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Abstract 

AFRL/MLPJE had developed a novel thermal sensing material termed protein- 

impregnated-polymer (PIP).  Thus far, a proof-of-concept has been demonstrated using a 

macro-sized pixel (0.64 mm2) as a bolometric detector.  In an effort to better characterize 

this novel thermal sensing material, experimental data was used to determine figures of 

merit (FOMs) comparative to off-the-shelf thermal detectors.  Microelectromechanical 

(MEMS) pixels were designed and used as the support structure for an inkjet-deposited 

droplet of the PIP.  During the material characterization, two observations were made:  

PIP is a pyroelectric material, and the polymer (polyvinyl alcohol (PVA)) without the 

protein was found to be more suited for measurements taken on the micro-scaled pixels.  

Both PVA and PVA doped with carbon black (PVA_CB) were the materials focused on 

in this research, with the latter being the material used for FOM characterization.  

Pyroelectric coefficients for PVA and PVA_CB were found to be 755.11 nC/(cm2 K), 

and 108.32 nC/(cm2 K), respectively, which are both two orders of magnitude higher than 

values for current pyroelectric polymers.  A responsivity of 1.66 × 104 V/W, thermal time 

constant of 3.59 sec, noise equivalent power of 21.3 nW, and a detectivity of 1.93 × 105 

cm Hz/W  were the FOMs found in this thesis.  Although the calculated FOMs are not 

stellar in comparison to current thermal detector technology, this material shows much 

promise.  The shortfalls in FOMs could potentially be attributed to a poor pixel design.  

This thesis plants the scientific seed in cultivating a thermal imaging focal plane array 

(FPA) using a newly found pyroelectric polymer. 
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CHARACTERIZATION OF POLYMER-BASED MEMS PYROELECTRIC 
INFRARED DETECTOR 

 
 

I.  Introduction 

 Nature offers a great model for imitating, learning, and providing inspiration for 

new and emerging technologies.  Nature is continually evolving to meet the needs of ever 

changing environments by finding solutions that work.  “Through evolution nature has 

experimented with various solutions to challenges and has improved upon successful 

solutions” [1].    

 For the past several years, the Air Force Research Laboratory (AFRL) has been 

developing sensors capable of detecting electromagnetic (EM) radiation across the 

spectrum—from the infrared (IR), through the visible, and into the ultraviolet regimes.  

These sensors have become integral parts of military weapons systems, as well as 

intelligence, surveillance, and reconnaissance systems—and, in general, the capabilities 

developed are technologically sophisticated [2].  Detecting electromagnetic radiation is of 

specific interest in aviation because of the increased distances over which sensors need to 

operate.  “The ability to detect such radiation in the IR without cryogenics—the science 

of low-temperature phenomena—has been an important technology driver because of 

increased sensor reliability and reduced payloads” [2].  AFRL’s developmental research 

has found that many biological systems possess sensing capabilities unmatched by 

current technologies. 

 Recently, the military has been trying to emulate some of nature’s IR sensing 

capabilities.  “Biomimetics means to imitate life, and in a more practical sense, it is an 
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interdisciplinary effort aimed at understanding biological principles and applying them to 

improve existing technology” [2].  Three of nature’s creatures that have been studied in 

detail in an effort to find the optimal IR detection system to emulate are the jewel beetle 

(Melanophilia acuminata), the pit viper, and bacterial proteins.  The goal is to find the 

single biological “trigger” that is responsible for initial stimulus for IR detection. 

 The jewel beetle lays its eggs in the bark of freshly burned trees using the ability 

to detect forest fires from a distance of about 80 km [3].  The forest fires emit IR 

radiation that the beetle detects via a specialized IR sensor known as the IR pit organ or 

IR sensilla.  Throughout the research of this creature, it was found that the sensilla is 

located on the abdomen of the insect and uses similar properties to that of a golay cell.  

The golay cell senses temperature by absorbing radiation in a gas chamber, heating the 

gas, causing it to expand and deflect a diaphragm in accordance with the amount of 

radiation [4].  Since this natural version of the golay cell is not very robust and is 

extremely complex, the evaluation of biomimetically modeling this creature by AFRL 

ceased. 

 The next IR-capable creature that was studied by AFRL was the pit viper.  Pit 

vipers are named after their specialized thermo receptors, heat-sensitive organs located on 

either side of the head that look like small pits.  These pits contain membranes sensitive 

to IR radiation and allow the snakes to locate their prey based on temperature differences 

with their environment.  To the pit viper, rodents and birds that are only fractions warmer 

than the background stand out even in complete darkness [5].  These nocturnal creatures 

have been found to detect changes in temperature as small as 0.002 to 0.003 °C [6].  
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Further research, again by AFRL, proved this creature too complex to continue the study.  

The snake's IR detection system is only engaged when close to its prey.  Also, it was 

found that the snake uses its blood to cool its sensors; remembering the original objective 

is to find the single biological “trigger.” 

 The last avenue researchers at AFRL looked into was bacterial proteins.  Certain 

proteins undergo substantial conformational changes in response to a given stimulus.  

“This conformational change can manifest in different manners and result in an actuation, 

that is, catalytic or signaling event, movement, interaction with other proteins, and so on” 

[7].  In all cases, the sensing-actuation process of proteins is initiated by a recognition 

event that translates into a mechanical action [7].  By harnessing this mechanical action, a 

thermal transducer can be envisioned. 

 Using the bacterial protein approach in creating an IR sensor has been Air Force 

Research Lab, Materials Lab, Experimental branch’s (AFRL/MLPJE) objective over the 

last couple years. Finally, in 2001, the first biological IR sensing material was found.  

AFRL/MLPJE has developed a biological thermal sensing agent from the TlpA protein of 

salmonella.  The TlpA protein uses its coiled-coil motif response that changes by 

expanding and contracting when exposed to varying temperatures [8].  To exploit this 

behavior, the TlpA is suspended in a mixture of poly vinyl alcohol (PVA) and carbon 

black.  The PVA is used to provide flexible structural support, giving the protein the 

freedom to expand and contract.  The carbon black particles improve the material’s 

electrical properties and its IR absorbtivity.  The resulting composite thermal sensing 

material is termed protein-impregnated-polymer (PIP) [8].   
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1.1 IR Detectors 

 “Although optical-sensor systems traditionally have been modeled after the 

human eye, recent research indicates that modalities other than image forming systems 

can be used to detect, identify, and monitor targets of interest” [9].  The sensors that are 

used to detect optical radiation fall into two categories:  photodetectors and thermal 

detectors. 

 Photodetectors are devices or materials that detect light by direct interaction of the 

radiation with the atomic lattice of the material.  Photodetectors are made from 

semiconductor materials and need to be cryogenically cooled to function as an IR 

detector which increases both the cost and payload of the detector system.  In short, when 

photons are incident on a photodetector, electrons from the valence band are excited into 

the conduction band creating an electron-hole pair.   This electron excitation is detected 

by associated circuitry or interfaces.  There are three main types of photodetectors:  

photoconductive,, photovoltaic, and photoemissive.  Due to the detection process, this 

regime of detectors typically has a fast response time, on the order of micro-seconds.   

 Thermal detectors respond to the absorbed energy of the optical radiation by 

changing the temperature of the sensor [9].  This is typically a two-step process:  1) the 

radiation must change the temperature of the active region in the sensor, and 2) this 

temperature change causes or induces some measurable parameter change.  Once again, 

this parameter change is measured with associated circuitry or interfaces.  Because the 

measurable parameter change in thermal detectors is due to heat, the response time will 
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be much slower.  Some examples of thermal detectors and their mechanism are listed in 

Table 1. 

Table 1: Thermal detectors and their respective material/measured parameter changes. 

Type of Thermal Detector Material Parameter Measured Parameter 
Bolometer Resistance Voltage or Current 
Pyroelectric Spontaneous polarization Current 
Thermocouple Thermal potential difference Voltage 
Microcantilevers Mechanical displacement Mechanical displacement 

 

 For most of the aforementioned thermal detectors, no cooling system is required, 

and they can be operated at room temperature.  The development of uncooled IR 

detectors capable of imaging scenes at 300 K has been an outstanding technical 

achievement.  Much of the technology was developed under classified military contracts 

in the United States, so the public release of this information in 1992 surprised many in 

the worldwide IR community [10].  The benefits of uncooled thermal detectors in 

military applications are boundless.  Although the response time is slower than its 

counterpart, the photodetector, less equipment to operate and minimal cost to fabricate 

are two of the major thrusts in continued research in uncooled IR detectors.     

 Since the invention of IR detectors, a means to compare and contrast between all 

the different detectors was needed.  Figures of merit (FOMs) make this possible.  FOMs 

enable the user to compare relative performance between detectors [9].  In order to 

analyze, quantify, and compare the performance of IR imaging devices, such as various 

types of focal plane arrays (FPAs), it is essential to have an in-depth understanding of 

their FOMs [11]. 
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 PIP has not been precisely classified into a particular type of thermal sensing 

material.  Thus far, what is known is that PIP has been proven to detect thermal radiation.  

Manufacturing of this material can be done at low cost and has potential to be 

comparable to current thermal detection devices that exist on today’s market.   

1.2 Proof-of-Concept 

Initially, when AFRL/MLPJE started their research with PIP, the material was 

thought to be bolometric, which when tested required a bias voltage.  Their results 

showed that the TlpA protein both enhanced the recovery time after a thermal stimulus 

and mitigated noise in the signal [1].  From these experimental results, the protein was 

incorporated into the PVA/carbon black solution to make the PIP material.  The 

experimental results collected by MLPJE are shown in Figure 1.  For this experiment, all 

samples incorporated PVA, carbon black, and glycerol.  The control sample consisted of 

only PVA and carbon black; the collagen sample included PVA, carbon black, and a 

collagen protein; the TlpA sample incorporated PVA, carbon black, and a TlpA protein.  

It is evident from these results that the TlpA sample both mitigated inherent noise in the 

response and also showed a faster response time when the sample was masked from the 

thermal source.  The results of this experiment concluded that the TlpA protein should be 

included in the PVA-carbon black formulation, thereby developing a biomimetic thermal 

sensing material, termed PIP.  
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Figure 1: Experimental results collected by AFRL/MLPJE to determine the benefit of 
the TlpA protein.  All of the materials under test in this experiment consisted of PVA and 
carbon black.  The control sample only had PVA and carbon black, the collegen 
incorporated PVA, carbon black, and a collegen protein, and the TlpA8 consisted of 
PVA, carbon black, and the TlpA protein [1].      

Thus far, AFRL researchers have successfully built a detection array using a PIP-

based thermal detector, making the first ever biomimetic thermal detector [2].  A thin 

film of the PIP was deposited onto a circuit board pre-fabricated with 64 anodes and 64 

cathodes making a total of 64 pixels.  The film was evenly distributed across the circuit 

board with a draw-down bar creating a film thickness of ~250 μm.  In an effort to 

individualize each of the pixels, a micromachining technique was invoked using a UV 

laser.  Linewidths of 15 μm were made with minimal damage to the underlying substrate.  

The completed 8 x 8 array (625 mm2) is shown in Figure 2. 

 The chips were tested under ambient temperature and pressure with the thermal 

signal being focused onto the chip using a germanium lens [8].  In an effort to monitor 

the output signal of the device, the pixel was biased while simultaneously measuring  
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Figure 2: An image of the world’s first biomimetic thermal imager [8]. 

resistance.  The incident thermal radiation induces a change in resistance, thereby 

demonstrating the PIP material as a bolometric type thermal detector.  In thermal 

detectors, the response time is directly proportional to the thermal mass of the pixel.  

Therefore, the pixel array shown in Figure 2 is less than ideal in producing an effective 

image because the size of the pixel (800 μm x 800 μm) is much larger than the typical 

size of current thermal IR detector pixels of 50 μm x 50 μm.  Most bolometer designs 

allow the active thermal sensing material to be elevated off the substrate, both 

maximizing the sensitivity of the sensor and minimizing the thermal time constant.  The 

design shown in Figure 2 was created by depositing PIP between two electrodes while the 

material is adhered to the underlying circuit board with no thermal isolation whatsoever.  
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Also, the deposition methods of current thermal device’s active materials have allowed 

for thicknesses of less than 500 nm, whereas in the pixels shown in Figure 2 have a 

thickness of 250 μm.   

1.3 Statement of Problem 

  The need to move from the macro-scale to a micro-scale PIP focal plane array is 

critical.  By reducing the thermal mass, the response time will be greatly reduced, thereby 

enhancing the possibility of a fully functioning biological thermal imaging focal plane 

array.  In an effort to minimize the thermal mass, both a micron-scaled structure and a 

PIP deposition method need to be developed.  The objective of this aim is to enhance the 

PIP-based IR detector FOMs closer to current off-the-shelf IR thermal detectors.   

 Descriptions of the detector’s structural design characteristics that will result in 

testing for FOMs are 

1) Thermal isolation from the underlying substrate,  

2)  Dimensions large enough (~ 400 μm x 400 μm) for an unproven ink jet 

micro-deposition method (able to compensate for movement errors in x and 

y), 

3) Interdigitized electrode fingers allowing the deposited PIP to complete the 

circuit,  

4) The ability to electrically interact with each pixel. 

Once the PIP material is deposited, the pixel will then be placed into a radiometric set-up 

in an effort to collect data from which to calculate IR detector FOMs to be compared with 

off-the-shelf thermal detectors. 
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1.4 The Proposed Solution 

 This thesis will be dedicated to design a functioning thermal detector prototype by 

applying the PIP material to the top of a polysilicon micro-electro-mechanical-system 

(MEMS) structure.  The PIP material, when deposited, must have thermal isolation from 

the underlying substrate in an effort to minimize the thermal time constant.  The ultimate 

goal of this thesis is to prove that a micron-scale biomimetics-based thermal sensor using 

the PIP material will have comparable FOMs to existing commercial thermal IR 

detectors.   

1.5 The Approach 

 The detector’s structure will be created using the poly-crystalline silicon surface 

micro-machining technique. The MEMS structures will act as the isolating structure and 

also provide electrical contacts for biasing and transduction measurements.  The designs 

are created in a CAD-based program called L-edit.  Once created, the designs are 

submitted to MEMSCAP to be fabricated using the Polysilicon Mulit-User MEMS 

Processes (PolyMUMPS).   

 The PIP deposition techniques will consist of an ink jet deposition method using 

MicroFab’s MJ-AT Jetting Device.  The smallest amount of PIP possible will need to be 

deposited onto the pixel while remaining thermally isolated from the underlying 

substrate.  Also, the PIP material needs to complete the circuit between the interdigitized 

fingers of the MEMS structure to allow for electrical current to pass through the material. 

The main objective of this thesis is not to optimize the deposition method for a high yield 

rate; therefore, any necessary means to get the PIP material onto a pixel will be used.   
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 The FOMs for IR detectors are responsivity, thermal time constant, noise 

equivalent power (NEP), and detectivity.  The responsivity and detectivity of a thermal 

detector are measures of sensitivity of the electrical output signal to incident thermal flux.  

The NEP is a parameter that defines the radiant power incident on the detector that 

produces an output signal equal to the root mean square (rms) detector noise.  The 

normalized detectivity, commonly known as D*, is the detector output signal-to-noise 

ratio (SNR) at 1 Watt of input IR flux normalized to a 1 cm detector area and 1 Hz 

bandwidth.  These qualitative measures will be used to judge the performance 

characteristics of the fabricated PIP based pixels and be compared to current thermal 

detectors.   

1.6 Scope 

 This thesis will demonstrate that the PIP material can be used to make a 

functioning micron-scaled thermal detector.  Thus, this research will only concentrate on 

the following topics: building pixels using the PolyMUMPs foundry, micro-deposition of 

the PIP material, characterizing the PIP-based detector in a radiometric set-up that will 

result in testing for FOMs, and comparing these FOMs to commercial off-the-shelf 

thermal detectors.   

1.7 Contributions 

 The research performed in this thesis will establish a baseline for the first-ever 

micron-scale biologically-based-IR thermal detector.  Once the micron-scaled PIP-based 

detector proof-of-concept is demonstrated, more research into optimizing and mass 
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producing FPAs of these pixels is recommended.  The visionary application of a PIP FPA 

is for IR detection/imaging on a micro-unmanned aerial vehicle (μUAV).   

1.8 Thesis Overview 

 Chapter 2, titled “Background,” will be devoted to understanding thermal 

detectors.  A more detailed description will then be dedicated to pyroelectric detectors, 

which is what the PIP material was revealed to be.  Chapter 3, titled “Material 

Characterization and Sample Preparation,” will describe the electrical characterization 

that was accomplished to determine that PIP is a pyroelectric detection material.  Also, in 

an effort to describe how the sample was prepared for FOM characterization, a 

description of MEMS pixels and the inkjet deposition system will be addressed.  Chapter 

4, titled “Figure of Merit Analysis,” will describe how all of the FOMs will be 

experimentally and/or analytically found.  In Chapter 5, titled, “Results and Analysis,” a 

complete discussion on the results found for the FOMs will be described along with an 

analysis on some of the performance trends of the PIP detector.  Also, the FOM results 

found in this thesis will then be compared to other thermal detectors to establish a 

performance baseline.  In Chapter 6, titled “Conclusions and Recommendations,” the 

scientific contributions from this thesis will be described and any future work that would 

be valuable to follow-on. 

1.9 Works Cited 

[1] Bar-Cohen, Yoseph.  Biomimetics, Biologically Inspired Technologies.  Florida:  
CRC Press, 2006. 

 



 

13 

[2] Stone, Morley, O.  “Electromagnetic applications of biomimetic research,”  Air & 
Space Power Journal, Spring 2004, 
http://www.findarticles.com/p/articles/mi_m0NXL/is_1_18/ai_n6120608. 

 
[3] Dalziel, Louise.  “Jewel beetle flies into the inferno.” 

http://news.bbc.co.uk/2/hi/science/nature/4362589.stm 
 
[4] Keyword “Golay Cells,”  http://www.answers.com 

[5] Keyword “Pit viper,” http://www.wikipedia.com 

[6] Hearn, Kelly.  “Snake proteins may make good sensors.” 
http://www.globalsecurity.org/org/news/2001/010228-ir.htm 

 
[7] Ehrick, Jason,D., Deo, Sapna, K., “Genetically engineered protein in hydrogels 

tailors stimuli-responsive characteristics.”  Nature, vol 4, pp 298 – 302, Apr 2005. 
 
[8] Brott, Lawrence L., Rozenzhak, Sophie, M., “A Poly (vinyl alcohol) / Carbon-

Black Composite Film:  A Platform for Biological Macromolecule 
Incorporation.”  Advanced Materials, vol 16, pp 592 – 596, Apr 2004. 

 
[9] Dereniak, E.L., Boreman, G.D. Infrared Detectors and Systems.  New York:  John 

Wiley & Sons, Inc., 1996. 
 
[10] Kruse, Paul, W., Skatrud, David, D., Uncooled Infrared Imaging Arrays and 

Systems.  Boston, MA:  Academic Press, 1997. 
 
[11]  Datskos, Panos, G., Lavrik, Nickolay, V., “Detectors –Figures of Merit.”  

Encyclopedia of Optical Engineering, pp 349 – 357, 2003. 
 
[12] Kaieda, Tetsuo.  Protein Impregnated Polymer (PIP) Film Infrared Sensor Using 

Suspended Microelectromechanical systems (MEMS) Pixels.  MS Thesis.  
AFIT/GE/ENG/05-10.  School of Engineering and Management, Air Force 
Institute of Tehcnology (AU), Wright Patterson AFB, OH, September 2005. 



 

14 

II. Background 

2.1 Chapter Overview 

The purpose of this chapter is to give background information on the topics that 

are applicable to this thesis.  These topics of discussion will essentially construct the 

foundation of why and how this thesis will benefit the IR community.  The realization of 

the outcome of this thesis research will result in an unprecedented breakthrough in sensor 

technology.  In this chapter, the following topics will be discussed:  IR fundamentals, the 

basics of thermal detection, thermal detectors, and lastly, a detailed discussion of 

pyroelectric detectors.   

2.2 IR Fundamentals 

 In 1900, Max Planck developed the law of blackbody radiation which predicted 

the spectral exitance of electromagnetic radiation at all wavelengths from a blackbody at 

a temperature, T [1].  The analytical solution that Planck derived matched the empirical 

data at all wavelengths and can be seen in Equation (1):   

 ( )
2

e 2hc
5 λkT

2πhc WM λ,T =
cm μm

λ e -1

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎣ ⎦

⎜ ⎟
⎝ ⎠

, (1) 

where, ( )eM λ,T is the spectral radiant exitance, h is Planck’s constant 

[ ]( )-346.626×10 J sec⋅ , c is the speed of light [ ]( )82.998×10 m/sec , λ is wavelength [μm], 

k is the Boltzmann constant [ ]( )231.381 10 J/K−× , and T is temperature [ ]K .  This 

development proved that most living bodies emit radiation that is concentrated in the IR 
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spectrum and that such heated bodies emit their radiation in a continuum of wavelengths 

[2].  Figure 3 depicts plots of the spectral exitance for temperatures at 300 K, 400 K, and 

500 K. 

 

Figure 3: Plot of the spectral radiant exitance for 300 K, 400 K, & 500 K blackbodies. 

 The peak wavelength of the radiated signal for a specific temperature can be 

quantified using the equation defined from Wien’s displacement law.  This law states the 

hotter the object is, the shorter the wavelength at which the peak of its radiation is 

emitted [3].   By setting the partial derivative of the spectral exitance  equal to zero, 
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and solving for the wavelength, the peak wavelength at which the exitance is maximum 

for a particular blackbody temperature, can then be solved 
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 2898μm Kλ =max T
. (3) 

Figure 4 depicts Wien’s displacement law using various blackbody source temperatures. 

 
Figure 4: Peak wavelength at maximum exitance for various blackbody temperatures. 

