
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2020

A Study of Execution Performance for Rust-Based Object vs Data A Study of Execution Performance for Rust-Based Object vs Data

Oriented Architectures Oriented Architectures

Joseph A. Vagedes

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Vagedes, Joseph A., "A Study of Execution Performance for Rust-Based Object vs Data Oriented
Architectures" (2020). Theses and Dissertations. 3191.
https://scholar.afit.edu/etd/3191

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholar.afit.edu%2Fetd%2F3191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3191?utm_source=scholar.afit.edu%2Fetd%2F3191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

A STUDY OF EXECUTION PERFORMANCE
FOR RUST-BASED OBJECT VS DATA

ORIENTED ARCHITECTURES

THESIS

Joseph Vagedes, 2nd Lt, USAF

AFIT-ENG-MS-20-M-065

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-065

A STUDY OF EXECUTION PERFORMANCE FOR RUST-BASED OBJECT VS

DATA ORIENTED ARCHITECTURES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Joseph Vagedes, B.S.C.E.

2nd Lt, USAF

March 19, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-065

A STUDY OF EXECUTION PERFORMANCE FOR RUST-BASED OBJECT VS

DATA ORIENTED ARCHITECTURES

THESIS

Joseph Vagedes, B.S.C.E.
2nd Lt, USAF

Committee Membership:

Douglas D Hodson, Ph.D
Chair

Scott L Nykl, Ph.D
Member

Ryan D Engle, Ph.D
Member

AFIT-ENG-MS-20-M-065

Abstract

In recent years, advances in the performance of computer hardware technology has

begun to slow due the physical limitations of modern transistors including feature size

and heat dissipation issues [1, 2]. Engineers have turned to adding additional cores to

Central Processing Units (CPUs) to improve performance, however many modern day

applications are not designed to take advantage of multi-core parallelism effectively.

Software developers are no longer able to rely on improved hardware for increased

performance in their software; they must turn to software optimizations.

The memory layout of a software system is one area that directly contributes to

the performance of the software as it affects access time and throughput of data in

cache [1]. This area of optimization tends to be overlooked by developers as they do

not have the necessary technical background in computer architecture. In general,

the commonly used programming paradigm, Object-Oriented Programming (OOP),

does not store data in memory in such a way that it can be optimally used by the

cache, resulting in slower performance.

This research investigates the Data-Oriented Design (DOD) paradigm, in partic-

ular, an architecture built off its principles: Entity-Component-System (ECS). ECS

is commonly used by video game engines due to its ability to store data in a way

that is optimal for the cache to access. Additionally, the structure of this paradigm

produces a code-base that is simple to parallelize as the workload can be distributed

across a thread-pool based on the data used with little to no need for data safety

measures such as mutexes and locks. A final benefit, although not easily measured,

is that the DOD paradigm produces a highly decoupled (i.e., a strong separation of

concerns) code-base, resulting in more easily maintainable and extensible code.

iv

DOD and ECS are not a catch-all replacement for OOP; they are most optimal for

software systems with large amounts of data being used and operated on consistently

[3]. This is why it is actively being developed and used in video game engines. This

research argues that due to the similarities between video game engines and real-time

simulators, this paradigm can replace the commonly used OOP paradigm in real-time

simulators to improve performance.

To demonstrate the performance differences between the two paradigms for use

in real-time simulators, two separate code-bases were developed, each using one of

the paradigms. Multiple experiments were run on each code-base to determine how

tolerant each was to changes in important aspects of simulations such as the amount

of data used in a simulation. The DOD paradigm consistently outperformed the OOP

paradigm in all experiments; it was seen that as more data is used in an experiment,

the larger the difference in performance between the DOD and OOP paradigms.

This research closes by emphasizing that DOD is not a replacement to OOP in

all use cases. DOD is most optimal in code-bases that contain and operate on a

large amounts of data; this includes, but is not limited to, areas such as video games

engines, real-time and non-real-time simulations, and high performance computing.

This paradigm also has a strong use case for the development of multi-threaded

applications as it reduces the complexity of developing the software system as methods

for operating on data can be automatically distributed across a threadpool by a

scheduler. This reduces, if not eliminates, the need for developers to think about

data safety and mechanisms such as mutexes and locks.

v

Table of Contents

Page

Abstract . iv

List of Figures . ix

List of Tables . x

I. Introduction . 1

1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Goals . 3
1.4 Hypothesis . 3
1.5 Approach . 3
1.6 Assumptions/Limitations . 4
1.7 Contributions . 5
1.8 Thesis Overview. 5

II. Background . 6

2.1 Overview . 6
2.2 Computer Hardware . 6
2.3 Object-Oriented Programming . 10

2.3.1 C++ . 14
2.4 Data-Oriented Design . 21

2.4.1 Rust . 24
2.5 Entity-Component-System . 30

2.5.1 Entity . 31
2.5.2 Component . 31
2.5.3 System . 32
2.5.4 Execution Pattern . 33

2.6 Specs . 35

III. Methodology . 39

3.1 System Under Study . 39
3.2 Variables . 39
3.3 Assumptions . 40
3.4 Statistical Analysis . 41
3.5 Experimental Design . 43

3.5.1 OOP Benchmark Design. 45
3.5.2 DOD Benchmark Design . 45
3.5.3 Experiment One . 47
3.5.4 Experiment Two . 48

vi

Page

3.5.5 Experiment Three . 50
3.5.6 Experiment Four . 51
3.5.7 Experiment Five . 52
3.5.8 Experiment Six . 53

3.6 Data Logging . 54
3.7 Summary . 55

IV. Results and Analysis . 56

4.1 Overview . 56
4.2 Experiment 1 . 56
4.3 Experiment 2 . 59
4.4 Experiment 3 . 62
4.5 Experiment 4 . 69
4.6 Experiment 5 . 71
4.7 Experiment 6 . 73

V. Conclusion . 76

5.1 Overview . 76
5.2 Research Conclusions . 76
5.3 Research Significance and Future Work . 78

Appendix A. Benchmark Measurement and Analysis . 81

1.1 Measurement . 81
1.2 Analysis . 82

1.2.1 Outlier Classification . 82
1.2.2 Linear Regression . 83
1.2.3 Comparison . 83

Appendix B. Experiment One Code . 85

2.1 Benchmark . 85
2.2 Modules . 88
2.3 DOD . 88
2.4 DOD Components . 105
2.5 DOD Systems . 138
2.6 OOP . 139
2.7 OOP Objects . 142

Appendix C. Experiment Two Code . 149

3.1 Benchmark . 149
3.2 Modules . 151
3.3 DOD . 151

vii

Page

3.4 DOD Components . 153
3.5 DOD Systems . 155
3.6 OOP . 156
3.7 OOP Objects . 159

Appendix D. Experiment Three Code . 161

4.1 Benchmark . 161
4.2 Modules . 166
4.3 DOD . 167
4.4 DOD Components . 184
4.5 DOD Systems . 217
4.6 OOP . 218
4.7 OOP Objects . 221

Appendix E. Experiment Four Code . 228

5.1 Benchmark . 228
5.2 Modules . 230
5.3 DOD . 230
5.4 DOD Components . 240
5.5 DOD Systems . 244
5.6 OOP . 253
5.7 OOP Objects . 261

Appendix F. Experiment Five Code . 264

6.1 Benchmark . 264
6.2 Modules . 266
6.3 DOD . 266
6.4 DOD Components . 269
6.5 DOD Systems . 273
6.6 OOP . 282
6.7 OOP Objects . 286

Appendix G. Experiment Six Code . 289

7.1 Benchmark . 289
7.2 Modules . 293
7.3 DOD . 293
7.4 DOD Components . 300
7.5 DOD Systems . 304
7.6 OOP . 317
7.7 OOP Objects . 320

Bibliography . 337
Acronyms . 340

viii

List of Figures

Figure Page

1. Generic Cache Hierarchy . 8

2. OOP Virtual Method Calling . 14

3. Flow Chart of The OOP Benchmark . 46

4. Flow Chart of The DOD Benchmark . 47

5. Graphical Results for Experiment One . 57

6. Graphical Results for Experiment Two . 60

7. Graphical Results for Experiment Three: Full
Scatter-plot of total memory size . 63

8. Graphical Results for Experiment Three: Partial
Scatter-plot of total memory size . 64

9. Graphical Results for Experiment Three: OOP
entity size effects . 65

10. Graphical Results for Experiment Three: DOD
entity size effects . 66

11. Graphical Results for Experiment Three: OOP
entity count effects . 67

12. Graphical Results for Experiment Three: DOD
entity count effects . 68

13. Graphical Results for Experiment Four . 70

14. Graphical Results for Experiment Five . 73

15. Graphical Results for Experiment Two: Comparing
Completion Time . 74

ix

List of Tables

Table Page

1. Memory Layout of Two OOP Objects . 10

2. Memory Layout of DOD Table . 22

3. OOP Cache Line vs. DOD Cache Line . 23

4. Different Storage Types for Specs . 36

5. System Scheduling Example . 38

6. Variables used in all experiments . 40

7. Variables for Experiment One . 48

8. Variables for Experiment Two . 49

9. Variables for Experiment Three . 50

10. Variables for Experiment Four . 52

11. Variables for Experiment Five . 53

12. Variables for Experiment Six . 54

13. Numerical Results for Experiment One . 59

14. Numerical Results for Experiment Two . 62

15. Numerical Results for Experiment Three OOP . 69

16. Numerical Results for Experiment Three DOD . 69

17. Numerical Results for Experiment Four . 71

18. Numerical Results for Experiment Five . 73

19. Numerical Results for Experiment Six . 75

x

A STUDY OF EXECUTION PERFORMANCE FOR RUST-BASED OBJECT VS

DATA ORIENTED ARCHITECTURES

I. Introduction

1.1 Background

Real-time simulators share many similarities with current games; they both man-

age a world composed of a set of interacting entities. The main differences between

the two are how they are developed, how precisely they represent the real world, and

their intended purpose. In real-time simulators, it is common for a developer to be

responsible for handling all aspects of the software - from networking to memory-

management and parallelization. These aspects must be meticulously developed due

to their importance in the overall performance of the simulator [4, 5]; this makes

developing these aspects difficult and slow. Maintainability also becomes an issue

for developers; it may be necessary to refactor large portions of the code-base when

upgrading or implementing new features due to tightly-coupled code [6, 7].

Games, on the other hand, are primarily developed using game engines. These

engines handle the features that cause (or prevent) high performance such as the

aforementioned networking, memory-management, and parallelization. Aspects such

as these have been precisely developed and tweaked to be as efficient as possible.

This allows a game developer to focus on developing features while not necessarily

needing to worry about the overall organization of the architecture, which affects

performance. An architecture that is becoming increasingly popular in the game

development industry is the Entity-Component-System (ECS). This architecture is

1

dual-hatted; it not only handles memory management and code parallelization, but

it also forces the programmer to develop using the Data-Oriented Design (DOD)

paradigm. A stand-out feature of DOD is that it produces highly decoupled code,

effectively compartmentalizing pieces of the code-base. These features allow it to be

highly extensible and easy to maintain due to the few dependencies between sections

of the code-base. Code can be added and removed without necessarily effecting other

parts of the code-base. This thesis claims that there are enough similarities between

real-time simulators and game engines that implementing the ECS architecture for

a real-time simulator could greatly improve the design and overall performance of

real-time simulators.

1.2 Problem Statement

With the slowing advances in computer hardware technology, mainly the clock fre-

quencies at which hardware runs, it is becoming increasingly important to optimize

software systems for increased performance. Many optimizations have already been

made in the realm of game development due to the intense computational require-

ments, however, the problem is that these same optimizations have not been made

in other legacy software, including real-time simulators [8, 9]. These optimizations in

games can be attributed to game engines. Game engines define how data is stored

and accessed; they ensure how it is stored in an efficient way - the basis of the DOD

paradigm. Older, or legacy, simulators on the other hand tend to focus on devel-

opment through Object-Oriented Programming (OOP). The benefits of each, along

with similarities and differences, are explained in chapter II.

This thesis hopes to determine if real-time simulators can implement software

architectures originally developed and optimized for game engines to increase their

performance and ease of development through the compartmentalized nature and

2

memory layout of the DOD paradigm as explained in chapter II. If so, the DOD

paradigm, and in particular, the ECS architecture are possible solutions to improving

the performance legacy, or to-be developed modeling software, including real-time

simulators.

1.3 Research Goals

The goal of this research is to investigate the performance differences between real-

time simulators that use an OOP approach for computation and one that use a DOD

approach and answer the question as to if DOD, in particular the ECS architecture,

is a possible solution to developing high-performance real-time simulators.

1.4 Hypothesis

This research hypothesizes that games and real-time simulations share enough

similarities that it is not only possible to implement a software architecture origi-

nally developed for games (the ECS architecture), but that it will also improve the

performance considerably. It also theorizes that the code base produced due to this

architecture will increase the maintainability of the software due to the compartmen-

talized nature of the DOD paradigm.

1.5 Approach

Two code-bases were created; one used the OOP paradigm and the other used

the DOD paradigm (more specifically the ECS architecture). They were tasked with

performing the same calculations on the same data-sets to simulate a real-time system.

Comparisons in performance (how long it takes to execute all systems on all entities)

are taken for each code-base and compared. During each set of tests, one of the below

variables are changed:

3

• Size of each entity

• Number of entities

• Number of components used in a system

• Number of threads

• Number of systems

1.6 Assumptions/Limitations

The following assumptions/limitations are understood when designing and imple-

menting the OOP and DOD code bases:

• Methods for operating on the state of entities are generalized to do resource-

intensive, but meaningless calculations for simulating realistic computation.

• The optimizer settings for the compiler will be set to as low as possible to

ensure data requests from memory are not optimized away. Additionally, this is

to ensure compiler does not change the structure of the code base or how either

the DOD or OOP architectures are executed.

• Both architectures will be ran on a 2018 Macbook Pro (MR9Q2LL/A) with a

2.3GHz Quad-Core Intel i5 processor (i5-8259U) with the following cache sizes:

– L1: 4 x 32 KB

– L2: 4 x 256 KB

– L3: 6 MB

– L4: 128 MB

4

1.7 Contributions

This thesis contributes to the fields of:

• Modeling & Simulation: DOD is a commonly used paradigm in games to

greatly improve performance. As their are many similarities between games

and real-time simulations, the same concepts, paradigms, and architectures are

applicable to these simulations. By implementing these in real-time simulators,

vast improvements to performance could be made.

• High Performance Computing: The ECS architecture can be scaled to as

many threads as needed. Systems are run on separate threads where possible

(no data races). If systems handle different sections of the data sufficiently,

the computations may be paralleled to a high degree. If enough entities exist,

multiple threads can handle the same calculations on different sets of entities,

providing further parallelism.

1.8 Thesis Overview

This thesis is arranged into five chapters. Chapter II provides important back-

ground information on relevant computer hardware pieces that directly impact a

computer’s performance and different software paradigms used in common program-

ming languages today. It also explains how each paradigm works with or against the

computer hardware when used. Chapter III provides the experiment methodology,

along with the respective code snippets for each run. Chapter IV shows the analysis

of the data obtained from Chapter III and display the results in an efficient manner.

Finally, Chapter V summarizes the research and impact of the research, while also

providing future research opportunities based off this research.

5

II. Background

2.1 Overview

This chapter will provide an overview of the hardware components that directly af-

fect the performance of code written using Object-Oriented Programming (OOP) and

Data-Oriented Design (DOD) paradigms. It will then provide a technical summary

of the aforementioned paradigms while characterizing the memory layout produced

when used. It will explain how these paradigms work with or against the hardware

while also identifying the advantages and disadvantages of each. It will end with a

detailed explanation of the Entity-Component-System (ECS) architecture and one

full implementation, Specs, used in the experimentation of this thesis.

2.2 Computer Hardware

It is common knowledge that the Central Processing Unit (CPU) is central to any

computer or embedded system; it is responsible for fetch, decode, and execution of

instructions. Modern processors rely heavily on multiple-core parallelism to increase

performance as with current technologies, designers are no longer able to easily shrink

feature sizes, or increase clock speeds, due to the physical limitations of transistors

and issues with heat dissipation [1].

Each processor in a multi-core system has its own instruction pipeline and cache

for which it operates on. When processors are working on different sets of data, there

is no issue as each set of data is located only in the cache of that specific processor.

However, when processors work on the same data simultaneously, performance issues

and even data corruption issues (such as data races) can occur due to the same data

being located in multiple caches that must be in sync when one writer exists. [1].

Modern cache follows a coherence protocol that is responsible for ensuring shared

6

data among multiple caches remain consistent [1]. Many protocols exist, but the most

commonly used is the Modified-Exclusive-Shared-Invalid (MESI) protocol which uses

the four states (as seen in the name) to control what can and cannot be done to

the cache. However, this does not prevent data races and memory corruption in all

cases: the cache coherency protocol can only ensure data safety for primitive types

depending on the processor. This means that a program can safely write an entire

primitive before another thread will be able to read or overwrite that data. This

prevents data races for primitive types. However, if a non-primitive data type is

being used, such as a string, or a custom class, it cannot ensure data safety [10].

As an example, imagine a string is being written to by multiple threads. A string

is not a primitive type, it is a wrapper around a list of primitive characters. When

writing to a string (appending, overwriting, etc), each individual character is edited

one at a time. The cache coherence protocol will ensure that each individual character

is written to without issue, but determining which thread is writing to each character

will be non-deterministic. To ensure issues like these do not occur, it is important to

use a thread safety mechanism such as atomics or mutexes [11]. These mechanisms

should even be used when operating on primitives as it will ensure the compiler does

not reorder or remove operations when optimizing the code. Atomics and mutexes

act as fences to ensure code is not reordered incorrectly.

Atomics exist at multiple levels: (i) Hardware, (ii) Operating system, and (iii) Pro-

gramming language; however, true atomics only exist at the hardware level whereas

mutexes are handled purely in software [12]. When a programmer signifies that a

primitive type is atomic, the compiler uses special hardware locks and/or special

operation codes to perform an operation in one instruction, or make it appear to

other threads as if it was performed in one instruction. Atomics are only for single

operations such as an add command [12, 11]. Mutexes, on the other hand, are data

7

structures that allow you to lock sections of code and perform multiple operations

before unlocking (known as the critical area). Mutexes prevent other threads from

accessing the critical area while locked.

The cache is responsible for providing instructions and data to the processor. It is

split into different levels that get further away (physical distance) from the processor.

At each level, the size of the cache gets larger and the access time gets slower as seen

in Figure 1. Without this cache model, the CPU would almost always be idle while

it is waiting for instructions and data to come from memory as the performance of a

CPU greatly outpaces that of the cache [1].

Figure 1: Generic Cache Hierarchy

With this model, the most recently used data and instructions are in the lowest

levels of cache while the least recently used get progressively farther away. It is

important to note that any data and instructions located in a particular level of

cache is also located in all higher levels of cache. When a CPU requests instructions

or data from memory, the cache model searches for it in the lowest level memory. If

the requested data is found, it is considered a cache hit. If not found, it is a cache

miss and it must be searched for in the next level of cache. This process continues

until a cache hit occurs. Once the requested data or instructions are found, it not only

provides that data to the CPU, but it also moves data/instructions down the cache

8

hierarchy to the lowest level cache for future use. Cache misses are costly in terms

of performance, changing the time it takes to get the requested data to the processor

from a few clock cycles, to hundreds, thousands, or even hundreds of thousands of

clock cycles (depending on where it is found in the cache hierarchy). During this

time, the CPU either becomes idle, or more frequently, will context switch to another

process while the requested data is being obtained [1].

Current cache models have hit rates of over ninety percent [1]; this is made possible

due to the concepts of spatial and temporal locality. Spatial locality is the notion that

commonly accessed data are close to each other in memory while temporal locality is

the notion that if data is accessed, it will be accessed again. The cache model takes

advantage of spatial locality by bringing in more than just the requested data into

the lowest level cache. Data inside of a cache is split up into multiple blocks, varying

in size depending on the make of the cache. If the CPU requests a specific piece of

data, the entire block the piece of data resides in is brought into the CPU’s cache.

This improves spatial locality as it means much of the data around the requested data

is ready to be used by the CPU immediately. The cache model takes advantage of

temporal locality simply by the fact that it keeps the most recently used data in the

lowest levels of cache and does not remove them unless replaced by another block.

This is generally done via a least recently used decision, meaning the block that has

not been used in the longest time is replaced with the incoming block. [1].

Of the two concepts, spatial locality is almost entirely dependent on the developer,

and has the greatest effect on performance. The latter is also dependent on the

developer, but occurs naturally in code as it is common and logical to work with the

same data throughout a program. Spatial locality is important for a programmer to

keep in mind when developing the code base as the way it stores and accesses data

greatly affects performance [1].

9

If data is stored in an inefficient way, data contention issues between cores arise,

degrading the overall performance of the program. To develop an efficient multi-

threaded program, the goal should be to minimize memory bus traffic between cores.

This can most easily be done by minimizing core interactions by minimizing shared

data between each core [4]. The DOD and OOP paradigms have different memory

models. The interactions between the core(s), cache, and these memory models will

be explained in their respective sections, but it is important to note that they play

an large role in the overhead performance of any programs developed using these

paradigms.

2.3 Object-Oriented Programming

OOP is the most common paradigm used and is taught to nearly all students

learning software development. OOP can be separated into four main areas: (i)

encapsulation, (ii) abstraction, (iii) inheritance, and (iv) polymorphism. The focus

of encapsulation is to wrap commonly accessed state (i.e. data inside a class) into a

class (or object) that the programmer can use as if it was a single piece of data [13].

When these objects are instantiated during run-time execution, each piece of state in

the object is located directly next to each other. Table 1 presents a simplified view

of an OOP object in memory when instantiated, ignoring any overhead data.

Memory Address (Hexadecimal)
0x00 0x04 0x08 0x0C 0x10 0x14

state1 state2 state3 state1 state2 state3
Object1 Object2

Table 1: Memory Layout of Two OOP Objects

Encapsulation becomes a performance issue when developing a multi-threaded

program. This is due to how each object is stored in memory as specified in Table 1.

When an object is shared between threads, the entire object is loaded into the cache

10

of both threads (as explained in section 2.2), regardless of what state is actually

being used by each thread. This is an issue as valuable cache space is being used by

unnecessary state, which means less of the necessary state can fit in the cache at any

given time. This hurts the overall performance as it increases the amount of cache

misses during execution as not all of the required state fits in the cache at any given

time.

A benefit of encapsulation is that state can be made private, allowing the developer

to better control how an object is manipulated [13]. This is because private state

cannot be directly accessed (reading or writing) and the developer must choose to

create methods that allow for interaction with the state of an object. Encapsulation

helps to protect the object by preventing users from illegally or incorrectly updating

the state of it by forcing state manipulation to be done through one of the public

methods. An added benefit is that the class becomes easier to update: if the developer

wants to change how a particular piece of state is manipulated, they can update the

method accordingly. As long as the method interface (the inputs and outputs) do

not change, none of the existing code-base will be affected. By creating methods for

manipulating state, the second use-case of OOP becomes apparent - abstraction.

Abstraction is used to make understanding the code-base simple, along with re-

ducing the complexity of the code from the view of the programmer [13, 14]. The

goal is to present an interface to the programmer that is easy to use and works

consistently. This allows the programmer to use the interface without necessarily un-

derstanding how it works. Consider any of the numerous sorting algorithms available

in the standard library of most programming languages - these are perfect examples

of abstraction. The programmer must only provide a data set and a pattern to sort

on; all of the complex state manipulation that occurs on the data set is abstracted

away and only a sorted data set is returned to the user. This is highly beneficial

11

to the development cycle of any software product as the developer does not have to

focus on the inner workings of every specific piece of code, but can abstract away

many complexities and focus on the bigger picture, or the problem at hand.

Inheritance is one of the two major use-cases for OOP. It is the act of creating

a new class that receives all the state and methods from a different class, while also

allowing the user to add additional state and/or methods [14]. This promotes code

reuse without the need of rewriting the code. Additionally, the programmer can

choose to make state private that was not necessarily private in the parent class

(though a programmer cannot make private data public without using a work-around

such as a get() function). The programmer may also choose to override a method

that was inherited from a parent class. This allows the programmer to ensure the

method works correctly with any changes made in the child class.

As a class grows large, it becomes increasingly slow to move an instance of the class

in memory as the entire object must be copied to a new location in memory. Once

it grows too large, it becomes necessary to pass these objects around by reference

(the memory location of the object). Passing these objects around by reference is

still inherently slow due to jumping through pointers, but it is more efficient than

copying large amounts of data in memory. Aside from performance loss, inheritance

also tightly couples the two classes together; a change in a parent class will almost

assuredly affect any child classes below (but not vise-versa). It can also be extremely

difficult to refactor or delete a parent class as it will cause a ripple effect of changes

down the class hierarchy. This will cause maintenance and development of the code-

base to become slow and difficult.

The final area of OOP is polymorphism. Polymorphism is the ability for objects

of different types to have the same interface and be treated as if they were the same

object type [13]. As stated previously, inheritance guarantees that a child class has all

12

of the state and methods as a parent class. Due to this, the child class can be treated

as if it was the a parent class. The implementation of polymorphism is different in

every language, but is typically done by instantiating the child class with the interface

of the parent class.

There are two types of polymorphism: (i) static and (ii) dynamic. Static poly-

morphism is done at compile time and is typically used when overloading methods

(though it differs per language) [15]. Method overloading is when a function has

the same name, but different inputs or different functionality. This can be done for

any functions, or methods associated with a class. They may have different return

types, but that is not necessary to be considered overloaded. Functions can be over-

loaded in the same class or between parent and child classes. This is considered static

as the compiler generates a separate function at compile time for each overloaded

method that is used in the program. This may slow compilation, but does not affect

performance.

Dynamic polymorphism occurs at run time and does incur a performance penalty

due to pointer indirection for method calling. A common example of Dynamic poly-

morphism is the act of instantiating a child class as a parent class, however the

performance losses occur when using virtual methods. A virtual method is a method

that must be overwritten in a child class. Handling virtual methods is specific to the

programming language, however it is commonly handled through the use of virtual

method tables. A virtual method tables is a table the compiler adds to any class that

contains virtual methods. The table contains the address of all virtual methods for

that class. Figure 2 shows the difference between the indirection required for a virtual

method and a non-virtual method. For a virtual method, the code must first follow

the pointer to the virtual method table (i), then it must index the table (ii), finally

it must follow the pointer to the actual method (iii). For a non virtual method, the

13

code must only follow the pointer to the actual method (i). As it can be seen, this

requires two additional points of indirection that causes virtual methods to be slower

than their non-virtual counterparts.

Figure 2: OOP Virtual Method Calling

Polymorphism is extremely important in the world of modeling and simulation

as is what allows the developer to handle different levels of fidelity when perform-

ing calculations. As an example, consider a simulation that is modeling the Radio

Frequency (RF) signatures of different objects for a radar system. Without poly-

morphism, it would be extremely difficult to represent multiple types of objects at

different levels of accuracy, as multiple levels of fidelity present the need to perform

different calculations depending on the object. An example of how this is handled

can be seen in section 2.3.1.

2.3.1 C++

C++ is a system-level programming language released in 1985 and is one of the

most common programming languages used today. C++ was created to add the OOP

paradigm to C and is commonly used in projects ranging from embedded systems to

graphical user interfaces. C++ is a compiled language which allows for very fast code

execution compared to interpreted languages such as Python. Due to its age, there

is a lot of infrastructure built around C++ and a lot of support can be found when

programming C++.

14

Unfortunately, C++ has many issues that developers must overcome when pro-

gramming in the language. C++ is unrestricted in what it allows you to do; this can

result in unexpected behavior during execution. A prime example is that C++ does

not enforce data safety when programming which can lead to many hard-to-diagnose

issues when developing multi-threaded applications. It is up to the developer to de-

termine where data safety mechanisms and memory management are required. Due

to the complexities of ensuring safety in C++, it presents a barrier of entry that

requires an enormous amount of experience to overcome, and even then, mistakes are

still made.

As stated previously, C++ was developed around the idea of OOP, though the

system for it is basic. It also allows for developers to develop and customize how they

use the paradigm in their code-base, but this also presents issues for new developers

with little experience. The main usage of OOP in C++ is inheritance and polymor-

phism allowing the developer to create large and complex inheritance hierarchies for

advanced polymorphism. As stated in section 2.3, polymorphism is the ability to

treat an object as if it was another object. An example on how this is done can be

seen in Listing II.1. The child class inherits all state and methods from the base

class by specifying it in the declaration of the child class. Polymorphism occurs when

the child class is created, but it has an interface of the base class. The two children

classes are inherently different, and may contain different state and methods from

each other, but due to polymorphism, they are able to both be treated as the same

type of object.

15

class base {/* No data yet */}

class child1: public base {/* No Data yet */}

class child2: public base {/* No Data yet */}

int main()

{

base *obj1 = new child1;

base *obj2 = new child2;

}

Listing II.1: Instantiating Child as Parent

When viewing code in C++, there is little difference between static and dynamic

polymorphism. However, what happens behind the scenes, and the results, are con-

siderably different. Listing II.2 shows static polymorphism by overloading the method

print in the child class; it can be seen that the base object calls its method and the

child object calls its method. When a child object is instantiated with the interface

of the base object, it calls the base object’s method as that is what the compiler sees

it as.

16

class base {

public:

void print() { cout << "base" << endl; }

}

class child: public base {

public:

void print() { cout << "child" << endl; }

}

int main()

{

base *b = new base;

b->print (); // Prints "base" as expected

child *c = new child;

c->print (); // Prints "child" as the function was

overloaded (static)

base *bc = new child;

bc -> print (); // Prints "base" as the compiler sees

object as a Base and calls class method (static).

}

Listing II.2: Static Polymorphism

17

Per Listing II.3, dynamic polymorphism is occurring because the print() method

now has the keyword virtual. Static polymorphism is still occurring in object b and c

as they are instantiated as themselves. However, when a child class is instantiated as

a parent class (object ’bc’ in the example), the virtual keyword causes the code-base

access the virtual method table to access child classes method rather than call the

parent classes method. You can tell this is drastically different as Listing II.2, which

uses static polymorphism as it produces the opposite outcome. It is important to note

that this dynamic polymorphism is incurring a performance penalty as the virtual

method table adds two additional points of indirection.

class base {

public:

virtual void print() {cout << "child" << endl; }

}

class child: public base {

public:

void print() { cout << "child" << endl; }

}

Int main()

{

Base *b = new Base;

b->print (); // Prints "base" as expected

Child *c = new Child;

c->print (); // Prints "child" as the function was

overloaded (static)

18

Base *bc = new Child;

bc ->print(); // Prints "child" as the compiler sees

base object is virtual method , and accesses it via

the VMT (dynamic)

}

Listing II.3: Dynamic Polymorphism

Consider the simulation found in Listing II.4 with two objects, one is a perfect sphere

while the other is an aircraft. The sphere will always have the same RF signature

but the aircraft has a different level of fidelity and perform more complex calculations

to determine it’s RF signature. With dynamic polymorphism, the solution is simple.

Create a virtual method that is overloaded in the children classes. When the method

is called on each object, it will call the child class function and properly calculate its

RF signature rather than incorrectly calling the base classes method.

19

class radarObject

{

//By setting this to zero , it enforces that the method

//must be overrode in the child class , effectively

// becoming an interface.

virtual double calcRFSig () = 0;

}

class sphere: public radarObject

{

double RFSig = 5;

double calcRFSig ()

{

return RFSig;

}

}

class aircraft: public radarObject

{

double state1 = 1;

double state2 = 2;

double state3 = 3;

double calcRFSig ()

{

// Complex calculation of internal state

return state1*state2*state3;

}

}

20

int main()

{

radarObject *obj[2] = {new sphere , new aircraft };

for(int i = 0; i < 2; i++) {

std::cout << obj[i]->calcRFSig () << std::endl;

}

/* Output:

5

6

*/

}

Listing II.4: Handling Fidelity

2.4 Data-Oriented Design

DOD is a paradigm that focuses on efficient data storage and usage of the cache

[16]. It does this by moving state out of classes and into separate data structures

(commonly arrays) for each piece of state. The state data structure is indexed to

access the data of objects. To be a pure DOD implementation, it must be guaranteed

that each index in the data structure will contain data; this increases performance as

it is no longer necessary to waste computational time verifying there is no null data.

This causes the memory structure to change from object instances directly next to

each other in memory (if in an array) to all instances of a piece of state next to each

21

other in memory. Table 2 below represents the same two objects stored in memory

using the DOD paradigm rather than the OOP paradigm found in Table 1. Each

instance of an object is an index into each array of data. In this example, there exists

three arrays (state1, state2, and state3) of length two. This programming pattern

has two main benefits of use: (i) cache optimization using spatial locality and (ii)

simplicity of parallelizing the code base.

Memory Address (Hexadecimal)
0x00 0x04 0x08 0x0C 0x10 0x14

state1 state1 state2 state2 state3 state3
Object1 Object2 Object1 Object2 Object1 Object2

Table 2: Memory Layout of DOD Table

It is important to note that the greatest performance increases are only seen in

code-bases that have a large amount of objects being operated on in a row. When

this happens, the array length becomes larger, allowing it to better take advantage

of spatial locality. The benefits of this paradigm is reliant on preventing cache misses

when operating on large amounts of data. This design allows for more of the necessary

data to be in the lowest level cache at once (and less, if not none, of the unnecessary

data to be in cache). In OOP, entire objects are moved into the lowest level cache

at once, even if the program is only operating on a few pieces of state inside of that

object. This causes a lot of space in the cache to be filled by unused state inside of

the object. Due to the structure that usage of the DOD paradigm produces, only the

necessary state is moved into the CPU’s cache. This ensures that more operations

can be completed in a row before needing to bring additional data into the cache (and

causing less cache misses).

Consider an OOP class that has three pieces of state and a function that only

operates on two of the pieces of state at any given time. If that function is called

on all instantiated objects (such as an update function in a real-time simulator), the

22

cache line would look similar to OOP portion of Table 3. It can be seen that even

though the function only works on two pieces of state, all three pieces of state are

brought into the cache line. Due to this, one-third of the cache line is wasted. In the

table, only four objects can fit in the cache line. Consider a DOD implementation

of this where instead of a class, three arrays are initialized, each holding a particular

piece of state. When an object is instantiated, its three pieces of state are added

into the three arrays. When the same function is called across all objects, only the

two necessary arrays are brought into the lowest level cache. This causes the cache

line to look like the DOD portion of Table 3. It can be seen that there is no longer

any wasted space and the cache can now fit six objects worth of state into the cache

before it is full. This greatly reduces the amount of cache misses that can occur while

a program is executing.

OOP Cache Line vs. DOD Cache Line
OOP Cache Line S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
DOD Cache Line S1 S1 S1 S1 S1 S1 S2 S2 S2 S2 S2 S2

Table 3: OOP Cache Line vs. DOD Cache Line

This paradigm makes it easier to parallelize a code base. Since data is no longer

wrapped in a class, it is easier to move only the data you need into different threads

to be worked upon. As data is now stored in arrays of the same type, those specific

arrays may be pushed into threads and operated on. For this type of execution, the

programmer does not have to worry about any data races as the same data is never

in multiple threads at once. An even more advanced system can take into account

the access type (read and write) for each piece of data that a function needs. If two

functions need only read access to a specific piece of data, that data could be copied

into both threads without needing to worry about data races. This will be further

expanded on in section 2.5.

The largest downside to this pattern is that data can no longer be hidden/ pro-

23

tected as can be done in the OOP paradigm. Since the data is no longer wrapped

in a class that can limit how a piece of state is manipulated, there is less control on

how a user interacts with the lowest level data in a program. Another issue is dealing

with multiple levels of fidelity due to the fact that all data of the same type must be

the same size and type. When dealing with multiple levels of fidelity, this tends not

to be true as the amount of data needed to represent something can differ depending

on how accurately something must be depicted.

2.4.1 Rust

The Rust programming language is a new programming language, officially re-

leased in 2015. The language is a system level, compiled language similar to C++.

Rust’s focus is on memory management, data safety, and concurrency. The stand out

feature is that Rust’s compiler checks that the developer is properly handling data-

safety, error-handling, and concurrency. This checking is done at compile time, so

there is no run-time performance loss for this additional safety. A major distinction

of Rust is its use of lifetimes. Any piece of data instantiated in rust has an associated

lifetime. Unlike other languages such as C++, if a piece of data is accessed after its

lifetime, the compiler will see this and force the developer to fix the issue before the

code will compile. Consider the Rust code in listing II.5. If this were programmed

in C++, the code would compile, but it would be incorrect because ‘x’ would no

longer exist when ‘y’ is set to ‘x’. If you tried to use ‘y’ in anyway, you would get an

error. However, Rust understands that the lifetime of ‘x’ ends at the bracket and it is

cleaned up. If this code is compiled, the compilation would fail due to trying to access

this data after its lifetime. Additionally, garbage collection is completely handled by

Resource Acquisition is Initialization (RAII) due to the use of the aforementioned

lifetimes.

24

fn main() {

{

let x: i32 = 5; // Start of lifetime

} //end of lifetime

let y: i32 = x; //error: Access after lifetime ended

}

Listing II.5: Lifetimes

Rust also uses an idea of ownership to prevent data issues. Ownership states that

only one thing can “own” a piece of data. You can transfer ownership and you can

borrow ownership, but their cannot be two owners without the use of smart pointers

that control access. Listing listing II.5 shows how ownership occurs, similar to C++’s

unique ptr <> ().

fn main() {

let x: i32 = 5;

let y: i32 = x; //This is ok , it copies 5. x and y own

two different versions of 5

// Strings initalize on the heap , therefore it is not

copied

let str1: String = String ::from("Hello");

let str2: String = str1; //This is a change of

ownership from str1 to str2.

println !("{}", str1); //This errors as str1 is now

invalid. It does not own "Hello" anymore

25

let str3: String = String ::from("Hello");

{

let str4: &String = &str3; //This borrows the

value for the duration of str4’s lifetime

println !("{}", str4);

} //str4’s lifetime ends here

println !("{}", str3); //str3 regained ownership so

this does not error

}

Listing II.6: Ownership

The idea of ownership also comes into play for threads. Rust uses traits called send

and sync to control data across threads. Send is a trait given to all data types that

can be safely transferred across threads. This ensures the user does not attempt to

transfer ownership of something that it cannot, such as a reference counted pointer.

The sync trait is given to all data types that are safe to borrow ownership across

threads. This once again ensures that the user does not attempt to borrow ownership

of something that it cannot (anything that could cause data races or memory issues).

Although this does not seem like many features for multi-threaded applications, these

features, plus smart pointers, are able to ensure that data cannot be accessed unsafely

from multiple threads.

Rust does have the concept of OOP, although it is handled differently than in

C++. Encapsulation and abstraction is handled similar to C++. Rust uses the

keyword struct to encapsulate data similar to C. However, Rust uses an additional

keyword impl to specify implementing a method for a struct. This is different than

in C++ where methods are implemented inside of the class. Rust implemented this

26

design to better separate data from functionality as Rust focuses on “Composition

over Inheritance”, a main focus of DOD.The state inside of a struct is defaulted to

private; any public state must use the keyword pub. This is opposite to C/C++

where data in a struct is defaulted to public, however the same as the C/C++ class

where data is defaulted to private.

Another key difference is that Rust does not use inheritance as a way of polymor-

phism, it uses traits. A trait is similar to an interface in C++ (a class that contains

a virtual method equal to zero). A trait defines a list of methods that must be imple-

mented for a struct. If the struct intends on implementing a trait, it must define all of

the methods in the trait. Once that is done, the struct can be used by anything that

requires the trait. One weakness that Rust traits have is that traits cannot currently

contain fields of data, which is why abstraction is not fully possible. listing II.7 shows

an example of implementing a trait for two separate structs and using polymorphism

to call the same function on two different structs, along with being able to have two

different structs in the same array.

trait Pet {

//This function must be overridden in any struct

implementing the trait

fn speak (&self)->String;

}

struct Dog {}

impl Pet for Dog {

fn speak (&self)->String {

return String ::from("Woof!")

}

27

}

struct Cat {}

impl Pet for Cat {

fn speak (&self)->String {

return String ::from("Meow!")

}

}

//This method accepts any object that has implemented the

Pet class

fn makeSpeak <T: Pet >(pet: T) {

println !(pet.speak ());

}

fn main() {

let dog: Dog = Dog {};

let cat: Cat = Cat {};

//Dog and Cat structs both implement the Pet class , so

they can be used in the function.

makeSpeak(dog);

makeSpeak(cat);

// Result:

28

//Woof!

//Meow!

}

Listing II.7: OOP in Rust

A final feature that Rust enforces is error handling. Many of the core features,

and standard library features enforce the use of error handling by wrapping results

from methods in an (Ok(T), Err(E)) enumerator. During the development phase,

developers may simply “unwrap” this enumerator and access the result directly, but

this could cause an unrecoverable error that will crash the program if an error oc-

curred. However, if used properly, this Enumerator forces the developer to write

error handling code to be able to retrieve the result of a method. Developers may

also return results of methods this way in their own code to ensure they continue to

use proper error handling. Listing listing II.8 provides examples of handling errors

with unwrap() during developing, and how to properly handle errors with a finished

product.

fn main() {

//If Test.txt is not found , this will cause the program to

crash as the developer choice to unwrap () the result

instead of error handling should only be used during

development & testing , not in final product

let file: File = File::open("Test.txt").unwrap ();

//The proper way to handle the possibility of getting an

error

let file = match File::open("Test.txt") {

29

Ok(f) => return f,

Err(error) => {/*code for how to handle the error */}

}

}

Listing II.8: Rust Error Handling

2.5 Entity-Component-System

The ECS architecture is a software architecture commonly found in game develop-

ment. It is currently being implemented in the well-known Unity game engine and has

been actively developed and implemented by various game developers. This architec-

ture focuses on the DOD paradigm, allowing for cache optimizations to reduce cache

misses [17], automated parallelization [18], and a greatly decoupled code-base [17, 19].

These optimizations not only increase the computational performance (allowing for

more work to be done per computational cycle), but also make implementing and

maintaining the code-base simple and quick compared to other architectures. This

is due to how the ECS architecture compartmentalizes Systems from the data, and

Systems from themselves. The ECS can be broken up into three main parts (i) entity,

(ii) component, and (iii) system along with a final important aspect, the execution

pattern. The execution pattern is not a part of the ECS architecture, but is im-

portant to consider with this architecture. As this architecture is most prevalent in

game engines, the below information will be discussed in reference to games and game

engines.

The ECS architecture focuses on data-oriented programming rather than object-

oriented programming. Instead of objects inheriting state and functionality from a

parent object (object-oriented programming), the object will be composed of data

30

(data-oriented programming) [20]. This is considered the “Component” in the ECS

architecture while the object is now the “Entity”. Finally, the methods for operating

on state becomes the “System”. Each will be explained in-depth below.

2.5.1 Entity

The entity is any game-object spawned in the world. The world is merely the

container of all entities. In the context of ECS, the world is a storage device that

holds all state of entities as explained below. A few examples of entities would be the

player, an enemy, or a bullet being fired from a weapon. An entity is analogous to

an instanced class in OOP with an important exception: the entities do not contain

data. An entity is only an index into a table containing the state (components) of

all entities. As explained in Section 2.4, this table is structured in a manner that

promotes cache optimization [21, 22]. The index value is generally equal to when it

was instantiated. If it was the first object instantiated, it would have an id, or index,

of zero.

2.5.2 Component

Components are generally individual pieces of state normally wrapped inside of a

struct. This “wrapping” allows for each type of state to have a unique id even if they

are both the same underlying data type such as a integer or double. As an example, a

velocity and acceleration state could both be doubles, but they need to have different

ids, so they are wrapped in a “velocity” and “acceleration” struct which provides

unique ids for each type of state. This wrapping also allows for multiple pieces of

state to be bundled as a single component, such as having a single position component

rather than individual components for x, y, and z Cartesian coordinates.

Any state that would normally be inside of a class, is removed from the class and

31

placed into individual components. Multiple pieces of state commonly used together

(such as the aforementioned Cartesian coordinates) may continue to be wrapped

together, though it is up to the developer [23]. This is a trade-off as some performance

is lost as the struct must indexed before accessing the individual (x, y, z) values. As

an example, if only one of the Cartesian Coordinates (x, y, or z) values are being

accessed, then the other two coordinates are also being brought into the cache (as all

three are wrapped in a struct) and wasting space.

