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Abstract

This research presents a method using modal analysis by which electromagnetic

characterization of materials in a partially filled rectangular waveguide, having a sin-

gle top air gap, can be accurately performed. Thermal expansion of waveguides com-

monly occurs during high-temperature measurements, resulting in air gaps between

the sample and waveguide walls. Higher order modes are excited by the discontinuous

geometry, which are not accounted for in most closed form extraction algorithms. A

correction must be applied that considers the complex power transmitted and stored

by higher-order modes, not merely the dominant mode. Characterization independent

of sample distance from the calibration plane is also presented.

Expanding upon previous analysis of partially filled rectangular waveguides, a

modal solution for a single air gap between the top of the material sample and the

waveguide wall is developed. The analysis is performed on samples of dielectric to

verify the method, and further tests are performed on magnetic shielding material.

Boundary conditions between the empty and partially filled regions are formulated

so it is only necessary to explicitly satisfy two of the existing three field components,

the third being linearly dependent.

Calculation of the complex permittivity and permeability of magnetic shielding

material, within 10% of the true value, was achieved by using less than 20 modes.

Measurement improvement of real permittivity is the strongest feature of the algo-

rithm. Modal corrections of samples converged slowly or not at all if a large air gap

(> 90mils) was present, indicating the sensitivity of the solution. The inclusion of the

calibration plane independence analysis greatly improved the level of performance of

the modal correction. Results are presented in S-band and X-band, although the

concept is applicable to all frequency bands.
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MATERIAL CHARACTERIZATION IMPROVEMENT

IN

HIGH TEMPERATURE RECTANGULAR WAVEGUIDE

MEASUREMENTS

I. Introduction

Electromagnetic characterization of materials quantifies the response to applied

electric and magnetic fields through the use of the complex quantities permittivity (ǫ)

and permeability (µ), respectively. The real part of each complex number is related

to energy storage in the material, while the imaginary part accounts for conduction

losses, manifested as thermal energy.

In applied electromagnetics, the parameters ǫ and µ are routinely sought by

microwave engineers, since these parameters determine the behavior of fields. Mate-

rials can be either non-magnetic dielectrics or magnetic materials with both electric

and magnetic losses. It is common for certain types of materials to be used to ab-

sorb and dissipate electromagnetic field energy, such as that transmitted by a radar.

These shielding materials are effective at reducing the echo area or radar cross section

(RCS) [20]. The materials used to achieve this reduction typically vary in weight,

composition, effective frequency band, and durability, as well as method of applica-

tion.

A highly relevant topic in RCS engineering is the reduction of scattering from

the exhaust cavity of aircraft engines. Shaping, the primary tool for RCS reduction,

cannot be used on existing legacy aircraft. Therefore, radar absorbing shielding ma-

terial must be applied to needed areas. It is necessary that the absorber be able

to withstand the extremely high temperatures of the exhaust environment, typically

2500◦ F, without performance degradation. Ceramic shielding material is commonly

used, because of its durability under heat.
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As mentioned before, knowledge of ǫ and µ of the shielding material is necessary

to determine the response of the electromagnetic fields and the effective RCS, that

is, whether the shielding material will meet the requirement for RCS reduction. Mi-

crowave measurements are used to calculate the electromagnetic parameters of heat-

resistant ceramic shielding material, but must be performed at elevated temperatures

to properly simulate the performance environment. This requirement introduces sev-

eral complications into the measurement process, which would otherwise be trivial.

Thermal expansion of the metal waveguide, which is normally greater than that of the

ceramic shielding material, introduces air gaps between the sample and the waveguide

walls, leading to the excitation of higher order modes; this situation will be referred

to as a partially filled waveguide (PFW). If a gap is nonexistent, then the situation

is a fully filled waveguide (FFW).

The use of closed form algorithms, such as Nicolson-Ross-Weir (NRW), does

not account for the complex power loss to higher-order and evanescent modes [23,27].

These must be considered if an accurate extraction is desired. Occasionally, due to

the extreme heat or imprecise placement, the sample will shift longitudinally away

from (or towards) the calibration plane, introducing a phase shift. If the phase shift

is not compensated, an extraction of the electromagnetic parameters will be flawed.

This thesis uses modal analysis techniques to overcome the problem of an air gap and

is combined with a new method for reference plane independent measurements in a

rectangular waveguide containing magnetic material.

1.1 Problem Statement

A need exists to accurately characterize magnetic shielding materials at ex-

tremely high temperatures. During high temperature tests, thermal expansion of the

waveguide causes air gaps to form between the sample under test and the waveguide

walls. This geometry scatters higher-order modes inside the waveguide, although all

but the dominant TE10 mode quickly evanesce. However, each higher order mode

transmits or stores a finite amount of complex power that does not propagate to the

2



receiving sensor inside the network analyzer. Therefore, characterization using the

NRW algorithm with the standard reflection (S11, S22) and transmission (S21, S12)

scattering (S) parameters yields inaccurate results [17, 21, 29]. In addition, the re-

flection measurements are extremely sensitive to the axial placement of the sample

in the waveguide. Any displacement from the calibration plane along the waveguide

axis incurs a two-way phase delay or advance which, without compensation, yields

inaccurate results.

This thesis presents a mode-matching analysis using TMy modes to model a

PFW system containing a single air gap between the top of the sample and the waveg-

uide. Theoretical S-parameters, namely Sthy
11 and Sthy

21 , are calculated and compared

to the experimental S-parameters obtained from the network analyzer. A complex

2-D Newton-Raphson root search algorithm solves for the values of permittivity and

permeability that minimize the difference, which are assumed to be the actual values

of the material parameters. It is shown numerically to be sufficient to enforce con-

tinuity of two of the three transverse field components at the boundary between the

empty and PFW regions.

To counteract the error introduced by shifting the sample in the waveguide, the

respective forward and reverse theoretical S-parameters are multiplied together and

compared to the experimental forward and reverse products. A complex 2-D Newton-

Raphson root search algorithm iteratively solves for permittivity and permeability

based on these new functions. This reference plane independent (RPI) formulation is

based on the mode-matching technique described above.

The combination of these components (mode matching, RPI formulation, and

use for magnetic materials) has not, to the best knowledge of the author, been pre-

sented before.

3



1.2 Scope

The standard industry method for materials characterization uses the microwave

stripline. The availability of appropriately sized samples, as well as ease of use and

performing calculations, contribute greatly to this fact. Other popular test mecha-

nisms include the focused beam, cavity resonator, coaxial waveguide, and single-probe

waveguide [21]. All of these methods can be applied in high temperature situations,

and perhaps the focused beam system gives the best performance (no higher order

modes are excited). Since this thesis presents a solution specifically for the rectangu-

lar waveguide, other test setups are not discussed. This exclusion is appropriate, since

many facilities, including the sponsor of this research, do not possess every apparatus

on this list.

In general, materials characterization will need to be performed across a wide

range of frequencies. However, only S-band (2.6 - 3.95 GHz) and X-band (8.2 -

12.4 GHz) measurements are taken throughout this research. The mode-matching

technique can easily be applied to rectangular waveguides at other frequency bands.

Also, only air gaps in the y direction (short dimension) of the waveguide are addressed;

this is the more dramatic problem, since the transverse TE10 E-field is non-zero

at these gaps. For gaps in the x direction (long dimension), the tangential (and

transverse) E-field is identically zero along the boundary, so small gaps have less

effect on the measurement, at least for dielectrics [21].

1.3 Thesis Organization

Chapter 2 gives an overview of previous research done in the area of partially

filled waveguides, and highlights the contributions of this work. Chapter 3 presents

an review of electromagnetic field theory necessary for the research, including the use

of vector potentials. The derivation of the mode-matching solution to the problem,

as well as the inclusion of the reference plane independent analysis, is discussed in

Chapter 4. Experimental results and error analysis are provided in Chapter 5, and

4



conclusions and recommendations are summarized in Chapter 6. The appendices

contain the NRW algorithm and integral proofs of Chapter 4.
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II. Previous Efforts

Microwave measurement problems considering partially filled waveguides have been

thoroughly treated over the years. Several texts, such as those by Collin [10], Har-

rington [16] and Marcuvitz [22], address the issue to varying degrees of complexity.

This chapter will review some of these methods.

2.1 Modal Methods

Wexler [28] has presented a general analysis of scattered modes in discontinuous

waveguides, without regard to the type of fields present. Boundary conditions and

continuity of transverse fields are satisfied by an infinite series of modes on each

side of the obstacle or junction. As in this thesis, the objective is to determine

the distribution of complex power among the the scattered modes. Wexler uses the

orthogonality relation
∫

CS

en × hm · ûzdCS = 0

on the non-degenerate modes. Although [28] mentions only PEC obstacles, the modal

formulation may be used on dielectric and/or magnetic material obstacles as well.

The problem of finding cutoff frequencies in a waveguide partially filled with an

exponentially varying dielectric has been addressed by Gonzalez [15]; his solution does

not, however, explicitly solve for the propagation constants of higher order modes.

The problem discussed by Jarem et al. [19] is similar to that treated in this re-

search, although with notable differences. Using TMy modes, Jarem uses a method of

moments analysis to calculate the theoretical reflection and transmission coefficients,

and uses least-squares curve fitting to match them to the measured S-parameter data.

The axial propagation wave number γbn is the solution of the eigenvalue equation

γz1n

ǫb1
tanh (γz1nd) = γz2n

ǫb2
tanh (γz2n (d − b))

γ2
zin + γ2

bn + ω2ǫbiµbi = 0, i = 1, 2
(2.1)

6



where d is the sample thickness, b is the height of the waveguide, and γzin is the

y-directed wave number in the partially filled region. The index i = 1, 2 refers the

subregions of material (ǫ1, µ1) and (ǫ2, µ2) respectively. To satisfy boundary condi-

tions between the FFW and PFW region, Jarem tries three methods: matching a

single E and H component at the FFW/PFW interface; using Galerkin’s method to

match the inner products of the fields; and matching all transverse field components

individually. Jarem chooses to continue with the first method, matching a single

transverse component of E and H. This choice is justified by both numerical cross-

checks and a variational admittance expression which depends only on two transverse

components. A more rigorous validation of this choice of boundary conditions is given

in this research.

Similarly, Catala-Civera et al. [8] present a method for extracting complex per-

mittivity of a dielectric using PFW theory. An uncertainty study of the procedure is

also given. The material sample is discontinuous in x̂ (i.e. long transverse dimension).

An iterative material perturbation technique is used to search for the correct axial

wave number γ of the PFW, using

γ − γ0 = −jω

∫∫
[(∆ǫ − j∆σ)E · E0 − ∆µH · H0] dS

∫∫
(E0 × H − E × H0) · ẑ dS

where ∆ǫ and ∆µ are the material perturbations and the subscript “0” refers to the

unperturbed values [6,16]. Depending on the height of the material sample, the initial

unperturbed material parameters those of either the empty or full waveguide. The

uncertainty analysis revealed greater error for low-loss samples, as well as samples of

short axial length. Additionally, the importance of precise sample alignment with the

calibration plane is stressed.

Bogle [7] has also developed a similar solution to the partially filled waveguide

characterization problem, although he uses a slightly different formulation. The PFW

used in his analysis has left-right gaps, with the sample in the center. Havrilla has used

7



a perturbational method to compensate for small gaps in a PFW, but has included

only the dominant TE10 mode in the solution, excluding higher-order modes [17].

2.2 Variational Methods

While modal methods can provide an exact solution for wave propagation in

an partially filled waveguide, variational calculus may also be used to obtain an ap-

proximate solution. Berk [6] outlined a general variational procedure for obtaining

the complex propagation coefficients in a waveguide partially filled with a dielectric

slab. Collin and Vaillancourt [11] have successfully used the Rayleigh-Ritz method

to obtain approximate eigenfunctions and eigenvalues in a waveguide partially filled

with dielectric in the y-axis. The piecewise function κ (y) corresponds to the electric

permittivity ǫ as a function of position. The magnetic vector potential is equal to

A = ŷAy = ŷ sin
(πx

a

)

ψEn (y) e±γz

where ψEn (y) is one of infinitely many solutions of the Sturm-Liouville equation

d2ψE

dy2
− 1

κ (y)

dκ

dy

dψE

dy
+

(

κk2
0 −

π2

a2
+ γ2

z

)

ψE = 0

having corresponding eigenvalues γ2
n. It can be shown that the solutions ψEn form an

orthogonal set with respect to the weighting function κ−1. Additionally, the equation

γ2

∫ b

0

1

κ (y)
ψ2

Edy −
∫ b

0

{(
dψE

dy

)2

−
(

κk2
0 −

π2

a2

)

ψ2
E

}

dy

κ (y)
= 0, κ (y) 6= 0 (2.2)

is a variational expression for the true propagation constant γ2 [2]. Collin proposes

the set of eigenfunctions in the empty waveguide,

φEn =

√
ǫon

b
cos

(nπy

b

)

, n = 0, 1, 2... (2.3)
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where ǫ is Neumann factor, to use in the extremisation of (2.2). This method is used

to match the tangential components of the fields at the junction between the empty

and partially filled waveguide [11]. While this technique is by its nature approximate,

it has the advantage of avoiding the solution of a transcendental equation.

