
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2020

Honeyhive - A Network Intrusion Detection System Framework Honeyhive - A Network Intrusion Detection System Framework

Utilizing Distributed Internet of Things Honeypot Sensors Utilizing Distributed Internet of Things Honeypot Sensors

Zachary D. Madison

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Madison, Zachary D., "Honeyhive - A Network Intrusion Detection System Framework Utilizing Distributed
Internet of Things Honeypot Sensors" (2020). Theses and Dissertations. 3179.
https://scholar.afit.edu/etd/3179

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F3179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3179?utm_source=scholar.afit.edu%2Fetd%2F3179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

HONEYHIVE – A NETWORK INTRUSION
DETECTION SYSTEM FRAMEWORK

UTILIZING DISTRIBUTED INTERNET OF
THINGS HONEYPOT SENSORS

THESIS

Zachary D. Madison, Capt, USAF

AFIT-ENG-MS-20-M-038

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-038

HONEYHIVE – A NETWORK INTRUSION DETECTION SYSTEM

FRAMEWORK UTILIZING DISTRIBUTED INTERNET OF THINGS

HONEYPOT SENSORS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Zachary D. Madison, B.S.C.S.

Capt, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-038

HONEYHIVE – A NETWORK INTRUSION DETECTION SYSTEM

FRAMEWORK UTILIZING DISTRIBUTED INTERNET OF THINGS

HONEYPOT SENSORS

THESIS

Zachary D. Madison, B.S.C.S.
Capt, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
(Chairman)

Scott R. Graham, Ph.D.
(Member)

Stephen J. Dunlap, M.S., CISSP
(Member)

AFIT-ENG-MS-20-M-038

Abstract

With the ever increasing number of Internet-connected devices, the importance of

cyber security also increases. Exploding over the past decade, the number of Internet

of Things (IoT) devices connected to the Internet jumped from 3.8 billion in 2015 to

17.8 billion in 2018. A major concern with many IoT devices is that they contain

vulnerabilities that are often left unpatched. To make matters worse, many of these

IoT devices lack modern security measures found on traditional computing devices,

due to their inherent hardware limitations and vendors focusing on functionality and

time to market over security.

Honeypots are devices not part of routine network usage that are meant to alert

of an attacker’s presence, capture an attacker’s tools, and record their Tactics, Tech-

niques, and Procedures (TTPs). Honeyd is a framework capable of rapidly creating

low-interaction honeypots by simulating the network stack.

HoneyHive is a framework that uses distributed IoT honeypots as Network Intru-

sion Detection System (NIDS) sensors that beacon back to a centralized Command

and Control (C2) server. This research uses the three Honeyd IoT honeypots devel-

oped by Stafira, but HoneyHive is flexible enough to support any device capable of

running the Python HoneyB Agent script. HoneyHive offers a method for network

intrusion detection using the lure of vulnerable IoT devices as distributed honeypot

intrusion detection sensors.

The HoneyHive framework consists of the C2 server, transfer server, Snort log

parser, Database (DB), and the HoneyB Agent script. The C2 server interacts with

all other components and displays honeypot interactions and Snort alerts to network

operators in real time. The transfer server receives PCAPs and other Binary Large

iv

Object (BLOB) from the HoneyB Agent. Upon receiving a PCAP, it is passed to

Snort and analyzed for matching signatures. Immediately after this, the Snort log

parser reads the log file and then sends any alert information back to the C2 server.

The DB stores alerts, alert metadata, and PCAPs received from the HoneyB Agent.

The HoneyB Agent script captures and reports any traffic interactions with Stafira’s

honeypots. Captured traffic is sent to the transfer server and honeypot interactions

are sent to the C2 server.

The tests in this experiment involve four types of scans and four levels of active

honeypots against the HoneyHive framework and a traditional NIDS on the simulated

test network. The scan types include No Scan (Control Group), TCP Connect scan,

Aggressive scan, and NIDS Avoidance scan. The levels for honeypots are 0, 3, 6, and

9 honeypots. Each of these was run in different combinations with one another for a

full factorial experiment resulting in 16 different combinations.

This research successfully created a framework of distributed network intrusion

detection IoT honeypot sensors that capture traffic, create alerts, and beacon back to

a central C2 server. The HoneyHive framework operated correctly by not alerting on

routine network traffic and alerting on non-routine network traffic. Additionally, the

HoneyHive framework successfully detected intrusions that traditional NIDSs cannot

through the use of distributed IoT honeypot sensors and packet capture aggregation.

v

AFIT-ENG-MS-20-M-038

To my Wife,

Thank you for all your love, support, and hand-crafted late night lattes. I am so

proud of how diligent you work and all your accomplishments. I never want my

career or goals to take priority over yours, “Love is taking turns riding shotgun.”

To my soon to be born baby girl,

You motivated your Daddy to work extra hard and finish early so that we could have

your nursery all setup. I pray that you love the Lord, dream big, and never settle for

what’s easiest, but fervently pursue justice.

To my Mom and Dad,

Thank you for all your love and encouragement through every step of my life. Thank

you for instilling in me a work-ethic and a perseverance to overcome any adversity.

I love you both to the moon and back!

PLUS ULTRA!

vi

Acknowledgements

“We all want progress. But progress means getting nearer to the place you want

to be and if you have taken a wrong turning, then to go forward does not get you any

nearer. If you are on the wrong road, progress means doing an about-turn and walking

back to the right road; and in that case, the man who turns back soonest is the most

progressive man.” - C.S. Lewis

To my advisor, Dr. Barry Mullins, thank you for your shared excitement, exper-

tise, and keeping me from going down too many rabbit holes during my research.

Stephen, even though I grumbled at every design change to the HoneyHive frame-

work and my experiment methodology, thank you. My thesis would not be near the

product it is now without all your insight and wonderful suggestions.

Zachary D. Madison

vii

Table of Contents

Page

Abstract . iv

Dedication . vi

Acknowledgements . vii

List of Figures . xii

List of Tables . xiv

List of Acronyms . xv

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Research Goals . 4
1.4 Approach . 4

1.4.1 HoneyHive Framework . 4
1.4.2 Simulated Network . 5
1.4.3 Experiment . 5

1.5 Assumptions and Limitations . 6
1.5.1 Assumptions . 6
1.5.2 Limitations . 6

1.6 Research Contributions . 7
1.7 Thesis Overview. 7

II. Background and Related Research . 8

2.1 Overview . 8
2.2 Background . 8

2.2.1 Internet of Things (IoT) . 8
2.2.2 IoT and Computer Network Security . 9
2.2.3 Network Intrusion Detection System (NIDS) 12
2.2.4 Networking Monitoring . 13
2.2.5 Honeypots . 14
2.2.6 Honeytokens . 15
2.2.7 Honeyd 1.5c . 16
2.2.8 Cyber Deception . 18
2.2.9 Programming and Languages . 19
2.2.10 Tools . 20

2.3 Related Research . 26
2.3.1 Conpot . 26

viii

Page

2.3.2 IoT Web-Based Honeypots by Lukas Stafira 26
2.3.3 Honeycomb by Christian Kreibich . 29
2.3.4 Honeyd Syslog Solutions . 29
2.3.5 IoTCandyJar . 30
2.3.6 HoneyLab . 31
2.3.7 SIPHON . 34
2.3.8 HoneyIo4 . 34
2.3.9 IoTPOT and IoTBOX . 36
2.3.10 Multi-Purpose IoT Honeypot . 37
2.3.11 ThingPot . 37
2.3.12 IoTSec . 39
2.3.13 Honeycomb and MazeRunner by Cymmetria 39
2.3.14 Comparison of Related Frameworks . 42

2.4 Chapter Summary . 43

III. Framework Design . 44

3.1 Overview . 44
3.2 Motivation . 44
3.3 Third-Party Software . 45

3.3.1 Honeyd 1.5c . 46
3.3.2 Stafira’s Honeypots . 46
3.3.3 Ubuntu 12 . 46
3.3.4 Snort . 47
3.3.5 Suricata . 47
3.3.6 Wireshark . 47

3.4 Programming Languages . 48
3.4.1 Node.js . 48
3.4.2 Python 2.7 . 48
3.4.3 SQLite . 49

3.5 HoneyHive Framework Design . 49
3.5.1 C2 Server, Transfer Server, and Snort Log Parser 53
3.5.2 HoneyB Agent . 55
3.5.3 Database Design . 57
3.5.4 Network Design . 60

3.6 Summary . 63

IV. Research Methodology . 64

4.1 Goals . 64
4.2 Approach . 64
4.3 System Boundaries . 65
4.4 Parameters, Factors, and Metrics . 68

4.4.1 Assumptions . 68

ix

Page

4.4.2 System Parameters . 68
4.4.3 Factors . 73
4.4.4 Metrics . 74

4.5 Methodology. 75
4.5.1 runExperiment.py . 76

4.6 Results . 79
4.7 Chapter Summary . 81

V. Results and Analysis . 82

5.1 Overview . 82
5.1.1 Number of Alerts Overview . 83
5.1.2 Number of Distinct Types of Alerts Overview 88
5.1.3 Packet Capture Percentage Overview . 93

5.2 Scan Type . 100
5.2.1 Control Group . 101
5.2.2 TCP Connect . 103
5.2.3 Aggressive . 108
5.2.4 NIDS Avoidance . 112

5.3 Number of Honeypots . 116
5.3.1 0 Honeypots . 116
5.3.2 3 Honeypots . 121
5.3.3 6 Honeypots . 126
5.3.4 9 Honeypots . 130

5.4 Summary . 134

VI. Conclusions . 135

6.1 Introduction . 135
6.2 Research Conclusions . 135

6.2.1 Number of Alerts . 136
6.2.2 Number of Distinct Types of Alerts . 137
6.2.3 Percentage of Packets Captured . 137

6.3 Research Significance . 138
6.4 Research Limitations . 138
6.5 Future Work . 140

Appendix A. HoneyHive Framework . 144

Appendix B. Honeyd Configuration File . 184

Appendix C. suricataConnect.py . 186

Appendix D. runExperiment.py . 192

x

Page

Appendix E. Experiment Results . 208

Appendix F. permutation test.py . 233

Bibliography . 235

xi

List of Figures

Figure Page

1. Growth of IoT Devices from 2015-2025 . 10

2. VMware Workstation Hardware Settings . 23

3. Virtual Machine Structure . 25

4. Container Structure . 25

5. Stafira’s Network Configuration . 28

6. IoTCandyJar Design . 32

7. HoneyLab Design . 33

8. SIPHON Overview . 35

9. Attacker’s Interaction with SIPHON . 35

10. IoTPOT Overview . 38

11. IoTBOX Overview . 38

12. ThingPot Overview . 40

13. HoneyHive Framework . 50

14. UML Program Design . 52

15. Database Schema . 59

16. Simulated Test Network - Network Layout . 61

17. HoneyHive Framework . 67

18. Overview - Mean Number of Alerts . 86

19. Overview - Mean Number of Distinct Alerts . 91

20. Overview - Mean Packet Capture Percentage . 97

21. HoneyHive Framework Mean Packet Capture
Percentage (% HHP) by Level . 98

22. Control Group - Mean Percentage of Packets Captured 102

xii

Figure Page

23. TCP Connect - Mean Number of Alerts . 105

24. TCP Connect - Mean Number of Distinct Alerts 106

25. TCP Connect - Mean Packet Capture Percentage 107

26. Aggressive - Mean Number of Alerts . 109

27. Aggressive - Mean Number of Distinct Alerts . 110

28. Aggressive - Mean Packet Capture Percentage . 111

29. NIDS Avoidance - Mean Number of Alerts . 113

30. NIDS Avoidance - Mean Number of Distinct Alerts 114

31. NIDS Avoidance - Mean Packet Capture Percentage 115

32. 0 Honeypots - Mean Number of Alerts . 118

33. 0 Honeypots - Mean Number of Distinct Alerts . 119

34. 0 Honeypots - Mean Packet Capture Percentage 120

35. 3 Honeypots - Mean Number of Alerts . 123

36. 3 Honeypots - Mean Number of Distinct Alerts . 124

37. 3 Honeypots - Mean Packet Capture Percentage 125

38. 6 Honeypots - Mean Number of Alerts . 127

39. 6 Honeypots - Mean Number of Distinct Alerts . 128

40. 6 Honeypots - Mean Packet Capture Percentage 129

41. 9 Honeypots - Mean Number of Alerts . 131

42. 9 Honeypots - Mean Number of Distinct Alerts . 132

43. 9 Honeypots - Mean Packet Capture Percentage 133

44. Proposed HoneyHive GUI . 142

xiii

List of Tables

Table Page

1. Comparison of Honeypot Frameworks . 42

2. Factors and Levels . 73

3. Overview - Mean Alerts by Level . 85

4 Anderson-Darling Test - Number of Alerts . 87

5 Permutation Test - Number of Alerts . 88

6. Overview - Mean Number of Distinct Alerts by Level 90

7 Anderson-Darling Test - Number of Distinct Alerts 92

8 Permutation Test - Number of Distinct Alerts . 93

9. Percentage of Scanned Devices Monitored in Test
Network . 94

10. Overview - Mean Packet Capture Percentage . 96

11 Anderson-Darling Test - Packet Capture Percentage 99

12 Permutation Test - Packet Capture Percentage . 100

13 Experiment Results . 208

xiv

List of Acronyms

AFNet Air Force Network

BLOB Binary Large Object

BPF Berkeley Packet Filter

C2 Command and Control

CA Certificate Authority

CEO Chief Executive Officer

CIKR Critical Infrastructure and Key Resources

CLI Command Line Interface

CPU Central Processing Unit

CSS Cascading Style Sheets

CSV Comma-Separated Values

CUT Component Under Test

CWMP CPE WAN Management Protocol

DB Database

DDOS Distributed Denial of Service

DHS Department of Homeland Security

DMZ Demilitarized Zone

DoD Department of Defense

DODIN DoD Information Network

DOM Document Object Model

DOS Denial of Service

GPS Global Positioning System

GUI Graphical User Interface

HTML HyperText Markup Language

xv

HTTP HyperText Transfer Protocol

ICS Industrial Control System

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

IPC Inter-Process Communication

JSON JavaScript Object Notation

LCS Longest Common Substring

MAC Media Access Control

MQTT Message Queue Telemetry Transport

MTU Maximum Transmission Unit

NIDS Network Intrusion Detection System

NPM Node.js Package Manager

OS Operating System

RFID Radio-Frequency Identification

SCADA Supervisory Control and Data Acquisition

SMTP Simple Mail Transfer Protocol

SPAN Switch Port Analyzer

SSH Secure Shell

SUT System Under Test

TCP Transmission Control Protocol

TTL Time to Live

TTPs Tactics, Techniques, and Procedures

UML Unified Modeling Language

UWB Ultra-Wideband

VM Virtual Machine

xvi

VNC Virtual Network Computing

VPN Virtual Private Network

Wi-Fi Wireless Fidelity

WLAN Wireless LAN

WPAN Wireless Personal Network

XMPP Extensible Messaging and Presence Protocol

xvii

HONEYHIVE – A NETWORK INTRUSION DETECTION SYSTEM

FRAMEWORK UTILIZING DISTRIBUTED INTERNET OF THINGS

HONEYPOT SENSORS

I. Introduction

1.1 Background

With the ever increasing number of Internet-connected devices, the importance

of cyber security similarly increases. Exploding over the past decade, the number of

Internet of Things (IoT) devices connected to the Internet jumped from 3.8 billion

in 2015 to 17.8 billion in 2018 [1]. A major concern with many IoT devices is that

they contain vulnerabilities that are often left unpatched [2][3]. To make matters

worse, many of these IoT devices lack modern security measures found on traditional

computing devices, due their inherent hardware limitations and vendors focusing on

functionality and time to market over security [2]. While an insecure IoT device

connected to a consumer’s probably-already insecure home network does not cause

much worry, insecure IoT devices connected to previously-secure networks do. An

attacker now has a vector into a previously locked down network and can use the

device as a pivot to gain access into the internal network [4]. If these devices were

to become connected to Critical Infrastructure and Key Resources (CIKR) networks,

the results could be catastrophic.

Honeypots are devices not part of routine network usage that are meant to alert of

an attacker’s presence, capture tools, and record Tactics, Techniques, and Procedures

(TTPs) [5]. Honeypots come in varying levels of sophistication and are available in

1

multitudes of frameworks. Honeyd is one such framework that is capable of rapidly

creating low-interaction honeypots by simulating the network stack. Lukas Stafira

used Honeyd to develop three convincing web-based IoT honeypots which are used

in this research. Stafira created IoT honeypots for the TITAThink camera, Proliphix

thermostat, and an ezOutlet2 power outlet [6].

Network Intrusion Detection Systems (NIDSs) are devices that analyze network

traffic and create alerts if they see traffic of malicious nature and or anomalous traf-

fic. Intrusion detection is split into two categories, signature matching and anomaly

detection. Signature matching uses known patterns of malicious traffic and creates

alerts upon seeing the pattern. Anomaly detection on the other hand uses baselining

and heuristics to create alerts when network traffic deviates from the network base-

line. Signature matching is faster and easier to setup than anomaly detection but

only alerts on traffic matching installed signatures. This means that signatures must

be kept up to date and any previously unknown exploit (zero-day) will not generate

an alert. Anomaly detection can detect zero-day exploits but requires much more

setup and can create many false positives, or false negatives, if the heuristics are not

fine-tuned. Modern NIDS often are a hybrid of the two detection techniques.

1.2 Motivation

Even networks with security measures in place are not immune to compromise;

an example is the cyber attack against Ukarine in 2016 where attackers successfully

gained internal network access through a phishing campaign. After initial access, at-

tackers then conducted internal network scans and credential harvesting over a period

of several months. Using gathered credentials, attackers gained access to Supervisory

Control and Data Acquisition (SCADA) networks and took approximately 30 power

stations offline, sending the country and more than 230,000 residents into darkness for

2

several hours [7]. If the network had contained convincing SCADA honeypots then

it is possible that network administrators would have detected the attackers’ pres-

ence and been able to respond in time before the real SCADA systems were taken

offline. While honeypots do not guarantee network security nor are they the solution

to securing every network, their use is another viable tool for network defense.

Due to IoT devices’ lack of sophisticated hardware and vendor support for security

updates, other methods must be implemented to secure the network. Because so

many IoT devices remain unpatched, unmonitored, and left on, they have become a

tantalizing target for attackers to gain network access or add another device to their

botnet [8]. Due to IoT device popularity with attackers HoneyHive was developed.

HoneyHive is a framework that uses distributed IoT honeypots as NIDSs sensors

that beacon back to a centralized Command and Control (C2) server. This research

uses the IoT honeypots developed by Stafira, but HoneyHive is flexible enough to

support any device capable of running the Python 2.7 HoneyB Agent script. Providing

security for all IoT devices with their heterogeneous nature is a monumental task.

HoneyHive instead offers another method for network intrusion detection using the

lure of vulnerable IoT devices as distributed honeypot intrusion detection sensors.

Because traditional NIDSs typically only monitor Switch Port Analyzer (SPAN)

traffic from the switch they are located on, they can miss attacks located on other

parts of the network. Typical placement of a NIDS is just inside a network’s external

firewall in the Demilitarized Zone (DMZ) [9]. If an attacker manages to to infiltrate

an internal network without tripping the NIDS, then internal attacks and or scans

can be performed without raising an alert, as was the case with the Ukraine power

network. The HoneyHive framework addresses this shortcoming of the traditional

NIDS construct by using distributed IoT Honeypot NIDS sensors.

3

1.3 Research Goals

The goal of this research is to first develop the HoneyHive framework and then

test its effectiveness in network intrusion detection compared to that of a traditional

NIDS.

The hypotheses for this research are:

1. The HoneyHive framework operates correctly by not alerting on routine network

traffic and alerting on non-routine network traffic.

2. The HoneyHive framework detects intrusions that traditional NIDSs cannot

through the use of distributed IoT honeypot sensors and packet capture aggre-

gation.

1.4 Approach

In order to determine HoneyHive’s effectiveness at network intrusion detection,

several steps must be taken. These include the development of the HoneyHive frame-

work, setting up the simulated network for experimentation, and then designing and

running the experiment.

1.4.1 HoneyHive Framework

To develop the HoneyHive framework, Honeyd and Stafira’s IoT honeypots are

first setup. Then the individual components of the framework are developed, including

the C2 server, transfer server, Snort log parser, Database (DB), and HoneyB Agent

script. Snort is also integrated into the framework for increased signature matching.

The HoneyHive framework is explained in more depth in Chapter 3.

4

1.4.2 Simulated Network

A simulated network also needs to be setup in order to run the experiment. The

network is composed of IoT devices, Stafira’s honeypots (duplicated several times),

Windows 10 devices running Ubuntu Virtual Machines (VMs), Ubuntu VMs running

the Honeyd honeypots and HoneyB Agent script, the HoneyHive C2 server, Suricata,

an Ubuntu attacker machine, and networking devices. The network layout is described

in Chapter 3, and the actual devices used on it and in the experiment are described

in Chapter 4.

1.4.3 Experiment

After development, HoneyHive’s effectiveness at network intrusion detection is

tested in a simulation where an attacker has gained access to the internal network,

has narrowed down their list of targets through previous reconnaissance, and now is

performing internal nmap network scans against the specific Internet Protocol (IP)

addresses before launching exploits against them. The attacker launching exploits on

scanned devices is not tested in this experiment. The exploitation and propagation

stage would hopefully be prevented by network administrators through the use of

alerts from the HoneyHive framework. The tests in this experiment involve four

types of scans and four levels of active honeypots. The scan types include No Scan

(Control Group), TCP Connect scan, Aggressive scan, and NIDS Avoidance scan.

The levels for honeypots are 0, 3, 6, and 9 honeypots. Each of these are run in different

combinations with one another for a full factorial experiment resulting in 16 different

combinations. Each test is performed 30 times for a total of 480 runs. Because of

the timing and coordination required to run the experiment, gather results, and reset

devices to their initial state after each run, the runExperiment.py script automates

this process. This script is discussed further in Chapter 4 and is found in Appendix

5

D.

1.5 Assumptions and Limitations

1.5.1 Assumptions

The following assumptions are made in this research:

1. Routine network traffic on the simulated network does not contain any traffic a

NIDS would treat as malicious.

2. Given the same set rules, NIDS create the same number of distinct alerts and

the same number of total alerts when analyzing an identical sample of network

traffic.

1.5.2 Limitations

1.5.2.1 HoneyHive

Several limitations currently exist in the HoneyHive framework. The HoneyB

Agent script is written in Python 2.7 which is near the end of its life. Additionally,

HoneyHive relies on a NIDS (Snort) to perform signature matching instead of being

self-contained and possessing its own sophisticated intrusion detection system.

1.5.2.2 Honeypots

While the honeypots in this experiment are useful for testing hypotheses, imple-

menting modern and more sophisticated honeypots would improve the HoneyHive

framework. Honeyd is outdated and no longer regularly maintained [10][11]. Also,

Stafira’s honeypots are low-interaction and are only convincing with web traffic.

6

1.6 Research Contributions

The HoneyHive framework offers increased network intrusion detection to all net-

works its deployed to. It can be used for integration in CIKR-based networks since

IoT devices share some similarities with Industrial Control System (ICS). In addition,

government organizations or commercial companies that work in cyber security could

integrate HoneyHive into their existing network security architecture. The impact of

this framework is a cross-platform, standalone, NIDS / Network Monitoring solution

capable of improving the rate at which network intrusions are detected. While Hon-

eyHive may not be the solution for every network, it is a viable tool for increasing

network security through intrusion detection.

1.7 Thesis Overview

Chapter 2 provides background information and related research on the state of

IoT devices, IoT and Computer Network Security, NIDS and Network Monitoring,

and honeypots and honeytokens. It also provides details about software and program-

ming languages used in this thesis. Chapter 3 describes the HoneyHive framework

design and components in depth and explains the rationale behind design decisions.

Chapter 4 describes the methodology for running the experiment and the research

questions posed for this thesis. The methodology includes all parameters, factors,

metrics, and a step-by-step procedure to replicate the experiment. Chapter 5 presents

the experiment results and provides analysis. Finally, Chapter 6 provides a summary

and conclusion for this thesis as well as future work to improve the HoneyHive frame-

work, and hopefully, IoT and Computer Network Security.

7

II. Background and Related Research

2.1 Overview

This chapter provides background information on IoT, IoT and Computer Network

Security, NIDS, and Network Monitoring, honeypots and honeytokens in Section 2.2.

It also covers Honeyd 1.5c, Cyber Deception, and programming languages and tools

used in this research. Section 2.3 explores related research and emerging technologies

in the field of IoT and honeypots.

2.2 Background

2.2.1 Internet of Things (IoT)

The term IoT covers a myriad of devices and appliances with capabilities to sense

the world around them, process information, and share this information with other

devices on an internal network or the Internet at large [12]. Simple sensors and

appliances now have the computing power for making intelligent decisions, as well

as communication abilities for sharing perceived data and being remotely interacted

with [13]. Suo et al. break IoT device functionality into four layers: the application

layer, support layer, network layer, and perceptual layer. The application layer is the

actual service displayed to the user such as a web page, application, or screen. The

support layer acts as the intermediary between the application and network layers

and involves cloud computing to bring increased performance. The network layer

deals with transmitting data between devices through numerous different commu-

nication protocols. Finally, the perceptual layer is responsible for collecting data

in the physical world and converting it to digital data through the use of sensors,

cameras, Radio-Frequency Identification (RFID), Global Positioning System (GPS),

transducers, thermostats, etc. [12].

8

The majority of IoT devices communicate on a Wireless Personal Network (WPAN)

with a 10 meter range using one of several different Institute of Electrical and Elec-

tronics Engineers (IEEE) protocols. These protocols mainly include Bluetooth (IEEE

802.15.1), Ultra-Wideband (UWB) (IEEE 802.15.3), and Zigbee (IEEE 802.15.4)

[13][14][15][16][17]. Some devices utilize Wireless Fidelity (Wi-Fi) (IEEE 802.11) in-

stead for communication over a Wireless LAN (WLAN) with a range up to 100 meters.

However, the devices used in this research, and that would be found as honeypots,

communicate over Ethernet (IEEE 802.3), which is the focus of this research.

The added functionality of smart devices makes them very appealing and has

caused the IoT market to explode over the past decade. As shown in Figure 1, the

total number of devices connected to the Internet in 2018 was 17.8 billion, 7 billion

of which were IoT devices. By 2025, the total number of devices connected to the

Internet is expected to grow to 34.2 billion with IoT devices comprising 21.5 billion

of the total devices. The IoT market is anticipated to grow to reach $1.6 trillion by

2025, making it a lucrative and competitive market [1].

With such a competitive market, vendors are scrambling to be the first to re-

lease the latest and greatest product, often cutting corners in areas like security to

reduce cost and production time. IoT devices are often slapped together with inex-

pensive, outdated, and insecure third party components that are no longer supported

or patchable [2]. Insecure IoT devices are an alarming problem in network security

for consumers, corporations, the Department of Homeland Security (DHS), and the

Department of Defense (DoD).

2.2.2 IoT and Computer Network Security

IoT creates new possibilities for technologies never before imagined but also opens

up new vulnerabilities and attack vectors for malicious hackers [4]. These new attack

9

Figure 1. Growth of IoT Devices from 2015-2025 [1]

vectors arise from a lack of security in devices. Unfortunately, some vendors in this

market are not primarily concerned with the security of their devices. Their main

focus is to rapidly develop innovative and easy to use technology before competitors

and turn a profit. This mindset often leaves many IoT devices ripe for exploitation.

Many IoT devices are riddled with vulnerabilities due to vendors focusing on cheap

solutions and rapid development in a competitive market. HP performed a study and

found that 70 percent of IoT devices contain vulnerabilities. When researching 10

of the most popular IoT devices, they found an average of 25 security vulnerabilities

per device, with over 250 vulnerabilities in total [3]. Outdated software is loaded on

devices that are then often never updated or very cumbersome to do so for the average

user. This results in millions of IoT devices with known unpatched vulnerabilities

connected to the Internet, just waiting for attackers to exploit them. Attackers can

quickly discover devices with known vulnerabilities using websites such as Shodan

10

[4][18][19][20].

While being able to lock a house, switch on or off lights, or adjust a thermostat

remotely can be desirable, the inclusion of these IoT devices opens up significant

vulnerabilities in networks. A once-secure network can now be accessed by exploiting

a vulnerable IoT device and using it as a pivot into the otherwise unreachable network.

Because these devices are not intended to be accessed by just anyone, unlike web

servers, they are not placed inside DMZs, but are instead placed deeper within the

network. Attackers are still able to reach these vulnerable IoT devices if they first

compromise a DMZ or a different internal device and utilize that device as a pivot to

the IoT device. Traffic is already allowed to DMZ devices, but a misconfigured router

or router with port forwarding can allow internal devices to be compromised.

The threat of IoT devices being hacked is not just theoretical; in 2014, smart me-

ters were hacked allowing attackers to spoof messages between nodes. With spoofed

messages attackers could avoid paying their monthly utility bill or shut down en-

ergy from the utility company altogether, without the use of any kinetic effects. The

attacker’s ability to shut down energy demonstrates the threat of cyber to CIKR

networks; they are susceptible and can be disabled as well [21].

Many IoT devices have been found that allow logins with empty, default, or weak

passwords. IoT devices are becoming increasingly common targets for use in botnets.

While IoT devices may have limited computational power, their sheer number and

ease of exploitation have made them an enticing target for attackers. In addition,

these devices are not often updated and have limited user interaction allowing at-

tackers to go unnoticed on a network for a prolonged period of time [22]. Take the

Mirai (Japanese for “the future”) worm for example, hundreds of thousands of IoT

devices have been compromised and assimilated as part of botnets since its release in

2016. Mutations of the Mirai worm are even prevalent today because of the lack of

11

security implemented in IoT devices [8]. These botnets, consisting of up to 400,000

devices, are available for purchase and have been used to execute a Distributed Denial

of Service (DDOS) attack on a number of web servers successfully [23].

Because IoT devices lack sophisticated hardware and are so diverse, traditional

methods for securing them like installing antivirus software or automatic updates

are not possible typically. Kolias et al. argue that the vendor is responsible for

implementing automatic updates and better security in device [8]. IoT devices rarely

receive updates to fix vulnerabilities, and on the off chance they do, there is even a

smaller percentage of users that take the time to manually install the updates [2].

The average user plugs the IoT device into their network without changing default

passwords, and never manually checks or installs updates [20].

2.2.3 Network Intrusion Detection System (NIDS)

One common device to increase computer network security is a NIDS. A NIDS

can be deployed on networks to detect malicious traffic and intrusions. They can

be placed either inline, which can affect network latency as all traffic now passes

through the NIDS and is then forwarded to its destination, or mirrored where copies

of all traffic are sent to the NIDS as well as the original destination. NIDS can

use multiple techniques for intrusion detection which include signature / pattern

matching, and or baselining / anomaly detection. Signature-based detection searches

network traffic for patterns defined in rule-sets and creates an alert if there is a match.

Baselining involves taking a snapshot of normal traffic on a network, and then using

heuristics; any behavior that is abnormal (an anomaly), generates an alert. Modern

NIDS employ a combination of the techniques as they both have advantages and

disadvantages. Signature-based detection is great at alerting on known exploits, but is

unable to alert on zero-day exploits, which results in false negatives. Baselining on the

12

other hand requires creating a network traffic standard that if deviated from causes an

alert. If the network changes or routine traffic changes, then a new baseline has to be

performed. Anomaly detection can create numerous false alerts (false positives) and

require significant setup time for learning the network baseline. However, anomaly

detection is capable of detecting previously unknown vulnerabilities.

This research proposes the use of honeypots as NIDS. Using honeypots as a NIDS

is not a novel idea. Spitzner argued that they make more effective NIDS than tra-

ditional ones since they reduce false positives because any traffic sent to them is

suspicious [24].

2.2.4 Networking Monitoring

Network monitoring software works closely with intrusion detection sensors but

is focused on overall network traffic patterns and determining whether or not devices

are reachable. While NIDS inspect the content of traffic, network monitors record

the volume and types of traffic on the network. Network monitoring quickly helps

network operators identify overloaded network links and devices. Network monitoring

is useful for bringing devices back online and can detect spikes in traffic, indicative of

a Denial of Service (DOS) attack. Furthermore, if a device does go down, it can signal

that an attacker launched an exploit that resulted in a crashed service. NIDS and

network monitoring used together provide a better picture of network health while

still closely investigating traffic for malintent. The HoneyHive framework developed

in this research provides both network monitoring and network intrusion detection

for networks it is deployed to.

13

2.2.5 Honeypots

One way to mitigate or detect exploited devices is the use of honeypots. Honeypots

are used to increase the security of computer networks by emulating real devices

attackers might be interested in compromising. A honeypot being interacted with can

be one of the first signs of compromise in a network or of an impending attack, and

can therefore act as a NIDS. By using honeypots, previously unknown vulnerabilities

(zero-day vulnerabilities) may be discovered when an adversary targets and gains

access to the device. In addition, honeypots leave known vulnerabilities unpatched

so that TTPs of an adversary can be learned and or later used to fingerprint an actor

that employs the specific TTPs.

Honeypots come in all kinds of shapes, sizes, and implementations. They range

from simple scripts, virtual devices, to physical devices and support low to high-

interaction.

Low-Interaction Honeypots Low-Interaction honeypots can simulate com-

mon network services and the network stack. However, upon receiving a known ex-

ploit, the attacker does not receive full control of the device because the command

terminal spawned is simulated. This also means that zero-day exploits are not cap-

tured since they are outside what the honeypot knows how to react to. Because the

attacker cannot gain full control of the honeypot, this does make them safer for de-

ployment in a network, but at the expense of being easier to detect as a honeypot by

attackers.

High-Interaction Honeypots High-Interaction honeypots in contrast do

not emulate network services or the network stack but do allow the attacker to gain

full control of the device. This not only allows for a more believable honeypot, but

also supports gathering more information about the attack such as zero-day exploits,

14

tools and TTPs used by the hacker. Although there are many benefits to high-

interaction honeypots, they also have disadvantages. While the honeypot looks more

convincing to the attacker because of the full control allowed, it now presents an

increased security risk to the network. In addition, high-interaction honeypots are

costly to develop in both time and resources; they require more maintenance and

oversight than low-interaction honeypots [24][25][26][27][28].

2.2.6 Honeytokens

Cymmetria breaks honeytokens into several sub categories: breadcrumbs, “bea-

cons”, and tokens [29]. Breadcrumbs are data left intentionally for a hacker to find

and use to allow them to move throughout the network. However, by using bread-

crumbs an attacker only moves through a controlled path of devices monitored by

network defenders. All the while, an attacker’s TTPs, which include commands,

tools, and exploits are being recorded. Cymmetria’s “beacons” create alerts when-

ever they are interacted with. They are not part of routine usage (like honeypots)

by the organization so any interaction is considered malicious and can even help to

identify insider threats. Examples of “beacons” include decoy shares, documents with

embedded macros, and websites that all beacon back to a C2 server when touched.

The “beacons” defined by Cymmetria are essentially various types of intrusion de-

tection sensors. Cymmetria’s last category, tokens, are Honeydocs (fake documents)

that act as a beacon to alert that a file was exfiltrated out of the network. The main

difference between beacons and tokens, as defined by Cymmetria, is that “beacons”

reside on the organization’s internal network and tokens are meant to detect data

leaving the network [30].

