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Abstract 

Weapon System Sustainment (WSS) costs are growing at an increasing rate 

despite the vast efforts to reduce them. Researchers have attributed much of the cost 

increase to inaccurate demand forecasts for weapon system spare parts. In 2011, the 

forecast to sustain all United States Air Force (USAF) aircraft was 19% accurate and 

WSS costs per year have continuously increased. 

The purpose of this study is to explore a parsimonious change to aircraft 

component forecasting to reduce costly forecast error. This study substitutes flying hours 

with sorties for the purpose of demand forecasting. Many F-16 and B-52 spare parts are 

evaluated by employing demand and usage data from the D200 and LIMS-EV. The 

modified Poisson process modeled in this study indicates error can be decreased for many 

of the components the USAF invests in. This study resulted in roughly a 15% decrease in 

forecast error among the F-16 and B-52 platforms.  Decision makers can employ the 

insight gained from the model developed in this study to reduce WSS costs and improve 

performance. 
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SORTIE-BASED AIRCRAFT COMPONENT 
DEMAND RATE TO PREDICT REQUIREMENTS 

 
I.  Introduction 

Background 

Predicting future needs for aircraft spare parts in an important issue within the United 

States Air Force (USAF). In the USAF’s complex multi-echelon, multi-indenture supply 

repair cycle, an inaccurate demand forecast may result in improper work schedules at the 

Air Logistics Centers, incorrect peacetime operating stock levels at base supply 

warehouses, and incorrect stock levels in aircraft deployment readiness kits. The 

consequences of such inaccuracy include a spare part or multiple spare parts not being 

available for an aircraft that the USAF needs to fly. The impact of an unavailable aircraft 

could include a missed training opportunity for a pilot. More severely, unavailable 

aircraft could mean one of the USAF’s mission sets, like personnel recovery or air 

superiority is degraded. If demand for any given component is overestimated, too many 

spare parts are stocked, and other needed parts are not purchased or repaired due to 

sustainment budget constraints.  

The current USAF process employs reliability theory and forecasting techniques 

to determine future demand. Some critiques of the USAF forecasting method submit that 

the USAF’s process should be updated because it continues to underperform (Eckbreth et 

al., 2011). This study is parsimonious effort to improve forecasts and diverges from the 

critique’s recommendation of employing “more sophisticated data analysis”. For most 

spare parts, the USAF currently calculates reliability on the number of flying hours 
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associated with the end item the spare part belongs to. The following section further 

clarifies this problem and the cost of inaccurate demand predictions.  

 Sustainment costs for USAF weapon systems, especially legacy systems, are 

untenable. Eckbreth et al., (2011) also tied the challenges to the sustainment enterprise to 

supply chains that are inefficient due to the inability to accurately predict parts needs. In 

2011, they claim the demand forecast for spare part was only 19% accurate. Furthermore, 

the USAF expenditures to operate and maintain the active fleet ballooned to $63.7 billion 

in 2019 dollars. Part of the growth in sustainment expenses were due to the age of the 

fleet (Gunzinger, et al., 2019). Figure 1 shows the upward trend of operation and 

maintenance costs per aircraft across all fleets. 

Figure 1: Trends in O&M funding per aircraft (Gunzinger et al., 2019) 

The 35 years prior to 1997, the USAF funding for operations and maintenance increased 

by $3.4 million per aircraft. However, in the 20 years since, this portion of funding 

increased by $5.1 million per aircraft. Figure 2 shows the downward trend in new aircraft 

procurement spending.  
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Figure 2: Trends in the USAF's total procurement funding (Gunzinger et al., 2019) 

Figures 1 and 2 indicate that the cost of sustaining and operating an aging fleet is 

increasing and is a cause for worry. Congressional Budget Office (2018), found that since 

2001 operations and sustainment cost growth rates have exceeded 5% above inflation. 

Considering prior to 2001 these growth rates were between 1% and 2%, the office finds it 

alarming that the cost of maintaining and operating an aging fleet remain to grow at a 

faster rate. With plans to continue to fly legacy systems like the B-52 until 2050 and due 

to the exceedingly high price tag on many parts, it is imperative that supply chain 

planners continue to adapt and find more accurate calculations for future spare part needs 

beyond the inadequacies of the legacy D200 forecast method. 

Problem Statement 

The USAF uses the flying hour program to determine several rates and 

percentages to include spare part consumption rates. In many cases, the rate at which 

aircraft spare parts fail and place a demand on the supply system do not show a strong 



4 

correlation with actual hours flown. This translates to a demand rate calculation that 

produces an inaccurate future year forecast.  

Research Questions 

To address this problem and how it is claimed to affect sustainment costs, this 

study answers the following research questions:  

1. Can sortie data be employed to reduce USAF forecast error? 

2. How can the D200 process integrate a sortie rate? 

3. What methods are available to simulate future requirements based on sorties? 

Research Focus 

This study assesses the effectiveness of the current flying hour-based spare part 

demand rate by comparing it to a sortie-based demand rate. The mean absolute percent 

error (MAPE) of the forecasts produced by the two methods is calculated to show which 

method performs best.   

