
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2020

Cyber-Physical System Intrusion: A Case Study of Automobile Cyber-Physical System Intrusion: A Case Study of Automobile

Identification Vulnerabilities and Automated Approaches for Identification Vulnerabilities and Automated Approaches for

Intrusion Detection Intrusion Detection

David R. Crow

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Crow, David R., "Cyber-Physical System Intrusion: A Case Study of Automobile Identification
Vulnerabilities and Automated Approaches for Intrusion Detection" (2020). Theses and Dissertations.
3170.
https://scholar.afit.edu/etd/3170

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F3170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3170?utm_source=scholar.afit.edu%2Fetd%2F3170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CYBER-PHYSICAL SYSTEM INTRUSION:
A CASE STUDY OF AUTOMOBILE

IDENTIFICATION VULNERABILITIES AND
AUTOMATED APPROACHES FOR

INTRUSION DETECTION

THESIS

David R. Crow, Second Lieutenant, USAF

AFIT-ENG-MS-20-M-012

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense, or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-012

CYBER-PHYSICAL SYSTEM INTRUSION:

A CASE STUDY OF AUTOMOBILE IDENTIFICATION VULNERABILITIES

AND AUTOMATED APPROACHES FOR INTRUSION DETECTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

David R. Crow, B.S.

Second Lieutenant, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-012

CYBER-PHYSICAL SYSTEM INTRUSION:

A CASE STUDY OF AUTOMOBILE IDENTIFICATION VULNERABILITIES

AND AUTOMATED APPROACHES FOR INTRUSION DETECTION

THESIS

David R. Crow, B.S.
Second Lieutenant, USAF

Committee Membership:

Scott R. Graham, Ph.D.
Chair

Brett J. Borghetti, Ph.D.
Member

Lt Col Patrick J. Sweeney, Ph.D.
Member

AFIT-ENG-MS-20-M-012

Abstract

Today’s vehicle manufacturers do not tend to publish proprietary packet formats for

the controller area network (CAN), a network protocol regularly used in automobiles

and manufacturing. This is a form of security through obscurity—it makes reverse

engineering efforts more difficult for would-be intruders—but obfuscating the CAN

data in this way does not adequately hide the vehicle’s unique signature, even if these

data are unprocessed or limited in scope. To prove this, we train two distinct deep

learning models on data from 11 different vehicles. Our results clearly indicate that

one can determine which vehicle generated a given sample of CAN data. This erodes

consumer safety: a sophisticated attacker who establishes a presence on an unknown

vehicle can use similar techniques to identify the vehicle and better format attacks.

To protect critical cyber-physical systems (CPSs) against attacks like those enabled

by this CAN vulnerability, system administrators often develop and employ intrusion

detection systems (IDSs). Before developing an IDS, one requires an understanding

of the behavior of the CPS and of the causality of its constituent parts. Such an

understanding allows one to characterize normal behavior and, in turn, identify and

report anomalous behavior. This research explores two different time series analysis

techniques, Granger causality and empirical dynamic modeling (EDM), which may

contribute to this understanding of a system. Our findings indicate that Granger

causality is not a suitable approach to IDS development but that EDM may enable the

understanding of a system required of an IDS architect. We thus encourage further

research into EDM applications to IDSs for CPSs.

iv

AFIT-ENG-MS-20-M-012

This work is dedicated to my wife and to my dogs.

I am grateful for their love and companionship.

v

Acknowledgements

I would like to thank Dr. Scott Graham for his continuous support and expert advice

during the research process. He allowed this thesis to be my own work while providing

direction whenever he thought I needed it. I would also like to acknowledge Dr. Brett

Borghetti and Lt Col Patrick Sweeney for their helpful lessons and thorough reviews

of the work I produced. Finally, I must express my profound gratitude to my wife

for providing me with unfailing support and unending desserts. This accomplishment

would not have been possible without her.

David R. Crow

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . ix

List of Tables . xi

List of Abbreviations . xii

I. Introduction . 1

1.1 Motivation . 1
1.2 Contributions . 4
1.3 Organization . 5

II. Background and Related Work . 6

2.1 Cyber-Physical Systems & Time Series Data . 6
2.2 The Controller Area Network (CAN) Protocol . 7
2.3 Intrusion Detection Systems . 11
2.4 Causality & Time Series Analysis . 12

2.4.1 Granger Causality . 13
2.4.2 Empirical Dynamic Modeling (EDM) . 15
2.4.3 Autoregressive Integrated Moving Average 18

2.5 Deep Learning . 18
2.5.1 Neural Networks . 19
2.5.2 Classification . 20
2.5.3 Siamese Neural Networks . 21

2.6 Predictive Approaches for the CAN . 22
2.7 Summary of Related Work . 23

vii

Page

III. Fingerprinting Vehicles with CAN Bus Data Samples . 24

3.1 Data . 24
3.2 Classifying Ordered CAN Payload Data . 25

3.2.1 Model Architecture . 26
3.2.2 Model Fitting . 29
3.2.3 Results . 31

3.3 Classifying Ordered CAN ArbIDs . 32
3.3.1 Model Architecture . 34
3.3.2 Model Fitting . 35
3.3.3 Results . 37

3.4 Classifying Unordered CAN Payload Data . 38
3.4.1 Model Architecture . 41
3.4.2 Model Fitting . 42
3.4.3 Results . 42

3.5 Distinguishing CAN Data with Siamese Neural Networks 46
3.6 Summary . 47

IV. EDM as a Component of an Intrusion Detection System 48

4.1 Experimental Data & Analysis . 48
4.1.1 Data . 48
4.1.2 Granger Causality . 53
4.1.3 EDM Techniques . 53

4.2 Results . 55
4.2.1 Linear Data — Granger Causality . 56
4.2.2 Linear Data — EDM . 57
4.2.3 Nonlinear Data — Granger Causality . 62
4.2.4 Nonlinear Data — EDM. 63

4.3 Summary . 67

V. Conclusions . 69

5.1 Fingerprinting Vehicles with CAN Bus Data Samples 69
5.2 EDM as a Component of an Intrusion Detection System 70
5.3 Contributions & Conclusion . 71

Appendix A. Equation Derivations for the Linear System . 73

Appendix B. EDM Analysis in R . 75

Bibliography . 80

viii

List of Figures

Figure Page

1. Examples of Time Series Plots . 8

2. Vehicle Network Wiring Before and After CAN . 9

3. CAN Message Format — Standard . 10

4. CAN Message Format — Extended . 10

5. CAN Message Format — Flexible Data Rate . 10

6. Visualization of Granger Causality . 15

7. EDM — Lorenz Attractors and Shadow Manifolds 16

8. EDM — Convergent Cross Mapping . 17

9. Deep Learning — Feedforward Neural Networks . 20

10. Deep Learning — The Convolution Operation . 21

11. Ordered Data — Network Architectures . 28

12. Ordered Data — Training Loss & Accuracy Over Time 30

13. Ordered Data — Confusion Matrices . 33

14. Ordered ArbIDs — Network Architectures . 36

15. Ordered ArbIDs — Training Loss & Accuracy Over Time 37

16. Ordered ArbIDs — Confusion Matrices . 39

17. Unordered Data — Network Architectures . 43

18. Unordered Data — Training Loss & Accuracy Over Time 44

19. Unordered Data — Confusion Matrices . 45

20. Linear Data — Time Series . 50

21. Linear Data — Pairwise Relationships . 51

22. Nonlinear Data — Time Series . 52

ix

Figure Page

23. Nonlinear Data — Pairwise Relationships . 52

24. Linear Data — Granger Causality . 56

25. Linear Data — Optimal Embedding Dimensions . 57

26. Linear Data — Deterministic Chaos . 58

27. Linear Data — Nonlinearity . 59

28. Linear Data — Next-Point Predictions . 60

29. Linear Data — Errors in Next-Point Predictions . 60

30. Linear Data — Pairwise Causality . 61

31. Linear Data — Causality Predictions . 62

32. Nonlinear Data — Granger Causality . 63

33. Nonlinear Data — Optimal Embedding Dimensions 64

34. Nonlinear Data — Deterministic Chaos . 64

35. Nonlinear Data — Nonlinearity . 65

36. Nonlinear Data — Next-Point Predictions . 65

37. Nonlinear Data — Errors in Next-Point Predictions 66

38. Nonlinear Data — Pairwise Causality . 67

39. Nonlinear Data — Causality Predictions . 67

x

List of Tables

Table Page

1. Metadata Concerning the Examined Vehicles . 25

2. Ordered Data — Example Samples . 26

3. Ordered Data — Samples Per Vehicle . 26

4. Hyperparameter Options for MLP Construction . 27

5. Hyperparameter Options for CNN Construction . 27

6. Ordered Data Test Set — Balanced Accuracy . 31

7. Ordered Data Test Set — Class Accuracy . 32

8. Ordered ArbIDs — Example Samples . 34

9. Ordered ArbIDs — Samples Per Vehicle . 34

10. Ordered ArbIDs Test Set — Balanced Accuracy . 38

11. Ordered ArbIDs Test Set — Class Accuracy . 40

12. Unordered Data — Samples Per Vehicle . 41

13. Unordered Data — Example Samples . 41

14. Unordered Data Test Set — Balanced Accuracy . 46

15. Unordered Data Test Set — Class Accuracy . 46

16. Steering System Variables . 50

17. RMSE for Each Steering System Time Series . 60

18. RMSE for Each Selected AVAS Time Series . 66

19. Steering System Variables — Full Derivations . 73

20. Input File Format for rEDM Functions . 75

xi

List of Abbreviations

AFRL Air Force Research Lab

ArbID arbitration ID

ARIMA autoregressive integrated moving average

AVAS Avionics Vulnerability Assessment System

CAN controller area network

CAN FD flexible data rate

CCM convergent cross mapping

CNN convolutional neural network

CPS cyber-physical system

CSV comma-separated values

ECU electronic control unit

EDM empirical dynamic modeling

IDS intrusion detection system

MLP multilayer perceptron

NIST National Institute of Science and Technology

OBD on-board diagnostics

OEM original equipment manufacturer

RMSE root-mean-square error

RPM revolutions per minute

S-map sequential locally weighted global linear map

SNN Siamese neural network

xii

CYBER-PHYSICAL SYSTEM INTRUSION:

A CASE STUDY OF AUTOMOBILE IDENTIFICATION VULNERABILITIES

AND AUTOMATED APPROACHES FOR INTRUSION DETECTION

I. Introduction

1.1 Motivation

The controller area network (CAN), a cyber-physical system (CPS) that connects

a large number of the devices in a modern vehicle (including vital systems like the

brakes, steering wheel, and transmission), is vulnerable in several ways. In the extreme,

it is vulnerable to cyberattacks capable of altering, preventing, or otherwise modifying

the operator’s desired behavior. This research presents a more obscure vulnerability:

the packets that broadcast on a vehicle’s CAN bus can uniquely identify the vehicle.

This means that an attacker can construct a database of known CAN packet formats

and, using this database and one of the tools presented in Chapter III, identify a new

vehicle. This allows the attacker to strengthen the attack and thus places the operator

and passengers at greater risk.

We illustrate this vulnerability by building, tuning, and evaluating two deep

learning models. We train the models by giving as input CAN data samples and each

sample’s generating vehicle, and we test these models by giving new samples as input

and comparing the predicted vehicle to the actual vehicle. This research seeks to

determine which vehicle generated each test sample. Data comes from one primary

source and consists of 230 megabytes of raw CAN data captured from 11 distinct

vehicles. By formatting and partitioning the available data, we generate two disparate

1

datasets. The first is composed of all available 1,024-byte CAN samples; the second

contains samples from the first such that the classes are evenly represented. Each

sample’s label is the ID of the vehicle that generated it.

We then feed these samples into the deep learning models. The first, a multilayer

perceptron (MLP), is simple enough that an attacker only somewhat familiar with

deep learning tools can easily implement it and use it to classify CAN samples with

some level of success. The second, a more complex convolutional neural network

(CNN), achieves much better classification performance than does the MLP. Overall,

results indicate that one can use either the MLP or the CNN to determine which

vehicle generated a given CAN data sample. This compromises operator and passenger

privacy. It also risks safety because it gives bad cyber actors another tool to correctly

structure malicious CAN packets.

Intrusion detection systems (IDSs) are a common method to defend against CPS

attacks, including those enabled by the aforementioned CAN vulnerability. These

systems monitor computer networks such as CAN and report malicious activity to

system administrators. In the CPS domain, an IDS can detect attackers attempting

to modify or misrepresent physical processes. Consider an automobile’s CPSs. If

an attacker intends to, say, cause the driver to speed and thus receive a speeding

ticket, the attacker may choose to inject packets detailing a lower speed, which would

in turn cause the speedometer to display incorrect information. In this case, an

effective IDS will notice that the data for speed does not conform to the expected

behavior indicated by the data for the related physical processes (e.g., engine and

wheel rotational velocities, throttle position, fuel efficiency). In other words, the IDS

will notice that the speed readings are anomalous. As another example, if an IDS

knows that a substantial increase in an automobile’s brake pressure likely precedes a

relative decrease in velocity, the IDS can assert that no change, a small change, or

2

an increase in velocity (after significant brake pressure) is anomalous. Of course, this

requires an IDS capable of determining expected behavior and identifying anomalies.

To design such an IDS for a vulnerable CPS, IDS architects require the following:

1. Insight into the dynamics or patterns of a CPS, to include an understanding

of the way in which some current system state or behavior enables predictions

concerning a future state;

2. An ample quantity of data obtained under normal operating conditions to

establish normal behavior;

3. A process to determine whether new traffic conforms to normal behavior; and

4. An alert system to report to the administrator the traffic that does not conform.

IDS architects can achieve (1) by obtaining either significant understanding of a

CPS or sufficiently powerful computational resources. Often, the latter is infeasible:

many CPSs are computationally limited by available hardware or by standards and

regulations. Modern automobiles, for example, utilize small packets and fairly simple

hardware. For this reason, the former is often more attainable. A solid understanding

of a system’s dynamics, like how one signal affects another or how some current state

predicts some future state—causality, in a word—allows an architect to develop a

mechanism to identify anomalous traffic.1 This research thus examines two different

techniques to contribute to an architect’s understanding of a system. The first, Granger

causality, is a well-known, simple method for evaluating the causality between two time

series. The second, empirical dynamic modeling (EDM), is an emerging field capable

of more sophisticated time series analysis. Our research attempts to demonstrate a

potential ability to use one or both techniques as the first step towards an IDS.

1Assuming the architect has an ample quantity of normal data.

3

To do so, we apply Granger causality and EDM to two distinct datasets. We

generate the first dataset using a simplistic model of the relationship between an

automobile’s steering wheel and the relative velocity of its two front wheels. Addition-

ally, the Air Force Research Lab (AFRL) maintains a flight simulator, the Avionics

Vulnerability Assessment System (AVAS), which generates the second dataset used in

this research. The simulation computes various metrics, like airspeed, angle of attack,

position, heading, and wind angle; this research concerns the airplane’s airspeed,

altitude, and pitch. The simulator logs all values as they change over time. The

steering and AVAS datasets represent a linear system and a nonlinear one, respectively.

To evaluate the available analysis tools, we compute Granger causality for every

pair of variables in both systems. In doing so, we determine if the simple technique

affords insights sophisticated enough to develop an effective IDS. We then apply every

EDM tool to the two datasets to establish whether or not its more complex analysis

better enables an IDS than does that of Granger causality. The results support Clive

Granger’s original claim: Granger causality tests do not apply to nonlinear systems

in a meaningful way [1]. The results further indicate that, even for linear systems, a

Granger causality analysis is likely insufficient for IDS design. However, the results of

the EDM analyses imply a possibility of using the technique to develop sophisticated

IDSs for nonlinear systems. For linear systems, EDM does not appear to reveal

any previously unknown, important dynamics (including those identified by Granger

causality or by other analysis techniques).

1.2 Contributions

The primary contributions of this research are as follows:

• A previously unseen demonstration of the unique signature of a vehicle’s raw

CAN data and a discussion of the associated risks;

4

• An in-depth presentation of the advantages and disadvantages of Granger causal-

ity and EDM, as applied to both linear and nonlinear data;

• The first known argument for applying EDM to cybersecurity and, more specifi-

cally, to IDS development; and

• A complete library of available EDM functions for use with any set of time series

data of a specific format.

1.3 Organization

The remainder of this thesis reviews the research in detail. Chapter II presents

necessary background information before discussing some of the related work in

current literature and explaining why this work is insufficient for the research at

hand. Chapter III describes the CAN fingerprinting experiments, including the data

used, the deep learning methodology, and the results obtained. Chapter IV examines

whether Granger causality or EDM could serve as the first step toward an effective

IDS. Specifically, the chapter details the data, the analysis techniques, and the results

of the analyses. Finally, Chapter V considers the implications of the results found in

Chapters III and IV and suggests possible opportunities for future research.

5

II. Background and Related Work

Each section in this chapter focuses on a specific field of research or technology.

The chapter first defines cyber-physical systems (CPSs) and time series data before

introducing the controller area network (CAN) protocol and its use in the automotive

industry. Next, it details the need for intrusion detection systems (IDSs) in critical

systems, including those vehicles that utilize the CAN protocol. It follows by describing

causality and explaining Granger causality and empirical dynamic modeling (EDM),

two different techniques for causality analysis. The chapter then discusses neural

networks and deep learning approaches to classification. Finally, it examines some of

the current literature in these fields and highlights relevant gaps in recent research.

2.1 Cyber-Physical Systems & Time Series Data

The Association for Computing Machinery Transactions on Cyber-Physical Systems

defines CPSs as follows:

“Cyber-Physical Systems ... has emerged as a unifying name for systems
where the cyber parts, i.e., the computing and communication parts, and
the physical parts are tightly integrated, both at the design time and
during operation. Such systems use computations and communication
deeply embedded in and interacting with physical processes to add new
capabilities to physical systems ... There is an emerging consensus that new
methodologies and tools need to be developed to support cyber-physical
systems.” [2]

A CPS can be represented by a model, but this model is typically difficult to

understand or replicate.2 For this reason, one must analyze the CPS’s output. Often,

the output of CPS monitoring is time series data representing the value of some process

(or processes) over time. One example of a time series in an aircraft is the propeller’s

2Granger causality and EDM attempt to give insight into a CPS’s model.

6

instantaneous revolutions per minute (RPM) over time, as measured by the aircraft’s

sensors. The National Institute of Science and Technology (NIST) says the following of

time series analysis: “Time series analysis accounts for the fact that data points taken

over time may have an internal structure (such as autocorrelation, trend or seasonal

variation) that should be accounted for” [3]. Kotu and Deshpande contrast time series

analysis and forecasting: “Time series analysis is the process of extracting meaningful

non-trivial information and patterns from time series. Time series forecasting is the

process of predicting the future value of time series data based on past observations

and other inputs” [4]. Most techniques for both analysis and forecasting require data

stationarity for the time series in question. Says NIST: “A stationary process has the

property that the mean, variance and autocorrelation structure do not change over

time ... a flat looking series, without trend, constant variance over time, a constant

autocorrelation structure over time and no periodic fluctuations (seasonality)” [3].

