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Abstract 

Due to the advent of autonomous technology coupled with the extreme expense of 

manned aircraft, the Department of Defense (DoD) has increased interest in developing 

affordable, expendable Unmanned Aerial Vehicles (UAVs) to become autonomous wingmen for 

jet fighters in mosaic warfare. Like a mosaic that forms a whole picture out of smaller pieces, 

battlefield commanders can utilize disaggregated capabilities, such as Manned-Unmanned 

Teaming (MUM-T), to operate in contested environments. With a single pilot controlling both 

the UAVs and manned aircraft, it may be challenging for pilots to manage all systems should the 

system design not be conducive to a steady state level of workload.  

To understand the potential effects of MUM-T on the pilot’s cognitive workload, an 

Improved Performance Research Integration Tool (IMPRINT) Pro pilot workload model was 

developed. The model predicts the cognitive workload of the pilot in a simulated environment 

when interacting with both the cockpit and multiple UAVs to provide insight into the effect of 

Human-Agent Interactions (HAI) and increasing autonomous control abstraction on the pilot’s 

cognitive workload and mission performance. This research concluded that peaks in workload 

occur for the pilot during periods of high communications load and this communication may be 

degraded or delayed during air-to-air engagements. Nonetheless, autonomous control of the 

UAVs through a combination of Vector Steering, Pilot Directed Engagements, and Tactical 

Battle Management would enable pilots to successfully command up to 3 UAVs as well as their 

own aircraft against 4 enemy targets, while maintaining acceptable pilot cognitive workload in 

an air-to-air mission scenario.  
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HUMAN PERFORMANCE MODELING: ANALYSIS OF THE EFFECTS OF 

MANNED-UNMANNED TEAMING ON PILOT WORKLOAD AND MISSION 

PERFORMANCE 

 

I.  Introduction 

Chapter Overview 

This chapter begins by covering the background of Unmanned Aerial Vehicles (UAVs) 

and introducing the topic of autonomous wingmen for jet fighters. It then focuses on the effect of 

Human-Agent Interactions (HAI) and autonomous control on the pilot’s cognitive workload 

during flight operations. Next, the chapter explains how Improved Performance Research 

Integration Tool (IMPRINT) can help predict pilot workload and mission performance when 

interacting with both the ownership cockpit and the UAVs. After the research and investigative 

questions have been presented, this chapter then focuses on the best course of action to address 

the research problem. Lastly, the chapter addresses the assumptions and limitations, research 

implications, and provides a preview of the remaining chapters. 

Introduction of Manned-Unmanned Teaming in Air Warfare 

The rise of adversaries in combat air space has motivated the United States military to 

actively explore experimental flight alternatives to attempt to augment America’s fighter 

squadrons. With the foreseeable future for air warfare leaning towards the use of UAVs, the 

Department of Defense (DoD) is investigating the use of UAVs to augment manned tactical 

platforms, with the goal of enhancing capabilities for operating in or permissive through 

contested airspace. To accomplish this, a UAV concept dubbed Manned-Unmanned Teaming 

(MUM-T) is being explored where the UAVs will act as teammates to human pilots in air 

operations and address current operational limitations and perhaps improve human survivability 
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in modern warfare (Drew, 2016). The lower cost of the UAVs, as compared to manned aircraft, 

has received increased attention by the U.S. military due to its potential to expand the combat 

capacity of manned fighters and bombers within the limitations of the DoD’s budget. 

Experimental technologies such as the Air Force Research Laboratory’s (AFRL) XQ-58A 

Valkyrie, Boeing’s Airpower Teaming Systems (ATS), and Kratos Defense & Security 

Solutions’ Unmanned Tactical Aerial Platform-22 (UTAP 22) could potentially provide 

autonomous jet fighters for a fraction of the price of a F-35 Lightning II Joint Strike Fighter or F-

22 Raptor aircraft (Hanlon, 2017). The emergence of this technology presents a low-cost solution 

that shifts the paradigm of a pilot commanding a single aircraft to a pilot commanding multiple 

UAVs in addition to the manned aircraft. Using MUM-T in air operations would alter the 

warfighter Concept of Operations (CONOPS) and traditional life cycle management paradigms. 

In theory, a manned aircraft would be paired with one or multiple robotic wingmen to act 

in unison with the command pilot to locate, jam, strike, or distract enemy air defenses (Rogoway, 

2017). The UAVs would operate at a far off distance to provide pilots with additional weapons 

and sensors while increasing the enemy’s targeting requirement in the battlefield. The unmanned 

aircraft could carry out surveillance missions and amplify firing power to fill capacity gaps for 

pilots. It also enables airmen to access new areas of the battlespace that may be too difficult or 

risky for a human pilot to enter. These additional capabilities make MUM-T a potentially lethal 

force and a significant asset to the military. The DoD recognizes these potential advantages and 

has taken steps towards exploring the potential of these affordable, unmanned tactical aircraft.  

However, there are complications with this new strategy, should the DoD choose to adopt 

MUM-T for frontline use. The command pilot bears the weight of the combat effort and will 
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need to deploy capabilities from the UAV in addition to commanding their own aircraft, ideally 

without degrading the effectiveness of their own aircraft within the mission. This concept places 

additional cognitive demands on the pilots, potentially exceeding their available resources should 

the system interface design not be conducive to maintaining a manageable level of workload for 

the pilot. The challenge of maintaining close and time critical control of UAVs requires a new 

approach to control and integration. The DoD must re-evaluate some of the basic conventions in 

current operations to leverage the best of traditional aviation and emerging capabilities. By 

further investigating the effects of HAI and autonomous control on the pilot’s cognitive workload 

and mission performance, this study seeks to provide insight into the impact of MUM-T on the 

command pilot in air-to-air operations. 

Problem Statement 

The level of success achieved through MUM-T is highly dependent on the integration of 

this technology with human operators. Researchers have studied the design of autonomous 

systems within remote controlled flight. However, there is limited research investigating 

workload impacts of more autonomous technology in military flight operations. This is likely 

due to the novelty of MUM-T. These systems will require an improved understanding of 

operator mental workload and how it affects mission performance to enable successful 

integration of pilots and UAVs into a single cohesive, effective team.  

To support informed decisions on the available operations concepts associated with MUM-T, 

a thorough and in-depth study of the effects of MUM-T on the pilot’s cognitive workload and 

mission performance is required. This is a significant area to explore because the structure of the 

human-agent system affects the human’s cognitive workload and thus, the human-agent team’s 

overall effectiveness in combat. The simulation developed as part of this analysis was designed 
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to provide a method to evaluate the effects of HAI and autonomous control on the pilot’s 

cognitive workload and mission performance. This research seeks to identify workload 

management strategies and a preferred design for the control and integration of UAV 

technologies in manned operations.  

Research Objectives 

The purpose of the thesis was to understand the potential effects of MUM-T on the pilot’s 

cognitive workload and overall mission performance. There were two main objectives to this 

study: 

1. The first objective was to develop an original Discrete Event Simulation (DES) within 

IMPRINT that quantitatively models the mental workload of pilots during flight 

operations with UAVs to reveal any potential benefits or issues from the HAI. 

2. The second objective was to determine what amount of autonomous control abstraction 

has the largest impact in reducing operator workload and increasing system performance 

to provide HAI recommendations for system improvements.  

Investigative Questions 

The following research questions were addressed to fully answer the overarching inquiry 

of how to model the MUM-T system such that the HAI and can be investigated to study its 

potential effects on pilot workload and mission performance: 

1. How does the use of MUM-T affect the pilot’s cognitive workload during combat 

mission events? 

The first question was used to determine if the relationship between the deployment of 

UAVs and workload metrics are linear or non-linear. It was hypothesized that the 
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deployment of UAVs in air operations would result in higher workload than situations 

where the pilots did not need to command the UAVs and their aircraft. 

2. How does the use of MUM-T affect the human-agent team’s mission performance 

during combat mission events? 

The second question was used to determine how the incorporation of UAVs into air 

operations would impact the human-agent team’s overall mission performance in terms 

of enemy target kills. It was hypothesized that the utilization of UAVs in air operations 

would improve the human-agent team’s ability to successfully strike targets. 

3. To what degree of autonomous control abstraction should the UAVs perform at to 

reduce operator workload in a flight operation task? 

The third question was used to determine how much of the operator’s cognitive tasks 

should be relinquished by the command pilot and reassigned to the UAVs to reduce the 

amount of workload experienced by the pilot. It was hypothesized that the pilot’s 

workload levels would be reduced by commanding the UAVs to meet a desired goal and 

enabling the MUM-T system to make all required decision to meet those goals through 

Tactical Battle Management. 

4. To what degree of autonomous control abstraction should the UAVs perform at to 

increase mission performance in a flight operation task? 

The fourth question was used to determine how much of the operator’s cognitive tasks 

should be relinquished by the command pilot and reassigned to the UAVs to help and not 

hinder the human-agent team’s mission performance. It was hypothesized that the 

human-agent team’s mission performance would also be improved by commanding the 
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UAVs to meet a desired goal and enabling the MUM-T system to make all required 

decision to meet those goals through Tactical Battle Management. 

Methodology 

To explore the decision to integrate an automated component into a human system, this 

study built an original DES using IMPRINT to research the effect of MUM-T on the pilot’s 

cognitive workload and mission performance. IMPRINT is a discrete event modeling tool 

specifically designed to evaluate the interactions of human users and system technologies 

(Rusnock & Geiger, 2013). It was developed by ALION and funded by the U.S. Army Research 

Laboratory, Human Research & Engineering Directorate, to support manpower and personnel 

integration as well as human systems integration (Alion Science and Technology Corporation, 

2009). The tool models human workload and performance as a function of time by tracking 

activities performed by the human or machine. It can test multiple alternate scenarios in a short 

period of time as well as quantify the effect of a system interface design on the human element of 

a system based on mental workload. This type of evaluation is useful for gauging the effect of 

HAI and autonomous control on the pilot’s cognitive workload and mission performance.  

Although IMPRINT is not yet widely used for human-agent systems, it is possible to 

model existing operation procedures and inputs from external stimuli (i.e. UAVs flying around a 

fighter aircraft) to observe and predict workload levels through computer simulation. This study 

developed a DES that was constructed from data gathered from Autonomy for Air Combat 

Missions (ATACM), a separate study previously performed by the 711th Human Performance 

Wing (HPW) at AFRL, Wright Patterson Air Force Base. The ATACM study was a Human-In-

the-Loop (HITL) experiment that developed and tested critical autonomous decision and 

machine learning technologies in a virtual simulation cockpit with the aim of enabling a single 
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pilot to command multiple UAVs in flight while controlling his or her own aircraft in highly 

contested environments (Schumacher et al., 2017). The study replicated an offensive counter-air 

scenario in which individual performance and mental workload could vary in real-time based on 

the operators’ capabilities.  

Using the ATACM study, an original DES was constructed to model the mission 

scenarios and system configuration assumed within this assessment. A baseline DES was 

developed to quantitatively capture the pilot’s cognitive workload levels and mission 

performance when controlling both UAVs and manned aircrafts. Alternative system 

configurations were then created to compare the baseline model to varying amounts of 

autonomous control abstraction and traditional aviation techniques. Through this process, this 

research sought to understand and determine how integrating UAVs into flight operations 

impacts the command pilot’s workload and mission performance. The findings presented in this 

research are a significant step towards simulating the complexities of real-world activities by 

mirroring the highly dynamic nature of realistic military operations in a virtual environment. 

Assumptions and Limitations 

Creating an IMPRINT model required task analyses, direct observations, and data 

collection of a system. However, MUM-T has yet to be deployed in an operational environment. 

Consequently, this research was reliant on information provided by Subject Matter Experts 

(SMEs) and data collected from a HITL study performed by the 711th HPW. An in depth analysis 

of the assumptions and limitations of this research is provided in the final discussion chapter. 

Research Implications 

This research is expected to have a significant impact on projects, such as AFRL’s 

Skyborg and Autonomous Collaborative Platforms programs, which are currently developing 
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integrated, human-agent aircraft systems for operational use. The results of this study delivered a 

cost-effective way to evaluate MUM-T systems without having to perform costly, time-

consuming HITL experiments. Furthermore, the study provided valuable insight into the effects 

of incorporating UAVs into air operations, which can then be used to refine UAV requirements 

before fielding the unmanned combat air vehicle. This research ultimately has the potential to 

refine the relationship between pilots and UAVs to lead to a more nuanced understanding of how 

to best incorporate MUM-T into military air warfare. 

Preview 

This research follows the scholarly format, thus some of the chapters are self-contained drafts 

of potential publications. This chapter began with the background of MUM-T and described a 

problem that needs to be addressed within human-agent teaming. Chapter II contains a literature 

review from relevant sources on the topics of automation, mental workload, DES in aviation. Chapter 

III addresses the first research objective by investigating the effects of HAI on the pilot’s cognitive 

workload and mission performance when incorporating UAVs in an air-to-air operation. Chapter IV 

addresses the second research objective by identifying the stages and levels of automation that have 

the largest impact in reducing operator workload and increasing system performance. Chapter V 

contains a summary of the research results and future research recommendations. 
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II. Literature Review 

Chapter Overview 

 The purpose of this chapter is to provide relevant background information from previous 

research and important works of literature to foster an understanding of the topics discussed in 

this research. The chapter begins by providing a generalized overview of automation to include 

its advantages and disadvantages as well as the stages and levels of autonomous control. It then 

describes the effect of autonomous control on system design and performance. The chapter 

subsequently dives into workload theory by explaining what it is, how it relates to human 

performance, and how it can be measured. Finally, the researcher introduces IMPRINT, which is 

useful in quantitatively modeling the mental workload of operators. The chapter concludes by 

stating the research gap that this work fulfills and closes with a short conclusion on all of the 

topics that were discussed. Each subject is described in detail to establish the intellectual 

foundation of the subject areas necessary to follow the discussion throughout the thesis chapters. 

Automation 

Autonomous control and automation go hand-in-hand, boosting and providing a fallback 

for one another. Autonomous control is the self-governance of control functions amidst 

significant uncertainties in the environment and the ability to compensate for system failures 

without external intervention (Antsaklis, Passino, & Wang, 1991). This is different from 

automation, which is often defined as a process or procedure performed with minimal human 

assistance (Groover, 2015). Automation is also defined as the capability of a machine or 

computer agent (hereafter referred to as “agent”) to execute a task previously performed by a 

human operator (Parasuraman, Sheridan, & Wickens, 2000). Examples might include a 

calculation performed by a computer instead of a human or the ability for a machine to make 
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decisions without human intervention. The degree of complexity can vary in automation, ranging 

from organizing information sources, to recommending options, or perhaps carrying out an 

action. In each of these cases, automation serves to fulfill the functions of the human operator at 

varying levels of control. 

Automation has played a key role in the technological development of modern day 

aircraft systems. Advancements in computer software and hardware have enabled aviation 

systems to perform simple to complicated tasks that human operators performed in the early days 

of aviation. To understand the evolution of flight management systems, it is important to 

recognize the fundamentals of automation, to include what it is, the advantages and 

disadvantages of automation, as well as the models and levels of autonomous control. 

Advantages and Disadvantages of Automation 

Human-agent teaming is the cooperation between one or more people and intelligent 

agents, capable of dynamically engaging with one another for the purpose of achieving a 

common goal that is beneficial to the mission. The concept of “intelligent agents” implies the 

independent ability to sense, reason, and act upon the environment. Thus, inferring that 

intelligent agents have a higher level of adaptability and flexibility than non-intelligent agents, 

enabling them to vary their performance in response to environmental factors.  

The MUM-T concept is an example of human-agent teaming. The UAVs will act like 

assistants to human pilots in air operations by bolstering defense networks and aiding in certain 

classes of decision making. This capability, as with other automated systems, can provide several 

advantages and disadvantages to the human operator. In general, automation can reduce human 

task load or increase operator efficiency by relieving the operator from specific tasks. For 

instance, the agent could perform complex mathematical calculations, organize or filter 
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information for relevance and coherency, perform mundane or routine tasks, or monitor a system 

for an extended amount of time, thus reducing human participation, information overload, and 

consequently human error (Parasuraman et al., 2000; Swanson et al., 2012). These benefits are 

ideally obtained when a balance is struck between the capabilities of the system, what the system 

can achieve, and the demands placed on the human resources (Taylor, 2006). In these situations, 

automation not only improves safety by reducing human error, but also increases reliability, 

improves precision, and reduces operator workload (Billings, 1991; Hart & Sheridan, 1984). 

Furthermore, operator fatigue accumulates more slowly and the human operator has a greater 

capacity to perform more critical tasks as a result of reducing operator workload (Secarea, 1990). 