As mentioned before, components are moved into arrays containing all instances of

that component [21, 20]. A particular entity’s location in that list is always equivalent

to its unique identifier. It is important to note that the length of each array is always

equal to the amount of entities, regardless of if every entity has that component or

not. This is a drawback of the ECS architecture compared to a pure DOD paradigm

as DOD only has a place in the array if the data exists. This design choice is necessary

so that an entity’s location in the list is the same across all components, thus simple to

find a particular entity’s component. This does hurt performance as null checks must

be made before accessing the data. However with the advanced branch prediction

that exists in most CPUs, this is mitigated [1].

2.5.3 System

Now that component storage is handled for each entity, the manipulation of these

components must be considered. This is done through systems. There are two parts

to this: (i) entities interacting with other entities and (ii) entities interacting with

themselves. Interactions between entities tend to be complex due to the compartmen-

talized nature of the architecture. No entity knows about another entity, no compo-

nent knows about another component, and no system knows about another system.

This compartmentalization is a large benefit when it comes to the maintainability of

32

the code-base as it allows for entities and systems to be added or removed without

affecting anything else in the code-base. However, this does mean that a complex

messaging system must be created to allow for communication between entities.

A system is a method that is automatically run on all entities that have the

required components. Systems are defined by specifying the components that are

needed as the inputs (anything being read or written), then defining the method that

operates on the components [23]. It is important to remember that the system only

has access to a single instance of an entity at any given time (e.g. entity zero does not

know anything about entity one by default). When a system begins execution, it is

provided an array for each of the requested components. This array is the same size as

the amount of entities that exist in the world. The system will attempt to execute over

each index in the array. If an index in one of the arrays is null (i.e. an entity doesn’t

have a required component), then it will move on to the next index. If all components

exist, the system will execute on the components. This process continues until all

entities with the necessary components have been operated on. As an example, if

a system needs access to a “Position” and “Velocity” component, the iterator will

provide, one entity at a time, all entities that contain the two components. The

system is able to operate on all entities efficiently during run-time because only the

necessary components are being brought into the cache (as seen in Table 3) resulting

in fewer cache misses and more time operating on the components.

2.5.4 Execution Pattern

The execution pattern, i.e. system loop, is not part of the ECS architecture, but

it important to consider for a real-time simulation. The system loop is responsible

for responding to user input, executing all systems, and rendering the screen. How-

ever, since most modern-day military simulators are not responsible for rendering the

33

screen, that can be replaced with sending User Datagram Protocol (UDP) packets to

the secondary system responsible for rendering.

A common misconception is that the system loop is simply a while loop that waits

for a boolean termination signal. In very simple implementations, this may be true,

however in most cases, it is not. When using the loop stated above, the amount of

time that passes per iteration is non-deterministic as it is dependent on how much

processing is being done that loop. If any of the systems are dependent on time

passing at a steady pace (e.g. sixty cycles/ frames a second), then time would speed

up and slow down depending on how much processing was being done [24]. [A real-life

example of this is Space Invaders: The enemies speeding up as more are eliminated

is a byproduct of having to perform less calculations, and render less entities, on the

screen. It was not intentional.]

The requirement of timing needing to pass at a steady pace makes the system

loop more complicated. There are many ways to implement a system loop, and it

is a decision that must be made early as it affects how the system logic is written.

Common system loops focus on setting a max frame rate that should be obtainable

on most systems, then each time step is an assumed value (1 second divided by

the number of frames). A disadvantage to this is that if the frame rate is set too

high, or the hardware is old, users may find that the in-simulation time slows down

(i.e. the simulation seems to be in slow motion) as the CPU cannot process the

amount of data fast enough such that the simulation appears to run in real-time [24].

Another implementation is that the system loop will actually calculate how much

time has passed since the last frame and feed that time to the update functions (or

the systems for an ECS architecture) [17]. The issue with this implementation is that

it complicates programming time-dependent systems as code must be robust enough

to calculate its result based on a certain time, instead of being able to assume that

34

the next frame is a specific increase from the last frame.

As an example, implementing functionality such as “pressing the left arrow moves

the character left” would be as simple as “If the left arrow is pressed, move left

by one unit” in the first system loop implementation. This is because you know

time will move the same every frame. If the system loop is implemented the second

way, it becomes more complicated to create the functionality. This is because a new

component that stores the previous loops current time must be created. Then in the

system, that time is subtracted from the actual current time, then multiplied by some

velocity.

There are many other implementations of system loops out there, each with its own

pros and cons. However, one thing that should almost always be done on a separate

thread is the rendering (or in this case, sending data packets to the renderer) as these

actions are extremely slow[25]. Delegating it to a different thread will free up more

computational time that can be devoted to user input and system execution.

2.6 Specs

Specs is an implementation of the ECS architecture continuously being developed

for the programming language Rust. Specs main use is for game development, though

the Application programming interface (API) has been developed such that it is

an option for other use-cases (such as real-time simulations). Specs closely follows

the architecture explained in section 2.5, but goes beyond what traditional ECS

architectures by providing additional storage devices with different use-cases, simple

-and safe- parallelism, and a with a high degree of flexibility.

Rather than only an array for storing components, Specs provides five different

storage components each optimized for different use as seen in Table 4. Two of the

most important storage types are “DenseVecStorage” and “HashmapStorage”. “Den-

35

seVecStorage” exists for components that exist in many entities where as “Hashmap-

Storage” is for components that will exist in few entities. “HashmapStorage” is not

inherently great for locality, but it provides quick access to components that are

rarely used. Since not all Storage types are vectors now, components are provided to

systems via an iterator. This iterator contains all requested state for an individual

entity. The system then executes the method on the components provided by the

iterator. The iterator automatically iterates to the next entity that has all necessary

components. This process continues until all entities with the necessary components

have been operated on. This iterating process can be slow if the system is requesting

many components, so it is best to keep the amount of components needed in a system

low.

Storage Type Description Optimized for
BTreeStorage Works with a BTreeMap no particular case
DenseVecStorage Uses a redirection table fairly often use components
HashMapStorage Uses a HashMap rare components
NullStorage Can flag entities doesn’t depend on rarity
VecStorage Uses a sparse Vec commonly used components

Table 4: Different Storage Types for Specs

Additionally, Specs includes a special data type called resources which is used

in systems. A resource is similar to a component, but instead of being specific to

a certain entity, it is common to all entities [23]. There are many use cases for

using a resources, one of which is to create a messaging system for handling events

and communication between entities, though it is not necessary to be used for such.

Resources are also highly useful for use in extremely large pieces of data so that

they don’t have to be passed around in memory. They can even be shared amongst

multiple entities. This is common with much of the necessary data for graphics.

As stated before, Specs provides simple and safe parallelism. On top of defining

what components will be used for a system, Specs also requires that the developer

36

specify how each component will be used. This is defined by specifying either read or

write access for each component (or resource). Specs then uses a scheduling algorithm

to look at each system in the simulation and is able to determine what systems can

be run in parallel based off of the read/write access of components for each system

[18, 26]. Systems are then dispatched to a thread pool based off of the schedule

created by the scheduling algorithm [23]. Specs also allows the developer to define

any dependencies between systems. If it is vital that one system executes before

another, it can be specified by the developer and the algorithm will adapt the schedule

accordingly.

During Execution, when a system is being run, a query is made to the underlying

storage for the requested data. In Specs, the underlying storage is a hashmap contain-

ing a storage type (specified in Table 4) for each component. The query returns the

requested data in the form of an iterator. The querying process is costly in terms of

performance due to the need of filtering out any entities that don’t have the required

pieces of state. Due to this, it is suggested that systems should contain the least

amount of components possible. This is because the iterator checks each entity for

the required components. If the system is requesting 100 components, it must verify

all 100 components exist for the specific entity before providing the entity via the

iterator. If the system contains that many components, it can probably be refactored

into multiple smaller systems.

Consider the three systems defined in Table 5. It can be seen that system two and

three both rely on reading component two, but write to different components. This

means that they can be run in parallel. However both system two and three conflict

with system one as system one is writing to component 2. The scheduling algorithm

would schedule system one to execute on thread one; directly after finishing, system

two and three would execute in parallel on two separate threads as there are no data

37

races between the two.

Component1 Component2 Component3 Component4
System1 READ WRITE WRITE NULL
System2 NULL READ WRITE NULL
System3 NULL READ NULL WRITE

Table 5: System Scheduling Example

A final important benefit that Specs has in the area of real-time simulations is

its high degree of flexibility with some OOP properties. An important difference

between games and real-time simulators are multiple levels of fidelity as explained

in section 2.3 and section 2.4. Specs allows for polymorphic structs to be used as

components. Since these components may be of different sizes in memory depending

on how they were instantiated, the component list actually holds references to the

individual components instead of holding the actual components as normally done.

Any system that uses this component is going to be inherently slower due to the

indirection in accessing the structs, but is a necessary trade-off to be able to handle

these multiple levels of fidelity. It is important to note that this feature should be

used sparingly as it will degrade performance.

38

III. Methodology

3.1 System Under Study

The system under study for this experimentation is the software paradigm and

architecture used to organize and execute a hypothetical real-time simulator. The

experimentation considered the two software paradigms: (i) Object-Oriented Pro-

gramming (OOP) and (ii) Data-Oriented Design (DOD). Two separate software

architectures were developed, each using one of the two different paradigms. The

DOD paradigm was developed using the Entity-Component-System (ECS) architec-

ture while the OOP architecture consisted of a simple architecture focusing on the

concepts of OOP. These two paradigms will be referred to as OOP / DOD architec-

tures from here on out.

3.2 Variables

This experimentation focused on the performance impact that different variables

had on the two separate architectures. This was done by measuring the only response

variable, completion time, of each architecture while changing a variables found in

Table 6. Completion time is measured as the time it takes to execute all systems on

all entities once the world has been set up. It does not include the time it takes to

set up the world.

The variables important to the experimentation can be seen in Table 6. For

each experiment, each variable is in one of three categories. The first category,

response variable, is reserved only for completion time. This is the output vari-

able that changes, and is measured, as the independent variable is iterated over.

Completion time values are used for determining the performance of each architec-

ture.

39

The independent variable is the next category and is reserved for the variable(s)

that the experiment is measuring the performance impact on. This variable has a

set list of values that is iterated over during the experiment. At each iteration, the

performance of each architecture is measured and used for data analysis in Chapter IV.

The final category are the factors that are held constant for the duration of each

experiment. Any variable not in either of the first two categories are placed in this

category to ensure they do not affect the experiment in any manner. Each experiment

section below will provide a table of all variables and what category they are in.

Variable Entity Count Entity Size Component Count Thread Count System Count
Unit Entities Bytes Components Threads Systems

Table 6: Variables used in all experiments

3.3 Assumptions

As stated in Chapter I, there were three main assumptions: (i) the methods that

operate on the data execute exactly the same for both architectures, (ii) the compiler

optimization level is set to as low as possible, and (iii) both architectures and all

experiments are ran on the same hardware.

The first assumption was that the methods that operate on the state of entities in

the experimentation were designed to do the same operation for both architectures.

Additionally, these operations were resource-intensive, but overall meaningless. The

focus was for the methods to pull the necessary state into the cache and do enough

calculations to prevent the compiler from optimizing the memory requests away. The

method for these experiments merely request a specific amount of state from the

entity and sums the requested state together. It then stores the value in a separate

piece of state from the entity. The method: comp0+ = comp1 + ...+ compN

In an attempt to further enforce that memory requests were not optimized away,

40

the next assumption is that the compiler optimization of the code was forcefully

lowered to ensure methods were not optimized away. This also assumes that by

lowering the optimization level, the compiler will not change the underlying structure

of the code or how either the DOD or OOP architectures are executed.

The final assumption is that both architectures and all experiments run on the

same hardware. This hardware is a 2018 Macbook Pro with a 2.3Ghz Quad-Core Intel

i5 processor (MR9Q2LL/A). All results are based off of this hardware. Numerical

results will vary on different hardware due to differences in the size and levels of

cache in the Central Processing Unit (CPU) and Random Access Memory (RAM).

Results based on thread count may vary more greatly as a CPU with 8 cores and

16 threads will perform different than the aforementioned Macbook Pro with 4 cores

and 8 threads.

3.4 Statistical Analysis

Each of the six experiments were designed to test whether a specific variable

impacts the performance of the OOP or DOD architecture to a greater extent by

measuring the completion time of each. A null and alternative hypothesis was made

for each experiment with the goal of failing to reject the null hypothesis. A p-value

was calculated using a Student’s t-test, which is used to affirm or reject the alternative

hypothesis. Affirming or rejecting the alternative hypothesis gives the ability to reject

the null hypothesis (if the alternative was affirmed), or fail to reject the null hypothesis

(if the alternative was rejected). Failing to reject the null hypothesis does not mean

it is affirmed, only that there is strong statistical evidence that the null hypothesis

may be true.

The paired Student’s t-test was selected for use in this experimentation as it’s

purpose is to determine the probability that two sample sets are the same with re-

41

spect to a single variable tested, which closely matches the goal of each experiment.

The goal of each experiment was to determine if OOP and DOD (the two sample

sets) completion times are affected similarly as you change a specific variable. To

comply with the criteria of the Student’s t-test, while still answering the hypothesis,

the specific single variable used in the Student’s t-test is the paired completion time

measurements between the two architectures. It was necessary to use the paired Stu-

dent’s t-test as there is a direct relationship between each specific data point between

the two architectures (i.e. removing one of the points in the OOP measurement,

leaves a dangling point in the corresponding DOD measurement).

The general steps to calculating a paired Student’s t-test is as follows:

1. Calculate the difference (di = yi − xi) for each pair

2. Calculate the mean difference (d̄)

3. Calculate the standard error (SE(d̄) = sd/
√
n) where sd is standard deviation

and n is the number of pairs

4. Calculate the t-statistic (T = d̄/SE(d̄))

5. Index the t-distribution table to get p-value

The p-value returned from the Student’s t-test is a measurement of probability

that the two data-sources are the same (i.e. if the p-value is .4, there is a 40%

probability that the two data sources are similar). Typically a p-value less than

or equal to 0.05 is considered statistically strong evidence. The experiments and

hypotheses have been set up such that a p-value less than or equal to 0.05 indicates

strong evidence to reject the null hypothesis while a p-value greater than 0.05 indicates

weak evidence and fail to reject the null hypothesis.

42

3.5 Experimental Design

A detailed explanation of each experiment can be found in the below subsections,

however, the purpose of each experiment can be seen in the list below:

To test the performance impact of:

• Experiment 1: Entity Size

• Experiment 2: Entity Count

• Experiment 3: Total Memory Size

• Experiment 4: Thread and System Count

• Experiment 5: Thread Count

• Experiment 6: Component Count

Each experiment consisted of multiple tests: each test executed the same code

base, but with a different value for the independent variable as can be seen in tables

provided in the subsection of each experiment. For each test, there was a warm-up

period of 5 seconds to flush the cache and/or load the cache. This allowed the test to

measure the performance during normal execution instead of measuring the start-up

performance. It was arbitrarily selected that 100 samples would be taken for each

data point. This decision was made to ensure each test to provide enough data to

perform a reliable Student’s t-test. Each sample measured the completion time (µs)

to execute all systems on all entities. From there, outliers were removed and the

remaining samples were averaged to produce a single data point used in each graph.

These points were used to determine the change in completion time and calculate

the p-value using the Student’s t-test as explained in Section 3.4. The averaged

data points can be found in the results of each experiment while the code for each

experiment can be found in Appendix B through Appendix G.

43

Each Experiment was split into two distinct parts: (i) OOP architecture bench-

mark and (ii) DOD architecture benchmark. An important design choice for each

experiment was to ensure the two benchmarks did not run in parallel. This was to

ensure that one did not hog CPU resources and/or that there was no interference

between the two. It was arbitrarily selected that the OOP architecture was run first

for each experiment.

There are three phases in each experiment that occurs during the benchmark

process as can be seen in Figure 3 and Figure 4. The first phase, which is similar in

both architectures, is to configure the benchmark. This step sets important variables

for benchmark execution and analysis. The variables important to this experiment

include: warm-up time, sample size, re-sample size, and noise threshold. Warm-up

time was used to set how long the benchmark should run before taking measurements.

This allows the cache to be flushed of any old / stale values from previous experiments

and gives a more realistic measurement of performance. Sample size determines how

many measurements to take before performing statistical analysis on the data and

providing a result. Re-sample size is set to determine how many re-samples are taken

for each sample. Finally, the noise threshold is set to determine what, if any, values

are noise. If the noise threshold is set to X%, then any value outside of the X%

average is considered noise.

The second phase, setting up the data for experiment execution, is different for

each of the two architectures and will be explained in Section 3.5.1 and Section 3.5.2.

The final phase (phase three), also similar in both architectures, is the benchmark,

analysis, and results display phase. During this phase, a lambda with the method to

be measured (in this case, the execute function that runs all systems on all entities)

is passed to Criterion. Criterion then executes this lambda without measurement

for the duration of the warm-up time, after which it begins taking samples based off

44

sample size and re-sample size. Once all samples have been taken, Criterion then

performs statistical analysis as described in Appendix A and provides the results to

the user. Phase two and three execute for every value of the independent value. As

an example, should the independent variable hold values of [128, 256, 512, 1024], then

phase two and three will execute four times, once for each value.

3.5.1 OOP Benchmark Design

Phase two for the OOP benchmark consists of two steps as seen in Figure 3. The

first step is to instantiate the objects (entities) that will be present in the architecture.

The amount of objects instantiated varies depending on the experiment. As this is the

OOP benchmark, the objects were created with all of the state inside of the object,

along with the methods that are to be ran on the objects. The amount of state and

methods inside of each object vary depending on the experiment.

The second step is initializing the storage which holds the objects instantiated in

step one. This storage is responsible for executing the methods on each object. The

storage holds entities in multiple groups depending on how many threads are available

to the architecture. As an example, if there are four threads available to the system,

then there are four groups, which have the instantiated objects evenly distributed

amongst them. This allows for simple parallel execution of all methods as long as

there are no data races, which is ensured by design. This storage has a method called

execute() which executes all methods on all objects in the storage. This is what is

passed to the lambda described in phase three for benchmarking and analysis.

3.5.2 DOD Benchmark Design

Phase two for the DOD benchmark consists of five separate steps as seen in Fig-

ure 4. The first step is initializing the storage. This is done first as entities no longer

45

Figure 3: Flow Chart of The OOP Benchmark

hold state and methods. Therefore, to be able to instantiate entities, the storage for

each piece of state must already exist. The storage is a hashmap of key-value pairs

consisting of the type id and vectors for each registered components. This leads to

the second step, which is registering components. To be able to create an entity with

components, the storage for the component must exist. This is done by registering

the component with the storage. This causes the storage to create a key value pair

with an empty vector for each component registered.

The next step is instantiating all entities with their required components. During

this step, every entity that is instantiated increases the size of all component vectors

by one, regardless of if the entity has the component. For any components that the

entity does have, they are added to the respective component vectors at the entities

index.

The final step is to initialize the dispatcher and register systems with the dis-

patcher. The dispatcher is responsible for executing any registered systems over the

storage. Unlike the OOP design, the dispatcher is what executes systems (methods)

in parallel rather than the storage itself. The dispatcher is initialized with no sys-

46

tems, however the final step is to register systems with the dispatcher. As described in

Chapter II, a system consists of a method that will be executed across all entities that

have a particular set of components. When systems are registered, the dispatcher is

responsible for detecting any data conflicts based on the requested components, and

schedule the systems in an optimal way such that no state is in conflict (i.e. no state

is being written to simultaneously, or no state is being read while also being written).

Both the dispatcher and the storage are provided to the lambda described in phase

three for benchmarking and analysis. The dispatcher has a method called execute

which takes a reference to the storage. This method executes all systems over the

data inside of the storage.

Figure 4: Flow Chart of The DOD Benchmark

3.5.3 Experiment One

The objective of this experiment was to compare the performance impact the size

of entities has on the completion time of the OOP and DOD architectures. The fol-

lowing null and alternative hypotheses were made:

H0 : completion time(OOP) ≤ completion time(DOD)

H1 : completion time(OOP) > completion time(DOD)

47

The two equations state that the null hypothesis is “completion time of the OOP

architecture is less than or equal to that of the DOD architecture as entity size in-

creases” i.e. the OOP architecture outperforms (or is equal to) the DOD architecture.

The alternative hypothesis is “completion time of the OOP architecture is greater

than that of the DOD architecture as entity size increases” i.e. the DOD architecture

outperforms the OOP architecture.

This hypothesis was made due to the issues with cache performance described in

section 2.2. For the OOP architecture, the entire entity is brought into the CPU’s

cache regardless of what state is actually used where as for DOD, only the required

state is brought into the CPU’s cache. Due to this, the cache should fill faster for the

OOP architecture resulting in more cache misses compared to the DOD architecture.

Table 7 presents a list of all variables for this experiment. It should be noted that

the independent variable, entity size, iterates through the following values: [32, 64,

128, 256, 512, 1024, 2048] bytes. Completion time was recorded as the average time

it took to execute all systems on all entities once.

Response Variable Factors held Constant Independent Variable
name unit name count unit name unit
completion time µs entity count 1000 entities entity size bytes

component count 2 components
thread count 1 threads
system count 1 systems

Table 7: Variables for Experiment One

3.5.4 Experiment Two

The objective of this experiment was to compare the performance impact the

amount of entities has on the completion time of the OOP and DOD architectures.

The following null and alternative Hypotheses were made:

48

H0 : completion time(OOP) ≤ completion time(DOD)

H1 : completion time(OOP) > completion time(DOD)

The two equations state that the null hypothesis is “completion time of the OOP

architecture is less than or equal to that of the DOD architecture as entity count

increases” i.e. the OOP architecture outperforms (or is equal to) the DOD archi-

tecture. The alternative hypothesis is “completion time of the OOP architecture is

greater than that of the DOD architecture as entity count increases” i.e. the DOD

architecture outperforms the OOP architecture.

This hypothesis was made as it was theorized that as more entities are introduced

into the simulation, more cache misses would occur due to the same issues presented in

experiment 1. The cache misses would occur more frequently in the OOP architecture

than the DOD architecture due to how the two architectures organize data in memory.

Table 8 presents a list of all variables for this experiment. It should be noted

that the independent variable, entity count, iterates through the following values:

[10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 1000] entities.

Completion time was recorded as the average time it took to execute all systems on

all entities once.

Response Variable Factors held Constant Independent Variable
name unit name count unit name unit
completion time µs entity size 256 bytes entity count entities

component count 2 components
thread count 1 threads
system count 1 systems

Table 8: Variables for Experiment Two

49

3.5.5 Experiment Three

The objective of this experiment was to provide additional insight into the impact

that entity size and entity count has on the OOP and DOD architectures by iterating

both and viewing the effects based on the total amount of memory used in cache.

It was thought that both entity count and entity size would increase the amount

of data brought into the CPU’s cache for the OOP architecture. However, it was

thought that only entity count would increase the amount of data brought into the

CPU’s cache for the DOD architecture. This was expected to result in an increased

cache miss rate once the total amount of data (entity size∗entity count) exceeded the

CPU’s cache size. Since the OOP architecture would fill cache faster than the DOD

architecture, it was theorized that the completion time would increase at different

rates.

Table 9 presents a list of all variables for this experiment. It should be noted

that the independent variable, entity size, iterates through the following values: [32,

64, 128, 256, 512, 1024, 2048] bytes while entity count iterates through the following

values: [10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]

entities. Completion time was recorded as the average time it took to execute all

systems on all entities once.

Response Variable Factors held Constant Independent Variable
name unit name count unit name unit
completion time µs thread count 1 threads entity count entities

system count 1 systems entity size bytes
component count 2 components

Table 9: Variables for Experiment Three

50

3.5.6 Experiment Four

The objective of this experiment was to compare the performance impact the

amount of threads and systems has on the completion time of the OOP and DOD

architectures. The following null and alternative Hypotheses were made:

H0 : completion time(OOP) ≤ completion time(DOD)

H1 : completion time(OOP) > completion time(DOD)

The two equations state that the null hypothesis is “completion time of the OOP

architecture is less than or equal to that of the DOD architecture as thread and system

count increases” i.e. the OOP architecture outperforms (or is equal to) the DOD

architecture. The alternative hypothesis is “completion time of the OOP architecture

is greater than that of the DOD architecture as thread and system count” i.e. the

DOD architecture outperforms the OOP architecture. Opposite of all experiments

before (as described in Section 3.5), the expected outcome was that the null hypothesis

be affirmed.

This hypothesis was made due to the fact that the execution pattern for executing

on multiple threads does not change between the OOP and DOD architectures. Both

dispatch systems to threads to execute simultaneously. The only difference is the ease

(for the user) in which it is to dispatch the systems to threads in the thread-pool.

Table 10 presents a list of all variables for this experiment. It should be noted

that the independent variables, system count and thread count, iterate through the

following values: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] threads / systems. Both

variables always equal each other. Completion time was recorded as the average time

it took to execute all systems on all entities once.

51

Response Variable Factors held Constant Independent Variable
name unit name count unit name unit
completion time µs entity count 1000 entities thread count threads

entity size 256 bytes system count systems
component count 2 components

Table 10: Variables for Experiment Four

3.5.7 Experiment Five

The objective of this experiment was to compare the performance impact the

amount of threads has on the completion time of the OOP and DOD architectures.

The following null and alternative Hypotheses were made:

H0 : completion time(OOP) ≤ completion time(DOD)

H1 : completion time(OOP) > completion time(DOD)

The two equations state that the null hypothesis is “completion time of the OOP

architecture is less than or equal to that of the DOD architecture as thread count

increases” i.e. the OOP architecture outperforms (or is equal to) the DOD archi-

tecture. The alternative hypothesis is “completion time of the OOP architecture is

greater than that of the DOD architecture as thread count increases” i.e. the DOD

architecture outperforms the OOP architecture. Opposite of all experiments before

Experiment four (as describe in Section 3.5), the expected outcome was that the null

hypothesis be affirmed.

This hypothesis was made due to the fact that the execution pattern for executing

on multiple threads does not change between the OOP and DOD architectures. Both

dispatch systems to threads to execute simultaneously. The only difference is the ease

(for the user) in which it is to dispatch the systems to threads in the thread-pool.

It was expected however, that as you add available threads to the architectures, the

52

completion time would decrease until the thread count surpasses the CPU thread

count. This was expected as once it surpasses that point, no more benefit can be seen

as anything over the thread count of the CPU is no longer truly running in parallel.

You are only adding additional workload for managing the thread-pool.

Table 11 presents a list of all variables for this experiment. It should be noted

that the independent variable, thread count, iterate through the following values: [1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] threads. Completion time was recorded

as the average time it took to execute all systems on all entities once.

Response Variable Factors held Constant Independent Variable
name unit name count unit name unit
completion time µs entity size 256 bytes thread count threads

component count 2 components
entity count 1000 entities
system count 15 systems

Table 11: Variables for Experiment Five

3.5.8 Experiment Six

The objective of this experiment was to compare the performance impact the

amount of components requested for a system being executed (i.e. a system needs

four components to execute. Any entity that has all four requested components will

have that system executed on it) has on the completion time of the OOP and DOD

architectures. The following null and alternative Hypotheses:

H0 : completion time(OOP) ≤ completion time(DOD)

H1 : completion time(OOP) > completion time(DOD)

The two equations state that the null hypothesis is “completion time of the OOP

architecture is less than or equal to that of the DOD architecture as component

53

count decreases” i.e. the OOP architecture outperforms (or is equal to) the DOD

architecture. The alternative hypothesis is “completion time of the OOP architecture

is greater than that of the DOD architecture as component count decreases” i.e. the

DOD architecture outperforms the OOP architecture.

This hypothesis was made due to the fact that the DOD architecture has more

granular control of what state is brought into the cache where as the OOP architecture

brings the entire object into cache regardless of what state is used due to how state

is organized in memory. As the method uses less state, less state will be brought into

the cache for the DOD architecture resulting in less frequent cache misses and better

performance (lower completion time).

Table 12 presents a list of all variables for this experiment. It should be noted that

the independent variable, component count, iterates through the following values:

[16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2] components. Completion time was

recorded as the average time it took to execute all systems on all entities once.

Response Variable Factors held Constant Independent Variable
name unit name count unit name unit
completion time µs entity size 256 bytes component count components

thread count 1 threads
entity count 1000 entities
system count 1 systems

Table 12: Variables for Experiment Six

3.6 Data Logging

Data logging was performed by the criterion crate (Rust’s version of a user-

developed library). Criterion is a statistics-driven micro-benching tool written in

Rust. As a micro-bench, it is able to test small parts of a code base, i.e. single

method calls. This is used to benchmark the method call to execute all systems on

all entities.

54

It uses statistical analysis to determine the average time it takes to execute a piece

of code over a predetermined amount of iterations. Additionally, it has the capability

to detect any outliers and remove them from the results. Criterion provides the

fastest, average, and slowest execution times for each benchmark, which will be used

for providing results in chapter IV. An explanation of the process that Criterion uses

can be found in Appendix A.

3.7 Summary

In summary, six separate experiments were run over five variables. The goal of

these experiments was to determine the performance impact that different variations

and combinations of the five variables had on the performance of the two software

architectures. These experiments serve to provide an accurate answer as to which of

the two paradigms provided better, more reliable performance in regards to real-time

simulations by emulating the workflow of a real-time simulator. All data is calculated

and recorded via the criterion crate, a statistics driven micro-benching tool which

accurately finds the average run-time of a piece of code.

55

IV. Results and Analysis

4.1 Overview

This chapter describes the results obtained from the the experiments described in

chapter III. Each section discusses a single experiment, first providing an overview of

the experiment, then examining the performance of both Object-Oriented Program-

ming (OOP) and Data-Oriented Design (DOD) architectures. The performance of

the two software architectures are then compared to determine which is most tolerant

to the independent variable(s). Finally, an explanation of the results is described to

elaborate on the performance differences between the two software systems.

4.2 Experiment 1

The objective of this experiment was to determine if the size of entities has different

effects on the performance of the OOP and DOD architectures. In this experiment,

the independent variable, entity size, was iterated through the following values: [32,

64, 128, 256, 512, 1024, 2048] bytes. Refer to Table 7 for all other variable values.

The results for this experiment contain 100 data points per independent variable per

software architecture. For Figure 5, of the 100 points, outliers were removed and

the remaining were averaged to provide a single performance point. The averaged

points are provided in Table 13 while the code used in this experiment can be found

in Appendix B.

To determine if there is enough statistical evidence to show that entity size effects

the performance of the DOD and OOP architectures differently, a paired Student’s

t-test comparing the completion time between the two architectures was performed.

The data used for the Student’s t-test can be found in the “Time” columns of Table 13.

After performing the Student’s t-test as described in Section 3.4, the resulting p-value

56

was 0.015. A p-value of 0.015 is enough statistical evidence to reject the null hypoth-

esis and fail to reject the alternative hypothesis. This means that there is enough

evidence to suggest that entity count does effect the two architectures differently.

Figure 5: Graphical Results for Experiment One

Figure 5 shows the completion time (µs) of the OOP and DOD architectures on

the left and the percent difference in completion time between the two architectures

on the right. It can be seen that as entity size increased, so did the completion time

of the OOP architecture. Even though no additional work was being completed by

the method, the completion time increased from 36.180µs to 154.77µs, an increase of

327.78%.

The DOD architecture saw no noticeable increase in completion time while in-

creasing the size of the entity. completion time ranged from 21.017µs to 21.194µs,

an difference of 0.8%. This data not only supports the Student’s t-test (on the inter-

polated data) in showing that the two architectures are effected differently, but that

57

it effects the OOP architecture to a greater extent, greatly reducing performance

compared to the DOD architecture.

The largest difference in performance between the two architectures was 635%,

with a completion time of 154.77µs for the OOP architecture and a completion time

of 27.49µs for the DOD architecture. It is important to note that the largest completion time’s,

at 8,192 and 16,384 bits, are uncharacteristically large for a real-time simulator and

would not normally be seen in one. However, there is still a performance difference

of over 100% between the two architectures at lower, more realistic, entity sizes.

From the data above, There is significant statistical evidence that entity size has

a role in determining the performance of the OOP architecture where as it does not for

the DOD architecture. An expected reason for this result is that the OOP paradigm

stores data per entity as shown in Table 1: all state in an entity is stored directly next

to each other in memory. When the Central Processing Unit (CPU) requests a piece

of state from the entity, the memory model loads the entire block of memory that

the state is located in, into the CPU’s cache. This generally means the entire entity,

along with other data around it, is brought into the lowest level cache. If executing

the same method over many entities, a lot of space in the CPU’s cache is wasted on

data that is never used by the processor. This results in many cache misses, causing

the CPU to sit idle, or context switch, while it waits for the memory model to provide

the required data.

The DOD paradigm stores data per state as shown in Table 2: all state of a specific

kind are stored directly next to each other in memory. When the CPU requests a

piece of state, the memory model will once again load the entire block of memory that

the state is located in, into the CPU’s cache. However, this means the particular state

for all entities is now present in the CPU’s cache. If executing the same method over

many entities, no space is wasted as the state necessary for computation is already

58

present for all entities. The CPU is able to execute the method over more entities

before having a cache miss due to missing data and sitting idle while the memory

model loads the required data. This properly explains why the performance of the

OOP software system slows while the DOD software system remains nearly constant

OOP DOD
size

(bytes)
% Change Between

Measurements
Time (µs) Time (µs)

% Change Between
Measurements

% Difference

32 N/A 36.392 21.096 N/A 72.51
64 106.24 38.664 21.194 100.46 82.43

128 111.84 43.242 21.052 99.33 105.41
256 100.58 43.494 21.086 100.16 106.27
512 112.72 49.027 21.017 99.67 133.27

1024 147.20 72.171 21.065 100.23 242.61
2048 214.45 154.77 21.053 99.94 635.14

Table 13: Numerical Results for Experiment One

4.3 Experiment 2

The objective of this experiment was to determine if the amount of entities has

different effects on the performance of the OOP and DOD architectures. In this ex-

periment, the independent variable, entity count, was iterated through the following

values: [10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]

entities. Refer to Table 8 for all other variable values. The results of this experiment

contain 100 data points per independent variable per software architecture. For Fig-

ure 6, of the 100 points, outliers were removed and the remaining were averaged to

provide a single performance point. The averaged points are provided in Table 14

while the code used in this experiment can be found in Appendix C.

To determine if there is enough statistical evidence to show that the entity count

effects the performance of the DOD and OOP architectures differently, a paired Stu-

dent’s t-test comparing the completion time between the two architectures was per-

formed. The data used for the Student’s t-test can be found in Table 14. After

59

performing the Student’s t-test as described in Section 3.4, the resulting p-value was

0.00058. A p-value of 0.00058 is enough statistical evidence to reject the null hypoth-

esis and fail to reject the alternative hypothesis. This means that there is enough

evidence to suggest that entity count does effect the two architectures differently.

Figure 6: Graphical Results for Experiment Two

Figure 6 shows the completion time (µs) of the OOP and DOD software architec-

tures on the left and the percent difference between the two architectures on the right.

From Figure 6, it can be seen that for both OOP and DOD architectures, increasing

the entity count did increase the completion time in a linear fashion as expected. Per

the data, The OOP architecture had an increase in completion time of 4.2µs for 10

entities to a completion time of 72.7µs for 10,000 entities resulting in rate of roughly

7.86µs per 1,000 entities.

For the DOD architecture, there was an increase in completion time of 3.9µs for

10 entities to a completion time of 37.2µs for 10,000 entities resulting in a rate of

roughly 3.33µs per 1,000 entities. This data not only supports the Student’s t-test

60

in showing that the two architectures are effected differently, but that it effects the

OOP architecture to a greater extent, greatly reducing the performance compared to

the DOD architecture. The average rate of increase differs by 135.9% between the

two software architectures. At low entity count, the architectures performance is very

similar: 4.2µs for the OOP architecture and 3.9µs for DOD architecture, a difference

of only 7.34%, however it does not hold.

Due to the difference in the rate of increase in completion time, at 10,000 entities,

that difference rose to 122.32%: 82.7µs for the OOP architecture and 37.2µs for

the DOD architecture. The growth rate of the OOP architecture did not match the

hypothesis, as it was expected to be greater than a linear rate of increase, however it

did still hold true that the DOD architecture outperformed the OOP architecture as

the number of entities increased. It is important to note that a low entity count is

unusual for a simulation and a larger entity count would more accurately represent a

simulation.

This difference in completion time rate can be explained with the same information

provided in Section 4.2. As the amount of entities grow, there is a larger amount cache

misses in the OOP software system due to the inefficient storage of data; the effect

that entity size has on the performance of the architecture is multiplied due to having

many entities. The more entities, the greater the amount of cache misses; if a cache

miss occurs every 100 entities, then 1,000 entities would result in 10 cache misses

while 10,000 entities would result in 100 cache misses. Each cache miss affects the

performance of the architecture. This is due to the unused data in each entity that

is brought into the CPU’s cache. It causes the cache to fill more often than it’s DOD

counterpart. DOD experiences an increase in cache misses also, as only so much data

can fit in the CPU’s cache at any given time. However, the rate of cache misses

is much lower due to only the necessary state being brought into cache, wasting no

61

space is cache.

Entity count 10 50 100 500 1000 2000 3000
OOP Time (µs) 4.218 4.985 5.401 7.852 11.302 18.866 27.511
DOD Time (µs) 3.930 4.260 4.962 6.332 7.757 10.755 13.878

% Difference 7.34 17.03 8.85 24.01 45.70 75.42 98.23
Entity count 4000 5000 6000 7000 8000 9000 10000

OOP Time (µs) 35.278 43.029 50.604 58.026 65.918 73.62 82.703
DOD Time (µs) 17.235 20.416 24.289 27.231 30.575 34.101 37.200

% Difference 104.69 110.76 108.34 113.09 115.59 115.89 122.32

Table 14: Numerical Results for Experiment Two

4.4 Experiment 3

The objective of this experiment provide additional insight into the impact that

entity size and entity count has on the OOP and DOD architectures. In this experi-

ment, the independent variables, entity count and entity size, were iterated through

the following values: [10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,

9000, 10000] entities and [32, 64, 128, 256, 512, 1024, 2048] bytes respectively. Refer

to Table 9 for all other variable values. The results for this experiment contain 100

data points per independent variable per software system. Of the 100 points, outliers

are removed and the remaining are averaged to provide a single performance point

for each. The averaged points are provided in Table 15 and Table 16 while, the code

used for this experiment can be found in Appendix D.

Figure 7 and Figure 8 show two scatter plots of the different completion times

for each total memory size value. the total memory size value was created by mul-

tiplying entity count and entity size together. That value is then divided by 8,000

bits, changing the unit from bits to kilobytes. Figure 7 shows the performance re-

sults for all points where as Figure 8 zooms into the first 5000KB. It can be seen

that the DOD architecture consistently outperforms the OOP architecture when

total memory size becomes greater than 5000KB. The peak difference between the

62

Figure 7: Graphical Results for Experiment Three: Full Scatter-plot of
total memory size

two is when total memory size reaches 20.48MB: OOP’s performance is 301.71µs

where as DOD’s performance is 38µs, a performance difference of 693.84%.

Figure 10, Figure 9, Figure 11 and Figure 12 break down the above results to show

how each individual component of total memory size (entity count and entity size)

effect the performance of the OOP and DOD architectures. Figure 10 and Fig-

ure 9 show that entity size greatly effects the performance of the OOP system as

entity count increases, but does not effect the performance of the DOD system. Ex-

periment 2 originally showed that increasing entity count increased completion time

by roughly 3.3µs per 1,000 entities for the DOD system and by roughly 6.1µs per

1,000 entities for the OOP system.

The data from this experiment verifies this result for the DOD paradigm and

expands the results to show that this is true regardless the size of the entity. This can

63

Figure 8: Graphical Results for Experiment Three: Partial Scatter-plot of
total memory size

be seen by the fact that all entity sizes in Figure 10 have extremely similar slopes for

the rate of increase in completion time: roughly 3.3µs per 1,000 entities with little

deviation. The same can not be said for the OOP paradigm. It can be seen from

Figure 9 that as the size of the entity increases, the slope at which completion time

increases grows larger, and eventually becomes non linear at around 4096 bit sized

entity.

These results can best be explained by the fact that the CPU’s cache line is not

being filled until after 2048 bits. This is also backed by the fact that the non-linear

increase in completion time occurs at different entity count marks depending on the

size of the entity. As an example, at 4096 bit size entities, the non-linear growth rate

starts around 5000 entities. However, for the 8192 bit size entities, this non-linear

growth rate starts between 2000 and 3000 entities. At the aforementioned points at

64

Figure 9: Graphical Results for Experiment Three: OOP entity size effects

which the growth rate becomes non-linear, it is hypothesized that cache misses begin

to occur at an increased rate, causing the completion time to increase at a non-linear

rate. It should be noted, even at it’s lowest rate, the OOP architecture has a rate

nearly 2x as large as the DOD architecture.

When comparing both the OOP and DOD architectures, the largest performance

difference for the DOD architecture was only 7.1%; this was for the two sizes of 1,024

bits and 16,384 bit entity sizes, with corresponding values of 23.80µs and 25.51µs

respectively. For the OOP architecture, the largest performance difference was 355%

with corresponding values of 66.29µs and 301.71µs. These results show that the DOD

architecture is more stable as entity count increases, regardless of it’s other variable

values.

65

Figure 10: Graphical Results for Experiment Three: DOD entity size effects

Figure 11 and Figure 12 confirm one of the observations made in Experiment 2:

that entity count effects the performance of the DOD architecture to a lesser extent

than it effects the performance of the OOP architecture. This can be seen by the

fact that as entity size increases in Figure 12, the completion time remains constant,

regardless of the entity count. Only entity count affects the performance. However,

Figure 11 shows that the completion time does not remain constant as entity size

increases. The rate at which completion time increases depends on the entity count.

As there is a larger entity count, not only is the baseline completion time higher,

but the the rate at which completion time increases is greater.

The largest performance difference in the OOP architecture can be seen when

there are 10,000 entities in the simulation. The performance differed from 66.292µs to

66

Figure 11: Graphical Results for Experiment Three: OOP entity count effects

301.71µs while entity size was increased. That is a gain of 355% in completion time

by only increasing the amount of unused state in an entity. For the DOD architec-

ture, the greatest performance difference was at 6,000 entities in the simulation. The

performance differed from 23.799µs to 25.51µs while entity size was increased. That

is only a gain of 7%. As can be seen, there is a vast difference between the two archi-

tectures, 355% for the OOP architecture compared to 7% for the DOD architecture.

The four graphs above show that entity count and entity size work together to

determine the performance of the OOP architecture due to the fact that the entire

entity must be brought into the cache, wasting space and resulting in additional cache

misses. However, the same does not hold true for the DOD architecture. The four

graphs above show that only entity count is used to determine the performance due

67

Figure 12: Graphical Results for Experiment Three: DOD entity count effects

to the fact that only the necessary state is brought into the cache. This results in

less cache misses.

The data above shows that completion time would increase as total memory size

increased, but that the OOP architecture’s completion time would increase at a rate

much greater than the DOD architecture was confirmed. The three aforementioned

figures show that the DOD architecture consistently outperformed the OOP archi-

tecture as total memory size increased.