Figure 1 presents examples of time series plots; panels (b) and (g) represent

stationary time series. Although these are arbitrary plots, they succinctly represent

a wide array of potential time series. Many of the time series generated by the

CPSs in an automobile or aircraft are non-stationary, so analysis and forecasting

techniques that require stationarity (e.g., Granger causality) are likely not viable for

these data. Other techniques, like EDM, allow for non-stationary time series analysis

and forecasting. Section 2.4 explores causality analysis using two different techniques.

2.2 The Controller Area Network Protocol

The CAN protocol is a link-layer message broadcast system developed for auto-

mobile applications by Bosch in the early 1980s [6, 7]. It is commonly used in the

automotive, manufacturing, and healthcare industries due to its low cost, low weight,

and architectural simplicity. As Figure 2 shows for a set of four devices controlled by

7

0 50 100 150 200

400

450

500

(a)

Day

go
og

20
0

0 50 100 150 200

0

20

40

60

(b)

Day

di
ff(

go
og

20
0)

1950 1955 1960 1965 1970 1975 1980

4000

5000

6000

(c)

Year

st
rik

es

1975 1980 1985 1990 1995

40

60

80

(d)

Year

hs
al

es

1900 1920 1940 1960 1980

100

200

300

(e)

Year

eg
gs

1980 1985 1990 1995

50000

75000

100000

(f)

Year

pi
gs

1820 1840 1860 1880 1900 1920

0

2000

4000

6000

(g)

Year

ly
nx

1991 1992 1993 1994 1995

120

140

160

180

(h)

Year

be
er

1960 1970 1980 1990

4000

8000

12000

(i)

Year

el
ec

Figure 1. Examples of time series plots. “(a) Google stock price for 200 consecutive
days; (b) Daily change in the Google stock price for 200 consecutive days; (c) Annual
number of [labor] strikes in the US; (d) Monthly sales of new one-family houses sold
in the US; (e) Annual price of a dozen eggs in the US (constant dollars); (f) Monthly
total of pigs slaughtered in Victoria, Australia; (g) Annual total of lynx trapped in the
McKenzie River district of north-west Canada; (h) Monthly Australian beer produc-
tion; (i) Monthly Australian electricity production.” [5]

an electronic control unit (ECU), the network significantly reduces required wiring

within CPSs. Systems that implement the CAN protocol typically use one or more

packet frame formats. Figures 3 to 5 display the standard format, the extended

format, and the flexible data rate (CAN FD) format, respectively. These formats are

backwards compatible. The extended format enables longer message IDs than does

the standard format. The CAN FD format enables larger payload sizes and a potential

8

transmission rate increase [8, 9]. For all three formats, only the arbitration ID (ArbID)

and payload are variable; the remaining fields—flags and error-checking bits—are set

deterministically according to the ArbID and payload. An implementation of the

CAN protocol, which links sensing and actuating devices to a computer network, is a

classic example of a CPS.

Point-to-Point Wiring Networked Wiring

ECUECU

Point-to-Point Wiring Networked Wiring

ECUECU

Figure 2. Vehicle network wiring before and after the CAN protocol. [10]

In automobiles, the devices on the network broadcast short messages detailing the

vehicle’s functionality (e.g., wheel speed, brake pedal pressure, engine RPM); this

ensures data consistency throughout the vehicle. United States federal regulations

require that all passenger vehicles manufactured after 2007 provide an on-board

diagnostics (OBD)-II interface connected to the CAN bus. Consumers, mechanics,

and original equipment manufacturers (OEMs) can utilize this interface to monitor

some of the car’s communications [11]. Recent CAN data collection efforts found

that most vehicles utilize the standard or extended frame formats specified in ISO

11898-1:2015, so CAN frames in today’s automobiles typically contain no more than

eight data bytes [12]. This limits the complexity of CAN data analysis.

The components along the CAN bus are cost-sensitive, so on-bus computational

capabilities are limited. For these reasons, automobile manufacturers typically employ

a policy of security through obscurity, in which the exact data contents are obfuscated

9

Figure 3. ISO 11898-1 CAN standard message format. [11]

Figure 4. ISO 11898-1 CAN extended message format. [11]

Figure 5. ISO 11898-1 CAN flexible data rate message format. [8]

10

to prevent significant analysis of proprietary CAN designs. For this reason, it is

difficult for a non-insider to learn what information is contained in a vehicle’s CAN

data [13]. However, Stone et al. showed that CAN data collected via an OBD-II port

can be automatically reverse-engineered, processed, and converted into time series

data. Additionally, the researchers hypothesized that one can quantify the causal

relationships present in these time series with EDM [12].

2.3 Intrusion Detection Systems

Much like a home security system which alerts the police in the event of a burglary,

an IDS monitors a computer network and alerts the system administrator in the event

of an intrusion. Accomplished cybersecurity researcher Dorothy Denning said the

following of IDSs:

“The development of a real-time intrusion-detection system is motivated
by four factors: 1) most existing systems have security flaws that render
them susceptible to intrusions, penetrations, and other forms of abuse;
finding and fixing all these deficiencies is not feasible for technical and
economic reasons; 2) existing systems with known flaws are not easily
replaced by systems that are more secure—mainly because the systems
have attractive features that are missing in the more-secure systems, or
else they cannot be replaced for economic reasons; 3) developing systems
that are absolutely secure is extremely difficult, if not generally impossible;
and 4) even the most secure systems are vulnerable to abuses by insiders
who misuse their privileges.” [14]

As the availability of cyber devices has increased over the past three decades, so

too has the need for effective IDSs. There are two primary types of IDS: misuse

detection and anomaly detection [15]. Misuse detection systems compare network

traffic to predefined attack signatures stored in large databases; a match indicates

an attack on the network. Anomaly detection systems, on the other hand, compare

traffic to a predetermined baseline to identify anomalies. Detecting and preventing

11

intrusions on a vehicle’s CAN bus limits the possibility of attacks like the 2015 Jeep

hack [16, 17]. Such an attack is made possible by the CAN’s prime vulnerabilities:

“1) weak access control; 2) no encryption; 3) and no authentication” [18]. Tyree et al.

discuss three IDS approaches specific to the CAN domain [19]:

1. Rule-based IDSs: “Early works involve rule-based detectors, an analogue of

signature-based detection in enterprise security. These can detect simple signal-

injection attacks, (sophisticated but very limited) bus-off attacks ... and poten-

tially ECU reprogramming.”

2. Frequency-based IDSs: These systems aim “to exploit the regular frequency of

important CAN messages. Frequency anomalies have been explored to detect

and prevent signal-injection attacks and potentially ECU reprogramming.”

3. ECU-fingerprinting IDSs: Such detectors consider “automatic ECU identification

as a stepping stone to IDS . . . [by using] data-driven techniques to classify which

ECU sent each message by exploiting timing or voltage signatures.”

Recently, various approaches in deep learning have allowed for the development

of effective IDSs in all three categories. Kang and Kang present one such example

[20]. See Liao et al. and Kwon et al. for discussions on further examples [21, 22]. In

general, these examples only develop IDSs for standard computer networks instead of

for CPSs. This is a limitation of these research efforts.

2.4 Causality & Time Series Analysis

Causality is the relationship between cause and effect. For two processes a and b

that exhibit a highly causal relationship, one can expect that some set of parameters

for a predicts some other set of parameters for b. If a and b are not causal, modifying

a is not likely to elicit a predictable response in b. In passenger vehicles, causality

12

is ever-present. The engine’s RPM, for example, directly affects the vehicle’s speed.

Brake position indirectly affects engine RPM and thus the vehicle’s speed. Causal

relationships also hold in the reverse direction. Some perceived value for vehicle speed

implies that the vehicle must have had an engine RPM in some identifiable range at

some previous point in time. Pearl, one of the preeminent researchers in the field, says

the following of causality:

“We say, for example, ‘reckless driving causes accidents’ or ‘you will fail
the course because of your laziness’ (Suppes 1970), knowing quite well that
the antecedents merely tend to make the consequences more likely, not
absolutely certain. Any theory of causality that aims at accommodating
such utterances must therefore be cast in a language that distinguishes
various shades of likelihood—namely, the language of probabilities. Con-
nected with this observation, we note that probability theory is currently
the official mathematical language of most disciplines that use causal mod-
eling, . . . In these disciplines, investigators are concerned not merely with
the presence or absence of causal connections but also with the relative
strengths of those connections and with ways of inferring those connections
from noisy observations. Probability theory . . . provides both the princi-
ples and the means of coping with—and drawing inferences from—such
observations.” [23]

In fewer words, Pearl asserts that causality is difficult to measure. Researchers who

seek to analyze causality in a system must approximate it using methods in statistical

probability. Granger causality presents one such method. EDM provides several

statistical analysis techniques, and some of these techniques also seek to estimate the

causality in a system. Understanding this causality could enable an effective IDS.

2.4.1 Granger Causality

Pearl further claims that Granger causality is a “statistical rather than causal

[method]” meaning that it does not directly quantify causality [23]. Still, Granger’s

technique is likely the most prominent and widely used method for approximating

13

causality in a system, probably because it “does not rely on the specification of a

scientific model and thus is particularly suited for empirical investigations of cause-

effect relationships” [24]. If the following properties hold for the variables X and Y ,

then X is said to Granger-cause Y [1]:

1. “The effect [Y] does not precede its cause [X] in time” [24].

2. “The causal series [X] contains unique information about the series being caused

[Y] that is not available otherwise” [24].

It is difficult to deterministically confirm (2). For this reason, one mathematically

identifies Granger causality by predicting Y ; if the variance of the prediction error is

lower when X is included in the prediction set than when it is not, then X Granger-

causes Y [1]. Note that the accuracy of the causality estimation is improved if both X

and Y are stationary. Granger causality does have one other major caveat: because

it essentially measures association between two variables, it can lead to illegitimate

causalities if one does not consider important relevant variables [24]. Overall, though,

this concept serves as a key tool for time series analysis, and this research shows that

it allows one to draw limited conclusions about time series data generated by some

CPSs. Figure 6 presents an example of a time series X that Granger-causes another

time series Y .

Concerning applications of time series analysis to IDSs, Qin and Lee explored a

tangential application of Granger causality to cybersecurity efforts. Specifically, the

authors used Granger causality to correlate and aggregate security alerts to identify

high-priority alerts [26]. Cabrera et al. (2001) applied Granger causality to the traffic

preceding a network attack to determine which variables best predict the attack. They

then showed that observation of these important variables can assist in determining

signatures of network attacks [27]. Finally, Cabrera et al. (2002) conducted limited,

14

X
0 10 20 30 40 50 60 70 80 90 100

-3

-2

-1

0

1

2

3

Time

Y

0 10 20 30 40 50 60 70 80 90 100

-2

0

2

4

Figure 6. Visualization of Granger causality. Here, X Granger-causes Y . [25]

controlled experiments in a very similar domain. Their work uses Granger causality

to discover relevant variables prior to distributed denial of service attacks [28].

2.4.2 Empirical Dynamic Modeling

Floris Takens introduced the delay embedding theorem in 1981 [29]. Takens’s

Theorem concerns mathematical attractors, where “an attractor is the value, or set of

values, that a system settles toward over time” [30]. EDM is an application of Takens’s

Theorem. In Sugihara et al.’s words, the field “is based on the mathematical theory

of reconstructing system attractors from time series data” [31]. Most applications

of the techniques concern economics or natural sciences; for example, the Sugihara

Laboratory, from which EDM originated, primarily applies the techniques to ecology.

In practice, EDM allows one to model nonlinear dynamic systems with observational

time series data. Figure 7 provides a summarized visual explanation of the main ideas

in Takens’s Theorem and in EDM. Specifically, panel (A) depicts a Lorenz attractor3

as a model of a dynamic system. As the image shows, one can identify a time series

for a given dimension by recording that dimension’s observations over time. Panel

3The Lorenz attractor is a set of solutions to the Lorenz system, a system of ordinary differential
equations first studied by Edward Lorenz in 1963 [32].

15

(B) shows that a univariate time series can be converted to a higher dimensional

representation by using time-lagged versions of itself as additional dimensions. EDM

calls the resulting manifold a shadow manifold. Takens showed that the shadow

manifold is diffeomorphic (maps one-to-one) to its original attractor manifold M [29].

t

τ

2τ

xt-τ

xt

(xt , xt-τ , xt-2τ)

xt-τ

xt-2τ

xt xt-2τ

time (t)

xt

(xt , yt , zt)

yt
zt

M

Mx

(A)

(B)

Figure 7. “Empirical dynamic modeling: (A) Example Lorenz system. The attractor
manifold M is the set of states that the system progresses through time. Projection of
the system state from M to the coordinate axis X generates a time series. (B) Lags of
the time series X are used as coordinate axes to construct the shadow manifold MX ,
which is diffeomorphic (maps 1:1) to the original manifold M . The visual similarity
between MX and M is apparent.” [31, 33]

Sugihara et al. demonstrated that this diffeomorphic property between M and

its shadow manifolds—one for each dimension—implies that the shadow manifolds

are diffeomorphic with respect to each other. The opposite is also true. Thus, if two

shadow manifolds are shown to be diffeomorphic with respect to each other, one can

assume they belong to the same dynamic system. One can then use convergent cross

16

mapping (CCM), a mathematical technique recently developed by Sugihara et al., to

identify the presence of and quantify the causality between the two original time series

[34]. In short, CCM seeks to determine whether an arbitrary point and its nearest

neighbors in one shadow manifold can accurately predict a point and its neighbors in

another shadow manifold. Figure 8 summarizes this concept. Sugihara et al. showed

that increasing the sample sizes for the shadow manifolds improves CCM’s predictive

power, but they also showed that this predictive power converges to some maximum

as the sample sizes increase to infinity [29, 34].

(xt, xt-τ, xt-2τ)

(yt, yt-τ, yt-2τ)

(xt, yt, zt)
M

MyMx

Figure 8. “Convergent cross mapping (CCM) tests for correspondence between shadow
manifolds. This example based on the canonical Lorenz system (a coupled system in
X, Y , and Z ...) shows the attractor manifold for the original system (M) and two
shadow manifolds, MX and MY , constructed using lagged-coordinate embeddings of X
and Y , respectively (lag = τ). Because X and Y are dynamically coupled, points that
are nearby on MX ... will correspond temporally to points that are nearby on MY

... This enables us to estimate states across manifolds using Y to estimate the state
of X and vice versa using nearest neighbors ... With longer time series, the shadow
manifolds become denser and the neighborhoods (ellipses of nearest neighbors) shrink,
allowing more precise cross-map estimates” [33, 34]. The arrows between the manifolds
represent the diffeomorphic properties of the attractors.

17

2.4.3 Autoregressive Integrated Moving Average

There exists another, much more well-known method for forecasting time series:

autoregressive integrated moving average (ARIMA) models. Implementations of

ARIMA first difference a time series to ensure data stationarity before regressing

past values, or lags, of the time series against the original to make predictions. The

method uses a moving window approach, which means it computes forecast error using

the errors for past slices of the time series [4, 35]. Some researchers have published

promising work in ARIMA applications to cybersecurity. Yaacob et al., for example,

obtained notable IDS results for a specific attack with a set of test data, but the

researchers imply a high likelihood of false alarms and thus recommend more research

efforts [36]. Similarly, Shirani, Azgomi, and Alrabaee compute confidence intervals for

future network traffic using ARIMA. Although the proposed methodology can identify

attacks with specific data patterns, their research indicates that ARIMA cannot enable

a general-purpose IDS for CPSs [15]. Specifically, because ARIMA forecasts a time

series using only the data from that series, it is not likely to contribute significantly to

the deep understanding of a system’s dynamics required by an IDS. For this reason,

we consider techniques—like EDM—that afford IDS architects a deeper understanding

of a system.

2.5 Deep Learning

Deep learning, a subfield of machine learning, is motivated by the desire to solve

problems that standard computing approaches either fail to solve or solve suboptimally.

Although the field has a long history of developments, much of its notable success is

recent. As pioneering scientist Terrence Sejnowski claims, “What made it possible for

deep learning to make big breakthroughs on some of the most difficult problems in

artificial intelligence was persistence, big data, and a lot more computer power” [37].

18

Until the 2000s, researchers simply lacked the hardware, software, and data necessary

for effective applications of deep learning techniques. Recently, such techniques

have achieved success and garnered attention in the fields of computer vision, audio

processing, game-playing, and time series analysis (among others). In the context of

this research, deep neural networks enable pattern detection in CAN data, both for

classification and prediction purposes.

2.5.1 Neural Networks

The fundamental deep learning tool is the feedforward neural network or multilayer

perceptron (MLP). Effectively, an MLP aims to loosely model the human brain by

using a set of neurons or nodes. In practice, researchers use MLPs to approximate a

function f ∗; the network “defines a mapping y = f(x; θ) and learns the value of the

parameters θ that result in the best function approximation” [38]. Such a network is

called “feedforward” because information flows strictly from the input layer, through

the computations that define f , and to the output layer.4 The interior layers in a

neural network (if such layers exist) are called hidden layers because the outputs of

these layers are not freely inspectable. A neural network is a deep neural network if it

contains at least two hidden layers.5 One can often use an MLP to approximate a

nonlinear function using few hidden layers [40]. Figure 9 presents such an MLP; this

one is capable of emulating the exclusive or operation.

In deep learning, convolutional neural networks (CNNs) “are a specialized kind of

neural network for processing data that has a known grid-like topology”; because time

series are effectively one-dimensional grids, these networks are well-suited for time

series data [35, 38]. Where standard neural networks use general matrix multiplication

operations to approximate f ∗, CNNs utilize convolution, a special mathematical

4Neural networks that use feedback connections, where information flows back to previous layers,
are called recurrent neural networks.

5Definitions for deep networks differ. Two or more hidden layers is a common definition [39].

19

Figure 9. “An example of a feedforward network, drawn in two different styles ... It has
a single hidden layer containing two units. (Left) In this style, we draw every unit as a
node in the graph. This style is explicit and unambiguous, but for networks larger than
this example, it can consume too much space. (Right) In this style, we draw a node in
the graph for each entire vector representing a layer’s activations. This style is much
more compact. Sometimes we annotate the edges in this graph with the name of the
parameters that describe the relationship between two layers. Here, we indicate that
a matrix W describes the mapping from x to h, and a vector w describes the mapping
from h to y. We typically omit the intercept parameters associated with each layer
when labeling this kind of drawing.” [38]

operation in which a user-defined kernel convolves with an input to generate an output.