The use of the Rayleigh-Ritz method was improved by Vander Vorst and Go-

vaerts, who computerized the algorithm for use in a variation-iteration method [26].

The exact solution for wave propagation in a waveguide containing E -plane slabs of

dielectric has been given by Gardiol [14].

2.3 Other Methods

Fehlen [13], also using a modal field expansion, developed a rigorous PFW anal-

ysis for samples in a coaxial test fixture, with future application to high-temperature

measurements in mind.

Seeking to improve on the transmission/reflection method of materials charac-

terization, Baker-Jarvis et al. developed an method to correct errors of the NRW

algorithm (found in Appendix A) in low-loss samples with thicknesses approximately

integer multiples of half-wavelengths [3]. Relevant to this thesis is the presentation of

a family of equations that are independent with respect to both the reference plane

and the sample thickness itself. These equations isolate the s-parameters in terms

of other known quantities, to be used in a minimization equation as part of a root

search for the correct permittivity. The paper does not test magnetic materials, and

is specific to measurements using fully-filled waveguides.

Wilson [29] and Champlin [9] have analyzed the effect of an air gap on calcula-

tion of complex permittivity from transmission and reflection measurements. Wilson,

using Wexler’s formulation with a material slab discontinuity, successfully derived

field expansions in the empty and PFW regions. It is suggested that a conducting

paste be applied in the gap as a correction, and this is done with great success. How-

ever, such a solution is not applicable in a high-temperature PFW situation, since

9



the paste cannot withstand the high temperature [21]. Champlin, recognizing the

difficulty of obtaining uniformity in the sample, gives an analytic correction for small

gaps to be used in characterization of non-magnetic materials. He does not use modal

analysis.

2.4 Summary

Notable contributions concerning microwave measurements of a PFW system

were reviewed in this chapter. Several works have been published investigating differ-

ent PFW scenarios, including those containing variable dielectric material. Solution

techniques are commonly modal or variational, with computational results often given

as verification.
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III. Electromagnetics Fundamentals

An understanding of basic electromagnetics and guided wave theory is necessary to

develop the solution for the problem at hand. Presented in this chapter is an ex-

planation of vector potentials, the proper use as they pertain to field construction,

and a review of guided wave theory as it pertains to this thesis. The analysis of this

chapter borrows extensively from [4], [16] and [21]. A ejωt time dependence is assumed

and suppressed throughout. Readers familiar with these texts may feel comfortable

moving to the next chapter.

3.1 Maxwell’s Equations

Electric and magnetic field behavior in simple media, defined as linear, isotropic,

homogeneous, and dispersive, can be described by the coupled vector form of Maxwell’s

equations:

∇× E = −M − jωB (3.1a)

∇× H = J + jωD (3.1b)

∇ · D = ρe (3.1c)

∇ · B = ρm (3.1d)

The following auxiliary relations, also for propagation in simple media, apply,:

D = ǫE ≡ (ǫ′ − jǫ′′)E (3.2a)

B = µH ≡ (µ′ − jµ′′)H (3.2b)

J = σE (3.2c)

where ω is the radian frequency, E and H are the electric and magnetic fields respec-

tively, B is the magnetic flux density, D is the electric flux density, J is the electric

current density, M is the magnetic current density, ρe is the electric charge density, ρm

is the magnetic charge density, ǫ is the complex electric permittivity, µ is the complex
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magnetic permeability, and σ is the conductivity of the material. The real and imag-

inary components of permittivity and permeability are denoted with single (′) and

double (′′) prime notation, respectively. Relative electric permittivity ǫr (or magnetic

permeability µr) is defined as the ratio of the material permittivity (permeability) to

the permittivity (permeability) of free space,

ǫr =
ǫ

ǫ0

µr =
µ

µ0

Maxwell’s equations describe the coupling of electric and magnetic fields as en-

ergy propagates in space or through a material. The constitutive parameters ǫ, µ,

and σ determine the field response in the material to the application of an electro-

magnetic field [21]. The real and imaginary parts of ǫ and µ represent energy stored

in the material and loss mechanisms of the material, respectively.

3.2 Vector Potentials

It is useful to define auxiliary functions to aid in the solutions of problems

involving Maxwell’s equations, such as the partially filled waveguide problem of this

thesis.

3.2.1 Magnetic Vector Potential. The fields generated by an electric current

in a region free of magnetic sources (i.e. M = 0) must satisfy Gauss’s Law, ∇·B = 0.

Since in a source free region B is always solenoidal, this implies it has a magnetic

vector potential A, such that

BA = ∇× A (3.3)

or, by (3.2b),

HA =
1

µ
∇× A (3.4)
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Substituting (3.4) into (3.1a) yields

∇× EA = −jωµHA = −jω∇× A (3.5)

which can also be written as

∇× [EA + jωA] = 0 (3.6)

By identity, this implies that EA + jωA has a scalar potential, that is

EA + jωA = −∇φe (3.7)

or,

EA = −∇φe − jωA (3.8)

where the electric scalar potential φe is a function of position.

By taking the curl of both sides of (3.4) and using the vector identity ∇×∇×
A = ∇ (∇ · A) −∇2A, it can be reduced to

µ∇× H = ∇ (∇ · A) −∇2A (3.9)

Using (3.1b) leads to

µJ + jωǫµEA = ∇ (∇ · A) −∇2A (3.10)

Substituting (3.8) into (3.10) obtains

∇2A + k2A = −µJ + ∇ (∇ · A) + ∇ (jωǫµφe) (3.11)

= −µJ + ∇ (∇ · A + jωǫµφe) (3.12)
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where k2 = ω2ǫµ. Having previously defined the curl of A in (3.3), the divergence of

A, which is independent of the curl, may be defined as

∇ · A = −jωǫµφe (3.13)

which is known as the Lorentz gauge condition. Substituting into (3.11) results in

∇2A + k2A = −µJ (3.14)

This is known as the wave equation for A. The electric vector field due to the magnetic

vector potential A, using (3.13) in (3.8), can be written as

EA = −∇φe − jωA = −jωA +
1

jωǫµ
∇ (∇ · A) (3.15)

Thus knowledge of A enables the finding of EA and HA from (3.15) and (3.4), re-

spectively. The components of the fields due to an electric current density J having

been found, it remains necessary to calculate the fields due to a magnetic current M.

3.2.2 Electric Vector Potential. The fields generated by an equivalent mag-

netic current in a region free of electric sources (i.e. J = 0) must satisfy Gauss’s Law,

∇ · D = 0. Observing that D is also solenoidal, this implies it has an electric vector

potential F such that

DF = ∇× F (3.16)

or, by (3.2a),

EF = −1

ǫ
∇× F (3.17)

Substituting (3.17) into (3.1b) yields

∇× HF = jωǫEF = jω∇× F (3.18)
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which can also be written

∇× [HF + jωF] = 0 (3.19)

By identity, this implies that HF + jωF has a scalar potential, that is

HF + jωF = −∇φm (3.20)

or

HF = −∇φm − jωF (3.21)

where the magnetic scalar potential φm is a function of position.

By taking the curl of both sides of (3.17) and using the vector identity ∇×∇×
F = ∇ (∇ · F) −∇2F, it can be reduced to

−ǫ∇× EF =
[
∇ (∇ · F ) −∇2F

]
(3.22)

Using (3.1a) leads to

ǫM + jωǫµHF = ∇ (∇ · F ) −∇2F (3.23)

Substituting (3.21) into (3.23) obtains

∇2F + k2F = −ǫM + ∇ (∇ · F + jωǫµφm) (3.24)

Having previously defined the curl of F in (3.16), the divergence of F, which is

independent of the curl, may be defined as

∇ · F = −jωǫµφm (3.25)

which is known as the Lorentz gauge condition. Substituting this into (3.24) results

in

∇2F + k2F = −ǫM (3.26)
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This is the wave equation for F. The magnetic vector field due to the electric vector

potential F, using (3.25) in (3.21) can be written as

HF =
1

jωǫµ
∇ (∇ · F) − jωF (3.27)

Thus knowledge of F enables the determination of EF and HF from (3.17) and (3.27),

respectively.

3.2.3 Summary. It has been shown that the electromagnetic field compo-

nents sustained by an electric current density J or magnetic current density M can be

calculated through use of the magnetic vector potential A or electric vector potential

F. When both sources are present, the principle of superposition may be applied to

determine the total fields, namely

Etotal = EA + EF (3.28)

and

Htotal = HA + HF (3.29)

Using vector potentials to construct solutions to Maxwell’s equations is the

subject of the next section.

3.3 Field Construction

The simplest solutions to Maxwell’s equations are Transverse ElectroMagnetic

(TEM) field configurations, or modes, where both the electric and magnetic field

components are transverse to the direction of propagation. Modes that are Transverse

Electric (TE) or Transverse Magnetic (TM) may also be constructed. The direction

of propagation is indicated by superscript, i.e., TEMz is transverse to the z direction.

In this chapter, only solutions in a rectangular coordinate system are considered.
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3.3.1 TEM Modes. In a source free region, both J and M do not exist.

Equations (3.14) and (3.26) become the homogeneous differential equations

∇2A + k2A = 0 (3.30)

and

∇2F + k2F = 0 (3.31)

Since (3.30) and (3.31) are of the same form, the solutions will also be of the same

form. Therefore, the following development is only be presented for A. Letting

A (x, y, z) = x̂Ax (x, y, z) + ŷAy (x, y, z) + ẑAz (x, y, z) (3.32)

the component form of (3.30) is

∇2Ax + k2Ax = 0 (3.33a)

∇2Ay + k2Ay = 0 (3.33b)

∇2Az + k2Az = 0 (3.33c)

The total electric field is given by the sum of (3.15) and (3.17),

Etotal = EA + EF = −jωA +
1

jωǫµ
∇ (∇ · A) − 1

ǫ
∇× F (3.34)

Applying (3.32) to (3.34), the total E field can be written in component form

E = x̂
[

−jωAx + 1
jωǫµ

(
∂2Ax

∂x2 + ∂2Ay

∂x∂y
+ ∂2Az

∂x∂z

)

− 1
ǫ

(
∂Fz

∂y
− ∂Fy

∂z

)]

ŷ
[

−jωAy + 1
jωǫµ

(
∂2Ax

∂x∂y
+ ∂2Ay

∂y2 + ∂2Az

∂y∂z

)

− 1
ǫ

(
∂Fx

∂z
− ∂Fz

∂x

)]

ẑ
[

−jωAz + 1
jωǫµ

(
∂2Ax

∂x∂z
+ ∂2Ay

∂y∂z
+ ∂2Az

∂z2

)

− 1
ǫ

(
∂Fy

∂x
− ∂Fx

∂y

)]

(3.35)
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By the Duality Principle the total magnetic field likewise is given by

Htotal = HA + HF =
∇× A

µ
+

1

jωǫµ
∇ (∇ · F) − jωF (3.36)

which which can also be expanded in components as

H = x̂
[

−jωFx + 1
jωǫµ

(
∂2Fx

∂x2 + ∂2Fy

∂x∂y
+ ∂2Fz

∂x∂z

)

+ 1
µ

(
∂Az

∂y
− ∂Ay

∂z

)]

ŷ
[

−jωFy + 1
jωǫµ

(
∂2Fx

∂x∂y
+ ∂2Fy

∂y2 + ∂2Fz

∂y∂z

)

+ 1
µ

(
∂Ax

∂z
− ∂Az

∂x

)]

ẑ
[

−jωFz + 1
jωǫµ

(
∂2Fx

∂x∂z
+ ∂2Fy

∂y∂z
+ ∂2Fz

∂z2

)

+ 1
µ

(
∂Ay

∂x
− ∂Ax

∂y

)]

(3.37)

To generate a TEMz mode, both A and F must be used as generating functions.

Requiring A = ẑAz and F = ẑFz to be non-zero while Ax = Ay = Fx = Fy = 0 will,

by (3.34) and (3.36), produce the required TEMz field components.

3.3.2 TM,TE modes. While the use of TEM modes is sufficient for many

applications (such as wave propagation in free space), other boundary conditions

require the use of TM and TE modes. This nomenclature indicates that either the

magnetic or electric field components lie in a plane transverse to a given direction.

For example, a TEy field configuration implies that Ey = 0; the remaining electric

field components, and all the magnetic field components, may or may not exist.

To generate modes TM (or TE) to a given direction, it is sufficient to allow the

magnetic vector potential A (or electric vector potential F) to have a single non-zero

component in the direction in which the fields are desired to be transverse [4]. For

example, the generating potential for TMz field components is

A = ẑAz (x, y, z)

F = 0
(3.38)
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where the vector potential A must satisfy the wave equation (3.14) with J = 0. Using

the separation of variables technique, solution is assumed to be in the form

Az (x, y, z) = f (x) g (y) h (z) (3.39)

where the functions f, g and h must be chosen to satisfy the wave equation (3.33c)

and boundary conditions of the problem. For a rectangular waveguide oriented on

the z-axis it is easiest to apply the boundary conditions if the solution is written in

the form

Az = [C1 cos (kxx) + D1 sin (kxx)] [C2 cos (kyy) + D2 sin (kyy)]
(
B+e−γzz + B−eγzz

)

(3.40)

where the complex exponentials represent traveling waves and the sine and cosine

functions represent standing waves. The separation of variables also obtains the con-

straint equation

k2
x + k2

y − γ2
z = k2 = ω2ǫµ (3.41)

In (3.40), the coefficients C,D, and B are amplitude constants determined upon satis-

faction of the boundary conditions. The wave numbers kx and ky are spatial constants

that describe field variation in x and y respectively, while the wavenumber k is de-

pendent on both frequency and the fundamental properties of the medium itself. The

wavenumber γz describes field behavior in the propagation axis, and consists of a

real and imaginary part, such that γ = α + jβ. The real part α is the attenuation

constant, and the imaginary part β is the phase constant.

