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Abstract

The United States Department of Defense (DoD) possesses over 560,000 buildings
and structures around the world which require electricity to maintain and operate. The
energy costs associated with the operations of these building is approximately $4 billion
per year. Sustainable infrastructure management is a crucial opportunity to improve and
establish a prudent, manageable, and successful DoD budget. This research identified,
modeled, and simulated thermal energy-efficient standards in building construction in order
to recognize the best value standards as opportunities for potential cost savings.

EnergyPlus and OpenStudio Building Performance Simulation (BPS) software was
used to model the energy flow into and out of buildings to determine the annual energy
costs for two prototypical DoD office buildings developed by the Pacific Northwest
National Laboratory. The simulation inputs of building size, location, and insulation
materials were varied to determine their effects on the energy cost. The results showed that
exceeding construction code with R-15 wall insulation was consistently the most cost
effective. Exceeding the construction code with R-60 roof insulation was more cost
effective in the large facility located in the cold and mild climates. Lower than construction
standard roof insulation was more cost effective in hot climates and in mild climates for the
small facility.

The research results indicate that designers, engineers, and policy makers in the Air
Force should consider facility life-cycle costs to lower annual facility sustainment costs.
Accepting the construction code without performing an energy flow analysis of the facility

during the design phase forfeits the opportunity to improve the life-cycle energy cost.
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A LIFE-CYCLE ANALYSIS OF THE THERMAL ENERGY TRANSFER IN
PROTOTYPICAL AIR FORCE OFFICE BUILDING CONSTRUCTION
USING BEST VALUE INSULATION STANDARDS

CHAPTER 1: INTRODUCTION

The concept of sustainability was brought into the global discourse for the first time
when the United Nations published the Brundtland Report in 1987. The report states that
there are environmental trends that “threaten to radically alter the planet, that threaten the
lives of many species upon it, including human beings” [1]. Sustainability started as a
response to climate change and the observed effects on the Earth’s environment. The
Department of Defense acknowledges that climate change is a threat multiplier to existing
and emerging risks. Increased temperatures, rising sea levels, extreme weather, and
changing precipitation are identified as some of the potential effects of climate change [2].
The global impacts may include societal instability, increased poverty, and additional
conflict over resources. Resource constraints, water and food shortages, refugee
displacement, natural disasters, and disease are additional factors from climate change that
will increase and contribute to these impacts [3]. But climate change’s root problem is not
its impact, but rather the economies that have been built on unsustainable practices and
unconstrained resource consumption. Moreover, sustainability has grown beyond the
singular and sometimes polarizing issue of climate change. Instead, it encompasses an
approach that can be applied to complex problems. It focuses on the broader interactions
between resources, human society, and the environment to find long-term solutions.

Sustainability is defined as meeting the needs of the present without compromising the
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ability of future generations to meet their needs [1].

The current sustainability movement seeks viable solutions to a multitude of
complex problems including but not limited to: addressing the epidemic of poverty within
underdeveloped countries, implementing widespread environmental safeguarding,
sustaining energy generation on renewable and clean practices, and reducing resource
consumption and demand with a growing human population. Sustainability requires
analysis from three central aspects: the economy, the environment, and the society [4]. The
increasing pressures of operations and maintenance costs within constrained Department of
Defense (DoD) budgets can also be addressed using the principles developed and applied
from sustainability. Taking a comprehensive long-term approach to facility management
can help meet current fiscal needs without limiting future operating, maintenance, and
acquisition requirements.

Buildings are the basis of our civilization as they provide a built structure in which
society lives, works, exchanges goods or services, is sheltered from weather, and even
enjoys entertainment. Facilities are utilized and operated by society, funded and sustained
with economic capital, and constructed and maintained with resources from our
environment. Buildings are estimated to consume 70% of the nation’s electricity [5]. The
U.S. Energy Information Administration estimates that cooling, heating, and ventilation
accounts for the largest energy consumption category in both the residential and
commercial sector, approximately 24%. Reducing a building’s energy consumption can
clearly help reduce the largest factor in most building’s operating expenses. This research
aims to optimize and improve building energy efficiency to reduce the resource demand

required for operating a building, which would in-turn reduce the impact on the
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environment and energy sources.
Background

The purpose of this research is to identify, model, and simulate thermal energy-
efficient standards in building construction in order to recognize the best value standards
and opportunities for cost savings. The motivation for this research problem is driven by
facility energy usage and its large associated costs. High facility operating costs occur
within many organizations while the facility sustainment budgets are becoming even more
constrained. Meanwhile, the global economy’s energy resource demands are increasing
within a system dependent on finite energy fuel. This complex, global challenge provides
the research context which addresses one facet of this enormous and interconnected
problem. A long-term perspective is taken in this analysis to consider the total life-cycle
cost of a building rather than simply the acquisition costs. An understanding of
sustainability, asset management, and DoD infrastructure lays the foundation for the
research’s area of study.

Asset management is a key business practice to enable building energy efficiency.
Asset management is successfully accomplished when organizational goals implement the
intentional balancing of performance with costs, risks, and opportunities [6]. In simpler
terms, it is the processes or decisions used to find something’s most efficient economic life
before it must be discarded. Asset management is often applied to infrastructure, facilities,
or structures as a technique to optimize assets to meet organizational goals. The need for
asset management is clear; facilities are expensive. The acquisition costs alone can seem
large, but the hidden operations and maintenance cost is usually the most expensive part of

a building’s life-cycle [7]. To provide an example of this concept, a new phone may seem
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expensive. But this cost is small compared to the costs of activation fees, monthly phone
plans, electricity required for power, transactions to buy phone applications, and accessories
such as power cables, headphones, or cases. Asset management takes a holistic look at all
costs, including hidden costs, to optimize the value of the asset for the owner. As budgets
become more constrained, prudent management is imperative to reduce costs.

Asset management is an intentional, proactive approach to managing infrastructure.
The alternative is a reactive approach that waits to respond to changes in the assets. The
benefits of implementing asset management include: reducing operations and maintenance
budgets, reducing the consumption of resources, and allowing better investment and
management decisions to be made based on data [8]. Data-driven decisions are crucial to
asset management effectiveness. Asset management can help an organization apply
sustainability to their portfolio of assets. This research applies asset management principles
to determine the optimal thermal energy efficiency standards for construction, thereby
allowing an organization to meet the reduced operations costs and lowering energy demand.

The United States government and the DoD operate with limited resources. The
DoD possesses 560,000 buildings and structures and the energy costs associated with the
operations of these building is approximately $4 billion a year [9]. Sustainable
infrastructure management is crucial to establishing a prudent and successful DoD budget.
Effectively implementing building energy efficiency across the DoD enterprise will help
achieve its energy plan goals to improve resiliency, optimize demand, and assure supply
[10]. There are four lines of effort that support the DoD energy plan’s goals: plans and
operations, training and testing, built and natural infrastructure, and acquisitions and supply

chains. Each line of effort discusses potential effects but also provides steps towards
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mitigation such as constructing underground utilities and effective firebreaks to make
installations more resilient [2]. Research efforts focused on reducing resource demands
aligns with the DoD lines of effort for operations, built and natural infrastructure, and
acquisitions.

Sustainability, asset management, and DoD infrastructure reinforce the importance,
the proven processes, and the application for this study. The research aims to model,
simulate, and optimize thermal energy efficient construction standards for sustainable life-
cycle building costs. The results compare the modeled construction configurations against
local construction codes which contribute to the development of construction standards
focused on improved sustainability instead of minimum safety requirements. The four
research questions this study investigates are: (1) how can the Air Force receive the best
value in facility construction from a life-cycle cost perspective with lowest price technically
acceptable (LPTA) contracts? (2) do building construction codes specify the most cost-
effective standards when analyzing a building’s life-cycle energy efficiency? (3) will
constructing to higher standards than the building code be more cost effective over a
facility’s life? (4) can an optimal insulation construction standard be developed for a
prototypical Air Force office building?

Method

This research models the thermal energy flow in a building using computational
modeling and simulation. The heat transfer rate across a building’s physical envelop is the
focus of the model. Building Performance Simulation (BPS) software models the energy
flow into and out of a building using a large amount of user-input data, user-input

parameters, and heat transfer formulas. Changing the input parameters, such as the
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construction material properties, affects the heat transfer formula outputs and a building’s
heat flow over time can then be analyzed. The parameters are bounded based on building
construction common practices, construction experience, feasible standards, and the
applicability for implementation by the United States Air Force.

The research is aimed at the Air Force minor construction program for facilities
valued at approximately two million dollars based on the United States Code (USC) Title
10, Section 2805 [11]. The two-million-dollar financial limitation is based on the minor
construction statutory limit required through policy compliant with Title 10 USC 2805. The
National Defense Authorization Act for Fiscal Year 2017 amended Section 2805 of Title 10
USC to raise the threshold for unspecified minor construction projects from one million
dollars to two million dollars [11].

Buildings maintain a steady state internal air temperature by balancing the heat flow
through the perimeter with the heat or cooling added to the building. Minimizing the heat
flow through the facility envelop will also minimize the heating or cooling required for the
building to maintain a constant temperature. The heating and cooling energy also directly
relates to energy costs for the building. The purpose of the BPS software is to model and
calculate this heating and cooling energy cost. The first step is to simulate a prototypical
office building while varying the key building parameters. A life-cycle analysis is then
performed to calculate the life-cycle cost of each simulation configuration. Finally, an
economic analysis is completed to compare each mutually exclusive construction
alternative to identify the best value construction standard.

The dependent variable of the model is the heat flow over time across the building

envelop. A building has a massive number of independent variables that affect the heat flow
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formulas. Many factors affect this energy flow to include the weather, the internal and
external temperatures, the building shape, the building materials, the internal loads, and
many more [12]. This research uses insulation type, building size, and building location to
focus the research problem to a feasible study with meaningful results. The thermodynamic
equations that influence the energy balance across a building envelope are very complex.
Using the BPS software utilizes computational methods to simplify calculating these
values. The building’s energy cost can be calculated using a life-cycle analysis once the
energy consumption is known. An economic analysis can then use the rate of return to
compare mutually exclusive construction alternatives to quantify which configuration has
the best economic value.
Application and Impact

The Department of Defense frequently uses the lowest price technically acceptable
(LPTA) acquisition method. LPTA acquisition ensures the government receives the contract
for the lowest price that meets the technical requirements of the work. However, technical
sufficiency can be difficult to articulate and prove for buildings through the bidding
process. Therefore, the Air Force relies on construction standards and codes as
requirements in construction contracts to prove their technical acceptability. Third party
codes are used in DoD construction such as the International Code Council’s International
Building Code (IBC). The IBC provides a baseline of standards within much of the United
States to ensure safety for building construction. However, this baseline standard does not
ensure the best value standards are utilized. Sustainment-focused standards enables
construction to consider long-term resource and financial costs.

This research explores more stringent standards to enable long-term energy savings
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when implementing the LPTA acquisition methodology. The research results enable
specific construction standards to be developed that the Air Force could implement to
reduce building life-cycle sustainment costs. The research results could further be applied to
construction in resource constrained locations. Reducing the energy demand of a base’s
buildings requires less resources to sustain these locations. Reducing the resources,
transportation requirements, and logistics creates a synergy that also makes the bases more
resilient. Sustainability within the military is best supported when it is cost effective and
does not impact operational capabilities or capacity. Sustainable practices will be most
successful in the DoD if it supports a lower budget, benefits operational capabilities, or
increases operational capacities.

Research Scope

Building thermal energy flow is determined from operational use, environmental
conditions, and construction characteristics. The mission and function of the organization
dictates the operational usage. Optimizing operational use and reducing waste can result in
many organizational benefits. However, this is constrained by the specifics of the building
use, mission, and function. Additionally, the Air Force often prioritizes the operational
capabilities that support its mission over the reduction in budget or energy resources. For
these reasons, the operational function of the building was determined not to be a beneficial
variable to manipulate in the scope of this research.

The location of the building determines the environmental conditions affecting the
thermal energy flow. An environmental condition has large variations based on its location
that have significant impact to energy flow. Weather data provides values for these

variables that can be accessed with established databases. Six separate locations are
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modeled to capture the influence of location and climate on this model and simulation. A
cold climate is represented by Minot Air Force Base in Minot, North Dakota and Ellsworth
Air Force Base near Rapid City, South Dakota. A moderate climate is represented by
Wright Patterson Air Force Base in Dayton, Ohio and Langley Air Force Base in Newport
News, Virginia. Lastly, a hot climate is represented by Edwards Air Force Base near
Bakersfield, California and Joint Base (JB) San Antonio in San Antonio, Texas. It is
assumed that these six locations will provide sufficient climate variation to determine trends
and the influence of climate on the model.

The focus of this model is the construction characteristics of the building. The
construction of the building determines these characteristics and provides the basis for
simulation and optimization. The BPS software allows manipulation of these inputs to
allow analysis of the output. The model assumes uniform construction material qualities
without defects or variation from typical values. The size of the building construction is
targeted for the Air Force minor construction program. The United States Army Corps of
Engineers (USACE) is required to manage larger projects under the Military Construction
(MILCON) program. These larger projects have higher visibility and more direct
management through techniques such as value engineering. As such, this research is not
intended for this scope of construction. Air Force base-level engineers plan, execute, and
manage the minor construction program. This scope provides a better opportunity for
implementation of energy efficiency standards based on a long-term life-cycle perspective.

The literature review in Chapter 2 provides a summary of existing research
pertaining to thermal energy flow through a building envelope and an overview of Building

Performance Simulation (BPS) software. Chapter 3 discusses the methodology that was

23



used in this study. Chapter 4 discusses the research analysis results, interpretations, and

impacts. Finally, Chapter 5 summarizes the research and provides final recommendations.
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CHAPTER 2: LITERATURE REVIEW

Chapter Overview

This chapter reviews the current literature on building energy efficiency and
simulation. First, the focus and scope of the research topic is discussed to provide context to
the relevant literature. An overview of the physics principles relating to heat transfer are
explained to provide a foundation for the modeling and simulation. Next, the building
components and the principles that influence heat transfer through the building envelop are
identified for use in the modeling. Lastly, current off-the-shelf building simulation software
are identified. Advantages and disadvantages are explored and the best applicable software
for this research purpose compared.

Research Focus

The focus of this research is building construction scoped below two million dollars
in cost for use as office space. This aligns with the motivation that the research results
should be applicable within the Air Force minor construction program. The minor
construction program is executed by the Air Force base-level engineers instead of centrally
managed project execution such as United States Army Corps of Engineers (USACE). Due
to the lower cost thresholds of this program, it receives a lower level of oversight providing
a larger opportunity to benefit from this research.

The study is aimed to apply to either a new construction project or an office
renovation project. The construction standards that provide the most cost-effective
construction allow the base engineers to work with contractors and designers to ensure that
the Air Force is building sustainable facilities. A construction program focused on

sustainable policy reduces the energy demand required to operate the facilities each year.
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The cost savings can then be re-invested in infrastructure, fund the procurement of other
mission requirements, or reduce the burden on the taxpayer.

Thermodynamics Principles & Definitions

Thermodynamics must be studied and understood to analyze the energy efficiency
of a building and to learn how thermal energy transfer occurs. Thermodynamics is the
branch of physics that studies heat and temperature and their relation to energy, work,
radiation, and properties of matter [13]. The first law of thermodynamics, conservation of
energy, states that the total energy in an isolated system is constant. The first law of
thermodynamics implies that the change in internal energy is equal to the heat supplied to
the system minus the amount of work done by the system on its surroundings. The equation

for the first law of thermodynamics is

AU=Q—-W (1)

where

U is internal energy,

Q is heat (thermal energy), and
W is work (mechanical energy).

Defining a building as the physical system for study and applying the first law of
thermodynamics given in equation (1) facilitates an analysis of the energies entering and
leaving the facility. The building performs no work on the surrounding environment, so the
mechanical energy transferred by the system is zero. Additionally, most facilities use
Heating Ventilation and Air Conditioning (HVAC) equipment to keep a constant internal
temperature. This provides a comfortable internal environment for its users, but it also

establishes a steady state for the internal energy of this system. Under steady state
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conditions, the internal energy of the system remains constant due to a balance in heat loss
and heat gained [13]. Deriving the first law of thermodynamics equation with these
conditions provides an energy balance that can be described as [14]

Qin = Qout (2)
where
Qiy, is the rate of thermal energy entering the system. This includes energy flowing into the
building envelope and the energy being generated within the building.
Qe is the rate of thermal energy flowing out from the envelope into the outdoor space.

Equation (2) shows that the rate of thermal energy exiting the building is equal to
thermal energy entering the building. Equation (1) and (2) allow a representation of the heat
flow into and out of a system using formulas. This heat balance process can then be applied
to a specific building as the system of interest. People, sunlight, geothermal heat flow,
electronic fixtures, electronic equipment, and HVAC equipment all contribute to the energy
flow into the building. Energy flow out of the building is the energy flow through the
building’s envelope into the environment. The building envelope is also defined as the
systems boundary.

A temperature differential drives thermal energy flow as the environment strives for
thermal equilibrium. Intuitively, a hot object will cool down to reach the same temperature
as its surrounding given enough time. This is an example of a difference in temperature
creating thermal energy flow in the same way as a pressure difference will create fluids to
flow. Heat transfer occurs from a temperature difference in three forms: thermal
conduction, thermal convection, and thermal radiation. Thermal conduction is heat transfer

from direct contact, thermal convection is heat transfer from fluid movement, and thermal
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radiation is heat transfer from waves.
Thermal conduction is caused from an object’s molecular collisions which transfer

the energy from one object to another. The equation to represent thermal conduction is [13]

. k*Ax*AT (3)
Qconduction = T

where
Q conduction 1S the rate of heat transfer over time,
k is the thermal conductivity of the material,
A is the surface area between the two objects in contact,
AT is the difference in temperature between the two objects, and
Ax is the thickness.

Thermal convection is the energy transfer that occurs from heat transferring through
a fluid. The actual physical flow of the molecules throughout the fluid causes the heat
transfer in convection rather than molecular collisions, as is the case with conduction. When
a fluid increases in temperature, the fluid becomes less dense. Buoyant forces then cause
the fluid to rise, being replaced with the cooler fluid. This cyclical movement of the fluid

transfers heat as the molecules moves. The equation to represent thermal convection is [13]
Qconvection = h * A x AT 4

where

Q convection iS the rate of heat transfer over time,

h is the convective heat transfer coefficient of the material,
A is the surface area of the heat transfer surface, and

AT is the difference in temperature between the surface and fluid.
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Thermal radiation does not require a physical medium to transfer heat. Energy is
transferred through electromagnetic waves which do not require direct contact to exchange
heat. All matter above absolute zero emits some level of thermal radiation which can even
travel through a vacuum. The energy transferred between two objects depends on the
surface area, emissivity of the material, and temperature difference. The equation to
represent radiation heat transfer is [13]

Qradiation = €% 0 * A% (T* = T) ()
where
Qradiation is the rate of heat transfer over time,
¢ is the emissivity of the material,
o is the Stefan-Boltzmann constant (5.6703 * 10®° W / m?K*),
A is the surface area of the emitting surface,
T is the temperature in Kelvin of the emitting object, and
To is the temperature of the environment.

Emissivity is a material property that quantifies the ability to emit or absorb thermal
radiation. Emissivity is a dimensionless measure that ranges from zero to one. A perfect
emitter, theorized as a perfect black body, has an emissivity of one. Kirchhoft’s law states
that a body absorbing and emitting radiation in thermodynamic equilibrium, the emissivity
equals the absorptivity. This can be stated simply as an object’s emissivity is equal to its
absorptivity. This reveals that a material emits and absorbs thermal radiation to the same
degree; therefore, a material that is a good emitter is also a good absorber [13].

Higher energy in the electromagnetic spectrum generally creates shorter waves and

improves the penetration of the wave while lower energy creates longer wavelengths and
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improves distance. For example, watt-for-watt, amplitude modulation (AM) radio waves are
lower energy and broadcast over a larger distance while frequency modulation (FM) radio
waves are higher energy and will penetrate facilities easier. All wavelengths of light also
carry photons of energy and can transfer heat. This thermal energy is considered lower
energy on the electromagnetic spectrum and is relatively easy to reflect. It is especially
critical in a facility to consider these principles in windows or exterior glass which can
significantly contribute to energy transfer due to light. The principles of reflection,
absorption, and emissivity are important to the transfer of heat, especially energy from the
sun [15].

Thermal heat transfer encompasses all three modes of heat transfer: (1) thermal
conduction, (2) thermal convection, and (3) thermal radiation. Modeling all three modes
simultaneously can quickly become complex and computationally demanding. Instead, the
three heat flow rates can be combined into a theoretical, apparent thermal conductivity.
Convection and radiation are modeled with theoretical conduction coefficients to allow the
combination of the three formulas. This allows the simplification of the convection or
radiation formulas by modeling that all heat transfer occurs through conduction. The
theoretical conduction coefficients are derived from equating the heat transfer from three
methods to three conduction equations. The benefit of this visualization and modeling is the
simplification of equations which allows modeling simulation software to perform with less
computational requirements.

Construction Components in a Building’s Envelope
The building envelope is the nomenclature for the physical separator between the

conditioned space within a facility and the unconditioned space of the environment. It most
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often coincides with the exterior barriers of the building and it provides protection against
unwanted heat, light, noise, water, air, and the external environment. It can provide three
primary functions: (1) controlling the energy flow and matter flow between the facility and
environment, (2) supporting the structural requirements of the facility to resist or transfer
loads, and (3) improve the internal and external aesthetics of the building [16]. This
research will focus on the first function of the building envelope as it is concerned with the
thermal energy transfer.

The various construction components and materials that could contribute to a
facility’s building envelope are immense and immeasurable. However, the materials,
systems, or components can be identified that most buildings have in common. Almost all
buildings will have a combination of walls, roofs, windows, doors, insulation, and a
foundation that contribute to the building envelope [17]. Each of these systems have sub-
systems, components, and materials which influence the heat flow through the system and
the entire facility. A review of each of these systems will provide an introduction into their
importance and effect on modeling the prototypical building.

Walls provide thermal, acoustic, and moisture protection to the interior of the
facility to facilitate a controlled and comfortable space. Walls can be classified as wood-
based, metal-based, masonry-based, or a combination. They provide a significant portion of
the surface area for a facility. Based on a study in Jordan, simply insulating the walls and
roof with polystyrene insulation can reduce the energy demand in a facility by 76.8% [18].
Although this value will fluctuate significantly based on the specifics of the building
envelope and facility geometry, it highlights the importance of the walls and roof on the

thermal energy flow through a facility.
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A typical wall structure involves a structural support component made of steel,
wood, or masonry; an insulating material; a moisture control barrier; and a finishing
material to provide aesthetics and consistent appearance [19]. The large surface area that
walls typically represent in a facility make it a primary opportunity for thermal energy
transfer savings; however, the physical geometry and interaction with other building
envelope systems can diminish the expected savings from improvements. The cavity
created between structural support elements, such as two-by-fours, can limit the size of the
insulation installed. Additionally, how other building envelope systems interact with the
support elements can provide avenues for the thermal energy to bypass the wall’s insulating
properties. Nevertheless, walls provide a critical area for improving the thermal energy flow
through the building envelope.

A roof provides the top covering over a building and protects the facility from
precipitation, sunlight, and varying temperatures. The roofing materials and design depend
on its supporting structure, the distance it must span, the dead and live load weights it must
convey, and the pitch or angle of the roofing system. Similar to a wall, the system
comprises several sub-systems to include structural support members, insulating material,
weatherproofing membrane or material, sealing components, and drainage [20]. The
materials and roofing systems can extensively vary depending on its function and design
considerations. Common materials for the structure of roofs include steel-based, aluminum
standing seam, wood-based, masonry-based, and rubber-based.

Roofs can be classified as flat roofs or pitched roofs and can vary from simply
supporting the basic live and dead loads to supporting thousands of pounds of utility system

equipment. Despite the wide variation in roof systems, insulation remains an important sub-
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component for the roof. Similar to the walls, roofing systems can cover a large percentage
of a facility’s surface area. During the heating season, the heat within the internal
conditioned space rises and transfers through the roof. This can be minimized with well-
sealed and insulated roof systems. Conventional wisdom emphasizes adding insulation to
the roof to improve energy efficiency, but this should be tempered with the principle of
diminishing returns [21]. Heat will begin bypassing the roof structure by transferring
through other building envelope systems using the principle of thermal bridging, discussed
with further depth in this chapter within the ‘other energy efficiency principles’ section.
Therefore, a life-cycle cost model should be implemented to properly analyze the
appropriate roof insulation that should be applied prior to the decision of increasing or
adding more insulation [22].

Windows and doors usually account for most of the wall openings in a facility.
Although they are usually a much lower ratio of the surface area of a facility, they can
cause heat transfer at 20 to 30 times the rate that it occurs through walls [17]. These wall
openings can either be embedded in the structural system of the building to support its own
weight or they can use a combination of structural components such as lintels, jambs, sills,
etc. to transfer the loads around the openings. Window systems vary dramatically based on
the quantity of natural light desired, thermal performance required, architectural or aesthetic
preferences, and selected construction materials. Performance factors for windows include
color and aesthetics, insulation, solar heat gain and light transmission, and acoustic
properties [23]. However, the thermal performance of windows is nearly always less than
that of the walls and roof. Methods for improving the standard window thermal

performance include glazing, vacuum sealing, reflective or absorptive films, increasing the
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amount of window panes to add air gaps, and insulating the frames [24], [25]. Although the
surface area may be lower for windows and doors, the low thermal resistance in these wall
openings provide a critical path for a loss of thermal energy in the building envelope.
Building Insulation

The primary function of insulation is to reduce the thermal energy flow through the
material in order to improve energy efficiency, air quality, and comfort. More materials and
methods for insulation exist than can be comprehensively discussed in this literature review
[26]. However, the common materials and typical methods will be discussed to provide an
overview of insulation and its use within a building envelope. Additionally, as industry
strives for more energy efficient practices, new insulation materials are being developed
and implemented to achieve better performance [27].

Some of the typical insulating methods include using insulating batts, loose
insulation, rigid foam boards, spray insulation, and structural insulated panels. This list is
not all-encompassing but includes the most common methods for insulating a facility.
Insulation batts or rolls, one of the most common form of building insulation, are pre-cut
sections of insulation and strips of rolled insulation, respectively. They are commonly used
in the walls and roof of a building and have a wide range of available materials and
properties. Rolls and batts can be un-faced or faced with paper, foil, or plastic to assist with
moisture and vapor control. The most common batt or roll materials include cellulose,
fiberglass, plastic fibers, and mineral wool.

Loose insulation consists of small insulating particles that can be placed or blown
into an area. The advantage of this method is that it conforms to the contours of the space,

thus making it ideal for spaces with complex geometry, hard to reach areas, or locations
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with a significant number of penetrations. Common materials include cellulose, fiberglass,
mineral wool, plastic fibers, polystyrene, and perlite. It is important to properly seal the area
for air movement prior to using loose insulation or convection will still create significant
heat losses.

Rigid foam boards provide a common alternative to batt or loose insulation. The
rigidity of the board can make it easier to work with and it can be manipulated to a desired
shape with common tools such as a circular saw. Common materials include expanded
polystyrene (EPS) which is similar to Styrofoam, extruded polystyrene which uses plastic
granules to extrude into a rigid board, and polyisocyanurate which is a thermoset plastic
produced as foam. Moisture resistance is one significant advantage of this insulation
method which causes it to frequently be used next to foundations and basements, as well as
exterior wall sheathing. It can also be used in wall cavities, but more frequently other
methods are more cost effective for this application. Fibrous rigid board insulation made of
fiberglass, mineral wool, and perlite can also be used, but they are susceptible to moisture
reducing their performance and causing them to be more frequently be used to insulate
HVAC systems.

Spray foam insulation is a liquid foam that can be injected or sprayed in place to
produce a high performing insulating material. The material properties for spray foam make
it the most effective insulation used in building construction, but it can be challenging to
install correctly. The liquid foam components must be mixed in the proper ratios to produce
the desired material properties and prevent undesired off-gassing. The most common
material used in spray foams is polyurethane which comes in closed-cell foams and open-

cell foams, but some additional materials include cementitious, phenolic, and
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polyisocyanurate. When compared to closed-celled spray insulation, open-celled spray is
less dense, easier to penetrate, and can have a spongy-like texture. It should not be installed
where water can be an issue and is frequently used with renovation projects in existing
walls. Closed-cell spray insulation is a rigid, dense material which offers even higher
insulating properties than open-cell. It can be used for additional waterproofing and
structural support in addition to its excellent thermal resistance. The disadvantage of spray
polyurethane insulation is that it has a high cost and requires a specialized contractor for
installation.

Many new materials and techniques are being used and developed to continue to
improve insulation performance. New materials such as aerogels and dynamic insulation
materials are also being tested and utilized in construction [28]. Structural insulated panel is
one example of a developing technique being used in construction. These are prefabricated
insulated structural elements that are used for walls, ceilings, floors, and roofs. This offers
more uniform insulation by minimizing the thermal bridging across studs or standard
structural elements. Structural insulated panels require prior coordination between the
designer, manufacturer, and construction contractor, but it can offer improved performance
when executed properly.

Other Energy Efficiency Principles

Several other construction principles influence the energy flow through the building
envelope. Some of these include the building shape and size, the building orientation, the
internal loads, the HVAC system, and thermal bridging. The facility shape, size, and
orientation all affect how the building interacts with the outside environment. The surface

area that creates the boundary between the outside environment and the building envelope,
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in addition to the incident angle of direct sunlight, are two very important building
properties to thermal energy gains. Optimizing the size, shape, and orientation can passively
reduce the energy costs without increasing the costs for construction [29]. These factors
must be considered and controlled during the design phase prior to construction.

The internal loads and HVAC system contribute to the internal heat gains within the
facility. These are operational factors that can dramatically affect the thermal heat flow
through the building envelope. The latent and sensible heat gained through personnel and
equipment must be incorporated when sizing the HVAC system to ensure that the system
can adequately control the conditioned space. The internal temperature set point, amount of
ventilation, and estimated infiltration must be considered to adequately select the
appropriate HVAC system [30].

Many additional energy efficiency strategies have been developed to reduce the
effects of energy loss through the building envelope. Some of these initiatives include green
roofs, photovoltaic roofs, radiant-transmittive barriers, evaporative cooling, thermal mass or
phase changing materials, precision building to increase air tightness and decrease
infiltration, facility shading, and skylighting [31]. These potential energy savings methods
are not discussed in depth since they are often situational to the facility and climate.
Although they can be effective in reducing the energy demand for a specific building, they
are not widely applicable to all facilities or climates. This makes these methods difficult to
include in this broader research scope aimed for implementation across the entire Air Force
enterprise.

Lastly, the principle of thermal bridging needs be understood to properly design a

facility and improve the thermal energy flow through a building envelope. Thermal
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bridging is the principle that more heat flows through a conductive object if it is more
conductive than the materials around it. Electricity moves through the path of least
resistance and thermal energy flow follows an analogous principle. The impact of this
principle is that a building with an extremely well insulated wall and roof will still lose
significant heat through thermal bridging caused by poorly insulated areas such as windows
and doors. This principle creates a diminishing return when adding insulation to a building
envelope component because the heat will find another component with lower insulation to
primarily flow through. Additionally, a single building envelope system can also have
thermal bridging such as wooden studs that provides an alternative path around insulation in
the wall cavity or uninsulated window frames providing a thermal bridge around high
performance window glass [32]. Significant thermal bridging can also create additional
problems such as undesirable condensation and moisture within a wall system [33]. The
result of thermal bridging is that no area in a building envelope can be neglected in order to
achieve the best thermal energy efficiency. Understanding thermal bridging is critical to
analyzing a building envelope and reducing the thermal energy flow for a facility.
Introduction to Building Performance Simulation

This research aims to improve energy efficiency standards for the Air Force which
would reduce its buildings’ annual energy costs. Existing Building Performance Simulation
(BPS) software provide the means for modeling and simulating without the need to
recreate, develop, or derive the heat transfer algorithms. Prior to an analysis of the energy
efficiency of construction standards, the research must: (1) evaluate off-the-shelf BPS
software, (2) select the best BPS software for the application of this research in energy

modeling, and (3) implement the selected BPS software to collect data with varying
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building characteristic parameters.

The total life-cycle cost of a building can be reduced by identifying and optimizing
energy efficient construction standards focused on long-term costs [34]. This study hopes to
develop construction standards focused on sustainment rather than minimum code
requirements. Low-Bid Technically Acceptable (LPTA) contracts are a frequently used
DoD contract type that focuses primarily on initial acquisition costs rather than total life-
cycle cost. Sustainment focused standards would enable the Air Force enterprise to receive
cost savings despite the LPTA acquisition methodology. In order to develop a sustainment
focused construction standard, not only must the acquisition cost be considered but also the
annual sustainment cost. The annual sustainment cost depends on operations costs, energy
costs, and building repair costs.

The annual energy costs are the focus of this research since the operations and repair
costs are assumed to be primarily dependent on the building function and not the
construction materials [35]. The construction material can be a key building parameter of
the model which will directly influence the annual energy costs. Moreover, construction
material standards can significantly affect the thermal energy flow within a building and
affect the energy costs [36]. Focusing on the construction material in the model links the
energy costs with the construction standards.

Selecting the appropriate analytical tools is crucial to research success. Emphasizing
finding the correct BPS software to use for the building modeling was a crucial step to
ensure the appropriate tool was selected. Prior to modeling, an analysis and initial
demonstration was performed of all the considered BPS software. The selected BPS tool

was then able to be applied to the main research effort to analyze building energy
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sustainment costs.
Building Performance Simulations (BPS)

Building Performance Simulation (BPS) uses computer simulation and modeling
based on physics principles to quantify building performance. BPS is used in the design,
construction, operations, and evaluation of buildings. Using BPS software during the design
phase of a building can reduce the energy demand on buildings by as much as 35 to 47%
[17]. It ties the physical characteristics of a facility to a model. Building performance
results are determined from the changes in the building inputs. BPS is an expansive field
that includes many sub-domains with some being thermal, lighting, acoustical, or air flow
simulations. This research was concerned with the thermal simulation sub-domain since it
has the most direct impact to energy costs.

Hundreds of BPS software tools have been developed since it was first applied in
the 1960s to simple, steady-state, and single system applications [37]. BPS software tools
have been developed for use in government, industry, academia, performance ratings, and
design. As the domain grew, the application of BPS tools expanded to general geometric
modeling, building envelope properties, HVAC sizing and zone loading, lighting and
daylighting, air quality and flow, infiltration and ventilation, electrical and equipment
loading, renewable energy sourcing, and many more. The sub-domain of thermal simulation
applies to this research as an application of the building envelope. Thermal energy loss
through the building envelop can be directly quantified as the required energy necessary for
the HVAC system to keep the building at a steady state temperature. The internal HVAC
distribution, zoning, and energy flow are less relevant since the overall sustainment cost is

the focus of this research. Only the energy leaving the system affects the overall
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sustainment cost, not the energy flowing from one room to another within the defined
system.

Numerous BPS software programs had to be narrowed down to only a few that
could be considered for use in this research since time constraints and practicality prevented
analyzing every tool. Previous research was used as the primary criteria for reducing the
potential BPS candidates to an adequate number to evaluate [37], [38]. The intent was to
perform an initial evaluation on approximately ten BPS software that could be suitable for
this research. Then a deeper comparison, evaluation, and analysis was performed on the
best candidates, ideally applied to four or less. The software evaluation criteria included
software that is prominent within previous research, common in actual use, considered to
have accurate simulations, and most importantly suitable to implement in this specific
model application. The four BPS software that were selected for the deeper evaluation
included the Quick Energy Simulation Tool (eQuest), EnergyPlus, Trace 700, and
Integrated Environmental Solution Virtual Environment (IES VE). Other software
considered were Carrier Hourly Analysis Program (HAP), Transient System Simulation
Tool (TRNSYS), Ecotect, AECO Sim, and IDA Indoor Climate and Energy (ICE). All nine
BPS software were well regarded within the domain, applicable to evaluate energy flow
through a building envelope, and used in relevant, prior research [37].