68

Performance of OOP System (µs) while varying both the entity count and entity size
entity count 10 50 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

32 4.309 5.026 5.370 7.802 10.809 16.987 23.112 30.285 35.459 42.319 49.082 54.139 61.898 66.292
64 4.285 5.003 5.369 7.556 10.857 16.900 24.787 31.900 37.925 45.43 51.661 58.137 65.533 71.787

128 4.408 5.060 5.478 7.567 10.897 18.54 27.275 33.856 41.434 48.866 55.844 62.232 70.541 77.957
256 4.263 5.104 5.504 7.745 11.698 20.295 28.484 36.563 44.917 52.320 61.126 68.640 78.719 84.131
512 4.276 5.147 5.509 7.996 12.660 21.587 30.327 39.002 47.819 68.275 87.130 96.089 122.30 138.78

1024 4.385 5.292 5.438 8.771 13.458 23.277 36.933 59.632 78.468 102.42 152.57 196.47 236.86 271.08
2048 4.321 5.835 6.339 10.095 15.178 37.169 71.056 119.02 154.77 187.56 224.10 258.29 280.90 301.71

Table 15: Numerical Results for Experiment Three OOP

Performance of DOD System (µs) while varying both the entity count and entity size
entity count 10 50 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

32 3.822 4.390 5.016 6.331 7.801 10.768 13.930 17.171 20.819 24.398 27.443 31.194 34.507 37.549
64 3.823 4.471 5.047 6.236 7.780 10.813 14.035 17.431 20.876 24.352 27.646 30.986 34.615 37.443

128 3.739 4.337 5.004 6.471 7.701 10.706 13.914 17.135 20.988 23.799 27.454 30.879 34.623 37.993
256 3.812 4.396 5.091 6.227 7.848 11.068 13.893 17.297 20.289 24.289 27.637 30.687 34.596 37.889
512 3.727 4.406 5.052 6.206 7.724 10.739 13.768 17.237 21.691 24.513 28.207 30.583 34.952 38.189

1024 3.867 4.381 5.099 6.267 7.906 11.016 14.559 17.664 20.729 23.946 27.456 31.139 33.827 37.442
2048 3.840 4.419 5.163 6.309 7.700 10.731 13.927 17.596 21.253 25.510 28.072 31.004 35.336 38.006

Table 16: Numerical Results for Experiment Three DOD

4.5 Experiment 4

The objective of this experiment was to determine if the thread and system count

has a different effect on the performance of the OOP and DOD architectures. In

this experiment, the two independent variables, thread count and system count were

iterated through the following values: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15]. Refer to Table 10 for all other variable values. The results for this experiment

contain 100 data points per independent variable pair per software architecture. For

Figure 13, of the 100 points, outliers were removed and the remaining were averaged

to provide a single performance point. The averaged points are provided in Table 17

while the code used in this experiment can be found in Appendix E.

To determine if there is enough statistical evidence to show that the combination

of thread count and system count does not effect the performance of the DOD and

OOP architectures differently, a paired Student’s t-test comparing the completion

time between the two architectures was performed. The data used for the Student’s

t-test can be found in Table 17. After performing the Student’s t-test as described in

Section 3.4, the resulting p-value was 0.20. A p-value of 0.20 is not enough statistical

69

evidence to reject the null hypothesis, thus it shows that the combination of system

and thread count does not effect the two architectures differently, as expected.

Figure 13: Graphical Results for Experiment Four

Interestingly, it can be seen in Figure 13 that performance does not remain the

same as the amount of threads increase. It would be expected that since both threads

and systems increase at the same rate, completion time would remain constant as

each thread does the same amount of work. The best explanation as to why this is

not the case is the fact that as the amount of threads increases, so does the overhead

of maintaining and pushing work to the thread. This is because the threads are

managed by a thread-pool and the workload is pushed to the threads every cycle.

However, Figure 13 confirms the results from the Student’s t-test: that performance

of both the DOD and OOP architectures remain similar. The performance difference

is as little as 1.36% at 13 threads. The interesting results from this experiment is

the performance difference of the systems while close the the thread count of the

70

CPU. The largest difference in performance occurs exactly at the thread count of

the CPU, where the DOD system is outperforming the OOP system by 79.78%: the

OOP architecture has a completion time of 40.178µs and the DOD architecture has

a completion time of 22.344µs.

It was thought that this is due to the fact that the DOD is able to split the

workload between threads more precisely than the OOP system. The OOP system

can only split the workload by divvying up the entities between each thread and calling

all systems on each entity; the DOD system, however, can divvy up the workload not

only by the entity, but also by the system. Therefore one thread is not stuck calling all

methods on a single entity: if a different thread finishes early, it can steal work from

another thread and begin calling the methods of a different entity. This explains why

at low threads, the performance is similar, but grows steadily apart. It is also thought

that the performance begins to merge after the the CPU’s thread count because after

that point, only 8 of the possible threads are truly running in parallel, so overhead of

managing many threads, but not actually running in parallel (past 8 threads) begins

to dictate the performance of the software systems.

System/Thread 1 2 3 4 5 6 7 8
OOP Time (µs) 12.150 14.581 17.343 20.746 25.427 32.176 33.914 40.178
DOD Time (µs) 9.103 12.699 13.427 16.377 18.879 19.575 21.150 22.344

% Difference 33.47 14.82 29.17 26.68 34.68 64.37 60.35 79.78
System/Thread 9 10 11 12 13 14 15

OOP Time (µs) 42.364 44.755 49.971 49.397 48.164 51.515 54.546
DOD Time (µs) 30.524 34.141 38.212 43.563 57.519 50.073 53.256

% Difference 38.79 31.09 30.77 13.39 1.36 2.88 2.42

Table 17: Numerical Results for Experiment Four

4.6 Experiment 5

The objective of this experiment was to determine if the number of threads has a

different effect on the performance of the OOP and DOD architectures. In this ex-

71

periment, the independent variable, thread count, was iterated through the following

values: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] threads. Refer to Table 11 for

all other variable values. The results for this experiment contain 100 points, outliers

were removed and the remaining were averaged to provide a single performance point.

The averaged points are provided in Table 18 while the code used in this experiment

can be found in Appendix F.

To determine if there is enough statistical evidence to show that the thread count

does not effect the performance of the DOD and OOP architectures differently, a

paired Student’s t-test comparing the completion time between the two architectures

was performed. The data used for the Student’s t-test can be found in Table 18.

After performing the Student’s t-test as described in Section 3.4, the resulting p-

value was 0.40. A p-value of 0.40 is not enough statistical evidence to reject the

null hypothesis, thus it shows that the amount of threads does not effect the two

architectures differently, as expected.

Figure 14 shows the performance of the OOP and DOD architectures as more

threads were provided to handle a workload. This experiment provides a workload of

solving a recursive Fibonacci sequence 15 times for each entity. It was set up such that

each calculation of the Fibonacci sequence could be calculated on different threads.

Figure 14 supports the statistical evidence form the Student’s t-test as it can be seen

that the two architectures perform nearly identical, having only a 5.1% difference

in completion time with one thread and 1.1% difference in completion time at 15

threads. As can be seen in figure, the OOP architecture is more unstable due to the

decreased performance at 5 and 9 threads, however both architectures meet optimal

performance at 4 threads. This makes sense as the tests were ran on a device with 4

cores and 8 threads, so results should be optimal at these points.

72

Figure 14: Graphical Results for Experiment Five

Thread count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OOP Time (µs) 482 260 176 146 190 174 158 147 229 214 202 198 188 180 175
DOD Time (µs) 508 289 215 168 165 166 160 162 164 167 167 172 173 174 173

% Difference 5.1 9.7 18.0 12.5 15.4 5.3 0.9 9.1 39.2 28.5 21.0 14.8 8.6 3.8 1.1

Table 18: Numerical Results for Experiment Five

4.7 Experiment 6

The objective of this experiment was to determine if the amount components used

in a system has different effects on the performance of the OOP and DOD architec-

tures. In this experiment, the independent variable, component count, was iterated

through the following values: [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2] compo-

nents. Refer to Table 12 for all other variable values. The results of this experiment

contain 100 data points per independent variable per software architecture. For Fig-

ure 15, of the 100 points, outliers were removed and the remaining were averaged to

provide a single performance point. The averaged points are provided in Table 19

73

while the code used in this experiment can be found in Appendix G.

To determine if there is enough statistical evidence to show that the component

count effects the performance of the DOD and OOP architectures differently, a paired

Student’s t-test comparing the completion time between the two architectures was

performed. The data used for the Student’s t-test can be found in Table 19. After

performing the Student’s t-test as described in section 3.4, the resulting p-value was

0.00956. A p-value of 0.00956 is enough statistical evidence to reject the null hypoth-

esis and fail to reject the alternative hypothesis. This means that there is enough

evidence to suggest that system size does effect the two architectures differently.

Figure 15: Graphical Results for Experiment Two: Comparing Completion Time

Figure 15 compares the completion time of the DOD and OOP architectures

while changing the amount of components being used by the systems. It shows

that completion time decreases at an extremely high rate for the DOD architecture

where as it only decreases slightly for the OOP architecture, solidifying the statistical

evidence provided by the Student’s t-test that the amount of components the system

74

uses effects the architectures differently. The DOD architecture’s completion time

decreases by 339.69%, from 34.92µs to 7.94µs where as it only decreases by 15.7%,

from 19.69µs to 14.68µs for the OOP architecture.

Interestingly, the performance of the DOD architecture rapidly increased as the

amount of components used in each system decreased while performance of the OOP

architecture remained almost constant. It was unexpected however, as to the perfor-

mance difference between OOP and DOD when using a large amount of components

in a system. At 16 components being used in a single system, the performance dif-

ference between OOP and DOD was 137.82% with DOD at 34.92µs and OOP at

14.68µs. This can best be explained by the DOD architecture needing to verify that

an entity has all components required for the system, before executing the system.

The intersection in performance is when the method is using 6 components, mak-

ing it only a benefit to use the DOD architecture when systems use less 7 components.

It should be noted that 7 components is an extremely large amount components to

be using in a single method however and can probably be refactored into multiple

smaller systems.

Component Count 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

OOP
% Change from

initial
1 1.23 2.93 3.23 3.63 5.82 5.75 12.31 13.71 13.32 14.82 17.31 16.35 16.51 15.70

OOP Time (µs) 14.68 14.51 14.27 14.22 14.17 13.88 13.89 13.07 12.92 12.96 12.79 12.52 12.62 12.60 12.69
DOD Time (µs) 34.92 32.86 33.37 28.61 25.57 24.92 21.16 18.67 17.33 16.23 12.24 11.06 9.79 8.78 7.94

DOD
% Change from

initial
1 6.26 4.64 22.08 37.66 40.13 64.92 87.04 101.5 115.2 185.2 215.7 256.6 297.6 339.7

Table 19: Numerical Results for Experiment Six

75

V. Conclusion

5.1 Overview

This chapter summarizes the research and results obtained throughout the thesis.

Section 5.2 restates important results found during experimentation and analysis.

Section 5.3 states the impact that this research has on the field along with possibilities

for future work and uses for the Entity-Component-System (ECS) architecture.

5.2 Research Conclusions

This research concludes that the Data-Oriented Design (DOD) paradigm, and in

particular, the ECS architecture, does have a strong use case in the area of modeling

& simulation, specifically in real-time simulations. It successfully tested many of the

common attributes of a real-time simulator and their effects on the performance of

the architecture compared to the Object-Oriented Programming (OOP) counterpart.

Through six experiments, it is determined that this architecture greatly improves the

overhead of retrieving and storing data for use in the application.

Through statistical analysis, experiment 1 shows that the ECS architecture is

tolerant to the performance loss that OOP architectures have when operating on in-

creasingly large objects. In normal use cases, a 100% improvement in the overhead

of reading and writing data to memory is seen compared to the OOP counterpart.

An improvement of over 600% to overhead is seen in uses cases where object size is

extremely large, such as 16,384 bit size objects. Most importantly, this experiment

shows that overhead performance remains constant regardless of the size of the ob-

ject for ECS architectures, where as it plays an important role in determining the

performance of an architecture using the OOP paradigm.

Experiment 2 shows that the ECS architecture is more tolerant to increased entity

76

count in the simulation compared to a OOP architecture. In this experiment, it is

seen that performance overhead of reading and writing data to memory increased at

a rate of 3.33µs for every 1,000 entities for the ECS architecture where as it increased

at a rate of 7.86µs every 1,000 entities for the OOP architecture. This is a difference

of 135%. Experiment 3 reiterated and confirmed the findings of Experiments 1 and

2, providing further testing and results to solidify and verify the findings.

Experiments 4 and 5 shows that the performance overhead of parallelizing the

code-base is similar for both architectures. The results show that there is a minimal

improvement in overhead costs when operating on a threadpool with a count near

the core count of the Central Processing Unit (CPU), though in any other amount of

threads, the performance difference is negligible. The important aspect of this exper-

iment is that performance remains similar between both architectures, however the

ECS architecture handles the multi-threading automatically, and guarantees thread

safety, where as the developer is responsible for both normally for the OOP paradigm.

Experiment 6 shows that the amount of components the system uses greatly ef-

fects the performance of the ECS architecture where as it has no affect on the OOP

architecture. This experiment shows that the ECS architecture is only optimal when

the amount of components used in a system is less than around 6 components. It is

important to reiterate that these components are in regards to the components used

in the system, not that exists in the entity. At its worst, the OOP architecture out

performs the ECS architecture by 137%. At its best, the ECS architecture outper-

forms the OOP architecture by 60%. It is important to note that most systems only

operate on small amounts of components at any given time, so the ECS architecture

generally outperforms the DOD architecture.

Overall, ECS has shown to be an excellent candidate as a software architecture

for for real-time simulators. This architecture reduces memory overhead consistently

77

against all factors tested in the experiments. The only area of concern is if the systems

that are executing on state require extremely large amounts of data from each entity.

When this occurs, the ECS architecture is a poor choice for use in the software. It

should once again be emphasized that DOD and ECS is not a replacement to OOP

in all use cases. DOD is most optimal in code-bases that contain and operate on a

large amounts of data; this includes, but is not limited to, areas such as video games

engines, real-time simulations, simulations, and high performance computing.

5.3 Research Significance and Future Work

As improvements in the development of faster computer hardware continues to

slow, the need for more performant and scalable software systems will increase. Hard-

ware engineers have turned to increasing the core count in CPU’s to improve the per-

formance. However, developing safe, multi-threaded software is no small feat. Many

developers are never taught the underlying aspects of hardware that their software

runs on such as how data is stored and accessed, or how a CPU and/or operating

system handles multiple threads. Due to this, they are unable to make many of the

optimizations that can greatly increase the performance of their code-base.

This work has focused on researching, testing, and bench-marking a software ar-

chitecture normally used in game development, for use in other areas. This software

architecture abstracts away two of these software/hardware aspects that many de-

velopers are unaware of, or find difficult optimizing. The ECS architecture abstracts

away the need for the developer determine how and where data is stored in memory,

along with writing code that is thread-safe and concurrent. Additionally, the re-

search done in this work has shown that the optimizations made to these two aspects

consistently out performed that of the OOP architecture counterparts.

The ECS architecture and DOD paradigm as a whole have many areas of future

78

research that could greatly benefit the field of modeling & simulation, high perfor-

mance computing, and the Air Force. The following suggests five future work options

based off this research:

• Research into additional ECS frameworks. As the ECS architecture does not

have a standard implementation, other implementations may be better opti-

mized for modeling and simulation use-cases. Possible frameworks to research

include: (1) legion for its more precise ability to filter components, (2) hecs

which builds on the successes of specs and legion; it is a library rather than

an architecture, allowing the developer to more greatly customize the imple-

mentation for their needs, and (3) froggy, a prototype for the Component

Graph System programming model. It aims to combine the convenience of

composition-style OOP with the performance close to ECS.

• Development of a prototypical use case for modeling and simulation using exist-

ing ECS frameworks. Use an existing ECS architecture to design and develop

a modeling and simulation program for a real-world problem such as a flight

simulator. This will give the ability to test the ECS architecture’s real-world

application performance. Finally, compare this performance to the performance

of an OOP designed framework.

• Development of a custom ECS architecture for use in future modern military

simulators. This would allow for the development of specific functionality and

optimizations for use cases in the field of modeling & simulation and the Air

Force. This includes an optimized scheduling algorithm for providing system

workloads to a threadpool, along with optimizing memory accesses for the needs

of common modern military simulators.

• Research into the possible use of the ECS as a framework for high-performance

79

computing. The ECS architecture is able to scale with threadcount, making it

a perfect candidate for working on High-Performance Computers/Super Com-

puters which provide the developer with an extremely large amount of threads.

Additionally, its ability to schedule systems on different threads without data

safety concerns allows the developer to easily develop highly parallelized code

for high-performance computing.

• Research into the possible use of the ECS framework for Graphics Processing

Unit (GPU) accelerated computing. The GPU specializes in executing the same

piece of code (a shader) on a large amount of data points very efficiently. The

ECS architecture does the same thing, executing a system on a large amount

of entities. Also, the ECS architecture stores state in large arrays of contiguous

memory, similar to how data is provided to the GPU from the CPU. Instead

of ECS systems manipulating state via the CPU, systems could be replaced

with calls to the GPU to do the same calculations on the same data, only with

shaders. The memory is already in a structure that the GPU expects.

80

Appendix A. Benchmark Measurement and Analysis

The information provided below is directly taken from the user guide for the Cri-

terion crate which can be found at https://bheisler.github.io/criterion.rs/

book/analysis.html. The information is being directly transferred here to ensure

available should the link above change. The information below is not the work of the

author of this thesis, but the work of the creator of Criterion.

1.1 Measurement

The measurement phase is when Criterion.rs collects the performance data that

will be analyzed and used in later stages. This phase is mainly controlled by the

measurement time value in the Criterion struct.

The measurements are done in a number of samples (see the sample size param-

eter). Each sample consists of one or more (typically many) iterations of the routine.

The elapsed time between the beginning and the end of the iterations, divided by the

number of iterations, gives an estimate of the time taken by each iteration.

As measurement progresses, the sample iteration counts are increased. Suppose

that the first sample contains 10 iterations. The second sample will contain 20, the

third will contain 30 and so on. More formally, the iteration counts are calculated

like so: iterations = [d, 2d, 3d, ...Nd]

Where N is the total number of samples and d is a factor, calculated from the

rough estimate of iteration time measured during the warm-up period, which is used

to scale the number of iterations to meet the configured measurement time. Note

that d cannot be less than 1, and therefore the actual measurement time may ex-

ceed the configured measurement time if the iteration time is large or the configured

measurement time is small.

Note that Criterion.rs does not measure each individual iteration, only the com-

81

https://bheisler.github.io/criterion.rs/book/analysis.html
https://bheisler.github.io/criterion.rs/book/analysis.html

plete sample. The resulting samples are stored for use in later stages. The sample

data is also written to the local disk so that it can be used in the comparison phase

of future benchmark runs.

1.2 Analysis

During this phase Criterion.rs calculates useful statistics from the samples col-

lected during the measurement phase.

1.2.1 Outlier Classification

The first step in analysis is outlier classification. Each sample is classified using

a modified version of Tukey’s Method, which will be summarized here. First, the

interquartile range (IQR) is calculated from the difference between the 25th and

75th percentile. In Tukey’s Method, values less than (25th percentile - 1.5 * IQR)

or greater than (75th percentile + 1.5 * IQR) are considered outliers. Criterion.rs

creates additional fences at (25pct - 3 * IQR) and (75pct + 3 * IQR); values outside

that range are considered severe outliers.

Outlier classification is important because the analysis method used to estimate

the average iteration time is sensitive to outliers. Thus, when Criterion.rs detects

outliers, a warning is printed to inform the user that the benchmark may be less

reliable. Additionally, a plot is generated showing which data points are considered

outliers, where the fences are, etc.

Note, however, that outlier samples are not dropped from the data, and are used

in the following analysis steps along with all other samples.

82

1.2.2 Linear Regression

The samples collected from a good benchmark should form a rough line when

plotted on a chart showing the number of iterations and the time for each sample.

The slope of that line gives an estimate of the time per iteration. A single estimate

is difficult to interpret, however, since it contains no context. A confidence interval

is generally more helpful. In order to generate a confidence interval, a large number

of bootstrap samples are generated from the measured samples. A line is fitted to

each of the bootstrap samples, and the result is a statistical distribution of slopes

that gives a reliable confidence interval around the single estimate calculated from

the measured samples.

This resampling process is repeated to generate the mean, standard deviation,

median and median absolute deviation of the measured iteration times as well. All

of this information is printed to the user and charts are generated. Finally, if there

are saved statistics from a previous run, the two benchmark runs are compared.

1.2.3 Comparison

In the comparison phase, the statistics calculated from the current benchmark run

are compared against those saved by the previous run to determine if the performance

has changed in the meantime, and if so, by how much.

Once again, Criterion.rs generates many bootstrap samples, based on the mea-

sured samples from the two runs. The new and old bootstrap samples are compared

and their T score is calculated using a T-test. The fraction of the bootstrapped T

scores which are more extreme than the T score calculated by comparing the two

measured samples gives the probability that the observed difference between the two

sets of samples is merely by chance. Thus, if that probability is very low or zero, Cri-

terion.rs can be confident that there is truly a difference in execution time between

83

the two samples. In that case, the mean and median differences are bootstrapped and

printed for the user, and the entire process begins again with the next benchmark.

This process can be extremely sensitive to changes, especially when combined with

a small, highly deterministic benchmark routine. In these circumstances even very

small changes (eg. differences in the load from background processes) can change

the measurements enough that the comparison process detects an optimization or

regression. Since these sorts of unpredictable fluctuations are rarely of interest while

benchmarking, there is also a configurable noise threshold. Optimizations or regres-

sions within (for example) +-1% are considered noise and ignored. It is best to

benchmark on a quiet computer where possible to minimize this noise, but it is not

always possible to eliminate it entirely.

84

Appendix B. Experiment One Code

2.1 Benchmark

1 use criterion::{criterion_group, criterion_main, Criterion};

2 extern crate thesis_experimentation;

3

4 use specs::prelude::*;

5 use thesis_experimentation::exp1::oop_obj::*;

6 use thesis_experimentation::exp1::oop::*;

7 use thesis_experimentation::exp1::dod::*;

8 use std::time::Duration;

9

10 #[inline]

11 fn dod_dispatch(d: &mut Dispatcher, mut w: &mut World) {

12 d.dispatch_par(&mut w);

13 }

14

15 #[inline]

16 fn oop_dispatch<T: Exp1>(world: &mut OOPWorld<T>) { world.execute(); }

17

18 pub fn oop_criterion_benchmark(c: &mut Criterion) {

19 let mut group = c.benchmark_group("oop_exp1");

20 group.warm_up_time(Duration::from_secs(5));

21 group.sample_size(100);

22 group.nresamples(100);

23 rayon::ThreadPoolBuilder::new().num_threads(1).build_global().unwrap();

24

25 let o128 = obj_setup::<Obj128>();

85

26 let o256 = obj_setup::<Obj256>();

27 let o512 = obj_setup::<Obj512>();

28 let o1024 = obj_setup::<Obj1024>();

29 let o2048 = obj_setup::<Obj2048>();

30 let o4196 = obj_setup::<Obj4096>();

31 let o8192 = obj_setup::<Obj8192>();

32 let o16384 = obj_setup::<Obj16384>();

33

34 let mut world128 = OOPWorld::new(o128, 1);

35 let mut world256 = OOPWorld::new(o256, 1);

36 let mut world512 = OOPWorld::new(o512, 1);

37 let mut world1024 = OOPWorld::new(o1024, 1);

38 let mut world2048 = OOPWorld::new(o2048, 1);

39 let mut world4196 = OOPWorld::new(o4196, 1);

40 let mut world8192 = OOPWorld::new(o8192, 1);

41 let mut world16384 = OOPWorld::new(o16384, 1);

42

43 group.bench_function("oop_exp1_size_128", |b|

44 b.iter(||oop_dispatch(&mut world128)));

45 group.bench_function("oop_exp1_size_256", |b|

46 b.iter(||oop_dispatch(&mut world256)));

47 group.bench_function("oop_exp1_size_512", |b|

48 b.iter(||oop_dispatch(&mut world512)));

49 group.bench_function("oop_exp1_size_1024", |b|

50 b.iter(||oop_dispatch(&mut world1024)));

51 group.bench_function("oop_exp1_size_2048", |b|

52 b.iter(||oop_dispatch(&mut world2048)));

53 group.bench_function("oop_exp1_size_4196", |b|

86

54 b.iter(||oop_dispatch(&mut world4196)));

55 group.bench_function("oop_exp1_size_8192", |b|

56 b.iter(||oop_dispatch(&mut world8192)));

57 group.bench_function("oop_exp1_size_16384", |b|

58 b.iter(||oop_dispatch(&mut world16384)));

59 }

60

61 pub fn dod_criterion_benchmark(c: &mut Criterion) {

62 let mut group = c.benchmark_group("dod_exp1");

63 group.warm_up_time(Duration::from_secs(5));

64 group.sample_size(100);

65 group.nresamples(100);

66

67 let entity_size: Vec<i32> = vec![128,256,512,1024,2048,4096,8192,16384];

68

69 entity_size.iter().for_each(|size| {

70 let mut world = World::new();

71 setup_component(&mut world).unwrap();

72 setup_entity(*size, &mut world).unwrap();

73 let mut dispatcher = setup_dispatcher(*size);

74

75 let mut bench_name = String::from("dod_exp1_size_");

76 let i = size.to_string();

77 bench_name.push_str(&i);

78

79 group.bench_function(bench_name, |b|

80 b.iter(|| dod_dispatch(&mut dispatcher, &mut world)));

81 });

87

82 }

83 criterion_group!(oop, oop_criterion_benchmark);

84 criterion_group!(dod, dod_criterion_benchmark);

85 criterion_main!(oop,dod);

Listing B.1: Experiment 1: Benchmark

2.2 Modules

1 pub mod oop;

2 pub mod dod;

3 pub mod oop_obj;

4 pub mod dod_component;

5 pub mod dod_system;

Listing B.2: Experiment 1: Modules

2.3 DOD

1 use specs::prelude::*;

2 use std::io;

3 use super::dod_component::*;

4 use super::dod_system::*;

5 use std::sync::Arc;

6

7 //Add components to the world

8 pub fn setup_component(world: &mut World)-> io::Result<()> {

9 world.register::<Comp_i64_0>();

10 world.register::<Comp_i64_1>();

11 world.register::<Comp_i128_0>();

12 world.register::<Comp_i128_1>();

88

13 world.register::<Comp_i128_2>();

14 world.register::<Comp_i128_3>();

15 world.register::<Comp_i128_4>();

16 world.register::<Comp_i128_5>();

17 world.register::<Comp_i128_6>();

18 world.register::<Comp_i128_7>();

19 world.register::<Comp_i128_8>();

20 world.register::<Comp_i128_9>();

21 world.register::<Comp_i128_10>();

22 world.register::<Comp_i128_11>();

23 world.register::<Comp_i128_12>();

24 world.register::<Comp_i128_13>();

25 world.register::<Comp_i128_14>();

26 world.register::<Comp_i128_15>();

27 world.register::<Comp_i128_16>();

28 world.register::<Comp_i128_17>();

29 world.register::<Comp_i128_18>();

30 world.register::<Comp_i128_19>();

31 world.register::<Comp_i128_20>();

32 world.register::<Comp_i128_21>();

33 world.register::<Comp_i128_22>();

34 world.register::<Comp_i128_23>();

35 world.register::<Comp_i128_24>();

36 world.register::<Comp_i128_25>();

37 world.register::<Comp_i128_26>();

38 world.register::<Comp_i128_27>();

39 world.register::<Comp_i128_28>();

40 world.register::<Comp_i128_29>();

89

41 world.register::<Comp_i128_30>();

42 world.register::<Comp_i128_31>();

43 world.register::<Comp_i128_32>();

44 world.register::<Comp_i128_33>();

45 world.register::<Comp_i128_34>();

46 world.register::<Comp_i128_35>();

47 world.register::<Comp_i128_36>();

48 world.register::<Comp_i128_37>();

49 world.register::<Comp_i128_38>();

50 world.register::<Comp_i128_39>();

51 world.register::<Comp_i128_40>();

52 world.register::<Comp_i128_41>();

53 world.register::<Comp_i128_42>();

54 world.register::<Comp_i128_43>();

55 world.register::<Comp_i128_44>();

56 world.register::<Comp_i128_45>();

57 world.register::<Comp_i128_46>();

58 world.register::<Comp_i128_47>();

59 world.register::<Comp_i128_48>();

60 world.register::<Comp_i128_49>();

61 world.register::<Comp_i128_50>();

62 world.register::<Comp_i128_51>();

63 world.register::<Comp_i128_52>();

64 world.register::<Comp_i128_53>();

65 world.register::<Comp_i128_54>();

66 world.register::<Comp_i128_55>();

67 world.register::<Comp_i128_56>();

68 world.register::<Comp_i128_57>();

90

69 world.register::<Comp_i128_58>();

70 world.register::<Comp_i128_59>();

71 world.register::<Comp_i128_60>();

72 world.register::<Comp_i128_61>();

73 world.register::<Comp_i128_62>();

74 world.register::<Comp_i128_63>();

75 world.register::<Comp_i128_64>();

76 world.register::<Comp_i128_65>();

77 world.register::<Comp_i128_66>();

78 world.register::<Comp_i128_67>();

79 world.register::<Comp_i128_68>();

80 world.register::<Comp_i128_69>();

81 world.register::<Comp_i128_70>();

82 world.register::<Comp_i128_71>();

83 world.register::<Comp_i128_72>();

84 world.register::<Comp_i128_73>();

85 world.register::<Comp_i128_74>();

86 world.register::<Comp_i128_75>();

87 world.register::<Comp_i128_76>();

88 world.register::<Comp_i128_77>();

89 world.register::<Comp_i128_78>();

90 world.register::<Comp_i128_79>();

91 world.register::<Comp_i128_80>();

92 world.register::<Comp_i128_81>();

93 world.register::<Comp_i128_82>();

94 world.register::<Comp_i128_83>();

95 world.register::<Comp_i128_84>();

96 world.register::<Comp_i128_85>();

91

97 world.register::<Comp_i128_86>();

98 world.register::<Comp_i128_87>();

99 world.register::<Comp_i128_88>();

100 world.register::<Comp_i128_89>();

101 world.register::<Comp_i128_90>();

102 world.register::<Comp_i128_91>();

103 world.register::<Comp_i128_92>();

104 world.register::<Comp_i128_93>();

105 world.register::<Comp_i128_94>();

106 world.register::<Comp_i128_95>();

107 world.register::<Comp_i128_96>();

108 world.register::<Comp_i128_97>();

109 world.register::<Comp_i128_98>();

110 world.register::<Comp_i128_99>();

111 world.register::<Comp_i128_100>();

112 world.register::<Comp_i128_101>();

113 world.register::<Comp_i128_102>();

114 world.register::<Comp_i128_103>();

115 world.register::<Comp_i128_104>();

116 world.register::<Comp_i128_105>();

117 world.register::<Comp_i128_106>();

118 world.register::<Comp_i128_107>();

119 world.register::<Comp_i128_108>();

120 world.register::<Comp_i128_109>();

121 world.register::<Comp_i128_110>();

122 world.register::<Comp_i128_111>();

123 world.register::<Comp_i128_112>();

124 world.register::<Comp_i128_113>();

92

125 world.register::<Comp_i128_114>();

126 world.register::<Comp_i128_115>();

127 world.register::<Comp_i128_116>();

128 world.register::<Comp_i128_117>();

129 world.register::<Comp_i128_118>();

130 world.register::<Comp_i128_119>();

131 world.register::<Comp_i128_120>();

132 world.register::<Comp_i128_121>();

133 world.register::<Comp_i128_122>();

134 world.register::<Comp_i128_123>();

135 world.register::<Comp_i128_124>();

136 world.register::<Comp_i128_125>();

137 world.register::<Comp_i128_126>();

138 world.register::<Comp_i128_127>();

139

140 return Ok(())

141 }

142

143 //Add entities to the world

144 pub fn setup_entity(entity_size: i32, world: &mut World)->io::Result<()> {

145 match entity_size {

146 128 => {

147 for _ in 0..5000 {

148 world.create_entity()

149 .with(Comp_i64_0(criterion::black_box(5)))

150 .with(Comp_i64_1(criterion::black_box(5)))

151 .build();

152 }

93

153 }

154 256 => {

155 for _ in 0..5000 {

156 world.create_entity()

157 .with(Comp_i128_0(criterion::black_box(5)))

158 .with(Comp_i128_1(criterion::black_box(5)))

159 .build();

160 }

161 }

162

163 512 => {

164 for _ in 0..5000 {

165 world.create_entity()

166 .with(Comp_i128_0(criterion::black_box(5)))

167 .with(Comp_i128_1(criterion::black_box(5)))

168 .with(Comp_i128_2(criterion::black_box(5)))

169 .with(Comp_i128_3(criterion::black_box(5)))

170 .build();

171 }

172 }

173

174 1024 => {

175 for _ in 0..5000 {

176 world.create_entity()

177 .with(Comp_i128_0(criterion::black_box(5)))

178 .with(Comp_i128_1(criterion::black_box(5)))

179 .with(Comp_i128_2(criterion::black_box(5)))

180 .with(Comp_i128_3(criterion::black_box(5)))

94

181 .with(Comp_i128_4(criterion::black_box(5)))

182 .with(Comp_i128_5(criterion::black_box(5)))

183 .with(Comp_i128_6(criterion::black_box(5)))

184 .with(Comp_i128_7(criterion::black_box(5)))

185 .build();

186 }

187 }

188

189 2048 => {

190 for _ in 0..5000 {

191 world.create_entity()

192 .with(Comp_i128_0(criterion::black_box(5)))

193 .with(Comp_i128_1(criterion::black_box(5)))

194 .with(Comp_i128_2(criterion::black_box(5)))

195 .with(Comp_i128_3(criterion::black_box(5)))

196 .with(Comp_i128_4(criterion::black_box(5)))

197 .with(Comp_i128_5(criterion::black_box(5)))

198 .with(Comp_i128_6(criterion::black_box(5)))

199 .with(Comp_i128_7(criterion::black_box(5)))

200 .with(Comp_i128_8(criterion::black_box(5)))

201 .with(Comp_i128_9(criterion::black_box(5)))

202 .with(Comp_i128_10(criterion::black_box(5)))

203 .with(Comp_i128_11(criterion::black_box(5)))

204 .with(Comp_i128_12(criterion::black_box(5)))

205 .with(Comp_i128_13(criterion::black_box(5)))

206 .with(Comp_i128_14(criterion::black_box(5)))

207 .with(Comp_i128_15(criterion::black_box(5)))

208 .build();

95

209 }

210 }

211

212 4096 => {

213 for _ in 0..5000 {

214 world.create_entity()

215 .with(Comp_i128_0(criterion::black_box(5)))

216 .with(Comp_i128_1(criterion::black_box(5)))

217 .with(Comp_i128_2(criterion::black_box(5)))

218 .with(Comp_i128_3(criterion::black_box(5)))

219 .with(Comp_i128_4(criterion::black_box(5)))

220 .with(Comp_i128_5(criterion::black_box(5)))

221 .with(Comp_i128_6(criterion::black_box(5)))

222 .with(Comp_i128_7(criterion::black_box(5)))

223 .with(Comp_i128_8(criterion::black_box(5)))

224 .with(Comp_i128_9(criterion::black_box(5)))

225 .with(Comp_i128_10(criterion::black_box(5)))

226 .with(Comp_i128_11(criterion::black_box(5)))

227 .with(Comp_i128_12(criterion::black_box(5)))

228 .with(Comp_i128_13(criterion::black_box(5)))

229 .with(Comp_i128_14(criterion::black_box(5)))

230 .with(Comp_i128_15(criterion::black_box(5)))

231 .with(Comp_i128_16(criterion::black_box(5)))

232 .with(Comp_i128_17(criterion::black_box(5)))

233 .with(Comp_i128_18(criterion::black_box(5)))

234 .with(Comp_i128_19(criterion::black_box(5)))

235 .with(Comp_i128_20(criterion::black_box(5)))

236 .with(Comp_i128_21(criterion::black_box(5)))

96

237 .with(Comp_i128_22(criterion::black_box(5)))

238 .with(Comp_i128_23(criterion::black_box(5)))

239 .with(Comp_i128_24(criterion::black_box(5)))

240 .with(Comp_i128_25(criterion::black_box(5)))

241 .with(Comp_i128_26(criterion::black_box(5)))

242 .with(Comp_i128_27(criterion::black_box(5)))

243 .with(Comp_i128_28(criterion::black_box(5)))

244 .with(Comp_i128_29(criterion::black_box(5)))

245 .with(Comp_i128_30(criterion::black_box(5)))

246 .with(Comp_i128_31(criterion::black_box(5)))

247 .build();

248 }

249

250 }

251

252 8192 => {

253 for _ in 0..5000 {

254 world.create_entity()

255 .with(Comp_i128_0(criterion::black_box(5)))

256 .with(Comp_i128_1(criterion::black_box(5)))

257 .with(Comp_i128_2(criterion::black_box(5)))

258 .with(Comp_i128_3(criterion::black_box(5)))

259 .with(Comp_i128_4(criterion::black_box(5)))

260 .with(Comp_i128_5(criterion::black_box(5)))

261 .with(Comp_i128_6(criterion::black_box(5)))

262 .with(Comp_i128_7(criterion::black_box(5)))

263 .with(Comp_i128_8(criterion::black_box(5)))

264 .with(Comp_i128_9(criterion::black_box(5)))

97

265 .with(Comp_i128_10(criterion::black_box(5)))

266 .with(Comp_i128_11(criterion::black_box(5)))

267 .with(Comp_i128_12(criterion::black_box(5)))

268 .with(Comp_i128_13(criterion::black_box(5)))

269 .with(Comp_i128_14(criterion::black_box(5)))

270 .with(Comp_i128_15(criterion::black_box(5)))

271 .with(Comp_i128_16(criterion::black_box(5)))

272 .with(Comp_i128_17(criterion::black_box(5)))

273 .with(Comp_i128_18(criterion::black_box(5)))

274 .with(Comp_i128_19(criterion::black_box(5)))

275 .with(Comp_i128_20(criterion::black_box(5)))

276 .with(Comp_i128_21(criterion::black_box(5)))

277 .with(Comp_i128_22(criterion::black_box(5)))

278 .with(Comp_i128_23(criterion::black_box(5)))

279 .with(Comp_i128_24(criterion::black_box(5)))

280 .with(Comp_i128_25(criterion::black_box(5)))

281 .with(Comp_i128_26(criterion::black_box(5)))

282 .with(Comp_i128_27(criterion::black_box(5)))

283 .with(Comp_i128_28(criterion::black_box(5)))

284 .with(Comp_i128_29(criterion::black_box(5)))

285 .with(Comp_i128_30(criterion::black_box(5)))

286 .with(Comp_i128_31(criterion::black_box(5)))

287 .with(Comp_i128_32(criterion::black_box(5)))

288 .with(Comp_i128_33(criterion::black_box(5)))

289 .with(Comp_i128_34(criterion::black_box(5)))

290 .with(Comp_i128_35(criterion::black_box(5)))

291 .with(Comp_i128_36(criterion::black_box(5)))

292 .with(Comp_i128_37(criterion::black_box(5)))

98

293 .with(Comp_i128_38(criterion::black_box(5)))

294 .with(Comp_i128_39(criterion::black_box(5)))

295 .with(Comp_i128_40(criterion::black_box(5)))

296 .with(Comp_i128_41(criterion::black_box(5)))

297 .with(Comp_i128_42(criterion::black_box(5)))

298 .with(Comp_i128_43(criterion::black_box(5)))

299 .with(Comp_i128_44(criterion::black_box(5)))

300 .with(Comp_i128_45(criterion::black_box(5)))

301 .with(Comp_i128_46(criterion::black_box(5)))

302 .with(Comp_i128_47(criterion::black_box(5)))

303 .with(Comp_i128_48(criterion::black_box(5)))

304 .with(Comp_i128_49(criterion::black_box(5)))

305 .with(Comp_i128_50(criterion::black_box(5)))

306 .with(Comp_i128_51(criterion::black_box(5)))

307 .with(Comp_i128_52(criterion::black_box(5)))

308 .with(Comp_i128_53(criterion::black_box(5)))

309 .with(Comp_i128_54(criterion::black_box(5)))

310 .with(Comp_i128_55(criterion::black_box(5)))

311 .with(Comp_i128_56(criterion::black_box(5)))

312 .with(Comp_i128_57(criterion::black_box(5)))

313 .with(Comp_i128_58(criterion::black_box(5)))

314 .with(Comp_i128_59(criterion::black_box(5)))

315 .with(Comp_i128_60(criterion::black_box(5)))

316 .with(Comp_i128_61(criterion::black_box(5)))

317 .with(Comp_i128_62(criterion::black_box(5)))

318 .with(Comp_i128_63(criterion::black_box(5)))

319 .build();

320 }

99

321 }

322

323 16384 => {

324 for _ in 0..5000 {

325 world.create_entity()

326 .with(Comp_i128_0(criterion::black_box(5)))

327 .with(Comp_i128_1(criterion::black_box(5)))

328 .with(Comp_i128_2(criterion::black_box(5)))

329 .with(Comp_i128_3(criterion::black_box(5)))

330 .with(Comp_i128_4(criterion::black_box(5)))

331 .with(Comp_i128_5(criterion::black_box(5)))

332 .with(Comp_i128_6(criterion::black_box(5)))

333 .with(Comp_i128_7(criterion::black_box(5)))

334 .with(Comp_i128_8(criterion::black_box(5)))

335 .with(Comp_i128_9(criterion::black_box(5)))

336 .with(Comp_i128_10(criterion::black_box(5)))

337 .with(Comp_i128_11(criterion::black_box(5)))

338 .with(Comp_i128_12(criterion::black_box(5)))

339 .with(Comp_i128_13(criterion::black_box(5)))

340 .with(Comp_i128_14(criterion::black_box(5)))

341 .with(Comp_i128_15(criterion::black_box(5)))

342 .with(Comp_i128_16(criterion::black_box(5)))

343 .with(Comp_i128_17(criterion::black_box(5)))

344 .with(Comp_i128_18(criterion::black_box(5)))

345 .with(Comp_i128_19(criterion::black_box(5)))

346 .with(Comp_i128_20(criterion::black_box(5)))

347 .with(Comp_i128_21(criterion::black_box(5)))

348 .with(Comp_i128_22(criterion::black_box(5)))

100

349 .with(Comp_i128_23(criterion::black_box(5)))

350 .with(Comp_i128_24(criterion::black_box(5)))

351 .with(Comp_i128_25(criterion::black_box(5)))

352 .with(Comp_i128_26(criterion::black_box(5)))

353 .with(Comp_i128_27(criterion::black_box(5)))

354 .with(Comp_i128_28(criterion::black_box(5)))

355 .with(Comp_i128_29(criterion::black_box(5)))

356 .with(Comp_i128_30(criterion::black_box(5)))

357 .with(Comp_i128_31(criterion::black_box(5)))

358 .with(Comp_i128_32(criterion::black_box(5)))

359 .with(Comp_i128_33(criterion::black_box(5)))

360 .with(Comp_i128_34(criterion::black_box(5)))

361 .with(Comp_i128_35(criterion::black_box(5)))

362 .with(Comp_i128_36(criterion::black_box(5)))

363 .with(Comp_i128_37(criterion::black_box(5)))

364 .with(Comp_i128_38(criterion::black_box(5)))

365 .with(Comp_i128_39(criterion::black_box(5)))

366 .with(Comp_i128_40(criterion::black_box(5)))

367 .with(Comp_i128_41(criterion::black_box(5)))

368 .with(Comp_i128_42(criterion::black_box(5)))

369 .with(Comp_i128_43(criterion::black_box(5)))

370 .with(Comp_i128_44(criterion::black_box(5)))

371 .with(Comp_i128_45(criterion::black_box(5)))

372 .with(Comp_i128_46(criterion::black_box(5)))

373 .with(Comp_i128_47(criterion::black_box(5)))

374 .with(Comp_i128_48(criterion::black_box(5)))

375 .with(Comp_i128_49(criterion::black_box(5)))

376 .with(Comp_i128_50(criterion::black_box(5)))

101

377 .with(Comp_i128_51(criterion::black_box(5)))

378 .with(Comp_i128_52(criterion::black_box(5)))

379 .with(Comp_i128_53(criterion::black_box(5)))

380 .with(Comp_i128_54(criterion::black_box(5)))

381 .with(Comp_i128_55(criterion::black_box(5)))

382 .with(Comp_i128_56(criterion::black_box(5)))

383 .with(Comp_i128_57(criterion::black_box(5)))

384 .with(Comp_i128_58(criterion::black_box(5)))

385 .with(Comp_i128_59(criterion::black_box(5)))

386 .with(Comp_i128_60(criterion::black_box(5)))