 The understanding of atmospheric attenuation is crucial when designing an IR 

detection system.  All IR applications require EM radiation transmission through air.  As 

the object emits this radiation in the IR, molecules that comprise the air will both scatter 

and absorb this radiation, ultimately attenuating the EM signal to be detected.  Larger 

particles, such as aerosols, easily absorb the EM radiation, making the IR detection very 

difficult.  However, particles such as smoke and mist are usually small with respect to IR 

wavelengths, allowing the radiation to propagate much further in this type of austere 

environment [4].  Figure 5 illustrates a plot of the transmittance through 6000 ft of air at 

sea level as a function of wavelength. This plot demonstrates the effects of the various 

constituents that make up the earth’s atmosphere.  Also, it is evident the two IR operating 
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regimes are 3 – 5 μm and 8 – 14 μm.  In these windows, the effects of atmospheric 

attenuation are minimal and targets in the IR are most easily detected. 

 
Figure 5: Transmittance of IR radiation through 6000 ft of air at sea level [5]. 

2.3 Basics of Thermal Detection 

 As described in the introduction, there are two main types of IR detectors, 

photodetectors and thermal detectors.  Although both detectors have their own particular 

advantages and disadvantages, the focus of this thesis will be on using the PIP material as 

a viable thermal sensing material.  Therefore, this section and the rest of this thesis will 

be dedicated to becoming intimately familiar with the physics and properties of thermal 

detectors.   

 Thermal detectors respond to incident radiation by raising the temperature of the 

active layer.  The increase in temperature in turn causes a physical property to change in 

the thermal sensing material.  These classes of detectors are termed “energy devices” due 
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to the fact that the amount of energy absorbed is determined by the absorption properties 

of the detector’s material [2].    In an effort to describe the performance of thermal 

detectors, it is best to separate the discussion into two sections: the thermal characteristics 

(temperature rise due to incident thermal radiation) and the physical change in the 

material (the measurable response in the material when exposed to incident thermal 

radiation). 

 The most basic thermal detector model can be seen in Figure 6.  This model’s 

components consist of the active element’s heat capacitance thC , at a temperature of 

T+ΔT , where T is the temperature of the underlying substrate, which is an infinite heat 

sink.  ΔT is the change in temperature when exposed to incident IR radiation.  The 

suspended structure is linked to the substrate via some thermal conductance, thG .  At 

thermal equilibrium, the structure will be at temperature, T.   

 

 

Figure 6: The fundamental representation of a thermal detector. 
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When IR radiation is detected, the active element will change to a temperature of 

T+ΔT .  This change in temperature can be found by solving the heat balance equation, 

 th th e
dΔTC +G ΔT = εΦ
dt

. (4) 

Emissivity, ε , of the material is the ratio of energy radiated by the material to energy 

radiated by a blackbody at that same temperature [6].  By Kirchoff’s law, this also means 

emissivity is a measure of the material’s ability to absorb IR radiation.  The incident 

thermal flux, eΦ , is radiation that changes the detector’s temperature from T to T+ΔT .  

If the assumption is made that incident thermal flux is a periodic function, then  

 jωt
e 0Φ =Φ e  (5) 

where, 0Φ  is the amplitude of the incident sinusoidal flux, and ω  is the frequency of the 

signal.  This leads to the solution of the differential heat equation where the change in 

temperature, ΔT can then be solved.  The simplified solution (removing the transient part 

without losing any generality) can be seen in Equation (6), and is valid for any type of 

thermal detector [7]   

 0
2 2 2

th th

εΦΔT =
G +ω C

. (6) 

 Equation (6), can be mathematically evaluated to determine how to optimize 

performance.  First, it is clearly evident that ΔT needs to be as large as possible.  To 

make this possible, the emissivity of the thermal sensing material needs to be as high as 

possible.  The theoretical limit for ε is one, and this value is typically used when 

evaluating thermal detectors.  Next, to maximize the change in temperature, both the 
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thermal conductance and the heat capacitance need to be small.  The interaction of the 

thermal detector with the incident radiation needs to be optimized by removing all other 

thermal contacts with the detector’s surroundings.  This means the detector mass must be 

as small as possible, and the connection between the elevated sensing area and the 

underlying substrate also needs to be as small as possible [7].   

 This change in temperature, ΔT, can then be further manipulated into a more 

useful term called responsivity, (v,i)ℜ .  Responsivity, generically, is the electrical output 

of the detector divided by the incident thermal flux.  From Equation (6), it is evident that 

ΔT and ω are inversely proportional, and therefore, a typical characteristic for thermal 

detectors, called thermal response time, thτ , can then be found, 

 th
th

th

Cτ =
G

. (7) 

Also, another variable substitution that will be used is the coefficient, K, which reflects 

how well the temperature change transduces into an electrical output voltage or current of 

the detector [7], 

 (v,i)
ΔV ΔIK = or
ΔT ΔT

 (8) 

Solving for ΔV or ΔI  in Equation (8), and inserting both Equation (7) and (8) into 

Equation (6), the voltage responsivity , v
0

ΔV=
Φ

ℜ , or the current responsivity, i
0

ΔI=
Φ

ℜ  

can be solved, 

 (v,i)
(v,i) 2 2

th th

K ε
=

G 1+ω τ
ℜ  (9) 
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 A basic understanding of how thermal detectors operate is paramount when trying 

to design a thermal IR detector.  The background mathematical analysis clearly illustrates 

how to maximize the voltage and current responsivity of a thermal detector.  Some of the 

key elements needed to succeed in this endeavor are the design of the detector’s structure 

that gives the thermal isolation, and designing for as small a thermal conductance as 

possible.  Also, the heat capacitance of the material needs to be minimized to effectively 

increase the reponsivity of the device.  Most often, the heat capacitiy is a material 

parameter that is designed around or can be controlled by the thickness of the sensing 

area [16].  Reducing this value also reduces the thermal time constant, which is critical 

when trying to design FPAsof thermal detectors.    

The value, K, in Equation (8) is generic to all thermal detectors.  This value, 

depending on the type of thermal detector, varies due to the physical parameters that 

change with incident IR radiation.  The next section will be dedicated to describing the 

four main types of the thermal detectors, thermocouples, bolometers, microcantilevers, 

and lastly, the recently categorized PIP-based sensor, pyroelectric detectors.   

2.4 Types of Thermal Detectors  

First, the four different types of thermal detectors shown in Table 1 will be 

described.  Again, these four types of detectors are thermocouples/thermopiles, 

bolometers, microcantilevers, and lastly, pyroelectrics.  All thermal detectors rely on the 

absorption of IR energy.  This energy heats up the detection element which leads to a 

change in the physical properties of the detection material and/or detector structure.  The 
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four thermal detectors that will be described here have their own unique physical 

response to incident IR radiation.   

Both thermocouples and thermopiles (thermocouples connected in series) use the 

thermoelectric effect to sense thermal gradients (temperature difference between two 

points).  These devices are formed by joining two dissimilar metals.  Essentially, the 

thermoelectric effect states that when two different metals are subject to a temperature 

gradient, a voltage will be produced.  In most cases, the “cold” junction is maintained at a 

known temperature while the “hot” junction is attached to a probe and exposed to the 

targeted object [8].  These devices are very inexpensive and can measure a large range of 

temperatures.  The major constraint of thermocouples is their accuracy.  Typically, these 

detectors cannot measure with < 1 °C accuracy and are less than ideal for thermal 

imaging.   

 The bolometer is a resistive element created from a material with a very small 

thermal capacity and a large temperature coefficient of resistance (TCR) so that absorbed 

incident radiation produces a large change in resistance.  The TCR will be described in 

more detail in Chapter 3, but essentially when a bolometric-type material is heated or 

cooled, there will be a change in resistance.  This relative resistive change is known as 

the TCR.  The higher the TCR for the material, the more sensitive the bolometer will be. 

Figure 7 depicts a cross-section of a bolometer detector.   

Microcantilever detectors are another class of thermal detectors in which incident 

IR radiation is absorbed by the micron-scaled cantilever, causing the structure to deflect. 
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Figure 7: Cross-section of a thin film bolometer detector [7]. 

This deflection has been reportedly measured by numerous techniques, including optical, 

capacitive, piezoresistive, and electron tunneling [9].   Microcantilever thermal detector 

technology is typically designed with MEMS and uses the differences in thermal 

expansion coefficients of two different bimetals to cause a displacement in the 

microcantilever [4].  When the structure is released from the sacrificial layer, the bimetal 

material will tend to displace in the direction of the material with the higher thermal 

coefficient of expansion.  This displacement will give the structure thermal isolation from 

the underlying substrate.  When additional IR photons are absorbed, the cantilever is 

heated, causing the bimetal material structure to deflect. 

 A means to measure this deflection of the bimaterial microcantilever device, in 

response to absorbed IR radiation, is essential for this device to be considered a thermal 

detector.  One approach, known as the “optical” lever, uses a beam of light from a laser 

source which is focused onto the tip of the cantilever beam.  The type of laser must be 

strategically chosen depending on the type of material in an effort to be completely 

reflected rather than absorbed by the materials used in the cantilevers.  The reflected 
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beam is focused onto a two-element or four-element photodiode.  The outputs detected 

from the photodiodes are electrically amplified and the difference in signal is measured.  

The changes in measured signal level correspond to the degree to which the cantilever 

bends, and therefore, is a function of absorbed IR radiation.  Figure 8 illustrates a typical 

MEMS based cantilever design.   

 

 

Figure 8: Microcantilever IR detector design.  a) SEM image.  b)  Detector’s 
dimensions in μm [9].  

Pyroelectric detectors are another type of thermal detector.  Pyroelectric materials 

are those materials that with a change in temperature create a change in polarization.  

This polarization change creates a surface charge that is produced in a particular direction 

as a result of the material’s response to the change in spontaneous polarization with 

respect to temperature [7].  The thermal response is a generation of current when the 

pyroelectric material’s temperature changes.   If the temperature does not fluctuate, no 

(a) (b)  (a) (b)   
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current is produced.  This is the most common type of thermal detector in that they are 

inexpensive and are the most sensitive at room temperature [2].   

 Pyroelectric materials typically have crystalline asymmetry which possesses an 

electrical dipole moment without the application of an electric field.  Therefore, this 

device can operate without bias.  If the pyroelectric detector’s temperature changes at a 

rate faster than the compensating surface charges can redistribute themselves, an 

electrical current can be seen.  This category of detector is an alternating current type, 

which means rather than detecting a temperature level, it detects a temperature difference.    

It will be shown that the PIP material was found to be pyroelectric, rather than 

bolometric.  Therefore, this thesis will be dedicated to the characterization of a 

pyroelectric thermal sensing material.  In the following section, I will discuss the 

background, materials overview, FOMs, pyroelectric detector structures, pyroelectric 

deposition methods, and lastly, some of the required signal conditioning needed for 

pyroelectric detectors.  

2.5 The Pyroelectric Detector 

2.5.1 Background 

The physically observable phenomenon of pyroelectricity has been around for 

many centuries, discovered by Theophrastus in 315 BC, where he describes a stone, 

probably the mineral tourmaline, which could attract wood particles and small straw 

when heated [10].  Experimental research of static electricity in pyroelectric materials 

began in the early 18th century.  This paved the way to crystal physics toward the end of 

the 19th century, when the Currie brothers discovered piezoelectricity.   Studies done on 
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Rochelle salt resulted in the discovery of ferroelectricity in 1921.  It was not until 1938, 

that applications of using the pyroelectric properties of tourmaline as an IR sensor were 

proposed by Yeou Ta.  Due to the lack of technology, Ta’s vision was not realized until 

the early 1960s.  Since then, new materials, fabrication processes, and electronic circuitry 

have made pyroelectric detectors the most sensitive uncooled IR detectors on the market 

[10].         

2.5.2 Material Overview 

 All crystals can be categorized according to their symmetry elements and are 

categorized into thirty-two crystal classes.  Twenty of these thirty-two are known to be 

non-centrosymmetric (NCS), or acentric, crystal classes, i.e. types of crystals lacking a 

center of inversion, and can exhibit a variety of technologically important physical 

properties [12].  These twenty classes are known as piezoelectric crystals.  Ten of these 

twenty piezoelectric crystals, known as pyroelectric, are found to be spontaneously 

polarized, attributed to having a dipole moment in their unit cell, and exhibit 

pyroelectricity.  Ferroelectric crystals belong to the pyroelectric family of crystals.  These 

crystals can be defined as pyroelectric crystals that have reversible polarization with the 

application of an electric field [11].  The aforementioned NCS classes are shown in 

Figure 9. 
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Figure 9: There are 32 total classifications of crystals which are based on symmetry. 
20 of these 32, also known as acentric, have piezoelectric properties.  Of all the acentric 
crystals, 10 are classified as pyroelectric, and some of the crystals that exhibit the 
pyroelectric effect also possess ferroelectric properties [11].   

 
2.5.2.1 Piezoelectric Materials  

Piezoelectricity is a term derived from the Greeks, piezen, meaning to press, and 

was discovered by Jacques and Pierre Curie in 1880.  The Currie brothers observed that 

certain crystals exhibited an electrical current when subjected to a mechanical force.  

Also, it was found that the converse effect occurred when the crystal was exposed to an 

electric field; the crystal exhibited a macroscopic strain.  Thus, with piezoelectric 

materials, two effects are possible, direct and converse.  The direct effect acts like a 

generator where the piezoelectric material converts mechanical into electrical energy.  

Some applications of the direct effect are solid state batteries, sensing devices, and fuel 

lighting.  The converse effect results in a motor action in which the piezoelectric material 

converts electrical into mechanical energy.  The applications of the converse effect can be 

Of the 32 crystal classes based on symmetry:

20 are Piezoelectric

10 are Pyroelectric

Ferroelectric
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seen in micro-motors, both acoustic and ultrasonic sensors, and in electromechanical 

transducers [12].    

2.5.2.2 Pyroelectric Materials 

 A subclass of piezoelectric crystals is pyroelectric.  The term, pyro, comes from 

the Greek meaning fire.  Red tourmaline was discovered to hold electric properties when 

ash particles were attracted and repelled by pieces in a fire.  Pyroelectric materials are 

inherently polarized even in the absence of an applied electric field.  This inherent 

polarization is termed spontaneous polarization and an illustration of this spontaneous 

polarization is shown in Figure 10.  

 

 

Figure 10: A simplistic model representing a two-dimensional pyroelectric crystal 
illustrating spontaneous polarization.  a) The 2-D crystal lattice. b) The corresponding 
polarized vector field. Notice the net polarization of the field is oriented in one direction; 
giving the crystal a dipole moment [11]. 

As indicated from Figure 9, the larger circles represent negatively charged ions, 

and are located at the intersection of the lattice points.  The smaller circles represent the 

positively charged ion.  This crystal is seen to be spontaneously polarized because the net 

Positively charged ion

Negatively charged ion

a.                                              b.

Positively charged ion

Negatively charged ion

a.                                              b.
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polarization of the crystal is oriented in one direction.  The spontaneous polarization is 

measured in terms of dipole moment per unit volume.  The crystals that possess this 

effect are pyroelectric and the direction of the spontaneous polarization is called the polar 

axis.  In the case of the oversimplified crystal structure shown in Figure 10, the polar axis 

would be from negative to positive [11].  

 The pyroelectric effect is defined as the generation of pyroelectricity when a 

pyroelectric material is subject to a thermal stimulus.  When there is a temperature 

change, the crystal becomes electrically polarized.  The net polarization is the dipole 

moment per unit volume, which is proportional to the surface charge per unit volume.  

When a pyroelectric material senses a temperature change, there is a movement of these 

charges.  By definition, charge flow or charge per unit time, is current.  Thus, a 

pyroelectric material produces a current if it senses a change in temperature. The material 

will continue to produce more and more current, assuming the temperature continues to 

increase, until the Currie temperature is reached.  The Currie temperature, by definition, 

is the temperature at which the crystal no longer has an electrical dipole moment.  Figure 

11 illustrates a typical current response of a pyroelectric material with respect to a change 

in temperature.  The temperature at which the current goes to zero is known as the Currie 

temperature, Tc, of the crystal.  The pyroelectric effect is what makes pyroelectric 

materials ideal candidates for thermal detectors.  Some major applications that use 

pyroelectric detectors are burglar alarms, IR imagers, and measuring of thermal 

properties of materials [12].  
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Figure 11: A generic current response, with respect to temperature of a pyroelectric 
crystal.  The temperature at which the current goes to zero is known as the Currie 
temperature and is specific to each pyroelectric material [2]. 

2.5.2.3 Ferroelectric Materials 

 Ferroelectric crystals are a subset of pyroelectric crystals.  This type of crystal 

may be defined as a pyroelectric material that has a reversible or switchable polarization 

[12].  This polarization can be switched or reversed by the application of an electric field.  

Therefore, in order for a crystal to have ferroelectric properties, it must possess a 

permanent dipole moment and be capable of having this dipole moment reversed in the 

presence of an electric field.   

 The ferroelectric effect was discovered by J. Valasek in 1921, in an investigation 

of the anomalous dielectric properties of Rochell salt.  In 1935, a second ferroelectric 

material, KH2PO4 was discovered, followed by a third substance, BaTiO3, discovered in 

1944.  Since then, more than 250 pure materials and many more mixed crystals have been 

discovered possessing ferroelectric properties [12].  Ferroelectric materials also have 
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many uses, as they exhibit the properties of both piezoelectric and pyroelectric materials.  

Devices based simultaneously on switched ferroelectric and piezoelectric properties 

include, oscillators and filters, while the analogous properties results in light switches, 

displays, optical memories, and thermal detectors [12].    

2.5.2.4 Pyroelectric IR thermal detection materials 

Thermal detection materials that capitalize on the pyroelectric effect to transduce 

the thermal response into an electrical signal can be categorized into three classifications:  

single crystals, ceramics (polycrystalline), and polymers.  Each classification of material 

has its own unique benefit and disadvantages.  This section will describe these three 

classifications and, in conclusion, illustrate a table depicting pyroelectric detector 

materials and their applicable parameters, allowing for a visual comparative analysis.   

Single crystals like triglycine sulphate (TGS) are extremely attractive materials 

for pyroelectric detectors because they possess high pyroelectric coefficients, which is a 

parameter that characterizes how well the material electrically responds to a change in 

temperature.  Equation (8) summarizes a generic change in a detector’s electrical output, 

K, which occurs with a change in temperature in thermal detectors.  Focusing on 

pyroelectric physics, the K value can now be replaced with the pyroelectric coefficient, p, 

which describes the responsiveness of the pyroelectric material.  This parameter is 

described as, 

 Ip = dTA
dt

 (10) 
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where I is the current produced by a change in temperature, A is the cross-sectional area 

normal to the polar axis, and dT/dt is the change in temperature with respect to a change 

in time (which is essentially the slope of the forced temperature ramp when finding p).  

Although single crystal materials have a high pyroelectric coefficient, they are difficult to 

handle and show poor long term stability [7].  Also, these materials have a low Currie 

temperature which prohibits them from meeting military specifications.  TGS is typically 

used for high performance single pixel detectors.  Two other single crystals that have 

been used for pyroelectric detectors are lithium tantalite (LiTaO3) and strontium barium 

niobate (SBN).   

 Ceramic materials are another class of pyroelectic detector materials.  There is an 

ample amount of ceramic materials that consist of solid solutions of PZ (lead zirconate, 

PbZrO3), and PT (lead titanate, PbTiO3), and other similar oxides.  These materials have 

been developed over many years in an effort to satisfy the requirements of ferroelectric, 

piezoelectric, electro-optic, and pyroelectric devices. The polar axis can be controlled in 

these materials by the application of an electric field.  Some of the benefits in using 

ceramics are mechanical and chemical robustness, high Currie temperatures, and that 

they can be modified by the inclusion of selected dopants to control the pyroelectric 

coefficient and the Currie temperatures [7].   

 Polymers can also be used in pyroelectric detectors.  Two of the major polymer 

materials that are used are polyvinylidene fluoride (PVDF) and copolymers PVF2.  These 

materials possess low pyroelectric coefficients and low dielectric constants.  Pyroelectric 

detectors using polymers typically have FOMs inferior to other types of pyroelectric 
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materials.  Polymer materials are ideal candidates for designing low cost detectors since 

they are readily available in large thin sheets which do not require expensive lapping and 

polishing processes necessary for other materials [7].   

 Ideal pyroelectric materials should have large pyroelectric coefficients, low 

dielectric constants, low dielectric loss and low volume specific heat.  The possibility of 

finding a material with all of these characteristics is not likely.  Typically, a material that 

has a high pyroelectric coefficient will have a high dielectric constant.  Likewise, the 

polymer type materials which have low pyroelectric coefficients also have low dielectric 

constants.  It is evident that there are a plethora of pyroelectric materials to choose from 

when designing a pyroelectric detector.  Table 2 summarizes some of the current 

pyroelectric materials and their respective properties. 

One of the most important components of any pyroelectric device is the detector 

material [13].  Table 2 will be a useful resource that will be re-investigated once the PIP 

Table 2: Pyroelectric materials and their properties [7]. 
Material Material Type Temp of 

Measurement 
 (K) 

Pyroelectric 
coefficient, p 
(nCcm-1K-1) 

Heat capacity, 
 cth 
(Jcm-3K-1) 

Dielectric constant, 
 εr 

Currie Temperature,
 Tc 
(K) 

TGS Crystal 308 55 2.6 55 (1 kHz) 322 

DTGS Crystal 313 55 2.4 43 (1 kHz) 334 
TGFB Crystal 333 70 2.6 50 (1 kHz) 346 

ATGSAS Crystal 298 70 - 32 (1 kHz) 324 
LiTaO3 Crystal 298 23 3.2 47 938 
SBN-50 Crystal 298 55 2.34 400 394 

PGO Crystal 298 11 2.0 5x10-4 (100 Hz) 451 
PGP:Ba3 Crystal 298 32 2.0 1x10-3 (100 Hz) 343 
PZFNTU Ceramic 298 38 2.5 290 (1 kHz) 503 
PCWT-

4/24 
Ceramic 298 38 2.5 220 (1.5 kHz) 528 

PVF2[26] Polymer 298 3.2    
PVDF Polymer 298 2.7 2.43 12 (10Hz) 353 
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material parameters are defined.  In an effort to optimize the performance of a pyroelectic 

detector, not only do the material properties need to be well understood, but so do the 

FOMs.  The next section will describe the FOMs specific to pyroelectric devices.   

