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Abstract

Space was once a rarely traveled domain but it is quickly becoming more accessi-

ble. More countries are developing space programs and more civilian companies are

investing time and resources to exploring the reaches. When automobiles became

accessible to the masses, roads had to be paved, traffic laws had to be written, and

multiple local and national agencies stood up to monitor and enforce the domain.

When airplanes became accessible, routes needed to be planned, traffic laws had to

be written, and again multiple local and national agencies stood up to monitor and

enforce the domain. The same is happening with the space domain. Space is be-

coming accessible enough to need planned trajectories, traffic laws, and an agency

to monitor and enforce those safeguards. That agency will need all tools possible at

their disposal to provide the best coverage and maintain space domain awareness,

which requires accurate, timely, and precise knowledge of the tens of thousands of

space objects.

This research focuses on radio frequency geolocation of space objects utilizing

space-based platforms. Geolocation has long been the solution for locating objects.

Technically, geolocation is the process of locating something on Earth (geo) but the

term has been applied to all aspects of locating objects. In particular, this study

examines the scenario of two cooperative receivers geolocating (or in this context,

astrolocating) a transmitter in close proximity. A MATLAB algorithm is developed

in this research to calculate the initial estimated transmitter location and projected

orbital trajectory. The algorithm uses the Macaulay method of solving a system of

polynomials as well as heuristic optimization techniques to locate a transmitter with

respect to receivers at different time intervals. For the scenarios investigated, both

iv



Macaulay and heuristic optimization methods achieve initial relative orbit determi-

nation for the transmitter.
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SPACE-BASED LOCALIZATION OF RADIO FREQUENCY

TRANSMITTERS UTILIZING MACAULAY RESULTANT

AND HEURISTIC OPTIMIZATION METHODS

I. Introduction

1.1 Motivation

Space domain awareness (SDA) or the identification, characterization and under-

standing of any factor that could affect space operations [1] has traditionally fallen on

Air Force Space Command (AFSPC). The newly created United States Space Force

(USSF) will now take lead on this task [2]. Just as the US Air Force was tasked at its

creation with maintaining air superiority the USSF is tasked with maintaining space

superiority [2]. And space superiority involves knowing what objects are present in

the domain and where they are or can be located.

More than 2000 operational satellites orbit the Earth today [3]. New satellites

are being launched every month. SpaceX has started launching a constellation called

Starlink consisting of over 1000 small satellites to provide worldwide internet [4]. This

increases orbiting operational satellites by fifty percent. But operational satellites are

not the only concern. Orbital debris such as rocket bodies, decommissioned satellites

and broken satellite parts make up the majority of the space threats. There are more

than 20,000 pieces of orbital debris larger than a softball [5]. And it is estimated that

there are more than 500,000 pieces of space debris larger than a marble [5]. With the

debris travelling at speeds up to 17,500 miles per hour, every piece of debris could

potentially become a lethal threat to an operational satellite. To maintain accurate
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and reliable SDA, the USSF needs to utilize any and all methods for localization.

Localization involves using some form of sensor along with a processing technique

to locate another object. Localization sensors collect data in all ranges of the elec-

tromagnetic (EM) spectrum [6]. Signal measurements can be taken with respect to

time, frequency, direction, strength, or any combination of these. Geolocation focuses

on estimating the position of an object. In space, the position is only half the battle.

The object’s state vector, comprised of the position and the velocity of the object,

tells the story of where the object came from and where it is headed. For a satellite,

the positions and velocity can be defined as an initial orbit determination (IOD) or

initial relative orbit determination (IROD) problem. This research defines satellite

localization as astrolocation.

1.2 Methodology

This research will approach the localization problem by examining the time a

signal arrives at a pair of satellite receivers. More specifically, the time difference

of arrival (TDOA) between the transmitter (T) signal arriving at receiver one (R1)

versus arriving at receiver two (R2) will be utilized to evaluate the range difference

of arrival (RDOA). The RDOA equation expands to a multivariate polynomial in

terms of both receiver locations as well as the transmitter location at specific times.

A resultant multivariate polynomial solver called the Macaulay Resultant will be

examined as an option to solve for the initial state vector and IROD of the transmitter.

The Macaulay solver will be compared to a heuristic optimization solver to evaluate its

effectiveness. A MATLAB R© simulation will be developed to analyze the polynomial

solvers, different receiver formation geometries and how well those receiver geometries

solve the astrolocation problem, as well as analyze the geometry between the receivers

and the transmitter including orbital regime.
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1.3 Underlying Assumptions

Scenarios will be defined in the local-vertical, local-horizontal (LVLH) frame. The

chief of the LVLH frame is assumed to have a circular inertial orbit. A circular chief

orbit and calculations done in the LVLH frame allow for the dynamics to be treated

as linear and the Hill, Clohessy, Wiltshire (HCW) model used [7]. The scenarios

will ignore the effects of J2 and higher perturbations. Relativistic effects are not

considered, i.e. the speed of light is constant, inferring (TDOA)c = RDOA. Also,

the accuracy of clock timing is not addressed. It is assumed that the receiver states are

known with zero uncertainty. It is assumed that the signal processing for the TDOA

measurement is accomplished before the process examined in this research begins.

Due to the complexities of the Macaulay resultant theory, the algorithm assumes

coplanar motion between R1, R2 and T; however, cross-track motion is allowed for

the heuristic optimization method.

1.4 Research Objective

The objective of this research is to develop an algorithm to enhance space-based

SDA. The specific capability to be advanced is the relative orbit determination of resi-

dent space objects (RSO) given radio frequency (RF) data from space-based observers.

Multiple relative geometries of the receivers as well as multiple relative trajectories

of the transmitter will be explored. By taking measurements at several time steps,

an RDOA measurement history can be found, setting up a system of polynomials.

This research also aims to draw conclusions about astrolocation in general by

asking the following questions:

• Given two cooperative receivers, what formation geometries are effective or

ineffective at astrolocating a transmitter?
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• Given a formation geometry for two cooperative receivers, what are potential

transmitter geometries for which IROD is possible?

• And given a geometry between receivers and a transmitter, how does the orbital

regime influence the IROD solution?

The Macaulay resultant method presents a way to solve the system of polynomials

to find the IROD. Due to an initial survey of the Macaulay resultant method showing

little evidence of the Macaulay method being used for IROD, Heuristic optimization

methods are used in parallel with the Macaulay method to ensure research objective

accomplishment.

1.5 Thesis Organization

This thesis is organized into five chapters. First, Chapter I addresses the prob-

lem and its motivation. Chapter II discusses existing geolocation techniques, relative

satellite motion, and orbit determination. Chapter III outlines the process behind

the developed algorithm. Chapter IV explores the results of specific scenarios us-

ing the algorithm. Chapter V concludes the research with summarized results and

contributions along with recommendations for future research.
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II. Background

2.1 Overview

This research develops an algorithm to determine the initial relative orbit of a

satellite emitter using a formation of cooperative receiver satellites. The process of

locating an object and determining its orbit can take many forms. Figure 1 shows a

sampling of options one can explore to develop a localization algorithm. The param-

eters highlighted in yellow depict what is used for this research.

Figure 1. Localization Parameters

This chapter addresses the definitions of these parameters as well as explores some

research that has already been accomplished with respect to these parameters.

2.2 Orbital Motion

Johannes Kepler is credited with the laws of planetary motion. First, the planets

are in elliptical orbits around the sun with the sun at one focus of the ellipse. Sec-
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ond, the position/radius vector of the orbit sweeps through equal areas of the ellipse

in equal times. And, third, the period of the orbit squared is proportional to the

semimajor axis cubed [8].

The combination of Newton and Kepler’s work is where satellite motion begins.

Orbital motion of satellites can be reduced to a two-body gravitational problem [8].

Due to proximity, the strongest gravitational force on a satellite is from the Earth,

and gravitational forces from the Sun, the moon and other planets are treated as

negligible.

2.2.1 Reference Frames.

Before specific orbits can be characterized, reference frames need to be defined.

The Earth-centered inertial (ECI) frame originates from the center of the Earth. Seen

in Figure 2, the i vector is in the direction of the vernal equinox. The k vector is

vertical through the north pole, and the j vector completes the right-handed triad,

lying in the equatorial plane pointing orthogonally eastward from the i direction.

Figure 2. Earth-Centered Inertial Reference Frame [9]

This research uses the ECI frame as reference for the inertial orbit definition.

However, calculations for the TDOA/IROD problem are in the local-vertical, local
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horizontal (LVLH) frame.

