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Abstract

Radio tomographic imaging (RTI) is a form of device-free, passive localization (DFPL)

that uses a wireless sensor network (WSN) typically made up of affordable, low-

power transceivers. The intent for RTI is to have the ability to monitor a given

area, localizing and tracking obstructions within. The specific advantages rendered

by RTI include the ability to provide imaging, localization, and tracking where other

well developed methods like optical surveillance fall short. RTI can function through

optical obstructions such as smoke and even physical obstructions like walls. This

provides a tool that is particularly valuable for tactical operations like emergency

response and military operations in urban terrain (MOUT).

Many methods to optimize the performance of RTI systems have been explored,

but little work that focuses on the sequence of transceiver reports can be found in the

body of literature. This thesis provides an exploration of the effects from attempting

to optimize the transmission sequence in a WSN by creating a metric to quantify the

value of the information a transceiver will report and using it to develop a dynamic,

utility-driven, token passing process.

After deriving a metric from the Fisher information matrix of the imaging solution,

it was combined with a weighting based on the time each node last reported across the

WSN. Modeling and simulation was performed to determine if the novel transmission

sequence provided any benefit to the localization and tracking performance. The

results showed a small improvement in two different localization methods when packet

loss in the WSN reached 50%. These results provide a proof-of-concept that warrants

further exploration and suggest that performance improvements may be realized by

implementing a transmission sequence based on the metric developed in this thesis.
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WIRELESS SENSOR NETWORK OPTIMIZATION FOR RADIO

TOMOGRAPHIC IMAGING

I. Introduction

This chapter presents a brief background of the research topic area and provides

context and motivation for the research accomplished in the thesis. It presents the

specific research objectives pursued in the thesis and provides an overview of the

remainder of the document.

1.1 Problem Background

Radio tomographic imaging (RTI) uses a network of transceivers, termed a wireless

sensor network (WSN), that produces an image using the amount of attenuation

calculated on the links between tranceivers. The imaging is essentially a map of

the attenuation in the scene contained within the boundaries of the WSN, where

obstructions attenuate the radio frequency (RF) signals to a greater degree than

free space and show up in the imaging as regions of higher attenuation. This is

accomplished by recording the received signal strength (RSS) between transceiver

pairs, and the imaging or the raw RSS measurements can be used to localize and

track obstructions inside the WSN. This technique does not require an obstruction to

have any type of device and falls under a broader category of localization techniques

called device-free, passive localization (DFPL) often referred to simply as device-

free localization (DFL) [1–5]. Various other methods for DFPL exist to include radio

grids where the tranceivers are in a grid in the scene rather than around the perimeter

of the scene; RF fingerprinting, where a map is created and localization occurs by
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comparing the network measurements to a database of measurements with targets

at various locations; RF backscatter, where scattering caused by obstructions is used

rather than attenuation on line-of-sight links; and passive radar, that uses signals of

opportunity to illuminate targets rather than transmitting its own radar pulses [1].

The range of devices suitable for passive imaging methods mentioned above is

also wide. Simple transceivers are typically used for RTI as a way to make it a cost-

effective form of surveillance. One widely used type of transceiver is called a TelosB

mote, and became a de-facto standard for RTI systems after Wilson and Patwari

utilized them successfully for an RTI system in [6]. Many of the simple transceivers

are IEEE 802.15.4 compliant devices, including the IPv6 Over Low-Power Wireless

Personal Area Networks (6LoWPAN) due to the low power requirements and low

cost for 802.15.4 compliant radio integrated circuits [1, 5, 7]. Some implementations

use the simplest hardware possible by only recording whether a packet was received

or dropped and building the image based on the resultant binary matrix [8]. The

RF methods can also be achieved using IEEE 802.11 (Wi-Fi) compliant devices [1,

5]. Additionally, ultra-wideband (UWB) radios can be used for both RTI and RF

backscatter imaging [1, 9], and passive radar uses highly prevalent RF signals like

those used for cellular phones and Wi-Fi [1].

1.2 Research Motivation

RTI systems have been proven useful for localization in a variety of scenar-

ios [6,10,11]. These applications can be put to great use in tactical operations includ-

ing emergency response situations like structure fires and active shooters, military

operations in urban terrain (MOUT) where situational awareness on the interior of

a building can provide life-saving information, and general surveillance of controlled

areas where typical methods may be cost-prohibitive or inappropriate for the specific
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application. These potential uses have made RTI a promising area of research, with

many publications presenting methods to improve or optimize RTI systems for better

imaging results [2, 3, 12–19]. Various publications have also explored improving the

measurement models used in RTI [12,18,20–29]. Additionally, RTI becomes more dif-

ficult when tracking multiple targets, and solutions have been sought to resolve this

problem as well [4,30]. The central problem explored in this thesis is an understudied

area of RTI: the order of transmission of the nodes in the WSN, which implicitly

affects the relative frequency of transmission of the nodes.

1.3 Research Objectives

The lack of research focused on optimizing RTI systems by adjusting the sequence

in which the nodes report RSS measurements provides an open opportunity for this

thesis to explore the potential for such an approach as a means to improve the local-

ization and tracking capabilities of RTI. Specifically, this thesis will focus on creating

a metric by which to judge the value of a given node’s reported information at a given

time in the transmission sequence. Discussed in chapter III, the utility metric is based

in part on the Fisher information matrix derived by Wilson and Patwari in [6].

The results in this thesis will mainly consist of generation of the selection metrics

developed and used for dynamically selecting the next node for transmit, enumeration

of the simulated relative frequency of transmission for each node, and simulated loca-

tion tracking results for dynamic scenes using dynamic node selection and sequential

transmission methods.

The output of the thesis will be a comparison of the simulated location tracking

results between the two modeled transmission order methods in addition to graphical

representations of how the utility metric affects the transmission order. The results

and output will mainly provide a framework to apply the dynamic selection method
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to future simulations and experiments to further test potential benefits.

1.4 Document Overview

The thesis document is structured into five chapters. This chapter provides a

brief overview of the problem background, specific research problem statement, and

document structure. Chapter II provides a detailed background on RTI including

models, imaging solutions, and target tracking methods. Chapter III provides a

description of the specific steps and methodology taken to address the objectives

stated above, and chapter IV presents and discusses the subsequent results. Finally,

chapter V provides a summary of the results and discussion of their significance to RTI

and presents a context for which the work accomplished in this thesis can be applied

in future work to further explore the concepts presented or potentially benefit the

conduct of future experiments.
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II. Background and Literature Review

This chapter reviews existing literature for previous work that has been conducted

on radio tomographic imaging (RTI) and device-free localization (DFL). It explores

multiple mathematical bases for localization of obstructions within wireless sensor

networks, and reviews some of the methods that have been implemented to improve

RTI systems. It also covers work that has occurred on the Air Force Institute of

Technology’s RTI system.

2.1 Radio Tomographic Imaging

Radio tomographic imaging is a form of DFL that provides a method for localizing

obstructions inside the perimeter of a wireless sensor network (WSN). This form of

localization does not rely on the objects being tracked to be tagged in any way,

like with a radio frequency identification device (RFID) chip or Global Positioning

System (GPS) receiver [1]. A typical RTI system uses the received signal strength

(RSS) between pairs of sensors to detect possible obstructions and localize them. The

work accomplished in [6] lays a fundamental groundwork for setting up functional RTI

systems, and provides a mathematical basis for estimating the position of obstructions

within a WSN.

Since the publication of [6] many other methods of DFL have been explored,

including the implementation of methods to improve RTI that uses WSNs. One

particular method used to enhance RTI that will be further explored in this thesis

was the implementation of Bayesian filtering methods in [16]. Additionally, physical

methods have also been found to improve the performance of RTI systems as in [11]

where antennae on the sensors in the network were rotated to improve imaging and

localization performance.
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2.1.1 Wireless Sensor Networks

The work in [6] provides much of the information needed for setting up a WSN to

perform RTI, short of providing specific details on the sensors within the network. A

sensor network is set up with radio frequency (RF) transceivers around the perimeter

of a scene, where the transceivers are referred to as nodes in [6]. The transceivers

form a unique link with every other transceiver in the network, and report the signal

strength on that link. When an obstruction passes through the link, the signal is

attenuated. Using the RSS to detect attenuation, the obstruction can be localized

within the perimeter of the WSN. Figure 1 shows one such configuration modeled

after figure 1 in [6].

Figure 1 above illustrates how the links between nodes can contribute information

to localize objects within the WSN. A grid can be overlaid, where each square repre-

sents a pixel in the estimated image. Links passing through and near pixels provide

information used to determine whether an obstruction is present. This is also shown

in [6], where the lower bound on the mean-squared error is reduced as a result of

more links crossing a given pixel.

Token Passing Protocol Many RTI systems use a token passing protocol in

a time division multiple access (TDMA) communication scheme such that each node

has a turn to send a report to the base station and all other nodes [2, 3, 6, 10, 11, 31].