EQuest uses the DOE-2 energy analysis program or ‘engine’ to perform its energy
simulations based on input weather data. Both eQuest and DOE-2 were originally
developed for the Department of Energy (DoE). However, they have since been utilized
throughout industry, government, and research. Version 2.2 of the DOE engine and version

3.65 dated 4 October 2018 were evaluated in this research. EQuest is a free software open
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to anyone for use. EQuest is one of the most prevalent BPS due to its age, open
accessibility, zero cost, and positive reputation from the Department of Energy [39].

EnergyPlus has many similarities to eQuest. It was also developed by the
Department of Energy, using the same DOE-2 engine as eQuest. It builds on the DOE
engine while providing additional modeling capabilities and features. It is updated semi-
annually with version 9.1.0 dated 27 March 2019 used in this research. Several additional
programs have been developed to improve the interface between the user and EnergyPlus.
Two more prevalent programs considered were OpenStudio and DesignBuilder. Neither of
these programs change the input or output of EnergyPlus, but rather make the BPS more
user friendly for the analyst. EnergyPlus and OpenStudio are also free to use while
DesignBuilder has a 30-day free trial. EnergyPlus is free, open-source, and cross-platform
causing it to continue to gain in reputation and use. DesignBuilder costs between $595 and
$1995 plus tax for the software in addition to an annual licensing fee, but it offers a 30-day
free trial of the full version.

Trace 700 was developed from the Heating Ventilation and Air Conditioning
(HVAC) manufacturing company TRANE. As a HVAC system designer and provider,
TRANE developed Trace 700 as a BPS focused on the design and analysis considerations
for an HVAC system. Trace 700 was developed to assist designers in comparing energy and
economic impacts of alternatives in HVAC systems. Version 6.3.4 dated 31 March 2018
was evaluated in this research. Trace 700 leverages the parent company’s resources
providing a technical HVAC focused BPS. Trace 700’s reputation is consistent with
TRANE’s high reputation in the HVAC industry.

IES VE is developed and offered from a company in the United Kingdom founded
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in 1994. The software initiated from research in 1979, but the commercially available
software was not available until 2000 and it was not launched in the United States until
2003. IES VE has a suite of individual applications that can be chosen and applied to the
central data model. The applications allow for customization based on the analysis being
performed. The price for the software varies depending upon the applications selected. A
free 30-day trial is offered to students but requires a validation process. The software
continues to have periodic updates and has gained in reputation as a prominent BPS. IES
VE has won awards from Leadership in Energy and Environmental Design (LEED) and the
American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE).
The other BPS considered included Carrier HAP, Trnsys, Ecotect, AECO Sim, and
IDA ICE. These programs were identified in reviews and research as also being prominent
BPS software. However, they were not determined to be as promising a fit for this research
as eQuest, EnergyPlus, Trace 700, and IES VE. Many BPS are specialized for a specific
application and this research requires software that is easy to learn and modify without
significant training. The software must be intuitive and user friendly to allow the tool to be
quickly implemented and adapted to the research question. Specialized training or a large
learning curve was not desired to allow progress in the research. Although they can be
considered equally capable to those previously mentioned, these additional BPS programs
were not as suitable to a short research timeline. Many of these other BPS are better
applicable to industry or business implementation rather than research. Additionally, the
focus of many of these BPS programs was not placed on the sub-domain of thermal
simulation or not suitable for the building envelope analysis required. For these reasons,

these other BPS were not considered for the deeper comparison.
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BPS Comparison

eQuest, EnergyPlus, Trace 700, and IES VE programs were downloaded,
implemented, and compared to determine their potential use. Each software could be viable
to apply to this research with its own strengths and weaknesses. However, the comparison
was necessary to select the most suitable software in order to meet the objectives for this
research. The user-interface, customization subtleties, and focus of each software was
experienced through experimentation and first-hand simulations with each software. The
justification for the final BPS software selection was then based on these personal
demonstrations of each software.

EQuest is a well-established, known tool with trusted results. The computation
speed and time required for the simulation is low, thus allowing almost instantaneous
simulations for simple buildings. The simulation uses one-hour increments for the weather
data and simulation. The building characteristics are edited using the ‘wizard GUI” design
tool. The input parameters involve over 40 separate screens which can be challenging to
navigate without being familiar with the program. The overall interface is less intuitive than
the other BPS software. The internal zoning capabilities are less than the other BPS
software, but this is not as relevant for building envelope analysis. This program is great for
initial design considerations and comparison of alternatives. The largest concern for
application to this research was the learning curve with the raw interface and customizing a
facility’s structure.

EnergyPlus uses the same DOE engine as eQuest but performs the simulation using
15-minute increments instead of an hour. The smaller simulation increment combined with

improvements to the modeling provide a very accurate BPS output. OpenStudio and
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DesignBuilder improve the user interface and make the software navigation significantly
more intuitive. OpenStudio was used since it was free to use. Both programs are aesthetic
without changing the quantitative output of EnergyPlus. The improved interfaces also
enable the simulation to be more transparent and easier for additional research to replicate
the simulation. The settings and inputs are just as complex as the other BPS software, but it
enables customizable modules which are more intuitive. When compared to the other BPS,
EnergyPlus is more accurate, focuses on the heat balance building perimeter, allows for
intuitive customization, and is open source. The largest concern for this BPS application is
the learning curve associated with the building geometry input which uses an open-source
software plug-in FloorspaceJS. This software is comparable to the building editors in the
other BPS such as SketchUp, but FloorspacelS software was less familiar.

Trace 700 is HVAC focused with an emphasis on heating and cooling load
calculations, HVAC sizing, and system controls. However, the building envelope loads
must be calculated to properly size the HVAC system requiring the program to fill many
additional BPS capabilities. The interface is extremely easy to navigate with it being the
most intuitive of the BPS software. The interface is well oriented with screens consisting of
windows, tabs, and drop-down selections that are familiar to computer users. Trace 700 is
fantastic when using the pre-populated options, but more difficult to customize.

The HVAC detail was in-depth and includes ducting, plumbing, Variable-Air-
Volume (VAV) boxes, and controls. The software also included equipment such as chillers,
pumps, cooling towers, and heaters. The HVAC level of detail was more than the level
required for this research, but it would be very valuable for an Architect and Engineering

(A&E) design application where these individual items and components must be selected.
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The focus of the BPS was clearly HVAC sizing and not the building envelope. The output
focused on the maximum loads required for sizing rather than the total cumulative loads
required for energy loss balancing. The largest concern with this BPS applied to this
research was the primary focus not being in the proper BPS sub-domain or application.
Although the software produces the necessary output and provides an intuitive interface,
many of the HVAC inputs were not required for this research and customization is more
difficult in Trace 700.

The IES VE software was developed with sustainability and reducing building
energy consumption as the primary driver. The software grew from a PhD research effort
and became available software after decades of development. The interface is more
complicated and less intuitive than the other BPS considered. The application-based
interface allows selection of capabilities to enable only the analysis desired. Unlike Trace
700 where the focus is HVAC central, IES VE allows the analyst to choose the focus. The
learning curve was greatest for this software over the others considered. The free trial
required a validation process for students or researchers which was not as straightforward as
advertised. It was challenging to know which applications to select and how to use each
application without training. The largest concern with IES VE when applied to this research
was the complicated interface and numerous applications available. Without proper training
on the software, the risk that it would not be an ideal fit for the research was too high when
other alternatives existed.

Chapter Summary
This chapter began exploring the context and focus of this research. The research

scope is narrowed to construction of facilities within the U.S. Air Force minor construction
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program. Reducing the sustainment costs of facilities through energy efficient construction
standards defined the context of the research. Thermodynamic principles lay the foundation
for determining the thermal energy flow throughout a building. To determine the cost
associated with energy efficient standards, the physics controlling the energy flow must be
understood. Convection, conduction, and radiation were overviewed to provide a working
understanding of these principles. Next, the critical components in a building envelope were
discussed. A building envelope is complex with each parameter interacting to create heat
flow. This research focuses on the building shape, size, and insulation to provide feasible
bounds on the model variables. Lastly, BPS software was presented as an off-the-shelf
solution to heat balance algorithms. Utilizing existing, proven software prevents recreating
the algorithms required to model and simulate heat transfer in a building. Instead, nine
existing BPS software that are commonly used in industry were considered for this
research. The advantages and disadvantages of four were extensively analyzed. Chapter 3
will provide a BPS selection for this research in addition to overviewing the methodology

for simulating the thermal energy flow in a building.
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CHAPTER 3: METHODOLOGY

Chapter Overview

This chapter describes the methodology for determining the total life-cycle energy
cost of a building. The methodology is divided into three parts. In Part I, the BPS software
is selected from the four programs compared in Chapter 2. In Part II, the settings and inputs
are described for the BPS software. An overview of each section in the BPS software
provides the means for others to repeat these simulations. More detail on the settings can be
viewed in Appendix A and Appendix B. In Part III, the input variables that are manipulated
are described. This part describes the changes between simulations that provide the data
that is analyzed in Chapter 4.

Part I: Selection of BPS Software

The decision criteria considered for the BPS in this research were the simulation’s
accuracy, interface intuition, customization, cost, sub-domain focus, and ease to implement.
The EnergyPlus BPS software with the OpenStudio interface software was selected for this
research. However, all four BPS software being compared were identified as viable
alternatives suitable to implement in this research. The primary justification for this
selection was the intuitive interface and ease for customization. Although Trace 700 had the
best interface, the emphasis of Trace 700 was too focused on HVAC. It provided many
superfluous features and required many additional details that were only important to the
internal interactions of the building such as zoning and system specifications. The building
heat balance through the building envelope was the focus of this research which was better
reflected with EnergyPlus and eQuest [40]. EnergyPlus provided a better and more intuitive

interface than eQuest. Additionally, EnergyPlus provides a more accurate simulation having

48



built upon the eQuest software [38]. EnergyPlus is a proven, accurate software used
frequently in thermal energy research shown to have less than 10% error in accuracy when
compared to actual facilities [41]. EQuest, EnergyPlus, and OpenStudio also have the
benefit of being free and opensource. Although not the primary criteria, this benefit was a
consideration. Lastly, the interface in OpenStudio and EnergyPlus allows for easier
replication of the simulation which is important for validation of the research results. The
repeatability of the overall research was a significant consideration when determining the
appropriate selection.

Repeatability is one of the main decision criteria that aided in selecting EnergyPlus
as the BPS software for this energy simulation. Repeating a building simulation can be very
challenging due to the complex interaction of numerous parameters in the heat balance
algorithms, energy flow modeling, weather and site data, and building model [42]. The
large quantity of inputs, the various ways to model the building, and the environment
interactions contribute to the numerous BPS software available. The methodology section
of this paper provides the settings and input for each section of OpenStudio. The reason for
providing these settings, inputs, and justifications is to enable other researchers to repeat
this method using the same software and inputs. Additional details for the software settings
may be found in Appendix A and Appendix B.

The focus on the building envelope’s total energy flow is an important qualification
for this simulation and research [43]. The model is not concerned with the internal energy
transfer or zoning within the building. Although these are crucial to maintaining a
comfortable and consistent temperature profile throughout the building, it has a minimal

impact on the energy flow to the outside of the facility. Proper facility design must address
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these zone or energy flows between rooms, but this research is more concerned with the
overall building energy. The error in the heat balance caused by this generalization is
considered negligible since each simulation will be using this same assumption. Testing of
EnergyPlus has shown the accuracy between a model and experiment to be within one to
two degrees Celsius when used to predict temperatures due to heat flows [44]. The primary
key building parameters considered with this building envelope focus are the building
shape, building size, site location, environmental temperature, internal temperature setpoint,
wall composition, roof composition, foundation composition, window composition,
occupancy, and internal equipment loads. The three key building parameters varied in this
research are the building shape, building size, site location, wall composition, and roof
composition.

Part II: OpenStudio Settings and Inputs

The OpenStudio interface is organized into 15 different screens or sections which
then have tabs to further subcategorize some of the sections. Each section has input
parameters for the building model or simulation that enable the analyst to input the specifics
of their situation. The OpenStudio model uses modules throughout the interface to layer the
inputs for organization and use. The program comes with many pre-populated modules,
allows customization of existing modules, and provides the option to create new modules.
Wherever possible, the existing modules were used to improve the repeatability of the
simulation. Since the software includes so many options and can be complex, each input
was documented visually in Appendix B. Appendix A summarizes the OpenStudio settings
in a table for a more concise format. Table 1 provides a portion of Appendix A to provide

an example of the BPS setting documentation.
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Table 1: Example of Appendix A - Summary of inputs for OpenStudio to demonstrate the

software capabilities and enable simulation repeatability

WBS |Category Name |Input Name Input
1.1 |Weather Weather file USA_OH_Dayton-Wright.Patterson.AFB.745700_TMY3
ASHRAE Climate Zone 5A
Calendar Year 2020
1.2 |Life Cycle Costs Analysis Type Federal Energy Managemt Program (FEMP)
Analysis Length 25 years
NIST Fuel Escalation Rates Yes
NIST Region MidWest
NIST Sector Commercial
1.3 Utility Bills N/A N/A
2.1  |Schedule Sets Default Schedules Office Small Activity Schedule
Office Small Building Occupancy Schedule
Office Small Building Light Schedule
Office Small Building Equipment Schedule
Office Small Infiltration
2.2 |Schedules Office Small Activity Schedule 120 Watts/person
Step starts at 0600 peaks at 0800-1600 with a dip at 1200
Office Small Building Occupancy Schedule |for lunch hour. Gradual step down after 1600.
10% emergency lighting assumed. Step starts at 0500
peaks at 0800-1700 with a more gradual step down.
Office Small Building Light Schedule Affected with the lunch hour.
30% baseline use. Peaks at 0700 until 1700 with one step
Office Small Building Equipment Schedule |at 1800. Affected with the lunch hour.
Office Small Infiltration Value of 1.0 throughout the day

The first section in OpenStudio addresses the weather data required for the

simulation. Weather data was downloaded from https://www.energyplus.net/weather where

EnergyPlus has combined over 20 different reputable weather data sources. This research
used ‘typical meteorological year 3’ weather data which is derived from the National Solar
Radiation Database (NSRDB) archives. The National Renewable Energy Laboratory
(NREL) manages these data files by ensuring their accuracy and improving the data quality.
This data provides hourly weather data for each day in a typical year. This does not provide
the extreme weather values that are often required for HVAC sizing and system design.
These extreme conditions are summarized as design days, but design days were not used for
this research. Instead, the BPS software uses the weather data as the basis of its simulation.
Since the weather is not completely predictable, the simulation uses the typical weather data
and the recorded variations to simulate several iterations of the built model. The results

from the weather simulations are included and summarized in the results section, which can
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be seen in OpenStudio section fifteen.

ASHRAE is an organization that provides standards and guidelines for HVAC and
mechanical engineering. ASHRAE has developed environmental climate zones for
geographic locations within the United States. A map of these climate zones, see Figure 1,

was used for the input in the weather section of OpenStudio.

Marine (C) Moist (A)

Brattleboro —
Cincinnatti
Columbus
Cleveland,

- Philadelphia
Wilmington
~Washington, D.C.

v Warm-Humid Below
Wilmington Red Line

o
Charleston

New 3
Orleans

Miami 1

All of Alaska in Zone 7 except for the following Boroughs in Zone 8: Bethel, Dellingham, Fairbanks, N. Star, Nome North Slope, Northwast Arctic, Southeast Fairbanks, Wade
Hampton, and Yukon-Koyukuk

Zane 1 inciudes: Havai, Guam, Puerto Rico, and the Virgin Islands
Figure 1: ASHRAE Climate Zones
The weather section’s sub-section named life-cycle costs allows the customization
of the simulation’s life-cycle analysis parameters. The Federal Energy Management
Program (FEMP) provides guidelines for this type of analysis [45]. The default setting was
selected for this simulation. The analysis length is set to 25 years as an average time
required before a large building renovation. Han et al. [46] reported an inflection point at 25

years in his research which used EnergyPlus and DesignBuilder BPS with genetic
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algorithms to optimize building life-cycle cost using building components. Twenty-five
years was also chosen because the building components will be at the end of their designed
or specified lives and should be replaced [47]. This is especially true in the Air Force where
operational considerations often drive renovations for function changes. For some
individual component context, the life expectancy of a typical roof is 20 to 30 years, a
window is 15 to 20 years, HVAC and boilers are 10 to 20 years, and insulation is 20 to 30
years [48]. The National Institute of Standards and Technology (NIST) is a reputable
organization that provides various standards. The default to use NIST for fuel escalation
rates over this life-cycle analysis was accepted. The commercial NIST sector was chosen
since this sector includes office space. Utility bills were not considered since actual
building performance data was unavailable and was estimated based on the site’s location.

The second OpenStudio section contains the schedules that the building operates.
This includes the HVAC operations, personnel flow, lighting schedule, equipment schedule,
and infiltration. These categories do not operate at a constant rate in a daily or weekly
schedule. Instead, the loads from these categories fluctuate depending on the building use.
A typical HVAC system used in a commercial setting such as an office space will operate
in some capacity all day, so a 24-hour HVAC setting was used in OpenStudio. It may not be
actively cooling or heating the space, but the system will usually use the fan to provide a
minimum air flow required for air quality and building equipment. Most large HVAC
systems will have variable air flow or fan speeds to improve the energy efficiency of the
system and prevent it from operating at 100% all the time. The system controls will vary
these air flows based on the minimum loads or air flow required.

The occupancy for an office space will follow typical work hours. Some personnel
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will come in early and steadily increase until all personnel arrive for work. The peak
personnel will remain consistent except for the lunch hour where it will drop. Finally, the
personnel will begin to leave the building as work ends and they return home. The
afternoon decrease is seen to be lower than the arrival rate since some personnel must work
late. The OpenStudio schedule settings provides a means to model the flow of personnel.
Personnel also drive the use of lighting, equipment, water, and outlet electricity which all
follow this same profile curve to some degree. The light schedule assumed that 5% of the
lights would always remain on as emergency lighting. Electrical loads assumed a 30% and
40% baseline due to equipment, computers, HVAC, and other building items that always
demand electricity regardless of occupancy. The two baseline values correspond to
electrical outlet demand and electrical demand, respectively, which are split since
occupancy has a more direct impact to outlet use. Infiltration is modeled with a constant
that is based on the tightness of the building construction which is then set to a 100%
schedule to show the constant infiltration.

The third OpenStudio section enables the modeling of the building construction.
This section allows the varying of the materials and material properties used in
construction, thus making it the most relevant section to explore the research questions.
Most construction surfaces are a composition of various layers of building materials. This
section allows a building to be separated into construction surfaces such as walls, windows,
roofs, foundations, and many more. Each surface may then be further separated into
individual materials such as paint, gypsum board, wooden two-by-fours, cellulose
insulation, etc. Lastly, each material may have its properties adjusted or customized to

reflect the modeled building material qualities. The building construction consisted of two
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prototypical office building constructions to model typical office space.

The fourth section includes the internal loads that would affect the energy required
to maintain a constant temperature. The internal loads considered for this simulation
included the sensible and latent heat generated from occupants, the heat generated from
lighting, and the heat generated from electrical equipment. These loads follow the
applicable schedules developed in section three. The fifth section addresses internal space
types useful for internal air flow, zoning, and ducting which is not required for this
simulation.

The sixth section provides the geometry of the building to include its size, shape,
and orientation. It also communicates to the software how the surfaces defined in section
three interact with one another. This is another crucial section to correctly and accurately
define the building model for the BPS software. OpenStudio uses the Floorspace]S program
to develop the building geometry. The prototypical building used in the analysis must be
created within this program for OpenStudio to use.

The seventh section provides building attributes that are applied to the geometry
defined in the sixth section. Many of these features are not relevant to this application since
the internal energy flow is a secondary concern in this research. One relevant setting is the
nominal floor-to-floor height which is required for zoning and air volume calculations.
Even though multiple zone analysis is not being performed, this must be defined to separate
the conditioned space from the plenum, which is discussed in the ninth section. The eighth
section is the spaces which defines the space types designated in section five. The defaults
are appropriate for this section which allow for the two space types of a single zone and a

plenum. This section would need to be detailed if the research is concerned with the internal
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air flows or zoning.

The ninth section applies thermal zones to the space types defined in section eight.
Since the internal zoning is not a concern for this simulation, the building may be separated
into two categories, conditioned space and unconditioned space. The conditioned space is
designated as ‘single zone’ and includes the locations of personnel or equipment sensitive
to temperature and humidity. The unconditioned space is designated as ‘plenum space’
which should be everywhere else for this simulation. A plenum is a part of a building that
allows for air circulation. This is unconditioned space that is frequently seen above a drop-
down ceiling, in utility corridors, or in the space between the ceiling and floor. This section
also allows for the setpoints of the HVAC fluid temperatures used in the HVAC system.
These temperatures were left at the default values from the prototypical model which are
typical for most HVAC systems.

The tenth section defines the HVAC system layout used in the building. A typical
centralized, packaged HVAC unit was used with heating and cooling coils, distribution
ducting, and a supply air mixed with outside air to increase air quality. This is typical in Air
Force office spaces, although a few older bases have centralized plants for steam such as
Wright Patterson, AFB. Since these are in the minority, centralized plants were not
considered for these simulations. However, the trends in the results and decision-making
principles would remain the same regardless of the energy source.

The eleventh section allows the analyst to toggle the output variables in the
simulation result. There are 571 possible output variables with the default only having 25
turned ‘off’. These 25 all related to an aspect of zoning, which was not a concern for this

research. The 546 output variables remaining ‘on’ were used for this simulation. The
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consequence of extra output variables is a longer summary report in section fifteen.
However, since only the result summary values relevant to the research question are used,
no harm is created from keeping these variables ‘on’. Using the defaulted ‘on’ values saves
the time required to understand how the algorithm uses each of these output variables.

The twelfth section sets the conditions for the simulation parameters. The defaults
for the simulation were used. This section includes important settings such as the HVAC
sizing factor, simulation timesteps, convergence parameters, simulation iterations, and
algorithm selection. HVAC systems are typically sized beyond the maximum loads
required. This ensures an operational factor of safety to prevent the HVAC from shutting
down when the designed conditions are exceeded, such as may be experienced during an
uncommonly hot day. However, oversizing an HVAC system affects the performance and
makes the overall system less energy efficient. The default sizing factors in OpenStudio are
common industry practice values.

The simulation timestep determines the time used for each datapoint in the
simulated energy balance. Decreasing the amount of time between each step increases the
algorithm accuracy, but it also increases the complexity and time required. This tradeoff
between accuracy and complexity is frequently observed in simulation and modeling. The
convergence parameters control when the simulation algorithm determines that it has
reached an optimal solution. More stringent parameters will require additional iterations.
The simulation and iterations are required since there is uncertainty in weather. The
simulated weather used in the algorithm is based on the historical data and the probabilities
of typical weather experienced based on calendar day. Lastly, EnergyPlus allows the

analyst to select from several different algorithms used to model the heat transfer equations.
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The DOE-2 algorithm was selected since this was the algorithm originally intended for
EnergyPlus. The thirteenth section addresses additional measurements that can be
customized into the simulation and results. This section was not used for this research.

The fourteenth section runs the simulation. This section does not have any inputs
but requires the analyst to click the run button. The fifteenth and final section provides the
results summary from the simulation. This provides the output from the simulation and
modeling. It provides an extensive report with many extraneous details since the output
variables in section eleven were not filtered. This research is concerned with the total
annual building energy use, which will be discussed more in Chapter 4. For more
information on the settings used in each of these sections, see Appendix A and Appendix B.

Pilot Study Simulation Results

The purpose of using a BPS software is to determine the building’s total energy use
per year. The annual energy value is the total amount of energy the facility requires from a
utility provider to operate for the year. The energy cost that utility companies charge
customers in this region can be converted to the annual sustainment cost for the building.
When the construction materials are varied, the annual sustainment costs can be compared.
A comparison of the total life-cycle costs of the facility alternatives can also occur when the
acquisition cost for constructing with these materials is also included.

The OpenStudio results section provides the reports from the Energy Plus
simulation. There are numerous different results that can be used for a multitude of
applications beyond this research. However, this research is primarily concerned with the
total annual energy required to maintain a constant internal temperature. The ‘total site

energy’ with units of Gigajoules (GJ) provides the value for the total annual energy
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required for the building sustainment.

The OpenStudio report also provides the site to source energy conversion factors.
This is relevant to a life-cycle cost analysis whose boundary conditions are not limited to
the facility but instead consider the energy generation. However, this research only looks at
the life-cycle cost from the perspective of the building user or the Air Force, not the overall
energy impact to the environment.

The OpenStudio result summary table should be used which includes end-users and
provides subcategories for the building energy use. This is important because heating often
uses natural gas which has a different cost than electricity. The natural gas and electrical
utility rates can be multiplied by the annual energy consumption to provide an annual cost.
This lets the simulation output provide the annual energy sustainment cost. The annual
sustainment costs can be added to acquisition costs, or the cost of construction, for the total
cost. When the construction materials are varied, the total life-cycle costs may be
compared.

OpenStudio was used in a pilot study simulation to ensure proper application to this
research. Using a template building, the following were the energy outputs: (1) 186.78 GJ
of total annual energy, (2) 76.08 GJ of annual natural gas energy, and (3) 110.70 GJ of
annual electrical energy. The U.S. Energy Information Administration (U.S. EIA) provides
reputable energy information on utility rates and projection estimates for future rates [49].
For example, using the U.S. EIA database, the electrical energy cost for the East North
Central can be estimated to be 10.28 cents per kilowatt hour (kWh) in 2020. Multiplying
this value with the annual electrical energy for the building and the conversion factor for GJ

to KWh provides an annual electrical energy bill of $3,161.10. This value is reasonable
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given the small facility modeled with the pilot study. The facility is comparable in size to a
larger residential building but used for commercial purposes. The actual prototypical
facilities used for the research differ greatly in shape and size than the pilot study building;
however, the pilot study demonstration provided value in becoming familiar with the BPS
software, ensured the BPS software was suitable for the research, and further developed the
simulation methodology.

The EnergyPlus BPS successfully demonstrated the ability to model the annual
building energy use and successfully showed that it is appropriate for this research.
OpenStudio and EnergyPlus provided an effective platform to perform the simulation and
modeling. However, their limitations and constraints should not be ignored. A negligible
difference in the life-cycle analysis was assumed for the maintenance and repair costs for
different construction materials. The simulation selection was constrained with the
requirement to ensure the process was repeatable, which occasionally sacrificed complexity
and accuracy for an easier simulation to learn and document. The simulation settings were
limited from not including extensive HVAC analysis for internal loading to include zoning,
HVAC sizing, or variations in HVAC type. The prototypical buildings used in this research
were also constrained to the cost parameters that allow them to be built within the Air Force
minor construction program. Not only did OpenStudio prove to be suitable for this research,
it also enables countless additional research opportunities for alternative construction
materials. Furthermore, each construction parameter can be considered for study and
analysis in order to identify more cost effective and energy efficient construction methods

or standards.
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Part III: Input Variables and Simulations

The three key building parameters for this study are the building location, building
size, and insulation standard. The building locations were chosen to represent cold, mild,
and hot climates and are located within zones 2A, 3B, 4A, 5A, 6A, and 7A based on the
ASHRAE climate zone map presented in Figure 1. The cold climates were Minot Air Force
Base in Minot, North Dakota and Ellsworth Air Force Base near Rapid City, South Dakota;
the mild climates were Wright Patterson Air Force Base in Dayton, Ohio and Langley Air
Force Base in Newport News, Virginia; and the hot climates were Edwards Air Force Base
near Bakersfield, California and JB San Antonio in San Antonio, Texas. The weather data

was downloaded at https://www.energyplus.net/weather where EnergyPlus has combined

over 20 different reputable weather data sources, as described in Part II. Again, this
research used ‘typical meteorological year 3’ weather data which is derived from the
NSRDB archives. The NREL manages these data files by ensuring their accuracy and
improving the data quality. This model did not focus on humidity outside of the local
weather patterns since this would introduce another key building parameter. This was the
justification for choosing most bases within the ASHRAE ‘A’ zones which represent moist
climate locations relative to the United States.

The next key building parameter is the building size. The size, shape, and
orientation of the building all influence how heat flows through the building. These factors
affect how solar and wind interacts with the building, which impacts the heat loss or gain.
Air Force buildings are constructed in many various sizes and shapes depending on the land
available, the function or mission of the facility, and pre-existing buildings. Therefore, both

a smaller and larger facility were used in this simulation to determine how the size affected
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the construction standards.

Rather than designing and creating a prototypical building, previous research was
used to ensure credibility in the model, prevent recreating research effort, and ensure
consistency in the study. The Pacific Northwest National Laboratory (PNNL) was
contracted by the Department of Energy to create and build models of prototypical
government office buildings to be used for additional research efforts [50]. Two of these
buildings were selected for use in this research. Using these prototypical buildings as a
common starting point allows for better sharing and comparing of research results to more
quickly progress towards energy efficient building practices. The function of these
buildings aligned with the goal for office space and government employee occupants. The
buildings’ purposes match exactly with the simulation intent. The smaller building is a
5,506 square foot, single story facility with typical two-by-four framed walls used as an
office building. Figure 2 shows a visual representation of the smaller building shape and

size.

Figure 2: 5,506 square feet prototypical office space building developed by the Pacific
Northwest National Laboratory

The larger building is a 20,000 square foot, three story facility with typical two-by-

four steel frame construction walls using lightweight concrete for the floors. The building
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design and construction layout was not modified, except for the key building parameters
used in the comparisons and the internal loads which were adjusted to reflect Air Force
office use and schedule. Figure 3 shows a visual representation of the larger building shape

and size.

Figure 3: 20,000 square feet prototypical office space building developed by the Pacific
Northwest National Laboratory

The largest modification to the prototypical office space buildings occurred in
OpenStudio’s section two, named schedules. This section defines the occupants within the
building, the heat generated by a typical occupant, the operating equipment, the lighting, the
water system, and the values and schedules that the HVAC system operates. These values
were set to follow typical Air Force operations which involved a standard 07:30 to 16:30
workday with some personnel arriving earlier and several working late. It included a
decrease in operations around a lunch hour and no one working on the weekend. However,
the facility maintained a minimum operational level to include emergency lighting, a
baseline HVAC temperature, and powered equipment while plugged in. Although the
smaller and larger building had some differences based on the sizes of the facilities, such as
the HVAC system servicing the facility, the profiles were kept as consistent as possible

between the two facilities. These profile default settings and selected values can be viewed
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in more detail in Appendix A and Appendix B.

One more default value that did not reflect typical Air Force office space was the
people per space floor area located in OpenStudio’s fourth section, named loads. This value
was modified to be 0.06 people per square meter in both facilities to be consistent. This
equates to approximately 180 square feet per person working in the facility. Standard rule
of thumb design practices uses an average of 125 to 150 square feet of office space per
person. However, this does not account for unusable space such as corridors, bathrooms,
etc. Therefore, 180 square feet was used to account for these additional spaces throughout
the facilities.

The last key building parameter varied in the OpenStudio simulation was the
insulation material used in the walls and roof. The R-value is how insulation standards are
discussed and reported in the United States. This is a measure of a material’s thermal
resistance using the English or Imperial measurement system. The R-Value System
International (RSI) is the International System (SI) conversion for thermal resistance. The
thermal conductivity refers to the inverse of the thermal resistance which is also known as
the U-Value in the English system. Both thermal resistance and thermal conductivity are
based on the thickness of the material and the type of material. Doubling the thickness will
double the thermal resistance. To compare materials without considering the thicknesses,
thermal conductivity is often reported using the conductivity per meter nomenclature.

Table 2 shows the values used for each of the insulation standards throughout this
research. The two prototypical office building models used different input variables for the
insulation material properties in the OpenStudio’s third section, named constructions. The

small facility used the RSI value for the insulation while the large facility used the
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conductivity per meter metric. The two inputs represent the same values, but the two
prototypical models used different input metrics for thermal properties of materials required
these unit conversions. The two input metrics combined with the confusingly similar
thermodynamics nomenclature were the reason for clearly presenting all these values in
Table 2.

Table 2: Conversion of insulation values used as input parameters in OpenStudio

y Thermal Resistance |Thermal Resistance| Thermal g Conductivity
Insulation . . | Thickness
(R-Value) (RSI) Conductivity per meter
Wall 11 1.937 0.516 0.089 0.0459
13 2.290 0.437 0.089 0.0388
15 2.642 0.379 0.089 0.0337
21 3.698 0.270 0.089 0.0240
Roof 30 5.284 0.189 1.000 0.1893
38 6.692 0.149 1.000 0.1494
49 8.630 0.116 1.000 0.1159
60 10.567 0.095 1.000 0.0946
: ft? x °F = h m? x °K w w
Units —_— m
BTU w m? x °K m * °K

Many different organizations develop construction codes for governments or
organizations to adopt as either mandatory requirements or voluntary standards. The
construction code requirements depend upon the regulatory laws of the country, state, and
local municipality where the construction is occurring. Insulation construction standards in
the United States are primarily specified from the state governments. The American Society
of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) is one organization
that published a construction standard named ASHRAE Standard 90.1 that has been widely
adopted in the construction industry. Some other standards used frequently in the United
States include the International Building Code (IBC), the International Residential Code
(IRC), the International Energy Conservation Code (IECC), and state developed
construction codes. New revisions of these codes are published every few years which can

significantly change the required insulation requirements. For example, the 2007 ASHRAE
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Standard 90.1 requires R-38 insulation in attic roofing for ASHRAE climate zone 7, while
the 2016 Standard 90.1 requires R-60 insulation. It is therefore important to know both the
construction code standard and the published year required for a location.

Each of the six states used in this research have adopted different construction
codes. The North Dakota Century Code Chapter 54 Section 21.3 makes amendments to the
2012 IRC, the 2012 IBC, and the 2009 IECC which are codified in the North Dakota
Department of Commerce State Building Code [51], [52]. The South Dakota Codified Laws
Title 11 Chapter 10-5 requires compliance with the 2009 IBC and provides voluntary
guidance to use the 2009 IECC [53]. The South Dakota state legislature provides latitude to
its local municipalities to determine the specifics of their own construction codes. Ohio
Administrative Code Chapter 4101:1-13 requires compliance with the 2010 ASHRAE 90.1
Standard [54]. The Virginia Construction Code 1301.1.1.9-10 specifies its own state
developed construction standard [55]. The California Code of Regulation Title 24 Part 6
Subchapter 2 Section 110.8 and Subchapter 7 Section 150.0 also specify its own state
developed construction standards [56], [57]. The California legislature has divided the state
into 16 different climate zones which are used in its code regulations, similar to the
ASHRAE climate zones. The Texas State Code Title 7 Section 214.216 and Title 5 Section
388.003 require compliance with the 2015 IECC. This research used the 2010 ASHRAE
90.1 Standard as the construction code that requires R-13 insulation in the two-by-four wall
cavity and R-38 insulation in the attic roof for ASHRAE zones one through six. This
provided a consistent construction code standard for all six locations for the analysis.
Additionally, this construction code met or exceeded the construction code for each of the

six states considered for the building types used in this research.
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The insulation values chosen as input parameters were selected to represent
commercially and easily obtainable materials that are commonly used in construction.
Additionally, they represent one value that is below code, one at code, one that exceeds the
minimum code, and one that greatly exceeds the minimum code for both the wall and roof.
For each building size at each of the six locations, every combination of these wall and roof
insulation standards were simulated. This created 16 different simulations for each of the
six configurations of size and location for a total of 192 separate simulations. Once
OpenStudio successfully ran the simulations and provided the results reports, the energy
annual energy consumption values were recorded. The annual energy consumption could
then be used to perform a life-cycle analysis and economic comparative analysis which is
further detailed in Chapter 4.

Chapter Summary

This chapter (a) outlined the methodology to selecting the appropriate BPS software
for this specific research effort, (b) described the OpenStudio settings and inputs, (c)
described the pilot study to demonstrate the BPS capabilities and advantages, and (d)
presented the input variables and settings used for the prototypical Air Force office building
insulation simulations. The results and interpretations of the research findings are discussed

in Chapter 4.
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CHAPTER 4: RESULTS AND ANALYSIS

Chapter Overview

This chapter presents the results from this research and includes the BPS software
output, the life-cycle analysis, and the economic analysis. This chapter is organized into
three separate parts. In Part I, the energy performance results from EnergyPlus and
OpenStudio are presented. In Part II, the life-cycle cost analysis (LCCA) is applied to the
simulation output. Finally, in Part III, the economic analysis compares construction
alternatives to determine the best value parameters.