With two satellites in close proximity, the relative orbital dynamics can be ap-

proximated by linear differential equations and visualized in the LVLH frame. The

origin of the LVLH frame can be a satellite (sometimes called the chief) or simply

a point in a reference orbit. The rotating LVLH frame moves with the chief’s orbit

around the Earth. Seen in Figure 3, the X vector defines the radial direction of the

frame. The Z vector is parallel to the chief’s orbital angular momentum vector in the

orbit normal direction. The Y vector completes the right-handed triad perpendicular

to X and points in the general direction of the orbit track. In the LVLH frame, X, Y,

and Z are referred to as the radial, in-track, and cross-track directions, respectively.

Figure 3. Local-Vertical, Local-Horizontal Reference Frame [10]

2.2.2 Formation Flying.

The maintenance of a desired relative separation, orientation, or position between

or among spacecraft is called formation flying [11]. This is simply multiple satellites

7



working collaboratively by maintaining a specific flying geometry. The relative motion

between the formation is chosen based on the mission.

One type of formation is called a constellation. This is a global-scale group of

satellites working together. GPS satellites are arranged with at least six satellites in

six orbital planes around the world, so that at any one point in time, there are at least

three satellites in view of any position on Earth [12]. Local ground topography such

as hills and buildings might obscure this view, but the satellites are there. Another

constellation mission is performed by the National Oceanic and Atmospheric Admin-

istration (NOAA) and the National Aeronautics and Space Administration (NASA)

using the Geostationary Operational Environmental Satellites (GOES) satellites [13].

There are two GOES satellites covering all land inside US borders. The satellites pro-

vide advanced imaging for accurate forecasts, real-time mapping of lightning activity,

and monitoring of solar activity and space weather.

Another type of formation is called a leader/follower formation. Satellites in this

formation are at the same radial distance from ECI, but they are offset by some

value in the in-track direction of the orbital plane. This formation can be centered

on an LVLH frame, or can be spread out through a full orbital plane surrounding the

Earth. The GOES constellation could also be considered a leader/follower formation.

Another mission in a leader/follower formation is the European Space Agency (ESA)

Gravity Recovery And Climate Experiment (GRACE) mission. GRACE uses the

relative distance between two satellites in the LVLH frame to measure Earth’s gravity

field over time [14].

Another formation is called natural motion circumnavigation (NMC). In this for-

mation, a satellite maintains a specific velocity that allows the satellite to circum-

navigate around a point in the LVLH frame. The velocity is also an energy matching

condition between the chief and the deputy. The point at the center of the ellipse
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may be located at the origin of the LVLH frame or could be offset from the origin. It

is often suggested that the International Space Station (ISS) could utilize inspector

satellites in NMCs around the ISS to assess the structure for external damage. This

technique has yet to be employed by the ISS, citing unintended damage and risk as

the reasons to forego the practice [15].

Figure 4 shows an example of how one satellite might move in relation to the other.

The chief is at the center of the LVLH reference frame and the deputy’s motion is

related to the chief by the relative position vector ρ. The way this motion propagates

as the satellites orbit Earth will determine the relative orbital dynamics (NMC or

leader/follower).

Figure 4. Notional Relative Orbit [16]

Clohessy and Wiltshire [7] built on the work of Hill looking at a chief in a near

circular inertial orbit around earth to solve the equations of motion for a deputy in a

relative orbit around a chief at close proximity. These are referred to as Hill-Clohessy-

Wiltshire (HCW) equations of motion and are shown in Equation 2.1.
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ẍ− 3n2x− 2nẏ = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

(2.1)

where x, y, and z are the radial, in-track and cross-track relative positions of the

deputy with respect to the chief in the LVLH frame and n is the mean motion of the

chief’s inertial orbit. Figure 5 depicts this relative position as component vectors.

Figure 5. Deputy Position Relative to Chief [9]

There are many other relative dynamics models that have been developed. Each

one takes into account slightly different parameters, such as chief orbit eccentricity

or perturbation effects. The major assumption of the HCW model is that the chief

is in a near-circular orbit around the earth [7]. Other models might allow for more

chief orbit eccentricity or they might take into account types of perturbations that

could affect the chief orbit. As a feasibility study, this research starts with the HCW

model.

The relative motion relationships in the LVLH frame can be used to describe the

motion of a formation of satellites, i.e. between the two receiver satellites in the
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TDOA/IROD problem presented in this research. But, relative motion can also be

used to describe the motion of another satellite or object in relation to the formation,

i.e. the motion of the transmitter around the receivers. This research will explore the

use of these dynamics for localization.

Researchers Cajacob et. al [17] found that the farther apart the receiver satellites

are, the more accurate the localization measurement is. However, the idea of HCW

relative motion is that the objects are close to each other. The research presented

here will look at the specific geometries of a formation of receiver satellites that will

be able to perform a localization mission despite the ‘close’ relative separation.

2.2.3 Orbit Determination.

Orbit determination is the process of taking observed data about a satellite’s

position and defining the satellite state vector (position and velocity) in 3-dimensional

space or defining a set of orbital parameters (orbital elements). These orbital elements

define the trajectory an object will follow over time. Orbit determination can be done

in the ECI frame to get an inertial orbit or in the LVLH frame to get a relative orbit.

Figure 6 shows how an orbit is defined with the classical orbital elements.
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Figure 6. Orbit Parameters [8]

The trajectory of the orbit is located at a radius r from the central body that is

located at the focal point of the ellipse. The eccentricity of the orbit is defined by

parameter e. Inclination, i, is the angle between the orbital plane and the equatorial

plane. The Right Ascension of the Ascending Node (RAAN), indicated by Ω, is the

angle from î (vernal equinox) to the ascending node of the orbit (the point at which

the trajectory crosses the equatorial plane). The argument of perigee, ω, is the angle

from the ascending node to the direction of perigee (the point of the ellipse closest to

the occupied focus). True anomaly, ν, is the angle from perigee to the radial location

vector. Figure 7 shows the final parameter that is needed to define an orbit. The

semi-major axis, a, is half the distance from apogee to perigee. Other parameters

of the orbit include the distance from the focus to the orbit trajectory, p, and the

semi-minor axis, b.
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Figure 7. Elliptical Orbit Shape Parameters [18]

The six classical orbit elements are defined by

[œ] = [a e i Ω ω ν]T (2.2)

Each of the orbit elements can be calculated from the position and velocity vectors

of the satellite at different times throughout the trajectory [19]. Multiple observations

of the satellite’s motion are needed to calculate an accurate orbit trajectory.

Orbit determination is defined in terms of fidelity. Initial orbit determination

(IOD) and initial relative orbit determination (IROD) both take the measurements

of the satellite motion and determine a coarse initial estimate for the orbital motion

[8, 20]. IOD is with respect to the inertial frame. And IROD is with respect to

the relative, LVLH, frame. Precise orbit determination (POD) requires an initial

estimate of the orbit dynamics (IOD or IROD) and then refines that estimate into a

more accurate and precise orbit definition.

This research will focus on the use of RF data to calculate position, velocity and
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orbit data. This research will not explore the signal processing when a measurement

is taken, but rather the IROD process after the measurements are received. The

development of this algorithm will use the signal’s time difference of arrival. The

receivers will be in a formation in either Low Earth Orbit (LEO) or GEO-synchronous

Orbit (GEO), and the emitter will be in close enough proximity for HCW dynamics

to remain valid. This research will focus on relative motion of the objects.

2.3 Localization

Localization is the process of locating an object. In general, a point can be located

in 3-dimensional space with the intersection of three or more vectors or planes [18].

Localization can be done with one receiver or many. Localization can be accomplished

using any frequency in the EM spectrum depending on what sensors are on the receiver

and where those receivers are located [6]. This research will focus on the RF portion

of the EM spectrum.

By using several locator receivers, intersections can be found at one measurement

time for possible location solutions [21]. If the emitting frequency is unknown, the

locator must do some other analysis to gain understanding about the source. Data

can be processed in different ways to gain insight into the location of the source.

Directionality, time, and phase are common ways to look at incoming signals. The

following sections will explore the different types of signal measurements used for

localization.

2.4 Signal Measurement and Processing

Once the location of the receivers is known, the process of localization of a trans-

mitter can begin. Localization can be divided into two steps, measurement and

estimation. The measurement step utilizes a specific type of data based on the sen-
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sor of the receiver. This research will use the signal’s time of arrival to accomplish

astrolocation.

2.4.1 Time Difference of Arrival.

Time difference of arrival (TDOA) is the characterization of a signal based on the

different times that it arrives at multiple receivers. For geolocation in 3-Dimensional

space, at least three sets of unrelated TDOA measurements are needed [18].

At the time of measurement, the inertial location of three receiver satellites and

an emitter are O0(x0, y0, z0), O1(x1, y1, z1), O2(x2, y2, z2), and T (x, y, z), as shown in

Figure 8.