For these reasons, automation that is well-designed can amplify operator’s capabilities in the 

cockpit as well as in other human-agent teaming systems. 

Despite these advantages, not all systems that can be automated should be automated 

(Wiener & Curry, 1980). Automation can help reduce issues such as human error or information 

overload, but clumsy automation can also create several new problems such as operator 

complacency, boredom, decision-bias, trust issues, as well as increase fluctuations in workload 

(De Visser et al., 2008; Woods, Johannesen, Cook, & Sarter, 1994). First of all, automation may 

cause an operator to become complacent because the operator’s interaction with the system is 

reduced to a monitoring role. This change can lead to a loss of manual skills, system knowledge, 

and even job satisfaction (Hart & Sheridan, 1984; R. D. Johnson, Bershader, & Leifer, 1983). 

The operator’s situation awareness is degraded when automation takes over all processes, 

especially when the information applied by the operator is not readily available to the operator. 

Secondly, the lack of appropriate communication in poorly designed automation can lead to 

operator distrust or confusion (Endsley, 1996). If the human is missing vital pieces of 
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information about the process or system state (i.e. automation’s logic, functionality, 

responsibilities, limits, state, or operating parameters), then it will be difficult for the person to 

understand what the system is doing or why it is doing it (Wiener, 1989). The breakdown of 

communication between the operator and automation may lead to decision bias and/or trust 

issues between the operator and the automated system.  

Another disadvantage of automation arises when new burdens are inadvertently placed on 

the operator. Automation can eliminate human tasks in some circumstances, but also generate 

new tasks or problems in conjunction with the expected benefits of automation; consequently, 

adding more opportunities for error or increasing operator workload (Colombi et al., 2011; 

Woods et al., 1994). For instance, automation could increase workload because of the added 

communication between the system and the operator or the replacement of physical control 

activities with supervisory activities (Endsley, 1996). Moreover, automation can contribute to 

hazardous attitudes such as misuse (using automation when it should not be used), disuse (not 

using available and capable automation), or abuse (inappropriate use of automation) 

(Parasuraman & Riley, 1997). It is important to understand the disadvantages of automation 

because all of these issues add another dimension of complexity to the design of human-agent 

systems. 

Stages and Levels of Automation 

To effectively leverage the advantages of automation, designers should be aware of the 

varying degrees of autonomous control in human-agent teams. Automation can operate across a 

spectrum of autonomous control defined in Table 1-Table 3 and Figure 1-Figure 2. Although 

these hierarchies focus on what to automate and how to allocate functions, there are 

interdependencies between humans and agents. For this reason, the stages and levels of 
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automation to be covered in this section are flexible and can be synthesized to take into account 

cross-scale interactions. The four types of autonomous control taxonomies are listed below. 

1. Ten Levels of Automation (Sheridan & Verplank, 1978) 

2. Four Stages of Human Information Processing (Parasuraman et al., 2000) 

3. Five Levels of Decision Automation (Hart & Sheridan, 1984) 

4. Four Levels of Allocation of Roles Between the Expert System and The Pilot 

(Endsley, 1987) 

In 1978, Sheridan and Verplank described the distribution of tasks allocated between 

either the human or the automation in the ten LoA. This ten-point scale characterizes the level of 

involvement granted to automation within human-machine or human-agent teams by using a 

continuum of levels, ranging from no automation (i.e. human manually performs task) to full 

automation (i.e. computer is fully autonomous). Table 1 describes the ten LoA where higher 

levels represent increasing automation autonomy over human actions (Parasuraman et al., 2000; 

Wickens, Mavor, & McGee, 1998). 

Table 1. Ten Levels of Automation – adapted from (Sheridan & Verplank, 1978) 

 Level Description 

Low 1 Fully manual control; computer offers no assistance; human does all planning, 

decision making, and action execution 

 2 Computer provides a complete set of decision/action alternatives, or 

 3 Narrows the selection down to a few, or 

 4 Suggests one alternative, and 

 5 Executes that suggestion if the human approves, or 

 6 Allows human limited time to veto decision before automatic execution 

 7 Executes automatically, then necessarily informs the human, and 

 8 Informs the human upon request, or 

 9 Informs the human only if it, the computer, decides to 

High 10 Fully autonomous control; computer decides everything and ignores the human 
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The ten LoA range from complete human control to complete computer control. The 

amount of decision authority granted to the automation increases as the level of the scale 

increases. At level 1, there is no automation because the operator executes all of the tasks. At 

level 4, the computer suggests one decision alternative from the provided options, but the human 

has the final decision authority. At level 6, the human is only given a limited amount of time to 

veto a decision before the computer carries out its decision. At level 10, the system is fully 

automated and there is no human interaction because the computer has full control to make and 

execute a decision. As the levels increase, the amount of approval authority required before an 

artificial agent initiates an action decreases. Consequently, Sheridan’s and Verplank’s LoA 

illustrates how operator involvement decreases as automation is granted the authority to perform 

tasks traditionally performed by humans (Vagia, Transeth, & Fjerdingen, 2016). 

To understand the different ways automation can be applied to a system, Parasuraman, 

Sheridan, and Wickens used the four-stage model of Human Information Processing (HIP) to re-

examine tasks at a detailed level (Broadbent, 1958; Parasuraman et al., 2000). The HIP model is 

composed on four stages: 1) sensory processing; 2) perception/working memory; 3) decision 

making; and 4) response selection (Parasuraman et al., 2000). The four stage model is shown in 

Figure 1. 

 

Figure 1. Human Information Processing Model– adapted from (Parasuraman et al., 2000) 

As automation replaces human operated tasks, the replaced tasks may relate to any of the 

four stages of the HIP model. Parasuraman et al. introduced the idea of associating LoA to the 

HIP by translating the stages into four corresponding system functions: 1) information 
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acquisition; 2) information analysis; 3) decision and action selection; and 4) action 

implementation. When the stages are assigned to a system, the resulting functions provide an 

initial categorization for the types of tasks in which automation can support the human operator. 

The relationship between the two processing models is shown in Figure 2. 

 

Figure 2. Stages of Machine Processing Built from the Human Information Processing Model – 

adapted from (Parasuraman et al., 2000) 

The four stages of HIP describe human decision-making and the functions correlate with 

system processing. In the first stage, sensory processing, information is gathered from the outside 

world and used for higher level processing. Information acquisition supports sensory processing 

by controlling sensors and the registration of multiple sources of input data. This step includes 

the orienting of sensory receptors, sensory processing, selective attention, and initial pre-

processing of data prior to full perception (Parasuraman et al., 2000). In the second stage, 

perception/working memory, information that is gathered from the first stage is synthesized in 

consort with long-term memory to form an interpretation of the environment. Information 

analysis supports working memory and inferential processes by conscious perception, filtering 

the retrieved raw data, and processing it into information that is more important or useful for the 

human (Baddeley, 1996). This step includes cognitive operations such as rehearsal, integration 

and prediction, but these operations occur prior to the point of a decision (Parasuraman et al., 

2000). In the third stage, decision making, a course of action is selected from the different 
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decision alternatives based upon the interpretation of the environment. The decision and action 

selection supplements cognitive processing and human decision abilities by presenting a desired 

choice to the human without taking that action (Parasuraman et al., 2000). In the final stage, 

response selection, the response or action decided upon in the decision making stage is executed 

(Kaber, Stoll, & Thurow, 2007; Parasuraman et al., 2000). It is the actual execution of the action 

choice. By and large, the LoA across any of the four stages and functions of automation can vary 

in design and application, depending on the demands and uses of the operational system 

according to the proposed model. 

Since Sheridan and Verplank, several researchers have proposed alternate taxonomies 

describing LoA (Clough, 2002; Draper, 1995; Endsley, 1987; Endsley & Kaber, 1999b; Endsley 

& Kiris, 1995; Fereidunian, Lehtonen, Lesani, Lucas, & Nordman, 2007; Fereidunian, Lucas, 

Lesani, Lehtonen, & Nordman, 2007; Hart & Sheridan, 1984; M. Johnson, Bradshaw, & 

Feltovich, 2018; Kaber, 2018; Lorenz et al., 2001; Milgram, Rastogi, & Grodski, 1995; Ntuen & 

Park, 1988; Proud, Hart, & Mrozinski, 2003; Riley, 1989). Each of these authors proposed 

varying LoA for different taxonomies. What is important to remember is that even taxonomies 

that are supposed to be used for the same types of applications can vary a lot (Vagia et al., 2016). 

For example, automation allocation for avionics can be explained by Hart and Sheridan’s (1984) 

five Levels of Decision Automation, shown in Table 2, or Endsley’s (1987) four levels of 

Allocation of Roles, shown in Table 3. 
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Table 2. Five Levels of Decision Automation – adapted from (Hart & Sheridan, 1984) 

 Level Description 

Low 1 Automated system suggests alternatives for human to consider or ignore 

 
2 

Automated system lists alternatives from which human must decide and 

execute manually 

 
3 

Automated system lists alternatives from which human must decide, but system 

executes 

 
4 

Automated system makes decision, but informs human who can intervene 

before execution of decision 

High 
5 

Automated system makes decision and executes, only informing human after 

the fact 

 

Table 3. Four Levels of Allocation of Roles – adapted from (Endsley, 1987) 

 Level  Description 

Low 
1 Suggest 

Pilot chooses whether or not to act upon expert system 

recommendations 

 
2 Concur 

Expert system acts autonomously, however, the consent of the pilot 

is required to carry out actions 

 
3 Veto 

Expert system act autonomously, unless recommendations are vetoed 

by the pilot 

High 
4 Act 

Fully autonomous with no operation interaction; expert system 

excludes pilot from the loop 

 

Both taxonomies are supposed to be used for the same application, avionics decision 

support, however these scales differ in the number of levels their taxonomies include. The model 

presented by Hart and Sheridan (1984) describes the LoA in five levels ranging from 

autonomous suggestions to fully autonomous control, with the exception of a fully manual 

control level and fewer intermediate levels. While the compact model proposed by Endsley 

(1987) presents four functions for the allocation of roles between an advanced cockpit (i.e. expert 

system), capable of supplementing human decision making, and the operator (i.e. pilot). In this 
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sense, the designer has the freedom to decide which LoA approach fits best to his or her needs as 

there is not one prescribed way to design an autonomous system. 

Due to the growth of automation capabilities in recent years, a new set of human-agent 

design tools have been proposed to keep up with the advancement of sociotechnical systems 

(Allen, Guinn, & Horvitz, 1999; Fong, Thorpe, & Baur, 1999; C. D. Johnson, Miller, Rusnock, 

& Jacques, 2017; M. Johnson, Bradshaw, et al., 2018; M. Johnson et al., 2014a; M. Johnson, 

Vignati, & Duran, 2018; Klein, Woods, Bradshaw, Hoffman, & Feltovich, 2004; Miller, 2017). 

Miller (2017) discussed the problem of automatically coordinating the behaviors of multiple 

agents to achieve more complex goals, since such a feat would require high precision 

coordination – a difficult task to achieve. Instead, he recommended that human-agent interaction 

should strive to adopt a more explicit interaction protocol to help coordinate roles and 

responsibilities. According to this view, this would make collaborative task performance feasible 

in complex domains.  

Johnson, Bradshaw, et al. (2018) made a different observation that traditional approaches 

often drive designers towards deciding what to automate as if it were a binary decision. 

However, they made the point that these two cases are “degenerate cases where the situation 

does not permit coordination” (Johnson, Bradshaw, et al., 2018). According to this view, LoA-

based approaches could be characterized as restrictive, forcing designers to choose what to 

automate and how to allocate functions, instead of leading them to coordinate the task work in 

support of interdependencies between humans and automation.  

In response to these concerns, Johnson et al. (2017) developed the five Levels of Human 

Control Abstraction (LHCA) as an alternative conceptual framework to describe the level of 

control inputs given by the operator (see Table 4). The framework describes the cognitive tasks 
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relinquished by the human operator and reassigned to the automation. As the stages progress 

from Direct Control to Mission-Capable Control, the level of detail for the human operator’s 

control inputs, attention, and workload is reduced. For instance, an example of Direct Control 

would be a simple, fixed wing aircraft, whereas an example of Mission-Capable Control would 

be an autonomous car. Using this taxonomy, designers have a better understanding of the 

workload that is placed on the human operator when interacting with the automation in addition 

to the levels of human control abstraction for each interaction. However, a weakness of this 

model is that there is not enough precision to fully capture the nuances between each LHCA. 

Table 4. Levels of Human Control Abstraction – adapted from (C. D. Johnson et al., 2017) 

 Level  Description 

Low 
1 Direct Control 

Operator controls every aspect of the system, including actual 

control surface positions or motor power 

 

2 
Augmented 

Control 

Operator gives control inputs commanding desired actions, the 

system then makes final determinations about control surface 

positions or motor power 

 

3 
Parametric 

Control 

Operator inputs desired parameters that the system should 

meet, the system then uses onboard sensors and control 

algorithms to meet those parameters 

 
4 

Goal-Oriented 

Control 

Operator inputs desired goals the system should meet, the 

system then makes all required decisions to meet those goals 

High 

5 

Mission-

Capable 

Control 

Operator enters pre-launch mission goals at a level of detail 

which, when combined with standard operating procedures and 

rules of engagement, are sufficient to accomplish the mission 

 

The five LHCA can be modelled using the Interdependence Analysis Tool (IAT) 

(Johnson, Vignati, et al., 2018). The IAT is like a road map that helps designers visually 

understand how people and automation can effectively team by providing insight into the 

interdependence relationships used to support one another throughout an activity. The IAT 

allows designers to track which entity in the human-machine system is performing each specific 
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sub-task across multiple activities and how the workflow changes over time. This is beneficial 

because it helps designers to see the changes in role assignment between the human and the 

machine. However, unlike the LHCA model, IAT does not map the level of workload placed on 

the human or the machine in each activity. 

The IAT was founded upon three essential interdependence relations: observability, 

predictability, and directability (Johnson et al., 2014). From this foundation, Johnson et al. 

(2018) developed an experimental paradigm containing three main sections: 1) joint activity 

modelling, 2) assessment of potential interdependence, and 3) analysis of potential workflows. 

Table 5 illustrates these three main sections in a generic table. Section 1 helps designers model 

the joint activity, section 2 helps them identify potential interdependencies in the activity, and 

section 3 helps analyze the potential workflows to better understand the flexibility and risk in the 

human-machine system (Johnson, Vignati, et al., 2018). Ideally, the amount of mental workload 

experienced by the operator decreases as the responsibilities shift from the human to the 

machine. This shift in responsibilities from the human to the machine can be seen in third section 

of the IAT.  

Table 5. Interdependence Analysis Tool – from (M. Johnson, Vignati, et al., 2018) 
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In review, there have been several taxonomies proposed for the stages and levels of 

autonomies over the past four decades. Each model has its unique nuances, but all work toward 

the goal of providing a language to characterize the division of work between the human and 

the agent. However, their application often leads the designer to select a fixed allocation, which 

may not always be appropriate as illustrated by the writings of Johnson et al. (2018) and C.D. 

Johnson et al. (2017). System designers need to be able to evaluate what type of interaction or 

interdependence between the human and the automation is most appropriate for a human-agent 

team as well as identify when automation should be utilized to maximize the use of its 

capabilities.  

Effects of Levels of Automation 

While automation may lead to legitimate system advantages, quantification of these 

advantages should include the whole system including the operator’s cognitive workload, 

situation awareness and the effect of these attributes on mission performance. Several studies 

have been conducted to explore the effects of LoA on human workload, situation awareness, and 

system performance within real world or simulated systems (Cummings, Bruni, Mercier, & 

Mitchell, 2007; Endsley & Kaber, 1999; Kaber & Endsley, 2004; Mitchell, 2000; Parasuraman et 

al., 2000). Kaber and Endsley’s research in 1999 and 2004 found that LoA is an important factor 

in determining the overall performance of a human-agent system. According to their studies, 

workload remains stable, situation awareness is degraded, and overall system performance 

improves as the LoA is increased from low to intermediate (Endsley & Kaber, 1999; Kaber & 

Endsley, 2004). It was determined through this research that if the designer automated higher 

level cognitive functions, the operator may experience underload and lose focus on task 

execution. Consequently, decreasing the operator’s situation awareness and negatively impacting 
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the human-agent team’s performance. Conversely, if the designer only incorporated lower LoA, 

then the operator’s cognitive workload could become excessive and negatively impact overall 

system performance. Kaber and Endsley’s results illustrate the complex relationship between 

cognitive workload, situation awareness, and system performance (Endsley & Kaber, 1999; 

Kaber & Endsley, 2004). 