Part I: Building Performance Simulation (BPS) Output

The OpenStudio BPS software performs the simulation algorithm in section 14
based on all the parameters and settings input throughout sections 1-13. The software must
initialize the workflow, process the OpenStudio measures from the inputs, translate the
OpenStudio model to EnergyPlus, apply the inputs to the EnergyPlus model, perform the
iterative simulation, and finally present the results in the reports found in section 15. The
reports can provide a multitude of analytical information for the building such as total
energy flow, orientation impact, zoning performance, air flow, equipment energy use, water
use, HVAC efficiencies, and many more. For this research, the focus of the results reported
is the total energy flow which provides information on the energy loss through the building
envelope and the annual energy cost.

The first relevant OpenStudio report is the ‘site and source energy table’ found in
section 15. The site energy is the total of all energy required to operate the facility
throughout the year based on the OpenStudio model. This includes the energy required for

all HVAC operations, internal equipment operations such as lighting, outlet loads, and
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building system operations. It provides a single summary value for the annual energy
required, but it does not provide a breakdown of what is using the energy or what kind of
energy is required. Table 3 provides an example of the ‘site and source energy table’ for the
small facility located at Wright Patterson AFB with R-11 wall insulation and R-30 roof
insulation.

Table 3: Example of an OpenStudio report on Site and Source Energy

Total Energy [GJ] | Energy Per Total Building Area [MJ/m2] | Energy Per Conditioned Building Area [MJ/m2]

Total Site Energy 244 46 478.25 478.25
Net Site Energy 244 46 478.25 478.25
Total Source Energy 753.21 1473.55 1473.55
Net Source Energy 753.21 147355 1473.55

The source energy provides a holistic view of the total energy required to power the
facility. It not only includes the total energy required from the facility but also includes the
transmission, delivery, and production energy losses required for the facility to operate. For
example, energy losses are experienced when producing energy into a form that can be
distributed from an energy plant to the building location. Additionally, the energy
distribution infrastructure also experiences energy losses while transporting the energy over
distance. The source energy includes the energy lost in these processes to provide the site
energy required for the facility. The source energy can be influenced by the type of energy
the building systems utilize. For example, an on-site natural gas boiler and a centralized
steam plant can provide the exact same site energy for building heating but would provide
different source energy values. The focus of this research was the building envelop and not
the HVAC system selection, so site energy was used in the analysis rather than the source
energy.

The ‘site and source energy table’ provides valuable information on the magnitude

of the energy required for the facility, but it does not provide specifics necessary for a cost
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analysis. The ‘site energy subcategory end use table’ provides a further breakdown of the
building energy to include the type of energy and the system or category of energy use.
Table 4 shows an example of the ‘site energy subcategory end use table’ for the small
facility located at Wright Patterson AFB with R-11 wall insulation and R-30 roof
insulation.

Table 4: Example of an OpenStudio report on Site Energy Subcategory End Use

Electricity [GJ] | Natural Gas [GJ] | Additional Fuel [GJ] | District Cooling [GJ] | District Heating [GJ] | Water [m3]

Heating 16.99 10.08 0.00 0.00 0.00 0.00

Cooling 17.96 0.00 0.00 0.00 0.00 0.00

Interior Lighting 73.99 0.00 0.00 0.00 0.00 0.00
Exterior Lighting 25.66 0.00 0.00 0.00 0.00 0.00
Interior Equipment 58.98 0.00 0.00 0.00 0.00 0.00
Exterior Equupment 0.00 0.00 0.00 0.00 0.00 0.00
Fans 22.80 0.00 0.00 0.00 0.00 0.00

Pumps 0.00 0.00 0.00 0.00 0.00 0.00

Heat Rejection 0.00 0.00 0.00 0.00 0.00 0.00
Humidification 0.00 0.00 0.00 0.00 0.00 0.00
Heat Recovery 0.00 0.00 0.00 0.00 0.00 0.00
Water Systems 18.01 0.00 0.00 0.00 0.00 30.12
Refrigeration 0.00 0.00 0.00 0.00 0.00 0.00
Generators 0.00 0.00 0.00 0.00 0.00 0.00

Total End Uses 234.38 10.08 0.00 0.00 0.00 30.12

It is important to be able to separate the energy use into electricity and natural gas
since they have different costs. It is beneficial to see the energy categories during the
simulation iterations to identify which categories change with the key building input
parameters. The fans, heating, and cooling category values change when varying the
insulation used in the facilities. The lighting, equipment, and building systems use a
baseline energy cost which did not fluctuate with changing insulation values. Instead, these
energy costs are the energy required to operate the facility based on the prototypical office
building model and schedules selected. However, the most important values from this table

for the cost analysis are the ‘total end uses’ value for the electricity and natural gas energy

70



types. The electricity and natural gas ‘total end uses’ values can then be used for the
economic analysis of each simulation configuration.

As mentioned in Chapter 3 within the “pilot study simulation results’ section, the
U.S. Energy Information Administration (U.S. EIA) provides reputable energy information
on utility rates and the best projection estimate for future rates [49]. The U.S. EIA database
was used to estimate the electrical energy cost and natural gas energy cost for each location
used in this research. The EIA utility rates used in this research were the annual estimate for
2020 and the data was taken from their open source website in October of 2019. Minot AFB
and Ellsworth AFB are within the West North Central U.S. region, Wright Patterson AFB is
within the East North Central U.S. region, Langley AFB is within the South Atlantic U.S.
region, Edwards is within the Pacific U.S. region, and JB San Antonio is within the West
South Central U.S. region. Table 5 presents the total energy required for each simulation
configuration with different insulation values for the small prototypical office building at
Wright Patterson AFB. It also includes the EIA utility rates used for the cost analysis and
the annual electricity and natural gas costs to operate this facility. Appendix C provides the

complete table for all simulations in addition to the one example presented in Table 5.
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Table 5: Annual energy cost for small prototypical facility at Wright Patterson with
different insulation values

WPAFB, OH Total Energy (G)) Electricity (G)) MNat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost Annual Nat Gas Cost

Small Building 5500 SF cents/kW $/thousand cuft
Wall: R-11

Insulation 1 Roof: R-30 244.46 234.38 10.08 10.26 6.77| 5 6,967.11 S 646.78
Wall: R-13

Insulation 2 Roof: R-30 243.09 233.52 9.57 10.26 6.77| 5 6,928.07 $ 614.05
wall: R-15

Insulation 3 Roof: R-30 242.07 232.86 9.21) 10.26 6.77| S 6,899.00 $ 590.96
wall: R-21

Insulation 4 Roof: R-30 240.15 231.64 8.51) 10.26 6.77] S 6,844.28 S 546.04
Wall: R-11

Insulation 5 Roof: R-38 242.66 233.27 9.39) 10.26 6.77] S 6,915.81 S 602.50
wall: R-13

Insulation 6 Roof: R-38 241.29 232.41 8.88 10.26 6.77] § 6,876.77 $ 569.78
wall: R-15

Insulation 7 Roof: R-38 240.33 231.8 8.53] 10.26 6.77| S 684541 S 547.32
Wall: R-21

Insulation 8 Roof: R-38 238.58 230.65 7.93] 10.26 6.77| 5 6,799.53 $ 508.82
wall: R-11

Insulation 9 Roof: R-49 241.04 232.28 8.76) 10.26 6.771 S 6,869.64 S 562.08
wall: R-13

Insulation 10 Roof: R-49 239.83 231.5 8.33] 10.26 6.77| S 6,835.16 S 534.49
wall: R-15

Insulation 11 Roof: R-49 2389 230.91 7.99) 10.26 6.77| S5 6,808.65 $ 512.67
Wall: R-21

Insulation 12 Roof: R-49 237.31 229.83 7.48] 10.26 6.77| 5 6,763.34 $ 479.95
wall: r-11

Insulation 13 Roof: R-60 240.06 231.68 8.38) 10.26 6.77| 5 6,841.71 S 537.70
wall: R-13

Insulation 14 Roof: R-60 238.92 230.93 7.99 10.26 6.77] § 6,809.22 S 512.67
wall: R-15

Insulation 15 Roof: R-60 238.09 230.37 7.7 10.26 6.77| 5 6,785.57 S 494.71
Wall: R-21

Insulation 16 Roof: R-60 236.46 229.28 7.18} 10.26 6.77] S 6,739.11 S 460.70

Although utility rates fluctuate year to year, they tend to increase over time. For
example, the East North Central commercial electricity rate has increased from 7.19 cents
per kilowatt to 10.19 cents per kilowatt from 2000 to 2019. Since the rate that energy costs
increase over time is difficult to reliably predict over time, the 2020 energy rate was used
throughout the entire life-cycle analysis. This will conservatively calculate the energy
savings since the actual cost savings will be greater depending on the increase in energy
costs. Since this same assumption was applied to each configuration cost calculation, the
error between comparisons is minimized. The same conservative calculation using the 2020
utility rates was applied consistently throughout this analysis.

Once the total energy and utility rates are known, the annual cost can be easily
calculated. Multiplying the energy and rate together while using the appropriate unit
conversions provides the annual cost for both electricity and natural gas. Summing these
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two energy costs together provides the total annual energy cost for sustaining the operations
of this facility. The total annual energy cost is a recurring cost that must be paid each year.
This annual energy cost is the final result from the simulation that will be used in the life-
cycle and economic analysis to determine which insulation configuration is the better
economic value.

In Part I, the process was presented to calculate the annual energy cost from the
results of an OpenStudio simulation. The limitations and assumptions for the U.S. EIA
utility rates used in the data analysis were discussed. An abbreviated table presenting the
total energy and annual cost can be found in Table 5 and the full data table can be found in
Appendix C. In Part II, the annual cost will be used in the life-cycle cost analysis to
compare the results from different insulation configurations.

Part II: Life-Cycle Cost Analysis (LCCA) Results

A life-cycle analysis (LCA) is an analytical process to quantify the total costs of a
system or component over its entire life span. It emphasizes the entire span of the system
from initial production to decommissioning and disposal, which is commonly referred to as
a cradle-to-grave scope [58]. The LCA is an appropriate evaluation tool for this data since
the scope extends from the material acquisition cost at the procurement of the facility to the
material replacement at the end of the construction material’s life within the facility. The
construction material should be used for the LCA scope instead of the entire facility since
the building will continue to operate after the individual construction materials exceed their
life. A renovation project can be performed to extend the useful operations of the facility
based on asset management principles. However, to identify the most cost-effective

construction standard for the insulation, only the construction material’s life span needs to
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be considered for this LCA.

The three stages in the LCA process are inventory analysis, impact analysis, and
improvement analysis [59]. The inventory analysis involves quantifying the system into its
basic elements of raw materials, energy, wastes, and by-products. The simulation’s inputs
and the determination of the energy losses encompass the inventory analysis for this
research. The material selections for each configuration in this study were also an important
part of the inventory analysis which identified the raw material and costs for each
configuration. The impact analysis stage is the technical analysis to quantify and assess the
effects of the systems. For this research, the impact analysis is performed with the cost
analysis that quantifies the life-cycle cost for each configuration over the life span of the
insulation. Lastly, the improvement analysis is the study that systematically evaluates the
opportunities to reduce the impact of the system. In this research, the improvement analysis
is the economic analysis which compares the individual configurations to one another to
determine the comparative benefits between the alternatives.

Many times, the focus of the LCA is placed on the impact analysis due to the
technical assessment and decision-making emphasis, but each step in the LCA process is
crucial for an accurate and meaningful result. A life-cycle cost assessment (LCCA) model
is often used to analyze the system during the impact analysis phase. A LCCA is a
systematic analytical process for evaluating various designs or alternative courses of actions
with the objective of choosing the best way to employ scarce resources [59]. Many different
models have been developed to apply LCCA to different situations and processes. All these
models apply the LCA principles to reduce the total cost of a product, system, or asset, but

they all apply these principles to different processes to emphasis differing priorities.
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Durairaj et al. [59] provides a comparison of several preferred LCCA models to identify the
differences and advantages of each. Table 6 summarizes the comparison to visually show
the strengths and advantages of each model.

Table 6: A comparison of preferred LCCA models

No Features LCCA LCCA LCCA ABC EIO-LCA DOC PLCCA TCA LCECA
(Fab. & Bla.) (Wood.) (Dahlen) Model Model Model  Model Model Model

1 Objective Cost LCCof LCCof Cost EIO Cost LCC TC Eco-
Alternates assets  labor Redn. analysis  Evaln. estimates calculation design

2 Identification of alternatives A A A A NA A NA NA A

3  Development of CBS & CBRs E E E E G G G A E

4 |dentification of suitable cost model E G G E A A A A E

5  Generation of cost estimates E E E E NA A NA A G

6  Availability of cost profiles G A A A NA A NA NA G

7 Break Even Analysis A A A A NA NA NA NA A

8  Determination of High Cost contributors A NA NA A A NA NA NA A

9  Total Cost Determination A A A A A A G A

10 Incorporation of Eco-costs NA NA NA NA NA NA A NA G

11 Cormelation with Design changes NA NA NA A NA A A NA A

12  Implementation of a ign solution NA NA NA A NA A A NA A

13 Quality Aspects NA NA NA NA NA A E NA NA

14 Inclusion of Supplier Relatiohships NA NA NA NA E NA NA A A

15 Trade - offs NA E NA A A A A A A

16 Employment cycles NA NA E NA A NA NA A NA

17  Sensitivity Analysis A A A A NA NA NA NA A

18 Risk Analysis A A A A NA A A NA A

19 De-manufacture concept NA NA NA A NA A A NA A

20 Any special feature Holistic Asset Human  Uncertainty Lca Prod. Redesign For Eco-
model model factor upgradn  sys.des. projects design

A, available; NA, not available; G, good; E, excellent.

Source: K. Durairaj, S. K. Ong, A. Y. C. Nee, and R. B. H. Tan, “Evaluation of life-cycle cost analysis
methodologies,” Corp. Environ. Strateg., vol. 9, no. 1, pp. 30-39, 2002

The LCCA model developed from Fabrycky and Blanchard [60] was selected for
this research due to its objective being based in cost alternatives. The comparison between
different construction materials in this study provides alternative construction options that
need to be evaluated. Additionally, this LCCA model excels at focusing on the cost
breakdown structure and cost estimating. Fabrycky and Blanchard’s process involves
problem definition, identification of alternatives, cost breakdown structure development,
cost model selection, cost estimate development, analysis of results, and recommendations.

The generic equation for a LCCA 1is [60]
LCC =1+ E+W+ OM&R + Repl— Res+ 0 (6)

where

LCC is the total life-cycle cost in present value (PV) dollars of a given alternative,
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I is the initial cost to include development, acquisition, and construction costs,

E is the total energy costs,

W is the total water and other utility costs,

OM&R is the total operating, maintenance, and repair costs,

Repl is the capital replacement costs

Res is the residual value from resale or salvage after disposal costs at the end of life, and

O is all other costs, if any, such as administration, financing, human resources, etc.
Equation (6) provides the foundation for the LCCA for this research. However, it

can be further simplified based on the study’s scope and assumptions. Since the alternatives

analyzed in this research are only the building insulations, many of these terms are zero or

can be modeled as equivalent. The initial cost and energy costs are the primary terms that

are considered in this research. The total water and other utilities for the facility are not

impacted by the wall and roof insulation so they can be considered zero for this scope. The

operating cost for building insulation is already quantified in the energy cost term, so it can

also be considered zero. The maintenance and repair costs for the insulations are assumed to

be equivalent for each alternative. Maintenance on insulation is rare since it typically is

installed, ran to failure, and then replaced in whole. Repair of insulation is also rare when

installed properly. The need for insulation repair will usually only be considered when

another system fails and damages the insulation such as the roofing membrane or a water

pipe. This should not be considered for this LCCA since it involves a corrective repair due

to another system rather than preventative maintenance of the system being analyzed. The

replacement value is also not considered in this analysis since the building would continue

to operate at the end of the system life and require a replacement of the same system. The
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iterative asset replacement is cyclical so the replacement cost would be the acquisition cost
of the next iteration. Each construction material being considered has the same life span and
replacement timeline. Insulation does not have any residual value at the end of its life and
must simply be disposed. Lastly, no other costs need to be considered for this analysis such
as financing or administration. The equation after applying equation (6) to this study

simplifies to
LCC=1+E (7)

where

LCC is the total life-cycle cost in present value (PV) dollars of a given alternative,
I is the initial cost to include acquisition and construction costs,

E is the total energy costs.

Fabrycky and Blanchard [59] model the cost breakdown structure using different
language than the generic LCCA. Their cost breakdown structure uses four categories to
identify costs: (1) research and development costs, (2) production and construction costs,
(3) operation and maintenance costs, and (4) retirement and disposal costs. When applied to
this study, the research and development costs and the retirement and disposal costs are
zero. The production and construction costs are the same as the initial acquisition and
construction costs. The operation and maintenance costs are the same as the total energy
costs. This simplifies the cost breakdown structure model to equal the same as equation (7).
When using this equation to determine cost-effectiveness, the only evaluation criteria is the
lowest life-cycle cost. Non-monetary considerations were not quantified and included in the
evaluation criteria or recommendation since they are often project-specific.

The energy costs were calculated using the BPS software, but the acquisition and
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construction costs must be calculated using a different method. Gordian is a company that
compiles and provides construction cost data in a format called RSMeans [61]. Gordian
offers access to their information database through their RSMeans construction cost books
or software. This researched used the 2017 book for ‘Building Construction Costs with
RSMeans Data’ to estimate the costs of the construction. The book presents unit pricing on
materials which include acquisition, installation, labor, and any equipment required for
constructing with that material. It also provides information on city cost indexes, overhead,
production rates, and typical crew composition. The Air Force frequently uses RSMeans
construction cost estimating in its construction programs.

Table 7 provides an example of how the RSMeans data was used to calculate the
acquisition cost for one insulation configuration at Wright Patterson AFB. RSMeans cost
data is organized into divisions for similar types of work or disciplines. The insulation line
items needed for this study are in division 07, thermal and moisture protection. RSMeans
presents costs as unit pricing to allow calculations for different quantities. The quantity
take-off measurements for these calculations were based on the prototypical building
geometries. The small facility has 5,506 square feet of roofing and 2,388 square feet of
exterior wall while the large facility has 5,000 square feet of roof and 8,040 square feet of

exterior wall.
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Table 7: Example of acquisition cost calculations for Wright Patterson AFB

Division OT: Thermal and Moisture Protection [ Key: [RS Means Data_ [Caiculation[Adjustment Factor From City Cost Table
o Activity Quantty | Una Dty #1 Material | Material L Crew Labor |Labor Ad). | ¢ Equip |Equip Ad). Juif . | RSMeans mem

Output | v ($funi) Adj | cost ($tnd) | Factor | Cost |($Aind) | Factor 1 Number

Thermal insulston - Sarast Ny

| mrmnber rauintion tor ocrucetngn mberpman baniets s
1 [tas paper o fod backing 8° Bick, R1S sso0s | =r 00 . [ 19 |3 awr| vesp | oes (RFij 3 an [} orer 3 3 6me 072316102050
Thermal naulaton - Barist naates

£0000 = = 18 ors 110 1 daes A Carp am 1137 1 4as2 L] o mar ) 3 47 |07-21-16-10-2230
|pmntet mauiston tor foornTedngs fbeigiaas blankety of
] baftn_ paper or fod backing 12" thick, A 50000 ¥ s L[E3) 108 110 $ 44m 1 Carp an 1137 §_agm L] ome ) ) 1158 bO-21-16-10-2220
Thermal insulstion - Sardet hauiaton
Banket raueton for focruTedngn fherpas bankets or
4 Joata, enteced ¥ 12 Bick R3O so000 | SF 458 nn 082 1198 $ 37| 1Cam L] § 49 [ 3 3 A674 |07-21-16-10-3020

Blanket raulston for wals Fol faced fbergiass J 1T°
5. 19" wite assos | o | wse | sw [T 11w |5 ass| veam | e vy |3 zes| e

ermal msulstion - SemesDamauees | | | 1 | |
Cioaed el beray pesyurethane foam T pounds per cube
g 1ot denaty owss | sr | s 489 18 1w | srres] oan | es

Cemhe )
ot a
Contngeecy | %

Tosst | 8 waasm

Once the quantity and unit cost are known, the cost must be adjusted based on the
city cost factors for the construction’s location. The material, labor, and equipment price
vary based on the economics and markets of the city where construction occurs. Table 8
provides more details on the city cost index calculations. The labor adjustment factor
requires additional details on the trades of the personnel performing the work, which is all
available within the RSMeans building construction book. Different construction trades
have different overhead costs that are affected by their hourly wage and expertise. Once the
city indexes are known, the total cost for a line item can be calculated. Then the line items
that are applicable for each specific insulation configuration are selected and summed for a
total configuration cost. Lastly, the cost must be adjusted to include inflation, overhead,
profit, and contingency. Once adjusted, the total acquisition cost for the insulation
configuration has been calculated. Appendix D provides all the tables and calculations for

each location.
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Table 8: City cost index with labor overhead and labor adjustment factor calculations for

Wright Patterson AFB
City Cost Table (Dayion, OH p 787)
MaiCly | Materal st Cly | Labor &dy | Equip Ad
Oivisha Waste | o |'bdex |aq Factor hdex | Facer | Facher
Division 07 Thermal and Uoature Protecton - Caprpentsr 108 1075 | 1062 1199 0787 1127
Devigign U7 Thermal and Womdure Protection - Crew G-24 105 1078 1,199 4 1214 o787
Labor
Labor d Labor Factor Table Overhead
(From Table in Back Caver of RSMeans) work rate Tokel Labor
OH J Total
Crew hour daily  8Workers B c 1] B+C+D Workers x rate  Total Craw Rate Totsl Labor OH | Crew Rate
G624 1 Roofer Compostion 4315 3452 1 07 183 11 600 2315 )
1 Roofer Heiper 321 2568 1 w7 183 11 ) 3210 1828
1 Building Laborer bR 1] M2 1 139 183 1" 412 3518 1881
11440 £2.06] 0.543
1Carp 1 Carperter [F D 1 138 183 1 [EF] 2525 FFD)
4925 .28 0.433

Table 9 provides a summary of the total acquisition costs and annual costs

calculated for each insulation configuration, location, and building size. These two values

enable the life-cycle cost to be calculated using equation (7). The economic analysis for

comparing the different configurations to determine the most cost effective can also be

calculated with these values. The economic analysis will be discussed further in Part III.

Table 9: Acquisition and annual costs for each simulation configuration

Small Facility Large Facility
Minot AFE Ellsworth AFB 'WPAFB Small Facility Minot AFB Ellsworth AFB WPAFB
Insulation | Acquisition Annual Acquisition Annual Acquisition Annual Acquisition Annual Acquisition Annual Acquisition Annual
Configuration Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost

1] $13,951.64 | $11,199.77 | $10,997.00 | $ 9,395.13 | $13,337.92 | $ 7.613.89 | $17,702.10 | $37,997.65 | $14,005.05 | 534,890.69 | $16,920.69 | $31,276.19

2| $14,492.15 | $11,022.54 | $11,510.60 | § 9,254.52 | $13,866.97 | 5 7,542.12 | $19,521.74 | $37,742.12 | $15,734.13 | $34,667.20 | 518,711.76 | $31,114.88

3| $14,559.71 | $10,882.32 | $11,574.80 | § 9,141.13 | $13,933.10 | § 7,489.95 | $19,749.19 | $37.543.02 | $15,950.26 | $34,492.78 | $18,934.39 | $30,989.76

4] $20,827.32 | $10,601.54 | $16,938.16 | & 8,939.07 | $19,984.52 | 5 7,390.32 | $40,849.43 | $37,142.85 | 534,006.29 | $34,143.37 | $39,306.82 | $30,736.97

5| $16,828.61 | $10,953.45 | $13,632.06 | § 9,194.55 | $16,140.02 | § 7,518.31 | $20,314.91 | $37,572.80 | $16,398.17 | $34,516.89 | $19,475.51 | $31,004.87

6| 517,369.12 | $10,770.31 | $14,145.67 | 5 9,061.83 | $16,669.07 | $ 7,446.55 | $22,134.55 | 537,318.40 [ $18,127.25 | $34,294.26 | $21,256.58 | $30,844.13

7| $17.,436.68 | 510,632.66 | $14,209.87 | 5 8,960.31 | $16,735.20 | 5 7,396.73 | $22,362.01 | $37,119.02 | $18,343.38 | $34,120.69 | 521,479.21 | $30,719.58

8| $23,704.29 | $10,339.30 | $19,573.22 | § 8,767.55 | $22,786.62 | 5 7,308.35 | $43,462.25 | $36,720.83 | $36,399.40 | $33,773.26 | $41,851.64 | $30,468.50

9] $22,746.01 | $10,726.46 | $17,502.61 | § 9,027.01 | $21,685.46 | $ 7,431.72 | $25,688.99 | $37,207.79  $19,913.33 | $34,196.98 | $24,511.79 | $30,774.87

10| $23,286.52 | $10,541.69 | $18,016.21 | § 8,900.55 | $22,214.51 | 5 7,369.65 | $27,508.63 | $36,953.96 | $21,642.41 | $33,975.76 | $26,292.85 | $30,615.56

11 $23,354.08 | 510,388.89 | $18,080.41 | & 8,803.50 | $22,280.64 | § 7,321.32 | $27,736.09 | $36,755.72 | $21,858.55 | 533,802.76 | $26,515.49 | $30,491.58

12| $29,621.69 | $10,115.72 | $23,443.77 | S 8,615.65 | $28,332.07 | § 7,242.29 | $48,8236.33 | 536,358.94 | $39,914.57 | $33,457.32 | $46,887.92 | $30,241.92

13) $25,535.09 | $10,574.23 | $19,832.01 | § 8923.21 | $24,370.28 | 5 7,379.41| $28,221.98 | $36,977.22 | $22,028.86 | $33,996.18 | $26,950.09 | $30,632.09

14| $26,075.59 | 510,383.84 | 520,345.62 | 5 B,798.80 | 524,899.32 | § 7,321.89 | $30,041.62 | 536,723.95 | 523,757.94 | 533,775.25 | 528,731.15 | $30,473.06

15| $26,143.15 | $10,234.74 | $20,409.82 | § 8,703.10 | 524,965.45 | § 7,280.27 | $30,269.08 | $36,526.56 | $23,974.07 | 533,603.10 | $28,953.79 | $30,349.65

16| $32,410.76 | $ 9,97138525773.18 | § 8,525.56 | $31,016.88 | $ 7,199.81 | $51,369.31 | $36,130.64 | $42,030.10 | $33,257.94 | $49,326.22 | $30,101.13
Average| $21,771.40 | $10,583.68 | $17,249.06 | § 8,938.22 | $20,826.13 | $ 7,390.85 | $29,735.51 | $37,049.47 [ 524,005.24 | $34,060.28 | $28,507.24 | $30,677.17

Small Facility Large Facility
Langley AFB Small Facility Edwards AFB JB San Antonio Langley AFB Edwards AFB JB San Antonio
Insulation | Acquisition Annual Acquisition Annual Acquisition Annual Acquisition Annual Acquisition Annual Acquisition Annual
Configuration Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost

1| $12,3659.08 | § 7,887.26 | $16,994.26 | S 9,169.51 | $11,867.06 | § 5,334.47 | $15,720.10 | $33,235.54 | $21,470.39 | $35,453.21 | $15,071.04 | $21,521.54

2| 512,892.15 | § 7,856.41 | $17,496.90 | § 9,146.98 | $12,350.28 | $ 5,321.66 | $17,481.04 | $33,107.93 [ $23,162.57 | $35,343.17 | $16,697.82 | 521,477.28

3| $12,957.53 | 5 7,836.81 | $17,559.73 | § 9,130.38 | 512,410.68 | 5 5,312.33 | $17,701.16 | $33,008.93 | $23,374.09 | $35,258.46 | 516,901.16 | $21,442.36

4] $18,726.18 | § 7,791.63 | $24,441.75 | § 9,097.95 | $17,855.22 | § 5,293.20 | $37,121.62 | $32,809.96 | 546,542.76 | $35,092.21 | $35,230.49 | $21,373.58

5| $15,103.78 | § 7,845.15| $19,845.29 | § 9,146.98 | $14,412.64 | $ 5320.14 | $18,203.71 | $33,018.14 | $24,059.65 | $35,277.85 | $17,382.89 | $21,445.18

6| $15,626.85 | 5 7,817.68 | $20,347.93 | § 9,124.85| $14,8095.85 | 5 5,307.54 | $19,964.65 | $32,891.52 | $25,751.83 | $35,170.58 | $19,009.67 | $21,401.35

7] $15,692.23 | § 7,795.36 | $20,410.76 | $ 9,108.24 | $14,956.26 | $ 5,297.76 | $20,184.77 | $32,793.18 | $25,963.35 | $35,088.25 | $19,213.01 | $21,366.21

8| $21,460.88 | § 7,753.23 | $27,292.78 | § 9,076.22 | 520,400.80 | $ 5,279.08 | $39,605.23 | $32,597.16 | $49,132.02 | $34,925.96 | $37.,542.34 | $21,298.52

9| $19,952.28 | § 7,813.31 | $28,464.72 | § 9,127.62 | $19,233.15 | 5 5,307.54 | $22,607.03 | $32,837.25 | $31,887.67 | $35,148.42 | $21,760.80 | $21,384.21

10{ $20,475.35 | $ 7.785.84 | $28,967.37 | § 9,106.26 | $19,716.37 | § 529494 | $24,367.98 | $32,711.62 | $33,579.85 | $35,043.13 | $23,387.58 | $21,340.61

11| $20,540.74 | § 7,760.25 | $29,030.20 | $ 9,089.66 | $19,776.77 | $ 5,285.61 | $24,588.09 | $32,614.60 | $33,791.37 | $34,961.58 | $23,590.92 | $21,306.33

12| $26,309.39 | § 7,714.53 [ $35912.22 | § 9,057.25 | $25,221.31 | § 5,266.93 | $44,008.55 | $32,420.88 | $56,960.05 | $34,802.46 | $41,920.25 | $21,240.16

13| $22,490.62 | 5 7,791.76 | $31,629.06 | 5 9,115.37 | 521,640.61 | 5 5,299.06 | $24,912.31 | 532,726.09 | $34,761.47 | 535,074.79 | 523,947.21 | 521,347.12

14| $23,013.69 | § 7,761.57 | $32,131.71 | § 9,094.01 | $22,123.83 | § 5,286.46 | $26,673.25 | $32,600.78 | $36,453.65 | $34,969.90 | $25,573.99 | $21,303.73

15| $23,079.08 | § 7,735.32| $32,194.54 | § 9,077.02 | $22,184.23 | § 5,277.35 | $26,893.37 | $32,505.40 | $36,665.17 | $34,800.33 | $25,777.33 | §21,269.88

16| $28,847.73 | 5 7.689.26 | §39,076.56 | 5 9,045.39 | $27,628.77 | § 5,258.67 | $46,313.83 | $32,313.00 | $59,833.85 | 534,732.79 | $44,106.66 | $21,203.72

A $19,346.10 | § 7.789.71 | $26,362.24 | § 9,107.11 [ $18,542.11 | § 5,296.42 | $26,646.67 | $32,762.00 | $35,211.86 | $35,077.07 | $25.444.57 | $21,357.61
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Part III: Construction Engineering Economic Analysis Results

Simply calculating the total life-cycle cost and comparing the result may seem to be
an appropriate analysis to determine the most cost-effective insulation configuration, but it
would ignore important economic principles which must also be considered. The time-value
of money is the economic concept that money available at a present time is worth more than
the same amount of money at a future time. The potential to invest and earn money with
present money makes it more valuable than the identical amount in the future. Interest,
investment opportunity, and inflation all contribute to the time-value of money concept.

Since the analysis of the facility occurs over a 25-year period, the time-value of
money concept must be included in the analysis. Each insulation configuration has a
different investment principle and annual energy cost that must have the time-value of

money applied individually. The formula for the present value of an annuity is

_— (1—(1r+r)‘”) (8)

where
PV is the value in dollars at present time,
A is the annuity for each period in dollars,
r is rate per period, and
n is the number of periods.
Equation (8) determines the value for a series of equal, future periodic payments at a
given present time. Quantifying the money accumulated or spent over periods of time can

be modeled using a cash flow. This equation can be applied to this study’s cash flow to
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determine the internal rate of return for each configuration. The internal rate of return is the
percentage rate that would make the present value cost equal to the annual annuity present
value. The acquisition cost is used for the present value cost, the annual energy cost is used
for the annuity, and the number of periods is the 25-year life span of the insulation. The
internal rate of return can be calculated by solving equation (8) for the rate per period.

The primary advantage of internal rate of return is that it is well-suited for analyzing
mutually exclusive alternatives. When comparing one alternative to another, the internal
rate of return is a consistent metric to evaluate performance. It incorporates the time value
of money without dictating or estimating the interest, investment, or inflation rates. Instead,
it presents a single rate and allows the decision maker to determine whether the project or
investment is worthwhile based on the situation. A Minimum Attractive Rate of Return
(MARR) is the minimum interest rate that an investment must earn to be attractive to an
investor. For example, one business may see an investment with an internal rate of return of
9% as a worthwhile pursuit due to their other investment opportunities while another
business may see it as a poor investment based on their MARR. Using the internal rate of
return metric enables transparency in the analysis which avoids making invalid assumptions
on the specific rates. Instead, the decision maker can compare their situation’s rates to the
internal rate of return in the results. This makes the research results appropriate for a wider
base of applications.

Using internal rate of returns can be deceiving because it does not consider the
magnitude of the cash flow values. Instead, the internal rate of return is a percentage that
balances the equation over the time period. Additionally, it does not include associated

future costs. For this application, an associated future cost not included could be the
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replacement renovation costs. This disadvantage of associated future costs is minimized for
this application since the renovation would be required for each alternative. Another
disadvantage of the internal rate of return is that it ignores reinvestment rates and instead
assumes a constant rate throughout the life of the equation. In actuality, the inflation,
investment opportunities, and interest rates all vary over time. However, these fluctuations
are hard to predict, so they are modeled as a constant to allow for the cost analysis and
comparison of alternatives.

The internal rate of return should only be used to compare two configurations to one
another when used as an evaluation metric. This minimizes potential misinterpretation of
the results due to the magnitudes of the cash flows. Three analyses were performed to show
which configuration was the most cost effective. The first analysis simply compared the
insulation configuration to the default of installing no insulation. The purpose of this
analysis was to provide information for a baseline on the internal rate of return. Table 10
shows the rate of returns for each large building insulation configuration located at Wright-
Patterson AFB. The highlighted row 6 refers to the insulation configuration that represents
the minimum construction code. The insulation configurations were organized by
increasing acquisition cost since the analysis is addressing mutually exclusive alternatives.

This organization is particularly important for the third analysis performed.
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Table 10: Internal rate of return for the large building insulations at Wright Patterson AFB

compared to installing no insulation

Compared to Baseline (No Insulation) WPAFB - Large Building
Acquisition | Annual Cost| Rate of Return
Number|Initial Cost |[Annual Cost Savings Savings (iRR)

0 0| $40,007.73

1| $16,930.69 | $31,276.19 | -16930.69 8731.54 51.57%

2| $18,711.76 | $31,114.88 | -18711.76 8892.86 47.52%

3| $18,934.39 | $30,989.76 | -18934.39 9017.97 47.62%

5| $19,475.51 | $31,004.87 | -19475.51 9002.86 46.22%

6| $21,256.58 | $30,844.13 | -21256.58 9163.61 43.10%

7| $21,479.21 | $30,719.58 | -21479.21 9288.15 43.24%

9| $24,511.79 | $30,774.87 | -24511.79 9232.86 37.65%

10| $26,292.85 | $30,615.56 | -26292.85 9392.18 35.70%

11| $26,515.49 | $30,491.58 | -26515.49 9516.15 35.87%

13| $26,950.09 | $30,632.09 | -26950.09 9375.65 34.77%

14| $28,731.15 | $30,473.06 | -28731.15 9534.67 33.16%

15| $28,953.79 | $ 30,349.65 | -28953.79 9658.08 33.33%

4| $39,306.82 | $30,736.97 | -39306.82 9270.77 23.46%

8| 541,851.64 | $30,468.50 | -41851.64 9539.24 22.65%

12| $46,887.92 | $30,241.92 | -46887.92 9765.81 20.64%

16| $49,326.22 | $30,101.13 | -49326.22 9906.60 19.87%

The initial inclination may be to interpret the results as insulation identifier 1 is the
most cost effective with a rate of return of 51.57%. But this highlights the influence of the
cash flow magnitudes on the internal rate of return. Because the rate of return is used as a
comparative measure, it only accounts for the two values being compared. In this case, no
insulation and the insulation configuration. It cannot be used as a measure to interpret two
insulation configurations not used in the comparison to one another. This analysis only
shows that each insulation configuration is more cost effective than installing no insulation
when the MARR s less than 19.87%. However, the interpretation of this analysis does not
answer the research questions since this study is not considering the case of no insulation.