After the first node transmits it passes the token to the next node, or if it fails to

transmit within the allotted time window the token is automatically passed to the

next node in the sequence. This allows the use of reasonably simple devices that

will not interfere with each other as they take turns reporting RSS around the WSN.

Typically each node will take its turn sequentially such that the reporting order

is {1, 2, 3, . . . , N − 1, N} where N is the total number of nodes [2, 3, 6, 10, 11, 31].
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Figure 1: Illustrative wireless sensor network diagram.

Specifically, an open-source protocol developed by the Sensing and Processing Across

Networks (SPAN) laboratory at the Department of Electrical Engineering at the

University of Utah named “spin” is used in the Air Force Institute of Technology

(AFIT) RTI system. As configured, it allocates evenly-divided time slots for each

transceiver across one second. If a transceiver fails to transmit within its allotted

time slot, it is given an 80 ms window to re-transmit before it times out and the base

station passes the token to the next transceiver in the sequence.

2.1.2 Mathematical Models

Localization cannot occur without utilizing models for the environment as well

as the RSS for a given link. Using these models, the system is represented overall

using a linear model, allowing an approach that is very common in estimation. The

problem presents some unique challenge, primarily in that RTI systems rely on ill-

posed inverses that require methods such as Tikhonov Regularization to prevent small

7



noise variances from overwhelming any signal data upon inversion, which is described

in [6, 32,33].

2.1.2.1 Linear Formulation

One of the most widely-used models for RTI in the literature is the linear formu-

lation as used by Wilson and Patwari in [6], whose methods and general approach

can also be seen in [2, 3, 11, 14,21,22,29,33].

As shown in [6], the RSS of a given link, i, can be represented mathematically by

yi(t) = Pi − Li − Si(t)− Fi(t)− vi(t) (2.1)

where [6]

• Pi is the transmitted power

• Si(t) is the “shadowing” loss, or loss due to objects attenuating the signal

• Fi(t) is the fading loss, caused by interference in the presence of multipath

• Li is the static loss due to distance, device characteristics, etc.

• vi(t) is the measurement noise

all of which are measured in decibels. In the linear formulation the major item of

interest is Si(t) which can be described as [6]

Si(t) =
N∑
j=1

wijxj(t) (2.2)

where wij is the “weight” - a measure of the impact link i has on pixel j, and xj(t) is

the attenuation in pixel j at time t. Operating under the assumption that many of

the losses are static, the change in RSS can be found by subtracting a measurement
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of the scene with no obstructions from a measurement of the scene when obstructions

are present [6]. This requires a calibration period with an empty scene, which is

both a contextual and logistical consideration for deploying an RTI system that uses

the linear formulation. It does allow for the change in RSS on a given link between

calibration time tc and time t to be represented as [6]

4yi = yi(t)− yi(tc) = Si(t)− Si(tc) + Fi(t)− Fi(tc) + vi(t)− vi(tc) (2.3)

The differences in fading loss Fi(t) and measurement noise, vi(t) can be combined

into a single noise term ni, and (2.2) can be incorporated to turn (2.3) into:

4yi =
N∑
j=1

wijxj(t)−
N∑
j=1

wijxj(tc) + ni (2.4)

4yi =
N∑
j=1

wij(xj(t)− xj(tc)) + ni (2.5)

4yi =
N∑
j=1

wij4xj + ni (2.6)

This can then be represented in vector and matrix form as:

4y = W4x + n (2.7)

where 4y is a vector of the change in RSS on each link, 4x is a vector of the change

in attenuation in each pixel, n is a vector of the measurement noise on each link, and

W is the weight matrix containing the per-pixel weights for each link [6]. Represented

more simply, the calibration can be taken as given in further discussion and the linear

form of the RTI problem will be written

y = Wx + n (2.8)
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There are many variations of weight matrices, W, that relate the RSS to the image.

2.1.2.2 Weight Matrix

Martin, et al. [22] identified various weight models, and posited that each weight

model can be expressed as

W = S�Ω (2.9)

where S is a binary matrix identifying which links affect which pixels, W is a mag-

nitude matrix that further defines how links affect pixels, and � is the element-wise

product of the two matrices. The three common selection matrices identified in [22]

for a link m and pixel n are

SEllipsem,n =


1, if d1,m,n + d2,m,n < dm + λ

0, otherwise

(2.10)

SLinem,n =


1, if link m intersects pixel n

0, otherwise

(2.11)

SAllm,n =1 (2.12)

where dm is the total link length of link m, d1,m,n is the distance from the center

of pixel n to one endpoint of link m, d2,m,n is the distance from the center of pixel

n to the other endpoint of link m, and λ is a parameter that can be selected to

determine the length of the major axis of the ellipse that exceeds the length of link

m, expressed as λm,n = d1,m,n + d2,m,n − dm. The SEllipse selection matrix is the

most frequently used in literature, found in a variety of RTI publications, including

[6, 10, 11, 14, 15, 19, 29, 31, 33–35] among many others. This is likely due to the fact

that an elliptical pattern around the transmitter and receiver corresponds to the
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electromagnetic Fresnel ellipsoid that is related to the diffraction patterns around an

obstruction, explored in literature while investigating robust physical models for RTI

as seen in [27,28,36].

Network Shadowing (NeSh) The NeSh model, originally developed by

Patwari in [23] and [26] and formally applied to an RTI system in [6] inherently uses

the SEllipse selection matrix and applies a magnitude for a link m and pixel n [22]

ΩNeSh
m,n = 1/

√
dm (2.13)

Applying (2.13) and (2.10) to (2.9) results in a weight matrix WNeSh such that for a

link m and pixel n

WNeSh
m,n =


1/
√
dm, if d1,m,n + d2,m,n < dm + λ

0, otherwise

. (2.14)

The NeSh weighting model can be seen in use in [6,11,21,36]. However, given that the

ellipse selection matrix is implicitly used in the NeSh model, many other publications

have models that behave similarly.

Line The line model is a more simplistic approach that was used in [37]

specifically for its simplicity, as well as its proven use for some medical imaging

techniques. It uses the SLine selection matrix and a scale factor of ΩLine
m,n = Lm,n

resulting in a weight matrix [21,37]

WLine
m,n =


Lm,n, if link m intersects pixel n

0, otherwise

(2.15)
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where Lm,n is the length of the portion of the link-line m that passes through pixel n.

This maps the drop in RSS directly to the amount of the link-line being obstructed.

NeSh-Line The NeSh-Line model is an approach that is not found often in

the literature. Used primarily in [38] and [39], it uses the SLine selection matrix and a

magnitude matrix that is a combination of the NeSh and line models, such that [22]

WNeSh−Line
m,n =


Lm,n/

√
dm, if link m intersects pixel n

0, otherwise

. (2.16)

The authors in [38] and [39] directly borrow the 1/
√
dm scaling of the NeSh model

from [23] and apply it to the line model, which directly relates the RSS to the length of

the link-line being obstructed. This model incorporates both the conclusion that the

information provided by a link is inversely proportional to its total length, and that

the length of the link being obstructed is directly proportional to the drop in RSS.

While the elliptical selection matrix is implicit to the NeSh model, the NeSh-Line

model essentially assumes an ellipse so narrow it can be approximated as a line.

Exponential The exponential model relates RSS to the total link length,

the distance between the transmitter and the target, and the distance between the

receiver and the target [20]. This model lends itself to what Li in [20] calls a “pixel-

free” measurement model, as the RSS can be modeled using only the position of the

target, rather than a vector of pixel intensity values. To relate this to a pixel-by-

pixel image, the vector of pixel intensity values can be used instead, with obstructed

pixels taking a value greater than zero and unobstructed pixels taking a value of zero.

Rather than using the λik from [20] which depends only on transmitter, receiver,

and target position, λm,n as defined above can be used to relate the position of the
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transmitter, receiver, and obstructed pixel (effectively target location). The resultant

weight matrix is [20, 22]

WExp
m,n =


exp(−λm,n/(2σw)), if λm,n ≥ 0

0, otherwise

. (2.17)

This model essentially uses the SAll selection matrix, with zeroes where nodes have

“links” with themselves. This model, scaled by 1/
√
dm is also used in [16].