The kernel, input, and output are represented by multidimensional arrays.6 Figure 10

depicts a simple convolution operation.

2.5.2 Classification

Classification, one of the primary applications of deep learning, is the task of

predicting an input’s class (or category). Goodfellow, Bengio, and Courville summarize

classification in the following way:

“In this type of task, the computer program is asked to specify which of k
categories some input belongs to. To solve this task, the learning algorithm
is usually asked to produce a function f : Rn → {1, ..., k}. When y = f(x),
the model assigns an input described by vector x to a category identified
by numeric code y. There are other variants of the classification task, for
example, where f outputs a probability distribution over classes.” [38]

6In the context of time series or CAN data, each array is of shape n× 1.

20

Figure 10. “An example of 2-D convolution without kernel flipping. We restrict the
output to only positions where the kernel lies entirely within the image, called ‘valid’
convolution in some contexts. We draw boxes with arrows to indicate how the upper-
left element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.” [38]

2.5.3 Siamese Neural Networks

Siamese neural networks (SNNs) are a different type of neural network to determine

whether two inputs represent the same entity or different entities. An SNN can be

implemented as any type of network, including MLPs and CNNs. One may imagine

an SNN as consisting of two networks in tandem, where the networks have identical

architectures and use identical weights. The SNN receives two matrices as input,

encodes each as a feature vector, and compares the two vectors [41].7 To determine

7In practice, one implements a single network to reduce space requirements; the network receives
and encodes each half of the input pair before comparing the encoded vectors [40].

21

whether two inputs represent the same entity, the SNN uses one of two primary loss

functions: (1) contrastive loss and (2) triplet loss. The former computes the absolute

difference between the vectors and reports same if the difference surpasses some

threshold and not same otherwise. The latter requires a third input—an anchor—and

updates the network’s weights such that the anchor input and the same input encode

to similar vectors, while the anchor input and the not same input encode to dissimilar

vectors [40, 41].

This functionality may enable a more robust vehicle classifier. An attacker with

a well-trained SNN need not collect data from every possible vehicle. Instead, the

attacker only needs enough data to train the SNN to determine whether the same

vehicle generated two different samples of CAN data. At that point, the attacker

can effectively classify any new vehicle by comparing its data samples to those of the

previously seen vehicles.

2.6 Predictive Approaches for the CAN

Most researchers concerned with CAN security attempt to predict future values in

a time series. For example, Marchetti et al. devise an IDS by analyzing sequential

CAN IDs, and Tyree et al. create an IDS that learns relationships in different time

series signals [19, 42]. However, some researchers in recent years have used deep

learning to classify CAN data. Kang and Kang train a deep neural network to classify

CAN data packets as either normal or abnormal [20]. Kwon et al.’s literature survey

details more examples of deep learning as applied to IDSs and to CAN security [22].

Recent research also shows that one can certainly distinguish CAN data. Enev et al.

show that machine learning can discriminate between different drivers using just the

reverse-engineered CAN data collected from the vehicle [43]. However, their research

does not claim to distinguish the raw CAN data generated by different vehicles.

22

2.7 Summary of Related Work

In summary, previous research efforts into the CAN protocol have demonstrated the

ability to (a) predict CAN data (but not classify it); (b) classify CAN signals as good or

bad; or (c) classify vehicles by analyzing reverse-engineered CAN data. None of these

efforts depict an ability to classify vehicles using raw CAN data. This is an important

gap in current research, and our thesis seeks to address this gap. Concerning IDSs,

our work differs from previous work in that it compares EDM to Granger causality as

a time series analysis technique for IDS development. Additionally, past research does

not examine Granger causality applications to general-purpose IDSs; in each case,

the researchers attempt to predict very specific attacks. Finally, our investigation of

the current literature revealed no research into EDM applications to automobile- or

aircraft-generated time series or to cybersecurity as a whole. We foresee EDM as a

useful contribution to the cybersecurity domain, and our research thus seeks to link

the two in a way not yet found in the literature.

23

III. Fingerprinting Vehicles with CAN Bus Data Samples

This chapter addresses the controller area network (CAN) vulnerability mentioned

in Chapter I. Specifically, this chapter shows definitively that an original equipment

manufacturer (OEM)’s obfuscation processes do not mask a vehicle’s identity because

CAN data from one vehicle is uniquely identifiable. Two deep learning models, one a

multilayer perceptron (MLP) and the other a convolutional neural network (CNN),

are trained for each of three distinct data formatting processes to determine how well

a model can distinguish between CAN data from disparate vehicles. Input to the

models consists of the formatted CAN data; each model then predicts the vehicle ID

and compares its output to the true vehicle ID. As the results of the experiments

indicate, CAN data can be uniquely attributed to its generating vehicle regardless of

the data formatting process. The remainder of this chapter discusses the nature and

origins of the data. It then discusses each of the experiments in turn, to include the

data formatting process, the deep learning models employed, and the results.

3.1 Data

This research uses 230 megabytes of Stone et al.’s CAN data [12]. The researchers

conducted one capture on each of 11 different vehicles. Table 1 displays metadata for

the vehicles in the dataset.

A large comma-separated values (CSV) file stores the data. Each of the 4,161,755

rows in this file represents one CAN message, and each row contains:

• A capture id and a vehicle id, which identify the message’s origin;

• A timestamp relative to the start of the capture;

• An arbitration id, which identifies the subject of the message’s contents;

24

Table 1. Make, Model, and Year for Each Vehicle in the Dataset

Vehicle Make Model Year

1 Chevrolet Cobalt 2009
2 Chevrolet Silverado 2011
3 Dodge 1500 2014
4 Ford F-150 2017
5 Ford Focus 2010
6 Honda Accord 2012
7 Honda Accord 2015
8 Nissan 370Z 2015
9 Nissan XTERRA 2010
10 Saab 9-7X 2009
11 Toyota Corolla 2009

• A dlc, or data length code, which indicates the number of payload data bytes;

• The hexadecimal data itself; and

• The vehicle’s make, model, and year.

3.2 Classifying Ordered CAN Payload Data

The messages in the CSV file are not immediately suitable for deep learning. Each

message contains no more than eight data bytes (and many contain fewer), and it

is extremely unlikely that so little information can uniquely identify a vehicle. To

address this issue, we build a set of data samples, where each sample contains 1,024

bytes of sequential CAN data from one capture. That is, for each capture, we sort the

messages by timestamp before splitting all hex data into a list of hex bytes, converting

the hex bytes into three-digit integers (for readability), and dividing the list into

samples of 1,024 integers each. Because each integer represents one byte of CAN data,

each sample contains 8× 1024 = 8192 individual data bits. We then write each sample

and the associated vehicle ID to a new CSV file. This makes it more likely that each

sample contains sufficient information and that the underlying CAN data structure is

preserved. Table 2 presents a few examples of these data samples.

The new CSV file contains 28,425 samples from the 11 vehicles. Table 3 illustrates

25

the distributions of samples over all vehicles (the number of samples depends primarily

on the length of the data capture). In a balanced dataset, each vehicle would contain

about nine percent of all samples. Clearly, this dataset is not balanced. We address

this class imbalance during model training.

Table 2. Ordered Data — Example Samples

Vehicle Type Ordered Data

3 2014 Dodge 1500 074 166 111 254 255 240 254 . . .
7 2015 Honda Accord 003 212 003 209 003 199 003 . . .
8 2015 Nissan 370Z 255 248 000 128 015 254 030 . . .

Table 3. Ordered Data — Samples Per Vehicle

Vehicle Type Samples Proportion

1 2009 Chevrolet Cobalt 4115 14.48%
2 2011 Chevrolet Silverado 1856 6.53%
3 2014 Dodge 1500 1812 6.37%
4 2017 Ford F-150 2221 7.81%
5 2010 Ford Focus 3806 13.39%
6 2012 Honda Accord 1709 6.01%
7 2015 Honda Accord 2220 7.81%
8 2015 Nissan 370Z 3041 10.70%
9 2010 Nissan XTERRA 2564 9.02%
10 2009 Saab 9-7X 2980 10.48%
11 2009 Toyota Corolla 2101 7.39%

3.2.1 Model Architecture

Using an MLP to classify vehicles is a simple approach, but it is useful to present

this approach’s performance to demonstrate that an attacker does not need complex

methods to adequately classify vehicles. Each CAN sample contains 1,024 data bytes,

so the model receives 8,192 bits as input and outputs one of 11 classes. To identify

the best MLP, we test multiple hyperparameter configurations. The left panel of

Figure 11 displays the best configuration. It has one hidden layer of 512 nodes, and it

uses a relu activation function. The dropout layer sets 20% of its inputs to zero. The

output layer contains 11 nodes, one for each vehicle in the dataset, and uses a softmax

activation function. We compile the model with an Adam optimizer of learning rate

26

lr = 0.001 and a categorical cross-entropy loss function. The model has 530,443

parameters, all of which are trainable. In total, we test 27 MLP architectures. Table 4

lists the various options for each hyperparameter used during model construction.

Table 4. Hyperparameter Options for MLP Construction

Hyperparameter Options

Number of Hidden Layers 1, 2, 3
Number of Nodes Per Hidden Layer 128, 256, 512
Optimizer Learning Rate 0.01, 0.001, 0.0001

A more complex approach—a CNN—demonstrates that a sophisticated attacker

can achieve superior performance over the naive approach. The CNN utilizes one-

dimensional convolutional layers because each sample contains one-dimensional data.

In testing, the CNN receives one sample as input and outputs one of the 11 classes.

Like with the MLP, we test multiple hyperparameter configurations before selecting the

best CNN. The best model utilizes a typical CNN structure consisting of convolutional,

pooling, and dropout layers. The right panel of Figure 11 displays the specific

architecture. The convolutional layers each use 32 filters with a kernel size of four,

the pooling layer pools over four elements at each step, and the dropout layer sets

20% of its inputs to zero. The convolutional layers and the first dense layer all use

a relu activation function; the final dense layer uses softmax. We again compile

the model with an Adam optimizer of learning rate lr = 0.001 and a categorical

cross-entropy loss function. The model has 818,427 parameters, and all but 64 are

trainable. In total, we test 18 CNN architectures. Table 5 lists the various options for

each hyperparameter used during model construction.

Table 5. Hyperparameter Options for CNN Construction

Hyperparameter Options

Filters Per Convolutional Layer 32, 64
Kernel Size Per Filter 2, 3, 4
Pooling Size 2, 3, 4

27

InputLayer
input:

output:

(None, 128, 1)

(None, 128, 1)

Conv1D
input:

output:

(None, 128, 1)

(None, 125, 32)

Conv1D
input:

output:

(None, 125, 32)

(None, 122, 32)

BatchNormalization
input:

output:

(None, 122, 32)

(None, 122, 32)

MaxPooling1D
input:

output:

(None, 122, 32)

(None, 30, 32)

Dropout
input:

output:

(None, 30, 32)

(None, 30, 32)

Flatten
input:

output:

(None, 30, 32)

(None, 960)

Dense
input:

output:

(None, 960)

(None, 100)

Dense
input:

output:

(None, 100)

(None, 11)

InputLayer
input:

output:

(None, 128)

(None, 128)

Dense
input:

output:

(None, 128)

(None, 512)

Dropout
input:

output:

(None, 512)

(None, 512)

Dense
input:

output:

(None, 512)

(None, 11)

Figure 11. The best architectures identified in iterative model evaluation processes.
Input to the models consists of sequential CAN bus data. (Left) MLP. (Right) CNN.

28

3.2.2 Model Fitting

Table 3 shows that the classes in the full dataset are somewhat imbalanced. For

example, nearly 15% of all samples come from Vehicle 1, but one should expect

each vehicle to contain about 9% of the samples. To address this imbalance, we use

scikit-learn’s class weight module during model training. This tool adjusts weights

to account for the frequency of each class, and thus it ensures that both models can

use all training data without unnecessarily suffering from class imbalance [44]. Still,

we also create a second, balanced dataset by randomly sampling n = 1695 samples

from every vehicle.

Another important tool during model training is Keras’s EarlyStopping callback,

which limits overfitting [45]. This function monitors validation loss and terminates

training if the loss does not improve in 10 epochs. The callback then restores the model

to its best version. This tool also limits model training time. To properly train and

evaluate the models, we split each dataset into three sets: 60% of the samples are used

in training, 20% in validation, and 20% in testing. Scikit-learn’s train test split

enables this split by randomly sampling from the dataset [44]. We train each model on

the training set, terminate training with the early stopping callback (which monitors

the validation set’s loss), and evaluate the trained model on the testing set. However,

these tools do not guarantee optimality, so we also iteratively improve the models

through repeated testing and hyperparameter tuning. A search over a set of possible

hyperparameter configurations ensures we can identify the best classifier. In total,

we evaluate 27 different MLPs and 18 different CNNs. Tables 4 and 5 depict the

hyperparameter options for these models.

Figure 12 shows that the final models possess sufficient capacity for this task. The

validation loss and accuracy for each model are nearly as good as the training loss

and accuracy—especially for the CNNs—and all four losses and accuracies appear to

29

reach an asymptote. This means that additional training will not benefit the models,

and it also means that the models are nearly optimal for this task. Note that even

the best MLP struggles to generalize to new data.

Figure 12. Training and validation loss and accuracy over time for the best models.
Input to the models consists of sequential CAN bus data. (Top left) The MLP’s loss.
(Top right) The MLP’s accuracy. (Bottom left) The CNN’s loss. (Bottom right) The
CNN’s accuracy.

To evaluate model performance, we compute balanced accuracy for both the bal-

anced and the imbalanced dataset. This metric considers the various class distributions

when computing the classification accuracy. Even for the balanced dataset, this is

important. Because we randomly sample from the dataset to build the training,

validation, and testing sets, each of those three sets could be imbalanced. Additionally,

we present confusion matrices to allow for an in-depth analysis of where each model

fails. For example, Manufacturer X could use the exact same CAN configuration

30

for different vehicles, so even a well-trained model could fail to distinguish between

Manufacturer X’s vehicles. These analyses may even imply a similar CAN structure

across different manufacturers, so the results of these investigations guide further

model modifications and tuning.

3.2.3 Results

The MLP’s performance demonstrates that an intruder with a low-level understand-

ing of deep learning could use this field to better format CAN attacks. The CNN’s

performance shows that a sophisticated intruder can use more advanced techniques to

achieve much better results. Specifically, results indicate that both the MLP and the

CNN can adequately classify CAN data segments, but the CNN is significantly better

than the MLP on both the imbalanced dataset and the balanced dataset. Results also

indicate that both models perform better on the larger, imbalanced dataset; this is

simply due to the availability of training data in each set. Table 6 presents the overall

balanced accuracies for the test set.

Table 6. Ordered Data Test Set — Balanced Accuracy

Model Dataset Accuracy

Multilayer Perceptron Imbalanced 94.46%
Multilayer Perceptron Balanced 67.48%
Convolutional Neural Network Imbalanced 99.64%
Convolutional Neural Network Balanced 95.63%

Table 7 presents class-specific accuracy values for the four trained models. Clearly,

the CNN trained on the imbalanced dataset performs better than the other models on

every class (except Vehicle 5, for which both the CNN and the MLP achieve 100%

accuracy). Additionally, the CNN trained on the balanced dataset outperforms either

version of the MLP on most (10/11) of the classes. This is further evidence of the

superior performance of the CNN, and it also indicates that more training data is

better, even if the classes in the data are imbalanced.

31

Table 7. Ordered Data Test Set — Class Accuracy

Vehicle Type MLP, Imbal. MLP, Bal. CNN, Imbal. CNN, Bal. Median

1 2009 Chevrolet Cobalt 97.34% 79.36% 99.88% 98.34% 97.84%
2 2011 Chevrolet Silverado 89.90% 31.07% 100.00% 99.30% 94.60%
3 2014 Dodge 1500 91.32% 56.10% 100.00% 93.77% 92.54%
4 2017 Ford F-150 98.53% 78.12% 100.00% 96.23% 97.38%
5 2010 Ford Focus 99.87% 83.10% 100.00% 98.13% 99.00%
6 2012 Honda Accord 91.25% 77.32% 99.18% 98.99% 95.12%
7 2015 Honda Accord 91.90% 40.72% 99.54% 90.74% 91.32%
8 2015 Nissan 370Z 90.15% 60.70% 98.68% 93.92% 92.03%
9 2010 Nissan XTERRA 94.68% 75.16% 100.00% 99.70% 97.19%
10 2009 Saab 9-7X 100.00% 94.27% 100.00% 96.74% 98.37%
11 2009 Toyota Corolla 95.27% 65.22% 100.00% 97.48% 96.38%

Figure 13 presents the multiclass confusion matrices for both model types on

both datasets. Generally, the models tend to correctly classify CAN segments, but

some specific misclassifications are certainly common. For example, all four trained

models misclassify Vehicle 6 as Vehicle 7 (and vice versa) to some extent; these are

different-year Honda Accords. Additionally, the models usually perform similarly

on the same vehicle. For example, all models demonstrate strong performance on

Vehicle 10—perhaps Saab employed a distinct data structure when designing its 2009

9-7X. Conversely, neither of the MLP models achieve relatively strong performance

on Vehicle 2. One can easily discern other trends by further analyzing Figure 13.