The next analysis performed was to calculate the internal rate of return when
comparing the insulation configurations to the construction code. However, the internal rate

of return is nearly meaningless without the context of a MARR for a decision to be made
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from the comparison. Whether the internal rate of return is an attractive investment depends
entirely upon the MARR. A 0% MARR would indicate that the business has no other
investment opportunities and does not recognize the time value of money.

Table 11 presents the results of the second analysis performed on the large building
located at Wright-Patterson AFB. The construction code, highlighted in orange, has an
internal rate of return of 0% since it is being compared to itself. For ease of interpretation,
the more cost-effective insulation configurations are highlighted in green using a MARR
based on the interest rate on treasury notes and bonds. The government is not a business and
uses taxpayer dollars to raise capital to operate. In order to determine a suitable MARR for
application to the Air Force, the same interest rate and inflation assumptions used to prepare
the Budget of the United States Government were used in this research. These assumptions
and rates are published publicly and updated from the United States government’s Office of
Management and Budget (OMB) in a document named the Circular A-94 [62]. The interest
rates on treasury notes and specified maturities should be used to estimate Air Force
construction MARR. The 30-year rate is used due to its closeness to the 25-year analysis
length of time. Since the inflation rate was not estimated and included in the utility rate
calculations, the real interest rate should be used instead of the nominal rate. Using these
criteria, the MARR used for this research application to Air Force construction was 0.4%

[63].
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Table 11: Rate of return for the large building insulations at Wright Patterson AFB
compared to the insulation construction code, numbered 6

Compared to Standard 'WPAFB - Large Building Treasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $16,930.69 | $31,276.19 4325.88 -432.06 8.77%|above No No No
2| 518,711.76 | $31,114.88 2544.82 -270.75 9.55% |above No No No
3| $18,934.39 | $30,989.76 2322.18 -145.63 3.81% |above No No Yes
5| $19,475.51 | $31,004.87 1781.07 -160.74 7.57%|above No No No
6| $21,256.58 | $30,844.13 0.00 0.00 0.00% | N/A Indifferent |Indifferent Indifferent
7{ $21,479.21 | $30,719.58 -222.63 124.54 55.94% | below Yes Yes Yes
9| $24,511.79 | 530,774.87 -3255.21 69.25 -4.36% |below No No No
10| 526,292.85 | $30,615.56 -5036.28 228.57 1.00% |below Yes Yes No
11| 526,515.49 | $30,491.58 -5258.91 352.54 4.44% |below Yes Yes No
13| 526,950.09 | $30,632.09 -5693.51 212.04 -0.54% |below No No No
14| $28,731.15 | $30,473.06 -7474.58 371.07 1.74% |below Yes Yes No
15| 528,953.79 | $30,349.65 -7697.21 494.47 4.03% | below Yes Yes No
4| $39,306.82 | $30,736.97 | -18050.25 107.16 -11.30% |below No No No
8| $41,851.64 | $30,468.50 | -20595.06 375.63 -5.31% |below No No No
12| 546,887.92 | $30,241.92 | -25631.34 602.21 -3.73% |below No No No
16| 549,326.22 | $30,101.13 | -28069.64 742.99 -2.95% |below No No No

Since some comparisons have a lower initial cost than the construction code
standard and some have a higher initial cost, the interpretation based on the MARR is not
straightforward. The lower acquisition costs behave similar to a loan while the higher
acquisition costs behave similar to an investment. A loan is enticing only if the MARR of
another opportunity is above the interest rate on the loan, while an investment opportunity
is enticing only if its rate of return is higher than the businesses MARR. To assist in
interpreting the results, several MARRSs are shown in Table 11. A column specifies whether
the MARR should be above or below the insulation configuration’s rate of return to be
enticing. In addition to the 0.4% MARR used for this research, a 0% MARR and 6%
MARR column was included just as additional examples.

These results show five insulation configurations that are more cost effective than
the standard, which are numbered 7, 10, 11, 14, and 15. This information would be difficult
to interpret from the first analysis. Again, care must be taken not to leap to the conclusion
that configuration 7 is the most cost effective with the highest internal rate of return of
55.94%. This second analysis reveals that construction code is not the most cost-effective

construction method for insulation using these key building parameters.
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The third analysis performed using rate of return was to identify the best performer
and investment opportunity for each insulation configuration. A process using internal rate
of return comparisons was calculated called incremental analysis. Incremental analysis is an
analysis method used to compare mutually exclusive alternatives to maximize benefit to the
business. Incremental analysis orders the alternatives in increasing first cost order,
compares each alternative to the current best investment starting at the top, and selects the
alternative as the temporary best alternative if its benefit is better than the MARR [64].
Using internal rate of returns in the incremental analysis presents the single best value
insulation configuration when evaluated at a specific MARR. Again, this analysis uses the
0.4% MARR provided in the OMB Circular A-94.

Table 12 presents the results of the third analysis performed on the large building
located at Wright-Patterson AFB. Configuration 6 is highlighted in orange to represent the
construction standard. ‘N/A’ represents an internal rate of return value that could not be
calculated. When both the acquisition cost and the annual energy cost increase when
compared to another insulation configuration, there is no interest rate that balances the cash
flow. For example, no rate of return will cause configuration 8 to behave as a balanced cash

flow since it costs more without providing any annual savings.
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Table 12: Incremental analysis using internal rate of return for large building insulations at
Wright Patterson AFB to identify the best performing configuration

Incremental Analysis WPAFB - Large Building MARR = 0.4%
Acquisition [ Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration ____ | Return (iRR) |Better than Previous
0 0| $40,007.73
1| $16,930.69 | $31,276.19 | -16930.69 8731.54 0 51.57%|Yes
2| $18,711.76 | $31,114.88 -1781.07 161.31 1 7.61%|Yes
3| $18,934.39 | $30,989.76 -222.63 125.12 2 56.20%|Yes
5| $19,475.51 | $31,004.87 -541.12 -15.11 3 N/A[No
6| $21,256.58 | $30,844.13 [ —2322.18r 145.63 3 3.81%|Yes
7| $21,479.21 | $30,719.58 -222.63 124.54 6 55.94%|Yes
9| $24,511.79 | $30,774.87 -3032.58 -55.29 7 N/A|[No
10| $ 26,292.85 | $30,615.56 -4813.64 104.03 7 -4.27%|No
11| $26,515.49 | $30,491.58 -5036.28 228.00 7 0.98%|Yes
13| $ 26,950.09 | $30,632.09 -434.60 -140.50 11 N/A[No
14| $28,731.15 | $30,473.06 | -2215.67 18.52 11 -9.61%|No
15| $28,953.79 | $30,349.65 -2438.30 141.93 11 3.12%|Yes
4| $39,306.82 | $30,736.97 | -10353.04 -387.31 15 N/A[No
8| $41,851.64 | $30,468.50 | -12897.85 -118.84 15 N/A[No
12| $46,887.92 | $30,241.92 | -17934.13 107.73 15 -11.24%|No
16| $49,326.22 | $30,101.13 | -20372.43 248.52 15 -7.61%|No

Configuration is bolded to call attention to its final selection as the best value for

this incremental analysis. Configuration 15 represents an R-15 wall insulation which is

above construction code and an R-60 roof insulation which is significantly above

construction code. However, this result is only applicable for the key building parameters

used with this data. It cannot be applied to all facilities without further research and support.

Table 13 presents the numerical data in Table 10, 11, and 12 in a visual table to

allow for easier interpretation of the comparisons. The red shows a configuration that was

less cost effective than the construction standard. The yellow indicates the construction

standard. The green reveals the configurations that were more cost effective than the

construction code standard. The asterisks point out the insulation configuration that was the

most cost effective out of the 16 considered based on the incremental analysis. A 0.4%

MARR was used.
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Table 13: Summary of the comparative rate of returns for large building insulations at
Wright Patterson AFB using the construction code as the baseline, shown in yellow

WPAFB Large Bldg
Below Standard Above Sig Above
Insulation |R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 3 7 il Sasas 15
Standard R-13 2 6 10 14
Below R-11 1 5 9 13

A plot was developed using the acquisition and annual cost data to perform a
verification analysis. The purpose of this analysis was to perform a quality control check on
the calculated internal rate of return analysis. Additionally, the plot provided a quick visual
to help identify high performing insulation configurations. Figure 4 shows the plot of

insulation configurations of the large building located at Wright-Patterson AFB.

WPAFB Large Building Economic Analysis Compared to Standard Code

......

-5000 : w410 * 11

Initial Cost Savings ($)

® 3

Annual Cost Savings (5)

Figure 4: Scatter plot to identify the area of interest for high performing insulation
configurations

The plot is centered using the construction standard as the origin, numbered 6. A
linear interpretation line, shown in orange, was superimposed on the graph to assist in
interpreting the graph. This line models values for similar performance to the construction
standard using a MARR of 0%. It then allows for interpretation for an area of interest above
the trend line as high-performing insulation configurations. Configurations 7, 10, 11, 14,

and 15 all fall within this area of interest. The internal rate of return calculations and the
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plot both show that these were the insulation configurations that were better performing
than the standard.

This graph provides valuable information on the magnitude of performance which
can be difficult to determine using internal rate of return. For example, it shows that the
best performer for this location and size, configuration 15, was the furthest above the trend
line. This can also be calculated numerically from determining the data point above the
trend line with the greatest perpendicular distance to the trend line. It also shows reveals
configurations that are only barely outperformed by the construction standard, such as
configuration 13 in this analysis. It also reveals that the closed-celled polyurethane spray
(configurations 4, 8, 12, and 16) is significantly outperformed by the other configurations.
This graph provides valuable validation of the internal rate of return results and adds
important interpretation on the performance magnitudes.

The focus of results presented in part I1I was the large facility at Wright Patterson
because its plot was uncluttered, easy to read, and clear to interpret. However, the analysis
process was performed for each of the key building parameters used in the simulation. Each
table and graph are not presented, but they can all be found in Appendix E and Appendix F.
Table 14 summarizes the analysis for all the data considered in this study. It follows the

same format and interpretation previously used.
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Table 14: Summary of the comparative rate of return for all key building parameters using
construction code as the baseline, numbered 6

Minot Small Bldg Minot Large Bldg
Zone7 ND Below Standard Above Sig Above Below Standard Above Sig Above
Insulation R-30 R-38 R-49 R-60 R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16 4 8 12 16
Above R-15 3 7 11| Reeess 15 3 7 11| B 1S
Standard R-13 2 6 10 14 2 6 10 14
Below R-11 1 5 9 13 1 5 9 13
Ellsworth Small Bldg Ellsworth Large Bldg
Zone 6 sSD Below Standard Above Sig Above Below Standard Above Sig Above
Insulation R-30 R-38 R-49 R-60 R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16 4 8 12 16
Above R-15 3 ey 7 11 15 3 7 11| ##*++ 15
Standard R-13 2 6 10 14 2 6 10 14
Below R-11 ik 5 9 13 1 5 9 13
WPAFB Small Bldg WPAFB Large Bldg
Zone 5 OH Below Standard Above Sig Above Below Standard Above Sig Above
Insulation R-30 R-38 R-49 R-60 R-30 R-38 R-49 R-60
Sig Above R-21 L 8 12 16 4 8 12 16
Above R-15 L S 7 11 15 3 7 31| e 35
Standard R-13 2 6 10 14 2 6 10 14
Below R-11 1 5 9 13 i <] 9 15
Langley Small Bldg Langley Large Bldg
Zone 4 VA Below Standard Above Sig Above Below Standard Above Sig Above
Insulation R-30 R-38 R-49 R-60 R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16 4 8 12 16
Above R-15 ol ) 7 11 15 3 7 11| #sss+ 15
Standard R-13 2 6 10 14 2 6 10 14
Below R-11 1 5 9 13| 1 5 9 13
Edwards Small Bldg Edwards Large Bldg
Zone 3 CA Below Standard Above Sig Above Below Standard Above Sig Above
Insulation R-30 R-38 R-49 R-60 R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16 4 8 12 16
Above R-15 Jasse 3 7 11 15| s 7 11 15
Standard R-13 2 6 10 14 2 6 10 14
Below R-11 1 5 9 13 1 5 9 13
San Antonio Small Bldg San Antonio Large Bldg
Zone 2 X Below Standard Above Sig Above Below Standard Above Sig Above
Insulation R-30 R-38 R-49 R-60 R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16 4 8 12 16
Above R-15 S a3 7 11 15 Latlod £ 7 11 15
Standard R-13 2 6 10 14 2 6 10 14
Below R-11 1 5 9 13 1 5 9 13

The results show that the best performing insulation depends upon the key building
parameters. Trends in the results can be found in performances based on the building sizes
and the climates. In all cases, the best performing wall insulation was R-15 which is above
the construction code. However, the best performing roof insulation changed depending on
the key building parameters. The smaller facility showed R-30 which is below construction

code as the best roof insulation in the hot and mild climates. The cold climate was split
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between the construction standard, R-38, and significantly above the construction standard,
R-60. The larger facility showed R-60 which is significantly above the construction code as
the best roof insulation in the cold and moderate climates. But in the hot climates, it showed
that the R-30 was the best roof insulation. Additionally, the comparison tables within the
cold, mild, and hot locations behaved very similarly. An inflection point can be identified in
the small facility between climate zones five and six where the data shifts. Zones one
through four all look almost identical while zones four and five look very different. The
same inflection point can be identified in the large facility between zones three and four.
Since the inflection point occurs in different locations for the two facility sizes, it indicates
that the building size contributes to this relationship. The existance of the inflection points
also reinforce that the climates, determined by the locations, have a direct and significant
impact on the results.

The differences in the comparison tables between Edwards AFB in California and
JB San Antonio in Texas were found to be caused by the utility costs. California had the
largest utility cost of 14.25 cents per kW while Texas had the lowest utility cost of 7.81
cents per kW. All other locations were between 10 and 12 cents per kW. When Edwards
was anayzed with the same rates as Texas, the comparison table was identical. This showed
that the differences between these two locations were based on the utility markets rather
than the weather or climate. Even with the economic markets between these states being so
different, the comparison tables still show the similarities in the results due to the climates
for these locations.

The results provide evidence to support that more cost effective construction can be

built than just meeting the minimum construction code. This meets the primary objective of
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this research to provide a proof of concept on whether more cost efficient standards can be
utilized than construction code. Therefore, the Air Force should not simply accept
construction using LPTA acquisition contracts which simply build to the construction code
without verification using heat flow analysis and calculations. The wall insulation provides
a trend that deserves continued research and investigation to determine whether this
improved standard should be consistently adopted in policy or process practices. The roof
insulation appears to be more dependent on the size and location of the facility to determine
the most cost effective insulation standard. The results reveal that no singular construction
code will be the most cost effective in every location for every facility shape and size;
instead, it is important to consider the specifics of the building being constructed to identify
the best value construction standard.

Another factor that should be further considered is the effect of thermal bridging on
the prototypical office building models. The window standards used in these models
provide an opportunity to reduce the effects of thermal bridging and further improve the
cost effectiveness of insulating the roof and walls. The large surface area covered by
windows in these buildings causes increased diminishing returns when insulating the walls
and roof. This could also be a key factor in the different trends seen in Edwards AFB and
JB San Antonio where the cooling loads dominate the HVAC cycle. Expanding this
research to include an analysis of window performance as a key building parameter could
provide additional insight into the relationships between insulation and thermal energy
efficiency.

Chapter Summary

The findings were presented from (a) the energy performance simulations with the
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key building parameter inputs, (b) the life-cycle analysis of the simulation outputs, and (c)
the economic analysis comparing each mutually exclusive alternative. Despite the limitation
of real-world data and the findings being confined to the boundaries established for the
study, the results provide valuable insight into the best value construction standards. It
establishes that construction code does not represent the most cost-effective insulation
standard. Chapter 5 will expand on the research results presented in Chapter 4 and provide

result impacts, assumptions, limitations, and final recommendations.
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

Chapter Overview

This chapter provides final conclusions and recommendations from the research.
First, a brief research summary is presented with the research questions from chapter 1.
Second, the assumptions and limitations of the research are presented. Finally, the benefits
and impacts of the research provide compelling suggestions for future research.

Research Summary

This research analyzed the potential energy performance benefits of different
insulation standards for United States Air Force (USAF) office facilities using EnergyPlus
and OpenStudio BPS software. The BPS software modeled the annual energy cost for each
configuration. The acquisition costs were estimated using building construction costs with
RSMeans data. This data enabled the economic viability to be determined using a life-cycle
analysis for each model configuration. At each building location and size, the internal rate
of return for each insulation standard were compared to the building code to determine
which standards were economically viable and then which insulation standard was the best
value for these parameters.

Research Questions Answered
1. Will constructing to higher standards than the building code be more cost effective over
a facility’s life?

Our results show that constructing to higher standards than the building code is
usually more cost effective over a facility’s life. These results only apply to the six
locations selected for this research using the two prototypical office space buildings. The

above code R-15 wall insulation was the most cost effective in all twelve location and
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building size scenarios modeled. This provided a clear consensus for the wall insulation that
the building code should be exceeded for a more cost-effective alternative. However, the
highest available insulation material, the closed-cell spray polyurethane foam, was not more
cost effective than building code except at the cold climate locations. This material is newer
technology with higher performance, but it also requires a high initial cost that was
generally not an economically viable alternative.

Unlike the wall insulation, roof insulation did not have a consensus trend. The
results show that the large facility located at cold and mild climates benefitted from
exceeding the roof insulation construction code. Five scenarios showed that R-60 roof
insulation was the best value from a life-cycle cost perspective. Only one scenario of the
small facility in a cold climate showed that the standard R-38 roof insulation was the most
cost effective. The other six scenarios all showed that the best value was constructing below
the construction code for roof insulation. This research only used cost as a decision criterion
and did not consider other considerations that are more difficult to quantify such as air
quality, comfort, and humidity.

2. Can an optimal insulation construction standard be developed for a prototypical Air
Force office building?

The results indicate that an optimal insulation construction standard could be
developed. Although this study was limited to six locations and two sizes, future research
could expand this scope to determine a wider reaching consensus for a construction
standard. The results positively affirmed the proof of concept of the possibility for a more
cost beneficial insulation standard than construction code. Since the roof insulation’s best

value standard depended upon geographic location, the construction standard could differ
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depending upon the ASHRAE climate zone. Additionally, the standard could also specify

square footage ranges to account for the different building sizes. This would enable the best

economic value across a wider range of locations and sizes. Further research could more

accurately specify these specifics prior to adopting policy.

3. Does building construction code specify the most cost-effective standards when
analyzing a building’s life-cycle energy efficiency?

The results showed that building construction code was not the most cost effective
in any of the twelve scenarios studied. Out of the sixteen combinations analyzed, the
smaller facility had an average of 5.7 standard combinations that were more cost effective
than the construction code. The larger facility had an average of five standard combinations
that were more cost effective. This research provided evidence that there are cost savings
opportunities in exceeding insulation construction code standards for the prototypical Air
Force office space building.

4. How can the Air Force receive the best value in facility construction from a life-cycle
cost perspective with LPTA contracts?

This research question was central to the development and execution of this thesis.
The insulation standard is just one standard that was analyzed to find more economic
alternatives. Rather than assuming the construction code is the most economic, the results
provided evidence that the insulation standard used in construction should be analyzed and
carefully selected. Some potential methods for recognizing these cost savings with the
LPTA acquisition strategy include performing an energy flow analysis of the facility during
the design phase of a project to identify the best life-cycle cost, specifying specific

insulation standards in the contracting requirements, or implementing Air Force policy that

97



requires best value standards. The research cannot recommend a specific implementation
strategy, but it showed that the construction code should not just be blindly adopted.
Assumptions

Clear assumptions are critical in scientific research to narrow the scope of the
research and to enable other researchers to repeat and validate the research. It is assumed
that the key building parameters values selected provided adequate variation. The key
building parameter values narrowed the scope to a manageable range to sufficiently
investigate the research questions. Two assumptions were stated in Chapter 1 within the
‘research scope’ section, the assumption that the construction material has uniform qualities
without defects or variation from typical values and the assumption that the operations and
repair costs are primarily dependent on the building function instead of insulation material.
The uniform construction materials assumption is an inherent assumption in BPS modeling
as opposed to real world materials which may contain defects. However, manufacturing
specifications and quality control limit the impact of these material defects on actual
performance. Facilities usually do not have operations and repair costs for insulation,
instead choosing to perform no maintenance on these materials until the time to replace
them altogether. This assumption allows simplification of the life-cycle analysis to consider
only the acquisition cost and energy operations cost.

Chapter 3 within part I, the assumption is made that the error in the heat balance
caused by the BPS software’s use of zoning is considered negligible since each simulation
uses the same zoning configurations. This assumption was made in order to establish a
model that could be used to address the research questions. Zoning and HVAC

configuration would greatly expand this research to include additional factors and
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alternatives. Although meaningful to building energy optimization, this did not directly
address the research question and would introduce additional complexities. Additional
model settings that could be perceived as assumptions in the model can be found in
Appendix A and Appendix B.

Additional assumptions during this research were made during the modeling and
data analysis phase to enable comparisons between the simulations. One of the most
important assumptions made was assuming a consistent HVAC system across all insulation
levels in the modeling. A change in the HVAC size would create significant savings that
would need to be included in the economic analysis. It was thought that the benefits would
not be large enough from only changing the wall and roof insulation to merit downsizing
the HVAC system. However, HVAC downsizing could occur when increased insulation
was combined with other thermal energy efficiency factors that were not considered in this
research effort.

Once the simulation data was collected, this assumption could be verified. The large
facility located at Minot Air Force Base had the largest difference in annual energy between
its construction standard configuration and any of its other fifteen insulation configurations.
Using the sub-category breakdown in the BPS software results, the reduced load on the
HVAC was calculated to be approximately 0.38 tons of cooling between these two
insulation configurations. Since HVAC is typically sized in one ton or half ton increments
for these sized facilities, this verifies that the HVAC system would not require downsizing.
Since this location had the highest difference in annual operational energy, it validates this
assumption for all key building parameters studied in this research. This assumption was

critical to this research since non-constant HVAC systems would change the HVAC system
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input for the BPS software as well as the economic analysis performed.

Another assumption made during the analysis was that the material costs and energy
costs remained constant throughout the life-cycle of the insulation. This assumption is
obviously untrue since the economic market for these goods and services causes
fluctuations in price. The research used the 2020 utility rates reported by the U.S. EIA as a
constant price throughout the life-cycle analysis for each configuration. The actual impact
of these price variation is likely negligible since this assumption was consistently made for
every configuration. Additionally, the market prices for energy and insulation is unknown
in the future. The uncertainty of estimating the changes outweighed the benefits to accuracy
for the life-cycle analysis. This assumption drove the use of real interest rates instead of
nominal interest rates during the analysis. Instead of using a nominal MARR of 2.4 which
would include inflation, a real MARR of 0.4 was used to mirror the assumption made for
the cost rate [63].

Lastly, an assumption made was that the BPS software accurately simulates building
performance. Since this was the tool used to model the prototypical building performance,
the inherent assumption is that the tool selected is appropriate and accurate. The pilot study
was performed to reduce the risk of this assumption and select the appropriate BPS
software for this research. EnergyPlus and Open Studio have frequently been used and
validated in prior research providing a widely accepted level of accuracy for thermal energy
analysis [17], [39]-[41], [43], [44].

Research Limitations
The primary limitations of this study include the scope of the research, lack of

validation, and analysis based solely on cost. Time and complexity were the main factors
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preventing expanding these research limitations. These limitations could also be eliminated
or minimized with future research efforts to build upon the model or expand the analysis.
The limitations were appropriate to sufficiently answer the research questions for this study.

A significant limitation of this study is the lack of validation. Both EnergyPlus and
OpenStudio are validated tools; however, they were not validated within this study for
modeling USAF prototypical facilities. Using data from actual USAF buildings to compare
the EnergyPlus estimates with actual energy usage would be a great method for validation.
Unfortunately, this exceeded the scope of this thesis and could merit its own independent
research effort. The focus of this research was a proof of concept for the economic viability
of building code standards.

The complexity of a building envelope necessitated limiting the scope of the model.
Varying too many parameters would prevent meaningful trends from being identified in the
analysis. Instead, a majority of the factors affecting the energy flow through a building
envelope were held constant to isolate the independent variables relationships. However,
each parameter held constant limited the scope and prevented investigating its impact on
energy flow. For example, the prototypical facilities used two-by-four construction when
two-by-six construction could expand the insulations available. Although wall composition
invites an intriguing comparison, it deviated from the research intent since most Air Force
minor construction uses two-by-four construction. This is just one example of many where
the BPS software inputs could be varied to expand the scope of this research.

Furthermore, the results should not be applied generally for all Air Force office
facilities due to the wide variety of different office building designs and sizes. The three

key building parameters of location, building size, and insulation materials should first be
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expanded to increase the applicability of the results. These key building parameters were
intentionally selected to provide the proof of concept central to the research questions. But
prior to policy implementation, more rigor should be performed to expand these key
building parameters to improve the fidelity of the data results.

Another limitation of this research is that the analysis of the results was performed
solely based on cost. The decision criteria for the best value construction was limited to
only life-cycle cost. The economic analysis reveals the insulation material that provides the
least monetary cost to the Air Force. However, other criteria could impact the material
selection during construction. Air Force commanders, as the decision makers, may value
other decision criteria over the life-cycle cost. For example, the acquisition cost could be so
close to the statutory limit that increasing the initial construction cost would be prohibitive
to the execution of the project due to Congressional appropriation limitations. Air quality
and comfort for the building occupants could also be a non-monetary factor that could
influence the insulation selection. Increased insulation could be selected to improve these
non-monetary considerations. Other factors that were held constant in this study could also
be affected by these non-monetary decision criteria such as amount of natural lighting,
ventilation, shading, humidity control, and many more.

Research Benefits

This research provides insight into the energy performance of different insulation
standards for Air Force facilities. The results indicated that construction code does not
always provide the most cost-effective solution to building construction over the life-cycle
of the facility. The results provided a positive proof of concept that construction codes

should be investigated from a life-cycle cost perspective to determine the best economic
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value. In general, the information from this research could provide decision makers on how
to implement different construction code standards within the Air Force to realize cost
savings.

The four research questions proposed in chapter 1 were answered with the results of
this study. The results positively affirmed that the research questions merited investigation.
The construction code standard was shown not to be the most cost effective over the
prototypical facilities life. The results indicated that the insulation material in construction
should be considered with more scrutiny than merely adopting the minimum code
requirement.

The purpose of this research was to identify opportunities for improved operational
costs across the Air Force through facility construction. The results showed that increasing
the wall insulation beyond the construction code would provide cost savings for both
building sizes at every location studied. This provided a valuable trend that could be easily
implemented within construction practice to recognize life-cycle cost savings. The roof
insulation depended upon the size and location to whether exceeding the construction code
would provide cost savings. Exceeding the construction code for the roof insulation with
the large building was more cost effective in the cold and moderate climate locations, but
not at the hot climate locations. The smaller facility did not benefit from exceeding the
construction standard in the roof insulation, except in the cold climates. This showed that
the best value roof insulation standard depended too much upon other factors to generalize
a trend. However, the results provided enough positive results to affirm the research
questions and merit further investigation and research.

The common-sense method for application of this research would be to codify the
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best-value standards within policy. Although this should eventually be the result of this
research, caution is advised to not adopt the results in policy too quickly. More research
should be taken to validate and expand this research prior to implementation. However, the
benefits of the research are policies with a focus on sustainability that consider both
environmental impact and economic considerations. Reducing the energy demand of Air
Force facilities can coincide with lower life-cycle costs when prudently implemented. The
results merited continued expansion of the research and shifting the focus of continued
efforts to application and implementation.

Suggestions for Future Research

Future research should first focus on validating the BPS software results with actual
Air Force building metrics. Validation of the results with real world Air Force buildings
would provide insight into the accuracy of the model and bring increased confidence in the
results. Prior to policy implementation, validation should occur to verify the applicability to
actual facilities beyond the prototypical buildings used in this research.

Another important aspect for future research includes the influence of window type,
insulation, and quantity on insulation performance. Windows remained constant in the
simulations based on the prototypical facility from the Pacific Northwest National
Laboratory [50]. However, windows are another key building parameter that could
significantly affect the thermal energy flow through a building envelop and influence the
economic benefit for the insulation. Similar to how electricity flows through the path of
least resistance, heat will also transfer through the least insulated path. Windows provide an
opportunity for this thermal bridging to occur since they typically have very low thermal

resistance. Additionally, windows can cover a large portion of the wall surface area creating
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a large amount of heat transfer. For these reasons, studying the influence of windows on
building performance is a logical and important next step.

Numerous future research efforts could explore increasing the key building
parameters chosen and values used. Each input into the BPS model provides an opportunity
to investigate the relationship of its impact to the results. Growing the number of variables
changed would provide additional information on how these inputs interact with one
another. In addition to increasing the variables changed in this model, the selected
parameter values could also be expanded. For example, increasing the locations used in the
model would make the results more applicable across the entire Air Force enterprise. The
focus of the research could even shift to explore the economic value of other construction
standards besides insulation.

Lastly, future research should consider the benefits to policy implementation. The
results provided a positive proof of concept for the prototypical office building analyzed
that more stringent standards than construction code could be adopted. Once future research
validates and expands this research, the application directly to the Air Force should be
analyzed. Proper implementation could provide cost savings across the Air Force
organization. It is important to emphasize the limitation that these results cannot be
generalized yet to other building sizes, locations, or types other than the ones studied in this
model. But at the heart of this research is finding the best value standards to improve
operational costs which can only be recognized with direct application and implementation.
Conclusion

The research goals were (a) to utilize BPS software to simulate and calculate the

energy flow in a prototypical USAF office building, (b) to identify the potential energy
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consumption savings of different insulation standards for USAF prototypical office
facilities, and (c) to determine which insulation standard is the most economically viable
within the current market. The results of this study met the research goals and purpose. Due
to the limitations of this research, a need for future validation studies and expansion of the
research scope should be made prior to implementation of the results in policy. However,
the results showed the opportunity for potential cost savings from applying the research
results while simultaneously aligning with the growing energy conservation strategy in the
DoD.

Currently the Air Force minor construction program typically uses LPTA
acquisition contracts which cause most constructed office buildings to be built to the
minimum construction code. The results showed that R-15 wall insulation which exceeded
the code standard was more cost effective over the life-cycle of the prototypical office
building. The R-60 roof insulation which significantly exceeded the code standard was most
cost effective in the cold climates and with the large facility located in mild climates. Lower
than standard roof insulation was most cost effective over the life-cycle in the hot climates
and with the smaller facility in the mild climates. Future studies should be performed to
expand the key building parameters of the simulation, investigate the interaction with
window standards, expand the scope of the research, validate the model with a larger
dataset, and discern the air quality differences from changing the insulation standard.

Designers, engineers, and policy makers in the Air Force need to consider facility
life-cycle costs to lower annual facility sustainment costs. The results show that
constructing to the minimum construction code is not the best economic value for the

facility. Often exceeding the standard provides a lower life-cycle cost despite the higher
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acquisition cost for material and installation. This facility model and economic analysis, if
validated and expanded, could provide a basis for a future tool that could be readily tested

and implemented in Air Force construction or policy.
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Appendix A: Summary of OpenStudio Simulation Inputs

Table A.1: Summary of OpenStudio Simulation Inputs for the large prototypical building
located at Wright Patterson AFB

WBS |Category Name |Input Name Input
1.1 |Weather Weather file USA_OH_Dayton-Wright.Patterson.AFB.745700_TMY3
ASHRAE Climate Zone 5A
Calendar Year 2020
1.2  |Life Cycle Costs Analysis Type Federal Energy Managemt Program (FEMP)
Analysis Length 25 years
NIST Fuel Escalation Rates Yes
NIST Region MidWest
NIST Sector Commercial
1.3 |Utility Bills N/A N/A
2.1 |Schedule Sets Default Schedules Office Small Activity Schedule
Office Small Building Occupancy Schedule
Office Small Building Light Schedule
Office Small Building Equipment Schedule
Office Small Infiltration
2.2 |Schedules Office Small Activity Schedule 120 Watts/person

Office Small Building Occupancy Schedule

Office Small Building Light Schedule

Office Small Building Equipment Schedule
Office Small Infiltration
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Step starts at 0600 peaks at 0800-1600 with a dip at 1200
for lunch hour. Gradual step down after 1600.

10% emergency lighting assumed. Step starts at 0500
peaks at 0800-1700 with a more gradual step down.
Affected with the lunch hour.

309 baseline use. Peaks at 0700 until 1700 with one step
at 1800. Affected with the lunch hour.

Value of 1.0 throughout the day




3.1 |Construction Sets |Exterior Surface Construction Exterior Wall
Exterior Floor
Exterior Roof
Interior Surface Construction Interior Wall
Interior Floor
Inerior Ceiling
Ground Contact Surface Construction Walls
Floors
Exterior Sub Surface Construction Fixed Windows
Operable Windows
Doors
Overhead Doors
Skylights
Tubular Daylight Domes
Tubular Daylight Diffusers
Interior Sub Surface Construction Fixed Windows
Operable Windows
Doors
Other Construction Interior Partitions
3.2 |Constructions Exterior Surface Construction Default Construction Layers
Interior Surface Construction Default Construction Layers
Ground Contact Surface Construction Default Construction Layers
Exterior Sub Surface Construction Default Construction Layers
Interior Sub Surface Construction Default Construction Layers
Other Construction Default Construction Layers
3.2 |Materials Default Construction Layers Default Material Layers
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4.1 |People Definitions |People per Space Floor Area 0.06
Fraction Radiant 0.3
Sensible Heat Fraction autocalculate
Carbon Dioxide Generation Rate .000038L/s*W
Lights Definition  |Watts per Space Floor Area 10.763910 W/m2
Fraction Radiant 0.7
Return Air Fraction 0
Fraction Visible 0.2
Electric Equipment
Definitions Watts per Space Floor Area 6.781264 W/m2
Fraction Latent 0
Fraction Lost 0
Fraction Radiant 0.5
Internal Mass
Definitions Surface Area per Space Floor Area 2
5.1 |Space Type N/A Default
6.1 |Geometry Floorspacel$ PNNL Prototypical Office Building File
7.1 |Building N/A Default
7.2 |Stories N/A Default
7.3 |Shading N/A Default
7.4 |Exterior Equipment |N/A Default
8.1 |Properties Thermal Zone Attic
Core Zone
Perimeter Zone 1
Perimeter Zone 2
Perimeter Zone 3
Perimeter Zone 4
8.2 |Loads Level 0 Lights - multipler 15
Infiltration - multiplier 1
Occupants - multipler 20
Electric equipment - multipler 25
Office outlet plugs - multiplier 25
8.3 |Surfaces N/A Default
8.4 |Subsurfaces N/A Default
8.5 |Interior Particians |[N/A Default
8.6 |Shading N/A Default
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9.1 [HVAC Systems N/A Default
Cooling Sizing
9.2 |Parameters N/A Default
Heating Sizing
9.3 [Parameters N/A Default
Centralized, packaged unit;
10.1 |HVAC Systems Layout Configuration Ducted with heating and cooling coils
11.1 |Output Variables [Possible Output Variables Default (546 of 571 options)
Simulations
12.1 |Settings
Run Period Date Range January 1 through December 31
Heaing Sizing Factor 1.25
Cooling Sizing Factor 1.15
Number of timesteps per hour 4
Radiance
Parameters Parameters Coarse
Simulation Control |Do Zone Sizing Calculations off
Do Plant Sizing Calculations off
Run Simulation for weather file On
Minimum Warmup Days 6
Temperature Convergence Tolerance 0.2
Do System Sizing Calculations Off
Run Simulation for Sizing Periods off
Maximum Warmup Days 25
Loads Convergence Tolerance Value 0.04
Solar Distribution Full Interior and Exterior
Program Control  [N/A N/A
Qutput Control
Reporting
Tolerances Time Heating Setpoint Not Met 0.2
Time Cooling Setpoint Not Met 0.2
Convergence Limits [Maximum HVAC Iterations 20
Maximum Plant Iterations 8
Minimum Plant Iterations 2
Minimum System Timestep 1
Shadow
Calculations Calculation Frequency 7
Maximum Fugures in Calculation 15000
Inside Surface
Convection
Algorithm Algorithm TARP
Qutside Surface
Convection
Algorithm Algorithm DOE-2
Heat Balance
Algorithm Surface Temp Upper Limit 200
Maximum Surface Convection Heat
Transfer Coefficient 1000
Minimum Surface Convetion Heat Transfer
Coefficient 0.1
Algorithm Conduction Transfer Function
Zone Heat Balance
Algorithm Algorithm Third Order Backward Difference
Zone Air
Contaminant
Balance C02 Concentration off
Zone Capacitance
Multiple Research
Special Temperature Capacity Multiplier 1
CO2 Capacity Multiplier 1
Humidity Capacity Multiplier 1
13.1 [Measures N/A N/A
14.1 |Run Simulation None None
15.1 |Results Summary |None None
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Appendix B: Visual Documentation of Inputs for OpenStudio Simulations

Simulation: Small prototypical USAF office building at WPAFB Dayton, OH

Energy Plus Simulation using Open Studio

1. Weather
a. Weather File & Design Days

[

File Preferences Components &M Help
Iqﬁ Weather File & Design Days i Life Cyde Costs ' Utiity Bis
i ‘ || Weather File | Change Weather Fie '.