15

2.2.7 Honeyd 1.5c

One common framework to create virtual honeypots is Honeyd. The version of

Honeyd used and described is 1.5c and was last updated in May of 2007. Honeyd

1.6d is available on Github with a last commit of December 2013, but as noted by

Stafira, contains program stability issues [6].

Honeyd simulates the network stack to allow one physical device to act as numer-

ous honeypots. All traffic for the honeypots is sent to Honeyd which makes it look

like the devices are running independently on separate IPs. Honeypots can also be

customized by using Nmap DB files to deceive scanning and fingerprinting software.

The Nmap DB file defines how different Operating Systems (OSs) and their respec-

tive versions respond to messages as well as ports and services that are running by

default [25][31]. While not identical, the Nmap DB file can be used to closely match

network fingerprints of IoT devices. One deficiency Stafira noted about Honeyd was

the outdated Nmap DB files [6].

Within the Honeyd configuration file, low-interaction honeypots can be quickly

created. Each honeypot can be assigned a personality defined by the Nmap DB

file, customize ports to open, filter, and close, and run custom shell scripts on open

ports. Running customized scripts is one of the selling features of Honeyd; with

sophisticated enough scripts, entire services can be mimicked. In theory, creating

scripts to match every service would yield a convincing and very interactive honeypot,

but the operating system itself, as well as Inter-Process Communication (IPC) would

be painstakingly time consuming and better alternatives such as VMs exist for high-

interaction honeypots. Honeyd is designed and better suited for quickly creating

numerous honeypots and simulating a handful of services to provide a low-interaction

honeypot framework.

The IP and Media Access Control (MAC) addresses of the honeypot are also

16

configurable, but the IP must be on the same network as Honeyd. MAC addresses

can be used to identify the type of device and manufacturer, so allowing customization

leads to more convincing honeypots. However, with these customization options, it

is imperative that both the IP and MAC addresses be unique on a network in order

to prevent collisions [31].

The Honeyd documentation states that with the flag “l” it logs packets and con-

nections to a specified file. However, this logging option contains only time stamps,

IP addresses, ports, protocols, and transmission byte counts; the actual packet con-

tents captured by Honeyd are not included. While advanced methods did exist to

receive the contents of the packet capture from Honeyd, none are viable now due to

the out-of-date libraries and compilation errors. Furthermore, Provos stated that he

expected a NIDS or other scripts to be run in tandem with Honeyd [31]. Implement-

ing a full packet capture whose contents are accessible is one of the deficiencies this

research plans to address in the Honeyd framework.

Honeyd can be compiled with internal Python services that allow interacting with

Honeyd through either honeydctl (Honeyd Control) or Python scripts while it is still

running. This allows for the creation of dynamic honeypots. Honeydctl connects to

Honeyd and presents the user with a console for issuing commands. These commands

allow listing running honeypots, modifying, or deleting them. One noteworthy com-

mand is “!” which allows sending Python commands directly to Honeyd. By simply

importing the honeyd module in honeydctl (after issuing !) or a Python script, the

user now has access to all the data received and transmitted by Honeyd. Having

access to this data would allow creating packet captures and signatures for received

data. Unfortunately, Honeyd has compilation issues because of out-of-date library

dependencies and the version of Honeyd 1.5c that can be installed from the Ubuntu

packages list is not built with internal Python services. Therefore, this research per-

17

forms its own packet capture for signature creation and forensic analysis [31].

Honeydstats and Honeyview Honeydstats and Honeyview are plugins

that allow analyzing the log that Honeyd generates from received traffic. Honeydstats

is a text-based representation of packet level data received (very similar to Honeyd’s

’l’ option), while Honeyview is a web-based GUI representation. Both Honeydstats

and Honeyview focus on the OS versions, destination ports, country codes, and IP

addresses from attackers [31]. Although statistics can be aggregated from across the

network, they both still rely on log files. The information they provide is not in depth

enough for forensic analysis nor fast enough for today’s cyber attacks. This research

hopes to provide a framework with real time alerts while capturing detailed evidence

for forensic analysis.

2.2.8 Cyber Deception

In their 2017 Cyberthreat Defense Report, the CyberEdge Group recommended

that cyber deception technology should include coverage for IoT devices [32]. While

not IoT specific, Cymmetria is leading the way on Deception Campaigns. They define

cyber deception as “baiting, studying, investigating, fingerprinting, and/or smoking

out” attackers. Through the use of cyber deception, organizations can prevent at-

tackers from moving freely throughout their network and impose an increased cost

to attack the defended network. Cymmetria explains that cyber deception is more

than just implementing everything honey (honeypots, honeynets, and honeytokens),

as traditional honey technology is difficult to integrate into a network, expensive to

develop and maintain, and easy for attackers to detect. It is the creation, manage-

ment, and monitoring of these false devices in order to manipulate attackers through

a predefined and monitored path of the network (or as Cymmetria defines, “orches-

tration and virtualization”). Even if the attacker realizes there are fake devices and

18

documents, the speed of their attack and propagation is hindered because now they

have to spend extra time verifying if a target is real or a honeypot. All the while,

the attacker’s tools and exploits are at risk of being captured. If they are captured,

then a signature or patch can be created and propagated throughout the networks,

or even worse for the attacker, reported to vendors and antiviruses and distributed

throughout the world. This renders the attacker’s tools worthless and requires them

to spend more time and money to create new ones. While traditional honeypots could

still pose this threat to attackers, alerts and all collected information on the attacker

are not available in real time [30].

2.2.9 Programming and Languages

JavaScript JavaScript is one of the staples for web development today. It is

an interpreted language and allows interacting and modifying the HyperText Markup

Language (HTML) Document Object Model (DOM), which enables creating dynamic

web pages without requiring a user to reload it. Through the use of Node.js and

Electron, applications such as HoneyHive can be created with dynamic Graphical

User Interfaces (GUIs) [33].

Node.js Node.js is a standalone runtime environment for JavaScript built

and maintained by Google. It utilizes Chrome’s V8 engine and possess the func-

tionality to interact with the OS that JavaScript normally does not have since it is

sandboxed in the browser. This extra functionality ranges from interacting with local

files to networking modules for creating a full fledged server. The OS can be queried

for information and concurrency can be implemented through the use of child pro-

cesses. These are just a handful of built in modules, but using the Node.js Package

Manager (NPM), modules can quickly be downloaded and installed for use in an ap-

plication. Node.js is so versatile because it runs exactly the same across all platforms

19

[34].

Electron Electron is a module for Node.js that allows creating cross-platform

GUIs. It utilizes HTML, Cascading Style Sheets (CSS), and JavaScript to render the

GUI and is essentially the same as coding a standalone web page for the applica-

tion. This makes creating a GUI that works on any platform relatively fast and easy

because of all the CSS frameworks available. Many applications have already been

written in Electron, such as Atom, Visual Studio Code, Discord, and Slack, to name

a few. Electron applications can even be bundled into executable files for ease of

distribution using the Electron Packager module [35].

Python Python is an interpreted language and currently supports two ver-

sions 2.7.X and 3.7.X [36]. The Python code written in this research uses 2.7.X

because of the greater community support for Python modules available and because

Lukas Stafira, whose work is built upon in this study, created his IoT honeypots

with version 2.7.X. Modules can be quickly installed in Python by using its package

manager, pip [37].

2.2.10 Tools

This section covers the essential tools used in this research for testing and results.

These tools include Nmap, packet capturing software (Wireshark and TCPDump) and

VMware Workstation. Docker is also discussed because several related researchers

utilize it, and future work on this research references it.

Nmap Nmap is an open source port scanning tool used by attackers and

security professionals alike for reconnaissance and vulnerability analysis on networks

and their devices [38]. It provides information on a device’s ports, the services running

20

on the ports, and the suspected OS. All gathered information from ports, running

services, and the Time to Live (TTL) in packet responses are compared against the

Nmap DB to make a best guess about the target’s OS. Nmap scans are customizable

in the type of host discovery performed, to the way it scans ports for services, all

the way to firewall and NIDS evasion. Using firewall and evasion flags, an attacker

is able to spoof their MAC, port, checksum, TTL, and even modify their Maximum

Transmission Unit (MTU), which results in smaller fragmented packets. The timing

and performance flags allow adjusting timeouts and data transmission for faster or

slower scans. If used in combination, these flags can result in scanning a network over

a long period of time, without ever alerting a firweall or NIDS [38]. Varying the scan

types and parameters of the scan and testing how effectively and quickly a scan is

detected is one measure of performance for the HoneyHive framework.

Wireshark and TCPDump Packet capturing software is used to sniff traf-

fic on a network and inspect it in further detail later. Both Wireshark [39] and TCP-

Dump [40] utilize the libpcap library to capture network traffic, but Wireshark is

GUI-based, while TCPDump is Command Line Interface (CLI)-based. Filters can

be used to eliminate unwanted traffic either before or after capture to narrow in on

specific hosts or protocols. Although both Wireshark and TCPDump allow quick

filtering of data by specifying source / destination hosts and ports, TCPDump allows

filtering on specific bytes in frames, packets, datagrams, and applications using the

Berkeley Packet Filter (BPF) syntax [41]. Although Wireshark has a command line

equivalent (tshark), TCPDump is used to collect traffic in finer granularity and then

analyzed in Wireshark for this research [39][40][42].

VMware Workstation VMware Workstation is a hypervisor software solu-

tion that allows creating and running VMs [43]. Virtual Machines contain a separate

21

emulated CPU, OS, memory, and disk space. Hardware from the host system is shared

between it and all running VMs and the amount of resources allocated to a VM is

highly configurable, see Figure 2. Users can select the amount of memory and disk

space a VM has access to, as well as the number of processor cores and peripherals

it can use. Not only does VMware allow running multiple OSs on a single computer

without having to reboot, as is the case with multi-booting, but it also provides a

more secure, sandboxed environment to run applications. If an application becomes

compromised in a VM, only that VM’s OS is affected; other VMs as well as the host

OS are not affected, see Figure 3. An attacker would have to break out of the VM

OS, and VMware hypervisor to get at the host OS, a lengthier and more complicated

process than escaping docker containers [43] [44].

22

Figure 2. VMware Workstation Hardware Settings

23

Docker Docker is a program that allows running container images. A con-

tainer image is packaged software with all the dependencies included, i.e., libraries,

code, and other tools needed for execution. Because the containerized software in-

cludes all dependencies, execution is the same across different infrastructures. This

greatly increases the portability and stability of software across different devices. At

runtime, container images become containers, which results in isolating the running

software from other processes and giving it only user-level privileges. This improves

the security of the applications because now if the application is compromised by an

attacker, the attacker is limited to access of that container only, essentially a sandbox.

Whereas VMs run a guest operating system on top of the hypervisor to sandbox each

application, the docker engine runs right on the host operating system. With the

elimination of the guest operating system layer from Figure 3, containers utilize less

resources (memory, disk, CPU), which allows running more containerized applications

than virtual machines, as shown in Figure 4 [44].

Docker claims to increase application and device security, however, Sever and

Kǐsasondi demonstrate that if container images are misconfigured then attackers can

compromise other containers, possibly escape the container and compromise the host

operating system [45]. While there are configurations and security measures that can

be put into place to prevent this, the prepared Dockerfiles and many GitHub images

do not use them [45]. Any system that is improperly configured becomes susceptible

to exploitation and therefore users of Docker should not assume their systems are

secure just because they are running containers. In fact, there are known exploits to

escape docker containers as listed in the Exploit Database website [46]. Users should

properly configure their containers with security in mind, and then lock down the

security of the host operating system as well.

24

Figure 3. Virtual Machine Structure [44]

Figure 4. Container Structure [44]

25

2.3 Related Research

Many different frameworks for building honeypots have been developed and are

explored in this section. They range from generic honeypots, ICS / SCADA and IoT

honeypots. There are numerous honeypots that serve one purpose such as a specific

exploit or service, but the focus of this section is honeypot frameworks that allow the

creation of many convincing IoT honeypots.

2.3.1 Conpot

Conpot is developed and maintained by the Honeynet Project and is used to create

ICS honeypots. Because IoT devices are used to control things like thermostats,

electrical components, and appliances, they bare an ever-increasing resemblance to

ICS. Conpot provides a suite of protocols found on ICS networks and throttles their

responses to mimic real system response time [47].

2.3.2 IoT Web-Based Honeypots by Lukas Stafira

Using the Honeyd framework and Python, Stafira emulated the web services for

three IoT devices to create realistic and interactive web-based honeypots [6]. These

devices included the TITAThink Camera, Proliphix Thermostat, and ezOutlet2 Power

Outlet. In order to make the devices appear dynamic, Stafira accessed local data,

such as time and weather, and used them to generate web pages when responding to

HyperText Transfer Protocol (HTTP) requests. Stafira tested whether Honeyd could

be used to create near duplicate honeypots that simulate the web traffic of several IoT

devices. The honeypots Stafira created successfully mimicked the HTML data of web

transmissions for the real devices. He also tested the Transmission Control Protocol

(TCP)/IP and HTML header similarity, response time, and Nmap completion time

for SYN, UDP, and FIN scans. Stafira compared his results to the physical IoT devices

26

using Wireshark, Nmap, and custom Python scripts. His test network configuration

is shown in Figure 5. Honeyd is shown being able to run all three IoT honeypots on

a single VM. Overall, Stafira’s results showed that it is possible to create convincing

IoT honeypots, and the honeypots he created are used in this research as convincing

IoT sensors for network intrusion detection [6].

27

Figure 5. Stafira’s Network Configuration [6]

28

2.3.3 Honeycomb by Christian Kreibich

Honeycomb is a tool for automatic signature generation from malicious network

traffic captured with honeypots, specifically those part of the Honeyd framework [48].

Kreibich treats all traffic captured by honeypots as malicious because interaction with

them is suspicious and not routine. The signatures generated are formatted for both

the Zeek (formerly Bro) and the Snort NIDS [49] [50]. Honeycomb hooks into Honeyd

and keeps track of network connections (IP and port combinations), while filtering out

traffic received from being scanned, and generates signatures using the Longest Com-

mon Substring (LCS) algorithm. Using Honeycomb, Kreibich successfully generated

signatures for both the Slammer Worm and the CodeRed II Worm [48].

2.3.4 Honeyd Syslog Solutions

Kiwi Syslog Server Kloet demonstrated how using Kiwi, it is possible to

filter Syslog messages generated by Honeyd. The Syslog messages were sent from the

host machine running Honeyd to the machine running the Kiwi NIDS [51]. The Kiwi

program then filtered Syslog messages and generated Simple Mail Transfer Protocol

(SMTP) email alerts based on predefined rules, such as a connection being established

to a honeypot. Kloet also mentioned remedies for false positives which include fine

tuning the Kiwi alert threshold, creating a static route to null, and excluding the

address that the Honeyd daemon listens on [51]. Kloet’s solution of forwarding the

Honeyd generated Syslog to a program more capable of parsing and displaying the

alerts in a readable format is useful for small networks. However, in larger networks,

network administrators could easily be flooded by emails, whether the emails are

actual alerts or false positives, and it could be difficult to piece together and visualize

what is happening. While Kiwi can filter out the noise of false positives, it has

no graphical overview of the network for easy real time interpretation by network

29

operators and administrators [52].

Honeycomb by Lavenya and Kaur Honeycomb by Lavenya and Kaur is

a Honeypot log management tool. It gathers all log files generated by the Honeyd

framework, emails them in one file for download, and then allows importing and

inspecting them in the web-based GUI [53]. Much like the Kiwi syslog server solution,

it is a step towards making the Honeyd log files more manageable and collection of

them automated. However, the alerts are still not conveyed to network operators fast

enough and the data in the log files is not in-depth enough to capture exploits, tools,

or an attacker’s TTPs [53].

2.3.5 IoTCandyJar

Ramirez et al. discuss the need for their framework since building custom IoT

honeypots or buying the actual physical device to create honeypots are too costly

[54]. The vast heterogeneity of IoT devices makes creating custom IoT honeypots

time consuming and they often are not high-functioning enough. To combat this, their

framework uses machine learning to replicate the behavior of IoT devices, dynamically

creating realistic honeypots, and presenting them as convincing devices to attackers

[54]. Figure 6 displays the IoTCandyJar framework. This framework consists of three

dynamic honeypots that attackers interact with (left), a DB that records responses

from scanned IoT devices on the Internet (middle), the IoTScanner which conducts

the scanning of IoT devices on the Internet (top right), and the IoTLearner which

uses heuristics and training to predict correct responses to attackers (bottom right).

Requests from attackers are first sent to IoTCandyJar’s dynamic honeypots. These

honeypots then query the DB for responses that could be correct. The result of

the query is in-turn passed to the IoTLearner which uses heuristics to select what it

believes to be the correct response. This response is finally forwarded to the attacker.

30

The IoTScanner constantly adds to the DB by using attacker requests to scan IoT

devices on the Internet [54].

While the framework can quickly imitate any IoT device connected to the Internet,

the methodology cannot precisely match responses for exploits without sending actual

IoT devices the exploits, which is illegal. IoTCandyJar does use some extent of exploit

filtering, but this only works for known exploits. For the known exploits, they either

have to manually create the response or drop the connection altogether which means

they are back to creating custom low-interaction honeypots. While for unknown

exploits, their own system may very well become an attacker itself. In addition, IoT

devices have specific ports open and services running on them, which would preclude

a single device from responding to a Nmap scan with the exact IoT profile the attacker

is targeting [54].

2.3.6 HoneyLab

HoneyLab is a distributed framework for deploying and sharing honeypots between

cyber-security researchers that seeks to address the shortcomings Chin et al. described

as infrastructure fragmentation, flexibility for deploying devices, and the limited IP

address space [55]. HoneyLab runs honeypots in a virtualized environment for high

level interaction and attack containment. The framework, shown in Figure 7, is

composed of a web interface to register / login and control honeypots, the C2 node

called HoneyLab Central, and sensor nodes distributed worldwide that run on Xen

servers. The Xen servers deploy honeypot VMs alongside VMs with sensing software.

Users can upload custom VM images which allows for maximum flexibility and custom

honeypot support. Commands can be issued to honeypots through HoneyLab’s web

interface but users also have the option of interacting with their honeypots through

Virtual Network Computing (VNC) or a remote shell after establishing a Virtual

31

Figure 6. IoTCandyJar Design [54]

Private Network (VPN) connection to the network. All sensor nodes run the Honeylab

daemon software to communicate with the C2 HoneyLab Central device to report

alerts and receive commands [55].

Limitations with the framework include IP-only level traffic (no Ethernet), all traf-

fic must go through the HoneyLab Central device which could become overburdened,

and all outgoing connections (reverse connections) are blocked. These limitations

affect the convincingness of the actual honeypots and may not fool attackers. Also,

once an attacker is in the target’s internal network, they can see that the honeypot

is not part of the network and all traffic is forwarded to it. Additionally, it is not

apparent how propagation throughout the HoneyLab honeynet from a compromised

honeypot is prevented. Finally, the research appears to be discontinued because the

website was not found to be up and operational [55]. Like HoneyLab, the IoT hon-

eypot sensors in this research beacon back to a central command and control server

for real time alerts.

32

Figure 7. HoneyLab Design [55]

33

2.3.7 SIPHON

Like HoneyLab, SIPHON is a globally distributed honeynet intended to be a

“Scalable, high-Interaction Physical HONeypot” framework [28]. As shown in Figure

8, the framework uses IP addresses distributed around the world from servers rented

from cloud providers (Amazon, Digital Ocean, and Linode) that act as “wormholes”

– interconnecting the honeynet through SSH tunnels. By using this design, certain

geographically located devices that are more desirable to attackers can be simulated.

As Figure 9 illustrates, the wormholes send the attacker’s traffic to SIPHON’s “for-

warder” devices that change IP address and perform man-in-the-middle attacks before

finally sending the traffic to actual physical IoT devices. This setup is very similar to

IoTCandyJar’s method of sending traffic to physical devices, but instead of merely

recording the devices’ responses for replay, SIPHON’s network owns the IoT devices

and, can, therefore, allow high-interaction and record advanced attacker methodology

[28].

2.3.8 HoneyIo4

HoneyIo4 by Alejandro Guerra Manzanares is a low-interaction honeypot with

four Python scripts to match the expected Nmap DB scan responses for the following

IoT devices: GoPro Hero3 camera, Casio QT6600 cash register, Nintendo Wii video

game console, and Oki B4545 printer [23]. HoneyIo4 also includes a web-based GUI

that allows starting or stopping each honeypot by simply executing the associated

Python script. While HoneyIo4 successfully matched target Nmap DB OS profiles, it

appears to be trying to re-invent the wheel as the Python scripts attempt to do what

Honeyd does already. Honeyd allows for quickly customizing ports, responses, and

specifying an OS profile from a Nmap DB for response traffic to match. Manzanares

claims that Honeyd cannot match IoT OS fingerprints, but as long as the OS is in

34

Figure 8. SIPHON Overview [28]

Figure 9. Attacker’s Interaction with SIPHON [28]

35

the supplied Nmap DB file to Honeyd, the traffic can be matched.

Honeyd also has more advanced capabilities than HoneyIo4 such as running mul-

tiple honeypots at once on the same physical device, routing of network traffic, and

keeping state for each honeypot [23].

2.3.9 IoTPOT and IoTBOX

IoTPOT and IoTBOX is a two-part honeypot system consisting of a Telnet service

“frontend” (IoTPOT) and sandboxed “backend” (IoTBOX) [22]. IoTPOT changes its

responses to match different IoT devices that an attacker is targeting based on their

initial Telnet requests as illustrated in Figure 10. By using this method, IoTPOT can

appear to be a vast number of different IoT devices. IoTPOT also logs all traffic which

includes login attempts and credentials. Login settings can also be customized to allow

authentication on the first attempt, a specific username and password combination,

or authenticate only after a set number of attempts. After an attacker successfully

authenticates, IoTPOT checks if the command issued has a known, stored response.

If it is a known command, IoTPOT responds to the attacker directly. If the command

is not known, IoTPOT forwards the command to IoTBOX, stores IoTBOX’s response

so it can quickly respond to the same command in the future, and then forwards it

to the attacker [22].

The design of IoTBOX is shown in Figure 11. Because some commands can be to

download malware, IoTBOX is ran in a controlled environment with frequent image

resets. IotBOX uses QEMU to emulate eight different Central Processing Unit (CPU)

architectures which are then run on the OS OpenWRT. The benefit of this is that

malware executables are compiled to run on a specific CPU architecture, and through

CPU emulation, the captured malware can be run and analyzed in depth [22].

It is not apparent how IoTPOT would know the correct banner response an at-

36

tacker is looking for from a specific IoT device. Also, because IoTPOT uses one IP

address, an attacker or scanning tool that documents device analysis would notice

this single IP responds like multiple different devices and may become suspicious of

it being a honeypot.

2.3.10 Multi-Purpose IoT Honeypot

Inspired by IoTPOT, Krishnaprasad created the “Multi-Purpose IoT Honeypot”

to handle four protocols commonly used by IoT devices: Secure Shell (SSH), Telnet,

HTTP, and CPE WAN Management Protocol (CWMP) [56]. Multi-Purpose IoT

Honeypot utilizes a “frontend” proxy that is running a Python script for each of the

supported protocols. The frontend logs data about the attack and then forwards it

to the corresponding service “backend” which are only two docker machines running

the services. While Multi-Purpose IoT Honeypot is running common services for IoT

devices, it does not tailor its responses to deceive Nmap scans performed by attackers

that it is in fact an IoT device and not a honeypot. Furthermore, if an attacker does

connect to a service, they realize it is not an IoT device and not connected to any

real network. Krishnaprasad’s use of docker to containerize honeypot machines is

a concept also used by Cymmetria’s Honeycomb framework. This technique allows

for high-interaction honeypots that are easier to develop, deploy, and maintain than

physical devices or traditional virtual machines [56].

2.3.11 ThingPot

Like IoTPOT and Multi-Purpose IoT Honeypot, ThingPot also has a frontend and

backend design [57]. ThingPot classifies itself as a “Medium Interaction Honeypot”

simulating Extensible Messaging and Presence Protocol (XMPP) and Message Queue

Telemetry Transport (MQTT) and low interaction for HTTP REST traffic. Each of

37

Figure 10. IoTPOT Overview [22]

Figure 11. IoTBOX Overview [22]

38

these services is also run in a virtual environment using docker. An overview of

ThingPot’s design is shown in Figure 12. The XMPP and REST nodes implement

that respective protocol while the controller node logs and stores data. Using this

design, ThingPot imitated a Phillips Hue smart light and had an actual attacker try

and take control of it [57].

2.3.12 IoTSec

One proposed solution for securing IoT devices is the use of interceding devices

called µmboxes as an intermediary between IoT devices, that dynamically configure

firewall rules to allow for the specific traffic of IoT devices on the network, essentially

acting as a personal firewall or blue coat proxy for the IoT devices [20]. µmboxes work

together and alert the centralized IoTSec Control Platform (C2) if an intrusion or

anomaly is detected. They utilize several different methods for detecting intrusions:

signature matching, network baseline generation, and cross-device policies. Signature

matching and network baselining are not new concepts, but cross-device policies are

interesting because using the functionality of other IoT devices, a safety check can

be performed. The example Yu et al. give is an IoT camera checking that a person

is home before a smart oven is allowed to be issued the “on” command [20].

2.3.13 Honeycomb and MazeRunner by Cymmetria

Cymmetria is a cyber-security solutions company based out of Tel Aviv, Israel

and was founded in 2014 by Gadi Evron [58]. The Chief Executive Officer (CEO),

Gadi Evron, has over 15 years of experience in cyber security and was the former vice

president of cyber security strategy at Kaspersky Lab. Cymmetria’s flagship product

is MazeRunner which utilizes their Honeycomb framework [59].

Honeycomb by Cymmetria, not to be confused with Honeycomb by Kreibich (a

39

Figure 12. ThingPot Overview [57]

40

plugin for Honeyd), or Honeycomb by Lavenya and Kaur (a Honeyd log manager),

allows for rapid and customized honeypot creation using containers and Python plu-

gins. Honeypots are spawned off through the use of these containers [60].

MazeRunner allows users to create honeypots, add services, and change configu-

rations all rapidly and with a GUI. MazeRunner is the container that manages all

the honeypots and acts as the command and control for intrusion detection. It pro-

vides an overview of real time alerts of interaction with the honeypots. It implements

packet capture, memory dump, shows what commands an attacker ran and allows

downloading the tools an attacker used. The tool’s hash can then be propagated as a

signature to flag on throughout the network. Custom scripts such as Stafira’s can be

run with the Enterprise edition for even more customized honeypots. The backend

uses their Honeycomb framework [61] [62] [63].

MazeRunner contains a component called ActiveSOC which automatically investi-

gates an incident using rules and heuristics to determine if the incident needs further

investigation by an analyst. Using ActiveSOC, false positives can be reduced and

analysts can focus on investigating actual intrusions [64].

MazeRunner has been successful in catching red teams in NATO exercises [29] as

well as APTs such as APT3 (pirpi - a Chinese Threat Actor) in European govern-

ment networks, defense contractor networks, and several other customer’s networks

[65]. Additionally, MazeRunner successfully captured the tools and TTPs of the

cyberespionage group Patchwork, as Patchwork moved throughout the MazeRunner

network. Patchwork, aptly named from the copy-paste code used from online forums,

is a targeted attack against government agencies and has infected several thousand

machines since 2015 [66].

41

2.3.14 Comparison of Related Frameworks

This research builds off of the IoT honeypots created by Lukas Stafira. The clos-

est research to the HoneyHive framework is MazeRunner by Cymmetria. However,

MazeRunner does not use nor allow creating custom IoT honeypots as network in-

trusion detection sensors. Table 1 provides a summary and comparison of all the

frameworks mentioned. The specific categories compared include the honeypot level

of interaction (Honeypot Level), whether or not the framework focuses on IoT hon-

eypots (IoT), whether or not the framework implements full packet capture (PCAP),

whether or not the framework is distributed (Distributed), whether or not the frame-

work was developed with the intent for it to be used as a NIDS (NIDS), whether or

not the framework reports alerts and receives commands from a C2 server (C2), and

the year of the last update on the framework (Last Update). The various levels of

honeypot interaction include low, medium, and high. An “X” in a category denotes

the framework possess that trait. Neither Conpot nor Honeyd were made to create

IoT honeypots specifically, perform full packet capture, have a distributed framework,

be implemented as a NIDs, or have a Command and Control structure.

Framework Honeypot Level IoT PCAP Distributed NIDS C2 Last Update
Conpot Medium 2019
Honeyd Low 2013

HoneyHive Low X X X X X 2020
HoneyIo4 Low X 2017
HoneyLab High X X 2009

IoTCandyJar Low X 2017
IoTPOT & IoTBOX High X 2015

MazeRunner High X X X X 2020
Multi-Purpose IoT Honeypot High X 2017

SIPHON High X X X 2017
ThingPot Medium X 2017

Table 1. Comparison of Honeypot Frameworks adapted from [19]

42

2.4 Chapter Summary

This chapter discusses the exponential growth of IoT devices and the need for

improved IoT and computer network security. Several methods for improving net-

work security include the use of a NIDS, network monitoring, and honeypots. The

HoneyHive framework utilizes a combination of all these aspects for increased net-

work security. Languages and tools for the development of the HoneyHive framework

are also covered in detail. Finally, related research in the field of IoT honeypots is

explored to understand existing solutions, their shortcomings, and their inspiration

in the development of this research.

43

III. Framework Design

3.1 Overview

This chapter describes the design decisions involved in the creation of the Honey-

Hive framework. The HoneyHive framework is comprised of IoT honeypots simulated

by Honeyd, a C2 server, and a HoneyB Agent script that beacons back to the C2

server. Using the IoT honeypots as NIDS Sensors, the system can recognize scanning

patterns and known IoT exploits to create real time alerts. Full packet capture of all

network traffic received by the honeypots is also a feature. Additionally, Snort, Suri-

cata, Nmap, VMware, and Wireshark are tools used for augmentation in the testing

of this framework.

3.2 Motivation

While there are numerous NIDS and network monitoring solutions available, none

meet all the objectives of this research. For one, most NIDS and network monitoring

software are not tailored to honeypots or IoT. Without a convincing, high-interaction

honeypot, an attacker will not launch advanced exploits (zero-days), deploy tools, or

employ their TTPs [28]. Additionally, many NIDS log to files or send an email to an

administrator when alerts are generated. This is neither real time nor manageable

for large-scale networks. The closest solution found to this proposed research is

MazeRunner by Cymmetria as discussed in Chapter 2. However, the honeypots used

in MazeRunner are not IoT devices, and MazeRunner does not currently support

running custom scripts for honeypot emulation.

NIDS may also only offer a limited view of the entire network they are defending.

On network switches, traffic is sent only to the port of the intended recipient. Some

switches contain mirror ports that send a copy of all traffic received out another port

44

typically for analysis by a NIDS. In addition, for every switch another mirror port

and NIDS would be needed, and then only a specific segment of the network would

be analyzed individually by each NIDS. This would not provide a global picture of all

network traffic across all switches for analysis. The proposed solution in this research

scatters IoT honeypot sensors across the network and has them beacon back to a

C2 server, where traffic is then combined for analysis. Packets are captured using

Scapy on the honeypots, sent to the C2 server, and then analyzed by Snort IDS.

In this experiment, Nmap is used to conduct various scans against the HoneyHive

framework to test how effective it is at detecting network scans.

One question focused on in the design of the HoneyHive framework was, “What

are the qualities of an effective NIDS?” Roesch describes some of the qualities of

the Snort NIDS that have made it so effective, even still today. It is lightweight,

cross-platform, has a small network footprint, and can be easily configured by an

administrator in a short amount of time. Cross-platform means the NIDS should

run on a variety of different enterprise systems and OSs. A small network footprint

means a device does not generate large amounts of network traffic [67]. Furthermore,

an ideal NIDS should have a low rate of false positives and virtually no false negatives

(for known exploits), provide meaningful alerts in real time, and not introduce further

vulnerabilities into the network.

3.3 Third-Party Software

This section describes the rationale behind software solutions used in the Honey-

Hive framework that were developed by other individuals. These solutions includes

Honeyd, Stafira’s three IoT honeypots, Ubuntu, Snort, Suricata, Nmap, VMware,

and Wireshark.

45

3.3.1 Honeyd 1.5c

This section describes the design decision of using Honeyd 1.5c. Because Lukas

Stafira reported stability issues with Honeyd 1.6d and built IoT honeypots using 1.5c,

the latter is used in this research [6]. Honeyd 1.5c is installed using apt-get install

because compiling the source code generates errors even after following guides and

downloading and installing older versions of library dependencies. Unfortunately,

the version of Honeyd installed with command “sudo apt-get install honeyd 1.5c”

was compiled without Python support. The inability to compile Honeyd prevented

compiling it with the Python support as well as the Honeycomb plugin, which requires

Honeyd being recompiled with its source files included. This severely impacts the level

of control and interaction with the Honeyd program, prevents use of the Honeycomb

automatic signature generation plugin, and influenced other HoneyHive framework

design decisions.

3.3.2 Stafira’s Honeypots

The three honeypots used in the HoneyHive framework are the TITAThink Cam-

era, Proliphix Thermostat, and ezOutlet2 Power Outlet. They simulate the web

interface of real IoT devices and were created by Lukas Stafira using Honeyd 1.5c,

bash, and Python 2.7. These honeypots were selected because of the high level of

web-based authenticity they shared with their real counterparts and the in-depth

analysis already performed on them [6].

3.3.3 Ubuntu 12

Ubuntu version 12 was used for two reasons. First, it was used by Lukas Stafira

in his research with Honeyd, and second, newer versions of Ubuntu did not have

Honeyd available in repositories for installation. Because of the previously mentioned

46

compilation problems, this ruled out the newer versions of Ubuntu.

3.3.4 Snort

Rather than create a NIDS when there are many solutions already available, Snort

was selected because it is lightweight and open source. It is also widely used and has

a vast community of support. Community Snort signature rules, that are periodically

updated, are readily available for download [50] [67]. Snort is used in the HoneyHive

framework to parse PCAPs and create alerts, but was not used as a NIDS in the

DMZ. Suricata would have been used as the NIDS to perform signature matching in

the HoneyHive framework instead of Snort, but there were issues with getting it to

run on Windows 10.

3.3.5 Suricata

Suricata is used in the test network of this experiment but is not part of the

HoneyHive framework. In the simulated network, Suricata was selected as the NIDS

to monitor SPAN traffic in the DMZ. Suricata was selected as the DMZ NIDS in

this experiment because it uses the same rule structure as Snort which allowed the

exact same rule-set to be shared between the two. In addition, Suricata employs

modern NIDS features such as multi-threading and is regularly updated [68]. In this

experiment, it was important to have highly capable NIDS to compare results against,

otherwise results would not be as meaningful.

3.3.6 Wireshark

Wireshark itself was used primarily for troubleshooting in pilot studies. However,

several tools included in the Wireshark package were used in the actual experiment,

Mergecap and Capinfos. Mergecap was used to combine multiple PCAPs into a single

47

PCAP. Capinfos was used to count the number of packets in the PCAP.

3.4 Programming Languages

This section describes the design decisions behind chosen languages in the devel-

opment of this framework. Node.js was used for coding the C2 server whereas Python

2.7 was used for the HoneyB Agent that communicates with the C2 server. SQLite

was the language selected to create the DB.

3.4.1 Node.js

Node.js was selected over other languages such as C++, Go, and Java for several

reasons. Node.js uses Chrome’s V8 JavaScript engine to achieve a standalone runtime

environment. Any computer with Chrome will be able to run the program with the

same execution and output [34]. Another selling feature of Node.js is the Electron

package, which allows rapidly creating GUIs using HTML, CSS, and JavaScript [35].

