
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2007

Scaling Ant Colony Optimization with Hierarchical Reinforcement Scaling Ant Colony Optimization with Hierarchical Reinforcement

Learning Partitioning Learning Partitioning

Erik J. Dries

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Dries, Erik J., "Scaling Ant Colony Optimization with Hierarchical Reinforcement Learning Partitioning"
(2007). Theses and Dissertations. 3119.
https://scholar.afit.edu/etd/3119

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3119?utm_source=scholar.afit.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Scaling Ant Colony Optimization

with Hierarchical Reinforcement

Learning Partitioning

THESIS

Erik Dries, Captain, USAF

AFIT/GCS/ENG/07-16

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/07-16

Scaling Ant Colony Optimization

with Hierarchical Reinforcement

Learning Partitioning

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Erik Dries, B.S.C.S.

Captain, USAF

September 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/07-16

Scaling Ant Colony Optimization

with Hierarchical Reinforcement

Learning Partitioning

Erik Dries, B.S.C.S.

Captain, USAF

Approved:

/signed/ 31 Aug 2007

Gilbert L. Peterson, PhD (Chairman) date

/signed/ 31 Aug 2007

Gary B. Lamont, PhD (Member) date

/signed/ 31 Aug 2007

Maj Christopher B. Mayer, PhD (Member) date

AFIT/GCS/ENG/07-16

Abstract

This research merges the hierarchical reinforcement learning (HRL) domain and

the ant colony optimization (ACO) domain. The merger produces a HRL ACO algo-

rithm capable of generating solutions for both domains. This research also provides

two specific implementations of the new algorithm: the first a modification to Diet-

terich’s MAXQ-Q HRL algorithm, the second a hierarchical ACO algorithm. These

implementations generate faster results, with little to no significant change in the

quality of solutions for the tested problem domains.

The application of ACO to the MAXQ-Q algorithm replaces the reinforcement

learning, Q-learning and SARSA, with the modified ant colony optimization method,

Ant-Q. This algorithm, MAXQ-AntQ, converges to solutions not significantly different

from MAXQ-Q in 88% of the time. This research then transfers HRL techniques to

the ACO domain and traveling salesman problem (TSP).

To apply HRL to ACO, a hierarchy must be created for the TSP. A data cluster-

ing algorithm creates these subtasks, with an ACO algorithm to solve the individual

and complete problems. This research tests two clustering algorithms, k-means and

G-means. The results demonstrate the algorithm with data clustering produces solu-

tions 20 times faster but with 5-10% decrease in solution quality.

iv

Acknowledgements

I would like to thank my thesis advisor, Dr. Gilbert Peterson, for his invaluable

knowledge, guidance, and pressure in this endeavor. I would also like to thank my

wife for her unending support even when I left her on the other side of the country.