Name: |Dayton Wright Patterson A

P (® Calendar Year | 2020 s

Longitude: -§4.05 (O First Day of Year _Smday:

Elevation: 250

Time Zone: -5 =
Download weather fles at wirit.enerqyplus. net/weather s e : (el

Starts

Select Year by:

Define by Day of The Wesk And Month [ First ﬂ [_S-mdev — ] '—wv :]
Measure Tags (Optional):
Define by Date
Ends
el | l” ) Define by Day of The Week And Month [ Frst :] [ Sunday :] [Jawy :]
W v
cec aimate zone | Z] Defherbat

Wind

Date Temperature Humidity

Weather data file for WPAFB downloaded at energyplus.net/weather.
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€F Weather Data by Region | Energ, X = 4

&« Cc & energyplus.net/weather-region/north_and_central_america_wmo_region_4/USA/OH a % 0 :
r& EnergyPlus Downloads Documentation QuickStar Support & Training Licensing Weather Log in

Weather Data by Region

All Regions - North And Central America WMO Region 4 - USA - Ohio

Select a location

Akron 725210 (TMY2)

Akron Canton Rgnl AP 725210 (TMY)

Akron Canton Rgnl AP 725210 (TMY3)
Cincinnati Muni AP-Lunken Field 724297 (TMY3)
Cleveland-Burke Lakefront AP 725245 (TMY3)
Cleveland-Hopkins Intl AP 725240 (TMY3)
Cleveland 725240 (TMY2)

Columbus-Port Columbus Inll AP 724280 (TMY)
Columbus-Port Columbus Inll AP 724280 (TMY3)
Columbus 724280 (TMY2)

Dayton-Wright Palierson AFB 745700 (TMY)

< Dayton-Wright Patierson AFB 745700 (TMY3) >

Dayton 745700 (TMY2)

Dayton Intl AP 724290 (TMY3)

Findlay AP 725356 (TMY3)
Mansfield-Lahm Muni AP 725246 (TMY3)
Mansfield 725246 (TMY2)

Ohio State University AP 724288 (TMY3)
Toledo 725360 (TMY2)

Toledo Express AP 725360 (TMY)

Toledo Express AP 725360 (TMY3)

ASHRAE Climate: 5A
CEC Climate Zone: N/A (California)
Design Days — N/A (for sizing HVAC capacity)

b. Life-cycle Costs
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File Preferences Components & Measures Help

Life Cyde Costs ||

- [ weather Fie & Design Days | [

) Life Cycle Cost Parameters
% 1|  Performed using constant dollar methodology. The base date and service date are assumed to be January 1, 2012.
§5 || Analysis Type
(®) Federal Energy Management Program (FEMP)
A (O Custom

Analysis Length (Years) Real Discount Rate (fraction)
|25| | 0.030000

Use National Institute of Standards and Technology (NIST) Fuel Escalation Rates
@) Yes
O nNo

NIST Region NIST Sector

iﬁ} [bicM'st :] [Cmu'm:rud :]

National Institute of Standards and Technology (NIST) Fuel Escalation Rates
e Based on energy forecasted data from the Energy Information Administration (EIA) of the
US Department of Energy (DOE)

e https://www.nist.gov/programs-projects/fuels

e Age: 25 years at which point roof, HVAC, windows, and insulation should be replaced
meriting a full renovation project.
e Ohio is in Midwest and office space is considered commercial

c. Utility Bills — Not Used
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2. Schedules
a. Schedule Sets

:File Preferences Components & Measures Help

o[ schedue sets | schedues |
B 90.1-2007 - offce - Name
e Attic Schedule Set

l90.1-200?-0f’ﬁne - WholeBuilding - Sm Office Schedule Set

i WholeBuiding - Sm Office Default Schedules
Schedule

Set Hours of Operation Number of People
l Vo 1
I i i1 OfficeSmal 1
: Drag From Library | L BLDG_OCC_SCt J I
I 11 1
e =1 CeEeeseeee =7
People Activity Lighting

-
——)
] M
—)
—)
& |,
\_‘_—__”_):

1] m_ua{r_s‘
el 0| ) E———
Electric Equipment Gas Equipment
e ¥ )
"] Officesmal
:{ HDG_EQBP.SQJ{: Drag From Library |
I 11 1
E e R J
Hot Water Equipment Steam Equipment
3 S e )
u : Drag From Library : : Drag From Library :
A oo D SN J
Other Equipment Infiltration
= S = i
___________ . ] Officesmall
I Drag From Library 11 INFIL_QUARTE! } |
r D! ::[ i :
: Drag From Library : S T =/
S J
F %2 % &

b. Schedules
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-~
Schedule Name: |ficeSmall BLDG, occ_scu Schedule Type: Fractonal

[ Priccity 1 [schedue Rue 3
Date Range: [wol 3] 2m1 9|

s HEEEE -
Lower Limit: (0.00 12 Upper Umit: [1.00 D

Mouse over horizontal line to set value

T [ | T T
0:00 4:00 16:00 20:00 24:00

| 15 Minutes | 1 Minute Minute |

___________ | =

Occupancy loads (people) based off prototypical commercial office. Occupancy core hours between
8 and 5 with a dip during lunch hour.
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Default day profile.

Lower Limit: 0,00 [5]  upper umt: 120.0 T
Mouse tver honzontal lne o set sl

All occupants assumed to be working at computers or seated with low activity level: 120 W/person
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Ql OfficeSmal ACTIVITY. SCH < *| schedule name: ficesmall BL0G_LIGHT_Scr| Schedule Type: Fractional s ot T s = .
' [l Pty 2 [Scheduie Rue 1 | Q
Date Range: [ 0101 3] [ 121 0|
wove: (s | () G O B @ (s
.00 13| Uppertmt:[no0 |5
Mouse over horizontal e to set vakue =

0.85+

Priority 2 0.71+

0.57+

0.434

0.291
OfficeSmal
(CLGSETP_SCH_NO_OPTIMUM

0.144

Exterior_Lgt_ALWAYS_ON

)

W

£

X

&

e

e

4 (Tt I Whioutyy | 15Mnutes | | 1 Mnute |
[ Omsromusey |

I (S J

Light schedule based off prototypical commercial office. Emergency lighting accounts for 15% of
lighting that remains on all the time. Otherwise, follows the occupancy curve.

o T T T T T Apr
- 0:00 400 8:00 12:00 16:00 20:00 24:00
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_LIGHT_SCH

OfficeSmall BLDG_OCC_SCH

OfficeSmall BLDG_SWH_SCH

Small office equipment based off prototypical commercial office. The load is expected to follow a

B CEEREFEEEEEEE

Il oty 2 [schecuie ruie 7 ] Q
Date Range: [amn 3] [ 12
Lower Limit: |0.00 %  Upper Limit: |1.00 |
Mouse over horizontal ine to set value
' H
0.86
0.71
0.57+
0.43
0.294
0.14
o T T T T
0:00 400 8:00 12:00 16:00 20:00 24:00
ﬁ 15 Minutes 1 Minute |
—_d

= §

w

=

similar curve to occupancy with a baseline of 30%.
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-~ e
OfficeSmall BLDG_LIGHT_SCH < Schedule Name: |[NFIL_QUARTER _ON_SCH| Schedule Type: Fractional
. Default day profile.
e Offic ll BLDG_OCC_SCH -4
& et 1] uperimnfioo ]
Py Mouse herizontal ine ol
@J OfficeSmall BLDG_SWH_SCH - . e L
i; Officesmal <
! | | | cGsETP_ScH_no_opTium
— 0,86+
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X ol
2 ==
@ Run Period Profies 9 0.14-
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) ||| = )
ﬁr " Default 0:00 4‘30 &llw ].Z:IDO ls:'oo 29:‘00 24:00
v

(Tt 3 G | rsvetes | [ 1meute |

1 1

[} Drag From Library 1

1 1

! 1

ST =/

Infiltration assumed to be constant at 100%.
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Water use determined to follow core operational hours. Only a fraction of full building capacity
used, 15%. Normally water fixtures remain in the off position except for the small amount of time it
is being used.

3. Constructions

a. Construction sets

The model is primarily concerned with the construction envelope. As such the model
included the construction buildout for the walls, floors, roof, windows, interior partitions, and doors.

Q
Z

File Preferences Components & Measures Help

BEOEEREFFEEERE
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b. Constructions

The below screenshot provides an example of one construction set: the exterior wall.

This construction set considers the materials that make up the exterior wall: The 25 mm stucco, 5/8”’
gypsum board, R-5.89 batt insulation, and another 5/8’ gypsum board.

A breakdown similar to this one was created for each construction set listed above.
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2= Typical Insulated
Mass wall

~

7 & o'

5] Typical Insulated
* Carpeted 6in Siab
Floor

s Typical Insulated Exterior
Mass Floor R-9.35

= Typical Insulated
Metal Door R-1.43

[§%| Typical Insulated Steel
*=* Framed Exterior Wal
R-8.06

%% Typical Interior
Ceiing

* Typical Interior Door

* Typical Interior Floor

=5 Typical Interior
Partition

" Typical Interior Wall

£
x
&
B
©
i

c. Materials

<< | Construction Sets m Constructions

This provides an example of one construction material: the wall insulation.

This construction material provides attributes of the construction material that are relevant
to the energy model such as thickness, conductivity, density, absorption, etc. The default insulation
was R-5.89 based on the prototypical office building. However, the thermal resistance value is
manually changed to reflect the insulation configurations needed for this research. The 2.289539
thermal resistance equates to R-13 insulation.
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[Typical Insuiation R-5.89

Measure Tags (Optional):
Standard: Standard Source:

[ 3 | B
Standards Category: Standards Identifier:

I | :)
Composite Framing Material:  Composite Framing Configuration:
l | )
Composite Framing Depth:  Composite Framing Size:

I Sl :
Composte Cavity Insulation:

I d

Roughness:

[ smooth ¢

Thermal Resistance:

|2.289539 meK /W

Thermal Absorptance:

4. Loads

Three internal loads were included in this model: occupancy or people generating heat, lighting
generating heat, and electrical equipment generating heat. The three screenshots are shown below.
The lighting values will need to be adjusted from fluorescent to LED for the research thesis since the
Air Force has adopted the standard of LED lighting in facilities.
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Name:

[90.1-2007 - Office - WholeBuiding - Sm Office People Definition

Number of People: People per Space Floor Area: Space Floor Area per Person:

l | [0.0s0000 |peoplem [ | mifperson

Fraction Radiant: Sensible Heat Fraction: Carbon Dioxide Generation Rate:

e T T —T
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[80.1-2007 - Office - WholeBuiding - Sm Office Lights Definition

Lighting Power: Watts Per Space Floor Area:

| | W |10.763910 | wim?

Fraction Radiant: Fraction Visible:

[0.700000 | [o.200000

Return Air Fraction:
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[20.1-2007 - Office - WholeBuiding - Sm Office Electric Equipment Definition

Design Level: Watts Per Space Floor Area: Watts Per Person:

Y |6.781264 | wims | | Wipersen

Fraction Radiant:

|0.500000

YU, 1-200 / - Uthce -
WholeBuilding - Sm Office
Electric Equipment

Pl frmi b

5. Space Types

This section’s details are not required since only the building envelope is considered. The
internal loads are required to size HVAC ducting and internal air flows, but this is not included in
this research scope.
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6. Geometry

A prototypical building geometry is used for this thesis developed by PNNL. A visual of the
small facility is shown below.
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7. Facility

The facility section describes overall building attributes. The default values were kept for this
section. Shading and exterior equipment was not considered for this research scope.

8. Spaces

Similar to space types, this was not required since only the building envelope is considered. The
internal loads are required to size HVAC ducting and internal air flows, but this is not included in
this research scope. The default values from the prototypical building were kept for this section.
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properties | [ Loads | [ Surfaces | [ Subsurfaces | [ Interior Partitons || Shadng

[ General || Arfow || custom

Filters: Story Thermal Zone Space Type

— J| [an s [a ) [m 3

&= | T P [ S (] [
P>y Story Thermal Zone Space Type Defauit Default Schedue | Part of Total Floor
@ Construction Set Set Area
iﬁ | (]| Aeeiy to Selected | Apply to Selected Apply to Selected Apply to Selected | Apply to Selected | Apply to Selected
=1 | E— CODT0D) | MeealT] | Goaawromesd (C27770 | CI2ZZD | O
ﬁ;ilﬂ O )| loeman] |osavr-omewme) "1 | 0“1 ®
e o )|0| C7700) | Fomematiod| oazorome e 77770 | C22000 =
F’“ pemere vz |0 7777 |ermeter v 2] | fs0.1207- e -whoenl| """ (77770 @
E—J’,mw-m-s Of C22270 | femew 2isa)| (5012007 offee -whaenal| 77777 | 277770 =
;x— permeter 2.3 Of D" | ermeter 2 o)) 50.1:2007 -offce -whaenul| [~~~ | [~~~
[y

9. Thermal Zones

The thermal zones addressed the HVAC cooling and heating parameters. The HVAC was
considered to only have one conditioned space setting for the entire building, name “single zone.” A
plenum is an unconditioned space separate from the working space. This is usually the space above
a drop ceiling where utilities are run while providing access for maintenance. The heating and
cooling parameters shown below are typical HVAC values that might be seen in an office space for
supply temperatures, humidity, flow rates, and air distribution.
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Cooling Heating
Sizing Sizing Custom
Parameters. Parameters

10. HVAC Systems

The HVAC system is modeled using a typical HVAC system model used in buildings. This
building is modeled using a centralized, packaged unit with heating and cooling coils to condition
supply air through ducts to the zones designated for conditioning. The return diffuser pulls air out of
the zone and expels it outside or mixes it with fresh air to be used again as a supply.
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¥y Demand Equipment
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11. Output Variables

There are 571 possible output variables. All output variables remained ‘on’ except for 25 that
were turned ‘off.” All 25 had to do with HVAC zoning which was not used for this modeling.
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@ | [_[Toff] arsystem Component Model Semulation Cals, * [ 3
)
v _ [off"| A system Mixed Ar Mass Flow Rate, = [
2]
m;i | [Toff"| ar system Outdoor Ar Economizer Status, = [
L
| [_[Tof") ar system Ouitdoor Ax Flow Fracton, [
&
[:J | off | ar System Outdoor Ar Heat Recovery Bypass Heatng Col Activity Status, = 7|
@ i [Tof") e system Outdoor A Heat Recovery Bypass Mnmum Outdoor A Mxed Ar Temperature, =
@ _ [ToH"| ar system Outdoor Ar Heat Recovery Bypass Stabis, * [
@ ___"off"| ar system Outdoor Ar Hih Humidty Control Status, = [ 0|

_[TOf") s System Outdoor A Mass FlowRate, * [

[TOf| e System Outdoor A Maxiru Flow Fraction, * [ ]|

12. Simulation Settings

Below are the simulation settings used for this model. The sizing factor addresses the situation
where an HVAC unit needs to be sized greater than the maximum design load provided by weather
data. If an HVAC was sized exactly to the ‘worst-case’ design day, then it would fail to meet the
demand. The other settings describe the parameters for the simulation algorithm to train, iterate, and
converge. Many of these settings were carried over from the Open Studio tutorial ReadMe and
example files.
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Date Range
E ) [eey: 3] [oecemberss [3]
;e.-;: Sizing Parameters
~= ] Heating Sizing Factor
L2s0000 |
Cooling Sizing Factor
ps In ging Window
[ ]
Timestep

B eEEREERREEE

» Simulation Control

' » Program Control

| » Output Control Reporting Tolerances

» Convergence Limits

» Shadow Calculation

» Inside Surface Convection Algorithm
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Pref o C &M

(® Coarse (Fast, less accurate)
(O Fine (Slow, more accurate)
O custom

Accumulated Rays per Record:

1

Direct Certainty:
1.000000

Direct Pretest:
1.000000

Ambient Bounces DMX:
2

Ambient Divisions DMX:
512

Limit Weight VMX:
0.001000

Klems Sampling Density:
500

Help

Direct Threshold:
0.000000

Direct Jitter:
1.000000

Ambient Bounces VMX:
6

Ambient Divisions VMX:
4050

Ambient Supersamples:
256

Limit Weight DMX:
0.001000

Sky Discretization Resolution:

[ 14

Do System Sizing Calculation

Run Simulation For Sizing Periods
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Simulation Settings

Do Zone Sizing Calculation

o)

Do Plant Sizing Calculation

(..

Run Simulation For Weather File Run Periods

[ o

Minimum Number Of Warmup Days

O

Temperature Convergence Tolerance Value

o —

—

Tolerance For Time Heating Setpoint Not Met

baooso |k

Maximum HVAC Iterations

Maximum Plant Iterations

» Shadow Calculation

B(O(F{EAR{I(E( I (D(E(S(S(H(D(O

Do System Sizing Calculation

(..

Run Simulation For Sizing Periods

s

Maximum Number Of Warmup Days

s |

Loads Convergence Tolerance Value

Solar Distribution
[ Fulinteriorandxcterior 3

Tolerance For Time Cooling Setpoint Not Met

p.ooo0 |k

Minimum Plant Iterations

O

Minimum System Timestep

L]
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Surface Temperature Upper Limit

2000000 |c

Maximum Surface Convection Heat Transfer Coefficient Value
[1000.000000 | Win'k

» Zone Air Heat Balance Algorithm

Minimum System Timestep

Maximum Figures In Shadow Overlap Calculations

Sky Diffuse Modeling Algorithm
I :)

Minimum Surface Convection Heat Transfer Coefficient Value

0. 100000 Wim'K
Algorithm
[ conductionTransferFunction 3

» Zone Air Contaminant Balance

» Zone Capacitance Multiple Research Special
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Outdoor Carbon Dioxide Schedule Name

| B

Humidity Capacity Multiplier

13. Measures

This section was not used for the simulation.
14. Run Simulation

This section runs the simulation once the ‘run’ button is pressed. The simulation inputs all the
variables, parameters, and settings then it converts the model into Energy Plus and runs the
algorithm and DOE modeling engine. Below the top and bottom of the simulation section is shown
after the ‘run’ button is successfully pushed.
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EEREEE P(EEEE

P -
Initializing workflow.

Processing OpenStudio Measures.

Translating the OpenStudio Model to EnergyPlus.
Processing EnergyPlus Measures.

Starting Simulation.

EnergyPlus Starting

EnergyPlus, Version 9.1.0-08d2e308bb, YMD=2019.08.26 23:08
Initializing Response Factors

Calculating CTFs for "DEFAULT INTERIOR CEILING®, Construction # 3
Caloulating CTFs for "EXTERIOR-ROOF", Construction # 4

Calculating CTFs for "EXTERIOR-WALL®, Construction # 5

Caleulating CTFs for "INTERIOR-WALL", Construction # 6

Calculating CTFs for "SLAB-ON-GRADE-FLOOR”, Construction & 7
Initizlizing Window Optical Properties

Initializing Solar Calculations.

Allocate Solar Module Arrays

Initizlizing Zone Report Variables

Initializing Surface (Shading) Report Variables

Computing Interior Solar Absorption Factors

Determining Shadowing Combinations

Computing Window Shade Absorption Factors

Proceeding with Initializing Solar Calculations

Initializing Surfaces

Initializing Outdoor environment for Surfaces

Setting up Surface Reporting Variables

Initializing Temperature and Flux Histories

Initizlizing Window Shading

Computing Interior Absorption Factors

Computing Interior Diffuse Solar Absorption Factors

Computing Interior Diffuse Solar Exchange through Interzone Windows
Initializing Solar Heat Gains

Initializing Internal Heat Gains

Initializing Interior Solar Distribution

Initializing Interior Convedtion Coefficients Zi

(L | ' | 51 S

T
Updating Shadowing Calculations, Start Date=10/01/2006 =
Continuing Simulation at 10/01/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Dates 10/08/2006
Continuing Simulation at 10/08/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=10/15/2006
Continuing Simulation at 10/15/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date= 10/22/2006
Continuing Simulation at 10/22/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=10/29/2006
Continuing Simulation at 10/29/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=11/05/2006
Continuing Simulation at 11/05/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=11/12/2006
Continuing Simulation at 11/12/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=11/19/2006
Continuing Simulation at 11/19/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=11/26/2006
Continuing Simulation at 11/26/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=12/03/2006
Continuing Simulation at 12/03/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=12/10/2006
Continuing Simulation at 12/10/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=12/17/2006
Continuing Simulation at 12/17/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=12/24/2006
Continuing Simulation at 12/24/2006 for RUN PERIOD 1
Updating Shadowing Calculations, Start Date=12/31/2006
Writing tabular output file results using HTML format,
Computing Life Cycle Costs and Reporting

Writing final SQL reports

EnergyPlus Run Time=00hr 00min 32,62sec

EnergyPlus Completed Successfully.

Processing Reporting Measures.
Gathering Reports.
_Com_pleted. "

15. Results Summary

The results section provides the reports from the Energy Plus simulation. There are numerous

different results that can be used for a multitude of applications beyond the function for this thesis.
This research is primarily concerned with the total annual energy required to maintain a constant
internal temperature. The ‘total site energy’ (GJ) provides the value for the total energy required for
the building to maintain a constant temperature throughout the entire year.

The second figure provides the source to site energy conversion factors. This is relevant to a

life-cycle cost analysis whose boundary conditions are not limited to the facility. However, this
research only looks at the life-cycle cost from the perspective of the building user or the Air Force,
not the overall energy impact to the environment.
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The third figure provides the subcategories for the building energy use. This is important
because heating often uses natural gas which has a significantly different cost than electricity. The
natural gas and electrical utility rates can be multiplied with the annual energy consumption to
provide an annual cost. This will allow the simulation output to provide the annual energy
sustainment cost. This annual sustainment cost may then be included in a total cost that includes
acquisition costs, or the cost of construction. If the construction materials are varied, the total life-
cycle cost may be compared.

Example Simulation output: (1) 186.78 GJ of total annual energy, (2) 76.08 GJ of annual natural
gas energy, (3) 110.70 GJ of annual electrical energy.

File Preferencer  Components & Mestures  Help

(-
T Dpen D¥iew for
O || opors Y | et | |
E Progrmm Version EnergyPlus, Version 9.1.0-0842¢308bb, YMD=2019.08.26 23:08 Table of Coprents [
= Tabular Output Report m Formar: HTML
——t
ﬁ, Bulding: East entrance bldg v2
l‘: Enviromnent: RUN PERIOD 1 ** Dayton Wright Patterson Afb OH USA TMY2 WAO#=T45700
¥
-E" Sinnalation Timestamp: 2019-08-26 23:08:29
o Y e .
|ﬁ|' || Report Annmal Building Usility Performance Summary Table of Contents
et For. Entire Facility
L
b | Trmestamp: 2019-08-26 23:08:29
E.' || Values gathered over 876000 hours
—
cd {i
x Site and Source Energy
i
Q Total Energy [G] | Energy Per Total Building Area [MT'm2] | Energy Per Condinoned Building Aren [MI'm2]
1 Total Sute Energy 18678 27203
& Net Site Energy 18678 27203
"
0 Total Source Energy 433.07 3267.89
an Net Source Energy 433.07 5267.89
Lk

]

Site to Source Energy Conversion Factors

Sue==S5ource Comversion Factor
Electnaity 3167

e Preferences  Components & Measures  Help

(Remfasmwwy

| .___ | Site to Source Energy Conversion Factors
Sute=-Source Conversion Factor
Elecenicary 3187
Natural Gas 1084
Drstnct Coolmg 1036
District Heating 3613
Steam 0.300
Gasoline 1030
Dresel 1.050
Coal 1050
Fuel Ol =1 1030
Fuel Onl w2 1030
Propane 1.0%0
Other Fuel | 1.000
Other Fuel 2 1.000
Building Area
Area [m2]
Total Buldmng Area 811
Net Condeioned Buildmg Area 0N
Unconditioned Building Area 0.00
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Total Building Area §2.21
Net Condinoned Building Asea §2.21
Uneonditioned Building Asea 0.00
End Uses
Electricity [GJ] | Natural Gas [GI] | Addinsonal Fuel [6J] | District Cooting [GI]| District Heatng [G7] | Water [ru3]
Heating 1254 T6.08 0.00 000 000 0.00
Cooling T.00 0.00 0.00 0.00 0.00 0.00
Iiterser Laghting M2 0.00 0.00 0.00 0.00 0.00
Extencs Lighting 0.00 0,00 0.00 0.00 0.00 0,00
Tnterior Equipment 4005 0.00 0.00 0.00 000 0.00
Exterior Equipment 0.00 000 000 000 0o oo
Fans 13.63 0.00 0.00 0.00 0.00 0.00
Pumps 003 0.00 0.00 0.00 0.00 0.00
Hear Rejection 0.00 0.00 0.00 0.00 0.00 0.00
Humidification 0.00 0.00 0.00 0.00 0.00 0.00
Heat Recovery 0.00 0.00 0.00 0.00 0.00 0.00
Water Systems 323 0.00 0.00 0.00 0.00 5393
Refrigeration 0.00 0.00 0.00 0.00 0.00 0.00
Generators 0.00 0.00 0.00 0.00 0.00 0.00
Total Eud Uses 110.70 76.08 Q.00 0.00 0.00 5393

Note; Natural gas appears to be the principal heating sonrce bazed oo energy usage.

Simulation: Large prototypical USAF office building at WPAFB Dayton, OH

Energy Plus Simulation using Open Studio

Below are the screenshots for the sections in OpenStudio which were different for the large
prototypical building.

3. Constructions

a. Construction sets

The construction geometry of the large building is different than the small prototypical
building requiring different construction shape, size, materials, and construction methods to be used.
These construction material differences and properties are captured in section 3 of OpenStudio.
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-;'_'“1 A=t Construction Sets ‘ Constructions I Materials
ik ASHRAE 169.1-2009 Name =
e i Cy 4-5 (mdoff)
- ConstSet |ASHRAE 189.1-2003 CimateZone -5 (mdoff) ConstSet
= Exterior Surface
& '_ Walls Floors Roofs
(@ [ Sl N (e S
e i | 221 189.1-2000 1| exsebcapet @y || || = 169.12009 ]
v | T e O TR0 T G, O]
— I 11 11 1
e (e ————— L RCa—— R ——— ]
E Interior Surface
ﬁ; Walls Floors Ceilings
— (—————————— N (———— ) (————— 3)
® {L":'uoom Qw:}".-mmw 9}}{{"‘0001:@& 01:
E L RS J: N _j
EE[ Ground Contact Surface Constructions
—— Walls Floors Ceilings
% — b
G (BEo| [BEo| [(AE—rol
E ______________________ 2 i T e e A
— Exterior Sub Surface Constructions
c) (Tt 7 | Fixed windows Operable Windows Doors
2 e el =y
oo | S = S GJ:;{ e DO
e I '
I == o pore———— v

c. Materials
The large facility uses the material property conductivity to determine the insulation

material’s properties. The below figure shows an example of the material properties for R-11 wall
insulation.
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[wal nsutation [39]

Measure Tags (Optional):
Standard: Standard Source:

I I

Standards Category: Standards Identifier:

I s

Compostte Framing Materal: Composite Framing Configuration:

I oI

E Roof Membrane Composte Framing Depth:

I )

Composite Cavity Insulation:

I )

E MAT-CCOS5 4HW
CONCRETE

E Metal Decking

E Roof Insulation [21]

Thickness:

( medumRough 3] [0.088%00 | m
Conductivity: Density:

osssss  |wmx kojm*
Specific Heat: Thermal Absorptance:
836.800000 gk
Solar Absorptance: Visible Absorptance:

6. Geometry

Below is the geometry used for the large prototypical building developed by PNNL.
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Open Confrols

Below is geometry used for the pilot study to test the capabilities of all the BPS software
prior to selecting the BPS for this research.
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10. HVAC Systems
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The following tables provide the total energy output from the OpenStudio

Appendix C: Annual Energy Cost Based on BPS Simulations

simulation and the calculations to convert energy into cost.

WPAFB, OH Total Energy (GJ) _Electricity (GJ) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost  Annual Nat Gas Cost

Small Building 5500 SF cents/kw $/thousand cuft
Wall: R-11

Insulation 1 Roof: R-30 244.46 234.38 10.08 10.26 6.77) S 6,967.11 S 646.78
Wall: R-13

Insulation 2 Roof: R-30 243.09 233.52 9.57| 10.26 6.77| $ 6,928.07 5 614.05
Wwall: R-15

Insulation 3 Roof: R-30 242.07 232.86 9.21 10.26 6.77| S 6,899.00 $ 590.96
wall: R-21

Insulation 4 Roof: R-30 240.15 231.64 8.51 10.26 6.77| S 6,844.28 S 546.04
wall: R-11

Insulation 5 Roof: R-38 242.66 233.27 9.39 10.26 6.77) S 6,915.81 S 602.50
wall: R-13

Insulation 6 Roof: R-38 241.29 232.41 8.88 10.26 6.77] $ 6,876.77 S 569.78
Wall: R-15

Insulation 7 Roof: R-38 240.33 231.8 8.53 10.26 6.77] S 6,849.41 § 547.32
wall: R-21

Insulation 8 Roof: R-38 238.58 230.65 7.93 10.26 6.77] $ 6,799.53 $ 508.82
Wall: R-11

Insulation 9 Roof: R-49 241.04 232.28 8.76| 10.26 6.77| $ 6,869.64 S 562.08
wall: R-13

Insulation 10 Roof: R-49 239,83 231.5 8.33 10.26 677 $ 6,835.16 S 534.49
Wwall: R-15

Insulation 11 Roof: R-49 238.9 230.91 7.99 10.26 6.77| $ 6,808.65 S 512.67
Wwall: R-21

Insulation 12 Roof: R-49 237.31 229.83 7.48] 10.26 6.77| S 6,763.34 S 479.95
wall: R-11

Insulation 13 Roof: R-60 240.06 231.68 8.38 10.26 6.77| S 6,841.71 S 537.70
wall: R-13

Insulation 14 Roof: R-60 238.92 230.93 7.99 10.26 6.77) S 6,809.22 S 512.67
wall: R-15

Insulation 15 Roof: R-60 238.09 230.37 .1 10.26 6.77| S 6,785.57 S 454.71
Wall: R-21

Insulation 16 Roof: R-60 236.46 229.28 7.18 10.26 6.77] 5 6,739.11 $ 460.70

WPAFB, OH Total Energy (GJ) Electricity (GJ) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost  Annual Nat Gas Cost

Large Building  |20000 SF cents/kw S/thousand cuft
wall: R-11

Insulation 1 Roof: R-30 1097.41 1097.41 0 10.26 6.77] 5 31,276.19 -
Wall: R-13

Insulation 2 Roof: R-30 1091.75 1091.75 0 10.26 6.77] 5 31,114.88 S =
wall: R-15

Insulation 3 Roof: R-30 1087.36 1087.36 0 10.26 6.77| 5 30,989.76 S =
Wwall: R-21

Insulation 4 Roof: R-30 1078.49 1078.49 0 10.26 6.77| $ 30,736.97 S z
Wwall: R-11

Insulation 5 Roof: R-38 1087.89 1087.89 0 10.26 6.77) $ 31,004.87 S -
wall: R-13

Insulation 6 Roof: R-38 1082.25 1082.25 0 10.26 6.77) S 30,844.13 $ -
Wall: R-15

Insulation 7 Roof: R-38 1077.88 1077.88 0 10.26 6.77| & 30,719.58 S -
Wall: R-21

Insulation 8 Roof: R-38 1069.07 1069.07 0 10.26 6.77] 5 30,468.50 S =
Wall: R-11

Insulation 9 Roof: R-49 1079.82 1079.82 0 10.26 6.77| S 30,774.87 S -
Wwall: R-13

Insulation 10 Roof: R-49 1074.23 1074.23 0 10.26 6.77| S 30,615.56 S >
wall: R-15

Insulation 11 Roof: R-49 1069.88 1069.88 0 10.26 6.77| 5 30,491.58 S -
wall: R-21

Insulation 12 Roof: R-49 1061.12 1061.12 0 10.26 6.77| S 30,241.92 S »
wall: R-11

Insulation 13 Roof: R-60 1074.81 1074.81 0] 10.26 6.77| $ 30,632.09 S =
Wall: R-13

Insulation 14 Roof: R-60 1069.23 1069.23 0 10.26 6.77| 5 30,473.06 S =
Wwall: R-15

Insulation 15 Roof: R-60 1064.9 1064.9 0 10.26 6.77) S 30,349.65 S =
Wall: R-21

Insulation 16 Roof: R-60 1056.18 1056.18 of 10.26 6.77) § 30,101.13 § -
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Langley, VA Total Energy (GJ)) _Electricity (GJ) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost  Annual Nat Gas Cost

Small Building  |5500 SF cents/kw $/thousand cuft
Wall: R-11

Insulation 1 Roof: R-30 235.08 233.29 1.79] 11.84 9.18] $ 7,731.52 S 155.74
Wall: R-13

Insulation 2 Roof: R-30 23438 232.67 1.7 11.84 9.18] § 7,708.50 S 147.91
Wall: R-15

Insulation 3 Roof: R-30 233.89 232.23 1.66 11.84 9.18] § 769238 S 144.43
wall: R-21

Insulation 4 Roof: R-30 232.86 231.33 1.53 11.84 9.18] S 7,658.51 S 133.12
wall: R-11

Insulation 5 Roof: R-38 23417 232,52 1.65| 11.84 9.18] § 7,701.59 S 143.56
Wall: R-13

Insulation 6 Roof: R-38 233.52 231.94 1.58] 11.84 9.18| § 7,680.21 § 137.47
Wall: R-15

Insulation 7 Roof: R-38 233 231.47 1.52] 11.84 9.18] § 7,663.11 S 132.25
Wall: R-21

Insulation 8 Roof: R-38 232.01 230.61 1.41 11.84 9.18] S 7,630.55 S 122.68
Wall: R-11

Insulation 9 Roof: R-49 233.44 231.89 1.56 11.84 9.18] § 7,677.58 S 135.73
wall: R-13

Insulation 10 Roof: R-49 232.79 231.3 1.49 11.84 9.18] § 7,656.20 S 129.64
Wall: R-15

Insulation 11 Roof: R-49 232.25 230.85 1.4 11.84 9.18] § 7,638.44 S 121.81
Wall: R-21

Insulation12  |Roof: R-49 231.23 229.96 1.26 11.84 9.18| 5 7,604.90 S 109.63
wall: R-11

Insulation 13 Roof: R-60 232.97 231.48 1.49) 11.84 9.18] $ 766212 S 129.64
wall: R-13