Methodology 

The USAF calculates future demand for spare parts by multiplying the flying-

hour-based demand rate by the approved number of flying hours allocated for the 

upcoming year. A correlation analysis is performed to investigate whether demand for F-

16 and B-52 spare parts has a stronger linear relationship to flying hours or sorties. 

Understanding this relationship helps validate a previous study  regarding this subject and 

provides justification for this study to investigate further.  This study will replaced the 

demand rate in this process with a sortie-based rate. Then, this study develops various 
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methods to forecast flight allocations based on number of sorties because the USAF does 

not allocate flying in these terms. To accurately compare demand predictions, a sortie-

based rate must be multiplied by a time period in terms of sorties versus flying hours. The 

F-16 and the B-52 fleets were chosen to analyze the difference a sortie-based demand rate 

will have on a large fleet like the F-16 and a small fleet like the B-52. For both fleets, the 

error from the current system and the proposed model are compared to determine which 

produces the least amount of error. 

Assumptions/Limitations 

This study is limited by the data-collection environment. For example, demand 

data is collected and reported in a complex manner. It is reasonable to assume that during 

this complex process of reporting the number of times a component failed and 

maintenance activities placed a request for replacement can result in a level of 

inaccuracy. Furthermore, some observations were not included in the study because the 

observations’ demand data was not available due to data various data entry errors. Using 

secondhand data and eliminating samples in this manner can distort the results of this 

study. This study employs the USAF’s D200 Poisson process forecast with sorties to 

measure time between demand. This allows for an intelligent baseline for comparison, 

despite potential limitation of the D200 forecast methodology like assuming a constant 

demand rate. 
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Implications 

There are few studies addressing the time measure of USAF repairable 

component failures. To the best of the authors’ knowledge there are no studies that 

analyze spare component demand as a function of sorties and compares the results of a 

sortie-based driver of demand to the current flying hour-based driver. The USAF does not 

provide a sortie forecast as an input to the D200 model. Thus, the methods in this study to 

estimate a sortie forecast are original. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to explore the vast knowledge of forecasting. It 

starts with the structure of forecasting. Then the literature review follows the lineage of 

time series forecasting techniques as they have grown in complexity and accuracy. Then 

the literature review differentiates times series forecasting from the techniques that count 

data like inventory demand require. Furthermore, the literature review examines the 

Poisson process where demand arrival is exponentially distributed and the expected 

number of demands in each time period is a discrete Poisson distribution. The Air Force 

manual that governs the D200 forecasting system is examined to illustrate that it follows 

the Poisson process. Finally, the related aircraft component demand forecasting literature 

is assessed to ensure originality of this study. 

Forecasting 

 The review of the literature pertaining to this study begins with the concept of 

predicting future outcomes, or forecasting. The need for forecasting increases with a 

managers’ attempt to minimize dependency on chance by becoming more scientific in 

dealing with an uncertain environment. Forecasting techniques can be placed into two 

main categories: quantitative and qualitative. Quantitative forecasting can be employed 

when there is enough empirical information regarding the past and it can be assumed that 

the past patterns in the information will continue into the future. If these conditions are 

not met, qualitative techniques can be employed. If neither condition is met, the topic of 
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interest is unpredictable.  Moreover, quantitative forecasting methods as a continuum 

with two extremes. At one extreme there are intuitive or ad hoc methods and at the other 

extreme there are formal statistical methods. Another dimension for classifying 

quantitative forecasting methods distinguishes this method by the model used. The two 

main forecasting models are time series and explanatory models. Explanatory models like 

regression assume that the variable to be predicted has some relationship with one or 

more independent variables. However, time series models make no effort to explain the 

factors that may affect the variable that is being predicted. Time series models attempt to 

find a pattern in the historical data and generalize that pattern into the future (Makridakis, 

et al., 1998). 

Time Series Forecasting 

Bowerman, et al., (2005) define time series as a chronological sequence of observations 

on a particular variable. It is a quantifiable variable over some time measure. The authors 

explain that the components of a time series are trend, cycle, seasonal variation, and 

irregular fluctuation. The authors argue that due to the irregular fluctuation, no single best 

forecasting model exists. So, the biggest problem with forecasting is fitting an 

appropriate model to the pattern in the available time series data. The fluctuations are 

modeled as part of the error in forecasting. So, according to the authors, large forecasting 

errors can indicate that the irregularity is too great for forecasting or another model or 

technique could be more appropriate. Before explaining error and the importance of 

analyzing forecast error, it is important to review the different time series forecasting 

methods. 
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 Beyond using averages or naïve one month moving averages to predict future 

occurrences, Norbert Wiener (1949), began using the statistical concepts from 

communication engineering and cybernetics to make predictions based on the smoothing 

of stationary time series. Much like early communication devices depended on 

probability distributions to predict the most likely intended message and provide it to the 

receiver, Wiener proposed that time series data behaves this way and can be used to make 

predictions. Brown (1959), based his work on much of Wiener’s ideas by using statistical 

forecasting for inventory control. His work was an early application of smoothing and 

other advanced tools like monte-carlo simulation to advanced demand predictions. It may 

have been unknown to Brown, but Holt (1957, reprinted 2004) documented the idea of 

smoothing variation or random fluctuations and derived equations to model trend and 

seasonal fluctuations. Brown’s work in 1959 attempted to make the abstract concept and 

the mathematics more user friendly for an inventory control specialist or manager. 