The transverse wave numbers may also be complex, and are often referred to

as eigenvalues, since they are characteristic solutions to the wave equation. The

notation e−γzz indicates a wave traveling in the forward, +z, direction, while eγzz

indicates reverse travel along −z. If γz is purely imaginary, the wave is unattenuated.

If γz is purely real, the wave is evanescent. For complex γz and Re (γz) > 0, the wave
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Figure 3.1: Coordinate system used thoughout this thesis. The waveguide axis is
z, y is top to bottom, and x is left to right. The waveguide is filled with free space,
with parameters (ǫ0, µ0)

.

travels within some envelope of attenuation. Once Az is found, the E and H field

components can be determined according to (3.35) and (3.37).

3.4 Guided Waves

This section presents the method for solving Maxwell’s equations in a rectan-

gular hollow waveguide with (assumed) perfect electric conducting (PEC) walls, and

cross section uniform to the direction of propagation. The analysis throughout this

section is similar to Chapter 8 of [16]. The geometry of the waveguide is given in

Figure 3.1. Let the axis of the waveguide be the z axis, with (x, y) dimensions from

the origin to (a, b); usually, a ≈ 2b, where b is the height of the waveguide. The

interior of the waveguide will be free space with electrical parameters ǫ0 and µ0. A

TEM mode cannot propagate in a hollow waveguide due to the absence of both the

axial currents and magnetic flux necessary to generate transverse field components.

Therefore, solutions TM and TE will be investigated.

Transverse magnetic to z modes, as previously mentioned, are generated from

A = ẑAz and F = 0. Standing waves will occupy the transverse dimensions, while a
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traveling wave will exist along z. Therefore, use of the magnetic vector potential in

(3.40) is appropriate. Boundary conditions require that the tangential component of

the electric field (Ez) vanish at x = 0, x = a, y = 0 and y = b. Therefore, f and g of

(3.39) are

f (x) = D1 sin (kxx) kx = mπ
a

m = 1, 2, 3...

g (y) = D2 sin (kyy) ky = nπ
b

n = 1, 2, 3...

Each pairing of the integers m and n represent a possible mode. If only forward-

traveling waves are considered, the TMz mode functions are

Az = B+
mn sin

(mπx

a

)

sin
(nπy

b

)

e−γzz (3.42)

where the constants have been combined. The constraint equation (3.41) then be-

comes
(mπ

a

)2

+
(nπ

b

)2

− γ2
z = k2

0 = ω2ǫ0µ0 (3.43)

The field components are obtained from (3.34) and (3.36). A solution using TE modes

can be determined in a similar manner.

3.4.1 Impedance. The use of the term impedance to describe the complex

ratio of voltage and current was applied, in turn, to circuit theory, transmission lines,

and electromagnetic fields [24]. Several representations of impedance exist, depending

on the field type, direction of travel, and the medium of propagation. The intrinsic

impedance η of a material, dependent only the parameters ǫ and µ, is

η =

√
µ

ǫ
(3.44)

The wave impedance,

Z =
Et

Ht

(3.45)

is the ratio of transverse components of E to transverse components of H. The

impedance is dependent on the type of wave: TEM, TE, TM all have characteris-
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tic wave impedances particular to the type of waveguide, material, and frequency. If

a plane wave (TEM, TE, or TM) is normally incident on the material, then the wave

impedance Z is reduces to the intrinsic impedance η.

3.4.2 Cutoff Frequency. Forward wave propagation (without attenuation)

in the waveguide occurs when γz = jβ is purely imaginary. When γz is purely real,

the wave is evanescent and does not propagate. The transition between these two

states occurs at the cutoff frequency, when

k2 −
(
k2

x + k2
y

)
= k2 − k2

c = 0 (3.46)

Since k = ω
√

ǫµ = 2πf
√

ǫµ, substituting in the wavenumbers from (3.42) and

solving (3.46) for frequency f results in

(fc)mn =
1

2π
√

ǫµ

√
(mπ

a

)2

+
(nπ

b

)2

(3.47)

which is an expression for the cutoff frequency of a TMmn mode. Modes (TM, TE, or

both) that have the same cutoff frequency are called degenerate. The mode with the

lowest cutoff frequency in a particular guide is the dominant mode. In a rectangular

waveguide where a > b, the TEz
10 mode is dominant.

3.4.3 Mode Orthogonality. The solution to the PFW problem requires the

use of an arbitrary number of field modes. The total field in the waveguide is the

superposition of all the modes, and each mode vector ei is orthogonal to all other

mode vectors. If two modes, either TE or TM, are considered, multiplying them

together forms the product

ei · ej = ∇tΨi · ∇tΨj (3.48)
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where Ψ is a mode function and ∇t is the transverse gradient. By Green’s first

identity,
∫∫

ei · ejds = − (kcj)
2

∫∫

ΨiΨjds (3.49)

Also, by Green’s second identity,

[
(kci)

2 − (kcj)
2]

∫∫

ΨiΨjds = 0 (3.50)

If kci 6= kcj the integral must vanish, as must the right hand side of (3.49), that is

∫∫

ei · ejds = 0, i 6= j (3.51)

It is equivalent to state that if the inner product of two functions (or vectors) is zero,

then they are orthogonal. The proof (from Chapter 8 of [16]) may be extended to the

magnetic field vectors h as well. The transverse electromagnetic field at any point

can then be expressed as the sum of the mode vectors:

Et =
∑

i

ei

Ht =
∑

i

hi

where the mode vectors e and h can be either TE or TM.

3.4.4 Power Transmission. When many modes in a waveguide with PEC

walls exist simultaneously, each will propagate energy independently [16]. For the

current test setup of a PFW this is especially relevant, since it is expected that an

infinite number of TMy modes will exist on both sides of the discontinuity. In the

fully filled waveguide, all the energy is transmitted by the dominant TE10 mode; this

allows the use of closed form algorithms, such as NRW, which consider single-mode

propagation. When multiple modes exist, it is necessary to take into account the

complex power transmitted by both the propagating and evanescent modes. For N

modes, the total z-directed complex power in a section of waveguide is the sum of the
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power contained in each mode, such that

Pz =

∫∫

(E × H∗) · ẑds

=

∫∫
(

∑

i

eiVi

)

×
(

∑

j

hjI
∗
j

)

· ẑds

=
∑

i

∑

j

ViI
∗
j

∫∫

ei · ejds

=
∑

i

ViI
∗
i (3.52)

where Vi is the mode voltage and Ii is the mode current of the ith mode. It is

apparent that this is the expected result, since the complex power of any system is

simply Pz = V · I∗.

3.5 Summary

A cursory review of electromagnetics was presented in this chapter, including

the use of vector potentials and the modal expansion of fields in a waveguide. These

concepts form the basis of the modal analysis found in Chapter IV.
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IV. Mode-Matching Analysis

The characterization of electromagnetic materials by transmission and reflection meth-

ods in a rectangular waveguide assumes the sample to be homogeneous and precisely

machined, i.e. it completely fills the inner dimensions of the waveguide and is perpen-

dicularly planar to the waveguide walls, as seen in Figure 4.1. At high temperatures,

thermal expansion distorts the geometry of both the sample and the waveguide it-

self [21]. The metal waveguide tends to expand at a greater rate than the sample

under test, resulting in air gaps between the sample and the waveguide walls. Figure

4.2 (a) is an example of a top-bottom gap in the short dimension of the waveguide.

The boundary conditions at the gap require the excitation of higher order modes

which are not accounted for in closed form solutions such as the NRW algorithm,

which uses the dominant (TE10) mode only [17,21].

Development of the solution for a single top gap will follow that suggested by

Collin [10] and Harrington [16], using TMy modes to construct the electric and mag-

netic fields in the unobstructed and partially filled waveguide regions. By applying

appropriate boundary conditions, and ensuring that tangential components of E and

H are matched, a system of equations that accurately describes the structure can

be developed. In turn, the forward reflection (Sthy
11 ) and transmission (Sthy

21 ) coeffi-

cients can be extracted. A minimization of the difference between the theoretical and

experimental S-parameters is calculated according to the minimization equations

∣
∣
∣S

thy
11 (ω, ǫ, µ) − S

exp
11 (ω)

∣
∣
∣ < tol

∣
∣
∣S

thy
21 (ω, ǫ, µ) − S

exp
21 (ω)

∣
∣
∣ < tol

(4.1)

A Newton-Raphson root search of the complex parameters ǫ and µ is performed until

an acceptable minimum tolerance is reached. In addition, it is necessary to have

available a reference plane independent measurement scheme to compensate for error

in sample placement or if alignment with the calibration plane cannot be guaranteed.

This method is presented in the final section of the chapter.
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Figure 4.1: Forward scattering parameters in a fully filled waveguide measurement.
The sample is aligned with calibration plane 1; calibration plane 2 is the other end of
the sample holder.

4.1 Newton-Raphson Root Search

The minimization equations used in this thesis can be thought of as two func-

tions, dependent on values of ǫr and µr that force the differences in (4.1) below the

required tolerance. The complexity of the desired root search depends on the parame-

ters of the material. If a material has both electric and magnetic loss properties, then

a 2-dimensional root search, using two equations and two unknowns, must be used.

However, if a material is a non-magnetic dielectric, only ǫr is the unknown (µr = 1),

and a complex 1-dimensional root search of one equation and one unknown can be

applied. This technique will be shown first.

One of the most common techniques in numerical analysis used to determine

roots of equations is the Newton-Raphson method [5]. If p is an unknown root, and a

function f is differentiable on the interval of all approximations to p, then f (p) = 0.

Let x = x0 be an initial guess of the root p. A Taylor series expansion of f (x) around

the approximate root x0 is

f (x) = f (x0 + ∆x) ≈ f (x0) + ∆xf ′ (x0) +
∆x2

2!
f ′′ (ξ) + ... (4.2)
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(a)

(b)

Figure 4.2: Two cross sectional views, (a) transverse and (b) axial, of a partially
filled waveguide consisting of a single top air gap, with material parameters (ǫ, µ).
Only the dominant mode forward scattering parameters, S11 and S21 are shown, al-
though the PFW geometry excites infinitely many modes.
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where ξ is on the range x0 to x0 + ∆x. If the approximation x0 + ∆x is set equal to

p, then

f (p) = 0 ≈ f (x0) + ∆xf ′ (x0) +
∆x2

2!
f ′′ (ξ) + ... (4.3)

he first derivative of f can be calculated numerically, using forward, central, or back-

ward differences. If ∆x is small, then the third and higher order terms can be ne-

glected. This leads to an estimate for ∆x,

∆x = − f (x0)

f ′ (x0)
(4.4)

The next approximation x1 to the root is obtained by adding ∆x to the previous

estimate, x0,

x1 = x0 + ∆x = x0 −
f (x0)

f ′ (x0)
(4.5)

In general, then, the nth approximation to the root p is

xn = xn−1 −
f (xn−1)

f ′ (xn−1)
(4.6)

Convergence is dependent on a “good” initial guess for the root p. If the root is known

to be complex, the initial guess must also be complex; the method will not converge

to a complex root if a purely real initial guess is supplied [1].

If roots to more than one equation are to be found simultaneously, Newton-

Raphson’s method can easily be expanded to higher dimensions. Consider two func-

tions

f (u, v) = 0

g (u, v) = 0 (4.7)

with roots u and v. It is assumed both functions are differentiable on the interval, or

surface, of approximations to u and v. If x = x0 and y = y0 are supplied as estimates
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to the roots, then the Taylor series expansion around the approximations is

f (x, y) = f (x0 + ∆x, y0 + ∆y) ≈ f (x0, y0) +
∂f

∂x
∆x +

∂f

∂y
∆y

g (x, y) = g (x0 + ∆x, y0 + ∆y) ≈ g (x0, y0) +
∂g

∂x
∆x +

∂g

∂y
∆y (4.8)

where the higher order derivatives of the series have been neglected. Letting x0+∆x =

u and y0 + ∆y = v, (4.8) reduces to

f (u, v) = 0 = f (x0 + ∆x, y0 + ∆y) = f (x0, y0) +
∂f

∂x
∆x +

∂f

∂y
∆y

g (u, v) = 0 = g (x0 + ∆x, y0 + ∆y) = g (x0, y0) +
∂g

∂x
∆x +

∂g

∂y
∆y (4.9)

which can be recast in matrix notation as




fx fy

gx gy








∆x

∆y



 = −




f (x0, y0)

g (x0, y0)



 (4.10)

The matrix can be inverted to obtain expressions for ∆x and ∆y,




∆x

∆y



 =
−1

|fxgy − gxfy|




gy −fy

−gx fx








f (x0, y0)

g (x0, y0)



 (4.11)

Proceeding as before, the next set of estimates to the roots are found by adding ∆x

and ∆y to the previous estimates, x0 and y0.

x1 = x0 + ∆x

y1 = y0 + ∆y
(4.12)

The nth root approximation is therefore

xn = xn−1 + ∆xn−1

yn = yn−1 + ∆yn−1

(4.13)

29



Depending on the slope of each function f and g, the initial guesses usually must be

good approximations to the root. If the third term of the Taylor series is too large,

then it may be necessary to include it in order to achieve root convergence [5].

