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Abstract

Blind deconvolution is used to complete missions to detect adversary assets in space

and to defend the nations assets. A new algorithm was developed to perform blind

deconvolution for objects that are spatially separable using multiple frames of data.

This new one-dimensional approach uses the expectation-maximization algorithm to

blindly deconvolve spatially separable objects. This object separation reduces the

size of the object matrix from an NxN matrix to two singular vectors of length N.

With limited knowledge of the object and point spread function the one-dimensional

algorithm successfully deconvolved the objects in both simulated and laboratory data.

Comparing the one-dimensional blind deconvolution algorithm to the two-dimensional

blind deconvolution algorithm saw a decrease in error when comparing the intensities

for both low and high signal-to-noise ratio data sets. The new algorithm blindly

deconvolved multiple spatially separable objects, to include, a binary star system.

The last test for this algorithm was to perform blind deconvolution on data collected

in a laboratory setting.
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One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data for

Spatially Separable Objects

I. Introduction

This chapter discusses the background of the problem that space domain awareness

(SDA) agencies face, the motivation behind the research, the goals of the research.

Lastly, this chapter will outline the organization of the thesis.

1.1 Motivation

The motivation for this research is to aid in deconvolving objects that are spatially

separable with an unknown point spread function (PSF) and no additional knowledge

of the object. These objects can be satellites and debris in low earth orbit (LEO)

or geosynchronous orbit, or stars that are light-years away. Currently, SDA agencies

utilize the two-dimensional blind deconvolution algorithm that is computationally

intensive on the core processing unit (CPU) [1, 2]. Reducing the amount of Fourier

transform computations and the time it takes to perform the algorithm would enable

real time blind deconvolution. This real time blind deconvolution would enable on-

the-fly adjustments of ground-based systems to make corrections to the system. This

research will be able to reduce the number of computations when calculating the

object by separating the object into it’s x and y components.
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1.2 Background

Organizations such as the United States Space Force and Air Force Research

Laboratory (AFRL) take pride in their ability to perform blind deconvolution in

a manner that is able to aid in assessing threats to the military’s assets in space.

With a significant number of objects being put into orbit around Earth, the next ten

years will test the ability of blind deconvolution algorithms [3]. The ability to do

blind deconvolution faster will be put to the test by objects that are smaller, such

as satellites and small debris. The protection of these assets in space are a focus for

some military organizations. A deconvolution algorithm that is able to deconvolve

blindly and rapidly with no degradation in performance or increase in equipment cost

is desired.

Images used by organizations that examine this data have aberrations caused by

the geometry and material of ground-based telescopes [4]. A ground-based telescope

will also have atmospheric turbulence from the heating and cooling of the air causing

a ”boiling” effect [5]. There are many blind deconvolution algorithms that are used

today that are able to perform blind deconvolution though they are very slow and

typically are post-processed hours after the data is collected [2]. This post-processing

eliminates the ability to make corrections on-the-fly to ensure the collected images

are capable of detecting the resident space objects.

This proposed research effort would develop a new blind deconvolution algorithm

that would be able to quickly and effectively blindly deconvolve an object or multiple

objects. This research will focus on the knowledge that the object may be spatially

separable and can be broken into separate components. This research will aid in

speeding up the blind deconvolution algorithm and moving the computation power

from the CPU to the graphics processing unit to perform one-dimensional convolu-

tions instead of the traditional two-dimensional Fourier transforms.

2



1.3 Research Goals

The goal of this research is to develop a new blind deconvolution algorithm that

utilizes a one-dimensional approach versus the traditional two-dimensional approach.

This research will follow the expectation-maximization blind deconvolution algorithm

developed by Schulz, using multiple frames of astronomical data and no assumption

about the object [6]. This new research will develop a new algorithm for the assump-

tion that the object is spatially separable to estimate the object and the PSF for

each frame of data. The simulated experiments will demonstrate spatially separable

blind deconvolution for binary star systems and other spatially separable objects.

This one-dimensional algorithm will also be able to estimate the object with better

accuracy compared to the two-dimensional algorithm. To measure the success of the

new algorithm applied to laboratory data, the results will be compared to images of

the object gathered through a system without atmospheric turbulence.

1.4 Thesis Organization

Chapter II provides the necessary knowledge for this research to include the at-

mospheric phase screen, blind deconvolution and necessary probability relationship.

Chapter III describes the methodology for how the research was performed in a sim-

ulated setting. The results of both the simulated and laboratory experiments are

presented in Chapter IV. Lastly, in Chapter V the research is summarized to include

the results and any future work that would benefit this research.

3



II. Background and Literature Review

This chapter explains the technical background required to understand the con-

cepts of this research. First, the chapter discusses how Zernike polynomials and

the atmospheric phase screen are generated for this research. The Gerchberg-Saxton

phase retrieval method is discussed to explain how the phase was reconstructed. Then

the description of the blind deconvolution algorithm is explained. Finally, the rela-

tionship of the probability of the incomplete data given the complete data is derived.

2.1 Zernike Polynomials

Zernike Polynomials, introduced by physicist Frits Zernike, are polynomials that

are orthogonal on a unit circle [7]. These Zernike polynomials describe the character-

istics of light through an optical system. Optical aberrations, such as tilting of light

across the x and y axis, can be described as a scaled version of these Zernike poly-

nomials by using an aberration coefficient, called Zernike coefficients. Noll created

a modified set of Zernike polynomials that describes the Kolmogoroff’s spectrum of

turbulence using Zernike polynomials and is defined in Eq. (1). In this equation,

Rm
n (r) is the radial function, found in Eq. (2). The values of m and n are integers

and are the azimuthal frequency and radial degree, respectively. They also follow the

following rule where m ≤ n, n−|m| = even. Lastly, the radius around the unit circle

is denoted as r. This modified set of Zernike polynomials allows for the separation

into a radius and phase in the unit circle, Zj (p, θ).

4



Zeven j =
√
n+ 1Rm

n (r)
√

2 cos (mθ)

Zodd j =
√
n+ 1Rm

n (r)
√

2 sin (mθ)

m 6= 0

Zj =
√
n+ 1R0

n (r) m = 0

(1)

Rm
n (r) =

(n−m)/2∑
s=0

(−1)s(n− s)!
s![(n+m)/2− s]![(n−m)/2− s]!

rn−2s (2)

Figure 1: Zernike polynomials for the first 21 Zernikes.

