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AFIT-ENS-MS-20-M-182 

Abstract 

The importance and value of statistical predictions increase as data grows in availability 

and quantity. Metamodels, or surrogate models, provide the ability to rapidly approximate 

and predict information. However, selection of the appropriate metamodel for a given 

dataset is often arduous, and the choice of the wrong metamodel could lead to considerably 

inaccurate results. This research proposes and tests the framework for a metamodel 

recommendation system. The implementation allows for virtually any dataset and 

preprocesses data, calculates meta-features, evaluates the performance of various 

metamodels, and learns how the data behaves via meta-learning, thus preparing and 

bettering itself for future recommendations. Testing on over 500 widely varied datasets, 

the framework provides positive results, often recommending a metamodel with similar 

performance as the actual best metamodel.  



v 

I would like to thank my family and friends for their support, encouragement, and 

understanding as I pursued this program and my research. I would also like to express my 

incredible gratitude and appreciation to my faculty advisor, Dr. Weir, for his invaluable 

mentorship and guidance. Not only did he provide me with a skill set in research and 

academic thinking and writing, he also showed me encouragement and understanding, 

increased my confidence as an analyst, and inspired me to do great work. 



vi 

Table of Contents 

Abstract .............................................................................................................................. iv 

Table of Contents ............................................................................................................... vi 

Table of Figures ................................................................................................................ vii 

List of Tables ................................................................................................................... viii 

I.  Introduction .....................................................................................................................1 

II. Literature Review ............................................................................................................4 

2.1 Overview ................................................................................................................4 

2.2 Metamodel Recommendation Systems ..................................................................4 

2.3 Metamodeling .........................................................................................................6 

2.4 Data Preparation ...................................................................................................10 

2.5 Training and Testing Sets .....................................................................................25 

III. Methodology ...............................................................................................................26

3.1 Overview ..............................................................................................................26 

3.2 Datasets.................................................................................................................26 

3.3 Data Preparation ...................................................................................................27 

3.4 Meta-features ........................................................................................................40 

3.5 Training and Testing Sets .....................................................................................42 

3.6 Metamodels ..........................................................................................................42 

3.7 Proposed Framework ............................................................................................43 

3.8 Validation Run......................................................................................................45 

IV.  Analysis and Results ...................................................................................................47 

V.  Conclusions and Recommendations ............................................................................53 

Appendix A ........................................................................................................................57 

Bibliography ......................................................................................................................58 



vii 

Table of Figures 

FIGURE 1. SCHEMATIC DIAGRAM OF RICE'S MODEL WITH SELECTION BASED ON PROBLEM FEATURES (RICE, 

1976) ..................................................................................................................................................... 2 

FIGURE 2. METAMODEL RECOMMENDATION SYSTEM FRAMEWORK OFFERED BY SAVCHENKO ET. AL....... 5 

FIGURE 3. HIERARCHY OF DATATYPES .......................................................................................................... 15 

FIGURE 4. ADJUSTED HIERARCHY OF DATATYPES ........................................................................................ 16 

FIGURE 5. HISTOGRAMS OF CAR MAKERS IN NOTIONAL DATASET ............................................................. 22 

FIGURE 6. FLOWCHART FOR DETERMINING DATATYPES ............................................................................. 36 

FIGURE 7. PROPOSED FRAMEWORK FOR METAMODEL RECOMMENDATION SYSTEM ............................... 43 

FIGURE 8. DISTRIBUTION OF RELATIVE PERFORMANCES ............................................................................. 51 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii 

List of Tables 

TABLE 1. DATATYPES AND THEIR DEFINITIONS ............................................................................................ 15 

TABLE 2. ADJUSTED DATATYPES AND THEIR DEFINITIONS ........................................................................... 17 

TABLE 3. SAMPLE OF THE TOP GEAR DATASET ............................................................................................ 27 

TABLE 4. CLASSIFICATION RESULTS FOR TOP GEAR DATASET ...................................................................... 37 

TABLE 5. CLASSIFICATION RESULTS FOR BASEBALL DATASET ...................................................................... 38 

TABLE 6. PREPROCESSING METHODS USED PER DATATYPE ........................................................................ 39 

TABLE 7. COMPARISON OF ORIGINAL TOP GEAR DATASET AND DATASET WITH DUMMY VARIABLES ....... 40 

TABLE 8. SAMPLE OF META-FEATURES AND NRMSES OF TOP GEAR DATASET ........................................... 45 

TABLE 9. EXAMPLE OF LEAVE-ONE OUT METHOD FOR TOP GEAR DATASET ............................................... 46 

TABLE 10. PERCENTAGE OF RECOMMENDATIONS WHOSE NRMSE FALL WITHIN AN EPSILON PERCENTAGE 

OF THE BEST METAMODEL’S NRMSE .................................................................................................. 48 

TABLE 11. PERCENTAGE OF RECOMMENDATIONS WHOSE NRMSE FALL WITHIN A DECIMAL VALUED 

EPSILON OF THE BEST METAMODEL’S NRMSE ................................................................................... 49 

TABLE 12. PYTHON MODULES ...................................................................................................................... 57 

 



1 

A METAMODEL RECOMMENDATION SYSTEM USING METALEARNING 

 
I.  Introduction 

 The world of statistical predictions increases in importance and value as data 

becomes more readily accessible and available in large quantities. In its most basic sense, 

the standard prediction requires some knowledge of past patterns and outcomes to provide 

a plausible forecast. Information can be modeled through some type of algorithm, or 

metamodel, which can then be used to make predictions. The term “meta” signifies “a 

superstructure over some object” (Savchenko & Stepashko, 2018). Therefore, a 

metamodel, or surrogate model, is a model of a model. Metamodels are data-driven and 

use their input data to provide rapid approximations of the system they aim to represent.  

Countless metamodels are in existence, all with their own unique abilities and pros, 

as well as limitations and cons. Much research has been done to compare metamodels and 

their ability to perform and provide accurate results. A metamodel’s superiority to others 

depends on many factors, such as parameters used to tune the metamodel, as well as 

information regarding the input data (e.g., dimensions and distributions of the input data, 

datatypes, and other underlying mathematical properties). A single best metamodel has not 

been found. Given this, there is a need to determine the appropriate metamodel for a given 

dataset. Often referred to as the algorithm selection problem, the chosen metamodel does 

not always produce the perfect representation of the dataset (nor should it be required to 

do so). The outcome of a recommendation system depends greatly on the selection pool 

and input data. Selection of the “runner up” can still provide adequate modeling results and 
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may even prove better in other performance categories, such as computational expense and 

number of parameter specifications. 

 Whereas metamodeling itself is not a new concept, the algorithm selection problem 

has recently surfaced within the literature. Published in 1975, Rice’s paper “The algorithm 

selection problem” brought forth a structure for designing an algorithm selection system. 

The framework comprises four characteristics with mappings between the different spaces: 

(1) the problem space, comprised of the dataset instance; (2) the feature space, comprised 

of features of the problem; (3) the algorithm space, containing the pools of algorithms from 

which to select a good or best model; and (4) the performance measure, which evaluates 

each algorithm’s performance (Rice, 1976). A schematic diagram of this framework is 

shown in Figure 1.  

 

Figure 1. Schematic diagram of Rice's model with selection based on problem features 

(Rice, 1976) 

The purpose of the framework is to recommend a metamodel for the given dataset, 

given its features. Ideally, a new dataset with similar features as another previously run 
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dataset would perform similarly in terms of performance measures for the various 

algorithms and would, therefore, receive the same metamodel recommendation as its 

counterpart. 

A more recent paper, “A recommendation system for meta-modeling: A meta-

learning based approach”, proposes a metamodel recommendation system for “well-

behaved data” – data that is generated using mathematical functions, where the inputs 

directly determine the outputs (Cui, Hu, Weir, & Wu, 2016). Although this framework has 

been proven to work well for “nice” data, it requires tuning to be able to function with real-

world data. To adapt to non-theoretical datasets, this research extends the framework 

presented by Cui et. al by automating the selection of a good algorithm for any type of 

dataset, rather than limiting it to mathematical functions. This research aims to expose if 

the proposed metamodel recommendation system can get exceptional results when 

inputting data of different sources and with different relationships. 
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II. Literature Review 

2.1 Overview 

The purpose of this chapter is to present previous work related to this study, all of 

which contribute to the overall flow and elegance of the proposed metamodel 

recommendation system. This chapter first offers previous work on similar frameworks 

that inspired the creation of this research. It then presents general information on the 

metamodels of choice, followed by specific data preparation techniques that inform the 

main contribution of the proposed structure. Lastly, it explains the process of model 

validation using a training and testing split.  

2.2 Metamodel Recommendation Systems 

This research revealed several papers and previous studies that use and evaluate 

metamodel recommendation systems. In their paper, “A recommendation system for meta-

modeling: A meta-learning based approach”, Cui et al. propose a generalized framework 

for a metamodel recommendation system (Cui, Hu, Weir, & Wu, 2016). They use Latin 

hypercube sampling to determine a representative dataset from 44 benchmark functions. 

After computing 15 meta-features, they reduce these features using three feature reduction 

methods and then fit them using six different metamodels. Accuracy is measured using 

normalized root mean squared error (NRMSE). Their implementation achieves 94% 

correlation on rankings, as determined by Spearman’s rank correlation coefficient, and 

91% accuracy on the best predicted model using a hit ratio. Their paper’s main 

contributions include (1) creating the framework for the metamodel recommendation 

system for simulation, (2) improving computational efficiency by reducing it from an order 
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of minutes experienced by traditional approaches to an order of seconds, (3) suggesting a 

comprehensive set of meta-features and feature reduction techniques, and (4) validating 

their framework using benchmark cases.  

In their paper, “Short-term building energy model recommendation system: A 

meta-learning approach”, Cui et al. implement a metamodel recommendation system for 

the specific case of forecasting energy building profiles (Cui, Wu, Hu, Weir, & Li, 2016). 

They use building characteristics and statistical and time series meta-features to identify 

appropriate forecasting models for specific energy buildings.  

In their paper, “Metamodeling as a Way to Universalization of Inductive Modeling 

Tools”, Savchenko et al. offer the framework for a metamodel recommendation system. 

Their paper indicated the intent to create an automated process, although they point out 

that tasks could also be user-interactive, such as the final selection of the metamodel. Their 

process is presented in Figure 2. 