Inverse Area Hamilton [36] proposes a unique model that uses the inverse

of the area of confocal ellipses. A minimum and maximum semi-minor axis length

(controlling the ellipse width) is chosen to bound the extent of the ellipses, with

the maximum being chosen based on the width of the first Fresnel ellipse to more

accurately model effects due to diffracted paths [36]. A variation of the specific

model [36] used can be seen in use in [11,14,22], which use the excess path length to

create the confocal ellises. Taking the area of an ellipse to be [22]

A(dm, λ) =
π

4
(dm + λ)

√
2dmλ+ λ2 (2.18)

and relating it to the existing framework discussed thus far results in the following

magnitudes [22]

ΩInvArea
m,n =


1

A(dm,λmin)
, if λm,n < λmin

1
A(dm,λm,n)

, if λm,n ≥ λmin

. (2.19)
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This magnitude matrix is then applied using the ellipse selection matrix, resulting in

the following weight matrix elements for link m and pixel n

W InvArea
m,n =


ΩInvArea
m,n , if d1,m,n + d2,m,n < dm + λm,n

0, otherwise

. (2.20)

2.1.2.3 Noise Model

The noise element from (2.8), n, has been explored in much of the existing litera-

ture. Experimental data and subsequent statistical analysis led many researchers to

model the noise as additive white Gaussian noise (AWGN), which is explicitly stated

in [18, 20, 22, 27, 36, 38, 39] as well as others. Wilson and Patwari explore a Gaussian

mixture model (GMM) in [6], where the noise is a mixture of two Gaussian distri-

butions, a low-variance Gaussian and high-variance Gaussian. This was based on

work performed on indoor wireless communications channels performed in [40] that

found a two-state Markov model with a fading and non-fading state modeled wireless

channels more accurately; however, Roberts [40] used a Rician distribution rather

than Gaussian. The general consensus in literature appears to be that an AWGN

model adequately represents the noise in an RTI system, with even the results com-

paring experimental measurements with both modeled AWGN and GMM noise in [6]

showing reasonably close agreement.

2.1.3 Image Estimation

With models established for W and n from (2.8), the problem can be solved for

x. When modeling a true image, attenuated pixels are selected and filled in based on

the extent of the obstruction. For RTI the main goal is to localize humans in most

contexts [6]. To model a human inside of an RTI grid, Wilson and Patwari assume the
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human body to be a uniformly attenuating cylinder of radius RH [6]. The position

of the uniformly attenuating cylinder model can then be used to construct the truth

image using [6]

xcj =


1, if ||xj − cH || < RH

0, otherwise

(2.21)

where xcj is the center of pixel j, xj is pixel j and cH is the location of the human

obstruction. The approximate size of a human used by [6] is RH = 1.3 ft.

The above provides mathematical representations for all parts of (2.8). The image

can then be solved for in the least-squared error sense [6]

x̂LS = argmin
x
||Wx− y||22. (2.22)

To obtain the least-squares solution, the gradient of (2.22) is set to zero, yielding [6]

x̂LS = (WTW)−1WTy. (2.23)

The inversion of WTW in (2.23) requires W to be full rank in order to work, which

is not true for RTI systems [6]. This was alluded to above as the ill-posed inverse

problem that requires some form of regularization to prevent small values from ap-

proaching infinity upon inversion. The process of regularization adds information to

allow inversion without issue [6].

2.1.3.1 Regularization

Various methods of regularization exist that provide a solution to the ill-posed

inverse problem of RTI systems [2, 33]. The challenge for making RTI image recon-

struction possible via the least-squares method becomes a balance between how well

a given method works versus how computationally expensive it is. This is mostly due
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to the context of using resource-constrained devices for RTI for a highly deployable

system and the importance of having near-real-time imaging.

Linear Back Projection Linear back projection is one of the simplest meth-

ods for reconstructing an RTI image [2, 33]. Rather than taking an inverse, WT is

used to map the RSS to pixel values such that [2, 33]

x̂ = WTy. (2.24)

While providing an easy-to-implement solution, [33] found linear back projection fails

to account for the effect of noise, making the resultant image sub-par. However, [33]

found that linear back projection can successfully localize a single, stationary human

inside of a WSN.

Tikhonov Regularization Tikhonov regularization is a common method

found in much of the literature. It is used as a regularization technique for recon-

struction or comparison purposes in [2, 3, 6, 10, 15, 17, 19, 21, 22, 25, 29, 32, 33, 37, 41].

Tikhonov regularization adds a term to the objective function such that [6]

f(x) =
1

2
||Wx− y||2 +

α

2
||Qx||2 (2.25)

where Q is the Tikhonov matrix and α is a weighting parameter that determines

how much the regularization drives the solution. Wilson and Patwari use a dif-

ference matrix for Q in [6], which approximates the first derivative. The image is

two-dimensional, requiring the derivative be taken along the x and y directions, rep-

resented by the difference matrices Dx and Dy, respectively [6].
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Incorporating the difference matrices into (2.25) results in

f(x) =
1

2
||Wx− y||2 +

α

2

(
||Dxx||2 + ||Dyx||2

)
(2.26)

Once regularized, the problem can then be solved in the least-squares sense as in

(2.23) where the gradient is taken, set to zero, and the estimate x̂LS becomes [6]

x̂LS =
(
WTW + α

(
DT
xDx + DT

y Dy

))−1
WTy (2.27)

which can conveniently be expressed as a linear transformation with transformation

matrix Π where

Π =
(
WTW + α

(
DT
xDx + DT

y Dy

))−1
WT (2.28)

x̂LS = Πy. (2.29)

The transformation matrix, Π, does not depend on measurements, allowing it to

be precalculated and applied to measurement vectors as they are reported by the

WSN [6]. These attributes make Tikhonov regularization a good balance between

computational complexity and the quality of the solution.

Covariance Weighted Least Squares In the weighted least squares using

covariance approach to regularization, an a priori covariance matrix is used [11].

This approach is another popular and effective approach in the literature, found

at use in [11, 14, 16, 26, 42]. This approach also expresses the estimate as a linear

transformation of the RSS measurements as in (2.29), where Π is [11]

Π = (WTW + C−1x σ2
N)−1WT (2.30)
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where σ2
N is the weighting parameter for regularization and Cx is the a priori covari-

ance matrix. The elements of Cx are often expressed by [11]

[Cx]i,j = σ2
xexp

(
−di,j
δc

)
(2.31)

where σ2
x is the variance of the pixels and di,j is the distance between the center of

pixel i and pixel j. The weighted least squares method using the a priori covariance,

much like Tikhonov regularization, is also a good balance between computational

complexity and the quality of the solution for a real time RTI system.

Projected Landweber Iteration An example of a more computationally

intensive method that is not particularly useful for real-time imaging in an RTI system

is presented in [33] - a method called projected Landweber iteration. It begins by

taking the gradient of the objective function f(x) where [33]

f(x) =
1

2
||Wx− y||2 =

1

2
(y −Wx)T (y −Wx) (2.32)

∇f(x) = WT (Wx− y) (2.33)

The projected Landweber iteration method then uses a projection operator, P [·]

whose argument is a steepest-descent algorithm to calculate the next step such that

[33]

x̂k+1 = P
[
x̂k − µWT (Wx̂k − y)

]
(2.34)
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and the projection operator, operating element-by-element, is defined as

P [f(x)] =


0 if f(x) < 0

f(x) if 0 ≤ f(x) ≤ 1

1 otherwise

. (2.35)

Similarly to the linear back projection method, this method does not require taking

the inverse, and so avoids the issue of small values in W causing issues; however,

because it is an iterative method, [33] found that it can take many iterations to arrive

at a desirable result. Additionally, [33] found that too many iterations can also cause

degradation of the image, and without a formula to calculate the optimal number

of iterations, it must be found empirically. These attributes make the projected

Landweber iteration method a much less efficient process that does not fit the context

of a rapidly deployable, real-time imaging system, which is typically the most common

context for RTI systems.

2.2 Position Tracking

One goal seen throughout literature is to track a moving target within the RTI

network. This can be achieved in a variety of ways with a range of advantages and

results. A natural progression from the imaging results in RTI is using the resultant

image to localize targets, an approach seen in [4, 11, 23, 37] and others. Another

method explored frequently is using a state-space approach where the target’s state

is tracked. Depending on the specific implementation, the state space may be just

position or both position and velocity. Some of the Bayesian approaches to target

tracking using an RTI WSN seen in [16] use a purely state-space approach to track

the target. A few of the approaches used are detailed below.
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2.2.1 Maximum A Posteriori

The maximum a posteriori (MAP) estimator is one of the most straightforward

approaches that can be used to localize the target. It is used in a wide array of the

literature, and is particularly favored in [6]. It uses the image calculated in (2.23),

which is a vector of pixel intensities. Taking each element of x̂LS to represent the

intensity of pixel j, denoted by x̂j, the MAP estimate for the target location can be

defined as [43]

p̂MAP = argmax
j

p (x̂j|y) . (2.36)

Taking into account the cylindrical human model in (2.21), with a small radius, and

the white Gaussian noise model as described in section 2.1.2.3, p̂MAP reduces similarly

to a direct-current signal in the presence of white Gaussian noise to be [43]

p̂MAP = argmax
j

x̂j. (2.37)

The index for the highest intensity pixel is then mapped to a coordinate using the

same mapping that generates the image from the pixel vector.