The visual characteristics of the Zernike polynomials can be seen in Figure 1,

which displays the Zernike polynomials from Zernike zero to Zernike twenty-one. In

this research, the aberration coefficients that are simulated utilize Zernike one through

Zernike twelve due to the drop in aberration power with increasing Zernike index.

5



Zernike zero is piston and affects the light by causing a time delay for photons arriving

on the charge-coupled device (CCD). When simulating and collecting laboratory data

the piston Zernike is non-distortive and unobservable in the frames of data [8]. The

visual representation aids in the ability to describe how a light source is going to

react to an optical system. These Zernike polynomials are utilized to generate an

atmospheric phase screen to simulate how the atmosphere will react to a light source.

2.2 Atmospheric Phase Screen

These Zernikes are utilized to model optical aberrations caused by the boiling

effect of the atmosphere. This atmosphere modeling is used to generate a phase

screen with accurate statistics of the atmosphere. The use of Noll’s modified set of

Zernike polynomials sets up the random phase screen, which will be used for the

atmospheric phase screen seen in Eq. (3). Where θatm is the random phase screen

and Zj is the corresponding Zernike polynomial [5].

θatm (Rp, θ) =
∑
j

ajZj (p, θ) (3)

To generate the phase screen the amplitude, aj, is calculated by multiplying the

Cholesky decomposition, Φ , of the covariance matrix by a zero-mean, unit-variance

random vector, ~n. This amplitude is found in Eq. (4).

~aj = Φ~n (4)

The Cholesky decomposition is a factorization technique to produce a lower trian-

gular matrix that when multiplied by it’s conjugate will generate the original matrix.

The covariance matrix of the Zernike polynomials is decomposed to generate the re-

quired Cholesky decomposition to produce the amplitude. Following the work in [5],

6



the covariance matrix and Cholesky decomposition is calculated and derived.

The covariance matrix was calculated from the Zernikes, one to nine, and followed

Noll’s derivation of the Zernike covariance matrix, found in Table 1. The piston

Zernike is ignored due to piston causes a time delayed signal, which doesn’t effect

the way the signal appears on a CCD or photodiode. The piston Zernike is the 0th

column and row.

Table 1: Covariance matrix using Noll’s derivation calculated out to the tenth Zernike.
m’\m 1 2 3 4 5 6 7 8 9
1 4.572 0.000 0.000 0.000 0.000 0.000 -0.144 0.000 0.000
2 0.000 4.572 0.000 0.000 0.000 -0.144 0.000 0.000 0.000
3 0.000 0.000 0.236 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.236 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.236 0.000 0.000 0.000 0.000
6 0.000 -0.144 0.000 0.000 0.000 0.063 0.000 0.000 0.000
7 -0.144 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063

Taking the Cholesky decomposition of the covariance matrix in Table 1 gives the

Cholesky matrix found in Table 2. The table of random vectors that is used for the

simulated example to generate the phase screen is found in Table 3.

Table 2: Cholesky decomposition of the covariance matrix for 10 Zernikes.
m’\m 1 2 3 4 5 6 7 8 9
1 2.138 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 2.138 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.486 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.486 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.486 0.000 0.000 0.000 0.000
6 0.000 -0.067 0.000 0.000 0.000 0.242 0.000 0.000 0.000
7 -0.067 0.000 0.000 0.000 0.000 0.000 0.242 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.251 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.251

Multiplying the Cholesky matrix and the random normal vector generates the

aberration coefficients found in Table 4. The aberration coefficients are then multi-
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Table 3: Zero-mean, unit variance random vector for the example atmospheric phase
screen.

nj Value
1 3.035
2 0.725
3 -0.063
4 0.715
5 -0.205
6 -0.124
7 1.490
8 1.409
9 1.417

plied by the Zernike polynomials that they correspond to and summed together to

generate a random atmospheric phase screen. This atmospheric phase screen is found

in Fig. 2 and describes how light will react with the ”boiling” effect caused by the

atmosphere from the heating and cooling of the air. Using the atmospheric phase

screen and Eq.(5), an atmospheric phase screen across the aperture is generated,

where A (x, y) is the aperture and P (x, y) is the pupil function. The PSF is built

from fourier transforms of this pupil function. The PSF for the example atmospheric

phase screen is found in Fig. 3.

P (x, y) = A (x, y) cos (θatm) +
√
−1 sin (θatm) (5)

Converting the PSF to an optical transfer function (OTF) is essential when utiliz-

ing the processor to do the computation versus a graphics card. When utilizing a PSF

in the numerous convolution operations required to accomplish blind deconvolution

algorithms, accomplishing them on a graphics card can be faster then on a CPU.

This is due to the ability of the graphics card to graphically compute the convolution

versus the CPU computing the convolutions numerically. Computing the OTF, H,

can be accomplished by taking the Fourier transform of the PSF, h, and vice versa.

These two equations can be found in Eq. (6) and Eq. (7).

8



Table 4: Aberration coefficients using the Cholesky matrix and multiplying it by the
zero-mean, unit variance random vector.

aj
1 6.490
2 1.551
3 -0.031
4 0.348
5 -0.100
6 -0.079
7 0.156
8 0.354
9 0.356

H (fx, fy) = F {h (x, y)} (6)

h (x, y) = F−1 {H (fx, fy)} (7)

Figure 2: Image of the pupil function with an atmospheric phase screen using the
aberration coefficients and Zernike polynomials.
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Figure 3: PSF of the example atmospheric phase screen.
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2.3 Gerchberg-Saxton Phase Retrieval

There is an unknown phase associated with the unknown PSF. To estimate a

spatially separable object or objects, this phase needs to be estimated in order to es-

timate the PSF. This can be done using methods such as the steepest-descent method,

error-reduction algorithm and the one used for this research, the Gerchberg-Saxton

phase retrieval algorithm [9, 10, 11]. In [11], the different algorithms mentioned above

are compared and explained.

The premise behind the Gerchberg-Saxton phase retrieval approach is that the

amplitude in the pupil and detector planes are known, but the phases are unknown.

In Algorithm 1, the process describes how a guess at the phase in the detector plane

is used to estimate the aperture field via the inverse Fourier transform and vice versa.