2.5.3 Pyroelectric Figures of Merit 

 In this section, all of the FOMs for pyroelectric detectors will be discussed.  

FOMs for all IR detectors are a way to do a comparative analysis between all the 

different detector methodologies.  An overview of the FOMs, responsivity (ℜ), thermal 

time constant (τth), noise equivalent power (NEP), and detectivity (D*), for pyroelectric 

detectors will be discussed in this section.   

2.5.3.1 Responsivity ( andi vℜ ℜ ) 

 The derivation will begin with the solution to the classical heat balance equation, 

previously shown in Equation (6),  

 e
2 2

th th

εΦ (t)ΔT =
G 1+ω τ

,  (11) 

where ε  is the emissivity, the incident modulated thermal flux is eΦ (t) , Gth is the 

thermal conductance attaching the raised structure to the infinite heat sink, ω  is the 

modulation frequency, and the thermal time constant is thτ , which is given in Equation  

(7).  Recognizing that dΔT/dt = dT/dt , and assuming incident sinusoidal radiation, 

e e,0Φ (t)=Φ exp(jωt) , Equation (11) results in, 

 e
2 2

th th

εjωΦ (t)dT dΔT= =
dt dt G 1+ω τ

, (12) 
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 e,0

2 2
th th

εωΦdT =
dt G 1+ω τ

 (13) 

By inserting Equation (13) into the rearranged Equation (10), d
dTI = pA
dt

, the result 

gives [2] 

 e,0 d

2 2
th th

pεωΦ A
I =

G 1+ω τ
. (14) 

Pyroelectric response due to the change in temperature of the active region is 

proportional to the pyroelectric coefficient.  From a practical perspective, the sensitivity 

of the detector can be measured in two forms: current responsivity (ℜi) and voltage 

responsivity (ℜv).  Responsivity, by definition, is the output electrical response, whether 

voltage or current, divided by incident radiant flux.  Following this definition, Equation 

(14) can be divided through by incident radiant flux, e,0Φ , to give a current responsivity 

equation, 

 d
2 2

th th

pωεA A
WG 1+ω τ

i
⎡ ⎤ℜ = ⎢ ⎥⎣ ⎦

 (15) 

 The current responsivity, ℜi, is the ratio of current flow to the incident radiant 

flux.   The analysis of Equation (15) reveals some interesting facts about pyroelectric 

detectors.  First, when the detector is illuminated with a DC flux, the responsivity will be 

zero.  Since the pyroelectric coefficient, p, is directly proportional to the responsivity, its 

value must be as high as possible.  It is evident that frequency plays an important role in 

the pyroelectric detectors.  A typical responsivity plot vs. modulation frequency can be 

seen in Figure 12. 
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Figure 12: Current responsivity vs. modulation frequency plot [2]. 

When the pyroelectric detector is illuminated with a DC flux, f = 0 (f = ω/(2π)), 

there will be no current responsivity, when the chopping frequency reaches a value of f  > 

1/(2πτth), the responsivity will remain constant.  Lastly, there is no upper cutoff 

frequency in the current responsivity.  Thus, when the pyroelectric detector is operating 

at modulation frequencies above 1/(2πτth), the current responsivity can be simplified to, 

 d

th

pA ε A
G Wi

⎡ ⎤ℜ = ⎢ ⎥⎣ ⎦
 (16) 

 The voltage responsivity, vℜ , is defined as the ratio of voltage generated across 

the detector to the incident radiant flux.  The equivalent circuit for a pyroelectric detector 

can be seen in Figure 13.  This circuit will help in the description of the voltage 

responsivity. 

ℜi

f > 1/(2πτth) frequencyf = 0

ℜi

f > 1/(2πτth) frequencyf = 0
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Figure 13: Equivalent circuit for a pyroelectric detector [2]. 

 To calculate the voltage responsivity, the voltage across the detector is required.  

This detector voltage is the product of the current and the parallel electrical impedance of 

the detector and the amplifier.  This voltage is then, 

 d
2 2

e

IRV=
1+ω τ

, (17) 

where e d dτ =R C , which is the electrical time constant of the circuit.  The voltage 

responsivity is then given by, 

 
2 21
d

v i

th th

p AV V
I IG

ωε

ω τ
⎛ ⎞ ⎛ ⎞ℜ =ℜ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

 (18) 

Equation (17) can then be plugged into Equation (18) to give, 

 
( )

d d

2 2 2 2
th th e

pεωR A V
WG 1+ω τ 1+ω τ

v
⎡ ⎤ℜ = ⎢ ⎥⎣ ⎦

 (19) 

 The main difference between Equation (15), for the current responsivity, and 

Equation (19), for the voltage responsivity, is the fact that there is an upper cutoff 

frequency.  Therefore, the voltage responsivity has three regions of operation. These 
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three regimes can be seen in Figure 14, which represents the voltage reponsivity with 

respect to frequency.  The first region (1) is where f < 1/τth, and ℜv increases linearly 

with frequency.  The second region (2) is where 1/(2πτth) < f < 1/(2πτe), and ℜv is 

constant with frequency; and the last region (3) is where f > 1/(2πτe), and ℜv falls off 

linearly with frequency.   

  

 
Figure 14: Voltage responsivity vs. frequency for a pyroelectric detector [2]. 

The responsivity parameter (ℜv) is defined as the output voltage signal of the 

detector produced in response to a given incident radiant power falling on the detector.  

Again, responsivity is shown,  

 out
v

e

v=
Φ

ℜ , (20) 

Since the voltage output is what was measured, the current responsivity will no longer be 

discussed.  The output voltage was easily measured with an electrometer.  However, the 

ℜv

frequency1/τth 1/τe

(1)                       (2)                          (3)

ℜv

frequency1/τth 1/τe

(1)                       (2)                          (3)
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incident power received at the detector requires a detailed discussion of radiometry and 

will now be discussed. 

 Typical radiometric calculations begin with the joule radiance, 

 
2

e
e 2

s

Φ WL
cosθ A cm sr ms μ

⎡ ⎤∂
= ⎢ ⎥∂ ∂Ω ⎣ ⎦

 (21) 

where Φe is the joule flux [W], cosθs is the angle to the optics measured from the normal 

of the radiating source, As [cm2] is the area of the source, and Ω [steradians (sr)] is the 

solid angle subtended by the optic.  The solid angle can be further simplified to  

 o o
2

A cosθΩ
R

∂
∂ =  (22) 

where Ao is the area of the optic, cosθo is the angle to the radiating source measured from 

the normal of the optic, and R [cm] is the distance between the optic and the source.  

Inserting Equation (22) into Equation (21) and solving for the radiant flux gives, 

 e s o s o
e_optic 2

L cosθ cosθ A AΦ
R

∂ ∂
= ∫∫ . (23) 

A typical radiometric assumption can be made when Ad << R2 , which is called the 

paraxial approximation, and results in a algebraic solution, 

 e s o s o
e_optic 2

L cosθ cosθ A AΦ
R

= . (24) 

Equation (24) can be further reduced if both the source and detector are coaxial, where    

θ = 0, leaving both cosine terms equal to one.  Thus, Equation (24) becomes the flux that 

arrives at the optics, 

 e s o
e_optic 2

L A AΦ
R

=  (25) 
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In order to find the flux that arrives at the detector, a magnification of the radiating 

source area is used, 

 
2

i
imag s

SA = A
R

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (26) 

where Aimag is the area of the image, and Si is the distance from the image (detector) to 

the optic.  Using this ratio, the portion of the flux that arrives at the detector can be found, 

 d
e_det e_optic

imag

AΦ = Φ
A

. (27) 

where Ad is the area of the detector. 

 A further discussion on the radiance (Le) seen in Equation (25) is now needed.  

Since a blackbody source will be used, it can be assumed that the source is lambertian.  

By definition, a lambertian source is one that emits a flux proportional to the cosine of 

the angle from normal [4].  In other words, radiation is equally being emitted into 2π 

steradians.  When the source is lambertian, the relationship between radiance and 

exitance can be made, 

 e
e

ML =
π

, (28) 

where Me , again is the exitance, and was shown in Equation (1).  Dividing through by π 

leaves radiance as a function of wavelength and temperature, 

 ( )
2

e 2hc
5 λkT

2hc WL λ,T =
cm μm

λ e -1

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎣ ⎦

⎜ ⎟
⎝ ⎠

 (29) 

 Remembering that this effort is to find the flux incident on the detector, replacing 

the Le in Equation (25) with the Le(λ,T) of Equation (29) results in   
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2

s o
e_optic hc

5 2λkT

2hc A AΦ
λ e -1 R

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. (30) 

Now, the incident flux that arrives at the optic has been calculated.  In an effort to find 

the flux that is incident on the detector, the transmittance of the lens must be taken into 

consideration.  Each type of lens material will have a particular transmittance function, 

which is the fraction of light at a specific wavelength that passes through the material 

uninhibited.  The lens that was used in this thesis was made from germanium (Ge) and 

had an anti-reflective coating that allowed for almost a 100 % passband between 8 - 14 

μm.  In order to find an accurate value of the flux that arrives at the detector, the 

transmittance function must be found.  The best piece of equipment that allows for this 

type of material characterization is a Fourier transform infrared (FTIR) spectrometer.  

Figure 15a illustrates the transmittance function of Ge from the FTIR.  Figure 15b 

represents a 700-K blackbody radiance.  Figure 15c is the product of the transmittance 

function of the lens and the radiance of a 700-K blackbody source.  This is the radiance 

that will be used to find the flux arriving at the detector.  Therefore, Equation (30) 

becomes,   

 ( )
2

s o
e_optic Ge hc

5 2λkT

2hc A AΦ τ λ
λ e -1 R

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (31) 

where, τGe(λ) is the transmittance function of the Ge lens as a function of wavelength 

(seen in Figure 15a).  
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The radiometry analysis has been discussed in an effort to find the flux arriving at 

the detector.  Therefore, when using a blackbody source, Equation (27) will be used to 

calculate the flux arriving at the detector.  The main objective of this section was to find 

the voltage output in response to this incident flux, which is the voltage responsivity.  

The change in voltage from that when the detector is not being exposed to incident 

radiation to when it is exposed, is the voltage output that will be used in calculating the 

voltage responsivity. 

 
Figure 15: Data collected on the radiance seen before and after the germanium lens.  
This effort is crucial to obtaining an accurate flux calculation seen at the detector.  a) The 
transmittance function of the germanium lens used in this thesis.  Data was found using a 
FTIR.  b) 700 K plankian radiance found using Equation (29).  c) The radiance that will 
be seen by the detector. 
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2.5.3.2 Thermal Time Constant (τth)  

 All IR detectors exhibit a characteristic transient behavior when the input IR flux 

changes abruptly.  A general definition of the response time is the time it takes for the 

transient output signal to reach 63.2 % of its steady state change.  In thermal detectors, 

the response time is typically slow, on the order of 1 – 100 msec.  The thermal detector 

response time or thermal time constant, in the case of pyroelectric detectors, is related to 

the required accumulation of heat and is directly related to the increase in current on the 

output.   

The thermal time constant, defined in Equation (7), again where Cth is the heat 

capacity of the active material in the detector and Gth is the total thermal conductance 

between the active area of the detector and the support structure, was illustrated in Figure 

6.  The heat capacity, Cth [ ]J/K , is the total capacitance which incorporates individual 

capacitances for each material comprising the detector active region.  Heat capacity is the 

amount of heat required to raise the temperature of one gram of material by one degree 

Celsius (without a change in phase), which is basically the ability of the sensing material 

to store and bleed off heat.  Therefore, for thermal sensing materials, the heat capacities 

need to be small, and can be made smaller by decreasing the film thickness.   

Of critical importance in thermal detectors is the need to minimize the thermal 

conductance, Gth [ ]W/(mK)  [15].  This concept is shown by an analytical evaluation of 

Equation (11).  In an effort to maximize the sensitivity, ΔT, the thermal conductance of 

the support structure needs to be small.  At the same time, by decreasing the thermal 

conductance, the thermal time constant is increased, which leaves an engineering trade-
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off between a fast thermal time constant and a high responsivity.  A fast thermal time 

constant can be achieved by reducing the thermal material’s heat capacity and a high 

responsivity can be achieved by thermally isolating the pixel’s active region from the 

underlying substrate and by minimizing the thermal conductance of the support structure.  

Both the thermal time constant and the responsivity are incorporated into the next FOM, 

NEP. 

2.5.3.3 Noise Equivalent Power (NEP) 

  Noise equivalent power (NEP) is the root mean squared (rms) value of the 

incident chopped radiant power that is necessary to produce an rms signal equal to the 

rms electrical noise.  Before this FOM can be understood, the noise associated with 

pyroelectric detectors must first be explained.    

 Every detector of thermal radiation is also a detector of noise.  Pyroelectric 

detectors are susceptible to three main types of noise.  The sources of pyroelectric 

detector noise are as follows: 

1) Microphonic noise – noise caused by a mechanical displacement, 

2) Temperature noise – noise due to the heat exchange between the detector and 

its environment, 

3) Johnson noise – fluctuations caused by the random thermal motion of the 

charge carriers in a resistive element. 

Each source of noise and its importance in pyroelectric detector FOMs will be discussed 

below. 
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 Microphonic noise is observed in many radiation detectors when there are 

mechanical vibrations propagated through the detector. A good indication of microphonic 

noise is its periodicity due to the fact it is made up of sinusoidal waves with their 

respective eigenvectors [14].  This noise results from changes in interelectrode 

capacitances.  The equation for capacitance is  

 dε AC = 
d

 (32) 

where dε is the dielectric constant, A is the area of the plates of the capacitor, and d is the 

distance between the parallel plates.  When there is a mechanical vibration, the distance 

between the electrodes changes by Δd, thereby producing a voltage for a given amount of 

charge with a change in capacitance [2].  Thus, Equation (32) then becomes  

 dε AC =
d ± Δd

Δ . (33) 

Figure 16 illustrates the result of microphonic noise using a single cantilever.   

 

 
Figure 16: An illustration of a cantilever capacitor.  When perturbed by vibrations, the 
distance between the cantilever and the bottom electrode changes by Δd thereby changing 
the capacitance.  

 The next type of noise that is prevalent in pyroelectric detectors is temperature 

noise.  This noise is essentially the temperature fluctuation of the sensitive element.  In 

d Δdd Δd
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the case of all thermal detectors, the ultimate performance is attained when the detector is 

temperature-fluctuation limited.  This means that the detector will only have an electrical 

response when there is a change in temperature.  A good derivation is done by Dereniak 

[2] that leads to the spectrum of the mean-square fluctuations in temperature, 

 
2

2 th
2 2

th th

4kG T ΔfΔT =
G +ω C

,  (34) 

where Δf is the noise equivalent bandwidth.  This noise equivalent bandwidth is defined 

as an electrical filter with ideal uniform gain through the passband, and zero gain outside, 

essentially a rectangular function in frequency space.  Noise equivalent bandwidth is used 

when the heating/cooling of a detector is achieved using a blackbody source 

complimented with an optical chopper wheel.  The mathematical expression for the noise 

equivalent bandwidth for a square wave, derived in [2] is 

 
int

1Δf =
2τ

, (35) 

where τint is the integration time, which is the on-time/off-time for a square-wave 

chopping.   

 Johnson noise is the last type of noise that is typically found in pyroelectric 

detectors.  In general, pyroelectric detectors are operated in this Johnson noise-limited 

region.  This means that Johnson noise is the dominating source of noise.  Johnson noise, 

by definition, is the fluctuation caused by the thermal motion of the charge carriers in a 

resistive element.  The Johnson noise represented by a current, again derived in [2], is 

 d
J

d

4kT Δfi =
R

, (36) 
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again, where k is the Boltzmann constant, Td is the temperature of the detector, Δf is the 

electrical bandwidth, and Rd is the resistance of the material.  The voltage equivalent 

Johnson noise can also be represented by 

 j d dv  = 4kT R Δf . (37) 

 NEP is defined as the minimum radiant flux level a detector can discern 

depending on the detector’s noise level.  The signal produced from the detector, as a 

response to incident radiation must be above the noise floor to be easily detected.  The 

signal-to-noise ratio (SNR) can then be expressed in terms of the current responsivity of a 

pyroelectric detector, 

 e

n

ΦSNR 
i
iℜ

=  (38) 

where, in is the noise current produced in the detector.  The incident power that produces 

an output current such that SNR = 1, is defined as NEP.  Therefore Equation (38) 

becomes, 

 niNEP
i

=
ℜ

. (39) 

The same applies for voltage responsivity, 

 nvNEP
v

=
ℜ

, (40) 

where vn is the voltage noise.   

 When designing detectors, the smaller the NEP, the more sensitive the detector is.  

NEP is dominated by the square root dependence of both the noise equivalent bandwidth 

(Δf) and the area (Ad).  This problem was mitigated when Jones (1953) normalized the 
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NEP to a 1-cm2 detector area and a 1-Hz noise bandwidth.  The term for this is detectivity 

(D*) and will be discussed next.   

2.5.3.4 Detectivity (D*) 

 Detectivity is a very important FOM for IR detectors.  This FOM is the sensitivity 

of the detector normalized to a 1-cm2 detector area and a 1-Hz noise equivalent 

bandwidth.  The larger the number quantified for D*, the better.  D* is defined by 

 dA Δf
D*

NEP
=  (41) 

The units of D* are Jones, where 1 Jones = [cm Hz1/2 W-1].  D* was originally proposed 

for quantum detectors using the aforementioned scaling of area and bandwidth.  

Unfortunately, this trend is not always obeyed in thermal detectors due to the fact that 

neither a temperature fluctuation, nor thermo-mechanical noise, scales with the size of the 

detector area [15].  The D*, given in Equation (41), typically overestimates the 

performance of larger absorbing areas in thermal detectors and underestimates that of 

smaller area detectors.   

  Making the assumption that the major source of noise in the detector is Johnson 

noise and that voltage responsivity is what is being measured, Equation (40) can further 

be defined by 

 
2 2 2 2

j d d th e

d

v 4kT R Δf 1+ω τ 1+ω τ
NEP

pεAv

= =
ℜ

, (42) 

which can be placed back into Equation (41) to give 

 d d d d

2 2 2 2
th d th e

A Δf A R pεA ω
D*= =

NEP G 4kT 1+ω τ 1+ω τ
. (43) 
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2.5.4 Pyroelectric Detector Structural Design 

 All thermal detectors require thermal isolation from the underlying substrate to 

maximize sensitivity and performance.  The ability to form raised structural designs in 

semiconductor fabrication is a direct result of solid-state micromachining [16].  The main 

rational for this isolation is to minimize the unwanted conduction path between the 

thermal sensing area and the associated substrate.  In an effort to achieve thermal 

isolation, two methods are typically employed.  The first method, commonly termed 

bulk-micromachining, uses chemicals to remove a substantial portion of the 

semiconductor substrate.  The second method employed, called surface-micromachining, 

is the process of depositing sacrificial materials (removable layer) and structural 

materials. Both of these methods are employed to achieve the thermal isolation and are 

illustrated in Figure 17.   

 It is evident from Figure 17 that the pyroelectric detector pixel resembles a 

thermally isolated parallel plate capacitor.  This design type is employed due to the 

physics of this device.  Incident radiation must heat up the top surface of the structure, 

thereby invoking an alignment of the electrical dipoles in the pyroelectric material.  This 

alignment produces a current through the material which can be measured at the 

electrodes.   

 There are two main designs for the electrode configuration of pyroelectric 

detectors.  The first design, shown in Figure 17, is the face electrode configuration.  In 

this form, the top electrode must be blackened in an effort to maximize the absorption of 

heat.  This heat is then transferred to the pyroelectric material where it performs its 



 

50 

 

Figure 17: Two typical pyroelectric detector structures constructed using both, a) bulk-
micromaching technique – in which unwanted layers are removed using chemical 
etching, and b) surface micromachining technique – where thin film layers are added 
(deposited) and one of the layers is selectively removed [15]. 

physical phenomenon to detect objects in the IR.  The second design configuration is 

termed the edge electrode method.  In this design, the electrodes are located on the sides 

of the pyroelectric material.  This time, since the IR flux is being absorbed by the 

pyroelectric material itself, it also must be blackened to enhance this process.  These two 

electrode configurations are shown in Figure 18.   
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Figure 18: Typical electrode configuration used in pyroelectic detector designs.  a) Face 
electrodes – a thin film of pyroelectric material is sandwiched between two vertically 
deposited electrodes.  b)  Edge electrodes – a thin blackened film of pyroelectric material 
is deposited between two horizontally spaced electrodes [17]. 

2.5.5 Pyroelectric Material Deposition 

 There are many deposition techniques used to deposit thin pyroelectric films.  

Four techniques that will be described include sputtering, metal organic chemical vapor 

deposition (MOCVD), laser ablation, and lastly, the Langmuir-Blodgett method.  The 

objective of this section is to give a brief introduction into these deposition methods.  In 

this thesis, a new technique of depositing the novel PIP pyroelectric material will be 

demonstrated.   

 Sputtering is a deposition process where atoms are ejected from a solid target by 

the bombardment of energetic atoms.  This process allows for the growth of thin layers of 

materials with sub-micron thicknesses.  One major pyroelectric material that uses 
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sputtering to deposit thin films on silicon substrates is lead scandium tantalite (PST).  It 

must be noted that this technique lays a conformal layer across the substrate.  Therefore, 

in an effort to design pyroelectric detectors, subsequent steps (i.e., chemical etching, 

thermal annealing, and other epitaxial growth techniques) in the fabrication process need 

to be accomplished.  This means that the pyroelectric material used needs to be 

compatible with all of these steps. 