387 .with(Comp_i128_61(criterion::black_box(5)))

388 .with(Comp_i128_62(criterion::black_box(5)))

389 .with(Comp_i128_63(criterion::black_box(5)))

390 .with(Comp_i128_64(criterion::black_box(5)))

391 .with(Comp_i128_65(criterion::black_box(5)))

392 .with(Comp_i128_66(criterion::black_box(5)))

393 .with(Comp_i128_67(criterion::black_box(5)))

394 .with(Comp_i128_68(criterion::black_box(5)))

395 .with(Comp_i128_69(criterion::black_box(5)))

396 .with(Comp_i128_70(criterion::black_box(5)))

397 .with(Comp_i128_71(criterion::black_box(5)))

398 .with(Comp_i128_72(criterion::black_box(5)))

399 .with(Comp_i128_73(criterion::black_box(5)))

400 .with(Comp_i128_74(criterion::black_box(5)))

401 .with(Comp_i128_75(criterion::black_box(5)))

402 .with(Comp_i128_76(criterion::black_box(5)))

403 .with(Comp_i128_77(criterion::black_box(5)))

404 .with(Comp_i128_78(criterion::black_box(5)))

102

405 .with(Comp_i128_79(criterion::black_box(5)))

406 .with(Comp_i128_80(criterion::black_box(5)))

407 .with(Comp_i128_81(criterion::black_box(5)))

408 .with(Comp_i128_82(criterion::black_box(5)))

409 .with(Comp_i128_83(criterion::black_box(5)))

410 .with(Comp_i128_84(criterion::black_box(5)))

411 .with(Comp_i128_85(criterion::black_box(5)))

412 .with(Comp_i128_86(criterion::black_box(5)))

413 .with(Comp_i128_87(criterion::black_box(5)))

414 .with(Comp_i128_88(criterion::black_box(5)))

415 .with(Comp_i128_89(criterion::black_box(5)))

416 .with(Comp_i128_90(criterion::black_box(5)))

417 .with(Comp_i128_91(criterion::black_box(5)))

418 .with(Comp_i128_92(criterion::black_box(5)))

419 .with(Comp_i128_93(criterion::black_box(5)))

420 .with(Comp_i128_94(criterion::black_box(5)))

421 .with(Comp_i128_95(criterion::black_box(5)))

422 .with(Comp_i128_96(criterion::black_box(5)))

423 .with(Comp_i128_97(criterion::black_box(5)))

424 .with(Comp_i128_98(criterion::black_box(5)))

425 .with(Comp_i128_99(criterion::black_box(5)))

426 .with(Comp_i128_100(criterion::black_box(5)))

427 .with(Comp_i128_101(criterion::black_box(5)))

428 .with(Comp_i128_102(criterion::black_box(5)))

429 .with(Comp_i128_103(criterion::black_box(5)))

430 .with(Comp_i128_104(criterion::black_box(5)))

431 .with(Comp_i128_105(criterion::black_box(5)))

432 .with(Comp_i128_106(criterion::black_box(5)))

103

433 .with(Comp_i128_107(criterion::black_box(5)))

434 .with(Comp_i128_108(criterion::black_box(5)))

435 .with(Comp_i128_109(criterion::black_box(5)))

436 .with(Comp_i128_110(criterion::black_box(5)))

437 .with(Comp_i128_111(criterion::black_box(5)))

438 .with(Comp_i128_112(criterion::black_box(5)))

439 .with(Comp_i128_113(criterion::black_box(5)))

440 .with(Comp_i128_114(criterion::black_box(5)))

441 .with(Comp_i128_115(criterion::black_box(5)))

442 .with(Comp_i128_116(criterion::black_box(5)))

443 .with(Comp_i128_117(criterion::black_box(5)))

444 .with(Comp_i128_118(criterion::black_box(5)))

445 .with(Comp_i128_119(criterion::black_box(5)))

446 .with(Comp_i128_120(criterion::black_box(5)))

447 .with(Comp_i128_121(criterion::black_box(5)))

448 .with(Comp_i128_122(criterion::black_box(5)))

449 .with(Comp_i128_123(criterion::black_box(5)))

450 .with(Comp_i128_124(criterion::black_box(5)))

451 .with(Comp_i128_125(criterion::black_box(5)))

452 .with(Comp_i128_126(criterion::black_box(5)))

453 .with(Comp_i128_127(criterion::black_box(5)))

454 .build();

455 }

456 }

457 _ => {}

458 }

459 return Ok(())

460 }

104

461

462 //Add systems to the dispatcher, set up threadcount

463 pub fn setup_dispatcher<’a, ’b>(size: i32)->Dispatcher<’a, ’b> {

464

465 let pool = Arc::from(rayon::ThreadPoolBuilder::new().num_threads(1).build().

unwrap());

466

467 match size {

468 128 => {

469 let dispatcher = DispatcherBuilder::new()

470 .with(Sys_128bit_0, "sys", &[])

471 .with_pool(pool)

472 .build();

473 return dispatcher;

474 }

475

476 _ => {

477 let dispatcher = DispatcherBuilder::new()

478 .with(Sys_256bit_0, "sys", &[])

479 .with_pool(pool)

480 .build();

481 return dispatcher;

482 }

483 }

484 }

Listing B.3: Experiment 1: DOD

2.4 DOD Components

105

1 use specs::prelude::*;

2

3 #[derive(Debug)]

4 #[allow(non_camel_case_types)]

5 pub struct Comp_i64_0(pub i64);

6 impl Component for Comp_i64_0 {

7 type Storage = DenseVecStorage<Self>;

8 }

9

10 #[derive(Debug)]

11 #[allow(non_camel_case_types)]

12 pub struct Comp_i64_1(pub i64);

13 impl Component for Comp_i64_1 {

14 type Storage = DenseVecStorage<Self>;

15 }

16

17 #[derive(Debug)]

18 #[allow(non_camel_case_types)]

19 pub struct Comp_i128_0(pub i128);

20 impl Component for Comp_i128_0 {

21 type Storage = DenseVecStorage<Self>;

22 }

23

24 #[derive(Debug)]

25 #[allow(non_camel_case_types)]

26 pub struct Comp_i128_1(pub i128);

27 impl Component for Comp_i128_1 {

28 type Storage = DenseVecStorage<Self>;

106

29 }

30

31 #[derive(Debug)]

32 #[allow(non_camel_case_types)]

33 pub struct Comp_i128_2(pub i128);

34 impl Component for Comp_i128_2 {

35 type Storage = DenseVecStorage<Self>;

36 }

37

38 #[derive(Debug)]

39 #[allow(non_camel_case_types)]

40 pub struct Comp_i128_3(pub i128);

41 impl Component for Comp_i128_3 {

42 type Storage = DenseVecStorage<Self>;

43 }

44

45 #[derive(Debug)]

46 #[allow(non_camel_case_types)]

47 pub struct Comp_i128_4(pub i128);

48 impl Component for Comp_i128_4 {

49 type Storage = DenseVecStorage<Self>;

50 }

51

52 #[derive(Debug)]

53 #[allow(non_camel_case_types)]

54 pub struct Comp_i128_5(pub i128);

55 impl Component for Comp_i128_5 {

56 type Storage = DenseVecStorage<Self>;

107

57 }

58

59 #[derive(Debug)]

60 #[allow(non_camel_case_types)]

61 pub struct Comp_i128_6(pub i128);

62 impl Component for Comp_i128_6 {

63 type Storage = DenseVecStorage<Self>;

64 }

65

66 #[derive(Debug)]

67 #[allow(non_camel_case_types)]

68 pub struct Comp_i128_7(pub i128);

69 impl Component for Comp_i128_7 {

70 type Storage = DenseVecStorage<Self>;

71 }

72

73 #[derive(Debug)]

74 #[allow(non_camel_case_types)]

75 pub struct Comp_i128_8(pub i128);

76 impl Component for Comp_i128_8 {

77 type Storage = DenseVecStorage<Self>;

78 }

79

80 #[derive(Debug)]

81 #[allow(non_camel_case_types)]

82 pub struct Comp_i128_9(pub i128);

83 impl Component for Comp_i128_9 {

84 type Storage = DenseVecStorage<Self>;

108

85 }

86

87 #[derive(Debug)]

88 #[allow(non_camel_case_types)]

89 pub struct Comp_i128_10(pub i128);

90 impl Component for Comp_i128_10 {

91 type Storage = DenseVecStorage<Self>;

92 }

93

94 #[derive(Debug)]

95 #[allow(non_camel_case_types)]

96 pub struct Comp_i128_11(pub i128);

97 impl Component for Comp_i128_11 {

98 type Storage = DenseVecStorage<Self>;

99 }

100

101 #[derive(Debug)]

102 #[allow(non_camel_case_types)]

103 pub struct Comp_i128_12(pub i128);

104 impl Component for Comp_i128_12 {

105 type Storage = DenseVecStorage<Self>;

106 }

107

108 #[derive(Debug)]

109 #[allow(non_camel_case_types)]

110 pub struct Comp_i128_13(pub i128);

111 impl Component for Comp_i128_13 {

112 type Storage = DenseVecStorage<Self>;

109

113 }

114

115 #[derive(Debug)]

116 #[allow(non_camel_case_types)]

117 pub struct Comp_i128_14(pub i128);

118 impl Component for Comp_i128_14 {

119 type Storage = DenseVecStorage<Self>;

120 }

121

122 #[derive(Debug)]

123 #[allow(non_camel_case_types)]

124 pub struct Comp_i128_15(pub i128);

125 impl Component for Comp_i128_15 {

126 type Storage = DenseVecStorage<Self>;

127 }

128

129 #[derive(Debug)]

130 #[allow(non_camel_case_types)]

131 pub struct Comp_i128_16(pub i128);

132 impl Component for Comp_i128_16 {

133 type Storage = DenseVecStorage<Self>;

134 }

135

136 #[derive(Debug)]

137 #[allow(non_camel_case_types)]

138 pub struct Comp_i128_17(pub i128);

139 impl Component for Comp_i128_17 {

140 type Storage = DenseVecStorage<Self>;

110

141 }

142

143 #[derive(Debug)]

144 #[allow(non_camel_case_types)]

145 pub struct Comp_i128_18(pub i128);

146 impl Component for Comp_i128_18 {

147 type Storage = DenseVecStorage<Self>;

148 }

149

150 #[derive(Debug)]

151 #[allow(non_camel_case_types)]

152 pub struct Comp_i128_19(pub i128);

153 impl Component for Comp_i128_19 {

154 type Storage = DenseVecStorage<Self>;

155 }

156

157 #[derive(Debug)]

158 #[allow(non_camel_case_types)]

159 pub struct Comp_i128_20(pub i128);

160 impl Component for Comp_i128_20 {

161 type Storage = DenseVecStorage<Self>;

162 }

163

164 #[derive(Debug)]

165 #[allow(non_camel_case_types)]

166 pub struct Comp_i128_21(pub i128);

167 impl Component for Comp_i128_21 {

168 type Storage = DenseVecStorage<Self>;

111

169 }

170

171 #[derive(Debug)]

172 #[allow(non_camel_case_types)]

173 pub struct Comp_i128_22(pub i128);

174 impl Component for Comp_i128_22 {

175 type Storage = DenseVecStorage<Self>;

176 }

177

178 #[derive(Debug)]

179 #[allow(non_camel_case_types)]

180 pub struct Comp_i128_23(pub i128);

181 impl Component for Comp_i128_23 {

182 type Storage = DenseVecStorage<Self>;

183 }

184

185 #[derive(Debug)]

186 #[allow(non_camel_case_types)]

187 pub struct Comp_i128_24(pub i128);

188 impl Component for Comp_i128_24 {

189 type Storage = DenseVecStorage<Self>;

190 }

191

192 #[derive(Debug)]

193 #[allow(non_camel_case_types)]

194 pub struct Comp_i128_25(pub i128);

195 impl Component for Comp_i128_25 {

196 type Storage = DenseVecStorage<Self>;

112

197 }

198

199 #[derive(Debug)]

200 #[allow(non_camel_case_types)]

201 pub struct Comp_i128_26(pub i128);

202 impl Component for Comp_i128_26 {

203 type Storage = DenseVecStorage<Self>;

204 }

205

206 #[derive(Debug)]

207 #[allow(non_camel_case_types)]

208 pub struct Comp_i128_27(pub i128);

209 impl Component for Comp_i128_27 {

210 type Storage = DenseVecStorage<Self>;

211 }

212

213 #[derive(Debug)]

214 #[allow(non_camel_case_types)]

215 pub struct Comp_i128_28(pub i128);

216 impl Component for Comp_i128_28 {

217 type Storage = DenseVecStorage<Self>;

218 }

219

220 #[derive(Debug)]

221 #[allow(non_camel_case_types)]

222 pub struct Comp_i128_29(pub i128);

223 impl Component for Comp_i128_29 {

224 type Storage = DenseVecStorage<Self>;

113

225 }

226

227 #[derive(Debug)]

228 #[allow(non_camel_case_types)]

229 pub struct Comp_i128_30(pub i128);

230 impl Component for Comp_i128_30 {

231 type Storage = DenseVecStorage<Self>;

232 }

233

234 #[derive(Debug)]

235 #[allow(non_camel_case_types)]

236 pub struct Comp_i128_31(pub i128);

237 impl Component for Comp_i128_31 {

238 type Storage = DenseVecStorage<Self>;

239 }

240

241 #[derive(Debug)]

242 #[allow(non_camel_case_types)]

243 pub struct Comp_i128_32(pub i128);

244 impl Component for Comp_i128_32 {

245 type Storage = DenseVecStorage<Self>;

246 }

247

248 #[derive(Debug)]

249 #[allow(non_camel_case_types)]

250 pub struct Comp_i128_33(pub i128);

251 impl Component for Comp_i128_33 {

252 type Storage = DenseVecStorage<Self>;

114

253 }

254

255 #[derive(Debug)]

256 #[allow(non_camel_case_types)]

257 pub struct Comp_i128_34(pub i128);

258 impl Component for Comp_i128_34 {

259 type Storage = DenseVecStorage<Self>;

260 }

261

262 #[derive(Debug)]

263 #[allow(non_camel_case_types)]

264 pub struct Comp_i128_35(pub i128);

265 impl Component for Comp_i128_35 {

266 type Storage = DenseVecStorage<Self>;

267 }

268

269 #[derive(Debug)]

270 #[allow(non_camel_case_types)]

271 pub struct Comp_i128_36(pub i128);

272 impl Component for Comp_i128_36 {

273 type Storage = DenseVecStorage<Self>;

274 }

275

276 #[derive(Debug)]

277 #[allow(non_camel_case_types)]

278 pub struct Comp_i128_37(pub i128);

279 impl Component for Comp_i128_37 {

280 type Storage = DenseVecStorage<Self>;

115

281 }

282

283 #[derive(Debug)]

284 #[allow(non_camel_case_types)]

285 pub struct Comp_i128_38(pub i128);

286 impl Component for Comp_i128_38 {

287 type Storage = DenseVecStorage<Self>;

288 }

289

290 #[derive(Debug)]

291 #[allow(non_camel_case_types)]

292 pub struct Comp_i128_39(pub i128);

293 impl Component for Comp_i128_39 {

294 type Storage = DenseVecStorage<Self>;

295 }

296

297 #[derive(Debug)]

298 #[allow(non_camel_case_types)]

299 pub struct Comp_i128_40(pub i128);

300 impl Component for Comp_i128_40 {

301 type Storage = DenseVecStorage<Self>;

302 }

303

304 #[derive(Debug)]

305 #[allow(non_camel_case_types)]

306 pub struct Comp_i128_41(pub i128);

307 impl Component for Comp_i128_41 {

308 type Storage = DenseVecStorage<Self>;

116

309 }

310

311 #[derive(Debug)]

312 #[allow(non_camel_case_types)]

313 pub struct Comp_i128_42(pub i128);

314 impl Component for Comp_i128_42 {

315 type Storage = DenseVecStorage<Self>;

316 }

317

318 #[derive(Debug)]

319 #[allow(non_camel_case_types)]

320 pub struct Comp_i128_43(pub i128);

321 impl Component for Comp_i128_43 {

322 type Storage = DenseVecStorage<Self>;

323 }

324

325 #[derive(Debug)]

326 #[allow(non_camel_case_types)]

327 pub struct Comp_i128_44(pub i128);

328 impl Component for Comp_i128_44 {

329 type Storage = DenseVecStorage<Self>;

330 }

331

332 #[derive(Debug)]

333 #[allow(non_camel_case_types)]

334 pub struct Comp_i128_45(pub i128);

335 impl Component for Comp_i128_45 {

336 type Storage = DenseVecStorage<Self>;

117

337 }

338

339 #[derive(Debug)]

340 #[allow(non_camel_case_types)]

341 pub struct Comp_i128_46(pub i128);

342 impl Component for Comp_i128_46 {

343 type Storage = DenseVecStorage<Self>;

344 }

345

346 #[derive(Debug)]

347 #[allow(non_camel_case_types)]

348 pub struct Comp_i128_47(pub i128);

349 impl Component for Comp_i128_47 {

350 type Storage = DenseVecStorage<Self>;

351 }

352

353 #[derive(Debug)]

354 #[allow(non_camel_case_types)]

355 pub struct Comp_i128_48(pub i128);

356 impl Component for Comp_i128_48 {

357 type Storage = DenseVecStorage<Self>;

358 }

359

360 #[derive(Debug)]

361 #[allow(non_camel_case_types)]

362 pub struct Comp_i128_49(pub i128);

363 impl Component for Comp_i128_49 {

364 type Storage = DenseVecStorage<Self>;

118

365 }

366

367 #[derive(Debug)]

368 #[allow(non_camel_case_types)]

369 pub struct Comp_i128_50(pub i128);

370 impl Component for Comp_i128_50 {

371 type Storage = DenseVecStorage<Self>;

372 }

373

374 #[derive(Debug)]

375 #[allow(non_camel_case_types)]

376 pub struct Comp_i128_51(pub i128);

377 impl Component for Comp_i128_51 {

378 type Storage = DenseVecStorage<Self>;

379 }

380

381 #[derive(Debug)]

382 #[allow(non_camel_case_types)]

383 pub struct Comp_i128_52(pub i128);

384 impl Component for Comp_i128_52 {

385 type Storage = DenseVecStorage<Self>;

386 }

387

388 #[derive(Debug)]

389 #[allow(non_camel_case_types)]

390 pub struct Comp_i128_53(pub i128);

391 impl Component for Comp_i128_53 {

392 type Storage = DenseVecStorage<Self>;

119

393 }

394

395 #[derive(Debug)]

396 #[allow(non_camel_case_types)]

397 pub struct Comp_i128_54(pub i128);

398 impl Component for Comp_i128_54 {

399 type Storage = DenseVecStorage<Self>;

400 }

401

402 #[derive(Debug)]

403 #[allow(non_camel_case_types)]

404 pub struct Comp_i128_55(pub i128);

405 impl Component for Comp_i128_55 {

406 type Storage = DenseVecStorage<Self>;

407 }

408

409 #[derive(Debug)]

410 #[allow(non_camel_case_types)]

411 pub struct Comp_i128_56(pub i128);

412 impl Component for Comp_i128_56 {

413 type Storage = DenseVecStorage<Self>;

414 }

415

416 #[derive(Debug)]

417 #[allow(non_camel_case_types)]

418 pub struct Comp_i128_57(pub i128);

419 impl Component for Comp_i128_57 {

420 type Storage = DenseVecStorage<Self>;

120

421 }

422

423 #[derive(Debug)]

424 #[allow(non_camel_case_types)]

425 pub struct Comp_i128_58(pub i128);

426 impl Component for Comp_i128_58 {

427 type Storage = DenseVecStorage<Self>;

428 }

429

430 #[derive(Debug)]

431 #[allow(non_camel_case_types)]

432 pub struct Comp_i128_59(pub i128);

433 impl Component for Comp_i128_59 {

434 type Storage = DenseVecStorage<Self>;

435 }

436

437 #[derive(Debug)]

438 #[allow(non_camel_case_types)]

439 pub struct Comp_i128_60(pub i128);

440 impl Component for Comp_i128_60 {

441 type Storage = DenseVecStorage<Self>;

442 }

443

444 #[derive(Debug)]

445 #[allow(non_camel_case_types)]

446 pub struct Comp_i128_61(pub i128);

447 impl Component for Comp_i128_61 {

448 type Storage = DenseVecStorage<Self>;

121

449 }

450

451 #[derive(Debug)]

452 #[allow(non_camel_case_types)]

453 pub struct Comp_i128_62(pub i128);

454 impl Component for Comp_i128_62 {

455 type Storage = DenseVecStorage<Self>;

456 }

457

458 #[derive(Debug)]

459 #[allow(non_camel_case_types)]

460 pub struct Comp_i128_63(pub i128);

461 impl Component for Comp_i128_63 {

462 type Storage = DenseVecStorage<Self>;

463 }

464

465 #[derive(Debug)]

466 #[allow(non_camel_case_types)]

467 pub struct Comp_i128_64(pub i128);

468 impl Component for Comp_i128_64{

469 type Storage = DenseVecStorage<Self>;

470 }

471

472 #[derive(Debug)]

473 #[allow(non_camel_case_types)]

474 pub struct Comp_i128_65(pub i128);

475 impl Component for Comp_i128_65{

476 type Storage = DenseVecStorage<Self>;

122

477 }

478

479 #[derive(Debug)]

480 #[allow(non_camel_case_types)]

481 pub struct Comp_i128_66(pub i128);

482 impl Component for Comp_i128_66{

483 type Storage = DenseVecStorage<Self>;

484 }

485

486 #[derive(Debug)]

487 #[allow(non_camel_case_types)]

488 pub struct Comp_i128_67(pub i128);

489 impl Component for Comp_i128_67{

490 type Storage = DenseVecStorage<Self>;

491 }

492

493 #[derive(Debug)]

494 #[allow(non_camel_case_types)]

495 pub struct Comp_i128_68(pub i128);

496 impl Component for Comp_i128_68{

497 type Storage = DenseVecStorage<Self>;

498 }

499

500 #[derive(Debug)]

501 #[allow(non_camel_case_types)]

502 pub struct Comp_i128_69(pub i128);

503 impl Component for Comp_i128_69{

504 type Storage = DenseVecStorage<Self>;

123

505 }

506

507 #[derive(Debug)]

508 #[allow(non_camel_case_types)]

509 pub struct Comp_i128_70(pub i128);

510 impl Component for Comp_i128_70{

511 type Storage = DenseVecStorage<Self>;

512 }

513

514 #[derive(Debug)]

515 #[allow(non_camel_case_types)]

516 pub struct Comp_i128_71(pub i128);

517 impl Component for Comp_i128_71{

518 type Storage = DenseVecStorage<Self>;

519 }

520

521 #[derive(Debug)]

522 #[allow(non_camel_case_types)]

523 pub struct Comp_i128_72(pub i128);

524 impl Component for Comp_i128_72{

525 type Storage = DenseVecStorage<Self>;

526 }

527

528 #[derive(Debug)]

529 #[allow(non_camel_case_types)]

530 pub struct Comp_i128_73(pub i128);

531 impl Component for Comp_i128_73{

532 type Storage = DenseVecStorage<Self>;

124

533 }

534

535 #[derive(Debug)]

536 #[allow(non_camel_case_types)]

537 pub struct Comp_i128_74(pub i128);

538 impl Component for Comp_i128_74{

539 type Storage = DenseVecStorage<Self>;

540 }

541

542 #[derive(Debug)]

543 #[allow(non_camel_case_types)]

544 pub struct Comp_i128_75(pub i128);

545 impl Component for Comp_i128_75{

546 type Storage = DenseVecStorage<Self>;

547 }

548

549 #[derive(Debug)]

550 #[allow(non_camel_case_types)]

551 pub struct Comp_i128_76(pub i128);

552 impl Component for Comp_i128_76{

553 type Storage = DenseVecStorage<Self>;

554 }

555

556 #[derive(Debug)]

557 #[allow(non_camel_case_types)]

558 pub struct Comp_i128_77(pub i128);

559 impl Component for Comp_i128_77{

560 type Storage = DenseVecStorage<Self>;

125

561 }

562

563 #[derive(Debug)]

564 #[allow(non_camel_case_types)]

565 pub struct Comp_i128_78(pub i128);

566 impl Component for Comp_i128_78{

567 type Storage = DenseVecStorage<Self>;

568 }

569

570 #[derive(Debug)]

571 #[allow(non_camel_case_types)]

572 pub struct Comp_i128_79(pub i128);

573 impl Component for Comp_i128_79{

574 type Storage = DenseVecStorage<Self>;

575 }

576

577 #[derive(Debug)]

578 #[allow(non_camel_case_types)]

579 pub struct Comp_i128_80(pub i128);

580 impl Component for Comp_i128_80{

581 type Storage = DenseVecStorage<Self>;

582 }

583

584 #[derive(Debug)]

585 #[allow(non_camel_case_types)]

586 pub struct Comp_i128_81(pub i128);

587 impl Component for Comp_i128_81{

588 type Storage = DenseVecStorage<Self>;

126

589 }

590

591 #[derive(Debug)]

592 #[allow(non_camel_case_types)]

593 pub struct Comp_i128_82(pub i128);

594 impl Component for Comp_i128_82{

595 type Storage = DenseVecStorage<Self>;

596 }

597

598 #[derive(Debug)]

599 #[allow(non_camel_case_types)]

600 pub struct Comp_i128_83(pub i128);

601 impl Component for Comp_i128_83{

602 type Storage = DenseVecStorage<Self>;

603 }

604

605 #[derive(Debug)]

606 #[allow(non_camel_case_types)]

607 pub struct Comp_i128_84(pub i128);

608 impl Component for Comp_i128_84{

609 type Storage = DenseVecStorage<Self>;

610 }

611

612 #[derive(Debug)]

613 #[allow(non_camel_case_types)]

614 pub struct Comp_i128_85(pub i128);

615 impl Component for Comp_i128_85{

616 type Storage = DenseVecStorage<Self>;

127

617 }

618

619 #[derive(Debug)]

620 #[allow(non_camel_case_types)]

621 pub struct Comp_i128_86(pub i128);

622 impl Component for Comp_i128_86{

623 type Storage = DenseVecStorage<Self>;

624 }

625

626 #[derive(Debug)]

627 #[allow(non_camel_case_types)]

628 pub struct Comp_i128_87(pub i128);

629 impl Component for Comp_i128_87{

630 type Storage = DenseVecStorage<Self>;

631 }

632

633 #[derive(Debug)]

634 #[allow(non_camel_case_types)]

635 pub struct Comp_i128_88(pub i128);

636 impl Component for Comp_i128_88{

637 type Storage = DenseVecStorage<Self>;

638 }

639

640 #[derive(Debug)]

641 #[allow(non_camel_case_types)]

642 pub struct Comp_i128_89(pub i128);

643 impl Component for Comp_i128_89{

644 type Storage = DenseVecStorage<Self>;

128

645 }

646

647 #[derive(Debug)]

648 #[allow(non_camel_case_types)]

649 pub struct Comp_i128_90(pub i128);

650 impl Component for Comp_i128_90{

651 type Storage = DenseVecStorage<Self>;

652 }

653

654 #[derive(Debug)]

655 #[allow(non_camel_case_types)]

656 pub struct Comp_i128_91(pub i128);

657 impl Component for Comp_i128_91{

658 type Storage = DenseVecStorage<Self>;

659 }

660

661 #[derive(Debug)]

662 #[allow(non_camel_case_types)]

663 pub struct Comp_i128_92(pub i128);

664 impl Component for Comp_i128_92{

665 type Storage = DenseVecStorage<Self>;

666 }

667

668 #[derive(Debug)]

669 #[allow(non_camel_case_types)]

670 pub struct Comp_i128_93(pub i128);

671 impl Component for Comp_i128_93{

672 type Storage = DenseVecStorage<Self>;

129

673 }

674

675 #[derive(Debug)]

676 #[allow(non_camel_case_types)]

677 pub struct Comp_i128_94(pub i128);

678 impl Component for Comp_i128_94{

679 type Storage = DenseVecStorage<Self>;

680 }

681

682 #[derive(Debug)]

683 #[allow(non_camel_case_types)]

684 pub struct Comp_i128_95(pub i128);

685 impl Component for Comp_i128_95{

686 type Storage = DenseVecStorage<Self>;

687 }

688

689 #[derive(Debug)]

690 #[allow(non_camel_case_types)]

691 pub struct Comp_i128_96(pub i128);

692 impl Component for Comp_i128_96{

693 type Storage = DenseVecStorage<Self>;

694 }

695

696 #[derive(Debug)]

697 #[allow(non_camel_case_types)]

698 pub struct Comp_i128_97(pub i128);

699 impl Component for Comp_i128_97{

700 type Storage = DenseVecStorage<Self>;

130

701 }

702

703 #[derive(Debug)]

704 #[allow(non_camel_case_types)]

705 pub struct Comp_i128_98(pub i128);

706 impl Component for Comp_i128_98{

707 type Storage = DenseVecStorage<Self>;

708 }

709

710 #[derive(Debug)]

711 #[allow(non_camel_case_types)]

712 pub struct Comp_i128_99(pub i128);

713 impl Component for Comp_i128_99{

714 type Storage = DenseVecStorage<Self>;

715 }

716

717 #[derive(Debug)]

718 #[allow(non_camel_case_types)]

719 pub struct Comp_i128_100(pub i128);

720 impl Component for Comp_i128_100{

721 type Storage = DenseVecStorage<Self>;

722 }

723

724 #[derive(Debug)]

725 #[allow(non_camel_case_types)]

726 pub struct Comp_i128_101(pub i128);

727 impl Component for Comp_i128_101{

728 type Storage = DenseVecStorage<Self>;

131

729 }

730

731 #[derive(Debug)]

732 #[allow(non_camel_case_types)]

733 pub struct Comp_i128_102(pub i128);

734 impl Component for Comp_i128_102{

735 type Storage = DenseVecStorage<Self>;

736 }

737

738 #[derive(Debug)]

739 #[allow(non_camel_case_types)]

740 pub struct Comp_i128_103(pub i128);

741 impl Component for Comp_i128_103{

742 type Storage = DenseVecStorage<Self>;

743 }

744

745 #[derive(Debug)]

746 #[allow(non_camel_case_types)]

747 pub struct Comp_i128_104(pub i128);

748 impl Component for Comp_i128_104{

749 type Storage = DenseVecStorage<Self>;

750 }

751

752 #[derive(Debug)]

753 #[allow(non_camel_case_types)]

754 pub struct Comp_i128_105(pub i128);

755 impl Component for Comp_i128_105{

756 type Storage = DenseVecStorage<Self>;

132

757 }

758

759 #[derive(Debug)]

760 #[allow(non_camel_case_types)]

761 pub struct Comp_i128_106(pub i128);

762 impl Component for Comp_i128_106{

763 type Storage = DenseVecStorage<Self>;

764 }

765

766 #[derive(Debug)]

767 #[allow(non_camel_case_types)]

768 pub struct Comp_i128_107(pub i128);

769 impl Component for Comp_i128_107{

770 type Storage = DenseVecStorage<Self>;

771 }

772

773 #[derive(Debug)]

774 #[allow(non_camel_case_types)]

775 pub struct Comp_i128_108(pub i128);

776 impl Component for Comp_i128_108{

777 type Storage = DenseVecStorage<Self>;

778 }

779

780 #[derive(Debug)]

781 #[allow(non_camel_case_types)]

782 pub struct Comp_i128_109(pub i128);

783 impl Component for Comp_i128_109{

784 type Storage = DenseVecStorage<Self>;

133

785 }

786

787 #[derive(Debug)]

788 #[allow(non_camel_case_types)]

789 pub struct Comp_i128_110(pub i128);

790 impl Component for Comp_i128_110{

791 type Storage = DenseVecStorage<Self>;

792 }

793

794 #[derive(Debug)]

795 #[allow(non_camel_case_types)]

796 pub struct Comp_i128_111(pub i128);

797 impl Component for Comp_i128_111{

798 type Storage = DenseVecStorage<Self>;

799 }

800

801 #[derive(Debug)]

802 #[allow(non_camel_case_types)]

803 pub struct Comp_i128_112(pub i128);

804 impl Component for Comp_i128_112{

805 type Storage = DenseVecStorage<Self>;

806 }

807

808 #[derive(Debug)]

809 #[allow(non_camel_case_types)]

810 pub struct Comp_i128_113(pub i128);

811 impl Component for Comp_i128_113{

812 type Storage = DenseVecStorage<Self>;

134

813 }

814

815 #[derive(Debug)]

816 #[allow(non_camel_case_types)]

817 pub struct Comp_i128_114(pub i128);

818 impl Component for Comp_i128_114{

819 type Storage = DenseVecStorage<Self>;

820 }

821

822 #[derive(Debug)]

823 #[allow(non_camel_case_types)]

824 pub struct Comp_i128_115(pub i128);

825 impl Component for Comp_i128_115{

826 type Storage = DenseVecStorage<Self>;

827 }

828

829 #[derive(Debug)]

830 #[allow(non_camel_case_types)]

831 pub struct Comp_i128_116(pub i128);

832 impl Component for Comp_i128_116{

833 type Storage = DenseVecStorage<Self>;

834 }

835

836 #[derive(Debug)]

837 #[allow(non_camel_case_types)]

838 pub struct Comp_i128_117(pub i128);

839 impl Component for Comp_i128_117{

840 type Storage = DenseVecStorage<Self>;

135

841 }

842

843 #[derive(Debug)]

844 #[allow(non_camel_case_types)]

845 pub struct Comp_i128_118(pub i128);

846 impl Component for Comp_i128_118{

847 type Storage = DenseVecStorage<Self>;

848 }

849

850 #[derive(Debug)]

851 #[allow(non_camel_case_types)]

852 pub struct Comp_i128_119(pub i128);

853 impl Component for Comp_i128_119{

854 type Storage = DenseVecStorage<Self>;

855 }

856

857 #[derive(Debug)]

858 #[allow(non_camel_case_types)]

859 pub struct Comp_i128_120(pub i128);

860 impl Component for Comp_i128_120{

861 type Storage = DenseVecStorage<Self>;

862 }

863

864 #[derive(Debug)]

865 #[allow(non_camel_case_types)]

866 pub struct Comp_i128_121(pub i128);

867 impl Component for Comp_i128_121{

868 type Storage = DenseVecStorage<Self>;

136

869 }

870

871 #[derive(Debug)]

872 #[allow(non_camel_case_types)]

873 pub struct Comp_i128_122(pub i128);

874 impl Component for Comp_i128_122{

875 type Storage = DenseVecStorage<Self>;

876 }

877

878 #[derive(Debug)]

879 #[allow(non_camel_case_types)]

880 pub struct Comp_i128_123(pub i128);

881 impl Component for Comp_i128_123{

882 type Storage = DenseVecStorage<Self>;

883 }

884

885 #[derive(Debug)]

886 #[allow(non_camel_case_types)]

887 pub struct Comp_i128_124(pub i128);

888 impl Component for Comp_i128_124{

889 type Storage = DenseVecStorage<Self>;

890 }

891

892 #[derive(Debug)]

893 #[allow(non_camel_case_types)]

894 pub struct Comp_i128_125(pub i128);

895 impl Component for Comp_i128_125{

896 type Storage = DenseVecStorage<Self>;

137

897 }

898

899 #[derive(Debug)]

900 #[allow(non_camel_case_types)]

901 pub struct Comp_i128_126(pub i128);

902 impl Component for Comp_i128_126{

903 type Storage = DenseVecStorage<Self>;

904 }

905

906 #[derive(Debug)]

907 #[allow(non_camel_case_types)]

908 pub struct Comp_i128_127(pub i128);

909 impl Component for Comp_i128_127{

910 type Storage = DenseVecStorage<Self>;

911 }

Listing B.4: Experiment 1: DOD Components

2.5 DOD Systems

1 use specs::prelude::*;

2 use specs::Join;

3 use super::dod_component::*;

4

5 #[derive(Debug)]

6 #[allow(non_camel_case_types)]

7 pub struct Sys_128bit_0;

8 impl<’a> System<’a> for Sys_128bit_0 {

9

10 type SystemData = (WriteStorage<’a, Comp_i64_0>, ReadStorage<’a, Comp_i64_1

138

>);

11

12 fn run(&mut self, (mut x, y): Self::SystemData) {

13 for (x, y) in (&mut x, &y).join() {

14 x.0 += y.0;

15 }

16 }

17 }

18

19 #[derive(Debug)]

20 #[allow(non_camel_case_types)]

21 pub struct Sys_256bit_0;

22 impl<’a> System<’a> for Sys_256bit_0 {

23

24 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>);

25

26 fn run(&mut self, (mut x, y): Self::SystemData) {

27 for (x, y) in (&mut x, &y).join() {

28 x.0 += y.0;

29 }

30 }

31 }

Listing B.5: Experiment 1: DOD Systems

2.6 OOP

1 use rayon::iter::IntoParallelRefMutIterator;

2 use rayon::*;

139

3 use std::sync::{Arc, RwLock};

4 use super::oop_obj::*;

5 pub type ThreadPoolWrapper = Option<::std::sync::Arc<::rayon::ThreadPool>>;

6

7 //Responsible for spawning the objects for the experiment

8 pub fn obj_setup<T: Exp1>()-> Vec<T> {

9

10 let mut vec: Vec<T> = Vec::new();

11 for _ in 0..5000 {

12 let tmp = T::new(criterion::black_box(5));

13 vec.push(tmp);

14 }

15

16 return vec;

17 }

18

19 //Struct to imitate the World in ECS Architecture

20 //Stages are set up to match that of the ECS World

21 pub struct OOPWorld<T: Exp1> {

22 stages: Vec<Stage<T>>,

23 pool: Arc<RwLock<ThreadPoolWrapper>>

24 }

25 impl <T: Exp1> OOPWorld <T> {

26 pub fn new(vec: Vec<T>, thread_count: usize)->OOPWorld<T>{

27 let pool: ThreadPoolWrapper = Some(Arc::from(

28 ThreadPoolBuilder::new().num_threads(thread_count).build().unwrap())

);

29 let pool: Arc<RwLock<ThreadPoolWrapper>> = Arc::from(RwLock::from(pool))

140

;

30

31 let stage: Stage<T> = Stage::new(vec);

32 let mut stages: Vec<Stage<T>> = Vec::new();

33 stages.push(stage);

34

35 return OOPWorld{

36 stages,

37 pool

38 };

39 }

40

41 //Executes all methods in the same manner as the ECS Architecture

42 pub fn execute(&mut self){

43 let stages = &mut self.stages;

44 self.pool

45 .read()

46 .unwrap()

47 .as_ref()

48 .unwrap()

49 .install(move || {

50 for stage in stages {

51 stage.execute();

52 }

53 });

54 }

55 }

56

141

57 //Struct to imitate the Stage in ECS Architecture

58 struct Stage<T: Exp1> {

59 groups: Vec<Vec<T>>

60 }

61 impl <T: Exp1> Stage <T> {

62 fn new(vec: Vec<T>)-> Stage<T> {

63

64 let mut groups: Vec<Vec<T>> = Vec::new();

65 groups.push(vec);

66

67 return Stage {

68 groups

69 };

70 }

71 fn execute(&mut self) {

72 use rayon::iter::ParallelIterator;

73 self.groups.par_iter_mut().for_each(|group| {

74 for obj in group {

75 obj.run();

76 }

77 })

78 }

79 }

Listing B.6: Experiment 1: OOP

2.7 OOP Objects

1 pub trait Exp1: Send {

2 fn run(&mut self);

142

3 fn new(val: i128)->Self;

4 }

5

6 pub struct Obj128(pub i64, pub i64);

7 impl Exp1 for Obj128 {

8 fn run(&mut self) {

9 self.0 += self.1;

10 }

11 fn new(val: i128)->Self {

12 let val= val as i64;

13 return Obj128(val,val);

14 }

15 }

16

17 pub struct Obj256(pub i128, pub i128);

18 impl Exp1 for Obj256 {

19 fn run(&mut self) {

20 self.0 += self.1;

21 }

22 fn new(val: i128)->Self {

23 return Obj256(val,val);

24 }

25 }

26

27 pub struct Obj512(pub i128, pub i128, pub i128, pub i128);

28 impl Exp1 for Obj512 {

29 fn run(&mut self) {

30 self.0 += self.3;

143

31 }

32 fn new(val: i128)->Self {

33 return Obj512(val,val,val,val);

34 }

35 }

36

37 pub struct Obj1024(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

38 impl Exp1 for Obj1024 {

39 fn run(&mut self) {

40 self.0 += self.7;

41 }

42 fn new(val: i128)->Self{

43 return Obj1024(val,val,val,val,val,val,val,val);

44 }

45 }

46

47 pub struct Obj2048(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

48 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

49 impl Exp1 for Obj2048 {

50 fn run(&mut self) {self.0 += self.15; }

51 fn new(val: i128)->Self {

52 return Obj2048(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

53 }

54 }

144

55

56 pub struct Obj4096(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

57 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

58 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

59 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

60 impl Exp1 for Obj4096 {

61 fn run(&mut self) {self.0 += self.31; }

62 fn new(val:i128)-> Self {

63 return Obj4096(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

64 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

65 }

66 }

67

68 pub struct Obj8192(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

69 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

70 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

71 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

72 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

145

pub i128, pub i128,

73 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

74 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

75 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

76 impl Exp1 for Obj8192 {

77 fn run(&mut self) {self.0 += self.63; }

78 fn new(val:i128)-> Self {

79 return Obj8192(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

80 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

81 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

82 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

83 }

84 }

85

86 pub struct Obj16384(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

87 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

88 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

89 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

146

pub i128, pub i128,

90 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

91 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

92 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

93 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

94 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

95 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

96 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

97 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

98 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

99 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

100 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

101 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

102 impl Exp1 for Obj16384 {

103 fn run(&mut self) {self.0 += self.127; }

104 fn new(val:i128)-> Self {

147

105 return Obj16384(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

106 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

107 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

108 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

109 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

110 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

111 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

112 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

113 }

114 }

Listing B.7: Experiment 1: OOP Objects

148

Appendix C. Experiment Two Code

3.1 Benchmark

1 use criterion::{criterion_group, criterion_main, Criterion};

2 use std::time::Duration;

3 use specs::prelude::*;

4 use thesis_experimentation::exp2::dod::*;

5 use thesis_experimentation::exp2::oop::*;

6 use thesis_experimentation::exp2::oop_obj::*;

7

8 #[inline]

9 fn dod_dispatch(d: &mut Dispatcher, mut w: &mut World) {

10 d.dispatch_par(&mut w);

11 }

12

13 #[inline]

14 fn oop_dispatch<T: Exp2>(world: &mut OOPWorld<T>) { world.execute(); }

15

16 pub fn dod_criterion_benchmark(c: &mut Criterion) {

17 let mut group = c.benchmark_group("dod_exp2");

18 group.warm_up_time(Duration::from_secs(5));

19 group.sample_size(100);

20 group.nresamples(100);

21

22 let entity_count = vec![10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000,

6000, 7000, 8000, 9000, 10000];

23

24 entity_count.iter().for_each(|count|{

149

25 let mut world = World::new();

26 setup_component(&mut world).unwrap();

27 setup_entity(*count, &mut world).unwrap();

28 let mut dispatcher = setup_dispatcher();

29

30 dispatcher.setup(&mut world);

31

32 let mut bench_name = String::from("dod_exp2_entity_count_");

33 let i = count.to_string();

34 bench_name.push_str(&i);

35

36 group.bench_function(bench_name.as_str(), |b| b.iter(|| dod_dispatch(&

mut dispatcher, &mut world)));

37 });

38 }

39

40 fn oop_criterion_benchmark(c: &mut Criterion) {

41 let mut group = c.benchmark_group("oop_exp2");

42 group.warm_up_time(Duration::from_secs(5));

43 group.sample_size(100);

44 group.nresamples(100);

45

46 let entity_count = vec![10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000,

6000, 7000, 8000, 9000, 10000];

47

48 entity_count.iter().for_each(|count|{

49 let vec = obj_setup::<Obj1024>(*count);

50 let mut world = OOPWorld::new(vec, 1);

150

51

52 let mut bench_name = String::from("oop_exp2_entity_count_");

53 let i = count.to_string();