In this algorithm j is the iteration count, F is the Fourier transform and F−1 is the

inverse Fourier transform, both of these transforms are two-dimensional. The e is the

exponential function and i is the imaginary number
√
−1. A guess of the phase at

the detector is used for the initialization step of the Gerchberg-Saxton phase retrieval

algorithm. A guess of the aperture is also selected for the initialization step of the

phase retrieval algorithm. These guesses are explained in more detail in Chapter III.
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Algorithm 1: Gerchberg-Saxton Phase Retrieval

Result: PSF = |Detector Field|2

j = 1

while j ≤ 10 do

Detector Field = F
{

aperture · e−i·phase
}

;

Detector Phase = angle {Detector Field};

Aperture Field = F−1
{
PSF · e−i·Detector Phase

}
;

Phase = angle {Aperture Field};

j = j + 1;

end

2.4 Generalized Expectation-Maximization

The generalized expectation-maximization (GEM) algorithm is a technique to

numerically optimize a maximum-likelihood estimation problem [6, 12]. The use

of the GEM algorithm is to compute the maximum-likelihood estimates, through

iterations, when the observed data is incomplete. This incomplete data is data that

has a many to one mapping to the true object and associated PSF [13]. In this case

the observed data is measured by the CCD or photo-diode. The problem of estimating

the true object from this data is ill-posed because there are many combinations of

objects and PSFs that can produce the measured data. Thus, instead of solving for

the object, this research endeavors to solve for a spatially separable object. With

the two main steps for the expectation-maximization (EM) algorithm consisting of

an expectation step and a maximization step, an update equation can be derived to

develop an iterative estimation solution for the ill-posed problem. Further examples of

the derivation and discussion of the EM algorithm and the likelihood and convergence

of the algorithm can be found in [13].
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2.5 Blind Deconvolution

Deconvolution is the ability to reconstruct an object or PSF based on the knowl-

edge of the PSF or object, respectively. Due to the complexity of convolution, the

derivation of the reconstruction is done in the frequency domain to eliminate the

convolution, described in Eq. (8), where o is the object, h is the PSF and i is the

image or data . This type of direct deconvolution requires information about two

of the three unknowns found in the convolution portion of Eq. (8). Typically the

knowledge of the data is known and with the knowledge of the PSF, the object can

be reconstructed. This is unable to be done if there are too many unknowns, such

as when the object and the PSF are unknown. Then blind deconvolution is used to

estimate the PSF and object.

i (z, w) =
∑
x

∑
y

o (x, y)h (z − x,w − y) ⇔ I (f) = O (f)H (f) (8)

Blind deconvolution is the ability to estimate an object without the knowledge

of the object nor the PSF due to atmospheric turbulence or aberration from the

telescope. There are several techniques used to perform blind deconvolution, such

as maximum a posteriori (MAP) estimation, which is an iterative approach [14]. A

non-iterative approach to blind deconvolution is the APEX method but lacks the

ability to blindly deconvolve a more complex blur function that is incorporated due

to atmospheric turbulence and other photon noise [15].

This research is based on the two-dimensional blind deconvolution algorithm orig-

inally derived by Dr. Timothy Schulz for astronomical images using multiple sets

of data [6]. This research is an iterative approach that is similar to MAP called

maximum-likelihood estimation.
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2.6 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is a ratio of the signal intensity versus the background

noise. With a low SNR value it becomes difficult to properly estimate an object. To

determine the SNR of a particular data set, the power of the signal is divided by the

power of the noise. SNR can be calculated by also dividing the amplitudes of the

signal and power and squaring it as seen in Eq. (9), where Psignal and Pnoise are the

power of the signal and noise, respectively. Additionally, Asignal and Anoise are the

amplitude of the signal and noise, respectively.

SNR =
Psignal

Pnoise

=

(
Asignal

Anoise

)2

(9)

SNR can also be calculated as the average signal vs the standard deviation of the

signal, seen in Eq. (10), where µS is the average of the signal and σS is the standard

deviation of the signal.

SNR =
µS

σS
(10)

2.7 Relationship of Complete Data Given Incomplete Data

The two-dimensional blind deconvolution algorithm utilizes statistical definitions

to determine the probability of complete data given the incomplete data. The incom-

plete data is the sum of all the complete data and the complete data is indirectly

observed with a many-to-one mapping of the complete data to the incomplete data.

This is done by proving that the probability of complete data given the incomplete

data is a binomial distribution and has an average or expected value of Np, where N

is the number of trials and p is the probability of success on any given trial. Using

Bayes theorem, the probability of the complete data given the incomplete data can be
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written as seen in Eq. (11), where dk is the incomplete data, d̃k is the complete data,

(z, w) are the detector plane coordinates and (x, y) are the object plane coordinates.

The P denotes the probability notation.

P
(
d̃k (z, w|x, y) |dk (z, w)

)
=
P
(
d̃k (z, w|x, y) ∩ dk (z, w)

)
P (dk (z, w))

(11)

The first step is to solve for the probability of the incomplete data. It is known

that the expected value of the incomplete data is the image itself, described in Eq.

(12). This distribution follows a Poisson distribution due to how photons arrive to

the detector,as seen in Eq. (13).

E [dk (z, w)] = ik (z, w) =
∑
x

∑
y

o (x, y)hk (z − x,w − y) (12)

P (dk (z, w)) =

(∑
x

∑
y

o (x, y)hk (z − x,w − y)

)dk(z,w)

e
−

∑
x

∑
y
o(x,y)hk(z−x,w−y)

dk (z, w)!
(13)

To solve for the probability of the intersection in the numerator of Eq. (11), the

relationship between the complete and incomplete data in Eq. (14) is used.

d1 = d̃k (z, w|x0, y0)

d2 =
∑
x 6=x0

∑
y 6=y0

d̃k (z, w|x, y)

dk (z, w) = d = d1 + d2

(14)

From the two dimensional blind deconvolution algorithm the expected value is

determined for d1 and d2, which is found in Eq. (15).
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E [d1] = m1 = o (x0, y0)hk (z − x0, w − y0)

E [d2] = m2 =
∑
x 6=x0

∑
y 6=y0

o (x, y)hk (z − x,w − y)
(15)

The probability of the intersection of d1 and d2 is found in Eq. (16).

P (d1 ∩ d2) =
m1

d1e−m1

d1!

m2
d2e−m2

d2!
(16)

The probability found in Eq. (16) can be rewritten as a function of d1 and d and

is seen in Eq. (17).

d2 = d− d1

P (d1 ∩ d− d1) = P (d1 ∩ d) =
m1

dle−m1

d1!

m2
d−d1e−m2

(d− d1)!
(17)

The original probability of the incomplete data can be rewritten using the notation

from Eq. (17) which leads to Eq. (18).