3.4.2 Python 2.7

Python 2.7 was selected instead of 3.X because the IoT honeypots selected were

written in 2.7. Originally, the design was to modify the IoT honeypots to beacon

back to a server. However, without Python support in Honeyd, there was very little

interaction and control provided for the honeypots. Additionally, Ubuntu 12 allowed

installation of Python 2.7 but for Python 3.X, only 3.2.X could be installed and the

current version is 3.7.X. Python 3.2 also lacked support for modules available in 2.7

and 3.7, such as pyshark and Scapy [69].

48

3.4.3 SQLite

Because the DB is stored on the same file system as the C2 server, there was no

need to authenticate to it over the network like in some languages such as MySQL.

This allows for much faster querying and DB modification since the limiting factor is

now disk read / write speed and not network latency [70].

3.5 HoneyHive Framework Design

This section describes the individual components that make up the HoneyHive

framework. Shown in Figure 13, these components include the C2 server, the Hon-

eyB Agent script, and the DB. After these components are described, the network

layout for experimentation and testing is explained. The network layout includes the

HoneyHive framework, Honeyd, Stafira’s honeypots, Snort, Suricata, the simulated

test network, and an attacker machine.

49

Figure 13. HoneyHive Framework

50

In Figure 14, the Unified Modeling Language (UML) diagram displays the inter-

action of all the components that make up the HoneyHive framework. The HoneyB

Agent script monitors the Honeyd honeypots for traffic, captures any traffic, alerts the

C2 Server, and transfers captured traffic to the C2 server. Credentials, commands,

and attempted binary uploads are all captured in network traffic. The HoneyB Agent

also periodically reaches out to the C2 server to report it is still functioning, known

as a heartbeat.

The C2 server receives alerts and captured traffic from the HoneyB Agent script

and then relays all of this to the DB, GUI, and Snort. Although the GUI development

is for future work, the overall system was designed with it in mind for ease of use

by network operators. The HoneyHive framework functions fully without a GUI

and displays relevant information via command line. Additionally, the C2 server

provides a kill switch capability to terminate the HoneyB Agent script, Honeyd and

the honeypots, and the rest of the framework.

The DB stores alert information and captured traffic. The DB also supports

exporting all data, and clearing parts or all data in the DB.

51

Figure 14. UML Program Design

52

3.5.1 C2 Server, Transfer Server, and Snort Log Parser

After setting up Honeyd and Stafira’s honeypots, the C2 server was the first com-

ponent developed because every other component interacts with it. The networking

features were among the first to be developed. For handling higher loads and lower

network latency, the server uses both multithreading and IPC. The C2 server scripts

(main.js) are located in Appendix A.

Originally designed with a single server (the main server) that accepted alerts and

heartbeats from honeypots, a secondary server (the transfer server) became necessary

for handling the transfer of PCAPs. Without a separate transfer server, binary-

encoded data would have to be converted to base64 and then back again to send

over a channel expecting JavaScript Object Notation (JSON) data. This decreased

the server’s robustness because additional checks would need to determine if the data

was in JSON format or binary data. The conversion to base64 also created a large

overhead in transferring files because it increased the number of bytes that needed

to be sent in addition to the CPU cycles required for the conversion. These factors

ultimately led to the separate transfer server, which listens on a different port for

receiving large files.

C2 Server Messages are sent in JSON format from the HoneyB Agent

script to the C2 server with one of the following four commands: AUTHENTICATE,

ALERT, HEARTBEAT, and PCAP. The AUTHENTICATE command allows Hon-

eyd machines and their respective honeypots to be authenticated and then added to

the list of IPs that are tracked by the C2 server. The ALERT command notifies

the server of suspicious activity, which is then displayed to the network operator via

command line and sent to the DB to store the incident. This allows for real time

intrusion alerts and notification of honeypot interaction. HEARTBEAT is the pulse

53

function used by the HoneyB Agent script to periodically report that Honeyd and

the honeypots are all functioning correctly. If the HoneyB Agent misses too many

heartbeats, then an alert is generated, displayed, and stored in the DB. This heart-

beat alert threshold is a user configurable parameter. Finally, the PCAP signals that

the HoneyB Agent script is ready to transfer captured network traffic. To facilitate

this, the transfer server is spun up and listens on the port number specified by the

HoneyB Agent to download the PCAP. After a PCAP is successfully downloaded, it

is stored on disk and in the DB. It is then sent to Snort for analysis, which supports

the objective of full packet capture for later forensic investigation.

Additionally, several commands are added to the C2 server for the purpose of run-

ning the experiment. These include SNORT, SURICATA, REBOOT, and RESET.

While packets were originally processed by Snort immediately after being received,

Snort processing on packets was changed on the C2 server to wait until after the

SNORT command was received from the runExperiment.py script. This made it so

that Mergecap only ran once to merge all PCAPs together, and Snort only ran once

on the final merged PCAP, as opposed to subsets of the merged PCAP and creating

an incorrect number of alerts in the log file. Capinfos is run immediately after Merge-

cap in order to gather the number of packets captured. For network deployment, this

entire process would be replaced with a user-defined parameter to run Mergecap and

Snort on captured traffic after a set amount of time. However, in this experiment,

when the SNORT command is received, the C2 server creates a merged PCAP and

calls the Snort log parser on each of the individual PCAPs and on the merged PCAP.

The alerts from PCAPs individually processed are stored in one log file (“alert.ids”),

and the alerts from the merged PCAP are stored in a separate log file. These log files

are then parsed and the results are reported back to the C2 server.

SURICATA is a command sent from the suricataConnect.py script to the C2

54

server and is used to record all transferred metrics from the Suricata machine - Suri-

cata’s number of alerts (SuA), Suricata’s number of distinct alerts (SuT), and the

number of packets Suricata captured (SuP). Upon receiving the REBOOT command

from runExperiment.py, the C2 server reboots the Windows VM it is running on to

reset everything to the initial state. When the RESET command is received from

runExperiment.py, the C2 server transfers all metrics to the runExperiment.py script

and then resets all metrics to zero.

Transfer Server When the C2 server receives the PCAP command from

the HoneyB Agent, the transfer server is launched as a child process and listens on

the port specified by the HoneyB Agent. The transfer server then downloads the

PCAP sent to it by the HoneyB Agent. After the download is complete, the transfer

server notifies the C2 server through IPC, and then the transfer server shuts down.

The transfer server’s code is shown in Appendix A.

Snort Log Parser The Snort log parser is invoked as a child process after

the C2 server receives the SNORT command. The Snort log parser executes Snort on

a PCAP specified by the C2 server. After Snort finishes processing the PCAP, the

alert information in the log file (“alert.ids”) is parsed and then reported back to the

C2 server through IPC. The Snort log parser code is shown in Appendix A.

3.5.2 HoneyB Agent

Originally, each honeypot was modified to beacon back to the C2 server itself, but

this caused the honeypots and Honeyd to slow down. Additionally, with this design

the honeypots beaconed back to the C2 server with every request to the honeypot,

instead of once for an entire session. This structure also did not afford a level of

control that the HoneyB Agent script does, which is found in Appendix A.

55

The HoneyB Agent script is multithreaded, performing network packet capture

with Scapy, periodically sending a heartbeat, alerts, and packet captures to the C2.

The plugin maintains a list of honeypot IP addresses with ongoing network traffic.

After a set amount of time without additional traffic to or from an IP address, it ages

out; the address is removed from the connections list and its corresponding PCAP

file is transferred to the C2 server. The age out time and time between heartbeats

are user-defined parameters. In this experiment they are set to a 9000 seconds, a

time that exceeded all but two outlier runs in this experiment. This was done so that

each honeypot produced a single PCAP to make the test between Snort parsing the

PCAP individually versus a merged PCAP fair.

The HoneyB Agent only sends an alert message for honeypots without tracked

network activity. Examples of this are honeypots receiving traffic for the first time, or

receiving traffic again after it previously aged out. There is a separate thread whose

sole function is to monitor the honeypot connection list and detect and remove any

IP addresses that have aged out. The traffic for that IP address is then transferred

to the C2 server. If a honeypot receives traffic after the age out time, but before it

is detected by the watcher thread, then this causes a transfer of the packet capture

as well. The capture files are named with the format of “IP Y-m-d HM.pcap.” IP

is the honeypot’s IP address, Y is the current year, m is the current month, d is the

current day, H is the current hour, and M is the current minute.

After trial and error with other packet capturing software, Scapy was the clear

winner. Scapy allowed capturing, analyzing, and running custom functions on pack-

ets received. Honeyd.py would have been the ideal solution since Honeyd already

performs packet capture and would have also allowed for dynamic control of Hon-

eyd. However, Honeyd on Ubuntu 12 was not compiled with the Python plugin, and

re-compiling it generated errors.

56

The TCPDump and tshark programs supported capturing packets but did not

allow processing and running functions on those packets. Although these programs

could still have been used, the capture files would need to be manually parsed while

still being modified. tshark did have a Python module called pyshark, but only the

legacy version could be installed for Python 2.7, which did not work correctly and

said to upgrade to the newer version.

The HoneyB Agent also had several commands added for the purpose of testing

which include TRANSFER, RESET, KILL, START, STOP, and REBOOT. TRANS-

FER signals the HoneyB Agent to transfer and then remove all PCAP files and to

remove all tracked IP addresses from the connections list. RESET only removes all

the IP addresses from the connection list. KILL terminates Honeyd and then the

HoneyB Agent script. START launches Honeyd and registers the honeypots by au-

thenticating to the C2 server. STOP kills only Honeyd. Finally, upon receiving the

REBOOT command, the HoneyB Agent script reboots the Ubuntu VM that Hon-

eyd and itself are running on. Originally, this was the chosen method of returning

the machine to its initial state between each experimental run. However, Stafira’s

honeypots did not run correctly when Honeyd was launched on startup from rc.local.

3.5.3 Database Design

The DB schema is shown in Figure 15. The main table that connects all the other

tables is the Alert table. Each alert has a unique ID, which serves as the primary key

of this table, a timestamp, mandatory layer 3 information (source and destination

IP addresses), and associated honeypot (HoneyID which is used as foreign key for

the Honeypot table). Optional information includes layer 4 information (source and

destination ports), and hashes for the PCAPs and memory dump files. The hashes

are used as foreign keys to look up the entries in their respective tables and down-

57

load their Binary Large Objects (BLOBs). Each alert will only have one associated

honeypot, PCAP, and memory dump. However, multiple commands, credentials, and

binaries, can be found across multiple alerts and an alert can have multiple of them,

creating a many-to-many relationship. To support this design, an intermediary table

is used to break the table into a one-to-many relationship for both sides. AlertID

is used to lookup all the associated commands, credentials, and binaries for a sin-

gle alert, whereas the SHA256 is used to lookup all the alerts a specific signature is

found in. Additionally, the SHA256 can be used to look up the plain-text command,

credentials, and binary BLOB. Note that these tables have MD5 hashes as well to

support looking up and distributing signatures generated in this format. The final

table is the Honeypot table, which stores information of honeypots that have suc-

cessfully authenticated. It includes a unique ID (HoneyID), their host name, MAC

and IP addresses, OS, and an optional description detailing the type of honeypot and

other relevant information.

58

Figure 15. Database Schema

59

3.5.4 Network Design

Figure 16 shows the overall network design with devices on separate networked

hosts to ensure all traffic is not seen by all hosts, which is unrealistic. Each Ubuntu

VM housing Honeyd, Stafira’s honeypots, and the HoneyB Agent script reside on

separate physical machines from that of the attacker. Each Honeyd daemon runs all

three of Stafira’s honeypots, with only the IP addresses and MAC addresses modified

in the Honeyd configuration file and the HoneyB Agent script. Stafira’s modified

Honeyd configuration file can be found in Appendix B. The IP address scheme for

the Honey devices is:

1. TitaThink Camera honeypot 192.168.1.1[5-7]0

2. Prolophix Thermostat honeypot 192.168.1.1[5-7]1

3. ezOutlet2 Power Outlet honeypot 192.168.1.1[5-7]2

4. Ubuntu VM / HoneyB Agent 192.168.1.1[5-7]4

Because of the constant reboots from running the experiment, the C2 server was

moved to a Windows 10 VM with an IP address of 192.168.1.233. The Desktop

Windows 10 machine, addressed with 192.168.1.235, runs this Windows 10 VM and

one of the Ubuntu VMs. The attacker machine (Desktop Ubuntu Machine), was

moved from inside a VM to running natively on a physical machine and has an IP

address of 192.168.1.230.

60

Figure 16. Simulated Test Network - Network Layout

61

With physical separation of test components complete, the network was designed

and developed. Each set of honeypots was placed on separate switches to distribute

them throughout the simulated test network. In addition, the IoT devices were spread

out over all switches. The IoT devices match their honeypot counterparts IP address-

ing scheme in the last digit. The TitaThink Camera is 192.168.1.190, the Prolophix

Thermostat is 192.168.1.191, and the ezOutlet2 Power Outlet is 192.168.1.192. A

NIDS (Suricata), running on the Raspberry Pi with the IP address of 192.168.1.231,

was placed in the DMZ on the Netgear ProSafe switch’s SPAN port to match their

traditional network deployment location [9]. This allowed it to receive a copy of all

traffic that traverses the switch. Additionally, the Raspberry Pi was retrofitted with

the suricataConnect.py script in order for it receive commands and report results in

the experiment. This script is found in Appendix C.

To simulate a real world attack like that of the cyber attack against Ukraine in

2016, the attacker machine was placed in the internal network on the EdgeRouter

X switch [7]. The assumption is that the attacker gained internal access through a

phishing attack without tripping the NIDS (Suricata) and without alerting network

administrators. They are now using the compromised box as a pivot to scan the rest

of the internal network. The attacker is using an encrypted channel (SSH) to commu-

nicate with the compromised box. Through preliminary scanning and reconnaissance,

the attacker has narrowed down their target list to the IP addresses 192.168.1.150-

192.168.192 and is now conducting further scanning prior to launching exploits. With

this network design, the simulated test network is representative to that of real-world

scenarios.

62

3.6 Summary

In this chapter, the design and justification of decisions for the HoneyHive frame-

work are explained as well as the motivation behind its development. Design decisions

explored include the third-party software used, the programming languages selected

for the framework’s development, the C2 server, the HoneyB Agent script, the DB,

and the simulated test network design.

63

IV. Research Methodology

4.1 Goals

In this research the HoneyHive framework’s effectiveness of network intrusion

detection is tested and compared against that of traditional NIDS (Snort and Suri-

cata). These tests are conducted using Stafira’s IoT honeypots, their physical device

counterparts, the HoneyHive framework, Snort, and Suricata. The results from this

experiment address the research hypotheses:

1. The HoneyHive framework operates correctly by not alerting on routine network

traffic and alerting on non-routine network traffic.

2. The HoneyHive framework detects intrusions that traditional NIDS’s cannot

through the use of distributed IoT honeypot sensors and packet capture aggre-

gation.

4.2 Approach

In this experiment, the total number of alerts as well as the number of distinct

alert types is compared across three categories in order to determine network intrusion

detection effectiveness: PCAPs captured by the HoneyB Agent are parsed by Snort

individually, PCAPS captured by the HoneyB Agent merged into a single PCAP and

parsed by Snort, and Suricata running on a SPAN port. Additionally the number of

packets captured to and from the attacking machine by the HoneyHive framework

and Suricata are also compared. These metrics are further explained in Sections 4.3

and 4.4.

Different types of scans are conducted against the internal network with varying

levels of active honeypots. The type of scans include no scan (control group), TCP

64

Connect scan to simulate an attacker attempting to connect to devices, an Aggressive

scan which portrays an attacker attempting to gather as much device information as

possible, and a NIDS Avoidance scan to emulate an attacker who wishes to remain

undetected on the network while gathering information. Scans are conducted using

Nmap, and PCAPs from the scans are created using Scapy. These PCAPs are then

ultimately transferred to the C2 server and analyzed by Snort. The number of Snort

alerts and types generated by the captured traffic (both individually and merged)

and total packet count are then compared to the number of Suricata alerts and types

and total packet count.

After initial setup of the physical devices and network, the HoneyB Agent Python

script is started on each of the Ubuntu VMs. After the HoneyB Agent scripts are

launched, the experiment is conducted by launching the runExperiment.py script on

Desktop Ubuntu (Attacker’s machine). This script handles running all scan types and

honeypot test combinations, device orchestration (starting HoneyB Agents, transfer-

ring PCAPs and metrics, analyzing PCAPs via Snort, and resetting devices / HoneyB

Agents) between each run, and recording results for later analysis. The runExperi-

ment.py is located in Appendix D.

This experiment simulates an attacker compromising an internal device, unbe-

knownst to network administrators and the NIDS. The attacker then uses an en-

crypted channel to the compromised device and uses it as a pivot point to conduct

an internal network scan. This is similar to the 2016 cyber attack against Ukraine

mentioned in Chapter 1 and Chapter 3 [7].

4.3 System Boundaries

In Figure 17, the System Under Test (SUT), the HoneyHive framework, is shown

compromised of the HoneyB Agent, C2 server, and Snort. The specific part under

65

test, the Component Under Test (CUT), is the C2 server. The C2 server aggregates

all captured traffic from the HoneyB Agents, run PCAPs through Snort, and displays

alerts.

66

Figure 17. HoneyHive Framework

67

4.4 Parameters, Factors, and Metrics

4.4.1 Assumptions

During this experiment, several assumptions are made which are as follows:

1. The attacker has already compromised a machine in the internal network and

through an encrypted channel, is using it as a pivot to scan the internal network

2. The attacker has performed rudimentary investigation already to narrow down

the IP range to those scanned in the experiment

3. The honeypots are convincing enough for the attacker to perform further inves-

tigation, i.e., scanning

4.4.2 System Parameters

This section describes all the system parameters used to conduct the experiment.

This includes the computing parameters, the programs and languages with their

respective versions, and the configurations Honeyd, Snort, and Suricata.

Computing Parameters The following is a list of physical devices and their

hardware specifications used in this experiment:

• Desktop Windows 10 64 bit

– ASUS ATX DDR4 LGA 1151 Motherboard Z170-E

– Intel Core i7 6700K 4.00 GHz Unlocked Quad Core Skylake Desktop Pro-

cessor, Socket LGA 1151 [BX80662I76700K]

– 4 X Crucial Ballistix Sport LT 2400 MHz DDR4 DRAM Desktop Gaming

Memory Single 16 GB CL16 BLS16G4D240FSE (Red) - Total 64 GB

68

– ASUS GeForce GTX 1080 8 GB Turbo Graphic Card TURBO-GTX1080-

8G

– Samsung 850 EVO 500 GB 2.5-Inch SATA III Internal SSD (MZ-75E500B/AM)

– Seagate Barracuda ST2000DM001 2 TB 3.5 Internal Hard Drive (ST2000DM008)

– Seagate BarraCuda 4 TB Internal Hard Drive HDD – 3.5 Inch Sata 6 Gb/s

5400 RPM 256 MB Cache for Computer Desktop PC Laptop (ST4000DM004)

– Cooler Master GeminII S524 Version 2 CPU Air Cooler with 5 Direct

Contact Heat Pipes (RR-G5V2-20PK-R1)

– NZXT Phantom 410 Mid Tower Computer Case , White/Blue (CA-PH410-

W2)

– Corsair CX Series 750 Watt 80 Plus Bronze Certified Modular Power Sup-

ply

• Desktop Ubuntu 18.04.2 64 bit

– ASUS ROG Crosshair V Formula-Z AM3+ AMD 990FX + SB950 SATA

6 Gb/s USB 3.0 ATX AMD Gaming Motherboard with 3-Way SLI/Cross-

FireX Support and UEFI BIOS

– AMD FX-8350 Black Edition Vishera 8-Core 4.0 GHz (4.2 GHz Turbo)

Socket AM3+ 125W FD8350FRHKBOX Desktop Processor

– Crucial BX500 240 GB 3D NAND SATA 2.5-Inch Internal SSD - CT240BX500SSD1Z

– G.SKILL Ripjaws X Series 16 GB (4 x 4 GB) 240-Pin DDR3 SDRAM

DDR3 1866 (PC3 14900) Desktop Memory Model F3-14900CL9Q-16GBXL

– XFX Radeon RS RX 480 DirectX 12 RX-480P836BM 8 GB 256-Bit GDDR5

PCI Express 3.0 CrossFireX Support Video Card

69

– CORSAIR HX Series HX850 850W ATX12V 2.3 / EPS12V 2.91 SLI Ready

CrossFire Ready 80 PLUS GOLD Certified Modular Active PFC Power

Supply New 4th Gen CPU Certified Haswell Ready

– Cooler Master Hyper 212 Plus - CPU Cooler with 4 Direct Contact Heat-

pipes

– Cooler Master HAF 922 - High Air Flow Mid Tower Computer Case with

USB 3.0 and All-Black Interior

• Lenovo Laptop Windows 10 64 bit- Lenovo Thinkpad W541 Intel i7-

4910MQ processor 2.9 GHz running Windows 10 and 32 GB of RAM. HITACHI

HTS725050A7E635 Travelstar Z7K500 Opal 500 GB Hard drive

• ASUS Laptop Windows 10 64 bit- ASUS VivoBook F556UA-AB32 Laptop

(Windows 10, Intel i3-6100U 2.3 GHz, 15.6” LED-Lit Screen, Storage: 1000

GB, RAM: 4 GB) Black/Silver * Upgraded to 8 GB memory (added

second Crucial 4 GB Single DDR4 2133 MT/s (PC4-17000) SR x8

SODIMM 260-Pin Laptop Memory - CT4G4SFS8213) and replaced

HDD with Samsung 850 EVO 500 GB 2.5-Inch SATA III Internal

SSD (MZ-75E500B/AM)

• Raspberry Pi 3 Model B+ Rev 1.3 - Raspbian 4.19.75-v7. Broadcom

BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz, 1 GB LPDDR2

SDRAM, 16 GB Class 4 SanDisk Edge microSDHC memory card, running Suri-

cata Version 4.1.2

• R7500-200NAS Nighthawk AC2350 4X4 MU-MIMO Dual Band WiFi

Gigabit Router - Router Firmware Version V1.0.3.16

• Netgear ProSafe GS108Ev2 Switch - Firmaware version v1.00.12

70

• Ubiquiti EdgeRouter X Model ER-X - Firmware version v1.9.0

• TitaThink Camera TT520PW - Firmware Version 6.10

• Prolophix Thermostat NT130h - SW 3.0.3 / HW H.03

• ezOutlet2 Power Outlet EZ-22b - Version EZT.8824 (04)

Virtual Machines Two virtual machine images are used in the experiment.

The Windows 10 VM is used as the C2 server, and the Ubuntu VM is used to run

Stafira’s HTTP IoT Honeyd Framework and the HoneyB Agent script. The Ubuntu

VM is cloned and then distributed to the Windows Desktop, Lenovo Laptop, and

ASUS Laptop in order add physical separation and network distribution between

honeypots. Only IP and MAC addresses are modified in settings, scripts, and configs

for the cloned VMs. The VMware specifications and versions of installed software are

as follows:

• Ubuntu 12.04 VMs (Honeyd Machines) - 2 processors, 4.3 GB memory,

20 GB disk space. Honeyd 1.5c installed, bash version 4.2.25, Python version

2.7.3

• Windows 10 64 bit VM (C2 Server) - 4 logical processors, 8 GB memory, 40

GB disk space. Git, TortoiseGit, Node.js Version v12.13.0, V8 Engine Version

7.7.299.13-node.12, Snort Version 2.9.15-WIN32 GRE (Build 7), and Wireshark

Version 3.0.6 are all installed

Program and Language Versions This section documents the combined

programs and programming languages across all devices:

• VMware Workstation 15 Pro Version 15.5.0

71

• Node.js Version v12.13.0

• V8 Engine Version 7.7.299.13-node.12

• Python 2.7.15+ on Ubuntu Desktop, Python 2.7.3 on Ubuntu VMs, Python

2.7.16 on Raspberry Pi

• Bash 4.4.20 on Ubuntu Desktop, 4.2.25 on Ubuntu VMs, and 5.0.3 on Raspberry

Pi

• Honeyd 1.5c

• Nmap version 7.60

• Wireshark Windows Version 3.0.6

• Snort Version 2.9.15-WIN32 GRE (Build 7)

• Suricata Version 4.1.2

Honeyd Configuration The configuration file from Stafira’s HTTP IoT

Honeyd framework is used as the configuration file for Honeyd 1.5c in this experiment

and is shown in Appendix B. Only IP and MAC addresses are modified in this

configuration file.

Snort and Suricata Configuration Snort Version 2.9.15-WIN32 GRE

(Build 7) is installed on the C2 server and the default snort.conf file is used with

some modifications in order to run it on windows with only the emerging-scan.rules

rule set. Additionally, Suricata Version 4.1.2 is installed on the Raspberry Pi and

the default configuration file, suricata.yaml, is modified to only use the emerging-

scan.rules rule set. The snort.conf, suricat.yaml, and emerging-scan.rules are devel-

oped and vetted by the Snort community and available for download on their website

72

[71]. Suricata was built to use the same rule syntax and can successfully implement

these community rules as well.

4.4.3 Factors

The following factors were used in this experiment:

• Scan Type (ST) - The type of scan performed in the test. These include

the control group (no scan), TCP Connect scan, Aggressive scan (OS detec-

tion, version detection, script scanning, and traceroute), and NIDS Avoidance

scan (scan delay, host randomization, and packet fragmentation). The Nmap

parameters of these commands are:

1. No Scan (Control Group) - Wait 1321 seconds

2. TCP Connect scan - “sudo nmap -iL ipLst.txt -sT -Pn -oX runNum.xml”

3. Aggressive scan - “sudo nmap -iL ipLst.txt -A -Pn -oX runNum.xml”

4. NIDS Avoidance scan - “sudo nmap -iL ipLst.txt –scan-delay 1075ms –

randomize-hosts -f 8 -Pn -oX runNum.xml”

• Number of Honeypots (HP) - The total number of honeypots spun up in

the test. Honeypots are launched in multiples of three with each of the following

types: TitaThink Camera, Prolophix Thermostat, and ez-Outlet2 Power Outlet.

The level of honeypots are 0, 3, 6, and 9 honeypots.

Factors with their corresponding levels are shown in Table 2.

Factors Levels
Scan Type (ST) No scan (Control Group) TCP Connect Aggressive NIDS Avoidance
Honeypots (HP) 0 3 6 9

Table 2. Factors and Levels

73

4.4.4 Metrics

The metrics from the experiment include:

• Number of Snort Alerts Individually (SAI) - Numeric value representing

the total number of Snort alerts generated by parsing each PCAP file transferred

to the C2 server, individually, and resetting Snort after each run

• Number of Distinct Types of Snort Alerts Individually (STI) - Numeric

value representing the number of distinct types of Snort rules triggered by pars-

ing each PCAP file transferred to the C2 server, individually, and resetting

Snort after each PCAP is parsed

• Number of Snort Alerts Merged (SAM) - Numeric value representing the

total number of Snort alerts generated by parsing each PCAP file transferred

to the C2 server as a merged PCAP file

• Number of Distinct Types of Snort Alerts Merged (STM) - Numeric

value representing the number of distinct types of Snort rules triggered by pars-

ing each PCAP file transferred to the C2 server as a merged PCAP file

• Number of Suricata Alerts (SuA) - Numeric value representing the total

number Suricata alerts generated receiving from SPAN traffic

• Number of Distinct Types of Suricata Alerts (SuT) - Numeric value

representing the number of distinct types of Suricata rules triggered from SPAN

traffic

• Percentage of Packets HoneyHive Captured (% HHP) - The percentage

of packets the HoneyHive framework captured to and from the attacker, mea-

sured by the combined total packet count of all transferred PCAPs to the C2

74

server and then divided by the number of received and transferred packets on

the attacker’s machine

• Percentage of Packets Suricata Captured (% SuP) - The percentage

of packets the Raspberry Pi captured to and from the attacker, measured by

counting the number of packets sent and received to and from the attacker,

divided by the number of received and transferred packets on the attacker’s

machine

The number of HoneyHive Interactions (HHI) is a numeric value that represents

the number of times HoneyB Agents collectively reported an interaction with one of

their monitored honeypots. Each honeypot should only create one interaction per

test in this experiment for a total of three interactions per HoneyB Agent. For this

reason, it was not used in statistical analysis against Snort and Suricata but is instead

a verification that the honeypots and HoneyHive framework are operating correctly.

Additionally, the attacker’s total number of packets sent and received during each test

(AP) and the Elapsed Time of the test in seconds (ET) are useful for understanding

each trial, but not used in analysis. Metrics are bolded in Appendix E.

4.5 Methodology

The procedural steps taken to run the experiment are as follows:

1. Ensure all devices are connected to the network with the correct static IP and

that the network setup matches the network diagram.

2. Ensure that all program code/scripts are up to date and current with the current

Git repository. Perform a Git pull for scripts that are not.

3. Ensure the C2 server launches on startup - Windows+R and then type shell:startup.

75

4. Ensure the suricataConnect.py script launches on startup in rc.local.

5. Ensure no remnants remain from previous experimental runs.

(a) Remove experiment.txt and all .csv and .xml files from the attacker ma-

chine.

(b) Remove /var/log/suricata/fast.log from the Suricata machine.

6. Ensure emerging-scan.rules is located in “C:\Snort\rules” and that it is the

only active rule in the snort.conf file “C:\Snort\etc\snort.conf”.

7. Ensure emerging-scan.rules is located in “/etc/suricata/rules” and that it is the

only active rule in the suricata.yamnl file “/etc/suricata/suricata.yaml”.

8. Reboot all physical machines and virtual machines.

9. On each Honeyd VM, cd to honeyhive/scripts and then run “sudo python con-

nectToServer.py”.

10. Ensure the Windows 10 VM is up and the C2 server is running.

11. On the attacker machine, run “sudo python runExperiment.py”.

12. Wait for experiment to complete (about 10 to 12 days).

13. Download nmap.csv file and perform analysis on results.

4.5.1 runExperiment.py

This section describes the functions the runExperiment.py executes.

1. Check if experiment.txt exists and is not empty.

(a) Read in each line as a separate test run (Test type, Number of Honeyd

Machines, and Test Type Level) and append it to an array for execution.

76

2. If experiment.txt does not exist.

(a) Create an array with all combinations of user-specified test types (nmap-

Scan), number of Honeyd machines (0-3), and Test Type Level (0-3) for

each user-specif iced test. Each Honeyd machine controls 3 honeypots,

creating the honeypot levels of 0, 3, 6, and 9. This is all then multiplied

by the number of user-specified replicants (30).

The nmapScan Test Type Levels:

i. Level 0 - No Scan (Control Group): Wait 1321 seconds for routine net-

work traffic (median amount of time required by the median nmapScan

test in pilot studies). The mean was 1341 seconds.

ii. Level 1 - Nmap TCP Connect scan (“sudo nmap -iL ipLst.txt -sT -Pn

-oX runNum.xml”).

iii. Level 2 - Nmap TCP Syn scan with OS detection, version detection,

script scanning, and traceroute. (Aggressive scan) (“sudo nmap -iL

ipLst.txt -A -Pn -oX runNum.xml”).

iv. Level 3 - Nmap TCP Syn scan with scan delay, host randomiza-

tion, and packet fragmentation (NIDS Avoidance scan) (“sudo nmap

-iL ipLst.txt –scan-delay 1075ms –randomize-hosts -f 8 -Pn -oX run-

Num.xml”). These parameters were used because Nmap’s website

listed them as ways to avoid a NIDS [38].

(b) Randomize the order of the array.

(c) Create experiment.txt and write contents of the recently created array to

the file.

3. Execute all test runs in the array (loop).

77

(a) Send UDP “START” command to corresponding number of Honeyd ma-

chines and to Suricata over command and control port 9830, three times.

The following devices are sent “START” based on the number of Honeyd

Machines:

i. 0 - no Honeyd machines are started.

ii. 1 - 192.168.1.150-154 Honeyd machines are started.

iii. 2 - 192.168.1.150-154 and 192.168.1.170-174 Honeyd machines are started.

iv. 3 - 192.168.1.150-154, 192.168.1.160-164, and 192.168.1.170-174 Hon-

eyd machines are started.

Suricata is always started.

(b) Wait 40 seconds for the Honeyd and Suricata programs to finish starting

(based on pilot-studies, Honeyd takes 10-15 seconds and Suricata takes 30

seconds).

(c) Record the transmitted (tx packets) and received packet (rx packets) count

and start time of the attacker machine before executing the test.

(d) Execute the next test run in the execution array and wait for completion.

(e) Record the the transmitted (tx packets) and received packet (rx packets)

count for the attacker’s interface and end time after executing the test.

Subtract the end counts from the start counts to get the total packet

counts sent and the elapsed time of the test.

(f) Send UDP “RESET” command to all Honeyd Machines and Suricata over

command and control port 9830, three times.

(g) Wait 45 seconds for all the PCAPs and Suricata results to be transferred

to the C2 server (based on pilot-studies, sending all PCAPs takes 20-30

seconds and sending Suricata results take 3-5.

78

(h) Send the “SNORT” command to the C2 server over TCP port 9830 to

signal it to parse all received PCAPs.

(i) Wait 90 seconds for Snort to finish (Snort takes 30-50 seconds to complete,

based on pilot studies).

(j) Send the “RESET” command to the C2 server over TCP port 9830 to

signal for the C2 Server to send results over the socket and then clear all

data. runExperiment.py waits until the results are received.

(k) Write the results received from the C2 server, attacker machine packet

count and experiment elapsed time to the corresponding test result file in

csv format (nmap.csv).

(l) Remove completed experiment from the experiment.txt file (first line).

(m) Send UDP “REBOOT” command to all Honeyd Machines and Suricata

over command and control port 9830, three times (Honeyd Machines set

to ignore command).

(n) Send the “REBOOT” command to the C2 server over TCP port 9830 to

signal it to reboot the machine.

(o) Wait 45 seconds for all machines to finish rebooting (Windows takes 20-30

seconds, Ubuntu 15-20 seconds, Raspberry Pi 20-25 seconds).

(p) Ensure the C2 Server has booted by continuously trying to connect to it

until successful.

4.6 Results

The results from this experiment are saved in Comma-Separated Values (CSV)

format in the file nmap.csv. This file / data is imported into Excel and used to create

bar graphs and tables to show the differences between the HoneyHive framework

79

and that of a traditional NIDS (Suricata). Additionally, Anderson-Darling tests for

normality are run in Excel [72]. Finally, using the permutation test.py script in

Appendix F, Permutation tests are run for SAI versus SAM, SAI / SAM versus SuA,

STI versus STM, STM versus SuT, and % HHP versus % SuP.

The Anderson-Darling test is used to determine how well a set of data fits a

specified distribution. In the analysis of results for this experiment this is used to

test whether the given data is normal. This is done across all combinations of factors

and is important to do because some statistical tests, such as t-tests, assume normal

distribution. Suffice it to say that if the p-value from the Anderson-Darling test is

less than 0.05 then the data does not follow a normal distribution.