3.3 Classifying Ordered CAN ArbIDs

As Section 3.2 demonstrates, deep learning can effectively determine which vehicle

in a set generated a given segment of raw CAN data. One potential reason why is

that the deep learning models identify the sequential structure of the CAN data—that

is, the models learn to fingerprint vehicles by analyzing the order and frequency of

different CAN payloads. In assuming that this hypothesis is correct, it is natural to

consider the classification performance of models that receive as input segments of

arbitration IDs (ArbIDs) instead of data payloads. Such models could still learn to

identify a vehicle’s unique sequential packet structure, but both the required size of

32

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

97.34 1.57 0.12 0.00 0.00 0.12 0.36 0.48 0.00 0.00 0.00

0.26 89.90 2.85 0.00 0.00 0.26 1.04 4.66 0.78 0.26 0.00

0.00 3.22 91.32 0.00 0.00 0.00 0.00 2.57 2.89 0.00 0.00

0.21 0.21 0.00 98.53 0.00 0.21 0.21 0.00 0.63 0.00 0.00

0.00 0.00 0.00 0.00 99.87 0.13 0.00 0.00 0.00 0.00 0.00

0.58 0.87 0.00 0.58 0.00 91.25 3.79 0.00 0.00 0.00 2.92

0.24 0.48 0.24 0.48 0.00 2.86 91.90 0.71 0.48 1.19 1.43

0.55 2.55 2.19 0.00 0.00 0.00 1.09 90.15 3.47 0.00 0.00

0.00 0.66 1.00 0.00 0.00 0.00 0.83 2.82 94.68 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00

0.24 0.47 0.24 0.24 0.00 2.13 1.18 0.24 0.00 0.00 95.27

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

79.36 5.52 3.49 3.49 0.29 1.16 2.33 1.45 2.91 0.00 0.00

6.47 31.07 23.30 2.27 1.62 0.00 14.24 12.62 7.77 0.32 0.32

0.70 6.73 56.10 2.38 0.84 1.68 13.04 11.50 5.75 0.00 1.26

2.04 1.90 1.77 78.12 4.62 2.72 4.89 0.82 1.36 0.41 1.36

0.15 1.38 0.46 1.08 83.10 2.61 3.38 2.92 1.69 2.00 1.23

0.82 1.63 2.28 0.65 1.96 77.32 9.62 0.65 0.49 0.16 4.40

1.03 5.67 4.47 2.92 10.14 7.73 40.72 9.28 11.00 1.37 5.67

0.99 7.04 10.85 2.39 1.13 2.68 7.32 60.70 6.34 0.00 0.56

0.65 3.06 8.23 0.16 1.13 0.48 5.97 5.00 75.16 0.16 0.00

0.00 0.29 0.44 0.29 2.06 0.00 1.62 0.29 0.44 94.27 0.29

1.25 1.94 4.90 1.48 3.65 11.86 7.98 1.14 0.11 0.46 65.22

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

99.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00

0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.00 0.00 0.00 0.00 99.18 0.54 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.46 99.54 0.00 0.00 0.00 0.00

0.00 0.19 0.38 0.00 0.00 0.00 0.00 98.68 0.75 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

98.34 1.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00

0.70 99.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.14 0.81 93.77 0.27 0.00 1.76 1.90 0.00 0.14 0.14 1.08

0.15 0.44 0.00 96.23 0.00 0.15 1.02 0.15 0.15 0.15 1.60

0.00 0.00 0.14 0.14 98.13 0.14 0.00 0.43 0.43 0.00 0.57

0.00 0.00 0.00 0.00 0.00 98.99 1.01 0.00 0.00 0.00 0.00

0.00 1.23 0.14 0.41 0.14 7.22 90.74 0.00 0.14 0.00 0.00

0.00 3.04 0.14 0.00 0.41 1.52 0.28 93.92 0.69 0.00 0.00

0.00 0.15 0.15 0.00 0.00 0.00 0.00 0.00 99.70 0.00 0.00

1.77 0.27 0.00 0.00 0.14 0.14 0.00 0.27 0.00 96.74 0.68

0.00 0.89 0.00 0.44 0.00 0.89 0.15 0.00 0.00 0.15 97.48

Figure 13. Confusion matrices. Input to the models consists of sequential CAN bus
data. (Top left) MLP on the imbalanced dataset. (Top right) MLP on the balanced
dataset. (Bottom left) CNN on the imbalanced dataset. (Bottom right) CNN on the
balanced dataset.

33

the training dataset and the time to train the models would decrease. This section

details the methodology and results of such an experiment.

Like the experiment described in Section 3.2, the raw CAN messages require

preprocessing prior to evaluating the deep learning models. We thus construct a set

of ArbID samples; each sample contains 128 ArbIDs in the order they appear on a

vehicle’s CAN bus. To do so, we again sort the messages in each capture by timestamp

before splitting the list of ArbIDs into samples of 128 units; we then write each sample

and the associated vehicle ID to a new CSV file. Table 8 depicts three examples of

these ArbID samples. The CSV file contains 32,508 distinct ArbID samples from the

11 vehicles. Table 9 lists the percentage of samples belonging to each vehicle. As in

Section 3.2’s experiment, we address the class imbalance during model training.

Table 8. Ordered ArbIDs — Example Samples

Vehicle Type Ordered ArbIDs

3 2014 Dodge 1500 11C 118 124 140 202 122 1A0 . . .
7 2015 Honda Accord 1AA 1B0 1D0 1DC 1EA 1ED 320 . . .
8 2015 Nissan 370Z 292 245 216 160 180 182 1F9 . . .

Table 9. Ordered ArbIDs — Samples Per Vehicle

Vehicle Type Samples Proportion

1 2009 Chevrolet Cobalt 4903 15.08%
2 2011 Chevrolet Silverado 2346 7.22%
3 2014 Dodge 1500 1936 5.96%
4 2017 Ford F-150 2221 6.83%
5 2010 Ford Focus 3806 11.71%
6 2012 Honda Accord 1947 5.99%
7 2015 Honda Accord 2735 8.41%
8 2015 Nissan 370Z 3416 10.51%
9 2010 Nissan XTERRA 2874 8.84%
10 2009 Saab 9-7X 3799 11.69%
11 2009 Toyota Corolla 2525 7.77%

3.3.1 Model Architecture

We again evaluate both the naive MLP and the more complex CNN in this

experiment. Each model receives 128 ArbIDs as input and outputs one of the 11

34

classes. As in Section 3.2’s experiment, we conduct a search over hyperparameter

configurations for both model types; Tables 4 and 5 present the various options tested.

The optimal MLP has three hidden layers, each of which has 512 nodes and uses

a relu activation function. The dropout layer sets 20% of its inputs to zero, and

the output layer uses a softmax activation function to classify an input as one of

the 11 vehicles. The model, which we compile with an Adam optimizer of learning

rate lr = 0.001 and a categorical cross-entropy loss function, has 597,003 trainable

parameters. The left panel of Figure 14 presents the model’s exact architecture. The

optimal CNN, on the other hand, uses 32 filters, each with a kernel size of two, in

both of its one-dimensional convolutional layers, and its pooling layer aggregates

two elements at each step. The dropout layer sets 20% of its inputs to zero. The

convolutional layers and first dense layer use a relu activation function, and the final

dense layer uses a softmax activation function. We compile the model with an Adam

optimizer of learning rate lr = 0.001 and a categorical cross-entropy loss function.

In total, this CNN has 102,651 trainable parameters. The right panel of Figure 14

depicts the model’s architecture.

3.3.2 Model Fitting

As Table 9 shows, the full dataset disproportionately represents the 11 vehicles.

We again address this class imbalance by 1) utilizing the class weight module when

training on the imbalanced dataset and 2) downsampling to create a second, balanced

dataset. Additionally, we again limit overfitting by defining an EarlyStopping callback

that terminates training after 10 epochs without any improvement in training loss.

Finally, we employ a 60/20/20 ratio to split each dataset into training, validation,

and testing sets. This methodology applies to each version of the MLP and CNN.

In total, we evaluate 27 MLPs and 18 CNNs. As Figure 15 shows, the final models

35

InputLayer
input:

output:

(None, 128, 1)

(None, 128, 1)

Conv1D
input:

output:

(None, 128, 1)

(None, 127, 32)

Conv1D
input:

output:

(None, 127, 32)

(None, 126, 32)

BatchNormalization
input:

output:

(None, 126, 32)

(None, 126, 32)

MaxPooling1D
input:

output:

(None, 126, 32)

(None, 31, 32)

Dropout
input:

output:

(None, 31, 32)

(None, 31, 32)

Flatten
input:

output:

(None, 31, 32)

(None, 992)

Dense
input:

output:

(None, 992)

(None, 100)

Dense
input:

output:

(None, 100)

(None, 11)

InputLayer
input:

output:

(None, 128)

(None, 128)

Dense
input:

output:

(None, 128)

(None, 512)

Dense
input:

output:

(None, 512)

(None, 512)

Dense
input:

output:

(None, 512)

(None, 512)

Dropout
input:

output:

(None, 512)

(None, 512)

Dense
input:

output:

(None, 512)

(None, 11)

Figure 14. The best architectures identified in iterative model evaluation processes.
Input to the models consists of sequential CAN bus arbitration IDs. (Left) MLP.
(Right) CNN.

36

are well-suited for the classification task. Finally, to evaluate the trained models, we

present balanced accuracies and multiclass confusion matrices.

Figure 15. Training and validation loss and accuracy over time for the best models.
Input to the models consists of sequential CAN bus arbitration IDs. (Top left) The
MLP’s loss. (Top right) The MLP’s accuracy. (Bottom left) The CNN’s loss. (Bottom
right) The CNN’s accuracy.

3.3.3 Results

As in the first experiment, results indicate that the MLP is a sufficient classifier

for the task. On the imbalanced dataset, the MLP achieves a balanced classification

accuracy above 80%. The CNN, however, surpasses 99% on both datasets, so it is once

again the superior classification technique. Table 10 depicts the balanced accuracies

for the four trained models; the results shown are nearly identical to those presented

in Table 6. This supports the hypothesis that the deep learning models learn the

37

structure of a vehicle’s CAN data (as opposed to the data’s exact nature). In the

context of this experiment, this means that a bad cyber actor can simply feed the

ArbIDs into a deep learning model, thus allowing for a smaller dataset, a shorter

training period, and faster classification.

Table 10. Ordered ArbIDs Test Set — Balanced Accuracy

Model Dataset Accuracy

Multilayer Perceptron Imbalanced 82.08%
Multilayer Perceptron Balanced 68.16%
Convolutional Neural Network Imbalanced 99.52%
Convolutional Neural Network Balanced 99.05%

Table 11 reveals the class-specific accuracy values for the four trained models. It

is clear that the CNNs are superior to the MLPs for all vehicles in both datasets;

the MLPs do not achieve 98% accuracy on any class, and yet the CNNs surpass 99%

accuracy for nearly every class. Similarly, Figure 16 depicts the four confusion matrices

for the models. Interestingly, the MLP has significant performance differences when

trained on different datasets. For example, misclassification relationships exist between

Vehicles 1 and 7, 2 and 8, and 7 and 8 when the MLP is trained on the balanced

dataset. When it is trained on the imbalanced dataset, these same relationships are

not evident. In other cases, however, the MLP performs similarly on both datasets.

For example, the models often mistake Vehicles 1 and 6 for each other. The same

can be said about Vehicles 2 and 7. To a much lesser extent, one can draw the latter

conclusion about the CNNs, but further analysis of misclassifications by the CNNs is

made difficult by their phenomenal performances.

3.4 Classifying Unordered CAN Payload Data

Section 3.2 shows that deep learning tools can identify which vehicle from a set

generated a given segment of ordered CAN data. Section 3.3 demonstrates the same

capability but for segments of ordered ArbIDs. These abilities may be because the

38

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

73.40 0.17 0.00 0.00 0.00 25.13 0.00 0.00 1.21 0.09 0.00

0.00 76.14 8.63 0.00 0.00 0.00 14.97 0.00 0.00 0.00 0.25

0.27 1.91 87.70 0.00 0.27 0.00 1.37 1.37 6.83 0.00 0.27

0.00 0.00 0.00 97.49 0.00 0.00 0.00 2.51 0.00 0.00 0.00

0.13 0.00 0.00 0.13 93.59 0.00 0.00 4.23 0.38 1.28 0.26

13.51 4.05 0.00 0.00 0.00 81.08 1.35 0.00 0.00 0.00 0.00

1.16 24.42 1.02 0.00 0.00 0.58 72.53 0.00 0.15 0.00 0.15

0.38 0.00 0.00 5.52 6.86 0.00 0.00 87.24 0.00 0.00 0.00

12.52 0.00 0.00 0.00 0.00 1.29 0.00 0.00 85.42 0.77 0.00

2.61 0.00 0.00 0.00 0.00 1.18 0.00 0.00 0.26 95.82 0.13

0.18 0.00 0.00 0.00 0.37 0.00 0.00 8.49 0.00 0.00 90.96

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

49.88 0.00 0.00 0.00 0.00 28.04 21.34 0.00 0.74 0.00 0.00

0.00 39.94 5.27 3.83 0.00 0.00 4.47 11.18 35.30 0.00 0.00

0.00 0.00 93.66 1.73 0.00 0.00 0.00 1.15 3.46 0.00 0.00

0.00 6.03 0.00 80.97 0.00 0.00 3.22 8.31 1.47 0.00 0.00

0.55 1.38 1.10 5.25 68.23 8.84 4.83 6.77 1.80 1.24 0.00

12.59 0.40 0.00 0.00 11.10 53.32 19.33 2.87 0.40 0.00 0.00

4.83 7.50 0.67 1.33 1.50 6.33 50.17 21.50 5.50 0.50 0.17

0.00 6.86 0.16 11.27 0.98 1.80 8.17 60.46 3.27 6.86 0.16

3.99 1.73 10.40 0.00 0.00 0.35 6.24 0.69 76.26 0.35 0.00

0.11 0.00 0.00 0.75 11.63 1.17 2.45 6.08 1.07 76.63 0.11

0.00 0.00 0.00 0.00 0.12 0.00 0.00 2.57 0.00 0.00 97.30

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 98.95 0.42 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00

0.00 0.00 95.57 0.00 2.86 0.00 0.00 1.56 0.00 0.00 0.00

0.23 0.00 0.00 99.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

0.24 0.24 0.00 0.00 0.00 99.52 0.00 0.00 0.00 0.00 0.00

0.00 0.34 0.00 0.00 0.34 0.17 98.97 0.17 0.00 0.00 0.00

0.00 0.00 0.00 0.17 0.00 0.00 0.00 99.83 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 97.25 0.25 0.00 0.00 0.00 2.25 0.25 0.00 0.00 0.00

0.00 0.62 99.26 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00

0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.13 99.46 0.00 0.00 0.00 0.00 0.00 0.40

0.26 0.00 0.00 0.00 0.00 99.74 0.00 0.00 0.00 0.00 0.00

0.00 0.78 0.13 0.00 0.00 0.13 98.96 0.00 0.00 0.00 0.00

0.00 0.38 0.00 0.51 0.89 0.13 0.38 97.72 0.00 0.00 0.00

0.13 0.00 0.00 0.00 0.00 0.26 0.38 0.51 98.72 0.00 0.00

0.26 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 99.61 0.00

0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 99.87

Figure 16. Confusion matrices. Input to the models consists of sequential CAN bus
arbitration IDs. (Top left) MLP on the imbalanced dataset. (Top right) MLP on the
balanced dataset. (Bottom left) CNN on the imbalanced dataset. (Bottom right) CNN
on the balanced dataset.

39

Table 11. Ordered ArbIDs Test Set — Class Accuracy

Vehicle Type MLP, Imbal. MLP, Bal. CNN, Imbal. CNN, Bal. Median

1 2009 Chevrolet Cobalt 73.40% 49.88% 99.90% 99.73% 86.57%
2 2011 Chevrolet Silverado 76.14% 39.94% 96.26% 99.74% 86.20%
3 2014 Dodge 1500 87.70% 93.66% 95.54% 99.48% 94.60%
4 2017 Ford F-150 97.49% 80.97% 99.77% 99.74% 98.62%
5 2010 Ford Focus 93.59% 68.23% 100.00% 99.62% 96.60%
6 2012 Honda Accord 81.08% 53.32% 99.00% 99.87% 90.04%
7 2015 Honda Accord 72.53% 50.17% 97.61% 99.87% 85.07%
8 2015 Nissan 370Z 87.24% 60.46% 99.81% 98.49% 92.86%
9 2010 Nissan XTERRA 85.42% 76.26% 99.85% 98.81% 92.12%
10 2009 Saab 9-7X 95.82% 76.63% 100.00% 100.00% 97.91%
11 2009 Toyota Corolla 90.96% 97.30% 100.00% 100.00% 98.65%

deep learning models identify the underlying structure of the CAN data—that is, the

models identify the payload organization and frequencies unique to each of an OEM’s

vehicles. This may imply that the sequential structure of the CAN segments analyzed

in Sections 3.2 and 3.3 is irrelevant. For this reason, this experiment evaluates whether

randomized CAN payload data can effectively fingerprint a vehicle. Here, randomized

means that we simply shuffle each list of hex bytes described in Section 3.2 before

splitting the list into samples. Although a bad cyber actor is unlikely to process

collected data in such a way, the results presented in Section 3.4.3 illustrate that the

deep learning models do seem to identify the CAN structure, and this thus provides

valuable insight into the nature of CAN data and design.

Because the quantity of data in each capture does not change, the generated

CSV file contains 28,425 samples, the same number as the file generated in the first

experiment. Likewise, the sample distribution over the 11 classes for this experiment

is identical to the first experiment’s distribution. Table 12 depicts this distribution,

and Table 13 presents a few examples of the randomized CAN samples. Once again,

we address the obvious class imbalance during model training. As expected, it is

difficult to discern differences between these samples and those presented in Table 2

because the data formatting process does not alter the data bytes themselves—only

the order in which the bytes appear.

40

Table 12. Unordered Data — Samples Per Vehicle

Vehicle Type Samples Proportion

1 2009 Chevrolet Cobalt 4115 14.48%
2 2011 Chevrolet Silverado 1856 6.53%
3 2014 Dodge 1500 1812 6.37%
4 2017 Ford F-150 2221 7.81%
5 2010 Ford Focus 3806 13.39%
6 2012 Honda Accord 1709 6.01%
7 2015 Honda Accord 2220 7.81%
8 2015 Nissan 370Z 3041 10.70%
9 2010 Nissan XTERRA 2564 9.02%
10 2009 Saab 9-7X 2980 10.48%
11 2009 Toyota Corolla 2101 7.39%

Table 13. Unordered Data — Example Samples

Vehicle Type Unordered Data

3 2014 Dodge 1500 255 000 015 007 000 017 000 . . .
7 2015 Honda Accord 010 254 000 127 249 000 000 . . .
8 2015 Nissan 370Z 040 000 123 000 000 000 144 . . .

3.4.1 Model Architecture

Like before, we compare the MLP’s performance to that of a CNN. As in the first

experiment, the models each receive as samples 1,024 three-digit hexadecimal data

bytes extracted from CAN messages. The models classify each sample as one of the

11 vehicles described in Section 3.1. We iteratively construct these models using the

parameters listed in Tables 4 and 5. The optimal MLP has three 256-node hidden

layers that each utilize a relu activation function. These layers are followed by a 20%

dropout layer and an 11-node softmax output layer. It is compiled with an Adam

optimizer of learning rate lr = 0.001 and a categorical cross-entropy loss function

and has 396,811 trainable parameters. The best CNN utilizes two one-dimensional

convolutional layers, each of which uses 32 filters of size two; one pooling layer, which

pools over two elements at a time; and one dropout layer, which zeroes 20% of its

inputs. The output layer uses a softmax activation function, and the rest of the layers

use a relu activation function. The model monitors categorical cross-entropy loss and

employs an Adam optimizer of learning rate lr = 0.001. It has 1,091,515 parameters,

41

only 64 of which are non-trainable. The left and right panels of Figure 17 depict the

architectures for the optimal MLP and CNN, respectively.