 MOCVD is yet another pyroelectric deposition technique that is typically used 

when depositing pyroelectric thin films.  MOCVD is a vapor phase epitaxial growth 

process that forms thin layers by a chemical reaction between gaseous compounds and 

the substrate [19]. As the source gas is flowed over the heated substrate, metal-organic 

bonds are broken, creating a chemical bi-product that grows as a crystalline structure on 

the substrate.  This technique is typically used on lead-based pyroelectric materials, such 

as PLT [20].  Again, this technique deposits a conformal layer across the entire substrate, 

so all subsequent fabrication steps must be compatible with the material. 

 Laser ablation deposition, commonly known as pulsed laser deposition (PLD), is 

a newer deposition technique that uses a pulsed laser to deposit thin films of a wide range 

of target materials onto multiple types of substrates.  The main benefit of this technique is 

that the target materials can be deposited at room temperature.  It has been found that 

PLD, in comparison to other deposition methods, can synthesize the pyroelctric film at a 

faster rate, with closer stoichiometric control, and with a wider variability in the 

deposition parameters [21].  Two of the pyroelectric materials that have used this 

technique are PLT and SBN-50.  
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 Although there are many pyroelectric deposition techniques used, the final 

method to be discussed is the Langmuir-Blodgett (LB) thin film technique.  This is an 

elegant method for producing high quality organic films of precisely defined thickness 

and symmetry [22].  Basically, the substrate is immersed into the liquid to be deposited.  

A monolayer is added with each immersion step, leading to accurate growth thicknesses 

[23].   LB has been demonstrated using layers of fatty acid and fatty amine, which are 

two proteins that have exhibited the pyroelectric effect.  Eleven layers demonstrated a 

thickness of  ~34 nm using the LB process on fatty amine [22].   

2.5.6 Pyroelectric Signal Conditioning 

 As shown in Figure 13, the pyroelectric detector is typically modeled as a 

capacitor, due to the material’s extremely high DC resistance (~1013 Ω).  The capacitance 

is found to be very low (30 pF).  Thus, the detector has very large impedance which 

makes reading the signal output difficult.  Therefore, in an effort to bring this high 

impedance down to a manageable level, two methods can be employed: voltage follower 

or current amplifier.  Both of these amplification schemes have their advantages and 

disadvantages [24].  

 The pyroelectric detectors that use the voltage follower circuit offer low output 

impedance and a high SNR.  Also, referring back to the voltage responsivity, the output 

response for this method of amplification will be frequency dependant (see Figure 14).  

The voltage follower circuit is used as a trans-impedance circuit which is illustrated in 

Figure 19. 
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Figure 19: Pyroelectric detector connected to a voltage follower circuit (source follower) 
[2]. 

 The other signal amplification method that allows for bringing the output 

response above the noise floor is the high impedance amplifier, where current mode 

offers a much greater amplification of the signal.  This method, shown in Figure 20, uses 

an operational amplifier with a feedback resistor (RF) in parallel with a feedback 

capacitor (CF).  Using this mode to amplify the signal allows for a flatter frequency 

response (represented in Figure 12).  The downside to this method is the low SNR and 

the higher operating current and voltage requirements [25].   
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Figure 20: Pyroelectric detector connected to a high impedance amplifier [2]. 

2.6 Chapter 2 Summary 

 The intent of Chapter 2 was to give the reader a background understanding of IR 

detection.  As will be shown in the next chapter, PIP was found to be a pyroelectric 

material; therefore, Chapter 2 concentrated on pyroelectric detectors.  All aspects of 

pyroelectric detectors were discussed, to include materials, theory of operation, FOMs, 

detector structures, currently used thin film deposition techniques, and lastly, some 

pyroelectric detector signal conditioning circuit designs.   
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III. Material Characterization and Sample Preparation 

3.1 Chapter Overview 

 The intent of Chapter 3 is two-fold.  First, the material must be better understood 

before it can be characterized with FOMs as a thermal detection device.  This includes a 

description of the test evolution that was accomplished to define why PIP is presumed to 

be a pyroelectric-type thermal detection material.  Secondly, in an effort to transpose 

from the macro-world to the micro-world, a description of how the sample was prepared 

is necessary.  Describing the structural design that will support this newly found thermal 

detection material is the first step to understanding the sample preparation.  The design of 

the structure that makes this effort possible will first be described, which is a MEMS- 

based design fabricated with the PolyMUMPs foundry.  Next, in addition to the pixel 

design, the novel deposition method used to transport the material onto the pixel will be 

discussed.  Inkjet deposition is the system that makes this possible, therefore, a complete 

description on the theory of operation of the system and the inkjet droplet 

characterization will be reviewed.   

3.2 Material Characterization 

 The basis of materials science relates the desired properties and relative 

performance of a material in a particular application to the structure of the atoms and 

phases in the material under investigation, through material characterization [1].  

Typically, a device is made from first understanding the material, then optimizing the 

material for peak performance.  This order of events may not always be the case, as was 

seen in the PIP thermal detector.   
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3.2.1 PIP...the Bolometric Detector 

  While trying to measure the conformal changes of the TlpA strand of salmonella 

embedded in polyvinyl alcohol (PVA), it was found that the material was responsive to 

incident thermal radiation.  This discovery led to research aimed at creating a biomimetic 

material for thermal imaging [2].  As indicated in Chapter 1 of this thesis, Figure 2 

illustrates a protein-based polymer array of pixels.  Testing of these pixels concluded that 

the PIP-based pixels were bolometer-type thermal detectors, meaning the resistance 

changes with respect to temperature.  Typical bolometric detectors will have a particular 

resistance for a given temperature.  This is not case for the PIP-based thermal detection 

material, as will soon be shown. 

 FOMs are the core of this thesis topic; therefore, an understanding of the material 

characteristics is needed.  In an effort to better understand the electrical response, macro-

scaled PIP-based material samples were prepared and then tested.  The samples were 

prepared by AFRL/MLPJE by dropwise depositing the solution onto a four electrode 

circuit board.  By using a squeegee technique, the samples were uniformly coated with 

any desired thickness (~1– 250 μm) [2].  Figure 21 is an illustration of the samples that 

were prepared by AFRL/MLPJE.  The samples are ideal for electrical characterization 

because the circuit board allows for easy access to the electrodes for biasing/measuring 

the electrical properties of the material.   

   Once the PIP was deposited onto the circuit board, electrical characterization 

commenced.   First, in an effort to understand the PIP’s electrical response and further 

duplicate the efforts of AFRL/MLPJE’s experiments, resistance measurements were 
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taken.  Initially, an Agilent 34410A digital mulitimeter was used to capture resistance 

data.  The results quickly showed that the electrical resistance of the PIP material far 

exceeded the resistance measurement specs of the device (~1 GΩ).   

 
Figure 21: An illustration of the PIP based thermal detector samples prepared by 
MLPJE.  These samples were prepared in an effort to electrically characterize the 
material.     

High resistance implies low current and one device that is made for this type of 

measurement is the Keithley 6517a electrometer.  This device is capable of measuring 

extremely high resistances (> 100 TΩ) and low currents (~0.1 pA).  The 6517a comes 

equipped with an internal voltage source that allows for biasing with voltages of 100 V, 

while simultaneously measuring V/I, which from Ohm’s law, is resistance.  The sample 

was first placed into a breadboard and electrically connected to the Keithley 6517a for 

resistance measurements. 
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 Using a 100-V bias, the resistance between electrodes, 1 and 2, 2 and 3, and 3 and 

4 (shown in Figure 21) were measured.  The material’s electrical response was unusual, 

because the resistance increased with time.  The results of this experiment can be seen in 

Figure 22.  Typically, bolometers will possess a specific resistance for a particular 

temperature from a heat source.  In the case of this experiment, since there was no heat 

source incident on the sample, the resistance should stabilize (flat-line) to the ambient 

background temperature.  Many unsuccessful sub-experiments were performed, to 

include an overnight resistance measurement, in an effort to stabilize this resistance.  

Also, an interesting aspect of this material’s electrical resistive response is that each pixel 

tested has a defined slope.     

 To demonstrate the material’s thermal response, an experiment was conducted 

that exposed the same sample to a heat source (flashlight) at a distance of 12 inches from 

 
Figure 22: The resistance measurements initially performed on PIP sample.  Three 
pixels were tested with a 100 V bias, while simultaneously measuring the resistance.  The 
resistance was found continuously increases with time having a defined slope for each of 
the pixels measured. 
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the same sample.  The thermal response was reproduced to the results found by 

AFRL/MLPJE, in which the material had a negative temperature coefficient of resistance.  

This means when the material is heated, its resistance decreases.  After exposure to the 

thermal source, the resistance decreased significantly.  When the source was removed, 

the resistance slowly increased back to the original rate of change that was found prior to 

thermal exposure.  Three exposures were demonstrated in this experiment, and can be 

seen in Figure 23.  The thermal response from the exposure to heat (flashlight) can be 

attributed to the thermal bleed-off of the sample where the exposed pixel is cooling back 

to ambient conditions.  In thermal detectors, this process needs to be as fast as possible in 

an effort to be ready for the next scene to be imaged.  A quick analysis of Figure 23 

shows that the time it takes the resistance, after the first exposure, to reach the original 

resistance prior to thermal stimulus (~ 0.64 GΩ) is ~ 34 seconds.  This thermal time 

constant is far too slow if this sample were to be employed as a thermal detector.  The 

 
Figure 23: PIP material’s thermal response stimulated by a flashlight at ~ 12” from the 
sample.  The material portrays a negative temperature coefficient of resistance with a 
thermal stimulus.  The resistive recovery after thermal exposure seems to slowly increase 
back to its original resistive rate of change prior to thermal exposure. 
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main cause of this slow thermal time constant is the large thermal mass of the sample 

under test and lack of thermal isolation from the underlying support structure, in this 

case, the circuit board.   

 The continual increase in resistance causes significant problems when trying to 

evaluate PIP’s potential as a thermal detector.  Each thermal detector has its own unique 

K value, as in Equation (8).  In the case of bolometers, the K value is known as the TCR.  

The formula that governs a bolometer’s TCR is given by 

 d

d

dR1 1TCR = 
R dT K

⎡ ⎤
⎢ ⎥⎣ ⎦

, (44) 

where Rd is the resistance of the material, and dRd/dT is the resistive change with respect 

to the induced temperature change.  It is evident from Equation (44) that there is no time 

dependence on the resistance.  This concept imposes a problem when trying to 

experimentally find a TCR value for a material that has a resistance that increases with 

time while under bias.  Also, each time the sample was biased, a different value for 

resistance was measured.  This also imposes a problem, as the resistance of the sample is 

inversely proportional to the TCR.  

 An attempt to find PIP’s TCR value was pursued.  As expected, due to the 

continuous rate of change in the resistance, the TCR results were not reproducible. The 

temperature ramp executed was 8 K/min from 280 - 380 K.  The TCR values at 300 K 

ranged from -1 -1-0.05 K to -0.28 K .  Without the ability to accurately measure the TCR, 

which is directly proportional to responsivity (ℜ), as indicated in Equation (9), all FOMs 

could not be accurately compared to commercial off-the-shelf bolometers.   
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 The PIP material obviously had a thermal response as indicated from Figure 23, 

but the question still remained on the type of thermal detector this material was.  With the 

end-state of this thesis being FOMs, it is imperative that an accurate and reproducible K 

value be found.  Since there was no background research found on the type of resistive 

response in other types of bolometric materials, further investigations on PIP being 

bolometric ceased.  Research was re-vectored to an other type of thermal detector, 

namely pyroelectric.     

3.2.2 PIP...the Pyroelectric Detector 

 The rationale that led to the realization of PIP being a pyroelectric device was 

two-fold.  First, one of the commonly used materials for pyroelectric devices is PVF 

(polyvinyl fluoride).  The PIP material is made up of ~60% PVA (polyvinyl alcohol).  

The differences between PVF and PVA are apparent to material scientists and will not be 

discussed here.  The fact that polymer was used in thermal detection introduced the 

thought that PIP had potential to be a pyroelectric-type material.  

 The second indication that PIP could be a pyroelectric material was that fact that 

the material demonstrated ferroelectric properties.  As indicated in Chapter 2, 

ferroelectric materials are also pyroelectric, but in addition to having a spontaneous 

polarization, also have a reversible dipole moment in the presence of an electric field.  

This discovery was proven with a simple experiment.  The same sample shown in Figure 

21 was biased, using the Keithley 6517a’s voltage source, with a 100 V.  Most 

ferroelectric type materials are good dielectrics and are used in capacitors.  Therefore, 

after the application of an electric field, a charge can be measured through the electrodes, 
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and will dissipate with time.  Upon removal of the bias, the current was measured 

through the material.  The sample was then biased again, this time, swapping the leads 

from the original biasing.  Again, the current was measured; this time the sign was 

reversed.  This simple experiment further solidified the fact that PIP could be evaluated 

as a pyroelectric material.   

 From this point forward, a great deal of research went into the understanding of 

pyroelectric detectors, as indicated in the background discussed in Chapter 2.  One of the 

significant aspects of pyroelectric detectors is the fact that they generate a current with a 

change in temperature.  Therefore, an experiment was set-up to determine if this concept 

was true for the PIP material.  Basically, the same sample shown in Figure 21 was placed 

onto a temperature-controlled stage.  The stage also had the ability to accurately monitor 

the temperature of the stage.  The details of this experiment will be further discussed in 

Chapter 4, as the experimental setup is critical in defining the K value for pyroelectric 

detectors, the pyroelectric coefficient.  

 The temperature of the stage was increased while simultaneously measuring the 

current generated by the sample.  Again, the pixel located between electrodes 2 and 3 was 

the pixel under test.   As indicated through much of the literature [3], samples are 

typically biased for a short period of time before measuring the current generated due to a 

ramp in temperature.  The main rationale for this biasing is to align the polar axis 

perpendicular to the face of the electrodes (see Figure 18b), maximizing the current 

generated in the material.  This biasing technique is termed poling.  
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 The intent of the current generation experiment was three-fold.  First, prior to data 

capture, the sample was biased for 1 hour at 100 V.  Once data capture of the current 

commenced, the time it took for the sample to bleed off the charge was measured.  

Second, in an effort to determine how the current generated is affected over time, a 7-

hour test was accomplished.  Throughout the duration of this experiment, the current was 

recorded using the Keithley 6517a, while simultaneously increasing the temperature 

conductive stage at random intervals during this 7-hour experiment.  Lastly, it is of the 

utmost importance to have a stabilized ambient electrical output when no thermal 

stimulus is present.  Essentially, what is needed is the noise floor measurement.  This was 

accomplished by not exposing the sample to thermal stimulus for a prolonged period of 

time in between temperature ramps.  The results of this experiment are shown in Figure 

24.   

 Due to the fact that the sample was exposed to thermal stimulus prior to the 

sample reaching a steady state current output, it is difficult to give a quantitative time for 

the bleed-off of all charge built up during the 1-hour of biasing.  From a quick analysis of 

the plot shown in Figure 24, the current response seems to be flat-lined at ~ 1.25 hrs.  The 

bleed off of the charge has a strong dependence on the time the sample was biased.  

Although not displayed in this figure, multiple tests were conducted that show the longer 

the sample was biased, the longer the charge took to bleed off.  Next, the fact that PIP is a 

pyroelectric device was confirmed as a thermal stimulus generated 4.8 – 8.6 nA of 

current.  The first two temperature ramps were increased from 297 - 350 K at a rate of 8 

K/min.  When the temperature reaches 350 K, the material no longer recognizes a change 
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Figure 24: Spontaneous polarization current generated in the sample seen in Figure 21 
(pixel between electrodes 2 & 3).  The sample was tested over time to evaluate the charge 
bleed off time after biasing, the thermal response over a long period time with the sample 
exposed to random intervals of thermal stimuli, and lastly the noise floor. 

in temperature and currentdecays back to the background level.  If the temperature 

remains at 350 K, there will be a slower current decay back to zero.  In the experiment 

shown in Figure 24, when the temperature reached the maximum temperature of 350 K, 

power to the stage was removed which resulted in the stage temperature dropping to 

ambient conditions, decreasing the pyroelectric current quickly back to zero.  It is evident 

that the first thermal stimulus generated the greatest amount of current.  This is typically 

the case for the first thermal response of a pyroelectric detector after poling.  As indicated 

from [3], “observation of pyroelectric measurements performed subsequent to the 

traditional poling method lead to a higher value on the first heating and cooling cycle and 

then stabilizes at a lower value, which can be as much as 50% lower.”  This 50% 

decrease in the pyroelectic current is also evident from the second and third temperature 
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ramps in comparison to the first temperature ramp.  Lastly, the noise floor analysis was 

taken during the 5.3-hour time frame where no thermal stimulus was present.  The 

measured current stabilized to the ambient background conditions of the laboratory where 

the rms current for the 5.3 hours was found to be ~ 4.8 fA, which is for all practical 

purposes zero.  In an effort to effectively measure a thermal response, a zero flat-lined 

noise floor is ideal.  

3.2.3 Summary of the Material Characterization 

 The last two sections have summarized the evolution of the material 

characterization of the PIP material.  First, the material was thought to be a bolometric 

type in which the electrical measured response is resistance.  The continuous increase in 

resistance with respect to time was a hindrance when trying to characterize PIP as a 

thermal detector.  The ability to duplicate TCR measurements is critical, but was not 

possible.  Background research then led to the PIP material having potential to be a 

pyroelectric detector, which generates a current in response to a thermal stimulus.  This 

hypothesis was confirmed with the results shown in Figure 24, where a spontaneous 

polarization current was generated when the sample was exposed to a thermal stimulus.  

The bifurcation on whether PIP was a bolometric or pyroelectric material was easily 

vectored toward the latter.  Now that PIP is a proven thermal sensing material, the need to 

move to the micro-scale is critical.  The next section is dedicated to giving an in-depth 

understanding of the sample preparation to transition from the macro-scale to the micro-

scale, to include the structural analysis of the pixel and the deposition method used to 

garner small volumes of the PIP material. 
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3.3 Sample Preparation 

 The intent of this section is two-fold.  In the first section, an analysis of a surface 

micromachined MEMS structure fabricated with the PolyMUMPs foundry will be 

discussed.  The basis for the chosen design will be described, along with an analytical, 

modeled, and experimental comparison on the pixels’ structural design. 

 The second section will describe how the PIP material will be strategically 

deposited to individual pixels.  This microdispensing will be performed with Microfab’s 

inkjet printer head.  A characterization of the PIP droplet will be performed using a 

microscope camera, atomic force microscope (AFM), and a white-light interferometer. 

This analysis will give insight into the topography of a single droplet and the potential 

sensing area that will be used when the material is deposited onto a pixel.   

3.3.1 The MEMS Pixel Designs 

As described in Chapter 1, the pixel design must incorporate four major aspects: 

thermal isolation, interdigitized fingers for the material deposited to complete the circuit, 

large enough area for untried ink jet deposition, and the ability to be electrically 

monitored.   In this section, each of these attributes will be described.  Also, some of the 

materials used in the PolyMUMPs foundry will be referenced in this section without any 

description.  For a complete description of the PolyMUMPs foundry that fabricated the 

MEMS devices shown in this thesis, the reader should refer to Appendix 1.   

Thermal isolation is critical to the performance of all thermal detectors.  The 

further the distance the sensing material is from the underlying substrate, the more 

responsive the material will be as a thermal sensor.  In an effort to maximize this 
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distance, the main support structure will be made of Poly-2, and a thin film of gold will 

be deposited onto the Poly-2.  The differences in stress will cause the structure to deflect 

in the upward z-direction.  Figure 25 is a finite-element-modeling image of a Poly-2/gold  

cantilever beam to illustrate this effect. 

 

Figure 25: A poly 2-gold cantilever beam modeled in Coventorware.  The differences in 
stress cause the beam to deflect in the z-direction.  This effect will be used to maximize 
thermal isolation in the pyroelectric pixel.   

 It is evident that the longer the cantilever beam, the more it will deflect.  This 

premise will be used to both maximize thermal isolation and to compensate for the 

weight of the PIP material.  After depositing the PIP material, it is envisioned that the 

mass of the material will bring the deflection from ~ 40 μm to 10 μm, still leaving 
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enough thermal isolation for the pixel to be effective as a pyroelectric detector.  Figure 26 

depicts the cross sectional view of the envisioned pyroelectric pixel, both before and after 

PIP deposition.  This illustration shows two of the many interdigitized fingers using basic 

cantilevers.  

 

Figure 26: a)  An illustration of the pyroelectric structure prior to depositing the PIP 
material.  b)  After depositing the PIP material.  The structure’s initial deflection 
compensates for the weight of the PIP, but still maintains thermal isolation from the 
underlying substrate. 

The next critical design aspect of the pyroelectric pixel is that it must have 

interdigitized fingers in order for the novel thermal sensing material to complete the 

circuit.  It is imperative that all current flows through the PIP material.  This material is 

very resistive; therefore, if any two of the interdigitized fingers touch, a short will be 

created, making the detector dysfunctional.  Most pyroelectric designs deposit a 

conformal layer of material (i.e., TGS, LiTaO3, or PVDF) onto a transparent electrode, 

which is elevated off the substrate by two structural posts.  Another semitransparent 

electrode will then be deposited on top of the pyroelectric material.  Incident radiation 

will pass through the semitransparent material into the pyroelectric material, ultimately 

a. b. a. b.  
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changing its temperature.  Also, in an effort to maximize the absorption of the incident 

flux, the retro-reflected flux is captured by adding a highly reflective layer to the 

substrate.  Thus, the rays of flux reflect back and forth through the material maximizing 

absorption and ultimately, output response.  Figure 27a is a cross-sectional view of a 

typical pyroelectric pixel design and Figure 27b depicts a scanning electron microscope 

(SEM) image of a commercial pyroelectric FPA design.  

Figure 28 and 29, illustrate the pixel designs used in this thesis The gap between 

the interdigitized fingers was to ensure that the fingers never touched after the PIP 

material was deposited.  .  Both designs have identical overall dimensions; the major 

     

 
Figure 27: a)  A cross-sectional view of a typical pyroelectric pixel.  The pixel is 
thermally isolated from the underlying substrate by the structural posts.  b) An SEM 
image of a portion of 320 x 240 FPA [4].      
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difference is the number of interdigitized fingers and gaps between the fingers.  Figure 28 

illustrates the design with 5-μm gaps between fingers, and Figure 29 illustrates the design 

with 10 μm gaps between the fingers.   