54 bench_name.push_str(&i);

55

56 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

57 });

58 }

59

60 criterion_group!(dod_exp2, dod_criterion_benchmark);

61 criterion_group!(oop_exp2, oop_criterion_benchmark);

62 criterion_main!(dod_exp2, oop_exp2);

Listing C.1: Experiment 2: Benchmark

3.2 Modules

1 pub mod dod;

2 pub mod oop;

3 pub mod oop_obj;

4 pub mod dod_system;

5 pub mod dod_component;

Listing C.2: Experiment 2: Modules

3.3 DOD

1 use specs::{World, WorldExt, Builder, Dispatcher, DispatcherBuilder};

2 use std::io;

3 use super::dod_component::*;

151

4 use super::dod_system::*;

5 use std::sync::Arc;

6

7 pub fn setup_component(world: &mut World) -> io::Result<()> {

8 world.register::<Comp_i128_0>();

9 world.register::<Comp_i128_1>();

10 world.register::<Comp_i128_2>();

11 world.register::<Comp_i128_3>();

12 world.register::<Comp_i128_4>();

13 world.register::<Comp_i128_5>();

14 world.register::<Comp_i128_6>();

15 world.register::<Comp_i128_7>();

16 return Ok(());

17 }

18

19 pub fn setup_entity(entity_count: i32, world: &mut World) -> io::Result<()> {

20 for _ in 0..entity_count {

21 world.create_entity()

22 .with(Comp_i128_0(criterion::black_box(5)))

23 .with(Comp_i128_1(criterion::black_box(5)))

24 .with(Comp_i128_2(criterion::black_box(5)))

25 .with(Comp_i128_3(criterion::black_box(5)))

26 .with(Comp_i128_4(criterion::black_box(5)))

27 .with(Comp_i128_5(criterion::black_box(5)))

28 .with(Comp_i128_6(criterion::black_box(5)))

29 .with(Comp_i128_7(criterion::black_box(5)))

30 .build();

31 }

152

32

33 return Ok(());

34 }

35

36 pub fn setup_dispatcher<’a, ’b>()->Dispatcher<’a, ’b> {

37

38 let pool = Arc::from(rayon::ThreadPoolBuilder::new().num_threads(1).build().

unwrap());

39 let dispatcher = DispatcherBuilder::new()

40 .with_pool(pool)

41 .with(Sys_256bit_0, "sys", &[])

42 .build();

43

44 return dispatcher

45 }

Listing C.3: Experiment 2: DOD

3.4 DOD Components

1 use specs::prelude::*;

2

3 #[derive(Debug)]

4 #[allow(non_camel_case_types)]

5 pub struct Comp_i128_0(pub i128);

6 impl Component for Comp_i128_0 {

7 type Storage = DenseVecStorage<Self>;

8 }

9

10 #[derive(Debug)]

153

11 #[allow(non_camel_case_types)]

12 pub struct Comp_i128_1(pub i128);

13 impl Component for Comp_i128_1 {

14 type Storage = DenseVecStorage<Self>;

15 }

16

17 #[derive(Debug)]

18 #[allow(non_camel_case_types)]

19 pub struct Comp_i128_2(pub i128);

20 impl Component for Comp_i128_2 {

21 type Storage = DenseVecStorage<Self>;

22 }

23

24 #[derive(Debug)]

25 #[allow(non_camel_case_types)]

26 pub struct Comp_i128_3(pub i128);

27 impl Component for Comp_i128_3 {

28 type Storage = DenseVecStorage<Self>;

29 }

30

31 #[derive(Debug)]

32 #[allow(non_camel_case_types)]

33 pub struct Comp_i128_4(pub i128);

34 impl Component for Comp_i128_4 {

35 type Storage = DenseVecStorage<Self>;

36 }

37

38 #[derive(Debug)]

154

39 #[allow(non_camel_case_types)]

40 pub struct Comp_i128_5(pub i128);

41 impl Component for Comp_i128_5 {

42 type Storage = DenseVecStorage<Self>;

43 }

44

45 #[derive(Debug)]

46 #[allow(non_camel_case_types)]

47 pub struct Comp_i128_6(pub i128);

48 impl Component for Comp_i128_6 {

49 type Storage = DenseVecStorage<Self>;

50 }

51

52 #[derive(Debug)]

53 #[allow(non_camel_case_types)]

54 pub struct Comp_i128_7(pub i128);

55 impl Component for Comp_i128_7 {

56 type Storage = DenseVecStorage<Self>;

57 }

Listing C.4: Experiment 2: DOD Components

3.5 DOD Systems

1 use specs::prelude::*;

2 use super::dod_component::*;

3

4 #[derive(Debug)]

5 #[allow(non_camel_case_types)]

6 pub struct Sys_256bit_0;

155

7 impl<’a> System<’a> for Sys_256bit_0 {

8

9 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>);

10

11 fn run(&mut self, (mut x, y): Self::SystemData) {

12 for (x, y) in (&mut x, &y).join() {

13 x.0 += y.0;

14 }

15 }

16 }

Listing C.5: Experiment 2: DOD Systems

3.6 OOP

1 use std::sync::{Arc, RwLock};

2 use rayon::*;

3 use rayon::iter::IntoParallelRefMutIterator;

4 use crate::exp2::oop_obj::*;

5

6 type ThreadPoolWrapper = Option<::std::sync::Arc<::rayon::ThreadPool>>;

7

8 pub fn obj_setup<T: Exp2>(entity_count: i32)-> Vec<T> {

9

10 let mut vec: Vec<T> = Vec::new();

11 for _ in 0..entity_count {

12 let tmp = T::new(criterion::black_box(5));

13 vec.push(tmp);

14 }

156

15

16 return vec;

17 }

18

19 //--

20 pub struct OOPWorld<T: Exp2> {

21 stages: Vec<Stage<T>>,

22 pool: Arc<RwLock<ThreadPoolWrapper>>

23 }

24

25 impl <T: Exp2> OOPWorld <T> {

26 pub fn new(vec: Vec<T>, thread_count: usize)->OOPWorld<T>{

27 let pool: ThreadPoolWrapper = Some(Arc::from(ThreadPoolBuilder::new().

num_threads(thread_count).build().unwrap()));

28 let pool: Arc<RwLock<ThreadPoolWrapper>> = Arc::from(RwLock::from(pool))

;

29

30 let stage: Stage<T> = Stage::new(vec);

31 let mut stages: Vec<Stage<T>> = Vec::new();

32 stages.push(stage);

33

34 return OOPWorld{

35 stages,

36 pool

37 };

38 }

39

40 pub fn execute(&mut self){

157

41 let stages = &mut self.stages;

42 self.pool

43 .read()

44 .unwrap()

45 .as_ref()

46 .unwrap()

47 .install(move || {

48 for stage in stages {

49 stage.execute();

50 }

51 });

52 }

53 }

54

55 //--

56

57 struct Stage<T: Exp2> {

58 groups: Vec<Vec<T>>

59 }

60

61 impl <T: Exp2> Stage <T> {

62 fn new(vec: Vec<T>)-> Stage<T> {

63

64 let mut groups: Vec<Vec<T>> = Vec::new();

65 groups.push(vec);

66

67 return Stage {

68 groups

158

69 };

70 }

71

72 fn execute(&mut self) {

73 use rayon::iter::ParallelIterator;

74 self.groups.par_iter_mut().for_each(|group| {

75 for obj in group {

76 obj.run();

77 }

78 })

79 }

80 }

Listing C.6: Experiment 2: OOP

3.7 OOP Objects

1 pub trait Exp2: Send {

2 fn run(&mut self);

3 fn new(val: i128)->Self;

4 }

5

6 pub struct Obj1024(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

7 impl Exp2 for Obj1024 {

8 fn run(&mut self) {

9 self.0 += self.7;

10 }

11 fn new(val: i128)->Self{

12 return Obj1024(val,val,val,val,val,val,val,val);

159

13 }

14 }

Listing C.7: Experiment 2: OOP Objects

160

Appendix D. Experiment Three Code

4.1 Benchmark

1 use criterion::{criterion_group, criterion_main, Criterion};

2 use std::time::Duration;

3 use thesis_experimentation::exp3::oop::*;

4 use thesis_experimentation::exp3::dod::*;

5 use thesis_experimentation::exp3::oop_obj::*;

6 use specs::prelude::*;

7

8 #[inline]

9 fn oop_dispatch<T: Exp3>(world: &mut OOPWorld<T>) { world.execute(); }

10

11 #[inline]

12 fn dod_dispatch(d: &mut Dispatcher, mut w: &mut World) {

13 d.dispatch_par(&mut w);

14 }

15

16 fn oop_criterion_benchmark(c: &mut Criterion) {

17 let mut group = c.benchmark_group("oop_exp3");

18 group.warm_up_time(Duration::from_secs(5));

19 group.sample_size(100);

20 group.nresamples(100);

21 rayon::ThreadPoolBuilder::new().num_threads(1).build_global().unwrap();

22

23 let entity_count = vec![10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000,

6000, 7000, 8000, 9000, 10000];

24

161

25 entity_count.iter().for_each(|count|{

26 let vec = obj_setup::<Obj128>(*count);

27 let mut world = OOPWorld::new(vec, 1);

28

29 let mut bench_name = String::from("oop_exp3_count_");

30 let i = count.to_string();

31 bench_name.push_str(&i);

32 bench_name.push_str("_size_128");

33

34 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

35 });

36

37 entity_count.iter().for_each(|count|{

38 let vec = obj_setup::<Obj256>(*count);

39 let mut world = OOPWorld::new(vec, 1);

40

41 let mut bench_name = String::from("oop_exp3_count_");

42 let i = count.to_string();

43 bench_name.push_str(&i);

44 bench_name.push_str("_size_256");

45

46 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

47 });

48

49 entity_count.iter().for_each(|count|{

50 let vec = obj_setup::<Obj512>(*count);

162

51 let mut world = OOPWorld::new(vec, 1);

52

53 let mut bench_name = String::from("oop_exp3_count_");

54 let i = count.to_string();

55 bench_name.push_str(&i);

56 bench_name.push_str("_size_512");

57

58 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

59 });

60

61 entity_count.iter().for_each(|count|{

62 let vec = obj_setup::<Obj1024>(*count);

63 let mut world = OOPWorld::new(vec, 1);

64

65 let mut bench_name = String::from("oop_exp3_count_");

66 let i = count.to_string();

67 bench_name.push_str(&i);

68 bench_name.push_str("_size_1024");

69

70 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

71 });

72

73 entity_count.iter().for_each(|count|{

74 let vec = obj_setup::<Obj2048>(*count);

75 let mut world = OOPWorld::new(vec, 1);

76

163

77 let mut bench_name = String::from("oop_exp3_count_");

78 let i = count.to_string();

79 bench_name.push_str(&i);

80 bench_name.push_str("_size_2048");

81

82 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

83 });

84

85 entity_count.iter().for_each(|count|{

86 let vec = obj_setup::<Obj4096>(*count);

87 let mut world = OOPWorld::new(vec, 1);

88

89 let mut bench_name = String::from("oop_exp3_count_");

90 let i = count.to_string();

91 bench_name.push_str(&i);

92 bench_name.push_str("_size_4096");

93

94 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

95 });

96

97 entity_count.iter().for_each(|count|{

98 let vec = obj_setup::<Obj8192>(*count);

99 let mut world = OOPWorld::new(vec, 1);

100

101 let mut bench_name = String::from("oop_exp3_count_");

102 let i = count.to_string();

164

103 bench_name.push_str(&i);

104 bench_name.push_str("_size_8192");

105

106 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

107 });

108

109 entity_count.iter().for_each(|count|{

110 let vec = obj_setup::<Obj16384>(*count);

111 let mut world = OOPWorld::new(vec, 1);

112

113 let mut bench_name = String::from("oop_exp3_count_");

114 let i = count.to_string();

115 bench_name.push_str(&i);

116 bench_name.push_str("_size_16384");

117

118 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

119 });

120 }

121

122 pub fn dod_criterion_benchmark(c: &mut Criterion) {

123 let mut group = c.benchmark_group("dod_exp3");

124 group.warm_up_time(Duration::from_secs(5));

125 group.sample_size(100);

126 group.nresamples(100);

127

128 let entity_size: Vec<i32> = vec![128,256,512,1024,2048,4096,8192,16384];

165

129 let entity_count: Vec<i32> = vec![10, 50, 100, 500, 1000, 2000, 3000, 4000,

5000, 6000, 7000, 8000, 9000, 10000];

130

131 entity_size.iter().for_each(|size| {

132 entity_count.iter().for_each(|count| {

133 let mut world = World::new();

134 setup_component(&mut world).unwrap();

135 setup_entity(*size, *count, &mut world).unwrap();

136 let mut dispatcher = setup_dispatcher(*size);

137 let mut bench_name = String::from("dod_exp3_count_");

138 let i = count.to_string();

139 bench_name.push_str(&i);

140 bench_name.push_str("_size_");

141 let i = size.to_string();

142 bench_name.push_str(&i);

143

144 group.bench_function(bench_name, |b| b.iter(|| dod_dispatch(&mut

dispatcher, &mut world)));

145 })

146 });

147 }

148

149 criterion_group!(oop_exp3, oop_criterion_benchmark);

150 criterion_group!(dod_exp3, dod_criterion_benchmark);

151 criterion_main!(oop_exp3, dod_exp3);

Listing D.1: Experiment 3: Benchmark

4.2 Modules

166

1 pub mod oop;

2 pub mod dod;

3 pub mod oop_obj;

4 pub mod dod_component;

5 pub mod dod_system;

Listing D.2: Experiment 3: Modules

4.3 DOD

1 use specs::prelude::*;

2 use std::io;

3 use super::dod_component::*;

4 use super::dod_system::*;

5 use std::sync::Arc;

6

7 //Add components to the world

8 pub fn setup_component(world: &mut World)-> io::Result<()> {

9 world.register::<Comp_i64_0>();

10 world.register::<Comp_i64_1>();

11 world.register::<Comp_i128_0>();

12 world.register::<Comp_i128_1>();

13 world.register::<Comp_i128_2>();

14 world.register::<Comp_i128_3>();

15 world.register::<Comp_i128_4>();

16 world.register::<Comp_i128_5>();

17 world.register::<Comp_i128_6>();

18 world.register::<Comp_i128_7>();

19 world.register::<Comp_i128_8>();

20 world.register::<Comp_i128_9>();

167

21 world.register::<Comp_i128_10>();

22 world.register::<Comp_i128_11>();

23 world.register::<Comp_i128_12>();

24 world.register::<Comp_i128_13>();

25 world.register::<Comp_i128_14>();

26 world.register::<Comp_i128_15>();

27 world.register::<Comp_i128_16>();

28 world.register::<Comp_i128_17>();

29 world.register::<Comp_i128_18>();

30 world.register::<Comp_i128_19>();

31 world.register::<Comp_i128_20>();

32 world.register::<Comp_i128_21>();

33 world.register::<Comp_i128_22>();

34 world.register::<Comp_i128_23>();

35 world.register::<Comp_i128_24>();

36 world.register::<Comp_i128_25>();

37 world.register::<Comp_i128_26>();

38 world.register::<Comp_i128_27>();

39 world.register::<Comp_i128_28>();

40 world.register::<Comp_i128_29>();

41 world.register::<Comp_i128_30>();

42 world.register::<Comp_i128_31>();

43 world.register::<Comp_i128_32>();

44 world.register::<Comp_i128_33>();

45 world.register::<Comp_i128_34>();

46 world.register::<Comp_i128_35>();

47 world.register::<Comp_i128_36>();

48 world.register::<Comp_i128_37>();

168

49 world.register::<Comp_i128_38>();

50 world.register::<Comp_i128_39>();

51 world.register::<Comp_i128_40>();

52 world.register::<Comp_i128_41>();

53 world.register::<Comp_i128_42>();

54 world.register::<Comp_i128_43>();

55 world.register::<Comp_i128_44>();

56 world.register::<Comp_i128_45>();

57 world.register::<Comp_i128_46>();

58 world.register::<Comp_i128_47>();

59 world.register::<Comp_i128_48>();

60 world.register::<Comp_i128_49>();

61 world.register::<Comp_i128_50>();

62 world.register::<Comp_i128_51>();

63 world.register::<Comp_i128_52>();

64 world.register::<Comp_i128_53>();

65 world.register::<Comp_i128_54>();

66 world.register::<Comp_i128_55>();

67 world.register::<Comp_i128_56>();

68 world.register::<Comp_i128_57>();

69 world.register::<Comp_i128_58>();

70 world.register::<Comp_i128_59>();

71 world.register::<Comp_i128_60>();

72 world.register::<Comp_i128_61>();

73 world.register::<Comp_i128_62>();

74 world.register::<Comp_i128_63>();

75 world.register::<Comp_i128_64>();

76 world.register::<Comp_i128_65>();

169

77 world.register::<Comp_i128_66>();

78 world.register::<Comp_i128_67>();

79 world.register::<Comp_i128_68>();

80 world.register::<Comp_i128_69>();

81 world.register::<Comp_i128_70>();

82 world.register::<Comp_i128_71>();

83 world.register::<Comp_i128_72>();

84 world.register::<Comp_i128_73>();

85 world.register::<Comp_i128_74>();

86 world.register::<Comp_i128_75>();

87 world.register::<Comp_i128_76>();

88 world.register::<Comp_i128_77>();

89 world.register::<Comp_i128_78>();

90 world.register::<Comp_i128_79>();

91 world.register::<Comp_i128_80>();

92 world.register::<Comp_i128_81>();

93 world.register::<Comp_i128_82>();

94 world.register::<Comp_i128_83>();

95 world.register::<Comp_i128_84>();

96 world.register::<Comp_i128_85>();

97 world.register::<Comp_i128_86>();

98 world.register::<Comp_i128_87>();

99 world.register::<Comp_i128_88>();

100 world.register::<Comp_i128_89>();

101 world.register::<Comp_i128_90>();

102 world.register::<Comp_i128_91>();

103 world.register::<Comp_i128_92>();

104 world.register::<Comp_i128_93>();

170

105 world.register::<Comp_i128_94>();

106 world.register::<Comp_i128_95>();

107 world.register::<Comp_i128_96>();

108 world.register::<Comp_i128_97>();

109 world.register::<Comp_i128_98>();

110 world.register::<Comp_i128_99>();

111 world.register::<Comp_i128_100>();

112 world.register::<Comp_i128_101>();

113 world.register::<Comp_i128_102>();

114 world.register::<Comp_i128_103>();

115 world.register::<Comp_i128_104>();

116 world.register::<Comp_i128_105>();

117 world.register::<Comp_i128_106>();

118 world.register::<Comp_i128_107>();

119 world.register::<Comp_i128_108>();

120 world.register::<Comp_i128_109>();

121 world.register::<Comp_i128_110>();

122 world.register::<Comp_i128_111>();

123 world.register::<Comp_i128_112>();

124 world.register::<Comp_i128_113>();

125 world.register::<Comp_i128_114>();

126 world.register::<Comp_i128_115>();

127 world.register::<Comp_i128_116>();

128 world.register::<Comp_i128_117>();

129 world.register::<Comp_i128_118>();

130 world.register::<Comp_i128_119>();

131 world.register::<Comp_i128_120>();

132 world.register::<Comp_i128_121>();

171

133 world.register::<Comp_i128_122>();

134 world.register::<Comp_i128_123>();

135 world.register::<Comp_i128_124>();

136 world.register::<Comp_i128_125>();

137 world.register::<Comp_i128_126>();

138 world.register::<Comp_i128_127>();

139

140 return Ok(())

141 }

142

143 //Add entities to the world

144 pub fn setup_entity(entity_size: i32, entity_count: i32, world: &mut World)->io

::Result<()> {

145

146 match entity_size {

147 128 => {

148 for _ in 0..entity_count {

149 world.create_entity()

150 .with(Comp_i64_0(criterion::black_box(5)))

151 .with(Comp_i64_1(criterion::black_box(5)))

152 .build();

153 }

154 }

155 256 => {

156 for _ in 0..entity_count {

157 world.create_entity()

158 .with(Comp_i128_0(criterion::black_box(5)))

159 .with(Comp_i128_1(criterion::black_box(5)))

172

160 .build();

161 }

162 }

163

164 512 => {

165 for _ in 0..entity_count {

166 world.create_entity()

167 .with(Comp_i128_0(criterion::black_box(5)))

168 .with(Comp_i128_1(criterion::black_box(5)))

169 .with(Comp_i128_2(criterion::black_box(5)))

170 .with(Comp_i128_3(criterion::black_box(5)))

171 .build();

172 }

173 }

174

175 1024 => {

176 for _ in 0..entity_count {

177 world.create_entity()

178 .with(Comp_i128_0(criterion::black_box(5)))

179 .with(Comp_i128_1(criterion::black_box(5)))

180 .with(Comp_i128_2(criterion::black_box(5)))

181 .with(Comp_i128_3(criterion::black_box(5)))

182 .with(Comp_i128_4(criterion::black_box(5)))

183 .with(Comp_i128_5(criterion::black_box(5)))

184 .with(Comp_i128_6(criterion::black_box(5)))

185 .with(Comp_i128_7(criterion::black_box(5)))

186 .build();

187 }

173

188 }

189

190 2048 => {

191 for _ in 0..entity_count {

192 world.create_entity()

193 .with(Comp_i128_0(criterion::black_box(5)))

194 .with(Comp_i128_1(criterion::black_box(5)))

195 .with(Comp_i128_2(criterion::black_box(5)))

196 .with(Comp_i128_3(criterion::black_box(5)))

197 .with(Comp_i128_4(criterion::black_box(5)))

198 .with(Comp_i128_5(criterion::black_box(5)))

199 .with(Comp_i128_6(criterion::black_box(5)))

200 .with(Comp_i128_7(criterion::black_box(5)))

201 .with(Comp_i128_8(criterion::black_box(5)))

202 .with(Comp_i128_9(criterion::black_box(5)))

203 .with(Comp_i128_10(criterion::black_box(5)))

204 .with(Comp_i128_11(criterion::black_box(5)))

205 .with(Comp_i128_12(criterion::black_box(5)))

206 .with(Comp_i128_13(criterion::black_box(5)))

207 .with(Comp_i128_14(criterion::black_box(5)))

208 .with(Comp_i128_15(criterion::black_box(5)))

209 .build();

210 }

211 }

212

213 4096 => {

214 for _ in 0..entity_count {

215 world.create_entity()

174

216 .with(Comp_i128_0(criterion::black_box(5)))

217 .with(Comp_i128_1(criterion::black_box(5)))

218 .with(Comp_i128_2(criterion::black_box(5)))

219 .with(Comp_i128_3(criterion::black_box(5)))

220 .with(Comp_i128_4(criterion::black_box(5)))

221 .with(Comp_i128_5(criterion::black_box(5)))

222 .with(Comp_i128_6(criterion::black_box(5)))

223 .with(Comp_i128_7(criterion::black_box(5)))

224 .with(Comp_i128_8(criterion::black_box(5)))

225 .with(Comp_i128_9(criterion::black_box(5)))

226 .with(Comp_i128_10(criterion::black_box(5)))

227 .with(Comp_i128_11(criterion::black_box(5)))

228 .with(Comp_i128_12(criterion::black_box(5)))

229 .with(Comp_i128_13(criterion::black_box(5)))

230 .with(Comp_i128_14(criterion::black_box(5)))

231 .with(Comp_i128_15(criterion::black_box(5)))

232 .with(Comp_i128_16(criterion::black_box(5)))

233 .with(Comp_i128_17(criterion::black_box(5)))

234 .with(Comp_i128_18(criterion::black_box(5)))

235 .with(Comp_i128_19(criterion::black_box(5)))

236 .with(Comp_i128_20(criterion::black_box(5)))

237 .with(Comp_i128_21(criterion::black_box(5)))

238 .with(Comp_i128_22(criterion::black_box(5)))

239 .with(Comp_i128_23(criterion::black_box(5)))

240 .with(Comp_i128_24(criterion::black_box(5)))

241 .with(Comp_i128_25(criterion::black_box(5)))

242 .with(Comp_i128_26(criterion::black_box(5)))

243 .with(Comp_i128_27(criterion::black_box(5)))

175

244 .with(Comp_i128_28(criterion::black_box(5)))

245 .with(Comp_i128_29(criterion::black_box(5)))

246 .with(Comp_i128_30(criterion::black_box(5)))

247 .with(Comp_i128_31(criterion::black_box(5)))

248 .build();

249 }

250

251 }

252

253 8192 => {

254 for _ in 0..entity_count {

255 world.create_entity()

256 .with(Comp_i128_0(criterion::black_box(5)))

257 .with(Comp_i128_1(criterion::black_box(5)))

258 .with(Comp_i128_2(criterion::black_box(5)))

259 .with(Comp_i128_3(criterion::black_box(5)))

260 .with(Comp_i128_4(criterion::black_box(5)))

261 .with(Comp_i128_5(criterion::black_box(5)))

262 .with(Comp_i128_6(criterion::black_box(5)))

263 .with(Comp_i128_7(criterion::black_box(5)))

264 .with(Comp_i128_8(criterion::black_box(5)))

265 .with(Comp_i128_9(criterion::black_box(5)))

266 .with(Comp_i128_10(criterion::black_box(5)))

267 .with(Comp_i128_11(criterion::black_box(5)))

268 .with(Comp_i128_12(criterion::black_box(5)))

269 .with(Comp_i128_13(criterion::black_box(5)))

270 .with(Comp_i128_14(criterion::black_box(5)))

271 .with(Comp_i128_15(criterion::black_box(5)))

176

272 .with(Comp_i128_16(criterion::black_box(5)))

273 .with(Comp_i128_17(criterion::black_box(5)))

274 .with(Comp_i128_18(criterion::black_box(5)))

275 .with(Comp_i128_19(criterion::black_box(5)))

276 .with(Comp_i128_20(criterion::black_box(5)))

277 .with(Comp_i128_21(criterion::black_box(5)))

278 .with(Comp_i128_22(criterion::black_box(5)))

279 .with(Comp_i128_23(criterion::black_box(5)))

280 .with(Comp_i128_24(criterion::black_box(5)))

281 .with(Comp_i128_25(criterion::black_box(5)))

282 .with(Comp_i128_26(criterion::black_box(5)))

283 .with(Comp_i128_27(criterion::black_box(5)))

284 .with(Comp_i128_28(criterion::black_box(5)))

285 .with(Comp_i128_29(criterion::black_box(5)))

286 .with(Comp_i128_30(criterion::black_box(5)))

287 .with(Comp_i128_31(criterion::black_box(5)))

288 .with(Comp_i128_32(criterion::black_box(5)))

289 .with(Comp_i128_33(criterion::black_box(5)))

290 .with(Comp_i128_34(criterion::black_box(5)))

291 .with(Comp_i128_35(criterion::black_box(5)))

292 .with(Comp_i128_36(criterion::black_box(5)))

293 .with(Comp_i128_37(criterion::black_box(5)))

294 .with(Comp_i128_38(criterion::black_box(5)))

295 .with(Comp_i128_39(criterion::black_box(5)))

296 .with(Comp_i128_40(criterion::black_box(5)))

297 .with(Comp_i128_41(criterion::black_box(5)))

298 .with(Comp_i128_42(criterion::black_box(5)))

299 .with(Comp_i128_43(criterion::black_box(5)))

177

300 .with(Comp_i128_44(criterion::black_box(5)))

301 .with(Comp_i128_45(criterion::black_box(5)))

302 .with(Comp_i128_46(criterion::black_box(5)))

303 .with(Comp_i128_47(criterion::black_box(5)))

304 .with(Comp_i128_48(criterion::black_box(5)))

305 .with(Comp_i128_49(criterion::black_box(5)))

306 .with(Comp_i128_50(criterion::black_box(5)))

307 .with(Comp_i128_51(criterion::black_box(5)))

308 .with(Comp_i128_52(criterion::black_box(5)))

309 .with(Comp_i128_53(criterion::black_box(5)))

310 .with(Comp_i128_54(criterion::black_box(5)))

311 .with(Comp_i128_55(criterion::black_box(5)))

312 .with(Comp_i128_56(criterion::black_box(5)))

313 .with(Comp_i128_57(criterion::black_box(5)))

314 .with(Comp_i128_58(criterion::black_box(5)))

315 .with(Comp_i128_59(criterion::black_box(5)))

316 .with(Comp_i128_60(criterion::black_box(5)))

317 .with(Comp_i128_61(criterion::black_box(5)))

318 .with(Comp_i128_62(criterion::black_box(5)))

319 .with(Comp_i128_63(criterion::black_box(5)))

320 .build();

321 }

322 }

323

324 16384 => {

325 for _ in 0..entity_count {

326 world.create_entity()

327 .with(Comp_i128_0(criterion::black_box(5)))

178

328 .with(Comp_i128_1(criterion::black_box(5)))

329 .with(Comp_i128_2(criterion::black_box(5)))

330 .with(Comp_i128_3(criterion::black_box(5)))

331 .with(Comp_i128_4(criterion::black_box(5)))

332 .with(Comp_i128_5(criterion::black_box(5)))

333 .with(Comp_i128_6(criterion::black_box(5)))

334 .with(Comp_i128_7(criterion::black_box(5)))

335 .with(Comp_i128_8(criterion::black_box(5)))

336 .with(Comp_i128_9(criterion::black_box(5)))

337 .with(Comp_i128_10(criterion::black_box(5)))

338 .with(Comp_i128_11(criterion::black_box(5)))

339 .with(Comp_i128_12(criterion::black_box(5)))

340 .with(Comp_i128_13(criterion::black_box(5)))

341 .with(Comp_i128_14(criterion::black_box(5)))

342 .with(Comp_i128_15(criterion::black_box(5)))

343 .with(Comp_i128_16(criterion::black_box(5)))

344 .with(Comp_i128_17(criterion::black_box(5)))

345 .with(Comp_i128_18(criterion::black_box(5)))

346 .with(Comp_i128_19(criterion::black_box(5)))

347 .with(Comp_i128_20(criterion::black_box(5)))

348 .with(Comp_i128_21(criterion::black_box(5)))

349 .with(Comp_i128_22(criterion::black_box(5)))

350 .with(Comp_i128_23(criterion::black_box(5)))

351 .with(Comp_i128_24(criterion::black_box(5)))

352 .with(Comp_i128_25(criterion::black_box(5)))

353 .with(Comp_i128_26(criterion::black_box(5)))

354 .with(Comp_i128_27(criterion::black_box(5)))

355 .with(Comp_i128_28(criterion::black_box(5)))

179

356 .with(Comp_i128_29(criterion::black_box(5)))

357 .with(Comp_i128_30(criterion::black_box(5)))

358 .with(Comp_i128_31(criterion::black_box(5)))

359 .with(Comp_i128_32(criterion::black_box(5)))

360 .with(Comp_i128_33(criterion::black_box(5)))

361 .with(Comp_i128_34(criterion::black_box(5)))

362 .with(Comp_i128_35(criterion::black_box(5)))

363 .with(Comp_i128_36(criterion::black_box(5)))

364 .with(Comp_i128_37(criterion::black_box(5)))

365 .with(Comp_i128_38(criterion::black_box(5)))

366 .with(Comp_i128_39(criterion::black_box(5)))

367 .with(Comp_i128_40(criterion::black_box(5)))

368 .with(Comp_i128_41(criterion::black_box(5)))

369 .with(Comp_i128_42(criterion::black_box(5)))

370 .with(Comp_i128_43(criterion::black_box(5)))

371 .with(Comp_i128_44(criterion::black_box(5)))

372 .with(Comp_i128_45(criterion::black_box(5)))

373 .with(Comp_i128_46(criterion::black_box(5)))

374 .with(Comp_i128_47(criterion::black_box(5)))

375 .with(Comp_i128_48(criterion::black_box(5)))

376 .with(Comp_i128_49(criterion::black_box(5)))

377 .with(Comp_i128_50(criterion::black_box(5)))

378 .with(Comp_i128_51(criterion::black_box(5)))

379 .with(Comp_i128_52(criterion::black_box(5)))

380 .with(Comp_i128_53(criterion::black_box(5)))

381 .with(Comp_i128_54(criterion::black_box(5)))

382 .with(Comp_i128_55(criterion::black_box(5)))

383 .with(Comp_i128_56(criterion::black_box(5)))

180

384 .with(Comp_i128_57(criterion::black_box(5)))

385 .with(Comp_i128_58(criterion::black_box(5)))

386 .with(Comp_i128_59(criterion::black_box(5)))

387 .with(Comp_i128_60(criterion::black_box(5)))

388 .with(Comp_i128_61(criterion::black_box(5)))

389 .with(Comp_i128_62(criterion::black_box(5)))

390 .with(Comp_i128_63(criterion::black_box(5)))

391 .with(Comp_i128_64(criterion::black_box(5)))

392 .with(Comp_i128_65(criterion::black_box(5)))

393 .with(Comp_i128_66(criterion::black_box(5)))

394 .with(Comp_i128_67(criterion::black_box(5)))

395 .with(Comp_i128_68(criterion::black_box(5)))

396 .with(Comp_i128_69(criterion::black_box(5)))

397 .with(Comp_i128_70(criterion::black_box(5)))

398 .with(Comp_i128_71(criterion::black_box(5)))

399 .with(Comp_i128_72(criterion::black_box(5)))

400 .with(Comp_i128_73(criterion::black_box(5)))

401 .with(Comp_i128_74(criterion::black_box(5)))

402 .with(Comp_i128_75(criterion::black_box(5)))

403 .with(Comp_i128_76(criterion::black_box(5)))

404 .with(Comp_i128_77(criterion::black_box(5)))

405 .with(Comp_i128_78(criterion::black_box(5)))

406 .with(Comp_i128_79(criterion::black_box(5)))

407 .with(Comp_i128_80(criterion::black_box(5)))

408 .with(Comp_i128_81(criterion::black_box(5)))

409 .with(Comp_i128_82(criterion::black_box(5)))

410 .with(Comp_i128_83(criterion::black_box(5)))

411 .with(Comp_i128_84(criterion::black_box(5)))

181

412 .with(Comp_i128_85(criterion::black_box(5)))

413 .with(Comp_i128_86(criterion::black_box(5)))

414 .with(Comp_i128_87(criterion::black_box(5)))

415 .with(Comp_i128_88(criterion::black_box(5)))

416 .with(Comp_i128_89(criterion::black_box(5)))

417 .with(Comp_i128_90(criterion::black_box(5)))

418 .with(Comp_i128_91(criterion::black_box(5)))

419 .with(Comp_i128_92(criterion::black_box(5)))

420 .with(Comp_i128_93(criterion::black_box(5)))

421 .with(Comp_i128_94(criterion::black_box(5)))

422 .with(Comp_i128_95(criterion::black_box(5)))

423 .with(Comp_i128_96(criterion::black_box(5)))

424 .with(Comp_i128_97(criterion::black_box(5)))

425 .with(Comp_i128_98(criterion::black_box(5)))

426 .with(Comp_i128_99(criterion::black_box(5)))

427 .with(Comp_i128_100(criterion::black_box(5)))

428 .with(Comp_i128_101(criterion::black_box(5)))

429 .with(Comp_i128_102(criterion::black_box(5)))

430 .with(Comp_i128_103(criterion::black_box(5)))

431 .with(Comp_i128_104(criterion::black_box(5)))

432 .with(Comp_i128_105(criterion::black_box(5)))

433 .with(Comp_i128_106(criterion::black_box(5)))

434 .with(Comp_i128_107(criterion::black_box(5)))

435 .with(Comp_i128_108(criterion::black_box(5)))

436 .with(Comp_i128_109(criterion::black_box(5)))

437 .with(Comp_i128_110(criterion::black_box(5)))

438 .with(Comp_i128_111(criterion::black_box(5)))

439 .with(Comp_i128_112(criterion::black_box(5)))

182

440 .with(Comp_i128_113(criterion::black_box(5)))

441 .with(Comp_i128_114(criterion::black_box(5)))

442 .with(Comp_i128_115(criterion::black_box(5)))

443 .with(Comp_i128_116(criterion::black_box(5)))

444 .with(Comp_i128_117(criterion::black_box(5)))

445 .with(Comp_i128_118(criterion::black_box(5)))

446 .with(Comp_i128_119(criterion::black_box(5)))

447 .with(Comp_i128_120(criterion::black_box(5)))

448 .with(Comp_i128_121(criterion::black_box(5)))

449 .with(Comp_i128_122(criterion::black_box(5)))

450 .with(Comp_i128_123(criterion::black_box(5)))

451 .with(Comp_i128_124(criterion::black_box(5)))

452 .with(Comp_i128_125(criterion::black_box(5)))

453 .with(Comp_i128_126(criterion::black_box(5)))

454 .with(Comp_i128_127(criterion::black_box(5)))

455 .build();

456 }

457 }

458 _ => {}

459 }

460 return Ok(())

461 }

462

463 //Add systems to the dispatcher, set up threadcount

464 pub fn setup_dispatcher<’a, ’b>(size: i32)->Dispatcher<’a, ’b> {

465

466 let pool = Arc::from(rayon::ThreadPoolBuilder::new().num_threads(1).build().

unwrap());

183

467

468 match size {

469 128 => {

470 let dispatcher = DispatcherBuilder::new()

471 .with(Sys_128bit_0, "sys", &[])

472 .with_pool(pool)

473 .build();

474 return dispatcher;

475 }

476

477 _ => {

478 let dispatcher = DispatcherBuilder::new()

479 .with(Sys_256bit_0, "sys", &[])

480 .with_pool(pool)

481 .build();

482 return dispatcher;

483 }

484 }

485 }

Listing D.3: Experiment 3: DOD

4.4 DOD Components

1 use specs::prelude::*;

2

3 #[derive(Debug)]

4 #[allow(non_camel_case_types)]

5 pub struct Comp_i64_0(pub i64);

6 impl Component for Comp_i64_0 {

184

7 type Storage = DenseVecStorage<Self>;

8 }

9

10 #[derive(Debug)]

11 #[allow(non_camel_case_types)]

12 pub struct Comp_i64_1(pub i64);

13 impl Component for Comp_i64_1 {

14 type Storage = DenseVecStorage<Self>;

15 }

16

17 #[derive(Debug)]

18 #[allow(non_camel_case_types)]

19 pub struct Comp_i128_0(pub i128);

20 impl Component for Comp_i128_0 {

21 type Storage = DenseVecStorage<Self>;

22 }

23

24 #[derive(Debug)]

25 #[allow(non_camel_case_types)]

26 pub struct Comp_i128_1(pub i128);

27 impl Component for Comp_i128_1 {

28 type Storage = DenseVecStorage<Self>;

29 }

30

31 #[derive(Debug)]

32 #[allow(non_camel_case_types)]

33 pub struct Comp_i128_2(pub i128);

34 impl Component for Comp_i128_2 {

185

35 type Storage = DenseVecStorage<Self>;

36 }

37

38 #[derive(Debug)]

39 #[allow(non_camel_case_types)]

40 pub struct Comp_i128_3(pub i128);

41 impl Component for Comp_i128_3 {

42 type Storage = DenseVecStorage<Self>;

43 }

44

45 #[derive(Debug)]

46 #[allow(non_camel_case_types)]

47 pub struct Comp_i128_4(pub i128);

48 impl Component for Comp_i128_4 {

49 type Storage = DenseVecStorage<Self>;

50 }

51

52 #[derive(Debug)]

53 #[allow(non_camel_case_types)]

54 pub struct Comp_i128_5(pub i128);

55 impl Component for Comp_i128_5 {

56 type Storage = DenseVecStorage<Self>;

57 }

58

59 #[derive(Debug)]

60 #[allow(non_camel_case_types)]

61 pub struct Comp_i128_6(pub i128);

62 impl Component for Comp_i128_6 {

186

63 type Storage = DenseVecStorage<Self>;

64 }

65

66 #[derive(Debug)]

67 #[allow(non_camel_case_types)]

68 pub struct Comp_i128_7(pub i128);

69 impl Component for Comp_i128_7 {

70 type Storage = DenseVecStorage<Self>;

71 }

72

73 #[derive(Debug)]

74 #[allow(non_camel_case_types)]

75 pub struct Comp_i128_8(pub i128);

76 impl Component for Comp_i128_8 {

77 type Storage = DenseVecStorage<Self>;

78 }

79

80 #[derive(Debug)]

81 #[allow(non_camel_case_types)]

82 pub struct Comp_i128_9(pub i128);

83 impl Component for Comp_i128_9 {

84 type Storage = DenseVecStorage<Self>;

85 }

86

87 #[derive(Debug)]

88 #[allow(non_camel_case_types)]

89 pub struct Comp_i128_10(pub i128);

90 impl Component for Comp_i128_10 {

187

91 type Storage = DenseVecStorage<Self>;

92 }

93

94 #[derive(Debug)]

95 #[allow(non_camel_case_types)]

96 pub struct Comp_i128_11(pub i128);

97 impl Component for Comp_i128_11 {

98 type Storage = DenseVecStorage<Self>;

99 }

100

101 #[derive(Debug)]

102 #[allow(non_camel_case_types)]

103 pub struct Comp_i128_12(pub i128);

104 impl Component for Comp_i128_12 {

105 type Storage = DenseVecStorage<Self>;

106 }

107

108 #[derive(Debug)]

109 #[allow(non_camel_case_types)]

110 pub struct Comp_i128_13(pub i128);

111 impl Component for Comp_i128_13 {

112 type Storage = DenseVecStorage<Self>;

113 }

114

115 #[derive(Debug)]

116 #[allow(non_camel_case_types)]

117 pub struct Comp_i128_14(pub i128);

118 impl Component for Comp_i128_14 {

188

119 type Storage = DenseVecStorage<Self>;

120 }

121

122 #[derive(Debug)]

123 #[allow(non_camel_case_types)]

124 pub struct Comp_i128_15(pub i128);

125 impl Component for Comp_i128_15 {

126 type Storage = DenseVecStorage<Self>;

127 }

128

129 #[derive(Debug)]

130 #[allow(non_camel_case_types)]

131 pub struct Comp_i128_16(pub i128);

132 impl Component for Comp_i128_16 {

133 type Storage = DenseVecStorage<Self>;

134 }

135

136 #[derive(Debug)]

137 #[allow(non_camel_case_types)]

138 pub struct Comp_i128_17(pub i128);

139 impl Component for Comp_i128_17 {

140 type Storage = DenseVecStorage<Self>;

141 }

142

143 #[derive(Debug)]

144 #[allow(non_camel_case_types)]

145 pub struct Comp_i128_18(pub i128);

146 impl Component for Comp_i128_18 {

189

147 type Storage = DenseVecStorage<Self>;

148 }

149

150 #[derive(Debug)]

151 #[allow(non_camel_case_types)]

152 pub struct Comp_i128_19(pub i128);

153 impl Component for Comp_i128_19 {

154 type Storage = DenseVecStorage<Self>;

155 }

156

157 #[derive(Debug)]

158 #[allow(non_camel_case_types)]

159 pub struct Comp_i128_20(pub i128);

160 impl Component for Comp_i128_20 {

161 type Storage = DenseVecStorage<Self>;

162 }

163

164 #[derive(Debug)]

165 #[allow(non_camel_case_types)]

166 pub struct Comp_i128_21(pub i128);

167 impl Component for Comp_i128_21 {

168 type Storage = DenseVecStorage<Self>;

169 }

170

171 #[derive(Debug)]

172 #[allow(non_camel_case_types)]

173 pub struct Comp_i128_22(pub i128);

174 impl Component for Comp_i128_22 {

190

175 type Storage = DenseVecStorage<Self>;

176 }

177

178 #[derive(Debug)]

179 #[allow(non_camel_case_types)]

180 pub struct Comp_i128_23(pub i128);

181 impl Component for Comp_i128_23 {

182 type Storage = DenseVecStorage<Self>;

183 }

184

185 #[derive(Debug)]

186 #[allow(non_camel_case_types)]

187 pub struct Comp_i128_24(pub i128);

188 impl Component for Comp_i128_24 {

189 type Storage = DenseVecStorage<Self>;

190 }

191

192 #[derive(Debug)]

193 #[allow(non_camel_case_types)]

194 pub struct Comp_i128_25(pub i128);

195 impl Component for Comp_i128_25 {

196 type Storage = DenseVecStorage<Self>;

197 }

198

199 #[derive(Debug)]