Figure 8. TDOA Geolocation [18]

The distance from emitter to receiver ri in Figure 8 is defined as:

ri =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (2.3)

where x, y, and z are the location of the transmitter.
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Two unique TDOAs can be found using time of arrival (TOA) from three satellites.

TDOAi = TOAi − TOA0 = ∆ti (2.4)

Recall, localization requires three sets of unrelated data [10]. For this example, there

are two TDOA measurements. The third data point is typically the surface of the

earth [10].

Electromagnetic waves (and RF signals) travel at the speed of light, c. Using the

TDOAs, the difference in distance to each of the receivers can be found.

ri − r0 = ∆ri = c∆ti (2.5)

By substituting the ranges from Equation (2.3) into Equation (2.5), and determining

where these surfaces intersect the surface of the Earth, the inertial position T (x, y, z)

is determined.

2.4.2 Frequency Difference of Arrival.

Frequency Difference of Arrival (FDOA) uses the difference in measured frequency

at the receiver to gain information about the source [10]. Because the receivers and

emitter are moving, the observed and measured frequency is actually the Doppler

shifted frequency. The change in Doppler frequency from receiver to receiver is given

by Equation (2.6).

∆fd = −f0∆ṫ (2.6)

where f0 is the frequency of the signal from the emitter.

∆ṫ can be found by differentiating Equation (2.5).
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ṙi − ṙ0 = ∆ṙi = c∆ṫi (2.7)

Putting Equations (2.6) and (2.7) together, one finds

∆ṙ = − c

f0
∆fd (2.8)

Equation (2.8) is the FDOA equation. Similar to TDOA, three unrelated FDOA

equations are needed to locate an emitter.

2.4.3 Hybrid Models.

Combining methods of measurement can help decrease the number of data points

needed or the number of receivers needed at a given measurement time. For example,

Figure 9 shows how two satellites can be used to geolocate an object using TDOA,

FDOA, and the surface of the Earth as the intersecting vectors [10].

Figure 9. Hybrid Geolocation [10]

With TDOA or FDOA alone, four receivers are needed for the three independent

range vectors [18]. By combining methods, only three vectors (from three receivers
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or two receivers and the surface of the earth) are needed at a given time to locate the

instantaneous position of an object.

Another way to reduce the number of receivers is to increase the number of obser-

vations [10]. Each of the models explored above look at determining the instantaneous

position of an object using one observation window. Figure 10 depicts the concept of

multiple time observations of a moving receiver with a stationary transmitter.

Figure 10. Single Satellite Geolocation [10]

Single satellite geolocation is more accurate with the more data points that can

be measured [10]. But, single platform geolocation is most effective on a stationary

emitter. Bailey [21] wrote his master’s thesis focusing around single platform geolo-

cation. Sinclair et al. [22] explore the accuracy of heterogeneous TDOA or taking

measurements at multiple locations. Shuster et al. [23] expand on the Sinclair et

al. work to explore the accuracy of heterogeneous TDOA IROD. The research pre-

sented here will have a moving emitter where multiple observations will correspond

to different points in the emitter’s orbit trajectory.
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2.5 Solving Methods

The problem of locating a moving object has many different ways to solve it [18].

On one extreme, one could use many receiver satellites, all looking for the same object

at one time. The other extreme uses one receiver watching over a long period of time

to map out the transmitter’s trajectory. This research will explore in between these

extremes with multiple satellites taking measurements at multiple times. A system

of polynomials will be formed with the measurement data.

2.5.1 Resultant Methods and Macaulay.

The resultant of a set of multivariate polynomials is a single univariate polynomial

obtained by eliminating all of the other variables [24]. For example, if the equations

that are to be solved are functions of x1, x2, x3, . . . xn, then by eliminating the

variables x2, . . . xn, the resultant is given by R(x1). Macaulay uses the coefficients

of the original polynomials to form the resultant [25, 26].

The Macaulay resultant method consists of three main steps: constructing a ma-

trix polynomial in terms of an anchor variable, computing the anchor variable, and

solving for the remaining roots or variables [24].

Consider the system of n polynomial equations with n unknowns as shown in

Equation (2.9). The degrees of the equations are d1, d2, . . . , dn.

F1(x1, x2, . . . , xn) = 0

F2(x1, x2, . . . , xn) = 0

. . .

Fn(x1, x2, . . . , xn) = 0

(2.9)

Resultants can be used to eliminate all except an anchor variable. A resultant

is a polynomial comprised of the coefficients of the original system. The Macaulay
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method also expresses the resultant as a ratio of determinants of two matrices M and

D, seen in Equation (2.10).

R(x1) =
det(M)

det(D)
(2.10)

where M and D are matrix polynomials in terms of the original system coefficients

and the anchor variable, x1. If D is non singular, the roots of M correspond to the

roots of x1 in the original system. In this way, solving for the anchor variable becomes

an eigenvalue problem where

M(x1)(1, x2, . . . , xn, . . . , x2
d, x3

d, . . . , xn
d)T = (0, 0, . . . , 0, . . . , 0, 0, . . . , 0)T

(2.11)

Once the anchor variable is known, the remaining roots simply correspond to the

kernel of M(x1). This process will be discussed in greater detail in Chapter III.

Legrand et. al [24] built on the work of Morgan [26] and Manocha [25] to use the

Macaulay method to solve a system of polynomials. The research presented here will

explore the use of Macaulay to solve a TDOA IROD problem.

2.5.2 Heuristic Optimization and PSO.

Heuristic optimization is a form of stochastic optimization where a degree of ran-

domness is introduced and used to find some an optimal solution [27]. The heuristic

process presented in this research is the Particle Swarm Optimization (PSO) algo-

rithm.

PSO mimics the motion of a flock of birds. The motion appears random to the

observer but the swarm, as a whole, has an objective. To solve any problem, a

specific objective, or cost function, is selected. Then an initial swarm of random

particles is distributed throughout the solution space. These particles are possible
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solutions that minimize the cost function. Next, solver settings are chosen. These

settings include the bounds for the solution space, the tolerance for a solution, the

swarm size in terms of particles, the number of iterations to search for the solution,

and a processing algorithm.

Throughout iterations, the particle’s receive updates in three ways. First is an

inertial update. This updates the particle proportionally with respect to the cost

function. For example, localization of an RSO is based on the satellite position and

velocity. For the inertial update, the PSO solver takes the difference of position and

velocity of the previous update into account for the current position and velocity

update.

For the next update, a particle receives a cognitive update. This is an update

confirming a certain particle’s motion and that it is headed in the right direction

toward a likely solution based on what that specific particle can sense. The third

update, a social update, goes to particles that are headed in the right direction

according to the swarm as a whole. Again, the measure for ‘right direction‘ is the

cost function and the tolerance to which a solution is desired. The particles continue

to receive updates up to the iteration threshold or until the solution is within the cost

function tolerance.

PSO is widely used due to its robustness [28]. Riccardo Poli [28] published a sur-

vey on the uses of PSO ranging from antenna design and communication networks to

biomedical, financial and scheduling. Poli demonstrated that with PSO any cost func-

tion can be input and any solution found within a tolerance. Lujan et. al [29] utilized

the PSO method to determine optimal receiver formation geometries for space-based

TDOA localization. The research presented here will expand the Lujan research to

look at receiver formations geometries for TDOA IROD.
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2.6 Summary

Chapter II has discussed existing geolocation techniques, relative satellite mo-

tion, and orbit determination. Chapter III outlines the process behind the algorithm

developed as part of this research.
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III. Methodology

3.1 Overview

As seen in Section 2.4.1, with TDOA, only the time the signal arrives at the

receiver is necessary to locate the object. An alternative form of TDOA is found by

examining the relative distance the signal travels from the transmitter to two different

receivers.

RDOA = c (TDOA)

RDOA(ti) = ρ(ti) =
√

XT (ti)−XR1(ti)−
√

XT (ti)−XR2(ti)

(3.1)

where XT , XR1, and XR2 are the state vectors of the transmitter, receiver one, and

receiver two, respectively. ti is the time the measurement is taken.

The position of the transmitter in Equation (3.1) is the position in reference

to a specific measurement time. Taking multiple measurements sets up a system

of polynomials to solve for the position of the unknown transmitter. At least one

measurement per number of unknowns is needed to solve the localization problem.