 

Figure 2. Metamodel recommendation system framework offered by Savchenko et. 

al 
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One element of their recommendation system, and a crucial component of ours, is 

the suggested implementation of a preprocessing step, which would include “data 

visualization, imputing or eliminating omissions, filtering noise in data, checking the 

homogeneity of a sample, normalizing data”, and the like (Savchenko & Stepashko, 2018). 

They also propose the requirement of the system to determine the needs of a specific 

dataset, prior to recommendation, to include specifying between continuous and discrete, 

static and dynamic, linear and nonlinear, one-dimensional and multi-dimensional, 

stationary and nonstationary, as well as oscillatory and cyclic (Savchenko & Stepashko, 

2018).  

2.3 Metamodeling 

As previously mentioned, there are numerous metamodeling techniques, each 

which bring different capabilities. In his post on R-Bloggers, Piccini lists 101 different 

machine learning algorithms (Piccini, 2019). Those used in Cui’s papers include Kriging, 

or Gaussian process regression, support vector regression, radial basis function, 

multivariate adaptive regression splines, artificial neural networks, multilayer perceptron, 

Bayesian neural networks, generalized regression neural networks, K-nearest neighbor 

regression, and CART regression trees  (Cui, Hu, Weir, & Wu, 2016; Cui, Hu, Weir, & 

Wu, 2016). Determining the “best” subset of metamodels is beyond the scope of this 

research. Therefore this research is limited to a sample of six metamodels for testing. The 

chosen metamodels include multiple linear regression, ridge regression, Bayesian ridge 

regression, decision tree regression, k-nearest neighbors (KNN), and stochastic gradient 

descent (SGD). Now each metamodel is briefly explained. 
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2.3.1 Multiple Linear Regression 

Multiple linear regression models the relationship between two or more predictor 

variables and a response variable, typically via the method of least squares, which aims to 

minimize the residual sum of squares between the observed and predicted data. The 

multiple linear regression equation is as follows: 

𝑦𝑦� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ⋯+ 𝑏𝑏𝑝𝑝𝑥𝑥𝑝𝑝 (1) 

where 𝑝𝑝 represents the number of predictor variables, 𝑏𝑏0 is the value of 𝑦𝑦� when all 

independent variables are equal to zero; 𝑏𝑏0, 𝑏𝑏1, … , 𝑏𝑏𝑝𝑝 are the estimated coefficients of the 

predictor variables 𝑥𝑥1, … 𝑥𝑥𝑝𝑝, respectively; and 𝑦𝑦� is the predicted response. Hoerl et al. 

present the canonical form for multiple linear regression which is shown below: 

Χ = Χ∗Ρ (2) 

and 

𝑌𝑌 = Χ∗𝛼𝛼 + 𝜀𝜀 (3) 

where Ρ is an orthogonal transformation such that Χ′Χ = Ρ′ΛΡ, Λ = �𝛿𝛿𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖� is  the matrix 

of eigenvalues of Χ′Χ, and 𝛼𝛼 = Ρ𝛽𝛽, (Χ∗)′(Χ∗) = Λ, and 𝛼𝛼′𝛼𝛼 = 𝛽𝛽′𝛽𝛽 . 

2.3.2 Ridge Regression 

Ridge regression is used “to control the inflation and general instability associated 

with the least squares estimates”, and is known as “weight decay” in neural networks 

(Hoerl & Kennard, 1970; Bishop, 2006). This technique uses the following equation to 

estimate the variable coefficients: 

𝐵𝐵�∗ = [Χ′Χ + 𝑘𝑘Ι]−1Χ′𝑌𝑌,𝑘𝑘 ≥ 0 (4) 
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To compare ridge regression with multiple linear regression, see the following form as 

defined by Hoerl et al.: 

𝛼𝛼∗ = [(Χ∗)′(Χ∗) + Κ]−1(Χ∗)′𝑌𝑌 (5) 

where Κ = �𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖� and 𝑘𝑘𝑖𝑖 ≥ 0. 

Bishop notes that regularization, which adds a penalty term to the error function, can be 

used to control over-fitting (Bishop, 2006). For example, typically the goal is to minimize 

the error term, expressed often as 

𝐸𝐸(𝑤𝑤) = �{𝑦𝑦(𝑥𝑥𝑛𝑛,𝒘𝒘) − 𝑡𝑡𝑛𝑛}2
𝑁𝑁

𝑛𝑛=1

 (6) 

where 𝑦𝑦(𝑥𝑥𝑛𝑛,𝒘𝒘) are predictions for data point 𝑥𝑥𝑛𝑛 and 𝑡𝑡𝑛𝑛 are the target values. 

The error term of ridge regression uses the following form, adding only a single penalty 

term to (6): 

𝐸𝐸(𝑤𝑤) = �{𝑦𝑦(𝑥𝑥𝑛𝑛,𝒘𝒘) − 𝑡𝑡𝑛𝑛}2 +
𝜆𝜆
2
𝑤𝑤𝑇𝑇𝑤𝑤

𝑁𝑁

𝑛𝑛=1

 (7) 

The coefficient 𝜆𝜆 determines the regularization term’s importance in comparison with the 

importance of the sum-of-square error term. 

2.3.3 Bayesian Ridge Regression 

Bayesian regression techniques allow for the use of regularization parameters. 

Given by Bishop, the specific case of Bayesian ridge regression has a spherical Gaussian 

prior for the parameter 𝛼𝛼: 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝒩𝒩(𝑤𝑤|0,𝛼𝛼−1Ι) (8) 

The posterior distribution over 𝑤𝑤 is given by  
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𝑝𝑝(𝑤𝑤|𝑡𝑡) = 𝒩𝒩(𝑤𝑤|𝑚𝑚𝑁𝑁, 𝑆𝑆𝑁𝑁) (9) 

where 𝑚𝑚𝑁𝑁 = 𝛽𝛽𝑆𝑆𝑁𝑁Φ𝑇𝑇𝑡𝑡 and 𝑆𝑆𝑁𝑁−1 = 𝛼𝛼Ι + 𝛽𝛽Φ𝑇𝑇Φ. Bishop notes that the “[r]egularization of 

this posterior distribution with respect to 𝑤𝑤 is…equivalent to the minimization of the sum-

of squares error function with the addition of a quadratic regularization term”. This 

corresponds to (7), with 𝜆𝜆 = 𝛼𝛼 𝛽𝛽⁄  , making this algorithm very similar to the classical ridge 

regression (Bishop, 2006). 

2.3.4 Decision Tree Regression 

Decision tree regression partitions a dataset into subsets by creating decision points 

that place the data into different nodes (Acharya, Armaan, & S, 2019). Regression trees are 

built top-down. The root node is chosen to be the decision point that minimizes the sum of 

the residuals. Each subsequent decision node is then chosen in the same manner. A 

stopping criterion, such as the minimum number of observations in a node, determines 

when a node becomes an endpoint, or leaf. This leaf contains a numeric value that 

represents the output value. 

2.3.5 k-Nearest Neighbors 

K-nearest neighbors regression (KNN) determines which 𝑘𝑘 datapoint’s input data 

are closest to the inputs of a test datapoint, in terms of Euclidean distance. The distance 𝑑𝑑 

between training point 𝑝𝑝 and testing point 𝑞𝑞, each with 𝑛𝑛 inputs, is shown below. 

𝑑𝑑(𝑝𝑝, 𝑞𝑞) = ��(𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (10) 

The 𝑘𝑘 datapoints with the smallest distances are then selected as the nearest neighbors. The 

mean value of the target variable of these neighbors are then used to predict the target 
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variable value of the test datapoint. The mean calculation is shown below, where 𝑦𝑦�𝑝𝑝𝑗𝑗� is 

the response value of neighbor 𝑝𝑝𝑗𝑗 and 𝑦𝑦�(𝑞𝑞) is the predicted value of target point 𝑞𝑞. 

𝑦𝑦�(𝑞𝑞) =
1
𝑘𝑘
�𝑦𝑦(𝑝𝑝𝑗𝑗)
𝑘𝑘

𝑗𝑗=1

 (11) 

2.3.6 Stochastic Gradient Descent 

To predict the value of a target variable, stochastic gradient descent (SGD) 

implements the following minimization algorithm: 

𝜃𝜃𝑡𝑡∗ = arg min𝜃𝜃
1
𝑡𝑡
�(𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖),𝑦𝑦𝑖𝑖) + 𝑅𝑅(𝜃𝜃))
𝑡𝑡

𝑖𝑖=1

 (12) 

where there are 𝑡𝑡 datapoints, 𝜃𝜃𝑡𝑡∗ is the parameter that minimizes empirical cost, (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is 

training point 𝑖𝑖, 𝐿𝐿(𝑠𝑠, 𝑦𝑦) is a loss function (which provides a small value if 𝑠𝑠 is a good 

prediction for 𝑦𝑦), and 𝑅𝑅(𝜃𝜃) is a regularization function (Xu, 2011). The term 𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖) is the 

function that predicts the outcome variable 𝑦𝑦𝑖𝑖 given the observed variable 𝑥𝑥𝑖𝑖. SGD is a 

common algorithm to solve (12), in which the sequence 𝜃𝜃𝑛𝑛 approximates 𝜃𝜃𝑡𝑡∗ and is updated 

iteratively through: 

𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑡𝑡−1 − 𝛾𝛾𝑡𝑡𝑔𝑔(𝜃𝜃𝑡𝑡−1,𝑑𝑑𝑡𝑡) (13) 

where 𝛾𝛾𝑡𝑡 is the learning rate at step 𝑖𝑖, 𝛾𝛾𝑡𝑡 is either a scalar or a matrix, 𝑔𝑔(𝜃𝜃, 𝜉𝜉) = 𝜕𝜕𝜕𝜕(𝜃𝜃,𝑑𝑑)
𝜕𝜕𝜕𝜕

 is 

the gradient of the loss function, and 𝐷𝐷𝑡𝑡 = (𝑑𝑑1, … ,𝑑𝑑𝑡𝑡) are the training samples at step 𝑡𝑡 

(Xu, 2011). 

2.4 Data Preparation 

One component absent from Rice’s paper, as presented in Chapter I, and Cui’s 

papers is data preparation prior to metamodeling. This step is present in Savencho’s 
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suggested framework and plays a critical role in the execution of this research. Rice’s paper 

focuses on collections of functions (e.g., selecting a program to solve ordinary differential 

equations) and does not call for data preparation, engineering, or any of the like. Similarly, 

the framework proposed by Cui et al. tests on 44 functions, meaning that each problem has 

underlying mathematical properties and, therefore, do not require any cleaning prior to 

making predictions (Cui, Hu, Weir, & Wu, 2016). The test data used for research in “Short-

term building energy model recommendation system” considers simulated data and does 

not mention any data preparation procedures (Cui, Wu, Hu, Weir, & Li, 2016). Unlike the 

previously mentioned papers on recommendation systems, Savencho’s work proposes a 

system that allows for both pre- and post-processing. Because the recommendation 

framework allows for any type of tabular dataset, and, therefore, does not guarantee that 

the data will be ready for use, this research implements a preprocessing step as well.  