4.2 Partially Filled Waveguide Technique

4.2.1 TMy Modes. In rectangular waveguides where a ≈ 2b, the dominant

mode is TE10; the electric field component is oriented in the ŷ direction, and both

the x̂ and ẑ components do not exist. Conversely, the magnetic field has non-zero

components in the x̂ and ẑ directions, while the ŷ component does not exist.

Recall from [16] that the components of the E-field of the dominant TE10 mode

can be written as

ex = 0

ey = E0 sin (kxx) e−γzz

ez = 0

and the H-field components as

hx = γz

jωµ0
E0 sin (kxx) e−γzz

hy = 0

hz = kx

jωµ0
E0 cos (kxx) e−γzz

The wave impedance, by definition, is the ratio of transverse e and h vector field

components of the dominant mode and is therefore equal to

ZTEz
10

=
e±y

h±
x

=
E0 sin (kxx) e∓γzz

γz

jωµ0
E0 sin (kxx) e∓γzz

=
jωµ0

γz

. (4.14)

Since this is equal to the wave impedance of a TMy
10 mode, and because all the

scattered modes will be in the set of TMy
1n, the complete mode set can be constructed

using TMy modes.
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Figure 4.3: The three computational regions used in field construction: Region I:
empty; Region II: PFW; Region III: empty.

4.2.2 Field Construction. It is sufficient to use the magnetic vector potential

A to generate the necessary electromagnetic field components required for satisfying

boundary conditions in all the regions of the waveguide. Figure 4.3 is a diagram of

the regions discussed in this section. In the two empty regions (i.e. Regions I and

III), the magnetic vector potential takes the form

Ay = (B1 sin kxx + B2 cos kxx) (C1 sin kyy + C2 cos kyy)
(
D+e−γ0z + D−eγ0z

)
(4.15)

where kx, ky, and γ0 are the transverse wave numbers and complex propagation wave

number, respectively, that satisfy the constraint equation in free space,

k2
x + k2

y − γ2
0 = k2

0 = ω2ǫ0µ0

The use of e−γ0z denotes a forward propagating wave in the ẑ direction (i.e. through

the waveguide), and γ0 is, in general, a complex quantity. The respective E and

H-fields can be generated by

EA =
1

jωǫ0µ0

[
∇ (∇ · A) + k2

0A
]
, HA =

∇× A

µ0

(4.16)

31



Substituting (4.15) into (4.16) and simplifying, the E components may be writ-

ten as

ex = kxky

jωǫ0µ0
(B1 cos kxx − B2 sin kxx) (C1 cos kyy − C2 sin kyy) (D−e−γ0z + D−eγ0z)

ey =
(k2

0
−k2

y)
jωǫ0µ0

(B1 sin kxx + B2 cos kxx) (C1 sin kyy + C2 cos kyy) (D+e−γ0z + D−eγ0z)

ez = −kyγ0

jωǫ0µ0
(B1 sin kxx + B2 cos kxx) (C1 cos kyy − C2 sin kyy) (D+e−γ0z − D−eγ0z)

(4.17a)

and the H components as

hx = γ0

µ0
(B1 sin kxx + B2 cos kxx) (C1 sin kyy + C2 cos kyy) (D+e−γ0z − D−eγ0z)

hy = 0

hz = kx

µ0
(B1 cos kxx − B2 sin kxx) (C1 sin kyy + C2 cos kyy) (D+e−γ0z + D−eγ0z)

(4.17b)

Satisfaction of electric field boundary conditions at the waveguide walls requires B2

and C1 to vanish, leading to the definition of the wave numbers kx and ky:

kx = mπ
a

, ky = nπ
b

m = 1, 2, 3, ...

n = 0, 1, 2, ...

where a is the long dimension of the waveguide cross section, and b is the short

dimension, x̂ and ŷ respectively (refer to Figure 4.2 (a)). By the Uniqueness Theorem,

it is sufficient to satisfy only the electric field condition [4].

The complex mode propagation wave number γ0 of the empty region of the

waveguide can then be written as

γ0mn
=

√

k2
x + k2

y − k2
0 =

√
(mπ

a

)2

+
(nπ

b

)2

− k2
0
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By applying the aforementioned boundary conditions, the Region I electric and mag-

netic field components of (4.17) can simplified as

ex = −kxky

jωǫ0µ0
cos kxx sin kyy (D+e−γ0z + D−eγ0z)

ey =
(k2

0
−k2

y)
jωǫ0µ0

sin kxx cos kyy (D+e−γ0z + D−eγ0z)

ez = kyγ0

jωǫ0µ0
sin kxx sin kyy (D+e−γ0z − D−eγ0z)

hx = γ0

µ0
sin kxx cos kyy (D+e−γ0z − D−eγ0z)

hy = 0

hz = kx

µ0
cos kxx cos kyy (D+e−γ0z + D−eγ0z)

(4.18)

Using PFW theory in Region II, spatial shift factors are used to create an

alternative magnetic vector potential A, which is then applied to construct the fields

in each subregion (material and free space), namely

Ay1 = sin kxx (C1 sin ky1y + D1 cos ky1y) (B+
n e−γnz + B−

n eγnz)

Ay2 = sin kxx (C2 sin ky2 (b − y) + D2 cos ky2 (b − y)) (C+
n e−γnz + C−

n eγnz)
(4.19)

where the subscripts 1 and 2 represent each subregion.

In Region II, the electric field boundary condition in x̂ is identical to that of

Region I, namely, the tangential fields vanish at x = 0 and x = a. Therefore, a

standing sine wave exists in both subregions of Region II and throughout Region I;

this is manifested in the choice of harmonic functions in (4.19). From (4.16) the fields

in each region can be calculated. If the sample has height h, then fields in the first
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subregion (0 < y < h) exist within the material:

ex1 =
kxky1

jωǫ1µ1

cos kxx (C1 cos ky1y − D1 sin ky1y)
(
B+

n e−γnz + B−
n eγnz

)

ey1 =

(
k2

1 − k2
y1

)

jωǫ1µ1

sin kxx (C1 sin ky1y + D1 cos ky1y)
(
B+

n e−γnz + B−
n eγnz

)

ez1 =
−ky1γn

jωǫ1µ1

sin kxx (C1 cos ky1y − D1 sin ky1y)
(
B+

n e−γnz − B−
n eγnz

)

hx1 =
γn

µ1

sin kxx (C1 sin ky1y + D1 cos ky1y)
(
B+

n e−γnz − B−
n eγnz

)

hy1 = 0

hz1 =
kx

µ1

cos kxx (C1 sin ky1y + D1 cos ky1y)
(
B+

n e−γnz + B−
n eγnz

)
(4.20)

Fields in the second subregion (h < y < b) exist in free space:

ex2 =
−kxky2

jωǫ0µ0

cos kxx (C2 cos ky2 (b − y) − D2 sin ky2 (b − y))
(
C+

n e−γnz + C−
n eγnz

)

ey2 =

(
k2

0 − k2
y2

)

jωǫ0µ0

sin kxx (C2 sin ky2 (b − y) + D2 cos ky2 (b − y))
(
C+

n e−γnz + C−
n eγnz

)

ez2 =
ky2γn

jωǫ0µ0

sin kxx (C2 cos ky2 (b − y) − D2 sin ky2 (b − y))
(
C+

n e−γnz − C−
n eγnz

)

hx2 =
γn

µ0

sin kxx (C2 sin ky2 (b − y) + D2 cos ky2 (b − y))
(
C+

n e−γnz − C−
n eγnz

)

hy2 = 0

hz2 =
kx

µ0

cos kxx (C2 sin ky2 (b − y) + D2 cos ky2 (b − y))
(
C+

n e−γnz + C−
n eγnz

)
(4.21)

Boundary conditions require that the tangential electric field must vanish at y = 0

and y = b, forcing the constants C1 and C2 to zero. Continuity of tangential E and H

at y = h requires that kx and γzn
be the same in each subregion [16]. In addition, the

tangential components ex1, ex2, ez1, ez2, ex1, hx2, hz1 and hz2 must be continuous

at the boundary between the subregions, y = h. Equating ez1 and ez2 of (4.20) and

(4.21), the requirement

ky1γn

jωǫµ
sin

πx

a
sin ky1h · B±

n =
−ky2γn

jωǫ0µ0

sin
πx

a
sin ky2(b − h) · C±

n (4.22)
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is obtained. Similarly, the continuity between hz1 and hz2 requires

kx

µ1

cos (kxx) cos (ky1h) · B±
n =

kx

µ0

cos (kxx) cos ky2(b − h) · C±
n (4.23)

Using either (4.22) or (4.23), the propagation coefficient of subregion 1, B±
n , can be

expressed in terms of the propagation coefficient of subregion 2, C±
n , that is

B±
n =

−ky2ǫ1µ1

ky1ǫ0µ0

sin (ky2 (b − h))

sin (ky1h)
C±

n =
µ1

µ0

cos (ky2 (b − h))

cos (ky1h)
C±

n (4.24)

Division of (4.22) by (4.23) gives

ky1

ǫ1

sin ky1h cos ky2(b − h) =
−ky2

ǫ2

sin ky2(b − h) cos ky1h (4.25)

or, equivalently

ky1

ǫ1

sin ky1h cos ky2(b − h) +
ky2

ǫ2

sin ky2(b − h) cos ky1h = 0 (4.26a)

γ2
z,1n = k2

y1,n + k2
x − k2

1 = k2
y2,n + k2

x − k2
0 (4.26b)

such that the wave numbers in each subregion satisfy the constraint equation of

(4.26b). Since both ky1 and ky2 are dependent on γz, (4.26a) represents a transcen-

dental eigenvalue equation for possible values of the PFW mode-propagation constant

γz. Therefore, the equation must be solved numerically. When the correct value of γ

is found, the ratio B±
n

C±
n

is given by (4.24). Incorporating this ratio into (4.20), the field
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components of subregion 1 are

ex1 =
kxky2

jωǫ0µ0

cos kxx sin ky1y
sin (ky2 (b − h))

sin (ky1h)

(
C+

n e−γnz + C−
n eγnz

)

ey1 =

(
k2

0 − k2
y2

)

jωǫ1µ0

sin kxx cos ky1y
cos (ky2 (b − h))

cos (ky1h)

(
C+

n e−γnz + C−
n eγnz

)

ez1 =
−ky2γn

jωǫ0µ0

sin kx sin ky1y
sin (ky2 (b − h))

sin (ky1h)

(
C+

n e−γnz − C−
n eγnz

)

hx1 =
γn

µ0

sin kxx cos ky1y
cos (ky2 (b − h))

cos (ky1h)

(
C+

n e−γnz − C−
n eγnz

)

hy1 = 0

hz1 =
kx

µ0

cos kxx
cos (ky2 (b − h))

cos (ky1h)

(
C+

n e−γnz + C−
n eγnz

)
(4.27)

and the field components of subregion 2 are

ex2 =
kxky2

jωǫ0µ0

cos kxx sin (ky2 (b − y))
(
C+

n e−γnz + C−
n eγnz

)

ey2 =

(
k2

0 − k2
y2

)

jωǫ0µ0

sin kxx cos (ky2 (b − y))
(
C+

n e−γnz + C−
n eγnz

)

ez2 =
−ky2γn

jωǫ0µ0

sin kxx sin (ky2 (b − y))
(
C+

n e−γnz − C−
n eγnz

)

hx2 =
γn

µ0

sin kxx cos (ky2 (b − y))
(
C+

n e−γnz − C−
n eγnz

)

hy2 = 0

hz2 =
kx

µ0

cos kxx cos (ky2 (b − y))
(
C+

n e−γnz + C−
n eγnz

)
(4.28)

The wave number γz is determined using the height iteration method discussed

in Section 4.2.6. The wave numbers ky1 and ky2, which represent variation in the ŷ

direction in each subregion, are not expected to be equal to each other. The fields in

each of the three regions having now been constructed, it becomes possible to define

the system modes.

4.2.3 Modal Analysis. In an empty waveguide, only the dominant mode

propagates completely through the waveguide. All other higher-order modes are
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Figure 4.4: The TMy
10 mode is incident on the sample, and scatters the mode set

TM±y
1n . Hybrid TMy modes exist in Region II, between z = 0 and z = d. In Region III

(z > d), forward propagating TMy modes exist. All modes for n > 0 are evanescent.

evanescent and rapidly decay before reaching the network analyzer ports. For the

geometry described, which is discontinuous in ŷ, the dominant mode is TMy
10 and the

scattered mode set is TMy
1n, where the index n indicates the mode number. Figure

4.4 shows a cross section of the waveguide, and illustrates the decay of the evanescent

modes below cutoff as well as the propagation of the dominant mode.