Winters’ (1960) work added to the time-series forecasting body of knowledge by 

comparing weighted exponential smoothing to traditional methods of the time to show 

that it can model trend and seasonality, if present, and provide a more accurate forecast. 

Additive and multiplicative forms of exponential smoothing were theorized in much of 

the early works. However, Pegels (1969) formally presented the nine possible models in 

graphical form and summarizes them into one formula that readers can comprehend.  

Before Pegels’ work, Muth (1960) was the first to apply statistical concepts like 

linear regression to time series and showed that this method of simple exponential 

smoothing (SES) provided an optimal forecast for what he called a “random walk with 

noise”. Later, Box & Jenkins, (1970) examined time series that are non-stationary. Non-
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stationary time series are very difficult to be forecasted using moving average methods 

because the data has multiple windows of time that have different means. However, non-

stationary time series do display homogeneity in the sense that at least one part of the 

series behaves much like other parts. To model this behavior, the authors proposed a 

technique called autoregressive integrated moving average (ARIMA) by summing the 

stationary processes by the number of differences in the time series. With the expansive 

work and the multiple approaches to time series forecasting, Box and Jenkins work 

provided a clear and robust method for time series identification, parameter estimation, 

and verification known as the Box-Jenkins approach.  

With research, scholars articulated other methods, like state-space models (Ord, et 

al., 1995). These advanced methods are outside the scope of this study. This section of 

the literature focused on time series with linear relationships between the variable and 

time. Time series can also show a non-linear relationship between time and the variable 

of interest, which are much more complex than the aforementioned linear methods. 

Furthermore, they are difficult to perform and are outside the scope of this study. The 

next section will cover the literature on forecasting count data because aircraft spare parts 

demand can be described as intermittent count data. 

Forecasting Count Data 

Croston (1972) argues that simple exponential smoothing can be inappropriate 

when forecasting count data like inventory when the intervals between demand are 

shorter than the period between demand. As a routine stock control perspective, this 

forecasting situation results in inventory predictions based on these intervals instead of 
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average demand. Doing so assumes that the interarrival time is uniform. He then builds 

on Box and Jenkins’ ideas of non-stationary demand, often a characteristic of inventory 

demand, and employs a stochastic approach to modeling inter-arrival times of demand, 

which reduces error in intermittent non-stationary count data forecasts. His improved 

system makes separate forecasts for demand size and the arrival interval of demand and 

eliminates previous models’ biases towards regular demand where there is a demand 

signal in every interval. His model adjusts for periods without a demand signal.  After 

this work, inventory control forecasters have taken a stochastic approach to forecasting 

demand.  

Figure 3: Intermittent Demand Decision Tree (Syntetos, et al., 2011) 

 Syntetos et al., (2011) point out that non-parametric procedures, such as 

bootstrapping, to estimate demand distributions have been proposed to stochastically 

forecast inventory demand. Furthermore, they argue that fitting the demand to a two-
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parameter distribution provides evidence of improved forecasts. The focus of their study 

is summarized in Figure 3.  

Figure 3 can also be used as a model when determining methods to estimate 

parameters for intermittent demand distributions. The authors build on previous work and 

empirically show that distributions must be found for the demand size and the demand 

arrival. Agreeing with Croston (1972), Sytetos et al., (2011) conclude that the Poisson 

distribution is a “reasonable” distribution to model the behavior of these items and is 

theoretically expected of slow-moving items like aircraft parts and that the interarrival 

time of demand is not uniformly distributed. Before this work was presented, 

practitioners and researchers were studying demand as random. The work presented by 

Syntetos et al. (2011), provided additional empirical evidence in support of treating 

demand as random failures versus component wear-out.   

 However, demand can be considered a random event or caused by a wear-out 

process. Evaluating demand from both lenses is the cornerstone of reliability theory. 

Ebeling (2004) explains why the Poisson process is used to model demand behavior and 

make predictions of future failures. According to the Ebeling (2004), if a part having 

constant failure rate λ is immediately repaired or replaced, the number of failures that you 

would expect over a time period has a Poisson probability mass function. The Poisson 

distribution is discrete and the mean or the predicted number of failures over time is 

given by λt. 
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USAF Forecasting 

 To assist USAF managers in consolidating complex resource data and 

become more scientific in dealing with their environment, the USAF uses the Secondary 

Item Requirements System (SIRS) also referred to as the D200A (Air Force Materiel 

Command, 2017). SIRS uses historical demand divided by past programs (usually flying 

hours) to calculate factors. For each item, this factor can be viewed as λ from the Poisson 

process and is multiplied by the planned number of flying hours to determine projected 

demand. The computation for projected future spare part requirements is translated to a 

budget submission by the Air Force Spares Requirements Review Board (SRRB) process 

(U.S. Department of the Air Force, 2019). The proposed budget inputs by the SRRB are 

in terms of cost per flying hour to mirror the Air Force Corporate Structure’s flying hour 

program. Factors are computed using flying hours to match the budgeting process. 