It is essential that researchers understand the potential effects of LoA when designing 

human-agent teams, especially for systems such as MUM-T. Automation should ideally free 

operators from tedious, mundane, and time-consuming tasks; enabling them to focus on more 

critical responsibilities (Hart & Sheridan, 1984; National Research Council, 1982). However, 

automation does not completely remove all operational burdens from the human as it transitions 

the operator from a worker to a monitor, typically leaving the human responsible for the 

successful operation of the system. For instance, pilots controlling UAVs will usually be 

commanding and overseeing the actions performed by the UAVs and are likely to be held 

responsible incidents involving these aircraft as well as their own. The technology could become 

a distraction due to poor interface design, lag time, software bugs, user error, added stress, or 

unbalanced workload (Adams & Pew, 1990; Billings, 1991; Endsley, 1996; Hart & Sheridan, 

1984; Norman, 1989). Even in normal flight operations, a majority of civilian pilots felt that 

automation increased workload due to manipulation and reprogramming requirements 

(Parasuraman & Riley, 1997; Parasuraman et al., 2000; Wiener, 1985, 1989). To prevent any 

tendencies towards these undesirable issues, the aim of a designer should be to identify the state 

at which the human remains in the control loop enough to attain situation awareness, but is not 

overexerted to the extent that performance deteriorates (Rusnock & Geiger, 2014). 
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Therefore, achieving the proper level of automation design and control between the pilot 

in the cockpit and the UAVs is a function of identifying where the pilot needs help. For this 

reason, it is crucial that researchers quantitatively capture the pilot’s workload changes when 

operating UAVs to determine what an acceptable level of workload is such that the pilot is 

engaged and involved with flight tasks, but not oversaturated with responsibilities.  

Mental Workload 

Central to this research is the study of workload. Workload is a conceptual way to 

express the perceived demand experienced by a user in response to a specific task load (Beevis, 

1992; Keller, 2002). Although most tasks have both a physical and cognitive component, the 

current research is primarily concerned with cognitive or mental workload. Wickens (2002) 

defined mental workload as “the relation between the (quantitative) demand for resources 

imposed by a task and the ability to supply those resources by the operator.” For the purpose of 

this thesis, mental workload is defined as the relationship between an operator’s mental capacity 

and the required attentional resources needed to perform a task at a given moment in time (Hart 

& Staveland, 1988). A person’s capacity is a function of the following factors: environment, 

experience, level of training, proficiency, fatigue, stress, individual traits, and general workload 

strategy (Childress, M., Hart, S., & Bortolussi, 1982; Curry, Jex, Levison, & Stassen, 1979; Hart 

& Sheridan, 1984). Each of these factors contribute to the user’s perceived mental effort, which 

can vary based upon the operator’s aptitude to perform the task at hand. 

Mental Workload and Performance 

In past research, mental workload and performance have been studied together in an 

effort to explain the correlation between the two entities (Clare, Maere, & Cummings, 2012; 

Donmez B., Nehme C., & Cummings M.L., 2010; Hart & Staveland, 1988; Hebb, 1955; Reid & 
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Colle, 1988; Teigen, 1994; Yerkes & Dodson, 1908). Studies have found that mental workload 

generally increases as the number or complexity of user tasks increases and the time available to 

perform these tasks decreases (Hart & Staveland, 1988; Reid & Colle, 1988). However, the 

effect of workload on performance is not a linear relationship. Instead, performance will peak at 

a certain amount of workload before it begins to level off or decline (Teigen, 1994). This 

relationship is often described by the Hebb-Yerkes-Dodson Law (Teigen, 1994; Yerkes & 

Dodson, 1908). The law describes the relationship of psychological arousal and performance as 

curvilinear for simpler tasks and an inverted-U for more difficult tasks. Figure 3 is as an 

adaptation of the Hebb-Yerkes-Dodson law with a simple and difficult task. 

 

Figure 3. Depiction of the Hebb-Yerkes-Dodson Law– adapted from (Yerkes & Dodson, 1908) 

The Hebb-Yerkes-Dodson law indicates that human performance increases with mental 

arousal, but only up to a point that is contingent upon the task complexity. Factors such as 

urgency, significance, and enjoyment all affect arousal level and can impact the person’s 

attentiveness to a task. For both simple and difficult tasks, performance is poor when the human 

is unaroused (i.e. underloaded, unstimulated, or under-resourced) and generally increases as 



37 

 

more operator resources (i.e. effort or focus) are invested in the task. For simple tasks, 

performance increases up to a certain level of arousal and then plateaus when the operator 

reaches his or her maximum level of cognitive capacity (Diamond, Campbell, Park, Halonen, & 

Zoladz, 2007). For more difficult tasks, performance increases with arousal, up to an optimal 

point after which the subject is over stimulated and performance is reduced as arousal increases 

(Hebb, 1955; Teigen, 1994; Yerkes & Dodson, 1908). Accordingly, maximum performance for 

complex tasks occurs at moderate levels of arousal because it permits the human to concentrate 

on relevant cues within the environment (Hebb, 1955; Teigen, 1994; Yerkes & Dodson, 1908). 

This relationship can also be extended to explain the impact of perceived mental workload on 

human performance. Mental workload has the same effect as psychological arousal, meaning that 

performance is degraded as the workload increases past the optimal point (De Waard, 1996; 

Wickens, 2008).  

The correlation between perceived mental workload and performance can also be 

described by the Multiple Resource Theory (MRT) (Wickens 1984, 2002, 2008). According to 

Wickens (2002), the human operator has several different pools of mental resources that can be 

tapped simultaneously to process information. The multi-dimensional model is illustrated in 

Figure 4. 
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Figure 4. Multiple Resource Theory Model – adapted from (Wickens, 2002) 

As Wickens explained, humans have a limited amount of cognitive resources, which 

restricts their ability to process information. The theory suggests that specific mental resources 

could be used in parallel, but the overuse of shared processing stages, perceptual modalities, 

visual channels, or processing codes could lead to resource interference and decreases in human 

performance (Wickens, 2002). For example, if a pair of tasks requires the same pool of cognitive 

resources (i.e. listening to two conversations at once), then the tasks must be handled 

sequentially because the auditory channel is overloaded with similar information. If a pair of 

tasks require different cognitive resources (i.e. scanning a crowd and listening to music), then the 

two tasks can be performed together because they do not stem from the same pool of resources 

within the brain. Furthermore, some tasks may require multiple resources, creating bottlenecks 

that limit parallel processing (Wickens, 2008). In either case, excess workload from a task 

demand can ultimately result in less efficient or less accurate performance from the operator. 
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In addition to the Hebb-Yerkes-Dodson law and MRT, other mental workload theories 

have been proposed to explain the relationship between workload and performance. Cassenti and 

Kelly (2006) proposed a workload curve, illustrated in Figure 5 with four regions: undertaxed, 

ceiling performance, steady decline in performance, and floor performance. 

 

Figure 5. Operator Workload and Red-line – adapted from (Cassenti & Kelley, 2006) 

Using this model, the level of workload resulting in maximum performance is described 

as an individual’s red-line. The red-line occurs near the transition from region B to C as 

illustrated in Figure 5. Similar to the optimal point described in Figure 3, an operator’s red-line is 

the maximum level of performance that an individual can sustain at the current task load before 

having to shed a task to continue functioning (Grier et al., 2008). If the workload exceeds the 

operator’s red-line, then the individual will become overloaded and performance will deteriorate 

rapidly (Hart & Sheridan, 1984; Kahneman, 1973). On the other hand, operator workload that 

results in underload has also been shown to negatively impact task performance (Young & 

Stanton, 2002). Cognitive underload can occur when the operator is disengaged for an extended 

period of time, which can result in slower response speed and worsened precision (Hancock & 
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Chignell, 1988). In both circumstances, productivity or accuracy may diminish due to the 

overload or underload in workload 

Based on the aforementioned studies, it is clear that the increase in workload can degrade 

performance as the pilot reaches cognitive saturation. Therefore, one would expect operators 

experiencing moderate levels of workload to perform better than those experiencing extreme 

levels of workload. By understanding the relationship between workload and performance, 

system designers can identify where the red-line of workload occurs and proactively decide the 

level of task load which is most acceptable for future improvements in human-agent teams. The 

ultimate objective is to reduce system complexity and enhance operator performance by 

leveraging automation where it can be most beneficial and appropriate.  

Mental Workload and Expertise 

Mental workload is also influenced by the level of information processing required by a 

specific operator. According to Neerincx (2003), there are three levels of cognitive information 

processing: automatic processes or skills, routine problem solving or rules, and more complex 

analysis of information. Experts or highly experienced operators may perform a task using 

automatic processing because they are more familiar with the system or task at hand. Conversely, 

novices or less experienced operators may need to spend more time, attention, or energy to 

perform a complex analysis of information so as to complete the same task (Hart & Sheridan, 

1984; Secarea, 1990). Thus, the mental workload imposed by a given task load can vary 

significantly between individuals.  

Mental Workload and Environment 

Furthermore, the task load and the resulting perceived workload is not always constant 

during system operations. The task load and workload can vary due to changes in the 



41 

 

environment, or some other external demand, which can influence the number and complexity of 

cues that an operator must process to correctly perceive the environment. Hollnagel and Woods' 

(2005) Extended Control Model can be used to understand how the cognitive demands of a task 

might change by revealing the dependencies among the layers of activities and simultaneous 

function of control loops. To start with, the model describes how the performance of a Joint 

Cognitive System takes place on several layers of control: tracking, regulating, monitoring, and 

targeting (Hollnagel & Woods, 2005). The demand of these simultaneous processes vary 

depending if the person is familiar with the task (i.e. novice vs expert), performs a task that 

requires several layers of control (i.e. flying and navigating), or encounters external issues (i.e. 

environmental disturbances). These variable factors can change the time constants and cognitive 

demands of a task, depending on their relative importance to the user’s primary goals, 

consequently effecting the user’s perceived level of workload and making workload difficult to 

model. 

Measuring Mental Workload 

Often varying significantly throughout a work period, workload can also be difficult to 

model perfectly because it cannot be directly observed. It must be inferred from the observation 

of overt behavior or the measurement of psychological and physiological processes (Cain, 2004). 

As a result, measuring human workload requires subjective testing based on the opinion of a 

participant or an expert or objective testing through computational approaches. In this thesis, the 

NASA Task Load Index (NASA-TLX), a subjective workload measure, and Visual, Auditory, 

Cognitive, Psychomotor (VACP) method, an objective workload measure, are covered 

(Bierbaum, Szabo, & Aldrich, 1989; Hart & Staveland, 1988). 
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Workload can be measured through both subjective and objective means. Subjective 

workload assessments are used to ask the participant to estimate the perceived mental workload 

they experience in response to a specific task load. They are frequently performed after an 

experiment is completed, typically using a survey or questionnaire such as the NASA-TLX (Hart 

& Staveland, 1988). These self-assessment evaluations (see Appendix 1) can capture the 

perception of mental workload, especially when the effects of many different contributing factors 

may be difficult to comprehend (Hart & Staveland, 1988). While subjective measures may easily 

lend themselves to both researchers and subjects, this type of measure can be influenced by an 

individual’s personal judgment, heuristics, or biases. In many cases, subjective measures use a 

scaling system to record an individual’s workload judgment about a task after the experiment is 

completed. However, information fidelity erodes as time elapses. If a task was performed early 

in the experiment or a questionnaire was conducted well after the task occurred, then the subject 

may only be able to accurately recall the most challenging or latest iteration of that task (Hart & 

Staveland, 1988). 

The NASA-TLX is an example of a subjective workload evaluation technique that is 

pertinent to the research performed in this thesis. It was developed by the Human Performance 

Group at NASA’s Ames Research Center over several years of laboratory studies involving 

simple manual control tasks, complex supervisory control tasks, and aircraft simulations (Hart & 

Staveland, 1988). The subjective assessment tool uses a multi-dimensional rating scale that 

measures the operator’s perceived workload level by requiring subjects to rate task demands on 

six independent subscales: mental demand, physical demand, temporal demand, perceived 

performance, effort, and frustration level (NASA, 1986). Each subscale is scored in five point 

increments on a 100 point scale and then prioritized from least to most important by the rater. 



43 

 

Descriptions of the six subscales are typically given in the form of questions and are shown in 

Table 6. 

Table 6. NASA-TLX Subjective Measures – adapted from (Hart & Staveland, 1988) 

Category Questions 

Mental Demand 
How much mental and perceptual activity was required? Was the task 

easy or demanding, simple or complex? 

Physical Demand 
How much physical activity was required? Was the task easy or 

demanding, slack or strenuous? 

Temporal Demand 

Temporal Demand: How much time pressure did you feel due to the 

pace at which the tasks or task elements occurred? Was the pace slow or 

rapid? 

Perceived 

Performance 

How successful were you in performing the task? How satisfied were 

you with your performance? 

Effort 
How hard did you have to work (mentally and physically) to accomplish 

your level of performance? 

Frustration Level 
How irritated, stressed, and annoyed versus content, relaxed, and 

complacent did you feel during the task? 

 

The overall workload score is then computed based on the weighted averages of all the 

subscales. Researchers can gain insight into how difficult a task is perceived to be and which 

resources are most important to the rater based on the task demand ratings selected for each 

subscale, the prioritization of subscales, and overall workload score. This method enables 

researchers to gain insight into the mental state of a human operator and the influence of task 

load on perceived workload with low intrusiveness and implementation requirements (Hart & 

Staveland, 1988). However, measuring mental workload through NASA-TLX scores has its 

disadvantages. First of all, a user may not recall their workload accurately because workload 

scores are reported after the task has been completed, rather than in the moment. Secondly, 

human-in-the-loop studies are time intensive and expensive. This makes it difficult for 

researchers to collect a large amount of data points in a short period of time. Finally, this method 
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does not provide a way of measuring the second-by-second changes in workload that a user may 

experience in the course of a task. 

On the other hand, objective measures have also been used to estimate an operator’s 

mental workload. Objective workload measures are predictive in nature and can calculate the 

cumulative workload imposed by a series of tasks through computer simulations or direct 

performance measures. Given there is an established benchmark of tasks to be performed in a 

controlled environment, objective workload models can help researchers predict when an 

operator is near their red-line, identify which tasks are causing the red-line, and narrow in on 

which resource channel(s) are being overloaded (Bierbaum et al., 1989). For this reason, 

objective workload models can offer a better evaluation of workload throughout each stage of the 

system (D.K. Mitchell, 2000). This insight enables designers to pinpoint periods of high 

workload and modify the system design to mitigate burdening workload conditions for the 

operator. 

One of the most reliable methods for modeling human workload is the Visual, Auditory, 

Cognitive, Psychomotor (VACP) method (Bierbaum et al., 1989) (see Appendix 2). Built upon 

Wicken’s MRT (1984), the VACP model objectively assesses workload demands across the 

following seven resource channels: auditory perception, cognitive, fine psychomotor, gross 

psychomotor, speech, tactile, and visual perception. The VACP scale uses task ratings developed 

by Subject Matter Experts (SME) to explain the degree to which each resource component is 

used by a particular task over time (McCracken & Aldrich, 1984). Using this technique, VACP 

considers any excess demands placed on a specific resource by calculating the overall workload 

score for a particular instance in time for each VACP channel (Wickens, 2002). The fundamental 

idea is that tasks that utilize multiple resources will impose a higher workload on the operator 
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because each VACP channel can only service one task demand at a time. In this manner the 

simulation model can offer predictive data on the VACP demands placed on an individual in a 

given scenario (Hugo & Gertman, 2012). Furthermore, the simulation model can also create a 

workload profile to display the changing workload demands over time in a given scenario. 

In summary, findings from prior research reinforce the need for reliable measures of 

operator’s mental workload when employing new systems such as MUM-T. It is important to not 

only utilize subjective workload measures, but also objective workload measures to 

quantitatively capture the operator’s workload levels when performing a task or multiple tasks. 

Tools such as the VACP method offer greater insight into the pilot’s workload changes when 

operating UAVs and can help system designers determine when the pilot is likely overloaded or 

underloaded and determine the responsibilities leading to the condition of concern.  

Human Performance Modeling and IMPRINT 

To integrate pilots and UAVs into a cohesive system, designers must consider the effect 

that Human-Agent Interactions (HAI) have on the pilot’s cognitive workload. A useful tool for 

modeling cognitive workload and testing design options is through the Improved Performance 

Research Integration Tool (IMPRINT) (Alion Science and Technology Corporation, 2009). This 

section investigates the background and application of IMPRINT to explain how utilizing this 

tool is appropriate and useful for studying the effect of HAI on the pilot’s cognitive workload 

when commanding UAVs. 