In any region of the system, the total transverse electric and magnetic field can

be represented as the superposition of the forward and reverse propagating modes:

Et =
∞∑

n=1

a±
n ene

∓γnz

Ht =
∞∑

n=1

±a±
n hne∓γnz

(4.29)

where the coefficients a±
n represent the complex weighting constants of each mode. The

field vectors en and hn describe the vector components of the electric and magnetic

fields of each mode, respectively [13]. Depending on the value of z, either the complex
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propagation wave number of free space γ0, or that of the PFW region, γz should be

used.

Using (4.29) as a guide, the total transverse fields in each region of the system

can be constructed. In Region I (z < 0), a TMy
10 mode propagates in the forward

direction, and an infinite number of TMy
1n modes scatter in the reverse direction due

to scattering from the sample (see Figure 4.4). Now (4.29) can be expressed as

E = a+
10e10e

−γ0,10z +
∞∑

n=0

a−
1ne1neγ0,1nz

H = a+
10h10e

−γ0,10z −
∞∑

n=0

a−
1nh1neγ0,1nz

γ2
0,1n =

(
π
a

)2
+

(
nπ
b

)2 − k2
0

(4.30)

Although an infinite number of reverse scattered modes exist, only the n = 0 mode

will propagate completely through the waveguide to the network analyzer.

In Region II (0 < z < d), the existence of an infinite number of forward and

reverse traveling modes are necessary to satisfy the boundary conditions at the dis-

continuity in the geometry of the sample. The transverse fields can be written as

E =
∞∑

n=0

b+
1nẽ1ne

−γ1nz +
∞∑

n=0

b−1nẽ1ne
γ1nz

H =
∞∑

n=0

b+
1nh̃1ne−γ1nz −

∞∑

n=0

b−1nh̃1neγ1nz
(4.31)

The use of the tilde (∼) for the Region II field vectors indicates their dependence on

position in y. A different vector potential is used to generate the fields of each subre-

gion. The propagation of modes in Region II depends on several factors, including the

size of the gap and the nature of the material under test. The size of the gap dictates

whether a mode is propagating or evanescent. If the material sample is lossy, no true

cutoff exists and all modes will propagate, although the modes that exist above the

operation frequency will rapidly decay [17].

In Region III (z > d), the total fields can be represented by the forward prop-

agating mode set of TMy
1n; no reverse traveling waves are present due to the absence
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of reflecting obstacles in this region. The final mode set can be described by

E =
∞∑

n=0

c+
1ne1ne

−γ0,1n(z−d)

H =
∞∑

n=0

c+
1nh1ne−γ0,1n(z−d)

(4.32)

where γ0 is the propagation wave number of free space. A phase shift has been

introduced into the complex exponential to facilitate matching of boundary conditions

between regions.

4.2.4 Boundary Conditions. It is necessary to maintain continuity of the

transverse E and H field components at the interfaces between each region, namely

at z = 0 and z = d, which implies the satisfaction of the conditions

eI
y (z = 0−) = eII

y (z = 0+)

eI
x (z = 0−) = eII

x (z = 0+)

hI
x (z = 0−) = hII

x (z = 0−)

eII
y (z = d−) = eIII

y (z = d+)

eII
x (z = d−) = eIII

x (z = d+)

hII
x (z = d−) = hIII

x (z = d+)

(4.33)

Since the scattered mode set is TMy, the field components hy do not exist. It will be

shown that this allows ex to be written as a function of the field components ey and

hx, thereby eliminating the need to satisfy ex explicitly.

From (3.1) and (3.2), Maxwell’s curl equations (Faraday’s Law and Ampere’s

Law) in a source free region are

∇× E = −jωµH

∇× H = jωǫE
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Performing the curl in rectangular coordinates, and letting hy = 0, this can be ex-

panded into six equations,

∂ez

∂y
− ∂ey

∂z
= −jωµhx (4.34a)

∂ex

∂z
− ∂ez

∂x
= 0 (4.34b)

∂ey

∂x
− ∂ex

∂y
= −jωµhz (4.34c)

∂hz

∂y
= jωǫex (4.34d)

∂hx

∂z
− ∂hz

∂x
= jωǫey (4.34e)

−∂hx

∂y
= jωǫez (4.34f)

Performing the partial derivative on ex in (4.34b) and using the expression for ex from

(4.17) yields

∓γzex =
∂ez

∂x
(4.35)

where the sign is chosen with respect to either forward or reverse traveling waves.

It will be carried through the development. This result is combined with (4.34d) to

obtain the equality

ex =
1

∓γz

∂ez

∂x
=

1

jωǫ

∂hz

∂y
(4.36)

From (4.34c), the expression for hz is

hz =
1

−jωµ

(
∂ey

∂x
− ∂ex

∂y

)

=
1

jωµ

(
∂ex

∂y
− ∂ey

∂x

)

(4.37)

and from (4.34f), the expression for ez is

ez = − 1

jωǫ

∂hx

∂y
(4.38)
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Substituting (4.37) and (4.38) into (4.36) and distributing the derivative operator

obtains

ex =
1

∓γz

∂

∂x

(

− 1

jωǫ

∂hx

∂y

)

=
1

jωǫ

∂

∂y

[
1

jωµ

(
∂ex

∂y
− ∂ey

∂x

)]

=
±1

jωǫγz

∂2hx

∂x∂y
= − 1

ω2ǫµ

(
∂2ex

∂y2
− ∂2ey

∂y∂x

)

(4.39)

Taking the two terms on the right hand side of (4.39), substituting ∂2ex

∂y2 = −k2
yex,

multiplying both sides by ω2ǫµ, and rearranging terms yields

ex =
1

k2
y

(±jωµ

γz

∂2hx

∂x∂y
− ∂2ey

∂y∂x

)

(4.40)

The total transverse field consists of both forward and reverse propagating modes,

and the (±) is applied to each type of mode respectively. At material boundaries,

regardless of the presence of discontinuities, tangential E and H and their derivatives

must be continuous [10,16]. Having shown that ex is linearly dependent on the second

derivatives of ey and hx, the interfacial boundary conditions on ey and hx will be

satisfied analytically. The resultant continuity of ex can be shown numerically given

a successful solution of the mode matching matrix of (4.56).

Region II is divided into two subregions, each with different material parame-

ters. Therefore, continuity of ey and hx, and also (4.40), must satisfy the boundary

conditions (4.33) piecewise, that is

eI
y

∣
∣
z=0−

=







eII
y1, 0 < y < h

eII
y2, h < y < b

∣
∣
∣
∣
∣
∣
z=0+

(4.41)

eI
x

∣
∣
z=0−

=







eII
x1, 0 < y < h

eII
x2, h < y < b

∣
∣
∣
∣
∣
∣
z=0+

(4.42)

41



hI
x

∣
∣
z=0−

=







hII
x1, 0 < y < h

hII
x2, h < y < b

∣
∣
∣
∣
∣
∣
z=0+

(4.43)

at the z = 0 plane. Additionally, at the z = d plane, the piecewise equalities

eII
y1, 0 < y < h

eII
y2, h < y < b







∣
∣
∣
∣
∣
∣
z=d−

= eIII
y

∣
∣
z=d+

(4.44)

eII
x1, 0 < y < h

eII
x2, h < y < b







∣
∣
∣
∣
∣
∣
z=d−

= eIII
x

∣
∣
z=d+

(4.45)

hII
x1, 0 < y < h

hII
x2, h < y < b







∣
∣
∣
∣
∣
∣
z=d−

= hIII
x

∣
∣
z=d+

(4.46)

must hold, where eII
x , eII

y and hII
x are functions of position in y, corresponding to the

vector field components of each respective subregion. The total fields are matched

at the boundary are the superposition of an infinite number of higher order modes,

which must be truncated through practically to N modes for computational purposes.

Now that the required transverse field components, namely ey and hx, have

been identified, the boundary conditions of (4.33) can be applied to the mode sets of

(4.30), (4.31), and (4.32). The superposition of N modes yields the transverse fields

e10 +
N−1∑

n=0

Γne1n =
N−1∑

n=0

tnẽ1n +
N−1∑

n=0

rnẽ1n

h10 −
N−1∑

n=0

Γnh1n =
N−1∑

n=0

tnh̃1n −
N−1∑

n=0

rnh̃n

N−1∑

n=0

tnẽ1ne
−γ1nd +

N−1∑

n=0

rnẽ1ne
γ1nd =

N−1∑

n=0

Tne1n

N−1∑

n=0

tnh̃1ne−γ1nd −
N−1∑

n=0

rnh̃1neγ1nd =
N−1∑

n=0

Tnh1n (4.47)

42



where the leading coefficients have been normalized with respect to a+
10, resulting in

Γn =
a−

1n

a+
10

, rn =
b−1n

a+
10

, tn =
b+
1n

a+
10

, Tn =
c+
1n

a+
10

(4.48)

The constants of (4.48) correspond to the interfacial reflection and transmission co-

efficients of the sample, at the front (Γn, tn) and back (rn, Tn) sample interfaces,

respectively. The required S-parameters of the system can be determined from the

mode coefficients, as they are simply

S
thy
11 = Γ1 =

a−

1

a+

1

S
thy
21 = T1 =

c+
1

a+

1

(4.49)

If the sample is a simple material, the reverse S-parameters can be accurately equated

to the forward parameters, that is

S
thy
22 = S

thy
11

S
thy
12 = S

thy
21

(4.50)

4.2.5 Making a Well-Posed Problem. The system of (4.47) contains 4 equa-

tions and 4N unknowns and is therefore underdetermined for n > 1. If the problem is

to be well-posed, an equal number of equations and unknowns must exist. Since the

number of unknowns cannot be reduced, a method to construct 4N equations must

be used. Physically, this matrix represents the coupling of modes between regions

of empty waveguide and partially filled waveguide. While only the dominant mode

(n = 0) will propagate through the entire guide, complex power will also be transmit-

ted and/or stored by the higher-order modes (n > 0) which must be accounted for if

an accurate model of the fields is to be proposed.

The satisfaction of the boundary conditions between regions presented in Section

4.2.4 required equating a single vector component of both the transverse electric and

magnetic fields, that is the ey and hx components. A suitable testing operator should
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reduce system complexity without altering the resultant S-parameters. To ease the

required computations, mutually orthogonal operators are desirable. Inspection of

(4.17), (4.20) and (4.21) shows that the sin (kxx) term is common to the required

vectors. The argument of the cosine term, however, is different in each region. Since

it is known that in Region I, ky = nπ
b

, an appropriate testing operator is

ψ = cos
(pπy

b

)

, p = 0, 1, 2, ...N (4.51)

to be applied to each mode vector,

〈ψ, f〉 =

∫

ψ · fdy (4.52)

which is the inner product of a mode vector f and the testing function ψ. This

choice of operation, when used on the fields of Regions I and III, will cause many

terms to vanish, since sinusoidal functions of different mode indices are mutually

orthogonal. The linear dependence of ex on the field components ey and hx removes

the requirement to integrate the testing function over the waveguide cross section, as

is often done in other methods [7,13,17,18]. The testing operation is applied term by

term to the linear system of equations in (4.47), which can then be written as

N−1∑

n=0

Γn 〈e1n, ψ〉 −
N−1∑

n=0

rn 〈ẽ1n, ψ〉 −
N−1∑

n=0

tn 〈ẽ1n, ψ〉 + 0 = 〈−e10, ψ〉

N−1∑

n=0

Γn 〈h1n, ψ〉 −
N−1∑

n=0

rn

〈

h̃1n, ψ
〉

+
N−1∑

n=0

tn

〈

h̃1n, ψ
〉

, +0 = 〈h10, ψ〉

0 +
N∑

n=0

rn 〈ẽ1n, ψ〉 eγ1nd +
N−1∑

n=0

tn 〈ẽ1n, ψ〉 e−γ1nd −
N−1∑

n=0

Tn 〈e1n, ψ〉 =0

0 +
N∑

n=0

rn

〈

h̃1n, ψ
〉

eγ1nd −
N−1∑

n=0

tn

〈

h̃1n, ψ
〉

e−γ1nd +
N−1∑

n=0

Tn 〈h1n, ψ〉 =0 (4.53)

To further reduce the required number of calculations, it is useful to observe that

the transverse e and h field components have similar spatial variation, containing

44



harmonic functions of identical arguments. This means that the testing operation

integrals need only be calculated once, and then can be multiplied by an appropriate

scaling factor to correspond to the necessary field component. To facilitate anticipated

matrix algebra, the testing operations of (4.53) corresponding to the electric field

mode vectors can be represented by submatrices, such that

Mnp = 〈e1n, ψ〉
Nnp = ζ · Unp + Vnp

Unp = 〈ẽ1, ψ〉
Vnp = 〈ẽ2, ψ〉

(4.54)

where ζ is the scaling factor from (4.24). Submatrices Unp and Vnp correspond to the

testing operation applied to the electric field vector of subregions 1 and 2, respectively.