200 #[allow(non_camel_case_types)]

201 pub struct Comp_i128_26(pub i128);

202 impl Component for Comp_i128_26 {

191

203 type Storage = DenseVecStorage<Self>;

204 }

205

206 #[derive(Debug)]

207 #[allow(non_camel_case_types)]

208 pub struct Comp_i128_27(pub i128);

209 impl Component for Comp_i128_27 {

210 type Storage = DenseVecStorage<Self>;

211 }

212

213 #[derive(Debug)]

214 #[allow(non_camel_case_types)]

215 pub struct Comp_i128_28(pub i128);

216 impl Component for Comp_i128_28 {

217 type Storage = DenseVecStorage<Self>;

218 }

219

220 #[derive(Debug)]

221 #[allow(non_camel_case_types)]

222 pub struct Comp_i128_29(pub i128);

223 impl Component for Comp_i128_29 {

224 type Storage = DenseVecStorage<Self>;

225 }

226

227 #[derive(Debug)]

228 #[allow(non_camel_case_types)]

229 pub struct Comp_i128_30(pub i128);

230 impl Component for Comp_i128_30 {

192

231 type Storage = DenseVecStorage<Self>;

232 }

233

234 #[derive(Debug)]

235 #[allow(non_camel_case_types)]

236 pub struct Comp_i128_31(pub i128);

237 impl Component for Comp_i128_31 {

238 type Storage = DenseVecStorage<Self>;

239 }

240

241 #[derive(Debug)]

242 #[allow(non_camel_case_types)]

243 pub struct Comp_i128_32(pub i128);

244 impl Component for Comp_i128_32 {

245 type Storage = DenseVecStorage<Self>;

246 }

247

248 #[derive(Debug)]

249 #[allow(non_camel_case_types)]

250 pub struct Comp_i128_33(pub i128);

251 impl Component for Comp_i128_33 {

252 type Storage = DenseVecStorage<Self>;

253 }

254

255 #[derive(Debug)]

256 #[allow(non_camel_case_types)]

257 pub struct Comp_i128_34(pub i128);

258 impl Component for Comp_i128_34 {

193

259 type Storage = DenseVecStorage<Self>;

260 }

261

262 #[derive(Debug)]

263 #[allow(non_camel_case_types)]

264 pub struct Comp_i128_35(pub i128);

265 impl Component for Comp_i128_35 {

266 type Storage = DenseVecStorage<Self>;

267 }

268

269 #[derive(Debug)]

270 #[allow(non_camel_case_types)]

271 pub struct Comp_i128_36(pub i128);

272 impl Component for Comp_i128_36 {

273 type Storage = DenseVecStorage<Self>;

274 }

275

276 #[derive(Debug)]

277 #[allow(non_camel_case_types)]

278 pub struct Comp_i128_37(pub i128);

279 impl Component for Comp_i128_37 {

280 type Storage = DenseVecStorage<Self>;

281 }

282

283 #[derive(Debug)]

284 #[allow(non_camel_case_types)]

285 pub struct Comp_i128_38(pub i128);

286 impl Component for Comp_i128_38 {

194

287 type Storage = DenseVecStorage<Self>;

288 }

289

290 #[derive(Debug)]

291 #[allow(non_camel_case_types)]

292 pub struct Comp_i128_39(pub i128);

293 impl Component for Comp_i128_39 {

294 type Storage = DenseVecStorage<Self>;

295 }

296

297 #[derive(Debug)]

298 #[allow(non_camel_case_types)]

299 pub struct Comp_i128_40(pub i128);

300 impl Component for Comp_i128_40 {

301 type Storage = DenseVecStorage<Self>;

302 }

303

304 #[derive(Debug)]

305 #[allow(non_camel_case_types)]

306 pub struct Comp_i128_41(pub i128);

307 impl Component for Comp_i128_41 {

308 type Storage = DenseVecStorage<Self>;

309 }

310

311 #[derive(Debug)]

312 #[allow(non_camel_case_types)]

313 pub struct Comp_i128_42(pub i128);

314 impl Component for Comp_i128_42 {

195

315 type Storage = DenseVecStorage<Self>;

316 }

317

318 #[derive(Debug)]

319 #[allow(non_camel_case_types)]

320 pub struct Comp_i128_43(pub i128);

321 impl Component for Comp_i128_43 {

322 type Storage = DenseVecStorage<Self>;

323 }

324

325 #[derive(Debug)]

326 #[allow(non_camel_case_types)]

327 pub struct Comp_i128_44(pub i128);

328 impl Component for Comp_i128_44 {

329 type Storage = DenseVecStorage<Self>;

330 }

331

332 #[derive(Debug)]

333 #[allow(non_camel_case_types)]

334 pub struct Comp_i128_45(pub i128);

335 impl Component for Comp_i128_45 {

336 type Storage = DenseVecStorage<Self>;

337 }

338

339 #[derive(Debug)]

340 #[allow(non_camel_case_types)]

341 pub struct Comp_i128_46(pub i128);

342 impl Component for Comp_i128_46 {

196

343 type Storage = DenseVecStorage<Self>;

344 }

345

346 #[derive(Debug)]

347 #[allow(non_camel_case_types)]

348 pub struct Comp_i128_47(pub i128);

349 impl Component for Comp_i128_47 {

350 type Storage = DenseVecStorage<Self>;

351 }

352

353 #[derive(Debug)]

354 #[allow(non_camel_case_types)]

355 pub struct Comp_i128_48(pub i128);

356 impl Component for Comp_i128_48 {

357 type Storage = DenseVecStorage<Self>;

358 }

359

360 #[derive(Debug)]

361 #[allow(non_camel_case_types)]

362 pub struct Comp_i128_49(pub i128);

363 impl Component for Comp_i128_49 {

364 type Storage = DenseVecStorage<Self>;

365 }

366

367 #[derive(Debug)]

368 #[allow(non_camel_case_types)]

369 pub struct Comp_i128_50(pub i128);

370 impl Component for Comp_i128_50 {

197

371 type Storage = DenseVecStorage<Self>;

372 }

373

374 #[derive(Debug)]

375 #[allow(non_camel_case_types)]

376 pub struct Comp_i128_51(pub i128);

377 impl Component for Comp_i128_51 {

378 type Storage = DenseVecStorage<Self>;

379 }

380

381 #[derive(Debug)]

382 #[allow(non_camel_case_types)]

383 pub struct Comp_i128_52(pub i128);

384 impl Component for Comp_i128_52 {

385 type Storage = DenseVecStorage<Self>;

386 }

387

388 #[derive(Debug)]

389 #[allow(non_camel_case_types)]

390 pub struct Comp_i128_53(pub i128);

391 impl Component for Comp_i128_53 {

392 type Storage = DenseVecStorage<Self>;

393 }

394

395 #[derive(Debug)]

396 #[allow(non_camel_case_types)]

397 pub struct Comp_i128_54(pub i128);

398 impl Component for Comp_i128_54 {

198

399 type Storage = DenseVecStorage<Self>;

400 }

401

402 #[derive(Debug)]

403 #[allow(non_camel_case_types)]

404 pub struct Comp_i128_55(pub i128);

405 impl Component for Comp_i128_55 {

406 type Storage = DenseVecStorage<Self>;

407 }

408

409 #[derive(Debug)]

410 #[allow(non_camel_case_types)]

411 pub struct Comp_i128_56(pub i128);

412 impl Component for Comp_i128_56 {

413 type Storage = DenseVecStorage<Self>;

414 }

415

416 #[derive(Debug)]

417 #[allow(non_camel_case_types)]

418 pub struct Comp_i128_57(pub i128);

419 impl Component for Comp_i128_57 {

420 type Storage = DenseVecStorage<Self>;

421 }

422

423 #[derive(Debug)]

424 #[allow(non_camel_case_types)]

425 pub struct Comp_i128_58(pub i128);

426 impl Component for Comp_i128_58 {

199

427 type Storage = DenseVecStorage<Self>;

428 }

429

430 #[derive(Debug)]

431 #[allow(non_camel_case_types)]

432 pub struct Comp_i128_59(pub i128);

433 impl Component for Comp_i128_59 {

434 type Storage = DenseVecStorage<Self>;

435 }

436

437 #[derive(Debug)]

438 #[allow(non_camel_case_types)]

439 pub struct Comp_i128_60(pub i128);

440 impl Component for Comp_i128_60 {

441 type Storage = DenseVecStorage<Self>;

442 }

443

444 #[derive(Debug)]

445 #[allow(non_camel_case_types)]

446 pub struct Comp_i128_61(pub i128);

447 impl Component for Comp_i128_61 {

448 type Storage = DenseVecStorage<Self>;

449 }

450

451 #[derive(Debug)]

452 #[allow(non_camel_case_types)]

453 pub struct Comp_i128_62(pub i128);

454 impl Component for Comp_i128_62 {

200

455 type Storage = DenseVecStorage<Self>;

456 }

457

458 #[derive(Debug)]

459 #[allow(non_camel_case_types)]

460 pub struct Comp_i128_63(pub i128);

461 impl Component for Comp_i128_63 {

462 type Storage = DenseVecStorage<Self>;

463 }

464

465 #[derive(Debug)]

466 #[allow(non_camel_case_types)]

467 pub struct Comp_i128_64(pub i128);

468 impl Component for Comp_i128_64{

469 type Storage = DenseVecStorage<Self>;

470 }

471

472 #[derive(Debug)]

473 #[allow(non_camel_case_types)]

474 pub struct Comp_i128_65(pub i128);

475 impl Component for Comp_i128_65{

476 type Storage = DenseVecStorage<Self>;

477 }

478

479 #[derive(Debug)]

480 #[allow(non_camel_case_types)]

481 pub struct Comp_i128_66(pub i128);

482 impl Component for Comp_i128_66{

201

483 type Storage = DenseVecStorage<Self>;

484 }

485

486 #[derive(Debug)]

487 #[allow(non_camel_case_types)]

488 pub struct Comp_i128_67(pub i128);

489 impl Component for Comp_i128_67{

490 type Storage = DenseVecStorage<Self>;

491 }

492

493 #[derive(Debug)]

494 #[allow(non_camel_case_types)]

495 pub struct Comp_i128_68(pub i128);

496 impl Component for Comp_i128_68{

497 type Storage = DenseVecStorage<Self>;

498 }

499

500 #[derive(Debug)]

501 #[allow(non_camel_case_types)]

502 pub struct Comp_i128_69(pub i128);

503 impl Component for Comp_i128_69{

504 type Storage = DenseVecStorage<Self>;

505 }

506

507 #[derive(Debug)]

508 #[allow(non_camel_case_types)]

509 pub struct Comp_i128_70(pub i128);

510 impl Component for Comp_i128_70{

202

511 type Storage = DenseVecStorage<Self>;

512 }

513

514 #[derive(Debug)]

515 #[allow(non_camel_case_types)]

516 pub struct Comp_i128_71(pub i128);

517 impl Component for Comp_i128_71{

518 type Storage = DenseVecStorage<Self>;

519 }

520

521 #[derive(Debug)]

522 #[allow(non_camel_case_types)]

523 pub struct Comp_i128_72(pub i128);

524 impl Component for Comp_i128_72{

525 type Storage = DenseVecStorage<Self>;

526 }

527

528 #[derive(Debug)]

529 #[allow(non_camel_case_types)]

530 pub struct Comp_i128_73(pub i128);

531 impl Component for Comp_i128_73{

532 type Storage = DenseVecStorage<Self>;

533 }

534

535 #[derive(Debug)]

536 #[allow(non_camel_case_types)]

537 pub struct Comp_i128_74(pub i128);

538 impl Component for Comp_i128_74{

203

539 type Storage = DenseVecStorage<Self>;

540 }

541

542 #[derive(Debug)]

543 #[allow(non_camel_case_types)]

544 pub struct Comp_i128_75(pub i128);

545 impl Component for Comp_i128_75{

546 type Storage = DenseVecStorage<Self>;

547 }

548

549 #[derive(Debug)]

550 #[allow(non_camel_case_types)]

551 pub struct Comp_i128_76(pub i128);

552 impl Component for Comp_i128_76{

553 type Storage = DenseVecStorage<Self>;

554 }

555

556 #[derive(Debug)]

557 #[allow(non_camel_case_types)]

558 pub struct Comp_i128_77(pub i128);

559 impl Component for Comp_i128_77{

560 type Storage = DenseVecStorage<Self>;

561 }

562

563 #[derive(Debug)]

564 #[allow(non_camel_case_types)]

565 pub struct Comp_i128_78(pub i128);

566 impl Component for Comp_i128_78{

204

567 type Storage = DenseVecStorage<Self>;

568 }

569

570 #[derive(Debug)]

571 #[allow(non_camel_case_types)]

572 pub struct Comp_i128_79(pub i128);

573 impl Component for Comp_i128_79{

574 type Storage = DenseVecStorage<Self>;

575 }

576

577 #[derive(Debug)]

578 #[allow(non_camel_case_types)]

579 pub struct Comp_i128_80(pub i128);

580 impl Component for Comp_i128_80{

581 type Storage = DenseVecStorage<Self>;

582 }

583

584 #[derive(Debug)]

585 #[allow(non_camel_case_types)]

586 pub struct Comp_i128_81(pub i128);

587 impl Component for Comp_i128_81{

588 type Storage = DenseVecStorage<Self>;

589 }

590

591 #[derive(Debug)]

592 #[allow(non_camel_case_types)]

593 pub struct Comp_i128_82(pub i128);

594 impl Component for Comp_i128_82{

205

595 type Storage = DenseVecStorage<Self>;

596 }

597

598 #[derive(Debug)]

599 #[allow(non_camel_case_types)]

600 pub struct Comp_i128_83(pub i128);

601 impl Component for Comp_i128_83{

602 type Storage = DenseVecStorage<Self>;

603 }

604

605 #[derive(Debug)]

606 #[allow(non_camel_case_types)]

607 pub struct Comp_i128_84(pub i128);

608 impl Component for Comp_i128_84{

609 type Storage = DenseVecStorage<Self>;

610 }

611

612 #[derive(Debug)]

613 #[allow(non_camel_case_types)]

614 pub struct Comp_i128_85(pub i128);

615 impl Component for Comp_i128_85{

616 type Storage = DenseVecStorage<Self>;

617 }

618

619 #[derive(Debug)]

620 #[allow(non_camel_case_types)]

621 pub struct Comp_i128_86(pub i128);

622 impl Component for Comp_i128_86{

206

623 type Storage = DenseVecStorage<Self>;

624 }

625

626 #[derive(Debug)]

627 #[allow(non_camel_case_types)]

628 pub struct Comp_i128_87(pub i128);

629 impl Component for Comp_i128_87{

630 type Storage = DenseVecStorage<Self>;

631 }

632

633 #[derive(Debug)]

634 #[allow(non_camel_case_types)]

635 pub struct Comp_i128_88(pub i128);

636 impl Component for Comp_i128_88{

637 type Storage = DenseVecStorage<Self>;

638 }

639

640 #[derive(Debug)]

641 #[allow(non_camel_case_types)]

642 pub struct Comp_i128_89(pub i128);

643 impl Component for Comp_i128_89{

644 type Storage = DenseVecStorage<Self>;

645 }

646

647 #[derive(Debug)]

648 #[allow(non_camel_case_types)]

649 pub struct Comp_i128_90(pub i128);

650 impl Component for Comp_i128_90{

207

651 type Storage = DenseVecStorage<Self>;

652 }

653

654 #[derive(Debug)]

655 #[allow(non_camel_case_types)]

656 pub struct Comp_i128_91(pub i128);

657 impl Component for Comp_i128_91{

658 type Storage = DenseVecStorage<Self>;

659 }

660

661 #[derive(Debug)]

662 #[allow(non_camel_case_types)]

663 pub struct Comp_i128_92(pub i128);

664 impl Component for Comp_i128_92{

665 type Storage = DenseVecStorage<Self>;

666 }

667

668 #[derive(Debug)]

669 #[allow(non_camel_case_types)]

670 pub struct Comp_i128_93(pub i128);

671 impl Component for Comp_i128_93{

672 type Storage = DenseVecStorage<Self>;

673 }

674

675 #[derive(Debug)]

676 #[allow(non_camel_case_types)]

677 pub struct Comp_i128_94(pub i128);

678 impl Component for Comp_i128_94{

208

679 type Storage = DenseVecStorage<Self>;

680 }

681

682 #[derive(Debug)]

683 #[allow(non_camel_case_types)]

684 pub struct Comp_i128_95(pub i128);

685 impl Component for Comp_i128_95{

686 type Storage = DenseVecStorage<Self>;

687 }

688

689 #[derive(Debug)]

690 #[allow(non_camel_case_types)]

691 pub struct Comp_i128_96(pub i128);

692 impl Component for Comp_i128_96{

693 type Storage = DenseVecStorage<Self>;

694 }

695

696 #[derive(Debug)]

697 #[allow(non_camel_case_types)]

698 pub struct Comp_i128_97(pub i128);

699 impl Component for Comp_i128_97{

700 type Storage = DenseVecStorage<Self>;

701 }

702

703 #[derive(Debug)]

704 #[allow(non_camel_case_types)]

705 pub struct Comp_i128_98(pub i128);

706 impl Component for Comp_i128_98{

209

707 type Storage = DenseVecStorage<Self>;

708 }

709

710 #[derive(Debug)]

711 #[allow(non_camel_case_types)]

712 pub struct Comp_i128_99(pub i128);

713 impl Component for Comp_i128_99{

714 type Storage = DenseVecStorage<Self>;

715 }

716

717 #[derive(Debug)]

718 #[allow(non_camel_case_types)]

719 pub struct Comp_i128_100(pub i128);

720 impl Component for Comp_i128_100{

721 type Storage = DenseVecStorage<Self>;

722 }

723

724 #[derive(Debug)]

725 #[allow(non_camel_case_types)]

726 pub struct Comp_i128_101(pub i128);

727 impl Component for Comp_i128_101{

728 type Storage = DenseVecStorage<Self>;

729 }

730

731 #[derive(Debug)]

732 #[allow(non_camel_case_types)]

733 pub struct Comp_i128_102(pub i128);

734 impl Component for Comp_i128_102{

210

735 type Storage = DenseVecStorage<Self>;

736 }

737

738 #[derive(Debug)]

739 #[allow(non_camel_case_types)]

740 pub struct Comp_i128_103(pub i128);

741 impl Component for Comp_i128_103{

742 type Storage = DenseVecStorage<Self>;

743 }

744

745 #[derive(Debug)]

746 #[allow(non_camel_case_types)]

747 pub struct Comp_i128_104(pub i128);

748 impl Component for Comp_i128_104{

749 type Storage = DenseVecStorage<Self>;

750 }

751

752 #[derive(Debug)]

753 #[allow(non_camel_case_types)]

754 pub struct Comp_i128_105(pub i128);

755 impl Component for Comp_i128_105{

756 type Storage = DenseVecStorage<Self>;

757 }

758

759 #[derive(Debug)]

760 #[allow(non_camel_case_types)]

761 pub struct Comp_i128_106(pub i128);

762 impl Component for Comp_i128_106{

211

763 type Storage = DenseVecStorage<Self>;

764 }

765

766 #[derive(Debug)]

767 #[allow(non_camel_case_types)]

768 pub struct Comp_i128_107(pub i128);

769 impl Component for Comp_i128_107{

770 type Storage = DenseVecStorage<Self>;

771 }

772

773 #[derive(Debug)]

774 #[allow(non_camel_case_types)]

775 pub struct Comp_i128_108(pub i128);

776 impl Component for Comp_i128_108{

777 type Storage = DenseVecStorage<Self>;

778 }

779

780 #[derive(Debug)]

781 #[allow(non_camel_case_types)]

782 pub struct Comp_i128_109(pub i128);

783 impl Component for Comp_i128_109{

784 type Storage = DenseVecStorage<Self>;

785 }

786

787 #[derive(Debug)]

788 #[allow(non_camel_case_types)]

789 pub struct Comp_i128_110(pub i128);

790 impl Component for Comp_i128_110{

212

791 type Storage = DenseVecStorage<Self>;

792 }

793

794 #[derive(Debug)]

795 #[allow(non_camel_case_types)]

796 pub struct Comp_i128_111(pub i128);

797 impl Component for Comp_i128_111{

798 type Storage = DenseVecStorage<Self>;

799 }

800

801 #[derive(Debug)]

802 #[allow(non_camel_case_types)]

803 pub struct Comp_i128_112(pub i128);

804 impl Component for Comp_i128_112{

805 type Storage = DenseVecStorage<Self>;

806 }

807

808 #[derive(Debug)]

809 #[allow(non_camel_case_types)]

810 pub struct Comp_i128_113(pub i128);

811 impl Component for Comp_i128_113{

812 type Storage = DenseVecStorage<Self>;

813 }

814

815 #[derive(Debug)]

816 #[allow(non_camel_case_types)]

817 pub struct Comp_i128_114(pub i128);

818 impl Component for Comp_i128_114{

213

819 type Storage = DenseVecStorage<Self>;

820 }

821

822 #[derive(Debug)]

823 #[allow(non_camel_case_types)]

824 pub struct Comp_i128_115(pub i128);

825 impl Component for Comp_i128_115{

826 type Storage = DenseVecStorage<Self>;

827 }

828

829 #[derive(Debug)]

830 #[allow(non_camel_case_types)]

831 pub struct Comp_i128_116(pub i128);

832 impl Component for Comp_i128_116{

833 type Storage = DenseVecStorage<Self>;

834 }

835

836 #[derive(Debug)]

837 #[allow(non_camel_case_types)]

838 pub struct Comp_i128_117(pub i128);

839 impl Component for Comp_i128_117{

840 type Storage = DenseVecStorage<Self>;

841 }

842

843 #[derive(Debug)]

844 #[allow(non_camel_case_types)]

845 pub struct Comp_i128_118(pub i128);

846 impl Component for Comp_i128_118{

214

847 type Storage = DenseVecStorage<Self>;

848 }

849

850 #[derive(Debug)]

851 #[allow(non_camel_case_types)]

852 pub struct Comp_i128_119(pub i128);

853 impl Component for Comp_i128_119{

854 type Storage = DenseVecStorage<Self>;

855 }

856

857 #[derive(Debug)]

858 #[allow(non_camel_case_types)]

859 pub struct Comp_i128_120(pub i128);

860 impl Component for Comp_i128_120{

861 type Storage = DenseVecStorage<Self>;

862 }

863

864 #[derive(Debug)]

865 #[allow(non_camel_case_types)]

866 pub struct Comp_i128_121(pub i128);

867 impl Component for Comp_i128_121{

868 type Storage = DenseVecStorage<Self>;

869 }

870

871 #[derive(Debug)]

872 #[allow(non_camel_case_types)]

873 pub struct Comp_i128_122(pub i128);

874 impl Component for Comp_i128_122{

215

875 type Storage = DenseVecStorage<Self>;

876 }

877

878 #[derive(Debug)]

879 #[allow(non_camel_case_types)]

880 pub struct Comp_i128_123(pub i128);

881 impl Component for Comp_i128_123{

882 type Storage = DenseVecStorage<Self>;

883 }

884

885 #[derive(Debug)]

886 #[allow(non_camel_case_types)]

887 pub struct Comp_i128_124(pub i128);

888 impl Component for Comp_i128_124{

889 type Storage = DenseVecStorage<Self>;

890 }

891

892 #[derive(Debug)]

893 #[allow(non_camel_case_types)]

894 pub struct Comp_i128_125(pub i128);

895 impl Component for Comp_i128_125{

896 type Storage = DenseVecStorage<Self>;

897 }

898

899 #[derive(Debug)]

900 #[allow(non_camel_case_types)]

901 pub struct Comp_i128_126(pub i128);

902 impl Component for Comp_i128_126{

216

903 type Storage = DenseVecStorage<Self>;

904 }

905

906 #[derive(Debug)]

907 #[allow(non_camel_case_types)]

908 pub struct Comp_i128_127(pub i128);

909 impl Component for Comp_i128_127{

910 type Storage = DenseVecStorage<Self>;

911 }

Listing D.4: Experiment 3: DOD Components

4.5 DOD Systems

1 use specs::prelude::*;

2 use specs::Join;

3 use super::dod_component::*;

4

5 #[derive(Debug)]

6 #[allow(non_camel_case_types)]

7 pub struct Sys_128bit_0;

8 impl<’a> System<’a> for Sys_128bit_0 {

9

10 type SystemData = (WriteStorage<’a, Comp_i64_0>, ReadStorage<’a, Comp_i64_1

>);

11

12 fn run(&mut self, (mut x, y): Self::SystemData) {

13 for (x, y) in (&mut x, &y).join() {

14 x.0 += y.0;

15 }

217

16 }

17 }

18

19 #[derive(Debug)]

20 #[allow(non_camel_case_types)]

21 pub struct Sys_256bit_0;

22 impl<’a> System<’a> for Sys_256bit_0 {

23

24 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>);

25

26 fn run(&mut self, (mut x, y): Self::SystemData) {

27 for (x, y) in (&mut x, &y).join() {

28 x.0 += y.0;

29 }

30 }

31 }

Listing D.5: Experiment 3: DOD Systems

4.6 OOP

1 use super::oop_obj::*;

2 use std::sync::{Arc, RwLock};

3 use rayon::*;

4 use rayon::iter::IntoParallelRefMutIterator;

5

6 type ThreadPoolWrapper = Option<::std::sync::Arc<::rayon::ThreadPool>>;

7

8 pub fn obj_setup<T: Exp3>(entity_count: i32)-> Vec<T> {

218

9

10 let mut vec: Vec<T> = Vec::new();

11 for _ in 0..entity_count {

12 let tmp = T::new(criterion::black_box(5));

13 vec.push(tmp);

14 }

15

16 return vec;

17 }

18

19 //--

20 pub struct OOPWorld<T: Exp3> {

21 stages: Vec<Stage<T>>,

22 pool: Arc<RwLock<ThreadPoolWrapper>>

23 }

24

25 impl <T: Exp3> OOPWorld <T> {

26 pub fn new(vec: Vec<T>, thread_count: usize)->OOPWorld<T>{

27 let pool: ThreadPoolWrapper = Some(Arc::from(ThreadPoolBuilder::new().

num_threads(thread_count).build().unwrap()));

28 let pool: Arc<RwLock<ThreadPoolWrapper>> = Arc::from(RwLock::from(pool))

;

29

30 let stage: Stage<T> = Stage::new(vec);

31 let mut stages: Vec<Stage<T>> = Vec::new();

32 stages.push(stage);

33

34 return OOPWorld{

219

35 stages,

36 pool

37 };

38 }

39

40 pub fn execute(&mut self){

41 let stages = &mut self.stages;

42 self.pool

43 .read()

44 .unwrap()

45 .as_ref()

46 .unwrap()

47 .install(move || {

48 for stage in stages {

49 stage.execute();

50 }

51 });

52 }

53 }

54

55 //--

56

57 struct Stage<T: Exp3> {

58 groups: Vec<Vec<T>>

59 }

60

61 impl <T: Exp3> Stage <T> {

62 fn new(vec: Vec<T>)-> Stage<T> {

220

63

64 let mut groups: Vec<Vec<T>> = Vec::new();

65 groups.push(vec);

66

67 return Stage {

68 groups

69 };

70 }

71

72 fn execute(&mut self) {

73 use rayon::iter::ParallelIterator;

74 self.groups.par_iter_mut().for_each(|group| {

75 for obj in group {

76 obj.run();

77 }

78 })

79 }

80 }

Listing D.6: Experiment 3: OOP

4.7 OOP Objects

1 pub trait Exp3: Send {

2 fn run(&mut self);

3 fn new(val: i128)->Self;

4 }

5

6 pub struct Obj128(pub i64, pub i64);

7 impl Exp3 for Obj128 {

221

8 fn run(&mut self) {

9 self.0 += self.1;

10 }

11 fn new(val: i128)->Self {

12 let val= val as i64;

13 return Obj128(val,val);

14 }

15 }

16

17 pub struct Obj256(pub i128, pub i128);

18 impl Exp3 for Obj256 {

19 fn run(&mut self) {

20 self.0 += self.1;

21 }

22 fn new(val: i128)->Self {

23 return Obj256(val,val);

24 }

25 }

26

27 pub struct Obj512(pub i128, pub i128, pub i128, pub i128);

28 impl Exp3 for Obj512 {

29 fn run(&mut self) {

30 self.0 += self.3;

31 }

32 fn new(val: i128)->Self {

33 return Obj512(val,val,val,val);

34 }

35 }

222

36

37 pub struct Obj1024(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

38 impl Exp3 for Obj1024 {

39 fn run(&mut self) {

40 self.0 += self.7;

41 }

42 fn new(val: i128)->Self{

43 return Obj1024(val,val,val,val,val,val,val,val);

44 }

45 }

46

47 pub struct Obj2048(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

48 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

49 impl Exp3 for Obj2048 {

50 fn run(&mut self) {self.0 += self.15; }

51 fn new(val: i128)->Self {

52 return Obj2048(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

53 }

54 }

55

56 pub struct Obj4096(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

57 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

223

58 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

59 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

60 impl Exp3 for Obj4096 {

61 fn run(&mut self) {self.0 += self.31; }

62 fn new(val:i128)-> Self {

63 return Obj4096(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

64 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

65 }

66 }

67

68 pub struct Obj8192(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

69 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

70 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

71 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

72 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

73 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

74 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

224

75 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

76 impl Exp3 for Obj8192 {

77 fn run(&mut self) {self.0 += self.63; }

78 fn new(val:i128)-> Self {

79 return Obj8192(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

80 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

81 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val,

82 val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

83 }

84 }

85

86 pub struct Obj16384(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

87 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

88 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

89 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

90 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

91 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

225

92 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

93 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

94 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

95 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

96 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

97 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

98 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

99 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

100 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

101 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

102 impl Exp3 for Obj16384 {

103 fn run(&mut self) { self.0 += self.127; }

104 fn new(val: i128) -> Self {

105 return Obj16384(val, val, val, val, val, val, val, val, val, val, val,

val, val, val, val, val,

106 val, val, val, val, val, val, val, val, val, val, val,

val, val, val, val, val,

107 val, val, val, val, val, val, val, val, val, val, val,

226

val, val, val, val, val,

108 val, val, val, val, val, val, val, val, val, val, val,

val, val, val, val, val,

109 val, val, val, val, val, val, val, val, val, val, val,

val, val, val, val, val,

110 val, val, val, val, val, val, val, val, val, val, val,

val, val, val, val, val,

111 val, val, val, val, val, val, val, val, val, val, val,

val, val, val, val, val,

112 val, val, val, val, val, val, val, val, val, val, val,

val, val, val, val, val);

113 }

114 }

Listing D.7: Experiment 3: OOP Objects

227

Appendix E. Experiment Four Code

5.1 Benchmark

1 use criterion::{criterion_group, criterion_main, Criterion};

2 use std::time::Duration;

3 use specs::prelude::*;

4 use thesis_experimentation::exp4::dod::*;

5 use thesis_experimentation::exp4::oop::*;

6 use thesis_experimentation::exp4::oop_obj::*;

7

8 #[inline]

9 fn dod_dispatch(d: &mut Dispatcher, mut w: &mut World) {

10 d.dispatch_par(&mut w);

11 }

12

13 #[inline]

14 fn oop_dispatch<T: Exp4>(world: &mut OOPWorld<T>) { world.execute(); }

15

16 pub fn dod_criterion_benchmark(c: &mut Criterion) {

17 let mut group = c.benchmark_group("dod_exp4");

18 group.warm_up_time(Duration::from_secs(5));

19 group.sample_size(100);

20 group.nresamples(100);

21

22 let thread_count = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

23

24 thread_count.iter().for_each(|count|{

25

228

26 let mut world = World::new();

27 setup_component(&mut world).unwrap();

28 setup_entity(&mut world).unwrap();

29 let mut dispatcher = setup_dispatcher(*count);

30

31 dispatcher.setup(&mut world);

32

33 let mut bench_name = String::from("dod_exp4_thread_count_");

34 let i = count.to_string();

35 bench_name.push_str(&i);

36

37 group.bench_function(bench_name.as_str(), |b| b.iter(|| dod_dispatch(&

mut dispatcher, &mut world)));

38

39 });

40 }

41

42 fn oop_criterion_benchmark(c: &mut Criterion) {

43 let mut group = c.benchmark_group("oop_exp4");

44 group.warm_up_time(Duration::from_secs(5));

45 group.sample_size(100);

46 group.nresamples(100);

47

48 let thread_count = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

49

50 thread_count.iter().for_each(|count| {

51 let vec = obj_setup::<Obj2048>(1000);

52 let mut world = OOPWorld::new(vec, *count);

229

53

54 let mut bench_name = String::from("oop_exp4_thread_count_");

55 let i = count.to_string();

56 bench_name.push_str(&i);

57

58 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

59 });

60 }

61

62 criterion_group!(dod_exp4, dod_criterion_benchmark);

63 criterion_group!(oop_exp4, oop_criterion_benchmark);

64 criterion_main!(dod_exp4, oop_exp4);

Listing E.1: Experiment 4: Benchmark

5.2 Modules

1 pub mod dod;

2 pub mod oop;

3 pub mod oop_obj;

4 pub mod dod_component;

5 pub mod dod_system;

Listing E.2: Experiment 4: Modules

5.3 DOD

1 use specs::prelude::*;

2 use std::io;

3 use super::dod_component::*;

230

4 use super::dod_system::*;

5 use std::sync::Arc;

6

7 pub fn setup_component(world: &mut World) -> io::Result<()> {

8 world.register::<Comp_i128_0>();

9 world.register::<Comp_i128_1>();

10 world.register::<Comp_i128_2>();

11 world.register::<Comp_i128_3>();

12 world.register::<Comp_i128_4>();

13 world.register::<Comp_i128_5>();

14 world.register::<Comp_i128_6>();

15 world.register::<Comp_i128_7>();

16 world.register::<Comp_i128_8>();

17 world.register::<Comp_i128_9>();

18 world.register::<Comp_i128_10>();

19 world.register::<Comp_i128_11>();

20 world.register::<Comp_i128_12>();

21 world.register::<Comp_i128_13>();

22 world.register::<Comp_i128_14>();

23 world.register::<Comp_i128_15>();

24 return Ok(());

25 }

26

27 pub fn setup_entity(world: &mut World) -> io::Result<()> {

28 for _ in 0..1000 {

29 world.create_entity()

30 .with(Comp_i128_0(criterion::black_box(5)))

31 .with(Comp_i128_1(criterion::black_box(5)))

231

32 .with(Comp_i128_2(criterion::black_box(5)))

33 .with(Comp_i128_3(criterion::black_box(5)))

34 .with(Comp_i128_4(criterion::black_box(5)))

35 .with(Comp_i128_5(criterion::black_box(5)))

36 .with(Comp_i128_6(criterion::black_box(5)))

37 .with(Comp_i128_7(criterion::black_box(5)))

38 .with(Comp_i128_8(criterion::black_box(5)))

39 .with(Comp_i128_9(criterion::black_box(5)))

40 .with(Comp_i128_10(criterion::black_box(5)))

41 .with(Comp_i128_11(criterion::black_box(5)))

42 .with(Comp_i128_12(criterion::black_box(5)))

43 .with(Comp_i128_13(criterion::black_box(5)))

44 .with(Comp_i128_14(criterion::black_box(5)))

45 .with(Comp_i128_15(criterion::black_box(5)))

46 .build();

47 }

48 return Ok(())

49 }

50

51 pub fn setup_dispatcher<’a, ’b>(thread_count: usize)->Dispatcher<’a, ’b> {

52 let pool = Arc::from(rayon::ThreadPoolBuilder::new().num_threads(

thread_count).build().unwrap());

53 match thread_count {

54 1 => {

55 let dispatcher = DispatcherBuilder::new()

56 .with_pool(pool)

57 .with(Sys_256bit_0, "sys0", &[])

58 .build();

232

59 return dispatcher;

60 },

61 2 => {

62 let dispatcher = DispatcherBuilder::new()

63 .with_pool(pool)

64 .with(Sys_256bit_0, "sys0", &[])

65 .with(Sys_256bit_1, "sys1", &[])

66 .build();

67 return dispatcher;

68 },

69 3 => {

70 let dispatcher = DispatcherBuilder::new()

71 .with_pool(pool)

72 .with(Sys_256bit_0, "sys0", &[])

73 .with(Sys_256bit_1, "sys1", &[])

74 .with(Sys_256bit_2, "sys2", &[])

75 .build();

76 return dispatcher;

77 },

78 4 => {

79 let dispatcher = DispatcherBuilder::new()

80 .with_pool(pool)

81 .with(Sys_256bit_0, "sys0", &[])

82 .with(Sys_256bit_1, "sys1", &[])

83 .with(Sys_256bit_2, "sys2", &[])

84 .with(Sys_256bit_3, "sys3", &[])

85 .build();

86 return dispatcher;

233

87 },

88 5 => {

89 let dispatcher = DispatcherBuilder::new()

90 .with_pool(pool)

91 .with(Sys_256bit_0, "sys0", &[])

92 .with(Sys_256bit_1, "sys1", &[])

93 .with(Sys_256bit_2, "sys2", &[])

94 .with(Sys_256bit_3, "sys3", &[])

95 .with(Sys_256bit_4, "sys4", &[])

96 .build();

97 return dispatcher;

98 },

99 6 => {

100 let dispatcher = DispatcherBuilder::new()

101 .with_pool(pool)

102 .with(Sys_256bit_0, "sys0", &[])

103 .with(Sys_256bit_1, "sys1", &[])

104 .with(Sys_256bit_2, "sys2", &[])

105 .with(Sys_256bit_3, "sys3", &[])

106 .with(Sys_256bit_4, "sys4", &[])

107 .with(Sys_256bit_5, "sys5", &[])

108 .build();

109 return dispatcher;

110 },

111 7 => {

112 let dispatcher = DispatcherBuilder::new()

113 .with_pool(pool)

114 .with(Sys_256bit_0, "sys0", &[])

234

115 .with(Sys_256bit_1, "sys1", &[])

116 .with(Sys_256bit_2, "sys2", &[])

117 .with(Sys_256bit_3, "sys3", &[])

118 .with(Sys_256bit_4, "sys4", &[])

119 .with(Sys_256bit_5, "sys5", &[])

120 .with(Sys_256bit_6, "sys6", &[])

121 .build();

122 return dispatcher;

123 },

124 8 => {

125 let dispatcher = DispatcherBuilder::new()

126 .with_pool(pool)

127 .with(Sys_256bit_0, "sys0", &[])

128 .with(Sys_256bit_1, "sys1", &[])

129 .with(Sys_256bit_2, "sys2", &[])

130 .with(Sys_256bit_3, "sys3", &[])

131 .with(Sys_256bit_4, "sys4", &[])

132 .with(Sys_256bit_5, "sys5", &[])

133 .with(Sys_256bit_6, "sys6", &[])

134 .with(Sys_256bit_7, "sys7", &[])

135 .build();

136 return dispatcher;

137 },

138

139 9 => {

140 let dispatcher = DispatcherBuilder::new()

141 .with_pool(pool)

142 .with(Sys_256bit_0, "sys0", &[])

235

143 .with(Sys_256bit_1, "sys1", &[])

144 .with(Sys_256bit_2, "sys2", &[])

145 .with(Sys_256bit_3, "sys3", &[])

146 .with(Sys_256bit_4, "sys4", &[])

147 .with(Sys_256bit_5, "sys5", &[])

148 .with(Sys_256bit_6, "sys6", &[])

149 .with(Sys_256bit_7, "sys7", &[])

150 .with(Sys_256bit_8, "sys8", &[])

151 .build();

152 return dispatcher;

153 }

154 10 => {

155 let dispatcher = DispatcherBuilder::new()

156 .with_pool(pool)

157 .with(Sys_256bit_0, "sys0", &[])

158 .with(Sys_256bit_1, "sys1", &[])

159 .with(Sys_256bit_2, "sys2", &[])

160 .with(Sys_256bit_3, "sys3", &[])

161 .with(Sys_256bit_4, "sys4", &[])

162 .with(Sys_256bit_5, "sys5", &[])

163 .with(Sys_256bit_6, "sys6", &[])

164 .with(Sys_256bit_7, "sys7", &[])

165 .with(Sys_256bit_8, "sys8", &[])

166 .with(Sys_256bit_9, "sys9", &[])

167 .build();

168 return dispatcher;

169 }

170 11 => {

236

171 let dispatcher = DispatcherBuilder::new()

172 .with_pool(pool)

173 .with(Sys_256bit_0, "sys0", &[])

174 .with(Sys_256bit_1, "sys1", &[])

175 .with(Sys_256bit_2, "sys2", &[])

176 .with(Sys_256bit_3, "sys3", &[])

177 .with(Sys_256bit_4, "sys4", &[])

178 .with(Sys_256bit_5, "sys5", &[])

179 .with(Sys_256bit_6, "sys6", &[])

180 .with(Sys_256bit_7, "sys7", &[])

181 .with(Sys_256bit_8, "sys8", &[])

182 .with(Sys_256bit_9, "sys9", &[])

183 .with(Sys_256bit_10, "sys10", &[])

184 .build();

185 return dispatcher;

186 }

187 12 => {

188 let dispatcher = DispatcherBuilder::new()

189 .with_pool(pool)

190 .with(Sys_256bit_0, "sys0", &[])

191 .with(Sys_256bit_1, "sys1", &[])

192 .with(Sys_256bit_2, "sys2", &[])

193 .with(Sys_256bit_3, "sys3", &[])

194 .with(Sys_256bit_4, "sys4", &[])

195 .with(Sys_256bit_5, "sys5", &[])

196 .with(Sys_256bit_6, "sys6", &[])

197 .with(Sys_256bit_7, "sys7", &[])

198 .with(Sys_256bit_8, "sys8", &[])

237

199 .with(Sys_256bit_9, "sys9", &[])

200 .with(Sys_256bit_10, "sys10", &[])

201 .with(Sys_256bit_11, "sys11", &[])

202 .build();

203 return dispatcher;

204 }

205 13 => {

206 let dispatcher = DispatcherBuilder::new()

207 .with_pool(pool)

208 .with(Sys_256bit_0, "sys0", &[])

209 .with(Sys_256bit_1, "sys1", &[])

210 .with(Sys_256bit_2, "sys2", &[])

211 .with(Sys_256bit_3, "sys3", &[])

212 .with(Sys_256bit_4, "sys4", &[])

213 .with(Sys_256bit_5, "sys5", &[])

214 .with(Sys_256bit_6, "sys6", &[])

215 .with(Sys_256bit_7, "sys7", &[])

216 .with(Sys_256bit_8, "sys8", &[])

217 .with(Sys_256bit_9, "sys9", &[])

218 .with(Sys_256bit_10, "sys10", &[])

219 .with(Sys_256bit_11, "sys11", &[])

220 .with(Sys_256bit_12, "sys12", &[])

221 .build();

222 return dispatcher;

223 }

224 14 => {

225 let dispatcher = DispatcherBuilder::new()

226 .with_pool(pool)

238

227 .with(Sys_256bit_0, "sys0", &[])

228 .with(Sys_256bit_1, "sys1", &[])

229 .with(Sys_256bit_2, "sys2", &[])

230 .with(Sys_256bit_3, "sys3", &[])

231 .with(Sys_256bit_4, "sys4", &[])

232 .with(Sys_256bit_5, "sys5", &[])

233 .with(Sys_256bit_6, "sys6", &[])

234 .with(Sys_256bit_7, "sys7", &[])

235 .with(Sys_256bit_8, "sys8", &[])

236 .with(Sys_256bit_9, "sys9", &[])

237 .with(Sys_256bit_10, "sys10", &[])

238 .with(Sys_256bit_11, "sys11", &[])

239 .with(Sys_256bit_12, "sys12", &[])

240 .with(Sys_256bit_13, "sys13", &[])

241 .build();

242 return dispatcher;

243 }

244 15 => {

245 let dispatcher = DispatcherBuilder::new()

246 .with_pool(pool)

247 .with(Sys_256bit_0, "sys0", &[])

248 .with(Sys_256bit_1, "sys1", &[])

249 .with(Sys_256bit_2, "sys2", &[])

250 .with(Sys_256bit_3, "sys3", &[])

251 .with(Sys_256bit_4, "sys4", &[])