3.4.2 Model Fitting

The classes in the dataset are disproportionately represented; Table 12 shows the

exact sample counts for each class. We employ the same methods as before—namely,

the class weight module and the creation of a second, balanced dataset—to mitigate

the effects of this imbalance. We again utilize Keras’s EarlyStopping callback to

reduce overfitting, and we also split the dataset into training, validation, and testing

sets before evaluating each of the 27 MLP configurations and 18 CNN configurations

using the parameters depicted in Tables 4 and 5, respectively. Figure 18 shows that the

final versions of each model type are capable of effectively classifying CAN samples.

3.4.3 Results

Once again, the experimental results indicate that both model types can adequately

classify CAN samples. However, the performances in this experiment are noticeably

worse than in either of the previous experiments. As Table 14 illustrates, the optimal

MLP achieves 59.26% balanced classification accuracy, far lower than the 94.46%

and 82.08% accuracies achieved in the first two experiments.8 Similarly, training the

models on ordered data or ArbIDs allows for a balanced accuracy of 99.64% or 99.52%,

respectively, for the CNN; when trained on unordered data, the CNN’s performance

dips slightly to 98.83%. Table 15 depicts the models’ class accuracy for each vehicle.

Both versions of the MLP suffer on several classes, but the CNN, when trained on the

full dataset, attains 96.98% or better classification accuracy for every vehicle. Finally,

Figure 19 contains the confusion matrices for the four models. Clearly, the MLP

trained on the full dataset performs well on some vehicles, like 3, 6, and 9, but the

8All accuracy values refer to the given model’s performance on the imbalanced dataset.

42

InputLayer
input:

output:

(None, 128, 1)

(None, 128, 1)

Conv1D
input:

output:

(None, 128, 1)

(None, 127, 32)

Conv1D
input:

output:

(None, 127, 32)

(None, 126, 32)

BatchNormalization
input:

output:

(None, 126, 32)

(None, 126, 32)

MaxPooling1D
input:

output:

(None, 126, 32)

(None, 42, 32)

Dropout
input:

output:

(None, 42, 32)

(None, 42, 32)

Flatten
input:

output:

(None, 42, 32)

(None, 1344)

Dense
input:

output:

(None, 1344)

(None, 100)

Dense
input:

output:

(None, 100)

(None, 11)

InputLayer
input:

output:

(None, 128)

(None, 128)

Dense
input:

output:

(None, 128)

(None, 256)

Dense
input:

output:

(None, 256)

(None, 256)

Dense
input:

output:

(None, 256)

(None, 256)

Dropout
input:

output:

(None, 256)

(None, 256)

Dense
input:

output:

(None, 256)

(None, 11)

Figure 17. The best architectures identified in iterative model evaluation processes.
Input to the models consists of CAN bus data in a random order. (Left) MLP. (Right)
CNN.

43

Figure 18. Training and validation loss and accuracy over time for the best models.
Input to the models consists of CAN bus data in a random order. (Top left) The
MLP’s loss. (Top right) The MLP’s accuracy. (Bottom left) The CNN’s loss. (Bottom
right) The CNN’s accuracy.

other MLP only demonstrates strong performance on Vehicle 3. Comparatively, both

MLPs perform relatively poorly on a majority of the vehicles, including 2, 3, 5, 7, 8,

and 10.9 Certainly, both CNNs surpass either MLP. When trained on the balanced

dataset, the CNN achieves 80% accuracy on four classes. The CNN trained on the

full dataset benefits from its increased model capacity and quantity of training data,

because it exceeds 96% accuracy on every vehicle.

These results—especially for the CNN—show that deep learning models can

effectively classify unordered CAN data. This implies that the models do in fact

learn to identify structural characteristics of the data, like the commonly used byte

9It is important to note that both MLPs still outperform a random guess approach, which should
only correctly classify about 9% of the samples from a given dataset.

44

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

75.46 0.50 0.00 4.96 0.00 0.00 0.00 6.32 0.00 12.76 0.00

0.00 38.96 0.00 0.00 0.00 0.00 0.00 18.18 42.86 0.00 0.00

0.00 0.00 92.80 0.00 0.00 0.00 0.00 0.00 7.20 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 5.60 52.52 0.00 30.22 0.00 0.00 5.12 6.55

0.00 0.00 0.00 0.00 0.00 89.14 0.28 0.00 0.00 0.00 10.59

0.00 0.00 0.00 0.00 15.38 0.00 46.15 0.00 0.00 0.00 38.46

19.39 23.31 0.00 0.00 0.00 0.00 0.00 46.08 11.23 0.00 0.00

0.17 18.24 0.00 0.00 0.00 0.00 0.00 6.20 75.39 0.00 0.00

2.95 0.00 0.00 36.20 10.61 0.00 0.83 0.00 0.00 49.41 0.00

0.00 0.00 0.00 0.00 3.85 11.06 17.07 0.00 0.00 0.00 68.03

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

29.00 1.16 0.00 0.23 2.55 0.00 31.79 16.71 0.23 18.33 0.00

0.22 25.11 0.00 0.00 0.00 29.69 0.00 21.18 23.80 0.00 0.00

0.00 0.00 95.69 0.00 0.00 0.29 0.00 0.00 4.02 0.00 0.00

0.00 0.00 0.00 33.46 25.97 0.00 7.11 0.00 15.07 11.28 7.11

0.00 0.00 0.00 32.20 28.81 0.00 23.73 0.00 1.69 0.00 13.56

0.00 0.00 46.10 0.00 0.00 46.27 0.00 0.00 0.00 0.00 7.63

0.00 0.00 0.00 0.00 0.00 0.00 50.00 50.00 0.00 0.00 0.00

9.77 15.60 0.00 0.00 0.19 11.56 6.39 49.91 4.51 2.07 0.00

0.00 15.99 0.00 0.00 0.00 27.55 0.00 3.74 52.72 0.00 0.00

7.90 0.00 0.00 15.05 15.88 0.00 9.41 0.98 14.15 36.64 0.00

0.00 0.00 5.14 9.04 12.27 4.98 21.23 0.00 0.66 0.41 46.27

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

96.98 1.21 0.00 0.00 0.00 0.00 0.00 0.72 1.09 0.00 0.00

0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 99.74 0.00 0.26 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 97.94 1.77 0.00 0.00 0.00 0.29

0.00 0.00 0.00 0.00 1.35 0.00 98.65 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00

0.00 0.49 0.33 0.00 0.00 0.00 0.00 0.00 99.18 0.00 0.00

0.83 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 98.18 0.00

0.00 0.00 0.00 0.98 0.00 0.25 0.00 0.00 0.00 0.00 98.77

1 2 3 4 5 6 7 8 9 10 11
Predicted label

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 la
be

l

87.25 0.00 0.00 0.00 2.68 0.00 2.35 0.00 0.00 7.72 0.00

5.18 85.23 0.00 0.00 0.00 0.00 3.63 4.66 1.30 0.00 0.00

0.00 1.19 75.67 0.00 0.00 19.29 0.00 1.48 0.89 0.00 1.48

0.00 0.00 0.38 74.95 7.21 0.00 0.95 0.19 6.07 0.00 10.25

0.23 0.00 0.12 13.22 54.27 0.00 19.30 0.00 0.00 4.21 8.65

0.00 0.00 19.64 0.00 0.00 64.80 0.42 13.88 0.42 0.00 0.84

0.00 0.14 1.72 9.33 3.87 3.16 70.30 0.00 3.73 0.00 7.75

0.00 0.15 0.00 2.75 3.51 8.24 0.61 79.08 2.29 3.36 0.00

6.96 0.68 0.00 6.41 0.14 0.00 0.00 1.91 81.04 2.46 0.41

0.12 0.00 0.00 5.32 19.28 0.00 0.12 0.00 0.00 73.79 1.36

0.00 0.00 2.45 3.68 1.23 1.23 1.23 0.00 0.00 0.20 89.98

Figure 19. Confusion matrices. Input to the models consists of CAN bus data in a
random order. (Top left) MLP on the imbalanced dataset. (Top right) MLP on the
balanced dataset. (Bottom left) CNN on the imbalanced dataset. (Bottom right) CNN
on the balanced dataset.

45

Table 14. Unordered Data Test Set — Balanced Accuracy

Model Dataset Accuracy

Multilayer Perceptron Imbalanced 59.26%
Multilayer Perceptron Balanced 42.04%
Convolutional Neural Network Imbalanced 98.83%
Convolutional Neural Network Balanced 75.22%

Table 15. Unordered Data Test Set — Class Accuracy

Vehicle Type MLP, Imbal. MLP, Bal. CNN, Imbal. CNN, Bal. Median

1 2009 Chevrolet Cobalt 75.46% 29.00% 96.98% 87.25% 81.36%
2 2011 Chevrolet Silverado 38.96% 25.11% 100.00% 85.23% 62.10%
3 2014 Dodge 1500 92.80% 95.69% 100.00% 75.67% 94.25%
4 2017 Ford F-150 0.00% 33.46% 100.00% 74.95% 54.21%
5 2010 Ford Focus 52.52% 28.81% 99.74% 54.27% 53.39%
6 2012 Honda Accord 89.14% 46.27% 97.94% 64.80% 76.97%
7 2015 Honda Accord 46.15% 50.00% 98.65% 70.30% 60.15%
8 2015 Nissan 370Z 46.08% 49.91% 100.00% 79.08% 64.50%
9 2010 Nissan XTERRA 75.39% 52.72% 99.18% 81.04% 78.21%
10 2009 Saab 9-7X 49.41% 36.64% 98.18% 73.79% 61.60%
11 2009 Toyota Corolla 68.03% 46.27% 98.77% 89.98% 79.00%

values and their frequencies. As stated at the start of this section, someone hoping

to fingerprint vehicles with CAN data is not likely to randomize the bytes as we did.

However, in identifying why the models still correctly classify unordered samples, one

enables a deeper analysis of an OEM’s CAN design choices and tendencies.

3.5 Distinguishing CAN Data with Siamese Neural Networks

We also briefly explored Siamese neural network (SNN) applications to this work.

Given enough training data, an SNN can distinguish new cars—that is, those not

present in the original training set—because it learns during training whether two

observations come from the same source or from different sources. However, our

attempts did not prove fruitful. It seems that an SNN with a contrastive loss function

does not possess the capacity required to determine same/not same for two CAN

samples. We contend that a network with a triplet loss function may succeed, but,

in our exploratory efforts, the loss consistently centered around the margin α for all

network configurations. Although a more in-depth analysis of this topic is outside the

46

scope of this thesis, future researchers may wish to advance these efforts. They should

consider the following modifications:

• Utilize a batch-hard triplet generation methodology to ensure the triplets suffi-

ciently train the model (i.e., so the triplets are nontrivial); and

• Implement a weighted loss function to penalize those losses that collapse to α.

Demonstrating that an SNN can effectively fingerprint CAN samples would confirm

the security and privacy risks to the vehicle’s operator and passengers. Specifically,

because an SNN is more powerful than the MLPs and CNNs we evaluated, and because

this research already illustrates the risks present in the network’s design, an SNN that

can fingerprint vehicles is simply a more robust tool for the CAN intruder.

3.6 Summary

This chapter discussed a corpus of CAN data and three separate experiments, each

of which demonstrated an effective classification approach for these data. Section 3.2

described the first experiment, in which we generated 1,024-byte samples of ordered

payload data for each of 11 vehicles. Section 3.3 examined the second experiment, in

which we generated samples consisting of 128 ordered ArbIDs. Section 3.4 considered

the third experiment, in which we extracted the ordered payload data, as in the first

experiment, and then shuffled the data bytes before partitioning them into 1,024-byte

samples. In each experiment, we constructed and trained multiple versions of two

disparate deep learning classifiers, one an MLP and the other a CNN, before using

these classifiers to identify which of the 11 vehicles generated each sample. In all cases,

the experimental results indicated that deep learning models can effectively classify

the samples. Section 5.1 discusses the real-world implications of these findings.

47

IV. EDM as a Component of an Intrusion Detection System

Chapters I and II introduced intrusion detection systems (IDSs), which mitigate

cyber-physical system (CPS) vulnerabilities like those discussed in Chapter III. This

chapter discusses how two different time series analysis techniques can contribute

to IDS development. The first, Granger causality, is a well-known, relatively simple

statistical method for quantifying the causality in a system. The second, empirical

dynamic modeling (EDM), is a small-but-growing technique for analyzing the dynamics,

to include the causality, of a system. The remainder of this chapter discusses the

nature and origins of the data. It then describes the computational methodology of

Granger causality and EDM before finally analyzing the results of applying these

techniques to the data.

4.1 Experimental Data & Analysis

We utilize two statistical analysis tools to develop insights into a system’s charac-

teristics, including its nonlinearity, deterministic chaos, and causality. This section

describes the experimental data and the techniques used to analyze the data.

4.1.1 Data

This research utilizes data from two simulated CPSs. The first simulated dataset

represents the effect of an automobile’s steering wheel angle over time on the revolutions

per minute (RPM) measurements for the turning wheels. The second dataset consists

of captured nonlinear data generated by the Avionics Vulnerability Assessment System

(AVAS), an Air Force Research Lab (AFRL)-developed flight simulator that employs

real-world physics and flight dynamics for research purposes. The steering dataset

is considered to be linear because the relationship between each pair of time series

48

is linear or nearly linear. Specifically, the relationship between the two wheel RPMs

is linear, and the relationships between the steering input and each wheel RPM are

almost linear.10 Similarly, the AVAS dataset is nonlinear because the relationships

between the time series are nonlinear. The datasets allow us to evaluate the utility of

both Granger causality and EDM when used to analyze linear systems and nonlinear

systems. Although simpler methods may enable effective analysis of linear systems,

many CPSs of interest are nonlinear.

4.1.1.1 Linear Data

To properly assess both Granger causality and EDM, we construct a dataset

representative of a linear system. It is expected that the analysis techniques make

better predictions and identify stronger relationships when evaluating time series that

are linearly linked. The variables describing the steering wheel angle and RPMs of the

turning wheels in a passenger vehicle constitute such a system. We generate these time

series with Python 3.7 for a vehicle with the following characteristics: a 15-inch wheel

radius, including the tire; a 72-inch wheelbase; a 60-inch track; a maximum steering

wheel turning angle of 360 degrees; a steering ratio of 8:1 (and thus a maximum wheel

angle of 45 degrees); and a constant forward speed of 25 miles per hour. Under these

assumptions, a sum of sines function loosely represents some hypothetical driving

scenario. That is, the Steering line in Figure 20 serves as a potential steering wheel

angle time series, and we directly compute the inside and outside wheel RPMs using

Equations (1) and (2), respectively.11 Note that, if the steering wheel angle θ < 0, the

left wheel is the inside wheel; otherwise, the right wheel is to the inside. Table 16

defines the variables used in the equations.

10That is, the latter two relationships are linear for steering wheel angles of relatively small
magnitude but grow in nonlinearity as the steering wheel angle’s magnitude increases.

11The interested reader may inspect the derivations of these equations in Appendix A.

49

0 200 400 600 800 1000
Time (seconds)

−
36

0
−

18
0

0
18

0
36

0
S

te
er

in
g

W
he

el
 A

ng
le

 (
de

gr
ee

s)

0 200 400 600 800 1000
Time (seconds)

22
6

28
0

33
4

W
he

el
 R

P
M

0 200 400 600 800 1000
Time (seconds)

Steering
Left RPM
Right RPM

Figure 20. Plots of the steering system time series.

RPMinside =
60sb

πr

(
b+ cos

(
90− θ

t

)√
b2 +

(
k + b tan

(
90− θ

t

))2) (1)

RPMoutside =
60s
√
b2 +

(
k + b tan

(
90− θ

t

))2
πr

(
b sec

(
90− θ

t

)
+
√
b2 +

(
k + b tan

(
90− θ

t

))2) (2)

Table 16. Variable Definitions for the RPM Equations

Variable Meaning Defined Value

r wheel radius 15 inches
b wheelbase 12 inches
k track 60 inches
t steering ratio 8:1
s forward speed 25 miles per hour
θ current steering wheel angle not applicable

This steering system is rather rudimentary—it doesn’t account for the physical

properties of a real system, including the effects of other relevant variables—but even

its simplistic nature may allow us to draw conclusions concerning EDM’s applications

to linear CPSs. The empirical results shown in Figure 21 confirm that the time series

from the model are fairly linearly related.12 Because the values of the variables cover

12The somewhat nonlinear behavior between either wheel and the steering wheel is due to the
mechanics of a standard automobile’s Ackermann steering mechanism.

50

significantly different ranges, we standardize all variables with R’s scale function13

to ensure each is equally important during analysis.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●

●●
●●

●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●

●●
●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●

●●
●●

●●●
●●●●

●●
●●●●●

●●●●●
●●●●●●

●●
●●●

●●
●●

●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●

●●
●●

●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●
●●

●●
●●

●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●

●●
●●

●●
●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●

●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●
●●

●●
●●●

●●●●●
●●●

●●●●●
●●●●●

●●●●●●
●●●

Left RPM

R
ig

ht
 R

P
M

226 253 280 308 335

22
6

28
0

33
5

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●

●●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●●
●●

●●
●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●
●●

●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●

●●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●●
●●

●●
●●
●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●
●●●

●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

Steering Wheel Angle (degrees)

Le
ft

R
P

M

−360 −180 0 180 360

22
6

28
0

33
5

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●

●●●
●●●●

●●
●●●●●

●●●●●
●●●●●●

●●
●●●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●

●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
●●●

●●●●●
●●●

●●●●●
●●●●●

●●●●●●
●●●

Steering Wheel Angle (degrees)

R
ig

ht
 R

P
M

−360 −180 0 180 360

22
6

28
0

33
5

Figure 21. Scatter plots demonstrating the relationship between each pair of variables
in the steering system time series.

4.1.1.2 Nonlinear Data

To create the second dataset, we guided an AVAS-simulated aircraft through

takeoff, low-altitude cruising, and multiple shallow banked turns. Our data collection

yielded 7,582 observations from a 14-minute flight. Each observation includes seven

different flying metrics and a timestamp relative to the start of the simulation. The

metrics are roll and pitch (each in radians),14 altitude (in feet), and airspeed and

velocity in each of the three coordinate axes (in feet per second). The roll and pitch

values range from -180◦ to 180◦; altitude, airspeed, and the directional velocities are

all floating point values.15

As with the linear dataset, we z-scale the variables prior to analysis. We then

select a subset of the variables—airspeed, altitude, and pitch—before conducting the

13For some time series X, the function z-scales X by subtracting its mean and then dividing it by
its standard deviation.

14We exclude yaw because, in the AVAS, yaw is simply a measurement of the plane’s heading
relative to north. In other words, it is not a characteristic of the plane’s dynamics.

15Airspeed and altitude are both nonnegative.

51

analyses. Other subsets of the eight variables likely exhibit the desired dynamics, but

it is expected that these three variables best demonstrate a tightly coupled system.