Insulation 14 Roof: R-60 232.29 230.89 1.4 11.84 9.18] § 7,639.76 S 121.81
Wall: R-15

Insulation 15 Roof: R-60 231.73 230.42 1.31 11.84 9.18] § 7,621.34 $ 113.98
Wall: R-21

Insulation 16 Roof: R-60 230.7 229.54 1.17] 11.84 9.18] $ 7,587.47 $ 101.80

Langley, VA Total Energy (GJ) Electricity (G]) NatGas (Gl) |Electricity Rate Nat Gas Rate Annual Electricity Cost  Annual Nat Gas Cost

Large Building  |20000 SF cents/kW $/thousand cuft
Wall: R-11

Insulation 1 Roof: R-30 1010.54 1010.54 0 11.84 9.18) S 33,235.54 S -
Wwall: R-13

Insulation 2 Roof: R-30 1006.66 1006.66 0 11.84 9.18| $ 33,10793 S =
wall: R-15

Insulation 3 Roof: R-30 1003.65 1003.65 0 11.84 9.18] S 33,008.93 S o
Wall: R-21

Insulation 4 Roof: R-30 997.6 997.6 0f 11.84 9.18] $ 32,809.96 S -
Wall: R-11

Insulation 5 Roof: R-38 1003.93 1003.93 0 11.84 9.18] $ 33,018.14 S =
Wall: R-13

Insulation 6 Roof: R-38 1000.08 1000.08 0 11.84 9.18) $ 32,891.52 $ =
Wall: R-15

Insulation 7 Roof: R-38 997.09 997.09 0 11.84 9.18) § 32,793.18 S =
wall: R-21

Insulation 8 Roof: R-38 991.13 991.13 0 11.84 9.18] § 32,597.16 S -
Wall: R-11

Insulation 9 Roof: R-49 998.43 998.43 0 11.84 9.18| S 32,837.25 S -
Wall: R-13

Insulation 10 Roof: R-49 934.61 994.61 0 11.84 9.18) $ 32,711.62 S =
Wall: R-15

Insulation 11 Roof: R-49 991.66 991.66 0 11.84 9.18| 5 32,614.60 S ‘
Wall: R-21

Insulation 12 Roof: R49 985.77 985.77 0 11.84 9.18| 5 32,420.88 S =
Wall: R-11

Insulation 13 Roof: R-60 995.05 995.05 0 11.84 9.18 $ 32,726.09 $ =
wall: R-13

Insulation 14 Roof: R-60 991.24 991.24 0 11.84 9.18 $ 32,600.78 S -
Wall: R-15

Insulation 15 Roof: R-60 988.34 988.34 0 11.84 9.18] S 32,505.40 S -
Wall: R-21

Insulation 16 Roof: R-60 982.49 982.49 0) 11.84 9.18| S 32,313.00 $ =
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San Antonio, TX Total Energy (GJ) _Electricity (GJ) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost  Annual Nat Gas Cost

Small Building  |5500 SF cents/kw $/thousand cuft
Wall: R-11

Insulation 1 Roof: R-30 245.46 245.32 0.14 7.81 7.05| 532512 $ 9.35
Wall: R-13

Insulation 2 Roof: R-30 244.9 244.76 0.12 7.81 7.05| 531297 § 8.69
wall: R-15

Insulation 3 Roof: R-30 244.47 244.34 0.13 7.81 7.05| S 5,303.64 S 8.69
wall: R-21

Insulation 4 Roof: R-30 243.65 243.53 0.11 7.81 7.05) S 5,285.85 S 7.35
wall: R-11

Insulation 5 Roof: R-38 244.83 244.71 0.13 7.81 7.05) S 531145 S 8.69
Wall: R-13

Insulation 6 Roof: R-38 244,28 244.16 0.12 7.81 7.05| 5 5,299.52 | $ 8.02
Wwall: R-15

Insulation 7 Roof: R-38 243.86 243.74 0.11 7.81 7.05| $ 529041 $ 7.35
Wwall: R-21

Insulation 8 Roof: R-38 243.03 242.93 0.1 7.81 7.05) 527240 S 6.68
wall: R-11

Insulation 9 Roof: R-49 244.28 244.16 0.12 7.81 7.05| 5.299.52 $ 8.02
Wall: R-13

Insulation 10 Roof: R-49 243.73 243.62 0.11 7.81 7.05) S 5,287.59 S 7.35
Wall: R-15

Insulation 11 Roof: R-49 243.3 243.2 0.11 7.81 7.05| 5 5,278.26 S 7.35
Wall: R-21

Insulation 12 Roof: R-49 242.47 242.37 0.1 7.81 7.05 $ 5,260.25 $ 6.68
Wall: R-11

Insulation 13 Roof: R-60 243,92 243.81 0.11 7.81 7.05) $ 5291.71 S 7.35
Wall: R-13

Insulation 14 Roof: R-60 243.37 243.27 0.1 7.81 7.05) S 5,279.78 S 6.68
wall: R-15

Insulation 15 Roof: R-60 242.95 242.85 0.1 7.81 7.05| S 5,270.67 S 6.68
Wall: R-21

Insulation 16 Roof: R-60 242.12 242.03 0.09 7.81 7.05| 5,252.66 S 6.01

San Antonio, TX Total Energy (GJ) Electricity (GJ) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost  Annual Nat Gas Cost

Large Building  |20000 SF cents/kw S/thousand cuft
wall: R-11

Insulation 1 Roof: R-30 992.03 992.03 0 7.81 7.05| $ 21,521.54 $ -
Wall: R-13

Insulation 2 Roof: R-30 989.99 989.99 0 7.81 7.05| 5 21,477.28 S =
Wall: R-15

Insulation 3 Roof: R-30 988.38 988.38 0 7.81 7.05| $ 21,442.36 S =
wall: R-21

Insulation 4 Roof: R-30 985.21 985.21 0 7.81 7.05) 21,373.58 S -
wall: R-11

Insulation 5 Roof: R-38 988.51 988.51 0 7.81 7.05| § 21,445.18 S =
wall: R-13

Insulation 6 Roof: R-38 986.49 986.49 0 7.81 7.05| S 21,401.35 S -
Wall: R-15

Insulation 7 Roof: R-38 984.87 984.87 0 7.81 7.05| 5 21,366.21 S -
Wall: R-21

Insulation 8 Roof: R-38 981.75 981.75 0 7.81 7.05) $ 21,29852 § =
Wall: R-11

Insulation 9 Roof: R-49 985.7 985.7 0 7.81 7.05) 21,384.21 § -
wall: R-13

Insulation 10 Roof: R-49 983.69 983.69 0 7.81 7.05) 21,34061 S =
wall: R-15

Insulation 11 Roof: R-49 982.11 982.11 0 7.81 7.05| 21,306.33 S 2
wall: R-21

Insulation 12 Roof: R-49 979.06 979.06 0 7.81 7.05) $ 21,240.16 S =
Wwall: R-11

Insulation 13 Roof: R-60 983.99 983.99 0 7.81 7.05| $ 21,347.12 § -
Wall: R-13

Insulation 14 Roof: R-60 981.99 981.99 0 7.81 7.05) 5 21,303.73 S -
wall: R-15

Insulation 15 Roof: R-60 980.43 980.43 0 7.81 7.05) $ 21,269.88 S =
Wall: R-21

Insulation 16 Roof: R-60 977.38 977.38 0| 7.81 7.05] $ 21,203.72 $ -
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Edwards AFB, CA Total Energy (GJ) Electricity (G)) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost Annual Nat Gas Cost

Small Building |5500 SF cents/kw $/thousand cuft
Wall:3.4

Insulation 0 Roof: 3.9 259.79 258.01 1.78] 14.25 8.17| S 10,283.35 $ 137.83
wall: R-11

Insulation 1 Roof: R-30 231.24 231.03 0.21 14.25 8.17] S 9,153.25 S 16.26
wall: R-13

Insulation 2 Roof: R-30 230.71 230.52 0.19 14.25 8.17| S 9,132.27 § 14.71
wall: R-15

Insulation 3 Roof: R-30 230.31 230.13 0.18 14.25 8.17| 5 9,116.44 S 13.94
wall: R-21

Insulation 4 Roof: R-30 229.53 229.36 0.16 14.25 8.17] S 9,085.56 $ 12,39
wall: R-11

Insulation 5 Roof: R-38 230.71 230.52 0.19 14.25 8.17| $ 9,132.27 § 14.71
wall: R-13

Insulation 6 Roof: R-38 230,19 230,02 0.17] 14.25 8.17| $ 9,111.69 $§ 13.16
Wall: R-15

Insulation 7 Roof: R-38 229.79 229.63 0.16| 14.25 8.17| $ 9,095.85 5 12.39
Wall: R-21

Insulation 8 Roof: R-38 229.02 228.88 0.14 14.25 8.17| $ 9,065.38 S 10.84
Wall: R-11

Insulation 9 Roof: R-49 230.26 230.09 0.17 14.25 8.17| $ 911446 S 13.16
Wall: R-13

Insulation 10 Roof: R-49 229.74 229.58 0.16 14.25 817 $ 9,093.88 $ 12.39
wall: R-15

Insulation 11 Roof: R-49 229.34 229.20 0.15 14.25 8.17| S 9,078.04 S 11.62
Wall: R-21

Insulation 12 Roof: R-49 228.58 228.46 0.12 14.25 8.17] $ 9,047.96 S 9.29
wall: R-11

Insulation 13 Reof: R-60 229.97 229.81 0.16 14.25 8.17] S 9,102.98 $ 12.39
wall: R-13

Insulation 14  |Roof: R-60 229.45 229.30 0.15) 14.25 8.17] S 9,082.40 S 11.62
Wall: R-15

Insulation 15 Roof: R-60 229.06 228.92 0.13 14.25 8.17 $ 9,066.96 S 10.07
Wall: R-21

Insulation 16  |Roof: R-60 228.20 228.19 0.11 14.25 8.17| $ 9,036.88 S 8.52

Edwards AFB, CA Total Energy (G)) Electricity (GJ) Nat Gas {GJ]lElet‘tlicityRate Nat Gas Rate Annual Electricity Cost Annual Nat Gas Cost

Large Building |20000 SF cents/kW Sfthousand cuft
wall:3.4

Insulation 0 Roof: 3.7 1068.22 1068.22 0.00 14.25 8.17| S 42,283.71 $ -
Wall: R-11

Insulation 1 Roof: R-30 895.66 895.66 0.00 14.25 8.17| S 35453.21 $ -
Wall: R-13

Insulation 2 Roof: R-30 892.88 892.88 0.00 14.25 8.17] 5 35,343.17 S =
wall: R-15

Insulation 3 Roof: R-30 890.74 890.74 0.00 14.25 8.17] 5 35,258.46 S =
wall: R-21

Insulation 4 Roof: R-30 886.54 886.54 0.00 14.25 8.17] 5 3509221 S -
Wall: R-11

Insulation 5 Roof: R-38 891.23 §91.23 0.00 14.25 8.17] $ 35,277.85 § =
Wall: R-13

Insulation 6 Roof: R-38 888.52 888.52 0.00 14.25 8.17] 5 35,170.58 S -
wall: R-15

Insulation 7 Roof: R-38 886.44 886.44 0.00 14.25 8.17| 5 35,088.25 S -
Wall: R-21

Insulation 8 Roof: R-38 882.34 882.34 0.00 14.25 817 $ 34,925.96 $ -
Wall: R-11

Insulation 9 Roof: R-49 887.96 887.96 0.00 14.25 8.17| $ 35,14842 S -
‘Wall: R-13

Insulation 10  |Roof: R-49 885.30 885.30 0.00 14,25 8.17| $ 35,043.13 S -
wall: R-15

Insulation 11 Roof: R-49 883.24 883.24 0.00 14,25 8.17] $ 34,961.58 $ =
wall: R-21

Insulation 12 Roof: R-49 879.22 879.22 0.00 14.25 8.17| $ 34,80246 S =
wall: R-11

Insulation 13 Roof: R-60 886.10 886.10 0.00 14.25 8.17| & 3507479 S -
Wall: R-13

Insulation 14  |Roof: R-60 883.45 883.45 0.00 14.25 8.17| 34,969.90 S -
Wall: R-15

Insulation 15 Roof: R-60 88144 88144 0.00 14.25 8.17] 5 34,890.33 S -
wall: R-21

Insulation 16 Roof: R-60 B877.46 877.46 0.00 14.25 8.17] S 34,732.79 | § -
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Ellsworth AFB, SD Total Energy (GJ) Electricity (G)) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost Annual Nat Gas Cost

Small Building |5500 SF cents/kw $/thousand cuft
wall:3.4

Insulation 0 Roof: 3.9 447.57 348.88 98.69) 10.21 6.76] S 12,693.58 S 6,323.04
Wwall: R-11

Insulation 1 Roof: R-30 270.77 243.99 26.78 10.21 6.76] S 7,679.34 S 1,715.79
Wall: R-13

Insulation 2 Roof: R-30 268.32 242.66 25.67 10.21 6.76] S 7,609.85 5 1,644.67
Wall: R-15

Insulation 3 Roof: R-30 266.40 241.65 24.75) 10.21 6.76] $ 7,555.40 S 1,585.73
wall: R-21

Insulation 4 Roof: R-30 262.89 239.74 23.15 10.21 6.76] S 7,455.85 S 1,483.21
wall: R-11

Insulation 5 Roof: R-38 267.38 242.22 25.15 10.21 6.76] 5 7,583.19 $ 1,611.35
wall:R-13

Insulation 6 Roof: R-38 265.05 240.95 24.11 10.21 6.76] S 7,517.11 S 1,544.72
Wall: R-15

Insulation 7 Roof: R-38 263.30 240.00 23.30 10.21 6.76] S 7,467.48 S 1,492.83
wall: R-21

Insulation 8 Roof: R-38 259.96 238.10 21.77 10.21 6.76] S 737275 5 1,394.80
Wall: R-11

Insulation 9 Roof: R-49 264.50 240.73 23.81 10.21 6.76] S 7,501.51 S 1,525.50
Wall: R-13

Insulation 10 Roof: R-49 262.30 239.49 22,81 10.21 6.76] S 7439.12 5 1,461.43
wall: R-15

Insulation 11  |Roof: R-49 260.64 238.61 22.03 10.21 6.76| $ 7.392.04 5 1,411.46
wall: R-21

Insulation12  |Roof: R-49 257.36 236.82 20.55 10.21 6.76] 5 7,299.02 S 1,316.63
wall: R-11

Insulation 13 |Roof: R-60 262.76 239.81 2296 10.21 6.76| $ 745217 $ 1,471.04
wall: R-13

Insulation 14 Roof: R-60 260.61 238.64 21.97 10.21 6.76] S 7,391.19 5 1,407.61
Wall: R-15

Insulation 15 Roof: R-60 258.93 237.71 21.22 10.21 6.76] S 7,343.54 5 1,359.56
Wall: R-21

Insulation 16 Roof: R-60 255.81 235.98 19.83 10.21 6.76] S 7,255.06 S 1,270.50

Ellsworth AFB, SD Total Energy (GJ) Electricity (GJ) Nat Gas (G)) |Electricity Rate Nat Gas Rate Annual Electricity Cost Annual Nat Gas Cost

Large Building |20000 SF cents/kW $/thousand cuft
wall:3.4

Insulation 0 Roof: 3.7 1966.61 1966.61 0.00| 10.21 6.76| $ 55,775.24 $ >
Wwall: R-11

Insulation 1 Roof: R-30 1230.23 1230.23 0.00| 10.21 6.76] S 34,890.69 S -
Wall: R-13

Insulation 2 Roof: R-30 1222.35 1222.35 0.00 10.21 6.76| $ 34,667.20 S 2
Wall: R-15

Insulation 3 Roof: R-30 1216.20 1216.20 0.00| 10.21 6.76] 5 34,492.78 S o
wall: R-21

Insulation 4 Roof: R-30 1203.88 1203.88 10.00| 10.21 6.76] S 34,143.37 S -
wall: R-11

Insulation 5 Roof: R-38 1217.05 1217.05 0.00| 10.21 6.76] S 34,516.89 S -
Wwall: R-13

Insulation 6 Roof: R-38 1209.20 1209.20 0.00| 10.21 6.76] S 34,294.26 S -
Wall: R-15

Insulation 7 Roof: R-38 1203.08 1203.08 0.00| 10.21 6.76] S 34,12069 S -
wall: R-21

Insulation 8 Roof: R-38 1190.83 1190.83 0.00| 10.21 6.76| $ 33,773.26 S =
wall: R-11

Insulation 9 Roof: R-49 1205.77 1205.77 0.00| 10.21 6.76] S 34,196.98 S -
Wwall: R-13

Insulation 10 Roof: R-49 1197.97 1197.97 0.00| 10.21 6.76] S 33,975.76 S -
Wall: R-15

Insulation 11 Roof: R-49 1191.87 1191.87 0.00| 10.21 6.76] S 33,802.76 S =
wall: R-21

Insulation 12 Roof: R-49 1179.69 1179.69 0.00] 10.21 6.76] S 33,457.32 S -
wall: R-11

Insulation 13 Roof: R-60 1198.69 1198.69 0.00| 10.21 6.76] S 33,996.18 S -
Wall: R-13

Insulation 14 |Roof: R-60 1190.90 1190.90 0.00| 10.21 6.76] 5 33,775.25 § =
wall: R-15

Insulation15  |Roof: R-60 1184.83 1184.83 0.00) 10.21 6.76] 5 33,603.10 S :
wall: R-21

Insulation 16 Roof: R-60 1172.66 1172.66 0.00| 10.21 6.76] S 33,257.94 S ¥
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Minot AFB, ND Total Energy (GJ) Electricity (G)) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost Annual Nat Gas Cost

Small Building |5500 SF cents/kw $/thousand cuft
Wall:3.4

Insulation 0 Roof: 3.9 383.32 282.09 101.23 10.21 6.76] S 10,871.38 $ 6,485.78
wall: R-11

Insulation 1 Roof: R-30 289.31 242.57 46.74] 10.21 6.76] S 8,205.15 S 2,994.62
wall: R-13

Insulation 2 Roof: R-30 286.63 241.47 45.16| 10.21 6.76] S 812915 § 2,893.39
Wall: R-15

Insulation 3 Roof: R-30 284.51 240.60 43.91] 10.21 6.76] 5 8,069.02 $ 2,813.30
Wall: R-21

Insulation 4 Roof: R-30 280.28 238.87 41.40| 10.21 6.76] 5 7,949.05 $ 2,652.49
Wall: R-11

Insulation 5 Roof: R-38 285.64 241.12 44.52] 10.21 6.76] S 8,101.07 $ 2,852.39
wall: R-13

Insulation 6 Roof: R-38 282,91 240,04 42.87| 10.21 6.76] 5 8,023.64 § 2,746.67
Wall: R-15

Insulation 7 Roof: R-38 280.79 239,13 41.66| 10.21 6.76] 5 7.963.52 5 2,669.15
Wall: R-21

Insulation 8 Roof: R-38 276.41 237.39 39.02 10.21 6.76| S 7,839.29 $ 2,500.00
Wall: R-11

Insulation 9 Roof: R-49 282.29 239.83 42.46| 10.21 6.76] S 8,006.06 S 2,720.40
Wall: R-13

Insulation 10 Roof: R-49 279.48 238.66 40.82] 10.21 6.76] S 7,926.36 S 2,615.33
Wwall: R-15

Insulation 11 Roof: R-49 277.21 237.77 39.44 10.21 6.76] S 7,861.98 S 2,526.91
Wall: R-21

Insulation 12 Roof: R-49 273.09 236.08 37.00] 10.21 6.76] S 7,745.14 $ 2,370.58
Wall: R-11

Insulation 13 Reof: R-60 280.04 238.96 41.08] 10.21 6.76] S 7,94225 S 2,631.99
Wall: R-13

Insulation 14 Roof: R-60 277.19 237.82 39.37 10.21 6.76] 5 7,861.42 S 2,522.43
Wall: R-15

Insulation 15 Roof: R-60 274.96 236.94 38.03] 10.21 6.76| $ 7,798.17 § 2,436.57
Wall: R-21

Insulation 16  |Roof: R-60 270.96 235,27 35.69) 10.21 6.76] 5 7,684.73 5 2,286.65

Minot AFB, ND Total Energy (GJ) Electricity (GJ) Nat Gas (GJ) |Electricity Rate Nat Gas Rate Annual Electricity Cost Annual Nat Gas Cost

Large Building |20000 SF cents/kw $/thousand cuft
Wall:3.4

Insulation 0 Roof: 3.7 2181.14 2181.14 0.00 10.21 6.76] S 61,859.55 S -
Wall: R-11

Insulation 1 Roof: R-30 1339.78 1339.78 0.00 10.21 6.76] S 37,997.65 S -
Wall:R-13

Insulation 2 Roof: R-30 1330.77 1330.77 0.00 10.21 6.76] S 37,742.12 S =
Wall: R-15

Insulation 3 Roof: R-30 1323.75 1323.75 0.00 10.21 6.76] 5 37,543.02 $ =
Wall: R-21

Insulation 4 Roof: R-30 1309.64 1309.64 0.00 10.21 6.76] 5 37,142.85 § -
Wwall: R-11

Insulation 5 Roof: R-38 1324.80 1324.80 0.00| 10.21 6.76] 5 37,572.80 $ =
Wall: R-13

Insulation 6 Roof: R-38 1315.83 1315.83 0.00| 10.21 6.76] 5 37,31840 $ -
Wall: R-15

Insulation 7 Roof: R-38 1308.80 1308.80 0.00 10.21 6.76] S 37,119.02 $ -
Wwall: R-21

Insulation 8 Roof: R-38 1294.76 1294.76 0.00 10.21 6.76] S 36,720.83 S -
wall: R-11

Insulation 9 Roof: R-49 1311.93 1311.93 0.00 10.21 6.76] S 37,207.79 § =
‘Wwall: R-13

Insulation 10 Roof: R-49 1302.98 1302.98 0.00 10.21 6.76] S 36,953.96 S =
Wall: R-15

Insulation 11 Reof: R-49 1295.99 1295.99 0.00| 10.21 6.76] S 36,755.72 S =
Wall: R-21

Insulation 12 Roof: R-49 1282.00 1282.00 0.00) 10.21 6.76] S 36,358.94 S i
Wall: R-11

Insulation 13 Roof: R-60 1303.80 1303.80 0.00 10.21 6.76] S 36,977.22 § -
Wwall: R-13

Insulation 14 Roof: R-60 1294.87 1294.87 0.00 10.21 6.76] S 36,723.95 $ -
Wall: R-15

Insulation 15 Roof: R-60 1287.91 1287.91 0.00| 10.21 6.76] S 36,526.56 S -
Wall: R-21

Insulation 16 Roof: R-60 1273.95 1273.95 0.00 10.21 6.76] S 36,130.64 S =
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Appendix D: Acquisition Cost Calculations

The following tables provide the acquisition cost calculations made using the RSMeans
book ‘Building Construction Costs with RSMeans Data.’

Calculations for Dayton, OH

Division 07: Thermal and Moisture P

| Key: | RS Means Data jcaiculatlon| Adjustment Factor From City Cost Table

o Dailly [Duration | Material |Material |Matera Labor |Labor Adj. | Labor | Equip |Equip Adj. |Equip — . | RSMeans item
2 i Quartty [ o] (days) (S/Unit) Adj. Cost ) (Sunit) | Factor Cost | (S Factor cost |To® e Number
Thermal Insulation - Blanket insulation
Blanket insulation for floorsicedings, fiberglass, blanikets or
1 |batts, paper or fod backing, 6 thick, R19 5,000.0 SF 800 £33 052 1.198 s 37| 1cap | 086 1.127 5 3718 0 0.787 5 - $ 6338 |07-21-16-10-2150
Thermal insulation - Blanket insulation
Blanket insulation for floorsicedings, fiberglass, blankets or
2 |batts, paper or fod backing, § 1/2~ thick, R30 5.000.0 SF 500 10.00 0.75 1.188 5 4495 | 1Cap 0.78 1.127 § 4452 a 0.787 3 5 5.947 |07-21-16-10-2210
Thermal Insulation - Bianket nsulation
Blanket insulation for floorsicedings, fiberglass, blankets or
3 |vatts, paper or fod backing, 12° thick, R38 5.000.0 SF 475 1053 1.08 1.189 S 6473 1Carp | 083 1127 $ 4677 0 0.787 s - §  11.150 |07-21-16-10-2220
Thermal Insulation - Blanket lhsulation
Blanket insulation for floors/cedings, fibergiass, blankets or
4 |batts, unfaced, 8§ 1/2” thick, R30 5.000.0 SF 450 11.11 0.62 1199 5 3716 | 1cCap 0.88 1927 5 4555 ] 0.787 s 5 8875 |07-21-16-10-3020
Thermal Insulation - Blanket insulation
Blanket insulation for walis_ Kraft faced fiberglass 3 127
5 |nick, R11, 157 wide 8,040.0 SF 1350 596 0.32 1.189 5 3084| 1 0.29 1127 § 2628 ] 0.787 s H 5712 [07-21-16-20-0020
Thermal Insulation - Blanket lhsulation
Blanket insulation for walls, Fod faced ferglass 3 12
6 lnick, 13, 15" wide 8,040.0 SF 1350 5.96 0.48 1.188 $ 4626 | 1cCap 0.29 1.127 S 2628 (1] 0.787 H 5 7.254 |07-21-16-20-0420
Thermal Insulation - Blanket nsulation
Bianket nsulaticn for wals, Fol faced fberglass 3 172
7 |thick R1S, 15" wide 8,040.0 SF 1350 596 05 1.199 s 4me| 1cop | 029 1127 $ 2628 ] 0.787 5 - S 7.447 |07-21-16-20-0444
Thermal Insulation - Sprayed-On Insulation
Ciosed cel, spray polyurethane foam, 2 pounds per cubic
g |foot densiy 8,040.0 SF 1715 469 181 1.159 5 17444 | G2A 0.53 1.214 5 5173 039 0.787 sz488 | 5 25085 |07-21-25-10-0335
Overhead 10% 5 1468
Proft and
Contingency 5% § 808
Total $ 1693069
City Cost Table: Dayton, OH
z - Labor Equip
sy ial abor .
Phasion Waits Tax erdgxﬂy R::a::e.‘::tcu -'}ter.:eac li“l’l‘!ldec:l‘:lsﬂ FMJ Ay
actor Factor
Dmasion 07: Thermal and Moi P ion - Caprp 1.05 1.075 | 1.062 1.199 1.432 0.787 1.127 0.787
ﬁ:lm'smn 07: Thermal and Moisture Protection - Crew G-2A 1.05 1.075 | 1.062 1.199 1.543 0.787 1214 0.787
Labor
Labor Overhead and Labor Adjustment Factor Table Overhead
(From Table in Back Cover of RSMeans) sum Total
(BCD) x Labor OH /
Crew hour daily # Workers B C D B + C + D Workers x rate Total Crew work rate_ Total Labor OH| Total Crew
G-2A 1 Roofer Composition 43.15 34520 1 307 183 1 60.0 4315 2589
1 Roofer Helper 32.10 2566.80 1 30.7 18.3 1" 60.0 32.10 19.26
1 Buillding Laborer 39.15 313.20 1 139 18.3 1 432 39.15 16.91
114.40 62.06 0.543
1 Carp 1 Carpenter 4925 334.00 1 139 183 1 432 4925 2128
49.25 21.28| 0.432
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Calculations for Newport News, VA

Division 07: Thermal and Moisture Protection

Key: | RS Means Data_|Calculation]

Adjustment Factor From City Cost Table

3 i Daily Material | Material | Matenal Labor | Laber Adj. Labor Equip Equip Adj. | Equip [+ ..~
L AEthiky Quanttly . |SE Output | S/Unit) Adj. Cost Ci=w (8/Unit) | Factor Cost S/Unit Factor Cost ke
Thermal Insulation - Blanket insulation
Bianket insulation for floors/ceiings, fiberglass, blankets or
1 batis, paper or fol backing, 6” thick, R19 5.000 SF 600 833 052 1.185 $ 3081 1icCap 066 0574 $ 3n3 0 0680 $ $ 6205
Thermal Insulation - Blanket Insulstion
Blanket nsulation for fioors/cedings, fibergiass, blankets or
2 batts, paper or fol baciing, 9 1/2™ thick, R30 5,000 SF 500 10.00 0.75 1.185 5§ 4442 1carp 078 0874 S5 3846 o 0.680 - 5 8201
Thermal Insulation - Blanket insulation
Glanket insulstion for fioorsicedings, fiberglass, blankets or
3 |vatts, paper or fol backing, 12° thick, R38 5.000 SF 475 10.53 1.08 1.185 S 6400 1cCap 0.83 0.574 S 4041 0 0.680 5 S 10.481
Thermal Insulation - Blanket insulation
Blanket insulaton for floorsicelings, fibergiass, blankets or
4 |vatts, unfaced, 8 12" thick, R30 5,000 SF 450 1111 052 1.188 s 3674| 1Cap 0.88 0.874 S 4285 0 0.680 s - |s 7.959
Thermal Insulation - Blanket nsulation
Blanket insulation for wals, Kraft faced fiberglass 3 12
5 |thick R11, 157 wide 8,080 SF 1350 596 032 1.185 s 3043]| 1cap 029 0.574 s 22m0 0 0680 s - 1% 5.320
Thermal Insulation - Blanket Insulation
Blanket insulation for wals, Fod faced fibergiass 3 1727
& |thick R13. 15" wide 8,040 SF 1350 5.96 0.48 1.185 s ast4| 1 028 0.574 s 2210 0 0.680 H 5 5,844
Thermal Insulation - Blanket Insulation
Blanket insulation for wals, Foll faced fiberglass 3 1727
7 |thick R1S, 15" wide 8,040 SF 1350 596 0.50 1.185 s 4764]| 1cCap 029 0.574 5 2270 0 0680 s - |8 7.035
Thermal Insulation - Sprayed-On insulaton
Closed cel, spray polyurethane foam, 2 pounds per cubic
8 foot density 8.040 SF 1715 469 181 1.185 5 17.247 G-24 053 1.049 5 4470 0.39 0.680 § 2132|5284
Overhead 10% 5 4.010
Proft and
Contingency 5% s 2205
Total § 4631283
City Cost Table: Newport News, VA
MatCity |Material Adj Inst City Labor Adj. | Equip Adj
Ohision Wasle o Index Factor Index Factor Factor
Dhvision 07 Thermal and Prolection - Caprpenter 108 1075 | 105 1185 068 0074 068
Division 07: Thermal and Moisture Protection - Crew G-24 1.08 1.075 1.05 1185 0.68 1.049 0.68
Labor
Labor Overhead and Labor Adjustment Factor Table Overhead
(From Table in Back Cover of RSMeans) Total Labor
sum (BCD)x OH / Total
Crew hour daily # Workers B C D B+C+D Workersxrate  Total CrewR  workrate  Total Labor OH | Crew Rale
G-2A 1Roofer Composition 4315 345.2 1 30.7 18.3 1 60.0 4315 25.89
1 Roofer Helper 321 256.8 1 307 183 11 60 3210 19.26
1 Buillding Laborer 39.15 33z 1 139 183 1 432 39.15 16.91
114.40 62.06 0.543
1Carp 1 Carpenter 49.25 304 1 139 183 1 432 49.25 2128
49.25 21.28 0.432
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Calculations for San Antonio, TX

Division 07: Thermal and Moisture Protecti [ Key: | RS Means Dala_|Calculation] Adjustment Factor From City Cost Table |
; Daily |Duration | Material [Material | Matenal Labor | Labor Adj. | Labor Equip EquipAd). | Equip | o~ o
n ALy Quantiy |TRI O (days) (S/Unit Adj. Cost Clew (8unit) | Factor Cost S/Unit Factor Grigt) | TS
Thermal Insulation - Blanket nsulation
Blanket insulation for fioorsiceiings, fiberglass, blankets or
1 batts, paper or fol backing, 6° thick, R15 5,000 SF 500 833 052 1.088 5 2B4T 1Cap | 066 0.975 5 3218 a 0.681 5 - H 5.085
Thermal insulation - Blanket insulation
Blanket insulation for flocrs/cedings, fiberglass, blankets or
2 balis, paper or fol backing. § 1/2" thick, R30 5,000 SF 500 10.00 075 1.095 $ 4108 1 Carp. (1] 0975 - 3852 (] 0.681 ] = 5 7958
Thermal Insulation - Blanket nsulation
Bilanket insulation for floors/cedings, fiberglass, blankets or
3 batts, paper or foil backing, 12” thick, R38 5.000 SF 475 10.53 1.08 1.095 $_ 5012 iCarp | 083 0.575 § 4047 [] 0.681 5 5 9.859
Thermal Insulation - Blanket nsulation
Blanket nsulation for floors/cedings, fiberglass, blankets or
4 batts, unfaced, 9 1/72™ thick, R30 5,000 __E 4_5_9 1.11 E 1.085 S 334 |Cﬂ__ 0.88 0.975 5 4 (] 0.681 H 5 7 si
Thermal Insulation - Blanket nsulation
Blanke! insulation for walls, Kraft faced fiberglass 3 1727
5 thick. R11, 15" wide 8040 SF 1350 59% 0.32 1.095 5 287 1 Carp [ ] 0975 5 2274 [] 0.681 ] - H 5091
Thermal Insulation - Blanket nsulation
Blankel nsulation for walls. Foil faced fiberglass 3 1727
& thick, R13, 15" wide 8,040 SF 1350 5.96 0.48 1.095 5 4225 1Carp [} ] 0975 $ 2T 0 0.681 H s 5,455
Thermal Insulation - Blanket insulation
Blanket nsulstion for walls, Fol faced fh!lp!.! 3z
7 thick, R15, 15% wide 8,040 SF. 1350 596 0.50 1.095 5 4401 1 Carp 0.2 0.975 5 2274 (] 0.E81 5 - H) BETS
Thermal Insulation - Sprayed-On insulation
Closed cel, spray pobyurethane foam, 2 pounds per cubic
G |tootdensty 5,040 SF 1715 4569 181 1.095 $ 15933] G2A 053 1.050 $ 4476 0.39 0.681 s 2
[ overhead 10% Y 1T
PProft and Contingency| 5% s 2100
Total § $4.106.66
Cost Table: San Antonio, TX
Mat Material &dj Labor Inst. Labor Ad) Equip Adj
i i ey M:’ Factor h ME? Factor Factor
Division 07 Thermal and Moisture Protection - Caprpenter 105 1075 | 07 1085 0631 0975 e8!
Division 07: Thermal and Moisture Protection - Crew G-24 1.05 1.075 087 1.085 0.681 100 0.681
Labor
Labor Overhead and Labor Adustment Factor Table Overhead
{From Table in Back Cover of RSMeans) Total Labor
sum (BCO) x OH / Total
Crew hour dail #Workers B c 1] B+C+D Workers xrate  Tolal Crew Ra_ work rate Total Labor OH | Crew Rate
G-24 1 Roofer Composition 4315 3452 1 307 18.3 " 60.0 4315 2589
1 Roofer Helper a2 2568 1 307 183 1" &0 3210 19.26
1 Building Laborer 3915 a2 1 139 18.3 1" 432 39.15 16.91
114.40 62,06/ 0.543)
1 Carp 1 Carpenter 49.25 384 1 139 183 1 432 4825 2128
49.25 21.2!| 0.432
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Calculations for Bakersfield, CA