 Next, the dimensions of the pyroelectric pixels must be large enough to deposit 

PIP material.  The current off-the-shelf pyroelectric detectors have pixel dimensions of 

~50 μm x 50 μm.  This allows for high pixel density in a small area.  The designs of this 

experiment dwarf the aforementioned off-the-shelf pixels used today.  Since inkjet 

deposition has never been tried before, this proof-of-concept design was made much 

larger to increase the chance of creating a successful pyroelectric detector design.   

 The last attribute to be discussed is that the pixels need to have the ability to 

electrically interact with the outside world.  The ultimate goal is to deposit the PIP 

material onto the pixels, wire bond to a 24-pin chip carrier, and insert this chip into a 

bread-board for testing and characterizing the PIP material as a viable thermal sensing 

material.  In order to make this possible, the MEMS structure must have bonding pads.  

Typical bond pad sizes are on the order of 100 μm x 100 μm.  However, for the designs 

of this experiment, the pads were once again made larger to ensure that wire bonding was 

possible.  The bond pads for this PolyMUMPs run were 300 μm x 300 μm to ensure 

connection from the micro to macro worlds was possible.  Also, a typical industry 

standard places bond pads around the outside of the MEMS device and pixel wiring is 

done with a maze of addressing lines using Poly-2/gold.  This alleviates any shorting that 

may occur when trying to wire bond across the device.  Figure 30 illustrates the MEMS 

pixels that were used in this thesis.   



 

74 

 
Figure 28: Pyroelectric design with 5 μm gaps between the interdigitized fingers.  There 
are a total of 28 fingers, with widths of 10 μm, in this design that will support the PIP 
material.   

 
Figure 29: Pyroelectric design with 10 μm gaps between the interdigitized fingers.  
There are a total of 15 fingers, with widths of 15 μm, in this design that will support the 
PIP material.   
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Figure 30: An illustration of the use of bond pads.  This allows for the micro to macro 
connection. 

3.3.1.1 Deflection Theory of Bimaterial Micro-cantilevers 

When a single cantilever beam is composed of two different material layers, the 

elongation and contraction differences in the two materials result in either an upward or 

downward deflection [5].  When the temperature changes, bimaterial microcantilevers 

undergo bending due to the dissimilar thermal expansion of the two different materials 

used in the cantilever.  This phenomenon is frequently referred to as the “bimetallic 

effect.”[6].  In the PolyMUMPs process, the thin gold film is deposited onto the Poly-2 

layer at temperatures ranging between 333-383 K [7].  When the MEMS sacrificial layers 

are removed, the structures are released, and exposed to room temperature, ~ 300 K.  This 

difference in temperature results in contraction.  Due to higher coefficient of thermal 
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expansion (CTE) of gold, the gold layer contracts more than the Poly-2 layer, resulting in 

an upward deflection of the bimaterial beam [5].   

An illustration of this deflection theory using bimaterials, namely Poly-2_gold, 

was shown in Figure 25.  The main engineering control in exploiting the deflection is 

length.  Since the materials used were limited to the PolyMUMPs foundry, the only user 

control is design dimensions.  It is evident from Figure 25 that by maintaining the same 

width, the amount of deflection will be increased by increasing the length of the 

cantilever beam.    

 The material properties of the PolyMUMPs foundry will now be discussed.  Only 

the materials used in the pyroelectric pixel design described in this thesis will be 

discussed.  Table 3 gives all of the material properties needed for the bimaterial 

deflection calculations.  It must be noted that the values seen with (**), are parameters 

that vary from run to run within the PolyMUMPS foundry.  The other parameters must be 

experimentally found, but can be retrieved from many of the MEMS published papers.  

The deflection derivation of a bimaterial beam can be found in many published 

articles, with a good description in [5], and therefore, will not be shown here. 

Table 3: PolyMUMPs run 71 material properties. 

 

The bimaterial deflection is given by   

Material Property Poly 2 Gold 
Film thickness [μm]** 1.5062 0.5111 
Residual stress [MPa]** -7.3 23.62 
Youngs Modulus [GPa] 161 74 
Coefficient of Thermal Expansion [K-1] 2.33 x 10-6 14.3 x 10-6 
Poisson’s Ratio 0.23 0.44 
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where tgold is the thickness of the gold, L is the beam length, tpoly is the thickness of the 

polysilicon (Poly 2 layer), polyE′ is the biaxial modulus for polysilicon, which is derived 

from Young’s modulus ( polyE ) and Poisson’s ratio for polysilicon ( polyν ) and is expressed 

as 

 poly
poly

poly

E
E = 

1-ν
′ . (46) 

The residual stress, resσ , is composed of both the residual stress of the polysilicon, polyσ , 

the thermal stress between the Poly 2 layer and the gold layer, thermσ ,  

 res poly thermσ = σ +σ . (47) 

The thermal stress, thermσ , is due to the fact that gold and polysilicon have different CTEs 

and the gold is evaporated at a higher temperature than room temperature [5].  Thermal 

stress is defined as 

 ( )therm gold poly goldσ = E α -α ΔT′  (48)  

where goldE′  is the biaxial modulus for gold, and both poly goldα and α are the CTEs for both 

polysilicon and gold, respectively, and lastly, ΔT  is the change in temperature between 

the gold deposition and room temperatures,  

 room fabΔT=T -T . (49) 



 

78 

The deflection for the bimaterial cantilever can then be solved by placing Equations (46) 

through (49) back into Equation (45) to give the result shown in Equation (50) , which 

can be used to solve the deflection for a bimaterial cantilever beam of any given length, 

 
( )( )gold 2

gold poly poly gold room fab
gold

poly 2
poly

poly

E
3t σ + α -α T -T L

1-ν
z=

E
t

1-ν

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. (50) 

3.3.1.2 CoventorWare Modeling 

CoventorWare is an integrated suite of tools designed to produce accurately 

modeled MEMS [7].  This modeling tool is the key to success when a proof-of-concept is 

being designed.  Prior to spending the money for design runs or fabrication costs, this 

software tool allows the user to model and simulate MEMS structures in any given 

environment.  For the two interdigitized designs used in this thesis, CoventorWare was 

used to optimize all of the design specifications inherent in a well-performing 

pyroelectric device.  

Fortunately, the PolyMUMPs foundry’s layer structures are loaded into the 

software package.  This means that all the specifications on thickness, Young’s modulus, 

stress, strain, etc. for all applicable layers, SiN, Poly-0, Poly-1, Poly-2, gold, and both 

oxides are preloaded.  There are some typical parameters that vary from run to run in the 

PolyMUMPs process, such as the layer thickness and strain.  Due to this fact, it is a 

standard procedure to calibrate CoventorWare to experimental data from a particular run.  

For example, the pyroelectric pixel designs described in this thesis were created in 
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PolyMUMPs run 72.  Therefore, in this design, five Poly-2/ gold cantilevers were 

designed along with the pyroelectric designs. 

These microcantilevers were tested using an interferometric microscope (IFM) 

made by Zygo.  Interferometry is a traditional technique in which pattern of bright and 

dark fringes result from an optical path length difference between a reference and a 

sample beam.  The incoming light is split inside an interferometer, one beam going to an 

internal reference surface and the other to the sample.  After reflection, the beams 

recombine inside the interferometer, undergoing constructive and destructive interference 

and producing the light and dark fringe patterns. A precision stage and a CCD camera 

together generate a 3D interferogram of the object that is stored in the computer memory.  

This 3D interferogram of the object is then transformed by frequency domain analysis 

into a quantitative 3D image providing surface structure data [8].  The image produced 

coupled with Zygo’s software allows the user to measure accuracy down to 10 nm in x, y, 

and z axes.  Figure 25 showed five Poly-2/gold cantilevers used to calibrate the 

CoventorWare software.  The IFM-measured z-deflection data from these multi-length 

structures allowed for calibrating the Coventorware software to the experimental results.  

By varying some of the controllable parameters, the output of ConventorWare can be 

matched to the experimental data from the simple cantilever structures.  This software 

tool can then be used to model structures that use the Poly-2/gold materials.  Once 

calibrated, CoventorWare was used to model the two MEMS pyroelectric pixel designs.  

Figure 31 (a and b) illustrate these two CoventorWare modeled pyroelectric pixel 

designs.    
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Figure 31: a)  A Coventorware model of the small-gaps pixel design.  This structure 
deflects up to ~ 46 μm.  b) A model of the large-gaps pixel design.  This structure 
deflects up to ~ 43 μm. 

3.3.1.3 Experimental Results on Bimaterial Deflection 

Once the PolyMUMPs structures were released, the deflection height 

measurements were taken.  The term “releasing” is often used in MEMS literature in 

order to explain the removal of the sacrificial layer.  The same testing that was done to 
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the cantilever structures used in the calibration of CoventorWare was also done on the 

pyroelectric structures.  The Zygo is once again employed to measure the deflection 

height in the pixel designs.  Figure 32 is a screen shot of an image taken from Zygo’s 3D 

imaging software.  The main discrepancy when using the Zygo for this magnitude of 

deflection is that the retro-reflected beams will not propagate to the interferometer.  The 

angle is too great to capture all these reflected beams, which results in a less-than-

desirable image 

 

 
Figure 32: Image from Zygo’s IFM that depicts deflection characteristics of pixel 
design.  The max deflection is seen in the “yDst” parameter shows ~ 39.36 μm. 
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quality.  The experimental results from the Zygo give a good estimate into the magnitude 

of deflection the pixels have.   

 A second method in determining the amount of deflection in the pixels is by using 

a microscope with a micrometer adjustable focus (z-axis movement).  By bringing 

different parts of the structure into focus and taking readings on the amount the z-axis 

stage micrometer moved, an accurate deflection can be measured.  This method must also 

be calibrated prior to assuming each tick mark on the focus control is 1 μm.  This was 

done using an unreleased MEMS structure, which has a thickness of 675 μm (measured 

with a micrometer).  The chip was then placed on the microscope’s stage.  The stage was 

first brought into focus and the z-axis micrometer was read.  The top of the unreleased 

MEMS structure was then brought into focus and the z-axis micrometer was once again 

read.  The difference between these two readings resulted in  ~ 676 μm.  This confirmed 

that each tick mark on the microscope’s micrometer did, in fact, represent 1 μm, and 

could be used for the deflection measurements on the pixel designs.  

Using the aforementioned methodology, the deflection from the pixels was found 

to be ~ 39.8 μm.  Figure 33 illustrates an image of the small-gap pyroelectric pixel.  

Notice the anchor of where the Poly 2 is adhered to the substrate is in focus, and the tips 

of the cantilevers are out of focus.  This difference was measured using the methods 

described above. 
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Figure 33: An image of the small-gap pyroelectric pixel demonstrating the focusing 
technique to measure deflection height. a) The microscope is focused on the anchor 
adhering the structure to the underlying substrate.  b) The micrometer z-axis stage height 
is then rotated to bring the tip of the structure into focus.  The amount of micrometer 
rotation is the deflection height, which was found to be ~ 39.8 μm.   

3.3.1.4 Comparative Analysis 

This section will be dedicated to comparing the results described in the previous 

sections.  A comparative analysis will be performed on the pixel’s deflection using 

analytical equation predictions, CoventorWare simulated results, and the experimental 

measurements. All variables needed to solve Equation (50) are either design parameters 

or fabrication parameters.  Table 4 gives a clear description into the value and units given 

to each variable.  These variables were inserted into Equation (50) to give the analytical 

prediction for deflection.  The resulting deflection was found to be z = 32.2 μm .  It is of 

critical importance to note that that the derivation that led to Equation (50) did not 

include the width in either the Poly-2 or gold cantilevers.  If the gold is deposited over the 

a. b.
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entire width and length of the cantilever, it will cause maximum deflection.  This 

consideration is not taken into account in this derivation.  Equation (50) assumes that the 

length far exceeds the width, which can be neglected.   

Table 4: Variables with respective values and units used in Equation (50). 

Variable Value Units 
tgold 0.511 μm 
σpoly -7.3 MPa 
Egold 74 GPa 
υgold 0.44 N/A 
αpoly 2.33 x 10-6 K-1 

αgold 14.3 x 10-6 K-1 

Troom 300 K 
Tfab 333 K 
L 400 μm 
Epoly 161 GPa 
υpoly 0.23 N/A 
tpoly 1.5026 μm 

  

 The modeling of the pyroelectric pixels in CoventorWare will now be discussed.  

As previously described, CoventorWare needed to be calibrated prior to getting accurate 

results.  The only parameter to be varied when trying to calibrate CoventorWare to match 

the experimental results performed on the cantilever beams was the residual stress of the 

gold.  An enumeration was performed that varied this parameter giving multiple results of 

deflection on the modeled pixel.  The result that matched the experimental data was used.  

This residual stress value was then changed in the material properties of CoventorWare.  

All future simulations could then give calibrated results to a particular PolyMUMPs run.   

 The results for the modeling were shown in Figure 31.  Because the experimental 

results were only performed on the Figure 31a device (smaller gaps design), it will be the 
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only structure re-addressed in the comparative analysis.  The displacement results shown 

in Figure 31a, once again were found to be z = 44.6 μm .   

 Lastly, the experimental results were found using Zygo’s IFM.  These results 

were also confirmed using the aforementioned focal plane measurement.  The 

experimental data showed a deflection of z = 39.8 μm.    

 All of the comparative results found can be seen in Figure 34.  It is evident that a 

precise method of measuring the deflection of the pixels has yet to be determined.  The 

analytical expression lacks the width of the structure, which can cause large standard 

deviation.  The CoventorWare model only alters one of the many variables it uses in the 

algorithm to solve for deflection.  This also gives a large standard deviation in the results.  

Lastly, the experimental results were found with two different methods producing similar 

results, which are considered the most accurate deflection results.  More accurate 

analytical prediction calculations need to be researched.  It is evident that it is important 

to find a solution that incorporates the width of the cantilevers.  This would more 

accurately be able to predict the results and give a closer comparison between both the 

CoventorWare and experimentally measured results.  The deflection distance between the 

modeled and experimentally measured is fairly close.  The minute differences can be 

accounted for due to CoventorWare’s calibration technique.  There are many variables 

that could be tweaked to try to emulate experimental results.  This effort is beyond the 

objective of this thesis.  CoventorWare is a modeling tool that is used to give good 

approximations toward device development.   



 

86 

 

Figure 34: A comparative analysis illustration of the three methods described in this 
section. 

The pixel design was analyzed to ensure that enough thermal isolation was 

attained to compensate for the deposition of the PIP material.  The design requirements 

for the pixels: thermal isolation, interdigitized fingers for the material deposited to 

complete the circuit, large enough for untried ink jet deposition, and lastly, the electrical 

connections, were achieved and described in this section.  Now that the pixels that will be 

supporting the PIP material have been discussed, it is time to better understand the 

deposition method used to micro-dispense minute volumes of the PIP material onto the 

MEMS pixels.   
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3.3.2 The Deposition Method 

 This thesis topic follows-on the researchof a previous student [9].  One lesson 

learned from previous research was that a deposition method was needed.  The PIP 

material’s viscosity is a bit thicker than water and the PIP dries very fast.  The previous 

deposition method used was spincoating the PIP material onto a released MEMS 

structure.  This method coated everything, to include address lines and bond-pads, which 

did not allow for individual pixel testing.  An image of the results of spincoating PIP onto 

a MEMS structure is shown in Figure 35.  It is evident from Figure 35 that a newly 

devised deposition technique was needed in an effort to dispense the PIP onto individual 

micron-scaled pixels.  A solution to this problem was created by AFRL/MLPJE, which is 

inkjet deposition, and will be the main topic of 

 

Figure 35: A post-deposition image of PIP on a MEMS structure.  The material was 
spin-coated and didn’t allow for pixel to pixel characterization.  Also, this deposition 
method negated the micron-scale effort [9].   

Bond pads

Wires

PIP PIxels

Bond pads

Wires

PIP PIxels

 
 

Bond pads

Wires

PIP PIxels

Bond pads

Wires

PIP PIxels



 

88 

inkjet deposition, and will be discussed in this section of the thesis.  The inkjet deposition 

system will first be discussed, followed by PIP droplet characterization.  A thorough 

understanding into both droplet surface area and droplet thickness is critical in order to 

characterize PIP on a MEMS pixel. 

3.3.2.1 The Inkjet System 

 MicroFab Technologies, Inc. is one of the leading developers for microdispensing 

and precision printing using inkjet technology [10].  At the onset of researching an ideal 

deposition method, MicroFab was contacted for guidance.  The result of the consultation 

was the creation of an inkjet deposition system that allowed for printing accurately to 

MEMS structures using various aqueous solutions.  The inkjet system assembly used to 

deposit material in this thesis is shown in Figure 36. 

 
Figure 36: Inkjet deposition system used to dispense micro-droplets of material onto the 
MEMS pixels in this thesis. 
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 The deposition system shown in Figure 36 was created by AFRL/MLPJE using 

some key parts from MicroFab (i.e., inkjet printer head and JetDrive III controller).  The 

inkjet printer head assembly is critical to successful micro-deposition.  The basic 

construction of this piece is a cylindrical glass tube drawn to an orifice of 30 – 60 μm in 

diameter.  This tube is encased with a piezoelectric actuator and mounted into a metal 

housing that provides mechanical protection and support.  An image of the inkjet printer 

head assembly provided by MicroFab is shown in Figure 37.  As described in the 

background of this thesis, when a piezoelectric material is biased, it will compress, and 

when the bias is removed, the material expands back to its original state.  In an effort to 

squeeze micro-droplets out of the printer head, a voltage pulse is used.  By varying the 

parameters of this voltage pulse, various materials can be deposited.  This voltage pulse, 

with all applicable user-controlled parameters, is shown in Figure 38. 

 

Figure 37: MicroFab’s inkjet head, model MJ-AT-01, that was used in this thesis to 
deposit the PIP material.  a) An image of the complete inkjet printer head assembly.  b)  
A magnified image of the glass orifice (30 μm in diameter). [10].   
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b.
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Figure 38: A unipolar pulse that is typically used to control the material deposited 
through the inkjet printer head.  The printer head is encased with a piezoelectric material 
that when biased dispenses single micron-size droplets [10].  These time parameters are 
the process variables for depositing different materials. 

 Finding the ideal parameters for a particular material using this voltage pulse is an 

important and tedious process.  In order for the inkjet printer head to print accurately 

targeted droplets to pixels, an unperturbed output stream is required.  This process must 

be done daily because parameters found on one day may not be the same on the next.  All 

of the probable output fluidic streams that are encountered when changing the parameters 

of the voltage pulse can be seen in Figure 39.  The desired output stream is shown in 

Figure 39c.  In an effort to achieve this objective, an iterative process of changing the 

variables of the voltage pulse was accomplished.  Also, it must be noted that the JetDrive 

piezoelectric controller has both an internal and external trigger.  With the internal trigger 
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mode, a continuous triggering allows for an output stream of fluid in lieu of a single 

droplet.  To print droplets, the external triggering mode is used, which is controlled by 

the stepper motor.  When the motor is at a key location, a trigger is sent to the JetDrive 

III and a single droplet is dispensed.  Therefore, once the ideal fluidic stream is achieved, 

using the internal triggering, just prior to printing to a pixel, the triggering mode is 

quickly switched to external to dispense droplets to key locations on the MEMS structure.   

 

 

Figure 39: An illustration of the probable output fluidic streams seen when depositing 
materials through the inkjet printer head.  a) This output stream creates small unwanted 
satellite streams when the parameters V1, V2, and frequency are not set correctly adjusted.  
b) A canted output fluidic stream is typically seen when Trise and Tfall are not properly set.  
c) The ultimate goal is the ideal stream.     
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 Once the aforementioned output steam is attained, the stepper motor is engaged 

and the x-y micrometer stage that holds the MEMS structure moves in the x-direction 

toward the inkjet print head.  A program written in visual basic controls both the external 

triggering of the piezoelectric controller and the x-axis translation, allowing for droplet 

control.  Again, a description of this control is best depicted using a figure.  Figure 40 is 

an illustration on the capabilities of the visual basic program.  This program gives the 

user the ability to control the number of droplets produced in a row, which is defined as a 

line.  In the case of this thesis, a line is essentially a pixel.  The line spacing is the gap 

between each pixel, and the number of times droplets that are dispensed on top of one 

another is a layer.  This basically controls the thickness of the material deposited.   

   

 

Figure 40: A visual depiction of the user-controlled parameters of the visual basic 
program.  The stepper motor only translates the stage that holds the MEMS structure in 
the x-direction.  The user has control over the number of droplets in a row (line), the 
spacing between lines, and lastly, the number of layers (thickness).   
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 Printing to individual pixels was designed around this pre-existing program, 

which led to some fine-tuning modifications.  Since the stepper motor only controlled 

printing in the x-direction, a modification was needed to allow for fine-tuning user 

control in both the x and y directions (x-y micrometer stage).  By monitoring the 

microscope image of the deposition process, the user can calibrate the precise impact 

location of the droplets.  Now that the system used to deposit the droplets has been 

discussed, the next logical step is to characterize the droplets produced by this deposition 

system.  The next section is dedicated to analyze the accuracy, quality/dimensions, and 

topography of the inkjet-deposited droplets. 

3.3.2.2 Inkjet Droplet Characterization 

 This section’s objective is to analyze the performance of the inkjet deposition 

system used in this thesis.  Once the ideal stream (shown in Figure 39c) is attained, the 

stepper motor controller is engaged using the visual basic program.  The stage that 

supports the MEMS structure now moves towards the inkjet head.  Also at this time, the 

triggering is switched to external, so that individual droplets can be dispensed.  To 

properly characterize the inkjet deposited droplets, a cleaned silicon surface (acetone 

bath/nitrogen dried) was used as the targeted object.  In this section, the accuracy of the 

deposition system, the quality/dimensions of the droplet, and the topographic landscape 

of the droplet will be analyzed.  