Permutation tests do not require a normal distribution to perform statistical anal-

ysis and are used to determine what the probability is of obtaining results that exceed

those in two competing data sets, given their initial means and difference. To per-

form a Permutation test, first the arithmetic mean for each of the two data sets is

computed and then the difference between their arithmetic means is recorded as the

“test statistic”. After that, the data from both sets is combined and shuffled into

two new random subsets. The difference between the newly formed sets’ means is

calculated and compared to the test statistic. This is repeated 900,000 times in this

experiment, and then number of permutations whose absolute value exceeds that of

the test statistic is divided by the total number of permutations performed to calcu-

late the p-value. If this p-value is less than the chosen significance value, 10% in this

experiment, then there is a statistical significance between the two data sets [73] [74]

[75]. The code developed to perform Permutation tests on this experiment’s results

is found in Appendix F.

80

4.7 Chapter Summary

This chapter outlined the research goals and questions this experiment seeks to

answer. The experiment itself was broken down into the SUT, all system parameters,

factors, and metrics, the step by step procedure of executing the experiment, and

finally how the results of the experiment will be analyzed and presented.

81

V. Results and Analysis

5.1 Overview

This chapter provides an analysis of experiment results which can be found in

Appendix E. Results are presented first with an overall picture and then grouped

by each factor to distinguish patterns and the effect of each factor. Results are also

grouped by all combinations of factors (scan type with number of honeypots). First

tables and graphs present a comparison of each different metric. The Control Group

Scan and 0 Honeypot levels are not included in the means of other factors as they

create skewed results. This is followed by a table with the results of the Anderson-

Darling test for normality with a significance level (α) of 5%. Both metrics that are

being compared against one another are required to be normally distributed in order

to perform a t-test. While there are a handful of individual metrics that accept the

null hypothesis of normal distribution, only the Aggressive scan with 9 honeypots

accepted the null hypothesis for SAI and SAM to be compared against one another.

Because only one test set out of eighty is normally distributed, a Permutation test

is selected for testing whether results are statistically significant with a significance

level of 10% . 900,000 permutations are performed for each test. For number of alerts,

SAI and SAM are tested against one another as well as the SAI/SAM (whichever

has the higher average mean) against SuA. It appears that Snort consolidates some

alerts when PCAPs are analyzed together which is why SAI is often the more fair

test against SuA. However, it appears that Snort is able to detect and create more

alerts when analyzing packets together for the NIDS Avoidance Scans and when only

3 honeypots are active. When this happens, SAM is compared against SuA. For

the number of distinct alerts, STI is compared against STM, and STM is compared

against SuT. Snort created more distinct alerts on average when analyzing PCAPs

82

merged together which is why STM was used over STI. Finally, % HHP is compared

against % SuP to compare the percentage of captured packets.

5.1.1 Number of Alerts Overview

In Table 3 and Figure 18, the mean number of alerts across all groupings and

combination of factors is shown. Suricata generated more alerts in all factor groupings

except for when 9 honeypots were active in an Aggressive scan. Additionally, in the

TCP Connect scan Snort and Suricata created a similar amount of alerts when 9

honeypots were active. However, Suricata created a significant number more alerts

on average in the NIDS Avoidance scan when 9 honeypots were active. Table 4

displays the Anderson-Darling test for normality results conducted on the experiment

results. Only the Aggressive Scan with 9 honeypots was normal for both SAI and

SAM. Additionally, SAI was normal for the TCP Connect scan with 6 honeypots.

In Table 5 the Permutation test results are shown. In the SAI versus SUA column,

cells italicized and denoted with a “*” indicate that SAM was used for comparison

instead because it had a higher mean for alerts than SAI. SAI and SAM were not

statistically significant in test. However, Snort versus SuA was significantly different

in all tests except the TCP Connect Scan with 9 honeypots and 9 honeypots overall.

This indicates that the null hypothesis (Snort and Suricata create the same number of

alerts) is rejected. This suggests Suricata outperforms Snort in all alert tests where its

mean is higher and statistically significant. This is true for all but the Aggressive Scan

with 9 honeypots, where Snort outperforms Suricata and is statistically significant.

While HoneyHive created alerts in the majority of runs, there were 3/270 runs

(runs 270, 291, and 465) that it did not create alerts (HHI) when it should have. Ad-

ditionally, HoneyHive is currently using Snort for a higher level of signature matching

and alert creation. However, Snort did not create alerts for 32/270 runs that it should

83

have. This means roughly 10% of intrusions did not have successful signature match-

ing performed on packet captures. This is either from Snort crashing, not finishing in

a timely manner, simply not creating alerts, or an error in the HoneyHive framework.

84

HHI SAI SAM SuA
Control Group 0 0 0 0
CG 0 0 0 0 0
CG 3 0 0 0 0
CG 6 0 0 0 0
CG 9 0 0 0 0
TCP Connect 5.933333333 24.14444444 22.07777778 33.95555556
TCP 0 0 0 0 24.2
TCP 3 2.8 12.86666667 14.03333333 23
TCP 6 6 23.53333333 22.5 39.2
TCP 9 9 36.03333333 29.7 39.66666667
Aggressive 5.255555556 82.68888889 77.14444444 112.4
Agg 0 0 0 0 112.5
Agg 3 2.833333333 40.56666667 42.63333333 103.5333333
Agg 6 5 74.06666667 71.83333333 126.5666667
Agg 9 7.933333333 133.4333333 116.9666667 107.1
NIDS Avoidance 5.966666667 22.92222222 27.45555556 49.36666667
NIDS 0 0 0 0 26.96666667
NIDS 3 3 13.86666667 17.23333333 28
NIDS 6 6 22.6 25.83333333 58.16666667
NIDS 9 8.9 32.3 39.3 61.93333333
0 Honeypots 0 0 0 54.55555556
3 Honeypots 2.877777778 22.43333333 24.63333333 51.51111111
6 Honeypots 5.666666667 40.06666667 40.05555556 74.64444444
9 Honeypots 8.611111111 67.25555556 61.98888889 69.56666667
Overall 5.718518519 43.25185185 42.22592593 65.24074074

Table 3. Overview - Mean Alerts by Level

85

Figure 18. Overview - Mean Number of Alerts

86

SAI SAM SuA

TCP Connect 8.4179E-10 2.10219E-06 8.45677E-05

TCP 3 1.86436E-09 1.80995E-09 0.001764216

TCP 6 0.07823086 0.018595137 3.75442E-05

TCP 9 0.003989696 0.04930214 0.001424823

Aggressive 0.00231741 0.009967393 4.53772E-10

Agg 3 0.001050125 0.000460888 4.02293E-10

Agg 6 0.01229756 0.045563122 0.000516952

Agg 9 0.118392405 0.136474624 0.002484829

NIDS Avoidance 0 7.24625E-25 4.65401E-19

NIDS 3 1.03809E-09 1.02987E-07 4.93212E-11

NIDS 6 9.41431E-15 4.06702E-13 3.23667E-12

NIDS 9 1.18093E-13 4.58503E-11 5.75098E-11

3 Honeypots 1.90455E-12 1.2306E-10 7.56855E-23

6 Honeypots 1.14242E-13 3.13753E-13 7.32928E-21

9 Honeypots 3.86714E-12 1.15597E-11 1.65326E-15

Overall 0 0 0

Table 4. Anderson-Darling Test - Number of Alerts

87

SAI v. SAM SAI v. SuA

TCP Connect 0.489953333 0.00048

TCP 3 0.74778 0.0034967 *

TCP 6 0.762092222 0.0001189

TCP 9 0.339487778 0.49631

Aggressive 0.497806667 0.0006667 *

Agg 3 0.76365 0

Agg 6 0.817308889 0.0016511

Agg 9 0.275418889 0.0702367

NIDS Avoidance 0.310293333 0 *

NIDS 3 0.462257778 0.0015556 *

NIDS 6 0.687624444 3.33E-06 *

NIDS 9 0.453642222 0.0007711 *

3 Honeypots 0.532037778 0 *

6 Honeypots 0.996777778 3.33E-06

9 Honeypots 0.555283333 0.7710211

Overall 0.795945556 0

Table 5. Permutation Test - Number of Alerts

5.1.2 Number of Distinct Types of Alerts Overview

Table 6 and Figure 19 show the mean number of distinct alerts across all tests.

Suricata created more distinct number of alerts (SuT) on average than Snort. PCAPs

merged together and then analyzed by Snort (STM) created more distinct alerts on

average as compared with each packet being parsed individually by Snort (STI).

Furthermore, not only did the average number of distinct alerts grow for STM and

88

STI as the number of honeypots increased but the average difference in the number of

distinct alerts between STM and STI grew as well. In addition, the difference between

STM and SuT shrank. This supports that distributed data / PCAP aggregation

exhibits merit for NIDS. Table 7 shows the results of the Anderson-Darling test. No

data sets fit the normal distribution. Table 8 displays the results of Permutation

tests for STI compared with STM and STM compared with SuT. STI versus STM

was statistically significant in all tests except the TCP Connect Scan and NIDS

Avoidance Scan each with 3 honeypots. These tests were both very close to 10% but

did not meet the required significance level. Because STM created more distinct alerts

on average for each test over STI this means that it performed better for all tests

except the two aforementioned. This supports the hypothesis that the HoneyHive

framework can detect intrusions that traditional NIDS cannot through distributed

sensors and packet aggregation. However, Suricata created more distinct alerts on

average than SAM in all categories and was statistically significant in all tests except

the Aggressive Scan with 9 Honeypots. This indicates there was not an advantage of

combining packets over that of just listening on a SPAN port.

89

STI STM SuT
Control Group 0 0 0
CG 0 0 0 0
CG 3 0 0 0
CG 6 0 0 0
CG 9 0 0 0
TCP Connect 4.477777778 5.544444444 7.411111111
TCP 0 0 0 7.166666667
TCP 3 4.333333333 5.033333333 6.733333333
TCP 6 4.633333333 5.866666667 7.5
TCP 9 4.466666667 5.733333333 8
Aggressive 6.3 7.822222222 10.13333333
Agg 0 0 0 12
Agg 3 5.7 7.1 11.36666667
Agg 6 6.233333333 7.733333333 9.6
Agg 9 6.966666667 8.633333333 9.433333333
NIDS Avoidance 3.633333333 4.911111111 7.233333333
NIDS 0 0 0 6
NIDS 3 3.333333333 4.233333333 5.8
NIDS 6 3.7 4.466666667 7.966666667
NIDS 9 3.866666667 6.033333333 7.933333333
0 Honeypots 0 0 8.388888889
3 Honeypots 4.455555556 5.455555556 7.966666667
6 Honeypots 4.855555556 6.022222222 8.355555556
9 Honeypots 5.1 6.8 8.455555556
Overall 4.803703704 6.092592593 8.259259259

Table 6. Overview - Mean Number of Distinct Alerts by Level

90

Figure 19. Overview - Mean Number of Distinct Alerts

91

STI STM SuT

TCP Connect 1.42E-30 2.26E-18 0

TCP 3 2.26E-10 1.04E-06 3.82E-08

TCP 6 4.44E-12 2.19E-13 3.78E-16

TCP 9 1.47E-10 2.38E-08 3.96E-15

Aggressive 0 0 1.1E-12

Agg 3 9.08E-12 3.92E-14 5.21E-20

Agg 6 2.25E-14 2.56E-16 0.005961

Agg 9 4.67E-08 6.4E-13 7.33E-05

NIDS Avoidance 9.44E-29 1.93E-20 0

NIDS 3 6.37E-09 2.95E-10 2.66E-08

NIDS 6 1.61E-08 9.65E-12 8.99E-24

NIDS 9 4.02E-13 1.5E-13 2.28E-27

3 Honeypots 2.01E-10 4.23E-11 2.33E-09

6 Honeypots 2.16E-10 1.93E-10 1.72E-20

9 Honeypots 1.34E-08 7.63E-15 4.72E-22

Overall 3.26E-27 1.58E-28 0

Table 7. Anderson-Darling Test - Number of Distinct Alerts

92

STI v. STM STM v. SuT

TCP Connect 0.00062 0

TCP 3 0.1014511 0.0011956

TCP 6 0.0273578 0.0015211

TCP 9 0.0310778 0

Aggressive 0.0003433 0

Agg 3 0.0726156 0

Agg 6 0.0417956 0.0032133

Agg 9 0.0042444 0.1583944

NIDS Avoidance 0 0

NIDS 3 0.1012789 0.0982622

NIDS 6 0.0897022 0

NIDS 9 1.22E-05 0

3 Honeypots 0.0084811 0

6 Honeypots 0.0026778 0

9 Honeypots 1.00E-05 0

Overall 0 0

Table 8. Permutation Test - Number of Distinct Alerts

5.1.3 Packet Capture Percentage Overview

The percentages of scanned devices that are monitored for each level of honeypots

in the test network for the HoneyHive framework and Suricata, are shown in Table

9. As the number of honeypots increases, the total number of active devices on the

network that are scanned also increases. HoneyHive’s percentage of monitored devices

increses as the number of honeypots increases. However, the percentage of monitored

93

devices for Suricata decreases from 0 to 3 honeypots, increase from 3 to 6 honeypots,

and then decreases from 6 to 9 honeypots. This is because the honeypots activated

for 6 honeypots reside on Suricata’s switch (the DMZ switch).

The percentage of packets captured by the HoneyHive framework versus Suri-

cata is shown in Table 10 and Figure 20. Overall, HoneyHive and Suricata captured

roughly the same average percentage of packets. However, when 9 honeypots are

active the HoneyHive framework significantly outperforms Suricata in all categories

except the NIDS Scan. At the level of three honeypots, packets captured are within

several percentage points of another which is to be expected as Suricata does not have

active honeypots on its switch. Similarly, at 6 honeypots HoneyHive and Suricata

stayed within a couple percentage points of one another since they both increase by

three honeypots. The one category this does not hold for is the NIDS Avoidance scan

in which Suricata captures significantly more traffic than HoneyHive. Part of the

reason for this could be how packets are counted in Snort versus Suricata. Capinfos

counts all the packets in the PCAP and could be combining the fragmented parts

together, reducing the actual number. Suricata reports by using Scapy to increment

its packet for every packet sent or received with the attacker’s IP address. Table 11

shows the Anderson-Darling normality test for the percentage of packets captured but

only % HPP for the TCP Connect Scan with 6 honeypots and % SuP for the Aggres-

sive Scan with 9 honeypots are normal. Table 12 shows the Permutation test results

for percentage of packets captured. All but TCP Connect overall, TCP Connect Scan

HoneyHive Suricata
0 0 / 6 = 0.00% 2 / 6 = 33.33%
3 3 / 9 = 33.33% 2 / 9 = 22.22%
6 6 / 12 = 50.00% 5 / 12 = 41.67%
9 9 / 15 = 60.00% 5 / 15 = 33.33%

Table 9. Percentage of Scanned Devices Monitored in Test Network

94

with 3 and 6 Honeypots (although very close), Aggressive Scan with 6 honeypots, and

overall results are statistically significant. % HHP performed significantly better than

% SuP in the Aggressive Scan overall and all tests with 9 honeypots, minus the NIDS

Avoidance Scan. % SuP performed significantly better in all NIDS Avoidance Scans,

Aggressive Scan with 3 honeypots, and 3 and 6 Honeypots overall. Even though the

HoneyHive framework does not at this moment create more alerts or more distinct

alerts than Suricata, the fact that it significantly outperforms Suricata in capturing

network traffic when all 9 honeypots are active supports it will be able to detect more

than a traditional NIDS could. Also of note, Suricata did not significantly outperform

the HoneyHive framework in any of the TCP Connect scans.

Figure 21 shows the trend of an increase in mean capture packet percentage (%

HHP) for the HoneyHive framework as the ratio of honeypots to devices scanned on

a network also increases. In the TCP Connect scan each addition of 3 honeypots

increases % HHP by 9%. For the Aggressive scan there is a 36% increase for % HHP

from 3 to 6 honeypots and then a 39% increase from 6 to 9 honeypots. The NIDS

Avoidance scan only has a 5% increase from 3 to 6 honeypots and an 8% increase

from 6 to 9 honeypots. Finally, % HHP for each level of honeypot overall increase

17% from 3 to 6 and 18% from 6 to 9. Assuming this trendline continues, at 12 and

15 honeypots % HHP would be 62.5% and 80% respectively. This well exceeds %

SuP which would continue to decrease with the addition of honeypots not connected

to the switch it monitors.

95

% HHP % SuP
Control Group 0% 21%
CG 0 0% 5%
CG 3 0% 6%
CG 6 0% 7%
CG 9 0% 49%
TCP Connect 22% 19%
TCP 0 0% 19%
TCP 3 13% 10%
TCP 6 22% 28%
TCP 9 31% 21%
Aggressive 39% 27%
Agg 0 0% 4%
Agg 3 2% 4%
Agg 6 38% 35%
Agg 9 77% 41%
NIDS Avoidance 21% 32%
NIDS 0 0% 32%
NIDS 3 15% 23%
NIDS 6 20% 40%
NIDS 9 28% 34%
0 Honeypots 0% 18%
3 Honeypots 10% 12%
6 Honeypots 27% 34%
9 Honeypots 45% 32%
Overall 27% 26%

Table 10. Overview - Mean Packet Capture Percentage

96

Figure 20. Overview - Mean Packet Capture Percentage

97

Figure 21. HoneyHive Framework Mean Packet Capture Percentage (% HHP) by Level

98

% HHP % SuP

TCP Connect 2.4739E-05 1.18E-08

TCP 3 1.7612E-08 0.001415

TCP 6 0.08450075 7.71E-10

TCP 9 0.00013778 0.013687

Aggressive 1.2062E-18 2.86E-14

Agg 3 1.2349E-07 3.13E-08

Agg 6 6.8951E-05 2.95E-05

Agg 9 5.1989E-06 0.474596

NIDS Avoidance 0.00022313 1.95E-05

NIDS 3 9.268E-09 1.77E-08

NIDS 6 3.2239E-06 1.11E-10

NIDS 9 2.6557E-08 0.00294

3 Honeypots 2.018E-08 2.23E-13

6 Honeypots 1.2178E-15 3.65E-05

9 Honeypots 8.2817E-10 4.19E-05

Overall 0 9.39E-07

Table 11. Anderson-Darling Test - Packet Capture Percentage

99

% HHP v %

SuP

TCP Connect 0.20446

TCP 3 0.109532222

TCP 6 0.10659

TCP 9 0.003485556

Aggressive 0.010246667

Agg 3 0

Agg 6 0.667023333

Agg 9 0.003394444

NIDS Avoidance 0

NIDS 3 0

NIDS 6 0

NIDS 9 0

3 Honeypots 0.081776667

6 Honeypots 0.019293333

9 Honeypots 3.78E-05

Overall 0.537306667

Table 12. Permutation Test - Packet Capture Percentage

5.2 Scan Type

This section groups experiment results by each of the different scan types for

analysis. These scan types are No Scan (Control Group), TCP Connect, Aggressive,

and NIDS Avoidance.

100

5.2.1 Control Group

For the control group, where no scan was performed, no alerts were generated for

any of the metrics (HHI, SAI, SAM, and SuA). Similarly, without any alerts there

were also no distinct types of alerts (STI, STM, and SuT). This supports that the

HoneyHive framework operates correctly without any malicious traffic and does not

create false positives. The packets captured by the HoneyHive framework were zero

for all different levels of honeypots as is expected since no packets were sent to the

honeypots. However, Suricata still captured traffic as shown in Figure 22. Although

no malicious traffic was sent by the attacker, routine network traffic still takes place

and this is the traffic that is captured by Suricata. One interesting aspect about

the data is the sharp jump in percentage when 9 honeypots are active as compared

to the other levels of honeypots. Roughly seven times the traffic captured in other

levels is captured in this level. This is indicative that more traffic traverses the switch

Suricata is on. Upon further investigation, one trial had a massive outlier of 1247%

captured. When removing this outlier and reanalyzing, the mean falls in line with

the other honeypot levels. Because Suricata’s packet count only contains traffic to or

from the attacker and the percentage was much higher than what the attacker sent,

some device must have been sending traffic to the attacker’s IP. It is speculated that

this is attributed to Honeyd expiring all scan connections made by the attacker in

the previous trial (234) aggressive scan.

101

Figure 22. Control Group - Mean Percentage of Packets Captured

102

5.2.2 TCP Connect

In Figure 23 Suricata generates more alerts on average in all levels of honeypots for

the TCP Connect scan. When 9 honeypots are active, SAI is only a few alerts away

from SuA. One aspect of note is that after 3 honeypots, SAI becomes and remains

higher than SAM. It is speculated that this is partially due to Snort aggregating some

alerts it sees relatively close to one another to reduce the number to parse through.

Additionally, by parsing combined packets, it appears that Snort is able to create

more alerts at levels of honeypots with a lower amount of traffic.

In Figure 24, STM significantly outperforms STI in honeypot levels 6, 9, and

overall. However, Suricata significantly outperforms STM in all TCP connect tests.

One interesting aspect to note is that the average at 6 honeypots is higher than that of

9 for STI and STM. Upon looking at the individual data, there were four runs where

Snort reports 0 for the number of alerts and the distinct number of alerts in the 9

honeypot level and three runs for the 6 honeypot level. Upon removing these, the

new averages are STI:5.15, STM: 6.62 for 9 honeypots and STI:5.15, STM: 6.52, for 6

honeypots, supporting the trend of more honeypots creating more distinct alerts with

diminishing returns. The 0 runs are most likely from Snort crashing or not finishing

before results were collected.

Figure 25 shows the average percentage of packets captured by the HoneyHive

framework compared to that of Suricata. The HoneyHive framework begins with a

higher capture percentage at the 3 honeypots level but then Suricata captures more

at 6 honeypots. This is interesting because the number of honeypots increases equally

for the HoneyHive framework and Suricata. However, at 9 honeypots and for TCP

Connect scan overall the HoneyHive framework captures more traffic on average than

Suricata. The capture percentage of HoneyHive at 9 honeypots is statistically higher

than that of Suricata. No other levels were statistically significant. Another trend

103

expected to repeat is a drop in Suricata packet capture percentage from 6 to 9 due

to an increase in attacker traffic that the SPAN port does not receive.

104

Figure 23. TCP Connect - Mean Number of Alerts

105

Figure 24. TCP Connect - Mean Number of Distinct Alerts

106

Figure 25. TCP Connect - Mean Packet Capture Percentage

107

5.2.3 Aggressive

In Figure 26 the trend holds for SAM creating more alerts than SAI at 3 honeypots

and then SAI creating more alerts than SAM at 6 and 9 honeypots. Suricata performs

significantly better overall and when 3 or 6 honeypots are active. SAI performs

significantly better than SuA when 9 honeypots are active, supporting the hypothesis

that distributed sensors can detect intrusions that traditional NIDS cannot. This is

the only test in which the HoneyHive framework creates more alerts than Suricata

although at 9 honeypots in the TCP connect scan, it is also very close to that of

Suricata.

Figure 27 also follows the trend of the corrected data in the TCP connect scan, an

increase in distinct number of alerts in STI and STM with STM being significantly

greater than STI. SuT is significantly greater overall and for 3 and 6 honeypots.

Even though it is larger, it is not significantly greater than STM at 9 honeypots. One

interesting trend is that the number of distinct alerts for SuT actually decreases as

the number of honeypots increases. This could be caused by the increased time spent

scanning each host as more honeypots are activated and not tripping rules that are

triggered by consecutive scanning in a certain amount of time.

The average packet percentage for each honeypot level in the Aggressive Scan

is shown in Figure 28. The HoneyHive framework captures a higher percentage on

average overall and for 6 honeypots and significantly more for 9 honeypots. Even

though Suricata does not drop in packet percentage captured as it did in the TCP

Connect scan, it does not increase nearly as much as it did from 3 to 6 honeypots.

108

Figure 26. Aggressive - Mean Number of Alerts

109

Figure 27. Aggressive - Mean Number of Distinct Alerts

110

Figure 28. Aggressive - Mean Packet Capture Percentage

111

5.2.4 NIDS Avoidance

The average number of alerts for the NIDS Avoidance Scan with each level of

honeypot is shown in Figure 29. While not statistically significant, SAM performs

better than STI in all levels of honeypots. This is most likely due to the packet

fragmentation and scan delay not tripping as many Snort alerts, although more alerts

are created as more honeypots are active and more packets are aggregated. Because

SAM creates more alerts on average over SAI, it is compared against SuA. Unlike the

TCP Connect scan with 9 honeypots and Aggressive scan with 9 honeypots, Suricata

significantly outperforms Snort in the 9 honeypots level and all other tests.

Figure 30 shows the average distinct number of alerts for the NIDS Avoidance

scan, broken down by each honeypot level and overall. All metrics increase as the

number of honeypots they monitor increase as well. STM outperforms STI in all tests

and is statistically significant in all tests except with 3 honeypots (just over 10%).

SuT is statistically superior in performance in all tests for the NIDS Avoidance scan.

The trend of the percentage of packets captured by Suricata declining from 6

to 9 honeypots holds and is shown in Figure 31. However, in the NIDS Avoidance

Scan % SuP significantly outperforms % HHP in all tests, even when 9 honeypots

are active. % HHP still increases with each honeypot level though. As mentioned in

the overview, the packet count may be different if Capinfos is combining fragmented

packets together, resulting in a reduced packet count.

112

Figure 29. NIDS Avoidance - Mean Number of Alerts

113

Figure 30. NIDS Avoidance - Mean Number of Distinct Alerts

114

Figure 31. NIDS Avoidance - Mean Packet Capture Percentage

115

5.3 Number of Honeypots

This section groups experiment results by each of the different levels of honeypots

for analysis. These levels are 0, 3, 6, and 9.

5.3.1 0 Honeypots

Without any active honeypots, no alerts should be created and no packets cap-

tured. This section is useful in understanding the baseline performance of Suricata

across different scan types. The average number of alerts is shown in Figure 32. Suri-

cata creates alerts in all scan types with the most in the Aggressive scan, followed

by the NIDS Avoidance scan and then the TCP Connect scan. The number of alerts

increases as the number of honeypots increases for TCP Connect and NIDS but ac-

tually decreases for all honeypots not monitored by it (all but 6). This is most likely

due to a decrease in alerts being triggered as hosts being scanned in sequence takes

longer since each scan takes longer. Suricata performed correctly by not creating any

alerts when no scan was performed.

Figure 30 displays the average number of distinct alerts created by Suricata for

each different type of scan. The Aggressive scan creates the most number of distinct

alerts followed by TCP Connect scan and then the NIDS Avoidance scan. The distinct

number of alerts actually decreases for the Avoidance scan as each honeypot level

increases. The TCP Connect scan decreases for the 3 honeypots but then increases

for 6 and 9 honeypots. The NIDS Avoidance scan similarly decreases for 3 honeypots,

increases for 6, but then decreases slightly again for 9 honeypots.

The average percentage of packets captured by Suricata for each test is shown

in Figure 34. The NIDS Avoidance scan captured the largest percentage of packets

on average, followed by the TCP Connect scan, the Control Group, and then the

Aggressive Scan. The NIDS Avoidance scan capture percentage being so high with

116

0 honeypots supports that it is being skewed in other tests. The TCP Connect scan

results are within the expected amount for only one monitored device out of three.

With the attacker sending no scan packets in the control group, one might wonder

why packets are being captured. These packets are command and control packets for

running tests. It is surprising that the Aggressive scan packet capture percentage was

so low. This could be because the actual IoT devices cannot keep up with the scan

so ones not on this switch generate lots of re-transmissions that are not captured or

Nmap quickly dismisses the IoT device on the switch and moves on.

117

Figure 32. 0 Honeypots - Mean Number of Alerts

118

Figure 33. 0 Honeypots - Mean Number of Distinct Alerts

119

Figure 34. 0 Honeypots - Mean Packet Capture Percentage

120

5.3.2 3 Honeypots

Figure 35 shows the average number of alerts with 3 honeypots active grouped by

different scan types. All three metrics create more alerts in the Aggressive scan than

the other scan types. This is followed by the NIDS Avoidance Scan, and the TCP

Connect scan. Suricata creates the most alerts in all tests followed by SAM and then

SAI. Even though the NIDS Avoidance scan was designed to trigger the least number

of alerts, it appears that the NIDS have the most difficulty in creating alerts for the

TCP Connect scan. This is probably because the TCP Connect scan is difficult to

distinguish from normal connections while the NIDS Avoidance scan sends fragmented

packets, which might be treated as suspicious. The NIDS clearly have no trouble

detecting Aggressive Scans which makes sense because the scan generates much more

traffic by requesting OS and service information, giving it a very identifiable signature.

Figure 36 displays the number of distinct alerts for each scan with 3 honeypots

active. Based on the sheer number of alerts generated by the Aggressive scan, it

makes sense that the distinct number would also be higher than the other scan types.

However, even though the NIDS Avoidance scan generated more alerts than the TCP

Connect scan, the TCP Connect scan had a larger number of distinct alerts than that

of the NIDS Avoidance scan for STI, STM, and SuT. This suggest that the NIDS

Avoidance scan is repeatedly generating the same alerts while TCP connect has a

broader spectrum.

In Figure 37, % SuP captures more traffic than % HHP in all scans except the TCP

Connect scan. The NIDS Avoidance scan has the highest percentage of captured for

both % SuP and % HHP followed by the TCP Connect and then the Aggressive Scan

(although the Control Group is higher for % SuP). Because packets are fragmented

and sent at a much slower rate, it appears that Suricata and HoneyHive are able to

better capture them in the NIDS Avoidance scan with three honeypots active. With

121

0 honeypots active on its switch, it would appear that a single IoT device scanned

creates more traffic than three scanned honeypots. In the TCP Connect scan, % HHP

exceeds % SuP suggesting that IoT devices handle normal connections better than

ones with long delays and fragmented packets. The aggressive scan being the lowest

makes sense with the large amount of traffic that is generated and with only a small

fraction of the devices being scanned being active honeypots.

122

Figure 35. 3 Honeypots - Mean Number of Alerts

123

Figure 36. 3 Honeypots - Mean Number of Distinct Alerts

124

Figure 37. 3 Honeypots - Mean Packet Capture Percentage

125

5.3.3 6 Honeypots

The same pattern for average number of alerts holds for Figure 38 for 6 honeypots

as it did with 3. The main differences are more alerts are generated in each scan and

now SAI create more alerts than SAM in the TCP Connect and Aggressive scans.

SAM still creates more alerts than SAI in the NIDS Avoidance scan.

With 6 honeypots the trend for the average number of distinct alerts is mostly the

same as 3 honeypots and is shown in Figure 39. SuT is still the highest in all scan

types but the average distinct number decreases in the Aggressive Scan. Also of note,

SuT creates more alerts in the NIDS Avoidance scan instead of the TCP Connect

scan, this was the opposite with 3 honeypots. STM remains higher than STI in all

scan tests, and averages for both increase. Additionally, the difference between STM

and SuT for the average number of distinct alerts decreases in all scans except the

NIDS Avoidance scan.

Unlike scans with 3 honeypots, % HHP is the largest in the Aggressive scan and

the least in the NIDS Avoidance scan, as shown in Figure 40. % SuP is still largest

in the NIDS Avoidance scan but the Aggressive scan captures a higher pecentage

than the TCP Connect scan. % SuP also remains higher than % HHP in the NIDS

Avoidance scan, surpasses %HHP in the TCP Connect scan, and falls below % HHP

in the Aggressive scan.

126

Figure 38. 6 Honeypots - Mean Number of Alerts

127

Figure 39. 6 Honeypots - Mean Number of Distinct Alerts

128

Figure 40. 6 Honeypots - Mean Packet Capture Percentage

129

5.3.4 9 Honeypots

With 9 honeypots active SAI approached SuA in the TCP Connect scan and

significantly surpassed SuA in the Aggressive scan, shown in Figure 41. SuT remained

on top and STM remained higher than the STI in the NIDS avoidance scan. SuT

actually decreased in the number alerts generated from 6 honeypots to 9 honeypots

in the Aggressive scan.

Figure 42 shows the average number of distinct alerts across different scans with 9

honeypots active. Noticeable changes are STM closing in on SuT and there no longer

being a significant difference between the two, STM being higher in the NIDS Avoid-

ance scan than the TCP Connect scan, and SuT being approximately the same in the

TCP Connect and NIDS Avoidance scans, although TCP Connect is now higher. In

fact, the average number of alerts actually decreases for SuT in the Aggressive and

NIDS Avoidance scans.

In Figure 43, % HHP now surpasses % SuP in all scans except the NIDS Avoidance

scan. Another noticeable difference is % SuP is now higher in the Agressive scan

compared with the NIDS Avoidance scan. The percentage of packets captured by %

SuP actually decreases for both the TCP Connect and NIDS Avoidance scans.

130

Figure 41. 9 Honeypots - Mean Number of Alerts

131

Figure 42. 9 Honeypots - Mean Number of Distinct Alerts

132

Figure 43. 9 Honeypots - Mean Packet Capture Percentage

133

5.4 Summary

This chapter presents and analyzes results from the experiment in Chapter 4.

Results are explored with different grouping of factors to distinguish patterns and

analyze the effects each factor has on the experiment. Explanations for observed

patterns were also explored. Anderson-Darling tests for normality are completed on

all grouping of factors to determine if a t-test was suitable for statistical testing.

Because only one set was normal, a Permutation test is used to compare statistical

significance with a significance level of 10%. SuA is statistically superior in all tests

except for 9 honeypots overall and the TCP Connect and Aggressive scans with

9 honeypots. SAI is statistically superior to SuA in the Aggressive scan with 9

honeypots. STM is statistically superior to STI in all tests except the TCP Connect

and NIDS Avoidance scans with 3 honeypots active. SuT statistically outperforms

STM in all tests except the Aggressive scan with 9 honeypots active. Finally, % HHP

is statistically significant in comparison to % SuP in the Aggressive Scan overall and

all tests with 9 honeypots, except the NIDS Avoidance Scan. % SuP is statically

significant in all NIDS Avoidance scans, the Aggressive scan with 3 honeypots, and

3 and 6 honeypots overall. Assuming the trendline continues, % HHP would perform

better than % SuP with 12 and 15 honeypots in all scans.

134

VI. Conclusions

6.1 Introduction

In this chapter the conclusions drawn from the experimental results are discussed

in Section 6.2 for each category of metrics, which includes the number of alerts, the

number of distinct alerts, and the percentage of packets captured. The significance

of this research is discussed in Section 6.3. Section 6.4 describes the limitations

of this research. In Section 6.5, this thesis concludes with potential future work

in the research field of honeypots, network intrusion detection, and the HoneyHive

framework.

6.2 Research Conclusions

This research successfully creates a framework of distributed network intrusion

detection IoT honeypot sensors that capture traffic, create alerts, and beacon back

to a central C2 server. The first hypothesis from Chapter 1 is mostly supported with

experiment results while the second is only partially supported by the trendline of

experiment results:

1. The HoneyHive framework operates correctly by not alerting on routine network

traffic and alerting on non-routine network traffic.

2. The HoneyHive framework detects intrusions that traditional NIDSs cannot

through the use of distributed IoT honeypot sensors and packet capture aggre-

gation.

135

6.2.1 Number of Alerts

The first hypothesis is a two part question, but both parts are supported by the

experiment results. When No Scan is performed (the Control Group), no false positive

alerts are created by HoneyHive across all runs and varying levels of honeypots.

Therefore, HoneyHive operates correctly with routine network traffic.

The next part of the question requires delving into experimental results. While

HoneyHive performed admirably in the majority of runs, there were 3/270 runs (runs

270, 291, and 465) that it did not create alerts (HHI) when it should have. Addition-

ally, HoneyHive is currently using Snort for a higher level of signature matching and

alert creation. However, Snort did not create alerts for 32/270 runs that it should

have. This means roughly 10% of intrusions did not have successful signature match-

ing performed on packet captures. This is either from Snort crashing, not finishing

in a timely manner, simply not creating alerts, or an error in the HoneyHive frame-

work. Although Snort is only an augmentation for the HoneyHive framework, it is

used extensively in this research for generating alerts. Because of this, the HoneyHive

framework, in its current configuration, alerts on non-routine traffic only around 90%

of the time. For network intrusions, it is ideal for this to be as close to 100% as

possible.