P (dk (z, w)) = P (d) =
(m1 +m2)

de−(m1+m2)

d!
(18)

Lastly, solving for the original conditional probability and simplifying the proba-

bility is found to follow a binomial distribution shown in Eq. (19).

P (d1 ∩ d)

P (d)
=

d!

d1! (d− d1)!

(
m1

m1 +m2

)d1( m2

m1 +m2

)d−d1
(19)
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III. Methodology

3.1 Overview

This chapter deals with the one-dimensional blind deconvolution algorithm to es-

timate a spatially separable object and the data set’s PSF. This chapter discusses how

to determine a spatially separable object based on a visual and numerical approach.

Next, the expectation maximization steps are discussed and derived to produce the

new update equations for a spatially separable object. Then, the algorithm is devel-

oped and discussed to describe how the update equations produce new estimates from

old ones. Finally, the generation of a receiver operating characteristic (ROC) curve is

discussed and how it was generated for simulated data. The results of simulated and

laboratory data are found in Chapter IV. These results include the effects of SNR for

both simulated and lab generated data, as well as a ROC curve for these data sets.

3.2 Spatially Separable Object

This section will describe how an object can be spatially separated. This section

will also discuss the two ways that were utilized to determine if an object is spatially

separable or not. These two ways of determining spatial separability are by visual

reconstruction and singular value decomposition (SVD).

3.2.1 Object Separation

A spatially separable object can be separated into a product of it’s horizontal

and vertical components. This is expressed in Eq. (20), where o (x, y) is the object,

o1 (x) is the horizontal component of o (x, y) and o2 (y) is the vertical component. In

this research, separating the object is accomplished by summing the object along the

columns then once again along the rows. Summing along the columns will produce
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o1(x) and summing along the rows will produce o2(y). All image matrices can be

separated using this technique, though you lose detailed characteristics about the

object when reconstructing the object if the object is not spatially separable.

o (x, y) = o1 (x) o2 (y) (20)

As seen in Figure 4, the simplicity of a binary star system makes it a good scenario

to perform the one-dimensional blind deconvolution algorithm on. This separation

can be seen in the stem plots in Figure 5. This can be easily reconstructed back to the

truth image as seen before. If the object isn’t spatially separable, this scenario can

be seen in Figure 6, reconstructing the object back into the original form doesn’t pro-

duce the correct object. Thus, this limits the ability to perform the one-dimensional

blind deconvolution algorithm to objects that can be spatially separated into their

respective x and y components. This would be objects such as a binary star system,

point sources and simple objects such as squares and other quadrilaterals.

Figure 4: A spatially separable object, binary star system.

3.2.2 Singular Value Decomposition

A test can be performed on the object to determine whether the object is truly

separable or not. This test consists of performing an singular value decomposition

(SVD) on o (x, y) [16]. The two objects that will be tested for separability using this

method are found in Figure 4 and Figure 6.
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Figure 5: Stem plot of the binary star system that has been separated into two
components.

Figure 6: Left:True object; Right: Reconstruction of separated object

The results of these two scenarios can be found in Table 5. In this table the

SVD was taken and the main diagonal was converted to a vector to easily verify the

separability of the object. As can be seen in the table, the binary star system is a

separable object due to the the predominant value in the first row followed by zeros in

the remaining rows. This describes the object as only needing 1 value to reconstruct

the object. Unlike in the cross shaped object, there is a requirement of two values to

reconstruct the object correctly. Only using the 1 SVD value for the object in Fig. 6

will produce similar results due to the complete description of the object is missing.

Table 5: SVD vectors for the binary star system and cross configuration.

ith Singular Value Binary Cross
1 1414.21 2000.00
2 0 1000.00
3 0 0
...

...
...

N 0 0
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3.3 Expectation-Maximization Algorithm

The EM algorithm is one approach to solve for the ill-posed problem of an un-

known object and an unknown PSF introduced from the atmosphere and telescope

aberrations. This approach allows each iteration to establish a more refined estima-

tion of the object and it’s PSF. With the statistical expected value and maximization

of the complete data, a likelihood estimation of the object and PSF can be calculated.

There are two main steps for the EM approach called the expectation step and the

maximization step or e-step and m-step, respectively [13]. Other blind deconvolution

EM algorithms for astronomical data can be found in [17, 6]. The steps and derivation

found in the following subsections outline how this new blind deconvolution algorithm

is performed.

3.3.1 EM Steps

The new one-dimensional blind deconvolution algorithm requires a new set of

statistical models and equations in order to perform the algorithm properly. Below is

a list of steps that are required to derive the update equations for the one-dimensional

blind deconvolution algorithm.

1. Statistical Model for Incomplete Data

2. Statistical Model for Complete Data

3. Generate Probability Function for Incomplete Data

4. Generate log-likelihood function

5. Derive expectation step

6. Maximize expectation step
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7. Solve for Expected Value of Incomplete Data given Complete Data

8. Solve for Update Equations

3.3.2 Statistical Model for Incomplete Data

The incomplete data is the sum of all the complete data and is mathematically

described in Eq. (21). Where dk describes the incomplete data, d̃k describes the

complete data, (z, w) is the coordinates in the detector plane, and lastly (x, y) is the

coordinates in the object plane.

dk (z, w) =
∑
x

∑
y

d̃k (z, w|x, y) (21)

To describe the incomplete data more accurately there needs to be a statistical

description of the incomplete data. The expected value of the incomplete data is

the image intensity detected for that frame of data, shown in Eq. (22). Where ik is

the image intensity and is the convolution of the spatially separable objects and it’s

respective PSF for that frame, described in Eq. (23), where hk is the PSF of that

specific image or frame of data and E is the expected value operator.

E [dk (z, w)] = ik (z, w; o1, o2, hk) (22)

ik (z, w; o1, o2, hk) =
∑
x

∑
y

o1 (x) o2 (y)hk (z − x,w − y) (23)

3.3.3 Statistical Model for Complete Data

The complete data is the data that is observed indirectly due to the incomplete

data and has a many-to-one mapping of complete data to incomplete data [13]. The

complete data can be described to be Poisson-distributed random variables and have
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a mean expressed in Eq. (24).

E
[
d̃k (z, w|x, y)

]
= o1 (x) o2 (y)hk (z − x,w − y) (24)

3.3.4 Generate Probability Function for Incomplete Data

It is assumed that the incomplete data is a Poisson distributed at every point

in the detector plane and is statistically independent between different pixels and

frames. This produces a probability function for a single pixel of a frame of data,

found in Eq. (25).