3.2 The System of Equations

Space objects are free to move in 3-dimensions. Those objects have an instanta-

neous position vector, [x, y, z]T and velocity vector, [ẋ, ẏ, ż]T with respect to the

LVLH frame. Given an initial state vector, the states at any other point in time can

be found using a State Transition Matrix (STM), Φ(t, t0), such that

X(t) = Φ(t, t0)X(t0) (3.2)
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For this research, HCW dynamics will be used. Therefore,

ΦHCW =



4− 3 cosnt 0 0 1
n

sinnt − 2
n
(cosnt− 1) 0

6 sinnt− 6nt 1 0 2
n
(cosnt− 1) 1

n
(4 sinnt− 3nt) 0

0 0 cosnt 0 0 1
n

sinnt

3n sinnt 0 0 cosnt 2 sinnt 0

6n(cosnt− 1) 0 0 −2 sinnt 4 cosnt− 3 0

0 0 −n sinnt 0 0 cosnt


(3.3)

To solve for the position of the transmitter in the RDOA equation, only the top

half of the STM is needed,


x(t)

y(t)

z(t)

 =


4− 3 cosnt 0 0 1

n
sinnt − 2

n
(cosnt− 1) 0

6 sinnt− 6nt 1 0 2
n
(cosnt− 1) 1

n
(4 sinnt− 3nt) 0

0 0 cosnt 0 0 1
n

sinnt





x(t0)

y(t0)

z(t0)

ẋ(t0)

ẏ(t0)

ż(t0)


(3.4)

Equation (3.4) is substituted into the RDOA equations so that each equation is

no longer in terms of position at each time, but in terms of the initial state of the

transmitter. Now, there is a system of equations in terms of a common six unknowns.

In general, a polynomial with six unknowns (x, y, z, ẋ, ẏ, ż) is given by Equation

3.5.
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f1(x, y, z, ẋ, ẏ, ż) = a1x
2 + a2xy + a3xz + a4xẋ+ a5xẏ + a6xż + a7x +

a8y
2 + a9yz + a10yẋ+ a11yẏ + a12yż + a13y +

a14z
2 + a15zẋ+ a16zẏ + a17zż + a18z +

a19ẋ
2 + a20ẋẏ + a21ẋż + a22ẋ +

a23ẏ
2 + a24ẏż + a25ẏ +

a26ż
2 + a27ż + a28 = 0

(3.5)

where, for this research, the coefficients encompass the known data about R1 and R2

and [x, y, z, ẋ, ẏ, ż]T is the state vector of the transmitter at t0.

This research ignores the effects of J2, assumes linear dynamics within the LVLH

frame (HCW dynamics), and assumes co-planar motion (i.e. z and ż = 0). Therefore,

the scenario will start with four equations and four unknowns at four different receiver

times. For co-planar motion, the generic equation becomes

f1(x y ẋ ẏ) = a1x
2 + a2xy + a3xẋ+ a4xẏ + a5x +

a6y
2 + a7yẋ+ a8yẏ + a9y +

a10ẋ
2 + a11ẋẏ + +a12ẋ +

a13ẏ
2 + a14ẏ + a15 = 0

(3.6)

3.3 Application of Macaulay

To use the Macaulay resultant method, the system of equations must first be

rewritten in terms of an anchor variable (any of the variables in the system can be

anchor variables). For this research, ẏ will be the anchor variable and for setup,
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treated as a constant.

f1(x, y, ẋ, ẏ) = a1x
2 + a2xy + a3xẋ+ (a4ẏ + a5)x+ a6y

2 +

a7yẋ+ (a8ẏ + a9)y + a10ẋ
2 + (a11ẏ + a12)ẋ +

(a13ẏ
2 + a14ẏ + a15) = 0

(3.7)

3.3.1 Homogenization.

In order to form the Macaulay matrix polynomial equation, the original poly-

nomial equations need to be homogeneous. Homogeneity requires the degree of all

monomials within each polynomial to be equal. This is accomplished by adding a

homogenization variable w.

f1(x, y, ẋ, w) = A1x
2 + A2xy + A3xẋ+ A4xw + A5y

2 + A6yẋ +

A7yw + A8ẋ
2 + A9ẋw + A10w

2 = 0

(3.8)

where

A1 = a1, A2 = a2, A3 = a3, A4 = a4ẏ + a5,

A5 = a6, A6 = a7, A7 = a8ẏ + a9,

A8 = a10, A9 = a11ẏ + a12, A10 = a13ẏ
2 + a14ẏ + a15

(3.9)

3.3.2 Matrix Size.

Before the Macaulay matrix polynomial equation can be formed, the resultant

matrix M needs to be constructed. The size of M is based on the total degree of

the set of polynomials, D, the number of variables (not including the homogenization

variable), n, and the number of equations, m. The total degree D of the set of

polynomials is computed as

D = 1 +
m∑
i=1

(di − 1) (3.10)
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where di is the degree of the ith equation.

The size of M is directly related to the system’s total degree and number of

variables.

size (M) =

(n− 1) + d

(n− 1)

 (3.11)

For this research, n = 4 and all polynomials are of degree 2, so the total degree

of the system is

D = 1 + (d1 − 1) + (d2 − 1) + (d3 − 1) + (d4 − 1) = 5

and

size (M) =

3 + 5

3

 = 56

This means that M is a 56 x 56 matrix.

The M matrix is formed out of the coefficients of Equation (3.8). However, to

determine coefficient placement, column and row labels are needed for reference.

3.3.3 Column and Row Labels.

The columns of M correspond to all monomials up to the degree of the system. All

monomial exponents add up to the degree of the system. For this research, the system

degree is d = 5. From left to right, the monomials are arranged in lexicographical

order as seen in Equation (3.12).

M =
x5 x4y ... xw4 y5 y4ẋ ... ẏw4 w5

(3.12)

The rows of M come from the corresponding equation of the column big (marker)

variable multiplied by the same numbered row monomial and divided by the marker
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variable squared [24].

‘Big’ refers to the exponent of the variable. For example, in Equation (3.12), the

first column big variable is x. In the last two columns, the big variable is w. For any

monomial where the exponents are tied, the left variable with the big exponent is the

marker variable. For example, for monomial xy2ẋ2, y is the marker variable [24].

The ‘corresponding equation‘ comes from numbering the variables. If the variables

in the coefficients are numbered as a state vector,



x

y

ẋ

w


=



1

2

3

4


(3.13)

then if x is the marker variable, the corresponding equation is f1. If w is the marker

variable, the corresponding equation is f4. The functions will be defined in Equation

(3.16) in Section 3.3.4. These are the RDOA equations at each measurement time.

Walking through one example, for row one, the column one monomial is x5. The

marker variable is x, and the corresponding function is f1. The row one label becomes

x5f1
x2

= x3f1 (3.14)
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Following this pattern, M becomes

M =

x5 x4y ... xw4 y5 y4ẋ ... ẏw4 w5

x3f1

x2yf1
...

xw2f4

y3f2

y2ẋf2
...

ẏw2f4

w3f4

(3.15)

3.3.4 Matrix Values.

For this research, all equations have the same monomial terms but the coefficients

will be different. For simplicity, f1 will have coefficients Ai, f2 will have Bi, f3 Ci,

and f4 Di.

f1(x y ẋ w) = A1x
2 + A2xy + A3xẋ+ A4xw + A5y

2 + A6yẋ +

A7yw + A8ẋ
2 + A9ẋw + A10w

2

f2(x y ẋ w) = B1x
2 +B2xy +B3xẋ+B4xw +B5y

2 +B6yẋ +

B7yw +B8ẋ
2 +B9ẋw +B10w

2

f3(x y ẋ ẏ) = C1x
2 + C2xy + C3xẋ+ C4xw + C5y

2 + C6yẋ +

C7yw + C8ẋ
2 + C9ẋw + C10w

2

f4(x y ẋ ẏ) = D1x
2 +D2xy +D3xẋ+D4xw +D5y

2 +D6yẋ +

D7yw +D8ẋ
2 +D9ẋw +D10w

2

(3.16)
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These functions are substituted for the function number in the row label. For

example, in row one

x3f1 = x3
[
A1x

2 + A2xy + A3xẋ+ A4xw + A5y
2 + A6yẋ +

A7yw + A8ẋ
2 + A9ẋw + A10w

2
]

= A1x
5 + A2x

4y + A3x
4ẋ+ A4x

4w + A5x
3y2 + A6x

3yẋ +

A7x
3yw + A8x

3ẋ2 + A9x
3ẋw + A10x

3w2

(3.17)

The coefficients from these row label equations are placed in the column matching

the monomial they are multiplied by.

M =
x5 x4y x4ẋ x4w x3y2 x3yẋ x3yw x3ẋ2 x3ẋw x3w2

x3f1 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

See Appendix A for the full M matrix for the four equation, four unknown system.

3.3.5 Matrix Polynomial.

To solve for the anchor variable, the Macaulay method redefines the coefficient M

matrix. This is seen in Equation (3.18).