When the inner product is performed on the magnetic field vectors, the resultant

submatrices are

Pnp = 1
Z
〈e1n, ψ〉

Qnp = ζ · Fnp + Gnp

Fnp = 1
Z̃1

〈ẽ1, ψ〉
Gnp = 1

Z̃2

〈ẽ2, ψ〉

(4.55)

where Z is the z-directed wave impedance in each region, and the notation is that of

(4.54). The respective integrals of (4.54) and (4.55) are presented in Appendix B

Using (4.54) and (4.55), the system of (4.53) can be represented in matrix form

as 









Mnp −Nnp −Nnp 0

−Pnp Qnp −Qnp 0

0 e−γ1ntNnp eγ1ntNnp −Mnp

0 e−γ1ntQnp −eγ1ntQnp −Pnp





















Γn

rn

tn

Tn











=











−M0p

−P0p

0

0











(4.56)

The system is now in the form Ax = B, where each submatrix of A is of dimension

N×N , making the entire matrix 4N×4N . Both the solution set x and the excitation

vector B are 4N × 1 column vectors.
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In order to numerically verify the continuity of the ex fields across the interfa-

cial boundary, the coefficients of the solution set x are used to check the boundary

conditions on ex,

N−1∑

n=0

Γnex,1n −
(

N−1∑

n=0

tnẽx,1n +
N−1∑

n=0

rnẽx,1n

)

= 0
(

N−1∑

n=0

tnẽx,1ne−γzd +
N−1∑

n=0

rnẽx,1neγzd

)

−
N−1∑

n=0

Tnex,1n = 0

(4.57)

This was calculated with several combinations of height h and total modes N , with

absolute differences on the order of 10−15. Together with (4.40), this verifies that the

fields are continuous across the regional boundaries.

As has already been indicated, the S-parameters S
thy
11 and S

thy
21 are identically

Γ1 and T1 of the solution set. The minimization equation (4.1) can now be used to

search for the correct values of ǫ and µ.

4.2.6 Height Iteration Method. It has been stated that the eigenvalue equa-

tion of (4.26a) is a transcendental equation for possible values of the complex propa-

gation wave number γz,PFW and must be solved numerically [1]. A good initial guess

is imperative to successfully finding the root of the equation. The value of γz,FFW of

the fully fillwed waveguide (FFW) is used as the initial, unperturbed guess for γz,PFW

in (4.26a) with an initial guess as h = b − δ, where δ is a small value.

A Newton-Raphson root search algorithm, using central-difference derivatives,

uses these values to converge on a new γ, which becomes the initial guess in the next

iteration. The height h is decreased again by δ, and the process repeats until the

input height h is the actual value. If the final iteration converges, then γ is accepted

as γPFW , which is used to fill the mode matrix of (4.56). The top-level root search,

using the minimization equation of (4.1), continues the iteration for parameters ǫ and

µ.
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4.3 Reference Plane Independent Measurement

The two measurements discussed in the previous section, S11 and S21, are the

reflection and transmission S-parameters, respectively. The reflection measurement is

highly dependent on the sample location relative to the calibration plane along the

z-axis (see Figure 4.1), since a change in position incurs a two-way phase delay (or

advance) in the measurement. The transmission measurement is not sensitive to the

placement of the sample.

To perform calculations, it is necessary to extract the true S-parameters (de-

noted with superscript s) from the measured S-parameters (denoted with superscript

ms) obtained from the network analyzer. This section will assume that the sample

has thickness d, and is in a waveguide sample holder of width w. Also, the notation

kz, instead of γz, is used for the propagation wave number. Using Figure 4.5 (a) as a

guide, and using complex exponential notation to denote phase shifts, the measured

S-parameters are:

Sms
11 = Ss

11

Sms
22 = e−jk(w−d)Ss

22e
−jk(w−d) = e−jk2(w−d)Ss

22

Sms
21 = e−jk(w−d)Ss

21

Sms
12 = e−jk(w−d)Ss

12

(4.58)

Upon de-embedding the S-parameters, the actual material S-parameters are found to

be

Ss
11 = Sms

11

Ss
22 = ejk2(w−d)Sms

22

Ss
21 = ejk(w−d)Sms

21

Ss
12 = ejk(w−d)Sms

12

(4.59)

The preceding equations presume that the sample is precisely aligned with the

calibration plane. If, however, the alignment is erroneous, or if the sample shifts during

actual measurements, the extraction of parameters in (4.59) is invalid. Consider the
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(a)

(b)

Figure 4.5: Diagram of a waveguide sample undergoing a longitudinal position shift.
(a) Sample (s) and measured (ms) S-parameters of a sample. The sample is aligned
with Calibration Plane 1. (b) The sample has been shifted δ along the axis, and
δ ≪ d. The two reflection measurements now contain an additional phase shift of
e±jk2δ.
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situation of Figure 4.5 (b) when the sample is shifted along the waveguide a small

distance δ ≪ d. The actual S-parameters are then

Ss
11 = ejk2δSms

11

Ss
22 = ejk2(w−d−δ)Sms

22

Ss
21 = ejk(w−d)Sms

21

Ss
12 = ejk(w−d)Sms

12

(4.60)

It can be seen that the forward and reverse transmission measurements of (4.60)

and (4.59) are the same. However, the forward and reverse reflection measurements

of (4.60) incorporate the two-way phase delay/advance caused by the shift. Even a

small value of δ will cause a significant phase shift of the S-parameters.

It is quite possible that, in the course of handling the material sample and the

waveguide system, the exact distance between the sample and the calibration plane

may not be known. During high-temperature measurements, this problem can be

exacerbated by waveguide expansion in extreme heat. To perform accurate material

characterization in these situations, it is necessary to eliminate the dependence on

the reference plane. By multiplying the forward and reverse reflection measurements

Ss
11S

s
22 =

(
ejk2δSms

11

) (
ejk2(w−d−δ)Sms

22

)

= ejk2(w−d)Sms
11 Sms

22 (4.61)

and the forward and reverse transmission measurements

Ss
21S

s
12 =

(
ejk(w−d)Sms

21

) (
ejk(w−d)Sms

12

)

= ej2k(w−d)Sms
21 Sms

12 (4.62)

the dependence on δ drops out. The remaining quantities (w,d, and kz) are all known

values. When using a root search method to determine permittivity and permeability,
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these products can be used in a system of minimization equations

∣
∣
∣S

thy
11 S

thy
22 − S

exp
11 S

exp
22

∣
∣
∣ < tol

∣
∣
∣S

thy
21 S

thy
12 − S

exp
21 S

exp
12

∣
∣
∣ < tol

(4.63)

In a simple material, the respective forward and reverse reflection and transmission

measurements are equal, i.e. S11 = S22 and S21 = S12. This allows Γ1 and T1 of the

solution set of (4.56) to be used for both the forward and reverse coefficients, saving

significant computational effort.

4.4 Summary

A method for characterizing an electromagnetic material that partially fills a

rectangular metal waveguide in one dimension was presented using TMy modal anal-

ysis. The matrix A contains the region-to-region mode coupling information and the

solution vector x relates A to the field excitation vector B. The theoretical reflec-

tion and transmission coefficients of the dominant mode, S
thy
11 and S

thy
21 , are extracted

from x and compared to the experimental S-parameters. A 2-D Newton-Raphson

root search iterates the parameters ǫr and µr until the absolute difference between

the theoretical data and experimental data is within a specified tolerance.

In addition, a method was developed for removing measurement dependence on

a sample’s axial position in the waveguide with respect to the reference plane. This

was accomplished by multiplying the forward and reverse reflection measurements
(

S
thy
11 and S

thy
22

)

and the forward and reverse transmission measurements
(

S
thy
21 and S

thy
21

)

,

which are then compared to the products of the respective experimental S-parameters.

A 2-D Newton-Raphson root search is again used to arrive at a usable solution.
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V. Results

The PFW measurement correction and the reference plane independence analysis

were developed in the previous chapter for the case of a single air gap between the

top of the material sample and the waveguide. The analysis uses mode matching to

calculate the full set of theoretical scattering parameters and compares them to the

experimentally measured scattering parameters. A two-dimensional Newton-Raphson

root search is used to minimize the difference between the theoretical and experimental

S-parameters using the equations

∣
∣
∣S

thy
11 (ω, ǫ, µ) − S

exp
11 (ω)

∣
∣
∣ < tol

∣
∣
∣S

thy
21 (ω, ǫ, µ) − S

exp
21 (ω)

∣
∣
∣ < tol

(5.1)

where it is accepted that the actual values of permittivity ǫ and permeability µ will

drive the two functions of (5.1) below the specified tolerance.

5.1 Test Procedure

Microwave measurements were performed at room temperature in two frequency

bands, S-band (2.6 − 3.95 GHz) and X-band (8.2 − 12.4 GHz). The room tempera-

ture characterizations were done on samples with deliberately machined gaps in order

to simulate the effect of a high temperature waveguide expansion. Measurement of the

physical dimensions of the samples was performed in conjunction with the microwave

measurements.

Room temperature tests of samples machined with a gap sufficiently mimicked

the conditions of a high temperature test to the satisfaction of the research sponsor.

All data, both at S- and X-band, was collected on a Hewlett-Packard 8510C Network

Analyzer located at the AFIT Microwave Lab between the months of November 2006

and February 2007. The measurement apparatus for S- and X-band can be seen

in Figure 5.1 and Figure 5.2, respectively. A Thru-Reflect-Line (TRL) calibration

scheme was used to calibrate out the sample holder.

51



The results presented are the characterization of two materials, acrylic and

FGM-125. The acrylic material is a commercially available, ideally lossless dielectric.

FGM-125 is a commercially available rubberized magnetic shielding material, having

both electric and magnetic losses, manufactured by Emerson & Cuming. Measure-

ments of the acrylic were only done at S-band, while FGM-125 was measured at

S-band and X-band. This research is intended specifically for magnetic materials, but

it can be applied generally, hence the inclusion of the acrylic measurements.

Parameter data is presented visually using the convention ǫr = ǫ′ − jǫ′′ and

µr = µ′ − jµ′′. Truth data was calculated using NRW on a measurement of a sample

that completely filled the waveguide. RPI was not used to calculate the truth data,

since it is not a standard measurement technique. The uncorrected data is the raw

data of the PFW measurement, and NRW is used to extract the effective permittivity

and permeability of this measurement. Additionally, the minimization equations of

(4.63) are used in conjunction with PFW theory to characterize samples using the

reference plane independent formulation. The corrected data corresponding to this

method is labeled RPI. The RPI correction is always calculated with the same number

of modes as the standard mode-matching correction.

5.1.1 Error Analysis. Throughout the course of the research, every attempt

was made to minimize conceivable sources of error. The well-known TRL technique

was used to calibrate the waveguide/HP 8510 system, minimizing systematic instru-

mentation uncertainty. The waveguides were mounted on fixed racks to minimize

unnecessary movement of cables and prevent accidental shifting of the sample in the

sample holder (see Figures 5.1 and 5.2). The use of precision alignment pins between

the waveguide flanges and sample holder ensured consistency of the system during

calibration and measurements.

One unavoidable source of error was the measurement of the physical dimen-

sions of each sample under test. Using calipers with ±2 mil accuracy, each sample

dimension (width, height, thickness) was measured five times, and the average value
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Figure 5.1: Mounted S-band waveguide attached to HP 8510 Network Analyzer.
The mounting rack minimizes unnecessary movement of the cables.

Figure 5.2: Mounted X-band waveguide attached to HP 8510 Network Analyzer
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was recorded. A differential error analysis was performed to determine the effect of

uncertainty in height h and thickness d on the final calculation of permittivity and

permeability.

It has been suggested that the real and imaginary components of permittivity

and permeability be described as functions of h and d [12,13]. However, this choice of

functions does not reflect the mechanics of the algorithm itself, since the actual solu-

tion set is theoretical S-parameters. An error analysis of the S-parameters themselves

would not be particularly useful, since the purpose of the research is to calculate ǫ and

µ. Therefore, the error analysis of ǫ and µ will consider propagation of uncertainty

in the calculated S-parameters due to the measurement uncertainty in sample height

and thickness.

Let κ be either relative permittivity or permeability, such that

κ = κ′ (h, d) − jκ′′ (h, d)

The real part of the calculated material parameter due to a height h and thick-

ness d is expanded in a Taylor series around the point h0 and d0,

κ′ (h0 + δh, d0 + δd) = κ′ (h0, d0) +
∂κ′ (h0, d0)

∂h
δh +

∂κ′ (h0, d0)

∂d
δd + ... (5.2)

where δh and δd are the measurement uncertainties (±2 mils) in height and thickness,

respectively. The higher order terms of the Taylor series can be neglected since the

uncertainty is so small. The total uncertainty in κ′ can now be approximated by

δκ′ = κ′ (h0 + δh, d0 + δd) − κ′ (h0, d0) ≈
∂κ′ (h0, d0)

∂h
δh +

∂κ′ (h0, d0)

∂d
δd (5.3)

which represents the uncertainty contribution of both measurements. Since an ana-

lytic expression for the partial derivatives does not exist, they must be calculated via

a numerical approximation. Using forward differences, the two partial derivatives of
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(5.3) are

δκ′
h =

∂κ′ (h0, d0)

∂h
δh ≈ κ′ (h0 + δh, d0) − κ′ (h0, d0)

δh
δh = κ′ (h0 + δh, d0) − κ′ (h0, d0)

δκ′
d =

∂κ′ (h0, d0)

∂h
δh ≈ κ′ (h0, d0 + δd) − κ′ (h0, d0)

δd
δd = κ′ (h0, d0 + δd) − κ′ (h0, d0)

The quantities δh and δd can in general be positive or negative, but this analysis

will proceed considering the compounded uncertainty of overmeasuring both sample

dimensions. While all the errors, assuming they are independent and random, could

be combined in quadrature, a worst-case approximation is

|δκ′| = |δκ′
h + δκ′

d| < |δκ′
h| + |δκ′

d| (5.4)

The Triangle Inequality shows that the absolute value of the sum of the errors is always

less than the sum of the absolute values [25]. Substituting the real and imaginary

parts of ǫ and µ in for κ completes the error analysis.