Many machine learning techniques require data preparation to be considered of any 

use. It is not always clear how to handle troublesome information, such as missing values, 

categorical inputs, and unscaled data. This raises the need for data cleaning and 

reformatting. Detailed information on data cleansing processes can be found in many 

textbooks and courses relating to machine learning. This chapter goes through the main 

preprocessing steps and describes common techniques and their alternatives. Among these 

include how to handle missing data, determining information to maintain or remove, how 

to handle categorical data, scaling techniques, as well as several additional steps that can 

be implemented. 
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2.4.1 Missing Data 

One major issue encountered when preprocessing is how to handle missing data. 

The two main approaches are to (1) remove observations or fields containing any missing 

values, and (2) replace the missing value with another value. This topic has been researched 

extensively, but no one method is considered the best. Several approaches include 

replacing missing values with one of the following (Larose & Larose, 2014): 

• A value deduced by considering the context (e.g., a missing value could imply an 

input of 0) 

• An analyst-specified constant 

• The mean or mode of the variable 

• A random value generated from the observed data’s distribution 

• A prediction (or label) based on multiple linear regression or stochastic regression 

(or a classification algorithm) 

• The value from another observation with similar inputs for a subset of variables 

(referred to as “hot deck imputation”) 

• An analyst-determined value based on results from multiple imputation (an 

approach that blends classical and Bayesian statistics and offers several potential 

imputed values. The analyst “specifies an imputation model, imputes several data 

sets, analyzes them separately, and then combines the results” (Ette & Williams, 

2007)). 

The previously mentioned methods for handling missing data are not without their 

faults. As mentioned in “Discovering Knowledge in Data”, omitting observations or fields 

containing missing inputs may be wasteful. Even more detrimental is the possibility that 
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this could lead to a biased subset of data (Larose & Larose, 2014). For example, a dataset 

could have missing values due to patients dropping from medical treatment prior to 

completion. This could potentially remove a population from the dataset that each 

responded positively (or negatively) to the treatment – information that would not be 

captured upon their removal. Mean (or mode) imputation “decreases variability between 

individuals and biases correlations with other variables”, both of which are unfavorable 

aftermaths (Ette & Williams, 2007). Furthermore, a downfall to many of these methods is 

that the imputed data is treated with certainty. A multiple imputation approach looks to 

remove this uncertainty by considering several possible inputs. The main flaw of multiple 

imputation is its computational expense (Ette & Williams, 2007), which may not be a major 

setback, given the advanced power of machines today. 

2.4.2 Filtering 

The following paragraphs deal with questionable data that compel the decision to 

either maintain them within the dataset or filter them out. The first concerns unary variables 

(those that have only one level of input). Logic proposes to remove these variables, as 

identical inputs for all observations contribute no information. This segues into the topic 

of “nearly” unary variables, in which a large percentage of the data have the same input. 

Larose suggests removing nearly unary variables, with the requirement that the analyst 

determine the threshold to be considered nearly unary (e.g., nearly unary variables are those 

that have, say, 99% of their data having the same input). Larose warns against removing a 

variable simply because a large proportion has missing values or because it is highly 

correlated with other variables, as doing so could still discard important information 

(Larose & Larose, 2014). 
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Another area of consideration is whether to filter out duplicate observations. Repeat 

observations could be present because (1) the record was inadvertently copied twice, or (2) 

two or more observations had the exact same inputs. In the first scenario, the record should 

be deleted, as it overweighs those inputs. However, the second scenario should be 

maintained to support the fact that that combination of inputs occurred on more than one 

occasion. Larose suggests using common sense when addressing this issue. To use their 

example, a dataset with three nominal fields, each with three levels, would generate 33 =

27 possible combinations. A dataset containing more than 27 observations would 

undoubtfully result in a repeated combination (Larose & Larose, 2014).  

2.4.6 Datatypes 

2.4.6.1 Continuous vs Discrete 

Datatypes play an important role in machine learning, as different datatypes require 

different preprocessing methods. In testing, the preprocessing recognizes two main 

datatypes: continuous and discrete. Continuous data are always numeric, whereas discrete 

are both numeric and non-numeric (i.e., textual). The main difference between the two 

classes is that continuous data can always increase in precision, whereas discrete data 

cannot. However, this distinction should not be extended to non-numeric variables. For 

example, one could argue that a nominal variable representing the type of pet belonging to 

an individual could be further characterized into breeds, (i.e., made more precise). 

2.4.6.2 Subclasses for Datatypes 

Both continuous and discrete datatypes have subclasses, which are adopted from 

Valera et al. and are listed as follows: continuous data includes real-valued, positive real-

valued, and interval data; and discrete data includes categorical, binary, ordinal, and count 
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data (Valera & Ghahramani, 2017). These subtypes are captured in the hierarchy presented 

in Figure 3. 

 

Figure 3. Hierarchy of datatypes 

Each datatype is listed in Table 1, along with their parent class and definition, as 

provided by Valera et al. (Valera & Ghahramani, 2017). 

Table 1. Datatypes and their definitions 

Datatype Parent Class Definition 
Real-valued Continuous 𝑥𝑥 ∈ ℤ  
Positive real-valued Continuous 𝑥𝑥 ∈ ℤ+  
Interval Continuous 𝑥𝑥 ∈ (𝜃𝜃𝐿𝐿 ,𝜃𝜃𝑈𝑈) ⊆ ℤ, where 𝜃𝜃𝐿𝐿 ≤ 𝜃𝜃𝑈𝑈 
Categorical Discrete 𝑥𝑥 comes from a finite, unordered set 
Binary Discrete 𝑥𝑥 ∈ {0,1}   
Ordinal Discrete 𝑥𝑥 comes from a finite, ordered set 
Count Discrete 𝑥𝑥 ∈ ℕ  

 

2.4.6.3 Proposal of Datatype Hierarchy 

The above subcategories are all-encompassing – that is, all data falls into one of the 

datatypes listed in Table 1. However, this research proposes a revised organization of the 

hierarchy. That is not to say that the one offered by Valera et al. is incorrect, but rather that, 

for these purposes, another approach is more suitable. The new hierarchy groups together 

datatypes that are to be handled with the same preprocessing methods. This research only 
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adjusts the discrete variables, where discrete variables are subcategorized into categorical 

and count variables. Categorical variables are then decomposed into nominal, ordinal, and 

binary variables. These variables represent finite data, whereas count variables could, 

theoretically, take on infinite values. In the adjusted hierarchy, ordinal and binary variables 

maintain their previous definitions, whereas nominal data adopts the previous definition of 

categorical data. Figure 4 shows the modifications.  

 

Figure 4. Adjusted hierarchy of datatypes 

Table 2 shows each datatype, its parent class(es), a definition, and whether it is 

numeric. One note of ordinal variables is that, although there is an order in which the levels 

abide by, there is no way to measure the difference between any two levels. Note that this 

research considers binary to be a numeric datatype, as possible inputs are 0 and 1. A 

variable that has two textual levels (e.g., “male” and “female”) is considered nominal, 

although it can be transformed into binary. 
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Table 2. Adjusted datatypes and their definitions 

Datatype Parent Class(es) Definition Numeric 
Real-valued Continuous 𝑥𝑥 ∈ ℤ  Yes 
Positive real-valued Continuous 𝑥𝑥 ∈ ℤ+  Yes 
Interval Continuous 𝑥𝑥 ∈ (𝜃𝜃𝐿𝐿 ,𝜃𝜃𝑈𝑈) ⊆ ℤ, where 𝜃𝜃𝐿𝐿 ≤ 𝜃𝜃𝑈𝑈 Yes 
Nominal Discrete, Categorical 𝑥𝑥 comes from a finite, unordered set No 
Ordinal Discrete, Categorical 𝑥𝑥 comes from a finite, ordered set Possibly 
Binary Discrete, Categorical 𝑥𝑥 ∈ {0,1}   Yes 
Count Discrete 𝑥𝑥 ∈ ℕ  Yes 
 

2.4.6.4 Examples of Different Datatypes 

Examples of the different datatypes are now presented, beginning with continuous 

variables, which include real-valued, positive real-valued, and interval data. For each of 

the continuous variables, it follows that in between any two values, there is an infinite 

number of values that are valid inputs. An example of a real-valued variable is the equation 

𝑦𝑦 = 𝑥𝑥, as any value on the real number line is a plausible input. An example of a positive 

real-valued variable is time, because time can take on any positive value. The height of a 

person is an interval, where possible values fall within the generous range of 0 to 10 feet.  

Next, examples of discrete data, beginning with the categorical class, which 

includes nominal, ordinal, and binary are presented. Several examples of nominal data 

include the color of traditional M&Ms (i.e., the set {“Green”, “Red”, “Blue”, “Brown”, 

“Yellow”, “Orange”}), gender (i.e., the set {“Male”, “Female”)}, and types of operating 

systems (i.e., the set {“Mac”, “Windows”, “Linux”}). Examples of ordinal data include 

levels of happiness, where possible values come from the set {“Very unhappy”, 

“Unhappy”, “Okay”, “Happy”, “Very happy”} and number of cylinders in a standard car, 
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where possible values may include {2, 3, 4, 5, 6, 8}. A binary variable is simply the set 

{0,1} and measures true/false data, such as whether an individual owns a pet, with 0 

representing “no” and 1 representing “yes”. The final datatype is count variables, another 

subclass of the discrete type. Examples of this datatype include the number of soccer goals 

scored per game in a season and the number of people at each concert during a band’s tour.  

2.4.6.5 Distinguishing Between Datatypes 

Distinguishing between each subcategory presented above is typically a simple 

process when completed by a human, although this could still present debate per 

interpretation. However, more challenges arise when a machine is to automate the 

categorization of data. The main need is to identify between continuous, ordinal, and count 

data. As noted in Table 2, both continuous and count data are numeric, and ordinal can 

possibly be numeric. Identifying a variable as binary (another numeric datatype) is a simple 

process, as one only needs to verify that the numbers 0 and 1 are the sole levels. Therefore, 

when presented with numeric data, one must be able to determine which of these categories 

best describes the variable. It is possible that a continuous variable disguise itself as a 

discrete variable or vice versa. Likewise, ordinal and count data have the potential to appear 

identical. 