The second hypothesis is supported only partially by metrics and partially by

trendlines. To start, the average number of alerts steadily increased as the number of

honeypots increased. Even though the number of alerts in the HoneyHive framework

only statistically exceeded Suricata in the Aggressive scan with 9 honeypots it was

very close to Suricata in the TCP Connect scan with 9 honeypots. If this trend con-

tinued with the additions of honeypots, then it is expected that at 12 or 15 honeypots

HoneyHive would surpass Suricata. Furthermore, if the experiment was modified to

match an internal network scan that did not scan the DMZ, then Suricata would

136

not receive any non-routine traffic. This was not done in this experiment because

then there would not have been any data to run statistical tests against. All this

supports the hypothesis that distributed IoT honeypot sensors can detect intrusions

that traditional NIDS cannot through packet capture aggregation.

6.2.2 Number of Distinct Types of Alerts

The second hypothesis is also supported by the number of distinct types of alerts

from the experiment. While, HoneyHive did not ever exceed Suricata in the number of

distinct alerts, Suricata was no longer statistically significant for the Aggressive scan

with 9 honeypots. This once again suggests that with more honeypots HoneyHive

could outperform Suricata. What is supportive though is that Snort PCAPs merged

together (STM) created a larger number of distinct alerts with statistical significance

for almost all tests compared with that of PCAPs parsed individually by Snort (STI).

This supports the hypothesis because alerts that were not generated by analyzing each

PCAP individually were generated when the PCAPs were merged and analyzed as

one with statistical significance.

6.2.3 Percentage of Packets Captured

Finally, the percentage of packets captured to and from the attacker increased in

all tests for the HoneyHive framework as the number of honeypots increased. The

HoneyHive framework was statistically superior to Suricata with 9 honeypots active

in all tests except the NIDS Avoidance scan. Assuming the trendline holds with %

HHP, with more honeypots active, a higher percentage of attacker packets can be

captured. Additionally, if areas of a network are scanned without a NIDS then a

traditional NIDS will not see this traffic and not create alerts. Because HoneyHive

is a distributed system, it can capture this traffic that a traditional NIDS cannot by

137

placing IoT honeypots in different enclaves throughout the network. This supports

the second hypothesis that HoneyHive can detect intrusions that traditional NIDS

cannot through the use of distributed IoT honeypots.

6.3 Research Significance

While there currently exist many NIDSs, none of the existing research explored

in Chapter 2 is tailored to IoT honeypots. In addition, not all NIDSs alert in real

time nor offer a complete view of the network with C2 capabilities. Furthermore, few

offer automated distributed packet aggregation for intrusion analysis. The HoneyHive

framework addresses all these shortcomings. The HoneyB Agent is also deployable to

more than just IoT honeypots. It is deployable to any host with Python 2.7 installed.

This makes it very versatile and offers immediate monitoring for the host with very

little setup.

The HoneyHive framework offers benefits that allow the Air Force in defending

the Air Force Network (AFNet) and the DoD to protect the DoD Information Net-

work (DODIN). It can also be used for integration in CIKR-based networks since IoT

devices share some similarities with ICS. Moreover, any company that works in the

realm of network security could integrate HoneyHive into their existing network secu-

rity. The impact of this framework is a cross-platform, standalone, NIDS / Network

Monitoring solution capable of improving the rate at which network intrusions are

detected. While HoneyHive will not be the solution for every network, it is another

viable tool for increasing network security through intrusion detection.

6.4 Research Limitations

While the HoneyHive framework is a great success, there are several limitations

in its current configuration. The IoT honeypots from Stafira used in this research

138

are low-interaction, web-based honeypots. Furthermore, they rely on Honeyd 1.5c

and Python 2.7, both of which are at the end of their life [76]. Honeyd 1.5c was

last updated in 2007 [10] and the current version, Honeyd 1.6d was last updated in

2013, but Stafira reported stability issues with Honeyd 1.6d [6][11]. The IoT devices

that Stafira’s IoT honeypots emulate are also not the most up to date or popular IoT

devices in the United States [6]. Furthermore, not enough honeypots were used in

this experiment and only Nmap scans were performed against them.

The HoneyB Agent script is also written in Python 2.7. To ensure future usability,

it would need to be rewritten in Python 3.x or node.js. While this would not be too

challenging, it could take several days or weeks to ensure correct functionality after

the upgrade.

Currently the HoneyHive framework relies on a NIDS (Snort) and its community

of rules to perform a higher level of signature detection as opposed to simply alerting

based on interactions with honeypots. If the HoneyHive framework possessed its own

self-contained, sophisticated combination of heuristics and signature matching then

it would perform even more effectively and be easier to deploy to networks. Despite

these limitations, the HoneyHive framework has great potential as a tool for network

intrusion detection. In this experiment, Snort should have been used for both the

HoneyHive framework and the DMZ NIDS listening on the SPAN port as it appears

that Snort and Suricata do not create the same alerts given the same rule-set and

network traffic.

The test network scans were performed on was of limited size whereas enterprise

networks have hundreds if not thousands of devices. Additionally, all Honeypots

were on the same network but enterprise networks often have different sub-networks

comprising their internal network.

139

6.5 Future Work

One area of future work that would benefit the research of honeypots, network

intrusion detection, and the HoneyHive framework is developing high-interaction hon-

eypots in Docker (with secure configurations). Doing so would create more realistic

honeypots and extend the capabilities of the HoneyHive framework. Memory dumps

of an attacker’s interaction with honeypots could be performed to capture TTPs and

help identify them based on their tradecraft. In addition, more modern and popular

versions of IoT devices could be developed as honeypots. This would allow HoneyHive

to blend into more networks and not be as identifiable. The DB currently stores alert

information, captured traffic, and is designed to store captured passwords, binaries,

and memory dumps in the event that future work in HoneyHive is able to capture

these.

A major component of future work for the HoneyHive framework includes the

development of GUI to help network operators quickly identify and respond to in-

trusions. The proposed GUI design is shown in Figure 44 and can display alerts and

honeypot interactions to network operators. The left side of the GUI displays the

health status of the monitored honeypots, green representing no alerts, yellow scan

alerts, red exploit detected, and black meaning unreachable. Honeypots are nested

under their Honeyd controller, and the Honeyd controller takes on the most severe

status of the honeypots under it.

The center displays a network map with the same status indicators shown on the

left side. Notice that the device 192.168.45.42 is not a monitored honeypot, yet it

is still flagged red. This is because an internal scan originating from the device has

been detected, so the device itself is inferred to be compromised.

Individual alerts are viewable on the right side, and the actual packet capture is

available for download by clicking the green down arrow. The two alerts currently

140

displayed show the TITAThink and ezOutlet2 honeypots being scanned internally

by 192.168.45.42, which matches the color coding of what is shown by the honeypot

status (left), and the network map (middle).

141

Figure 44. Proposed HoneyHive GUI

142

Other future work includes hashing and distributing signatures across a multi-

server HoneyHive framework for faster detection of binaries, exploits, and TTPs.

The HoneyB Agent script could also be improved to be a sophisticated and self-

contained alert engine. In addition, the HoneyHive framework currently does not

implement encryption of network traffic and device authentication, as it was not

required for testing, but must before deployment. All traffic sent must be encrypted

before network deployment to thwart sniffing. Symmetric encryption is the proposed

implementation method of encryption, as opposed to asymmetric encryption, because

distributing a single shared passphrase is easier than setting up a Certificate Authority

(CA), generating two keys per device, and then registering all keys with the CA.

Device authentication is also important to ensure the authenticity of traffic, security

of the framework, and prevent erroneous alerts from overloading network operators.

If all these areas of future work are implemented then HoneyHive could be used

for more than just intrusion detection. It could be used for cyber deception much like

Cymmetria’s MazeRunner framework [29].

143

Appendix A. HoneyHive Framework

main.js (C2 Sever)

1 var cyan = ’\x1b [36m%s\x1b[0m’;

2 var green = ’\x1b [32m%s\x1b[0m’;

3 var blue = ’\x1b [34m%s\x1b[0m’;

4 var yellow = ’\x1b [33m%s\x1b[0m’;

5 var red = ’\x1b [31m%s\x1b[0m’;

6 var magenta = ’\x1b [35m%s\x1b[0m’;

7

8 var net = require(’net’);

9

10 var fs = require(’fs’);

11 var buffer = require(’buffer ’);

12 var path = require("path");

13 var fork = require(’child_process ’).fork;

14 const sqlite3 = require(’sqlite3 ’).verbose ();

15 var exec = require(’child_process ’).exec;

16

17 var encrypt_decrypt = require(’./ encrypt_decrypt.js’);

18 var crypto = require(’crypto ’);

19 var password = ’honeyhive ’;

20 var algorithm = ’aes -256-cbc’;

21

22 var HOST = ’0.0.0.0 ’;

23 var PORT = 9830;

24 var resetCounter = 0;

25 var honeydIP = [];

26 var honeyPots = [];

27 var completeTransfers = [];

28 var alerts = [];

29 var srcIPs = {};

144

30 var dstIPs = {};

31 var srcPrts = {};

32 var dstPrts = {};

33 var percentage = 0.35;

34

35 var numInteractions = 0

36 var numSnortAlerts = 0;

37 var numPackets = 0;

38 var numSuricataAlerts = 0;

39 var numSuricataTypes = 0;

40 var suricataPackets = 0;

41 var numSnortAlerts_Merged = 0;

42 var numSnortTypes = 0;

43 var numSnortTypesMerged = 0;

44 var snortICount = 0;

45 var snortMCount = 0;

46

47 // Check for DB and create it if it doesn’t exists

48 // spawns a child process to check / create DB

49 const database_creator = path.resolve("database_creator.js");

50

51 console.log(green , ’Checking Database FIle\n’);

52

53 const params = [];

54 const options = {

55 stdio: [’pipe’, ’pipe’, ’pipe’, ’ipc’]

56 };

57

58 const database_child = fork(database_creator , params , options);

59

60 database_child.on(’message ’, message =>{

61 console.log(green , ’message from Database Child:’, message);

145

62 });

63 // //

64

65

66 function execute(command , callback){

67 exec(command , function(error , stdout , stderr){ callback(stdout);

});

68 };

69

70 function countPackets(output)

71 {

72 numPackets += parseInt(output.split(’Number of packets:’)[1].

trim())

73 console.log(green , "Num Packets: " + numPackets);

74 }

75

76 // Assumptions: Honeypots are not emitting malicious traffic / haven’

t been compromised

77 function alertAnalyzer ()

78 {

79 // threshold for number of honeypots that can be interacted with

before an alert is generated

80 var hpThreshold = (Object.keys(dstIPs).length / (honeyPots.length)

);

81

82 if(hpThreshold > percentage)

83 {

84 createAlert(’Alert: Multiple Honeypot Interaction Detected!’)

85 }

86

87 }

88

146

89 function createAlert(msg)

90 {

91 console.log(red , msg)

92 }

93

94 function parsePCAP(filename)

95 {

96 /*

97 "C:\ Program Files\Wireshark\capinfos.exe" -c C:\Snort\log

\192.168.1.152 _2019 -10 -14 _0939 \192.168.1.152 _2019 -10 -14 _0939.pcap

98 File name: C:\ Snort\log \192.168.1.152 _2019 -10 -14 _0939

\192.168.1.152 _2019 -10 -14 _0939.pcap

99 Number of packets: 1894

100 */

101 var cmd = ’"C:\\ Program Files\\ Wireshark \\ capinfos.exe" -c "C:\\

Snort \\log\\’ + filename

102 execute(cmd , countPackets);

103 }

104

105

106 function snortMerge(mergeOutput)

107 {

108 console.log(’Starting Snort Parser on Merged File\n’);

109 const snort_parser_merge = path.resolve("snort_parser.js");

110

111 const paramsMerge = [resetCounter , 0];

112 const optionsMerge = {

113 stdio: [’pipe’, ’pipe’, ’pipe’, ’ipc’]

114 };

115

116 const snort_child_merge = fork(snort_parser_merge , paramsMerge ,

optionsMerge);

147

117

118 snort_child_merge.on(’message ’, message =>{

119 console.log(red , ’message from Snort Child Merged:’, message);

120 snortMCount +=1;

121 message.forEach(function(alert)

122 {

123 if(alert.Count != undefined)

124 {

125 numSnortAlerts_Merged += alert.Count;

126 }

127 numSnortTypesMerged +=1;

128 });

129 });

130

131 snort_child_merge.on(’exit’, (code) => {

132 snortMCount +=1;

133 console.log("Snort M Child Exited");

134 });

135

136 }

137

138 // looks at interfaces to automatically grab and bind on an IP

139 var os = require(’os’);

140 var ifaces = os.networkInterfaces ();

141 var serverIP;

142

143 Object.keys(ifaces).forEach(function (ifname) {

144 var alias = 0;

145

146 ifaces[ifname]. forEach(function (iface) {

147 if (’IPv4’ !== iface.family || iface.internal !== false ||

ifname.includes(’VMware ’)) {

148

148 // skip over internal (i.e. 127.0.0.1) and non -ipv4 addresses

149 return;

150 }

151

152 if (alias >= 1) {

153 // this single interface has multiple ipv4 addresses

154 console.log(ifname + ’:’ + alias , iface.address);

155 } else {

156 // this interface has only one ipv4 adress

157 console.log(ifname , iface.address);

158 serverIP = iface.address;

159 }

160 ++ alias;

161 });

162 });

163 console.log(cyan , "Sever IP: " +serverIP);

164

165

166 // Create a server instance , and chain the listen function to it

167 // The function passed to net.createServer () becomes the event

handler for the ’connection ’ event

168 // The sock object the callback function receives UNIQUE for each

connection

169 var server = net.createServer(function(sock) {

170

171 // Add a ’data’ event handler to this instance of socket

172 sock.on(’data’, function(data) {

173 var JSONData = JSON.parse(data);

174

175 /*

176 header = {" Honeyd ": honeydIP ,

177 "Honeypots ": honeypots

149

178 "MSG": ’AUTHENTICATE ’}

179 */

180 if(JSONData.MSG == ’AUTHENTICATE ’)

181 {

182 if(! honeydIP.includes(JSONData.Honeyd))

183 {

184 honeydIP.push(JSONData.Honeyd);

185 }

186

187 JSONData.Honeypots.forEach(function(pot)

188 {

189 if(! honeyPots.includes(pot))

190 {

191 honeyPots.push(pot);

192 }

193 });

194

195 console.log(green , "Connected Honeypots");

196 console.log(green , honeyPots);

197 }

198

199 // receive suricata alert count

200 else if(JSONData.MSG == ’SURICATA ’)

201 {

202 numSuricataAlerts += JSONData.NumAlerts;

203 numSuricataTypes += JSONData.NumTypes;

204 suricataPackets = JSONData.NumPackets;

205 console.log(green , ’Suricata Alerts Received: ’ +

numSuricataAlerts + ’, ’ + numSuricataTypes + ’, ’ +

suricataPackets);

206 }

207

150

208 // reboot machine for fresh stable state

209 // C2 server should be relaunched automatically at startup

210 else if(JSONData.MSG == ’REBOOT ’)

211 {

212 // deletes all snort log files and then

213 // reboots when the cmd is finished

214 execute("del C:\\ Snort\\log * /S /F /Q",

215 function(output){

216 execute("shutdown /g /f /t 0", function (){});

217 });

218 }

219

220 else if(JSONData.MSG == ’SNORT’)

221 {

222 console.log("SNORT Command received , parsing PCAPS\n");

223 // parse unscanned PCAPS

224 if(!(completeTransfers === undefined || completeTransfers.

length == 0))

225 {

226

227 // mergecap -w outfile.pcapng dhcp -capture.pcapng imap -1.

pcapng

228 // have to add all their dirs in front of the filename

too

229 // then run through Snort

230 var cmd = ’"C:\\ Program Files\\ Wireshark \\ mergecap" -F

pcap -w "C:\\ Snort\\log\\ merged ’+resetCounter+’.pcap"’;

231 completeTransfers.forEach(function(filename)

232 {

233 parsePCAP(filename);

234 cmd = cmd + ’ ’ + "C:\\ Snort\\log\\"+filename;

235 });

151

236

237 console.log(’Starting Snort Parser individually\n’);

238 const snort_parser = path.resolve("snort_parser.js");

239

240 const params = [resetCounter , 1];

241 const options = {

242 stdio: [’pipe’, ’pipe’, ’pipe’, ’ipc’]

243 };

244

245 const snort_child = fork(snort_parser , params , options);

246

247 snort_child.on(’message ’, message =>{

248 console.log(red , ’message from Snort Child

individually:’, message);

249 message.forEach(function(alert)

250 {

251 if(alert.Count != undefined)

252 {

253 numSnortAlerts += alert.Count;

254 }

255 numSnortTypes +=1;

256 });

257 });

258

259 snort_child.on(’exit’, (code) => {

260 snortICount +=1;

261 console.log("Snort I Child Exited");

262 });

263

264 if(completeTransfers.length > 1)

265 {

266 // function noop(){}

152

267 execute(cmd , snortMerge);

268 }

269 }

270 }

271

272 else if(JSONData.MSG == ’RESET’)

273 {

274 // need to add a wait for all the snort processes to end

275 sock.write(JSON.stringify ({ Interactions: numInteractions ,

SnortICount: snortICount , Snort: numSnortAlerts , SnortTypes:

numSnortTypes , SnortMCount: snortMCount , SnortMerged:

numSnortAlerts_Merged , SnortTypesMerged:numSnortTypesMerged ,

Packets: numPackets , Suricata: numSuricataAlerts , SuricataTypes:

numSuricataTypes , suricataPackets: suricataPackets , numHoneypots:

honeyPots.length , numPCAPs: completeTransfers.length }));

276

277 honeydIP = [];

278 honeyPots = [];

279 completeTransfers = [];

280 alerts = [];

281 srcIPs = {};

282 dstIPs = {};

283 srcPrts = {};

284 dstPrts = {};

285

286 snortICount = 0;

287 snortMCount = 0;

288 numInteractions = 0

289 numSnortAlerts = 0;

290 numPackets = 0;

291 numSuricataAlerts = 0;

292 numSuricataTypes = 0;

153

293 suricataPackets = 0;

294 numSnortAlerts_Merged =0;

295 numSnortTypes = 0;

296 numSnortTypesMerged =0;

297 resetCounter +=1;

298

299 fs.writeFile("C:\\ Snort\\log\\ pcaps.txt", ’’, function (){

console.log(’Snort PCAP File cleared\n’)});

300 console.log(yellow , "Reset Received\n");

301 }

302

303 /*

304 header = {"Time": time.strftime ("%Y-%m-%d_%H%M"),

305 "Honeyd ": honeydIP ,

306 "IP": ’192.168.72.150 ’ ,

307 "MSG": ’HEARTBEAT ’}

308 */

309 else if(JSONData.MSG == ’HEARTBEAT ’)

310 {

311 console.log(green , "Honeypot Heartbeat - Time: " + JSONData

.Time + " Honeyd: "+ JSONData.honeydIP + " Honeypot IP: " +

JSONData.IP);

312 }

313

314

315 /*

316 header = {"Time": time.strftime ("%Y-%m-%d_%H%M"),

317 "TransLayer ": transLayer ,

318 "IP_SRC ": pckt_src ,

319 "IP_DST ": pckt_dst ,

320 "SPORT ": sport ,

321 "DPORT ": dport ,

154

322 "MSG": ’ALERT ’}

323 */

324 else if(JSONData.MSG == ’ALERT’)

325 {

326 numInteractions +=1;

327 console.log(yellow , "Honeypot interaction detected \n\tTime

: "+JSONData.Time+

328 "\n\tTransport Protocol: "+JSONData.TransLayer+

329 "\n\tIP SRC: "+JSONData.IP_SRC+

330 "\n\tSRC Port: "+JSONData.SPORT+

331 "\n\tIP DST: "+JSONData.IP_DST+

332 "\n\tDST Port: "+JSONData.DPORT);

333

334 if (JSONData.IP_SRC in srcIPs)

335 {

336 srcIPs[JSONData.IP_SRC] +=1;

337 }

338

339 else {

340 srcIPs[JSONData.IP_SRC] = 1;

341 }

342

343 // --------------------------

344 if (JSONData.SPORT in srcPrts)

345 {

346 srcPrts[JSONData.SPORT] +=1;

347 }

348

349 else {

350 srcPrts[JSONData.SPORT] = 1;

351 }

352

155

353 // ---------------------------

354 if (JSONData.IP_DST in dstIPs)

355 {

356 dstIPs[JSONData.IP_DST] +=1;

357 }

358

359 else {

360 dstIPs[JSONData.IP_DST] = 1;

361 }

362

363 // ---------------------------

364 if (JSONData.DPORT in dstPrts)

365 {

366 dstPrts[JSONData.DPORT] +=1;

367 }

368

369 else {

370 dstPrts[JSONData.DPORT] = 1;

371 }

372

373 alerts.push({Time: JSONData.Time , Protocol: JSONData.

TransLayer , SrcIP: JSONData.IP_SRC , SrcPort:JSONData.SPORT , DstIP

:JSONData.IP_DST , DstPort:JSONData.DPORT });

374 alertAnalyzer ();

375

376 // spawns a child process to check / create DB

377 const database_inserter = path.resolve("database_inserter.

js");

378

379 console.log(green , ’Adding to Database\n’);

380

381 // would need to re -JSON -ify JSONData , so just sending the

156

382 // original data

383 const params = [data];

384 const options = {

385 stdio: [’pipe’, ’pipe’, ’pipe’, ’ipc’]

386 };

387

388 const inserter_child = fork(database_inserter , params ,

options);

389

390 inserter_child.on(’message ’, message =>{

391 console.log(green , ’message from Inserter Child:’,

message);

392 });

393

394 }

395

396

397 // client is sending PCAP , open a new port for transfer state

398 // open a server / port for the file transfer to keep command

399 // data and binary data separate

400 else if(JSONData.MSG == ’PCAP’)

401 {

402 // console.log(green , JSONData.Filename + "\n" + JSONData.

File_Size + "\n" + JSONData.MD5);

403 //var callbackPort = JSONData.listenPort

404 const transfer_server = path.resolve("transfer_server.js");

405 const params = [JSONData.Filename , JSONData.File_Size ,

JSONData.MD5 , JSONData.Port];

406

407 const options = {

408 stdio: [’pipe’, ’pipe’, ’pipe’, ’ipc’]

409 };

157

410

411 const transferChild = fork(transfer_server , params , options)

;

412

413 transferChild.on(’message ’, message =>{

414 console.log(green , ’message from transfer child:’,

message + ’\n’);

415 if(message == ’Download Complete ’)

416 {

417 fs.appendFile("C:\\ Snort\\log\\ pcaps.txt", "C:\\ Snort\\

log\\"+JSONData.Filename+’\n’, function (err) {

418 if (err) throw err;

419 console.log(’PCAP File added to Snort File list \n’);

420 });

421 completeTransfers.push(JSONData.Filename);

422

423 }

424 });

425 }

426 // end of PCAP

427

428 // end of on data

429 });

430

431 // Add a ’close’ event handler to this instance of socket

432 sock.on(’close ’, function(data) {

433 // console.log(yellow , ’CLOSED: ’ + sock.remoteAddress +’ ’+

sock.remotePort);

434 });

435 });

436

437 server.once(’error’, function(err) {

158

438 if (err.code === ’EADDRINUSE ’) {

439 console.log(’Port Already in Use!: \n’);

440 process.exit()

441 }

442 });

443

444 server.listen(PORT , HOST);

445

446 console.log(cyan , ’Server bound on ’ + HOST +’:’+ PORT);

159

transfer server.js (Transfer Server)

1 const crypto = require (’crypto ’);

2 const downloadMD5 = crypto.createHash(’md5’);

3 var net = require(’net’);

4 var fs = require(’fs’);

5 var buffer = require(’buffer ’);

6

7 var HOST = ’0.0.0.0 ’;

8

9 var params = process.argv;

10 var fileName = String(params.slice(2, 3));

11 var dir = "C:\\ Snort\\log"; //\\" + fileName.split(’.pcap ’)[0];

12 var file_size = params.slice(3, 4);

13 var md5 = params.slice(4, 5);

14 var PORT = parseInt(params.slice(5, 6));

15 var downloadedBytes = 0;

16

17

18 // test that args were being received correctly

19 // process.send(" arguments: " + params.slice(2, 3) + "\n" + params.

slice(3, 4) + "\n" + params.slice(4, 5));

20 // process.send(" filename: " + params.slice(2, 3));

21

22 var fileStream = fs.createWriteStream(dir + ’\\’+ fileName);

23

24

25 var server = net.createServer(function(sock) {

26

27 process.send(’Downloading PCAP: \n’);

28 downloadedBytes = sock.on(’data’, function(data) {

29

30 //fs.access(file , fs.constants.W_OK , (err) => {

160

31 // process.send(‘${file} ${err ? ’is not writable ’ : ’is

writable ’}‘);

32 //});

33 downloadedBytes += data.length;

34 fileStream.write(data);

35 });

36

37 sock.on(’close’, function(data) {

38 process.send(’Download Complete ’);

39 // process.send(" Downloaded: "+ downloadedBytes + " bytes");

40 server.close();

41 // md5Verification ();

42 process.exit()

43 });

44 });

45

46 server.once(’error’, function(err) {

47 if (err.code === ’EADDRINUSE ’) {

48 process.send(’Port Already in Use!: \n’);

49 process.exit()

50 }

51 });

52

53 server.listen(PORT , HOST);

54 process.send(’Transfer Server bound on ’ + HOST +’:’+ PORT);

161

snort parser.js (Snort Log Parser)

1 // Run Snort on a PCAP

2

3 // Parse Snort alert log , combine like alerts ,

4 // and other metada in JSON format (src IP , dst IP , port range)

5 // keep count of occurances

6 // dstIP should be the same since the pcaps are transfered as

individually for each IP

7 //

8

9 // Send back results to main.js for compilation and monitoring

10 // which will have some threshold for alerting if so much traffic is

seen

11 // sent to one host , or a smaller amount of traffic sent to multiple

hosts

12

13 // Snort Alert Example

14 /*

15 [**] [1:10000005:2] NMAP TCP Scan [**]

16 [Priority: 0]

17 10/01 -16:22:13.304233 192.168.1.11:61273 -> 192.168.1.150:80

18 TCP TTL :128 TOS:0x0 ID :28818 IpLen :20 DgmLen :52 DF

19 ******S* Seq: 0x5F62CB19 Ack: 0x0 Win: 0xFAF0 TcpLen: 32

20 TCP Options (6) => MSS: 1460 NOP WS: 8 NOP NOP SackOK

21 */

22

23 // Snort Alert Example

24 /*

25 [**] [1:2009582:3] ET SCAN NMAP -sS window 1024 [**]

26 [Classification: Attempted Information Leak] [Priority: 2]

27 10/30 -14:41:29.472407 192.168.1.230:43923 -> 192.168.1.150:111

28 TCP TTL :56 TOS:0x0 ID :13589 IpLen :20 DgmLen :44

162

29 ******S* Seq: 0x15754519 Ack: 0x0 Win: 0x400 TcpLen: 24

30 TCP Options (1) => MSS: 1460

31 [Xref => http ://doc.emergingthreats.net /2009582]

32 */

33

34 var fs = require(’fs’);

35 const readline = require(’readline ’);

36 var exec = require(’child_process ’).exec;

37 var params = process.argv;

38

39 var iteration = parseInt(params.slice(2, 3));

40 var dir = "C:\\ Snort\\log\\";

41 var individually = parseInt(params.slice(3, 4));

42

43 var lineCounter = 0;

44 const numLinesSnortAlert = 8;

45 var snortLogResults = [];

46 var found = false;

47 var indx = 0;

48 var lastAlert = "";

49

50 if (!fs.existsSync(dir + ’individually ’ + iteration))

51 {

52 fs.mkdirSync(dir + ’individually ’ + iteration);

53 fs.mkdirSync(dir + ’merged ’ + iteration);

54 }

55

56 function execute(command , callback){

57 exec(command , function(error , stdout , stderr){

58 // process.send(stdout);

59 // process.send(stderr);

60 callback(stdout); });

163

61 };

62

63 var noop = function (){}; // do nothing.

64

65 function snortLog(output){

66 process.send(output);

67 }

68

69

70 async function processLineByLine () {

71 const fileStream = fs.createReadStream(dir+’\\alert.ids’);

72

73 const rl = readline.createInterface ({

74 input: fileStream ,

75 crlfDelay: Infinity

76 });

77 // Note: we use the crlfDelay option to recognize all instances of

CR LF

78 // (’\r\n’) in input.txt as a single line break.

79

80 for await (const line of rl) {

81 try{

82 // Type of Alert :[**] [1:10000005:2] NMAP TCP Scan [**]

83 if (lineCounter%numLinesSnortAlert == 0)

84 {

85 var regex = /[\]]([0-9A-z])+[\[]/g;

86 var alert = line.match(regex);

87 var alertType = alert [1]. replace(’]’, ’ ’);

88 alertType = alertType.replace(’[’, ’ ’);

89 alertType = alertType.trim();

90

91 // checks to see if alert is same as prev , so we can skip

164

searching

92 if(alertType == lastAlert)

93 {

94 snortLogResults[indx].Count +=1;

95 }

96

97 else{

98 found = false;

99 for(var i = 0; i < snortLogResults.length; i++)

100 {

101 if (snortLogResults[i].Type == alertType)

102 {

103 found = true;

104 indx = i;

105 snortLogResults[i].Count +=1;

106 break;

107 }

108 }

109

110 if (found == false) {

111 snortLogResults.push({Type: alertType , Count: 1,

StartDate: "", EndDate: "", StartTime: "", EndTime: "", Src: [],

Dst :[]});

112 found = true;

113 indx = snortLogResults.length -1;

114 lastAlert = alertType;

115 }

116 }

117 }

118

119 // Priority :[Priority: 0]

120 //else if (lineCounter%numLinesSnortAlert == 1)

165

121 //{

122 // Each line in input.txt will be successively available

here as ‘line ‘.

123 // process.send(‘Line from file: ${line}‘);

124 //}

125

126 // Timestamp and Src -> Dst ’10/01 -16:22:13.304233

192.168.1.11:61273 -> 192.168.1.150:80 ’

127 else if (lineCounter%numLinesSnortAlert == 2)

128 {

129 var dateSrcDst = line.split(’ ’);

130 var dateTime = dateSrcDst [0]. split(’-’);

131 var date = dateTime [0];

132 var time = dateTime [1]. split(’.’)[0];

133

134 var src = dateSrcDst [1];

135 var srcSplit = src.split(’:’);

136 var srcIP = srcSplit [0];

137 var srcPrt = parseInt(srcSplit [1], 10);

138

139

140 var dst = dateSrcDst [3];

141 var dstSplit = dst.split(’:’);

142 var dstIP = dstSplit [0];

143 var dstPrt = parseInt(dstSplit [1], 10);

144

145 // first entry

146 if(snortLogResults[indx]. StartDate == "")

147 {

148 snortLogResults[indx]. StartDate = date;

149 snortLogResults[indx]. StartTime = time;

150 }

166

151

152 else {

153 snortLogResults[indx]. EndDate = date;

154 snortLogResults[indx]. EndTime = time;

155 }

156

157 if(! snortLogResults[indx].Src.includes(src))

158 {

159 snortLogResults[indx].Src.push(src);

160 }

161

162 if(! snortLogResults[indx].Dst.includes(dst))

163 {

164 snortLogResults[indx].Dst.push(dst);

165 }

166 // process.send(snortLogResults);

167 }

168

169 // TCP TTL :128 TOS:0x0 ID :28818 IpLen :20 DgmLen :52 DF

170 //else if (lineCounter%numLinesSnortAlert == 3)

171 //{

172 // Each line in input.txt will be successively available

here as ‘line ‘.

173 // process.send(‘Line from file: ${line}‘);

174 //}

175

176 // ******S* Seq: 0x5F62CB19 Ack: 0x0 Win: 0xFAF0 TcpLen: 32

177 //else if (lineCounter%numLinesSnortAlert == 4)

178 //{

179 // Each line in input.txt will be successively available

here as ‘line ‘.

180 // process.send(‘Line from file: ${line}‘);

167

181 //}

182

183 // TCP Options (6) => MSS: 1460 NOP WS: 8 NOP NOP SackOK

184 else if (lineCounter%numLinesSnortAlert == 5)

185 {

186 // has 5 lines for alert instead of 6 or 7

187 // modify by 2 to catch up

188 if(!(line.includes(’TCP Options ’)))

189 {

190 lineCounter +=2;

191 }

192 }

193

194 else if (lineCounter%numLinesSnortAlert == 6)

195 {

196 // has 6 lines for alert instead of 7

197 // modify by 1 to catch up

198 if(!(line.includes(’Xref’)))

199 {

200 lineCounter +=1;

201 }

202 }

203

204 // blank line between alerts

205 //else if (lineCounter%numLinesSnortAlert == 7)

206 //{

207

208 //}

209 lineCounter +=1;

210 }

211 process.send(snortLogResults);

212 }

168

213 catch(err)

214 {

215 process.send(err)

216 }

217 // process.exit()

218 }

219

220 var cmd = ’"C:\\ Snort\\bin\\ snort.exe" -c "C:\\ Snort\\etc\\ snort.

conf" ’;

221 if (individually == 1)

222 {

223 dir = dir + ’individually ’ + iteration;

224 cmd = cmd + ’--pcap -file "C:\\ Snort\\log\\ pcaps.txt" --pcap -reset

-l ’+ dir;

225 }

226 else {

227 dir = dir + ’merged ’ + iteration;

228 cmd = cmd + ’-r "C:\\ Snort\\log\\ merged ’+iteration+’.pcap" -l ’+

dir;

229

230 }

231

232 execute(cmd , processLineByLine);

169

honeyB Agent.py (HoneyB Agent)

1 import subprocess

2 import thread

3 import socket

4 import json

5 import time

6 import os

7 import base64

8 from datetime import datetime , date , time , timedelta

9

10 from scapy.all import *

11

12 # color honey yellow is #a98307

13 port = 9830

14 transferPort = 9831

15 honeyHiveIP = ’192.168.1.233 ’

16 honeydIP = ’192.168.1.154 ’

17 honeypots = ["192.168.1.150", "192.168.1.151", "192.168.1.152"]

18 connections = {}

19 timeOutSeconds = 9000

20 sessionTimeout = timedelta(seconds=timeOutSeconds)

21 autoTransferTimeout = timedelta(seconds=timeOutSeconds)

22 connections_Lock = thread.allocate_lock ()

23 honeyd = None

24 devnull = open(os.devnull , ’wb’)

25 alertMode = False

26

27 def main():

28 global honeyd

29

30 pcap_monitor_id = thread.start_new_thread(pcapMonitor , ())

31 #heartbeat_id = thread.start_new_thread(heartbeat , ())

170

32

33 # I want this in my main console output

34 # once run , it casues blocking

35 print "Scapy Packet Sniffer Engaged"

36 sniff(iface="eth0", prn=processPacket , store =0)

37

38 def pcapMonitor ():

39 while True:

40 connections_Lock.acquire ()

41 uct = datetime.utcnow ()

42 remove = []

43 for ip in connections:

44 if (uct - connections[ip].get("time") >=

autoTransferTimeout):

45 transferFile(ip , connections[ip].get(’filename ’))

46 remove.append(ip)

47 print "Automatic Transfer"

48 for i in remove:

49 connections.pop(i)

50 connections_Lock.release ()

51 floatSeconds = timeOutSeconds *1.0

52 time.sleep(floatSeconds)

53

54 # method called when a packet is received

55 # parses the packet to identify the dest ip, port , ect.