2.2.2 K-Means Clustering

Another method to localize targets that was found to be of particular use with

multiple targets present is K-means clustering. This approach was applied in [4] to

localize multiple targets. It is somewhat related to the MAP approach, but rather

than picking the location of the maximum pixel intensity, a threshold is chosen for

the pixel intensity such that only pixels at or above the threshold intensity value are

used in the K-means algorithm [4]. The pixels are then grouped into K clusters, and
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the following cost function is minimized to find an optimal cluster centroid [4]

J =
K∑
i=1

∑
xj∈Si

||xj − Ci||2 (2.38)

where Si is the set of pixels in cluster i, xj is the jth pixel in the set of clustered pixels,

and Ci is the centroid of cluster i. The centroid is taken to be the target location,

and provides a sub-pixel coordinate versus MAP which will only yield coordinates for

pixel centers.

2.2.3 Particle Filtering

Another tracking method that is more computationally intensive and uses Bayesian

methods to track position and velocity in a state space is particle filtering. Kaltiokallio

implemented this approach in [16]. In general, particle filtering was difficult to imple-

ment due to the “degeneracy problem” that results in much of the data used having

a zero weight [44]. This led to the use of a “sequential importance resampling” algo-

rithm which resamples particles when needed, typically after some predefined number

of steps [44]. The sequential importance resampling approach was used in [16], which

allows approximation of the posterior probability density function (PDF) as [44]

p(xk|z1:k) ≈
M∑
i=1

wikδ(xk − xik) (2.39)

where z1:k is the collection of RSS measurements on all links, containing measurement

vectors from time step 1 through time step k; M is the number of particles; wik is the

weight for particle i; xik is the state of particle i; δ(·) is the dirac delta function; and

xk is the actual state. Using this, the prediction and update stages for the particle
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filter then become [16]

xik ∼ p(xk|xik) (2.40)

wik =
L∏
l=1

exp

(
−(zl(k)− hl(xik))2

2σ2
r

)
(2.41)

where zl(k) is the RSS of link l at time k corresponding to the , L is the total number

of links, σ2
r is the measurement noise variance, and

hl(xk) , φe−4l(k)/λfilt (2.42)

4l(k) = ||pi − pk||+ ||pj − pk|| − ||pi − pj|| (2.43)

is the measurement model used in [16] where λfilt is a tunable parameter to control

the rate of decay and φ is the maximum change in RSS when a link line is crossed. All

p vectors are position vectors such that p = [px py]
T with pi denoting the position of

the transmitter, pj denoting the position of the receiver, and pk denoting the position

of the target which is contained in the state vector xk [16]. The model in (2.42) is an

exponential decay model that uses an ellipse defined by (2.43) where the transmitter

and receiver are the foci of the ellipse. This is similar to the weight models that use

an elliptical selection matrix as defined in (2.10); however, this model results in a

continuous ellipse that will provide a decaying RSS measurement as the target moves

further away from the link line, whereas the elliptical selection matrix defines a fixed

ellipse outside of which the RSS goes to zero.

2.2.4 Kalman Filtering

A Bayesian filtering method that is widely popular in position tracking is us-

ing a Kalman filter, which assumes a linear Gaussian dynamic and measurement

model [44]. Kaltiokallio [16] applied this to RTI, calculating an image from the RSS

22



measurements, then mapping that image to a kinematic state.

State and Measurement Models The dynamic state and measurement

models are expressed as [16,44]

xk = Fkxk−1 + qk−1 (2.44)

zk = Hkxk + rk, (2.45)

respectively; where xk is the state vector of the target containing position and ve-

locity, Fk is the dynamic model, qk−1 ∼ N (0, Qk−1) is the process noise, Hk is the

measurement model matrix that maps the state vector xk to the measurement vec-

tor, and rk is the measurement noise. The Kalman filter assumes a Gaussian prior

distribution on the initial state vector x0 ∼ N (m0, P0), whose statistics are then

utilized for subsequent prediction and update stages in the filtering process [44].

Prediction and Update The filter’s prediction step is then [16,44]

m−k = Fk−1mk−1 (2.46)

P−k = Fk−1Pk−1F
T
k−1 + Qk−1 (2.47)

where

• m−k is the predicted filter mean/estimated state

• Fk−1 is the dynamic model for the previous time step

• mk−1 is the filter mean/estimated state for the previous time step

• P−k is the predicted filter covariance

• Pk−1 is the filter covariance for the last time step
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• Qk−1 is the process noise for the previous time step.

After predicting the statistics for the next state using an estimated prior distribution

for the state without using any new measurement, the filter then updates its gain

and makes a final state estimate based on the predicted state and measurement data.

This step is expressed by [16,44]

Sk = HkP
−
k HT

k + Rk (2.48)

Kk = P−k HT
kS−1k (2.49)

mk = m−k + Kk

(
zk −Hkm

−
k

)
(2.50)

Pk = P−k −KkSkK
T
k (2.51)

where

• Sk is referred to as the innovation covariance of the filter

• Kk is the Kalman gain of the filter

• mk is the calculated mean of the Kalman filter, also the estimated state

• Pk is the calculated filter covariance.

The prediction and update stages are initialized using m0 and P0 as the first available

prior information [44].

Extended Kalman Filter The extended Kalman Filter (EKF) is an ex-

tension of Kalman filtering to non-linear filtering [44]. Assuming the dynamic and

measurement model noises are additive, the state and measurement models seen in
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(2.44) and (2.45) are alternatively expressed as [44]

xk = f(xk−1) + qk−1 (2.52)

zk = h(xk) + rk, (2.53)

where f(·) is the dynamic model function and h(·) is the measurement model function,

both of which are not necessarily linear. Given the non-linearity, the use of an EKF

approximates the prior distribution as Gaussian such that p(xk|y1:k) ' N (xk|mk,Pk),

by using Taylor series approximations to the non-linearities [44]. This approximation

results in a linearization of the processes local to the optimal solution, and is depen-

dent on a process that is not highly non-linear and has differentiable measurement

and dynamic models [44]. The prediction and update stages are then expressed as [44]

m−k = f(mk−1) (2.54)

P−k = Fx(mk−1)Pk−1Fx
T (mk−1) + Qk−1 (2.55)

Sk = Hx(m−k )P−k Hx
T (m−k ) + Rk (2.56)

Kk = P−k Hx
T (m−k )S−1k (2.57)

mk = m−k + Kk

(
zk − h(m−k )

)
(2.58)

Pk = P−k −KkSkK
T
k (2.59)

where Fx is the Jacobian matrix of the dynamic model function and similarly, Hx is

the Jacobian matrix of the measurement model function.
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2.2.4.1 Application in RTI

Kalman Filter In [16], a standard Kalman filter and extended Kalman filter

were applied to an RTI system. A state-space model was used such that the state of

the target was represented by [16]

xk = [px(k) vx(k) py(k) vy(k)]T (2.60)

where px and py are the x and y coordinates of the target, respectively, and vx

and vy are the velocity of the target in the x and y directions, respectively. This

specific notation can be confusing as the estimated image in RTI is denoted as x̂. To

discriminate more easily between the state vector and estimated image vector, the

estimated image will be denoted using x̂img in this section.

In the Kalman filtering approach implemented in [16], F and H do not change

with each time step, as H is a straightforward mapping from the four-element vec-

tor xk to a two-element vector with just the position, which will be denoted as pk

(unrelated to the filter covariance matrix Pk). Additionally, the measurement model

in (2.45) is based on the MAP estimation of the target location from the RTI image,

which essentially dissociates the actual RSS measurements from the Kalman filter

“measurement” model [16]. The initial state estimate is taken from (2.37) and the

measurement model in (2.45) becomes [16]

pk = Hxk + nimgk ,where (2.61)

H =

1 0 0 0

0 0 1 0

 (2.62)

which models a state based on the statistics of the image, where nimgk is the noise

associated with the estimated image in (2.23) because the “measurement” in this case
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is the coordinate pair obtained from the MAP estimate. Thus, the Kalman Filter state

update in (2.50) becomes mk = m−k + Kk

(
pk −Hkm

−
k

)
. This is notable because the

Kalman filter in this particular application does not relate RSS measurements directly

to the state space, instead the RSS is used to produce an initial position estimate in

the state space and the Kalman filter is subsequently used to track the state [16]. A

similar implementation of this Kalman filter approach for RTI is also found in [24,42].