Human performance modeling and simulation of operator workload are useful when 

trying to discover the innovative capabilities of new system designs and HAI with a system. In 

order to evaluate the workload that is imposed upon a pilot during air operations, engineers need 

a method to objectively measure the amount of workload produced within a given human-agent 
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system. One approach to doing this is by performing a Human-In-The-Loop (HITL) study by 

building and testing multiple system designs and subjectively measuring the amount of workload 

experienced by each test subject. However, this process is inefficient and ineffective as it 

requires a simulation of each simulation condition to be constructed, recruiting and running the 

HITL simulations with multiple test subjects, and then analyzing and understanding the resulting 

data. Thus this approach can be time consuming and expensive. Furthermore, the workload 

values are specific to the test subjects and the simulated scenario.  

An alternative workload measure would be to study the effect of HAI on the pilot’s 

cognitive workload by using analytical modeling software. A modeling tool that could facilitate a 

method to estimate pilot workload is IMPRINT. IMPRINT can be utilized to create a Discrete 

Event Simulation (DES) that simulates the predicted workload of the pilot when interacting with 

both the cockpit and the UAVs. This alternative method shows promise in evaluating human 

workload during manned-unmanned flight operations because it is low cost and low risk. 

Introduction of IMPRINT 

IMPRINT is a dynamic, stochastic, discrete event modeling tool specifically designed to 

evaluate the interactions of human users and system technologies (Rusnock & Geiger, 2013). It 

was developed by ALION and funded by the U.S. Army Research Laboratory, Human Research 

& Engineering Directorate, to support manpower and personnel integration as well as human 

systems integration (Alion Science and Technology Corporation, 2009). Originally released in 

1995, IMPRINT has been used with several human trial and theoretical experiments from human 

performance evaluations to the optimization of manning levels (Allender, 2000; Cassenti, Kelley, 

Colle, & McGregor, 2011; Harriott, Zhang, & Adams, 2013; Mitchell, D. K., Samms, C., & 

Wojcik, 2006; Rusnock & Geiger, 2014). It can test multiple alternative scenarios or system 



47 

 

designs in a short period of time as well as quantify the mental workload for the human operator. 

In 2005, a more robust version of the program called IMPRINT Pro was released, which 

included tool upgrades as well as the ability to integrate the programming language C# for 

greater flexibility (Alion Science and Technology Corporation, 2009). However, for the purposes 

of the thesis, IMPRINT Pro will be referred to as IMPRINT. 

Given this capability, modelers can use IMPRINT to analyze the cognitive demands 

experienced by the operators during specific tasks or at discrete time intervals throughout a 

scenario. The tool empowers modelers to discover emergent results in the data, test hypothetical 

adjustments of an interface, and determine the general efficiency of a system. Furthermore, this 

technique aids researchers in determining which tasks can be performed concurrently and which 

ones are likely to interfere with each other.  

Fundamentals of IMPRINT 

IMPRINT is a human performance modelling software that can be used to analytically 

study the effects of cognitive workload on operators during sample mission profiles. In this 

context, workload is defined as a measure of the task load, mental effort, or strain perceived by 

the human, with more tasks or more difficult tasks generally inflicting higher perceived 

workload. The theoretical basis for the mental workload option of IMPRINT is MRT where 

workload demands are assessed across several different resource pools to develop an objective 

measure of workload (Wickens, 2002). This enables researchers to account for demands placed 

on specific channels and identify any potential conflicts between them. 

Using MicroSaint Sharp, an embedded discrete event task network modeling language, 

IMPRINT implements MRT by providing system designers with the ability to model human 

workload and performance as a function of time through tracked activities performed by the 
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human or computer (Powers & Gacy, 2018). IMPRINT enables the system designer to use 

discrete task-level information to construct and parametrize task networks that represent the 

flow, performance time, and accuracy of operational missions. These task networks can be built 

by the system designer using either a VACP or advanced workload analysis. For the purpose of 

this research, only the VACP method will be discussed in further detail as it is the most 

appropriate method for analyzing the MUM-T system. 

IMPRINT also consists of four autonomous modules: the Equipment, Warfighter, Forces, 

and Mission modules. Each module is purposely designed to offer specific data outputs to inform 

different decisions (Alion Science and Technology Corporation, 2009). For the purpose of this 

research, specific focus will be placed on the Mission module. The Mission module, using the 

VACP analysis method, simulates the effects of task times and workload ratings for each 

resource on the overall system performance. The task networks in this type of module are 

developed using direct observations and data collection to estimate task time probability 

distributions for each action and mental workload values for each human operator action. 

Furthermore, the various system allocations can be modeled and manipulated to incorporate 

automation by assigning specific tasks to be performed by the human or machine.  

During the mission module simulation, IMPRINT predicts task performance and 

calculates how much workload each operator is experiencing throughout the mission (Alion 

Science and Technology Corporation, 2009). When using the VACP workload methodology in 

the Mission module, system designers must identify 

1) The tasks necessary to operate a proposed system,  

2) The order or logical conditions in which they must be performed, 

3) The distribution of time duration for performing the tasks,  
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4) The operators who perform them, as well as 

5) The workload and the mental resources expected to be used for each task (Hamilton & 

Bierbaum, 1992) 

This is accomplished by first completing a task analysis. A task analysis outlines the 

sequence of tasks performed, timing of the tasks, workload associated with each task, and 

allocates these activities to the human or computer. This information is used to develop a task 

network in IMPRINT. Each task in the network is assigned a workload rating from one to seven 

for each of the following VACP channels: visual, auditory, cognitive, fine motor, gross motor, 

speech, tactile, or a combination of any of these seven resources. See Appendix 2 for the 

standardized VACP values used in IMPRINT (Alion Science and Technology Corporation, 

2009). The workload ratings are combined in the IMPRINT simulation to create a workload 

profile that provides an objective measure of workload at each instant throughout the trial. This 

data also makes it possible for researchers to calculate a time-weighted average workload across 

the entire trial. Using this information, it is possible to show the relationship between workload 

and performance.  

Once the baseline task network has been developed, small changes can be made to the 

task flow to test several design concepts. For instance, the task flow can be executed several 

times using variations in the task times or frequency of occurrence to assess different goals and 

operator workload levels. In addition, IMPRINT can be customized by the system designer who 

can write C# code to perform specific actions at certain times, such as the beginning or ending of 

specific tasks. By providing a blend of pre-structured tools and programming flexibility to the 
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modeler, the resulting data from these simulations can be further analyzed to determine the 

effects of activities on human workload. 

At the completion of the simulation, IMPRINT can compare the minimum acceptable 

mission performance time and accuracy to the predicted performance. Using these results, the 

modeler can study the range of outcomes that occur in the mission. This is a valuable capability 

for analyzing workload data because it can help analysts determine whether an operator such as a 

pilot is task saturated when performing specific activities such, as commanding one or multiple 

UAVs. 

Research Gap 

As a whole, IMPRINT is a valuable tool for defining the operators and the workload of 

tasks, providing an automated means of task switching, and generating reports that highlight the 

results of both system and human performance variation. It can test multiple alternate scenarios 

in short amounts of time, consuming fewer resources than a HITL experiment. These capabilities 

are what make IMPRINT a powerful and effective method for modeling the effect of HAI on an 

operator’s cognitive workload when commanding a machine or computer agent. 

Historically, researchers have predicted mental workload using IMPRINT to address 

complex models concerning system design and human behavior interactions. IMPRINT has been 

previously used to perform human workload modeling for multiple human-agent technologies 

such as Shadow UAVs (Hunn & Heuckeroth, 2006), Micro Air Vehicles (Pomranky & 

Wojciechowski, 2007), U.S. Army Tanks (D. K. Mitchell, 2009), and autonomous ground 

vehicles (Pop, Michelson, & Engineering, 2018). It has also been used to evaluate mental 

workload differences between human-human teams versus human-robot teams (Harriott, 

Zhuang, Adams, & Deloach, 2012), and determine manpower requirements for military 
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applications and research (Rusnock & Geiger, 2013). Each of these examples illuminate the wide 

range use of IMPRINT technology for modeling human-machine interactions.   

In a 2011 study conducted by Schneider and McGrogan, used IMPRINT to model the 

potential effects of Multi-Aircraft Control (MAC) on pilot workload when implementing MAC 

with the MQ-1B Predator system architecture. This research concluded that pilots experienced 

low workload when operating one or two Unmanned Aircraft Systems (UAS) during benign 

operations. However workload quickly built up when pilots operated three or more UASs and 

became unmanageable for a single pilot to handle during dynamic operations. This study 

highlighted the need for techniques and technology to reduce task and communications demands 

on UAS pilots to effectively implement MAC.  

While MAC for UAS have been studied, there is limited research investigating workload 

impacts of MUM-T in military flight operations. This is likely due to the novelty of this type of 

technology and human-agent system integration. In view of that, this thesis used IMPRINT to 

gauge the effect of HAI on the pilot’s cognitive workload when commanding UAVs. Similar to 

the research conducted by Schnieder and McGrogan (2011), it is possible to model existing 

operation procedures and inputs from external stimuli (i.e. UAVs flying around a fighter aircraft) 

to observe and predict workload levels through IMPRINT. The MUM-T system has been broken 

down into human and autonomous components where the operator (i.e. pilot) and the agents (i.e. 

UAVs) can accomplish a measurable set of finite tasks that are assigned corresponding workload 

values. Using this task network, IMPRINT can help system designers explore the effects of 

MUM-T on the pilot’s cognitive workload and the human-agent team’s mission performance. 
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Summary 

The literature presented in this chapter builds the necessary background knowledge to 

understand the research performed in the study and the overall significance of this work. The 

chapter focused on the development of automation, the concept of workload, and the relationship 

between the two with regard to human performance modelling. This research aims to gather each 

of these research concepts together to develop a cohesive study that investigates how IMPRINT 

can be applied in a novel way to quantitatively model the mental workload of pilots when they 

are operating their aircraft and commanding UAVs simultaneously. 

Understanding workload theory and the application of IMPRINT will enable the reader to 

answer the first two investigative questions regarding what effect(s) HAI have on the pilot’s 

cognitive workload and overall mission performance when commanding UAVs. The final 

research question focuses on different amounts of autonomous control abstraction. It investigates 

how much of the operator’s cognitive tasks should be relinquished by the command pilot and 

reassigned to the UAVs to reduce the amount of workload experienced by the pilot to reduce 

operator workload and increase mission performance in the flight operation task. Finally, the 

research around this topic was explained, demonstrating a gap that needed to be filled and how 

this study aims to contribute to the body of knowledge by using IMPRINT in an innovative way.  
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III. A New Model of Airpower: Development of an IMPRINT Model to Analyze the Effects 

of Manned-Unmanned Teaming on Mental Workload 

Abstract 

Due to the advent of autonomous technology coupled with the extreme expense of 

manned aircraft, The Department of Defense (DoD) has increased interest in developing 

affordable, expendable Unmanned Aerial Vehicles (UAVs) in Manned-Unmanned Teaming 

(MUM-T). This concept employs UAVs to become autonomous wingmen for jet fighters in 

mosaic warfare. With a single pilot commanding the UAVs while piloting their aircraft, they 

may find it challenging to manage all systems should the system design not be conducive to a 

steady state level of workload.  

To understand the potential effects of MUM-T on the pilot’s cognitive workload, an 

Improved Performance Research Integration Tool (IMPRINT) Pro, pilot workload model was 

developed. The model predicts pilot workload in a simulated environment when interacting with 

the cockpit and multiple UAVs to provide insight into the effect of Human-Agent Interactions 

(HAI) on the pilot’s cognitive workload and mission performance. This research concluded that 

peaks in workload occur for the pilot during periods of high communications load and this 

communication may be degraded or delayed during air-to-air engagements. 

Key Words 

Human-Agent Interactions, Unmanned Aerial Vehicles, Manned-Unmanned Teaming, 

Mental Workload, Improved Performance Research Integration Tool, Human Performance 

Modeling 
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Introduction 

Due to the advent of autonomous technology coupled with the extreme expense of 

manned aircraft, the DoD has developed an interest in constructing affordable Unmanned Aerial 

Vehicles (UAVs) to become autonomous wingmen for jet fighters in mosaic warfare (Drew, 

2016). Like a mosaic that forms a whole picture out of smaller pieces, battlefield commanders 

can utilize disaggregated capabilities, such as low-cost UAVs, to operate in contested 

environments (Magnuson, 2018). Utilizing UAVs to complement manned aircraft may offer 

advantages such as increased pilot survivability as well as amplified firing power to fill 

capability and capacity gaps. However, there are complications with this new strategy. For 

example, in an envisioned architecture, commonly referred to as Manned-Unmanned Teaming 

(MUM-T), command pilots will need to deploy capabilities from the UAVs in addition to 

controlling their own aircraft. The need to devote attention and mental resources to both 

controlling their own aircraft and the UAVs could be challenging for pilots should the system 

interface design not be conducive to maintaining a manageable level of workload. 

To integrate pilots and UAVs into a cohesive system, designers must consider the effect 

that Human-Agent Interactions (HAI) have on the pilot’s cognitive workload. In this context, 

workload is defined as a measure of the task load, mental effort, or strain perceived by the 

human, with more tasks or more difficult tasks generally inflicting higher perceived workload. 

To evaluate the workload that is imposed upon a pilot during air operations, engineers need a 

method to objectively determine the amount of workload produced within a given human-agent 

system. One approach is to perform Human-In-The-Loop (HITL) experimentation by 

prototyping and testing multiple system designs, including subjectively measuring the workload 

experienced by test pilots who fly simulated missions within the prototype system. While human 
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research and prototyping of automation produces valuable information, it is inefficient and 

ineffective as the process is tedious, lengthy, and costly to complete. There can also be safety 

issues involved when performing risky HITL experiments. As such, to design a system using this 

approach as the only feedback mechanism constrains the number and variety of alternative 

system designs which can reasonably be considered within a design effort. 

An alternative to HITL evaluations is to assess cognitive workload through analytical 

modeling. A modeling tool that could be employed to estimate pilot workload is the Improved 

Performance Research Integration Tool (IMPRINT). IMPRINT quantitatively models operator 

workload across several different resource channels through the incorporation of the Visual, 

Auditory, Cognitive, and Psychomotor (VACP) scale (see Appendix 2) (Bierbaum et al., 1989). 

The tool can be used to simulate various system configurations and their effects on pilot 

workload within a Discrete Event Simulation (DES). This method can provide a lower cost 

method than HITL evaluations and permit a greater number of alternative design options to be 

explored. This tool can be particularly effective when coupled with HITL evaluations to provide 

validation and to ground assumptions about human behavior in novel circumstances, where 

human behavior is often unpredictable (Goodman, Miller, Rusnock, & Bindewald, 2017; 

Rosenberg, 1982). 

In our current research, IMPRINT was used to construct a DES to assess the effects of 

MUM-T on operator cognitive workload and system performance. The baseline DES represented 

tasks performed by human subjects enrolled in a previously conducted HITL evaluation 

(Schumacher et al., 2017). The study replicated a dynamic, military, offensive counter-air 

scenario in which individual performance and mental workload could vary in real-time based on 

the operators’ capabilities.  
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An original baseline DES was developed to quantitatively capture the pilot’s cognitive 

workload levels when controlling both UAVs and manned aircraft. An alternative system 

configuration was then created to compare the baseline model to traditional aviation techniques. 

The findings presented in this research provided a significant step towards simulating the 

complexities of real-world activities by mirroring the highly dynamic nature of realistic military 

operations in a simulated environment. 

Method 

Design of the ATACM Study 

In order to understand this data set, the participants, mission scenario, and task 

environment from this study is reviewed in this section. Nine experienced former military pilots 

participated in the Autonomy for Air Combat Missions (ATACM) study. The ATACM study 

was a HITL experiment that developed and tested critical autonomous decision and machine 

learning technologies in a virtual simulation cockpit with the aim of enabling a single pilot to 

command multiple UAVs in flight while controlling his or her own aircraft in highly contested 

environments (Schumacher et al., 2017). After initial training and practice, each pilot flew four 

air-to-air trial engagements in which the pilot commanded three UAVs against four adversaries. 