The Top Gear dataset, along with the dataset, Baseball provide an example of this 

potential problem. The Top Gear dataset comes from the car review television show, Top 

Gear, and provides various attributes of a variety of cars, along with a “Verdict” column 

that represents the television program’s hosts’ overall opinion of the cars. The variable, 

“Length”, from the Top Gear dataset measures the length of cars in millimeters. As this is 

a quantitative measurement and because the measurements could become more precise (by 
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using more decimals or via a more precise form of measurement, such as the micrometer), 

this variable is continuous. Nevertheless, as any car dataset would do, the Top Gear dataset 

rounds length to the nearest whole number of its utilized unit (millimeters). We now 

compare the length variable to one from the dataset, Baseball, provided by the Python 

package, pydataset. This dataset contains baseball statistics and includes the variable 

“hits”, giving the number of hits in the careers of various baseball players. This statistic is 

undoubtedly a count variable, as it represents frequency. However, it is possible that the 

values of this variable mimic those of the length variable in the Top Gear dataset. If this is 

the case, how would a machine automatically distinguish between these two variables? 

Although the number of hits in the baseball dataset is a count variable, if it appears to be a 

continuous variable, it should be treated as one in terms of preprocessing.  

As another example, imagine a dataset contains the number of goals scored per 

game during a World Cup. This variable will most likely range from 0 to around 12 (the 

current record). At the same time, the number of cylinders in a car typically comes from 

the set {2, 3, 4, 5, 6, 8}. These two variables could appear to be very similar, even though 

one variable is a count and the other is ordinal. Although these variables are by definition 

different datatypes, because the numbers within each are very similar (whole numbers 

ranging from 0 to 10 or from 2 to 8), they should be treated similarly.  

2.4.6.6 Algorithm 

In this research, the recommended method for automating the categorization of 

continuous and discrete variables is to implement some type of algorithm. Online forums 

suggest looking at the ratio between the number of unique values in a column and the 

number of rows in the dataset and comparing that ratio to some threshold. Valera et al. 
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suggest creating rules based on the number of unique values of a column and the frequency 

of occurrence of those values (Valera & Ghahramani, 2017). The two examples presented 

in the previous paragraph lead to an important criterion: rather than correctly identifying 

the datatype of a variable (where correct identification depends completely on human 

interpretation), this algorithm’s main goal must be to correctly identify which datatype the 

inputs of a variable most resemble, indicating that this variable should be treated as though 

its machine-classified datatype were in fact the correct datatype. The algorithm to 

distinguish between the different datatypes is described in Chapter III.  

2.4.3 Categorical Data 

Categorical data, according to the previously described definitions and hierarchy, 

can either be ordinal, in which a natural ordering occurs (e.g., unsatisfied, neutral, 

satisfied); nominal, in which the inputs hold no quantitative value (e.g., North, South, East, 

West); or binary, where possible values come from the set {0,1}.  To be of any use in 

machine learning algorithms, categorical data must be transformed into some numeric 

representation.  

According to Narsky et al., ordinal variables can be represented by integers “if the 

relative distance between categorical levels is unimportant”, which would be sufficient for 

an algorithm such as decision trees (Narsky & Porter, 2014). However, many algorithms 

take distance into account, and so setting categorical levels to an integer would cause an 

issue in modeling. Therefore, integer values to represent an ordinal variable should be used 

with caution, as uniform spacing in between numeric values implies uniform spacing 

between the original categorical variables. For example, if the levels for a variable are 

“Bad”, “Okay”, “Good”, and “Great” and the associated numeric variables are 1,2,3, and 
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4, this implies that the difference between “Bad” and “Okay” is the same as that between 

“Okay” and “Good” since the distance between 1 and 2 and between 2 and 3 are equal. 

This implication may not, however, be valid. 

Nominal data can be transformed using dummy variables, also known as flag 

variables. This process, referred to as binary encoding, as well as one-hot encoding, is now 

described. For a 𝑘𝑘-level categorical column, the column is transformed into 𝑘𝑘 − 1 columns. 

The replacement columns are binary to indicate if a particular row originally contained the 

level represented by the additional column. Of the possible levels, one level does not 

receive a corresponding dummy column, but is instead represented by having all “0”s in 

the other levels’ representative columns. Let 𝑁𝑁 be the set of all columns in a given dataset, 

and let there be 𝑛𝑛 columns in 𝑁𝑁. Let 𝑁𝑁𝑎𝑎 be the set of columns within 𝑁𝑁 that are categorical, 

where 𝑁𝑁𝑎𝑎 ⊆ 𝑁𝑁 and 𝐴𝐴 is the number of categorical columns. Let 𝑁𝑁𝑏𝑏 be the set of columns 

in 𝑁𝑁 that are not categorical, where 𝑁𝑁𝑏𝑏 ⊆ 𝑁𝑁 and 𝐵𝐵 is the number of non-categorical 

columns. Because a column must be categorized as categorical or not categorical, 𝑁𝑁𝑎𝑎 ∩

𝑁𝑁𝑏𝑏 = ∅ and 𝑁𝑁𝑎𝑎 ∪ 𝑁𝑁𝑏𝑏 = 𝑁𝑁.  Dummy variable transformation is only performed on columns 

within 𝑁𝑁𝑎𝑎, (i.e., those that are categorical). Let 𝑘𝑘𝑛𝑛𝑎𝑎 be the number of levels in categorical 

column 𝑛𝑛𝑎𝑎. After binary encoding, the transformed dataset has 𝐵𝐵 + ∑ (𝑘𝑘𝑛𝑛𝑎𝑎 − 1)𝐴𝐴
𝑎𝑎=1  

columns.  

An additional step is to create an “other” category when pursuing binary encoding. 

For example, Figure 5 below shows a variable capturing the frequency of different car 

makers within a fictional dataset. Standard binary encoding would create eight different 

variables to represent this categorical variable, as there are nine levels. There are six 

different makers that each only have between one and three occurrences. Instead of creating 
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a binary indicator column for each of these makers, they could each be lumped into a 

combined category. Cars that fall into this “other” category indicate that they are not Ford, 

Chevrolet, or Toyota. This reduces the additional number of columns from eight to three, 

which could improve computational runtime and efficiency. This would be a very effective 

method for variables with many levels, given that those lumped together individually have 

relatively few occurrences compared to those that maintain their own column. 

 

Figure 5. Histograms of car makers in notional dataset 

2.4.4 Scaling 

One very important step in data preparation is scaling the data. Because machine learning 

algorithms often take magnitude into consideration, while disregarding units, unscaled data 

causes features with large ranges to have an erroneously greater influence on the results 

(Larose & Larose, 2014). Furthermore, unscaled data can impact efficiency of learning.  

Several options for scaling include the following, each of which are described 

below. 
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• Min-max normalization  

• Z-score standardization  

• Decimal scaling  

2.4.4.1 Min-max Normalization  

The min-max normalization method considers the deviation of the observed value 

from the absolute minimum value for the given variable and scales this by the range of the 

variable. This method is represented mathematically by 

 𝑥𝑥′ =
𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
 (14) 

where 𝑥𝑥′ is the normalized value, 𝑥𝑥 is the original value, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum of the values, 

and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum of the values. This method scales the variables between 0 and 

1, so that 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 maps to 0 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 maps to 1.  

2.4.4.2 Z-score Standardization  

Z-score standardization looks at the difference between the observed value and the 

average value within the column and divides it by the standard deviation of the column’s 

values. The following equation represents this method mathematically: 

 𝑥𝑥′ =
𝑥𝑥 − 𝑥̅𝑥
𝜎𝜎

 (15)  

where 𝑥𝑥′ is the scaled value, 𝑥𝑥 is the original value, 𝑥̅𝑥 is the average, and 𝜎𝜎 is the standard 

deviation. The resulting scaled variables have a mean of 0 and a standard deviation of 1.  

2.4.4.3 Decimal Scaling  

Decimal scaling ensures that all normalized values fall between −1 and 1 and is 

represented by the following equation: 
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 𝑥𝑥′ =
𝑥𝑥

10𝑑𝑑
 (16)  

where 𝑥𝑥′ is the scaled value, 𝑥𝑥 is the original value, and 𝑑𝑑 is the number of digits of the 

input with the largest absolute value. Let 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 be the input with the largest absolute 

value. The resulting distribution lies in the interval �− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
10𝑑𝑑

, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
10𝑑𝑑

�, which falls in 

between −1 and 1.  

2.4.7 Additional Steps 

The scope of this study does not require any additional data cleansing steps. 

However, in real-world applications, further preprocessing steps should be considered, to 

include 

• Outlier detection and the potential removal of outliers. Outlier detection serves as 

an alarm that a datapoint may be an outlier, rather than as a definite conclusion that 

a given datapoint is an outlier. Therefore, outlier detection requires further 

investigation to determine whether an outlier is in fact an outlier.  

• Removing fields/levels that are no longer relevant or have expired 

• Ensuring that inputs make sense regarding their context 

• Checking for input errors (e.g., spelling) 

• Specifying datatypes for each column (e.g., categorical, count, etc.) 

• Splitting columns into separate components (e.g., decomposing time into year, 

month, day, hour, minute, etc.) 

• Feature-reduction techniques (e.g., principal components analysis) 
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2.5 Training and Testing Sets 

When building a machine learning algorithm, it is standard to perform a training 

and testing split to test the predicting abilities of the algorithm. A certain percentage of an 

observed dataset is labeled as the “training data”, leaving the remaining datapoints to be 

“testing data”. This enables calculation of how well each metamodel performs on the 

dataset. The model is built using the training dataset, where the target column is the output. 

After it is built, the algorithm makes predictions on the testing dataset. Because the original 

dataset contains the actual values of the target column for the testing dataset, the error in 

prediction can be determined. There are many articles that reference the ideal splits for 

specific algorithms, but there is no consensus on the percentages to use for these subsets 

for any algorithm. Therefore, the implementation uses the default values of the splitting 

algorithm. 