Essentially, the USAF calculates each years’ spare parts requirement in order to submit a 

budget to buy total requirements minus the number of parts that are projected to be fixed 

and returned to service. 

The USAF calculates each items’ current consumption rate λ which SIRS 

translates into reliability information called rates and percentages (RAP) or factors (Air 

Force Materiel Command, 2017). The current consumption rate is multiplied by next 

years’ projected flying hours to calculate requirements. With demand forecast accuracy at 

19% as recent as 2011 (Eckbreth et al., 2011), leaders have stressed the need to improve 

future demand calculations.  
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Efforts to Improve Forecasts 

 More recently, the U.S. Government Accountability Office (2015), found 

that the DoD was still in the early stages of improving their demand forecasting and 

remained on the annual report’s high-risk list. The USAF and other DoD services are still 

not where they need to be in terms of a more precise demand forecasting methods. This 

can cause the agencies to overspend on spare parts. GAO maintains a program to 

concentrate on government operations that it identifies as “high risk” due to the 

operations’ high potential for fraud, waste, abuse and mismanagement or tackle economy, 

efficiency, or effectiveness challenges.  

 Even though these problems remain, there has been work done to improve spare 

part forecasts and increase their accuracy. The same studies agree for the most part that 

aircraft parts are difficult to forecast. Bachman and O’Malley (1990), credited the 

difficulty to volatility in item demand rates and the effects of Air Force management 

decisions. The two researchers continue, suggesting the USAF should pursue 

improvements in technical forecasting, but any solution should include the development 

of stronger management controls to improve the stability of the requirement. Bachman 

and Kruse (1994) found for less volatile items like aircraft consumables, demand was not 

strongly correlated to weapon programs like flying hours or total number of weapons. 

This research is significant to this study because it analyzed demand correlating to other 

programs besides flying hours and challenges the general notion that aircraft components 

fail at a rate based on the number of flying hours. Sherbrooke (1997) used maintenance 

removals to simulate demand and found that in many cases when sortie durations are not 

constant, demand is more closely correlated to number of sorties. He also noted that 
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supply data should be used rather than maintenance removals because parts are often 

removed but never turned in for repair. 

Chapter Summary 

Even though this issue is very complex and difficult solve, the studies in this 

section claim the USAF has shown a poor track record and has lost credibility in terms of 

forecasting requirements to make decisions that maximize the nation’s return on 

investment (Eckbreth et al., 2011, Gunzinger et al., 2019). To get after this problem, 

researchers have shown the USAF may have been incorrectly attributing component 

demand to the number of flying hours rather than analyzing demands on a per sortie 

bases. This study will verify Sherbrooke’s findings and employ the USAF’s Poisson 

process with sorties as the time measure versus flying hours to determine and validate 

that sorties are a better predictor of demand than flying hours. Furthermore, this study 

will develop a methodology that uses supply demand data rather than maintenance data to 

evaluate requirements on a per sortie bases to predict demand. 
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III.  Methodology 

Chapter Overview 

This chapter will describe how the D200 works and explain how a model can be 

built to simulate the model with the use of sortie data. To begin, the rationale behind 

using F-16 and B-52 data and instructions on how to obtain the data is provided. To 

validate Sherbrooke’s (1997) work, it shows how correlations between demand and 

flying hours, and demand and sorties can be calculated and interpreted for both sets of 

data. Then, to mimic the current USAF Poisson process to predict demand, a sortie-based 

demand rate λ is calculated. In order to predict future demand, usage must be forecasted 

in terms of sorties, not flying hours. Since the USAF does not currently provide the D200 

usage estimates as a function of sorties, four methods will be developed to simulate 

future usage as a function of sorties instead of flying hours. This section will explain the 

rationale and steps to create the four methods and how to apply them to the model to 

produce four separate forecasts to compare to the D200 forecast. The mean absolute 

percent error (MAPE) will be used to compare the D200 process and the sortie-based 

process’s error. 

Correlation Analysis 

Following the data collection, a correlation analysis was preformed to compare each 

item’s demand with how many hours were flown each year.  The correlation (CORREL) 

function in Microsoft Excel produced a Pearson’s r value for each item indicating how 

strongly throughout the years flying hours correlated with demand for the part. This 

process was repeated with the number of sorties.  
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = ∑(𝑥𝑥−�̅�𝑥)(𝑦𝑦−𝑦𝑦�)
�∑(𝑥𝑥−�̅�𝑥)2 ∑(𝑦𝑦−𝑦𝑦�)2

                                         (1) 

where �̅�𝑥 is the sample mean of the items actual demand from 2004 to 2018 and 𝑦𝑦� is the 

sample mean of the items actual flying hours or number of sorties respectively from the 

same time period.  