 The deposited droplet accuracy is critical to the success of this thesis.  Therefore, 

a complete understanding of how accurate the visual basic program that controls the 

dispensing of a droplet in a specific location will be investigated.  This effort will be 
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accomplished using an Optronics digital camera and a KLA-Tencor profilometer.  The 

parameters, shown in Figure 40, controlled by the visual basic program, were varied to 

ensure the system could precisely deposit droplets where and when the software 

commands instructed.  Distance between droplets and layer numbers (droplets on top of 

one another) were two of the main parameters that were varied.  Figure 41a illustrates a 

microscope image of a 1000 μm line width with droplet spacing of 200 μm.  Figure 41b 

shows the cross-sectional profile of the droplet image seen in the adjacent photo.  The 

profilometer measures a thickness in microns vs. the distance traversed using the stylus of 

the profilometer.  It is evident that the locations of the droplets as dictated by the visual 

basic program are fairly accurate.  The gaps between the droplets are seen on average to 

be ~ 200 μm in separation.  An error analysis for the amount of variance between what 

the program said would happen to what actually was measured is beyond the scope of 

this thesis.  Since the pixel dimensions are large, perfect accuracy is not needed and can 

be the focus of further research. 

 The thickness generated from subsequent droplets is another analysis that can be 

done from Figure 41b.  It is evident from the profile that the droplets have a coffee ring 

effect (thicker on the edges than in the center).  This will be analyzed in more detail with 

the use of an AFM and IFM.  On average, the thickness at the center of the droplet 

increases by 0.25 μm with each droplet.  Also, the droplet accuracy for each layer does 

not change the individual droplet diameter by a noticeable amount.  The thickness results 

are best analyzed using the other aforementioned imaging tools.   
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Figure 41: a) Microscope photograph of 200 μm spaced droplets.  Image was used to 
prove the accuracy of droplet spacing and accuracy of subsequent droplets dispensed onto 
one another forming a layer of material.  b) Associated profilometer plot depicting the 
cross-sectional of the droplets.   

 The quality of the PIP droplets is the next topic of discussion.  The diameter of a 

single droplet is best shown with an AFM image and is illustrated in Figure 42.  A Digital 

Instruments Mulitmode AFM (Nano-scope IIa controller) was used to capture droplet 

images.  The droplet shown in this image has three layers.  The diameter was found to be 

~ 145.73 μm, and although there are multiple layers, the droplet maintains a circular 

shape.  This demonstrates the precision of the inkjet depositing system for adding 
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subsequent droplets.  The coffee ring effect is very evident from the topographic image 

shown in Figure 42b.  Ideally, a uniform layer would be deposited, but because the 

splashing effect is inherent in ink-jetted droplets, coffee ring topography is seen.  The 

solution to mitigate the coffee ring effect is to increase the evaporation rate of the solvent 

upon droplet deposition on the surface, minimizing the splash wave that propagates, and 

hence eliminating the coffee-ring [11].  The thickness around the edges of the droplet was 

measured to be 1.5 μm, and the center, 0.75 μm.  Also, the diameter of the three-layer 

droplet was found to be ~ 145.73 μm. 

 
Figure 42: An AFM image of a single droplet with three layers depicting the coffee ring 
effect.  It is evident from the image that the targeted precision of the 2nd and 3rd droplet 
was extremely accurate because the droplet didn’t change its circular shape. a) The 
thickness around the edges of the droplet is ~1.5 μm, while the center was found to be ~ 
0.75 μm.  b) Topographic image - the diameter of the droplet was found to be ~ 145.73 
μm.   
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 The thickness can be determined from the AFM image shown in Figure 42b, but 

is best seen by white light interferometry.  Using a Wyko NT 1100 optical profiler, the 

thickness of the three layers could be analyzed.  This image is shown in Figure 43, where 

again the coffee ring effect is seen.  The thickness around the edges was found to be ~ 1.5 

μm and the center, ~ 0.25 – 0.4 μm.   

In comparison to the spin-coat method, where everything is covered in the 

deposited material, the inkjet deposition method can strategically deposit material to the 

MEMS pixels.  Now that the micron-droplets have been analyzed on a planar surface, the 

next section will be dedicated to the results that occurred when the PIP was inkjet 

deposited onto the MEMS structures described in this thesis.   

 

 

Figure 43: A white-light interferometer image of a single droplet with three layers.  This 
image also demonstrates the coffee ring effect.  The thickness around the edges of this 
three layer droplet is seen to be ~1.5 μm and the center thickness is ~ 0.25 – 0.4 μm.  
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3.3.2.3 PIP on pixels 

At this point, it is necessary to describe how the pixels designed for this thesis 

were less than ideal.  As described in the background, thermal isolation from the 

underlying substrate is of great importance.  This effort enhances the pixel’s performance 

by having the ability to both heat/cool the sensing material quickly.  It will be shown that 

the interdigitized finger designs did not achieve this objective.  The material weight far 

exceeded the ability of the fingers to support the dispensed droplets while still remaining 

elevated off the substrate.  The pixel’s lack of thermal isolation did not eliminate the 

material’s response to incident thermal radiation, but did impede it, as will be described 

in the next couple chapters of this thesis.  This section will be dedicated to analyze the 

pixel’s structural shortcomings to support the droplets of PIP and maintain thermal 

isolation.  Also, a discussion on the effective sensing area of the pixel will be conducted, 

which is critical to being able to compare the PIP pyroelectric pixels to commercial off-

the-shelf pixels.   

 Once the inkjet deposition method was mastered, it was time to print to a MEMS 

pixel.  Initially, a single droplet was printed to a pixel and then analyzed under a 

FEI/Philips XL 30 FEG ESEM SEM .  It was found that a single droplet was not viscous 

enough to remain on top of the pixel.  The goal was for the material to coat between the 

fingers as to complete a connection between the two sets of fingers.  The connection 

between the sets of fingers is what acts as the sensing area.  An SEM image of this single 

droplet is shown in Figure 44.  The original concept when designing the pixels was that 

one droplet would be thick enough to uniformly cover the pixel fingers and maintain 



 

99 

isolation.  It is evident from Figure 44a and b that the thermal isolation is maintained but 

only stringers of material connect the interdigitized fingers rather than a conformal layer.  

The result of this investigation led to depositing more than one layer per pixel in order to 

better control the layer of PIP that completed the connection between the fingers.  

Unfortunately, this effort completely removed the thermal isolation aspect from the pixel 

design.  

 
Figure 44: An SEM image of a single droplet dispensed onto the MEMS small-gaps 
pixel.  a) 214 x’s magnification showing the small droplet with respect to the large pixel.  
b) A 1261x’s magnification zooming in on the droplet.  Although thermal isolation is 
maintained, it is evident that a single droplet isn’t viscous enough to uniformly cover the 
interdigitized fingers. 
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 To illustrate the concept of multiple layers annulling the thermal isolation, 

another microscope image was taken, as shown in Figure 45.  This image demonstrates 

where deposited PIP adhered the inderdigitized fingers to the substrate, while the 

locations without PIP still remain thermally isolated.  

The last analysis will be finding the effective thermal sensing area.  The actual 

pixels used for FOM testing will be evaluated.  Figure 46 shows the inkjet deposited 

droplet on the pixel used for FOM analysis.  Figure 46a illustrates the dimensions of the 

droplet with respect to the pixel size.  Figure 46b shows the up close dimensions of the 

sensing area used in calculating the surface area.  The pixel used was the small-gap pixel 

previously shown in Figure 28.  The sensing area is the entire area  

 

 

Figure 45: A microscope image illustrating how multiple layers cause the inderdigitized 
fingers to adhere to the underlying substrate, annulling thermal isolation. The image is 
out of focus where there is thermal isolation and in focus where the fingers are stuck to 
the substrate by the PIP material.  
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Figure 46: Two images taken by a microscope camera illustrating approximate 
dimensions of the inkjet deposited droplet (5 layers).  This allows for calculating for both 
the surface area/cross-sectional area of the effective sensing region. a) Photo of the 
effective sensing area of the PIP with respect to the dimensions of the pixel.  b) 
Magnified image of part a) that was measured using the software of the microscope 
camera.    

covered by the PIP material, and will be approximated with an ellipse.  The major and 

minor axes were measured to be 183.8 μm and 70 μm, respectively.  The effective 

sensing area was then calculated to be 1.01 x 104 μm2.  

3.4 Chapter Summary 

 Chapter 3 provided a better understanding into the electrical properties of the 

thermal sensing material.  The mystery of why the resistance continually increased with 

respect to time when treating the material as a bolometer was solved by finding that 

current was generated when the sample was heated.  This type of detector is pyroelectric, 
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and led to a confirmation experiment where the sample was tested over a ~ 7-hr 

timeframe and proved PIP to be a pyroelectric thermal sensing material.  

 The pixel structural design was then evaluated analytically, numerically, and 

experimentally to demonstrate the benefits of surface micromachined MEMS structures.  

The main objective was to maintain thermal isolation after the material was inkjet 

deposited.  The thermal isolation results were then analyzed and compared using three 

different methods: analytical, numerically, and experimental.  A thorough investigation 

into the inkjet deposition method was then done.  The system was first described, 

followed by a characterization of the droplets onto a planar surface.  Once the inkjet 

deposition system was validated, printing to the MEMS pixels was then performed.  This 

effort showed less-than-ideal results for maintaining the thermal isolation between the 

interdigitized fingers and the underlying substrate.  Depositing multiple layers led to the 

fingers sticking to the substrate, leaving further research into an ideal pixel design.  Now 

that the samples have been prepared, all of the experiments and test methodologies that 

were accomplished to give comparable pyroelectric detector results will be discussed.   
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IV. Figure of Merit Analysis 

4.1 Chapter Overview 

 This chapter will be dedicated to provide a detailed understanding of how the 

FOM calculations were made.  In an effort to capture all applicable variables needed in 

solving the FOMs, both analytical analysis and experimental testing are required.  Each 

section will be devoted to a FOM.  A description of how to solve or experimentally test 

each variable within that FOM will then be discussed.  The data found in this section will 

give insight into how well the micron-droplets of PIP on the MEMS pixels perform as an 

IR detector.    

4.2 Pyroelectric Coefficient 

 One parameter that governs the performance of a pyroelectric material is the 

pyroelectric coefficient.  In a pyroelectric material, a change in temperature alters the 

steady state dipole moment of the material which, in turn, varies the spontaneous 

polarization of the material.  The variation of the spontaneous polarization generates a 

displacement current that is parallel to the polar axis, and is described by  

 pyro
dTI = Ap
dt

, (51) 

where, Ipyro is the displacement current, A is the cross-sectional area normal to the 

direction of current flow, p is the pyroelectric coefficient (which is the objective of this 

investigation), and dT/dt is the change in temperature with respect to time.  A simple 

rearranging of Equation (51) allows for finding the pyroelectric coefficient, which was 

shown in Equation (10).  The current generated is directly proportional to the pyroelectric 
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coefficient.  Therefore, in an effort to design the most sensitive pyroelectric detector, a 

material that demonstrates the highest pyroelectric coefficient is desired.   

 One method that allows for accurate measurements of the pyroelectric coefficient 

is termed “the quasi direct method.”  This method was first introduced by Byer and 

Roundy in the early 1970s [1] and is currently one of the most widely used methods in 

determining this important material parameter.  In an effort to collect low noise 

measurements, again the Keithley 6517a electrometer was used.  The experimental set-up 

used MMR’s K-20 temperature controller, along with their low temperature micro-probe 

pressure chamber.  

 First, MMR’s low temperature micro probe (LTMP) is a compact material 

characterization station designed for industrial and laboratory applications where 

precision temperature control and electrical measurement conditions are essential [2].  

The LTMP allows for accurate temperature conditions ranging from ~ 80 - 400 K.  

Cooling is accomplished with the Joule-Thomson effect using a high pressure nitrogen 

gas coupled with a pressurized chamber.  Heating is accomplished using the stage’s 

resistive heating element where the temperature of the stage/sample is monitored with a 

silicon diode transducer.  Electrical throughputs attached to micro-probes allow for 

precise electrical contact to the sample under test.  In an effort to accurately control the 

stage/sample temperature, MMR’s K-20 temperature controller was used.  Using an RS-

232 connection, the K-20 can be controlled with a laptop using MMR’s software.  This 

software package allows for both temperature control and data logging, detected by the Si  
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Figure 47: A generic setup shown by MMR technologies [2].  This system was used 
in the process for finding the pyroelectric coefficient.  

diode, of both time and temperature at a 5 Hz rate.   MMR’s typical setup is shown in 

Figure 47. 

 Referring back to Equation (51) and using Byer and Roundy’s paper on the quasi 

direct measurement technique, pyroelectric current measurements were taken.  By 

accurately measuring the cross-sectional area and knowing dT/dt, which is essentially the 

temperature ramp of the stage, an accurate measurement on the material’s pyroelectric 

coefficient can be obtained.  A more specific illustration to the test setup used to find the 

pyroeletric coefficient used in this thesis is shown in Figure 48.  The sample shown in 

Figure 21 was placed onto MMR’s thermal stage with a thermally conductive double 

sided copper tape.  It is also important to note that the assumption was made that the 
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temperature of the stage and the sample were the same.  The electrometer was controlled 

via GPIB-USB with a Dell laptop using National Instruments Labview (V8.2).  A 

modified program, compliments of Keithley, was used to control, monitor (real-time), 

and record data (~ 7.5 Hz).  The K-20 temperature controller, as previously described, 

was controlled via RS-232, and came equipped with its own software driver.   

 

Figure 48: The experimental setup used to measure the pyroelectric current in this 
thesis.  While accurately ramping the stage temperature on which the sample is mounted, 
a pyroelectric current is generated and measured. 

 This system setup allowed for accurate analysis of the current produced due to a 

change in sample temperature.  Testing standards were quickly adapted to minimize 

variable differences when administering tests.  These standards are shown in Table 5.    
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Two probe tips were placed on electrodes 2 and 3 of the sample under test.  The 

co-axial outputs were connected to Keithley’s triaxial cable directly into the electrometer.  

Ramp rates from 1 - 120 K/min were achievable using the MMR software.  Also, due to 

the microphonic noise, testing was commenced at nighttime to mitigate any unwanted 

perturbations in the data.  Once the sample was placed on the stage and a vacuum of 150 

mTorr attained, the chamber was allowed to cool down to 275 K.   

Table 5: Standard parameters used in measuring the pyroelectric coefficients. 
 

 

 

 

 

 Traditionally, preparing the sample for pyroelectric current measurements 

includes a poling process.  In this poling process, the sample is heated and then cooled, 

while simultaneously placing a bias voltage across the sample.  As indicated by J.F. 

Roeder in 1996 [3], overestimations of pyroelectric coefficients have been made using 

the traditional poling method.  This article pioneers a new method of poling that mitigates 

this overestimation and is the method used in this thesis.  Both the traditional and 

modified methods are depicted in Figure 49.  The poling bias used for this thesis was 20 

V, and the ramp rate was 80 K/min.  The maximum temperature for the poling treatment 

was 380 K.  The entire poling process took ~ 11 min.        

Parameter Value 
Chamber pressure 150 mTorr 
dT/dt 4 K/min 
Electrodes used 2 and 3 
Temperature range of stage 275 K – 380 K 
Sample thickness Varied (measured with profilometer) 
Length of electrode 7 mm 
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Figure 49: a) Traditional poling method used that was found to overestimate the 
measured pyroelectric coefficient.  b) Modified poling method used in this thesis [3]. 

 Once the poling treatment was complete, the pyroelectric measurements 

commenced.  Since the PIP material, thus far, had only been used as a bolometric 

detector, variations of the PIP materials were examined in an effort to find the optimal 

solution to be used as a pyroelectric detector.  The material that generates the most 

amount of displacement current when heated will be the best candidate for inkjet 

deposition.  Also, to validate the pyroelectric current measurement setup used in this 

thesis, a sample of PVF2, a known pyroelectric detection material, was similarly tested.   

4.3 Responsivity (ℜ) 

The setup used in this thesis used two pixels connected in series or parallel 

(termed compensated pyroelectric detector).  Both configurations were used, but it was 

found that the series compensated system worked best, and is what was used for this 
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thesis.  In the compensated system, one of the pixels is blackened for maximum 

absorption of radiation, while the other pixel is made from a reflective material.  In 

theory, only one pixel will be exposed to incident radiation and the signal produced from 

this pixel will be amplified, whereas all other temperature and mechanical contributions 

affecting both detectors at the same time will be eliminated.  It was found that this effort 

mitigates microphonic noise so that a higher SNR can be found.  The use of the 

compensated pixel design was crucial in finding a thermal response from the pixels and is 

shown in Figure 50.  The major difference was this thesis’ pixels only used an absorptive 

material (carbon black).  Therefore, there was a need to completely focus radiation onto 

one pixel and leave the other pixel unexposed.   

Unfortunately, it is very difficult to position the pixel under test so that the Ge 

lens focuses all incident radiation to the specific area of the pixel.  Due to the fact that Ge 

is opaque in the visible spectrum, visually finding where the incident radiation that was 

being focused is not possible.  A thermal response was found using the Ge lens system in 

the radiometric setup, but gave less than ideal results due to the fact that both pixels were 

exposed to the thermal source.   

The radiometric setup is shown in Figure 51.  Since the radiation was directed at 

both pixels, the full potential of the material’s response was not being exploited.  If each 

detector in the compensated pixel arrangement is subjected to the same amount of 

incident heat, their signals will neutralize each other and the total signal output will be 

zero [5].  In an effort to obtain a thermal response from the pixels using a blackbody 

source, the  lens system (item 3), shown in Figure 51, was rotated (~ 30° from the normal  
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Figure 50: Ideal compensated pyroelectric detection system used to mitigate 
microphonic noise. 

 
Figure 51: The radiometric setup used in this thesis.  
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to optical axis) to allow for only one pixel to be exposed to the blackbody source, while 

the other compensated pixel collected background flux.  By defocusing the incident flux 

to capture a thermal response, an accurate flux calculation, could not be obtained.  

Without an accurate value for flux, responsivity, NEP, and detectivity could also not be 

found.  Therefore, in place of the blackbody, a HeNe laser (632 nm) was used. 

The laser source is ideal for the testing of these pixels because the compensated 

pyroelectric detection system can be used by only directing the incident power at the 

pixel under test. This setup is shown in Figure 52.  The HeNe laser’s output power is 

rated at 5 mW and it has a spot size with a diameter of ~ 1.5 mm at a range of 2 feet.  In 

an effort to focus this incident beam down to the size of one of the MEMS pixels (~ 400 

x 350 μm2), a focusing optic was used with a focal length of 25 cm.  The pixel under test 

was then positioned so that the focused HeNe spot size covered the entire pixel.  The 

output from the pixel was first directed through an SR 560 (Stanford Research, Inc.) 

voltage pre-amplifier and then into the Keithley 6517a electrometer.  As previously 

described, the output of a pyroelectric detector needs amplification, using one of the two 

circuits shown in Figure 19 or 20.  In lieu of this circuit, a voltage pre-amp was used.  

Labview was used to control and collect data from the electrometer at a rate of 7.5 Hz. 

Instead of making a radiometric calculation for the flux received at the detector, 

an optical power meter was used.  By replacing the pixel with the power meter, accurate 

power measurements could be made, giving another way to obtain a value for 

responsivity.  It will be shown that using the HeNe as the thermal source was the most 

effective way to collect good data from the pixels under test. 
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Figure 52: Responsivity test setup using a HeNe laser as the heat source.   

4.4  Thermal Time Constant (τth) / Electrical Time Constant (τe) 

 This section will discuss how both the thermal time constant and electrical time 

constant will be found.  Many assumptions will be made in these calculations and will be 

discussed when appropriate.  First, the thermal time constant will be described.  Second, 

since a voltage pre-amp is used to measure the voltage output, it is important to 

incorporate the electrical time constant into the calculations. 

 The same thermal time constant measurements taken for a thermister (another 

type of thermal sensor) will be used for pyroelectric device investigated in this thesis.  
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The value for the thermal time constant can be measured by exposing the detector to 

thermal radiation, then removing the thermal stimulus.  The output signal of the detector 

will decay to a negative value (below the background noise floor) and slowly grow back 

to this noise floor value.  The thermal time constant is the time at which the thermal 

response reaches 63.2% of the growth back to the background noise floor minus the time 

at which the thermal response reached its lowest value in the decay.  This description is 

best represented in an illustration and is shown in Figure 53.  Once a thermal response is 

found with the pixel, the thermal time constant can be measured. 

 One other component that is inversely proportional to the thermal time constant is 

the thermal conductance.  Thermal conductance pertains to the structural posts that attach 

the elevated pixel to the substrate.  This parameter has a dependence on both the 

materials used and their dimensions.  To achieve the greatest rise in temperature of the 

pixel, the thermal conductance of the support structure needs to be minimized (Equation 

(6)).  To minimize the thermal time constant (Equation (7)), the heat capacity needs to be 

as low as possible.  For this thesis, the thermal conductance calculation will follow the 

analysis used by Chaobo [6].  Although, the equation is not perfectly suited for the 

interdigitized finger pixels used in this thesis, the calculations will give a good 

approximation.  Also, since multiple layers of the material were needed to electrically 

complete the interdigitized finger circuit, the volume of material (thermal mass) was 

increased.  The heat capacity is directly proportional to thermal mass, which when 

increased, also increased the thermal time constant.  
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Figure 53: Technique to determine the thermal time constant as defined for a thermister 
which will be used in this thesis 

 The total thermal conductance is expressed as 
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 (52) 

where Gleg is the thermal conductance of the metal (Au) /polysilicon (Poly-2) legs, 

n is the number of interdigitized fingers, Lleg is the length of the leg, k is the thermal 

conductivity, and A is the cross-sectional area of the specific leg material.  Figure 54 

summarizes all of the parameters seen in Equation (52).  In Figure 54a, the top view of 

the small-gap MEMS pixel that was used is shown.  The Lleg is the length of the pixel leg, 

and 1/13 of the interdigitized fingers is encompassed by the red box.  The value for n will 

be the number of interdigitized fingers covered by the sensing area of the PIP (as seen 

from Figure 46, n = 3).  
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 The other variable in the thermal time constant equation is heat capacity, Cth 

[J/K].  Although not necessary as it is not part of any of the required FOMs, it could be 

easily calculated given the thermal time constant, τth and the thermal conductivity, Gth 

(from Equation (7)).  Cth consists of both material and geometrical attributes.  As 

previously described typically thermal detector materials have a small heat capacity.  