For each trial, participants were given ten minutes to employ their own aircraft and those of the 

UAVs to destroy the four adversaries before the push point was reached. The scenario ended 

when any of the following occurred: 1) all four adversary aircraft were killed, 2) all three UAVs 

or “wingmen” were killed, 3) the pilot was killed, or 4) the push point was reached at ten 

minutes. The general mission scenarios are illustrated in Figure 6. 
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Figure 6. ATACM Mission Scenarios (Schumacher et al., 2017) 

The virtual simulation cockpit utilized in the ATACM experiment was composed of four 

major elements: 1) a pilot-vehicle interface, 2) a multi-UAV artificial-intelligence-based multi-

agent controller, 3) automated (scripted) low-level responses to commands, and 4) a virtual 

piloted mission simulation. Using these four resources, the test subjects were required to locate 

and target adversary aircraft by commanding three UAVs and utilizing their own aircraft to fire 

at targets. Video footage from the experiments was captured and used for analysis in this 

research. 

IMPRINT Baseline Model Development 

The information provided from the HITL was used to create the baseline DES model for 

a single human pilot commanded three UAVs against four enemy targets (see Appendix 3). As 

shown in Figure 7, the baseline task network model was composed of four task loops and one 

logic loop: 1) Aviate Personal Aircraft, 2) Utilize UAVs, 3) Utilize Personal Aircraft, 4) Receive 

Environment Noise, and 5) End Scenarios.  
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1) Aviate Personal Aircraft: the first task loop included basic tasks such as adjusting 

the flight controls or scanning the surrounding environment that the pilot performed 

when operating his or her own aircraft.  

2) Utilize UAVs: the second task loop included tasks such as commanding the UAV or 

supervising UAV attacks, which the pilot executed to deploy the UAVs. The pilot 

commanded the UAVs using a continuum of autonomous control abstraction that 

ranged from simple commands such as “turn left” or “fly at an altitude” to more 

complex commands such as “fly formation” or “attack target.” 

3) Utilize Personal Aircraft: the third task loop included tasks such as aviating the 

manned aircraft or attacking the adversary target, which the pilot performed in order 

to utilize his or her own aircraft to attack the enemy.  

4) Receive Environment Noise: the fourth task loop included the workload associated 

with receiving audio notifications over the radio.  

5) End Scenarios: the final logic loop included tasks that would trigger the DES to end 

if any of the stopping scenarios were fulfilled 
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Each of these task loops ran in parallel with one another as it was assumed that the pilot 

performed these activities concurrently. The final logic loop also ran concurrently with the other 

task loops in order for the software to evaluate whether or not the simulation satisfied one of the 

ending conditions. Once the task network was developed, each task was assigned a VACP 

workload value, task time, and decision probability. The finalized model was then validated in 

comparison to results obtained from the ATACM study (see Appendix 3).  

Within the DES, the independent variable was the use of UAVs in the DES. The 

dependent variables were the mission performance and mental workload of the pilot during a 

simulation run. In the first model set up, both the manned aircraft and UAVs were employed to 

attack the adversaries. In the second model set up, only the manned aircraft was employed to 

attack the adversaries. The mission performance was measured by calculating the number of 

enemy targets that survived. The workload of the pilot was determined using the VACP scores 

gathered from each model for a subset of thirty trials, producing a time- average for the baseline 

model.  

Analysis and Results 

After the creation of the baseline model, one thousand DES trials were run to study the 

effect of HAI on the pilot’s cognitive workload when commanding three UAVs against four 

enemy targets. In the first “baseline” model setup, both the manned aircraft and UAVs were 

employed to attack the adversaries. In the second “manned-only” model set up, only the manned 

aircraft was employed to attack the adversaries. For each condition, the mission performance and 
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mental workload of the pilot were calculated and then analyzed to compare how the system was 

effected by the incorporation of MUM-T.  

Mission Performance Analysis 

Figure 8 shows the percent of trials as a function of the number of enemy targets 

remaining at the end of each trial. 

 

Figure 8. Graph of Enemy Target Survival Results 

According to the data, the number of surviving enemy targets was reduced when the 

UAVs were incorporated into the model. The manned-only condition had 4 enemy targets 

survive per trial on average, while the baseline condition only had 2 enemy targets survive per 

trial on average. Furthermore, the incorporation of the UAVs resulted in all of the enemy targets 

being killed in 18.40% of the simulation trials. Conversely, 0% of the simulation trials resulted in 

all of the enemy targets being killed in the manned-only condition. This significant difference 

was expected due to the added attack capability that the pilot had with the three UAVs attacking 

four enemy targets instead of a single pilot carrying the weight of the battle. For this reason, the 
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incorporation of UAVs improved the human-agent team’s mission performance. Despite this 

result, the workload levels must also be analyzed to determine whether or not the pilot would be 

oversaturated with tasks when utilizing this supplementary technology. It is important to look at 

this difference in workload against the increase in mission capability to determine whether 

changes in workload levels are worth the improvement in mission performance. 

Workload Profile Analysis 

In this section, the total objective workload experienced by the operator was compared 

between the UAVs and manned-only DES models. IMPRINT calculated a workload summary 

based on the length of time the pilot spent performing a specific activity in relation to the 

combined VACP value(s) assigned for the interfaces of each task node. Events that were above a 

workload level of 60 were considered to be near or above the saturation threshold where the 

system imposed more work than the pilot could effectively perform (Mitchell, 2003; Schneider 

& McGrogan, 2011). In an ideal mission scenario, all workload levels would be below 60. 

It should be noted the NASA-TLX (Hart & Staveland, 1988), a self-assessment workload 

survey (see Appendix 1), was utilized in the ATACM study to record the test subjects’ individual 

workload judgments about a task after the experiment was completed. It was not possible to 

perform an Analysis of Variance (ANOVA) test to compare the objective workload values 

obtained from IMPRINT and subjective workload values obtained from the NASA-TLX surveys 

because only one condition was used from the ATACM study. Thus there is no variation 

expected in the NASA-TLX values. For this reason, only an analysis of the IMPRINT workload 

profile could be performed.  

The workload graph shown in Figure 9 provided insight into some of the interactions and 

implications from incorporating MUM-T into flight operations. At the beginning of the 
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simulation, the VACP value during the first part of the profile varied from 32 and 46 as the pilot 

planned the attack and deployed the UAVs in addition to his or her own aircraft to track the 

enemy targets. In the next phase, the workload consistently fluctuated between 40 and 42 when 

the pilot navigated the aircraft and supervised the UAV activity. This moderate level of workload 

was well below the saturation threshold, which suggested that these activities were manageable 

for the pilot as long as the aircraft did not experience any emergencies. 

The attack began in the third phase, causing the workload to spike above the red-line to a 

maximum of 61 when the pilot needed to scan the surrounding environment, assess the enemy 

target’s status, navigate the aircraft, and receive radio communications. It slowly declined to a 

minimum workload level of 32 when the attack subsided. Then the workload resumed to a 

manageable and steady pattern when the pilot subsequently returned to navigating the aircraft 

and supervising the UAVs in the fourth phase. However, this manageable level of workload did 

not last long. The mean workload immediately increased above the saturation threshold in the 

fifth phase when the pilot received radio communications for the second time and then slowly 

declined once again. The sharp spikes in workload indicated that the incorporation of 

communications is a failure point. The workload level is generally manageable, but it will 

require the pilot to employ workload mitigation strategies when communicating with other 

aircraft beyond the UAVs. 

In the sixth phase, the pilot returned to supervising the UAVs and navigating the manned 

aircraft. For an instant, the pilot experienced a sharp spike to 51 in workload due to the pilot 

receiving radio communication and supervising the UAVs to attack an enemy target at the same 

time. Despite this spike and slight workload fluctuations in phase seven, the workload levels 
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indicate an ideal situation for human-agent teaming with all of the aircraft in a benign mission 

mode.  

 

Figure 9. IMPRINT Workload Profile for Pilot in Baseline Model 

The workload graph shown in Figure 10 provided insight into some of the interactions 

and implications when MUM-T is eliminated from flight operations. With the exception of 

commanding any UAVs, the pilot performed the same tasks as described in the analysis of the 

baseline model workload profile. At the beginning of the simulation, the VACP values over the 

first part of the profile generally varied from 32-34 as the pilot planned the attack and deployed 

his or her own aircraft to track the enemy targets. In the next phase, the workload momentarily 

spiked in two instances when radio communication was received. Despite these cases, the 

workload consistently fluctuated from 32-34 as the pilot performed aircraft navigation and 
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was well below the saturation threshold. This reasonable level of workload suggested that basic 

aircraft control and navigation activities with no enemy engagement are manageable for the pilot.  

The attack began in the third phase, causing the workload to spike to a maximum of 47 

when the pilot needed to use the aircraft to attack the enemy target and receive radio 

communications. It steadily declined to a minimum of 18 when the attack subsided and pilot 

resumed normal aircraft navigation and control in the fourth phase. Despite the slight spike to 42 

in workload due to the transmission of radio communication, the workload levels were generally 

stable for the remainder of the mission. Throughout the mission, the pilot’s workload was 

manageable and much lower than the workload experienced in the DES including MUM-T. This 

was expected considering the pilot only needed to focus on his or her aircraft and did not need to 

command three other UAVs in addition to the manned plane. 

 

Figure 10. IMPRINT Workload Profile for Pilot in Manned-Only Model 
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Time-Persistent Average Workload Analysis 

Using the VACP workload values from IMPRINT, a single representative workload 

value was also computed by taking the time-persistent average across 30 DES trials. The time-

persistent average illustrated how hard the pilot worked as a whole to command the three UAVs 

by weighting the workload values by the duration the workload was experienced. According to 

the data, the pilot experienced a time-persistent average workload value of 42.34 for the baseline 

model. On the other hand, the pilot experienced a time-persistent average workload value of 

33.83 for the model lacking MUM-T. The results indicated that the pilot’s cognitive workload 

was mostly below the saturation level for both scenarios, but it varied significantly throughout 

the simulations.  

Through an analysis of the mission performance, workload profiles, and time-persistent 

averages, it was determined that the increase in mission capability is worth the difference in the 

pilot’s cognitive workload levels. The incorporation of MUM-T in flight operations improved 

the pilot’s ability to successfully strike enemy targets and was manageable as long as the pilot 

did not require immediate attention for anything critical such as aircraft emergencies or 

prolonged external communication. In the simulation setup, both the manned and unmanned 

aircraft were utilized to attack four enemy targets. There were two moments in time when the 

threshold saturation of 60 was exceeded due to incoming radio transmissions. However, these 

spikes were infrequent and most of the workload was well below the saturation threshold. This 

suggested that the operator workload is manageable for the pilot with some communications 

offloading, when necessary. In the event of higher levels of radio communications, which are 

likely in operational air missions, workload mitigation strategies will be required to ensure that 

there is no mission degradation.  



67 

 

Conclusion 

The research performed in this study sought to use DES to understand the effects of HAI 

on the pilot’s cognitive workload when commanding UAVs. This was accomplished by 

examining the tasks performed by human subjects in the ATACM study, and then designing a 

simulated task environment modeled after these tasks. The model was built in IMPRINT to 

investigate how human cognitive workload and mission performance was impacted when a pilot 

commanded three UAVs in addition to his or her personal aircraft. The DES was validated by 

comparing the mission performance and timing results to that of the ATACM study. The results 

of the simulation indicated that mission performance was improved by the use of 3 UAVs 

against 4 enemy targets in an air-to-air operation. Furthermore, peaks in workload occurred for 

the pilot during periods of high communications load and this communication may be degraded 

or delayed during air-to-air engagements. Using this information, designers could predict 

potential workload issues when the pilots command the UAVs and communicate with other 

aircraft or ground stations in future MUM-T systems. 

Future work in this area of research includes additional examination of alternative 

scenarios. In the next study, an alternate model will be created to simulate varying levels of 

autonomy to determine what would be the optimum level for operation of multiple UAVs. 

Furthermore, the current research is limited to data provided by the ATACM experiment. The 

next step would be to gather data that exists outside of a HITL experiment to develop a model 

that more realistically captures HAI between pilots and their UAVs in an operational 

environment. Once this type of data becomes available, an improved model could be used to 

investigate improvements in MUM-T without the problematic costs of time, money, and 

resources.  
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IV. Simulation-Based Evaluation of the Effects of Varying Degrees of Control Abstraction 

for Manned-Unmanned Teaming on Mental Workload of Pilots 

Abstract 

The future of air combat is expected to evolve significantly to include new technologies 

and novel concepts of operation. The Manned-Unmanned Teaming (MUM-T) concept involves 

low cost, attritable Unmanned Aerial Vehicles (UAVs) that could be deployed alongside a 

manned aircraft. The UAVs act as a complementary asset and bolster offensive air operations. 

Given the complexity of future operating environments, the degree of autonomous control 

required for pilots to concurrently operate multiple UAVs and their own aircraft is one area of 

concern. To determine the amount of autonomous control abstraction that has the largest impact 

in reducing operator workload and increasing system performance, a predictive workload model 

was developed using the Improved Performance Research Integration Tool (IMPRINT). This 

research concluded that the UAVs should be commanded through a combination of Vector 

Steering, Pilot Directed Engagements, and Tactical Battle Management to increase mission 

performance and maintain the pilot’s cognitive workload at a manageable level.  

Key Words 

Human-Agent Interactions, Unmanned Aerial Vehicles, Manned-Unmanned Teaming 

(MUM-T), Mental Workload, Improved Performance Research Integration Tool, Human 

Performance Modeling, Level of Automation, Autonomous Command and Control 

Introduction 

The U.S. Air Force’s 2016 Small Unmanned Aircraft Systems Flight Plan (Secretary of 

the Air Force Public Affairs, 2016) described the long-term vision for remotely piloted aircraft in 

the next 20 years. It was envisioned that a single operator would command multiple platforms of 
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Unmanned Aerial Vehicles (UAVs), such as in Manned-Unmanned Teaming (MUM-T) system, 

where one or a few full-sized remote aircraft would take on traditional manned wingman roles. 

To fulfill this vision, a surge of developments have been made in the development of MUM-T 

platforms. Several prototypes of MUM-T have taken flight, most notably the Air Force Research 

Laboratory’s (AFRL) XQ-58A Valkyrie wingman. The XQ-58A is a long-range, high subsonic 

UAV which completed its first flight in March 2019 (88 Air Base Wing Public Affairs, 2019). 

The successful completion of this experimental flight test is a major step forward towards 

integrating small robotic fighter jets into air warfare. However, the United States is not the only 

country dabbling in such technology. Other countries such as Australia and China have already 

started to develop increasingly sophisticated UAVs to supplement their military’s air operations 

(Joe, 2019; Stevenson, 2019). 

With the Pentagon’s increasing focus on competing with China and Russia for military 

dominance, the Department of Defense (DoD) must re-evaluate some of the basic conventions of 

flying to leverage the best of traditional aviation and emerging capabilities to maintain its 

dominance in the skies. It is expected that American UAVs, similar to the likes of the XQ-58A, 

will be paired with an F-22 Raptor or F-35A Joint Strike Fighter to give the United States Air 

Force’s two stealth fighters the ability to fight in combat like never before (Tevithick, 2019). A 

single fighter aircraft could have several UAVs, each carrying additional weapons, radars and 

communication data links. The platform would increase pilot survivability by scouting ahead, 

absorbing enemy fire, and multiplying the enemy’s targeting. Additionally, these resources could 

give the command aircraft amplified firing power.  

However, there are complications with this new strategy should the DoD choose to adopt 

MUM-T for frontline use. While pilots have controlled UAVs from afar using Remotely Piloted 
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Aircraft (RPA), the idea of flying both manned and unmanned aircraft presents a bigger training 

challenge (Wassmuth & Blair, 2018). The command pilot bears the weight of the combat effort 

and will need to deploy capabilities from the UAV in addition to controlling the manned aircraft. 

The challenge of maintaining close control of UAVs requires a new approach to autonomous 

control and integration. This balancing act could be difficult for pilots to maintain should the 

system interface design not be conducive to maintaining a manageable level of workload. 

Therefore, system designers must understand the potential effects of varying amounts of 

autonomous control when designing human-agent teams, especially for systems such as MUM-

T. Automation should ideally free operators from tedious, mundane, and time-consuming tasks, 

enabling them to focus on more critical responsibilities (Hart & Sheridan, 1984; National 

Research Council, 1982). However, automation does not completely remove all operational 

burdens from the human as it transitions the operator from a worker to a monitor. For instance, 

pilots controlling UAVs will usually be commanding and overseeing the actions performed by 

the UAVs. The technology could distract the pilot from managing the battle or flying their own 

aircraft due to poor interface design, lag time, software bugs, user error, added stress, or an 

unbalanced workload (Adams & Pew, 1990; Billings, 1991; Endsley, 1996; Hart & Sheridan, 

1984; Norman, 1989).  