P [dk (z, w)] =
ik(z, w; o1, o2, hk)dk(z,w)e−ik(z,w;o1,o2,hk)

dk (z, w)!
(25)

The total probability function for the incomplete data is the product of the in-

dividual incomplete data probabilities, due to the independence between each pixel

and frame. This total probability function can be found in Eq. (26).

P [d (z, w)] =
∏
k

∏
z

∏
w

ik(z, w; o1, o2, hk)dk(z,w)e−ik(z,w;o1,o2,hk)

dk (z, w)!
(26)

3.3.5 Generating Log-Likelihood Function

Now that the total probability function for the incomplete data has been com-

puted, the natural log of the function is taken. This is done in order to make the

function easier to maximize by removing the products and replacing them with sums.

This log-likelihood function is found in Eq. (27), where L represents the log-likelihood

function.
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L (o1, o2, hk) =
∑
k

∑
z

∑
w

dk (z, w) ln [ik (z, w; o1, o2, hk)]− · · ·

· · · − ik (z, w; o1, o2, hk)− ln [dk (z, w)!]

(27)

L (o1, o2, hk) =
∑
k

∑
z

∑
w

dk (z, w) ln [ik (z, w; o1, o2, hk)]− ik (z, w; o1, o2, hk) (28)

The data factorial at the end of the log-likelihood equation has no affect on the

maximization step due to no dependence on the object or PSF. Due to this Eq. (27)

is simplified to Eq. (28). This summarizes the log-likelihood of the incomplete data.

Similar to this mathematical model, the complete data log-likelihood is shown in Eq.

(29). The image intensity was also substituted in to complete the equation. The

notation LCD denotes the complete data log-likelihood function.

LCD (o1, o2, hk) =
∑
k

∑
z

∑
w

∑
x

∑
y

d̃k (z, w|x, y) {ln [o1 (x)] + ln [o2 (y)] + · · ·

· · · + ln [hk (z − x,w − y)]} − o1 (x) o2 (y)hk (z − x,w − y)

(29)

3.3.6 Derive Expectation Step

Now that the log-likelihood function has been computed, the expected value of

the log-likelihood function can be taken, shown in Eq. (30). The expected value of

the log-likelihood function is denoted as Q (o1, o2, h), seen in Eq. (31). The expected

value of the complete data given the incomplete data will be calculated in a later

section.

23



Q (o1, o2, hk) = E
[
LCD (o1, o2, hk) |dk (z, w)

]
(30)

Q (o1, o2, hk) =
∑
k

∑
z

∑
w

∑
x

∑
y

E
[
d̃k (z, w|x, y) |dk (z, w)

]
{ln [o1 (x)] + · · ·

· · · + ln [o2 (y)] + ln [hk (z − x,w − y)]} − o1 (x) o2 (y)hk (z − x,w − y)

(31)

3.3.7 Maximize Expectation Step

With the expectation step complete, the maximization step (m-step) can be com-

puted by taking the derivative of the expectation step function with respect to each of

the components that are to be solved, o1, o2, and hk and setting them equal to zero.

The first derivative that will be taken is the object focused around the x component,

o1 (x), found in Eq. (32). The m-step also focuses around only one point. In this

computation, x0, is used as the singular point. The same goes for the y component,

y0.

dQ (o1, o2, hk)

do1 (x0)
=
∑
k

∑
z

∑
w

∑
y

E
[
d̃k (z, w|x0, y) |dk (z, w)

]
o1 (x0)

− · · ·

· · · − o2 (y)hk (z − x0, w − y) = 0

(32)

In order to simplify this into an algorithm that will perform correctly, the use of

a Lagrange multiplier is required. Thus the assumption in Eq. (33) and the property

of the PSF found in Eq. (34) are used to simplify the equation for the new o1 (x0).

This simplifies Eq. (32) to Eq. (35), where K denotes the number of data sets or

image frames that are used for the algorithm. The exponential new notation signifies

the update equation that will be overwritten after each iteration of the algorithm.
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∑
y

o2 (y) = 1 (33)

∑
z

∑
w

hk (z − x0, w − y) = 1 (34)

onew1 (x0) =
∑
k

∑
z

∑
w

∑
y

E
[
d̃k (z, w|x, y) |dk (z, w)

]
K

(35)

For maximizing the object separated into it’s y component the Lagrange multiplier

is incorporated into the equation due to the assumption made earlier. This gets the

following equation found in Eq. (36). Solving for o2 (y0) gives Eq. (37). The variable

γ is introduced to ensure that o2 (y0) sums to 1. In Eq. (38)-(41), the variable γ is

solved in terms of the expected value of the incomplete data.

dQ (o1, o2, hk)

do2 (y0)
=
∑
k

∑
z

∑
w

∑
x

E
[
d̃k (z, w|x, y0) |dk (z, w)

]
o2 (y0)

− γ = 0 (36)

onew2 (y0) =

∑
k

∑
z

∑
w

∑
x

E
[
d̃k (z, w|x, y0) |dk (z, w)

]
γ

(37)

∑
k

∑
z

∑
w

∑
x

E
[
d̃k (z, w|x, y) |dk (z, w)

]
o2 (y)

− γ = 0 (38)

γo2 (y) =
∑
k

∑
z

∑
w

∑
x

E
[
d̃k (z, w|x, y) |dk (z, w)

]
(39)

γ
∑
y

o2 (y) =
∑
k

∑
z

∑
w

∑
x

∑
y

E
[
d̃k (z, w|x, y) |dk (z, w)

]
(40)

γ =
∑
k

∑
z

∑
w

∑
x

∑
y

E
[
d̃k (z, w|x, y) |dk (z, w)

]
(41)
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The last portion of the maximization step is solving for the PSF. Using a property

of convolution the shift aspect of the convolution was transferred to the objects to

simplify the calculations of the new PSF. This new update equation for the PSF can

be found in Eq. (43), where the notation “old” denotes the current estimate of that

particular variable.

dQ (o, h)

dh (x0, y0)
=
∑
z

∑
w

E
[
d̃ (z, w|x0, y0) |d (z, w)

]
h (x0, y0)

− o1 (z − x0) o2 (w − y0) = 0 (42)

hnew (x0, y0) =

∑
z

∑
w

E
[
d̃ (z, w|x0, y0) |d (z, w)

]
∑
z

∑
w

oold1 (z − x0) oold2 (w − y0)
(43)