The height iteration method used to solve the eigenvalue equation for the correct

value of the complex propagation constant γz in the PFW region is, unfortunately,

not consistently stable. Providing an initial guess of γFFW for a particular mode does

not guarantee that the root search for γPFW will converge on the next consecutive

root, if it converges at all. It is also possible that the root search will find the same

root twice, or skip a root. If this happens, the subsequent filling of the mode matrix

in (4.56) will be inaccurate, due to the use of incorrect values of γz. Verification of

sample homogeneity is also beyond the scope of this research, so it is assumed that

material samples are homogeneous.

5.2 Room Temperature PFW Results

5.2.1 Acrylic. Although this mode-matching technique is meant to be ap-

plied to magnetic materials, a correction can be applied to a dielectric material in

order to verify that the algorithm is working. Therefore, acrylic samples were ob-
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tained from the AFIT machine shop, manufactured to the dimensions shown in Table

5.1. Acrylic is non-magnetic, so it was assumed that the sample permeability is that

Table 5.1: Acrylic Samples, S-Band

Sample # Thickness (in) Width (in) Height (in) Effective Gap ( ±2 mils)
1 0.24 2.84 1.340 0
2 0.24 2.84 1.328 12

of free space. The PFW correction was performed on Sample 2, measured to have

an effective air gap of 12 mils. A correction using 5 modes was performed, with

the results for real permittivity displayed in Figure 5.3. Acrylic is essentially lossless

(ǫ′′ ≈ 0), so the imaginary component is not presented graphically. The corrected per-

mittivity is within 2% of the true value for the entire band, and provides a noticeable

improvement over the uncorrected data. When combined with the RPI formulation

(also using 5modes), the correction is nearly perfect.

Having shown the performance of the correction for this simple case, it is now

appropriate to consider the more complex situation of magnetically lossy material.

5.2.2 FGM-125. Samples of FGM-125 were obtained and machined to the

dimensions shown in Table 5.2, to be used in tests at S-band (2.6 - 3.95 GHz). In

addition, samples were machined to the dimensions shown in Table 5.3 to be used in

tests at X-band (8.2 - 12.4 GHz). The S-band results will be discussed first.

Table 5.2: FGM-125 Samples, S-Band

Sample # Thickness (±2 mils) Width (in) Height (in) Effective Gap (±2 mils)
1 125 2.84 1.340 0
2 125 2.84 1.313 27
3 125 2.84 1.259 81

Sample 1, which completely filled the waveguide cross section, was used as the

reference sample. A 10 mode correction was applied to Sample 2, measured with a

27 mil top air gap. In Figures 5.4 and 5.5, it can be seen that while the true complex

permittivity is reasonably constant across the frequency band, permeability is not.
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Figure 5.3: Measured real permittivity of acrylic with 12 mil air gap. Acrylic is both
lossless and non-magnetic, so it is assumed ǫ′′ = 0 and µr = 1. A 5 mode correction
provides a significant improvement. The addition of the RPI-technique results in
a nearly perfect correction. Error bars indicate ±2 mil uncertainty in height and
thickness.
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Table 5.3: FGM-125 Samples, X-Band

Sample # Thickness (±2 mils) Width (in) Height (in) Effective Gap (±2 mils)
1 125 0.90 0.40 0
2 125 0.90 0.39 10
3 125 0.90 0.35 45

This is an expected property of magnetic materials, that both µ′ and µ′′ tend to

decrease quickly for increasingly high frequencies [21].

From Figure 5.4 (a), it is apparent that the ǫ′ extraction is highly sensitive to

gap size, since the uncorrected measurement is consistently 8% below the true data.

The modal correction, both with and without the RPI formulation, converges to a

slightly higher value of real permittivity, just outside the range of the error bars,

within 5% of the truth data. The uncorrected data for ǫ′′ is sufficiently close to the

true value of zero, so a modal correction is not actually necessary. However, it can be

seen that inclusion of RPI yields a superior result than when it is neglected.

Examining the plots of real and imaginary permeability in Figure 5.5 it can be

seen that these measurements are not as sensitive to top/bottom air gap, given the

proximity of the uncorrected data to the truth data. The 10 mode correction does

not much improve the extraction for either real or imaginary parts, although using

RPI has a considerable effect, especially for the imaginary component.

In a lab environment, it is expected that the waveguide samples will not be

deliberately machined with large gaps. Even in a high temperature measurement,

unless the sample falls over onto its side, extremely large gaps are not expected.

However, in order to illustrate a more drastic case of a PFW, and to test the accuracy

of the modal method for large gaps, Sample 2, with a gap of 81 mils was tested. As the

largest gap size under test, it will be easier to see the benefit of including successive

higher-order in the mode-matching correction. Therefore, a 10 mode correction is

presented in Figure 5.6 and Figure 5.7.
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Figure 5.4: Permittivity of FGM-125 in a PFW with 27 mil top air gap. A 10 mode
solution overcorrects the (a) real part, and yields an exact match between 3 and 3.1
GHz for the (b) imaginary part. The inclusion of RPI is within the error bounds in
(a), but gives superior performance in (b). Error bars indicate ±2 mil uncertainty in
height and thickness.
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Figure 5.5: Permeability of FGM-125 in a PFW with 27 mil top air gap. Correction
using 10 modes has almost no difference from the uncorrected data for either the (a)
real or (b) imaginary components. The RPI, however, is an improvement to both
components, and is nearly exact for µ′′. Error bars indicate ±2 mil uncertainty in
height and thickness.
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Figure 5.6: Permittivity of FGM-125 in a PFW with 81 mil top air gap. 10 mode
correction applied. (a) Use of RPI is within the error bounds of the 10 mode cor-
rection for ǫ′. (b) All extractions are reasonably similar. Error bars indicate ±2 mil
uncertainty in height and thickness.
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Figure 5.7: Permeability of FGM-125 in a PFW with 81 mil top air gap. 10 mode
correction applied. (a) Neither correction improves upon the raw data. (b)Use of RPI
gives better results than the modal correction alone, nearly perfect alignment with
the truth data. Error bars indicate ±2 mil uncertainty in height and thickness.
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The correction of ǫ′ in Figure 5.6 (a) yields excellent results, as the truth data

is within the uncertainty of the modal correction, both with and without the RPI

formulation. Considering the correction to ǫ′′ in Figure 5.6 (b), once again the uncor-

rected data yields an acceptable value. Of the modal correction methods, however,

RPI is the preferred solution , since it provides the most improvement. Likewise, in

Figure 5.7, the use of RPI is preferred as a correction to µ′, and µ′′.

The difference between the uncorrected permittivity data of the 27 mil gap (Fig-

ure 5.4 (a)) and the 81 mil gap, and the relative stability of the other three complex

parameters, is a further indication of the sensitivity of permittivity extractions to this

particular PFW geometry. This is due to the field pattern in the PFW region.

The electric field vector ey is discontinuous in ŷ between the material and free

space, creating a capacitive charge distribution [22]. The measurement of electric

permittivity, therefore, is very sensitive to this geometry. However, the magnetic field

vector hx, for a given value of y, is continuous in x̂. Accordingly, the measurement

of magnetic permeability is much more stable than the permittivity measurement for

top air gaps. If, for example, the air gap was located in the other dimension (i.e.

left/right), an inductive charge distribution would be created. It can reasonably be

assumed that in this scenario, the permeability measurement would suffer more than

permittivity, using similar reasoning.

The second round of room temperature measurements were performed at X-

band, using the samples described by Table 5.3. The parameters extracted using

NRW on measurements of Sample 1, the fully filled case, are assumed to be the truth

data. The first measurements were taken of Sample 2, with a single top air gap of 10

mils. A 10 mode correction is presented in Figures 5.8 and 5.9.

The real permittivity extraction of Figure 5.8 (a) represents an unsuccessful

attempt to improve ǫ′, as both corrections are less than the truth data. This may

be due to a strong capacitive effect at the measurement frequency. The corrected

and uncorrected data sets corresponding to ǫ′′ in Figure 5.8 (b) are nearly identical
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throughout the entire band, which is consistent with previous measurements. The

10 mode correction, when applied to magnetic permeability, is very accurate, having

better performance than the RPI formulation, which can be verified in Figure 5.9.

It must also be pointed out that the 2 mil uncertainty in height and thickness has

almost no effect on extraction of permeability. This is in contrast to permittivity,

which is clearly seen to be affected by a small amount of uncertainty in the specified

sample dimensions.

Sample 3, having a top gap of 45 mils, was also tested. A 15 mode correction

was used, and the results are displayed in Figures 5.10 and 5.11. The extraction

of ǫ′, in Figure 5.10 (a), reveals that use of the 15 mode correction gives a dramatic

improvement over the increasingly worse uncorrected data. However, even when com-

bined with the RPI formulation, the correction is not stable across the entire band.

The standard mode correction would be preferred in this case, since it has a better

average value and the average RPI value is too low.

The extraction of ǫ′′ in Figure 5.10 (b) is the first instance when the uncorrected

data did not accurately approximate the truth data. In addition, the two modal

corrections show significant variation with frequency. This may be due in part to the

instability of the Newton-Raphson Root search when used in parameter extractions

on lossless materials. It is well known that “good” guesses are critical when using

this algorithm [1, 13]. Of the corrections to permeability, shown in Figure 5.11, the

mode-matching correction using RPI was superior for both µ′ and µ′′.

5.2.3 Complex Propagation Wave Number. It has been mentioned that a

valid PFW correction is contingent upon satisfaction of the transcendental equation

ky1

ǫ1

sin ky1h cos ky2(b − h) +
ky2

ǫ2

sin ky2(b − h) cos ky1h = 0 (5.5a)

γ2
z,1n = k2

y1,n + k2
x − k2

1 = k2
y2,n + k2

x − k2
0
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Figure 5.8: Permittivity of FGM-125 in a PFW with 10 mil top air gap. A 10 mode
correction is given. Error bars indicate ±2 mil uncertainty in height and thickness.
(a) Both corrections are unusable, although are preferred to the uncorrected data.
(b) The modal correction and the uncorrected data are closest to the truth data.
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Figure 5.9: Permeability of FGM-125 in a PFW with 10 mil top air gap. A 10
mode correction is given. (a) Non-RPI modal correction is nearly exact. (b) All three
data sets are equally close to the truth data.
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Figure 5.10: Permittivity of FGM-125 in a PFW with 45 mil top air gap. A 15
mode correction is given. (a) Although both mode corrections are in the vicinity of
the truth data, the non-RPI is preferred. (b) The RPI correction is the best of the 3
data sets, but still varies significantly from the truth data.
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Figure 5.11: Permeability of FGM-125 in a PFW with 45 mil top air gap. A 15
mode correction is given. (a,b) Use of RPI gives the best correction, as the non-RPI
is closer to the uncorrected data.
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which, through finding γz, enables the determination of the wave numbers ky1 and

ky2. Using the procedure outlined in Section 4.2.6, an initial guess of γFFW , the

propagation wave number of a fully filled waveguide, is provided to the root search.

It is trivial to calculate γFFW for any number of desired modes, since it is based on

the waveguide geometry. However, using a numerical method to determine γPFW may

lead to erroneous results, due to instability in the iteration.

Therefore, it is useful to observe the response of the mode-matching correction

as successive modes are included in the analysis. This will be done with FGM-125

Sample 3 (S-band), having an air gap of 81 miles. Corrections to ǫr and µr using 1,

2, 3, 6 and 10 modes are illustrated in Figures 5.12 and 5.13. In Figure 5.12 (a), it is

clearly seen that the uncorrected permittivity obtained using NRW is far below the

true value rendering it completely inaccurate. Using the mode-matching technique

with 1 mode (i.e. no higher-order modes) yields a small improvement. Adding 1 higher

order mode improves the measurement further. Including 2 higher order modes (i.e.

3 modes total) results in an overcorrection, but as more modes are considered, the

modal correction moves closer to the true value. Similar observations can be made

about the ǫ′′ correction in Figure 5.12 (b), although in that case the uncorrected data

is closest to the truth data. This is also true for the corrections to µ′ and µ′′ in Figure

5.13.