However, the larger the volume of material deposited (thermal mass), the higher the heat 

capacity.  Since the heat capacity is directly proportional to the thermal time constant, the 

thicker the material is the slower the response time.  Due to the poor pixel design, 

multiple droplets of material were deposited, thereby increasing the thermal mass, which 

resulted in a slower than expected thermal time constant. 

 

Figure 54: The small finger pixel used in this thesis depicting the dimensions that are 
used in the thermal conductance calculation.  a) Top view showing the length of the leg 
and what is meant by the number of interdigitized fingers (red box is showing 1/13).  b) 
Cross-sectional view showing the dimensions that are used in the area calculation. 
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The electrical time constant is the next topic of discussion.  According to 

Dereniak [7], the electrical time constant is dependent on the parallel capacitance (Cd) 

and resistance (Rd) that comprise the pyroelectric material’s equivalent circuit.  This 

circuit was shown in Figure 13.  In an effort to find these values, a Hewlet Packard 4284a 

LCR   

meter was used.  The value found for the electrical time constant will be another 

approximation because the lowest frequency measurement made by the HP 4284a was 20 

Hz.  If this was to be an accurate measurement, the same frequency at which the signal is 

chopped should be the frequency at which Cd and Rd are measured.  Unfortunately, a 

thermal response of 20 Hz was not successfully achieved due to the lack of thermal 

isolation between the pixels and the substrate.  However, the values given at 20 Hz for 

both Cd and Rd will be used for the calculation of the electrical time constant, and can be 

found by 

 e d dτ = C R . (53) 

4.5 Noise Equivalent Power (NEP) 

 NEP is typically a sufficient enough FOM to evaluate and compare the 

performance of a single pixel; it describes the radiant power incident on the detector that 

produces a signal equal to the rms detector noise.  The noise in a detector is typically a 

result of multiple sources, many of which are difficult to measure and/or calculate.  

Therefore, to alleviate finding all of the individual noise sources, the NEP was found by 

visually monitoring the output thermal response.  The incident flux is continuously 

attenuated until the output response is equal to the background noise. 
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 Most IR lenses are not transimissive in the visible; therefore, focusing of thermal 

radiation is difficult.  The positioning of the pixel in the blackbody test case was not 

optimized due to this fact.  Future work needs to be accomplished at placing the pixel at 

the focal plane of the IR lens in an effort to maximize the responsivity using a blackbody 

source.  However, using the HeNe laser as the thermal source makes pixel positioning 

easy.  Since this laser operates at 632 nm (red), the pixel under test can be strategically 

positioned so that the spot size encompasses the pixel.  This effort allows for testing the 

compensated pyroelectric pixel system by only illuminating the pixel under test.     

 In an effort to attenuate the amount of incident radiant power that reaches the 

pixel using the HeNe laser as the source, a variable neutral density filter was used.  This 

filter is shown in Figure 55, and allowed for NEP measurements.  The filter, made by 

Oriel optics, is a grading of aluminum deposited on top of glass.  The more the wheel is 

rotated, the thicker the aluminum becomes, and the more the laser power is attenuated.  

This thickness of the grading is irrelevant because a power meter was used to collect the 

incident flux for each rotation of the filter wheel.  By replacing the pixel under test with a 

power meter, accurate total incident power measurements were made.  NEP testing began 

with the collection of noise floor data for ~ 1 minute.  With no filter, the laser was turned 

on and the signal was chopped using a 0.33 Hz rate for ~ 10 periods.  The laser source 

was then covered and the filter wheel was placed as to attenuate the laser power.  Prior to 

exposing the pixel to the thermal stimuli, noise floor data was collected.  The process of 

rotating the wheel (more attenuation), chopping, covering the source, and collecting noise 

floor data continued until the magnitude of the output signal voltage was the same as the  
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Figure 55: An image of the neutral density filter used to variably attenuate the HeNe 
power seen by the detector.  

rms noise.  It will be shown in the next chapter that additional attenuation was needed in 

an effort to force the output signal of the detector closer to the noise floor.   

4.6 Detectivity (D*) 

 A FOM that is directly proportional with the detector performance is detectivity 

(D*).  This FOM takes into account both the detector sensing area (Ad) and signal 

bandwidth (Δf).  D* was defined in Equation (43).  Once the NEP, Ad, and Δf are found, 

the D* value could easily be calculated.   

4.7 Chapter Summary 

 Chapter 4 was dedicated to discussing all of the variables needed in finding FOMs 

for a pyroelectric detector.  Some of the variables, such as the pyroelectric coefficient, 
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thermal time constant, and NEP, needed to be experimentally determined.  Now that each 

of the FOMs has been explicitly described, a thorough investigation into the results found 

is in order.  This will be the foundation for Chapter 5.  
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V. Results and Analysis 

5.1 Chapter Overview 

In this section of the thesis, all of the results that have been collected will be 

presented.  In Chapter 4, each section was broken out describing in detail the 

experimental setup used to find a particular FOM.  Although not intuitively obvious, 

there was logic in the descriptive order used in discussing these FOMs.  Once the 

material was found to be pyroelectric, the pyroelectric coefficient is the most important 

parameter that governs how well the material generates pyroelectricity in the presence of 

a thermal stimulus.  This will be the first results section described.   

The rest of the FOMs, responsivity, thermal/electrical time constants, noise 

equivalent power, and lastly, detectivity, are all detector parameters that were found once 

the material was deposited onto the pixel.  These FOMs could be found once a thermal 

response was found from the pyroelectric detector.   

The series compensation configuration was found to give the best thermal 

response.  In this system, only one pixel could be exposed to the thermal source and 

because of this the HeNe was found to give the best results.  Therefore all FOM results 

that are presented used the HeNe as the thermal source.  At the end of this chapter, a 

thermal response using the blackbody source will be shown.  This effort is to prove that 

the material under test was not only responsive to 632 nm, but also to IR wavelengths. 

This chapter’s sections will directly correspond to those of Chapter 4.  For each 

FOM the results will first be presented, followed by the analysis of the results.  At the 
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end of this chapter a comparative analysis will be performed with off-the-shelf 

technology vs. the results found in this thesis. 

5.2 Pyroelectric Coefficient  

Once PIP was found to be pyroelectric, a control experiment such as the one shown 

in Figure 1, was performed using the pyroelectric coefficient system setup described in 

the previous chapter.  This effort was accomplished to determine the TlpA protein’s role 

in this pyroelectric material.  The result of this experiment would determine exactly what 

material should be the focus of inkjet printing to the MEMS pixels.  

This pyroelectric control experiment consisted of measuring the current generated 

from four different samples:  PVA, PVA_CB, PVA_CB_TlpA, and PVA_TlpA.  All 

samples incorporate glycerol in an effort to give the PVA its flexible properties.  Using 

the same circuit board shown in Figure 21, all the aforementioned materials were 

deposited onto the circuit board with a pipette, and then using the squeegee technique, the 

electrodes were uniformly coated with comparable thicknesses.  Since the thickness of 

the material was directly proportional to the current that is generated (see Equation(51)), 

accurate measurements were taken using a profilometer.  Also, all measurements were 

taken between electrodes 2 and 3 for each material under test.  The only two parameters 

that varied between each test were the thickness and the material.  Table 6 shows all of 

the materials and their applicable thicknesses used in this test case.  The results from this 

pyroelectric current test can be seen in Figure 56.  

As previously stated, the objective of this test was to determine the role of the TlpA 

protein, and ultimately determine the ideal material to deposit onto the MEMS 
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Table 6: Material thicknesses of the samples used in determining the optimal material to 
inkjet deposit onto the MEMS pixels. 

Material Thickness [µm] 
PVA 38 
PVA_CB 36 
PVA_CB_TlpA 26.7 
PVA_TlpA 38.8 

        

 

Figure 56: Results of pyroelectric current test performed on 4 different samples in an 
effort to determine the benefit of the TlpA protein when PIP is treated as a pyroelectric 
material (without a bias).   

pixels.  Since the pyroelectric coefficient is directly proportional to current generated, the 

sample that produces the greatest amount of current with the 4 K/min temperature ramp 

would be the better material to be used as a detector.  This figure clearly shows that the 

TlpA protein hinders rather than benefits the thermal response of the pyroelectric 
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material.  This contradicts the results found by AFRL/MLPJE when the material was 

thought to be bolometric.   

It is clearly evident that the PVA alone generated the most current in response to 

the 4K/min thermal stimuli.  Not too far behind PVA, was PVA_CB, which is a well 

proven IR absorber, due to the emmisivity of carbon black (ε ~ 0.8 [2]).  A decision to 

inkjet deposit PVA_CB was made due to this property.  Therefore, for the rest of this 

document the term PIP will no longer be used, and in its place will be PVA_CB. 

To inkjet print, the PVA_CB material needed to be diluted in an effort to reduce 

its viscosity.  Therefore, various dilution ratios of the material were printed in an effort to 

find the ideal continuous output stream (see Figure 39).  The PIP material tested in Figure 

56 was not diluted, and therefore had a ratio of 0:1.  The least diluted material that was 

able to be printed was 3:1 (for every 1 mL of solution there was an additional 3 grams of 

water) and will be the material that will be described throughout the rest of the results 

section of this thesis.  

Fortunately, AFRL/MLPJE was able to obtain PVF2 (polyvinyl fluoride) and 

prepare a sample the same way the PVA_CB sample was prepared.  PVF is a well known 

and well documented pyroelectric polymer that is currently used commercially.  Thus, a 

pyroelectric coefficient comparative analysis was accomplished between the 3:1 PVA, 

3:1 PVA_CB, and the well known PVF, using the macro-circuit boards shown in Figure 

21.  Again, using the squeegee technique, the materials were coated in a thin film.  The 

material thickness for the 3:1 PVA was found to be 8.31 µm, the PVA_CB, 4 µm, and the 
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PVF, 63.7 µm.  The PVF material was dissolved in dimethyl formamide.  A 4 K/min 

temperature ramp was used in this test case and the results are shown in Figure 57.  

 

 
Figure 57: Pyroelectric coefficient comparison between PVA, PVA_CB, and PVF.   

From the analysis of Figure 57, it is evident that the PVA alone outperformed the 

PVA_CB, and the PVF.  The comparative analysis is done at room temperature (298 K) 

because currently published articles use this temperature and it is the temperature at 

which the detector will operate.  Also, this plot shows that the carbon black particles 

actually hinder the ionic transfer of the material in response to the thermal stimulus.  

Although this hindering decreased the pyroelectric coefficient by ~ 640 nC/(cm2K), the 

carbon black particles are a proven IR absorber, and the PVA_CB solution is what was 

P(298 K) = 7.39 

P(298 K) = 108.32

P(298 K) = 755.11 

P(298 K) = 7.39 

P(298 K) = 108.32

P(298 K) = 755.11 
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ultimately deposited to the MEMS pixels.  It is evident that further research needs to be 

done on the use of PVA alone, as a pyroelectric detection material.  

Referring to Table 7, PVF has a published pyroelectric coefficient of ~ 3.2 

nC/(cm2K) at room temperature [7].  This is 4.14 nC/(cm2K), lower than the PVF 

material’s pyroelectric coefficient measured here.  These results demonstrated that the 

“quasi direct method” experimental setup gave results on the same order of magnitude 

published previously, affirming that the results found for PVA and PVA_CB are valid.  

Also, the PVA results showed how much better this material is in comparison to a known 

pyroelectric polymer.   

As previously stated, the pyroelectric coefficient is a material parameter that 

governs the performance of that material as a pyroelectric detector.  Therefore, Figure 57 

is a good illustration depicting the benefit of using the PVA_CB material.  Both the PVA 

and PVA_CB show values two orders of magnitude higher than what was measured for 

the PVF.  Referring to Table 7, the PVA and PVA_CB materials are shown to outperform 

all other pyroelectric materials, as well.  From this table, each pyroelectric material has a 

defined Currie temperature, which is the temperature at which the material loses its 

pyroelectric properties.  It must be noted that the Currie temperature was never found for 

the PVA or PVA_CB materials.  The maximum allowable temperature of the conductive 

stage was rated at 380 K, which also leaves more research into material characterization.  

This shows that PVA_CB can be proven to outperform ~ 55 % of listed materials shown 

in Table 7 since it shows both a higher pyroelectric coefficient and a higher Currie 

temperature. 
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Table 7:  Pyroelectric materials and their properties [7]. 
Material Material Type Temp of 

Measurement 
 (K) 

Pyroelectric 
coefficient, p 
(nCcm-1K-1) 

Heat capacity, 
 cth 

(Jcm-3K-1) 

Dielectric constant, 
 εr 

Currie Temperature,
 Tc 
(K) 

TGS Crystal 308 55 2.6 55 (1 kHz) 322 

DTGS Crystal 313 55 2.4 43 (1 kHz) 334 
TGFB Crystal 333 70 2.6 50 (1 kHz) 346 

ATGSAS Crystal 298 70 - 32 (1 kHz) 324 
LiTaO3 Crystal 298 23 3.2 47 938 
SBN-50 Crystal 298 55 2.34 400 394 

PGO Crystal 298 11 2.0 5x10-4 (100 Hz) 451 
PGP:Ba3 Crystal 298 32 2.0 1x10-3 (100 Hz) 343 
PZFNTU Ceramic 298 38 2.5 290 (1 kHz) 503 
PCWT-

4/24 
Ceramic 298 38 2.5 220 (1.5 kHz) 528 

PVF2[7] Polymer 298 3.2    
PVDF Polymer 298 2.7 2.43 12 (10Hz) 353 

 

5.3 Responsivity (ℜ) 

This section will be dedicated to presenting the results of the responsivity 

measurements using the HeNe laser as the thermal source.  In an effort to capture the 

incident flux power of this laser, the pixel under test will be replaced with an optical 

power meter.  The voltage data logged from the thermal response will be analyzed in an 

effort to calculate HeNe responsivity.  Also, at the end of this section a thermal response 

from a 700 K blackbody will be shown, demonstrating a response from a broadband IR 

source. 

5.3.1 HeNe Responsivity 

 The best results were captured using a 5-mW HeNe laser.  Using an Oriel lens, 

the spot size was focused onto one of the two compensated pixels.  The signal was 

chopped at ~ 0.33 Hz which allowed for a maximum output voltage response.  After the 

thermal response data was collected, the MEMS structure was replaced with an optical 
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power sensor to collect the power from the laser.  The responsivity data was collected by 

attenuating the HeNe laser’s output using the aforementioned neutral density filter.  The 

voltage response from the HeNe source is shown in Figure 58.  The change in voltage in 

response to the illumination of the laser was found to be 28 mV, averaged over ten 

periods.  When the MEMS pixels were replaced with an optical power meter, the incident 

attenuated HeNe power was measured to be 1.68 µW.  The responsivity calculation 

resulted in, 

 4
_

e

ΔV 28mV V= = 1.66 10
Φ 1.68μW WV HeNe xℜ = . (54) 

 
Figure 58: Thermal response using an attenuated 5-mW HeNe laser as the thermal 
source.  The ΔV was found to be 28 mV. 

ΔV = 28 mVΔV = 28 mV
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5.3.2 Blackbody Thermal Response 

 As described in Chapter 4, a thermal response was found using a blackbody 

source.  Due to improper alignment with the lens system, the imaged blackbody aperture 

was much larger than the pixel area, exposing both pixels in the compensated 

configuration.  According to [3], if both pixels are subject to the same amount of thermal 

radiation, their signals will neutralize each other leaving the total output signal equal to 

zero.  Therefore, in an effort to expose one of the two pixels and capture a thermal 

response, the lens system was rotated ~ 30 ° from the normal to the optical axis.  The 

system setup used to capture a thermal response from the blackbody is shown in Figure 

59.    

 

Figure 59: The optical system used to obtain a thermal response from a blackbody 
source.  Since the imaged blackbody aperture was much larger than the size of the pixel 
the optical system needed to be rotated ~ 30 ° from the normal to the optical axis.  This 
effort only exposed one of the two pixels in the compensated design to incident flux from 
the blackbody source.   
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 A modulation frequency of 0.125 Hz was used after exposing the PVA_CB pixel 

to the 700-K blackbody source.  The open aperture of the blackbody was set at 1-inch, 

and with a Keithely 6517a electrometer, voltage response data was collected.  The 

thermal response to a 700-K blackbody is shown in Figure 60.  Although an accurate flux 

calculation could not be made because the optical system needed to be defocused for 

these measurements (see Chapter 4), it is evident that the PVA_CB pixel responded to 

blackbody thermal radiation.  Future research needs to concentrate on focusing IR 

radiation down to the dimensions of a pyroelectric pixel or properly shielding on of the 

compensated pixels from the blackbody radiation. 

 

Figure 60: The thermal response using a 700 K blackbody source.  The peak to peak ΔV 
was found to be 5.621 mV. 

ΔV = 5.621 mVΔV = 5.621 mV
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 The responsivity calculation found in this thesis was accomplished using a HeNe 

as the thermal source.  This effort allowed for visually focusing the incident radiation 

onto one of the two pixels in the compensated pixel configuration.  A thermal response 

was then found using a 700 K blackbody, demonstrating that the material is sensitive to 

IR wavelengths.  Due to alignment problems with the Ge lens system, accurate flux 

values could not be found, leaving room for further research.          

5.4  Thermal Time Constant (τth) / Electrical Time Constant (τe) 

The thermal time constant is a FOM that determines how fast the pixel can bleed 

off its heat after being exposed to a thermal stimulus.  The main rationale for this FOM is 

to show the potential of a material/pixel design for use in an imaging system.  A standard 

imaging system operates at 30 frames/sec (30 Hz).  The pixel response time should be 

somewhat shorter than 1/30 sec.  According to Kruse, a common practice is to make the 

response time of the pixel, 1/3 of the reciprocal of the frame rate.  In the case of 30 Hz, 

the response time would be ~ 10 msec [4].  Since thermal isolation is one of the major 

contributors in a fast thermal response time, it will be shown that the pixel designs used 

in this thesis have much room for improvement. 

The thermal response using the HeNe laser showed the best results, and will be 

used in the thermal response time investigation.  Figure 61 illustrates this thermal 

response, which looks almost identical to the thermister’s thermal response, shown in 

Figure 53.  Using the 63.2 % thermister criteria, the time constant for the pixel under test 

for this thesis was found to be 3.59 sec.  This is approximately two orders of magnitude 

slower than required to use this pixel/material in a thermal imaging system.  As shown 
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from Figure 44, multiple droplets of PVA_CB were desposited to coat the interdigizied 

fingers, thereby increasing the thermal mass of this pyroelectric material.  This is likely 

the main reason for the slow response time.  In an effort to achieve a faster response time 

using the inkjet deposition system, a better pixel design needs to be constructed that will 

allow for accommodating a single layer of deposited material (less thermal mass).  This 

will potentially give the pixel/material the response time needed to use this material in a 

thermal imaging system.   

As discussed previously, there are two other components involved in the thermal 

time constant, heat capacity, Cth, and thermal conductance, Gth.  Since the thermal time 

constant has already been found, according to Equation (7), if either heat capacity or 

 
Figure 61: The thermal response from the MEMS pixels depicting the thermal response 
time according to the thermister time constant criteria.  The thermal response time was 
found to be 3.59 sec.   

63.2 %-0.164 V

-0.06 V

τth = 3.59 sec

63.2 %-0.164 V

-0.06 V

τth = 3.59 sec
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thermal conductance can be found, the other can easily be determined.  Thermal 

conductance will be solved using Equation (52), and from this, the heat capacity will then 

be found.    

The parameters used to solve Equation (52) are shown in Table 8, which result in 

a thermal conductance of 1.504 µW/K.  Thus, rearranging the terms in Equation (7) 

allows for solving the heat capacity, which was found to be 5.41 µJ/K.  These 

calculations need to be readdressed when an ideal thermally-isolated pixel is designed.  

Since there was no thermal isolation, the value found for thermal conductance is not 

accurate.  Thermal conductance is a measure of how well the pixel absorbs and dissipates 

heat.  When the structure is adhered to a near-infinite heat sink (i.e., the substrate), the 

pixel’s thermal conductance can not be calculated using Equation (52).  Also, because the 

heat capacity is a key material parameter of the active region, experiments need to be 

accomplished to find the heat capacity for the PVA_CB material.    

Table 8: A list of the all parameters used in solving Equation (52). 

Parameter Value 
Number of interdigitized fingers covered by PIP (n) 3 (See Figure 54) 
Length of finger (Lleg) 450 µm 
Thermal conductivity of Poly2 (kPoly2) 32 W/(m-K) [5] 
Cross-sectional area of Poly2 (APoly2) 10 µm x 1.5 µm 
Thermal conductivity of Gold (kAu) 310 W/(m-K) 
Cross-sectional area of Gold (Aau) 10 µm x .5 µm 

 

 The electrical time constant is calculated from Equation (53).  Using a HP 4284a 

LCR meter, operating in parallel capacitance and parallel resistance (PCPR) mode, the 

equivalent circuit parameters can be found.  The lowest frequency at which these values 

were obtained was 20 Hz.  If this measurement was to be done correctly, both the 
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chopping frequency and the frequency at which the equivalent circuit values were 

collected should be the same.  Unfortunately, due to the length of the thermal time 

constant, a chopping frequency of 20 Hz was not obtained.  Thus, an assumption that a 

modulation frequency of 20 Hz was made, and, therefore, that the parallel capacitance 

and resistance values measured at 20 Hz are valid for measuring the electrical time 

constant.  These values are shown from the data given by the LCR meter, and can be seen 

in Figure 62.   

 
Figure 62: Parallel capacitance and parallel resistance data taken from a HP 4284a LCR 
meter.  Values for the equivalent circuit (seen in Figure 19) that model the pyroelectric 
detector were found in an effort to solve the electrical time constant. 