3.3.8 Solve for Expected Value of Complete Data given Incomplete

Data

The expected value of the complete data given the incomplete data is the expected

value of a binomial distributed random variable. As discussed in Chapter II, the mean

or expected value is equal to N · p. The Eq. (44)-(48) establishes the values of the

individual variables while Eq. (49) states the expected value of the complete data

given the incomplete data. The full derivation has been completed in Chapter II for

the binomial distribution random variable for complete data given incomplete data.
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E
[
d̃k (z, w|x, y) |dk (z, w)

]
= µ = Np (44)

N = dk (z, w) (45)

p =
m1

m1 +m2

(46)

m1 = o1 (x0) o2 (y0)hk (z − x0, w − y0) (47)

m2 =
∑
x 6=x0

∑
y 6=y0

o1 (x) o2 (y)hk (z − x,w − y) (48)

E
[
d̃k (z, w|x, y) |dk (z, w)

]
= dk (z, w)

o1 (x0) o2 (y0)hk (z − x0, w − y0)∑
x

∑
y

o1 (x) o2 (y)hk (z − x,w − y)
(49)

3.3.9 Solve for Update Equations

With the knowledge of the expected value of the complete data given the incom-

plete data, the update equations can be solved. Simply replacing the expected value

with the value that was found in Eq. (49), will generate the new update equation.

The new update equations are found in Eq. (50)-(53).

onew1 (x) =

∑
k

∑
z

∑
w

∑
y

dk(z,w)oold1 (x)oold2 (y)hold
k (z−x,w−y)

ioldk (z,w)

K
(50)

onew2 (y) =

∑
k

∑
z

∑
w

∑
x

dk(z,w)oold1 (x)oold2 (y)hold
k (z−x,w−y)

ioldk (z,w)

γ
(51)

γ =
∑
k

∑
z

∑
w

dk (z, w) (52)

hnewk (z − x,w − y) =

∑
z

∑
w

d(z,w)oold1 (z−x0)oold2 (w−y0)hold(x0,y0)

iold(z,w)∑
z

∑
w

oold1 (z − x0) oold2 (w − y0)
(53)

These three equations are the new update equations that will be used through
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several iterations to estimate the object and PSF of the incomplete data.

3.4 Phase Retrieval

With the EM update equations derived for the one-dimensional spatially separa-

ble object, the next step is to perform a phase retrieval in order to reconstruct an

estimation of the PSF. The phase retrieval method that is used in this research is the

Gerchberg-Saxton phase retrieval algorithm. In the one-dimensional blind deconvo-

lution algorithm designed, the PSF is not assumed to be separable and follows closely

with the phase retrieval in [11]. The number of iterations to accurately estimate the

PSF is important due to the amount of time this portion of the algorithm takes. Af-

ter running the algorithm one hundred times, the Gerchberg-Saxton phase retrieval

algorithm took 52% of the total time to estimate phase for the PSF using only 10

iterations of the phase retrieval algorithm. The total number of iterations of 10 is

used throughout all of the research as anything more than 10 significantly increases

run-time of the algorithm with only minor performance increase for the estimation of

the PSFs. A visual representation of the total time is found in Fig. 7, which shows

the percentage of time required to run the Gerchberg-Saxton phase retrieval algo-

rithm with 10 iterations for phase retrieval and 750 iterations of the one-dimensional

blind deconvolution algorithm, totaling 7500 iterations for phase retrieval. The time

outside the Gerchberg-Saxton algorithm is the remaining setup and object estimation

using the PSFs.
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Figure 7: Pie chart of how much time it takes to execute the Gerchberg-Saxton phase
retrieval algorithm with 10 iterations.

3.5 One-Dimensional Blind Deconvolution Algorithm

The final step to begin estimating the spatially separable objects and the different

PSFs for each respective frame of data is to setup the algorithm with the EM update

equations and the Gerchberg-Saxton phase retrieval algorithm. The first step is to

take a guess at the initial values for the object and the two PSFs. These initial values

are needed due to the update equations requiring a previous iterations values. For

this research, to include the simulated data and the lab created data, all the initial

values were kept constant throughout the different runs of the algorithm. The guess

for the object to start with was a uniform value of ones the size of the frames of

data. These objects were scaled based on the update equations to ensure that o2 (y)

summed to 1. The guess of the PSFs could be a uniform number throughout the

frame of data. This was not as useful as taking a logical guess of the PSF, by saying

that it is a parabolic focus error. This parabolic focus error can be seen in Fig. 8.

With all variables initialized, the algorithm is designed to estimate the object and
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Figure 8: The guess at the focus error for the initialization of the algorithm.

PSF. The flowchart for the algorithm can be found in Fig. 9. The algorithm starts by

reading in the frames of data from frame 1 to frame K. Then guesses for the object

and all the PSFs are chosen, as discussed in the previous paragraph. With the guess

of the object and the PSFs, the new estimated object is calculated based on these

guesses using the EM approach. With the new object calculated, the Gerchberg-

Saxton phase retrieval algorithm is performed to generate the new PSFs for the blind

deconvolution algorithm. This new object and PSF is ran back through the algorithm

again to obtain a new object based on the updated object and PSFs. After several

iterations of this algorithm, the object and PSFs converge to a estimation of the

object or objects and PSFs.
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Figure 9: Flowchart for the one-dimensional blind deconvolution algorithm.
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IV. Results

This chapter explains the results of several different scenarios utilizing the one-

dimensional blind deconvolution algorithm. The chapter also explains the resulting

error between the actual object and the estimated object and compares those results

to the two-dimensional blind deconvolution algorithm. Results are shown for objects

that are more complex but are still spatially separable. The last set of data that was

ran through the one-dimensional algorithm is a set of data that was collected in a

laboratory setting. Lastly, the chapter concludes with a discussion of what factors

can affect the algorithms performance.

4.1 Simulated High and Low Signal-to-Noise Ratio

The ability for the algorithm to perform well in both high and low SNR is re-

quired due to the nature of astronomical data. Objects whether they are in LEO,

geosynchronous orbit or light years away can have differing SNR. Objects in LEO can

have a low SNR due to reflectively of the object and the angle of the sun with respect

to the object and view point through the telescope. This can cause objects that are

light-years away to have a significantly higher SNR than these objects in LEO. More

information on SNR can be found in Chapter II. This section, will discuss how the

data was collected and analyze the results of the simulation for both scenarios, low

and high SNR. The diameter versus Fried’s seeing parameter for the atmospheric

turbulence was a factor of four times greater for the simulation.