Erik J. Dries

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

I. Introduction . 1
1.1 Problem Statement . 1
1.2 Research Goal . 2
1.3 Assumptions . 3

1.4 Overview . 3

II. Backgound . 4

2.1 Markov and Semi-Markov Decision Processes 4
2.2 Reinforcement Learning 6

2.2.1 Q-Learning . 6

2.2.2 State action reward state action (SARSA) Learn-
ing . 7

2.3 Hierarchical Reinforcement Learning 8

2.3.1 Hierarchical Abstract Machines 9
2.3.2 Option Hierarchy 11

2.3.3 MAXQ . 12

2.4 Ant Colony Optimization 17

2.4.1 Ant Colony System 18

2.4.2 Other Variations 19
2.5 Data Clustering . 21

2.5.1 k-Means . 21
2.5.2 G-Means . 22

2.6 Summary . 24

III. MAXQ with Ant-Q Learning . 26

3.1 Taxi World Problem . 26
3.2 Ant-Q . 28

3.3 MAXQ with Ant-Q Learning 29

3.4 Summary . 32

vi

Page

IV. Ant Colony System with Partioning 33

4.1 Traveling Salesman Problem 33

4.2 Data Clustering . 34

4.2.1 k-Means . 34
4.2.2 G-Means . 35

4.3 HRL ACS with Clustering 36

4.4 Summary . 38

V. Results . 40
5.1 MAXQ with Ant-Q Learning 40

5.1.1 Experiment Setup 41

5.1.2 Solution Convergence 42

5.2 ACS with clustering . 43

5.2.1 Experiment Setup 43

5.2.2 Tour Statistics 46
5.2.3 Timing . 48

5.2.4 Clustering . 57

5.3 Summary . 61

VI. Conclusions . 69
6.1 Summary . 69

6.2 Results . 71
6.3 Future Extensions . 72

Appendix A. Taxi World Problems 74

Bibliography . 78

vii

List of Figures
Figure Page

2.1. Taxi World Task Hierarchy . 14

3.1. Taxi World Task Hierarchy . 27

3.2. Sample 5x5 Taxi World Problem 27

4.1. A sample TSP . 34

4.2. 250 City TSP Task Hierarchy 36

5.1. TSP Algorithm Speed Graph 60

5.2. ACS-TSP Best Tour for rand200-3 61

5.3. k-Means Clustering Example 62

5.4. G-Means Clustering Example 63

A.1. 5x5 Taxi World Problem . 74

A.2. 7x7 Taxi World Problem . 74

A.3. 10x10 Taxi World Problem . 75

A.4. 20x20 Taxi World Problem . 75

A.5. 30x30 Taxi World Problem . 76

A.6. 50x50 Taxi World Problem . 77

viii

List of Tables
Table Page

5.1. Taxi World Problems . 41

5.2. Parameters for MAXQ-Q and MAXQ-AntQ 42

5.3. Convergence Data for Taxi World Problems 43

5.4. TSPLIB Traveling Salesman Problems 44

5.5. Random Traveling Salesman Problems 45

5.6. Parameters for ACS-TSP and HRL ACS with Clustering 46

5.7. Tour Length Statistics for ACS-TSP (TSPLIB) 48

5.8. Tour Length Statistics for ACS-TSP (Random) 49

5.9. Tour Length Statistics for HRL ACS with k-Means (TSPLIB) . 50

5.10. Tour Length Statistics for HRL ACS with k-Means (Random) . 51

5.11. Tour Length Statistics for HRL ACS with G-Means (TSPLIB) 52

5.12. Tour Length Statistics for HRL ACS with G-Means (Random) 53

5.13. Tour Length Comparison of TSP Algorithms (TSPLIB) 54

5.14. Tour Length Comparison of TSP Algorithms (Random) 55

5.15. % from Optimal Comparison of TSP Algorithms 56

5.16. Timing Statistics for TSP Algorithms (TSPLIB) 58

5.17. Timing Statistics for TSP Algorithms (Random) 59

5.18. k-Means Clustering Statistics (TSPLIB) 64

5.19. k-Means Clustering Statistics (Random) 65

5.20. G-Means Clustering Statistics (TSPLIB) 66

5.21. G-Means Clustering Statistics (Random) 67

ix

Scaling Ant Colony Optimization

with Hierarchical Reinforcement

Learning Partitioning

I. Introduction

Problems throughout the real world require optimized solutions. These problems in-

clude navigation, mapping, and planning. Developed optimization techniques provide

a way to search for these solutions efficiently. Ant colony optimization (ACO) is one

of these methods and the focus of this research. ACO generates solutions efficiently

and effectively but does not scale well with large problems. This research merges the

methods developed for reinforcement learning and hierarchical reinforcement learning

with ACO to produce an algorithm that scales to solve large, complex optimization

problems. This hierarchical ant colony optimization algorithm focuses on two problem

domains, the taxi world problem and traveling salesman problem.

This chapter provides an overview of the research conducted in this investiga-

tion. It covers the problem to be solved, an overview of hierarchical reinforcement

learning and the goals and objectives of this research investigation. Chapter I also

highlights the assumptions and risks of this research and provides an overview of the

thesis document.

1.1 Problem Statement

Reinforcement learning has been shown to be useful for autonomous agents in

their control and planning [20]. Unfortunately the documented domains tend to be

simple, single-goal problems and are not directly reflective of the real world. Hier-

archical reinforcement learning methods attempt to allow for more of the real world

to be modeled by two techniques. The first being reuse of common procedures or

solutions throughout the problem. Second, the ability to decompose the problem into

1

smaller, less computationally taxing tasks. These methods allow HRL domains to

model more realistic problems and provide quality solutions efficiently for them.

These advantages should be able to be transferred to other learning domains,

including ant colony optimization. By merging the ACO domain with HRL methods,

the research demonstrated there is the benefit of a speed increase for solving the prob-

lems with little to no loss in solution quality. This research completes the discussed

combination and provides data to show it is both feasible and beneficial.

The research direction is two-fold. The first goal is to show ant colony opti-

mization learning algorithms placed into HRL algorithms reduces the overall learning

time for those domains. Specifically, the MAXQ HRL algorithm introduced by Di-

etterich [4] and the documented taxi world problem. By incorporating the Ant-Q

ACO learning method, the overall run time is reduced significantly for larger state

space problems. The second goal is to transfer HRL methodologies to the ant colony

optimization domain and the traveling salesman problem to demonstrate a decompo-

sition of the TSP increases the speed of the solving algorithm with little to no loss in

solution quality. To demonstrate this, this thesis looks at the logical decomposition of

spatial location and clusters the cities into separate problems to provide the hierarchy

decomposition.