 This chapter looked at previous work on recommendation systems, as well as the 

literature on metamodels and data cleansing techniques. The next chapter uses this 

literature to guide the development of a metamodel recommendation system. 
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III.  Methodology 

3.1 Overview 

This research study uses the framework presented by Cui et al. in their article “A 

recommendation system for metamodeling: A meta-learning based approach” and by Cui 

et al. in their article “Short-term building energy model recommendation system: A meta-

learning approach” (Cui, Hu, Weir, & Wu, 2016; Cui, Wu, Hu, Weir, & Li, 2016). The 

purpose of this study is to validate whether the proposed metamodel recommendation 

system framework functions with another application. Rather than using mathematical 

functions or a specific type of data, this research considers a broad scope of datasets, only 

requiring the data to be in tabular form. The datasets may or may not have an inherent 

mathematical relationship, that is, certain combinations of inputs could lead directly to 

outputs or could be seemingly unrelated in a mathematical sense. Additionally, the 

collection of datasets could be made up of a combination of those that can be easily 

represented mathematically, and those that cannot. 

3.2 Datasets 

To make metamodel recommendations, the framework first requires a pool of 

datasets on which to train. To use this framework, the datasets must be in tabular form, 

(i.e., each column of a dataset represents an attribute), and each row represents a separate 

observation. Table 3 shows an example of the Top Gear dataset. The columns of this 

dataset represent different attributes relating to cars, and the rows represent specific cars. 
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Table 3. Sample of the Top Gear dataset 

 Maker Model Type Fuel Price Cylinders ⋯ Verdict Origin 
0 Alfa Romeo Giulietta Giulietta 1.6 JTDM-2 105 Veloce 5d Diesel 21250 4 ⋯ 6 Europe 
1 Alfa Romeo MiTo MiTo 1.4 TB MultiAir 105 Distinctive 3d Petrol 15155 4 ⋯ 5 Europe 
2 Aston Martin Cygnet Cygnet 1.33 Standard 3d Petrol 30995 4 ⋯ 7 Europe 
3 Aston Martin V12 Zagato V12 Zagato 6.0 V12 Standard 2d Petrol 396000 12 ⋯ 7 Europe 
4 Aston Martin Vanquish Vanquish 6.0 V12 Standard 2d Petrol 189995 12 ⋯ 7 Europe 
5 Aston Martin Vantage V8 Vantage 4.7 V8 420 Standard 2d Petrol 84995 8 ⋯ 8 Europe 
6 Aston Martin Vantage Roadster V8 Vantage 4.7 420 Roadster 2d Petrol 93995 8 ⋯ 7 Europe 
7 Audi A1 A1 1.2 TFSI 86 S line 3d Petrol 17025 4 ⋯ 6 Europe 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

237 Volvo XC70 XC70 2.0 D3 DRIVe 163 SE Lux 5d Diesel 33715 5 ⋯ 6 Europe 

 

To gather a robust collection of datasets, the Python library pydataset was used. 

This package was selected because of its quantity of datasets, the variation among the 

datasets in terms of size and content, and because the datasets are provided using a tabular 

format. This package contains an extensive variation of datasets, ranging from those with 

few observations to those with thousands, and from those containing solely numeric inputs, 

to those with numeric, binary, and categorical inputs. Datasets from the pydataset package, 

as well as the addition of the Top Gear dataset, make up the candidate problem space, as 

defined in Figure 1. There are 758 problems within the candidate problem space. 

Throughout the preprocessing steps described below, detailed requirements for 

transitioning from the candidate problem space into the problem space are discussed.  

3.3 Data Preparation 

As described in Chapter II, preprocessing is nearly always a required step when 

modeling, as datasets do not often come in a format readily available for testing. Due to 

the lack of subject-matter expertise on the datasets’ contexts, collection methods, and 

intended purposes, additional preprocessing steps that dive deeper into the actual inputs are 

forgone. However, in practice, further data cleansing is often needed. For example, the Top 
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Gear dataset was inspected and cleaned prior to its use. Upon review of the ranges for 

numeric attributes, several cars had incorrect inputs, making them erroneous outliers. Fuel 

efficiencies of 235 and 470 mpg and 0-60 acceleration of 0 seconds were clearly input 

errors, and cars with these values were, therefore, removed from the dataset. However, in-

depth inspection of outlier detection was not accomplished on the datasets provided by 

pydataset, as this would require much investigation and could rely heavily on prior 

knowledge of the data at hand. Nevertheless, contextual preprocessing of known datasets 

should be completed, if possible, and will most likely improve prediction accuracies. 

3.3.1 Missing Data 

Upon inspection, at least one dataset within the pydataset collection contained all 

missing values. Therefore, in considering the eligibility of a dataset to enter the problem 

space, any column within a dataset containing all missing values is removed.  

In reviewing the options for handling missing data, as detailed in Chapter II, we 

decided to remove all observations that contained any missing input. Replacing missing 

values with (1) the mean or mode, or (2) a random value based on the known data’s 

distribution could lead to an impossible observation or one that does not exist. Taking the 

Top Gear dataset as an example and considering option (1) from above, a car with a missing 

origin would be given an origin of “Europe”, as European cars occur most frequently in 

the dataset. However, this method ignores the inherent relationship between origin and 

maker, and could erroneously label an Asian car maker, such as Subaru, as a European car. 

Options (1) and (2) above could potentially create a car that is uncharacteristic of its, say, 

maker, (e.g., a large Mini Cooper) or one whose inputs do not coincide with one another 

(e.g., a car with poor torque but great acceleration). These potential outcomes could 
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possibly be solved via a clustering algorithm or regression, but combinations of other 

variables could inaccurately play a greater role in determining the input.  

In addition to the issues encountered by each method for handling missing data that 

were mentioned in the literature, several study-specific complications arose regarding the 

other techniques. The first major cause of concern with selecting an imputation method is 

the variation among the datasets and that the datasets are unknown. For example, handling 

missing data for a patient who dropped out of a treatment plan may need to be dealt with 

completely different than missing data due to a machine malfunction. Again, this would 

require contextual knowledge of the datasets. Mean or mode imputation or imputation 

using a clustering or regression algorithm requires that we know the field’s datatype. As 

will later be expanded upon, we use an algorithm to categorize variables as either binary, 

nominal/ordinal, continuous, or count. As the utilized classification algorithm is not 

entirely without flaw, a mischaracterization could result in an imputed value that is 

continuous instead of discrete, or vice versa. Additionally, the approach of replacing 

missing values with a predefined constant implies that an analyst or subject-matter expert 

would be deep-diving into the dataset for inspection and contextual analysis (either pre- or 

post-testing) – a step that was not completed for this study.  

Although omitting observations or fields with missing values could lead to a biased 

subset of data, the potential complications caused by other methods were considered of 

greater harm than the value of including more information (by using imputation). Further, 

many data imputation techniques benefit from human-led examination and validation, 

steps that are not taken in this study.  
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3.3.3 Additional Filtering 

Chapter II introduces the data cleaning technique of removing unary variables and 

nearly unary variables. For testing, we removed unary variables, but did not remove nearly 

unary variables, as the threshold for classifying a variable as “nearly” unary would need to 

be analyst-specified and datasets of different sizes would most likely require different 

thresholds.  

A column that serves as an index column, such as the first column in Table 1, is 

removed from the dataset. Any columns with textual input that contain all unique values 

are removed from the dataset, such as the “Model” and “Type” columns from Table 1. 

In alignment with the suggestions in Chapter II, we do not remove variables that 

contain a large portion of missing data, as a threshold would need to be established. 

Likewise, we do not omit highly correlated variables. It was decided not to remove 

duplicate observations within a dataset, although, during testing, it was verified that no 

dataset contained repeated rows.  

3.3.4 Minimum Number of Numeric Columns – Pre-binary Encoding 

Because the recommendation system is designed to predict metamodels on datasets 

whose outputs are numeric values, the original datasets (i.e., the dataset prior to binary 

encoding, which is later explained) must contain at least one column with numeric data. 

There were 16 datasets that did not satisfy this requirement and, therefore, did not transition 

from the candidate problem space to the problem space. We do not specify an upper bound 

on the number of columns within a dataset. After ineligible columns were removed from 

the dataset, the minimum and maximum number of columns in the qualified datasets is 3 
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and 212, respectively. Note that these counts (1) include the target column, and (2) were 

completed prior to creating dummy variable columns, which is described later.  

3.3.5 Minimum Number of Rows 

After the removal of these columns and rows, one of the final filtering processes 

ensures that the dataset has a sufficient number of rows. In determining the necessary 

number of rows for the datasets, we were faced with several options. One option was to 

exclude datasets whose number of rows did not satisfy the requirements of the default 

settings of the selected metamodels. The most stringent algorithm, in terms of row quantity 

requirements per the default settings, was k-nearest neighbors (KNN). Scikit-learn’s 

implementation of KNN uses a default number of neighbors of 𝑘𝑘 = 5. This necessitates at 

least five observations in each training dataset. Using the default training-testing split of 

75% and 25%, respectively, seven observations is the smallest amount that permits five 

observations in the training dataset. There is the option to decrease the number of neighbors 

used in the algorithm to permit datasets with fewer than seven rows. However, the absolute 

minimum number of observations is three, in which two observations are used for training 

and one is used for testing. Two training points does not lend itself to much use, and so this 

option was quickly disregarded. Another option was to find a “happy medium” by adjusting 

both the minimum number of rows and the value of 𝑘𝑘 for KNN, but we found that keeping 

the default settings to be of greater value than permitting datasets with less than seven 

observations.  

Datasets that do not satisfy the minimum number of rows requirement do not 

transition from the candidate problem space to the problem space, causing an additional 18 

datasets to not make the cut. We also restrict datasets to a maximum of 10,000 observations, 
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as datasets with more rows than this threshold greatly increased computation time. This 

removed 15 datasets. After preprocessing, the minimum and maximum number of rows in 

the qualified datasets is 7 and 8,437, respectively. 

3.3.6 Minimum Number of Numeric Columns – Post-binary Encoding  

To compute a gradient for the dataset, there must be at least two columns with 

numeric values. This check occurred after categorical data was transformed into a binary 

representation (and was, therefore, numeric), thus, increasing the likelihood of datasets 

meeting this requirement. There were 123 datasets that did not contain at least two columns 

with numeric values.  

3.3.7 Removing Datasets with the Same Name  

The last filtering step checks if the name of the dataset already exists in the pooled 

data. Within the pydataset package, there are 60 instances in which a dataset has the same 

name as another one, and so only one instance of each dataset with the same name made it 

to the problem space. It was not checked that datasets with the same name in fact contained 

the same data. 