56 # will implement scan recognition and attacker pivoting

57 def processPacket(packet):

58

59 #automatically named files based on ip, date , and time

60 now = datetime.now()

61 uct = datetime.utcnow ()

62

171

63 # ignore traffic not to honeypots

64 if packet.haslayer(IP) and (not packet[IP].dst in honeypots) and

(not packet[IP].src in honeypots) and (not packet[IP].dst ==

honeydIP) and (not packet[IP].src == honeydIP):

65 None

66

67 # ignore 9830 and 9831 because they are packets we are sending

68 elif packet.haslayer(TCP) and (packet[TCP]. dport == port or

packet[TCP]. dport == transferPort or packet[TCP]. sport == port or

packet[TCP]. sport == transferPort):

69 None

70

71 # ignores some Ubuntu traffic that is not being filtered out my /

etc/hosts

72 elif packet.haslayer(UDP) and (packet[UDP]. sport == 68 or packet[

UDP]. dport == 68 or packet[UDP]. dport == 5353 or packet[UDP].

dport == 53 or packet[UDP].sport == 53):

73 None

74

75 elif packet.haslayer(UDP) and (packet[UDP]. dport == 9830):

76 print "Command Received"

77 print now.strftime("%Y-%m-%d_%H%M")

78 runCommand(packet[UDP].load.strip(’\n’))

79

80 # ensures this packet has an IP

81 # log non 9830 and 9831 traffic from c2 server1

82 elif packet.haslayer(IP) and alertMode:

83 pckt_src=packet[IP].src

84 pckt_dst=packet[IP].dst

85 pckt_ttl=packet[IP].ttl

86

87

172

88 #

##

89 # if the honeypot doesnt already have an ongoing pcap log file

90 # and the time since last packet is less than 5 minutes

91 connections_Lock.acquire ()

92

93 if any(x in connections for x in[pckt_dst , pckt_src]):

94 ip = ""

95 filename = ""

96

97 # determine which ip was in the connections list

98 if pckt_dst in connections:

99 ip = pckt_dst

100

101 else:

102 ip = pckt_src

103

104 # time difference is less than than session timeout

105 # therefore , keep logging to file

106 # and update its timestamp to the new time

107 # new time - oldtime < allowed time

108 if(uct - connections[ip].get("time") < sessionTimeout):

109 filename = connections[ip].get("filename")

110 connections[ip]. update ({"time": uct})

111

112 # else there was a timeout so need a new file

113 # there was a connection at one point so the ip

114 # is in our honeypot list , no need to check again

115 # update time of connection to now

116 else:

117 print "Transfering PCAP"

173

118 #if packet.haslayer(TCP):

119 # print "Packet: Source IP %s, Port %s\n Dest IP %s,

Port %s" % (pckt_src , packet[TCP].sport , pckt_dst , packet[TCP].

dport)

120 #else:

121 # print "Packet: Source IP %s\n Dest IP %s" % (

pckt_src , pckt_dst)

122 transferFile(ip , connections[ip].get(’filename ’))

123

124 # create the new pcap file

125 filename = ip + "_" + now.strftime("%Y-%m-%d_%H%M") +".

pcap"

126 #print "New filename: " + filename

127 #print connections[ip]

128 connections[ip]. update ({"time": uct})

129 connections[ip]. update ({"filename": filename })

130 #print connections[ip]

131 alert(packet , now)

132

133 #appends packet to output file

134 wrpcap(filename , packet , append=True)

135

136

137 # ips not in connected list , but this may be first interaction

138 # with the honeypots. Want to assume first captured packet

will

139 # be sent to honeypot , but compromised hp could beacon out if

140 # hardware or software make it

141 elif any(x in honeypots for x in[pckt_dst , pckt_src]):

142 ip = ""

143

144 # determine which ip was in the connections list

174

145 if pckt_dst in honeypots:

146 ip = pckt_dst

147 else:

148 ip = pckt_src

149

150 # create the new pcap file

151 filename = ip + "_" + now.strftime("%Y-%m-%d_%H%M") +".pcap

"

152 #print "filename: " + filename

153 connections[ip] = {"filename": filename , "time": uct}

154 alert(packet , now)

155

156 #appends packet to output file

157 wrpcap(filename , packet , append=True)

158 connections_Lock.release ()

159

160

161 # receive and execute commands

162 def runCommand(msg):

163 global connections

164 global honeyd

165 global alertMode

166

167 print msg

168

169 # transfer all current pcaps

170 if(msg == "TRANSFER"):

171 connections_Lock.acquire ()

172 for ip in connections:

173 transferFile(ip , connections[ip].get(’filename ’))

174 # return all values to 0

175 connections = {}

175

176 connections_Lock.release ()

177

178 elif(msg == "RESET"):

179 # transfer all current pcaps

180 connections_Lock.acquire ()

181 for ip in connections:

182 transferFile(ip , connections[ip].get(’filename ’))

183 # return all values to 0

184 connections = {}

185 connections_Lock.release ()

186

187 # kill all honeyd

188 if(honeyd != None):

189 subprocess.Popen (["sudo killall honeyd"], stdin=None ,

stdout=devnull , stderr=devnull , shell=True)

190

191 honeyd = None

192 alertMode = False

193

194 # stops program completely

195 elif(msg == "KILL"):

196 # kill all honeyd

197 if(honeyd != None):

198 subprocess.Popen (["sudo killall honeyd"], stdin=None ,

stdout=devnull , stderr=devnull , shell=True)

199

200 # kill this script

201 subprocess.Popen (["sudo killall python"], stdin=None , stdout=

devnull , stderr=devnull , shell=True)

202

203 # starts just honeyd

204 elif(msg == "START"):

176

205 # relaunch honeyd

206 if(honeyd == None):

207 honeyd = subprocess.Popen(["sudo /home/edge/Desktop/

honeyhive/scripts/startHoney.sh"], stdin=None , stdout=devnull ,

stderr=devnull , shell=True)

208 alertMode = True

209

210 # authenticate

211 authenticate ()

212

213 # stops just honeyd

214 elif(msg == "STOP"):

215 # kill all honeyd

216 if(honeyd != None):

217 subprocess.Popen (["sudo killall honeyd"], stdin=None ,

stdout=devnull , stderr=devnull , shell=True)

218 honeyd = None

219 alertMode = False

220

221 elif(msg == "REBOOT"):

222 subprocess.call(["sudo", "reboot"])

223

224 def heartbeat ():

225 # header information to send server

226 # python dictonary

227 header = {"Time": time.strftime("%Y-%m-%d_%H%M"),

228 "Honeyd": honeydIP ,

229 "IP": ’192.168.72.150 ’,

230 "MSG": ’HEARTBEAT ’}

231

232 # converts dictionary to json format

233 jsonHeader = json.dumps(header)

177

234

235 try:

236 # attempts to connect to the server and tell it to open a

transfer port

237 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

238 server_address = (honeyHiveIP , port)

239 sock.connect(server_address)

240

241 sock.sendall(jsonHeader)

242

243 except socket.error , e:

244 print "Error creating Heartbeat socket: %s" %e

245

246 #clean -up actions that must be executed under all circumstances

247 finally:

248 sock.close ()

249

250 def authenticate ():

251

252 # header information to send server

253 # python dictonary

254 header = {"Honeyd": honeydIP ,

255 "Honeypots": honeypots ,

256 "MSG": ’AUTHENTICATE ’}

257

258 # converts dictionary to json format

259 jsonHeader = json.dumps(header)

260

261 try:

262 # attempts to connect to the server and tell it to open a

transfer port

263 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

178

264 server_address = (honeyHiveIP , port)

265 sock.connect(server_address)

266

267 sock.sendall(jsonHeader)

268

269 except socket.error , e:

270 print "Error creating Authenticate socket: %s" %e

271

272 #clean -up actions that must be executed under all circumstances

273 finally:

274 sock.close ()

275

276

277 def alert(packet , time):

278 sport = 0

279 dport = 0

280 transLayer = ’TCP’

281 if packet.haslayer(TCP):

282 sport=packet[TCP].sport

283 dport=packet[TCP].dport

284

285 elif packet.haslayer(UDP):

286 sport=packet[UDP].sport

287 dport=packet[UDP].dport

288 transLayer = ’UDP’

289

290 elif packet.haslayer(ICMP):

291 transLayer = ’ICMP’

292

293 else:

294 transLayer = ’Other ’

295

179

296 pckt_src=packet[IP].src

297 pckt_dst=packet[IP].dst

298 pckt_ttl=packet[IP].ttl

299

300 # header information to send server

301 # python dictonary

302 header = {"Time": time.strftime("%Y-%m-%d_%H%M"),

303 "TransLayer": transLayer ,

304 "IP_SRC": pckt_src ,

305 "IP_DST": pckt_dst ,

306 "SPORT": sport ,

307 "DPORT": dport ,

308 "MSG": ’ALERT ’}

309

310 # converts dictionary to json format

311 jsonHeader = json.dumps(header)

312

313 try:

314 # attempts to connect to the server and tell it to open a

transfer port

315 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

316 server_address = (honeyHiveIP , port)

317 sock.connect(server_address)

318

319 sock.sendall(jsonHeader)

320

321 except socket.error , e:

322 print "Error creating Alert socket: %s" %e

323

324 #clean -up actions that must be executed under all circumstances

325 finally:

326 sock.close ()

180

327

328

329 #sends transfer file command to the server

330 def transferFile(ip , filename):

331

332 # run command and return output

333 hashPcap = subprocess.check_output (["md5sum", filename])

334 # header information to send server

335 # python dictonary

336 header = {"Honeyd": honeydIP ,

337 "IP": ip,

338 "Filename": filename ,

339 "File_Size": os.path.getsize(filename),

340 "MD5": hashPcap.split(’ ’)[0],

341 "MSG": ’PCAP’,

342 "Port": transferPort}

343

344 # converts dictionary to json format

345 jsonHeader = json.dumps(header)

346

347 try:

348 # attempts to connect to the server and tell it to open a

transfer port

349 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

350 server_address = (honeyHiveIP , port)

351 sock.connect(server_address)

352

353 sock.sendall(jsonHeader)

354

355 except socket.error , e:

356 print "Error creating Transfer Server socket: %s" %e

357

181

358 #clean -up actions that must be executed under all circumstances

359 finally:

360 sock.close ()

361

362 # allows time for the C2 server to receive and start the transfer

server

363 # on the requested port

364 time.sleep (3)

365

366 try:

367 transSock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

368 transfer_address = (honeyHiveIP , transferPort)

369 transSock.connect(transfer_address)

370

371 # reads and sends the file to the server

372 f = open (filename , "rb")

373 l = f.read (1024)

374

375 while (l):

376 # encrypt data before sending

377 transSock.send(l)

378 l = f.read (1024)

379

380 f.close()

381 subprocess.call([’rm’, ’-f’, filename])

382

383 except socket.error , e:

384 print "Error creating Transfer File socket: %s" %e

385

386 #clean -up actions that must be executed under all circumstances

387 finally:

388 transSock.close ()

182

389

390 main()

183

Appendix B. Honeyd Configuration File

iotHoneyd.conf

1 create default

2 set default default tcp action block

3 set default default udp action block

4 set default default icmp action block

5

6 create titacamera

7 set titacamera personality "Linux 2.3.28 -33"

8 set titacamera default tcp action reset

9 add titacamera tcp port 80 "TitaCamera/camera_web.sh"

10 add titacamera tcp port 554 open

11 add titacamera tcp port 49152 open

12 add titacamera udp port 443 filtered

13 add titacamera udp port 990 filtered

14 add titacamera udp port 1900 filtered

15 add titacamera udp port 1901 filtered

16 add titacamera udp port 3702 open

17 add titacamera udp port 16896 filtered

18 add titacamera udp port 18676 filtered

19 add titacamera udp port 19956 filtered

20 add titacamera udp port 22986 filtered

21 add titacamera udp port 30697 filtered

22 add titacamera udp port 32772 filtered

23 add titacamera udp port 32777 filtered

24

25 create proliphixthermostat

26 set proliphixthermostat personality "D-Link Print Server"

184

27 set proliphixthermostat default tcp action reset

28 #Regular Thermostat Interface when Internet is available

29 #add proliphixthermostat tcp port 80

"ProliphixThermostat/thermostat_web.sh"

30 #Thermostat Interface when no internet is available

31 add proliphixthermostat tcp port 80

"ProliphixThermostat/thermostat_web_nointernet.sh"

32

33 create ezoutlet

34 set ezoutlet personality "IBM OS/2 Warp 4.0"

35 set ezoutlet default tcp action reset

36 add ezoutlet tcp port 80 "ezOutlet/outlet_web.sh"

37

38 set titacamera ethernet "7C:DD:90:B0 :22:82"

39 bind 192.168.45.150 titacamera

40 #dhcp titacamera on eth0

41 set proliphixthermostat ethernet "00:11:49:00:62:46"

42 bind 192.168.45.151 proliphixthermostat

43 #dhcp proliphixthermostat on eth0

44 set ezoutlet ethernet "00:03: EA:0E:11:67"

45 bind 192.168.45.152 ezoutlet

46 #dhcp ezoutlet on eth0

185

Appendix C. suricataConnect.py

suricataConnect.py

1 import subprocess

2 import socket

3 import json

4 import os

5

6 os.sys.path.append(’/usr/local/bin/scapy’)

7 from scapy.all import *

8

9 # color honey yellow is #a98307

10 port = 9830

11 honeyHiveIP = ’192.168.1.233 ’

12 suricataIP = ’192.168.1.231 ’

13 attacker = ’192.168.1.230 ’

14 suricataRunning = False

15 packetRXStart = 0

16 packetTXStart = 0

17 totalPackets = 0

18 devnull = open(os.devnull , ’wb’)

19

20 def main():

21 print "Scapy Packet Sniffer Engaged"

22 sniff(iface="eth0", prn=processPacket , store =0)

23

24 def processPacket(packet):

25 global totalPackets

26 if packet.haslayer(IP) and (packet[IP].src == attacker or packet[

IP].dst == attacker):

27 totalPackets += 1

28 #running on mirrored port so make sure it’s for this IP

186

29 if packet.haslayer(UDP) and packet[UDP]. dport == 9830 and packet[

IP].dst == suricataIP:

30 print "Command Received"

31 runCommand(packet[UDP].load.strip(’\n’))

32

33 # receive and execute commands

34 def runCommand(msg):

35 global suricataRunning

36 global packetRXStart , packetTXStart

37 global totalPackets

38

39 logGrep = subprocess.Popen([’sudo’, ’grep’, ’-i’, ’scan’, ’/var/

log/suricata/fast.log’], stdout=subprocess.PIPE)

40

41 wc = subprocess.Popen([’wc’, ’-l’], stdin=logGrep.stdout , stdout=

subprocess.PIPE)

42 out , err = wc.communicate ()

43 numAlerts = int(out)

44

45 typeCountGrep = subprocess.Popen ([’sudo’, ’grep’, ’-i’, ’scan’, ’

/var/log/suricata/fast.log’], stdout=subprocess.PIPE)

46

47 cutRuleSig = subprocess.Popen ([’cut’, ’-f’, ’4’, ’-d’, " "],

stdin=typeCountGrep.stdout , stdout=subprocess.PIPE)

48 sort = subprocess.Popen([’sort’], stdin=cutRuleSig.stdout , stdout

=subprocess.PIPE)

49 uniq = subprocess.Popen([’uniq’], stdin=sort.stdout , stdout=

subprocess.PIPE)

50 wcTypes = subprocess.Popen([’wc’, ’-l’], stdin=uniq.stdout ,

stdout=subprocess.PIPE)

51 out2 , err2 = wcTypes.communicate ()

52 numAlertTypes = int(out2)

187

53

54 print msg

55

56 # transfer current scan alert count and clear the log

57 if(msg == "TRANSFER"):

58 # packets sent and received after run complete

59 countRXEnd = subprocess.Popen ([’cat’, ’/sys/class/net/eth0/

statistics/rx_packets ’], stdout=subprocess.PIPE , close_fds=True)

60 packetRXEnd , err = countRXEnd.communicate ()

61 countTXEnd = subprocess.Popen ([’cat’, ’/sys/class/net/eth0/

statistics/tx_packets ’], stdout=subprocess.PIPE , close_fds=True)

62 packetTXEnd , err = countTXEnd.communicate ()

63

64 packetCount = int(packetRXEnd) + int(packetTXEnd) - int(

packetRXStart) - int(packetTXStart)

65

66 # send alert count

67 suricata(numAlerts , numAlertTypes , totalPackets)

68

69 print "Alerts: "+ str(numAlerts) + str(numAlertTypes) + str(

packetCount)

70

71 # clear log file

72 os.system("sudo rm /var/log/suricata/fast.log")

73 subprocess.call([’sudo’, ’touch ’, ’/var/log/suricata/fast.log’

])

74

75 elif(msg == "RESET"):

76 # packets sent and received after run complete

77 countRXEnd = subprocess.Popen ([’cat’, ’/sys/class/net/eth0/

statistics/rx_packets ’], stdout=subprocess.PIPE , close_fds=True)

78 packetRXEnd , err = countRXEnd.communicate ()

188

79 countTXEnd = subprocess.Popen ([’cat’, ’/sys/class/net/eth0/

statistics/tx_packets ’], stdout=subprocess.PIPE , close_fds=True)

80 packetTXEnd , err = countTXEnd.communicate ()

81 packetCount = int(packetRXEnd) + int(packetTXEnd) - int(

packetRXStart) - int(packetTXStart)

82

83 # send alert count

84 suricata(numAlerts , numAlertTypes , totalPackets)

85

86 print "Alerts: "+ str(numAlerts) + str(numAlertTypes) + str(

packetCount)

87 # finds and kills suricata based on PID

88 if(suricataRunning):

89 subprocess.Popen ([’sudo ./ killSuricata.sh’], stdout=

subprocess.PIPE , shell=True)

90 suricataRunning = False

91

92 # clear log file

93 os.system("sudo rm /var/log/suricata/fast.log")

94 subprocess.call([’sudo’, ’touch ’, ’/var/log/suricata/fast.log’

])

95

96 # stops program completely

97 elif(msg == "KILL"):

98 if(suricataRunning):

99 subprocess.Popen ([’sudo ./ killSuricata.sh’], stdout=

subprocess.PIPE , shell=True)

100

101 # kill this script

102 subprocess.Popen (["sudo killall python"], stdin=None , stdout=

devnull , stderr=devnull , shell=True)

103

189

104 # starts just suricata

105 elif(msg == "START"):

106 countRXStart = subprocess.Popen([’cat’, ’/sys/class/net/eth0/

statistics/rx_packets ’], stdout=subprocess.PIPE , close_fds=True)

107 packetRXStart , err = countRXStart.communicate ()

108 countTXStart = subprocess.Popen([’cat’, ’/sys/class/net/eth0/

statistics/tx_packets ’], stdout=subprocess.PIPE , close_fds=True)

109 packetTXStart , err = countTXStart.communicate ()

110

111 # launch suricata

112 # sudo suricata -c /etc/suricata/suricata.yaml -i eth0

113 if(not suricataRunning):

114 #subprocess.Popen ([" sudo "], stdin=None , stdout=devnull ,

stderr=devnull , shell=True)

115 subprocess.Popen (["sudo suricata -c /etc/suricata/suricata.

yaml -i eth0"], stdin=None , stdout=devnull , stderr=devnull , shell

=True)

116 suricataRunning = True

117

118 # stops just suricata

119 elif(msg == "STOP"):

120 # kill suricata

121 # sudo kill $(ps aux | grep ’[s]udo suricata -c /etc/suricata/

suricata.yaml -i eth0’ | awk ’{print $2}’)

122 if(suricataRunning):

123 subprocess.Popen ([’sudo ./ killSuricata.sh’], stdout=

subprocess.PIPE , shell=True)

124 suricataRunning = False

125

126 elif(msg == "REBOOT"):

127 subprocess.call(["sudo", "reboot"])

128

190

129 def suricata(numAlerts , numTypes , numPackets):

130 # header information to send server

131 # python dictonary

132 header = {"NumAlerts": numAlerts ,

133 "NumTypes": numTypes ,

134 "NumPackets": numPackets ,

135 "MSG": ’SURICATA ’}

136

137 # converts dictionary to json format

138 jsonHeader = json.dumps(header)

139

140 try:

141 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

142

143 # creates a socket for the connection to the server

144 server_address = (honeyHiveIP , port)

145

146 # attempts to connect to the server

147 sock.connect(server_address)

148 sock.sendall(jsonHeader)

149

150 except socket.error , e:

151 print "Error creating Suricata socket: %s" %e

152

153 finally:

154 # closes connection

155 sock.close ()

156

157 main()

191

Appendix D. runExperiment.py

runExperiment.py

1 import subprocess

2 import sys

3 import socket

4 import json

5 import time as t

6 import random

7 import os

8 from datetime import datetime , date , time , timedelta

9

10 devnull = open(os.devnull , ’wb’)

11

12 rasPi = ’192.168.1.231 ’

13

14 honeyd1 = ’192.168.1.154 ’

15 honeyd2 = ’192.168.1.164 ’

16 honeyd3 = ’192.168.1.174 ’

17 honeyd4 = ’192.168.1.184 ’

18

19 port = 9830

20 honeyHiveIP = ’192.168.1.233 ’

21 network = ’192.168.1.150 -192 ’

22

23 camera = [’192.168.1.190 ’, ’192.168.1.150 ’, ’192.168.1.170 ’, ’

192.168.1.160 ’]

24 thermostat = [’192.168.1.191 ’, ’192.168.1.151 ’, ’192.168.1.171 ’, ’

192.168.1.161 ’]

25 outlet = [’192.168.1.192 ’, ’192.168.1.152 ’, ’192.168.1.172 ’, ’

192.168.1.162 ’]

26

192

27 order = []

28 experimentFile = ’experiment.txt’

29 expRunNum = 0

30 numRuns = 30

31

32 def main():

33 global order

34

35 # checks to see if a file with the run order exists and makes

sure it’s not empty

36 if os.path.exists(experimentFile) and os.path.getsize(

experimentFile) > 0:

37 f = open(experimentFile , ’r’)

38 for line in f:

39 value = line.split ()

40 lambdaFunc = None

41 print value

42 # address of the functions can change between runs

43 # better to just check the name than store the address

value

44 if value [0] == ’nmapScan ’:

45 lambdaFunc = nmapScan

46 elif value [0] == ’baseline ’:

47 lambdaFunc = baseline

48 elif value [0] == ’wget’:

49 lambdaFunc = wget

50

51 # appends all experiments in the file to be run

52 order.append ({"Lambda": lambdaFunc , "Name": value [0], "

HoneyPots": int(value [1]), "Level": int(value [2])})

53 f.close()

54 else:

193

55 for i in range(numRuns):

56 #runExperiment(i+1)

57 #order = []

58 randomizeOrder ()

59 random.shuffle(order)

60 f = open(experimentFile , ’a’)

61 for run in order:

62 f.write(run[’Name’] + ’ ’ + str(run[’HoneyPots ’]) + ’ ’ +

str(run[’Level’]) + ’\n’)

63 f.close()

64

65 # removes very last newline ’\n’ so that there isn’t a blank

line at the end of the file

66 fT = open(experimentFile , ’rb+’)

67 fT.seek(-1, os.SEEK_END)

68 fT.truncate ()

69 fT.close()

70 runExperiment (1)

71

72 def runExperiment(runNumber):

73 global expRunNum

74

75 for run in order:

76 # starts the specified number of honeypots , and suricata

77 print "Sending Honeypot Starts"

78 sendCmd(run["HoneyPots"], "START\n")

79 sendCmd(run["HoneyPots"], "START\n")

80 sendCmd(run["HoneyPots"], "START\n")

81

82 # allows enough time for everything to reach a stable state

83 # takes about 30 seconds for suricata to startup on the

rasberry pi

194

84 t.sleep (40.0)

85

86 # packets sent and received before run

87 # cat /sys/class/net/enp2s0/statistics/rx_packets

88 # RX number of packets received

89 # TX number of packets transmitted

90 # need to cat both for full picture

91 countRXStart = subprocess.Popen([’cat’, ’/sys/class/net/

enp2s0/statistics/rx_packets ’], stdout=subprocess.PIPE , close_fds

=True)

92 packetRXStart , err = countRXStart.communicate ()

93 countTXStart = subprocess.Popen([’cat’, ’/sys/class/net/

enp2s0/statistics/tx_packets ’], stdout=subprocess.PIPE , close_fds

=True)

94 packetTXStart , err = countTXStart.communicate ()

95

96 #print packetCountStart

97

98 start = datetime.now()

99 print "Start Time:" + start.strftime("%Y-%m-%d_%H%M")

100 print "nmapScan" + " Level: " + str(run["Level"]) + ’

Honeypots: ’ + str(run["HoneyPots"])

101

102 # runs the specified test with corresponding level

103 run["Lambda"](run["Level"], run["HoneyPots"])

104

105 # packets sent and received after run complete

106 countRXEnd = subprocess.Popen ([’cat’, ’/sys/class/net/enp2s0

/statistics/rx_packets ’], stdout=subprocess.PIPE , close_fds=True)

107 packetRXEnd , err = countRXEnd.communicate ()

108 countTXEnd = subprocess.Popen ([’cat’, ’/sys/class/net/enp2s0

/statistics/tx_packets ’], stdout=subprocess.PIPE , close_fds=True)

195

109 packetTXEnd , err = countTXEnd.communicate ()

110

111 #print packetCountEnd

112 packetCount = int(packetRXEnd) + int(packetTXEnd) - int(

packetRXStart) - int(packetTXStart)

113 print ’Packets Sent and Received: ’+ str(packetCount)

114

115 end = datetime.now()

116 print "End Time:" + end.strftime("%Y-%m-%d_%H%M")

117 elapsedTime = (end - start).total_seconds ()

118 print "Elapsed Time:" + str(elapsedTime)

119

120 print "Sending Honeypot Resets"

121

122 # stops all honeypots and forces transfer of pcap , stops

suricata

123 sendCmd(run["HoneyPots"], "RESET\n")

124 sendCmd(run["HoneyPots"], "RESET\n")

125 sendCmd(run["HoneyPots"], "RESET\n")

126

127 # time required for honeypots and suricata to send all data

to c2 server

128 t.sleep (45.0)

129

130 sendSnort ()

131

132 # allows time for Snort to parse PCAP files

133 t.sleep (90.0)

134

135 # tells the C2 server to reset and send gathered stats to

this script

136 res = sendReset ()

196

137

138 # write gathered results to corresponding csv file

139 writeResults(run , res , packetCount , elapsedTime)

140

141 #removes run from experimentFile since it successfully completed

142 lines = open(experimentFile).readlines ()

143 with open(experimentFile , ’w’) as f:

144 f.writelines(lines [1:])

145 f.close()

146

147 # Reboots all machines for a clean stable start state

148 print "Sending Honeypot Reboots"

149 sendCmd(run["HoneyPots"], "REBOOT\n")

150 sendCmd(run["HoneyPots"], "REBOOT\n")

151 sendCmd(run["HoneyPots"], "REBOOT\n")

152

153 sendReboot ()

154

155 # allows plenty of time for all devices to reboot

156 # and startup scripts before proceeding to next iteration

157 # win 10 VM takes longest (30 seconds for reboot , another 15

for c2 server startup - 45s total)

158 # sometimes can take longer and crash script

159 t.sleep (45.0)

160

161 # makes sure c2 servere is up and running berfore starting

next iteration

162 sendStart ()

163 expRunNum += 1

164

165

166 # randomizes the order in which all 36 tests are run

197

167 def randomizeOrder ():

168 # inital testing

169 #test = [{" Lambda ": wget , "Name": ’wget ’}]

170

171 test = [{"Lambda": nmapScan , "Name": ’nmapScan ’}] #, {" Lambda ":

baseline , "Name": ’baseline ’}] #, {" Lambda ": wget , "Name": ’wget

’}]

172 for i in range (4):

173 numHps = i;

174 for testType in test:

175 for level in range (4):

176 order.append ({"Lambda": testType["Lambda"], "Name":

testType[’Name’], "HoneyPots": numHps , "Level": level })

177 #random.shuffle(order)

178

179

180 # tests to see if alerts are generated for different kinds of scans

181 # Levels are the different scan types:

182 # nmap 192.168.1.0/24 -sT

183 # nmap 192.168.1.0/24 -A

184 # sudo nmap 192.168.1.0/24 --max -hostgroup 1 --randomize -hosts -

f 8

185 def nmapScan(scanType , numHps):

186 global expRunNum

187 if (scanType == 0):

188 print "Control Group: sleep (1341)"

189 t.sleep (1341)

190 elif (scanType == 1):

191 print "nmap ipLst.txt -sT -Pn"

192 subprocess.call([’nmap’, ’-iL’, ’ipLst.txt’, ’-sT’, ’-Pn’, ’

-oX’, ’run’+str(expRunNum)+’.xml’], stdin=None , stdout=None ,

stderr=None , shell=False)

198

193 elif (scanType == 2):

194 print "nmap ipLst.txt -A -Pn"

195 subprocess.call([’nmap’, ’-iL’, ’ipLst.txt’, ’-A’, ’-Pn’, ’-

oX’, ’run’+str(expRunNum)+’.xml’], stdin=None , stdout=None ,

stderr=None , shell=False)

196 elif (scanType == 3):

197 print "sudo nmap ipLst.txt --scan -delay 1075ms --randomize -

hosts -f 8 -Pn"

198 subprocess.call([’sudo’, ’nmap’, ’-iL’, ’ipLst.txt’, ’--scan

-delay ’, ’1075ms’, ’--randomize -hosts ’, ’-f’, ’8’, ’-Pn’, ’-oX’,

’run’+str(expRunNum)+’.xml’],

199 stdin=None , stdout=None , stderr=None , shell=False)

200

201

202

203 # tests to see if an alert is generated for malicious wgets that

modify IoT device

204 # Levels are the different typse of devices:

205 # TITAThink Camera 192.168.1.1[5 -8]0

206 # Prolophix Thermostat 192.168.1.1[5 -8]1

207 # ez -Outlet 2 Power Outlet 192.168.1.1[5 -8]2

208 def wget(iotDevice , numHps):

209 if (iotDevice == 0):

210 print "Control Group: sleep (30)"

211 t.sleep (30)

212 elif (iotDevice == 1):

213 for ip in range (numHps + 1):

214 subprocess.call([’wget’, ’--user’, ’admin ’, ’--password ’

, ’admin ’, ’--tries’, ’1’, ’--timeout ’, ’1’, ’http ://’+camera[ip

]+’/form/deleteStorageAllApply?lang=en’],

215 stdin=None , stdout=None , stderr=None , shell=False)

216 print "wget TITAThink Cameras"

199

217 elif (iotDevice == 2):

218 print "wget Prolophix Thermostats"

219 for ip in range (numHps + 1):

220 subprocess.call([’wget’, ’--user’, ’admin ’, ’--password ’,

’admin’, ’--tries’, ’1’, ’--timeout ’, ’1’, ’http ://’+thermostat[

ip]+’/index.shtml ’],

221 stdin=None , stdout=None , stderr=None , shell=False)

222 elif (iotDevice == 3):

223 print "wget ez-Outlets"

224 for ip in range(numHps + 1):

225 subprocess.call([’wget’, ’--tries ’, ’1’, ’--timeout ’, ’1’

, ’http ://’+outlet[ip]+’/invert.cgi’],

226 stdin=None , stdout=None , stderr=None , shell=False)

227

228

229 # tests to see if alerts are genereated with no alert traffic

230 # levels: 20s, 660s, 6000s - to match length of each scan (from

pilot studies)

231 def baseline(runTime , numHps):

232 if (runTime == 1):

233 print "Baseline 30s"

234 t.sleep (30.0)

235 elif (runTime == 2):

236 print "Baseline 660s"

237 t.sleep (660.0)

238 else:

239 print "Baseline 1500s"

240 t.sleep (1500.0)

241

242

243 def sendCmd(numHPs , cmd):

244 # 1 non -mirrored

200

245 if (numHPs == 1):

246 hp1 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

247 hp1.sendto(cmd , (honeyd1 , port))

248 hp1.close()

249

250 # 1 non -mirrored , 1 mirrored

251 elif (numHPs == 2):

252 hp1 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

253 hp1.sendto(cmd , (honeyd1 , port))

254 hp1.close()

255

256 hp3 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

257 hp3.sendto(cmd , (honeyd3 , port))

258 hp3.close()

259

260 # 2 non -mirrored , 1 mirroed

261 elif (numHPs == 3):

262 hp1 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

263 hp1.sendto(cmd , (honeyd1 , port))

264 hp1.close()

265

266 hp2 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

267 hp2.sendto(cmd , (honeyd2 , port))

268 hp2.close()

269

270 hp3 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

271 hp3.sendto(cmd , (honeyd3 , port))

272 hp3.close()

273

274 # 2 non -mirrored , 2 mirrored

275 elif (numHPs == 4):

276 hp1 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

201

277 hp1.sendto(cmd , (honeyd1 , port))

278 hp1.close()

279

280 hp2 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

281 hp2.sendto(cmd , (honeyd2 , port))

282 hp2.close()

283

284 hp3 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

285 hp3.sendto(cmd , (honeyd3 , port))

286 hp3.close()

287

288 hp4 = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

289 hp4.sendto(cmd , (honeyd4 , port))

290 hp4.close()

291

292 # starts suricata on raspberry pi

293 ras = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

294 ras.sendto(cmd , (rasPi , port))

295 ras.close()

296

297

298 def sendStart ():

299 print "START sent to C2 Server"

300 while True:

301 try:

302 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

303

304 # creates a socket for the connection to the server

305 server_address = (honeyHiveIP , port)

306

307 # attempts to connect to the server

308 sock.connect(server_address)

202

309

310 # header information to send server

311 # python dictonary

312 header = {"MSG": ’START’}

313

314 # converts dictionary to json format

315 jsonHeader = json.dumps(header)

316

317 # sends all data

318 sock.sendall(jsonHeader)

319

320 except socket.error , e:

321 print "Error creating Start Socket: %s" %e

322 continue

323 break

324 sock.close ()

325

326

327 def sendSnort ():

328 print "SNORT sent to C2 Server"

329 while True:

330 try:

331 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

332

333 # creates a socket for the connection to the server

334 server_address = (honeyHiveIP , port)

335

336 # attempts to connect to the server

337 sock.connect(server_address)

338

339 # header information to send server

340 # python dictonary

203

341 header = {"MSG": ’SNORT’}

342

343 # converts dictionary to json format

344 jsonHeader = json.dumps(header)

345

346 # sends all data

347 sock.sendall(jsonHeader)

348

349 except socket.error , e:

350 print "Error creating Snort Socket: %s" %e

351 continue

352 break

353 sock.close ()

354

355 def sendReboot ():

356 print "REBOOT Sent to C2 Server"

357 while True:

358 try:

359 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

360

361 # creates a socket for the connection to the server

362 server_address = (honeyHiveIP , port)

363

364 # attempts to connect to the server

365 sock.connect(server_address)

366

367 # header information to send server

368 # python dictonary

369 header = {"MSG": ’REBOOT ’}

370

371 # converts dictionary to json format

372 jsonHeader = json.dumps(header)