To prevent any tendencies towards these undesirable issues, it is crucial that researchers 

investigate how people and automation can effectively team to give the operators a level of 

workload which permits them to perform time critical control tasks. Previous research has 

provided insight into framing the amount of control abstraction between the human operator and 

the agent based on the level of control inputs given by the operator and interdependencies 

between the two (C. D. Johnson et al., 2017; M. Johnson, Vignati, et al., 2018). The five Levels 
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of Human Control Abstraction (LHCA) (C. D. Johnson et al., 2017) describes the cognitive tasks 

relinquished by the human operator and reassigned to the automation. The reduction of operator 

control inputs can be modelled using the Interdependence Analysis Tool (IAT) (M. Johnson, 

Vignati, et al., 2018). This tool helps designers to visually see how human operators and 

automation support one another in a joint activity. Through an analysis of the effects of 

increasing autonomous control on the pilot’s cognitive workload and mission performance, this 

research uses both of these frameworks to provide a recommendation for selecting potential 

system designs for the interactions between the pilot in the cockpit and the UAVs in the sky. 

This is a significant area to explore because the command structure of the overall platform 

affects the human’s cognitive workload and, thus, the human-agent team’s overall mission 

performance in combat.  

Method 

The main objective of this research was to evaluate how much of the operator’s cognitive 

tasks should be relinquished by the command pilot and reassigned to the UAVs to reduce 

operator workload and increase mission performance in the flight operation task. The IMPRINT 

model illustrated in Figure 11 (Andrews, 2020) was modified to address this research question. 
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With the inherent complexity of Human-Agent Interactions (HAI), this study made 

several assumptions in order to create a simplified IMPRINT model that could be analyzed 

towards the understanding of general HAI behavior. First of all, the DES assumed that all 

command pilots had similar levels of ability, expertise, competence, and speed. Therefore, the 

single model did not account for learning effects or different strategies that participants may have 

used. It was also assumed that all pilots utilized a “backseat” strategy to control the UAVs, 

meaning that the pilots forward deployed the UAVs before getting involved in the engagement 

themselves.  

Moreover, the model focused on conditions in the peak performance region in which the 

human subjects arrived at their checkpoint and were actively engaged with the opponents. This 

meant that the segment of time in which the operators were traveling to the engagement zone 

was not included in the model. Furthermore, each simulation had the same conditions and did not 

feature any abnormal or unanticipated changes. It was assumed that any deviations in recording 

times did not trigger a significant decrease in model accuracy and each of the distributions 

applied in the model were an accurate representation of the participant pool. Finally, workload 

values and task times were based on data provided by a previously conducted Human-In-The-

Loop (HITL) study, and as such, its applicability may be limited beyond this scope. It is noted 

that it may be impossible to achieve this direct comparison during an actual tactical mission. 

Using this model, the effect of HAI on the pilot’s cognitive workload was studied for five 

different conditions described in Table 7. As the amount of autonomous control abstraction 

increases, the number of cognitive tasks relinquished by the command pilot and reassigned to the 

UAVs also increases. Additionally, the amount of approval authority required before a UAV 

initiates an action decreases.  
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Table 7. IMPRINT Model Conditions for Increasing Autonomous Control Abstraction 

 Condition LHCA Description of Pilot’s Role 
Description of UAV 

Role 

1 

Traditional 

Manned 

Wingman 

(Fully 

Manual) 

N/A 

Pilot performs all planning, 

decision making, and action 

execution for manned aircraft 

No UAV involvement 

2 
Vector 

Steering (VS) 

Parametric 

Control 

Pilot flies manned aircraft; 

performs all planning and 

decision making for individual 

UAV movements 

UAV follows specific 

Pilot commands 

3 

Pilot Directed 

Engagement 

(PDE) 

Goal-

Oriented 

Control 

Pilot flies manned aircraft; 

performs general planning and 

decision making for 

organizational movements 

UAV autonomously 

decides how to 

execute general Pilot 

commands 

4 

Tactical Battle 

Manager 

(TBM) 

Goal-

Oriented 

Control 

Pilot flies manned aircraft; 

performs overarching planning 

and decision making for expected 

outcomes with minimal 

interference 

UAV decides and acts 

autonomously, unless 

recommended action 

is vetoed by the Pilot 

5 

No Manned 

Aircraft 

Engagement 

(Combination) 

Parametric 

and Goal-

Oriented 

Control 

Pilot flies manned aircraft; offers 

no assistance in attacking enemy 

targets, only commands UAV 

from afar 

UAV executes pilot 

commands, which are 

a combination of VS, 

PDE, and TBM 

commands 

 

Each level of control can be executed using a specific structure of command. For 

instance, the pilot may give a VS command by directing a single UAV to “turn left 45 degrees” 

or “fly airspeed 180 knots.” Both of these commands are at a low degree of control abstraction 

because the UAV rapidly executes a specific, linear action in response to the pilot’s command. 

The operator may alternatively give a PDE command by directing a group of UAVs to “form up” 

on a designated lead UAV and fly to “intercept target 1,” meaning that the UAVs would 

autonomously determine how to fly in formation behind the leader and come in contact with the 

enemy target. This type of command is at a mid-degree of autonomous control abstraction 



75 

 

because the UAVs autonomously decide how to orientate themselves into a position specified by 

the pilot. Furthermore, the pilot could give a TBM command by ordering a single UAV or 

formation of UAVs to “attack target 1.” This means that the UAVs would use high-level 

intelligent reasoning to autonomously decide how to attack the target and then carry out the plan 

without requiring prior approval from the pilot. In each of these cases, the pilot is able to veto or 

intervene before the execution of a decision by an UAV. The types of commands and their 

corresponding conditions are summarized in Figure 12.  

 

Figure 12. Examples of UAV Commands for MUM-T 

 For each of the five levels of UAV control described in Table 7, the baseline IMPRINT 

model was altered to simulate the five types of conditions. For the first condition, Traditional 

Manned Wingman Role, the pilot alone performed all planning, decision making, and action 

execution using his or her own aircraft to mirror traditional air warfare. However, the pilot is at a 

disadvantage as they are engaging 4 enemy aircraft without any support. Since no UAVs were 
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deployed by the pilot, the “Utilize LW UAVs” loop was eliminated from the task network 

because there were no UAVs available to offer assistance to the manned aircraft. The modified 

baseline model is shown in Figure 13 on page 78.  

For the next three conditions (VS, PDE, and TBM), the level of decision authority 

granted to the automation rose as the amount of autonomous control abstraction increased from 

VS to TBM. To simulate the increase in control abstraction, three separate conditions with 

varying levels of workload and task times were created, summarized in Table 8 and Table 9.   

Table 8. IMPRINT Task Times and Workload Values for Commanding UAVs 

Condition 

Task 

Time 

(seconds) 

Workload Value 

Auditory Cognitive Speech Total 

VS 40 4.30 5.30 2.00 11.60 

PDE 10 4.30 5.00 2.00 11.30 

TBM 5 4.30 4.60 2.00 10.90 

 

Table 9. IMPRINT Task Times and Workload Values for Overseeing UAVs Perform Commands 

Condition 
Task Time 

Distribution 

Workload Value 

Cognitive Visual 

VS 

Weibull 

Scale: 0.39814 

Shape: 1.16338 

6.80 5.00 

PDE 

Log Logistics 

Scale: 3.38044 

Shape: 13.74008 

6.80 4.40 

TBM 

Weibull 

Scale: 114.64107 

Shape: 2.77098 

6.80 4.00 

 

The modified baseline model is shown in Figure 14 on page 80. In the DES, the 

probability of choosing a specific task node was set to 1 to simulate one of the three conditions. 

For example, the probability of the pilot giving a high level command was set to 1 and the other 
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probabilities were set to 0 to analyze the effects of only utilizing TBM commands. This method 

ensured that only one condition was analyzed at a time. Furthermore, the task completion time to 

command a UAV decreased as the level of command increased to appropriately compare the 

amount of time it would take each condition to execute the same action. For instance, a pilot 

would need to give multiple simple, low vector task commands in order to get a UAV to attack 

an enemy target. Conversely, the pilot would only need to give one complex, tactical task 

command to order the UAV to perform the same action. Finally, the task probabilities and time 

distributions for a UAV to execute a command were modeled after the data collected from the 

ATACM experiments (see Appendix 3). 

For the final condition, No Manned Aircraft Engagement, the pilot offered no assistance 

to the UAVs when attacking an enemy target. Instead, the UAVs were forward deployed and 

commanded by the pilot using either VS, PDE, or TBM commands to attack the adversaries. 

Accordingly, the “Utilize Personal Aircraft” loop was eliminated from the task network since the 

pilot was not engaging any of the enemy targets personally, shown in Figure 15 on page 80. This 

scenario was built to evaluate whether or not the involvement of a pilot was worth the risks 

associated with participating in the engagement themselves. 
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Analysis and Results 

In this DES, three enemy targets fought against one pilot and three UAVs. The 

independent variable was the amount of autonomous control abstraction given by the pilot to the 

UAVs. The dependent variables were the mission performance and mental workload of the pilot 

during a simulation run. One thousand trials were run in IMPRINT for each of the five 

conditions listed in Table 7. Mission performance was measured by calculating the number of 

enemy targets that survived compared to the number of UAVs that survived. In addition, the 

workload of the pilot was determined using the workload profiles and VACP scores gathered 

from 30 trials, producing five different time-persistent averages for each model.  

Mission Performance Analysis 

The total number of UAVs remaining after the simulated engagement are shown in 

Figure 16, and the total number of enemy targets are shown in Figure 17. The number of UAVs 

remaining was not calculated for the Traditional Manned Wingman, fully manual model as no 

UAVs were utilized in this condition. 
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Figure 16. Graph of UAV Survival Results for Conditions 2-5 

  

Figure 17. Graph of UAV Survival Results for Conditions 1-5 
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 Using the UAV survival results obtained from the DES, a statically significant difference 

was observed between the means of each condition as determined by a one-way Analysis of 

Variance (ANOVA) using a 95% confidence interval (see Appendix 4). This result provided 

statistical evidence that increasing the level of autonomous control abstraction did effect the 

UAV survival rate. However, it was observed that there was no statically significant difference 

among sample means for VS-PDE, PDE-Combination, and TBM-Combination pairs as 

determined by a Tukey Honestly Significant Difference (HSD) test (see Appendix 4). 

The percentage of surviving UAVs per 1,000 trials (see Table 10) and average number of 

surviving UAVs per trial (see Table 11) were then calculated to decide the amount of 

autonomous control abstraction that resulted in the greatest number of UAVs that survived for 

the most number of trials. According to the calculations, employing TBM commands or a 

combination of VS, PDE, and TBM commands resulted in the greatest number of UAVs 

surviving over 1,000 trials. Whereas employing VS resulted in the least number of UAVs 

surviving over 1,000 trials. This result was expected because the UAVs that had greater 

autonomy were able to make rapid decisions and act swiftly, since they did not need to wait for 

pilot input to evade from enemy fire.  

Table 10.  Percentage of Surviving UAVs per 1,000 Trials 

# of Surviving UAVs 
% of Trials Resulting in Surviving UAVs 

VS PDE TBM Combination 

0 0% 0% 0% 0% 

1 1% 0% 0% 0% 

2 13% 12% 8% 9% 

3 87% 88% 92% 91% 
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Table 11.  Average Number of Surviving UAVs per Trial 

Condition 
Average # of Surviving 

UAVs 

VS 2.857 

PDE 2.879 

TBM 2.922 

Combination 2.905 

 

Using the enemy target survival results obtained from the DES, a statically significant 

difference was also observed between the means of each condition as determined by a one-way 

Analysis of Variance (ANOVA) using a 95% confidence interval (see Appendix 4). Furthermore, 

it was observed that all of the pairs were statistically different from each other as determined by 

a Tukey HSD test (see Appendix 4). This result provided statistical evidence that increasing the 

amount of autonomous control abstraction did effect the enemy target survival rate.  

The percentage of surviving enemy targets per 1,000 trials (see Table 12) and average 

number of surviving enemy targets per trial (see Table 13) were then calculated to determine 

how much of the operator’s cognitive tasks should be relinquished by the command pilot and 

reassigned to the UAVs to result in the most enemy targets destroyed for the greatest number of 

trials. According to the calculations, deploying TBM commands resulted in the greatest number 

of enemy targets getting killed over 1,000 trials. The Traditional Manned Wingman role, which 

required no automation, resulted in the least number of enemy targets getting killed over 1,000 

trials. This result was expected assuming that the automation is nearly as effective as the pilot at 

commanding the UAVS. Under this assumption, using TBM commands would result in the least 

number of enemy targets surviving because the pilot can quickly command multiple UAVs to 

perform a high-level action using a single verbal command. On the other hand, the pilot would 
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have to exert more time and effort to attack the enemy target with his or her manned aircraft or 

commanding the UAVs using lower amounts of autonomous control abstraction.  

Table 12. Percentage of Surviving Enemy Targets per 1,000 Trials 

# of Surviving Enemies 
% of Trials Resulting in Surviving Enemies 

Fully Manual VS PDE TBM Combination 

0 0% 1% 10% 22% 6% 

1 0% 10% 31% 32% 26% 

2 1% 42% 36% 31% 41% 

3 21% 37% 19% 12% 22% 

4 79% 10% 5% 3% 5% 

 

Table 13.  Average Number of Surviving Enemy Targets per Trial 

Condition 
Average # of Surviving 

Enemy Targets 

Fully Manual 3.779 

VS 2.467 

PDE 1.775 

TBM 1.420 

Combination 1.945 

 

 According to both the UAVs and enemy target survival results, increasing the amount of 

autonomous control abstraction improved the mission performance of the human-agent system. 

Utilizing TBM commands or a combination of VS, PDE, and TBM commands improved the 

survival of the UAVs and utilizing just TBM commands increased the likelihood of killing 

enemy targets. Thus, the integration of MUM-T through TBM produced the highest level of 

mission performance in this task scenario. 

Workload Profile Analysis 

 In addition to the mission performance, the pilot’s cognitive workload levels were 

analyzed for the five model conditions described in Table 7. The total objective workload 
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experienced by the operator at each instant of a single simulation run was calculated by 

IMPRINT and graphed in Figure 18. Events that were above a workload level of 60 were 

considered to be near or above the saturation threshold where the system imposed more work 

than the pilot could effectively perform (Mitchell, 2003; Schneider & McGrogan, 2011). In an 

ideal mission scenario, all workload levels would be below 60. 

 The workload profile shown in Figure 18 illustrated the amount of mental effort required 

by the pilot to command three UAVs using varying amounts of autonomous control abstraction. 

The graph provided insight into how the pilot’s cognitive workload levels were affected by 

changing how much of the pilot’s cognitive tasks should be relinquished by the operator and 

reassigned to the UAVs in a specific trial run. 

  

Figure 18. IMPRINT Workload Profile for Pilot in Model Conditions 1-5 
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According to Figure 18, the pilot experienced the highest levels of cognitive workload 

when utilizing VS to command the three UAVs. The workload saturation level was surpassed in 

this condition, indicating the pilot’s inability to effectively or safely operate both manned and 

unmanned aircraft at the same time. The pilot experienced the next two highest levels of 

workload when employing PDE and then TBM commands to control the UAVs. The next lowest 

levels of workload were experienced in the fully manual, Traditional Manned Wingman role, 

which was anticipated since the pilot only utilized the manned aircraft to attack enemy targets. 

Finally, the pilot experienced the lowest levels of workload in the combination, No Manned 

Aircraft Engagement role, which transitioned the Pilot to a supervising role and transferred the 

burden of fighting the enemy targets to the UAVs. The results indicated a large drop in workload 

levels when the UAVs were forward deployed using a combination of VS, PDE, and TBM 

commands.  

Time-Persistent Average Workload Analysis 

Using the VACP workload values from IMPRINT, a single representative workload 

value was also computed by calculating the time-persistent average across 30 DES for the first 

four model conditions. The time-persistent average illustrated how hard the pilot worked as a 

whole to command the three UAVs. According to Table 14, the pilot experienced the lowest 

time-persistent average workload of 19.77 when using the No Manned Aircraft Engagement role 

and the highest time-persistent average workload of 43.22 when only using VS commands. The 

results indicated that the pilot’s cognitive workload for a large portion of the time was below the 

saturation level for each model condition, but it varied significantly throughout the simulation. 

Furthermore, the pilot experienced increased levels of workload when the amount of autonomous 
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control abstraction decreased. This finding is consistent with the results obtained from the 

analysis of the workload profile. 