 The capacitance and resistance found at 20 Hz are 47.5 pF and 0.16 GΩ, 

respectively.  This leads to an electrical time constant of 7.6 msec which is the time 

required to charge the small-signal capacitance (Cd) through the small-signal resistor (Rd) 

to 63.2 % of a full charge.   

Cd = 47.5 pF

Rd = .16 GΩ

Cd = 47.5 pF

Rd = .16 GΩ
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5.5 Noise Equivalent Power (NEP)   

This section will describe the results found in the NEP experiment using the 

HeNe as the thermal source.  In an effort to attenuate the incident thermal flux on the 

pixel, a neutral density filter (Figure 55) was used.   

When the HeNe was used as the thermal source, a SNR of one was found by 

attenuating the laser’s power with a neutral density filter.  For each turn of the filter, a 

corresponding power measurement was made with an optical power meter.  This effort 

ultimately led to a minimal detectable signal with a corresponding NEP.  A second 

neutral density filter was needed to further attenuate the HeNe to find the NEP.   

 Figure 63 shows the first examination of the NEP using the HeNe laser as the heat 

source.  The minimal incident flux (thickest grading on ND filter) was found to be 2.9 

µW at the detector.  It is evident that the signal is still well above the noise floor which 

does not result in a value for NEP.  An additional test was then executed adding 

additional ND filters, further attenuating the HeNe source.  Figure 64 illustrates a further  

attenuated HeNe source that still shows the signal above the background noise floor.  

This flaw can be attributed to monitoring the NEP real-time in Labview.  During the 

experiment, the magnitude of the thermal response signal appeared identical to the 

background noise.  When the data was post processed, the thermal response was clearly 

still greater than that of the background noise.      

The experimentally found NEP was 21.3 nW.  This value will be used in 

determining the value for detectivity (D*).  It is important to note that the background 

noise variance can be minimized immensely by the proper shielding and  
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Figure 63: Thermal response from an increasingly attenuated HeNe laser.  The laser was 
attenuated using a neutral density filter in an effort to find the NEP.  It is evident that the 
signal is still well above the background noise floor, even with a measured 2.9 µW of 
incident power.   

 
Figure 64: A further investigation into the NEP using the HeNe source.  The NEP was 
found to be 21.3 nW. 

connections, thereby decreasing the NEP values even further.  Due to detectivity being 

inversely proportional to the NEP, comparable D* values will be lower than expected.   
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5.6 Detectivity (D*)   

The detectivity for the thermal detector designed in this thesis will be evaluated 

using the NEP value found in the previous section.  Due to the fact that an accurate flux 

calculation could not be made, a value for D* could not be found for the blackbody 

source.  This section will be dedicated to calculating the D*HeNe using Equation (43).   

Applicable values for solving detectivity are shown in Table 9.  The D* values are 

far less than current IR detector technology which is attributed to the pixel’s lack of 

thermal isolation over the underlying substrate. The empirically–determined D*HeNe was 

found to be 1.93 x 105 cm Hz/W⎡ ⎤
⎣ ⎦ .    

Table 9: Blackbody and HeNe detectivity results. 

Heat 
Source 

(Ad) [cm2] (Δf) [Hz] (NEP) [nW] Detectivity (D*) 
cm Hz/W⎡ ⎤
⎣ ⎦  

Blackbody 
(700 K) 

1.01 x 10-4 0.063 --- --- 

HeNe 1.01 x 10-4 0.167 21.3 1.93 x 105  

 

 In an effort to analytically calculate the detectivity found in Equation (43), all 

parameter values will be presented followed by the D* result found.  All applicable 

parameters relating to the source will correspond to using the HeNe laser and the 

assumption will be made that the detector is operating in the Johnson noise-limited 

region.  Table 10 defines each of the parameters and their applicable values needed in 

solving for the D* given by Equation (43).  The analytically-determined for D* was 

found to be 1.59 x 106 cm Hz/W⎡ ⎤
⎣ ⎦  which is an order of magnitute greater than the 

D*HeNe that was solved for using the experimentally solved NEP.  Many assumptions 
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were made in an effort to obtain some of the values shown in Table 10, which resulted in 

more than a 724% error.  The D*HeNe is a more accurate value, and will be used in the 

comparison section that follows.     

 
Table 10: Parameters used in solving for D* seen in Equation (43). 

Parameter Value 
Area of detector (Ad) 3.602 x 10-5 [cm2] 
Equivalent resistance (Rd) 0.16 [GΩ], at 20Hz from LCR meter 
Pyroelectric coefficient (p) 108.32 [nC/(cm2 K)],  at 298 K 
Emmissivity (ε) 0.8,  for carbon black  
Modulation frequency (ω) 2.07 [rad], chopping frequency 0.33 Hz 
Temperature of detector (Td) 298 [K], room temperature 
Thermal conductance (Gth) 1.504 [μW/K] 
Thermal time constant (τth) 3.6 [sec] 
Electrical time constant (τe) 7.6 [msec] 

 

5.7 PVA_CB-based Pyroelectric Detector vs. Off-the-shelf Thermal Detectors 

In an effort to best quantify all the FOMs that were found in this thesis, an 

analysis will be performed comparing the PVA_CB-based thermal detector to a list of 

other thermal detectors.  The other detector FOMs were obtained from an article that was 

published in 1972 by E.H. Putley [6].  Although this article is more than thirty years old, 

a baseline understanding of the PVA_CB-based detector’s potential will be shown.  The 

comparison analysis between thermal detector types, to include PVA_CB, is shown in 

Table 11. 

 The obvious performance FOM that is less than ideal in the PVA_CB 

pyroelectric detector is the thermal response time.  The root cause of the slow response 

time was the thermal mass of the multiple deposited droplets of PVA_CB.  The initial 
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thoughts in the pixel construction was that the interdigitized fingers, once released, would 

deflect in the z-direction enough to support a single droplet of the inkjet-deposited 

PVA_CB.  It is evident from the image in Figure 44 that a single droplet was not enough 

to complete the circuit across the interdigitized fingers.  Therefore, multiple droplets were 

needed, increasing the heat capacity, which increased the thermal time constant.  Also 

depositing the material onto a thermally isolated structure will increase the responsivity.  

Reponsivity is directly proportional to dT/dt, as shown in Equation (51).  The faster the 

sample heats up/cools off, the more current will be generated and the higher the 

responsivity will be.  The NEP is comparable to other thermal detectors, but could be 

much lower using proper shielding techniques in an effort to mitigate noise.  Also, the 

integration time is inversely proportional to the electrical bandwidth (Δf).  If the 

integration time is decreased, Δf increases, and so does detectivity.  Basically, a new 

pixel structure needs to be designed and constructed. 

 
Table 11: Summary of thermal detectors to include the PVA_CB pyroelectric [6]. 

Detector type 
Td 
[K] 

Ad 
[cm2] 

τth 
[s] 

ℜv 
[V/W] 

NEP 
[W] 

D* 
[cm Hz1/2/W] 

PVA_CB 
pyroelectric 298 1.01 x 10-4 3.59 1.66 x 10 4 21.3 x 10-9 1.93 x 105 

TGS pyroelectric 298 10-2 1 x 10-6 1000 - 109 

BaTiO3 
bolometer 298 10-3 1 x 10-3 10 - 3.5 x 105 

Tl2SeAs2Te3 
bolometer 298 10-3 1 100 - 1.5 x 107 

Golay cell 298 6 x 10-2 15 x 10-3 - 2 x 10-10  
Thermopile 298 10-3 0.1 x 10-3 100  3 x 108 

Au/Si3N4 
microcantilever 298 6 x 10-5 0.3 - 3.46 x 10-10 3.59 x 107 
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5.8 Chapter Summary 

The results of this thesis were presented and discussed in this chapter.  First, it 

was proven that the TlpA protein inhibited the performance as a pyroelectric material.  

Thus, the material chosen to be inkjet deposited included only the PVA and carbon black.  

A comparison analysis between a known pyroelectric polymer, PVF, was used to validate 

the pyroelectric coefficient experimental setup and also demonstrate how well the PVA 

and PVA_CB materials performed in comparison.  Once a thermal response was found, 

the FOMs could then be easily found.  All FOMs measured/calculated were then 

presented in Table 11 to compare performance with other thermal detectors.  The main 

reason for the PVA_CB-detector shortfalls could be attributed to the lack of thermal 

isolation from the underlying substrate and could potentially be fixed with a different 

pixel structure.  This fix needs to be the first follow-on research topic.   With this 

approach, the FOMs for this newly found material are envisioned to exceed the 

performance of published uncooled thermal detectors shown in Table 11.     
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VI. Conclusions and Recommendations 

6.1 Chapter Overview 

This chapter will be broken into two separate sections, a conclusion section, and a 

recommendation section.  The conclusion section will describe some of the highlights 

from each of the chapters to include observations that were made, and present the 

contributions that this research will give the scientific community.  The recommendation 

section will describe some of the remedial actions required to fix the shortfalls in the 

FOMs and to realize the ultimate objective, an IR FPA detection system using PVA_CB.  

Also, additional experimental data will be presented to demonstrate another feature in the 

PVA_CB material, the piezoelectric effect. 

6.2 Conclusions 

6.2.1 Thesis Summary 

Chapter 1 gave a brief discussion on the background of using the first-ever 

biomimetic thermal sensing material.  The background to this thesis topic was then 

presented, demonstrating that AFRL/MLPJE proved, on the macroscopic scale, that the 

PIP material was thermally responsive to the IR.  This was a good transition to the 

problem statement: to move from the macro-world to the micron world in an effort to 

find the FOMs that govern the performance of the material/pixel.   

Chapter 2 presented background describing many types of thermal detectors.  

Since it was found that PIP was a pyroelectric material (shown in Chapter 3), a more in 

depth discussion was made on the theory and practice of pyroelectric devices.  This 
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chapter was used as the foundation for any discussions made throughout the rest of the 

document. 

Chapter 3 began with a discussion on how the PIP material was found to be 

pyroelectric.  The preparation of the sample was then discussed, describing the pixel 

structure and how the material was deposited at the micron scale.  After the material was 

deposited onto the pixel, it was considered an IR detector which could then be 

characterized with FOMs.    

The intent of Chapter 4 was to define how the FOMs were to be either 

analytically or experimentally found.  These FOMs included the pyroelectric coefficient, 

responsivity, thermal/electrical time constants, noise equivalent power, and detectivity.  

Once a thermal response was found from the pixel, these FOMs could then be easily 

obtained. 

Chapter 5 both presented and analyzed the results for the FOMs.  The TlpA 

protein was found to hinder the performance of the material operating as a pyroelectric 

device.  Therefore, the PVA_CB was used as the material of choice for deposition and 

detector characterization.  The pyroelectric coefficient showed performance 

characteristics orders of magnitude better than current pyroelectric polymers that are 

used.  The pyroelectric coefficient for PVA was 755.11 nC/(cm2 K) and for the PVA_CB, 

108.32 nC/(cm2K).  The detector FOMs for the PVA_CB detector were inferior in 

comparison to off-the-shelf thermal detectors.  NEPHeNe was found to be 21.3 nW, with a 

D*HeNe equal to 1.93 x 105 cm Hz
W

.  The main reason for this was the pixel design.  When 

the PVA_CB was inkjet deposited onto the MEMS structure, thermal isolation was lost 
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which decreased significantly dT/dt which can be found in almost all of the expressions 

for the FOMs.  Therefore, future research efforts need to concentrate on the pixel design 

which will further improve detector performance.   

6.2.2 Scientific Contributions of this Thesis 

 The research discussed in this thesis will benefit the DOD and the IR detector 

community with several novel contributions. 

1. Identified a new pyroelectric material that shows extreme potential for use as  

 the active region in a thermal imaging system. 

2. Demonstrated that inkjet deposition is an effective method to   

 strategically deposit micron sized droplets (with the ability to control layer  

 thickness) of a pyroelectric polymer material. 

3. Devised a unique approach to finding the NEP by attenuating a HeNe thermal  

 source with a neutral density filter while simultaneously monitoring (real-time)    

 the SNR until the background noise variance equaled the signal output  

 (definition of NEP). 

4. Analyzed shortfalls in FOMs due to the pixel design and its lack of thermal  

 isolation.  Correcting this will achieve higher performing detector  

 FOMs and pave the way for an FPA imaging system using this material.       

6.3 Recommendations 

Several recommendations were briefly mentioned in previous chapters.  Here, the 

recommendations will be elaborated upon to provide a research vector worth considering.   
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 The less than desirable FOMs found from the MEMS pixel can be attributed to 

the lack of thermal isolation.  Maintaining thermal isolation while withstanding the force 

of the inkjetted droplet of material needs to be addressed.  One consideration would be to 

use a bulk micromachining technique that incorporates a two-mask photolithography 

process.  Basically, a cantilever of silicon nitride (SiN) will be suspended over a wet-

etched cavity of silicon (Si).  In an effort to electrically interact with the PIP material, 

interdigiized electrodes will be deposited onto the SiN cantilever.  Using this technique, 

the user has control over the thermal isolation of the pixel.   

 Figure 65 illustrates the envisioned design of a PVA_CB-based imaging system.  

Due to the droplet size of the PVA_CB (180 μm in diameter), there is a limitation to the 

dimensions of the pixel.        

 
Figure 65: An envisioned design for a focal plane array PIP imaging system.  a.) 
Construction of an 8 x 4 focal plane array design.  b.) Thermal isolation is achieved from 
the underlying bulk etched substrate using a SiN cantilever.  The diameter of the inkjet 
deposited droplet is 180 μm therefore the cantilever width was designed for 200 μm.  c.)   
A cross-sectional view of the pixel.  The isolation is user controlled with etch time. 
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It is shown in Figure 65b that the width of one pixel needs to be ~ 200 μm.  Also, a FPA 

of 100 x 100 pixels is envisioned, and can be seen in Figure 66.  The dimensions were 

based off a single inkjet droplet of the PIP material.  Using the dimensions shown in 

Figure 66a, a 100 x 100 pixel-FPA can be fabricated on a 3 cm x 3.3 cm sample.  This 

design will allow for thermal isolation by giving the PVA_CB droplet a platform to be 

dispensed upon.  The thermal isolation will be achieved by the etched-out substrate.  

Also, the thinner the SiN layer, the higher the dT/dt.  Therefore, a study is needed to 

determine the minimal thickness of the SiN cantilever that will withstand the force of an 

inkjetted droplet of PVA_CB.   

 
Figure 66: a.)  The dimensions of the envisioned FPA using inkjetted droplets of PIP.   
b.)  The design is based off the dimensions of a single inkjet droplet that was studied in 
this thesis.  c.)  Using the dimensions found in a.) a 100 x 100 pixel FPA can be 
fabricated on a 2.3 cm x 2 cm sample.     
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 This thesis used a voltage preamplifier to amplify the signal’s thermal response.  

Ideally, each pixel would have its own integrated circuit amplifier (as in Figure 19 or 

Figure 20) and a readout circuit that amplified and read each pixel’s electrical output in a 

sequential process.  There are many articles published that discuss monolithic readout 

circuits that could be used in the PIP-based FPA.  The reader and follow-on researcher is 

referred to [1,2] for insight on read-out-circuit designs.  Since CMOS is compatible with 

the envisioned design shown in Figure 66, the amplifier and readout circuit could be 

designed with 37 transistors in an area of 6 μm x 6 μm [1], which is a small enough real-

estate that it can be accommodated by each pixel.       

6.4 Other Features of PVA_CB 

 Since the PIP material was found to be ferroelectric, there are a few other factors 

that are worth mentioning about the material studied in this thesis.  Recall that all 

ferroelectric materials are pyroelectric, and subsequently, all pyroelectric materials are 

piezoelectric.  This gives PIP all of these unique properties.  These unique properties can 

lead to potential applications and are worth investigating for future research. 

  First, piezoelectric materials will generate a voltage when compressed and, 

conversely, have a conformal change in shape in the presence of an electric field.  A 

simple experiment was conducted to demonstrate this concept.  The sample shown in 

Figure 21 using PIP as the material under test was placed under the Zygo (white light 

interferometer).  Once a good fringe pattern was found, a 100 µm upward scan was 

measured which captured an image.  The sample was then biased for ~ 5 min with 100 V 

and another 100 µm scan using the Zygo was taken.  Thus, two images of the exact same 
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spatial location were taken (one with zero bias, and the other with a 100 V bias) to see if 

the piezoelectric effect is present.  This piezoelectric experiment is seen in Figure 67.  

  

 
Figure 67: Zygo images illustrating PIP’s piezoelectric effect.  a.)  An image of PIP 
deposited onto one of the electrodes (with no bias applied).  b.)  The same image taken 
after the sample was bias at 100 V for 5 minutes.  It is evident from these two images that 
the ionic makeup of the material seems to traverse toward the respective electrodes there 
by thinning the material by ~ 0.26 µm in the presence of an electric field.   

 Since the PIP material is black, less than ideal images were captured due to the 

absorption of the incident light.  In Figure 67a, an image was first captured with the 

material in steady state conditions, and in Figure 67b an image of the same location was 

captured after ~ 5 minutes of the material being biased with 100 V.  The ionic makeup of 

the material constituents appeared to cause ion movement toward an electrode, thereby 

decreasing the thickness of the material in the Zygo’s field of view.  The material 

thickness decreased by ~ 10.7 % (~0.26 μm) in the presence of an electric field.  Many 

a. b.a. b.
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applications can be realized with materials that have piezoelectric properties, leaving 

further research into exploiting PIP’s piezoelectric properties.   

6.5 Chapter Summary 

The PVA_CB material demonstrates excellent potential for use in an FPA thermal 

imager.  This thesis gave insight into how much potential by characterizing the FOMs of 

a single detector.  It was evident that the FOMs found are less than ideal and can be 

attributed to the lack in thermal isolation between the active region (where the PIP was 

deposited) and the underlying substrate.  An envisioned design, shown in Figure 65, 

should maximize isolation even after deposition, thereby enhancing the FOMs.  An IR 

image should be achievable in three thesis research efforts from now.  The next follow-on 

should concentrate on fabricating the SiN cantilever designs which can be characterized 

with improved FOMs compared to FOMs in this thesis.  Research following that effort 

should focus on the amplification/readout integrated circuit, co-located with the pixel, to 

optimize circuit design by monitoring output signal integrity.  Lastly, a systems approach 

thesis should integrate these four theses with the end-state of capturing an IR image with 

all components manufactured/characterized in-house.       
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Appendix A:  The PolyMUMPs® Process 

 PolyMUMPs®, is a commercial fabrication process that uses a three-layer 

polysilicon surface micromachining method which is available to universities and 

professionals in industry.  The MEMS devices can be constructed in a CAD-based 

program called L-edit.  These designs are then submitted to MEMSCAP, which is the 

company that uses the PolyMUMPs® foundry.  There is an approximate turn-around-time 

of two months from design submittal until the devices are fabricated and returned.  This 

appendix will be dedicated to give an overview of the fabrication process.  The reader is 

to refer to contact MEMSCAP for more detailed information.   

 The fabrication process starts with a clean 100 mm diameter, (100) orientatation 

n-type silicon wafer.  First, a 0.6 μm layer of silicon nitride (SiN) is deposited by way of 

low pressure chemical vapor deposition (LPCVD).  The SiN is extremely resistive, and 

acts as the electrical insulating layer.  Second, a 0.5 μm layer of polysilicon, termed Poly-

0, is deposited on top of the SiN.  Standard photolithographic processes are used with the 

Poly 0 mask to define where the Poly-0 layer will remain by blanketing those areas with 

photoresist.  The unwanted regions are then removed using a reactive ion etch (RIE).  

Next, the first of two releasable layers is deposited.  This layer is made of phosphosilicate 

glass (PSG), which is used as a sacrificial layer, and is termed Oxide-1.  At this point, the 

wafer is then annealed in argon, for ~ 1 hr at 1050 °C.  Two more photolithographic mask 

sets are then accomplished to remove portions of the Oxide-1 where the dimples are 

formed, followed by an Anchor-1 etch.  The dimple etch removes 0.75 μm (in depth) of 
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the Oxide-1 layer, while the Anchor-1 etch removes the entire thickness of the Oxide-1 

layer.   

 The next step deposits another layer of polysilicon, this time called Poly-1.  On 

top of this layer is also deposited another PSG layer, which is again mitigates residual 

stress in the Poly-1 layer.  This PSG layer is annealed at 1050 °C, and acts as a hard mask 

for the RIE of the Poly-1.  Once this process is complete, a second oxide layer with a 

thickness of 0.75 μm is deposited, termed Oxide-2.   

 Two etches are possible on the Oxide-2 layer, Poly-1_Poly-2_Via or Anchor-2.  

The Via etch is used to remove Oxide-2, and the Anchor-2 etch is used to remove both 

Oxide-1 and Oxide-2 layers.  The last polysilicon layer is then deposited, called Poly-2.  

Again, on top of Poly-2, in an effort to mitigate residual stress, another PSG layer is 

deposited and annealed.  The last step in the PolyMUMPs process is to deposit a thin 

layer of gold.  This 0.5 μm layer of gold is evaporated onto the wafer where the unwanted 

areas are removed using lift-off.  The gold layer only adheres to the Poly-2 layer.  The 

layer compositions used in the PolyMUMPs process are seen in Figure 68. 
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Figure 68: The layer composition of the PolyMUMPs process.  The pixels that were 
used in this thesis were constructed using this process.   
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Appendix B:  The PolyMUMPs® Design 

 

Figure 69: PolyMUMPs run 73.   

MUMPs®:   73 (original designs) 

Layout: Variations of pixel designs using the top two layers of the PolyMUMPs  
  process (Poly-2/gold).  Each pixel is electrically connected using a row- 
  column addressing scheme.  The wires were made from Poly- 
  2/gold/anchor -2.  The bond pads allow for wirebonding to a chip package  
  to connect to outside world. 
Comments: All pixel designs did not support the weight of the PVA_CB, proving the  
  interdigitized finger structures less than ideal for inkjet deposition. 
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