M(ẏ) = M0 + M1ẏ + M2ẏ
2 (3.18)

Just like Equation (3.9), M0, M1, and M2 are comprised of the coefficients and

other variable terms from before homogenization. M0, M1, and M2 are the same

30



size as M but it is a way to break the coefficients down. For example,

M(1 : 5, 1 : 5) =



A1 A2 A3 A4 A5

0 A1 0 0 A2

0 0 A1 0 0

0 0 0 A1 0


(3.19)

Only A4 has a ẏ term. So, in terms of M0, M1, M2, and the coefficient breakdown

in Equation (3.9), Equation (3.19) becomes

M(1 : 5, 1 : 5) =



a1 a2 a3 a5 a6

0 a1 0 0 a2

0 0 a1 0 0

0 0 0 a1 0

0 0 0 0 a1


+



0 0 0 a4 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


ẏ +



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


ẏ2

(3.20)

3.3.6 Resultant Variable Solutions.

The roots of M directly correspond to the eigenvalues of the companion transpose

matrix.

CT =



0 I 0 . . . 0

0 0 I . . . 0

...
... . . .

...
...

0 0 0 . . . I

−M̄0 −M̄1 −M̄2 . . . −M̄di−1


(3.21)

Matrix inversion can be avoided by forming a generalized eigenvalue problem,
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Ax−B, where

A =



I 0 0 . . . 0

0 I 0 . . . 0

...
... . . .

...
...

0 0 . . . 0 0

0 0 . . . 0 Mdi



B =



0 I 0 . . . 0

0 0 I . . . 0

...
... . . .

...
...

0 0 0 . . . I

−M̄0 −M̄1 −M̄2 . . . −M̄di−1



(3.22)

The eigenvalues of Ax − B are the solution values of ẏ that satisfy the original

system of equations.

3.3.7 Computing Remaining Variables.

As suggested in Equation (2.11), the remaining variable solutions correspond to

the kernel vector of M or where M(ẏ)v = 0. Using a scale factor β

(
1 x y ẋ ẏ . . . xd yd ẋd ẏd

)T
= β

(
v1 v2 . . . vm

)
(3.23)

Each variable solution is simply the corresponding eigenvector vi.

3.4 Application of PSO

To use the particle swarm optimization method, a cost function must be chosen.

For this astrolocalization problem, the cost function to be minimized is shown in

Equation (3.24).
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J = ‖ρ̃− ρ(XT (t0))‖ (3.24)

where ρ̃ is the initial transmitter state as measured by the receiver sensor. In a

real-world scenario, the sensor would generate a time of arrival and RDOA would be

calculated between the receivers. For the purpose of testing the solvers, an initial

transmitter state will be chosen and RDOATrue calculated from this.

Next, the solver settings must be chosen. The lower and upper bounds for the cost

function are defined, as well as the particle swarm size and max number of iterations.

In this use of heuristic optimization, the PSO solution will be used as an initial guess

for fmincon, a MATLAB function used to find the minimum of a constrained nonlinear

multivariate equation. The fmincon solution is the initial transmitter state.

3.5 Scenario Parameters

Chapter IV will walk through the localization process utilizing both Macaulay

and PSO solvers for a specific example. However, the setup for any scenario will be

the same:

1. Select receiver formation and transmitter orbital regime

2. Select receiver formation geometry

3. Select transmitter geometry with respect to receiver LVLH frame

4. Select measurement times

5. Propagate initial receiver and transmitter locations through chosen measure-

ment times

6. Calculate RDOATrue at measurement times
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7. Use designated solver to determine initial transmitter state

8. The initial transmitter state is propagated to find the IROD of the transmitter

For the Macaulay solver, the coefficient matrix and matrix polynomial equation

must be created. Then the eigenvalue problem can be solved to find the roots of the

anchor variable. Finally, the remaining variables (and ultimately the initial trans-

mitter state) can be computed. For the PSO solver, the cost function is defined.

Then, the particle swarm parameters are set and the initial transmitter state can be

computed.

3.5.1 Receiver Formations.

It is assumed that the orbits of R1 and R2 are known. Either receiver could be

defined to be the chief of the LVLH frame as seen in Equation (3.25).

Ri = [x, y, z, ẋ, ẏ, ż]T

Ri = [0, 0, 0, 0, 0, 0]T
(3.25)

Depending on the formation geometry, the initial location of either R1 or R2 can

also be defined as any of the geometries in Equation (3.26) in the LVLH frame.

Ri = [0, y, 0, 0, 0, 0]T (leader/follower with y-offset)

Ri = [x, y, 0, 0, − 2nx, 0]T (NMC)

(3.26)

To account for several different types of scenarios, T can be defined as any of the
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geometries in Equation (3.27) in the LVLH frame.

T = [0, y, 0, 0, 0, 0]T (leader/follower with y-offset)

T = [x, y, 0, 0, − 2nx, 0]T (NMC)

T = [x, y, 0, 0.001, 0.001, 0]T (drifting in LVLH frame)

(3.27)

3.6 Summary

Chapter III has outlined the process of solving a system of polynomials to deter-

mine the location of a transmitter satellite utilizing a formation of receiver satellites.

Chapter IV explores the results of specific scenarios using the algorithm developed

for this research.
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IV. Analysis

4.1 Result Overview

Typical geolocation (such as GPS) provides the position of an object. Typical

satellite localization provides ephemeris data of the satellite in the ECI frame. This

provides the orbital information to determine where the satellite will be at any given

point in time. This research focuses on the IROD solution, locating a satellite with

respect to another object in space utilizing the LVLH frame with HCW dynamics.

Two of the objectives of this research include analysis of receiver and transmitter

geometries. The geometries chosen to be analyzed for this research are setup as shown

in Figure 11. The exact geometries will be discussed in detail at the beginning of a

test case scenario breakdown.

Figure 11. Example Geometries

This chapter will start by stepping through four test scenarios to show the Macaulay

process and disambiguation of Macaulay solutions, as well as the PSO solutions.
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4.2 Test Case 1: R1 and R2 in NMCs

For the first example, the initial LVLH reference orbit will be at an orbital altitude

of 400 km. The receivers and transmitter locations in the LVLH frame are defined as

[x, y, ẋ, ẏ]. For example one, R1, R2, and T are defined in Equation 4.1.

R1 = [10, − 5, 0, − 2nxR1]
T

R2 = [10, 5, 0, − 2nxR2]
T

T = [0, 0, 0, 0]T

(4.1)

This creates a receiver geometry such that R1 is in an NMC in the LVLH frame around

(−5, 0) and R2 is in an NMC in the LVLH frame around (5, 0). The transmitter is

stationary with respect to the LVLH frame in a leader/follower formation located at

(0, 0) as seen in Figure 12.

Figure 12. Example1 Setup Geometry

In a real-world scenario, the TDOA (and therefore the RDOA) is measured by a

sensor on-board the receiver satellites. For this scenario, the Ttrue(t0) state is used to

calculate a notional simulated RDOA measurement.
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4.2.1 Test Case 1: Macaulay.

The first step in the Macaulay process (discussed in Section 3.3) is to form the

coefficient matrix M. For the co-planar RDOA problem, there are four equations

with four unknowns. Each equation is evaluated at a different time step throughout

the relative orbit period. For this first example, t = [0, 0.1τ, 0.2τ, 0.3τ ] where t = 0

is the time at which the initial transmitter and receiver orbits are defined as seen in

Equation 4.1, and τ is the period of the LVLH reference orbit.

A Matlab function is written to compute the coefficients of the original system of

equations based on R1, R2 and LVLH orbit parameters. The coefficient matrix for

example one is shown in Table 1.

Table 1. Example1 Macaulay Coefficient Matrix

x2t xtyt xtẋt xtẏt xt y2t ytẋt ytẏt yt ẋ2t ẋtẏt ẋt ẏ2t ẏt 1

t1 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

t2 -158.93 -16.99 0 -1.01e5 1.46e3 34.93 0 -2.36e4 821.24 0 0 0 -1.36e7 2.70e5 0

t3 -909.07 -10.09 0 -4.90e5 1.66e3 2.7516 0 -6.72e3 104.68 0 0 0 -6.46e7 3.77e5 -7e-12

t4 -2.23e3 -30.84 0 -7.34e5 -3.55e3 2.7516 0 -1.27e4 104.68 0 0 0 -5.40e7 -7.47e5 0

These coefficients are placed in the M matrix according to the process in Section

3.3.4 and the M0, M1, and M2 matrices are defined. Now the generalized eigenvalue

problem in Equation (3.18) can be solved.