 After each item was assigned a correlation value between 0 and 1, indicating the 

strength of positive correlation or 0 and -1, indicating the strength of negative correlation, 

the values for each item were compared. The comparison resulted in 200 F-16 items and 

295 B-52 items with demand that has a stronger correlation to number of sorties and a 

weaker correlation to flying hours. The remaining items have annual demand that is more 

strongly correlated to flying hours. The results indicate that for at least 40% of the F-16 

items and over 52% of the B-52 items, the proportion of demands to sorties may be used 

to more accurately calculate future demand. It is important to note, correlation does not 

mean that the number of sorties that are planned for the next year will predict the demand 

for each part more accurately. Furthermore, the USAF does not provide the logistics 

community a forecast or plan for number of sorties. This problem will be addressed later 

in this chapter with the four proposed methods for forecasting sorties.  The next step in 

the study is to replicate the USAF’s D200A calculations for future demand using number 

of sorties instead of flying hours.  
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USAF Demand Calculations 

 The USAF primarily uses an eight-quarter moving average factor method to 

calculate the next years demand for each spare part (Defrank, 2017). Using the following 

equation, the USAF begins by calculating the average demand per flying hour: 

8 𝑞𝑞𝑞𝑞𝑞𝑞𝐶𝐶𝑞𝑞𝐶𝐶𝐶𝐶 𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞𝑚𝑚𝐶𝐶𝐶𝐶𝑞𝑞𝑚𝑚𝐶𝐶 (𝐹𝐹𝑞𝑞𝐹𝐹𝑞𝑞𝐶𝐶𝐶𝐶) = ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝐷𝐷 𝑡𝑡ℎ𝐷𝐷 𝑖𝑖𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝐷𝐷𝑞𝑞𝑡𝑡𝐷𝐷𝑞𝑞𝑇𝑇
𝑖𝑖=𝑇𝑇−8

∑ 𝐹𝐹𝐹𝐹𝑦𝑦𝑖𝑖𝐷𝐷𝐹𝐹 ℎ𝑜𝑜𝑞𝑞𝑞𝑞𝐷𝐷 𝑖𝑖𝐷𝐷 𝑡𝑡ℎ𝐷𝐷 𝑖𝑖𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝐷𝐷𝑞𝑞𝑡𝑡𝐷𝐷𝑞𝑞𝑇𝑇
𝑖𝑖=𝑇𝑇−8

        (2) 

where T is the time period (Defrank, 2017). The D200A multiplies this average number 

of demands per flying hour by the USAF’s flying hour forecast for the next time 

period(s) to calculate and predict the future time period’s demand. This study 

experiments with number of sorties in the denominator of equation 2. 

Average Demand Per Sortie 

 This study will use the following equation to calculate the factor as the average 

demand per sortie: 

8 𝑞𝑞𝑞𝑞𝑞𝑞𝐶𝐶𝑞𝑞𝐶𝐶𝐶𝐶 𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞𝑚𝑚𝐶𝐶𝐶𝐶𝑞𝑞𝑚𝑚𝐶𝐶 (𝐹𝐹𝑞𝑞𝐹𝐹𝑞𝑞𝐶𝐶𝐶𝐶) = ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝐷𝐷 𝑡𝑡ℎ𝐷𝐷 𝑖𝑖𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝐷𝐷𝑞𝑞𝑡𝑡𝐷𝐷𝑞𝑞𝑇𝑇
𝑖𝑖=𝑇𝑇−8

∑ # 𝑜𝑜𝑜𝑜 𝐷𝐷𝑜𝑜𝑞𝑞𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷 𝑖𝑖𝐷𝐷 𝑡𝑡ℎ𝐷𝐷 𝑖𝑖𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝐷𝐷𝑞𝑞𝑡𝑡𝐷𝐷𝑞𝑞𝑇𝑇
𝑖𝑖=𝑇𝑇−8

        (3) 

The above factor must be multiplied by the number of anticipated future sorties to render 

a forecast that is comparable to the current method discussed in the previous section. 

However, the USAF does not provide a forecast for the number of sorties for the D200 to 

calculate future demand.  The next step of this study is to develop a reasonable forecast 

for the future year’s sorties to closely simulate the results of a sortie based D200 demand 

forecast. 
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Sortie Forecasts Method #1 

 The first method will provide a baseline for the remaining sortie forecast models. 

Calculating a demand forecast using the proposed sortie-based factor and the next year’s 

actual number of sorties obtained from LIMS-EV will demonstrate the accuracy that 

other models can compare to. With the use of actual sorties flown in the next year, which 

will not be known, this method can be thought of as a goal for the remaining methods in 

this study to measure against.  

Sortie Forecasts Method #2 

The second method in this study simulates a sortie forecast by converting flying 

hours to the average sortie duration. To calculate number of sorties, the average duration 

rate is divided into the number of flying hours (Air Force Materiel Command, 2017). As 

the number of sorties is known, this equation can be used to calculate the average sortie 

duration (ASD).  