Extended Kalman Filter The EKF as implemented in [16] relates the RSS

measurements directly to the state space. The dynamic model F remains the same

linear dynamic model used for the Kalman filter making the prediction stage the

same seen in (2.46), but (2.42) is used as the non-linear measurement model where

hl(xk) , φe−4l(k)/λfilt such that the RSS measurement model, (2.53), is given by

yk = h(xk) + nk. With the non-linearity in the measurement model, the Jacobian

matrix Hx is used in the filter prediction and update stages, where the Jacobian for

a link l is given by [16] as

Hl(xk) =

[
δhl(xk)

δpx
0

δhl(xk)

δpy
0

]T
,where (2.63)[

δhl(xk)

δpx

δhl(xk)

δpy

]T
=
hl(xk)

λfilt

(
pi − pk
||pi − pk||

+
pj − pk
||pj − pk||

)
(2.64)

and the Jacobian matrix for L total links is then

Hx =
[
H1(xk)

T . . . HL(xk)
T
]T
. (2.65)

This is then used in the update stages of the EKF in (2.56) - (2.59).

While considered a non-linear filtering method, the extended Kalman filter relies

on the ability to differentiate the non-linear process it is filtering in order for lineariza-

tion to occur [44]. This is why the Jacobian of the measurement model is used for the
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update stages of the extended Kalman filter, producing a linearized approximation of

the non-linear measurement.
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III. Methodology

3.1 Modeling and Simulation

3.1.1 Processing Methods

The current Air Force Institute of Technology (AFIT) radio tomographic imaging

(RTI) system processes received signal strength (RSS) measurements using the same

methods developed in [6]. That method looks at the total number of unique links in

the wireless sensor network (WSN). The immediate ramifications of viewing each two-

way radio frequency (RF) link as a single, unique link are that two RSS measurements

are obtained for a single link at two different time instances. Using the typical method

of creating the image, the base station will wait until all nodes have reported to

update the image, meaning it must take pairs of RSS measurements for each unique

link and turn them into a single measurement to update the image. This results

in time-averaged measurements that reflect on average what happened on a given

link between the time of the first and second RSS measurements. Depending on the

dynamics of the scene, this can be problematic. In addition, [16] found this method

to be problematic when implementing certain tracking algorithms.

3.1.1.1 Sequential Processing

Tracking position with an extended Kalman Filter (EKF) is more readily fa-

cilitated when using measurements that are taken in the same time instant. The

RTI graphical user interface (GUI) post processes RSS measurements taken from all

transceivers once they become available at the base station. Another way to process

the RSS measurements is to break the measurement matrix into vectors representing

RSS measurements taken in the same time instant. An important distinction should

be made such that the time that a measurement is taken (the RSS on a given link)
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is not the same time it is reported. Each report in an RTI WSN contains RSS mea-

surements taken at different times. The measurement matrix Z is constructed such

that the element zi,j is the RSS from transmitter j to receiver i. Taking a five-node

RTI system as an example:

Z =



0 z1,2 z1,3 z1,4 z1,5

z2,1 0 z2,3 z2,4 z2,5

z3,1 z3,2 0 z3,4 z3,5

z4,1 z4,2 z4,3 0 z4,5

z5,1 z5,2 z5,3 z5,4 0


. (3.1)

This approach is detailed in [16] and is achieved using the communication protocol

as detailed in [11]. The measurement matrix as constructed in (3.1) assumes that one

round of data from the entire WSN has already been collected. Figure 2 shows how

the measurement matrix is constructed. For each communication round, a matrix

with an upper triangle and lower triangle is constructed. The upper triangle consists

of measurements that were taken the previous round and are being reported now, and

the lower triangle consists of measurements taken from the current round.

Figure 3 shows what each transmitter would report on the initial round of com-

munication. The most current measurements would be built in the lower triangle of

the measurement matrix. At time k, there are enough measurements in the matrix to

extract time-synchronous RSS readings. The first column of Z all occurred at time

k − 4.

Continuing the measurement cycle into the second round as shown in figure 4 and

stacking the complete measurement matrices, the result in figure 2 is obtained. After

the first complete round, each subsequent time step enables a new time-synchronous

measurement vector to be used in the tracking solution. This results in an overall
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Figure 2: Measurement matrix with time synchronous columns.

delay in the tracking solution of Nτtx where N is the total number of nodes in the

WSN and τtx is the time it takes for each individual node to report.

An alternative sequential processing method this thesis explores is utilizing each

report as the base station receives it. This means each time a node transmits, a row of

Z is obtained and utilized to update any imaging and position tracking methods. It is

important to note that when a node reports its collected RSS measurements, the other

nodes use that transmission to calculate the RSS on links made with the reporting

node. For example, referring to (3.2), when node 1 reports RSS measurements at

time k = 6, the first row in (3.2) is obtained. This same report from node 1 isalso

used by nodes 2, 3, 4, and 5 to obtain the RSS measurements in the first column

of (3.2). The report-by-report sequential processing method excludes the use of the

EKF as implemented in [16]. Associating times with the RSS measurements in the

five-node example above, where z(k) is an RSS measurement at time k, the first full
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Figure 3: Example reports by transmitter for the first round of communication.

measurement matrix starting with a report from node 1 at time k = 1 would be

Z =



0 z1,2(2) z1,3(3) z1,4(4) z1,5(5)

z2,1(6) 0 z2,3(3) z2,4(4) z2,5(5)

z3,1(6) z3,2(7) 0 z3,4(4) z3,5(5)

z4,1(6) z4,2(7) z4,3(8) 0 z4,5(5)

z5,1(6) z5,2(7) z5,3(8) z5,4(9) 0


(3.2)

This method uses new information as soon as it is available at the base station,

however the challenge becomes the implementation of a smoothing filter in real time,

as each report contains recent and old measurements.
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Figure 4: Example reports by transmitter for the second round of communication.

3.1.1.2 Information, Currency, History, and Utility

The different time steps at which each RSS measurement is taken can impact

how useful the information might be, particularly when considering dynamic targets.

When constructing an RTI image, or using RSS data to track target position, a variety

of factors can be considered. This thesis will examine the following factors:

• the information value of a given link, based on the number of pixels it crosses

• the currency of information in a report of RSS measurements

• the reporting history of a node, specifically the time it last reported
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and will incorporate them into a “utility” metric that identifies an ideal node to

report in the next time step. This approach assumes that a token passing, time

division multiple access (TDMA) protocol is used, but rather than using a sequential

transmission order as discussed in section 2.1.1 it proposes that the next node to

transmit will be the node with the highest utility.

Wilson [6] performed an analysis of the lower error bound on estimating the image,

x̂, in an RTI system. In doing so, the Fisher information matrix for data obtained

from RSS measurements was determined to be [6]

J = E
[
(∇x[ln P (y|x)]) (∇x[ln P (y|x)])T

]
(3.3)

and when taking the noise statistics into account, this becomes [6]

J = γWTW (3.4)

where γ is a scale factor based on the noise statistics, and is not necessarily important

for the purposes of this thesis. As such, WTW is used to determine the information

value of a given link and pixel. Changing the notation slightly to distinguish between

the traditional Fisher information matrix and the information matrix used in this

thesis, the information matrix here is

I = WTW. (3.5)

The trace of the above matrix represents the information value of each pixel, and can

be mathematically represented as:

Ip =
P∑
p=1

(
L∑
l=1

W 2
l,p

)
(3.6)
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where l is the link number, p is the pixel number, P is the total number of pixels, and

L is the total number of links. To find the information contained on a link rather than

in a pixel, the order of the summations can be switched, and the inner summation

represents the per-link information value:

Ip =
P∑
p=1

(
L∑
l=1

W 2
l,p

)
=

L∑
l=1

(
P∑
p=1

W 2
l,p

)
,where (3.7)

Il =
P∑
p=1

W 2
l,p. (3.8)

This is a metric by which the value of information in a given link can be quantified,

with a higher number meaning the link contains more information about the scene

within the WSN. If the values are then summed over the set of links made with node

n, the information value per node can be found, such that

In =
∑
l∈n

Il (3.9)

where l ∈ n are all of the links made with node n. This provides a per-node infor-

mation value which essentially represents which nodes receive the most information

about the scene. By sorting this in descending order, the node transmission order

for the first round of RSS reports in one of the token passing methods under test,

discussed below in section 3.2, can be established. Using only the information met-

ric would result in only the node with the highest information content transmitting

repeatedly, which would essentially render the imaging useless: if no other node trans-

mits, no RSS values would be reported, and the entire scene would be reported as

empty.

To force the system to choose a different node to transmit, a “history” metric

was introduced. The history metric tracks the last time a given node transmitted.
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The longer it has been since a node has transmitted its report, the more valuable

the report becomes because the more likely the entire report contains current, un-

reported information. Immediately after transmitting, a node’s history value zeros

out, because transmitting again from the same node would provide a report with the

exact same information that was just received. The history metric for a given node

n is mathematically defined as

Hn = 1− e−αhth (3.10)

where αh is a tuneable parameter to control the rate of decay, and th is the time

elapsed since node n last transmitted, which can be expressed as th = tnow − ttx

where tnow is the current time and ttx is the time the node last transmitted. Note

that history can also be expressed for each link with a given node, but will be the

same value for all L links made with the given node n.