Table 14. Time-Persistent Average of the IMPRINT Workload Profile for Conditions 1-5 

Condition 

Pilot Operator 

Minimum Maximum Time 

Persistent 

Average 

Fully Manual 16.93 46.27 33.83 

VS 24.61 56.57 43.22 

PDE 23.36 56.72 42.73 

TBM 24.46 56.29 42.15 

Combination 9.80 32.66 19.77 

 

Although the burden of operator management decreased as autonomy increased, 

increasing autonomy does not always improve the overall performance of the human-agent 

system. According to research conducted by Johnson et al. (2012), a decrease in mental 

workload levels does not necessarily equate to increased effectiveness. Therefore, both factors 

must be considered to appropriately determine what level of command the UAVs should be 

automated to reduce operator workload and increase mission performance. Through an analysis 

of the mission performance, workload profile, and time-persistent averages, it was determined 

that using a combination of VS, PDE, and TBM commands would lead to increased performance 

for the human-agent team. The incorporation of all three commands would ensure that the pilot is 

able to control both the manned and unmanned aircraft, while having enough control over the 

UAVs to anticipate their behavior. Furthermore, the forward deployment of the UAVs permits 

the pilots to distance themselves from enemy fire, thus increasing their chances of survival in air-

to-air warfare. 
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Conclusion 

The research performed in this study sought to use DES to explore how changes in 

autonomy affected the human-agent team’s mission performance and the pilot’s cognitive 

workload. This was accomplished by building an IMPRINT model to investigate the level of 

control abstraction the UAVs should be automated to reduce operator workload and increase 

mission performance in the flight operation task. Although a reduction in human workload is 

both the common expectation and the major motivation for automation (M. Johnson et al., 2012), 

system designers for should not automatically increase the autonomy of the UAVs without 

addressing the operator’s ability to understand what is happening and anticipate the agent’s 

behavior. For this reason, the UAVs should be automated to handle a varying amount of 

autonomous control abstraction using a combination of VS, PDE, and TBM commands to 

achieve increased mission performance and maintain the pilot’s cognitive workload at a 

manageable level. 

For future development, attention should be devoted to determine how many UAVs a 

single pilot can effectively operate simultaneously. By further studying the impact of MUM-T on 

mission effectiveness and its effect on the pilots who will be commanding them, the U.S. Air 

Force will be one step closer to successfully incorporating MUM-T into flight operations. Thus, 

changing the way that the aviation community has thought about piloting for over 100 years. 

  



90 

 

V. Conclusion and Recommendations 

Chapter Overview 

The purpose of this chapter is to answer the investigative questions, provide insights into 

the significance and limitations of the research, recommend a course of action, and propose 

future research. A novel Discrete Event Simulation (DES) was developed in this research to 

evaluate the potential effects of Manned-Unmanned Teaming (MUM-T) on the pilot’s cognitive 

workload and overall mission performance. The results of this research provided insights into the 

potential benefits or issues that may arise from incorporating MUM-T into air operations. It also 

revealed the amount of autonomous control abstraction that have the largest impact in reducing 

operator workload and increasing mission performance to provide Human-Agent Interactions 

(HAI) recommendations for system improvements.  

Answers to Research Questions 

The following research questions were addressed to fully answer the overarching inquiry 

of how HAI benefits or degrades pilot workload and mission performance: 

1. How does the use of MUM-T affect the pilot’s cognitive workload during combat 

mission events? 

The results of the simulation experiments indicated that the command pilot generally 

experienced a manageable level of workload when commanding 3 UAVs against 4 

enemy targets using a vocally commanded interface. However, peaks in workload 

occurred for the pilot during periods of high communications load and this 

communication may be degraded or delayed during air-to-air engagements. This is an 

area of concern for system designers because it may be difficult for pilots to balance 

radio calls while commanding UAVs under normal operating conditions or high G-stress. 
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2. How does the use of MUM-T affect the human-agent team’s mission performance 

during combat mission events? 

It was concluded that the mission performance was significantly improved by the use of 3 

UAVs against 4 enemy targets. According to the DES results, the human-agent team was 

18.40% more successful on average in striking all four enemy targets than the manned-

only condition.  

3. To what degree of autonomous control abstraction should UAVs perform at to reduce 

operator workload in a flight operation task? 

The results obtained from the alternative simulation experiments revealed the largest drop 

in workload levels when the UAVs were forward deployed using a combination of 

Vector Steering, Pilot Directed Engagement, and Tactical Battle Manager commands. 

Therefore, the UAVs should be automated to handle varying levels of autonomous 

control abstraction to maintain the pilot’s cognitive workload at a manageable workload 

level when commanding 3 UAVs against 4 enemy targets in an air-to-air operation. 

4. To what degree of autonomous control abstraction should UAVs perform at to increase 

mission performance in a flight operation task? 

According to DES results, utilizing either Tactical Battle Manager commands or a 

combination of Vector Steering, Pilot Directed Engagement, and Tactical Battle Manager 

commands improved the survivability of the UAVs. However, only the use of Tactical 

Battle Manager commands produced the highest likelihood of killing all 4 of the enemy 

targets. Therefore, it was concluded that the integration of MUM-T through Tactical 

Battle Management, a high degree of autonomous control abstraction, would enable the 
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human-agent team to achieve increased mission performance in terms of successful 

adversary strikes as well as UAV and pilot survivability. 

Assumptions and Limitations 

Creating an IMPRINT model required task analyses, direct observations, and data 

collection of a system. However, MUM-T had yet to be deployed in an operational environment. 

Consequently, this research was reliant on information provided by Subject Matter Experts 

(SMEs) and data collected from a Human-In-The-Loop (HITL) study performed by the 711 

Human Performance Wing (HPW) at Wright Patterson Air Force Base.  

While the pilots were non-experts within a virtual environment, it was assumed that the 

human participants and tasks were sufficiently representative of MUM-T operators and 

operations to effectively evaluate performance and workload impacts of automation. It was also 

assumed that the human subjects involved in the Autonomy for Air Combat Missions (ATACM) 

study gave their maximum effort and were trained to a stable skill level prior to data collection, 

minimizing any learning effects across the trials. Furthermore, it was assumed that the 

randomized order of the conditions resulted in no order effects and did not affect the workload or 

physiological changes in this investigation. Finally, the SMEs estimates were assumed to be 

accurate approximations to real-world data, which was justified because the SMEs had 

experience developing and using the ATACM environment. 

With the inherent complexity of HAI, this study makes several assumptions in order to 

create a simplified IMPRINT model that can be analyzed towards the understanding of general 

HAI behavior. First of all, the DES assumed that all command pilots have similar levels of 

ability, expertise, competence, and speed. Therefore, the single model did not account for 

learning effects or different strategies that participants may have used. It was also assumed that 
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all pilots utilized a “backseat” strategy to command the Unmanned Aerial Vehicles (UAV), 

meaning that the pilots forward deployed the UAVs before getting involved in the engagement 

themselves.  

Moreover, the model focused on conditions in the peak performance region in which the 

human subjects arrived at their checkpoint and were actively engaged with the opponents. This 

meant that the segment of time in which the operators were traveling to the engagement zone 

was not included in the model. Furthermore, each simulation had the same conditions and did not 

feature any abnormal or unanticipated changes. It was also assumed that any deviations in 

recording times did not trigger a significant decrease in model accuracy and each of the 

distributions applied in the model were an accurate representation of the participant pool. 

Finally, workload values and task times were based on data provided by the 711 HPW, and as 

such, its applicability may be limited beyond this scope. It is noted that it may be impossible to 

achieve this direct comparison during an actual tactical mission. 

Recommendation for Actions   

The recommended action is to develop UAVs that are capable of handling a combination 

of Vector Steering, Pilot Directed, and Tactical Battle Manager commands. Although the burden 

of operator management decreased as autonomy increased, increasing autonomy does not always 

improve the overall performance of the human-agent system. According to research conducted 

by Johnson et al. (2012), a decrease in mental workload levels does not necessarily equate to 

increased effectiveness. Therefore, both factors must be considered to appropriately determine 

what level of command UAVs should be automated to reduce operator workload and increase 

mission performance. Through an analysis of the mission performance, workload profile, and 

time-persistent averages, it was determined that using a combination of Vector Steering, Pilot 
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Directed, and Tactical Battle Manager commands would lead to increased performance for the 

human-agent team. The incorporation of all three commands would ensure that the pilot is able 

to control both the manned and unmanned aircraft, while having enough control over the UAVs 

to anticipate their behavior. In addition, the forward deployment of the UAVs permits the pilots 

to distance themselves from enemy fire, thus increasing their chances of survival in air-to-air air 

warfare. 

Furthermore, system designers should be cognizant of the potential for pilots to 

experience peaks in workload levels when commanding 3 UAVs against 4 enemy targets. The 

command pilot bears the weight of the combat effort and will need to deploy capabilities from 

the UAVs in addition to controlling the manned aircraft. The challenge of maintaining close 

control of the UAVs could be difficult for pilots to maintain during periods of high 

communications load, which could lead to a degrade or delay in communication capabilities 

during air-to-air engagements. Therefore, system designers should design a pilot-vehicle 

interface that is conducive to maintaining a manageable level of workload between the pilot in 

the cockpit and the UAVs in the sky.   

Recommendation for Future Research 

For future development, the DES should be updated to examine additional alternative 

scenarios. While these results provided insight into using different automation controls for 

MUM-T operations, the presented research was limited to data provided by the ATACM 

experiment. The next step would be to gather data that exists outside of a HITL experiment in 

order to develop a model that more realistically captures HAI between pilots and their UAVs in 

an operational environment. Once this type of data becomes available, an improved model could 

be used to determine how many UAVs a single pilot can effectively operate simultaneously and 
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in what type of formation are they best commanded. The improved model would further examine 

the relationship between stages and levels to discern which combinations work together 

optimally to better capture human-agent system behavior. This information could enable system 

designers to test and evaluate multiple configurations of MUM-T systems in a short period of 

time and at a marginal cost. 

When making automation implementation tradeoffs, other factors, such as situation 

awareness, reliability, and trust may also impact operator workload and system performance. 

Future work should seek to identify these factors and examine their impacts with on the pilot’s 

cognitive workload and the mission performance with regards to the different combinations of 

human-agent teaming. If one combination has less sensitivity than another, it may be prudent to 

choose the less sensitive combination.  

In addition, future research should develop a new autonomous control taxonomy that 

more appropriately describes the relationship between humans and agents in MUM-T. Although 

there has been some development in this area of research with the five Levels of Human Control 

Abstraction (LHCA) (C. D. Johnson et al., 2017) and the Interdependence Analysis Tool (IAT) 

(M. Johnson, Vignati, et al., 2018), progress still needs to be made to combine these approaches 

to provide a more comprehensive model that fully characterizes the division of work and 

interdependencies between the human and the agent.  

In the case of MUM-T, there were some discrepancies between the LHCA and the 

degrees of automation for MUM-T. As the LHCA increased from Parametric Control to Goal-

Oriented Control, the pilot’s level of responsibility decreased and the automation’s level of 

responsibility increased. However, this was not a binary relationship where the human operator 

completely relinquished all safety and regulation responsibilities to the automation. For instance, 



96 

 

consistent with the LHCA framework, the UAVs had more capabilities and responsibilities when 

issued a PDE command than a VS command. However, the automation did not completely 

relieve the pilot of safety monitoring and obstacle avoidance, as is described Goal-Oriented 

Control. The pilot was still expected to perform this duty and intervene to prevent the loss of an 

UAV from enemy fire.  

Furthermore, there was not enough precision to fully capture the nuances between the 

continuum of human responsibilities and degrees of automation for MUM-T. For example, there 

was a difference between the pilot giving a PDE or a TBM command. According to the IAT, the 

pilot would have fewer perception and cognition responsibilities when giving a TBM command 

in comparison to a PDE command.  Yet, both commands were categorized under Goal-Oriented 

Control according to LHCA. Therefore, the LHCA frameworks needs further refinement to 

distinguish different control approaches with an LHCA level.  It is conceivable that design 

tradeoffs frequently occur within LHCA levels rather than between levels. A stronger model 

could be developed by leveraging and combining the strengths and features of LHCA and IAT to 

help designers better assess the potential interdependencies between workload and workflows for 

the human and the agent in MUM-T systems. 

Summary 

The findings presented in this research are a significant step towards simulating the 

complexities of real-world activities by mirroring the highly dynamic nature of realistic military 

operations in a virtual environment. MUM-T had never been modeled using IMPRINT before 

this research was conducted. Not only did this study develop an original DES, but it also 

provided insights into the effects of MUM-T on the pilot’s cognitive workload levels and the 

human-agent team’s overall mission performance. Using this information, system designers from 
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the 711 HPW can integrate the results obtained from this study into future human-agent system 

design considerations. By studying the impact of MUM-T on mission performance and its effect 

on the pilots who will be commanding them, the U.S. Air Force will be one step closer to 

successfully incorporating MUM-T into flight operations. Thus, changing the way that the 

aviation community has thought about piloting for over 100 years. 
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Appendices 

Appendix 1: NASA-TLX Workload Rating Scale 

Table 15 describes the standardized NASA-TLX workload surveys administered to ATACM 

study subject participants (Hart & Staveland, 1988). 

Table 15. NASA-TLX Workload Rating Sale 

 

 

 

  



99 

 

Appendix 2: VACP Workload Rating Scale 

Table 16 describes the standardized VACP values used in IMPRINT (Alion Science and 

Technology Corporation, 2009). The scale was derived from (Bierbaum et al., 1989): 

Table 16. VACP Channel Workload Rating Scale 
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Appendix 3: IMPRINT Baseline Model Task Network Development & Validation 

Phase 1: Conceptual Model 

The first step in developing a usable baseline simulation model was to formulate a 

conceptual model of the human-agent system in order to ensure that all tasks, resources, and 

process flows were accurately captured. To develop this framework, SMEs from the ATACM 

study provided a general description of the activities involved in performing a given scenario, 

illustrated in Figure 19 and Figure 20 on pages 102-103. The activity diagrams help illustrate the 

type of activities participants completed throughout the ATACM trials. 
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Figure 19. Activity Diagram Illustrating Pilot Utilizing Personal Aircraft 
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Figure 20. Activity Diagram Illustrating Pilot Utilizing UAVs 
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Phase 2: Task Analysis 

The task networks developed in Figure 19 and Figure 20 set the foundation for the task 

network later developed in IMPRINT. Using IMPRINT, the flow of actions and decision logic 

captured in the activity diagrams were transferred to the DES environment. As shown in Figure 

21 on the next page, the baseline task network model was composed of four different task loops 

and one logic loop: 1) Aviate Personal Aircraft, 2) Utilize UAVs, 3) Utilize Personal Aircraft, 4) 

Receive Environment Noise, and 5) End Scenarios. 

The first task loop, “Aviate Personal Aircraft,” included basic tasks such as adjusting the 

flight controls or scanning the surrounding environment that the pilot performed when operating 

his or her own aircraft. The second task loop, “Utilize LW UAVs,” included tasks such as 

commanding the UAV or supervising UAV attacks, which the pilot executed to deploy the 

UAVs. The third task loop, “Utilize Personal Aircraft,” included tasks such as aviating the 

manned aircraft or attacking the adversary target, which the pilot performed in order to utilize his 

or her own aircraft to attack the enemy. The fourth task loop, “Receive Environment Noise,” 

included the workload associated with receiving audio notifications over the radio. All four of 

these task loops ran in parallel with one another as it was assumed that the pilot performed these 

activities concurrently. The final logic loop, “End Scenarios,” included tasks that would trigger 

the DES to end if any of the stopping scenarios were fulfilled. The logic loop also ran 

concurrently with the other task loops in order for the software to evaluate whether or not the 

simulation satisfied one of the ending conditions.   



100 

 

  

F
ig

u
re

 2
1
. 
O

ve
ra

rc
h
in

g
 I

M
P

R
IN

T
 T

a
sk

 N
et

w
o
rk

 



101 

 

Furthermore, some of the more complicated activities such as planning strategies, 

commanding the UAVs, and targeting adversary targets were decomposed into smaller sub-tasks. 

Figure 22-Figure 27 below illustrate some of the more complicated activities that were 

decomposed into smaller sub-tasks in IMPRINT. 

In Figure 22, the “Plan UAV Strategy” function was broken down into workloads 

associated with controlling one or two UAVs to three or four UAVs. 

 

Figure 22. Plan UAV Strategy IMPRINT Function 

In Figure 23, the “Command UAV” function was broken down into specific tasks the 

pilot would need to perform to command a single UAV. 