 𝐴𝐴𝐴𝐴𝐴𝐴 = # 𝑆𝑆𝑜𝑜𝑞𝑞𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷
# 𝐹𝐹𝐹𝐹𝑦𝑦𝑖𝑖𝐷𝐷𝐹𝐹 ℎ𝑜𝑜𝑞𝑞𝑞𝑞𝐷𝐷

                                                     (4) 

This sortie forecast method calculates the ASD for each observation year. The product of 

the current year ASD is then multiplied by the next year’s flying hour forecast to 

transform this forecast into a sortie forecast. Finally, the product of the sortie forecast 

using this method and the models sortie based rate (λ) is a reasonable demand forecast to 

compare with our baseline method #1.    

Sortie Forecasts Method #3 

 The second method this study used to provide the model a sortie forecast is to 

apply the Holt-Winter’s forecasting method to historical number of sorties per year to 
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forecast the next year’s number of sorties. The triple exponential smoothing accounts for 

seasonality and trends in the demand and is accomplished by the FORECAST.ETS 

function in Microsoft Excel. This function will automatically detect any seasonality or 

trend in the time series data and use the appropriate exponential smoothing formula. The 

forecasted number of sorties is multiplied by the new sortie-based factor to produce a 

demand forecast. 

Time series Demand Forecast (TDF) 

 This study also applies Holt-Winter’s forecasting algorithm to historical demand. 

This method ignores the sortie-based demand rate factor and provides a forecast based 

exclusively on historical demand. This method is simple and will be useful to understand 

if a demand rate factor is useful when forecasting demand for spare parts or not. 

Mean Absolute Percent Error 

 This study uses the mean absolute percent error (MAPE) to measure forecast 

error. The MAPE of the D200 demand forecast and the MAPE of the demand forecast 

produced by the four models in this study are calculated and then compared to determine 

the method that will provide the USAF with the best estimate of demand. The MAPE is 

calculated with the following equation: 

�1
𝐷𝐷
∑ |𝐴𝐴𝐴𝐴𝑡𝑡𝑞𝑞𝐷𝐷𝐹𝐹−𝐹𝐹𝑜𝑜𝑞𝑞𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑡𝑡|

|𝐴𝐴𝐴𝐴𝑡𝑡𝑞𝑞𝐷𝐷𝐹𝐹|
�      (5) 

where n is the number of observations. 
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IV.  Analysis and Results 

Chapter Overview 

 This chapter will focus on answering the main research question. Tables will be 

presented to show the results of all forecasts in terms of the MAPE. Then tables will be 

presented to show the robustness of a sortie-based forecast. Finally, a table will show that 

future research can use QPA factors and percent applications factors to reduce error 

further and further justify using sorties to forecast spare part demand.  

Aggregate F-16 Forecast Comparison  

The results of the correlation analysis and the four simulated demand forecasts is 

designed to decision makers insight and levers to pull when deciding to use a sortie-based 

demand forecast rather than a flying hour-based forecast. The analysis of the two data 

sets resulted in spreadsheet that can be filtered by NIIN, fiscal year, federal stock group, 

federal stock class, or by the correlation between demand and sorties and demand and 

hours flown. When filtered by these categories the MAPE is recalculated for each 

category. To illustrate, Table one shows the resulting MAPES of the F-16 parts filtered 

by fiscal year 2018. 

Table 1: 2018 F-16 forecast error comparison 

Model #1 MAPE: 40.3% 
Model #2 MAPE: 41.1% 
Model #3 MAPE: 39.9% 
Model #4 MAPE: 44.4% 

D200 MAPE: 52.5% 
Number of Parts (n): 418 
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This table is interpreted as the USAF’s flying hour-based forecast had 52% error in 2018. 

Furthermore, using actual sorties for 2018, method #1 shows the error could have been 

decreased to 41%. More significant than that, if method #3 was used to forecast the 

number of sorties for 2018 and the USAF used the proposed sortie-based demand rate, 

the error for the 418 F-16 parts could have been reduced to 39.9%, which outperforms 

our the D200 and the baseline. 

Individual F-16 Item Forecast Comparison  

 Table 2 shows a selection of individual NIINs with different correlations between 

their demand and hours flown. This table shows at the individual level method #3 tends 

to outperform the baseline and the D200 forecast in 2018.  This sample of NIINs also 

shows that this study’s proposal is not true for all parts and further research is needed to 

find possible explanations. For example, item 010454508 had a D200 forecast that was 

100% accurate. This may be due to the item manager’s ability to override the D200 

forecast and negotiate their forecast during the SRRB.  A future study could be used to 

explain this anomaly.  Regardless of these anomalies, Tables 1 and 2 show that in general 

sorties should be used in the demand rate to calculate future demand for F-16 items.  
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Table 2: 2018 Individual item prediction comparison 

 

Evidence for Future Research 

Another conclusion that can be made from this study is that the models used are 

relatively robust and insensitive to some of the limitations. For example, Table 3 

demonstrates that not all parts have the same value for flying hours like they do for 

sorties. The item’s flying hours come from D200 which accounts for the item’s QPA and 

its percent applications. The items number of flying hours is the product of total flying 

hours, QPA, and percent application.  Where QPA is 1 if there is only one of the items 

installed on the aircraft, 2 if there are two, etc. Percent application is the percent of each 

item that is used by the aircraft of study vs. other aircraft. For example, if a third of the 

USAF’s inventory of a given item is allocated to the F-16 but the other two thirds are 

allocated to two other mission designs (MD), the percent application is .33. This explains 

the differences in flying hours between some items and can be seen in Table 3. 