Figure 22 presents the three time series, prior to scaling, in one plot. It is important

to note that scaling the variables does not guarantee the successful application of

Granger causality analysis; the technique assumes the variables under analysis exhibit

linear dynamics, but Figure 23 clearly illustrates that the system is highly nonlinear.

0 200 400 600 800
Time (seconds)

0
36

4
72

9
A

irs
pe

ed
 (

fe
et

/s
ec

on
d)

0 200 400 600 800
Time (seconds)

1
67

87
13

57
3

A
lti

tu
de

 (
fe

et
)

0 200 400 600 800
Time (seconds)

−
38

−
15

8
31

54
P

itc
h

(d
eg

re
es

)

Airspeed
Altitude
Pitch

Figure 22. Plots of the selected AVAS time series.

●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●
●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●

●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●
●●

●●●●●●●●●●
●●●●●●●●●●

●●
●●●●●●●●

●●●●●●●
●●●●●●●●●

●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●

●●
●●●●●

●●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●
●●
●●
●●

●●●
●●●

●●●
●●●●

●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●

●●●●●●●●
●●● ● ● ●

Airspeed (feet/second)

A
lti

tu
de

 (
fe

et
)

0 182 364 547 729

1
67

87
13

57
3

●●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●●●●●●
●

●

●

●
●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●

●●●
●●●●●●●
●●●●●●
●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●
●●●

●●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●

●●●
●●●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●
●●
●●●
●●●
●●●●
●●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●
●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●
●
●
●

●

●

●

●
●

●

●

●
●
●
●
●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●●●●●●●●●●

●
●
●
●●●
●●●

●●●●
●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●

●
●
●
●
●●●●●●
●●
●
●●●

●●●●●
●●●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●
●●
●
●
●
●
●
●
●
●
●
●●
●●●●●
●●
●
●●
●
●
●
●
●
●
●
●●
●●
●●●
●●●
●●●
●●●●
●●●●●●●●●
●●●●
●●●
●●●●
●●●●●●●●●●●●●
●●●
●●●
●●●●
●●●●
●●●●
●
●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●
●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●●
●●●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●●●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●●
●●●
●●
●
●
●
●●
●●
●●
●●●
●●●
●●
●●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●●●
●
●
●
●
●
●
●
●●●●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●

●●
●●
●●
●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●●●
●●●●●●●●●
●●●●●
●●
●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●●●●●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●

●
●●●

●●●●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●●
●
●
●
●
●●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●

●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●

●●●
●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●●●
●●
●●●●●●●●●●
●●
●●
●
●
●
●
●
●
●●
●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●●
●●●●●●●

●●●●●
●●●●●

●●●
●●●

●●
●●
●●
●●
●●
●●●●●●●●●●●●●

●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●
●
●
●
●
●
●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●

●●●●●●●●●
●●●●●●●
●●●

●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●
●●
●●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●
●
●
●
●
●●
●●
●
●
●
●
●
●●
●●●●●●
●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●

●●●●●●●●
●●●●
●●●
●●
●●
●●
●●
●●
●●
●
●
●

●
●
●
●●

●●●●●●●●●●●
●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●
●
●
●
●
●●
●
●
●
●
●
●●●●●●

●●
●●
●●●
●●●●●●●●

●●●●
●●●
●●
●●
●●●●●
●●●●●●
●●●
●●
●●
●●
●●●●
●●●●●
●●●
●●
●●
●●
●●●
●●●●●
●●●
●●
●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●
●●
●●●

●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●

●●
●●
●●
●●●
●●●
●●
●●●●
●●●●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●●●●●●
●●
●●●
●●●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●●●●
●●●
●●
●
●●
●●
●●●●
●●●
●●●
●●
●●
●●●
●●●●●

●●●●●
●●●
●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●●
●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●
●●
●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●●●●●●
●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●

●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●
●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●●
●●
●●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●●

●●●●●●●
●
●
●
●

●

●

●

●
●
●
●●●

●
●
●
●●
●●●

●●●●●●●●●●●●●
●●●
●●

●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●

●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●
●●●●
●●

●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●●
●●
●●
●●●
●●●●
●●●●●

●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●

●●●●●●●●
●●
●
●
●
●●●●●
●
●●●●●●●●●●
●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●●●
●●●●●●
●●
●
●●●
●●
●

●

●

●

●

●

●

Airspeed (feet/second)

P
itc

h
(d

eg
re

es
)

0 182 364 547 729

−
38

8
54

●●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●●●●●●
●

●

●

●
●●
●●●
●●
●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●

●●●
●●●●●●●
●●●●●●
●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●
●●●

●●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●

●●●
●●●
●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●
●●
●●●
●●●
●●●●
●●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●
●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●
●
●

●

●

●

●
●

●

●

●
●
●
●
●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●●●●●●●●●●

●
●
●
●●●
●●●
●●●●

●●●●
●●●●

●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●

●
●
●
●
●●●●●●
●●
●
●●●

●●●●●
●●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●

●●
●
●
●
●
●
●
●
●
●
●●
●●●●●

●●
●
●●
●
●
●
●
●
●
●
●●
●●
●●●
●●●
●●●
●●●●
●●●●●●●●●
●●●●
●●●
●●●●
●●●●●●●●●●●●●

●●●
●●●
●●●●
●●●●
●●●●
●
●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●
●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●●
●●●

●
●
●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●●●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●●
●●●
●●
●
●
●
●●
●●
●●
●●●
●●●
●●
●●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●●●

●
●
●
●
●
●
●
●●●●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●●●
●●●●●●●●●
●●●●●
●●
●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●●●●●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●

●
●●●

●●●●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●●
●
●
●
●
●●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●

●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●
●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●

●●●
●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●●●
●●
●●●●●●●●●●
●●
●●
●
●
●
●
●
●
●●
●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●●
●●●●●●●

●●●●●
●●●●●

●●●
●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●

●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●
●
●
●
●
●
●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●

●●●●●●●●●
●●●●●●●

●●●
●
●
●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●
●●●

●●
●●

●●
●●

●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●
●
●
●
●
●●
●●
●
●
●
●
●
●●
●●●●●●
●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●
●●●●●●●●

●●●●
●●●
●●
●●
●●
●●
●●
●●
●
●
●

●
●
●
●●
●●●●●●●●●●●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●
●
●
●
●
●●
●
●
●
●
●
●●●●●●

●●
●●

●●●
●●●●●●●●

●●●●
●●●

●●
●●
●●●●●

●●●●●●
●●●

●●
●●
●●
●●●●

●●●●●
●●●
●●
●●
●●
●●●
●●●●●

●●●
●●
●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●
●●
●●●

●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●
●●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●

●●
●●●●
●●●●
●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●
●●
●●●
●●●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●●●●
●●●
●●
●
●●
●●
●●●●
●●●
●●●
●●
●●
●●●
●●●●●
●●●●●
●●●
●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●●
●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●

●●
●●
●●●
●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●
●●
●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●●●●●●
●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●
●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●●
●●
●●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●●
●●●●●●●

●
●
●
●

●

●

●

●
●
●
●●●

●
●
●
●●
●●●

●●●●●●●●●●●●●
●●●
●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●

●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●
●●●●
●●

●●●
●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●●
●●
●●
●●●
●●●●
●●●●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●

●●●●●●●●
●●
●
●
●
●●●●●
●
●●●●●●●●●●

●
●
●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●●●●
●●●●●●

●●
●
●●●

●●
●

●

●

●

●

●

●

Altitude (feet)

P
itc

h
(d

eg
re

es
)

1 3394 6787 10180 13573

−
38

8
54

Figure 23. Scatter plots demonstrating the relationship between each pair of variables
in the AVAS time series.

52

4.1.2 Granger Causality

StatsModels’s grangercausalitytests, which evaluates the null hypothesis “X

does not Granger-cause Y ”, quantifies the Granger non-causality present in each

system. Input to this function includes the two time series to be evaluated, of course,

but it also includes a maxlag parameter, which indicates the maximum number of

time steps to lag, or offset, the X time series. The function computes the system’s

Granger non-causality for all lag values from one to maxlag (inclusive). Output from

this function includes the statistical p-values concerning the results of four different

tests for Granger non-causality; if the average p-value is less than 0.05, we reject the

null hypothesis and assert that X Granger-causes Y [46].

4.1.3 EDM Techniques

Ye et al. suggest the following sequence of EDM techniques to best interpret a

dataset’s characteristics [33]:

1. Conduct nearest neighbor forecasting via simplex projection to identify the

embedding dimension E that maximizes the prediction skill ρ [47];

2. Use simplex projection and E to determine whether the system exhibits deter-

ministic chaos;

3. Employ sequential locally weighted global linear maps (S-maps) to characterize

any nonlinearity present in the data [48]; and

4. Utilize convergent cross mapping (CCM) to generate shadow manifolds, evaluate

predictive accuracy, and quantify causality [34].

In essence, “simplex projection is the process of iteratively selecting [a point] Yt in a

shadow manifold and b other points whose histories over time t are most similar to the

53

currently selected point ... A simplex is a generalization of a triangle or tetrahedron to

an arbitrary number of dimensions” [12, 47, 49]. One then uses the weighted average

of the future values of the b other points to make predictions about future values of Yt.

The difference between these predictions and the actual future values gives a forecast

skill ρ. By repeating this process with shadow manifolds of different dimensionalities,

one can identify the embedding dimension E that optimizes ρ [50]. The (strong)

Whitney embedding theorem says the following [51]:

Theorem. Any m-manifold of class CR (r ≥ 1 finite or infinite) may be imbedded

[sic] by a regular Cr-map in E2m, and by such a map in a one-one manner in E2m+1.

In simpler terms, the theorem states that the embedding dimension E for an

attractor manifold has an upper bound of 2D + 1, where D is the true dimension (the

number of variables) of the system [12, 50]. One can thus use simplex projection to

definitively identify the optimal E in a finite amount of time.

S-map projection is another iterative process, but it instead uses all neighboring

points to create linear regression vectors. By aggregating these regression vectors,

one approximates an n-dimensional spline. One then compares this spline to the

shadow manifold attractor to measure ρ [48, 49, 50]. When generating the regression

estimates, a nonlinear tuning parameter θ weights the neighbors with respect to their

distance to the current focal point Yt. Finally, “if ρ is maximized when θ = 0, then the

time series may be assumed to belong to a simple linear system instead of a dynamic

system” [12, 48, 50].

As Stone et al. claim, “This process provides insight into the true dimensionality of

the dynamic system responsible for generating [observational] data without requiring

complete understanding of the system itself” [12]. Accurate knowledge of E is a

prerequisite to effectively applying CCM to multiple time series to detect causality.

Alternatively, a proper S-map analysis of time series relationships may indicate whether

54

these relationships belong to a simple linear system. If so, computationally simpler

methods, like Granger causality or auto-regressive linear models, could replace the

more complex CCM technique in detecting causality [1, 33, 48]. Finally, knowledge

of the dimensionality of a system may assist in creating a high quality model of said

system. Such a model—and the results of a causality analysis—likely enables an

effective IDS for various CPSs.

To conduct this analysis, we use the Sugihara Laboratory’s rEDM repository on

GitHub. This codebase enables EDM analysis using the R programming language.

The repository includes the following functions (among others):

• simplex, which corresponds to the first and second EDM techniques;

• s map, which corresponds to the third EDM technique; and

• ccm and ccm means, which correspond to the fourth EDM technique.

These functions, together with a few helper functions, facilitate effective EDM

analysis. Appendix B details the code used to apply EDM to the steering dataset and

to plot the results of the analysis. Section 4.2 depicts the results of the EDM and

Granger causality analyses. Section 5.2 discusses the implications of these results. For

the interested reader, Rennie provides an in-depth description of EDM, to include the

mathematics behind simplex projection, S-map analysis, and CCM [52].

4.2 Results

This section presents the results of the Granger causality and EDM analyses

for both datasets. Sections 4.2.1 and 4.2.2 show that, for a linear dataset, Granger

causality enables a somewhat effective causality analysis but that EDM does not.

Conversely, for nonlinear data, Sections 4.2.3 and 4.2.4 present an ineffective use of

Granger causality and a more effective use of EDM.

55

4.2.1 Linear Data — Granger Causality

Figure 24 depicts, for 20 different lags, the Granger causality p-value between each

pair of time series in the linear dataset. Each p-value is the average of the p-values for

four different Granger causality tests for a specific lag parameter. For example, when

steering wheel angle is lagged by one second (relative to left wheel RPM), the average

p-value when using left wheel RPM to predict steering wheel angle is 0.7818. We only

reject the null hypothesis16 when p < 0.05, so this means that left wheel RPM does

not Granger-cause a one-second-delayed steering wheel angle.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (seconds)

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Left RPM G−causes Steering
Right RPM G−causes Steering
Steering G−causes Left RPM
Right RPM G−causes Left RPM
Steering G−causes Right RPM
Left RPM G−causes Right RPM

Figure 24. Granger causality between each pair of steering system time series.

Figure 24 also shows the limitations of Granger causality. For example, according

to the figure, steering wheel angle Granger-causes both wheel RPMs when the RPM

series is lagged by two or more seconds. This is somewhat consistent with a standard

automobile’s dynamics. However, it is not expected that the RPMs cause steering

wheel angle, but Granger-causality asserts that they do when the steering angle is

lagged by two, three, or eight to twelve seconds. This is a limitation of the technique;

the result is simply due to the similarity of the time series and is not actually indicative

of the steering system’s relevant dynamics. The results do provide some insight in

general, but this insight is likely not sufficient for suitable IDS design.

16As a reminder, the null hypothesis is “X does not Granger-cause Y .”

56

4.2.2 Linear Data — EDM

To effectively apply CCM to make predictions and quantify causality, we require

knowledge of the optimal embedding dimension E for each time series in the system.

By iteratively utilizing simplex projection to quantify predictive accuracy at different

values for E, we identify the optimal value. Figure 25 illustrates the results of this

process for each steering system time series. Although the differences in forecast skill,

or ρ,17 are difficult to discern, numerically, ρ is maximized for each time series when

E = 2. However, it is important to note that, because the values are all so similar,

the choice of E is largely irrelevant in this particular case. Still, we let E = 2 for the

remainder of the EDM analysis techniques. To be clear, this means the techniques

construct a two-dimensional shadow manifold, where each dimension is a time series

lagged by some multiple of τ . When predicting steering wheel angle, for example,

EDM constructs a shadow manifold using steering wheel angle and one copy of steering

wheel angle, where the copy is lagged by τ . For this dataset, we let τ equal one second.

● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Steering Wheel Angle

F
or

ec
as

t S
ki

ll

1 2 3 4 5 6 7 8 9 10

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Left Wheel RPM

Embedding Dimension
1 2 3 4 5 6 7 8 9 10

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Right Wheel RPM

1 2 3 4 5 6 7 8 9 10

Figure 25. Plots illustrating the optimal embedding dimension for each steering system
time series.

If we keep E constant and vary the time to prediction tp, simplex projection

enables an analysis of a system’s deterministic chaos (or lack thereof). Figure 26

17Forecast skill is a measure of the ability to forecast future values of a given time series.

57

shows how ρ remains constant as tp increases for each of the three time series. In other

words, the ability to make predictions further in the future is essentially the same as

for those closer in time, which indicates non-chaotic behavior for the three variables.

This is due to the nature of the simulated steering system: the steering wheel angle

consists of a set of fairly predictable points over time, and the left and right wheel

RPMs are directly computed from those points. For this reason, the system is not

likely to exhibit chaotic behavior, and EDM confirms this. EDM does not enable a

deeper analysis of the system’s chaos.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Steering Wheel Angle

F
or

ec
as

t S
ki

ll

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Left Wheel RPM

Time to Prediction (seconds)
0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Right Wheel RPM

0 1 2 3 4 5 6 7 8 9 10

Figure 26. Plots illustrating the deterministic chaos present in each steering system
time series.

S-map analysis fits local linear maps to the system to describe its nonlinearity. This

is different from simplex projection, which analyzes each point’s nearest neighbors. By

varying the nonlinearity tuning parameter θ in the S-map function call and plotting

against ρ, we obtain the plots shown in Figure 27. When θ = 0, S-map equally weights

all points; as θ increases, the function more heavily weights points close to the point

under analysis. Thus, when θ is higher, the function assumes more nonlinearity in

the system. However, for all three variables and for every value of θ, ρ is effectively

equal to one. This indicates the absence of nonlinearity in each time series. For this

linear system, it seems that EDM’s nonlinearity analysis is not particularly useful.

58

It is possible that the analysis does pertain to more robust linear systems, but this

requires further research.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Steering Wheel Angle

F
or

ec
as

t S
ki

ll

0 1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Left Wheel RPM

Nonlinearity Tuning Parameter
0 1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Right Wheel RPM

0 1 2 3 4 5 6 7 8

Figure 27. Plots illustrating the nonlinearity of each steering system time series.

EDM also enables next-point predictions. Figure 28 overlays these predictions on

each time series. Clearly, these predictions are extremely accurate, which indicates

that the three variables do not change significantly from one observation to the next.

Each plot also shows the prediction variance by way of a shaded polygon, but the

variance is so low that the polygons are all-but-invisible. Remember that Figure 26

already implied this: for every value of tp, ρ is very high. Additionally, we devised

a naive prediction model. This model simply predicts that the point at time t + 1

has the same value as the point at time t. In other words, the simple model predicts

no change for the next value. Figure 29 depicts the prediction errors (residuals) for

both models; the majority of these errors are small, especially for EDMs. Table 17

numerically compares the root-mean-square error (RMSE) between the naive model

and EDM. As the table illustrates, EDM outperforms the baseline predictor for each

time series, but one must consider the significant increase in computational complexity

for EDM. Finally, these time series are incapable of large, instantaneous changes, so

accurately predicting the next point is not very impressive and is not often useful in

practical applications. However, these predictions could still assist in IDSs for CPSs

59

of sufficiently low complexity. Of course, methods other than EDM may also suffice

for linear systems.

0 200 400 600 800 1000

−
2

−
1

0
1

2

Steering Wheel Angle

A
ng

le
 (

de
gr

ee
s)

Observed
Predicted

0 200 400 600 800 1000

−
2

−
1

0
1

Left Wheel RPM

Time (seconds)

R
P

M

0 200 400 600 800 1000

−
1

0
1

2

Right Wheel RPM

R
P

M

Figure 28. Plots illustrating the predictions for each steering system time series.

700 750 800 850 900 950

0
2

4
6

Steering Wheel Angle

E
rr

or
 (

fe
et

 p
er

 s
ec

on
d)

EDM Predictor
Naive Predictor

700 750 800 850 900 950

0
2

4
6

Left Wheel RPM

Time (seconds)

E
rr

or
 (

fe
et

)

EDM Predictor
Naive Predictor

700 750 800 850 900 950

0
2

4
6

Right Wheel RPM

E
rr

or
 (

de
gr

ee
s)

EDM Predictor
Naive Predictor

Figure 29. Plots illustrating the prediction error for each steering system time series
for both the EDM predictor and the naive predictor.