For a system of equations, the expectation is that there will be 2n solutions, where

n is the number of unknowns. Because there are four unknowns to this scenario,

solving Equation (3.18) should result in 16 solutions for the anchor variable, ẏ. As

described in Section 3.3.7, after the ẏ solutions are found, the remaining variable

solutions can be found by looking at the kernel of M. For this first example, the

solutions to the Macaulay process are shown in Table 2.
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Table 2. Example1 Macaulay Solutions

True 1 2 3 4 5 6 7 8

x 0 2.498e-15 2.498e-15 2.498e-15 2.498e-15 2.498e-15 -4.2356 2.498e-15 -20.0142

y 0 2.783e-15 2.783e-15 2.783e-15 2.783e-15 2.783e-15 1.1482 2.783e-15 1.8156

ẋ 0 6.945e-15 6.945e-15 6.945e-15 6.945e-15 6.945e-15 -0.0263 6.945e-15 -0.5177

ẏ 0 0 0 0 0 0 0.0199 0 0.0891

9 10 11 12 13 14 15 16 17

x -3.2221 -1.6397e-14 -0.0836
-3.264e-15

-8.555e-9i

-3.264e-15

+8.555e-9i
2.498e-15 2.498e-15 2.498e-15 2.498e-15

y 0.6449 2.9141e-15 0.0295
1.968e-14

-2.139e-9i

1.968e-14

+2.139e-9i
2.783e-15 2.783e-15 2.783e-15 2.783e-15

ẋ 0.0013 1.5811e-16 -10.0874 5.0130 5.0130 6.945e-15 6.945e-15 6.945e-15 6.945e-15

ẏ 0.0157 8.1103e-17 3.1958e-4
6.920e-17

+2.822e-11i

6.920e-17

-2.822e-11i
0 0 0 0

where True is the initial value of T (t0) used to calculate the notional RDOA measure-

ment. More analysis is needed to determine why there are 17 instead of the expected

16 solutions. Regardless of how many solutions, it is still undetermined at this point

which solution is the actual location of the transmitter. A Matlab function is writ-

ten to disambiguate between solutions. The disambiguation process will be shown in

Section 4.2.4. Figure 13 shows the positions of the disambiguated solutions within

the LVLH frame.
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Figure 13. Example Mapped Macaulay Solutions

4.2.2 Test Case 1: PSO.

For the PSO solver, a swarm size of 500 was chosen with 100 maximum iterations.

For the NMC/NMC/LF example shown Section 4.2.1 with the Macaulay process,

Table 3 and Figure 14 show the PSO result.

Table 3. Example1 PSO Solution

True 1

x 0 -9.32e-16

y 0 5.42e-16

ẋ 0 5.78e-16

ẏ 0 -4.14e-16
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Figure 14. Example1 Mapped PSO Solution

4.2.3 Test Case 1: Discussion.

Looking at the coefficient matrix for the example (Table 1), the Macaulay matrix

appears to be poorly conditioned. The coefficients range in orders of magnitude from

10−12 to 107. So, a scaling code that minimizes the standard deviation is applied to

try to improve the method. The scaled coefficient matrix is shown in Table 4.

Table 4. Example1 Macaulay Scaled Coefficient Matrix

x2t xtyt xtẋt xtẏt xt y2t ytẋt ytẏt yt ẋ2t ẋtẏt ẋt ẏ2t ẏt 1

t1 0 0 0 0 0 5.8e10 0 0 0 0 0 0 0 0 0

t2 -48.08 -1.39 0 -826.80 1.44e6 0.7748 0 -52.48 2.19e5 0 0 0 -3.03e3 7.23e6 0

t3 -147.26 -0.4426 0 -2.16e3 8.74e5 0.0327 0 -8.01 1.50e4 0 0 0 -7.72e3 5.41e6 -1.3e-5

t4 -551.58 -2.03 0 -4.84e3 -2.81e6 0.0489 0 -22.71 2.24e4 0 0 0 -9.66e3 -1.61e7 0

The solutions to the Macaulay process are shown in Table 5.
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Table 5. Example1 Macaulay Scaled Solutions

True 1 2 3 4 5 6 7 8 9 10

x 0 6.1807e-9 6.1807e-9 6.1807e-9 6.1807e-9 6.1807e-9 -2.3607 6.1807e-9 -1.5211e4 -0.0057 4.0229e3

y 0 -5.3407e-8 -5.3407e-8 -5.3407e-8 -5.3407e-8 -5.3407e-8 -0.1851 -53407e-8 0.0612 -0.0813 -1.2948

ẋ 0 1.3291e-5 1.3291e-5 1.3291e-5 1.3291e-5 1.3291e-5 -0.2860 1.3291e-5 12.4131 -0.2505 97.5238

ẏ 0 0 0 0 0 0 2.3836e3 0 2.7509e3 3.1828e-4 1.6606e3

11 12 13 14 15 16 17 18 19 20

x -6.2844e4 -7.4018e3 8.1482e-10 -9.7301e-10 -7.6430e-7 1.5855e-6 6.1807e-9 6.1807e-9 6.1807e-9 6.1807e-9

y 83.6469 -1.8497e4 -4.8217e-9 -2.0015e-10 -2.0919e-6 -1.3943e-6 -5.3407e-8 -5.3407e-8 -5.3407e-8 -5.3407e-8

ẋ -3.0127e7 -2.4397e-17 4.0333e-8 -2.3811e-9 -0.0089 -0.0390 1.3291e-5 1.3291e-5 1.3291e-5 1.3291e-5

ẏ 1.0699e4 1.8856e3 -4.8740e-11 1.8924e-10 1.9223e-7 -1.9220e-7 0 0 0 0

It is unclear, however, if this improves the accuracy of the results. A clear set of

metrics to analyze results is needed to disambiguate the solutions.

4.2.4 Test Case 1: Disambiguation of Macaulay Solutions.

Starting with the solutions that solve the generalized eigenvalue problem, the first

filter applied pulls out the solutions that have “big” imaginary parts. The location

of the transmitter is a real location. It is possible that a small imaginary part in the

solutions is due to machine precision, however, a solution with a bigger imaginary

part is less likely to be the location of the transmitter. The second filter pulls out

the duplicate solutions. Analysis only needs to be done on one of these solutions.

The third filter examines the polynomials constructed from the coefficient matrices.

Each row of the coefficient matrix is an RDOA equation at a specific measurement

time. Solutions that have passed the first two filters are propagated over time to

find their relative locations at the measurement times and are then plugged into

the polynomials. These values are compared to the polynomial solutions utilizing

the True transmitter initial values. The fourth filter plugs the remaining solutions

into the initial RDOA equation (Equation (3.1)). These are compared to the True

transmitter initial values. The fifth filter looks at the solutions in their inertial orbits.
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Due to the use of HCW dynamics, the solution orbits cannot be far outside the initial

LVLH orbit. It is expected that the solution orbits will be within the same orbital

regime as the initial LVLH orbit. The last filter examines the perigee of the solution

orbits. The perigee needs to be outside the radius of the Earth for the orbit not to

be ballistic.

These six filters are applied to the example and the remaining solutions analyzed.

For the unscaled Macaulay scenario, there are two solutions remaining. For the scaled

Macaulay scenario, there are five solutions remaining after disambiguation. The PSO

scenario solved for one optimal solution. The results of the disambiguation filters are

shown in Table 6.

Table 6. Example1 LEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 17 20

Step 2: Imaginary Check 17 20

Step 3: Duplicate Check 8 11

Step 4: Polynomial Check 4 5

Step 5: RDOA Check 4 5

Step 6: Orbit Check1 - logical orbital regime 3 5

Step 7: Orbit Check2 - perigee check 2 5

The IROD accuracy is shown in Table 7.

IROD Accuracy = ‖XTrue(t0)−XSol(t0)‖
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Table 7. Example1 LEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

1 3.7395e-15 6.9447e-15

10 1.6654e-14 1.7770e-16

Unscaled 17 solutions, 2 remaining

Solution Position Error (km) Velocity Error (km/s)

1 5.3764e-8 1.3291e-5

11 6.7935e-8 0.1056

12 6.8590e-8 0.0036

13 1.6597e-6 4.3445e-4

14 4.8613e-6 0.0016

Scaled 20 solutions, 5 remaining

Solution Position Error (km) Velocity Error (km/s)

1 1.3729e-16 8.4834e-16

PSO

Examining the same LVLH geometry at GEO instead of LEO where the orbital

altitude is 35786 km, this scenario is disambiguated as shown in Table 8 and the

IROD results are seen in Table 9.
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Table 8. Example1 GEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 25 24

Step 2: Imaginary Check 25 24

Step 3: Duplicate Check 12 11

Step 4: Polynomial Check 4 2

Step 5: RDOA Check 4 0

Step 6: Orbit Check1 - logical orbital regime 2

Step 7: Orbit Check2 - perigee check 2

Table 9. Example1 GEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

1 5.1451e-15 1.0671e-14

10 1.1415e-14 9.1301e-15

Unscaled 25 solutions, 2 remaining

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Scaled 24 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

1 6.4042e-16 9.7077e-16

PSO

As seen in Table 9, the scaled Macaulay code filters out all possible solutions and

no realistic IROD is found.
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4.3 Test Case 2: R1 at origin and R2 in NMC

For the second example, the initial LVLH reference orbit will be set as follows

alt = 400 km (4.2)

And the receivers and transmitter locations in the LVLH frame will be

R1 = [0, 0, 0, 0]T

R2 = [2, 1, 0, − 2nxR2]
T

T = [0, − 2, 0, 0]T

(4.3)

This creates a receiver geometry such that R1 is stationary in the LVLH frame in a

leader/follower formation located at (0, 0) and R2 is in an NMC in the LVLH frame

around (1, 0). The transmitter is stationary with respect to the LVLH frame in a

leader/follower formation located at (−2, 0) as seen in Figure 15.