204

373

374 # sends all data

375 sock.sendall(jsonHeader)

376

377 except socket.error , e:

378 print "Error creating Reboot Socket: %s" %e

379 continue

380 break

381 sock.close ()

382

383

384 def sendReset ():

385 print "RESET sent to C2 Server"

386 while True:

387 try:

388 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

389

390 # creates a socket for the connection to the server

391 server_address = (honeyHiveIP , port)

392

393 # attempts to connect to the server

394 sock.connect(server_address)

395

396 # header information to send server

397 # python dictonary

398 header = {"MSG": ’RESET’}

399

400 # converts dictionary to json format

401 jsonHeader = json.dumps(header)

402

403 # sends all data

404 sock.sendall(jsonHeader)

205

405 #{Interactions: numInteractions , Snort: numSnortAlerts ,

Packets: numPackets}

406 res = sock.recv (4096)

407

408 except socket.error , e:

409 print "Error creating Reset Socket: %s" %e

410 continue

411 break

412 sock.close()

413

414 return json.loads(res)

415

416 def writeResults(runInfo , results , packetCount , elapsedTime):

417

418 print "Writing Results"

419 # add suricata packet count and suricata num types of alerts

count

420 output = str(runInfo[’Level’]) + ’,’ + str(runInfo[’HoneyPots ’])

+ ’,’ + str(results[’numHoneypots ’]) + ’,’ + str(results[’

Interactions ’]) + ’,’ + str(results[’numPCAPs ’]) + ’,’ + str(

results[’SnortICount ’]) + ’,’ + str(results[’SnortMCount ’]) + ’,

’ + str(results[’Snort’]) + ’,’ + str(results[’SnortTypes ’]) + ’

,’ + str(results[’SnortMerged ’]) + ’,’ + str(results[’

SnortTypesMerged ’]) + ’,’ + str(results[’Suricata ’]) + ’,’ + str

(results[’SuricataTypes ’]) + ’,’ + str(packetCount) + ’,’ + str(

results[’Packets ’]) + ’,’ + str(results[’suricataPackets ’]) + ’,’

+ str(elapsedTime) + ’\n’

421 print "Output: " + output

422

423 #nmap

424 if (runInfo[’Name’] == ’nmapScan ’):

425 nmap_file = open(’nmap.csv’, mode=’a’)

206

426 nmap_file.write(output)

427 nmap_file.close ()

428

429 #baseline

430 elif (runInfo[’Name’] == ’baseline ’):

431 baseline_file = open(’baseline.csv’, mode=’a’)

432 baseline_file.write(output)

433 baseline_file.close ()

434

435 # wget

436 else:

437 wget_file = open(’wget.csv’, mode=’a’)

438 wget_file.write(output)

439 wget_file.close ()

440

441 main()