Another metric to take into consideration contained within every report in the

WSN is termed “currency,” which is a per-link quantity that captures how current

a given RSS measurement within a report is. The motivation behind tracking the

currency of each RSS measurement is that the older an RSS measurement is, the less

valuable it is, particularly for a dynamic scene. If the information in an RSS mea-

surement is not current in a dynamic scene, it can become irrelevant. The currency

metric is mathematically defined by

Cl = e−αctc (3.11)

where αc is a tunable parameter to control the rate of decay, and tc is the time elapsed

since the reporting node has received a report on link l, which can be expressed as

tc = tnow − trx where tnow is the same as above and trx is the time since node n
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received a report on link l to create an RSS measurement.

Using the three metrics of information (3.8), history (3.10), and currency (3.11)

identified above, a third metric can be calculated to choose an ideal node to report

next. This is the utility of the node and is calculated using

Un = Hn

[∑
l∈n

ClIl

]
(3.12)

where l ∈ n are all of the links formed with node n and p are all of the pixels in

the estimated image. Figure 5 shows an example of all l links that are made with

node n = 54. Table 1 summarizes the metrics discussed above, providing a succinct

definition for each.

3.1.2 Wireless Sensor Network Model

The wireless sensor network modeled in this thesis utilizes 60 nodes arranged in

a rectangle. Much of the work was done using a modeled dynamic scene where the

cylindrical human model, defined in (2.21), traverses a rectangular path. This is

shown in figure 6 below, where the outline of the image and the pixels contained

in the image is represented by blue dotted lines, and the dynamic path model is

represented by the red line with an arrow indicating clockwise movement. The nodes

are represented by the black circles. The particular WSN configuration shown in figure

6 was chosen to reflect the current hardware setup that the AFIT RTI system uses,

allowing for a more direct comparison between the model and previous experimental

data collected from the physical system. An additional WSN configuration was also

simulated with only 28 nodes and larger spacing between nodes to provide an example

of a WSN with less information. This configuration is pictured in figure 7.

The imaging solution was obtained using the covariance-weighted least squares

solution discussed in section 2.1.3.1. RSS measurements were modeled using (2.1)
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Table 1: Summary of information and time-based metrics.
Metric Symbol Meaning Equation

Information
Il Fisher information value for a given link l (3.8)
In Fisher information value for a given node n (3.9)

History Hn Scaling factor based on the last time a node
n transmitted RSS values

(3.10)

Currency Cl Scaling factor based on the last time an RSS
value was reported on link l

(3.11)

Utility Un Utility value of a node found by multiplying
the three metrics above

(3.12)

where n is a vector of independent, identically-distributed additive white Gaussian

noise (AWGN) such that

n ∼ N (0, σ2
nI) = N (0,N) (3.13)

The specific solution used took the form [16]

x̂ =
(
WTN−1W + C−1x

)−1
WTN−1y,where (3.14)

y = Wx + n (3.15)

where Cx is the covariance of the pixels in the image, and is defined in (2.31). Con-

sidering (3.13), (3.14) is equivalent to using the pi matrix defined in (2.30) to find the

estimated image. A summary of the parameter values used for the RSS model and

solution method is listed in table 2.

The model assumes that one round around the WSN takes one second. With 60

nodes, the time allotted to each node for transmission is τtx = 1/60th of a second.

Additionally, a provision was made to account for dropped packets. In the physical

RTI system that AFIT uses, packets are frequently dropped due to multipath in-

terference, poor line-of-sight to the base station, or just errors in the transmission.

This is handled in the physical system by giving the transmitter another attempt at
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Figure 5: All links made with node n = 54, highlighted in red.

transmission, and then moves on in the normal order recording a NaN as the RSS

measurement for the report that failed to successfully transmit. Upon image recon-

struction, when the two RSS measurements are averaged, if a NaN value and good

reading are found on the same link the good reading is used; if two NaN values are

on the same link, a NaN is reported. For the imaging solution all NaN values are set

to zero, and (2.23) is used to estimate the image.

To replicate this in the model, the report used in the event of a dropped packet

is a report of all zeros. Reporting all zeros is the technique used by the AFIT RTI

system, keeping the model a faithful representation of an existing physical system.

While it is technically not the correct method, as reporting a zero indicates no change

on a given link, few efficient alternatives exist to handle the NaN values that result

from a dropped packet. The correct way to handle such a situation is to eliminate the
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Figure 6: Modeled WSN with scene pixel outline and dynamic target path.

node from the model and recompute the weight matrix, but this is computationally

burdensome. Another alternative could be using the last successful report from the

node, which uses outdated information in a potentially dynamic scene, where the

use of zeros essentially assumes no target is present. No matter the method used, a

dropped packet results in a loss of information. A variety of packet loss rates were

simulated for the experiments, and are summarized in table 3 and section 3.2.
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Figure 7: Modeled WSN with scene pixel outline utilizing 28 nodes and 2 ft node
spacing.

Table 2: Parameters used for WSN model.
Variable Parameter Significance of Parameter

Cx (2.31)
σ2
x = 0.1 dB2 Variance of the pixel intensity in the image.
δc = 1.3 ft Tuneable space constant used to control the decay

rate in the pixel covariance.
WNeSh (2.14) λ = 0.03 ft Excess path length beyond foci of ellipse.

x (2.21) RH = 1.3 ft Radius of cylindrical human model used to form
truth image.

N (3.13) σ2
n = 16 dB2 Variance of the AWGN.
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3.1.3 Position Tracking

To compare the utility selection method to the standard round-robin method, the

maximum a posteriori (MAP) and the k-means methods of position estimation were

used to track position over time and the performance of the different transmission

orders was compared. The positioning error was calculated for the duration of the

dynamic scene for each method to identify any differences in performance using the

root-mean-squared error (RMSE), given by

RMSE =

√√√√√ M∑
m=1

(||p̂m − pm||)2

M
(3.16)

where p̂m is the mth target position estimate, pm is the mth true target position, each

occurring in the same time instant, and M is the total number of true and estimated

position coordinates. Additionally, the dispersion of the clusters used for the k-means

calculation between the two methods was also compared, defined in [3] as

σcentroid =

√√√√√√√√
J∑
j=1

||xj − C||2 · x̂j

J∑
j=1

x̂j

(3.17)

where ||xj − C|| is the Euclidean distance between the jth pixel in the cluster and

the cluster centroid, and x̂j is the intensity of the jth pixel in the cluster. Weighting

the distance between the pixel and centroid by the percent of the total intensity that

the specific pixel represents ensures that pixels that just meet the threshold to be

included in the cluster do not have an out-sized contribution to the dispersion of the

cluster, as lower intensity values will typically be found farther from the centroid.
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3.2 Simulation Set-up

The simulation runs were set up using the dynamic target path pictured in figure 6

with randomization added. The distance traveled in the x and y directions remained

the same, but the top left corner of the rectangular path was shifted based on discrete

uniform random variables such that xshift ∼ U{−4, 1} feet and yshift ∼ U{−2, 2} feet

to keep the edges of the dynamic target path within the scene being monitored by

the WSN. Randomization was added to the path location in order to provide some

level of randomization for the simulation runs because the utility-based and round

robin node selection methods are purely deterministic. Figure 8 shows what three

path realizations with a randomly drawn starting point might look like, as well as

marking the boundary inside of which the paths can be drawn. In the figure, path

one has [xshift, yshift] = [0, 0] feet, path two has [xshift, yshift] = [−4, 2] feet, and path

three has [xshift, yshift] = [−1,−2] feet.

Three different token passing methods were simulated for 1000 realizations of

the dynamic path. The token passing methods will be referred to by the following

definitions:

• Method 1: Standard, sequential token passing method for all communication

rounds, as discussed in paragraph 2.1.1.

• Method 2: The first round of RSS reports from each node uses the standard

sequential token passing, all subsequent rounds prioritize the next node to trans-

mit based on the utility values determined by (3.12).

• Method 3: The first round of RSS reports prioritizes the transmission sequence

based on the information value per node shown in (3.9), all subsequent rounds

prioritize the next node to transmit based on the utility values determined by

(3.12).
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Figure 8: Illustration of three paths with randomized starting points.

The k-means clustering and MAP localization methods were used to track the po-

sition of the target over each realization of the dynamic path, and the dispersion of

the k-means cluster was also calculated. Five experiments were run, using 1000 real-

izations of the dynamic path each. Table 3 summarizes the differences between each

experiment. The average RMSE, k-means cluster dispersion, and average RMSE over

time were calculated for each packet loss rate.
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Table 3: List of experiments conducted.