The question remains as to the reason for the mode-matching overcorrection

of ǫ′ in Figure 5.12 (a). Recall that the values of the propagation wave number γ

are obtained from satisfaction of the eigenvalue equation (5.5a). In order to observe

the behavior of the eigenvalue equation in the complex plane, two surface plots are

presented in Figure 5.14. The material under test is FGM-125, observed at 3.2 GHz,

using two different air gap sizes: 27 mils and 81 mils, which correspond to Sample 2

and Sample 3 respectively.

The ratio of α to β, or the propagation - attenuation ratio, for each root of γ

from Figure 5.14 is given in Table 5.4. A small ratio, such as that for mode 1 of the
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Figure 5.12: Permittivity of FGM-125 in a PFW with 81 mil top air gap. Multiple
mode corrections are given. (a) Too few modes (e.g. 3) is an “overcorrection”, but as
more modes are included the correction rights itself. (b) Similar to (a), it is better to
use more modes than too few. Uncorrected data gives the best result.
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Figure 5.13: Permeability of FGM-125 in a PFW with 81 mil top air gap. Multiple
mode corrections are given. (a) Minimal improvement from using increasing numbers
of modes, but the overcorrection described in Figure 5.12 occurs here as well. (b)
Uncorrected data again gives the best results, and is nearly identical to the 1 & 2
mode correction.
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27 mil gap, indicates the the mode is highly propagating, whereas a large ratio, such

as that for mode 5, indicates strong attenuation.

It is expected that the the dominant mode in a PFW system will have a small

propagation-attenuation ratio, and this can be verified in Figure 5.14 (a), where the

dominant mode can clearly be identified. The fact that the higher order mode roots

in (a) are close to zero indicates minimal propagation. This is similar to the behavior

of modes in a fully filled guide, in which the higher order modes (if they even exist)

attenuate rapidly.

However, for the 81 mil gap case in Figure 5.14 (b), the situation is very different.

Both the real and imaginary components of the roots are much larger than in (a). This

causes the α-β ratio at every mode, except the first, to be much smaller than the 27

mil gap case. The first mode has 7 times the attenuation of the 27 mil gap dominant

mode, so it can immediately be recognized that each γ, especially in the large gap

scenario, is both highly propagating and highly attenuated. The combination of these

effects implies that many higher order modes are necessary for a proper correction

using the PFW mode-matching technique. This is consistent with the observations

made of the successive mode corrections of Figures 5.12 and 5.13. Including several

higher order modes balances the total field, which leads to a more accurate correction.

Table 5.4: Propagation - Attenuation Ratios

FGM-125 FGM-125
27 mil gap 81 mil gap

Mode # α β α
β

α β α
β

1 11 40 0.3 259 125 2.1
2 117 12 9.8 325 109 3.0
3 232 5 46.4 394 90 4.4
4 347 3 115.7 464 77 6.0
5 461 2.8 164.6 534 67 8.0

The potential exists for instability in the numerical root search algorithm used

to converge to roots of the eigenvalue equation. If the solution space has a shallow

gradient, such in some regions of Figure 5.14 (b), the Newton-Raphson method (which
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uses a tangent line to approximate the next guess) may obtain a poor approximation.

It also is helpful if the roots are clearly distinguishable from one another, as in Figure

5.14 (a). In cases where the roots are very close together, or do not stand out greatly

from the surrounding space, it may be appropriate for a different root search, such as

the Muller Method, to be used [1, 13], although this step was not taken here.
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(a)

(b)

Figure 5.14: Two surface plots of the eigenvalue equation over the complex plane,
for which the true PFW γ will force the output to zero. Material under test is FGM-
125, observed at 3.2 GHz. Results are presented in logarithmic scale. (a) Sample 2,
27 mil air gap, first 6 PFW modes. The imaginary part, or phase constant, is close to
zero, or cutoff, for the last 4 modes. This ordering resembles a plot of γ that would
be expected in a FFW. (b) Sample 3, 81 mil air gap, first 5 PFW modes. Roots of γ

have large real and imaginary components, indicating both high attenuation and also
strong propagation.
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VI. Conclusions and Recommendations

This thesis has demonstrated the feasibility of using modal analysis to accurately per-

form electromagnetic material characterization in a partially filled waveguide. Waveg-

uide expansion is a common problem in high-temperature material measurements,

since gaps form between the sample and waveguide walls. This discontinuous geome-

try excites higher order which are not accounted for in algorithms such as Nicolson-

Ross-Weir. A correction was accomplished by considering a single air gap between

the top of the sample and the waveguide. Because the waveguide is partially filled in

the y-axis, the scattered mode set can be completely described using TMy modes.

Using Maxwell’s equations it was shown that the transverse field vector ex was

linearly dependent on the derivatives of ey and hx. Therefore, the the boundary

condition between the empty and partially filled waveguide regions depended only on

explicitly matching the transverse ey and hx mode vectors, although continuity of ex

can be shown numerically. A 2-dimensional Newton-Raphson root search was used

to compute the required value of the complex propagation constant γz of each higher

order mode in the partially filled waveguide, which was then used to construct a finite

number of field modes in the system. The theoretical scattering parameters of this

system are extracted and compared to the experimental scattering parameters in a

minimization equation. The top-level root search uses the minimization equations to

converge to the true values of relative permittivity and permeability of the sample.

Measurements of acrylic and magnetic shielding material in a PFW geometry

were performed at room temperature in S-band and X-band. For most air gaps,

acceptable corrections, i.e. within 10% of the true value, could usually be achieved

using 15 modes or less. At S-band, modal corrections for air gaps greater than 100

mils did not converge. Modal corrections on the 45 mil gap, the largest gap at X-band,

did not converge using more than 10 modes.

It was difficult to obtain useful modal corrections of the large gap PFW acrylic

samples. Even when using a single transmission measurement to extract permittivity,

i.e. a 1-D search, the near-lossless property of the sample made the root searching
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unstable, and no amount of modes used in the correction would converge. Corrections

to air gaps in magnetic shielding material measurements were usually more successful,

unless a significant gap (60-100 mils) was present. In most cases, the algorithm could

be expected to compute the entire data set (201 points) in less than 20 minutes using

a 15 mode correction.

The calculation of real permittivity (regardless of material) is more sensitive to

a top air gap than either imaginary permeability or real and imaginary permeability.

This is due to the electric field vector discontinuity that exists across the material

boundary, which does not exist in the two other transverse field vectors. Therefore, it

is reasonable that the mode-matching technique will be most effective at correcting the

parameter most corrupted by the presence of an air gap. If the gap was in the other

dimension, i.e. left-right, it is expected that the permeability measurement would

suffer. The modal correction was usually able to obtain an acceptable correction for

ǫ′ when ǫ′′ was very small. The success of modal corrections to µr depended on the

gap size and frequency range. It was not unusual for the “uncorrected” PFW data to

be the most acceptable data set.

The addition of a reference plane independent formulation to the mode-matching

technique contributed significant improvements to the correction. Foremost, this in-

dicates that samples were not precisely aligned with the reference plane. Secondly,

by using both forward and reverse scattering parameters, the effects of sample inho-

mogeneity on permittivity and permeability extraction is reduced. Based on these

observations, it is recommended that future material characterizations include a ref-

erence plane independent solution method.

The experiment was not performed at high temperature, but is a presented as

a proof of concept technique for a partially filled waveguide environment.

This research presents a novel method for characterization improvements in

high temperature rectangular waveguide measurements. The foundation of the single

air gap correction is a mode-matching technique of the dominant and higher order
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scattered TMy modes. The mode-matching is then combined with reference plane

independence to eliminate possible phase shift errors. Finally, the method is applied to

measurements involving a magnetic material. The combination of these components

has not, to the best knowledge of the author, been presented before.

6.1 Future Work

It has been observed that a vital part of obtaining a correct solution using modal

analysis is the accurate determination of the complex propagation constant γPFW . If

an iterative search is used, care must be taken to ensure that “good” initial guesses

are supplied to the algorithm. As an alternative, however, a root-search method

which can identify and sort a desired number of mode propagation constants could be

sought. Use of finite element analysis, genetic algorithms, or a less-sensitive iterative

root search are possible options for improvement in this area. With more accurate

values of γPFW , corrections for larger gaps can be calculated.

The top air gap PFW analysis should be combined with side air gaps to better

simulate a high-temperature situation, since it is expected that all dimensions of

the waveguide will expand. The room temperature tests had a priori knowledge of

the dimensions, specifically the height, of the sample under test. This observation,

however, cannot be made at high-temperature. It is recommended that known thermal

expansion coefficients be combined with the PFW analysis to obtain a reasonably

accurate guess for the air gap between the sample and waveguide while at high-

temperature.
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Appendix A. Nicolson-Ross-Weir Algorithm

Nicolson, Ross [23] and Weir [27] took expressions for the S11 reflection coefficient and

S21 transmission coefficient and derived explicit formulas for the calculation of the

material parameters permittivity and permeability (ǫr, µr). The derivation presented

here pertains to use in a rectangular waveguide where a ≈ 2b.

Given the scattering parameters S11 and S21, the reflection coefficient R is given

by

R = Q ±
√

Q2 − 1 (A.1)

where Q is

Q =
(S11)

2 − (S21)
2 + 1

2S11

(A.2)

The choice of sign in (A.1) which forces |R| < 1 is taken. Now, the transmission

coefficient P is given by

P =
S21

1 − R · S11

(A.3)

The impedance z can also be found, as it is

z =
1 + R

1 − R
(A.4)

In the rectangular waveguide, the propagation constant γ of the dominant, TE10

mode is

γ0 =
√

(k2
x − k2

0) (A.5)

Finally, for a material sample of thickness d, relative permittivity and perme-

ability can be given by the relations

µr =
− ln (P ) · z

γ0d
(A.6)

ǫr =
k2

x −
(

ln(P )
d

)2

µrk
2
0

(A.7)
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Appendix B. Integral Proofs

The integrals of Chapter IV are shown here in expanded form.

Mnp = 〈ey1n, ψy〉

=

∫

y

ey1n · ψydy

=

b∫

0

cos
nπy

b
cos

pπy

b
dy

=

b∫

0

cos2 nπy

b
dy

=







b/2, n = p

0, n 6= p

(B.1)

As a special case, if n = 0 (which would represent the dominant mode in the empty

waveguide), (B.1) may be simplified to

M0p = 〈ey10, ψy〉

=

∫

y

ey10 · ψydy

=

b∫

0

cos (0) cos
pπy

b
dy

=

b∫

0

cos2 (0) dy

=







b, n = p = 0

0, n 6= p

(B.2)
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Nnp = Unp + Vnp

Unp = 〈ẽ1,y1n, ψy〉

=
ε0

ε1

cos (ky2 (b − h))

cos (ky2h)
︸ ︷︷ ︸

ζ

h∫

0

cos (ky1y) cos
pπy

b
dy

=
ζ

2

h∫

0

cos
(

ky1 −
pπ

b

)

y + cos
(

ky1 +
pπ

b

)

ydy

=
ζ

2

[

sin
(
ky1 − pπ

b

)
y

(
ky1 − pπ

b

) +
sin

(
ky1 + pπ

b

)
y

(
ky1 + pπ

b

)

]∣
∣
∣
∣
∣

h

0

=
ζ

2

(

sin
(
ky1 − pπ

b

)
h

(
ky1 − pπ

b

) +
sin

(
ky1 + pπ

b

)
h

(
ky1 + pπ

b

)

)

(B.3)

Vnp = 〈ẽ2,y1n, ψy〉

=

b∫

h

cos (ky2 (b − y)) cos
pπy

b
dy

=
1

2

b∫

h

cos
(

ky2b − ky2y − pπy

b

)

+ cos
(

ky2b − ky2y +
pπy

b

)

dy

=
1

2

b∫

h

cos
(

ky2b − y
(

ky2 +
pπy

b

))

+ cos
(

ky2b − y
(

ky2 −
pπy

b

))

dy

= −1

2

[

sin
(
ky2b − y

(
ky2 + pπy

b

))

(
ky2 + pπy

b

) +
sin

(
ky2b − y

(
ky2 − pπy

b

))

(
ky2 − pπy

b

)

]∣
∣
∣
∣
∣

b

h

=
1

2

(

sin
(
ky2b − h

(
ky2 + pπy

b

))

(
ky2 + pπy

b

) +
sin

(
ky2b − h

(
ky2 − pπy

b

))

(
ky2 − pπy

b

)

)

(B.4)
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Pnp =
1

ZTM

〈ey1n, ψy〉 =
1

ZTM

Mnp

=







b
2ZTM

, n = p

0, n 6= p
(B.5)

Fnp =
1

Z̃1

〈e1,y1n, ψy〉 =
1

Z̃1

Unp

=
ζ

2Z̃1

(

sin
(
ky1 − pπ

b

)
h

(
ky1 − pπ

b

) +
sin

(
ky1 + pπ

b

)
h

(
ky1 + pπ

b

)

)

(B.6)

Gnp =
1

Z̃2

〈e2,y1n, ψy〉 =
1

Z̃2

Vnp

=
1

2Z̃2

(

sin
(
ky2b − h

(
ky2 + pπy

b

))

(
ky2 + pπy

b

) +
sin

(
ky2b − h

(
ky2 − pπy

b

))

(
ky2 − pπy

b

)

)

(B.7)
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