207

Appendix E. Experiment Results

Table 13. Experiment Results

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

1 NIDS Avoidance 0 0 0 0 0 0 31 8 0 18104 0% 32% 56978 2365

2 Control Group 6 0 0 0 0 0 0 0 0 96 0% 7% 1436 1341

3 NIDS Avoidance 0 0 0 0 0 0 30 6 0 15447 0% 27% 57756 2365

4 TCP Connect 0 0 0 0 0 0 31 8 0 3892 0% 12% 31239 312

5 TCP Connect 6 6 35 5 33 7 40 8 10706 9110 33% 28% 32030 129

6 Aggressive 3 3 0 0 0 0 105 12 13508 31709 2% 4% 893271 1093

7 Aggressive 0 0 0 0 0 0 125 12 0 32153 0% 4% 842658 679

8 Control Group 3 0 0 0 0 0 0 0 0 89 0% 7% 1218 1341

9 Aggressive 0 0 0 0 0 0 115 14 0 31803 0% 4% 857500 1086

10 Aggressive 6 5 0 0 0 0 124 12 13456 19050 7% 11% 181337 1829

11 NIDS Avoidance 3 3 0 0 0 0 28 5 7942 13030 10% 16% 79264 6459

12 TCP Connect 6 6 27 5 25 7 30 6 8490 5569 28% 18% 30590 35

13 Aggressive 3 3 61 7 69 9 107 11 11647 31299 2% 5% 673715 1163

14 Aggressive 0 0 0 0 0 0 112 12 0 32658 0% 4% 727012 1593

15 TCP Connect 6 6 32 5 33 8 44 8 10434 9281 33% 29% 31725 139

16 TCP Connect 6 6 33 5 28 7 38 8 10209 7751 33% 25% 30671 37

17 NIDS Avoidance 9 9 24 4 33 7 63 8 32051 36139 32% 36% 100940 2367

18 Control Group 6 0 0 0 0 0 0 0 0 95 0% 7% 1437 1341

208

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

19 Aggressive 6 5 93 8 87 10 54 9 18912 12077 7% 5% 267195 1089

20 NIDS Avoidance 6 6 12 4 16 5 62 8 19988 36159 23% 41% 87887 2365

21 Aggressive 9 8 67 6 62 8 53 7 16992 12077 52% 37% 32767 1096

22 Aggressive 0 0 0 0 0 0 112 12 0 31907 0% 5% 702602 698

23 Aggressive 3 3 55 7 55 9 111 12 14269 31707 2% 4% 712468 838

24 Aggressive 0 0 0 0 0 0 117 12 0 32710 0% 5% 699017 622

25 NIDS Avoidance 3 3 0 0 0 0 29 6 13444 18133 19% 26% 69043 2366

26 TCP Connect 3 3 21 5 21 7 31 8 2413 2120 6% 6% 37184 404

27 NIDS Avoidance 6 6 0 0 0 0 65 8 19797 36120 23% 41% 87561 2367

28 Control Group 0 0 0 0 0 0 0 0 0 173 0% 17% 1045 1341

29 Aggressive 3 3 0 0 0 0 109 12 13053 31143 2% 4% 721156 742

30 TCP Connect 9 9 13 5 16 5 45 10 5732 9613 15% 24% 39352 288

31 Control Group 9 0 0 0 0 0 0 0 0 93 0% 8% 1164 1341

32 TCP Connect 3 3 8 5 9 5 31 8 2381 3588 9% 14% 25923 79

33 NIDS Avoidance 9 9 17 5 19 7 66 8 21364 36139 21% 35% 101819 2523

34 Control Group 3 0 0 0 0 0 0 0 0 80 0% 7% 1096 1341

35 Control Group 3 0 0 0 0 0 0 0 0 65 0% 6% 1035 1341

36 Aggressive 9 8 126 8 118 8 77 9 22445 12080 60% 32% 37418 1108

37 TCP Connect 3 3 6 4 8 5 28 8 2607 2516 7% 7% 35691 398

38 TCP Connect 3 3 8 5 8 5 20 6 2319 1802 9% 7% 24792 47

209

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

39 Control Group 9 0 0 0 0 0 0 0 0 96 0% 9% 1051 1341

40 TCP Connect 6 6 0 0 0 0 43 8 0 12008 0% 29% 41541 1325

41 Aggressive 9 6 220 9 204 9 67 7 30154 12663 83% 35% 36358 1346

42 Control Group 9 0 0 0 0 0 0 0 0 98 0% 8% 1173 1341

43 NIDS Avoidance 9 9 24 4 35 7 65 8 32047 36187 32% 36% 100513 2364

44 Aggressive 0 0 0 0 0 0 113 12 0 32960 0% 3% 1001189 1149

45 Control Group 0 0 0 0 0 0 0 0 0 81 0% 5% 1630 1341

46 Control Group 6 0 0 0 0 0 0 0 0 97 0% 8% 1200 1341

47 TCP Connect 3 3 9 5 9 5 23 8 2665 3932 10% 14% 27946 180

48 TCP Connect 9 9 0 0 0 0 40 8 17267 7562 47% 21% 36457 25

49 Aggressive 0 0 0 0 0 0 115 11 0 32110 0% 3% 990706 950

50 NIDS Avoidance 9 9 24 4 33 7 68 8 32056 36234 32% 36% 100504 2365

51 TCP Connect 0 0 0 0 0 0 29 8 0 6685 0% 24% 28329 321

52 NIDS Avoidance 0 0 0 0 0 0 28 6 0 18122 0% 32% 57333 2367

53 Control Group 3 0 0 0 0 0 0 0 0 70 0% 5% 1281 1341

54 Aggressive 9 8 174 7 155 9 54 7 37572 12096 97% 31% 38909 1111

55 TCP Connect 3 3 7 5 8 5 26 6 2457 4213 8% 14% 30038 252

56 TCP Connect 9 9 54 5 42 7 35 8 16239 6219 45% 17% 36342 23

57 Control Group 6 0 0 0 0 0 0 0 0 90 0% 6% 1591 1341

58 NIDS Avoidance 0 0 0 0 0 0 33 6 0 18200 0% 31% 58469 2367

210

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

59 TCP Connect 0 0 0 0 0 0 33 8 0 4873 0% 16% 30904 366

60 Aggressive 6 5 69 7 66 9 36 9 11084 22560 3% 6% 385004 1828

61 TCP Connect 3 3 0 0 0 0 21 7 10031 7352 19% 14% 51586 2677

62 Control Group 6 0 0 0 0 0 0 0 0 95 0% 9% 1117 1341

63 TCP Connect 0 0 0 0 0 0 25 8 0 6123 0% 26% 23572 247

64 Aggressive 9 8 78 7 74 9 132 10 9304 18645 21% 42% 44115 1817

65 TCP Connect 6 6 27 5 24 7 34 8 8321 6698 27% 21% 31299 46

66 Control Group 9 0 0 0 0 0 0 0 0 80 0% 6% 1261 1341

67 TCP Connect 9 9 55 5 42 7 37 8 16691 8561 46% 24% 36386 32

68 TCP Connect 0 0 0 0 0 0 16 5 0 4564 0% 15% 31116 409

69 TCP Connect 3 3 7 5 8 5 16 6 2369 2076 7% 6% 34185 330

70 Control Group 6 0 0 0 0 0 0 0 0 95 0% 8% 1188 1341

71 Control Group 9 0 0 0 0 0 0 0 0 95 0% 8% 1211 1341

72 TCP Connect 9 9 0 0 0 0 12 6 16174 6893 44% 19% 36607 22

73 Control Group 6 0 0 0 0 0 0 0 0 109 0% 10% 1123 1341

74 Aggressive 6 5 103 7 99 9 119 10 24344 17919 6% 5% 382701 1826

75 Control Group 9 0 0 0 0 0 0 0 0 84 0% 7% 1216 1341

76 Aggressive 9 8 0 0 0 0 125 11 14966 18280 36% 44% 41339 1806

77 Control Group 6 0 0 0 0 0 0 0 0 110 0% 8% 1460 1341

78 NIDS Avoidance 6 6 12 4 17 5 62 8 19992 36290 23% 41% 88185 2366

211

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

79 TCP Connect 0 0 0 0 0 0 31 8 0 5310 0% 18% 29927 321

80 Aggressive 6 5 129 9 123 9 26 9 18030 17390 4% 3% 514449 1089

81 TCP Connect 6 6 3 1 3 1 42 8 577 10136 2% 32% 32128 154

82 NIDS Avoidance 6 6 108 6 112 7 67 8 19822 36111 23% 41% 87978 2365

83 TCP Connect 3 3 7 4 9 6 29 8 2634 2217 7% 6% 36804 471

84 Control Group 6 0 0 0 0 0 0 0 0 90 0% 8% 1114 1341

85 Control Group 0 0 0 0 0 0 0 0 0 79 0% 7% 1057 1341

86 TCP Connect 3 3 36 5 35 5 26 8 2523 2045 7% 6% 35480 382

87 Aggressive 9 8 137 8 122 10 124 12 37932 17753 96% 45% 39660 1802

88 Aggressive 9 8 156 9 137 10 120 10 29815 18369 70% 43% 42311 1806

89 Control Group 9 0 0 0 0 0 0 0 0 74 0% 7% 1026 1341

90 Control Group 9 0 0 0 0 0 0 0 0 196 0% 20% 1001 1341

91 TCP Connect 9 9 61 5 39 7 35 8 15533 6876 43% 19% 36470 20

92 NIDS Avoidance 6 6 12 4 18 5 63 8 19817 36112 23% 41% 87659 2367

93 Aggressive 6 5 104 7 104 9 118 10 23544 17856 5% 4% 507274 1829

94 TCP Connect 3 3 8 5 9 5 31 8 2608 4324 9% 14% 30338 295

95 NIDS Avoidance 9 9 24 4 33 7 59 8 32071 36129 32% 36% 100046 2365

96 Aggressive 3 3 43 7 46 9 107 12 12392 31865 1% 3% 1120935 932

97 Aggressive 6 5 58 7 59 9 92 8 13785 48851 41% 147% 33270 408

98 Aggressive 3 3 47 7 48 9 103 12 11984 31445 1% 3% 1121648 953

212

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

99 NIDS Avoidance 3 3 12 4 16 5 30 6 13457 18121 19% 26% 69068 2367

100 TCP Connect 3 3 9 5 11 7 33 8 2642 2661 8% 8% 35200 375

101 Aggressive 9 8 206 10 178 11 123 10 35124 16630 108% 51% 32566 1870

102 NIDS Avoidance 6 6 12 4 16 5 69 8 19816 36170 22% 41% 88593 2363

103 TCP Connect 6 6 26 5 25 7 41 8 8405 8325 26% 26% 32046 179

104 NIDS Avoidance 3 3 12 4 14 5 31 8 11941 17841 17% 25% 70457 2367

105 Control Group 6 0 0 0 0 0 0 0 0 91 0% 6% 1551 1341

106 Control Group 6 0 0 0 0 0 0 0 0 91 0% 5% 1688 1341

107 NIDS Avoidance 6 6 12 4 15 5 23 8 19817 36292 22% 41% 88230 2367

108 TCP Connect 6 6 23 5 20 7 39 8 6603 7154 20% 22% 32983 146

109 NIDS Avoidance 6 6 121 4 124 5 64 8 19821 36117 23% 41% 87948 2366

110 NIDS Avoidance 3 3 12 4 17 5 32 8 13458 18123 19% 26% 69950 2366

111 TCP Connect 0 0 0 0 0 0 6 6 0 21267 0% 63% 33801 547

112 Control Group 3 0 0 0 0 0 0 0 0 85 0% 6% 1384 1341

113 Control Group 3 0 0 0 0 0 0 0 0 174 0% 10% 1710 1341

114 TCP Connect 6 6 10 5 10 5 32 6 2387 7857 8% 25% 31182 101

115 NIDS Avoidance 9 9 24 4 32 7 63 8 32064 36118 32% 36% 100385 2367

116 Control Group 9 0 0 0 0 0 0 0 0 76 0% 7% 1071 1341

117 Control Group 0 0 0 0 0 0 0 0 0 82 0% 6% 1466 1341

118 TCP Connect 9 9 13 5 16 7 48 10 5785 7542 15% 19% 39194 280

213

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

119 Aggressive 6 5 108 7 108 9 234 10 22964 15869 7% 5% 324561 555

120 Control Group 0 0 0 0 0 0 0 0 0 67 0% 6% 1210 1341

121 NIDS Avoidance 6 6 0 0 0 0 68 8 19998 36136 23% 41% 87976 2366

122 TCP Connect 6 6 24 5 22 7 45 8 6286 9568 19% 29% 33472 203

123 Aggressive 6 5 50 7 47 9 269 12 8637 35068 2% 8% 413867 439

124 NIDS Avoidance 9 9 24 4 34 7 61 8 32091 36125 32% 36% 100790 2367

125 Aggressive 0 0 0 0 0 0 116 12 0 31918 0% 3% 1095314 718

126 Control Group 6 0 0 0 0 0 0 0 0 76 0% 7% 1107 1341

127 TCP Connect 0 0 0 0 0 0 30 8 0 6440 0% 25% 25899 252

128 Control Group 9 0 0 0 0 0 0 0 0 92 0% 7% 1360 1341

129 Control Group 9 0 0 0 0 0 0 0 0 96 0% 8% 1200 1341

130 Aggressive 0 0 0 0 0 0 118 12 0 32203 0% 3% 1000779 721

131 Control Group 6 0 0 0 0 0 0 0 0 94 0% 8% 1185 1341

132 NIDS Avoidance 9 9 24 4 34 7 64 8 31938 36658 31% 36% 102266 2368

133 NIDS Avoidance 9 9 0 0 0 0 67 8 31902 35737 31% 35% 101576 2364

134 TCP Connect 0 0 0 0 0 0 29 8 0 4409 0% 15% 30325 336

135 Aggressive 6 5 108 7 110 9 229 12 24171 15611 67% 43% 36188 530

136 Aggressive 0 0 0 0 0 0 103 11 0 30912 0% 5% 626567 1019

137 NIDS Avoidance 0 0 0 0 0 0 27 5 0 17984 0% 31% 58084 2369

138 Aggressive 0 0 0 0 0 0 121 12 0 31342 0% 5% 617717 604

214

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

139 Control Group 9 0 0 0 0 0 0 0 0 96 0% 4% 2441 1341

140 TCP Connect 0 0 0 0 0 0 29 8 0 4563 0% 19% 23664 221

141 TCP Connect 6 6 0 0 0 0 30 8 8454 5505 27% 18% 30797 51

142 Control Group 3 0 0 0 0 0 0 0 0 98 0% 6% 1681 1341

143 NIDS Avoidance 0 0 0 0 0 0 31 6 0 18153 0% 31% 57711 2366

144 NIDS Avoidance 3 3 12 4 17 5 33 6 12073 18218 17% 26% 70010 2369

145 Control Group 9 0 0 0 0 0 0 0 0 89 0% 5% 1641 1341

146 NIDS Avoidance 0 0 0 0 0 0 7 5 0 18218 0% 31% 57985 2366

147 NIDS Avoidance 6 6 32 5 36 5 66 8 19891 36207 22% 41% 89170 2367

148 TCP Connect 9 9 17 4 14 6 34 8 5507 6119 15% 17% 36474 21

149 NIDS Avoidance 0 0 0 0 0 0 27 6 0 18118 0% 31% 57733 2365

150 NIDS Avoidance 6 6 12 4 15 5 64 8 19808 36135 22% 41% 88909 2368

151 Aggressive 3 3 0 0 0 0 118 11 11018 30300 2% 5% 637042 666

152 TCP Connect 0 0 0 0 0 0 26 8 0 5026 0% 19% 25994 245

153 Aggressive 6 5 101 7 100 9 121 10 24777 17704 83% 59% 29869 1795

154 NIDS Avoidance 9 9 129 6 140 7 66 8 32106 36144 32% 36% 101266 2365

155 NIDS Avoidance 6 6 8 2 10 3 62 8 13939 36494 14% 38% 96538 7855

156 TCP Connect 6 6 23 5 25 7 35 8 8337 5158 25% 16% 33002 188

157 Control Group 6 0 0 0 0 0 0 0 0 80 0% 5% 1703 1341

158 Aggressive 0 0 0 0 0 0 122 14 0 32463 0% 5% 629445 1035

215

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

159 TCP Connect 9 9 55 5 40 7 38 8 17989 7239 49% 20% 36566 25

160 NIDS Avoidance 3 3 12 4 16 5 31 6 13178 18013 19% 26% 70151 2369

161 Aggressive 3 3 28 5 27 7 113 12 10649 31231 2% 5% 641598 1095

162 Control Group 0 0 0 0 0 0 0 0 0 81 0% 4% 2128 1341

163 NIDS Avoidance 3 3 12 4 17 5 32 6 12056 18171 17% 26% 70605 2366

164 Control Group 9 0 0 0 0 0 0 0 0 94 0% 5% 1815 1341

165 Control Group 3 0 0 0 0 0 0 0 0 140 0% 6% 2354 1341

166 Control Group 3 0 0 0 0 0 0 0 0 82 0% 7% 1163 1341

167 Control Group 0 0 0 0 0 0 0 0 0 66 0% 5% 1404 1341

168 Control Group 3 0 0 0 0 0 0 0 0 89 0% 8% 1099 1341

169 Control Group 3 0 0 0 0 0 0 0 0 77 0% 7% 1114 1341

170 Aggressive 3 3 47 7 47 9 42 11 10987 30930 2% 5% 640906 653

171 Aggressive 3 3 0 0 0 0 120 12 12157 32081 2% 5% 641763 655

172 Aggressive 9 8 146 7 121 9 123 12 38851 17979 95% 44% 40997 1810

173 NIDS Avoidance 0 0 0 0 0 0 31 6 0 18042 0% 31% 58041 2367

174 NIDS Avoidance 3 3 3 1 4 2 0 0 7461 18246 11% 26% 70969 4842

175 Control Group 9 0 0 0 0 0 0 0 0 191 0% 14% 1348 1341

176 Aggressive 0 0 0 0 0 0 121 12 0 32360 0% 5% 643431 701

177 TCP Connect 3 3 8 4 10 5 23 6 4535 2192 14% 7% 32258 493

178 NIDS Avoidance 3 3 12 4 17 5 34 6 13252 18704 19% 26% 70878 2367

216

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

179 Aggressive 9 8 176 7 149 10 124 10 30504 18477 69% 42% 44339 1809

180 TCP Connect 9 9 21 5 17 7 36 8 5538 6557 15% 18% 36719 21

181 Aggressive 0 0 0 0 0 0 122 12 0 32033 0% 5% 643158 593

182 Aggressive 6 5 0 0 0 0 53 7 23947 12114 97% 49% 24802 1854

183 TCP Connect 9 9 57 5 42 7 40 8 16630 7488 45% 20% 36608 26

184 NIDS Avoidance 0 0 0 0 0 0 28 6 0 18170 0% 29% 63306 3548

185 Aggressive 3 3 23 5 23 7 122 12 7402 32247 1% 5% 634299 1902

186 Aggressive 9 8 219 7 176 9 184 12 30316 18705 68% 42% 44587 1819

187 TCP Connect 9 9 65 5 44 7 38 8 19160 7960 52% 21% 37108 34

188 Control Group 9 0 0 0 0 0 0 0 0 93 0% 6% 1639 1341

189 Control Group 3 0 0 0 0 0 0 0 0 67 0% 4% 1630 1341

190 NIDS Avoidance 6 6 12 4 14 5 62 8 19824 36130 22% 41% 88777 2366

191 Aggressive 6 5 47 6 50 8 55 7 12240 11964 54% 53% 22766 942

192 Control Group 3 0 0 0 0 0 0 0 0 73 0% 4% 1680 1341

193 Control Group 6 0 0 0 0 0 0 0 0 94 0% 6% 1686 1341

194 NIDS Avoidance 0 0 0 0 0 0 6 2 0 18268 0% 32% 57911 2365

195 TCP Connect 9 9 94 7 88 7 62 8 24616 13503 54% 29% 45843 1747

196 TCP Connect 9 9 28 5 25 7 30 8 8641 6581 24% 18% 36486 27

197 Aggressive 6 5 0 0 0 0 222 10 0 15258 0% 45% 34217 577

198 Aggressive 3 1 126 9 120 9 105 12 8073 31319 1% 6% 552845 910

217

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

199 Control Group 6 0 0 0 0 0 0 0 0 667 0% 20% 3260 1341

200 TCP Connect 6 6 22 5 25 7 45 8 8132 10500 25% 33% 32216 169

201 NIDS Avoidance 6 6 108 6 114 7 65 8 19828 36232 22% 41% 89449 2369

202 Control Group 6 0 0 0 0 0 0 0 0 99 0% 5% 1876 1341

203 TCP Connect 3 3 9 4 9 4 31 8 2490 2312 7% 6% 36686 386

204 TCP Connect 0 0 0 0 0 0 21 8 0 4125 0% 12% 33202 467

205 NIDS Avoidance 6 6 0 0 0 0 71 8 18208 36181 18% 36% 100925 8985

206 Aggressive 9 8 184 7 157 9 65 7 36488 12802 97% 34% 37611 1106

207 Aggressive 6 5 104 8 95 8 88 9 17461 11975 72% 49% 24233 953

208 Control Group 0 0 0 0 0 0 0 0 0 82 0% 5% 1750 1341

209 NIDS Avoidance 9 9 30 5 39 8 61 8 31890 36047 31% 36% 101483 2369

210 TCP Connect 0 0 0 0 0 0 32 10 0 5200 0% 18% 29611 350

211 NIDS Avoidance 6 6 12 4 14 5 67 8 19935 35877 22% 40% 89865 2368

212 Aggressive 9 8 157 7 128 9 62 7 33662 12771 95% 36% 35500 1116

213 Aggressive 3 3 24 5 25 7 121 11 7981 31656 1% 5% 640899 1198

214 TCP Connect 0 0 0 0 0 0 27 8 0 4763 0% 15% 31533 369

215 TCP Connect 9 9 10 5 10 5 36 8 2376 7241 6% 20% 36809 22

216 Aggressive 3 3 43 7 44 9 112 12 12380 31724 2% 5% 626577 1156

217 Aggressive 3 3 39 7 42 9 108 12 11487 31105 2% 5% 635276 790

218 Control Group 0 0 0 0 0 0 0 0 0 66 0% 4% 1784 1341

218

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

219 Aggressive 3 3 91 7 89 9 43 11 11601 30455 2% 5% 635512 1226

220 NIDS Avoidance 9 9 45 5 56 7 67 8 31991 35993 31% 35% 102228 2396

221 Control Group 6 0 0 0 0 0 0 0 0 93 0% 3% 2763 1341

222 Aggressive 6 5 119 7 121 9 241 12 24515 16528 72% 48% 34137 520

223 TCP Connect 0 0 0 0 0 0 28 8 0 4164 0% 15% 27524 232

224 NIDS Avoidance 6 6 12 3 13 4 56 9 11827 29122 12% 30% 95912 7710

225 NIDS Avoidance 0 0 0 0 0 0 31 6 0 18251 0% 31% 58184 2367

226 Aggressive 9 8 110 9 84 9 127 10 30828 17955 89% 52% 34637 1803

227 Control Group 9 0 0 0 0 0 0 0 0 415 0% 13% 3174 1341

228 NIDS Avoidance 0 0 0 0 0 0 30 6 0 18100 0% 31% 58233 2365

229 Aggressive 9 8 131 7 113 10 123 10 32154 16534 96% 49% 33417 1066

230 TCP Connect 9 9 14 5 12 5 41 8 2890 6663 8% 18% 36512 22

231 TCP Connect 0 0 0 0 0 0 24 8 0 2524 0% 7% 34101 547

232 Aggressive 3 3 41 6 46 9 107 12 11240 31468 2% 5% 631313 843

233 TCP Connect 0 0 0 0 0 0 17 6 0 4072 0% 13% 30692 361

234 Aggressive 3 3 42 7 48 9 113 12 11541 32069 2% 5% 634563 1833

235 Control Group 9 0 0 0 0 0 0 0 0 32345 0% 1247% 2593 1341

236 TCP Connect 6 6 33 5 35 7 37 8 10589 8003 33% 25% 32002 137

237 Control Group 0 0 0 0 0 0 0 0 0 77 0% 5% 1668 1341

238 Control Group 9 0 0 0 0 0 0 0 0 88 0% 5% 1670 1341

219

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

239 Control Group 0 0 0 0 0 0 0 0 0 77 0% 4% 1714 1341

240 Control Group 6 0 0 0 0 0 0 0 0 189 0% 10% 1882 1341

241 TCP Connect 3 3 4 2 5 3 33 8 1985 2635 6% 8% 33381 331

242 NIDS Avoidance 0 0 0 0 0 0 30 6 0 18125 0% 31% 57950 2368

243 Aggressive 0 0 0 0 0 0 119 12 0 31340 0% 5% 595363 657

244 Control Group 3 0 0 0 0 0 0 0 0 73 0% 4% 1856 1341

245 Control Group 0 0 0 0 0 0 0 0 0 76 0% 4% 1721 1341

246 Aggressive 9 8 93 7 88 9 26 7 21261 12184 63% 36% 33586 1102

247 Aggressive 0 0 0 0 0 0 113 12 0 32255 0% 5% 612987 556

248 Aggressive 9 8 134 8 123 11 129 11 23659 18491 65% 50% 36619 1803

249 Aggressive 3 3 44 7 50 9 118 12 10722 33033 2% 5% 628083 969

250 TCP Connect 6 6 30 8 32 8 15 8 10666 44201 23% 94% 47052 4293

251 NIDS Avoidance 0 0 0 0 0 0 30 6 0 18157 0% 31% 58055 2367

252 NIDS Avoidance 0 0 0 0 0 0 8 4 0 36276 0% 62% 58487 2369

253 TCP Connect 0 0 0 0 0 0 20 7 0 4096 0% 13% 30987 345

254 Control Group 3 0 0 0 0 0 0 0 0 78 0% 3% 2343 1341

255 NIDS Avoidance 0 0 0 0 0 0 32 8 0 18145 0% 31% 58453 2369

256 TCP Connect 6 6 30 7 28 7 11 5 8162 22640 24% 67% 33560 126

257 Control Group 3 0 0 0 0 0 0 0 0 80 0% 4% 1838 1341

258 Control Group 0 0 0 0 0 0 0 0 0 82 0% 4% 1919 1341

220

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

259 Aggressive 9 8 153 7 134 9 125 10 38937 18166 93% 43% 42059 1815

260 TCP Connect 0 0 0 0 0 0 24 8 0 4333 0% 12% 34864 710

261 Control Group 6 0 0 0 0 0 0 0 0 94 0% 5% 2027 1341

262 Aggressive 3 3 70 7 73 7 113 11 11198 31090 2% 5% 623431 647

263 NIDS Avoidance 3 3 12 4 16 5 31 6 13468 18135 17% 23% 77784 2367

264 TCP Connect 0 0 0 0 0 0 51 8 0 3966 0% 14% 29352 403

265 Control Group 0 0 0 0 0 0 0 0 0 76 0% 4% 1918 1341

266 Aggressive 3 3 0 0 0 0 100 12 10279 31317 2% 5% 641550 639

267 NIDS Avoidance 3 3 3 1 10 4 26 5 7091 18248 8% 21% 85346 6785

268 Aggressive 9 8 130 7 118 10 112 10 37829 17290 93% 42% 40685 1801

269 Aggressive 0 0 0 0 0 0 113 12 0 30741 0% 5% 634409 991

270 TCP Connect 9 9 9 4 9 4 41 8 3000 6372 8% 17% 38513 20

271 Aggressive 6 5 70 7 73 10 28 8 10369 8125 31% 24% 33185 3742

272 NIDS Avoidance 3 3 21 5 22 6 32 6 13465 18143 18% 24% 76634 2367

273 Control Group 6 0 0 0 0 0 0 0 0 84 0% 5% 1831 1341

274 NIDS Avoidance 6 6 21 5 25 6 62 8 19986 36280 21% 38% 96653 2366

275 Aggressive 6 5 82 7 76 9 123 10 22437 17137 70% 53% 32080 1796

276 NIDS Avoidance 3 3 12 4 16 5 36 8 13375 18266 17% 24% 77461 2369

277 NIDS Avoidance 3 3 12 4 16 5 33 8 13344 18078 17% 24% 76664 2369

278 TCP Connect 9 9 35 5 30 7 42 8 10420 7431 27% 19% 38563 22

221

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

279 Aggressive 3 0 60 7 64 9 101 12 13963 31282 2% 5% 635043 643

280 Control Group 3 0 0 0 0 0 0 0 0 81 0% 5% 1624 1341

281 Aggressive 9 8 114 6 92 9 73 7 24621 12493 94% 48% 26233 938

282 Aggressive 9 8 231 7 202 9 189 10 40885 18035 93% 41% 43828 1820

283 NIDS Avoidance 6 6 0 0 0 0 57 8 21550 36430 21% 36% 100883 4659

284 TCP Connect 6 6 21 5 22 7 43 8 6104 9148 17% 26% 35026 203

285 Control Group 0 0 0 0 0 0 0 0 0 66 0% 4% 1700 1341

286 TCP Connect 0 0 0 0 0 0 16 6 0 3637 0% 12% 30859 508

287 TCP Connect 3 3 8 5 8 5 16 6 2414 1195 9% 4% 27226 60

288 TCP Connect 6 6 26 5 24 7 34 8 8376 6666 26% 20% 32762 39

289 Aggressive 3 3 40 7 46 9 103 12 11202 30472 2% 5% 639607 855

290 TCP Connect 3 3 0 0 0 0 28 8 0 3873 0% 12% 31268 315

291 TCP Connect 3 0 26 5 37 7 4 4 14062 10565 29% 22% 48180 2727

292 NIDS Avoidance 9 9 12 4 14 5 65 8 18087 36178 17% 34% 107584 2364

293 Control Group 3 0 0 0 0 0 0 0 0 69 0% 4% 1663 1341

294 Aggressive 6 5 46 7 45 9 236 10 8961 15931 27% 48% 33465 406

295 NIDS Avoidance 9 9 24 4 33 7 60 8 32040 36261 30% 34% 107230 2368

296 Control Group 0 0 0 0 0 0 0 0 0 655 0% 19% 3416 1341

297 TCP Connect 6 6 15 5 19 7 46 8 5862 8239 16% 22% 37122 431

298 TCP Connect 0 0 0 0 0 0 24 8 0 3904 0% 15% 26627 293

222

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

299 NIDS Avoidance 0 0 0 0 0 0 29 6 0 18051 0% 28% 63930 2367

300 Control Group 9 0 0 0 0 0 0 0 0 96 0% 5% 1802 1341

301 Aggressive 3 3 40 7 43 7 105 12 11784 31123 2% 5% 622328 814

302 Control Group 9 0 0 0 0 0 0 0 0 95 0% 5% 2006 1341

303 NIDS Avoidance 0 0 0 0 0 0 28 6 0 18111 0% 28% 64609 2368

304 NIDS Avoidance 3 3 12 4 15 5 11 5 13374 36263 17% 47% 76766 2366

305 NIDS Avoidance 9 9 24 4 35 7 59 8 31378 36098 28% 32% 113753 5503

306 Aggressive 6 5 99 7 88 9 47 7 20432 12197 82% 49% 25016 1059

307 Control Group 0 0 0 0 0 0 0 0 0 67 0% 4% 1759 1341

308 Control Group 3 0 0 0 0 0 0 0 0 85 0% 4% 1944 1341

309 TCP Connect 3 3 18 5 16 7 0 0 6146 3578 22% 13% 27547 65

310 Aggressive 0 0 0 0 0 0 112 12 0 31399 0% 5% 628763 614

311 Control Group 6 0 0 0 0 0 0 0 0 97 0% 5% 1895 1341

312 Control Group 6 0 0 0 0 0 0 0 0 74 0% 4% 1889 1341

313 Control Group 3 0 0 0 0 0 0 0 0 168 0% 9% 1826 1341

314 TCP Connect 3 3 8 5 8 5 22 6 2241 2545 8% 9% 26881 41

315 Control Group 9 0 0 0 0 0 0 0 0 99 0% 5% 1925 1341

316 Aggressive 0 0 0 0 0 0 105 12 0 31669 0% 5% 614810 849

317 NIDS Avoidance 6 6 12 4 17 5 65 8 19993 36001 21% 38% 95888 2369

318 Control Group 3 0 0 0 0 0 0 0 0 79 0% 4% 1888 1341

223

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

319 NIDS Avoidance 3 3 90 6 96 7 34 8 13433 18197 18% 24% 76571 2367

320 NIDS Avoidance 9 9 24 4 34 7 66 8 32035 36181 29% 33% 108858 2368

321 Control Group 0 0 0 0 0 0 0 0 0 80 0% 4% 2039 1341

322 NIDS Avoidance 6 6 32 5 36 5 20 8 15965 36234 17% 38% 95469 2365

323 Aggressive 9 8 188 8 166 10 129 11 41038 17657 93% 40% 44184 1821

324 Control Group 6 0 0 0 0 0 0 0 0 93 0% 4% 2394 1341

325 NIDS Avoidance 9 9 24 4 34 7 62 8 32021 36011 29% 33% 108974 2365

326 NIDS Avoidance 6 6 12 4 18 5 23 8 16006 72494 16% 75% 97299 2368

327 TCP Connect 9 9 19 5 16 7 39 8 5310 11010 12% 26% 42974 414

328 Aggressive 6 5 108 8 99 10 121 11 26021 17738 83% 57% 31384 1800

329 Control Group 0 0 0 0 0 0 0 0 0 82 0% 5% 1726 1341

330 Aggressive 6 5 0 0 0 0 54 7 20217 12029 82% 49% 24647 1058

331 NIDS Avoidance 3 3 0 0 0 0 29 6 13495 18172 18% 24% 76744 2367

332 Aggressive 6 5 115 7 118 9 270 10 20471 37090 5% 9% 402106 435

333 TCP Connect 3 3 10 4 13 5 32 8 4387 3487 14% 11% 31504 290

334 Aggressive 0 0 0 0 0 0 39 10 0 34635 0% 6% 623664 608

335 NIDS Avoidance 6 6 12 4 17 5 59 8 20028 36223 21% 38% 95552 2368

336 NIDS Avoidance 3 3 20 4 29 7 27 6 8568 18721 10% 23% 82583 5964

337 Control Group 9 0 0 0 0 0 0 0 0 103 0% 6% 1634 1341

338 Aggressive 9 8 194 9 175 9 83 9 34898 12110 96% 33% 36407 1099

224

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

339 Aggressive 0 0 0 0 0 0 106 12 0 31205 0% 5% 634197 610

340 Aggressive 9 8 136 7 119 9 55 7 32316 12068 95% 35% 34152 1107

341 NIDS Avoidance 0 0 0 0 0 0 28 6 0 18122 0% 28% 63660 2365

342 Aggressive 3 3 43 9 48 9 100 12 10602 30874 2% 5% 636944 660

343 TCP Connect 6 6 37 5 30 7 37 8 10525 8991 32% 27% 33078 34

344 NIDS Avoidance 9 9 20 4 35 7 68 8 26008 36143 24% 34% 107648 2369

345 Aggressive 0 0 0 0 0 0 113 12 0 31063 0% 5% 627136 593

346 NIDS Avoidance 9 9 131 4 137 7 60 8 32048 36141 30% 34% 107316 2366

347 NIDS Avoidance 3 3 12 4 14 5 28 6 13447 18548 15% 21% 88230 2367

348 NIDS Avoidance 6 6 13 5 18 6 59 8 12304 36518 11% 33% 112233 11102

349 NIDS Avoidance 3 3 0 0 0 0 30 6 0 18614 0% 17% 112058 5860

350 Control Group 9 0 0 0 0 0 0 0 0 195 0% 10% 1972 1341

351 Control Group 9 0 0 0 0 0 0 0 0 93 0% 4% 2368 1341

352 TCP Connect 3 3 18 5 20 5 22 8 6054 3768 19% 12% 31188 335

353 NIDS Avoidance 3 3 19 5 24 5 27 5 9310 18073 11% 21% 86161 4077

354 Control Group 0 0 0 0 0 0 0 0 0 83 0% 5% 1821 1341

355 TCP Connect 9 9 8 5 8 5 41 8 2053 7648 5% 20% 38907 20

356 Aggressive 0 0 0 0 0 0 116 12 0 31734 0% 5% 624185 616

357 TCP Connect 9 9 0 0 0 0 40 8 0 7076 0% 18% 38669 26

358 NIDS Avoidance 9 6 32 5 31 5 63 8 24826 35919 23% 33% 107681 2367

225

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

359 TCP Connect 3 3 10 5 14 7 27 10 4436 3843 14% 12% 31436 291

360 Aggressive 6 5 96 7 94 9 60 7 20159 12622 8% 5% 244766 1133

361 TCP Connect 3 3 9 4 12 5 27 8 4394 2310 15% 8% 29712 220

362 Control Group 9 0 0 0 0 0 0 0 0 97 0% 5% 1793 1341

363 TCP Connect 9 9 40 5 42 7 37 6 16204 9634 37% 22% 43952 1133

364 TCP Connect 6 6 64 7 63 7 112 8 9671 12918 19% 26% 49775 4317

365 NIDS Avoidance 0 0 0 0 0 0 32 6 0 18100 0% 27% 66522 2367

366 TCP Connect 3 3 4 1 6 3 24 8 5880 4023 11% 7% 55036 3398

367 Control Group 0 0 0 0 0 0 0 0 0 79 0% 4% 2185 1341

368 Control Group 3 0 0 0 0 0 0 0 0 81 0% 5% 1660 1341

369 NIDS Avoidance 6 6 12 4 15 5 25 6 16003 36208 17% 38% 95336 2367

370 TCP Connect 0 0 0 0 0 0 22 6 0 6548 0% 24% 27640 397

371 Aggressive 0 0 0 0 0 0 111 12 0 31316 0% 5% 628280 617

372 NIDS Avoidance 0 0 0 0 0 0 13 5 0 49444 0% 77% 64362 2367

373 Aggressive 3 3 41 7 47 9 101 11 10525 31215 2% 5% 633644 634

374 Aggressive 6 5 112 7 109 9 121 12 24876 17773 69% 49% 36026 1798

375 Control Group 0 0 0 0 0 0 0 0 0 77 0% 5% 1680 1341

376 Aggressive 9 8 153 7 137 9 129 12 28284 18672 67% 44% 42108 1811

377 Control Group 6 0 0 0 0 0 0 0 0 78 0% 3% 2959 1341

378 TCP Connect 9 9 69 7 61 8 48 8 22333 12944 44% 25% 51282 1197

226

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

379 Aggressive 9 8 13 5 16 7 63 7 5135 12788 15% 36% 35075 1113

380 NIDS Avoidance 6 6 12 4 17 5 64 8 19975 36099 21% 38% 95653 2365

381 NIDS Avoidance 9 9 17 5 20 5 58 8 17417 36140 16% 33% 110377 2470

382 TCP Connect 9 9 67 5 68 8 52 8 21808 13154 41% 25% 52637 1289

383 Control Group 3 0 0 0 0 0 0 0 0 84 0% 4% 2054 1341

384 TCP Connect 6 6 0 0 0 0 56 8 15843 13828 31% 27% 50786 2402

385 NIDS Avoidance 0 0 0 0 0 0 31 8 0 18069 0% 28% 64507 2365

386 Control Group 0 0 0 0 0 0 0 0 0 79 0% 4% 1965 1341

387 NIDS Avoidance 9 9 16 4 19 5 63 8 14146 36176 13% 33% 110131 2368

388 Control Group 6 0 0 0 0 0 0 0 0 93 0% 5% 1837 1341

389 TCP Connect 6 6 16 5 14 5 57 10 4065 9457 11% 25% 37141 389

390 Aggressive 0 0 0 0 0 0 111 12 0 31238 0% 2% 1269081 664

391 Aggressive 6 5 62 7 58 9 123 10 15636 17798 39% 45% 39801 1798

392 TCP Connect 6 6 43 7 35 7 37 8 12264 8118 37% 25% 33134 62

393 Control Group 3 0 0 0 0 0 0 0 0 67 0% 3% 2202 1341

394 TCP Connect 0 0 0 0 0 0 0 0 0 6240 0% 25% 24754 261

395 TCP Connect 6 6 28 5 24 7 28 6 7907 5451 24% 16% 33117 63

396 Aggressive 3 3 42 7 44 9 0 0 10654 30983 1% 2% 1290814 697

397 NIDS Avoidance 3 3 29 6 32 7 32 6 12307 18299 16% 23% 78976 4020

398 TCP Connect 0 0 0 0 0 0 27 7 0 4954 0% 15% 32433 853

227

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

399 Aggressive 0 0 0 0 0 0 111 12 0 32373 0% 2% 1330966 791

400 Aggressive 3 3 41 7 46 7 101 12 10886 29789 1% 2% 1368807 784

401 TCP Connect 0 0 0 0 0 0 18 6 0 4046 0% 17% 24177 243

402 Aggressive 6 5 41 7 41 7 117 13 9866 15540 7% 11% 139521 1850

403 Control Group 9 0 0 0 0 0 0 0 0 392 0% 19% 2104 1341

404 NIDS Avoidance 3 3 0 0 0 0 30 6 13196 17701 18% 24% 74274 2367

405 NIDS Avoidance 6 6 16 4 19 5 60 8 19288 35979 20% 37% 97429 5004

406 NIDS Avoidance 0 0 0 0 0 0 30 6 0 17680 0% 29% 60017 2367

407 Control Group 6 0 0 0 0 0 0 0 0 271 0% 15% 1852 1341

408 Control Group 3 0 0 0 0 0 0 0 0 65 0% 3% 2257 1341

409 NIDS Avoidance 6 6 18 5 22 6 65 8 13949 35215 15% 38% 92160 2364

410 NIDS Avoidance 3 3 12 4 15 5 34 8 13443 17860 18% 25% 72896 2366

411 TCP Connect 9 9 78 7 47 8 45 10 16941 6340 43% 16% 39820 71

412 NIDS Avoidance 0 0 0 0 0 0 29 8 0 17714 0% 30% 59644 2364

413 Aggressive 6 5 82 7 78 9 126 10 22631 17099 4% 3% 617511 1827

414 NIDS Avoidance 9 9 33 5 41 8 66 8 32040 35917 30% 34% 106518 2361

415 TCP Connect 0 0 0 0 0 0 20 8 0 3560 0% 15% 23808 249

416 Control Group 3 0 0 0 0 0 0 0 0 82 0% 5% 1716 1341

417 TCP Connect 9 9 0 0 0 0 38 8 18274 11916 39% 26% 46571 1926

418 Control Group 0 0 0 0 0 0 0 0 0 80 0% 5% 1725 1341

228

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

419 TCP Connect 3 3 33 5 22 5 30 5 6497 4413 21% 14% 30685 438

420 Control Group 9 0 0 0 0 0 0 0 0 112 0% 8% 1442 1341

421 NIDS Avoidance 6 6 12 4 14 5 67 8 13982 35230 15% 39% 91372 2367

422 TCP Connect 6 6 7 4 7 4 47 8 2333 9318 7% 27% 34092 291

423 NIDS Avoidance 0 0 0 0 0 0 28 6 0 17868 0% 30% 60313 2363

424 Control Group 6 0 0 0 0 0 0 0 0 93 0% 5% 1920 1341

425 Aggressive 9 8 0 0 0 0 127 12 40262 15467 95% 37% 42275 1815

426 Aggressive 9 8 132 9 115 10 46 7 31240 12512 96% 39% 32389 1099

427 Aggressive 6 5 65 6 58 8 51 7 17467 11541 80% 53% 21869 956

428 TCP Connect 0 0 0 0 0 0 17 5 0 6302 0% 20% 30743 709

429 NIDS Avoidance 6 6 21 5 23 5 63 8 14513 35542 13% 32% 112434 4904

430 TCP Connect 9 9 60 5 40 7 35 8 18381 6910 47% 18% 38861 22

431 NIDS Avoidance 3 3 7 3 10 4 28 6 2128 17759 2% 17% 102732 12076

432 TCP Connect 3 3 10 5 11 5 20 6 4206 2022 14% 7% 31038 391

433 TCP Connect 6 6 28 5 30 7 45 8 7174 11116 22% 34% 32913 204

434 Control Group 0 0 0 0 0 0 0 0 0 80 0% 5% 1748 1341

435 NIDS Avoidance 9 9 131 4 137 7 62 8 32068 36130 30% 34% 106204 2361

436 NIDS Avoidance 3 3 12 4 16 5 0 0 13165 0 18% 0% 72645 2368

437 TCP Connect 9 9 9 3 12 4 40 6 4264 11456 9% 25% 45205 447

438 TCP Connect 9 9 64 5 50 7 40 8 19618 9842 43% 22% 45758 1173

229

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

439 NIDS Avoidance 9 9 24 4 35 7 63 8 32070 35431 30% 33% 107572 2364

440 Control Group 3 0 0 0 0 0 0 0 0 74 0% 4% 1764 1341

441 NIDS Avoidance 9 9 20 4 20 5 22 6 20031 35028 19% 33% 107602 2369

442 Control Group 0 0 0 0 0 0 0 0 0 80 0% 4% 2096 1341

443 Control Group 0 0 0 0 0 0 0 0 0 66 0% 4% 1704 1341

444 TCP Connect 0 0 0 0 0 0 29 7 0 5686 0% 21% 27613 363

445 NIDS Avoidance 0 0 0 0 0 0 27 5 0 17012 0% 27% 64172 2365

446 Control Group 3 0 0 0 0 0 0 0 0 261 0% 14% 1837 1341

447 NIDS Avoidance 0 0 0 0 0 0 34 8 0 16999 0% 27% 63788 2369

448 TCP Connect 3 3 9 6 10 6 16 6 2360 1656 8% 5% 31020 267

449 Control Group 6 0 0 0 0 0 0 0 0 407 0% 18% 2313 1341

450 Control Group 0 0 0 0 0 0 0 0 0 77 0% 5% 1627 1341

451 Aggressive 0 0 0 0 0 0 114 12 0 29840 0% 5% 616091 608

452 NIDS Avoidance 9 9 0 0 0 0 62 8 32003 34564 30% 32% 107252 2363

453 NIDS Avoidance 9 9 24 4 33 7 62 8 32383 35168 30% 33% 107745 2366

454 Aggressive 6 5 51 9 49 9 239 10 9973 13414 35% 47% 28845 400

455 TCP Connect 9 9 66 7 61 9 45 8 19490 9039 39% 18% 49478 2956

456 Aggressive 9 8 45 7 46 9 244 12 8123 12856 19% 30% 42822 545

457 Aggressive 0 0 0 0 0 0 115 12 0 13926 0% 4% 328201 554

458 TCP Connect 0 0 0 0 0 0 24 8 0 5795 0% 27% 21736 51

230

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

459 TCP Connect 6 6 30 5 28 7 33 8 8437 7180 26% 22% 32494 21

460 Aggressive 3 3 36 6 44 9 105 12 10791 8698 4% 3% 249548 576

461 TCP Connect 3 3 7 5 8 5 0 0 2757 2426 9% 8% 29896 206

462 NIDS Avoidance 3 3 12 4 16 5 30 5 13365 17607 17% 23% 77673 2369

463 TCP Connect 6 6 13 5 11 5 0 0 4178 0 13% 0% 32501 25

464 Aggressive 0 0 0 0 0 0 133 12 0 8757 0% 3% 250691 579

465 TCP Connect 3 0 69 7 77 9 20 8 20917 1962 66% 6% 31710 349

466 Control Group 3 0 0 0 0 0 0 0 0 86 0% 5% 1777 1341

467 Control Group 0 0 0 0 0 0 0 0 0 73 0% 4% 1805 1341

468 NIDS Avoidance 9 9 24 4 33 7 65 8 30137 36170 27% 33% 110085 2361

469 NIDS Avoidance 3 3 32 5 37 5 33 6 13309 18103 17% 24% 76477 2367

470 Control Group 6 0 0 0 0 0 0 0 0 89 0% 4% 1985 1341

471 Control Group 3 0 0 0 0 0 0 0 0 69 0% 5% 1435 1341

472 Control Group 9 0 0 0 0 0 0 0 0 95 0% 7% 1291 1341

473 NIDS Avoidance 0 0 0 0 0 0 30 6 0 18158 0% 29% 63496 2365

474 Control Group 0 0 0 0 0 0 0 0 0 75 0% 6% 1290 1341

475 Aggressive 3 3 50 7 45 9 193 12 12677 9238 4% 3% 322296 1622

476 NIDS Avoidance 9 9 0 0 0 0 62 8 32065 36238 30% 34% 106835 2361

477 NIDS Avoidance 0 0 0 0 0 0 30 6 0 18168 0% 28% 65130 2364

478 Aggressive 0 0 0 0 0 0 112 12 0 9159 0% 1% 639420 606

231

Table 13 continued from previous page

Trial ST HP HHI SAI STI SAM STM SuA SuT HHP SuP % HHP % SuP AP ET

479 Control Group 9 0 0 0 0 0 0 0 0 83 0% 7% 1192 1341

480 NIDS Avoidance 3 3 12 4 15 5 29 5 13465 18132 18% 24% 75482 2365

232

Appendix F. permutation test.py

permutation test.py

1 import os

2 import numpy

3 import random

4

5 numPermutations = 900000

6 experimentFile = ’results.csv’

7

8 set1 = []

9 set2 = []

10 combined = []

11 mean1 = 0

12 mean2 = 0

13 difference = 0

14 numExceedDif = 0

15

16 # checks to see if a file with the run order exists and makes sure

it’s not empty

17 if os.path.exists(experimentFile) and os.path.getsize(experimentFile

) > 0:

18 f = open(experimentFile , ’r’)

19 for line in f:

20 value = line.split(’,’)

21 lambdaFunc = None

22

23 #print value [0]

24 set1.append(float(value [0]))

25 #print value [1]

26 set2.append(float(value [1]. rstrip ()))

27

233

28 f.close ()

29 #print ’set1’

30 #print set1

31 #print ’set2’

32 #print set2

33

34 mean1 = numpy.average(set1)

35 print ’Mean1: ’ + str(mean1)

36 mean2 = numpy.average(set2)

37 print ’Mean2: ’ + str(mean2)

38 difference = abs(mean1 - mean2)

39 print "Difference: " + str(difference)

40 combined = set1 + set2

41 #print combined

42

43 for x in range(numPermutations):

44 random.shuffle(combined)

45

46 sample1Avg = numpy.average(combined [:len(combined)//2])

47 sample2Avg = numpy.average(combined[len(combined)//2:])

48 if abs(sample1Avg - sample2Avg) > difference:

49 numExceedDif +=1

50 result = numExceedDif * 1.0 / numPermutations

51 print result

52

53 else:

54 print "Error , file not found!"

234

Bibliography

1. K. Lueth, “State of the IoT 2018: Number of IoT devices now at 7B –
Market accelerating,” 2018. [Online]. Available: https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/ [Accessed:
10 Jan 2020]

2. B. Schneier, “The Internet of Things Is Wildly Insecure — And Often
Unpatchable,” 2014. [Online]. Available: https://www.wired.com/2014/01/
theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
[Accessed: 10 Jan 2020]

3. K. Rawlinson, “HP Study Reveals 70 Percent of Internet of Things Devices
Vulnerable to Attack,” 2014. [Online]. Available: https://www8.hp.com/us/en/
hp-news/press-release.html?id=1744676 [Accessed: 10 Jan 2020]

4. M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen, “Uninvited
connections: A study of Vulnerable Devices on the Internet of Things (IoT),” in
Proceedings - 2014 IEEE Joint Intelligence and Security Informatics Conference,
JISIC 2014, 2014, pp. 232–235.

5. N. Provos, “Developments of the Honeyd Virtual Honeypot.” [Online]. Available:
http://www.honeyd.org/ [Accessed: 10 Jan 2020]

6. L. A. Stafira, “Examining Effectiveness of Web-Based Internet of Things
Honeypots,” Master’s thesis, Air Force Institue of Technology, 2019. [Online].
Available: https://scholar.afit.edu/cgi/viewcontent.cgi?article=3285&context=
etd [Accessed: 10 Jan 2020]

7. K. Zetter, “Inside the Cunning, Unprecedented Hack of Ukraine’s Power
Grid — WIRED,” 2016. [Online]. Available: https://www.wired.com/2016/
03/inside-cunning-unprecedented-hack-ukraines-power-grid/ [Accessed: 10 Jan
2020]

8. C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai
and other botnets,” IEEE Computer, vol. 50, no. 7, pp. 80–84, 2017.

9. W. Stallings, “Introduction to Network-Based Intrusion Detection Systems,”
2007. [Online]. Available: http://www.informit.com/articles/article.aspx?p=
782118 [Accessed: 10 Jan 2020]

10. N. Provos, “Honeyd Release 1.5c.” [Online]. Available: http://www.honeyd.org/
release.php?version=1.5c [Accessed: 10 Jan 2020]

11. DataSoft, “Honeyd 1.6d GitHub.” [Online]. Available: https://github.com/
DataSoft/Honeyd [Accessed: 10 Jan 2020]

235

12. H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the Internet of Things: A
Review,” International Conference on Computer Science and Electronics Engi-
neering, ICCSEE 2012, vol. 3, pp. 648–651, 2012.

13. T. Salman and R. Jain, “A Survey of Protocols and Standards for Internet of
Things,” Advanced Computing and Communications, vol. 1, no. 1, pp. 1–20, 2017.

14. J. S. Lee, Y. W. Su, and C. C. Shen, “A Comparative Study of Wireless Pro-
tocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” IECON Proceedings (Industrial
Electronics Conference), pp. 46–51, 2007.

15. Nest Support, “How to add your Nest thermostat to the Nest
app,” 2019. [Online]. Available: https://nest.com/support/article/
How-do-I-pair-my-Nest-Learning-Thermostat-with-my-Nest-Account#section-4
[Accessed: 10 Jan 2020]

16. A. Stachowicz, “ZigBee Wireless Networks,” 2010. [Online]. Available:
http://zigbee.pbworks.com/w/page/25465049/ZigBee [Accessed: 10 Jan 2020]

17. P. McDermott-Wells, “What is Bluetooth?” Potentials, IEEE, vol. 23, no. 5, pp.
33–35, 2005.

18. Shodan, “Shodan.” [Online]. Available: https://www.shodan.io/ [Accessed: 10
Jan 2020]

19. A. Acien, A. Nieto, G. Fernandez, and J. Lopez, “A comprehensive methodology
for deploying IoT honeypots,” 15th International Conference on Trust, Privacy
and Security in Digital Business (TrustBus), vol. L, no. ii, pp. 229–243, 2018.

20. T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices,” Proceedings of the 14th ACM Workshop
on Hot Topics in Networks - HotNets-XIV, pp. 1–7, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2834050.2834095 [Accessed: 10 Jan 2020]

21. M. Ward, “Smart meters can be hacked to cut power bills,” p. 1, 2014. [Online].
Available: http://www.bbc.co.uk/news/technology-29643276 [Accessed: 10 Jan
2020]

22. Y. M. P. Pa, S. Suzuki, K. Yoshioka, and T. Matsumoto, “IoTPOT:
Analysing the Rise of IoT Compromises,” USENIX Workshop on Offensive
Technologies, 2015. [Online]. Available: https://www.usenix.org/system/files/
conference/woot15/woot15-paper-pa.pdf [Accessed: 10 Jan 2020]

23. A. G. Manzanares, “HoneyIo4 The construction of a virtual, low-interaction
IoT Honeypot,” Ph.D. dissertation, Universitat Politecnica de Catalunya,
2017. [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/
108166/Alejandro Guerra Manzanares.pdf [Accessed: 10 Jan 2020]

236

24. L. Spitzner, Honeypots: Tracking Hackers. Boston: Pearson Education, 2002.

25. N. Provos, “A Virtual Honeypot Framework,” Proceedings of the 13th USENIX
Security Symposium, pp. 1–14, 2004.

26. I. Mokube and M. Adams, “Honeypots: concepts, approaches, and challenges,”
Proceedings of the 45th ACM Southeast Conference. ACMSE 07, pp. 321–326,
2007.

27. A. Barfar and S. Mohammadi, “Honeypots: Intrusion De-
ception,” ISSA Journal, no. January 2007, pp. 28–31,
2007. [Online]. Available: http://www.researchgate.net/publication/
228854989 Honeypots intrusion deception\%5Cnhttps://dev.issa.org/Library/
Journals/2007/June/BarfarandMohammadi-Honeypots-Intrusiondeception.pdf
[Accessed: 10 Jan 2020]

28. J. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. Tippenhauer, A. Shabtai, and
Y. Elovici, “SIPHON: Towards Scalable High-Interaction Physical Honeypots,”
in Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security.
ACM, 2017, pp. 57–68. [Online]. Available: http://arxiv.org/abs/1701.02446
[Accessed: 10 Jan 2020]

29. Cymmetria, “The Crossed Swords wargame: Catching NATO red teams
with cyber deception,” 2017. [Online]. Available: https://cymmetria.com/blog/
nato-crossed-swords-exercise/ [Accessed: 10 Jan 2020]

30. Cymmetria, “Introduction to cyber deception,” 2016. [Online]. Available:
https://cymmetria.com/an-introduction-to-cyber-deception/ [Accessed: 10 Jan
2020]

31. N. Provos and T. Hols, Virtual Honeypots: From Botnet Tracking to Intrusion
Detection, 1st ed. Boston: Pearson Education, 2008.

32. CyberEdge Group, “2017 Cyberthreat Defense Report,” 2017.
[Online]. Available: https://cyber-edge.com/wp-content/uploads/2017/03/
CyberEdge-2017-CDR-report.pdf [Accessed: 10-01-2019]

33. Pluralsight, “JavaScript.com.” [Online]. Available: https://www.javascript.com/
[Accessed: 10 Jan 2020]

34. OpenJS Foundation, “Node.js.” [Online]. Available: https://nodejs.org/en/
[Accessed: 10 Jan 2020]

35. Electron, “Electron — Build cross platform desktop apps with JavaScript,
HTML, and CSS.” [Online]. Available: https://electronjs.org/ [Accessed: 10 Jan
2020]

237

36. Python Software Foundation, “Python.” [Online]. Available: https://www.
python.org/ [Accessed: 10 Jan 2020]

37. Python Software Foundation, “pip · PyPI.” [Online]. Available: https:
//pypi.org/project/pip/ [Accessed: 10 Jan 2020]

38. G. F. Lyon, “Nmap: the Network Mapper - Free Security Scanner.” [Online].
Available: https://nmap.org/ [Accessed: 10 Jan 2020]

39. Wireshark, “Wireshark.” [Online]. Available: https://www.wireshark.org/
[Accessed: 10 Jan 2020]

40. TCPDump, “Tcpdump/Libpcap public repository.” [Online]. Available: https:
//www.tcpdump.org/ [Accessed: 10 Jan 2020]

41. TCPDump, “Manpage of TCPDump.” [Online]. Available: https://www.
tcpdump.org/manpages/tcpdump.1.html [Accessed: 10 Jan 2020]

42. Wireshark, “tshark - The Wireshark Network Analyzer 3.0.3.” [Online].
Available: https://www.wireshark.org/docs/man-pages/tshark.htmll [Accessed:
10 Jan 2020]

43. VMware, Inc., “VMware – Official Site.” [Online]. Available: https:
//www.vmware.com/ [Accessed: 10 Jan 2020]

44. Docker Inc., “Enterprise Container Platform — Docker.” [Online]. Available:
https://www.docker.com/ [Accessed: 10 Jan 2020]

45. D. Sever and T. Kisasondi, “Efficiency and security of docker based honeypot
systems,” 2018 41st International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings,
pp. 1167–1173, 2018.

46. Offensive Security, “Exploit Database - Exploits for Penetration Testers,
Researchers, and Ethical Hackers.” [Online]. Available: https://www.exploit-db.
com/ [Accessed: 10 Jan 2020]

47. HoneyNet Project, “Conpot.” [Online]. Available: http://conpot.org/ [Accessed:
10 Jan 2020]

48. C. Kreibich and J. Crowcroft, “Honeycomb Creating Intrusion Detection Signa-
tures Using Honeypots,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 1, pp. 51–56, 2004.

49. The Bro Project, “The Zeek Network Security Monitor.” [Online]. Available:
https://www.zeek.org/ [Accessed: 10 Jan 2020]

238

50. Cisco, “Snort - Network Intrusion Detection and Prevention System.” [Online].
Available: https://www.snort.org/ [Accessed: 10 Jan 2020]

51. J. Kloet, “A Honeypot Based Worm Alerting System,” 2005. [On-
line]. Available: https://www.sans.org/reading-room/whitepapers/detection/
honeypot-based-worm-alerting-system-1563 [Accessed: 10 Jan 2020]

52. SolarWinds Worldwide, “Kiwi Syslog Server,” 2019. [Online]. Available:
https://www.kiwisyslog.com/kiwi-syslog-server [Accessed: 10 Jan 2020]

53. Lavenya and K. Kaur, “HoneyComb: Enhancement to Honeypot Log Manage-
ment,” International Journal of Engineering Research and Technology (IJERT),
vol. 1, no. 6, pp. 1–6, 2012.

54. D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. Fontcuberta i
Morral, and F. Jaramillo, “IoTCandyJar: Towards an Intelligent-Interaction
Honeypot for IoT Devices,” Journal of Materials Chemistry C, vol. 6, no. 23, pp.
6216–6221, 2017. [Online]. Available: http://xlink.rsc.org/?DOI=C8TC01582A
[Accessed: 10 Jan 2020]

55. W. Y. Chin, E. P. Markatos, S. Antonatos, and S. Ioannidis, “HoneyLab: Large-
Scale Honeypot Deployment and Resource Sharing,” NSS 2009 - Network and
System Security, no. September 2014, pp. 381–388, 2009.

56. P. Krishnaprasad, “Capturing attacks on IoT devices with a multi-purpose IoT
honeypot,” Ph.D. dissertation, Indian Institute of Technology Kanpur, 2017.
[Online]. Available: https://security.cse.iitk.ac.in/sites/default/files/15111021.
pdf [Accessed: 10 Jan 2020]

57. M. Wang, J. Santillan, and F. Kuipers, “ThingPot: an interactive Internet-of-
Things honeypot,” arXiv preprint arXiv:1807.04114, 2018. [Online]. Available:
https://arxiv.org/pdf/1807.04114.pdf [Accessed: 10 Jan 2020]

58. Bloomberg, “Company Overview of Cymmetria Inc.” 2019. [Online].
Available: https://www.bloomberg.com/research/stocks/private/snapshot.asp?
privcapid=305449525 [Accessed: 10 Jan 2020]

59. Cymmetria, “Cymmetria,” 2019. [Online]. Available: https://cymmetria.com/
[Accessed: 10 Jan 2020]

60. Cymmetria, “Honeycomb GitHub,” 2019. [Online]. Available: https://github.
com/Cymmetria/honeycomb [Accessed: 10 Jan 2020]

61. Cymmetria, “MazeRunner Product Whitepaper,” 2016. [On-
line]. Available: https://www.cymmetria.com/wp-content/uploads/2017/10/
MazeRunner-Product-White-Paper.pdf [Accessed: 10 Jan 2020]

239

62. Cymmetria, “MazeRunner Product Whitepaper,” 2018.
[Online]. Available: https://cymmetria.com/white-paper/
cymmetrias-mazerunner-product-whitepaper/ [Accessed: 10 Jan 2020]

63. Cymmetria, “MazeRunner User Guide Community Edition,” 2018. [On-
line]. Available: https://webcdn.cymmetria.com/wp-content/uploads/2018/02/
MazeRunner-User-Guide-for-v1.10.0.pdf [Accessed: 10 Jan 2020]

64. Cymmetria, “Introducing ActiveSOC,” 2016. [Online]. Available: https:
//cymmetria.com/white-paper/introducing-activesoc-whitepaper/ [Accessed: 10
Jan 2020]

65. Cymmetria, “Catching APT3 with cyber deception Three case studies,”
2018. [Online]. Available: https://cymmetria.com/white-paper/catching-apt3/
[Accessed: 10 Jan 2020]

66. Cymmetria, “Unveiling Patchwork – the Copy-Paste Apt,” 2016. [Online]. Avail-
able: https://s3-us-west-2.amazonaws.com/cymmetria-blog/public/Unveiling\
Patchwork.pdf [Accessed: 10 Jan 2020]

67. M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in Lisa,
vol. 99, no. 1, 1999, pp. 229–238. [Online]. Available: https://static.usenix.
org/publications/library/proceedings/lisa99/full papers/roesch/roesch.pdf [Ac-
cessed: 10 Jan 2020]

68. Open Information Security Foundation, “Suricata — Open Source IDS / IPS /
NSM engine.” [Online]. Available: https://suricata-ids.org/ [Accessed: 10 Jan
2020]

69. Scapy Project, “Scapy.” [Online]. Available: https://scapy.net/ [Accessed: 10
Jan 2020]

70. “About SQLite.” [Online]. Available: https://www.sqlite.org/about.html
[Accessed: 10 Jan 2020]

71. Cisco, “Snort Rules and IDS Software Download.” [Online]. Available:
https://www.snort.org/downloads [Accessed: 10 Jan 2020]

72. B. McNeese, “Anderson-Darling Test for Normality,” 2011. [On-
line]. Available: http://www.spcforexcel.com/knowledge/basic-statistics/
anderson-darling-test-for-normality [Accessed: 10 Jan 2020]

73. J. Wilber, “Permutation Test: Visual Explanation,” 2019. [Online]. Available:
https://www.jwilber.me/permutationtest/ [Accessed: 10 Jan 2020]

74. T. Leeper, “Permutation Tests,” 2013. [Online]. Available: https://thomasleeper.
com/Rcourse/Tutorials/permutationtests.html [Accessed: 10 Jan 2020]

240

75. A. Downey, “Probably Overthinking It: There is only one test!” 2011. [Online].
Available: http://allendowney.blogspot.com/2011/05/there-is-only-one-test.
html [Accessed: 10 Jan 2020]

76. Python Software Foundation, “Sunsetting Python 2 — Python.org.” [Online].
Available: https://www.python.org/doc/sunset-python-2/ [Accessed: 10 Jan
2020]

241

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

HoneyHive – A Network Intrusion Detection System Framework
Utilizing Distributed Internet of Things Honeypot Sensors

19G437

Madison, Zachary D, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-038

Joseph A. Misher
Department of Homeland Security
Cyber Physical Division, Federal Protective Service
800 North Capitol Street NW, Washington D.C. 20001
COMM 202-658-8806
Email: Joseph.misher@hq.dhs.gov

DHS

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Exploding over the past decade, the number of Internet of Things (IoT) devices connected to the Internet jumped from
3.8 billion in 2015 to 17.8 billion in 2018. Because so many IoT devices remain upatched, unmonitored, and left on, they
have become a tantalizing target for attackers to gain network access or add another device to their botnet. HoneyHive is
a framework that uses distributed IoT honeypots as Network Intrusion Detection Systems (NIDS) sensors that beacon
back to a centralized Command and Control (C2) server. The tests in this experiment involve four types of scans and
four levels of active honeypots against the HoneyHive framework and a traditional NIDS on the simulated test network.
This research successfully created a framework of distributed network intrusion detection IoT honeypot sensors that
capture traffic, create alerts, and beacon back to a central C2 server. The HoneyHive framework successfully detected
intrusions that traditional NIDS cannot through the use of distributed IoT honeypot sensors and packet capture
aggregation.

Cyber Security, Network Security, Network Monitoring, Command and Control, HoneyHive, Honeypot, IoT, NIDS,
Honeyd, Snort, Suricata, Nmap, Node.js, Python, SQLite, Scapy, PCAP, VMware, Docker, Honeytokens, Cyber
Deception

U U U UU 260

Dr. B. E. Mullins, AFIT/ENG

(937)-255-3636 x7979; Barry.Mullins@afit.edu

	Honeyhive - A Network Intrusion Detection System Framework Utilizing Distributed Internet of Things Honeypot Sensors
	Recommended Citation

	tmp.1590084684.pdf.fT2Ex