Experiment Weight Matrix Parameter Packet Loss Rates
WSN

Configuration

1 NeSh (2.14) λ = 0.03 ft 0%, 20%, 50%, 85%
60 nodes
1 ft spacing

2 NeSh (2.14) λ = 0.06 ft 0%, 20%, 50%, 85%
60 nodes
1 ft spacing

3 NeSh (2.14) λ = 0.015 ft 0%, 20%, 50%, 85%
60 nodes
1 ft spacing

4 Line (2.15) N/A 0%, 20%, 50%, 85%
60 nodes
1 ft spacing

5 NeSh (2.14) λ = 0.06 ft 0%, 20%, 50%, 85%
28 nodes
2 ft spacing
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IV. Results and Analysis

4.1 Node Selection Based on Highest Utility

Implementing the utility metric, Un, in (3.12) and selecting the node with the

highest utility to transmit using the Network Shadowing (NeSh) weight model results

in a non-sequential selection pattern where the nodes with the highest information

metric are typically selected more often than those with a lower information metric.

This is reflected in figure 9 which shows the total number of reports each node makes

when the system chooses a node to transmit 108000 times. This was done by simulat-

ing the wireless sensor network (WSN) using the experiment 1 setup with 0% packet

loss, summarized in table 2, running for thirty minutes to ensure there were enough

node selections to reach a steady run-time state. Note that the vertical axis showing

the total number of reports starts at 1400 to better visualize the difference between

the bars.

Figure 10 shows the same data arranged side-by-side in a histogram, overlaid on

the information values for each node, obtained from (3.9). This shows that the pattern

in the number of times that each node reports is driven largely by the information

metric, specified in (3.6), but it is important to note that unless other nodes report,

no matter the information value, no new information will be received. In addition to

showing that the utility selection method largely relies on the information value of

each node, the result highlights the fact that the utility selection method as developed

in section 3.1.1.2 is deterministic.

Figure 11 shows the utility and history for node 54 over time on the same time

axis for one iteration of the dynamic scene illustrated in figure 6. Node 54 was

chosen because it is a high-information node that transmits more frequently than

other nodes, making it more likely that an underlying pattern would emerge over
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Figure 9: Number of reports per node for 108000 reports, arranged in the WSN setup.

more transmissions. Examining the two, it is clear that the history of a node has

the intended effect: upon transmit, the history of a node is set to zero, driving the

utility to zero as well, making that node the least useful to transmit in the next time

step. Given that the history for a given node is the same across all links created

with that node, there is no link-by-link effect. This provides a fairly coarse control

that readily achieves its intended purpose: forcing a different node selection for the

next transmission. There is no apparent underlying pattern in either the utility or

the history that seems to have an effect on the relative frequency that the node is

selected to transmit.

Where the history metric provides a coarse control to ensure no back-to-back

repeat transmissions, the currency metric provides a much finer control with a less

47



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

Node Number

0

50

100

150

200

250

300

350

400

In
fo

rm
a

ti
o

n
 p

e
r 

N
o

d
e

 (
I n

)

0

500

1000

1500

2000

2500

R
e

p
o

rt
s
 p

e
r 

N
o

d
e

Figure 10: Information value for each node overlaid with number of reports per node
for 108000 reports selected for highest utility.

impactful effect on the utility of a given node. Figure 12 shows the currency over

time for a high information value link and a low information value link. The high

information link transmits 41 times total while the low information link transmits

25 times over a 31 second time span. Changing the decay rate for the currency, αc,

does not drastically impact the behavior of the system, but can change the relative

selection frequency of specific nodes by a small amount.

While figure 12 provides a view of the currency for two links across the duration

of the entire dynamic scene, figure 13 provides a close-up view of the same links in

the same realization of the dynamic scene over only a few seconds. The close-up helps

illustrate the fact that the higher information link reports nearly twice as often, and

shows how little the difference is between the minimum value of the high information

link currency and low information link currency. This difference is amplified when the

αc decay rate is higher, reducing the impact that a given link has on a node’s overall
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Figure 11: Utility and history for node 54 over time.

utility value. The reverse is true when reducing αc. Figure 14 shows an illustration

of the two links, where it can be seen that the high information link passes directly

through the center of many pixels, and the lower information link passes diagonally

through only a few pixels.
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Figure 12: Currency values for links between nodes 54 and 24 (high information value)
and nodes 54 and 2 (low information value).
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Figure 13: Close-up on currency values for links between nodes 54 and 24 (high
information value) and nodes 54 and 2 (low information value) in the first four seconds.
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Figure 14: Illustration of links starting at node 54 and ending at nodes 2 (low infor-
mation link) and 24 (high information link).
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4.2 Position Tracking

The impact on the relative transmission frequency for the nodes when using the

utility metric can be clearly seen in the section above. Rather than having one

transmission per node per communication round, the information value of a given

link leads to an emphasis on reporting the received signal strength (RSS) for the

most information dense links. This section explores the actual impact on position

tracking that using the utility metric provides. Figure 15 illustrates the output of

the simulation. Each run provides a position estimate using the K-means cluster

centroid and the maximum a posteriori (MAP) estimate. Additionally, the dispersion

of clusters used to find the centroid was calculated.

4.2.1 Experiment 1 Results

Using the simulation setup described in section 3.1.3, the root-mean-squared error

(RMSE) for the K-means and MAP estimates and the average dispersion across all

K-means estimates over 1000 random realizations of the dynamic path were calcu-

lated. The 95% confidence interval for each of these metrics was also calculated and

the information is displayed in figure 16. To reiterate the token passing methods

under test: method 1 is the standard, sequential token passing method; method 2

uses sequential token passing until all nodes have reported once, then switches to

prioritizing the node with the highest utility; and method 3 prioritizes the initial

transmission sequence based on the information value of each node, then switches to

prioritizing the node with the highest utility. From figure 16, it can be seen that the

K-means centroid position RMSE and MAP estimate RMSE are statistically iden-

tical between all token passing methods during steady-state operation of the WSN,

and the K-means cluster dispersion is higher when using method 3. Examining the

results for the full path duration in figure 17, which takes into account the transient
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Figure 15: Position tracking results for one run of the MAP and image-based centroid
localization methods for the x (top) and y (bottom) directions using method 3.

position estimates during the formulation of the first few frames of the image, shows

that method 3 has lower RMSE, while method 1 and method 2 yield statistically

identical RMSE for the position estimates. Interestingly, the K-means dispersion is

still higher for method 3, despite the lower error on the centroid position estimate.

Figure 18 shows the centroid and MAP estimate RMSE for all three token passing

methods versus time. The shaded area indicates the first five seconds that were

trimmed to determine the steady-state RMSE for each method. These first five

seconds reveal a major reason why method 3 performs better when considering the

full path duration. The RMSE during this initial transient period is higher overall for

methods 1 and 2, even though method 3 has slightly higher error for a longer period

of time. The implication of this data is that method 3 takes slightly longer to reach a

steady-state operation, but has lower overall error on the initial estimates. Important
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Figure 16: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 0% packet loss.

to note, however, is that the magnitude of the initial error while using method 3 is

larger than or close to the same length as the longest leg of the dynamic path over

which the target is being tracked.

Figures 19 and 20 show the RMSE results when the average packet loss of 20%

experienced in the Air Force Institute of Technology (AFIT) radio tomographic imag-

ing (RTI) system is added to the simulation. There does not appear to be a major

difference between the 0% and 20% packet loss scenarios, with the K-means centroid

estimates showing nearly-identical performance and the MAP estimates showing iden-

tical performance during steady state tracking. Taking the full duration of the path

and tracking into account, method 3 outperforms method 1 and method 2 again due

to the initial error as discussed above.

Similar to figures 19 and 20, figures 21 and 22 show results from increasing the

packet loss percentage even further from 20% to 50%. Figure 21 shows that to-

ken passing method 2 and 3 result in lower RMSE for both the K-means and MAP
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Figure 17: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
0% packet loss.

tracking methods. Figure 22 shows that the same trend of token passing method 3

outperforming the other two when considering the full tracking duration. Addition-

ally, method 2 also outperforms method 1 for the full tracking duration when there

is 50% packet loss.

Figures 23 and 24 reinforce the findings from the previous 20% and 50% packet

loss scenarios. With 85% packet loss, similar results to the 50% packet loss scenario

are obtained. Methods 2 and 3 outperform method 1 when looking at both steady-

state performance and tracking error over the full duration, and method 3 has a slight

edge over method 2 when considering the full duration. An important note must be

made on the magnitude of the tracking error, however. The longest leg of the dynamic

path is 9 feet long, and the tracking error in the 85% packet loss scenario is nearly

half of that; additionally, it is approximately 25% of the x-axis length in the overall

scene and approximately 30% of the y-axis length of the overall scene. This indicates

that while a slight edge can be gained from using method 2 or 3 in a high packet
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Figure 18: Experiment 1 RMSE versus time for the three methods averaged over 1000
realizations, shaded portion indicates transient data that was removed to obtain the
“steady-state” RMSE results.

loss scenario, for the specific context and scene size used for the simulations in this

thesis, the amount of overall error would potentially render any position estimate

only slightly better than a random guess.