3.3.8 Filtering Summary 

Datasets were removed from the problem space if they (1) did not have at least one 

numeric column prior to binary encoding (which removed 16 datasets); (2) did not meet 

the minimum number of rows requirement (which removed 18 datasets); (3) did not satisfy 

the requirement to have less than 10,000 rows (which removed 15 datasets); (4) did not 

meet the minimum number of numeric columns requirement after binary encoding (which 

removed 122 datasets); and (5) if the name of the dataset already existed in the problem 
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space (which removed 30 datasets). As previously mentioned, the candidate problem space 

consists of 758 datasets. After preprocessing, 557 datasets move onto the problem space. 

3.3.9 Target Selection 

Each dataset must have a target column on which the various algorithms will make 

predictions. Options for selecting a target column include (1) hand-picking each target 

column, and (2) creating an algorithm to do so automatically. We chose to create an 

algorithm to select the target column, as this saves time and effort and because we may not 

have knowledge on the data. It should be noted that, when used in the real-world, the users 

of this framework should most likely already have target column(s) selected based on their 

dataset’s purpose.  

Datasets that are in the problem space are guaranteed to have at least one numeric 

column, as this was a requirement to transition from the candidate problem space to the 

problem space. The target variable selection algorithm sets the numeric column with the 

greatest number of unique values as the target column. For example, for the Top Gear 

dataset, the target column would be “Price”, as this column contains the greatest number 

of unique values. However, because we are using the Top Gear dataset as an example 

throughout the paper, and because we have inspected the columns and their data, we set 

the target column as the one that made the most sense in context – the “Verdict” column, 

which contains the Top Gear television program’s hosts’ opinions of each car’s overall 

value. 

3.3.10 Datatype Classification 

As mentioned in Chapter II, there is a need to distinguish among different datatypes. 

This is prudent because we must ensure that variables are handled according to their 
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datatype, or, at least according to the datatype that they most resemble. Distinguishing 

between continuous, ordinal, and count data is not a task completed in Python. To 

distinguish between continuous and discrete data is a difficult process, as it is often greatly 

determined by context. The main preprocessing techniques that require knowledge of a 

variable’s datatype are scaling and binary encoding. 

 The options moving forward in regards to scaling are to (1) leave all numeric data 

unscaled, (i.e., both continuous, count, and numeric discrete data), (2) scale all numeric 

data, or (3) attempt to distinguish between continuous, count, and numeric discrete data 

and only scale those that are regarded as continuous or count. The worst that could happen 

in option (3) is that discrete columns are scaled and/or continuous and count columns are 

not scaled, a fate that is certain of the other two options. Therefore, we decided to develop 

a proxy classification method, which is later described.  

The choices moving forward regarding binary encoding are to (1) only encode 

variables determined by Python as categorical (i.e., only those that are textual), and (2) 

encode variables determined by Python as categorical, as well as numeric data that appears 

to be ordinal (rather than count). Option 2 requires automating a process to distinguish 

between count and ordinal variables. We decided to pursue option (2), which is now 

described.  

We reasoned that the components of the datatype classification method must take 

into account the number of rows in the dataset, as well as the number of unique values in 

any given numeric column. The overall logic is that if the number of unique values in a 

column is close to the number of rows, this column should be considered continuous. The 

method is now detailed. Given a variable in a dataset, we first check if it is numeric. If it is 
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not, it is considered categorical. If a variable is numeric, we then check if it is Boolean, 

(i.e., if the only levels in the dataset are 0 and 1). If it is, we leave the variable as is, because 

binary encoding would not result in any changes. If the variable is not Boolean, we check 

the number of rows in the dataset. If the given dataset contains less than 30 rows, then the 

proportion of unique values in any given column to the number of rows must be less than 

or equal to 0.25 to be classified as a discrete variable. In this case, it is always categorized 

as ordinal (rather than possibly classifying it as a count). If this ratio is greater than 0.25, 

then it is considered continuous. If there are 30 or more rows, then we first check if there 

are 10 or fewer levels. If there are, we classify the variable as ordinal. If there are not, we 

look at the same ratio as previously described. If this ratio is less than or equal to 0.50, then 

we consider it count data. Otherwise, we consider it continuous. This process is captured 

in the flowchart in Figure 6, where blue diamonds represent decision points, yellow boxes 

represent that the variable is categorical, and orange boxes represent that the variable is not 

categorical.  
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Figure 6. Flowchart for determining datatypes 

 As mentioned in the review of the literature, the datatype classification of different 

variables does not aim to accurately label variables according to their human-determined 

datatype, but rather according to the data itself. Nevertheless, it is beneficial to see how it 

performs according to what we would expect. 

 

Table 4 presents the descriptions of each variable in the Top Gear dataset, along 

with their datatype classification according to the previously described algorithm. This 

dataset contains 238 cars (i.e., rows) and so the threshold used in the above algorithm was 
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0.25. The only variable whose classification could be challenged by human standards is 

miles per gallon.  

Table 4. Classification results for Top Gear dataset 

Column Description 
Number of 

unique values Proportion Classification 
Price List price (UK pounds) 228 0.957 Continuous 
Cylinders Number of cylinders in the engine 9 0.038 Ordinal 
Displacement Displacement of the engine (in cc) 97 0.408 Continuous 
BHP Power of the engine (in bhp) 120 0.504 Continuous 
Torque Torque of the engine (in lb/ft) 108 0.454 Continuous 
Acceleration Time it takes car to get from 0 to 62mph 

(in seconds) 
98 0.412 Continuous 

TopSpeed Car’s top speed (in mph) 82 0.345 Continuous 
MPG Combined fuel consumption (urban + 

extra urban, in miles per gallon) 
56 0.235 Count 

Weight Car’s curb weight (in kg) 195 0.819 Continuous 
Length Car’s length (in mm) 204 0.857 Continuous 
Width Car’s width (in mm) 143 0.601 Continuous 
Height Car’s height (in mm) 172 0.723 Continuous 

 

In reality, miles per gallon is a continuous variable, as it is a ratio measurement. No car has 

a perfect whole number MPG, but rather, there would always be some trailing decimals. 

But, as was mentioned regarding the length of a car in Chapter II, miles per gallon is 

rounded (and must be to be included in decimal form in a dataset). There are simply not 

enough unique miles per gallon values to classify this variable as continuous. Greater 

precision would result in a greater number of unique values, which would certainly change 

its classification to continuous, as it was just shy of doing so with the current precision. 

Miles per gallon inherently also has a low range, which also decreases the chance of its 

classification of continuous. Nevertheless, it presents itself as a discrete variable according 

to the algorithm and should thus be treated as one.  

The algorithm does not classify target columns. However, we tested to see how it 

would label the Top Gear dataset’s “Verdict” column (in which possible values are integers 
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from 1 to 10) and it correctly classified it as an ordinal variable. It should be noted that this 

is highly sensitive to the fact that 10 levels was used as the threshold for distinguishing 

between ordinal and continuous or count data. Because “Verdict” had exactly 10 levels in 

its data, it was considered ordinal. Had the algorithm’s threshold been any smaller, or had 

a verdict of, say, 3 never appeared in the dataset it would have classified “Verdict” as a 

count variable. 

Another dataset whose datatype classifications we inspected was the dataset 

Baseball, whose results are shown in Table 5. This dataset contains 263 observations, and 

so the ratio threshold is 0.25. The majority of the datasets of the variables are count 

variables describing the frequency of various measurements. However, most variables 

within this dataset are categorized as continuous, because of the variation in counts among 

the players for each statistic. Although it is understood that these variables are count 

variables, it makes more sense to treat them as continuous variables (i.e., scale these 

variables) to ensure that their magnitude does not affect their impact on the algorithms.  

Table 5. Classification results for Baseball dataset 

Column Description 
Number of 

unique values Proportion Classification 
atbat86 Number of times at bat in 1986 209 0.795 Continuous 
hits86 Number of hits in 1986 130 0.494 Continuous 
homer86 Number of home runs in 1986 35 0.133 Count 
runs86 Number of runs in 1986 92 0.350 Continuous 
rbi86 Number of runs batted in 1986 94 0.357 Continuous 
walks86 Number of walks in 1986 87 0.331 Continuous 
years Number of years in the major leagues 21 0.080 Count 
hits Number of hits during his career 241 0.916 Continuous 
homeruns Number of homeruns during his career 129 0.490 Continuous 
runs Number of runs during his career 226 0.859 Continuous 
rbi Number of runs batted in during his career 226 0.859 Continuous 
walks Number of walks during his career 207 0.787 Continuous 
outs86 Number of put outs in 1986 199 0.757 Continuous 
assist86 Number of assists in 1986 145 0.551 Continuous 
error86 Number of errors in 1986 29 0.110 Count 
sal87 1986 annual salary on opening day in 

thousands of dollars 
150 0.570 Continuous 
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The following table lays out the preprocessing method we use for each datatype. 

Because we decided to treat both continuous and count data in the same manner, it does 

not matter if the algorithm correctly distinguishes between the two. 

Table 6. Preprocessing methods used per datatype 

Datatype Preprocessing Method 
Continuous Scale 
Count Scale 
Categorical (only nominal and ordinal) Binary encoding 
Binary None, as it is already “binary encoded” 

 
3.3.11 Scaling Method 

Because the Scikit-learn package does not use a default scaling method, we decided 

to use z-score standardization. One issue with using the min-max normalization is that it 

assumes that, in the real world, no values lie outside of the maximum and minimum ranges, 

an assumption that could cause troubles in testing. It was decided to standardize the data 

for all algorithms, rather than making this preprocessing technique metamodel-dependent.  

3.3.12 Categorical Variables 

As mentioned in Chapter II, the literature describes methods for handling nominal 

versus ordinal variables. Distinguishing between the two types would require we inspect 

all categorical variables individually. Therefore, we handle all categorical variables as 

though they were nominal. This allows us to avoid treating a nominal variable as ordinal, 

which could have great repercussions.  

For testing, we use one-hot encoding. Table 7 shows a side-by-side comparison of 

a subset of the original Top Gear dataset and a subset of the data with its corresponding 

dummy variables. The following illustration shows how the one-hot encoding works, using 
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the Top Gear dataset as an example. We take the “Origin” variable, which has three levels: 

“Asia”, “Europe”, and “USA”. Only two columns are needed to represent data of three 

levels. Of the three levels, “Asia” comes first alphabetically, and so this level is not 

included as a column header. The original dataset on the left of Table 7 shows that Alfa 

Romeo is a European auto company. This is depicted in the table on the right via the “1” 

in the “Origin_Europe” column and a “0” in the “Origin_USA” column. Likewise, as 

shown in the left table, Ford is a U.S. auto company. This is represented in the table on the 

right by the “0” in the “Origin_Europe” column, coupled with the “1” in the “Origin_USA” 

column. As a last example, Subaru, which is an Asian company, receives “0”s for both 

“Origin_Europe” and “Origin_USA”, indicating that it is of neither of these origins. 