 

 

 

Item I.D. 
Number 

FH 
(x100) 

Sorties Dmd/FH 
Correlation 

D200 
Fcst 

D200 APE Baseline 
(#1) Fcst 

Baseline 
APE 

Method #3 Method #3 
APE 

001045672 1974 121222 -0.08735 25 31.5% 21.82 14.9% 22.46685 18.2% 

002327931 1974 121222 -0.01871 13 13.3% 10.91 27.2% 11.21678 25.2% 

004040445 1974 121222 -0.17118 36 9.0% 31.25 5.3% 32.16844 2.5% 

010454508 1974 121222 0.608434 24 0.0% 21.82 9.1% 22.46685 6.4% 

010525356 1974 121222 0.050471 11 57.1% 9.42 34.6% 9.701593 38.6% 

010525359 1974 121222 0.517792 18 63.3% 15.38 39.8% 15.82891 43.9% 

010526752 1974 121222 0.175176 29 81.3% 25.30 58.1% 26.04112 62.8% 

010549843 1974 121222 -0.36809 161 8.8% 139.40 5.8% 143.4814 3.1% 
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Table 3: Different FHs due to QPA and/or percent application 

 

B-52 Results 

The results from this study are very similar for the B-52 fleet Table 4 shows the 

2018 forecast MAPEs for the B-52 fleet 

Table 4: 2018 B-52 forecast error comparison 

Model #1 MAPE: 37.1% 
Model #2 MAPE: 41.6% 
Model #3 MAPE: 44.5% 
Model #4 MAPE: 61.6% 

D200 MAPE: 40.9% 
Number of Parts (n): 555 

 

This table is interpreted as the USAF’s flying hour-based forecast for the B-52 in 2018 

had 41% error. Furthermore, using actual sorties for 2018, method #1 shows the error 

would have been decreased to 37.1%. When applied to B-52 parts, this model with 

method #3 would have produced a larger forecast error than the D200. Method #3 would 

have produced 44.5% error versus D200’s 41% error. However, Table 5 shows a different 

story for the 2017 B-52 spare part demand forecast. 

Item I.D. 
Number 

FH 
(x100) 

Sorties 
 

D200 
Fcst 

D200 
APE 

Method #1 
Forecast 

Method 
#1 APE 

Method #2 
Forecast 

Method 
#2 APE 

Method #3 
Forecast 

Method #3 
APE 

001045672 1974 121222 25 0.315789 21.82616061 0.148745 22.50837196 0.184651 20.92536471 0.101334985 

001739074 119 121222 4 0 3.472343734 0 3.562768696 0 3.329035294 0 

002327931 1974 121222 13 0.133333 10.91308031 0.272461 11.25418598 0.249721 10.46268235 0.302487843 

003140050 4019 121222 25 0.041667 21.82616061 0.090577 22.42866089 0.065472 20.92536471 0.128109804 

004040445 1974 121222 36 0.090909 31.25109361 0.052997 32.22789621 0.023397 29.96131765 0.092081283 

004385854 3552 121222 19 0.461538 15.87357136 0.221044 16.54042643 0.27234 15.21844706 0.170649774 

006232912 70 121222 56 0.098039 52.58120512 0.031004 49.31881717 0.032964 50.41110588 0.011546943 

010397817 2011 121222 28 0.272727 23.81035703 0.082289 24.54919779 0.115873 22.82767059 0.03762139 

010404430 1766 121222 26 0.04 22.81825882 0.08727 22.71554485 0.091378 21.87651765 0.124939294 

010408468 1974 121222 21 0.235294 18.35381688 0.079636 18.9274946 0.113382 17.59632941 0.035078201 

010418639 6034 121222 62 0.087719 53.57330332 0.060117 55.14979753 0.03246 51.36225882 0.09890774 
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Table 5: 2017 B-52 forecast error comparison 

Model #1 MAPE: 39.7% 
Model #2 MAPE: 41.6% 
Model #3 MAPE: 34.8% 
Model #4 MAPE: 61.6% 

D200 MAPE: 44.4% 
Number of Parts (n): 554 

 

This table is interpreted as the USAF’s FH-based forecast for the B-52 in 2017 

had 44.4% error. Furthermore, using actual sorties for 2017, method #1 shows the error 

would have been decreased to 39.6%. When applied to B-52 parts, this model with 

method #3 would have further decreased forecast error to just 34.8% versus 44.4% error 

the D200 produced. 