Figure 15. Example2 Setup Geometry

The Macaulay disambiguation results are shown in Table 10 and the IROD results

for this LEO scenario are seen in Table 11.
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Table 10. Example2 LEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 16 16

Step 2: Imaginary Check 16 16

Step 3: Duplicate Check 13 13

Step 4: Polynomial Check 8 3

Step 5: RDOA Check 7 3

Step 6: Orbit Check1 - logical orbital regime 4 3

Step 7: Orbit Check2 - perigee check 4 3

Table 11. Example2 LEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

6 2.2990 0.1457

11 3.9364 0.0380

15 0.7862 0.0843

16 0.7862 0.0843

Unscaled 16 solutions, 4 remaining

Solution Position Error (km) Velocity Error (km/s)

1 0.4533 0.3316

9 0.4533 0.0851

14 0.4533 0.1232

Scaled 16 solutions, 3 remaining

Solution Position Error (km) Velocity Error (km/s)

1 8.8818e-16 7.6246e-16

PSO

If the scenario is located in GEO instead of LEO, the altitude becomes 35786 km.
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The Macaulay disambiguation is shown in Table 12 and the IROD results for this

GEO scenario are seen in Table 13.

Table 12. Example2 GEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 16 18

Step 2: Imaginary Check 16 14

Step 3: Duplicate Check 13 11

Step 4: Polynomial Check 6 3

Step 5: RDOA Check 6 3

Step 6: Orbit Check1 - logical orbital regime 2 0

Step 7: Orbit Check2 - perigee check 2

Table 13. Example2 GEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

15 0.8794 0.1627

16 0.8794 0.1627

Unscaled 16 solutions, 2 remaining

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Scaled 18 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

1 8.8818e-16 7.8319e-16

PSO

Again, as seen in Table 13, the scaled Macaulay code filters out all possible solu-

tions for the GEO scenario and no realistic IROD is found.
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4.4 Test Case 3: R1 and R2 in NMCs

For the third example, the initial LVLH orbit will be set as follows

alt = 400 km (4.4)

And the receivers and transmitter locations in the LVLH frame will be

R1 = [3, 1, 0, − 2nxR1]
T

R2 = [2, 2, 0, − 2nxR2]
T

T = [2, − 1, 0, − 2nxT ]T

(4.5)

This creates a receiver geometry such that R1 is in an NMC in the LVLH frame around

(1, 0) and R2 is in an NMC in the LVLH frame around (2, 0). The transmitter is also

in an NMC in the LVLH frame around (−1, 0) as seen in Figure 16.

Figure 16. Example3 Setup Geometry

The Macaulay disambiguation results are shown in Table 14 and the IROD results

for this LEO scenario are shown in Table 15.
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Table 14. Example3 LEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 17 16

Step 2: Imaginary Check 17 14

Step 3: Duplicate Check 14 11

Step 4: Polynomial Check 1 0

Step 5: RDOA Check 1

Step 6: Orbit Check1 - logical orbital regime 1

Step 7: Orbit Check2 - perigee check 1

Table 15. Example3 LEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

13 3.0902 0.0759

Unscaled 17 solutions, 1 remaining

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Scaled 16 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

1 9.4206e-16 0.0045

PSO

If the scenario is located in GEO instead of LEO, the altitude becomes 35786 km.

The Macaulay disambiguation is shown in Table 16 and the IROD results are seen in

Table 17.
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Table 16. Example3 GEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 16 16

Step 2: Imaginary Check 16 14

Step 3: Duplicate Check 13 11

Step 4: Polynomial Check 0 0

Step 5: RDOA Check

Step 6: Orbit Check1 - logical orbital regime

Step 7: Orbit Check2 - perigee check

Table 17. Example3 GEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Unscaled 16 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Scaled 16 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

1 4.4409e-16 2.9169e-4

PSO

The scaled Macaulay code filters out all possible solutions for the LEO and GEO

scenario and no realistic IROD is found. Even the unscaled Macaulay code filters out

all possible solutions for the GEO scenario and no realistic IROD is found.
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4.5 Test Case 4: R1 and R2 at stationary LVLH point

For the fourth example, the initial LVLH orbit will be set as follows

alt = 400 km (4.6)

And the receivers and transmitter locations in the LVLH frame will be

R1 = [0, 0, 0, 0]T

R2 = [0, − 2, 0, 0]T

T = [0, 3, 0.0001, 0.0001]T

(4.7)

This creates a receiver geometry such that R1 is stationary with respect to the LVLH

frame in a leader/follower formation located at (0, 0) and R2 is stationary with respect

to the LVLH frame in a leader/follower formation located at (−2, 0). The transmitter

is drifting with respect to the LVLH frame starting at (3, 0) as seen in Figure 17.

Figure 17. Example4 Setup Geometry

The Macaulay disambiguation results are shown in Table 18 and the IROD results

for this LEO scenario are shown in Table 19.
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Table 18. Example4 LEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 21 23

Step 2: Imaginary Check 15 19

Step 3: Duplicate Check 15 19

Step 4: Polynomial Check 13 0

Step 5: RDOA Check 8

Step 6: Orbit Check1 - logical orbital regime 5

Step 7: Orbit Check2 - perigee check 2

Table 19. Example4 LEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

9 3.3800 0.0231

20 3.0038 0.0930

Unscaled 21 solutions, 2 remaining

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Scaled 23 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

1 4.4409e-16 1.4142e-4

PSO

If the scenario is located in GEO instead of LEO, the altitude becomes 35786 km.

The Macaulay disambiguation is shown in Table 20 and the IROD results are shown

in Table 21.
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Table 20. Example4 GEO Macaulay Disambiguation

Solutions Left After Check

- Unscaled

Solutions Left After Check

- Scaled

Total Solutions out of Macaulay Solver 112 112

Step 1: Infinity Check 28 24

Step 2: Imaginary Check 22 16

Step 3: Duplicate Check 22 16

Step 4: Polynomial Check 8 0

Step 5: RDOA Check 7

Step 6: Orbit Check1 - logical orbital regime 0

Step 7: Orbit Check2 - perigee check

Table 21. Example4 GEO IROD Summary

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Unscaled 28 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

0 No solution found

Scaled 24 solutions, 0 remaining

Solution Position Error (km) Velocity Error (km/s)

1 4.7054e-16 1.4142e-4

PSO

Again, the scaled Macaulay code filters out all possible solutions for the LEO and

GEO scenario and no realistic IROD is found. Even the unscaled Macaulay code

filters out all possible solutions for the GEO scenario and no realistic IROD is found.
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4.6 Formation Analysis

Two of the objectives of this research include analysis of receiver and transmitter

geometries. The geometries chosen to be analyzed for this research are setup as shown

in Figure 18.

Figure 18. Example Geometries

Examining the geometries, placing both receivers in NMCs seems to accomplish

astrolocation to a certain degree. Scenario one is solved with very little error. How-

ever, the Macualay solver cannot solve scenario three at GEO. Placing one receiver

in an NMC and another stationary in the LVLH frame shows some promising results

as scenario two is solved. However, placing both receivers stationary in the LVLH

frame seems to yield no results.

From the limited scenarios examined, it appears that the Macaulay solver performs

better with a stationary transmitter (or setting the LVLH frame at the transmitter).

For scenario one and scenario two, the transmitter was astrolocated despite different

orbital regimes and different receiver formations.

As far as orbital regime, it appears that GEO makes solving the IROD problem

with Macaulay difficult. The PSO solver doesn’t seem to have the same problem.
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4.7 Summary

Chapter IV explored the results of specific scenarios using the algorithm developed

for this research. Chapter V concludes the research with summarized results and

contributions along with recommendations for future research.
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V. Conclusions

5.1 Research Summary

The research accomplished here is ground breaking in terms of the use of the

Macaulay resultant method for IROD. A MATLAB simulation was developed to ana-

lyze the polynomial solvers, different receiver formation geometries and how well those

receiver geometries solve the astrolocation problem, as well as analyze the geometry

between the receivers and the transmitter including orbital regime.