4.1.1 High Signal-to-Noise Ratio

In this scenario, the setup for the simulation was to convolve a binary star system

with a random PSF. This binary star system has an amplitude that is an order
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of magnitude larger than the standard deviation of the noise. The PSF that the

binary star system was convolved with is found in Figure 10. The resulting frames of

data from the convolution are found in Figure 11. The peak SNR for the high SNR

simulation for the two data sets that were used was 6.25.

Figure 10: Two simulated PSFs to be convolved with binary star system.

Figure 11: Two simulated frames of data from simulated PSFs.

Running the two frames of data through the one-dimensional blind deconvolu-

tion algorithm generates results that are similar to results from the original two-

dimensional algorithm. This blind deconvolution estimation of the object, which has

been magnified to elaborate on details, can be seen in Figure 12. To accompany the
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object estimation, the algorithm also estimates the PSF, which can be seen in Figure

13. Visually the two PSFs are very similar and may have minor differences but the

minor differences in the PSF are not significant compared to the estimation of the

object.

Figure 12: Zoomed in on object estimated using two frames of data following the
one-dimensional algorithm.

Figure 13: Estimation of the two PSF utilized for the high SNR simulation.

For the object reconstruction the percent relative error, using Eq. (54), of the left

star of the binary star system is 37.5%. Which means that the intensity of the left
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binary star that was simulated was 37.5 dimmer or brighter than the reference for

that particular star. The percent relative error of the right portion of the binary star

system is 12.8% for the intensity of the right star compared to the reference. This

demonstrates that the algorithm was able to accurately estimate the location and

separation based on visual inspection and intensity of the object based on numerical

calculations of the differences between the reference and the estimated objects.

Error =

∣∣∣∣Measured - Actual

Actual

∣∣∣∣ ∗ 100 (54)

4.1.2 1-D vs 2-D Blind Deconvolution Algorithm

To determine the accuracy and performance of the new blind deconvolution al-

gorithm the two algorithms are compared using the same data sets. In Figure 14,

the absolute error of the two algorithms are plotted against each other to determine

which one had the fewest errors in both intensity and resolution of the binary star.

The x and y tilt of the atmospheric turbulence was ignored and the estimated ob-

jects were shifted to match the true object. To show how the two errors compare to

each other they have been sorted based on either the one-dimensional algorithm or

the two-dimensional algorithm. The trials are shifted concurrently, for example, trial

60 of the one-dimensional algorithm is compared to trial 60 of the two-dimensional

algorithm. The left plot sorts the absolute errors of each trial from lowest error to

greatest error of the one-dimensional algorithm. The right plot sorts the absolute er-

rors of each trial from lowest error to greatest error of the two-dimensional algorithm.

It is visually apparent that the one-dimensional algorithm performed better in both

instances where the two-dimensional algorithm performed well or poorly.
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Figure 14: Left: Sorted plot from lowest to highest error of the one-dimensional
algorithm using high SNR with the same two-dimensional algorithm’s trial plotted
against it; Right: Sorted plot from lowest to highest error of the two-dimensional
algorithm using high SNR with the same one-dimensional algorithm’s trial plotted
against it

4.1.3 Low Signal-to-Noise Ratio

A similar simulation was performed where the binary star’s intensity was signif-

icantly reduce. The average SNR for the low SNR simulation for the two data sets

that were used was 3.63. In Figure 15, the absolute error of the two algorithms is

plotted and clearly shows that the one-dimensional algorithm performs significantly

better in low SNR scenarios.

Both errors for high SNR and low SNR are then averaged and are found in Table

6. Numerically it can also be seen that the one-dimensional blind deconvolution

algorithm performs better than the two-dimensional algorithm, when testing for the

error of the intensities based on the true data, in both high and low SNR situations.
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Table 6: Error of the simulated results for both high and low SNR.
Low SNR High SNR

One-Dimensional 259.61 602.12
Two-Dimensional 329.57 741.55

Figure 15: Left: Sorted plot from lowest to highest error of the one-dimensional
algorithm using low SNR with the same two-dimensional algorithm’s trial plotted
against it; Right: Sorted plot from lowest to highest error of the two-dimensional
algorithm using low SNR with the same one-dimensional algorithm’s trial plotted
against it

4.2 Blind Deconvolution of Other Spatially Separable Objects

The previous section concluded that the one-dimensional blind deconvolution al-

gorithm was able to estimate the object of a binary star system through simulation. In

the majority of cases, the one-dimensional blind deconvolution algorithm performed

better than the two-dimensional blind deconvolution algorithm. Thus for the rest of

the research the results will only display the unique results of the one-dimensional

algorithm and no further comparisons. This section will discuss how the new algo-
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rithm performs when the object is not as simple as a binary star system. Through

simulations, two additional objects were estimated using the one-dimensional algo-

rithm to see how the algorithm would perform the estimation. These two objects are

four point sources separated by one blank pixel in a square pattern and a bar the

length of 5 pixels, these objects can be found in Figure 16 and Figure 17. The goal

for these unique shapes is to display the capability of the one-dimensional algorithm

to estimate the object, if the object is spatially separable, to have the correct spacing

and pixel count.

Figure 16: True image of an object consisting of 4 point sources that are separated
by one pixel in a square pattern.

These objects were subjected to atmospheric turbulence similar to that of the

simulated binary star simulation performed in the previous section. The data sets

for the two scenarios in Figure 16 and Figure 17 are found in Figure 18 and Figure

19. Similar to the binary star system simulation, there is no visible evidence of what

these objects will look like. Thus, the one-dimensional blind deconvolution is required

to estimate these objects.

The one-dimensional blind deconvolution algorithm was able to successfully esti-
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Figure 17: True image of an object consisting of 5 pixels orientated in a vertical line
with no spatial separation between the different pixels.

mate what the four point source object would look like. Though the intensities of

the four point sources differ from the true data, the shape and spacing of the objects

match exactly what the truth describes. These results of the estimation of the four

point sources can be found in Figure 20.

The last simulated spatially separable object that was estimated using the one-

dimensional algorithm was on the light bar scenario and this blind deconvolution

estimated the object well enough to determine the size of the object. Though the

intensities are off and not equal throughout the light bar, it still describes the object

as being five pixels in length in a vertical position. The results of the estimation of

the 5 pixel light bar can be found in Figure 21.
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Figure 18: The two data sets used for the one-dimensional blind deconvolution of the
four point sources with atmospheric turbulence convolved with the object.