Division 07: Thermal and Protecti Key: [ RSMeansData |C Ad] Factor From City Cost Table |
" Dailly |Curation | Material |Material | Material Labor | Labor Adj. Labor Equip Equip Adj. Equip bt £
B Activty Quantty, [RoHR Output | (days) | (Sunity Adj. Cost Siew (Sunit) | _Factor Cost (S/Unit) Factor Cost__| 701! Cost
Thermal Insulation - Blanket Insulation
Blanke! insulation for floors/cedings, fiberglass, blankets or
1 batts, paper or fod backing, & thick, R19 5,000 SF 600 833 0.52 1.139 5 2961 1 Carp 066 1.813 § 5983 L] 1.266 5 5 8,944
Thermal Insulation - Blanket insulation
Bilanket insulation for ficors/cedings, fibergiass, blankets or
2 |batis, paper or fod backing, 9 1/27 thick, R30 5.000 SF 500 10.00 0.75 1.139 5 42m 1 0.79 1813 3 7161 0 1.266 5 5 11.432
Thermal Insulation - Blanket insulaton
Blanket nsulation for foors/cedings, fbergiass, blankets or
3 batts, paper or fol backing, 12" thick, R38 5,000 SF 475 10.53 1.08 1.138 $ 6150 1Carp. 0.83 1813 § 75 L] 1266 H 5 13.674
Thermal Insulation - Slanket lnsulation
Blanke! insulation for floorsicedings, fberglass, blankets or
4 batts, unfaced, 8 172~ thick, R30 5,000 SF 450 11.11 0.62 1139 ] 3,531 1 Carp. 088 1813 s 7877 0 1.266 5 5 11,507
Thermal Insulation - Blanket insulation
Blanke! insulation for wals, Kraft faced fiberglass 3 1727
5 thick, R11, 157 wide 8,040 SF 1350 598 032 1139 S 293 1 Carp. 029 1.813 S 427 L] 1.266 5 H 7157
Thermal Insulation - Blanket nsulaton
Blanke! nsulation for walls, Fol faced fiberglass 2 1/2°
[ thick, R13, 157 wide B.040 SF 1350 5.96 0.48 1.138 5 4395 1 Carp 028 1.813 5 4297 [] 1.266 s s 8622
[ Thermal Insulation - Blanket insulation
Brlanket insulation for walls, Fol faced fiberglass 3 1/2°
7 thick, R15, 15" wide 8.040 SF 1350 5.96 0.50 1.139 5 4578 1 Carp. 0.29 1813 3 4237 ] 1268 5 5 B85
Thermal Insulation - Sprayed-On hsulation
Closed cel, spray polyurethane foam, 2 pounds per cubic
8 fool density 5,040 SF 1715 468 181 1.138 S 16574 G-24 0.53 1853 5§ 83 0.38 1266 $ 3870] S 28,885
Overhead 10% 5 5,180
Profit and
Contingency 5% 5 2.849
Total § 59,833.85
City Cost Table: Bakersfield, CA
ik Mat City | Material Ady Labor Inst. City. Labor Adj Equip Adj
Division Waste Tax Index Faclor Index Factor Factor
Division 07: Thermal and lloisture Protection - Caprpenter 1.05 1.075 1.009 1.139 1.266 1813 1.266
!Divun 07: Thermal and Moisture Protection - Crew G-24 105 1.075 1.009 1.139 1.266 1.853 1.266
Labor
Labor Overhead and Labor Adjustment Factor Table Overhead
{From Tabde in Back Cover of RSMeans) Total Labor
sum {(BCD) x OH / Total
Crew hour daily # Workers B C 1] B+C+D Workers xrate  Total Crew Ra  work rate  Total Labor OH
G-2A 1 Roofer Composition 43.15 3452 30.7 18.3 1" 800 .
1 Roofer Helper 321 2568 1 07 18.3 " &0 3210 19.26
1 Building Laborer 3818 332 1 138 183 1" 432 39.15 16.91
114.40
1 Carp 1 Carpenter 4825 394 1 139 183 1" 432 4825 2128
49.25 n.z_J 0432
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Calculations for Rapid City, SD

Division 07: Th I and M. Pr i | Key: | RS Means Data [Calcu!atlon[ Adjustment Factor From City Cost Table ]
Daity Material | Material | Matenal P |+ o1a Cost

Labor | Labor Adj. Labor Equip Equip Adj. Equ

Crew {S/Unit) Factor Cost ($/Unit) Factor

D Activity Quantity | Unit

51

Output | (days) (S/Unit) Adj. Cost

Thermal Insulation - Blanket insuiston

Bianket insulation for foorsicedings, fiberglass, blankets or
1 batts, paper or foll backing, £ thick, R19 £.000 SF E00 ) 052 1.184 5 3028 1 Carp 0.8 0.758 5 2,505 o 0.£30 5 - ) £.530
Thermal Insulation - Blanket insulation

Blanket insulation for fioorsicedings, fiberglass, blankets or
2 batts. paper or fol backing, § 1/2” thick, R30 5.000 SF 500 10.00 0.75 1164 5 4384 1 0.79 0.758 5 29% ] 0.530 5 - 5 1362
Thermal Insulation - Blanket insulston

Blanket insulation for floorsicedings, fiberglass, blankets or
3 batts, paper or foll backing, 127 thick, R38 5.000 SF 475 1053 1.08 1.164 5 Gasd 1 Carp 0.83 0.759 5 3150 ] 0.530 5 = 3 9,434
Thermal Insulation - Blanket insulston

Blanket insulation for fioors/cedings, fiberglass, blankets or
4 batts, unfaced, 9 172" thick, R30 5,000 SF 450 1.1 0.62 1,164 s 3e08] 1 0.88 0.759 $ 333 0 0.530 5 - 5 5.947
Thermal Insulation - Blanket Insulston

Blanket insulation for wals, Kraft faced fiverglass 3 1/2°
5 thick, R11, 157 wide 8.040 SF 1350 596 02 1184 ) 2954 1 Carp 029 0.758 5 1,770 o 0530 s = ) 4764
Thermal Insulation - Blanket insulation

Blanket insulation for walls, Fol faced fiberglass 3 1727
-] thick, R13. 157 wide £.040 SF 1350 556 0.48 1.184 S 449 1Carp | 029 0.758 5 1770 o 0.530 5 - H 6261
Thermal Insulation - Blanket lnsulstion

Blanket insulstion for walls, Fol faced fiberglass 3 1/2°
7 thick, R1S, 15 wide B.040 SF 1350 596 0.50 1.184 S 4878 1 Carp 0.29 0.759 s 1.770 0 0.530 5 = 5 B448
Thermal Insulation - Sprayed-On insulaton

Closed cel, spray polyurethane foam, 2 pounds per cubic
8 |footdensty 8.040 SF ms 469 1.81 1.184 S 15935]| G2A 053 0818 S 3484 039 0530 s 1es2]s 208

Overhead 10% 5 3639
Proft and
Contingency 5% 5 2.001
Total § 42,0300
Mat Material Adj Labor Inst. Labor Adj Equip Adj
Wosio vox ilt:l:‘:‘:?‘r Factor d .“gy Factor Factor
1.05 1.075 1.031 1.164 0.53 0.759 053
Division 07: Thermal and Moisture Protection - Crew G-24 1.05 1.075 1.031 1.164 0.53 0.818 0.53
Labor
Labor Overhead and Labor Adjustment Factor Tabie Overhead
(From Tabie in Back Cover of RSMeans) Total Labor
sum (BCD) = OH / Total
Crew hour daily #Workers B C '] B+C+D Workersxrate TotaiCrew Ra workrate  TotalLabor OH | Crew Rate
G-24 1 Roofer Compostion 4315 3452 1 30.7 183 1" 60,0 43.15 25.89
1 Roofer Helper 321 2568 1 30.7 18.3 1" 60 3210 19.26
1 Building Laborer 3915 33z 1 139 183 1 432 3915 16.91
114.40 62,06 0.543
1 Carp 1 Carpenter 48.25 384 1 139 18.3 1" 432 49.25 21.28 |
49.25 21.28 0.432
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Calculations for Minot, ND

Division 07: Th | and Moi: P i Key: | RS Means Data |Calculation Adjustment Factor From City Cost Table
Daily |Ouration | Material |Material | Material Labor | Labor Adj. Labor Equip Equip Ad). Equip _ =
D Actity Quantty |SEUE o] (days) S/unit; Adj. Cost i (S$/Unit) | Factor Cost (S/Unit} Factor Cost. |1 SO

Thermal Insulation - Blanket insulation
Blanket insulation for floorsicedings, fiverglass, blankets or
1 |bakts, paper or fol backing, 6 thick, R19 5,000 SF 800 LRE] 052 1.225 $ 31s4] 1Cerp 088 1207 $ 3984 9 0843 L] - |13 1168
Thermal Insulation - Blanket nsulation

Blanket insulation for fisorsicedings, fiberglass, blankets or
2 |vatts, paper or foil backing, $ 12" thick, R30 5,000 SF. 500 10.00 075 1.225 s as503] 1cam 073 1.207 S 4788 0 0.843 H - |5 9,361
Thermal Insulation - Blanket insulation

Blanket insulation for floorsicedings, foerglass, blankets or
3 |batts, paper or foll backing, 12 thick, R33 5,000 SF 475 10.53 1.08 1.225 s e8] 1cap 083 1207 s 5010 [} 0843 5 - 5 ngn
Thermal Insulation - Blanket insulation

Blanket insulation for fioors/cedings, fberglass, blankets or
4 |vatts, unfaced, 9 172" thick, R30 5.000 SF 450 11,11 0.62 1.225 s arer] icam 0.88 1.207 $ 5312 0 0.843 H SO [ 9,108
Thermal Insulation - Blaniket Ihsulation

Blanket insulation for walis, Kraft faced fiberglass 3 12
s |thick R11, 15" wide 8,040 SF 1350 598 0.32 1.225 s 3151] 1cap 029 1.207 s 2815 0 0.843 H - 1s 5,968 |
Thermal Insulation - Blanket insulation

Blanket nsulation for walls, Foll faced fiberglass 3 1/2°
& |ick, R13, 15" wige 8.040 SF 1350 566 0.48 1.225 s ar6] 1cap 028 1.207 $ 2815 0 0.843 H S 7541
Thermal Insulation - Blanket insulation

Blanket insulation for walls, Foll faced fiberglass 3 1727
7 |ehick R1S, 15" wide 8.040 SF 1350 596 0.50 1.225 s 4s23] 1cap 028 1207 S 2815 0 0.843 H - 15 1738
Thermal Insulation - Sprayed-On hsulaton

Closed cell, spray polyurethane foam, 2 pounds per cubic
5 |toot densty 5.040 SF Lrat] 469 1,81 1.225 s 17822| G2A 0.53 1.300 5 554 039 0.843 5 2643]s5 26007 ]

Overhead 10% 5 4,448
Profe and
Contngency 5% ] 2,445
Total § 513691
Mat CRy | Material adj Labor Inst. Cty Labor Adj. | Equip Ad
Weaste Tax Index Factor 3 C Index Factor Factor
Division 07: Thermal and Moisture Protection - Ca) nter 1.05 1.075 1.085 1.225 0.843 1.207 0.843
Division 07: Thermal and Moisture Protection - Crew G-24 1.05 1.075 1 1235 0.843 1.300 0.843
Labor
Labor Overhead and Labor Adjustment Faclor Table Overhead
(From Tabile in Back Cover of RSMeans) Total Labor
Total Crew  sum (BCD)x OH [ Total
Crew hour daily # Workers B [ 1] B +C+D Workers x rate Rate workrate  TotalLabor OH | Crew Rate
G-24 1 Roofer Composition 4315 3452 1 30.7 183 il E0.0 4315 25.89
1 Roofer Helper 321 2588 1 307 183 1" &0 3z 19.26
1 Building Laborer 3915 3132 1 139 18.3 1" 432 39.15 16.91
114.40 0.543
1Carp 1 Carpenter 49.25 354 1 139 183 11 432 4525 21.28
49.25 0.432]
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Appendix E: Scatter Plots to Identify the Areas of Interest for High Performing
Insulation Configurations

WPAFB Small Building Economic Analysis Compared to Standard Code
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California Small Building Economic Analysis Compared to Standard Code
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Appendix F: Internal Rate of Return Calculations

The following tables provide the internal rate of return calculations made using
Microsoft Excel for the analyses found in chapter 4. Each analysis was performed for each
insulation configuration.

(1) Wright Patterson AFB, OH — Small Building

Acquisition|Annual Cost| Rate of Return
Number |Initial Cost |Annual Cost Savings Savings (iRR)

0 0| $10,186.81
1| $13,337.92 | S 7,613.89 | -13337.92 2572.93 19.04%
2| $13,866.97 | S 7,542.12 | -13866.97 2644.69 18.82%
3/ $13,933.10 | S 7,489.95 | -13933.10 2696.86 19.11%
5/ $16,140.02 | S 7,518.31 | -16140.02 2668.50 16.14%
6| $16,669.07 | S 7,446.55 | -16669.07 2740.27 16.04%
7| $16,735.20 | S 7,396.73 | -16735.20 2790.09 16.29%
4| $19,984.52 | S 7,390.32 | -19984.52 2796.50 13.39%
9| $21,685.46 | S 7,431.72 | -21685.46 2755.09 11.95%
10| $22,21451 | S 7,369.65 | -22214.51 2817.17 11.92%
11| $22,280.64 | S 7,321.32 | -22280.64 2865.49 12.13%
8| $22,786.62 | S 7,308.35 | -22786.62 2878.46 11.87%
13| $24,370.28 | S 7,379.41 | -24370.28 2807.41 10.59%
14| $24,899.32 | § 7,321.89 | -24899.32 2864.92 10.57%
15| $24,965.45 | S 7,280.27 | -24965.45 2906.54 10.73%
12| $28,332.07 | S 7,243.29 | -28332.07 2943.53 9.25%
16| $31,016.88 | $ 7,199.81 | -31016.88 2987.00 8.33%
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Compared to Standard WPAFB - Small Building Treasury Notes and Bonds
Acquisition | Annual Cost |Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1 $13,337.92 | § 7,613.89 3331.15 -167.34 1.84%|above No No Yes
2| $13,866.97 | S 7,542.12 2802.10 -95.57 -1.19%|above Yes Yes Yes
3| $13,933.10 | S 7,489.95 273597 -43.40 -6.13%|above Yes Yes Yes
5| $16,140.02 | § 7,518.31 529.05 -71.77 12.91%|above No No No
6| $16,669.07 | S 7,446.55 0.00 0.00 0.00%|N/A Indifferent |Indifferent
7| $16,735.20 | S 7,396.73 -66.13 49.82 75.33% | below Yes Yes Yes
4(519,984.52 | S 7,390.32 -3315.45 56.23 -5.74% |below No No No
9| $21,685.46 | $ 7,431.72 -5016.40 14.82 -14.49% |below No No No
10| $22,214.51 | S 7,369.65 -5545.44 76.90 -6.90% |below No No No
11| $22,280.64 | § 7,321.32 -5611.58 125.22 -4.06% |below No No No
8| $22,786.62 | S 7,308.35 -6117.55 138.19 -3.99% | below No No No
13| $24,370.28 | § 7,379.41 -7701.21 67.14 -9.39% |below No No No
14| $24,899.32 | $ 7,321.89 -8230.26 124.65 -6.40% |below No No No
15| $24,965.45 | S 7,280.27 | -8296.39 166.27 -4.74% | below No No No
12| $28,332.07 | $ 7,243.29 | -11663.00 203.26 -5.58% | below No No No
16| $31,016.88 | S 7,199.81 | -14347.81 246.73 -5.66% |below No No No
Incremental Analysis WPAFB - Small Building MARR = 0.4%
Acquisition| Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration Return (iRR) |Better than Previous
0 0| $10,186.81
1| $13,337.92 | S 7,613.89 | -13337.92 257293 0 19.04%|Yes
2| $13,866.97 | § 7,542.12 -529.05 71.77 1 12.91%|Yes
3| $13,933.10 | $ 7,489.95 -66.13 52.17 2 78.89%|Yes
5/ $16,140.02 | S 7,518.31 -2206.92 -28.36 3 N/A[No
6| $16,669.07 | S 7,446.55 -2735.97 43.40 3 -6.13%|No
7| $16,735.20 | $ 7,396.73 -2802.10 93.22 3 -1.37%|No
4| $19,984.52 | S 7,390.32 -6051.42 99.64 3 -5.92%|No
9| $21,685.46 | § 7,431.72 -7752.36 58.23 3 -10.15%|No
10| $22,214.51 | S 7,369.65 -8281.41 120.30 3 -6.64%|No
11| $22,280.64 | § 7,321.32 -8347.54 168.63 3 -4.69%|No
8| $22,786.62 | S 7,308.35 -8853.52 181.60 3 -4.59%|No
13| $24,370.28 | S 7,379.41 | -10437.18 110.54 3 -8.38%|No
14| $24,899.32 | S 7,321.89 | -10966.22 168.06 3 -6.33%|No
15| $24,965.45 | S 7,280.27 | -11032.36 209.68 3 -5.06%|No
12| $28,332.07 | $ 7,243.29 | -14398.97 246.66 3 -5.68%|No
16| $31,016.88 | § 7,199.81 | -17083.78 290.14 3 -5.73%|No
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WPAFB Small Bldg
Below Standard Above Sig Above
Insulation |R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 BEake 3 7/ 11 15
Standard R-13 2 6 10 14
Below R-11 1 5 9 13
(2) Wright Patterson AFB, OH — Large Building
Compared to Baseline (No Insulation) WPAFB - Large Building
Acquisition |Annual Cost| Rate of Return
Number (Initial Cost |Annual Cost Savings Savings (iRR)
0 0| $40,007.73
1| $16,930.69 | $31,276.19 | -16930.69 8731.54 51.57%
2| $18,711.76 | $31,114.88 | -18711.76 8892.86 47.52%
3| $18,934.39 | $30,989.76 | -18934.39 9017.97 47.62%
5| $19,475.51 | $31,004.87 | -19475.51 9002.86 46.22%
6| $21,256.58 | $30,844.13 | -21256.58 9163.61 43.10%
7| $21,479.21 | $30,719.58 | -21479.21 9288.15 43.24%
9| $24,511.79 | $30,774.87 | -24511.79 9232.86 37.65%
10| $26,292.85 | $30,615.56 | -26292.85 9392.18 35.70%
11| $26,515.49 | $30,491.58 | -26515.49 9516.15 35.87%
13| $26,950.09 | $30,632.09 | -26950.09 9375.65 34.77%
14| $28,731.15 | $30,473.06 | -28731.15 9534.67 33.16%
15| $28,953.79 | $30,349.65 | -28953.79 9658.08 33.33%
4| $39,306.82 | $30,736.97 | -39306.82 9270.77 23.46%
8| $41,851.64 | $30,468.50 | -41851.64 9539.24 22.65%
12| $46,887.92 | $30,241.92 | -46887.92 9765.81 20.64%
16| $49,326.22 | $30,101.13 | -49326.22 9906.60 19.87%
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Compared to Standard WPAFB - Large Building Treasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $16,930.69 | $31,276.19 4325.88 -432.06 8.77%|above No No No
2| $18,711.76 | $31,114.88 2544.82 -270.75 9.55%|above No No No
3| $18,934.39 | $30,989.76 2322.18 -145.63 3.81%|above No No Yes
5| $19,475.51 | $31,004.87 1781.07 -160.74 7.57%|above No No No
6| $21,256.58 | $30,844.13 0.00 0.00 0.00% [N/A Indifferent |Indifferent Indifferent
7| $21,479.21 | $30,719.58 -222.63 124.54 55.94% |below Yes Yes Yes
9| $24,511.79 | $30,774.87 | -3255.21 69.25 -4.36% |below No No No
10| $26,292.85 | $30,615.56 | -5036.28 228.57 1.00% |below Yes Yes No
11| $26,515.49 | $30,491.58 -5258.91 352.54 4.44% |below Yes Yes No
13| $26,950.09 | $30,632.09 | -5693.51 212.04 -0.54% | below No No No
14| $28,731.15 | $30,473.06 | -7474.58 371.07 1.74% |below Yes Yes No
15| $28,953.79 | $30,349.65 | -7697.21 494.47 4.03% | below Yes Yes No
4| $39,306.82 | $30,736.97 | -18050.25 107.16 -11.30% | below No No No
8| $41,851.64 | $30,468.50 | -20595.06 375.63 -5.31%|below No No No
12| $46,887.92 | $30,241.92 | -25631.34 602.21 -3.73%|below No No No
16| $49,326.22 | $30,101.13 | -28069.64 742.99 -2.95% |below No No No
Incremental Analysis WPAFB - Large Building MARR = 0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration Return (iRR) |Better than Previous
0 0| $40,007.73
1| $16,930.69 | $31,276.19 | -16930.69 8731.54 0 51.57%|Yes
2| $18,711.76 | $31,114.88 -1781.07 161.31 1 7.61%|Yes
3| $18,934.39 | $30,989.76 -222.63 2512 2 56.20%|Yes
5| $19,475.51 | $31,004.87 -541.12 =-15:11 3 N/A[No
6| $21,256.58 | $30,844.13 [ -2322.18]  145.63 3 3.81%|Yes
7| $21,479.21 | $30,719.58 -222.63 124.54 6 55.94%|Yes
9| $24,511.79 | $30,774.87 -3032.58 -55.29 7 N/A|No
10| $ 26,292.85 | $30,615.56 -4813.64 104.03 T -4.27%|No
11| $26,515.49 | $30,491.58 -5036.28 228.00 7 0.98%|Yes
13| $26,950.09 | $30,632.09 -434.60 -140.50 11 N/A[No
14| $28,731.15 | $30,473.06 -2215.67 18.52 11 -9.61%|No
15| $28,953.79 | $30,349.65 -2438.30 141.93 11 3.12%|Yes
4| $39,306.82 | $30,736.97 | -10353.04 -387.31 15 N/A[No
8| $41,851.64 | $30,468.50 | -12897.85 -118.84 15 N/A[No
12| $46,887.92 | $30,241.92 | -17934.13 107.73 15 -11.24%|No
16| $49,326.22 | $30,101.13 | -20372.43 248.52 15 -7.61%|No
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WPAFB Large Bldg

Below Standard Above Sig Above
Insulation |R-30 R-38 R-49 R-60

Sig Above R-21 4 8 12 16

Above R-15 3 7 11 1S

Standard R-13 2 6 10 14

Below R-11 1 5 9 13

(3) Langley AFB, VA — Small Building
Compared to Baseline (No Insulation) Langley - Small Building
Acquisition |Annual Cost| Rate of Return

Number (Initial Cost |Annual Cost Savings Savings (iRR)
0| $ = $ 9,571.83
1/ $12,369.08 | S 7,887.26 | -12369.08 1684.57 12.97%
2| $12,892.15 | S 7,856.41 | -12892.15 1715.42 12.62%
31 $12,957.53 | $ 7,836.81 | -12957.53 1735.01 12.72%
5| $15,103.78 | S 7,845.15 | -15103.78 1726.67 10.49%
6| $15,626.85 | S 7,817.68 | -15626.85 1754.14 10.25%
7| $15,692.23 | S 7,795.36 | -15692.23 1776.47 10.36%
4| $18,726.18 | S 7,791.63 | -18726.18 1780.20 8.17%
9( $19,952.28 | $ 7,813.31 | -19952.28 1758.51 7.30%
10| $20,475.35 | S 7,785.84 | -20475.35 1785.98 7.18%
11| $20,540.74 | S 7,760.25 | -20540.74 1811.57 7.31%
8[ $21,460.88 | S 7,753.23 | -21460.88 1818.60 6.86%
13| $22,490.62 | S 7,791.76 | -22490.62 1780.06 6.12%
14| $23,013.69 | S 7,761.57 | -23013.69 1810.26 6.06%
15| $23,079.08 | S 7,735.32 | -23079.08 1836.51 6.18%
12| $26,309.39 | S 7,714.53 | -26309.39 1857.30 4.95%
16| $28,847.73 | S 7,689.26 | -28847.73 1882.56 4.18%
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Compared to Standard Langley - Small Building Treasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $12,369.08 | $ 7,887.26 3257.77 -69.58 -4.34%|above Yes Yes Yes
2| $12,892.15 | S 7,856.41 2734.70 -38.73 -6.78% |above Yes Yes Yes
3| $12,957.53 | $ 7,836.81 2669.32 -19.13 -10.38%|above Yes Yes Yes
5| $15,103.78 | $ 7,845.15 523.07 -27.47 2.21%|above No No Yes
6| $15,626.85 | $ 7,817.68 0.00 0.00 0.00%|N/A Indifferent |Indifferent Indifferent
7| $15,692.23 | S 7,795.36 -65.38 22.32 34.12%|below Yes Yes Yes
4] $18,726.18 | $ 7,791.63 | -3099.33 26.06 -9.58% | below No No No
9/ $19,952.28 | § 7,813.31| -4325.43 4.37 -18.90% | below No No No
10| $20,475.35 | S 7,785.84 | -4848.50 31.84 -10.81% |below No No No
11| $20,540.74 | $ 7,760.25 | -4913.89 57.43 -7.85% | below No No No
8| $21,460.88 | $ 7,753.23 | -5834.03 64.45 -8.15% | below No No No
13| $22,490.62 | $ 7,791.76 | -6863.77 25.92 -13.40% | below No No No
14| $23,013.69 | $ 7,761.57 | -7386.84 56.11 -10.09% | below No No No
15| $23,079.08 | $ 7,735.32 | -7452.23 82.36 -8.15% | below No No No
12| $26,309.39 | $ 7,714.53 | -10682.54 103.16 -8.86% | below No No No
16| $28,847.73 | $ 7,689.26 | -13220.88 128.42 -8.83% | below No No No
Incremental Analysis Langley - Small Building MARR = 0.4%
Acquisition| Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration Return (iRR) |Better than Previous
ol s - $ 9,571.83
1| $12,369.08 | $ 7,887.26 | -12369.08 1684.57 0 12.97%|Yes
2| $12,892.15 | S 7,856.41 -523.07 30.85 1 3.24%|Yes
3| $12,957.53 | $ 7,836.81 -65.38 19.60 2 29.93%|Yes
5| $15,103.78 | S 7,845.15 -2146.25 -8.34 3 N/A|No
6| $15,626.85 | S 7,817.68 -2669.32 19.13 3 -10.38%|No
7| $15,692.23 | § 7,795.36 -2734.70 41.45 3 -6.40%(No
4| $18,726.18 | S 7,791.63 -5768.65 45.19 3 -9.94%|No
9] $19,952.28 | $ 7,813.31 -6994.75 23.50 3 -13.92%|No
10| $20,475.35 | S 7,785.84 -7517.82 50.97 3 -10.65%|No
11| $20,540.74 | § 7,760.25 -7583.21 76.56 3 -8.63%|No
8| $21,460.88 | § 7,753.23 -8503.35 83.58 3 -8.77%|No
13| $22,490.62 | § 7,791.76 -9533.09 45.05 3 -12.38%|No
14| $23,013.69 | $ 7,761.57 | -10056.16 75.24 3 -10.17%|No
15| $23,079.08 | $ 7,735.32 | -10121.54 101.49 3 -8.67%|No
12| $26,309.39 | § 7,714.53 | -13351.86 122.29 ) -9.14%|No
16| $28,847.73 | S 7,689.26 | -15890.19 147.55 3 -9.07%|No
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Langley Small Bldg
Below Standard Above Sig Above
Insulation |R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 Sewse 3 7 11 15
Standard R-13 2 6 10 14
Below R-11 1 5 9 13
(4) Langley AFB, VA — Large Building
Compared to Baseline (No Insulation) Langley - Large Building
Acquisition |Annual Cost| Rate of Return
Number (Initial Cost |Annual Cost Savings Savings (iRR)
0 0| $39,877.78
1| $15,720.10 | $33,235.54 | -15720.10 6642.24 42.25%
2| $17,481.04 | $33,107.93 | -17481.04 6769.85 38.72%
3| $17,701.16 | $33,008.93 | -17701.16 6868.84 38.79%
5| $18,203.71 | $33,018.14 | -18203.71 6859.64 37.67%
6| $19,964.65 | $32,891.52 | -19964.65 6986.26 34.97%
7| $20,184.77 | $32,793.18 | -20184.77 7084.60 35.08%
9| $22,607.03 | $32,837.25 | -22607.03 7040.52 31.11%
10| $24,367.98 | $32,711.62 | -24367.98 7166.16 29.36%
11| $24,588.09 | $32,614.60 | -24588.09 7263.18 29.49%
13| $24,912.31 | $32,726.09 | -24912.31 7151.69 28.65%
14| $26,673.25 | $32,600.78 | -26673.25 7277.00 27.22%
15| $26,893.37 | $32,505.40 | -26893.37 737237 27.35%
4| $37,121.62 | $32,809.96 | -37121.62 7067.82 18.78%
8| $39,605.23 | $32,597.16 | -39605.23 7280.61 18.10%
12| $44,008.55 | $32,420.88 | -44008.55 7456.90 16.58%
16| $46,313.83 | $32,313.00 | -46313.83 7564.77 15.93%
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Compared to Standard Langley - Large Building Treasury Notes and Bonds
Acquisition | Annual Cost |Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $15,720.10 | $33,235.54 424455 -344.02 6.38%|above No No No
2| $17,481.04 | $33,107.93 2483.61 -216.41 7.17%|above No No No
3| $17,701.16 | $33,008.93 2263.49 -117.41 2.11%|above No No Yes
5| $18,203.71 | $33,018.14 1760.94 -126.62 5.13%|above No No Yes
6| $19,964.65 | $32,891.52 0.00 0.00 0.00% [N/A Indifferent |Indifferent Indifferent
7| $20,184.77 | $32,793.18 -220.12 98.34 44.67%|below Yes Yes Yes
9| $22,607.03 | $32,837.25 -2642.38 54.27 -4.58% |below No No No
10| $24,367.98 | $32,711.62 -4403.33 179.90 0.16% |below Yes No No
11| $24,588.09 | $32,614.60 -4623.44 276.92 3.38% |below Yes Yes No
13| $24,912.31 | $32,726.09 -4947.66 165.43 -1.33%|below No No No
14| $26,673.25 | $32,600.78 -6708.60 290.74 0.63% |below Yes Yes No
15| $26,893.37 | $32,505.40 -6928.72 386.12 2.73% | below Yes Yes No
4| §37,121.62 | $32,809.96 | -17156.97 81.56 -12.35%|below No No No
8| $39,605.23 | $32,597.16 | -19640.58 294.36 -6.46% |below No No No
12| $44,008.55 | $32,420.88 | -24043.90 470.64 -4.88% |below No No No
16| $46,313.83 | $32,313.00 | -26349.18 578.52 -4.17% | below No No No
Incremental Analysis Langley - Large Building MARR = 0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration Return (iRR) |Better than Previous
0 0| $39,877.78
1| $15,720.10 | $33,235.54 | -15720.10 6642.24 0 42.25%|Yes
2| $17,481.04 | $33,107.93 -1760.94 127.61 1 5.21%|Yes
3| $17,701.16 | $33,008.93 -220.12 99.00 2 44 97%|Yes
5| $18,203.71 | $33,018.14 -502.55 -9.21 3 N/A|No
6| $19,964.65 | $32,891.52 ¢ -2263.49' 117.41 3 2.11%|Yes
7| $20,184.77 | $32,793.18 -220.12 98.34 6 44.67%|Yes
9| $22,607.03 | $32,837.25 -2422.27 -44.07 7 N/A|No
10| $24,367.98 | $32,711.62 -4183.21 81.56 7 -4.90%|No
11| $24,588.09 | $32,614.60 -4403.33 178.59 7 0.11%|No
13| $24,912.31 | $32,726.09 -4727.54 67.09 7 -6.77%|No
14| $26,673.25 | $32,600.78 -6488.48 192.40 7 -2.18%|No
15| $26,893.37 | $32,505.40 -6708.60 287.78 7 0.55%|Yes
4| $37,121.62 | $32,809.96 | -10228.25 -304.55 15 N/A|No
8| $39,605.23 | $32,597.16 | -12711.86 -91.76 15 N/A|No
12| S 44,008.55 | $32,420.88 | -17115.18 84.52 15 -12.17%|No
16| $46,313.83 | $32,313.00 | -19420.46 192.40 15 -8.73%|No
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Langley Large Bldg
Below Standard Above Sig Above
Insulation |R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 3 7 11 EaassN15
Standard R-13 2 6 10 14
Below R-11 1 5 9 13
(5) JB San Antonio, TX — Small Building
Compared to Baseline (No Insulation) San Antonio - Small Building
Acquisition | Annual Cost| Rate of Return
Number |Initial Cost |Annual Cost Savings Savings (iRR)
0 0| S 6,626.53
1| $11,867.06 | S 5,344.45 | -11867.06 1282.08 9.75%
2| $12,350.28 | S 5,321.66 | -12350.28 1304.88 9.46%
3($12,410.68 | S 5,312.33 | -12410.68 1314.20 9.49%
5| $14,412.64 | S 5,320.14 | -14412.64 1306.39 7.62%
6| $14,895.85 [ $ 5,307.54 | -14895.85 1318.99 7.35%
7| $14,956.26 | S 5,297.76 | -14956.26 1328.77 7.39%
4( $17,855.22 | S 5,293.20 | -17855.22 1333.33 5.52%
9( $19,233.15 | S 5,307.54 | -19233.15 1318.99 4.66%
10| $19,716.37 | S 5,294.94 | -19716.37 1331.60 4.51%
11| $19,776.77 | S 5,285.61 | -19776.77 1340.92 4.55%
8| $20,400.80 | S 5,279.08 | -20400.80 1347.45 4.30%
13| $21,640.61 | S 5,299.06 | -21640.61 1327.47 3.60%
14| $22,123.83 | S 5,286.46 | -22123.83 1340.07 3.48%
15| $22,184.23 | $ 5,277.35 | -22184.23 1349.18 3.52%
12| $25,221.31 | $ 5,266.93 | -25221.31 1359.60 2.44%
16| $27,628.77 | S 5,258.67 | -27628.77 1367.86 1.71%
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Compared to Standard San Antonio - Small Building Treasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $11,867.06 | $ 5,344.45 3028.80 -36.92 -7.62%|above Yes Yes Yes
2| $12,350.28 | $ 5,321.66 2545.58 -14.12 -11.62%|above Yes Yes Yes
3| $12,410.68 | S 5,312.33 2485.18 -4.79 -16.30% |above Yes Yes Yes
5|/ $14,412.64 | S 5,320.14 483.22 -12.60 -3.05% |above Yes Yes Yes
6| $14,895.85 | S 5,307.54 0.00 0.00 0.00% |N/A Indifferent |Indifferent Indifferent
7| $14,956.26 | $ 5,297.76 -60.40 9.78 15.78% [below Yes Yes Yes
4| $17,855.22 | S 5,293.20 -2959.36 14.34 -12.26%|below No No No
9| $19,233.15 | $ 5,307.54 -4337.30 0.00 N/A (-) |below No No No
10| $19,716.37 | S 5,294.94 -4820.52 12.60 -15.02% | below No No No
11| $19,776.77 | S 5,285.61 -4880.92 21.93 -12.61%|below No No No
8| $20,400.80 | § 5,279.08 | -5504.94 28.45 -11.96% | below No No No
13| $21,640.61 | $ 5,299.06 -6744.75 8.48 -18.04% | below No No No
14| $22,123.83 | S 5,286.46 -7227.97 21.08 -14.54% | below No No No
15| $22,184.23 | $ 5,277.35 -7288.37 30.19 -12.98% |below No No No
12| $25,221.31 | S 5,266.93 | -10325.46 40.60 -13.22%|below No No No
16| $27,628.77 | S 5,258.67 | -12732.91 48.86 -13.33%|below No No No
Incremental Analysis San Antonio - Small Building MARR =0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings | Configuration Return (iRR) |Better than Previous
0 0| S 6,626.53
1/ $11,867.06 | S 5,344.45 | -11867.06 1282.08 0 9.75%|Yes
2| $12,350.28 | S 5,321.66 -483.22 22.80 1 1.31%|Yes
3/ $12,410.68 | $ 5,312.33 -60.40 9.33 2 14.97%|Yes
5| $14,412.64 | S 5,320.14 -2001.96 -7.81 3 N/A[No
6( $14,895.85 | S 5,307.54 -2485.18 4.79 S -16.30%|No
7| $14,956.26 | S 5,297.76 -2545.58 14.57 3 -11.47%|No
4| $17,855.22 | $ 5,293.20 | -5444.54 19.13 3 -13.72%|No
9| $19,233.15 | § 5,307.54 -6822.48 4.79 3 -20.29%|No
10| $19,716.37 | S 5,294.94 -7305.69 17.39 3 -15.42%|No
11| $19,776.77 | S 5,285.61 -7366.10 26.72 3 -13.58%|No
8| $20,400.80 | $ 5,279.08 -7990.12 33.24 3 -12.96%|No
13| $21,640.61 | S 5,299.06 -9229.93 13.27 3 -17.50%|No
14| $22,123.83 | $ 5,286.46 -9713.15 25.87 3 -14.94%|No
15]| $22,184.23 | $ 5,277.35 -9773.55 34.98 3 -13.64%|No
12| $25,221.31 | S 5,266.93 | -12810.63 45.39 3 -13.69%|No
16| $27,628.77 | S 5,258.67 | -15218.09 53.65 3 -13.71%|No
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San Antonio Small Bldg
Below Standard Above Sig Above
Insulation |R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 BEake 3 7/ 11 15
Standard R-13 2 6 10 14
Below R-11 1 5 9 13