Chapter Summary 

 This chapter answered the main research question. Essentially, the methodology 

presented in this study shows that sorties can be employed to improve the accuracy of 

USAF demand forecasts. Aggregate forecasts for the F-16 and B-52 are compared and 

both fleets are shown to benefit from a sortie-based forecast.  
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V.  Conclusions and Recommendations 

Chapter Overview 

The purpose of this chapter it to relate the study results to actionable 

recommendations for USAF decision makers. This chapter also outlines recommendation 

for future research to supplement this study and future research to address the limitations 

of this study.  

Conclusions of Research 

This study showed that aircraft spare part demand is not always strongly 

correlated to the number of hours that are flown. In fact, 40% of the F-16 items from 

2004 to 2018 had demand that was more correlated to the number of sorties flown.  Due 

to the historic error of USAF forecasts and the finding that demand for many F-16 parts 

have a relationship with the number of sorties flown, this study adjusted the USAF’s 

historic demand rate forecast system to use sorties as a measure of time or demand 

interval. This demand rate is applied to the aircrafts predicted usage to calculate demand 

for the next periods (Berger & Murphy, 2014). However, generally the USAF predicts 

usage in terms of flying hours, not sorties. B-52 spare part demand data was obtained to 

explore the robustness of potential findings. This study proposed and analyzed four 

methods to transform the usage forecast to sorties in order to apply a sortied based 

demand rate to a predicted sortie usage. Each of these four methods produced a sortie-

based demand prediction to compare to the USAF’s flying hour-based demand 

prediction. For many of the observation years, the sortie-based demand prediction 
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outperformed actual forecasts showing that when applied to the current forecasting 

system, sorties can decrease error. 

 The results of this study empirically show that there is a possibility for decreased 

error in USAF spare part forecasting. Although, forecasting count data that is intermittent 

and non-stationary like spare part demand is difficult, this study employs a parsimonious 

method to decrease error and get after an area that has historically caused the USAF to 

lose credibility. This study gives a tool to forecasters that will allow them to compare 

their current prediction system to a sortie-based system. A quick comparison could result 

in better buying decisions when the SRRB proposes a budget for spare parts. With 

weapon system sustainment costs growing at an alarming rate, better decisions based on 

this study could decrease funds being inappropriately allocated and possibly restore some 

lost credibility. However, to make meaningful change, action must be taken. 

Recommendations for Action 

First, the USAF should terminate the use of flying hours to predict all demand. 

This model allows decision makers to compare how flying hour forecasts performed in 

the past and can produce a forecast based on both sorties and flying hours. Essentially, 

the model provides the tool necessary for the USAF to transition from a one size fits all 

system to a hybrid system. At the individual item level, the hybrid system will allow the 

forecaster to select the program that has historically shown less forecast error. 

 Second, if individual item comparison is infeasible, it is recommended to use the 

sortie-based model proposed in this study for all items. Demand forecasts aggregated 

from 2011 to 2018 for all parts in the study on the F-16 and B-52 fleets saw less error 
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with the sortie-based model. Even though the sortie-based forecast did not outperform the 

USAF forecast for every item in these fleets, it did perform better when demand was 

aggregated in this fashion.    

 

Recommendations for Future Research 

First, future studies or improvements to the model proposed in this study should 

apply quantity per application (QPA) and percent application to the number of sorties 

attributed to each item. Appling these factors to the number of sorties USAF aircraft fly 

allows for a more precise allocation of sorties to each item installed on the aircraft. Future 

research can employ the model of this study with the more precise sortie allocation and 

could improve the forecast.  

 Furthermore, future research should explore the appropriateness of applying the 

Poisson process to every item. The literature suggests that some aircraft parts may have a 

failure distribution that differs from the Poisson process (Ebeling, 2004). Future research 

should investigate the failure distribution of a sample of parts. If the distributions are 

significantly different, parameter estimates can be explored and possibly implemented 

into this study’s model. If a future study of this nature could show decreased forecast 

error further, it could help drive sustainment costs down. 

 Finally, research should be done to identify possible trends regarding the time 

measure that predicts demand more accurately. Research should be focused on finding 

the most appropriate variable for each item, class of items, or repair cycle group. Having 
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greater confidence in the time measure selected, forecasters can more effectively employ 

a possible hybrid system.  

Summary 

It is the belief of this research that a sortie-based demand rate could be applied to 

future requirements defined by the number of sorties expected to calculate a more precise 

demand forecast. This study shows exponential smoothing methods can be applied to 

historical sortie time series data to meet this requirement. The product of these two 

consistently outperforms the status quo and should be implemented to more accurately 

budget for future spare part requirements.  
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Weapon System Sustainment (WSS) costs are growing at an increasing rate despite the vast efforts to reduce these costs. 
To address this problem, the purpose of this study is to explore a parsimonious change to aircraft component forecasting to 
reduce costly forecast error. The United States Air Force (USAF) predicts the demand for components modeled after the 
Poisson process. The number of flying hours until demand is exponentially distributed and the expected number of 
demands in a giving time interval has a discrete Poisson distribution. This study replaces flying hours with sorties to 
measure time for the purpose of demand forecasting. Many F-16 and B-52 spare parts are evaluated by employing demand 
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