Figure 19: The two data sets used for the one-dimensional blind deconvolution of the
light bar with atmospheric turbulence convolved with the object.
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Figure 20: One-dimensional blind deconvolution of the four point source scenario.

Figure 21: One-dimensional blind deconvolution of the light bar scenario.
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4.3 Laboratory Generated Data

This section will discuss the deconvolution of data collected using a laboratory

setup. This final scenario was collected using a monitor, camera, a lens for focusing

and a heat source. The camera was situated approximately 1.5 meters away from the

two pixels displayed on a computer monitor. To focus the image onto the detector a

focusing lens was positioned to accomplish this. This lens was positioned between the

detector and the monitor. To generate realistic atmospheric turbulence a heat source

was introduced around the lenses to create the boiling effect of the atmosphere. The

characteristics of the lens, camera and monitor are found in Table 7. The image that

was used for the laboratory setup can be found in Figure 22, which is two white pixels

separated by one black pixel. This figure is zoomed in to easily see the two pixels,

their location and the separation.

Table 7: Specifications for laboratory setup
Equipment Specifications

Lens

Diameter (mm) 50.00+/-.025
Focal Length (mm) 200.00+/-4.00
f/# 4.00
Lens Type Achromatic
Wavelength Range (nm) 750-1550

Camera

Pixels 3296x2472
Pixel Size (µm) 5.5x5.5
Exposure Time (ms) 15
ADC Gain 1023
Aperture Diameter (mm) 25.4 +/-.2

Monitor
Screen Resolution 1920x1080
Aspect Ratio 16:9
Pixel Size (mm) 0.276

Introducing the heat source around the lens and the camera system simulated

a turbulent atmosphere that would tilt and de-focus the light around the lens and

camera. This tilt and de-focus can be seen in Figure 23. Looking at these two data

sets it can be difficult or nearly impossible to determine if two objects are present
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Figure 22: Two pixels loaded to the monitor to be collected by the camera in the
laboratory setting.

around the targeted brightness.

Figure 23: Two data sets collected using the laboratory setup that has atmospheric
turbulence added using a heat source.

When these two data sets were deconvolved using the one-dimensional blind de-

convolution algorithm it was found that the number of iterations needed to be reduced

by a factor of 10. This is due to how quickly the algorithm will converge to a point

source, which is not the desired outcome. When deconvolved the images do not ap-

pear as point sources due to the geometry of the camera, specifically the size of the
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individual detectors and the spacing between them. In Figure 24, the figure on the

right is the true image that was collected without any turbulence added from moni-

tor through to the lens then to the camera. The figure on the left is the deconvolved

object and as can be seen from the figure the pixel diameter for both figures is approx-

imately 5 with a slightly difference in pixel spacing. The estimation of the laboratory

generated data is off by one pixel in pixel separation due to the way that the light

was scattered across the detector. Increasing the number of iterations would give a

separation pixel count that matched closer to the true data but you lose out on the

details about the right object and may end up missing an object.

Figure 24: Left: One Dimensional Blind Deconvolution of two point sources collected
in a lab setting. Right: True data with no atmospheric simulated turbulence added
using a heat source.

4.4 Limiting Factors that Effect Results

This section will discuss the limiting factors that will cause the results of the

algorithm to perform poorly. These factors include the SNR of the data, the difference

in the PSF caused by the turbulence in the atmosphere, and the separation of the

object based on the geometry of the detectors.
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4.4.1 Signal-to-Noise Ratio Differences

Demonstrated in the previous sections in this chapter were simulations where the

differing SNRs were tested to see how well the one-dimensional algorithm performed

at estimating the object. For the high SNR data, the estimation of the object was

as expected and performed better than the two-dimensional algorithm in most cases.

Though, when changing the intensity of the object to cause a lower SNR value it was

visibly clear through the error that both algorithms struggled with lower SNR data.

As mentioned in the previous sections, objects whether they are in LEO, geosyn-

chronous orbit or light years away can have dramatically differing SNRs. Objects in

LEO may be dimmer than objects that are light years away, while both objects can

be spatially separable.

4.4.2 Atmospheric Turbulence Differences

The differences in the PSF caused by the atmospheric turbulence, the boiling

effect of the air and the effect it has on light, causes slight variations in the way the

algorithm performs. When the correlation between two PSFs are low this enables the

algorithm to perform better at resolving the object or objects. When looking at the

equation for the image if the PSFs are to similar it leads to an issue where there are

too many unknowns and not enough equations to solve for the object.

4.4.3 Geometry of the Detector

The final factor that will effect the results of the estimation of the object is how

far the objects are separated. A detector may not be able to detect another object

if the individual detector pixel size is larger than the spacing of the object on the

detector plane. With further image processing and optical theory, the object can be

isolated to a location on a detector based on the pattern on a detector as described
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in [3].
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V. Conclusions

This chapter details the conclusions that were drawn from the results of both the

simulated data and the laboratory data. This chapter will also discuss future work

that can be done in order to further speed up the deconvolution algorithm or increase

the performance of the one-dimensional algorithm.

5.1 Conclusions

It has been shown, through simulation, that the one-dimensional blind decon-

volution algorithm was able to perform better at determining the intensity of the

objects. Also, the one-dimensional blind deconvolution algorithm performed better

in low SNR situations than the two-dimensional blind deconvolution algorithm, when

resolving a binary star system.

Thus, since the one-dimensional blind deconvolution algorithms performs better it

was proven that the blind deconvolution algorithm was able to estimate objects that

were more complex than a binary star system. This algorithm was able to estimate

the correct location and size of the unique objects.

Lastly, the one-dimensional blind deconvolution algorithm was performed in a

laboratory setting. This algorithm was able to estimate the object comparing it to

an image that has no introduced atmospheric turbulence. Much more work can be

done in order to speed up and increase the performance of the algorithm.

5.2 Future Work

There is significant amount of work that can still be done in order to improve

the algorithm to perform significantly faster than the two-dimensional blind decon-

volution algorithm. One particular avenue to decrease the amount of time for the
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algorithm would be to separate the PSF into it’s own separable components. This

would not only reduce the number of Fourier transforms that would need to be used

but the elimination of the two dimensional Fourier transforms would be removed,

which is processing intensive.

One other aspect that was not researched was the ability to use this algorithm on

actual images collected by a ground-based telescope. As long as the imaged object

is spatially separable the one-dimensional blind deconvolution algorithm should not

have any issues resolving the object. Noise may be a factor that may distort the

results and further research will aid in determining the ability for the algorithm to

be implemented in a ground-based system.
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