1.2 Research Goal

The overall and guiding goals of this research are: 1) to demonstrate ACO

learning algorithms placed into HRL algorithms reduces the overall learning time for

those domains; and 2) to transfer HRL methodologies to the ACO domain and the

TSP to demonstrate a decomposition of the TSP increases the speed of the algorithm

with little to no significant loss in solution quality.

2

1.3 Assumptions

The techniques and algorithms presented in this thesis avoid a requirement

that developers use a specific language for the implementation. However, they are

presented in a manner which draws upon current object-oriented programming funda-

mentals. This assertion allows for the use of both statically-checked and dynamically-

checked languages.

The two problem domains presented, taxi world and the traveling salesman

problem are assumed to be constructed and designed in accordance with the problem

requirements outlined in Chapters III and IV. This is to alleviate any issues with more

complex problems and the ability for these algorithms to handle them effectively.

1.4 Overview

The structure of this thesis is as follows: Chapter I introduces the problem and

research goals. Chapter II provides a thorough overview of reinforcement learning,

three hierarchical reinforcement learning techniques, focusing on one as the selected

domain to test application against. Chapter II continues with the introduction and

discussion of ant colony optimization and data clustering, again focusing on those

specific algorithms selected to research. Chapter III presents the detailed design of

a hierarchical reinforcement learning method and the adaptation of an ant colony

optimization algorithm to the taxi world problem. Chapter IV then extends the

concepts from the previous chapter to an ant colony optimization domain and presents

a detailed design of an algorithm using the HRL concepts with ACO as its base. An

implementation for each domain is used to highlight the benefits or lack thereof of

these modified algorithms with results discussed in Chapter V. The final chapter,

Chapter VI, presents concluding remarks and recommendations for future research

into the use of HRL techniques in the ACO domain and the TSP.

3

II. Backgound

This chapter introduces the foundations used in this thesis. Reinforcement learning

was developed as a method to have an agent learn near-optimal plans through interac-

tion with the external environment [20]. This ability to interact with the environment

allows the agent to learn plans without needing a model of state space interactions.

This state abstraction creates an online learning agent and reduces the computational

requirements for planning. Other benefits of reinforcement learning are the ability to

use function approximations reducing the time needed to solve problems and increas-

ing the size of solvable problems [18]. However, they are effected by dimensionality;

the exponential growth in memory and computational requirements as the problem

size grows [20]. For this reason, several methods of hierarchical reinforcement learning

(HRL) have been designed attempting to alleviate the issue.

HRL functions by decomposing the problem into smaller subproblems and are

learned concurrently with an overarching method to combine these subproblem so-

lutions to give a near-optimal solution for the complete initial problem [2]. HRL

approaches are reviewed and one is selected to apply the decomposition in the HRL

learning method to ant colony optimization (ACO) learning. The majority of HRL

methods rely on the theory of semi-Markov decision processes to allow the decom-

position and develop an algorithm which converges on a near-optimal solution [2].

This chapter presents the basis for reinforcement learning, Markov decision processes

(MDP) [20], current hierarchical reinforcement learning methods, and techniques used

by MAXQ HRL. It further identifies the MAXQ framework developed by Dietterich [4]

to adapt for ant colony optimization. Finally, it explores the ACO domain and

presents the algorithms used in merging the two areas to create a version of ACO

which scales to larger problem spaces.

2.1 Markov and Semi-Markov Decision Processes

The majority of reinforcement learning methods are based on Markov decision

processes. MDPs provide a simple, discrete-time state and action framework to study

4

algorithms and the derived properties [2]. A MDP models problems as a sequence of

stages represented by the state of the system s, in which an event of action a occurs,

resulting in a state s’. The agent receives a real-valued reward r, evaluated from

a function based on the state-action pair, (s,a). A policy determines the action the

agent performs for a given state. The policy is what reinforcement learning algorithms

search for, hopefully converging towards an optimal policy π∗.

For any given policy π and state s, an expected infinite-horizon discounted return

can be calculated as shown in Equation 2.1. This constitutes the value function for

policy π at state s.

V π(s) = E{rt+1 + γrt+2 + γ2rt+3 + · · · |st = s, π} (2.1)

The objective again is to find an optimal policy π ∗ that maximizes the value function

for every state in the problem. Another method to determine an optimal policy is to

utilize a state-action function. This separates the value function in Equation 2.1 into

a state-action pair function, see Equation 2.2. It denotes the expected infinite-horizon

discounted return for executing action a in state s, selected by policy π.

Qπ(s, a) = E{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, at = a, π} (2.2)

The optimal policy selects the maximum state-action value as the selected action in a

given state. The value functions referring to an optimal policy are denoted by V∗ and

Q∗. Using the Bellman equation, reinforcement learning methods use these equations

to produce the optimal value functions, V∗ see Equation 2.3, Q∗ see Equation 2.4.