252 .with(Sys_256bit_5, "sys5", &[])

253 .with(Sys_256bit_6, "sys6", &[])

254 .with(Sys_256bit_7, "sys7", &[])

239

255 .with(Sys_256bit_8, "sys8", &[])

256 .with(Sys_256bit_9, "sys9", &[])

257 .with(Sys_256bit_10, "sys10", &[])

258 .with(Sys_256bit_11, "sys11", &[])

259 .with(Sys_256bit_12, "sys12", &[])

260 .with(Sys_256bit_13, "sys13", &[])

261 .with(Sys_256bit_14, "sys14", &[])

262 .build();

263 return dispatcher;

264 }

265 _ => {panic!("Unexpected thread count");}

266 };

267 }

Listing E.3: Experiment 4: DOD

5.4 DOD Components

1 use specs::prelude::*;

2

3 #[derive(Debug)]

4 #[allow(non_camel_case_types)]

5 pub struct Comp_i128_0(pub i128);

6 impl Component for Comp_i128_0 {

7 type Storage = DenseVecStorage<Self>;

8 }

9

10 #[derive(Debug)]

11 #[allow(non_camel_case_types)]

12 pub struct Comp_i128_1(pub i128);

240

13 impl Component for Comp_i128_1 {

14 type Storage = DenseVecStorage<Self>;

15 }

16

17 #[derive(Debug)]

18 #[allow(non_camel_case_types)]

19 pub struct Comp_i128_2(pub i128);

20 impl Component for Comp_i128_2 {

21 type Storage = DenseVecStorage<Self>;

22 }

23

24 #[derive(Debug)]

25 #[allow(non_camel_case_types)]

26 pub struct Comp_i128_3(pub i128);

27 impl Component for Comp_i128_3 {

28 type Storage = DenseVecStorage<Self>;

29 }

30

31 #[derive(Debug)]

32 #[allow(non_camel_case_types)]

33 pub struct Comp_i128_4(pub i128);

34 impl Component for Comp_i128_4 {

35 type Storage = DenseVecStorage<Self>;

36 }

37

38 #[derive(Debug)]

39 #[allow(non_camel_case_types)]

40 pub struct Comp_i128_5(pub i128);

241

41 impl Component for Comp_i128_5 {

42 type Storage = DenseVecStorage<Self>;

43 }

44

45 #[derive(Debug)]

46 #[allow(non_camel_case_types)]

47 pub struct Comp_i128_6(pub i128);

48 impl Component for Comp_i128_6 {

49 type Storage = DenseVecStorage<Self>;

50 }

51

52 #[derive(Debug)]

53 #[allow(non_camel_case_types)]

54 pub struct Comp_i128_7(pub i128);

55 impl Component for Comp_i128_7 {

56 type Storage = DenseVecStorage<Self>;

57 }

58

59 #[derive(Debug)]

60 #[allow(non_camel_case_types)]

61 pub struct Comp_i128_8(pub i128);

62 impl Component for Comp_i128_8 {

63 type Storage = DenseVecStorage<Self>;

64 }

65

66 #[derive(Debug)]

67 #[allow(non_camel_case_types)]

68 pub struct Comp_i128_9(pub i128);

242

69 impl Component for Comp_i128_9 {

70 type Storage = DenseVecStorage<Self>;

71 }

72

73 #[derive(Debug)]

74 #[allow(non_camel_case_types)]

75 pub struct Comp_i128_10(pub i128);

76 impl Component for Comp_i128_10 {

77 type Storage = DenseVecStorage<Self>;

78 }

79

80 #[derive(Debug)]

81 #[allow(non_camel_case_types)]

82 pub struct Comp_i128_11(pub i128);

83 impl Component for Comp_i128_11 {

84 type Storage = DenseVecStorage<Self>;

85 }

86

87 #[derive(Debug)]

88 #[allow(non_camel_case_types)]

89 pub struct Comp_i128_12(pub i128);

90 impl Component for Comp_i128_12 {

91 type Storage = DenseVecStorage<Self>;

92 }

93

94 #[derive(Debug)]

95 #[allow(non_camel_case_types)]

96 pub struct Comp_i128_13(pub i128);

243

97 impl Component for Comp_i128_13 {

98 type Storage = DenseVecStorage<Self>;

99 }

100

101 #[derive(Debug)]

102 #[allow(non_camel_case_types)]

103 pub struct Comp_i128_14(pub i128);

104 impl Component for Comp_i128_14 {

105 type Storage = DenseVecStorage<Self>;

106 }

107

108 #[derive(Debug)]

109 #[allow(non_camel_case_types)]

110 pub struct Comp_i128_15(pub i128);

111 impl Component for Comp_i128_15 {

112 type Storage = DenseVecStorage<Self>;

113 }

Listing E.4: Experiment 4: DOD Components

5.5 DOD Systems

1 use specs::prelude::*;

2 use super::dod_component::*;

3

4 #[derive(Debug)]

5 #[allow(non_camel_case_types)]

6 pub struct Sys_128bit_0;

7 impl<’a> System<’a> for Sys_128bit_0 {

8

244

9 type SystemData = (WriteStorage<’a, Comp_i128_0>);

10

11 fn run(&mut self, mut x: Self::SystemData) {

12 for x in (&mut x).join() {

13 x.0 += x.0;

14 }

15 }

16 }

17

18 #[derive(Debug)]

19 #[allow(non_camel_case_types)]

20 pub struct Sys_256bit_0;

21 impl<’a> System<’a> for Sys_256bit_0 {

22

23 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>);

24

25 fn run(&mut self, (mut x, y): Self::SystemData) {

26 for (x, y) in (&mut x, &y).join() {

27 x.0 += y.0;

28 }

29 }

30 }

31

32 #[derive(Debug)]

33 #[allow(non_camel_case_types)]

34 pub struct Sys_256bit_1;

35 impl<’a> System<’a> for Sys_256bit_1 {

245

36

37 type SystemData = (WriteStorage<’a, Comp_i128_2>, ReadStorage<’a,

Comp_i128_1>);

38

39 fn run(&mut self, (mut x, y): Self::SystemData) {

40 for (x, y) in (&mut x, &y).join() {

41 x.0 += y.0;

42 }

43 }

44 }

45

46 #[derive(Debug)]

47 #[allow(non_camel_case_types)]

48 pub struct Sys_256bit_2;

49 impl<’a> System<’a> for Sys_256bit_2 {

50

51 type SystemData = (WriteStorage<’a, Comp_i128_3>, ReadStorage<’a,

Comp_i128_1>);

52

53 fn run(&mut self, (mut x, y): Self::SystemData) {

54 for (x, y) in (&mut x, &y).join() {

55 x.0 += y.0

56 }

57 }

58 }

59

60 #[derive(Debug)]

61 #[allow(non_camel_case_types)]

246

62 pub struct Sys_256bit_3;

63 impl<’a> System<’a> for Sys_256bit_3 {

64

65 type SystemData = (WriteStorage<’a, Comp_i128_4>, ReadStorage<’a,

Comp_i128_1>);

66

67 fn run(&mut self, (mut x, y): Self::SystemData) {

68 for (x, y) in (&mut x, &y).join() {

69 x.0 += y.0;

70 }

71 }

72 }

73

74 #[derive(Debug)]

75 #[allow(non_camel_case_types)]

76 pub struct Sys_256bit_4;

77 impl<’a> System<’a> for Sys_256bit_4 {

78

79 type SystemData = (WriteStorage<’a, Comp_i128_5>, ReadStorage<’a,

Comp_i128_1>);

80

81 fn run(&mut self, (mut x, y): Self::SystemData) {

82 for (x, y) in (&mut x, &y).join() {

83 x.0 += y.0;

84 }

85 }

86 }

87

247

88 #[derive(Debug)]

89 #[allow(non_camel_case_types)]

90 pub struct Sys_256bit_5;

91 impl<’a> System<’a> for Sys_256bit_5 {

92

93 type SystemData = (WriteStorage<’a, Comp_i128_6>, ReadStorage<’a,

Comp_i128_1>);

94

95 fn run(&mut self, (mut x, y): Self::SystemData) {

96 for (x, y) in (&mut x, &y).join() {

97 x.0 += y.0;

98 }

99 }

100 }

101

102 #[derive(Debug)]

103 #[allow(non_camel_case_types)]

104 pub struct Sys_256bit_6;

105 impl<’a> System<’a> for Sys_256bit_6 {

106

107 type SystemData = (WriteStorage<’a, Comp_i128_7>, ReadStorage<’a,

Comp_i128_1>);

108

109 fn run(&mut self, (mut x, y): Self::SystemData) {

110 for (x, y) in (&mut x, &y).join() {

111 x.0 += y.0;

112 }

113 }

248

114 }

115

116 #[derive(Debug)]

117 #[allow(non_camel_case_types)]

118 pub struct Sys_256bit_7;

119 impl<’a> System<’a> for Sys_256bit_7 {

120

121 type SystemData = (WriteStorage<’a, Comp_i128_8>, ReadStorage<’a,

Comp_i128_1>);

122

123 fn run(&mut self, (mut x, y): Self::SystemData) {

124 for (x, y) in (&mut x, &y).join() {

125 x.0 += y.0;

126 }

127 }

128 }

129

130 #[derive(Debug)]

131 #[allow(non_camel_case_types)]

132 pub struct Sys_256bit_8;

133 impl<’a> System<’a> for Sys_256bit_8 {

134

135 type SystemData = (WriteStorage<’a, Comp_i128_9>, ReadStorage<’a,

Comp_i128_1>);

136

137 fn run(&mut self, (mut x, y): Self::SystemData) {

138 for (x, y) in (&mut x, &y).join() {

139 x.0 += y.0;

249

140 }

141 }

142 }

143

144 #[derive(Debug)]

145 #[allow(non_camel_case_types)]

146 pub struct Sys_256bit_9;

147 impl<’a> System<’a> for Sys_256bit_9 {

148

149 type SystemData = (WriteStorage<’a, Comp_i128_10>, ReadStorage<’a,

Comp_i128_1>);

150

151 fn run(&mut self, (mut x, y): Self::SystemData) {

152 for (x, y) in (&mut x, &y).join() {

153 x.0 += y.0;

154 }

155 }

156 }

157

158 #[derive(Debug)]

159 #[allow(non_camel_case_types)]

160 pub struct Sys_256bit_10;

161 impl<’a> System<’a> for Sys_256bit_10 {

162

163 type SystemData = (WriteStorage<’a, Comp_i128_11>, ReadStorage<’a,

Comp_i128_1>);

164

165 fn run(&mut self, (mut x, y): Self::SystemData) {

250

166 for (x, y) in (&mut x, &y).join() {

167 x.0 += y.0;

168 }

169 }

170 }

171

172 #[derive(Debug)]

173 #[allow(non_camel_case_types)]

174 pub struct Sys_256bit_11;

175 impl<’a> System<’a> for Sys_256bit_11 {

176

177 type SystemData = (WriteStorage<’a, Comp_i128_12>, ReadStorage<’a,

Comp_i128_1>);

178

179 fn run(&mut self, (mut x, y): Self::SystemData) {

180 for (x, y) in (&mut x, &y).join() {

181 x.0 += y.0;

182 }

183 }

184 }

185

186 #[derive(Debug)]

187 #[allow(non_camel_case_types)]

188 pub struct Sys_256bit_12;

189 impl<’a> System<’a> for Sys_256bit_12 {

190

191 type SystemData = (WriteStorage<’a, Comp_i128_13>, ReadStorage<’a,

Comp_i128_1>);

251

192

193 fn run(&mut self, (mut x, y): Self::SystemData) {

194 for (x, y) in (&mut x, &y).join() {

195 x.0 += y.0;

196 }

197 }

198 }

199

200 #[derive(Debug)]

201 #[allow(non_camel_case_types)]

202 pub struct Sys_256bit_13;

203 impl<’a> System<’a> for Sys_256bit_13 {

204

205 type SystemData = (WriteStorage<’a, Comp_i128_14>, ReadStorage<’a,

Comp_i128_1>);

206

207 fn run(&mut self, (mut x, y): Self::SystemData) {

208 for (x, y) in (&mut x, &y).join() {

209 x.0 += y.0;

210 }

211 }

212 }

213

214 #[derive(Debug)]

215 #[allow(non_camel_case_types)]

216 pub struct Sys_256bit_14;

217 impl<’a> System<’a> for Sys_256bit_14 {

218

252

219 type SystemData = (WriteStorage<’a, Comp_i128_15>, ReadStorage<’a,

Comp_i128_1>);

220

221 fn run(&mut self, (mut x, y): Self::SystemData) {

222 for (x, y) in (&mut x, &y).join() {

223 x.0 += y.0;

224 }

225 }

226 }

Listing E.5: Experiment 4: DOD Systems

5.6 OOP

1 use super::oop_obj::*;

2 use std::sync::{Arc, RwLock};

3 use rayon::ThreadPoolBuilder;

4 use rayon::iter::IntoParallelRefMutIterator;

5

6 type ThreadPoolWrapper = Option<::std::sync::Arc<::rayon::ThreadPool>>;

7

8 pub fn obj_setup<T: Exp4>(entity_count: i32) -> Vec<T> {

9

10 let mut vec: Vec<T> = Vec::new();

11 for _ in 0..entity_count {

12 let tmp = T::new(criterion::black_box(5));

13 vec.push(tmp);

14 }

15

16 return vec;

253

17 }

18

19 pub struct OOPWorld<T: Exp4> {

20 stages: Vec<Stage<T>>,

21 pool: Arc<RwLock<ThreadPoolWrapper>>,

22 count: usize

23 }

24

25 impl <T: Exp4> OOPWorld <T> {

26 pub fn new(vec: Vec<T>, thread_count: usize)->OOPWorld<T>{

27 let pool: ThreadPoolWrapper = Some(Arc::from(ThreadPoolBuilder::new().

num_threads(thread_count).build().unwrap()));

28 let pool: Arc<RwLock<ThreadPoolWrapper>> = Arc::from(RwLock::from(pool))

;

29

30 let stage: Stage<T> = Stage::new(vec);

31 let mut stages: Vec<Stage<T>> = Vec::new();

32 stages.push(stage);

33

34 return OOPWorld{

35 stages,

36 pool,

37 count: thread_count

38 };

39 }

40

41 pub fn execute(&mut self){

42 let stages = &mut self.stages;

254

43 let count = self.count.clone();

44 self.pool

45 .read()

46 .unwrap()

47 .as_ref()

48 .unwrap()

49 .install(move || {

50 for stage in stages {

51 stage.execute(count);

52 }

53 });

54 }

55 }

56

57 struct Stage<T: Exp4> {

58 groups: Vec<Vec<T>>

59 }

60

61 impl <T: Exp4> Stage <T> {

62 fn new(vec: Vec<T>)-> Stage<T> {

63

64 let mut groups: Vec<Vec<T>> = Vec::new();

65 groups.push(vec);

66

67 return Stage {

68 groups

69 };

70 }

255

71

72 fn execute(&mut self, count: usize) {

73 use rayon::iter::ParallelIterator;

74 self.groups.par_iter_mut().for_each(|group| {

75 for obj in group {

76 match count {

77 1 => {

78 obj.run0();

79 },

80 2 => {

81 obj.run0();

82 obj.run1();

83 },

84 3 => {

85 obj.run0();

86 obj.run1();

87 obj.run2();

88 },

89 4 => {

90 obj.run0();

91 obj.run1();

92 obj.run2();

93 obj.run3();

94 },

95 5 => {

96 obj.run0();

97 obj.run1();

98 obj.run2();

256

99 obj.run3();

100 obj.run4();

101 },

102 6 => {

103 obj.run0();

104 obj.run1();

105 obj.run2();

106 obj.run3();

107 obj.run4();

108 obj.run5();

109 },

110 7 => {

111 obj.run0();

112 obj.run1();

113 obj.run2();

114 obj.run3();

115 obj.run4();

116 obj.run5();

117 obj.run6();

118 },

119 8 => {

120 obj.run0();

121 obj.run1();

122 obj.run2();

123 obj.run3();

124 obj.run4();

125 obj.run5();

126 obj.run6();

257

127 obj.run7();

128 },

129 9 => {

130 obj.run0();

131 obj.run1();

132 obj.run2();

133 obj.run3();

134 obj.run4();

135 obj.run5();

136 obj.run6();

137 obj.run7();

138 obj.run8();

139 },

140 10 => {

141 obj.run0();

142 obj.run1();

143 obj.run2();

144 obj.run3();

145 obj.run4();

146 obj.run5();

147 obj.run6();

148 obj.run7();

149 obj.run8();

150 obj.run9();

151 },

152 11 => {

153 obj.run0();

154 obj.run1();

258

155 obj.run2();

156 obj.run3();

157 obj.run4();

158 obj.run5();

159 obj.run6();

160 obj.run7();

161 obj.run8();

162 obj.run9();

163 obj.run10();

164 },

165 12 => {

166 obj.run0();

167 obj.run1();

168 obj.run2();

169 obj.run3();

170 obj.run4();

171 obj.run5();

172 obj.run6();

173 obj.run7();

174 obj.run8();

175 obj.run9();

176 obj.run10();

177 obj.run11();

178 },

179 13 => {

180 obj.run0();

181 obj.run1();

182 obj.run2();

259

183 obj.run3();

184 obj.run4();

185 obj.run5();

186 obj.run6();

187 obj.run7();

188 obj.run8();

189 obj.run9();

190 obj.run10();

191 obj.run11();

192 obj.run12();

193 },

194 14 => {

195 obj.run0();

196 obj.run1();

197 obj.run2();

198 obj.run3();

199 obj.run4();

200 obj.run5();

201 obj.run6();

202 obj.run7();

203 obj.run8();

204 obj.run9();

205 obj.run10();

206 obj.run11();

207 obj.run12();

208 obj.run13();

209 },

210 15 => {

260

211 obj.run0();

212 obj.run1();

213 obj.run2();

214 obj.run3();

215 obj.run4();

216 obj.run5();

217 obj.run6();

218 obj.run7();

219 obj.run8();

220 obj.run9();

221 obj.run10();

222 obj.run11();

223 obj.run12();

224 obj.run13();

225 obj.run14();

226 }

227 _ => {panic!("unexpected thread_count");}

228 }

229 }

230 })

231 }

232 }

Listing E.6: Experiment 4: OOP

5.7 OOP Objects

1 pub trait Exp4: Send {

2 fn run0(&mut self);

3 fn run1(&mut self);

261

4 fn run2(&mut self);

5 fn run3(&mut self);

6 fn run4(&mut self);

7 fn run5(&mut self);

8 fn run6(&mut self);

9 fn run7(&mut self);

10 fn run8(&mut self);

11 fn run9(&mut self);

12 fn run10(&mut self);

13 fn run11(&mut self);

14 fn run12(&mut self);

15 fn run13(&mut self);

16 fn run14(&mut self);

17 fn new(val: i128)->Self;

18 }

19

20 pub struct Obj2048(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

21 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

22

23 impl Exp4 for Obj2048 {

24 fn run0(&mut self) {self.15 += self.0; }

25 fn run1(&mut self) {self.14 += self.0; }

26 fn run2(&mut self) {self.13 += self.0; }

27 fn run3(&mut self) {self.12 += self.0; }

28 fn run4(&mut self) {self.11 += self.0; }

29 fn run5(&mut self) {self.10 += self.0; }

262

30 fn run6(&mut self) {self.9 += self.0; }

31 fn run7(&mut self) {self.8 += self.0; }

32 fn run8(&mut self) {self.7 += self.0; }

33 fn run9(&mut self) {self.6 += self.0; }

34 fn run10(&mut self) {self.5 += self.0; }

35 fn run11(&mut self) {self.4 += self.0; }

36 fn run12(&mut self) {self.3 += self.0; }

37 fn run13(&mut self) {self.2 += self.0; }

38 fn run14(&mut self) {self.1 += self.0; }

39 fn new(val: i128)->Self {

40 return Obj2048(val,val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val);

41 }

42 }

Listing E.7: Experiment 4: OOP Objects

263

Appendix F. Experiment Five Code

6.1 Benchmark

1 use criterion::{criterion_group, criterion_main, Criterion};

2 use std::time::Duration;

3 use specs::prelude::*;

4 use thesis_experimentation::exp5::dod::*;

5 use thesis_experimentation::exp5::oop::*;

6 use thesis_experimentation::exp5::oop_obj::*;

7

8

9 #[inline]

10 fn dod_dispatch(d: &mut Dispatcher, mut w: &mut World) {

11 d.dispatch_par(&mut w);

12 }

13

14 fn oop_dispatch<T: Exp5>(world: &mut OOPWorld<T>) { world.execute(); }

15

16 pub fn dod_criterion_benchmark(c: &mut Criterion) {

17 let mut group = c.benchmark_group("dod_exp5");

18 group.warm_up_time(Duration::from_secs(5));

19 group.sample_size(100);

20 group.nresamples(10);

21

22 let thread_count = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

23

24 thread_count.iter().for_each(|count|{

25

264

26 let mut world = World::new();

27 setup_component(&mut world).unwrap();

28 setup_entity(&mut world).unwrap();

29 let mut dispatcher = setup_dispatcher(*count);

30

31 dispatcher.setup(&mut world);

32

33 let mut bench_name = String::from("dod_exp5_thread_count_");

34 let i = count.to_string();

35 bench_name.push_str(&i);

36

37 group.bench_function(bench_name.as_str(), |b| b.iter(|| dod_dispatch(&

mut dispatcher, &mut world)));

38

39 });

40 }

41

42 fn oop_criterion_benchmark(c: &mut Criterion) {

43 let mut group = c.benchmark_group("oop_exp5");

44 group.warm_up_time(Duration::from_secs(5));

45 group.sample_size(100);

46 group.nresamples(10);

47

48 let thread_count = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

49

50 thread_count.iter().for_each(|count| {

51 let vec = obj_setup::<Obj2048>(1000, *count);

52 let mut world = OOPWorld::new(vec, *count);

265

53

54 let mut bench_name = String::from("oop_exp5_thread_count_");

55 let i = count.to_string();

56 bench_name.push_str(&i);

57

58 group.bench_function(bench_name.as_str(), |b| b.iter(||oop_dispatch(&mut

world)));

59 });

60 }

61

62 criterion_group!(dod_exp5, dod_criterion_benchmark);

63 criterion_group!(oop_exp5, oop_criterion_benchmark);

64 criterion_main!(dod_exp5, oop_exp5);

Listing F.1: Experiment 5: Benchmark

6.2 Modules

1 pub mod dod;

2 pub mod oop;

3 pub mod dod_component;

4 pub mod dod_system;

5 pub mod oop_obj;

Listing F.2: Experiment 5: Modules

6.3 DOD

1 use specs::prelude::*;

2 use std::io;

3 use super::dod_system::*;

266

4 use super::dod_component::*;

5 use std::sync::Arc;

6

7 pub fn setup_component(world: &mut World) -> io::Result<()> {

8 world.register::<Comp_i128_0>();

9 world.register::<Comp_i128_1>();

10 world.register::<Comp_i128_2>();

11 world.register::<Comp_i128_3>();

12 world.register::<Comp_i128_4>();

13 world.register::<Comp_i128_5>();

14 world.register::<Comp_i128_6>();

15 world.register::<Comp_i128_7>();

16 world.register::<Comp_i128_8>();

17 world.register::<Comp_i128_9>();

18 world.register::<Comp_i128_10>();

19 world.register::<Comp_i128_11>();

20 world.register::<Comp_i128_12>();

21 world.register::<Comp_i128_13>();

22 world.register::<Comp_i128_14>();

23 world.register::<Comp_i128_15>();

24 return Ok(());

25 }

26

27 pub fn setup_entity(world: &mut World) -> io::Result<()> {

28 for _ in 0..1000 {

29 world.create_entity()

30 .with(Comp_i128_0(criterion::black_box(5)))

31 .with(Comp_i128_1(criterion::black_box(5)))

267

32 .with(Comp_i128_2(criterion::black_box(5)))

33 .with(Comp_i128_3(criterion::black_box(5)))

34 .with(Comp_i128_4(criterion::black_box(5)))

35 .with(Comp_i128_5(criterion::black_box(5)))

36 .with(Comp_i128_6(criterion::black_box(5)))

37 .with(Comp_i128_7(criterion::black_box(5)))

38 .with(Comp_i128_8(criterion::black_box(5)))

39 .with(Comp_i128_9(criterion::black_box(5)))

40 .with(Comp_i128_10(criterion::black_box(5)))

41 .with(Comp_i128_11(criterion::black_box(5)))

42 .with(Comp_i128_12(criterion::black_box(5)))

43 .with(Comp_i128_13(criterion::black_box(5)))

44 .with(Comp_i128_14(criterion::black_box(5)))

45 .with(Comp_i128_15(criterion::black_box(5)))

46 .build();

47 }

48 return Ok(())

49 }

50

51 pub fn setup_dispatcher<’a, ’b>(thread_count: usize)->Dispatcher<’a, ’b> {

52 let pool = Arc::from(rayon::ThreadPoolBuilder::new().num_threads(

thread_count).build().unwrap());

53

54 let dispatcher = DispatcherBuilder::new()

55 .with_pool(pool)

56 .with(Sys_256bit_0, "sys0", &[])

57 .with(Sys_256bit_1, "sys1", &[])

58 .with(Sys_256bit_2, "sys2", &[])

268

59 .with(Sys_256bit_3, "sys3", &[])

60 .with(Sys_256bit_4, "sys4", &[])

61 .with(Sys_256bit_5, "sys5", &[])

62 .with(Sys_256bit_6, "sys6", &[])

63 .with(Sys_256bit_7, "sys7", &[])

64 .with(Sys_256bit_8, "sys8", &[])

65 .with(Sys_256bit_9, "sys9", &[])

66 .with(Sys_256bit_10, "sys10", &[])

67 .with(Sys_256bit_11, "sys11", &[])

68 .with(Sys_256bit_12, "sys12", &[])

69 .with(Sys_256bit_13, "sys13", &[])

70 .with(Sys_256bit_14, "sys14", &[])

71 .build();

72 return dispatcher;

73 }

Listing F.3: Experiment 5: DOD

6.4 DOD Components

1 use specs::prelude::*;

2

3 #[derive(Debug)]

4 #[allow(non_camel_case_types)]

5 pub struct Comp_i128_0(pub i128);

6 impl Component for Comp_i128_0 {

7 type Storage = DenseVecStorage<Self>;

8 }

9

10 #[derive(Debug)]

269

11 #[allow(non_camel_case_types)]

12 pub struct Comp_i128_1(pub i128);

13 impl Component for Comp_i128_1 {

14 type Storage = DenseVecStorage<Self>;

15 }

16

17 #[derive(Debug)]

18 #[allow(non_camel_case_types)]

19 pub struct Comp_i128_2(pub i128);

20 impl Component for Comp_i128_2 {

21 type Storage = DenseVecStorage<Self>;

22 }

23

24 #[derive(Debug)]

25 #[allow(non_camel_case_types)]

26 pub struct Comp_i128_3(pub i128);

27 impl Component for Comp_i128_3 {

28 type Storage = DenseVecStorage<Self>;

29 }

30

31 #[derive(Debug)]

32 #[allow(non_camel_case_types)]

33 pub struct Comp_i128_4(pub i128);

34 impl Component for Comp_i128_4 {

35 type Storage = DenseVecStorage<Self>;

36 }

37

38 #[derive(Debug)]

270

39 #[allow(non_camel_case_types)]

40 pub struct Comp_i128_5(pub i128);

41 impl Component for Comp_i128_5 {

42 type Storage = DenseVecStorage<Self>;

43 }

44

45 #[derive(Debug)]

46 #[allow(non_camel_case_types)]

47 pub struct Comp_i128_6(pub i128);

48 impl Component for Comp_i128_6 {

49 type Storage = DenseVecStorage<Self>;

50 }

51

52 #[derive(Debug)]

53 #[allow(non_camel_case_types)]

54 pub struct Comp_i128_7(pub i128);

55 impl Component for Comp_i128_7 {

56 type Storage = DenseVecStorage<Self>;

57 }

58

59 #[derive(Debug)]

60 #[allow(non_camel_case_types)]

61 pub struct Comp_i128_8(pub i128);

62 impl Component for Comp_i128_8 {

63 type Storage = DenseVecStorage<Self>;

64 }

65

66 #[derive(Debug)]

271

67 #[allow(non_camel_case_types)]

68 pub struct Comp_i128_9(pub i128);

69 impl Component for Comp_i128_9 {

70 type Storage = DenseVecStorage<Self>;

71 }

72

73 #[derive(Debug)]

74 #[allow(non_camel_case_types)]

75 pub struct Comp_i128_10(pub i128);

76 impl Component for Comp_i128_10 {

77 type Storage = DenseVecStorage<Self>;

78 }

79

80 #[derive(Debug)]

81 #[allow(non_camel_case_types)]

82 pub struct Comp_i128_11(pub i128);

83 impl Component for Comp_i128_11 {

84 type Storage = DenseVecStorage<Self>;

85 }

86

87 #[derive(Debug)]

88 #[allow(non_camel_case_types)]

89 pub struct Comp_i128_12(pub i128);

90 impl Component for Comp_i128_12 {

91 type Storage = DenseVecStorage<Self>;

92 }

93

94 #[derive(Debug)]

272

95 #[allow(non_camel_case_types)]

96 pub struct Comp_i128_13(pub i128);

97 impl Component for Comp_i128_13 {

98 type Storage = DenseVecStorage<Self>;

99 }

100

101 #[derive(Debug)]

102 #[allow(non_camel_case_types)]

103 pub struct Comp_i128_14(pub i128);

104 impl Component for Comp_i128_14 {

105 type Storage = DenseVecStorage<Self>;

106 }

107

108 #[derive(Debug)]

109 #[allow(non_camel_case_types)]

110 pub struct Comp_i128_15(pub i128);

111 impl Component for Comp_i128_15 {

112 type Storage = DenseVecStorage<Self>;

113 }

Listing F.4: Experiment 5: DOD Components

6.5 DOD Systems

1 use specs::prelude::*;

2 use super::dod_component::*;

3

4 fn fib(n: i128)->i128

5 {

6 if n <= 1 {

273

7

8 return n;

9 }

10 return fib(n-1) + fib(n-2);

11 }

12

13 #[derive(Debug)]

14 #[allow(non_camel_case_types)]

15 pub struct Sys_128bit_0;

16 impl<’a> System<’a> for Sys_128bit_0 {

17

18 type SystemData = (WriteStorage<’a, Comp_i128_0>);

19

20 fn run(&mut self, mut x: Self::SystemData) {

21 for x in (&mut x).join() {

22 x.0 += fib(x.0);

23 }

24 }

25 }

26

27 #[derive(Debug)]

28 #[allow(non_camel_case_types)]

29 pub struct Sys_256bit_0;

30 impl<’a> System<’a> for Sys_256bit_0 {

31

32 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>);

33

274

34 fn run(&mut self, (mut x, y): Self::SystemData) {

35 for (x, y) in (&mut x, &y).join() {

36 x.0 += fib(y.0);

37 }

38 }

39 }

40

41 #[derive(Debug)]

42 #[allow(non_camel_case_types)]

43 pub struct Sys_256bit_1;

44 impl<’a> System<’a> for Sys_256bit_1 {

45

46 type SystemData = (WriteStorage<’a, Comp_i128_2>, ReadStorage<’a,

Comp_i128_1>);

47

48 fn run(&mut self, (mut x, y): Self::SystemData) {

49 for (x, y) in (&mut x, &y).join() {

50 x.0 += fib(y.0);

51 }

52 }

53 }

54

55 #[derive(Debug)]

56 #[allow(non_camel_case_types)]

57 pub struct Sys_256bit_2;

58 impl<’a> System<’a> for Sys_256bit_2 {

59

60 type SystemData = (WriteStorage<’a, Comp_i128_3>, ReadStorage<’a,

275

Comp_i128_1>);

61

62 fn run(&mut self, (mut x, y): Self::SystemData) {

63 for (x, y) in (&mut x, &y).join() {

64 x.0 += fib(y.0);

65 }

66 }

67 }

68

69 #[derive(Debug)]

70 #[allow(non_camel_case_types)]

71 pub struct Sys_256bit_3;

72 impl<’a> System<’a> for Sys_256bit_3 {

73

74 type SystemData = (WriteStorage<’a, Comp_i128_4>, ReadStorage<’a,

Comp_i128_1>);

75

76 fn run(&mut self, (mut x, y): Self::SystemData) {

77 for (x, y) in (&mut x, &y).join() {

78 x.0 += fib(y.0);

79 }

80 }

81 }

82

83 #[derive(Debug)]

84 #[allow(non_camel_case_types)]

85 pub struct Sys_256bit_4;

86 impl<’a> System<’a> for Sys_256bit_4 {

276

87

88 type SystemData = (WriteStorage<’a, Comp_i128_5>, ReadStorage<’a,

Comp_i128_1>);

89

90 fn run(&mut self, (mut x, y): Self::SystemData) {

91 for (x, y) in (&mut x, &y).join() {

92 x.0 += fib(y.0);

93 }

94 }

95 }

96

97 #[derive(Debug)]

98 #[allow(non_camel_case_types)]

99 pub struct Sys_256bit_5;

100 impl<’a> System<’a> for Sys_256bit_5 {

101

102 type SystemData = (WriteStorage<’a, Comp_i128_6>, ReadStorage<’a,

Comp_i128_1>);

103

104 fn run(&mut self, (mut x, y): Self::SystemData) {

105 for (x, y) in (&mut x, &y).join() {

106 x.0 += fib(y.0);

107 }

108 }

109 }

110

111 #[derive(Debug)]

112 #[allow(non_camel_case_types)]

277

113 pub struct Sys_256bit_6;

114 impl<’a> System<’a> for Sys_256bit_6 {

115

116 type SystemData = (WriteStorage<’a, Comp_i128_7>, ReadStorage<’a,

Comp_i128_1>);

117

118 fn run(&mut self, (mut x, y): Self::SystemData) {

119 for (x, y) in (&mut x, &y).join() {

120 x.0 += fib(y.0);

121 }

122 }

123 }

124

125 #[derive(Debug)]

126 #[allow(non_camel_case_types)]

127 pub struct Sys_256bit_7;

128 impl<’a> System<’a> for Sys_256bit_7 {

129

130 type SystemData = (WriteStorage<’a, Comp_i128_8>, ReadStorage<’a,

Comp_i128_1>);

131

132 fn run(&mut self, (mut x, y): Self::SystemData) {

133 for (x, y) in (&mut x, &y).join() {

134 x.0 += fib(y.0);

135 }

136 }

137 }

138

278

139 #[derive(Debug)]

140 #[allow(non_camel_case_types)]

141 pub struct Sys_256bit_8;

142 impl<’a> System<’a> for Sys_256bit_8 {

143

144 type SystemData = (WriteStorage<’a, Comp_i128_9>, ReadStorage<’a,

Comp_i128_1>);

145

146 fn run(&mut self, (mut x, y): Self::SystemData) {

147 for (x, y) in (&mut x, &y).join() {

148 x.0 += fib(y.0);

149 }

150 }

151 }

152

153 #[derive(Debug)]

154 #[allow(non_camel_case_types)]

155 pub struct Sys_256bit_9;

156 impl<’a> System<’a> for Sys_256bit_9 {

157

158 type SystemData = (WriteStorage<’a, Comp_i128_10>, ReadStorage<’a,

Comp_i128_1>);

159

160 fn run(&mut self, (mut x, y): Self::SystemData) {

161 for (x, y) in (&mut x, &y).join() {

162 x.0 += fib(y.0);

163 }

164 }

279

165 }

166

167 #[derive(Debug)]

168 #[allow(non_camel_case_types)]

169 pub struct Sys_256bit_10;

170 impl<’a> System<’a> for Sys_256bit_10 {

171

172 type SystemData = (WriteStorage<’a, Comp_i128_11>, ReadStorage<’a,

Comp_i128_1>);

173

174 fn run(&mut self, (mut x, y): Self::SystemData) {

175 for (x, y) in (&mut x, &y).join() {

176 x.0 += fib(y.0);

177 }

178 }

179 }

180

181 #[derive(Debug)]

182 #[allow(non_camel_case_types)]

183 pub struct Sys_256bit_11;

184 impl<’a> System<’a> for Sys_256bit_11 {

185

186 type SystemData = (WriteStorage<’a, Comp_i128_12>, ReadStorage<’a,

Comp_i128_1>);

187

188 fn run(&mut self, (mut x, y): Self::SystemData) {

189 for (x, y) in (&mut x, &y).join() {

190 x.0 += fib(y.0);

280

191 }

192 }

193 }

194

195 #[derive(Debug)]

196 #[allow(non_camel_case_types)]

197 pub struct Sys_256bit_12;

198 impl<’a> System<’a> for Sys_256bit_12 {

199

200 type SystemData = (WriteStorage<’a, Comp_i128_13>, ReadStorage<’a,

Comp_i128_1>);

201

202 fn run(&mut self, (mut x, y): Self::SystemData) {

203 for (x, y) in (&mut x, &y).join() {

204 x.0 += fib(y.0);

205 }

206 }

207 }

208

209 #[derive(Debug)]

210 #[allow(non_camel_case_types)]

211 pub struct Sys_256bit_13;

212 impl<’a> System<’a> for Sys_256bit_13 {

213

214 type SystemData = (WriteStorage<’a, Comp_i128_14>, ReadStorage<’a,

Comp_i128_1>);

215

216 fn run(&mut self, (mut x, y): Self::SystemData) {

281

217 for (x, y) in (&mut x, &y).join() {

218 x.0 += fib(y.0);

219 }

220 }

221 }

222

223 #[derive(Debug)]

224 #[allow(non_camel_case_types)]

225 pub struct Sys_256bit_14;

226 impl<’a> System<’a> for Sys_256bit_14 {

227

228 type SystemData = (WriteStorage<’a, Comp_i128_15>, ReadStorage<’a,

Comp_i128_1>);

229

230 fn run(&mut self, (mut x, y): Self::SystemData) {

231 for (x, y) in (&mut x, &y).join() {

232 x.0 += fib(y.0);

233 }

234 }

235 }

Listing F.5: Experiment 5: DOD Systems

6.6 OOP

1 use super::oop_obj::*;

2 use std::sync::{Arc, RwLock};

3 use rayon::ThreadPoolBuilder;

4 use rayon::iter::IntoParallelRefMutIterator;

5

282

6 type ThreadPoolWrapper = Option<::std::sync::Arc<::rayon::ThreadPool>>;

7

8 pub fn obj_setup<T: Exp5>(entity_count: i32, thread_count: usize) -> Vec<Vec<T>>

{

9

10 let mut vec: Vec<Vec<T>> = Vec::new();

11 for i in 0..thread_count {

12 vec.push(Vec::new());

13 for _ in 0..entity_count/(thread_count as i32) {

14 vec.get_mut(i).unwrap().push(T::new(criterion::black_box(5)));

15 }

16 }

17 return vec;

18 }

19

20 //--

21 pub struct OOPWorld<T: Exp5> {

22 stages: Vec<Stage<T>>,

23 pool: Arc<RwLock<ThreadPoolWrapper>>,

24 }

25

26 impl <T: Exp5> OOPWorld <T> {

27 pub fn new(vec: Vec<Vec<T>>, thread_count: usize)->OOPWorld<T>{

28 let pool: ThreadPoolWrapper = Some(Arc::from(ThreadPoolBuilder::new().

num_threads(thread_count).build().unwrap()));

29 let pool: Arc<RwLock<ThreadPoolWrapper>> = Arc::from(RwLock::from(pool))

;

30

283

31 let stage: Stage<T> = Stage::new(vec);

32 let mut stages: Vec<Stage<T>> = Vec::new();

33 stages.push(stage);

34

35 return OOPWorld{

36 stages,

37 pool,

38 };

39 }

40

41 pub fn execute(&mut self){

42 let stages = &mut self.stages;

43

44 self.pool

45 .read()

46 .unwrap()

47 .as_ref()

48 .unwrap()

49 .install(move || {

50 for stage in stages {

51 stage.execute();

52 }

53 });

54 }

55 }

56

57 //--

58

284

59 struct Stage<T: Exp5> {

60 groups: Vec<Vec<T>>

61 }

62

63 impl <T: Exp5> Stage <T> {

64 fn new(vec: Vec<Vec<T>>)-> Stage<T> {

65

66 let groups = vec;

67

68 return Stage {

69 groups

70 };

71 }

72

73 fn execute(&mut self) {

74 use rayon::iter::ParallelIterator;

75 self.groups.par_iter_mut().for_each(|group| {

76 for obj in group {

77 obj.run0();

78 obj.run1();

79 obj.run2();

80 obj.run3();

81 obj.run4();

82 obj.run5();

83 obj.run6();

84 obj.run7();

85 obj.run8();

86 obj.run9();

285

87 obj.run10();

88 obj.run11();

89 obj.run12();

90 obj.run13();

91 obj.run14();

92 }

93 })

94 }

95 }

Listing F.6: Experiment 5: OOP

6.7 OOP Objects

1 fn fib(n: i128)->i128

2 {

3 if n <= 1 {

4

5 return n;

6 }

7 return fib(n-1) + fib(n-2);

8 }

9

10 pub trait Exp5: Send {

11 fn run0(&mut self);

12 fn run1(&mut self);

13 fn run2(&mut self);

14 fn run3(&mut self);

15 fn run4(&mut self);

16 fn run5(&mut self);

286

17 fn run6(&mut self);

18 fn run7(&mut self);

19 fn run8(&mut self);

20 fn run9(&mut self);

21 fn run10(&mut self);

22 fn run11(&mut self);

23 fn run12(&mut self);

24 fn run13(&mut self);

25 fn run14(&mut self);

26 fn new(val: i128)->Self;

27 }

28 pub struct Obj2048(pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128,

29 pub i128, pub i128, pub i128, pub i128, pub i128, pub i128,

pub i128, pub i128);

30

31 impl Exp5 for Obj2048 {

32 fn run0(&mut self) {self.15 += fib(self.0); }

33 fn run1(&mut self) {self.14 += fib(self.0); }

34 fn run2(&mut self) {self.13 += fib(self.0); }

35 fn run3(&mut self) {self.12 += fib(self.0); }

36 fn run4(&mut self) {self.11 += fib(self.0); }

37 fn run5(&mut self) {self.10 += fib(self.0); }

38 fn run6(&mut self) {self.9 += fib(self.0); }

39 fn run7(&mut self) {self.8 += fib(self.0); }

40 fn run8(&mut self) {self.7 += fib(self.0); }

41 fn run9(&mut self) {self.6 += fib(self.0); }

42 fn run10(&mut self) {self.5 += fib(self.0); }

287

43 fn run11(&mut self) {self.4 += fib(self.0); }

44 fn run12(&mut self) {self.3 += fib(self.0); }

45 fn run13(&mut self) {self.2 += fib(self.0); }

46 fn run14(&mut self) {self.1 += fib(self.0); }

47 fn new(val: i128)->Self {

48 return Obj2048(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

49 }

50 }

Listing F.7: Experiment 5: OOP Objects

288

Appendix G. Experiment Six Code

7.1 Benchmark

1 use criterion::{criterion_group, criterion_main, Criterion};

2 use std::time::Duration;

3 use thesis_experimentation::exp6::oop::*;

4 use thesis_experimentation::exp6::oop_obj::*;

5 use thesis_experimentation::exp6::dod::*;

6 use specs::prelude::*;

7

8 #[inline]

9 fn oop_dispatch<T: Exp6>(world: &mut OOPWorld<T>) { world.execute(); }

10

11 #[inline]

12 fn dod_dispatch(d: &mut Dispatcher, mut w: &mut World) {

13 d.dispatch_par(&mut w);

14 }

15

16 fn oop_criterion_benchmark(c: &mut Criterion) {

17 let mut group = c.benchmark_group("oop_exp6");

18 group.warm_up_time(Duration::from_secs(5));

19 group.sample_size(100);

20 group.nresamples(100);

21 rayon::ThreadPoolBuilder::new().num_threads(1).build_global().unwrap();

22

23 let o2048 = obj_setup::<Exp2048>();

24 let o1912 = obj_setup::<Exp1912>();

25 let o1792 = obj_setup::<Exp1792>();

289

26 let o1664 = obj_setup::<Exp1664>();