(6) JB San Antonio, TX — Large Building

Compared to Baseline (No Insulation)

San Antonio - Large Building

Acquisition |Annual Cost| Rate of Return
Number |Initial Cost |[Annual Cost Savings Savings (iRR)
0 0| $26,707.81
1| $15,071.04 | $21,521.54 | -15071.04 5186.27 34.39%
2| $16,697.82 | $21,477.28 | -16697.82 5230.53 31.29%
3| $16,901.16 | $21,442.36 | -16901.16 5265.46 31.12%
5($17,382.89 | $21,445.18 | -17382.89 5262.64 30.23%
6| $19,009.67 | $21,401.35 | -19009.67 5306.46 27.85%
7| $19,213.01 | $21,366.21 | -19213.01 5341.61 27.74%
9] $21,760.80 | $21,384.21 | -21760.80 5323.60 24.36%
10| $23,387.58 | $21,340.61 | -23387.58 5367.21 22.81%
11| $23,590.92 | $21,306.33 | -23590.92 5401.48 22.76%
13| $23,947.21 | $21,347.12 | -23947.21 5360.70 22.24%
14| $25,573.99 | $21,303.73 | -25573.99 5404.09 20.95%
15| $25,777.33 | $21,269.88 | -25777.33 5437.93 20.91%
4| $35,230.49 | $21,373.58 | -35230.49 5334.23 14.64%
8| $37,542.34 | $21,298.52 | -37542.34 5409.29 13.85%
12| $41,920.25 | $21,240.16 | -41920.25 5467.65 12.33%
16| $44,106.66 | $21,203.72 | -44106.66 5504.10 11.69%
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Compared to Standard San Antonio - Large Building Treasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $15,071.04 | $21,521.54 3938.63 -120.19 -1.98%|above Yes Yes Yes
2| $16,697.82 | $21,477.28 2311.85 -75.93 -1.46%|above Yes Yes Yes
3| $16,901.16 | $21,442.36 2108.50 -41.00 -4.92% |above Yes Yes Yes
5| $17,382.89 | $21,445.18 1626.78 -43.82 -2.84%|above Yes Yes Yes
6| $19,009.67 | $21,401.35 0.00 0.00 0.00% |N/A Indifferent |Indifferent Indifferent
7| $19,213.01 | $21,366.21 -203.35 35.15 16.94% [below Yes Yes Yes
9| $21,760.80 | $21,384.21 -2751.13 17.14 -11.07%|below No No No
10| $23,387.58 | $21,340.61 -4377.91 60.74 -6.90% |below No No No
11| $23,590.92 | $21,306.33 -4581.26 95.02 -4.52% |below No No No
13| $23,947.21 | $21,347.12 -4937.54 54.24 -8.18%|below No No No
14| $25,573.99 | $21,303.73 -6564.32 97.63 -6.51% | below No No No
15| $25,777.33 | $21,269.88 -6767.67 131.47 -4.93% |below No No No
4| $35,230.49 | $21,373.58 | -16220.82 21.77 -16.79% | below No No No
8| $37,542.34 | $21,298.52 | -18532.67 102.83 -11.62% |below No No No
12| $41,920.25 | $21,240.16 | -22910.58 161.19 -10.47% |below No No No
16| $44,106.66 | $21,203.72 | -25096.99 197.64 -9.91% | below No No No
Incremental Analysis San Antonio - Large Building MARR =0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings | Configuration Return (iRR) |Better than Previous
0 0| $26,707.81
1| $15,071.04 | $21,521.54 | -15071.04 5186.27 0 34.39%|Yes
2 516,697.82 321,477.28 -1626.78 44.26 £l -2.77%|No
3| $16,901.16 | $21,442.36 -1830.12 79.18 1 0.61%|Yes
5/ $17,382.89 | $21,445.18 -481.73 -2.82 3 N/A|No
6( $19,009.67 | $21,401.35 -2108.50 41.00 S -4.92%|No
7| $19,213.01 | $21,366.21 -2311.85 76.15 3 -1.44%|No
9| $21,760.80 | $21,384.21 -4859.64 58.14 3 -7.72%|No
10| $ 23,387.58 | $21,340.61 -6486.41 101.75 3 -6.20%|No
11| $23,590.92 | $21,306.33 -6689.76 136.02 3 -4.65%|No
13| $23,947.21 | $21,347.12 -7046.05 95.24 3 -7.05%|No
14| $25,573.99 | $21,303.73 -8672.82 138.63 3 -6.09%|No
15( $25,777.33 | $21,269.88 -8876.17 172.47 3 -4.93%|No
4| $35,230.49 | $21,373.58 | -18329.32 68.77 3 -13.43%|No
8| $37,542.34 | $21,298.52 | -20641.18 143.83 3 -10.52%|No
12| $41,920.25 | $21,240.16 | -25019.09 202.19 3 -9.78%|No
16| $44,106.66 | $21,203.72 | -27205.49 238.64 3 -9.36%|No
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San Antonio Large Bldg
Below Standard Above Sig Above
Insulation |R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 bl 7 11 15
Standard R-13 2 6 10 14
Below R-11 1 5 9 13

(7) Edwards AFB, CA — Small Building

Compared to Baseline (No Insulation)

California - Small Building

Acquisition | Annual Cost| Rate of Return
Number |Initial Cost |Annual Cost Savings Savings (iRR)

0 0| $10,421.19
1| $16,994.26 | S 9,169.51 | -16994.26 1251.67 5.38%
2| $17,496.90 | S 9,146.98 | -17496.90 1274.20 5.26%
3| $17,559.73 | $ 9,130.38 | -17559.73 1290.81 5.36%
5] $19,845.29 [ $ 9,146.98 | -19845.29 1274.20 4.03%
6| $20,347.93 | S 9,124.85 | -20347.93 1296.33 3.96%
7| $20,410.76 | S 9,108.24 | -20410.76 1312.94 4.05%
4($24,441.75 | S 9,097.95 | -24441.75 1323.23 2.48%
8| $27,292.78 | S 9,076.22 | -27292.78 1344.97 1.67%
9| $28,464.72 | S 9,127.62 | -28464.72 1293.56 1.01%
10| $28,967.37 | S 9,106.26 | -28967.37 1314.92 1.00%
11| $29,030.20 | S 9,089.66 | -29030.20 1331.53 1.08%
13| $31,629.06 | S 9,115.37 | -31629.06 1305.82 0.24%
14| $32,131.71 | S 9,094.01 | -32131.71 1327.17 0.25%
15[ $32,194.54 | S 9,077.02 | -32194.54 1344.16 0.33%
12| $35,912.22 | $ 9,057.25 | -35912.22 1363.94 -0.39%
16| $39,076.56 | S 9,045.39 | -39076.56 1375.79 -0.96%
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Compared to Standard California - Small Building Treasury Notes and Bonds
Acquisition | Annual Cost|Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $16,994.26 | $ 9,169.51 3353.68 -44.66 -7.13%|above Yes Yes Yes
2| $17,496.90 | S 9,146.98 2851.03 -22.13 -9.98%|above Yes Yes Yes
3| $17,559.73 | $ 9,130.38 2788.20 -5.52 -16.19%|above Yes Yes Yes
5| $19,845.29 | S 9,146.98 502.65 -22.13 0.75% |above No No Yes
6| $20,347.93 | S 9,124.85 0.00 0.00 0.00% |N/A Indifferent |Indifferent Indifferent
7| $20,410.76 | S 9,108.24 -62.83 16.61 26.36% | below Yes Yes Yes
4| $24,441.75 | § 9,097.95 -4093.82 26.90 -10.81% |below No No No
8| $27,292.78 | $ 9,076.22 -6944.85 48.64 -10.49% |below No No No
9| $28,464.72 | $ 9,127.62 -8116.79 -2.77 N/A|below No No No
10| $28,967.37 | S 9,106.26 -8619.44 18.59 -15.84% |below No No No
11| $29,030.20 | $ 9,089.66 -8682.27 35.19 -13.08% |below No No No
13| $31,629.06 | S 9,115.37 | -11281.13 9.48 -19.61% |below No No No
14| $32,131.71 | $ 9,094.01 | -11783.78 30.84 -15.01% |below No No No
15| $32,194.54 | $ 9,077.02 | -11846.61 47.83 -13.10% |below No No No
12| $35,912.22 | S 9,057.25 | -15564.29 67.60 -12.76% |below No No No
16| $39,076.56 | S 9,045.39 | -18728.63 79.46 -12.87%|below No No No
Incremental Analysis California - Small Building MARR = 0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost | Savings Savings Configuration ____ | Return (iRR) |Better than Previous
0 0| $10,421.19
1| $16,994.26 | S 9,169.51 | -16994.26 1251.67 0 5.38%|Yes
2| $17,496.90 | S 9,146.98 -502.65 22.53 3| 0.89%|Yes
3| $17,559.73 | $ 9,130.38 -62.83 16.61 2 26.36%|Yes
5/ $19,845.29 | $ 9,146.98 -2285.56 -16.61 3 N/A[No
6| $20,347.93 | S 9,124.85 -2788.20 5.52 3 -16.19%|No
71 $20,410.76 | S 9,108.24 -2851.03 22.13 3 -9.98%|No
4| $24,441.75 | S 9,097.95 -6882.02 32.42 3 -12.39%|No
8( $27,292.78 | S 9,076.22 -9733.05 54.16 3 -11.61%|No
9| $28,464.72 | S 9,127.62 | -10904.99 2.75 3 -23.99%|No
10| $28,967.37 | $ 9,106.26 | -11407.64 24.11 3 -15.92% |No
11| $29,030.20 | $ 9,089.66 | -11470.47 40.72 3 -13.68%|No
13| $31,629.06 | S 9,115.37 | -14069.33 15.01 3 -18.69%|No
14| $32,131.71 | $ 9,094.01 | -14571.98 36.36 3 -15.22%|No
15| $32,194.54 | S 9,077.02 | -14634.81 53.35 3 -13.56%|No
12| $35,912.22 [ S 9,057.25 | -18352.49 73.13 3 -13.16%|No
16| $39,076.56 | $ 9,045.39 | -21516.83 84.98 3 -13.20%|No
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California - Small Building
Below Standard Above Sig Above
Insulation [R-30 R-38 R-49 R-60
Sig Above |R-21 4 8 12 16
Above R-15 el s 7 11 15
Standard |R-13 2 6 10 14
Below R-11 1 5 9 13

(8) Edwards AFB, CA — Large Building

Compared to Baseline (No Insulation)

California - Large Building

Acquisition | Annual Cost | Rate of Return
Number |Initial Cost |Annual Cost Savings Savings (iRR)

0 0| $42,283.71
1| $21,470.39 | $35,453.21 | -21470.39 6830.50 31.78%
2| $23,162.57 | $35,343.17 | -23162.57 6940.54 29.92%
3| $23,374.09 | $35,258.46 | -23374.09 7025.25 30.01%
5| $24,059.65 | $35,277.85 | -24059.65 7005.85 29.07%
6| $25,751.83 | $35,170.58 | -25751.83 7113.13 27.56%
7| $25,963.35 | $35,088.25 | -25963.35 7195.46 27.65%
9| $31,887.67 | $35,148.42 | -31887.67 113529 22.23%
10| $33,579.85 | $35,043.13 | -33579.85 7240.58 21.39%
11| $33,791.37 | $34,961.58 | -33791.37 732213 21.50%
13| $34,761.47 | $35,074.79 | -34761.47 7208.92 20.54%
14| $36,453.65 | $34,969.90 | -36453.65 7313.81 19.85%
15| $36,665.17 | $34,890.33 | -36665.17 7393.38 19.95%
4| $46,542.76 | $35,092.21 | -46542.76 7191.50 14.98%
8| $49,132.02 | $34,925.96 | -49132.02 735275 14.46%
12| $56,960.05 | $ 34,802.46 | -56960.05 7481.25 12.43%
16| $59,833.85 | $34,732.79 | -59833.85 7550.92 11.85%
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(fompare& to S-tan(':-lar'd" 'Cai'i_fornia - Large Building -Tfeasury Notes an&' Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $21,470.39 | $35,453.21 4281.44 -282.62 4.29%|above Yes Yes Yes
2| $23,162.57 | $35,343.17 2589.26 -172.58 4,39%|above Yes Yes Yes
3| $23,374.09 | $35,258.46 2377.74 -87.88 -0.60% |above Yes Yes Yes
5| $24,059.65 | $35,277.85 1692.18 -107.27 3.91%|above Yes Yes Yes
6| $25,751.83 | $35,170.58 0.00 0.00 0.00%|N/A Indifferent |Indifferent Indifferent
7| $25,963.35 | $35,088.25 -211.52 82.33 38.91% |below Yes Yes Yes
9| $31,887.67 | $35,148.42 | -6135.84 22.17 -13.60% | below No No No
10| $33,579.85 | $35,043.13 | -7828.02 127.46 -5.98% |below No No No
11| $33,791.37 | $34,961.58 | -8039.55 209.00 -3.07% |below No No No
13| $34,761.47 | $35,074.79 | -9009.64 95.79 -8.36% |below No No No
14| $36,453.65 | $34,969.90 | -10701.82 200.69 -5.14% | below No No No
15| $36,665.17 | $34,890.33 | -10913.35 280.25 -3.15% | below No No No
4| $46,542.76 | $35,092.21 | -20790.94 78.38 -13.41%|above No No No
8| $49,132.02 | $34,925.96 | -23380.20 244,63 -8.44% |below No No No
12| $56,960.05 | $34,802.46 | -31208.22 368.13 -7.80% |below No No No
16| $59,833.85 | $34,732.79 | -34082.02 437.79 -7.33% |below No No No
Incremental Analysis California - Large Building MARR =0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration Return (iRR) |Better than Previous
0 0| $42,283.71
1| $21,470.39 | $19,430.85 | -21470.39 22852.86 0 106.44%|Yes
2| $23,162.57 | $19,370.54 -1692.18 60.31 1 -0.87%|No
3| $23,374.09 | $19,324.11 -1903.70 106.74 1 2.79%|Yes
5| $24,059.65 | $19,334.74 -685.55 -10.63 3 N/A[No
6| $25,751.83 | $19,275.95 -2377.74 48.16 S -4.67%|No
7| §25,963.35 | $19,230.82 -2589.26 93.29 3 -0.79%|No
9| $31,887.67 | $19,263.80 -8513.58 60.31 3 -10.44%(|No
10| $33,579.85 | $19,206.09 | -10205.76 118.02 3 -7.90%|No
11| $33,791.37 | $19,161.40 | -10417.28 16271 3 -6.22%|No
13| $34,761.47 | $19,223.45 | -11387.38 100.66 3 -9.32%|No
14| $ 36,453.65 | $19,165.96 | -13079.56 158.15 3 -7.66%|No
15| $36,665.17 | $19,122.35 | -13291.08 201.76 3 -6.39%|No
4| $46,542.76 | $19,232.99 | -23168.67 91.12 3 -13.22%([No
8[ $49,132.02 | $19,141.88 | -25757.93 182.23 3 -10.44%(No
12| $56,960.05 | $19,074.19 | -33585.96 249.92 3 -10.19%(No
16| $59,833.85 | $19,036.01 | -36459.75 288.10 3 -9.89%|No

183




California - Large Building
Below Standard Above Sig Above
Insulation [R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 bbbl 7 11 15
Standard R-13 2 6 10 14
Below R-11 1 5 9 13

(9) Ellsworth AFB, SD — Small Building

Compared to Baseline (No Insulation) South Dakota - Small Building
Acquisition |Annual Cost | Rate of Return
Number|Initial Cost |Annual Cost Savings Savings (iRR)
0| S - $19,016.63
1( $10,997.00 | $ 9,395.13 | -10997.00 9621.50 87.49%
2| $11,510.60 [ § 9,254.52 | -11510.60 9762.10 84.81%
3/ $11,574.80 | S 9,141.13 | -11574.80 9875.50 85.32%
5| $13,632.06 | $ 9,194.55 | -13632.06 9822.08 72.05%
6| $14,145.67 | S 9,061.83 | -14145.67 9954.79 70.37%
7| $14,209.87 | S 8,960.31 | -14209.87| 10056.32 70.77%
4| $16,938.16 | S 8,939.07 | -16938.16| 10077.56 59.50%
9 $17,502.61 | S 9,027.01 | -17502.61 9989.61 57.07%
10| $18,016.21 | S 8,900.55 | -18016.21| 10116.08 56.15%
11| $18,080.41 | S 8,803.50 | -18080.41| 10213.13 56.49%
8| $19,573.22 | S 8,767.55 | -19573.22| 10249.07 52.36%
13( $19,832.01 | $ 8,923.21 | -19832.01| 10093.42 50.89%
14| $20,345.62 | S 8,798.80 | -20345.62| 10217.83 50.22%
15| $20,409.82 | $ 8,703.10 | -20409.82| 10313.52 50.53%
12| $23,443.77 | S 8,615.65 | -23443.77| 10400.98 44.36%
16| $25,773.18 | $ 8,525.56 | -25773.18| 10491.07 40.70%
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Compared to Standard South Dakota - Small Building Treasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1 $10,997.00 | § 9,395.13 3148.67 -333.29 9.49%|above No No No
2| $11,510.60 | § 9,254.52 2635.06 -192.69 5.30%|above No No Yes
3|/ $11,574.80 | S 9,141.13 2570.86 -79.29 -1.91%|above Yes Yes Yes
5( $13,632.06 | $ 9,194.55 513.60 -132.71 25.76%|above No No No
6| $14,145.67 | S 9,061.83 0.00 0.00 0.00%|N/A Indifferent |Indifferent Indifferent
7| $14,209.87 | S 8,960.31 -64.20 101.53 158.14% |below Yes Yes Yes
4| $16,938.16 | S 8,939.07 -2792.49 122.77 0.74% |below Yes Yes No
9| $17,502.61 | S 9,027.01 -3356.94 34.82 -8.49% |below No No No
10| $18,016.21 | S 8,900.55 -3870.54 161.28 0.32%|below Yes No No
11| $18,080.41 | S 8,803.50 -3934.75 258.34 4.24% |below Yes Yes No
8| §19,573.22 | S 8,767.55 -5427.56 294.28 2.49% | below Yes Yes No
13| $19,832.01 | § 8,923.21 -5686.35 138.63 -3.49% | below No No No
14| $20,345.62 | $ 8,798.80 -6199.95 263.03 0.46% |below Yes Yes No
15| $20,409.82 | S 8,703.10 -6264.15 358.73 2.97%|below Yes Yes No
12| $23,443.77 | S 8,615.65 -9298.10 446.19 1.45% |below Yes Yes No
16| $25,773.18 | S 8,525.56 | -11627.51 536.28 1.13% | below Yes Yes No
Incremental Analysis South Dakota - Small Building MARR = 0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost | Savings Savings Configuration ____ | Return (iRR) |Better than Previous
oS 2 $19,016.63
1| $10,997.00 | S 9,395.13 | -10997.00 9621.50 0 87.49%|Yes
2| $11,510.60 | S 9,254.52 -513.60 140.60 1 27.31%|Yes
3/ $11,574.80 | S 9,141.13 -64.20 113.40 2 176.63%|Yes
5| $13,632.06 | $ 9,194.55 -2057.26 -53.42 3 N/A[No
6| $14,145.67 | S 9,061.83 -2570.86 7929 2) -1.91%|No
7| $14,209.87 | $ 8,960.31 -2635.06 180.82 3' 4.67%|Yes
4| $16,938.16 | S 8,939.07 -2728.29 21.24 T -9.97%|No
9| $17,502.61 | S 9,027.01 -3292.74 -66.71 7 N/A|No
10| $18,016.21 | S 8,900.55 -3806.34 59.76 % -6.19%|No
11| $18,080.41 | S 8,803.50 -3870.54 156.81 ¥ 0.10%|No
8 519,573.22 S 8,767.55 -5363.36 192.75 7 -0.81%|No
13| $19,832.01 | $ 8,923.21 -5622.15 37.10 7 -10.79%|No
14 520,345.62 S 8,798.80 -6135.75 161.50 7 -2.99%|No
15| $20,409.82 | S 8,703.10 -6199.95 257.20 7 0.28%|No
12| $23,443.77 | S 8,615.65 -9233.90 344.66 7 -0.53%|No
16| $25,773.18 | S 8,525.56 | -11563.31 434.75 7 -0.47%|No
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South Dakota - Small Building
Below Standard Above Sig Above
Insulation [R-30 R-38 R-49 R-60
Sig Above |R-21 4 8 12 16
Above R-15 3| e T 11 15
Standard |R-13 2 6 10 14
Below R-11 11 5 13

(10) Ellsworth AFB, SD — Large Building

Compared to Baseline (No Insulation) South Dakota - Large Building
Acquisition |Annual Cost| Rate of Return
Number |Initial Cost [Annual Cost Savings Savings (iRR)
0 0| $55,775.24
1| $14,005.05 | $34,890.69 | -14005.05( 20884.56 149.12%
2| $15,734.13 | $34,667.20 | -15734.13| 21108.04 H#NUM!
3| $15,950.26 | $34,492.78 | -15950.26| 21282.46 133.43%
5| $16,398.17 | $34,516.89 | -16398.17| 21258.35 129.64%
6| $18,127.25 | $34,294.26 | -18127.25| 21480.99 H#NUM!
7| $18,343.38 | $34,120.69 | -18343.38| 21654.56 118.05%
9( $19,913.33 | $34,196.98 | -19913.33| 21578.27 108.36%
10| $21,642.41 | $33,975.76 | -21642.41| 21799.48 100.73%
11| $21,858.55 | $33,802.76 | -21858.55| 21972.49 100.52%
13( $22,028.86 | $33,996.18 | -22028.86| 21779.06 98.87%
14| $23,757.94 | $33,775.25 | -23757.94 22000.00 92.60%
15| $23,974.07 | $33,603.10 | -23974.07| 22172.15 92.48%
4| $34,006.29 | $34,143.37 | -34006.29| 21631.87 63.61%
8| $36,399.40 | $33,773.26 | -36399.40( 22001.98 60.45%
12| $39,914.57 | $33,457.32 | -39914.57| 22317.93 55.91%
16| $42,030.10 | $33,257.94 | -42030.10| 22517.30 53.57%
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Compared to Standard South Dakota - Large Building Treasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $14,005.05 | $34,890.69 4122.20 -596.43 13.91%|above No No No
2| $15,734.13 | $34,667.20 2393.12 -372.95 15.12%|above No No No
3| $15,950.26 | $34,492.78 2176.98 -198.53 7.69%|above No No No
5| $16,398.17 | $34,516.89 1729.08 -222.63 12.14%|above No No No
6| $18,127.25 | $34,294.26 0.00 0.00 0.00% |N/A Indifferent |Indifferent Indifferent
7| $18,343.38 | $34,120.69 -216.13 173.57 80.31% |below Yes Yes Yes
9| $19,913.33 | $34,196.98 -1786.08 97.28 2.53%|below Yes Yes No
10| $21,642.41 | $33,975.76 -3515.16 318.50 7.61% |below Yes Yes Yes
11| $21,858.55 | $33,802.76 -3731.30 491.50 12.48% |below Yes Yes Yes
13| $22,028.86 | $33,996.18 -3901.61 298.08 5.75%|below Yes Yes No
14| $23,757.94 | $33,775.25 -5630.69 519.01 7.81% |below Yes Yes Yes
15| $23,974.07 | $33,603.10 -5846.83 691.16 10.94% | below Yes Yes Yes
4| §34,006.29 | $34,143.37 | -15879.04 150.88 -8.95%|below No No No
8| $36,399.40 | $33,773.26 | -18272.16 520.99 -2.45% | below No No No
12| $39,914.57 | $33,457.32 | -21787.32 836.94 -0.31%|below No No No
16| $42,030.10 | $33,257.94 | -23902.85 1036.32 0.63%|below Yes Yes No
Incremental Analysis South Dakota - Large Building MARR = 0.4%
Acquisition | Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration Return (iRR) |Better than Previous
0 0| $55,775.24
1| $14,005.05 | $34,890.69 | -14005.05 20884.56 0 149.12%|Yes
2| $15,734.13 | $34,667.20 -1729.08 223.49 1 12.20%|Yes
3| $15,950.26 | $34,492.78 -216.13 174.42 2 80.70%|Yes
5| $16,398.17 | $34,516.89 -447 .91 -24.11 3 N/A|No
6| $18,127.25 | $34,294.26 ( -2176.98' 198.53 =) 7.69%|Yes
7| $18,343.38 | $34,120.69 -216.13 173.57 6 80.31%|Yes
9| $19,913.33 | $34,196.98 -1569.95 -76.29 7 N/A|No
10| $21,642.41 | $33,975.76 " 3299.03 144.93 7 0.73%|Yes
11| $21,858.55 | $33,802.76 -216.13 173.00 10 80.04%|Yes
13| $22,028.86 | $33,996.18 -170.32 -193.42 i 1| N/A[No
14| § 23,757.94 | $33,775.25 -1899.39 27.51 11 -6.66%|No
15| $23,974.07 | $33,603.10 -2115.53 199.66 11 8.09%|Yes
4| $34,006.29 | $34,143.37 | -10032.21 -540.28 15 N/A|No
8| $36,399.40 | $33,773.26 | -12425.33 -170.17 15 N/A|No
12| $39,914.57 | $33,457.32 | -15940.49 145.78 15 -9.15%|No
16| $42,030.10 | $33,257.94 | -18056.02 345.15 15 -5.02%|No
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South Dakota - Large Building
Below Standard Above Sig Above
Insulation [R-30 R-38 R-49 R-60
Sig Above R-21 4 8 12 16
Above R-15 3 7 al]|| AR SRS
Standard R-13 2 6 10 14
Below R-11 1 5 9 13

(11) Minot AFB, ND — Small Building

Compared to Baseline (No Insulation) North Dakota - Small Building
Acquisition | Annual Cost | Rate of Return
Number |Initial Cost |Annual Cost Savings Savings (iRR)

ol S - $17,357.16

1| $13,951.64 | $11,199.77 | -13951.64 6157.39 44.13%

2| $14,492.15 | $11,022.54 | -14492.15 6334.63 43.71%

3| $14,559.71 | $10,882.32 | -14559.71 6474.84 44.47%

5| $16,828.61 | $10,953.45 | -16828.61 6403.71 38.04%

6| $17,369.12 | $10,770.31 | -17369.12 6586.85 37.91%

7| $17,436.68 | $10,632.66 | -17436.68 6724.50 38.55%

4| $20,827.32 | $10,601.54 | -20827.32 6755.62 32.41%

9| $22,746.01 | $10,726.46 | -22746.01 6630.70 29.10%

10| $23,286.52 | $10,541.69 | -23286.52 6815.47 29.22%

11| $23,354.08 | $10,388.89 | -23354.08 6968.27 29.79%

8| $23,704.29 | $10,339.30 | -23704.29 7017.87 29.56%

13| $25,535.09 | $10,574.23 | -25535.09 6782.93 26.49%

14| $26,075.59 | $10,383.84 | -26075.59 6973.32 26.67%

15| $26,143.15 | $10,234.74 | -26143.15 7122.42 27.18%

12| $29,621.69 | $10,115.72 | -29621.69 7241.45 24.34%

16| $32,410.76 | S 9,971.38 | -32410.76 7385.79 22.65%
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Compared to Standard North Dakota - Small Building Treasury Notes and Bonds
Acquisition | Annual Cost |Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1| $13,951.64 | $11,199.77 3417.48 -429.46 11.79%|above No No No
2| $14,492.15 | $11,022.54 2876.97 -252.22 7.24%|above No No No
3| $14,559.71 | $10,882.32 2809.41 -112.01 -0.03% |above Yes Yes Yes
5| $16,828.61 | $10,953.45 540.51 -183.14 33.86%|above No No No
6| $17,369.12 | $10,770.31 0.00 0.00 0.00% [N/A Indifferent |Indifferent Indifferent
7| $17,436.68 | $10,632.66 -67.56 137.65 203.74% |below Yes Yes Yes
4| $20,827.32 | $10,601.54 -3458.20 168.77 1.59% | below Yes Yes No
9| $22,746.01 | $10,726.46 -5376.89 43.85 -9.73% |below No No No
10| $23,286.52 | $10,541.69 -5917.40 228.62 -0.27% | below No No No
11| $23,354.08 | $10,388.89 -5984.96 381.42 3.96% | below Yes Yes No
8| $23,704.29 | $10,339.30 -6335.17 431.02 4.59% [below Yes Yes No
13| $25,535.09 | $10,574.23 -8165.97 196.08 -3.59% |below No No No
14| $26,075.59 | $10,383.84 -8706.47 386.47 0.82% |below Yes Yes No
15| $26,143.15 | $10,234.74 -8774.03 535.57 3.56% |below Yes Yes No
12| $29,621.69 | $10,115.72 | -12252.57 654.60 2.36% | below Yes Yes No
16| $32,410.76 | S 9,971.38 | -15041.64 798.94 2.31%|below Yes Yes No
Incremental Analysis North Dakota - Small Building MARR = 0.4%
Acquisition| Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings | Configuration Return (iRR) |Better than Previous
o[ S - $17,357.16
1| $13,951.64 | $11,199.77 | -13951.64 6157.39 0 44.13%|Yes
2| $14,492.15 | $11,022.54 -540.51 177.24 1 32.76%|Yes
3| $14,559.71 | $10,882.32 -67.56 140.21 2 207.53%|Yes
5| $16,828.61 | $10,953.45 | -2268.90 113 3 N/A|No
6| $17,369.12 | $10,770.31 -2809.41 112.01 3 -0.03%([No
7| $17,436.68 | $10,632.66 -2876.97 249.66 3 7.12%|Yes
4| $20,827.32 | $10,601.54 -3390.64 31.12 7 -9.13%|No
9| $22,746.01 | $10,726.46 -5309.33 -93.80 7 N/A|No
10| $ 23,286.52 | $10,541.69 -5849.84 90.97 7 -6.25%|No
11| $23,354.08 | $10,388.89 -5917.40 243.77 7 0.23%(|No
8| $23,704.29 | $10,339.30 -6267.61 29337 7 1.25%|Yes
13| $25,535.09 | $10,574.23 | -1830.79 -234.93 8 N/A[No
14| $ 26,075.59 | $10,383.84 -2371.30 -44.55 8 N/A|No
15| $26,143.15 | $10,234.74 -2438.86 104.55 8 0.54%|Yes
12| $29,621.69 | $10,115.72 -3478.54 119.03 15 -1.17%|No
16| $32,410.76 | $ 9,971.38 -6267.61 263.37 15 0.38%(|No
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North Dakota - Small Building
Below Standard Above Sig Above
Insulation [R-30 R-38 R-49 R-60
Sig Above |R-21 4 8 12 16
Above R-15 3 7 dall] bt
Standard |R-13 2 6 10 14
Below R-11 1 5 9 13

(12) Minot AFB, ND — Large Building

Compared to Baseline (No Insulation)

North Dakota - Large Building

Acquisition | Annual Cost | Rate of Return
Number [Initial Cost |Annual Cost Savings Savings (iRR)
0 0| $ 61,859.55
1 17702.10| $37,997.65 | -17702.10 23861.90' #NUM!
2 19521.74| $37,742.12 | -19521.74| 24117.44 123.54%
3 19749.19( $37,543.02 | -19749.19 24316.53 123.13%
5 20314.91| $37,572.80 | -20314.91 24286.75 119.55%
6 22134.55| $37,318.40 | -22134.55 24541.15 110.87%
7 22362.01| $37,119.02 | -22362.01 24740.53 110.64%
9 25688.99( $ 37,207.79 | -25688.99 24651.76 95.96%
10 27508.63| $36,953.96 | -27508.63 24905.59 90.54%
11 27736.09| $ 36,755.72 | -27736.09 25103.84 90.51%
13 28221.98| $36,977.22 | -28221.98 24882.34 88.17%
14 30041.62| $36,723.95 | -30041.62 25135.60 83.67%
15 30269.08| $ 36,526.56 | -30269.08| 25333.00 83.69%
4 40849.43| $37,142.85 | -40849.43 24716.71 60.51%
8 43462.25| $ 36,720.83 | -43462.25 25138.72 57.84%
12 48836.33| $36,358.94 | -48836.33 25500.61 52.22%
16 51369.31| $36,130.64 | -51369.31| 25728.92 50.08%
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Compare& to Standard North Dakota - I:arge B-tii'ldi'rig ' -Tfeasury Notes and Bonds
Acquisition | Annual Cost | Rate of Return| MARR should be iRR to
Number | Initial Cost | Annual Cost | Savings Savings (iRR) merit selection over comparison | MARR 0% MARR 0.4% MARR 6%
1 17702.10| $37,997.65 4432.46 -679.25 14.84%|above No No No
2 19521.74| $37,742.12 2612.82 -423.72 15.80% |above No No No
3 19749.19| $37,543.02 2385.36 -224.62 8.06% |above No No No
5 20314.91| $37,572.80 1819.64 -254.40 13.37%|above No No No
6 22134.55( $37,318.40 0.00 0.00 0.00% |N/A Indifferent |Indifferent Indifferent
7 22362.01| $37,119.02 -227.46 199.38 87.66% | below Yes Yes Yes
9 25688.99| $37,207.79 -3554.44 110.61 -1.84%|below No No No
10 27508.63| $36,953.96 -5374.08 364.44 4.55% |below Yes Yes No
11 27736.09| $36,755.72 -5601.53 562.68 8.84% | below Yes Yes Yes
13 28221.98| $36,977.22 -6087.43 341.18 2.78%|below Yes Yes No
14 30041.62| $36,723.95 -7907.07 594.45 5.59% |below Yes Yes No
15 30269.08| $36,526.56 -8134.52 791.84 8.45% |below Yes Yes Yes
4 40849.43| $37,142.85 | -18714.88 175.56 -9.01% | below No No No
8 43462.25| $36,720.83 | -21327.69 597.57 -2.57%|below No No No
12 48836.33| $36,358.94 | -26701.77 959.46 -0.81% | below No No No
16 51369.31| $36,130.64 | -29234.76 1187.76 0.12%|below Yes No No
Incremental Analysis North Dakota - Large Building MARR = 0.4%
Acquisition| Annual Cost Compared to Rate of
Number| Initial Cost | Annual Cost| Savings Savings Configuration Return (iRR) |Better than Previous
0 0| $61,859.55
1|  17702.10| $37,997.65 | -17702.10| 23861.90 of #NUM! |Yes
2 19521.74| $37,742.12 -1819.64 255.53 1 13.44%]|Yes
3] 19749.19| $37,543.02 -227.46 199.10 2 87.53%|Yes
5 20314.91| $37,572.80 -565.72 -29.78 3 N/A|No
6 22134.55| $37,318.40 d -2385.36' 224.62 S 8.06%|Yes
7 22362.01| $37,119.02 -227.46 199.38 6 87.66%|Yes
9 25688.99| $37,207.79 -3326.98 -88.77 7 N/A|[No
10 27508.63| $36,953.96 -5146.62 165.06 7 -1.63%|No
1l 27736.09| $36,755.72 -5374.08 363.31 7 4.52%|Yes
13 28221.98| $36,977.22 -485.89 -221.50 1 [y | N/A|No
14 30041.62| $36,723.95 -2305.53 31.76 11 -6.94%|No
15 30269.08| $36,526.56 -2532.99 229.16 11 7.60%|Yes
4 40849.43| $37,142.85 | -10580.35 -616.29 15 N/A[No
8 43462.25| $36,720.83 | -13193.17 -194.27 15 N/A[No
12 48836.33| $36,358.94 | -18567.25 167.61 15 -9.21%|No
16 51369.31| $36,130.64 | -21100.24 395.92 15 -5.14%|No
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North Dakota - Large Building

Below Standard Above Sig Above
Insulation [R-30 R-38 R-49 R-60
Sig Above R-21 B 8 12 16
Above R-15 3 7 11 1S
Standard R-13 2 6 10 14
Below R-11 1 5 9 13
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