Metamodels “do not care” that Subaru is an Asian company – they only care that it does 

not fall into one of the other two categories. 

Table 7. Comparison of original Top Gear dataset and dataset with dummy variables 

Original Dataset   Dataset with Dummy Variables 
 Maker Origin   Maker Origin_Europe Origin_USA 
0 Alfa Romeo Europe  0 Alfa Romeo 1 0 
2 Aston Martin Europe  2 Aston Martin 1 0 
45 Chevrolet USA  45 Chevrolet 0 1 
74 Ford USA  75 Ford 0 1 
189 Subaru Asia  189 Subaru 0 0 
193 Suzuki Asia  193 Suzuki 0 0 

 

3.4 Meta-features 

The meta-features are then calculated for each dataset. The purpose of the meta-

features is to capture the inherent structure of the dataset, rather than looking at the dataset 

inputs directly. These meta-features can then be used concurrently to compare with the 

meta-features of a new dataset.  
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In accordance with Rice, meta-feature selection is a critical step in designing a 

recommendation system (Rice, 1976). Any variation in meta-features selected or in the 

number of meta-features could greatly impact the system’s recommendation.  

Simple meta-features were incorporated into the recommendation system, to 

include 

• Number of observations (rows) 

• Number of attributes (columns) 

• Rows-to-columns ratio 

In their paper, “Experimental Designs, Meta-modeling, and Meta-learning for 

Mixed-Factor Systems with Large Decision Spaces”, Little et. al note that inclusion of 

meta-features capturing “statistical features of input types (categorical, discrete, and 

continuous) or number of levels” may improve the recommendation system (Little, 2018). 

To abide by this suggestion, the following meta-features are incorporated: 

• Number of discrete columns 

• Minimum number of factors among discrete columns 

• Maximum number of factors among discrete columns 

• Average number of factors among discrete columns 

• Number of continuous columns 

In their article, Cui et al. propose 15 meta-features for use in their recommendation 

system and an in-depth explanation of these meta-features can be found in their paper (Cui, 

Hu, Weir, & Wu, 2016). Of those suggested, along with the gradient minimum, the 

following are implemented: 

• Gradient average 
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• Gradient maximum 

• Gradient standard deviation  

3.5 Training and Testing Sets 

The data is then partitioned into a training and testing set. The rows are shuffled 

before the split to avoid any structural data collection method. The training set 

encompasses 75% of the data, with the remaining 25% residing in the testing set, which 

are the default percentages in Scikit-learn’s splitting method. For this research, the 

normalized root mean squared error (NRMSE) was utilized as the performance metric for 

each metamodel. 

3.6 Metamodels 

As previously mentioned, the Python package Scikit-learn was used to supply the 

metamodels. For the most part, those implemented used the default settings from Scikit-

learn. The only deviation from the default settings is in the implementation of k-nearest 

neighbors. This algorithm defaults to uniform weights, but we use weights based on 

distance, as this aligned with the KNN method described in Chapter II. For other 

parameters and settings, please reference the Scikit-learn website (Pedregosa, 2011). The 

metamodels selected include: 

• Bayesian ridge regression 

• Decision tree regression 

• Linear regression 

• k-nearest neighbors regression 

• Ridge regression  
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• Stochastic gradient descent 

It should be noted that the selection of these particular models may not be “the 

ideal” subset. These are simply the ones placed in the algorithm space for testing. 

3.7 Proposed Framework 

The proposed framework is adopted from Rice’s model and from Cui’s model and 

is formed by two phases, as shown in Figure 7 (Rice, 1976; Cui, Wu, Hu, Weir, & Li, 

2016). 

 

Figure 7. Proposed framework for metamodel recommendation system 

The first phase is used to train and test datasets with the purpose of providing data 

for the recommendation system, and the second phase houses the recommendation system 

and allows for new datasets to be evaluated. Each phase is now described. 

Phase 1 begins with the candidate problem space, 𝐶𝐶, which contains all potential 

datasets. Each dataset 𝑐𝑐 ∈ 𝐶𝐶 is cleansed and is potentially deemed ineligible to enter the 

next stage in the phase. Those that move onto the next stage make up the problem space 𝑃𝑃, 
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where 𝑥𝑥 ∈ 𝑃𝑃 ⊆ 𝐶𝐶. Two steps occur from the problem space: feature extraction and 

algorithm predictions. Feature extraction, 𝑓𝑓, is applied to each 𝑥𝑥 ∈ 𝑃𝑃 to give the feature 

space 𝐹𝐹, where 𝑓𝑓(𝑥𝑥) ∈ 𝐹𝐹. This space is composed of the meta-features and is not used until 

Phase 2. The other step from the problem space is calculating the algorithm predictions. 

Each algorithm 𝑎𝑎 in the algorithm space 𝐴𝐴 is applied to each problem 𝑥𝑥, which then forms 

the algorithm prediction space 𝑌𝑌� , where 𝑦𝑦� = 𝑎𝑎(𝑥𝑥) ∈ 𝑌𝑌�. A performance measurement 𝑧𝑧 is 

then applied to each prediction, leading to the performance space 𝑍𝑍, where 𝑧𝑧(𝑦𝑦�) ∈ 𝑍𝑍. The 

recommended model, 𝑟𝑟 ∈ 𝐴𝐴, is then selected by choosing the algorithm 𝑎𝑎 that minimizes 

𝑧𝑧(𝑦𝑦�), i.e., 𝑟𝑟 = argmin
𝑎𝑎∈𝐴𝐴

(𝑧𝑧�𝑎𝑎(𝑥𝑥)�).  

The first part of Phase 2 uses the feature space 𝐹𝐹 and the performance space 𝑍𝑍, as 

provided by Phase 1, along with meta-learning, to create the recommendation system. The 

framework learns what performance measurements for each algorithm can be expected, 

given specific data in the feature space. A new candidate problem, 𝑐𝑐′, enters the framework 

and is cleaned and filtered using the same cleansing and filtering steps of Phase 1. If this 

new candidate problem meets the preprocessing requirements, it becomes a new problem 

𝑥𝑥′. Feature extraction 𝑓𝑓 is applied to the new problem to give the meta-features, 𝑓𝑓(𝑥𝑥′). 

These features are put into the recommendation system which then provides performance 

measurement predictions 𝑣𝑣�𝑓𝑓(𝑥𝑥′)�� ∈ 𝑉𝑉� . The recommended metamodel is the one that 

minimizes the predicted performance measurement, i.e., 𝑟𝑟′ = argmin
𝑎𝑎∈𝐴𝐴

(𝑣𝑣(𝑓𝑓(𝑥𝑥′))� ). 

The purpose of the framework is to enable the recommendation of a metamodel for 

a new dataset, without the need to run the dataset through each candidate metamodel, thus 

saving time and computation expenses. 



45 

3.8 Validation Run 

The next step is to check the accuracy of the recommender. Every dataset runs 

through the entire system – that is, each dataset is individually preprocessed, given a target 

column, and meta-features are computed. In accordance with the defaults of Scikit-learn, 

we use a 75/25 percent split for the training and testing sets. The NRMSEs are dependent 

on the observations within the training and testing sets. For example, a model whose testing 

set contains an observation drastically different from any observation within the training 

dataset would receive a performance score worse than that of the model whose training set 

contained this observation rather than the testing set. Consequently, the NRMSEs are at 

the mercy of the training-testing split. To reduce the likelihood that a metamodel’s potential 

poor performance is due to a poor training-testing split, we split the training and testing set 

30 separate times. For each metamodel, we then decide which of these splits provided the 

best results (i.e., the lowest NRMSE) and take the model with that split as the representative 

model for that metamodel. This ensures that we pick a model that is better than (or at least 

as good as) 29 other models. A sample of this new dataset is shown in Table 8, where grey 

columns reference the dataset name, blue columns represent the meta-features (inputs), and 

green columns represent the NRMSEs (outputs).  

 

Table 8. Sample of meta-features and NRMSEs of Top Gear dataset 

  Meta-features NRMSEs 

# Dataset Name Rows Columns Rows-Cols 
Ratio ⋯ Gradient 

Maximum 

Gradient 
Standard 
Deviation 

Bayesian Ridge Decision Tree 
Regression ⋯ 

Stochastic 
Gradient 
Descent 

1 top_gear 238 30 7.933 ⋯ 43.546 3.538 0.14366 0.17970 ⋯ 1.515e+10 
2 HairEyeColor 32 4 8 ⋯ 255.000 69.127 0.15706 0.12106 ⋯ 0.13276 
3 InsectSprays 72 2 36  255.000 71.195 0.13761 0.13490 ⋯ 0.24548 
4 LifeCylceSavings 50 5 10  5.561 1.061 0.10363 0.09772 ⋯ 0.64536 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 



46 

557 sleepstudy 180 3 60 ⋯ 1.000 109.465 0.16986 0.18638 ⋯ 6.53600e+10 

 
The meta-learner in the recommendation system uses linear regression, where the 

inputs are the meta-features and outputs are the NRMSEs. To validate that the system 

works properly, we use a leave-one-out approach. The “training” dataset that builds the 

model is made up of 𝑛𝑛 − 1 datasets, where 𝑛𝑛 is the total number of datasets in the system. 

Note that the term “dataset” in this case refers to the newly computed meta-features and 

the NRMSEs, rather than the inputs and output from the original datasets. The dataset that 

was not used to build the model is used for validation purposes. Taking the data in Table 9  

as an example, the “training” dataset is comprised of observations 2 through 557. The first 

observation, top_gear, is used to validate the system. Once the model is built using the 

training dataset, we give the resulting model the meta-features of the Top Gear dataset and 

are returned with the predicted NRMSEs for each metamodel. Because we have already 

computed the actual NRMSEs for the Top Gear dataset, we can determine the performance 

of the metamodel by comparing the predicted an actual NRMSEs. This leave-one-out 

method is used for all 557 datasets.  

 

Table 9. Example of leave-one out method for Top Gear dataset 
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IV.  Analysis and Results 

 We calculate the accuracy of the recommendation system using several 

measurements. First, we look at the percentage of times that the system recommended the 

correct metamodel by counting the number of times the recommendation was the best 

metamodel and dividing it by the total number of recommendations. This gave us an 

accuracy of 127 557⁄ ≈ 0.228. Although the best metamodel was recommended at an 

accuracy just above the likelihood of randomly guessing the correct metamodel (16.67% 

likelihood of guessing the best of six metamodels), this does not suggest that the system 

does not perform well. For example, several metamodels may perform well for any given 

dataset, and, therefore, selecting the second or third best option may be of satisfaction.  