Table 17. RMSE for Each Steering System Time Series

Time Series Naive Prediction RMSE EDM Prediction RMSE

Steering wheel angle 0.009424 0.003351
Left wheel RPM 0.005742 0.003893
Right wheel RPM 0.005742 0.003893

Figure 30 depicts inter-variable dynamics within the system. The figure plots

cross-map skill ρ18 against library size—the number of points used to compute ρ—for

18Cross-map skill quantifies the ability to use one shadow manifold to identify values in another.

60

each pair of variables. Each plot contains two lines, one for X xmap Y and one for

Y xmap X. Here, X xmap Y refers to the CCM analysis technique which uses the

shadow manifold of X to forecast the shadow manifold of Y . For a given library size,

the resulting value for ρ indicates this predictive capability. The three plots show

that ρ is equivalent across library sizes and in both directions for every pair of time

series. This means that steering information is encoded in the RPM data and that

RPM information is similarly encoded in the steering data, which in turn implies an

expected causal effect in both directions. Unfortunately, it appears that EDM does

not enable insight concerning pairwise causality for this dataset.

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Steering Wheel Angle
& Left Wheel RPM

C
ro

ss
−

M
ap

 S
ki

ll

Steering xmap Left RPM
Left RPM xmap Steering

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Steering Wheel Angle
& Right Wheel RPM

Library Size

Steering xmap Right RPM
Right RPM xmap Steering

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Left Wheel RPM
& Right Wheel RPM

Left RPM xmap Right RPM
Right RPM xmap Left RPM

Figure 30. Plots illustrating the causality between each pair of steering system time
series.

Finally, Figure 31 depicts the system’s causality through time. The lines again

represent the results of using X to forecast Y , but we now plot ρ against tp. As

previous Sugihara Lab researcher Hao Ye writes, “Note here that negative values of tp

... indicate that past values of Y are best cross-mapped from the reconstructed state

of X. This suggests a dynamical signal that appears first in Y and later in X, and is

consistent with Y causing X” [53]. When tp is positive, the opposite holds. For this

system, regardless of tp and of the variables in question, ρ ≈ 1. Thus, according to

EDM, each variable has a strong causal effect on every other variable regardless of

61

the time to prediction. This is unlikely, and it supports the claim that EDM does not

appear to enable sophisticated analysis of the system’s causality.

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to Prediction (seconds)

C
ro

ss
−

M
ap

 S
ki

ll Left RPM xmap Steering
Right RPM xmap Steering
Steering xmap Left RPM
Right RPM xmap Left RPM
Steering xmap Right RPM
Left RPM xmap Right RPM

Y causes X X causes Y

Figure 31. Plots illustrating predictive capability by analyzing the causality between
each pair of steering system time series.

4.2.3 Nonlinear Data — Granger Causality

Figure 32 depicts the Granger causality for the selected AVAS time series. Because

the system follows nonlinear dynamics, the analysis afforded by the Granger causality

functions is inferior to that of Section 4.2.1. Successful application of the technique

assumes linear dynamics, but altitude, airspeed, and pitch form a highly nonlinear

system. This nonlinearity confuses the causality equations and gives a p-value less than

0.05 for each of the 120 results, which in turn implies that any of the system’s variables

Granger-causes any other variable for at least 20 seconds. This is not intuitive, and it

does not lead to a better understanding of the variable interactions. For example, it is

not likely that an airplane’s airspeed causally affects its altitude—the two variables

can be correlated, of course—but Granger causality asserts that it does. Furthermore,

Granger causality assumes direct causality and is unable to account for secondary

62

interactions between time series.19 This maintains Clive Granger’s original assumption

that the technique does not apply well to nonlinear systems.
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

Lag (seconds)

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Altitude G−causes Airspeed
Pitch G−causes Airspeed
Airspeed G−causes Altitude
Pitch G−causes Altitude
Airspeed G−causes Pitch
Altitude G−causes Pitch

Figure 32. Granger causality between each pair of selected AVAS time series.

4.2.4 Nonlinear Data — EDM

For each of the three AVAS time series, Figure 33 presents the forecast skill ρ

for various embedding dimensions E. Visually, differences in ρ are minuscule, but

the optimal embedding dimension is two for each series. We thus let E = 2 for the

remainder of the EDM analysis techniques in this section. Additionally, we again let

τ equal the time between two observations in a given time series: one second.

Figure 34 plots the forecast skill ρ against the time to prediction tp to illustrate the

system’s deterministic chaos. For each time series, the figure shows that predictions

further in the future are less accurate than earlier predictions. Clearly, this effect is

strongest for pitch and weakest for altitude, but this is evidence of chaotic behavior

for all three variables.

As before, we plot ρ against θ to characterize each variable’s nonlinearity. Figure 35

shows these plots. For all three variables, ρ ≈ 1 for every tuning parameter; this implies

19If A causes B and B causes C, then A causes C. Granger causality can fail to identify the
relationship between A and C. Alternatively, Granger causality may identify causality between X
and Y (in either direction) when in fact both are caused by Z.

63

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Airspeed
F

or
ec

as
t S

ki
ll

1 2 3 4 5 6 7 8 9 10

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude

Embedding Dimension
1 2 3 4 5 6 7 8 9 10

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pitch

1 2 3 4 5 6 7 8 9 10

Figure 33. Plots illustrating the optimal embedding dimension for each selected AVAS
time series.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Airspeed

F
or

ec
as

t S
ki

ll

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude

Time to Prediction (seconds)
0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pitch

0 1 2 3 4 5 6 7 8 9 10

Figure 34. Plots illustrating the deterministic chaos present in each selected AVAS
time series.

the absence of nonlinear dynamics in the time series. This is not an intuitive result

for a system with demonstrated nonlinearity. For this reason, we cannot definitively

claim the presence or absence of nonlinear dynamics.

Figure 36 presents the next-point predictions given by EDM for each time series.

Unsurprisingly, the variance in the predictions—as shown by the nearly imperceptible

shaded polygon—is slight. As Figure 34 strongly indicated, none of the variables

change significantly between a pair of observations. Figure 37, which depicts the

prediction errors, confirms that EDM’s predictions are highly accurate, and it also

64

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Airspeed
F

or
ec

as
t S

ki
ll

0 1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude

Nonlinearity Tuning Parameter
0 1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pitch

0 1 2 3 4 5 6 7 8

Figure 35. Plots illustrating the nonlinearity of each selected AVAS time series.

confirms that EDM again outperforms the simple model. Table 18 presents the RMSEs

for both models. It is clear that EDM vastly outperforms the baseline model for

two of the three time series; although the simple predictor performs better for pitch,

the difference in RMSEs is insignificant. It is once again possible that even these

short-term predictions could assist in IDS development. However, it is important to

note an obvious limitation of EDM predictions: the technique cannot foresee values

not contained in the library. This explains the large outlier predictions.

0 200 400 600 800

−
2

0
2

4

Airspeed

S
pe

ed
 (

fe
et

 p
er

 s
ec

on
d)

Observed
Predicted

0 200 400 600 800

−
2

−
1

0
1

2

Altitude

Time (seconds)

A
lti

tu
de

 (
fe

et
)

0 200 400 600 800

−
2

−
1

0
1

2
3

Pitch

A
ng

le
 (

de
gr

ee
s)

Figure 36. Plots illustrating the predictions for each selected AVAS time series.

Figure 38 depicts cross-map skill for each pair of time series. The leftmost plot

shows that airspeed’s manifold can effectively forecast altitude’s but that the opposite

65

550 600 650 700 750 800

0
50

10
0

15
0

Airspeed
E

rr
or

 (
fe

et
 p

er
 s

ec
on

d)

EDM Predictor
Naive Predictor

550 600 650 700 750 800

0
50

10
0

15
0

Altitude

Time (seconds)
E

rr
or

 (
fe

et
)

EDM Predictor
Naive Predictor

550 600 650 700 750 800

0
50

10
0

15
0

Pitch

E
rr

or
 (

de
gr

ee
s)

EDM Predictor
Naive Predictor

Figure 37. Plots illustrating the prediction error for each selected AVAS time series
for both the EDM predictor and the naive predictor.

Table 18. RMSE for Each Selected AVAS Time Series

Time Series Naive Prediction RMSE EDM Prediction RMSE

Airspeed 3.907005 0.070161
Altitude 18.192201 0.001535
Pitch 0.013749 0.019748

relationship is noticeably weaker. The middle plot shows that the difference in cross-

map skill between airspeed xmap pitch and pitch xmap airspeed decreases as library

size increases. The rightmost plot shows a more extreme case of this: above a certain

library size, cross-map skill for altitude xmap pitch surpasses cross-map skill for pitch

xmap altitude. Furthermore, the pairwise relationships weaken as we examine the

plots from left to right. Finally, in all cases, the results indicate diminishing returns in

improving ρ by increasing library size, but it is still possible that this analysis enables

insight vital to better IDS design.

The last figure, Figure 39, plots cross-map skill against time to prediction. Consider

for example airspeed xmap pitch. When tp is slightly less than zero, ρ is maximized;

this implies that airspeed best predicts pitch when lagged by about one second. In

other words, pitch strongly affects airspeed after one second. This is an expected

behavior. When tp is positive, ρ quickly decreases and thus we assert that airspeed

does not have a strong causal effect on pitch. This too is consistent with the standard

66

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Airspeed
& Altitude

C
ro

ss
−

M
ap

 S
ki

ll

Airspeed xmap Altitude
Altitude xmap Airspeed

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Airspeed
& Pitch

Library Size

Airspeed xmap Pitch
Pitch xmap Airspeed

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude
& Pitch

Altitude xmap Pitch
Pitch xmap Altitude

Figure 38. Plots illustrating the causality between each pair of selected AVAS time
series.

interpretation of an airplane’s mechanics. Of course, further analysis of the figure

affords other conclusions. Note that the lines X xmap Y and Y xmap X are not

necessarily symmetrical because the process of using a shadow manifold M to forecast

another shadow manifold M is itself an asymmetrical process.

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to Prediction (seconds)

C
ro

ss
−

M
ap

 S
ki

ll Airspeed xmap Altitude
Pitch xmap Altitude
Altitude xmap Airspeed
Pitch xmap Airspeed
Altitude xmap Pitch
Airspeed xmap Pitch

Y causes X X causes Y

Figure 39. Plots illustrating predictive capability by analyzing the causality between
each pair of selected AVAS time series.

4.3 Summary

This chapter discussed two sets of time series, one linear in nature and the other

nonlinear, and two different techniques for analyzing the time series. For each set, we

67

first applied Granger causality to identify the causality between each pair of time series.

The results indicate some success when applying the technique to the linear system,

but they also indicate that Granger causality does not appear to apply to a nonlinear

system. We then applied EDM to the two systems to identify nonlinearity and chaos,

make next-point predictions, and quantify causality over time. This technique appears

to perform better for nonlinear systems, but it still enables some analysis for linear

systems. Section 5.2 examines the ramifications of these results.

68

V. Conclusions

This chapter discusses the real-world implications of the findings presented in

Chapters III and IV. Section 5.1 summarizes the controller area network (CAN)

research, examines the implied risks to modern automobiles, and presents a potential

avenue for future work. Similarly, Section 5.2 describes implications of the findings

concerning the time series analysis techniques. Additionally, the section considers

limitations of the experiments and details several opportunities for future researchers.

Finally, Section 5.3 restates the research contributions and concludes this thesis.

5.1 Fingerprinting Vehicles with CAN Bus Data Samples

The research discussed in Chapter III has two primary conclusions:

1. A vehicle’s CAN data uniquely identifies its year, make, and model.

2. An attacker can use one of the tools presented to improve CAN attacks.

Clearly, one can fingerprint vehicles with CAN data samples. In three different

experiments, we evaluated classification performance using CAN samples consisting

of ordered payload data, of ordered arbitration IDs, and of unordered payload data.

For each experiment, the best classifier consists of a convolutional neural network

(CNN) trained on the full set of samples and meets or exceeds a balanced classification

accuracy of 98.83%. This performance indicates that deep learning methods can, with

high probability, fingerprint a vehicle using only its raw CAN data, at least for the

data used in this research.

Overall, our findings indicate a significant CAN vulnerability that an attacker

familiar with deep learning can easily exploit. Such an attacker can use a well-tuned

CNN (or a multilayer perceptron if resources or knowledge are limited) to build

69

a database of known vehicles; the attacker can then reference this database when

intruding on a new CAN bus to better structure the desired attack. This risks operator

and passenger safety, and it warrants action on the part of automobile manufacturers.

It also warrants further research into other deep learning applications on the CAN.

As detailed in Section 3.5, devising a Siamese neural network (SNN) capable of

learning the difference between CAN segments from different vehicles is a logical

next step for this research. Although our exploratory efforts were unsuccessful, the

suggestions provided to future researchers may enable a stronger SNN. This would

be very helpful to the malicious intruder: such an attacker would not need to collect

CAN segments from every potential vehicle to effectively attack new vehicles.

5.2 EDM as a Component of an Intrusion Detection System

The Avionics Vulnerability Assessment System, while useful for this research, is

limited in scope. Future researchers who wish to affirm the conclusions found here

should generate data with an extensively tested simulator, or they should obtain real

data from real aircraft. In the same vein, the simulated linear system is elementary

and wanting for more real-world characteristics. Regardless, the results presented in

Section 4.2 suggest three primary findings:

1. For both linear and nonlinear systems, Granger causality’s limitations ensure

that intrusion detection system (IDS) architects should search elsewhere for

effective analysis techniques.

2. Although empirical dynamic modeling (EDM) can quantify behaviors present in

linear systems, the results are often limited and so are not likely to aid in the

development of IDSs.

3. For nonlinear systems, EDM is an easy-to-use suite of tools capable of evoking

70

detailed insights that may assist in IDS design.

Although both (1) and (2) imply that the analysis techniques explored here are

unsuitable for linear systems, cyber-physical systems (CPSs) are often nonlinear.

It is important to note, however, that our limited linear system is likely not fully

representative of a real-world linear system. For this reason, future researchers may

wish to verify the applicability of the first two conclusions to a robust linear system.

Concerning (3), we assert that the analysis of a nonlinear system afforded by

EDM successfully enables the understanding required by the first step towards an IDS.

Section 4.2’s results demonstrate an ability to effectively quantify a nonlinear system’s

causality, and this in turn enables better system insight for IDS architects. However,

note that, although this research demonstrates the potential of EDM, we cannot

realize its true value without larger, more realistic, and more complex datasets and

without demonstrated success on a wider range of critical CPSs. Future work should

thus address these limitations as well as the remaining steps towards an IDS—namely,

obtaining quality data, identifying whether new traffic conforms to the patterns

exhibited by the data, and creating a system to notify the administrator when the

traffic does not. Future researchers may also wish to conduct a deep exploration of

other time series forecasting and analysis techniques, like autoregressive integrated

moving average, for IDS design. Still, we believe EDM to be a powerful, emerging tool

relevant to critical infrastructure protection, and we strongly suggest further research

into its applications to IDSs and beyond.

5.3 Contributions & Conclusion

This work first explored a risk to a specific, common CPS before considering

methods to protect any given CPS from intruders. In doing so, our research has made

several contributions to CAN security, to IDS development, and to cybersecurity as a

71

whole. In Chapter III, we showed empirically that a vehicle’s raw CAN traffic can

uniquely identify the vehicle, and we theorized ways in which an attacker could exploit

this vulnerability. This is the first known demonstration of this CAN vulnerability

and of its associated risks. In Chapter IV, we examined two techniques for time series

analysis to determine whether either technique can enable a viable IDS for vulnerable

systems like the CAN. The discussion of EDM’s applicability to IDS development

may serve as the motivation for additional research efforts. The provided library of all

available EDM functions could enable other studies concerning nonlinear time series

analysis in a wide range of fields. Finally, it is our belief that more research into (1)

mitigating the demonstrated CAN vulnerability and (2) further applying EDM to IDS

development will prove beneficial to the field of cybersecurity and, specifically, to the

protection of CPSs.

72

Appendix A. Equation Derivations for the Linear System

This appendix derives the equations used to compute the inside and outside wheel

RPMs. Table 19 defines the variables used in these equations.

Table 19. Variable Definitions
for the RPM Equation Derivations

Variable Meaning

rw wheel radius
b wheelbase
k track
t steering ratio
s forward speed
θ current steering wheel angle
φ inside wheel angle
ri inside turning radius
ro outside turning radius
r average turning radius

RPMd straight-line wheel RPM
RPMi inside wheel RPM
RPMo outside wheel RPM

The inside wheel’s turning angle is defined by

φ =
θ

t
. (1)

Using (1), the turning radius of the inside wheel is

ri =
b

cos (90− φ)
. (2)

We compute the outside wheel’s turning radius with the Pythagorean theorem:

ro =

√
b2 + (k + b tan (90− φ))2. (3)

The radius of the center of the car about the pivot is the average of (2) and (3):

r =
ri + ro

2
. (4)

73

When the car travels in a straight line, both wheels rotate at

RPMd =
30s

πrw
. (5)

We can multiply (5) by the ratio of (2) to (4) to obtain

RPMi =
ri
r

(RPMd) . (6)

Similarly, for (5), (3), and (4),

RPMo =
ro
r

(RPMd) . (7)

In defining (6) and (7) exclusively in terms of non-derived variables, we find that

RPMi =
60sb

πrw

(
b+ cos

(
90− θ

t

)√
b2 +

(
k + b tan

(
90− θ

t

))2) (8)

and

RPMo =
60s
√
b2 +

(
k + b tan

(
90− θ

t

))2
πrw

(
b sec

(
90− θ

t

)
+
√
b2 +

(
k + b tan

(
90− θ

t

))2) . (9)

We presented (8) and (9) in Section 4.1.1.

74

Appendix B. EDM Analysis in R

The following R code serves as a demonstration of the rEDM implementation we

used for the linear dataset. We stripped all irrelevant details, including plot formatting

and exporting, for brevity and clarity. As presented, the functions require an input

file with a specific format. Table 20 depicts this format.

Table 20. Input File Format for rEDM Functions

Time Steering wheel angle Left wheel RPM Right wheel RPM

0 0.000000000 0.500000000 0.500000000
1 0.037775020 0.531704461 0.468295539
2 0.075493318 0.562495611 0.437504389
3 0.113098283 0.592274058 0.407725942
.

As mentioned in Section 4.1.3, we use the Sugihara Laboratory’s rEDM repository

on GitHub for the core EDM functionality. That section describes this functionality.

