upper Saddle River, New Jersey: Addison-Wesley, 2014.

[9] No Magic, Inc, "Cameo Systems Modeler User Guide," No Magic, Inc, 2020.

81

[10] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole and M. Bone, "The

Concept of Referece Architectures," Wiley Interscience, Hoboken, New

Jersey, 2008.

[11] M. W. Maier and E. Rechtin, The Art of Systems Architecting, Boca Raton,

Florida: CRC Press, 2009.

[12] US Army RDECOM, "Comprehensive Architecture Strategy," US Army,

Aberdeen Proving Ground, Maryland, 2018.

[13] D. Jacques and A. Cox, "The Use of MBSE and a Reference Architecture in a

Rapid Prototyping Environment," Air Force Institute of Technology, Dayton,

Ohio, 2019.

[14] D. Kaslow, B. Ayres, P. Cahill, Hart, Laura and R. Yntema, "Developing a

CubeSat Model-Based System Engineering (MBSE) Reference Model -

Interm Status #3," in IEEE Aerospace Conference, Big Sky, Montana, 2017.

[15] National Aeronautics and Space Administration, "CubeSat 101: Basic Concepts

and Processes for First Time CubeSat Developers," NASA CubeSat Launch

Initiative, San Luis Obispo, California, 2017.

[16] Office of the Secretary of Defense, Networks and Information Integration

(OASD/NII), "DoD Reference Architecture Description," Office of the DoD

Chief Information Officer, 2010.

[17] S. J. Pierce, "Modeling Navigation System Performance of a Satellite-Observing

Star Tracker Tightly Integrated with an Inertial Measurement Unit," AFIT

Dissertation, Dayton, 2015.

82

83

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

21-02-2020
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

March 2019 – March 2020

TITLE AND SUBTITLE

A Reference Architecture for CubeSat Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Farrell, Luke J., Second Lieutenant, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/ENV)

 2950 Hobson Way, Building 640

 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-20-M-199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 Intentionally Left Blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

14. ABSTRACT

Developing a space vehicle is a complex and detailed process, and while CubeSats are smaller and
more accessible than traditional satellites the design process is relatively unchanged. Creating a viable
space vehicle design requires detailed analysis of a set of mission needs in order to define the mission,
with this need set used to then create the specific mission requirements. These requirements are used to
formulate a concept of operations, and then move into developing a physical system for executing the
mission. The successful production of CubeSats within an organization is contingent upon the accurate
execution of the general CubeSat Development Process.
 This research presents a tool to facilitate more complete, streamlined, and transferable products
throughout the course of a general CubeSat Development Process. The reference architecture is capable
of displaying both organizational and systems level architectures, both linked together and in support of
consistent and repeatable structure to be given to users intending to produce a complete mission and
system design. The architecture incorporates a suite of repositories to assist users in hardware
integration and requirements traceability, including component, activity, and regulatory libraries; in
addition to parametric diagrams to facilitate requirements verification and constraint analysis.

15. SUBJECT TERMS

Cubesat, Reference Architecture, Model Based Systems Engineering, MBSE, System
Architecture
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

95

19a. NAME OF RESPONSIBLE PERSON

David R. Jacques, AFIT/ENV
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636 x3329

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

84