This research sought to draw conclusions about astrolocation in general by asking

the following questions:

• Given two cooperative receivers, what formation geometries are effective or

ineffective at astrolocating a transmitter?

• Given a formation geometry for two cooperative receivers, what are potential

transmitter geometries for which IROD is possible?

• And given a geometry between receivers and a transmitter, how does the orbital

regime influence the IROD solution?

In general, this research has shown that both the Macaulay resultant method and

the PSO method can solve for IROD of an orbiting transmitter using two receivers in

a formation. Chapter V will examine the conclusions drawn about specific geometries

examined in Chapter IV.

5.2 Receiver Formation Geometries

This research sought to answer the following question: given two cooperative

receivers, what formation geometries are effective or ineffective at astrolocating a
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transmitter? Based on the example scenarios presented in Chapter IV, it appears

that an IROD solution is more likely to be found by the Macaulay method when one

receiver is stationary and one is moving in the LVLH frame. However, there were

scenarios where the IROD problem could not be solved, and the cause of the lack

of solution cannot be ascertained. The PSO method had no trouble computing the

IROD regardless of receiver formation.

5.3 Transmitter Relative Geometries

This research sought to answer the following question: given a formation geometry

for two cooperative receivers, what are potential transmitter geometries for which

IROD is possible? Based on the example scenarios presented in Chapter IV, it appears

that an IROD solution is more likely to be found by the Macaulay method when the

transmitter is stationary with respect to the LVLH frame. The PSO method had no

trouble computing the IROD regardless of transmitter formation geometry.

5.4 Orbital Regimes

This research sought to answer the following question: given a geometry between

receivers and a transmitter, how does the orbital regime influence the IROD solution?

Based on the example scenarios presented in Chapter IV, it appears that an IROD

solution is less likely to be found by the Macaulay method when the receivers and

transmitter are located at GEO. The PSO method had no trouble computing the

IROD regardless of orbital regime.

5.5 Future Work

This research found that the Macaulay method can be used for IROD, but there

seem to be some limitations with the parameters that were chosen.
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• HCW dynamics were used. Utilizing different STM dynamics that allow for

more eccentric chief orbits or include perturbation effects could provide a more

realistic estimated trajectory.

• This research used one set of measurement times that were specific fractions

of the LVLH orbit period. Measurement times could be optimized to provide

better geometry relationships between R1 and R2. [17] found that the greater

the angle between receivers, the more accurate the location solution.

• This research did not include cross-track motion in the Macaulay solver method.

The cross-track motion adds a whole new set of challenges. The Macaulay

method would need to be restarted and M redefined based on the new RDOA

equations.

• This research only utilized a TDOA signal processing technique. By taking a

hybrid approach to processing and adding an AOA or FDOA technique to the

TDOA measurements, more data can be gathered about a specific location and

more accurate estimates could be made. However, the Macaulay method would

need to be restarted and M redefined based on the new measurement equations.

• This research began with a coarse disambiguation process for the Macaulay

solver. The disambiguation process should be expanded and refined.

• This research did not address the observability of the transmitter states. It is

possible that the observability of the transmitter would provide further insight

into the results presented in Chapter IV.
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5.6 Analysis

The goal of this research was to examine the feasibility of the Macaulay method

for IROD as well as enhance SDA methods. TDOA IROD would be an excellent

secondary mission for a formation of satellites. While the formation is performing a

primary mission, the formation satellites could also have receivers collecting oppor-

tunistic data as other satellites downlink to ground stations. This data could be used

to augment current SDA methods.
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Appendix A. Macaulay M matrix

The Macaulay coefficient matrix defined in Section 3.3 is

M =

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 A1 0 0 A2 A3 A4 0 0 0 A5 A6 A7 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 A1 0 0 A2 0 A3 A4 0 0 A5 0 A6 A7 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 A1 0 0 A2 0 A3 A4 0 0 A5 0 A6 A7 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 A1 0 0 0 0 0 A2 A3 A4 0 0 0 0 0 0 0 A5 A6 A7 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 A1 0 0 0 0 0 A2 0 A3 A4 0 0 0 0 0 0 A5 0 A6 A7 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 A1 0 0 0 0 0 A2 0 A3 A4 0 0 0 0 0 0 A5 0 A6 A7 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 A1 0 0 0 0 0 A2 0 0 A3 A4 0 0 0 0 0 A5 0 0 A6 A7 0 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 A1 0 0 0 0 0 A2 0 0 A3 A4 0 0 0 0 0 A5 0 0 A6 A7 0 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 A2 0 0 A3 A4 0 0 0 0 0 A5 0 0 A6 A7 0 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 A3 A4 0 0 0 0 0 0 0 0 0 0 0 0 A5 A6 A7 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 A3 A4 0 0 0 0 0 0 0 0 0 0 0 A5 0 A6 A7 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 A3 A4 0 0 0 0 0 0 0 0 0 0 0 A5 0 A6 A7 0 A8 A9 A10 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 0 A3 A4 0 0 0 0 0 0 0 0 0 0 A5 0 0 A6 A7 0 0 A8 A9 A10 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 0 A3 A4 0 0 0 0 0 0 0 0 0 0 A5 0 0 A6 A7 0 0 A8 A9 A10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 0 A3 A4 0 0 0 0 0 0 0 0 0 0 A5 0 0 A6 A7 0 0 A8 A9 A10 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 0 0 A3 A4 0 0 0 0 0 0 0 0 0 A5 0 0 0 A6 A7 0 0 0 A8 A9 A10 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 0 0 A3 A4 0 0 0 0 0 0 0 0 0 A5 0 0 0 A6 A7 0 0 0 A8 A9 A10 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 0 0 A3 A4 0 0 0 0 0 0 0 0 0 A5 0 0 0 A6 A7 0 0 0 A8 A9 A10 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0 0 0 0 0 A2 0 0 0 A3 A4 0 0 0 0 0 0 0 0 0 A5 0 0 0 A6 A7 0 0 0 A8 A9 A10

0 0 0 0 B1 0 0 0 0 0 B2 B3 B4 0 0 0 0 0 0 0 B5 B6 B7 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 B1 0 0 0 0 0 B2 0 B3 B4 0 0 0 0 0 0 B5 0 B6 B7 0 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 B1 0 0 0 0 0 B2 0 B3 B4 0 0 0 0 0 0 B5 0 B6 B7 0 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 B1 0 0 0 0 0 B2 0 0 B3 B4 0 0 0 0 0 B5 0 0 B6 B7 0 0 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 B1 0 0 0 0 0 B2 0 0 B3 B4 0 0 0 0 0 B5 0 0 B6 B7 0 0 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 B1 0 0 0 0 0 B2 0 0 B3 B4 0 0 0 0 0 B5 0 0 B6 B7 0 0 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 C1 0 0 0 0 0 C2 0 C3 C4 0 0 0 0 0 0 C5 0 C6 C7 0 C8 C9 C10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 C1 0 0 0 0 0 C2 0 C3 C4 0 0 0 0 0 0 C5 0 C6 C7 0 C8 C9 C10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 D1 0 0 0 0 0 D2 0 D3 D4 0 0 0 0 0 0 D5 0 D6 D7 0 D8 D9 D10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 D1 0 0 0 0 0 D2 0 D3 D4 0 0 0 0 0 0 D5 0 D6 D7 0 D8 D9 D10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 C1 0 0 0 0 0 C2 0 0 C3 C4 0 0 0 0 0 C5 0 0 C6 C7 0 0 C8 C9 C10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 C1 0 0 0 0 0 C2 0 0 C3 C4 0 0 0 0 0 C5 0 0 C6 C7 0 0 C8 C9 C10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 C1 0 0 0 0 0 C2 0 0 C3 C4 0 0 0 0 0 C5 0 0 C6 C7 0 0 C8 C9 C10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 D1 0 0 0 0 0 D2 0 0 D3 D4 0 0 0 0 0 D5 0 0 D6 D7 0 0 D8 D9 D10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 D1 0 0 0 0 0 D2 0 0 D3 D4 0 0 0 0 0 D5 0 0 D6 D7 0 0 D8 D9 D10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 B1 0 0 0 0 0 0 0 0 0 B2 B3 B4 0 0 0 0 0 0 0 0 0 0 0 0 B5 B6 B7 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 B1 0 0 0 0 0 0 0 0 0 B2 0 B3 B4 0 0 0 0 0 0 0 0 0 0 0 B5 0 B6 B7 0 B8 B9 B10 0 0 0 0 0 0 0 0 0 0 0 0
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