 We also looked at the percentage in which the recommended metamodel’s actual 

NRMSE was equivalent to the NRMSE of the actual best metamodel. This resulted in an 

accuracy of 130 557⁄ ≈ 0.233. Comparing this with the accuracy presented in the 

previous paragraph, we observe that three recommended metamodels that were not the 

actual best metamodel had an identical NRMSE as the actual best metamodel. 

 Instead of only considering successful recommendations as those that were the 

actual best recommendation, we looked at whether the recommended metamodel’s 

NRMSE lies within a certain epsilon of the best metamodel’s NRMSE. We did this both 

in terms of whether the recommended metamodel’s NRMSE falls within a certain 

percentage of the best metamodel’s NRMSE, as well as in terms of the difference between 

the NRMSEs of the actual best and the recommended metamodel. 
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For the first method, we calculated the frequency in which the recommended 

metamodel’s NRMSE was within 1%, 5%, and 10% of the best metamodel’s NRMSE. The 

pseudocode for this method is shown below. 

 

The percentage of recommended metamodel’s whose actual NRMSE fell within an 

epsilon of 1% of the best metamodel’s NRMSE was about 28.9%. Epsilons of 5% and 10% 

gave us results of about 34.5% and 38.1%, respectively. These results are displayed in 

Table 10. 

Table 10. Percentage of recommendations whose NRMSE fall within an epsilon 

percentage of the best metamodel’s NRMSE 

Epsilon Percentage of Recommendations 
0.01 28.9% 
0.05 34.5% 
0.10 38.1% 

 

 For the difference between the best and recommended metamodel’s NRMSE, we 

used epsilon values of 0.01, 0.05, and 0.50. Pseudocode for modeling this is shown below. 
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The results from these accuracy measurements are promising. The percentage of 

recommended metamodels whose actual NRMSE fell within an epsilon of 0.01 of the best 

metamodel’s NRMSE is about 40.6%. Epsilon values of 0.05 and 0.10 gave us results of 

about 70.6% and 90.1%, respectively. These results are shown in Table 11. 

Table 11. Percentage of recommendations whose NRMSE fall within a decimal valued 

epsilon of the best metamodel’s NRMSE 

Epsilon Percentage of Recommendations 
0.01 40.6% 
0.05 70.6% 
0.10 90.1% 

 

Of the two measurements presented above, we argue that the more informative 

option is to look at the difference between the best and recommended metamodel’s 

NRMSE. Requiring the recommended metamodel’s NRMSE to fall within a specific 

constant value of the best metamodel’s NRMSE creates a level playing field for all 

NRMSEs, as the results are only dependent upon the predefined epsilon. On the other hand, 

looking at whether the recommended metamodel’s NRMSE falls within a certain 
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percentage of the best metamodel’s NRMSE depends on the percentage that we choose, as 

well as on the best metamodel’s NRMSE. To elaborate, as the best metamodel’s NRMSE 

decrease (i.e., gets better), the window of accepting the recommended model as a good 

prediction decreases as well. We argue that the potential good performance of the best 

metamodel should not endanger the recommended model from being considered “good”, 

nor should the potential poor performance of the best metamodel improve the likelihood 

that the recommended metamodel is labeled as a “good” recommendation. 

 Another approach to evaluate the recommendation system is to consider how the 

recommended best metamodel performs in comparison to the actual best metamodel. This 

is another way to see if the recommendation system gives “good” predictions, in lieu of the 

“best” prediction. This can be calculated via a relative performance score, where higher 

scores are better, with a score of 1 indicating that the recommended metamodel and the 

best metamodel had identical NRMSEs. It should be noted that if the predicted best 

metamodel’s actual NRMSE score is 0, it is known that the actual best metamodel’s 

NRMSE score is 0 as well. This scenario was assigned a relative performance score of 1, 

to avoid dividing by 0. After the runs, the average relative performance was 0.763, meaning 

that, on average, the predicted metamodel was 76.3% as good as the best metamodel. 

However, because the average and medians of this distribution are not the same (with an 

average of 76.3% and a median of 81.7%), 50% of the data does not lie above or below the 

average. About 29% of the recommendations have a relative performance score between 

96% and 100%, as shown in Figure 8. 
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Figure 8. Distribution of relative performances 

One downside to the relative performance approach is that an NRMSE of exactly 0 

for the actual best metamodel will give a relative performance score of 0, unless the 

predicted metamodel has an NRMSE of 0, as previously described. This result could 

possibly not accurately reflect the predicted metamodel’s performance compared to the 

best. For example, one would claim that a predicted NRMSE of 0.005 is very close to an 

actual NRMSE of 0. However, the relative performance score would show otherwise.  

Of the 557 predictions, there were twelve instances in which the best metamodel’s 

NRMSE was 0. It should be noted that the data providing a perfect NRMSE were inspected 

after the model was run. The target column selected for these datasets was either  

(1) a column identical to an input column, (2) a linear combination of a portion of the other 

columns, (3) a combination of other columns and a constant, such as 100, or (4) an instance 

in which values from one column directly determined the output. For the fourth reason 

listed, an example is the “iraqVote” dataset. The dataset contains 100 rows. One column 

contains one of 50 states, where each state was represented in two rows. The target column, 

“gorevote” is “the vote share recorded by Al Gore in the corresponding state in the 2000 
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Presidential election” (Arel-Bundock, 2019). This signifies that each state has its own 

value, and so the value of the state directly led to the value of the target column. 

Of the datasets that resulted in a perfect NRMSE, none of the predicted best 

metamodel’s NRMSE was equal to 0, meaning that none of the twelve predictions for these 

datasets received a good relative performance score. Of the seven instances, four of the 

recommended metamodel’s NRMSE was less than 0.05 (i.e., very close to the actual best 

metamodel’s NRMSE). Although these NRMSEs of the predicted best metamodel are 

close to the NRMSEs of the actual best metamodel, the relative performance score shows 

otherwise. With this in mind, it can be concluded that the metamodel recommendation 

system gives as good of a prediction as the best metamodel more than 76.3% of the time, 

on average. Excluding these twelve instances from the relative performance calculation 

gives a new average relative performance score of 424.76 (557 − 12)⁄ ≈ 0.779, where 

424.76 is the sum of the relative performance scores excluding the seven instances 

described above. 
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V.  Conclusions and Recommendations 

This research aims to expand upon the work offered by Cui et. al by creating a 

metamodel recommendation system that works with data of all shapes and sizes. The 

framework mimics that of Cui’s and also allows for a large quantity of datasets, as well as 

implements data preparation.  

 As the results show, the metamodel recommendation system provides good 

recommendations when given an “unknown” dataset. Although it does not tend to suggest 

the best metamodel, it more often than not provides a recommendation that is very 

comparable to the best metamodel. 

Because the metamodel recommendation system makes good recommendations, it 

can be used to make recommendations for datasets without previously computing that 

dataset’s actual NRMSEs. Following the framework proposed in Section 3.7, a new dataset 

is preprocessed and, if it meets the requirements to enter the problem space, its meta-

features are calculated. After this, its NRMSE for each metamodel are predicted using the 

constructed meta-learner. 

As with any study, ours can be expanded upon and improved. Each component of 

the metamodel recommendation system could benefit from additional components and 

could be strengthened through additional research. We propose several areas for future 

research in the following paragraphs.  

The following recommendations refer to the datasets used, as well as data preparation. 

• The metamodel recommendation system only uses one Python library from which 

to pull datasets. Additional libraries exist which could allow for more datasets, 

possibly increasing the variety and, thus, improving the likelihood that a newly 
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introduced dataset would have a similar counterpart that was already put through 

the system. 

• The framework does not check the similarity among datasets. The decision to 

maintain datasets with similar meta-features would need to be made. Additionally, 

other than the check to ensure that datasets with the same name do not all make it 

to the problem space, we do not check that each dataset is unique. For example, by 

chance, we found that three datasets, each with a different name, all contained the 

exact same data: Bechtoldt, Bechtoldt.1, and Bechtold.2. Because each of these are 

handled separately, they all have different training-testing splits which could result 

in different metamodels recommendations. This could pose a problem when the 

system predicts the best metamodel for another dataset with similar (or identical) 

inputs. 

• Section 2.4.7 provides additional data preparation steps that could be implemented 

into the system, such as outlier detection, determining the importance of each field, 

and feature-reduction techniques. However, as has been stressed throughout, steps 

such as these often require knowledge of the datasets. 

 

The realm of meta-features lends itself to additional research and consideration. The 

following questions could be explored: 

• What is the appropriate set of meta-features that reveal enough information 

about the datasets? 

• Should the set of meta-features be data-dependent? That is, should use of a 

meta-feature depend on the data itself? 
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Although it was made clear that the recommendation system does not use the 

“ideal” set of metamodels, we were required to select several for implementation. 

Additional research could be done regarding the pool of metamodels and could aim to 

answer the following question: 

• What is an appropriate set of “unique” metamodels? That is, regression 

metamodels, for example, could tend to perform similar. With that in mind, what is 

the appropriate set that includes a wide variety of metamodels, such as regression-

based, neural networks, and decision trees? 

 

Research could be done regarding meta-learners. The system implemented a linear 

regression learner, but that is not to say that this is the ideal meta-learner. We recommend 

addressing the following questions in future research: 

• Does the meta-learner depend on the datasets? If so, what type of meta-learner 

should be used for specific datasets? 

• Can a pool of meta-learners be implemented into the system? 

 

Additional performance measurements could be selected, such as the following: 

• Spearman’s rank correlation to determine how well the system ranks the 

metamodels from best to worst 

• A calculation of the frequency of which the system predicts the second best 

metamodel 
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• A calculation of the frequency of which the system predicts the worst 

metamodel 
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Appendix A 

For a copy of the code, please contact Dr. Weir at Jeffery.Weir@afit.edu. The code 

was developed and run on a 64-bit Intel® Core™ i5-8250U CPU at 1.60GHz. We use 

Python version 3.6, along with the following modules. 

Table 12. Python modules 

Module Version Installation 
numpy 1.13.3+mkl Anaconda package 
operator  Base package 
pandas 0.21.0 Anaconda package 
pydataset 0.2.0 pip install 
scipy 1.0.0 Anaconda package 
sklearn 0.19.1 pip install 
statistics  Base package 
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