 

Figure 23. Command UAV IMPRINT Function 

In Figure 24, the “Send UAV Command” sub-function was broken down into Tactical 

Battle Manager (high level of workload) commands, Pilot Directed Engagement (medium level 

of workload) commands, and Vector Steering (low level of workload) commands. Tactical Battle 

Manager commands utilize a higher level of automation to attack an adversary target. Pilot 
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Directed Engagement commands utilize a lower level of automation to execute formation or 

targeting actions. Finally, Vector Steering utilizes the lowest level of automation to follow pilot 

directed commands such as turning left or right as well as flying at a specific airspeed or 

heading. 

 

Figure 24. Send UAV Command IMPRINT Sub-Function 

In Figure 25, the “UAV Performs Command” function correlated to the level of 

command given by the pilot to a single UAV. The level of workload placed on the pilot 

increased as the level of autonomy decreased from Tactical Battle Manager to Vector Steering 

because lower level commands required a greater amount of manual control as well as mental 

processing for the Pilot to command a UAV. In addition, the amount of time it took the UAV to 

execute a pilot’s command decreased as the level of command decreased because a low level 

command was less complicated for the UAV to execute. 

 

Figure 25. UAV Performs Command IMPRINT Function 
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In Figure 26, the “UAV Attacked by Enemy Target” function considered the case in 

which a UAV was attacked by an adversary and needed to evade from the enemy’s fire.  

 

Figure 26. UAV Attacked by Enemy Target IMPRINT Function 

In Figure 27, the “End Scenarios” function contained all four of the potential ending 

scenarios and the corresponding system logic for each case. 

 

Figure 27. End Scenarios IMPRINT Function 

Phase 3: Data Collection 

The task network built in IMPRINT was then verified by SMEs who had experience 

developing and testing the virtual simulation cockpit in the ATACM study. The SMEs walked 

through the task network diagram for logical flow and gave predicted workload values based on 

the baseline model task descriptions and an explanation of VACP (Bierbaum et al., 1989). The 

individual tasks and their assigned values are listed in Table 17. 
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Table 17. IMPRINT Task Workload Demand Levels 

Task Interface 

Workload Demand 

Auditory Cognitive 
Fine 

Motor 
Speech Tactile Visual 

A
v
ia

te
 A

ir
cr

af
t 

 

Perform Fast Scan Display  6.80    3.00 

Adjust Controls Joystick  6.80 2.60  2.00  

Scan Surrounding 

Environment 
Display  6.80    4.40 

Check Flight 

Controls 
Display  6.80    3.00 

U
ti

li
ze

 U
A

V
s 

Locate UAV 

Enemy Target 
Display  6.80    4.40 

Plan UAV 

Strategy for 1 

UAV 

Display  6.80    4.00 

Plan UAV 

Strategy for 2 

UAVs 

Display  6.80    4.40 

Plan UAV 

Strategy for 3 

UAVs 

Display  6.80    5.00 

Check UAV Status Display  4.60    4.40 

Initiate Call Joystick  1.00 2.20  1.00  

High Level 

Command (TBM) 
Headset 4.30 4.60  2.00   

Medium Level 

Command (PDE) 
Headset 4.30 5.00  2.00   

Low Level 

Command (VS) 
Headset 4.30 5.30  2.00   

Confirm 

Command 
Joystick  1.00 2.20  1.00  

Pilot Decides 

Whether to 

Override UAV 

Display  6.80    4.40 

Pilot Overrides 

UAV 
Headset 4.30 5.00  2.00   

Pilot Overrides 

UAV 
Joystick  1.00 2.20  1.00  

UAV Performs 

High Level 

Command (TBM) 

Display  6.80    4.00 

UAV Performs 

Medium Level 

Command (PDE) 

Display  6.80    4.40 

UAV Performs 

Low Level 

Command (VS) 

Display  6.80    5.00 
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UAV Attacks 

Enemy Target 
Display  4.60    3.00 

Assess UAV 

Enemy Target 

Status 

Display  4.60    3.00 

Assess UAV 

Enemy Target 

Status 

Headset 3.00 4.60  2.00   

UAV Employs 

Counter Measure 
Display  4.60    3.00 

U
ti

li
ze

 P
er

so
n
al

 A
ir

cr
af

t 

Pilot Observes 

Battlespace 
Display  6.80    4.40 

Pilot Locates 

Enemy Target 
Display  4.60    4.00 

Plan Aircraft 

Strategy 
Display  6.80    3.00 

Navigate Aircraft 

to Target Point 
Display  6.80    4.40 

Navigate Aircraft 

to Target Point 
Joystick  6.80 2.60  2.00  

Pilot Attacks 

Enemy Target 
Display  6.80    6.00 

Pilot Attacks 

Enemy Target 
Joystick  6.80 4.60  2.00  

Pilot Assesses 

Enemy Target 

Status 

Display  4.60    3.00 

Pilot Assesses 

Enemy Target 

Status 

Headset 3.00 4.60  2.00   

Pilot Receives 

Warning 
Display  1.00    3.00 

Pilot Receives 

Warning 
Headset 3.00 1.00  2.00   

Pilot Counters 

Enemy Action 
Display  6.80    6.00 

Pilot Counters 

Enemy Action 
Joystick  6.80 2.60  2.00  

N
o

is
e Receive Radio 

Communication 
Headset 3.00 4.60  2.00   

Check B-52 ETA Display 1.20     3.00 
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Once the task network was built and the workload values were inputted for each task, it 

was necessary to determine the probability and time that each task was expected to occur. The 

task probabilities and time distributions related to the successful completion or failure of certain 

tasks was calculated by extracting timing and decision data from the video footage of the nine 

test subjects in the ATACM study. The footage captured the pilots’ audio commands, flight 

information shown on the Head-Down Display, and the time elapsed. The individual 

probabilities for specific task nodes are listed in Table 18-Table 25. 

Table 18. Total number of Pilot Command Occurrences 

Type Command Level Total 

Attack High 249 

FormUp Med 61 

FormationNavigation Med 10 

TargetedNavigation Med 29 

WaypointNavigation Low 43 

FreeNavigation Low 143 

 

Table 19. Probability of Pilot Command Level 

 Total Number Probability 

High 249 0.4654 

Medium 100 0.1869 

Low 186 0.3477 

 

Table 20. Probability UAV Declined Command 

 Total Number Probability 

Accepted 527 0.9777 

Declined 12 0.0223 
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Table 21. Probability Pilot Overrode UAV 

 Total Number Probability 

Overridden 15 0.6818 

Not Overridden 7 0.3182 

 

Table 22. Probability Pilot Repeated Command 

 Total Number Probability 

Repeated 64 0.1192 

Not Repeated 473 0.8808 

 

Table 23. Survival Probabilities from UAV-Enemy Interactions 

 UAV Enemy 

Killed 0.0432 0.5463 

Survived 0.9568 0.4537 

 

Table 24. Survival Probabilities from Pilot-Enemy Interactions 

 Pilot Enemy 

Killed 0.2449 0.1122 

Survived 0.7551 0.8878 

 

Table 25. Probability Enemy Target Survived and Re-Attacked 

 UAV Pilot 

Re-Attacked 0.0370 0.1312 

No Re-Attack 0.4167 0.7565 
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Phase 4: Input Analysis 

Upon completion of the data collection effort, input data modeling was performed on 

several aircraft aviation and targeting tasks in order to form probability distributions using 

ExpertFit software (Law, 2006). These probability distributions were tested for independence, 

homogeneity, and goodness-of-fit (see Figure 28Figure 33 on pages 108-112 and Table 26 on 

page 113). All of the final distributions in the baseline model either successfully passed these 

tests or were replaced by an empirical distribution directly representing the data. The analyzed 

input data was then synthesized with the task network diagram in IMPRINT to create the final 

baseline simulation model that featured the task flows, workload levels, system resources, 

probabilistic events, and process probability distributions. 

 

Figure 28. Probability Distribution Analysis of “UAV Performs High Level Command” 
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Figure 29. Probability Distribution Analysis of “UAV Performs Medium Level Command” 

 

Figure 30. Probability Distribution Analysis of “UAV Performs Low Level Command” 
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Figure 31. Probability Distribution Analysis of “UAV Attacks Enemy Target Analysis” 

 

Figure 32. Probability Distribution Analysis of “UAV Employs Counter Measure” 
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Figure 33. Probability Distribution Analysis of “Aviate Aircraft” 

 

Figure 34. Probability Distribution Analysis of “Pilot Attacks Enemy Target” 



112 

 

 

Figure 35. Probability Distribution Analysis of “Pilot Counters Enemy Action” 
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Table 26. Chi-Square Tests of Expert Fit Probability Distributions for Tasks 1-8 

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 

M
o

d
el

 

Weibull 
Log-

Logistic 
Weibull Weibull Gamma Weibull Weibull Gamma 

R
el

at
iv

e 
S

co
re

 

91.67 95.00 97.22 91.67 83.33 97.50 83.33 92.50 

P
ar

am
et

er
s 

Location: 

0.00 

 

Scale: 

114.64 

 

Shape: 

2.77 

Location: 

0.00 

 

Scale: 

3.38 

 

Shape: 

13.74 

Location: 

1.99 

 

Scale: 

0.40 

 

Shape: 

1.16 

Location: 

0.00 

 

Scale: 

114.64 

 

Shape: 

2.77 

Location: 

0.00 

 

Mean: 

51.63 

 

STD: 

13.50 

Location: 

0.00 

 

Scale: 

292.83 

 

Shape: 

2.85 

Location: 

47.04 

 

Scale: 

22.46 

 

Shape: 

1.47 

Location: 

0.00 

 

Mean: 

112.67 

 

STD: 

25.48 

M
ea

n
 M

o
d
el

 E
rr

o
r 

0.32% 0.31% 0.08% 0.32% N/A 0.24% 0.31% N/A 

M
o

d
el

 E
v

al
u
at

io
n

 

Borderline Good Good Borderline Borderline Good Good Borderline 
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Phase 5: Validation of IMPRINT Model 

Validation of the workload model was a key step in creating the baseline simulation 

model. This execution of this step provided the statistical evidence that the model sufficiently 

mirrored the real world system, which in this case was the ATACM study. To validate the DES, 

performance data and VACP values for workload were gathered as outputs from IMPRINT and 

compared to the results obtained from the ATACM study. Due to the low probability of 

achieving specific conditions such as the pilot repeating a command or the UAV declining a 

command, a total of 1,000 trials were run to ensure that each condition within the various task 

logic loops was achieved during the DES.  

After running 1,000 trials in IMPRINT, the mission performance results were calculated 

by computing the percentage of total UAVs and the percentage of total enemy targets left at the 

end of each trial, as shown in Figure 36 and Figure 37. For satisfactory validation, an average 

absolute error that was within 10% was desired. According to the data, the mission performance 

varied between 1.04% average absolute error for the UAV survival results and 5.71% average 

absolute error for the enemy target survival results when comparing the IMPRINT model to the 

ATACM study. 
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Figure 36. Validation Graph of UAV Survival Results 

 

Figure 37. Validation Graph of Enemy Target Survival Results 

The amount of time it took each simulation to run in IMPRINT was also compared to the 

length of time needed to complete each trial in the ATACM study. According to the graphs, 

shown in Figure 38 and Figure 39, the trials generally took about 9-10 minutes to complete for 

both studies. However, it should be noted that the IMPRINT model ran 1,000 simulations, while 
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the ATACM study only performed 36 trials due to resource constraints. Despite the difference in 

total trials performed, the general trend of the IMPRINT performance times adequately reflected 

the overall tendency of the ATACM study. 

 

Figure 38. Histogram of IMPRINT Performance Times 
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Figure 39. Histogram of ATACM Performance Times 

For satisfactory validation, a confidence interval range that was within 10% above and 

below the mean was desired. For the ATACM trials, the average time in a given scenario was 

8.58 minutes, thus a half-width of 0.86 min or less was required. A 99% confidence interval for 

this system produced a half-width of 0.85 minutes, thus a 99% confidence interval level was 

deemed sufficient for use in validation. The average time in the simulation was 9.42 minutes, 

which indicated that the simulation was on average 50.50 seconds slower than the study. It was 

hypothesized that the inability for the model to account for multiple attacks occurring in a short 

period of time is what instigated a slightly slower time in the system. Nonetheless, the overlap of 

both confidence intervals revealed that there was no statistical difference between the DES and 

the ATACM system, thus validating the IMPRINT model. 
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Appendix 4: ANOVA Tests and Tukey Groupings 

Table 27 shows the results obtained from the one-way ANOVA test for the UAV survival 

rate data using a 95% confidence interval. According to the results, there is strong evidence 

against the null hypothesis since the p-value is less than 0.05. Therefore we reject the null 

hypothesis, which means that there is a definite, consequential relationship between the amount 

of autonomous control abstraction and the UAV survival rate. 

Table 27. One-Way ANOVA Test for UAV Survival Rate Data using 95% Confidence Interval 

Source DF Sum of 

Square 

Mean 

Square 

F 

Statistic 

P-value 

Groups (between groups) 3 2.456750 0.818917 7.776576 0.0000355626 

Error (within groups) 3996 420.801010 0.105306 
  

Total 3999 423.257760 0.105841 
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Table 28 shows the results obtained from the Tukey HSD test using 95% confidence 

interval for the UAV survival rate data. According to the results, VS-TBM, VS-Combination, 

and PDE-TBM pairs were statistically different from each other. However, there was not a 

statically significant difference among sample means for VS-PDE, PDE-Combination, and 

TBM-Combination pairs.  

Table 28. Tukey HSD Test for UAV Survival Rate Data using 95% Confidence Interval 

Pair Difference SE Q Lower 

CI 

Upper 

CI 

Critical 

Mean 

P-value 

VS-PDE 0.02200 0.01026 2.14386 -0.01530 0.05930 0.03730 0.42794 

VS-TBM 0.06500 0.01026 6.33414 0.02770 0.10230 0.03730 0.00005 

VS-Combo 0.04800 0.01026 4.67752 0.01070 0.08530 0.03730 0.00525 

PDE-TBM 0.04300 0.01026 4.19028 0.00570 0.08030 0.03730 0.01620 

PDE-Combo 0.02600 0.01026 2.53366 -0.01130 0.06330 0.03730 0.27748 

TBM-Combo 0.01700 0.01026 1.65662 -0.02030 0.05430 0.03730 0.64499 

 

Table 29 shows the results obtained from the one-way ANOVA test for the UAV survival 

rate data using a 95% confidence interval. According to the results, there is strong evidence 

against the null hypothesis since the p-value is less than 0.05. Therefore we reject the null 

hypothesis, which means that there is a definite, consequential relationship between the amount 

of autonomous control abstraction and the enemy target survival rate. 

Table 29. One-Way ANOVA Test for Enemy Target Survival Rate Data using 95% Confidence 

Interval 

Source DF Sum of Square Mean Square F Statistic P-value 

Groups (between groups) 4 3388.780800 847.195200 1088.124913 0.00000 

Error (within groups) 4995 3889.020435 0.778583   

Total 4999 7277.801235 1.455851   
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Table 30Error! Reference source not found. shows the results obtained from the Tukey 

HSD test using 95% confidence interval for the enemy target survival rate data. According to the 

results, all of the pairs were statistically different from each other.  

Table 30. Tukey HSD Test for UAV Survival Rate Data using 95% Confidence Interval 

Pair Difference SE Q Lower 

CI 

Upper 

CI 

Critical 

Mean 

p-value 

Fully 

Manual-

VS 

1.312000 0.027903 47.019875 1.204320 1.41968 0.10768 
0.000000 

Fully 

Manual-

PDE 

2.004000 0.027903 71.819992 1.896320 2.11168 0.10768 
0.000000 

Fully 

Manual-

TBM 

2.359000 0.027903 84.542595 2.251320 2.46668 0.10768 
0.000000 

Fully 

Manual-

Combo 

1.834000 0.027903 65.727477 1.726320 1.94168 0.10768 
0.000000 

VS-PDE 
0.692000 0.027903 24.800117 0.584320 0.79968 0.10768 

0.000000 

VS-TBM 
1.047000 0.027903 37.522720 0.939320 1.15468 0.10768 

0.000000 

VS-

Combo 
0.522000 0.027903 18.707603 0.414320 0.62968 0.10768 

0.000000 

PDE-

TBM 
0.355000 0.027903 12.722603 0.247320 0.46268 0.10768 

0.000000 

PDE-

Combo 
0.170000 0.027903 6.092514 0.062320 0.27768 0.10768 0.000163 

TBM-

Combo 
0.525000 0.027903 18.815118 0.417320 0.63268 0.10768 

0.000000 
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