Overall, the results imply that as information is lost, prioritizing reports from

nodes that have the most, and the most current, information about the scene results

in more accurate localization. Logically it follows that a WSN with fewer nodes,

and therefore less information about the scene it is surveilling, could potentially

benefit from the use of token passing methods 2 or 3. This reasoning informed the

configuration used for experiment 5. The other experiments listed in table 3 were

conducted and the results are reported below; however, in the interest of clarity and

brevity, only the results for the steady-state runtime for the 0% and 50% packet loss

scenarios are displayed in this section, as they best illustrate the impact of the utility-
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Figure 19: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 20% packet loss.

prioritized token passing methods. The remaining results are displayed in Appendix

A.
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Figure 20: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
20% packet loss.
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Figure 21: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 50% packet loss.
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Figure 22: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
50% packet loss.
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Figure 23: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 85% packet loss.
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Figure 24: Experiment 1 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
85% packet loss.
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4.2.2 Experiment 2 Results

Experiment 2 essentially uses a different model by changing the excess path length

parameter for the NeSh weight matrix model. For this experiment, the excess path

length parameter was doubled from experiment 1, so that λ = 0.06 ft. This widens

the ellipse with the two transceivers as the foci, making each link more information-

dense. Given the results of experiment 1, this implies that token passing methods

2 and 3 would be less impactful to localization performance even in scenarios with

increasing packet loss. This is reflected in figures 25 and 26. While figure 26 does

show a small gain in localization performance for the K-means localization, the gain

in accuracy for the MAP localization is marginal.
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Figure 25: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 0% packet loss.
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Figure 26: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 50% packet loss.
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4.2.3 Experiment 3 Results

Similar to experiment 2, experiment 3 again varies the excess path length pa-

rameter. Utilizing λ = 0.015 ft, the model narrows the ellipse representing the link

between transceivers. This effectively reduces the information on a given link and

suggests that token passing methods 2 and 3 would be more beneficial. The results

shown in figures 27 and 28 do not entirely support this conclusion. For an ideal, 0%

packet loss scenario, methods 2 and 3 underperform method 1 when using K-means

localization. MAP localization provides identical performance. In a scenario with

50% packet loss using k-means localization, all methods perform identically when

considering the 95% confidence intervals; however, method 2 and method 3 provide

better localization when using the MAP estimate.
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Figure 27: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 0% packet loss.
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Figure 28: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 50% packet loss.
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4.2.4 Experiment 4 Results

Experiment 4 changes the weight matrix model from the NeSh model to the line

model. Again, this implies there might be less information about the scene on a

given link, but this trivializes the differences between the two models. Figure 29

shows that methods 2 and 3 are marginally less accurate than method 1 when using

the line weight matrix, essentially making the three methods equivalent for the 0%

packet loss case. Figure 30 shows an increase in accuracy using both K-means and

MAP localization, reinforcing the trend that token passing method 2 and 3 provide

increased accuracy when less information is available.
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Figure 29: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 0% packet loss.
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Figure 30: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 50% packet loss.
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4.2.5 Experiment 5 Results

Experiment 5 uses the NeSh weight matrix model with λ = 0.06 ft again, but

reduces the number of nodes in the WSN to 28 while increasing the spacing between

each node to 2 ft. Figure 31 shows the 0% packet loss scenario, where method 3

marginally outperforms the other two methods when using K-means localization, but

the MAP estimates provide identical performance. Figure 32 shows the results with

50% packet loss, where methods 2 and 3 outperform method 1 using either form of

localization.
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Figure 31: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 0% packet loss.
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Figure 32: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 50% packet loss.
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V. Conclusions

The work performed in this thesis presents an alternative token passing method-

ology to the standard sequential token passing method frequently used for radio to-

mographic imaging (RTI) systems. The token passing methodology is based partly

on the Fisher information matrix of the image being produced, which was used to

produce a metric for dynamically selecting an optimal node to transmit in the next

time step. The intent behind the implementation and testing of this dynamic trans-

mission method was to improve the target localization and tracking performance of

RTI systems. An improvement in performance would further the utility of RTI as a

useful tool in many force protection applications for the United States Armed Forces

ranging from emergency response, like structure fires and active shooter scenarios, to

military operations in urban terrain (MOUT) where potential combatants could be

localized through walls before entering to clear a building.

An information metric was developed for each node in the wireless sensor net-

work (WSN), and the time that passed since each node in the WSN transmitted was

tracked to create two other metrics. These three metrics were combined to form a

fourth metric which was used to determine the node with the most, and most recent,

information about the scene being monitored. This selection process was used many

times to determine any long-term patterns that might emerge. The process was found

to be largely driven by the information metric and purely deterministic. Three to-

ken passing methods were then tested over 1000 trials for four different packet loss

scenarios: 0%, 20%, 50%, and 85% packet loss. The methods used were:

• Method 1: Standard, sequential token passing method for all communication

rounds, as discussed in paragraph 2.1.1.

• Method 2: The first round of received signal strength (RSS) reports from each
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node uses the standard sequential token passing, all subsequent rounds prioritize

the next node to transmit based on the utility values determined by (3.12).

• Method 3: The first round of RSS reports prioritizes the transmission sequence

based on the information value per node shown in (3.9), all subsequent rounds

prioritize the next node to transmit based on the utility values determined by

(3.12).

The performance of the three methods was evaluated by averaging the root-mean-

squared error (RMSE) from the K-means clustering centroid position estimate and

maximum a posteriori (MAP) position estimate. It was found that improvement

in performance is largely context dependent and can vary when considering various

models and WSN configurations. However, token passing methods 2 and 3 generally

resulted in a lower tracking error than method 1 as packet loss increased, implying

that prioritizing reports from nodes with more information about the scene can result

in better localization performance when fewer measurements are available.

The results from this work show, through modeling and simulation, a proof-of-

concept for optimizing the node transmission sequence through the utility metric

presented in (3.12). Specifically, in the context of high-packet loss scenarios, the dy-

namic, utility-driven, token passing methods have been shown to provide localization

and tracking at a lower overall level of error.

5.1 Future Work

While providing a proof-of-concept for the methods presented, further exploration

to verify and validate the results could provide more appropriate contexts, and im-

plementation of the methods on a physical system. Future work to further develop

the token-passing methodology should include:
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• Modeling and simulation similar to this thesis using different weight matrices

and other WSN parameters.

• Implementation of state-space tracking methods such as Kalman filters and

evaluation of the effects of the token passing methods on the resultant tracking

accuracy

• Further exploration of the differences when the following aspects of the WSN

are changed:

– Number of nodes in WSN

– Geometry/placement of nodes in the WSN

– Size of the scene being monitored by the WSN

– Pixel size

• Exploration of the effects of changing the target size, speed, and path.

• Application of the token-passing methods presented in this thesis to experimen-

tal RSS data collected on each link.

• Implementation of the token-passing methods presented in this thesis to a phys-

ical RTI system, and subsequent exploration of the system’s performance.
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Appendix A. Additional Results

1.1 Experiment 2 Results
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Figure 33: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
0% packet loss.
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Figure 34: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 20% packet loss.
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Figure 35: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
20% packet loss.
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Figure 36: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
50% packet loss.
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Figure 37: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 85% packet loss.
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Figure 38: Experiment 2 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
85% packet loss.
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1.2 Experiment 3 Results
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Figure 39: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
0% packet loss.
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Figure 40: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 20% packet loss.
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Figure 41: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
20% packet loss.
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Figure 42: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
50% packet loss.
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Figure 43: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 85% packet loss.
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Figure 44: Experiment 3 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
85% packet loss.
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1.3 Experiment 4 Results
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Figure 45: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
0% packet loss.
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Figure 46: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 20% packet loss.
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Figure 47: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
20% packet loss.
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Figure 48: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
50% packet loss.

K-Means Centroid RMSE MAP Estimate RMSE K-Means Average Dispersion
0

1

2

3

4

5

F
e
e
t

Method 1

Method 2

Method 3

Figure 49: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 85% packet loss.
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Figure 50: Experiment 4 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
85% packet loss.
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1.4 Experiment 5 Results
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Figure 51: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
0% packet loss.

84



K-Means Centroid RMSE MAP Estimate RMSE K-Means Average Dispersion
0

0.5

1

1.5

2

2.5
F

e
e
t

Method 1

Method 2

Method 3

Figure 52: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 20% packet loss.
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Figure 53: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
20% packet loss.
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Figure 54: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
50% packet loss.

K-Means Centroid RMSE MAP Estimate RMSE K-Means Average Dispersion
0

1

2

3

4

5

6

F
e
e
t

Method 1

Method 2

Method 3

Figure 55: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path during steady state runtime,
with 85% packet loss.
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Figure 56: Experiment 5 RMSE and K-means averaged dispersion with 95% confi-
dence intervals over 1000 realizations of the dynamic path for full path duration, with
85% packet loss.
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