Our code, meanwhile, collates the various rEDM tutorials hosted by the Sugihara

Laboratory into a single, easy-to-follow library. We include the following functions:

• ComputeE: This function computes the optimal embedding dimension E for some

input time series.

• ComputeTp: This function computes the optimal time to prediction tp for some

input time series to analyze deterministic chaos.

• PlotNonlinearity: This function computes the nonlinearity present in some

input time series.

• PlotPredictions: This function makes and plots next-point predictions for

some input time series.

• PlotCausality: This function computes pairwise causality against library size

for each pair of time series in an input set.

75

• PlotCausalityMeans: This function computes pairwise causality over time for

each pair of time series in an input set.

• RunEdm: This function applies all other functions to an input set of time series.

Of course, researchers interested in our efforts may wish to modify this code to suit

their own purposes. In this case, we recommend consulting the rEDM repository20

and the Sugihara Laboratory’s profile,21 both on GitHub. The latter also includes

repositories for EDM functions in Python and in C++.

20https://github.com/SugiharaLab/rEDM
21https://github.com/SugiharaLab

76

Initialization Details

load required libraries
library(rEDM)
library(plyr)
library(ggplot2)

load dataset
df <- read.csv("data/steering.csv")

segment dataset into library/prediction sets
n <- NROW(df)
lib <- c(1, floor(2/3 * n))
pred <- c(floor(2/3 * n) + 1, n)

segregate and scale each time series
steering <- df[c("Time", "Steering.wheel.angle")]
left <- df[c("Time", "Left.wheel.RPM")]
right <- df[c("Time", "Right.wheel.RPM")]
steering$Steering.wheel.angle <- scale(steering$Steering.wheel.angle)
left$Left.wheel.RPM <- scale(left$Left.wheel.RPM)
right$Right.wheel.RPM <- scale(right$Right.wheel.RPM)

Key EDM Functionality

identify the optimal embedding dimension (E)
ComputeE <- function(var) {

out <- simplex(var , lib=lib , pred=pred , E=1:10)
out[is.na(out)] <- 0
out$rho[out$rho < 0] <- 0
E <- which.max(as.numeric(unlist(out[c("rho")])))
E <- as.numeric(unlist(out[c("E")]))[E]

plot(outE, outrho , type="l", main=colnames(var)[-1], xlab="E", ylab="ρ")
return(E)

}

identify the optimal time to prediction (tp)
ComputeTp <- function(var , sequence =0:10) {

opt_e <- ComputeE(var)
out <- simplex(var , lib=lib , pred=pred , E=opt_e, tp=sequence)
tp <- which.max(as.numeric(unlist(out[c("rho")])))
tp <- as.numeric(unlist(out[c("tp")]))[tp]

plot(outtp, outrho , type="l", main=colnames(var)[-1], xlab="tp", ylab="ρ")
return(tp)

}

identify any nonlinearity present in the system
PlotNonlinearity <- function(var) {

opt_e <- ComputeE(var)
out <- s_map(var , lib , pred , E=opt_e)
plot(out$theta , out$rho , type="l", main=colnames(var)[-1], xlab="θ", ylab="ρ")

}

77

make and plot next -point predictions
PlotPredictions <- function(var , sequence =0:10) {

opt_e <- ComputeE(var)
opt_tp <- ComputeTp(var , sequence)
out <- simplex(var , lib=lib , pred=pred , E=opt_e, tp=sequence , stats_only=FALSE)
preds <- na.omit(out$model_output [[opt_tp + 1]])

plot(var , type="l", main=colnames(var)[-1], xlab="Time", ylab="Value")
lines(preds$time , preds$pred , col="blue", lty=2)
polygon(c(preds$time , rev(preds$time)), c(preds$pred - sqrt(preds$pred_var),

rev(preds$pred + sqrt(preds$pred_var))), col=rgb(0,0,1,0.3), border=NA)
}

conduct and plot pairwise causality analyses over time
PlotCausality <- function(vars=list(steering , left , right), tp= -10:10) {

identify the optimal embedding dimension (E) for each column
i <- 1
opt_e <- list()
var_names <- list()

for (var in vars) {
var_names[i] <- colnames(var)[-1]
opt_e[i] <- ComputeE(var)
i <- i + 1

}

opt_e <- unlist(opt_e)
var_names <- unlist(var_names)

get every combination of var1 xmap var2
add an (E) column that corresponds to the lib column
params <- expand.grid(lib_column=var_names , target_column=var_names ,

tp=tp , stringsAsFactors=FALSE)
params <- params[params$lib_column != params$target_column ,]
rownames(params) <- NULL
params$E <- as.integer(mapvalues(params$lib_column , var_names ,

opt_e, warn_missing=FALSE))

compute causality
out <- do.call(rbind , lapply(seq_len(NROW(params)), function(i) {

ccm(df , E=params$E[i], random_libs=FALSE , lib_sizes=n,
lib_column=params$lib_column[i],
target_column=params$target_column[i],
tp=params$tp[i], silent=TRUE)

}))

add a new column to label each pair
out$direction <- paste(out$lib_column , "xmap", out$target_column)

plot the causalities
labels <- paste(as.character(round (0.1 * tp , 2)), "(s)")
ggplot(out , aes(tp , rho , colour=direction)) + geom_line() + geom_point() +

geom_vline(xintercept =0, linetype="dashed") + labs(x="tp", y="ρ") +
scale_x_discrete(limits=tp, labels=labels)

}

78

conduct and plot pairwise causality analyses
PlotCausalityMeans <- function(var1 , var2) {

compute causality means
label1 <- colnames(var1)[-1]
label2 <- colnames(var2)[-1]
opt_e <- ComputeE(df[c("Time", label1 , label2)])
var1_xmap_var2_means <- ccm_means(ccm(df , E=opt_e, num_samples =100,

lib_column=label1 , target_column=label2 , lib_sizes=seq(50, 950, by=50),
random_libs=TRUE , replace=TRUE))

var2_xmap_var1_means <- ccm_means(ccm(df , E=opt_e, num_samples =100,
lib_column=label2 , target_column=label1 , lib_sizes=seq(50, 950, by=50),
random_libs=TRUE , replace=TRUE))

compute parallel maxima
y1 <- pmax(0, var1_xmap_var2_means$rho)
y2 <- pmax(0, var2_xmap_var1_means$rho)

plot the causality means
title <- paste(label1 , "&", label2)
limits <- c(min(min(y1), min(y2)), max(max(y1 , max(y2))))
plot(var1_xmap_var2_means$lib_size , y1 , type="l", ylim=limits ,

main=title , xlab="Library Size", ylab="ρ", col="red",)
lines(var2_xmap_var1_means$lib_size , y2, col="blue")
legend(x="topleft", col=c("red", "blue"), lwd=1, bty="n", inset =0.02, cex=0.8,

legend=c(paste(label1 , "xmap", label2), paste(label2 , "xmap", label1)))
}

Primary Function to Orchestrate Ensemble of EDM Functions

calls all other functions
RunEdm <- function(vars=list(steering , left , right)){

for (var in vars) {
PlotNonlinearity(var)
PlotPredictions(var)

}

for (var1 in vars) {
for (var2 in vars) {

if (colnames(var1)[-1] != colnames(var2)[-1]) {
PlotCausalityMeans(var1 , var2)

}
}

}

PlotCausality(vars)
}

79

Bibliography

1. C. W. J. Granger, “Investigating Causal Relations By Econometric Models,”

Econometrica, vol. 37, no. 3, pp. 424–438, 1969.

2. ACM Transactions on Cyber-Physical Systems, “Cyber-Physical Systems (TCPS):

About,” 2018. [Online]. Available: https://tcps.acm.org/about.cfm [Accessed:

2019-05-31]

3. National Institute of Standards and Technology, “Introduction to Time Series

Analysis,” in NIST/SEMATECH e-Handbook of Statistical Methods, 1st ed. NIST,

2012, ch. 6.

4. V. Kotu and B. Deshpande, “Time Series Forecasting,” in Data Science: Concepts

and Practice. Cambridge, Massachusetts, USA: Morgan Kaufman Publishers,

2019, ch. 12, pp. 305–327.

5. R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice,

2nd ed. Melbourne, Australia: OTexts, 2018.

6. Robert Bosch GmbH, “CAN Specification Version 2.0,” 1991. [Online].

Available: http://www.bosch-semiconductors.de/media/ubk semiconductors/

pdf 1/canliteratur/can2spec.pdf [Accessed: 2019-07-08]

7. S. Corrigan, “Introduction to the Controller Area Network (CAN),” 2016.

[Online]. Available: http://www.ti.com/lit/an/sloa101b/sloa101b.pdf [Accessed:

2019-07-08]

8. F. Hartwich and Robert Bosch GmbH, “CAN with flexible data-rate,” CAN

Newsletter, pp. 10–19, feb 2012.

9. National Instruments, “Understanding CAN with Flexible Data-Rate (CAN FD),”

2019.

10. ——, “Controller Area Network (CAN) Overview,” 2019. [On-

line]. Available: https://www.ni.com/en-us/innovations/white-papers/06/

controller-area-network--can--overview.html [Accessed: 2019-07-08]

11. International Organization for Standardization, “Road vehicles – Implementation

of World-Wide Harmonized On-Board Diagnostics (WWH-OBD) communication

requirements – Part 1: General information and use case definition,” 2018. [Online].

Available: https://www.iso.org/standard/46273.html [Accessed: 2019-05-31]

80

12. B. Stone, S. Graham, B. Mullins, and C. Schubert Kabban, “Enabling Auditing

and Intrusion Detection for Proprietary Controller Area Networks,” Dissertation,

Air Force Institute of Technology, 2018.

13. R. Buttigieg, M. Farrugia, and C. Meli, “Security Issues in Controller Area

Networks in Automobiles,” in 2017 18th International Conference on Sciences

and Techniques of Automatic Control and Computer Engineering (STA), 2018, pp.

93–98.

14. D. E. Denning, “An Intrusion-Detection Model,” IEEE Transactions on Software

Engineering, vol. SE-13, no. 2, pp. 222–232, 1987.

15. P. Shirani, M. A. Azgomi, and S. Alrabaee, “A Method for Intrusion Detection in

Web Services Based on Time Series,” in 2015 IEEE 28th Canadian Conference on

Electrical and Computer Engineering (CCECE), 2015, pp. 836–841.

16. A. Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With

Me in It,” 2015. [Online]. Available: https://www.wired.com/2015/07/

hackers-remotely-kill-jeep-highway/ [Accessed: 2019-09-30]

17. C. Miller and C. Valasek, “Remote Exploitation of an Unaltered Passenger Vehicle,”

Black Hat USA, vol. 2015, pp. 1–91, 2015.

18. S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack on the Connected

Car and Security Protocol for In-Vehicle CAN,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 2, pp. 993–1006, 2015.

19. Z. Tyree, R. A. Bridges, F. L. Combs, and M. R. Moore, “Exploiting the Shape

of CAN Data for In-Vehicle Intrusion Detection,” in 2018 IEEE 88th Vehicular

Technology Conference (VTC-Fall), 2019, pp. 1–5.

20. M. J. Kang and J. W. Kang, “Intrusion Detection System Using Deep Neural

Network for In-Vehicle Network Security,” PLoS ONE, vol. 11, no. 6, pp. 1–17,

2016.

21. H. J. Liao, C. H. Richard Lin, Y. C. Lin, and K. Y. Tung, “Intrusion detection

system: A comprehensive review,” Journal of Network and Computer Applications,

vol. 36, no. 1, pp. 16–24, 2013.

22. D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey of deep

learning-based network anomaly detection,” Cluster Computing, pp. 1–13, 2017.

23. J. Pearl, Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge,

Massachusetts, USA: Cambridge University Press, 2009.

81

24. M. Eichler, “Causal Inference in Time Series Analysis,” in Causality: Statistical

Perspectives and Applications. John Wiley & Sons, Ltd, 2012, ch. 22, pp. 327–354.

25. BiObserver, “Visualization of Granger causality,” 2014. [Online]. Available: https:

//commons.wikimedia.org/wiki/File:GrangerCausalityIllustration.svg [Accessed:

2019-09-27]

26. X. Qin and W. Lee, “Statistical Causality Analysis of Infosec Alert Data,” in

International Workshop on Recent Advances in Intrusion Detection. Springer

Berlin Heidelberg, 2003, pp. 73–93.

27. J. B. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichandran, and

R. K. Mehra, “Proactive detection of distributed denial of service attacks using MIB

traffic variables-a feasibility study,” 2001 7th IEEE/IFIP International Symposium

on Integrated Network Management Proceedings: Integrated Management Strategies

for the New Millennium, vol. 00, no. c, pp. 609–622, 2001.

28. J. B. Cabrera, L. Lewis, X. Qin, W. Lee, and R. K. Mehra, “Proactive Intrusion

Detection and Distributed Denial of Service Attacks - A Case Study in Security

Management,” Journal of Network and Systems Management, vol. 10, no. 2, pp.

225–254, 2002.

29. F. Takens, “Detecting Strange Attractors in Turbulence,” in Dynamical Systems

and Turbulence, Warwick 1980. Berlin, Germany: Springer Berlin Heidelberg,

1981, pp. 366–381.

30. G. Boeing, “Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals,

Self-Similarity and the Limits of Prediction,” Systems, vol. 4, no. 4, p. 37, 2016.

31. Sugihara Lab: Quantitative Ecology and Data-Driven Theory, “Empirical

Dynamic Modeling,” 2019. [Online]. Available: http://deepecoweb.ucsd.edu/

nonlinear-dynamics-research/edm/ [Accessed: 2019-05-31]

32. E. Lorenz, “Deterministic Nonperiodic Flow,” Journal of the Atmospheric Sciences,

vol. 20, pp. 130–141, 1963.

33. H. Ye, A. Clarke, E. Deyle, and G. Sugihara, “rEDM: An R package for Empirical

Dynamic Modeling and Convergent Cross Mapping,” pp. 1–19, 2019. [Online].

Available: https://cran.r-project.org/web/packages/rEDM/vignettes/rEDM.html

[Accessed: 2019-12-12]

34. G. Sugihara, R. May, H. Ye, C.-h. Hsieh, E. Deyle, M. Fogarty, and S. Munch,

“Detecting Causality in Complex Ecosystems,” Science, vol. 338, no. October, pp.

496–500, 2012.

82

35. G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting

and Control. Upper Saddle River, New Jersey, USA: Prentice-Hall, Inc., 1994.

36. A. H. Yaacob, I. K. Tan, S. F. Chien, and H. K. Tan, “ARIMA based network

anomaly detection,” 2nd International Conference on Communication Software

and Networks, ICCSN 2010, no. 1, pp. 205–209, 2010.

37. T. Sejnowski J., The Deep Learning Revolution. Cambridge, Massachusetts, USA:

The MI, 2018.

38. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, Mas-

sachusetts, USA: The MIT Press, 2016.

39. C. Nicholson, “A Beginner’s Guide to Neural Networks and Deep Learning,”

2019. [Online]. Available: https://skymind.ai/wiki/neural-network [Accessed:

2019-09-26]

40. A. Burkov, The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

41. J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature Verification

using a ”Siamese” Time Delay Neural Network,” International Journal of Pattern

Recognition and Artificial Intelligence, vol. 7, no. 4, pp. 669–688, 1993.

42. M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages through

analysis of ID sequences,” in 2017 IEEE Intelligent Vehicles Symposium (IV).

IEEE, 2017, pp. 1577–1583.

43. M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile Driver Finger-

printing,” in Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 1,

2015, pp. 34–50.

44. F. Pedregosa, G. Varaquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine

Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–

2830, 2011.

45. F. Chollet and others, “Keras,” 2015. [Online]. Available: https://keras.io

[Accessed: 2019-06-24]

46. J. Perktold, S. Seabold, and J. Taylor, “StatsModels: Statistics in Python,” 2009.

47. G. Sugihara and R. May, “Nonlinear forecasting as a way of distinguishing chaos

from measurement error in time series,” Nature, vol. 344, pp. 734–741, 1990.

83

48. G. Sugihara, “Nonlinear forecasting for the classification of natural time series,”

Philosophical Transactions of the Royal Society: Mathematical, Physical and

Engineering Sciences, vol. 348, no. 1688, 1994.

49. J. M. Lee, Introduction to Topological Manifolds, 2nd ed. New York, New York,

USA: Springer US, 2011.

50. C. W. Chang, M. Ushio, and C. hao Hsieh, “Empirical dynamic modeling for

beginners,” Ecological Research, vol. 32, no. 6, pp. 785–796, 2017.

51. H. Whitney, “Differentiable Manifolds in Euclidean Space,” Proceedings of the

National Academy of Sciences, vol. 21, no. 7, pp. 462–464, 1935.

52. N. Rennie, “Empirical Dynamic Models: A Method for Detecting Causality in

Complex Deterministic Systems,” pp. 1–20, 2018.

53. H. Ye, “Using rEDM to quantify time delays in causation,” 2019.

[Online]. Available: https://cran.r-project.org/web/packages/rEDM/vignettes/

rEDM-time-delay-ccm.html [Accessed: 2019-12-03]

84

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sep 2018 — Mar 2020

Cyber-Physical System Intrusion:
A Case Study of Automobile Identification Vulnerabilities

and Automated Approaches for Intrusion Detection

19G230

Crow, David R., 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-012

Air Force Research Laboratory
2241 Avionics Circle
WPAFB OH 45433-7765
Attn: Steven Stokes
COMM 937-528-8035
Email: steven.stokes@us.af.mil

AFRL/RYWA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Today’s vehicle manufacturers do not tend to publish proprietary packet formats for the CAN. This is a form of security
through obscurity, but obfuscating the network in this way does not adequately hide the vehicle’s unique signature. To
prove this, we train two distinct deep learning models on data from 11 different vehicles. Our results indicate that one
can determine which vehicle generated a given sample of CAN data. A sophisticated attacker who establishes a presence
on an unknown vehicle can use similar techniques to identify the vehicle and better format attacks. To protect critical
CPSs against attacks like those enabled by this vulnerability, system administrators often employ IDSs. One requires an
understanding of the behavior and causality of the CPS to develop an IDS. This research explores two different time
series analysis techniques, Granger causality and EDM, which may contribute to this understanding. Our findings
indicate that Granger causality is not a suitable approach to IDS development but that EDM might be. We thus
encourage further research into EDM applications to IDSs.

Cyber-Physical Systems, Intrusion Detection Systems, Time Series Analysis, Empirical Dynamic Modeling,
Deep Learning, Controller Area Network, CAN Security

U U U UU 98

Dr. Scott Graham, AFIT/ENG

(937) 255-6565 x4581; scott.graham@afit.edu

	Cyber-Physical System Intrusion: A Case Study of Automobile Identification Vulnerabilities and Automated Approaches for Intrusion Detection
	Recommended Citation

	tmp.1590085253.pdf.zdqjY