27 let o1536 = obj_setup::<Exp1536>();

28 let o1408 = obj_setup::<Exp1408>();

29 let o1280 = obj_setup::<Exp1280>();

30 let o1152 = obj_setup::<Exp1152>();

31 let o1024 = obj_setup::<Exp1024>();

32 let o896 = obj_setup::<Exp896>();

33 let o768 = obj_setup::<Exp768>();

34 let o640 = obj_setup::<Exp640>();

35 let o512 = obj_setup::<Exp512>();

36 let o384 = obj_setup::<Exp384>();

37 let o256 = obj_setup::<Exp256>();

38

39 let mut world2048 = OOPWorld::new(o2048);

40 let mut world1912 = OOPWorld::new(o1912);

41 let mut world1792 = OOPWorld::new(o1792);

42 let mut world1664 = OOPWorld::new(o1664);

43 let mut world1536 = OOPWorld::new(o1536);

44 let mut world1408 = OOPWorld::new(o1408);

45 let mut world1280 = OOPWorld::new(o1280);

46 let mut world1152 = OOPWorld::new(o1152);

47 let mut world1024 = OOPWorld::new(o1024);

48 let mut world896 = OOPWorld::new(o896);

49 let mut world768 = OOPWorld::new(o768);

50 let mut world640 = OOPWorld::new(o640);

51 let mut world512 = OOPWorld::new(o512);

52 let mut world384 = OOPWorld::new(o384);

53 let mut world256 = OOPWorld::new(o256);

290

54

55 group.bench_function("oop_exp6_2048", |b| b.iter(||oop_dispatch(&mut

world2048)));

56 group.bench_function("oop_exp6_1912", |b| b.iter(||oop_dispatch(&mut

world1912)));

57 group.bench_function("oop_exp6_1792", |b| b.iter(||oop_dispatch(&mut

world1792)));

58 group.bench_function("oop_exp6_1664", |b| b.iter(||oop_dispatch(&mut

world1664)));

59 group.bench_function("oop_exp6_1536", |b| b.iter(||oop_dispatch(&mut

world1536)));

60 group.bench_function("oop_exp6_1408", |b| b.iter(||oop_dispatch(&mut

world1408)));

61 group.bench_function("oop_exp6_1280", |b| b.iter(||oop_dispatch(&mut

world1280)));

62 group.bench_function("oop_exp6_1152", |b| b.iter(||oop_dispatch(&mut

world1152)));

63 group.bench_function("oop_exp6_1024", |b| b.iter(||oop_dispatch(&mut

world1024)));

64 group.bench_function("oop_exp6_896", |b| b.iter(||oop_dispatch(&mut world896

)));

65 group.bench_function("oop_exp6_768", |b| b.iter(||oop_dispatch(&mut world768

)));

66 group.bench_function("oop_exp6_640", |b| b.iter(||oop_dispatch(&mut world640

)));

67 group.bench_function("oop_exp6_512", |b| b.iter(||oop_dispatch(&mut world512

)));

68 group.bench_function("oop_exp6_384", |b| b.iter(||oop_dispatch(&mut world384

291

)));

69 group.bench_function("oop_exp6_256", |b| b.iter(||oop_dispatch(&mut world256

)));

70 }

71

72 pub fn dod_criterion_benchmark(c: &mut Criterion) {

73 let mut group = c.benchmark_group("dod_exp6");

74 group.warm_up_time(Duration::from_secs(5));

75 group.sample_size(100);

76 group.nresamples(100);

77

78 let entity_state_count = vec![2048, 1912, 1792, 1664, 1536, 1408, 1280,

1152, 1024, 896, 768, 640, 512, 384, 256];

79

80 entity_state_count.iter().for_each(|count| {

81 let mut world = World::new();

82 setup_component(&mut world).unwrap();

83 setup_entity(&mut world).unwrap();

84 let mut dispatcher = setup_dispatcher(*count);

85 let mut bench_name = String::from("dod_exp6_");

86 let i = count.to_string();

87 bench_name.push_str(&i);

88 group.bench_function(bench_name, |b| b.iter(|| dod_dispatch(&mut

dispatcher, &mut world)));

89 });

90 }

91

92 criterion_group!(oop_exp6, oop_criterion_benchmark);

292

93 criterion_group!(dod_exp6, dod_criterion_benchmark);

94 criterion_main!(oop_exp6, dod_exp6);

Listing G.1: Experiment 6: Benchmark

7.2 Modules

1 pub mod oop;

2 pub mod dod;

3 pub mod oop_obj;

4 pub mod dod_obj;

Listing G.2: Experiment 6: Modules

7.3 DOD

1 use specs::prelude::*;

2 use std::io;

3 use super::dod_obj::*;

4 use std::sync::Arc;

5

6 //All Entities use 2048 bits, which is 16 i128’s

7 pub fn setup_component(world: &mut World)-> io::Result<()> {

8 world.register::<Comp_i128_0>();

9 world.register::<Comp_i128_1>();

10 world.register::<Comp_i128_2>();

11 world.register::<Comp_i128_3>();

12 world.register::<Comp_i128_4>();

13 world.register::<Comp_i128_5>();

14 world.register::<Comp_i128_6>();

15 world.register::<Comp_i128_7>();

293

16 world.register::<Comp_i128_8>();

17 world.register::<Comp_i128_9>();

18 world.register::<Comp_i128_10>();

19 world.register::<Comp_i128_11>();

20 world.register::<Comp_i128_12>();

21 world.register::<Comp_i128_13>();

22 world.register::<Comp_i128_14>();

23 world.register::<Comp_i128_15>();

24

25 return Ok(())

26 }

27

28 //All Entities use 2048 bits, which is 16 i128’s

29 pub fn setup_entity(world: &mut World)->io::Result<()> {

30

31 for _ in 0..5000 {

32 world.create_entity()

33 .with(Comp_i128_0(criterion::black_box(5)))

34 .with(Comp_i128_1(criterion::black_box(5)))

35 .with(Comp_i128_2(criterion::black_box(5)))

36 .with(Comp_i128_3(criterion::black_box(5)))

37 .with(Comp_i128_4(criterion::black_box(5)))

38 .with(Comp_i128_5(criterion::black_box(5)))

39 .with(Comp_i128_6(criterion::black_box(5)))

40 .with(Comp_i128_7(criterion::black_box(5)))

41 .with(Comp_i128_8(criterion::black_box(5)))

42 .with(Comp_i128_9(criterion::black_box(5)))

43 .with(Comp_i128_10(criterion::black_box(5)))

294

44 .with(Comp_i128_11(criterion::black_box(5)))

45 .with(Comp_i128_12(criterion::black_box(5)))

46 .with(Comp_i128_13(criterion::black_box(5)))

47 .with(Comp_i128_14(criterion::black_box(5)))

48 .with(Comp_i128_15(criterion::black_box(5)))

49 .build();

50 }

51 return Ok(())

52 }

53

54 //This differs based on which experiment is going on

55 pub fn setup_dispatcher<’a, ’b>(size: i32)->Dispatcher<’a, ’b> {

56

57 let pool = Arc::from(rayon::ThreadPoolBuilder::new().num_threads(1).build().

unwrap());

58

59 match size {

60 2048 => {

61 let dispatcher = DispatcherBuilder::new()

62 .with(Sys_2048, "sys", &[])

63 .with_pool(pool)

64 .build();

65 return dispatcher;

66 }

67

68 1912 => {

69 let dispatcher = DispatcherBuilder::new()

70 .with(Sys_1912, "sys", &[])

295

71 .with_pool(pool)

72 .build();

73 return dispatcher;

74 }

75

76 1792 => {

77 let dispatcher = DispatcherBuilder::new()

78 .with(Sys_1792, "sys", &[])

79 .with_pool(pool)

80 .build();

81 return dispatcher;

82 }

83

84 1664 => {

85 let dispatcher = DispatcherBuilder::new()

86 .with(Sys_1664, "sys", &[])

87 .with_pool(pool)

88 .build();

89 return dispatcher;

90 }

91

92 1536 => {

93 let dispatcher = DispatcherBuilder::new()

94 .with(Sys_1536, "sys", &[])

95 .with_pool(pool)

96 .build();

97 return dispatcher;

98 }

296

99

100 1408 => {

101 let dispatcher = DispatcherBuilder::new()

102 .with(Sys_1408, "sys", &[])

103 .with_pool(pool)

104 .build();

105 return dispatcher;

106 }

107

108 1280 => {

109 let dispatcher = DispatcherBuilder::new()

110 .with(Sys_1280, "sys", &[])

111 .with_pool(pool)

112 .build();

113 return dispatcher;

114 }

115

116 1152 => {

117 let dispatcher = DispatcherBuilder::new()

118 .with(Sys_1152, "sys", &[])

119 .with_pool(pool)

120 .build();

121 return dispatcher;

122 }

123

124 1024 => {

125 let dispatcher = DispatcherBuilder::new()

126 .with(Sys_1024, "sys", &[])

297

127 .with_pool(pool)

128 .build();

129 return dispatcher;

130 }

131

132 896 => {

133 let dispatcher = DispatcherBuilder::new()

134 .with(Sys_896, "sys", &[])

135 .with_pool(pool)

136 .build();

137 return dispatcher;

138 }

139

140 768 => {

141 let dispatcher = DispatcherBuilder::new()

142 .with(Sys_768, "sys", &[])

143 .with_pool(pool)

144 .build();

145 return dispatcher;

146 }

147

148 640 => {

149 let dispatcher = DispatcherBuilder::new()

150 .with(Sys_640, "sys", &[])

151 .with_pool(pool)

152 .build();

153 return dispatcher;

154 }

298

155

156 512 => {

157 let dispatcher = DispatcherBuilder::new()

158 .with(Sys_512, "sys", &[])

159 .with_pool(pool)

160 .build();

161 return dispatcher;

162 }

163

164 384 => {

165 let dispatcher = DispatcherBuilder::new()

166 .with(Sys_384, "sys", &[])

167 .with_pool(pool)

168 .build();

169 return dispatcher;

170 }

171

172 256 => {

173 let dispatcher = DispatcherBuilder::new()

174 .with(Sys_256, "sys", &[])

175 .with_pool(pool)

176 .build();

177 return dispatcher;

178 }

179

180 _ => {panic!("unknown data size");}

181 }

299

182 }

Listing G.3: Experiment 6: DOD

7.4 DOD Components

1 use specs::prelude::*;

2

3 #[derive(Debug)]

4 #[allow(non_camel_case_types)]

5 pub struct Comp_i128_0(pub i128);

6 impl Component for Comp_i128_0 {

7 type Storage = DenseVecStorage<Self>;

8 }

9

10 #[derive(Debug)]

11 #[allow(non_camel_case_types)]

12 pub struct Comp_i128_1(pub i128);

13 impl Component for Comp_i128_1 {

14 type Storage = DenseVecStorage<Self>;

15 }

16

17 #[derive(Debug)]

18 #[allow(non_camel_case_types)]

19 pub struct Comp_i128_2(pub i128);

20 impl Component for Comp_i128_2 {

21 type Storage = DenseVecStorage<Self>;

22 }

23

24 #[derive(Debug)]

300

25 #[allow(non_camel_case_types)]

26 pub struct Comp_i128_3(pub i128);

27 impl Component for Comp_i128_3 {

28 type Storage = DenseVecStorage<Self>;

29 }

30

31 #[derive(Debug)]

32 #[allow(non_camel_case_types)]

33 pub struct Comp_i128_4(pub i128);

34 impl Component for Comp_i128_4 {

35 type Storage = DenseVecStorage<Self>;

36 }

37

38 #[derive(Debug)]

39 #[allow(non_camel_case_types)]

40 pub struct Comp_i128_5(pub i128);

41 impl Component for Comp_i128_5 {

42 type Storage = DenseVecStorage<Self>;

43 }

44

45 #[derive(Debug)]

46 #[allow(non_camel_case_types)]

47 pub struct Comp_i128_6(pub i128);

48 impl Component for Comp_i128_6 {

49 type Storage = DenseVecStorage<Self>;

50 }

51

52 #[derive(Debug)]

301

53 #[allow(non_camel_case_types)]

54 pub struct Comp_i128_7(pub i128);

55 impl Component for Comp_i128_7 {

56 type Storage = DenseVecStorage<Self>;

57 }

58

59 #[derive(Debug)]

60 #[allow(non_camel_case_types)]

61 pub struct Comp_i128_8(pub i128);

62 impl Component for Comp_i128_8 {

63 type Storage = DenseVecStorage<Self>;

64 }

65

66 #[derive(Debug)]

67 #[allow(non_camel_case_types)]

68 pub struct Comp_i128_9(pub i128);

69 impl Component for Comp_i128_9 {

70 type Storage = DenseVecStorage<Self>;

71 }

72

73 #[derive(Debug)]

74 #[allow(non_camel_case_types)]

75 pub struct Comp_i128_10(pub i128);

76 impl Component for Comp_i128_10 {

77 type Storage = DenseVecStorage<Self>;

78 }

79

80 #[derive(Debug)]

302

81 #[allow(non_camel_case_types)]

82 pub struct Comp_i128_11(pub i128);

83 impl Component for Comp_i128_11 {

84 type Storage = DenseVecStorage<Self>;

85 }

86

87 #[derive(Debug)]

88 #[allow(non_camel_case_types)]

89 pub struct Comp_i128_12(pub i128);

90 impl Component for Comp_i128_12 {

91 type Storage = DenseVecStorage<Self>;

92 }

93

94 #[derive(Debug)]

95 #[allow(non_camel_case_types)]

96 pub struct Comp_i128_13(pub i128);

97 impl Component for Comp_i128_13 {

98 type Storage = DenseVecStorage<Self>;

99 }

100

101 #[derive(Debug)]

102 #[allow(non_camel_case_types)]

103 pub struct Comp_i128_14(pub i128);

104 impl Component for Comp_i128_14 {

105 type Storage = DenseVecStorage<Self>;

106 }

107

108 #[derive(Debug)]

303

109 #[allow(non_camel_case_types)]

110 pub struct Comp_i128_15(pub i128);

111 impl Component for Comp_i128_15 {

112 type Storage = DenseVecStorage<Self>;

113 }

Listing G.4: Experiment 6: DOD Components

7.5 DOD Systems

1 use specs::prelude::*;

2 use super::dod_component::*;

3

4 #[derive(Debug)]

5 #[allow(non_camel_case_types)]

6 pub struct Sys_2048;

7 impl<’a> System<’a> for Sys_2048 {

8

9 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

10 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

11 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

12 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>,

13 ReadStorage<’a, Comp_i128_8>, ReadStorage<’a, Comp_i128_9

>,

14 ReadStorage<’a, Comp_i128_10>, ReadStorage<’a,

Comp_i128_11>,

304

15 ReadStorage<’a, Comp_i128_12>, ReadStorage<’a,

Comp_i128_13>,

16 ReadStorage<’a, Comp_i128_14>, ReadStorage<’a,

Comp_i128_15>);

17

18 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12

, o13, o14, o15): Self::SystemData) {

19 for (o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13, o14,

o15) in (&mut o0, &o1, &o2, &o3, &o4, &o5, &o6, &o7, &o8, &o9, &o10, &o11, &

o12, &o13, &o14, &o15).join() {

20 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0 + o9.0

+ o10.0 + o11.0 + o12.0 + o13.0 + o14.0 + o15.0;

21 }

22 }

23 }

24

25 #[derive(Debug)]

26 #[allow(non_camel_case_types)]

27 pub struct Sys_1912;

28 impl<’a> System<’a> for Sys_1912 {

29

30 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

31 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

32 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

33 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

305

>,

34 ReadStorage<’a, Comp_i128_8>, ReadStorage<’a, Comp_i128_9

>,

35 ReadStorage<’a, Comp_i128_10>, ReadStorage<’a,

Comp_i128_11>,

36 ReadStorage<’a, Comp_i128_12>, ReadStorage<’a,

Comp_i128_13>,

37 ReadStorage<’a, Comp_i128_14>);

38

39 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12

, o13, o14): Self::SystemData) {

40 for (o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13, o14) in

(&mut o0, &o1, &o2, &o3, &o4, &o5, &o6, &o7, &o8, &o9, &o10, &o11, &o12, &

o13, &o14).join() {

41 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0 + o9.0

+ o10.0 + o11.0 + o12.0 + o13.0 + o14.0;

42 }

43 }

44 }

45

46 #[derive(Debug)]

47 #[allow(non_camel_case_types)]

48 pub struct Sys_1792;

49 impl<’a> System<’a> for Sys_1792 {

50

51 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

52 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

306

>,

53 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

54 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>,

55 ReadStorage<’a, Comp_i128_8>, ReadStorage<’a, Comp_i128_9

>,

56 ReadStorage<’a, Comp_i128_10>, ReadStorage<’a,

Comp_i128_11>,

57 ReadStorage<’a, Comp_i128_12>, ReadStorage<’a,

Comp_i128_13>);

58

59 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12

, o13): Self::SystemData) {

60 for (o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13) in (&

mut o0, &o1, &o2, &o3, &o4, &o5, &o6, &o7, &o8, &o9, &o10, &o11, &o12, &o13)

.join() {

61 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0 + o9.0

+ o10.0 + o11.0 + o12.0 + o13.0;

62 }

63 }

64 }

65

66 #[derive(Debug)]

67 #[allow(non_camel_case_types)]

68 pub struct Sys_1664;

69 impl<’a> System<’a> for Sys_1664 {

70

307

71 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

72 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

73 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

74 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>,

75 ReadStorage<’a, Comp_i128_8>, ReadStorage<’a, Comp_i128_9

>,

76 ReadStorage<’a, Comp_i128_10>, ReadStorage<’a,

Comp_i128_11>,

77 ReadStorage<’a, Comp_i128_12>);

78

79 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12

): Self::SystemData) {

80 for (o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12) in (&mut o0,

&o1, &o2, &o3, &o4, &o5, &o6, &o7, &o8, &o9, &o10, &o11, &o12).join() {

81 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0 + o9.0

+ o10.0 + o11.0 + o12.0;

82 }

83 }

84 }

85

86 #[derive(Debug)]

87 #[allow(non_camel_case_types)]

88 pub struct Sys_1536;

89 impl<’a> System<’a> for Sys_1536 {

308

90

91 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

92 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

93 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

94 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>,

95 ReadStorage<’a, Comp_i128_8>, ReadStorage<’a, Comp_i128_9

>,

96 ReadStorage<’a, Comp_i128_10>, ReadStorage<’a,

Comp_i128_11>);

97

98 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11):

Self::SystemData) {

99 for (o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11) in (&mut o0, &o1,

&o2, &o3, &o4, &o5, &o6, &o7, &o8, &o9, &o10, &o11).join() {

100 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0 + o9.0

+ o10.0 + o11.0;

101 }

102 }

103 }

104

105 #[derive(Debug)]

106 #[allow(non_camel_case_types)]

107 pub struct Sys_1408;

108 impl<’a> System<’a> for Sys_1408 {

309

109

110 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

111 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

112 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

113 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>,

114 ReadStorage<’a, Comp_i128_8>, ReadStorage<’a, Comp_i128_9

>,

115 ReadStorage<’a, Comp_i128_10>);

116

117 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10): Self::

SystemData) {

118 for (o0, o1, o2, o3, o4, o5, o6, o7, o8, o9, o10) in (&mut o0, &o1, &o2,

&o3, &o4, &o5, &o6, &o7, &o8, &o9, &o10).join() {

119 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0 + o9.0

+ o10.0;

120 }

121 }

122 }

123

124 #[derive(Debug)]

125 #[allow(non_camel_case_types)]

126 pub struct Sys_1280;

127 impl<’a> System<’a> for Sys_1280 {

128

310

129 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

130 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

131 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

132 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>,

133 ReadStorage<’a, Comp_i128_8>, ReadStorage<’a, Comp_i128_9

>);

134

135 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8, o9): Self::

SystemData) {

136 for (o0, o1, o2, o3, o4, o5, o6, o7, o8, o9) in (&mut o0, &o1, &o2, &o3,

&o4, &o5, &o6, &o7, &o8, &o9).join() {

137 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0 + o9

.0;

138 }

139 }

140 }

141

142 #[derive(Debug)]

143 #[allow(non_camel_case_types)]

144 pub struct Sys_1152;

145 impl<’a> System<’a> for Sys_1152 {

146

147 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

311

148 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

149 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

150 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>,

151 ReadStorage<’a, Comp_i128_8>);

152

153 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7, o8): Self::SystemData

) {

154 for (o0, o1, o2, o3, o4, o5, o6, o7, o8) in (&mut o0, &o1, &o2, &o3, &o4

, &o5, &o6, &o7, &o8).join() {

155 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0 + o8.0;

156 }

157 }

158 }

159

160 #[derive(Debug)]

161 #[allow(non_camel_case_types)]

162 pub struct Sys_1024;

163 impl<’a> System<’a> for Sys_1024 {

164

165 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

166 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

167 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

312

168 ReadStorage<’a, Comp_i128_6>, ReadStorage<’a, Comp_i128_7

>);

169

170 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6, o7): Self::SystemData) {

171 for (o0, o1, o2, o3, o4, o5, o6, o7) in (&mut o0, &o1, &o2, &o3, &o4, &

o5, &o6, &o7).join() {

172 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0 + o7.0;

173 }

174 }

175 }

176

177 #[derive(Debug)]

178 #[allow(non_camel_case_types)]

179 pub struct Sys_896;

180 impl<’a> System<’a> for Sys_896 {

181

182 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

183 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

184 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>,

185 ReadStorage<’a, Comp_i128_6>);

186

187 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5, o6): Self::SystemData) {

188 for (o0, o1, o2, o3, o4, o5, o6) in (&mut o0, &o1, &o2, &o3, &o4, &o5, &

o6).join() {

189 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0 + o6.0;

313

190 }

191 }

192 }

193

194 #[derive(Debug)]

195 #[allow(non_camel_case_types)]

196 pub struct Sys_768;

197 impl<’a> System<’a> for Sys_768 {

198

199 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

200 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

201 ReadStorage<’a, Comp_i128_4>, ReadStorage<’a, Comp_i128_5

>);

202

203 fn run(&mut self, (mut o0, o1, o2, o3, o4, o5): Self::SystemData) {

204 for (o0, o1, o2, o3, o4, o5) in (&mut o0, &o1, &o2, &o3, &o4, &o5).join

() {

205 o0.0 += o1.0 + o2.0 + o3.0 + o4.0 + o5.0;

206 }

207 }

208 }

209

210 #[derive(Debug)]

211 #[allow(non_camel_case_types)]

212 pub struct Sys_640;

213 impl<’a> System<’a> for Sys_640 {

314

214

215 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

216 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>,

217 ReadStorage<’a, Comp_i128_4>);

218

219 fn run(&mut self, (mut o0, o1, o2, o3, o4): Self::SystemData) {

220 for (o0, o1, o2, o3, o4) in (&mut o0, &o1, &o2, &o3, &o4).join() {

221 o0.0 += o1.0 + o2.0 + o3.0 + o4.0;

222 }

223 }

224 }

225

226 #[derive(Debug)]

227 #[allow(non_camel_case_types)]

228 pub struct Sys_512;

229 impl<’a> System<’a> for Sys_512 {

230

231 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

232 ReadStorage<’a, Comp_i128_2>, ReadStorage<’a, Comp_i128_3

>);

233

234 fn run(&mut self, (mut o0, o1, o2, o3): Self::SystemData) {

235 for (o0, o1, o2, o3) in (&mut o0, &o1, &o2, &o3).join() {

236 o0.0 += o1.0 + o2.0 + o3.0;

237 }

315

238 }

239 }

240

241 #[derive(Debug)]

242 #[allow(non_camel_case_types)]

243 pub struct Sys_384;

244 impl<’a> System<’a> for Sys_384 {

245

246 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>,

247 ReadStorage<’a, Comp_i128_2>);

248

249 fn run(&mut self, (mut o0, o1, o2): Self::SystemData) {

250 for (o0, o1, o2) in (&mut o0, &o1, &o2).join() {

251 o0.0 += o1.0 + o2.0;

252 }

253 }

254 }

255

256 #[derive(Debug)]

257 #[allow(non_camel_case_types)]

258 pub struct Sys_256;

259 impl<’a> System<’a> for Sys_256 {

260

261 type SystemData = (WriteStorage<’a, Comp_i128_0>, ReadStorage<’a,

Comp_i128_1>);

262

263 fn run(&mut self, (mut o0, o1): Self::SystemData) {

316

264 for (o0, o1) in (&mut o0, &o1).join() {

265 o0.0 += o1.0;

266 }

267 }

268 }

Listing G.5: Experiment 6: DOD Systems

7.6 OOP

1 use super::oop_obj::*;

2 use std::sync::{Arc, RwLock};

3 use rayon::*;

4 use rayon::iter::IntoParallelRefMutIterator;

5

6 type ThreadPoolWrapper = Option<::std::sync::Arc<::rayon::ThreadPool>>;

7

8 pub fn obj_setup<T: Exp6>()-> Vec<T> {

9

10 let mut vec: Vec<T> = Vec::new();

11 for _ in 0..5000 {

12 let tmp = T::new(criterion::black_box(5));

13 vec.push(tmp);

14 }

15

16 return vec;

17 }

18

19 //--

20 pub struct OOPWorld<T: Exp6> {

317

21 stages: Vec<Stage<T>>,

22 pool: Arc<RwLock<ThreadPoolWrapper>>

23 }

24

25 impl <T: Exp6> OOPWorld <T> {

26 pub fn new(vec: Vec<T>,)->OOPWorld<T>{

27 let pool: ThreadPoolWrapper = Some(Arc::from(ThreadPoolBuilder::new().

num_threads(1).build().unwrap()));

28 let pool: Arc<RwLock<ThreadPoolWrapper>> = Arc::from(RwLock::from(pool))

;

29

30 let stage: Stage<T> = Stage::new(vec);

31 let mut stages: Vec<Stage<T>> = Vec::new();

32 stages.push(stage);

33

34 return OOPWorld{

35 stages,

36 pool

37 };

38 }

39

40 pub fn execute(&mut self){

41 let stages = &mut self.stages;

42

43 self.pool

44 .read()

45 .unwrap()

46 .as_ref()

318

47 .unwrap()

48 .install(move || {

49 for stage in stages {

50 stage.execute();

51 }

52 });

53 }

54 }

55

56 //--

57

58 struct Stage<T: Exp6> {

59 groups: Vec<Vec<T>>

60 }

61

62 impl <T: Exp6> Stage <T> {

63 fn new(vec: Vec<T>)-> Stage<T> {

64

65 let mut groups: Vec<Vec<T>> = Vec::new();

66 groups.push(vec);

67

68 return Stage {

69 groups

70 };

71 }

72

73 fn execute(&mut self) {

74 use rayon::iter::ParallelIterator;

319

75 self.groups.par_iter_mut().for_each(|group| {

76 for obj in group {

77 obj.run();

78 }

79 })

80 }

81 }

Listing G.6: Experiment 6: OOP

7.7 OOP Objects

1 pub trait Exp6: Send {

2 fn new(val: i128)->Self;

3 fn run(&mut self);

4 }

5

6 pub struct Exp2048(pub i128,

7 pub i128,

8 pub i128,

9 pub i128,

10 pub i128,

11 pub i128,

12 pub i128,

13 pub i128,

14 pub i128,

15 pub i128,

16 pub i128,

17 pub i128,

18 pub i128,

320

19 pub i128,

20 pub i128,

21 pub i128

22);

23

24 impl Exp6 for Exp2048 {

25 fn new(val: i128)->Self {

26 return Exp2048(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

27 }

28

29 fn run(&mut self) {

30 self.0 += self.1 + self.2 + self.3 + self.4 + self.5 + self.6 + self.7 +

self.8 + self.9 + self.10 + self.11 + self.12 + self.13 + self.14 + self

.15;

31 }

32 }

33

34 pub struct Exp1912(pub i128,

35 pub i128,

36 pub i128,

37 pub i128,

38 pub i128,

39 pub i128,

40 pub i128,

41 pub i128,

42 pub i128,

43 pub i128,

321

44 pub i128,

45 pub i128,

46 pub i128,

47 pub i128,

48 pub i128,

49 pub i128

50);

51

52 impl Exp6 for Exp1912 {

53 fn new(val: i128)->Self {

54 return Exp1912(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

55 }

56

57 fn run(&mut self) {

58 self.0 += self.2 + self.3 + self.4 + self.5 + self.6 + self.7 + self.8 +

self.9 + self.10 + self.11 + self.12 + self.13 + self.14 + self.15;

59 }

60 }

61

62 pub struct Exp1792(pub i128,

63 pub i128,

64 pub i128,

65 pub i128,

66 pub i128,

67 pub i128,

68 pub i128,

69 pub i128,

322

70 pub i128,

71 pub i128,

72 pub i128,

73 pub i128,

74 pub i128,

75 pub i128,

76 pub i128,

77 pub i128

78);

79

80 impl Exp6 for Exp1792 {

81 fn new(val: i128)->Self {

82 return Exp1792(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

83 }

84

85 fn run(&mut self) {

86 self.0 += self.3 + self.4 + self.5 + self.6 + self.7 + self.8 + self.9 +

self.10 + self.11 + self.12 + self.13 + self.14 + self.15;

87 }

88 }

89

90 pub struct Exp1664(pub i128,

91 pub i128,

92 pub i128,

93 pub i128,

94 pub i128,

95 pub i128,

323

96 pub i128,

97 pub i128,

98 pub i128,

99 pub i128,

100 pub i128,

101 pub i128,

102 pub i128,

103 pub i128,

104 pub i128,

105 pub i128

106);

107

108 impl Exp6 for Exp1664 {

109 fn new(val: i128)->Self {

110 return Exp1664(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

111 }

112

113 fn run(&mut self) {

114 self.0 += self.4 + self.5 + self.6 + self.7 + self.8 + self.9 + self.10

+ self.11 + self.12 + self.13 + self.14 + self.15;

115 }

116 }

117

118 pub struct Exp1536(pub i128,

119 pub i128,

120 pub i128,

121 pub i128,

324

122 pub i128,

123 pub i128,

124 pub i128,

125 pub i128,

126 pub i128,

127 pub i128,

128 pub i128,

129 pub i128,

130 pub i128,

131 pub i128,

132 pub i128,

133 pub i128

134);

135

136 impl Exp6 for Exp1536 {

137 fn new(val: i128)->Self {

138 return Exp1536(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

139 }

140

141 fn run(&mut self) {

142 self.0 += self.5 + self.6 + self.7 + self.8 + self.9 + self.10 + self.11

+ self.12 + self.13 + self.14 + self.15;

143 }

144 }

145

146 pub struct Exp1408(pub i128,

147 pub i128,

325

148 pub i128,

149 pub i128,

150 pub i128,

151 pub i128,

152 pub i128,

153 pub i128,

154 pub i128,

155 pub i128,

156 pub i128,

157 pub i128,

158 pub i128,

159 pub i128,

160 pub i128,

161 pub i128

162);

163

164 impl Exp6 for Exp1408 {

165 fn new(val: i128)->Self {

166 return Exp1408(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

167 }

168

169 fn run(&mut self) {

170 self.0 += self.6 + self.7 + self.8 + self.9 + self.10 + self.11 + self

.12 + self.13 + self.14 + self.15;

171 }

172 }

173

326

174 pub struct Exp1280(pub i128,

175 pub i128,

176 pub i128,

177 pub i128,

178 pub i128,

179 pub i128,

180 pub i128,

181 pub i128,

182 pub i128,

183 pub i128,

184 pub i128,

185 pub i128,

186 pub i128,

187 pub i128,

188 pub i128,

189 pub i128

190);

191

192 impl Exp6 for Exp1280 {

193 fn new(val: i128)->Self {

194 return Exp1280(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

195 }

196

197 fn run(&mut self) {

198 self.0 += self.7 + self.8 + self.9 + self.10 + self.11 + self.12 + self

.13 + self.14 + self.15;

199 }

327

200 }

201

202 pub struct Exp1152(pub i128,

203 pub i128,

204 pub i128,

205 pub i128,

206 pub i128,

207 pub i128,

208 pub i128,

209 pub i128,

210 pub i128,

211 pub i128,

212 pub i128,

213 pub i128,

214 pub i128,

215 pub i128,

216 pub i128,

217 pub i128

218);

219

220 impl Exp6 for Exp1152 {

221 fn new(val: i128)->Self {

222 return Exp1152(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

223 }

224

225 fn run(&mut self) {

226 self.0 += self.8 + self.9 + self.10 + self.11 + self.12 + self.13 + self

328

.14 + self.15;

227 }

228 }

229

230 pub struct Exp1024(pub i128,

231 pub i128,

232 pub i128,

233 pub i128,

234 pub i128,

235 pub i128,

236 pub i128,

237 pub i128,

238 pub i128,

239 pub i128,

240 pub i128,

241 pub i128,

242 pub i128,

243 pub i128,

244 pub i128,

245 pub i128

246);

247

248 impl Exp6 for Exp1024 {

249 fn new(val: i128)->Self {

250 return Exp1024(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

251 }

252

329

253 fn run(&mut self) {

254 self.0 += self.9 + self.10 + self.11 + self.12 + self.13 + self.14 +

self.15;

255 }

256 }

257

258 pub struct Exp896(pub i128,

259 pub i128,

260 pub i128,

261 pub i128,

262 pub i128,

263 pub i128,

264 pub i128,

265 pub i128,

266 pub i128,

267 pub i128,

268 pub i128,

269 pub i128,

270 pub i128,

271 pub i128,

272 pub i128,

273 pub i128

274);

275

276 impl Exp6 for Exp896 {

277 fn new(val: i128)->Self {

278 return Exp896(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

330

279 }

280

281 fn run(&mut self) {

282 self.0 += self.10 + self.11 + self.12 + self.13 + self.14 + self.15;

283 }

284 }

285

286 pub struct Exp768(pub i128,

287 pub i128,

288 pub i128,

289 pub i128,

290 pub i128,

291 pub i128,

292 pub i128,

293 pub i128,

294 pub i128,

295 pub i128,

296 pub i128,

297 pub i128,

298 pub i128,

299 pub i128,

300 pub i128,

301 pub i128

302);

303

304 impl Exp6 for Exp768 {

305 fn new(val: i128)->Self {

306 return Exp768(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

331

val,val);

307 }

308

309 fn run(&mut self) {

310 self.0 += self.11 + self.12 + self.13 + self.14 + self.15;

311 }

312 }

313

314 pub struct Exp640(pub i128,

315 pub i128,

316 pub i128,

317 pub i128,

318 pub i128,

319 pub i128,

320 pub i128,

321 pub i128,

322 pub i128,

323 pub i128,

324 pub i128,

325 pub i128,

326 pub i128,

327 pub i128,

328 pub i128,

329 pub i128

330);

331

332 impl Exp6 for Exp640 {

333 fn new(val: i128)->Self {

332

334 return Exp640(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

335 }

336

337 fn run(&mut self) {

338 self.0 += self.12 + self.13 + self.14 + self.15;

339 }

340 }

341

342 pub struct Exp512(pub i128,

343 pub i128,

344 pub i128,

345 pub i128,

346 pub i128,

347 pub i128,

348 pub i128,

349 pub i128,

350 pub i128,

351 pub i128,

352 pub i128,

353 pub i128,

354 pub i128,

355 pub i128,

356 pub i128,

357 pub i128

358);

359

360 impl Exp6 for Exp512 {

333

361 fn new(val: i128)->Self {

362 return Exp512(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

363 }

364

365 fn run(&mut self) {

366 self.0 += self.13 + self.14 + self.15;

367 }

368 }

369

370 pub struct Exp384(pub i128,

371 pub i128,

372 pub i128,

373 pub i128,

374 pub i128,

375 pub i128,

376 pub i128,

377 pub i128,

378 pub i128,

379 pub i128,

380 pub i128,

381 pub i128,

382 pub i128,

383 pub i128,

384 pub i128,

385 pub i128

386);

387

334

388 impl Exp6 for Exp384 {

389 fn new(val: i128)->Self {

390 return Exp384(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

391 }

392

393 fn run(&mut self) {

394 self.0 += self.14 + self.15;

395 }

396 }

397

398 pub struct Exp256(pub i128,

399 pub i128,

400 pub i128,

401 pub i128,

402 pub i128,

403 pub i128,

404 pub i128,

405 pub i128,

406 pub i128,

407 pub i128,

408 pub i128,

409 pub i128,

410 pub i128,

411 pub i128,

412 pub i128,

413 pub i128

414);

335

415

416 impl Exp6 for Exp256 {

417 fn new(val: i128)->Self {

418 return Exp256(val,val,val,val,val,val,val,val,val,val,val,val,val,val,

val,val);

419 }

420

421 fn run(&mut self) {

422 self.0 += self.15;

423 }

424 }

Listing G.7: Experiment 6: OOP Objects

336

Bibliography

1. David Patterson John Hennessy. Computer Architecture : A Quantitative Approach.

Elsevier, 5th edition, 2007.

2. Ghavam Shahidi. Slow-down in power scaling and the end of moore’s law? In Interna-

tional Symposium on VLSI Technology, Systems and Application. IEEE, 2019.

3. Jonathan Mines. Data-oriented vs object-oriented design, March 2018. [Online; accessed

12/01/2019].

4. Jason Roberts Shameem Akhter. Multi-Core Programming: Increasing Performance

through Software Multi-threading. Richard Bowles, 1st edition, 2006.

5. Raj Jain Mahbub Hassan. High Performance TCP/IP Networking: Conecepts, Issues,

and Solutions. Person Education Inc., 1st edition, 2004.

6. William B. McNatt and James M. Bieman. Coupling of design patterns: Common

practices and their benifits. Computer Software and Applications Conference, 2001.

7. Charles Scalfani. Goodbye, object oriented programming, July 2016. [Online; accessed

01/10/2020.

8. Seon Wook Kim Matthew DeVuyst, Dean Tullsen. Runtime parallelization of legacy

code on a transactional memory system. In High-Performance and Embedded Architec-

tures and Compilers. Association for Computing Machinery, 2011.

9. Pedro Cajaraville Diego Rodrigues Fernando Tinetti, Monica Lopez. Fortran legacy

code performance optimization: Sequential and parallel processing with open mp. In

World Congress on Computer Science and Information Engineering. IEEE, 2009.

10. Luis Ceze. Atomic operations in hardware, 2006. [Online; accessed 11/12/2020.

11. Dmitry Namiot. On lock-free programming patterns. World Scientific and Engineering

Academy and Society, 2016.

337

12. Federica Rinaldi Triangles. Lock-free multithreading with atomic operations, 2019.

13. Ashwin Urdhwareshe. Object-oriented programming and its concepts. International

Journal of Innovation and Scientific Research, 2016.

14. Alan Snyder. Encapsulation and inheritance in object-oriented programming languages.

Object-oriented programming systems, languages and applications, 1986.

15. Tamara Munzner. Dynamic control flow polymorphism and switch statements, 2012.

[Online; accessed 01/15/2020.

16. Rajive Joshi. Data-oriented architecture: A loosely-coupled real-time soa. Real Time

Innovations, Inc, 2007.

17. Robert Nystorm. Game Programming Patterns. Genever Benning, 1st edition, 2014.

18. Ferdinand Majerech. Component-based entity architecture for game development. Mas-

ter’s thesis, Silesian University, 2015.

19. Dennis Wiebusch. Decoupling the entity-component-system pattern using semantic

traits for reusable realtime interactive systems. IEEE 8th Workshop on Software Engi-

neering and Architectures for Realtime Interactive Systems (SEARIS), 2015.

20. Daniel Hall. Ecs game engine design. Master’s thesis, California Polytechnic State

University, 2014.

21. Douglas D. Hodson and Jeremy Millar. Application of ECS game patterns in military

simulators. In Int’l Conf. Scientific Computing CSC’18, pages 14–17. CSREA Press,

2018.

22. Douglas D. Hodson and Raymond R. Hill. The art and science of live, virtual, and con-

structive simulation for test and analysis. Journal of Defense Modeling and Simulation:

Applications, Methodology, Technology, 11(2):77–89, 2014.

23. Thomas Schaller. The Specs Book. Crates.io, 1st edition, 2018.

338

24. Bruno Feijo Marcelo Zamith, Luis Valente and Esteban Clua. Game loop model prop-

erties and characteristics on multi-core cpu and gpu games. SBGames 2016, 2016.

25. Aura Conci Louis Valente and Bruno Feijo. Real time game loop models for single

player computer games. IV Brazilian Symposium on Computer Games and Digital

Entertainment, 2016.

26. Dave England Abdennour El Rhalibi and Steven Costa. Game engineering for multi-

processor architecture. Conference DiGRA 2005: Changing views-worlds in play, 2005.

339

Acronyms

API Application programming interface. 35

CPU Central Processing Unit. iv, 6, 8, 9, 22, 32, 41, 43, 48, 50, 52, 58, 61, 64, 70, 71, 77,

78, 80

DOD Data-Oriented Design. iv, v, 1, 2, 3, 4, 5, 6, 9, 21, 22, 26, 30, 32, 39, 40, 41, 43, 45,

47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78

ECS Entity-Component-System. iv, 1, 2, 3, 5, 6, 30, 31, 32, 33, 35, 39, 76, 77, 78, 79, 80

GPU Graphics Processing Unit. 80

MESI Modified-Exclusive-Shared-Invalid. 6

OOP Object-Oriented Programming. iv, v, 2, 3, 4, 6, 9, 10, 11, 12, 14, 15, 22, 23, 26, 31,

38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79

RAII Resource Acquisition is Initialization. 24

RAM Random Access Memory. 41

RF Radio Frequency. 14, 19

340

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

A Study of Execution Performance
for Rust-Based Object vs Data Oriented Architectures

Vagedes, Joseph A, 2nd Lt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-065

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

To investigate the Data-Oriented Design (DOD) paradigm, in particular, an architecture built off its principles: the
Entity-Component-System (ECS). ECS is commonly used by video game engines due to its ability to store data in a way
that is optimal for the cache to access. Additionally, the structure of this paradigm produces a code-base that is simple
to parallelize as the workload can be distributed across a thread-pool based on the data used with little to no need for
data safety measures such as mutexes and locks. A final benefit, although not easily measured, is that the DOD
paradigm produces a highly decoupled code-base, resulting in more easily maintainable and extensible code.

Real-Time Simulations, DOD, ECS, Cache Optimization

U U U UU 352

Dr. Douglas D. Hodson, AFIT/ENG

(937) 255-3636 x4719 Douglas.Hodson@afit.edu

	A Study of Execution Performance for Rust-Based Object vs Data Oriented Architectures
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Research Goals
	Hypothesis
	Approach
	Assumptions/Limitations
	Contributions
	Thesis Overview

	Background
	Overview
	Computer Hardware
	Object-Oriented Programming
	C++

	Data-Oriented Design
	Rust

	Entity-Component-System
	Entity
	Component
	System
	Execution Pattern

	Specs

	Methodology
	System Under Study
	Variables
	Assumptions
	Statistical Analysis
	Experimental Design
	OOP Benchmark Design
	DOD Benchmark Design
	Experiment One
	Experiment Two
	Experiment Three
	Experiment Four
	Experiment Five
	Experiment Six

	Data Logging
	Summary

	Results and Analysis
	Overview
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6

	Conclusion
	Overview
	Research Conclusions
	Research Significance and Future Work

	Benchmark Measurement and Analysis
	Measurement
	Analysis
	Outlier Classification
	Linear Regression
	Comparison

	Experiment One Code
	Benchmark
	Modules
	DOD
	DOD Components
	DOD Systems
	OOP
	OOP Objects

	Experiment Two Code
	Benchmark
	Modules
	DOD
	DOD Components
	DOD Systems
	OOP
	OOP Objects

	Experiment Three Code
	Benchmark
	Modules
	DOD
	DOD Components
	DOD Systems
	OOP
	OOP Objects

	Experiment Four Code
	Benchmark
	Modules
	DOD
	DOD Components
	DOD Systems
	OOP
	OOP Objects

	Experiment Five Code
	Benchmark
	Modules
	DOD
	DOD Components
	DOD Systems
	OOP
	OOP Objects

	Experiment Six Code
	Benchmark
	Modules
	DOD
	DOD Components
	DOD Systems
	OOP
	OOP Objects

	Bibliography
	Acronyms