V ∗(s) = max
a∈As

[R(s, a) + γ
∑

s′
P (s′|s, a)V ∗(s′)] (2.3)

Q∗(s, a) = R(s, a) + γ
∑

s′
P (s′|s, a) max

a∈A’s
Q∗(s′, a′) (2.4)

5

These lend to the ability for dynamic programming and reinforcement learning meth-

ods to abstract the current and resultant state space from the overall problem and

remove the need to know about the rest of the state space. All recent reinforcement

learning methods generalize the MDPs into semi-Markov decision process SMDP [2].

A SMDP creates a discrete time step to make a decision, removing the continous

nature of MDPs and allowing an agent to appear to wait for a given amount of time

and instantaneously transition to the next state [11]. By including this positive time

step into the above optimal value function equations, the Bellman equations for V∗

and Q∗ become [2]

V ∗(s) = max
a∈As

[R(s, a) + γ
∑

s′,τ

P (s′, τ |s, a)V ∗(s′)] (2.5)

Q∗(s, a) = R(s, a) + γ
∑

s′,τ

P (s′, τ |s, a) max
a∈A’s

Q∗(s′, a′). (2.6)

2.2 Reinforcement Learning

Using the functions presented above, a reinforcement algorithm attempts to

learn an optimal value function for an unknown SMDP. Following the model of an

MDP, the agent knows the current state and the actions available. The algorithm

chooses an action and observes the resultant state and reward. We focus on three

learning methods, two used by Dietterich in his MAXQ HRL method, Q learning [22]

and SARSA(0) [17] and the ant colony optimization algorithm, Ant-Q [7], for adap-

tation into the MAXQ HRL decomposition. Adapting the state-action pair functions

from above, the value function equations are similar for all three learning methods,

the value is updated after every iteration of performing an action and observing the

resultant state and reward.

2.2.1 Q-Learning. Q-Learning was introduced by Watkins [22] as a rein-

forcement learning method designed to handle a non-deterministic MDP. Originally

6

defined as a dynamic programming method to provide a framework for learning algo-

rithms, Watkins Q-learning became a standard reinforcement learning technique [22].

Q-learning relies on a value function using the current state and possible action

to control the agent. Shown in Algorithm 1, in Q-learning the agent searches for the

best possible value function and uses an ε-greedy action selection policy to decide

what action to take at each state. An ε-greedy selection algorithm takes the highest

Q-value function result the majority of the time, but makes a random action with a

probability of ε [20]. This stochastic nature ensures if enough trials are completed,

all possible actions will be selected and the optimal policy learned [20]. Updating

Algorithm 1 Q-Learning Algorithm [20]

1: Initialize Q(s, a) arbitrarily
2: repeat
3: Choose action, a from state, s using policy derived from Q(s, a), (ε-greedy)
4: Take action, a, observe new state, s′, and reward, r
5: Update Q(s, a) value
6: Accept new state, s ← s′

7: until s is terminal

Q(s, a) value function follows Equation 2.7.

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)], (2.7)

where αt is the learning rate [22]. Q-learning has been proven to converge to the

optimal action-value function Q∗ with probability of 1 [10] if the following holds true

lim
T→∞

T∑
t=1

αt = ∞ and lim
T→∞

T∑
t=1

α2
t < ∞. (2.8)

2.2.2 State action reward state action (SARSA) Learning. SARSA, was

introduced by Rummery [17] as a reinforcement learning method able to handle any

MDP. It is similar to Q-learning with additional arguments to perform the Q(s, a)

value functions updates. The algorithm also includes an additional action selection

step, see Algorithm 2. The name comes from the quintuple used to perform the

7

update, s current state, a action, r reward observed, s′ next state, a′ next action

selected. The algorithm change involves a second action selection using the next state

and its possible actions. The SARSA value function update is:

Algorithm 2 SARSA Learning Algorithm [17]

1: Initialize Q(s, a) arbitrarily
2: repeat
3: Choose action, a from state, s using policy derived from Q(s, a), (ε-greedy)
4: Take action, a, observe new state, s′, and reward, r
5: Choose action, a′ from state, s′ using policy derived from Q(s′, a′), (ε-greedy)
6: Update Q(s, a) value
7: Accept new state, s ← s′ and action selected, a ← a′

8: until s is terminal

Q(s, a) ← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)], (2.9)

where αt is the learning rate [17]. SARSA’s learning function will also converge to

the optimal action-value function if it follows equation 2.8 and uses a GLIE policy

to choose actions. A GLIE (Greedy in the Limit with Infinite Exploration) policy is

any policy satisfying: 1) each action is executed infinitely often in every state that is

visited infinitely often; and 2) in the limit, the policy is greedy with respect to the

Q-value function with probability 1.

2.3 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) decomposes a complex reinforcement

learning problem into manageable parts. Techniques include separating the problem

across sets of machines designed to perform pre-determined tasks [14], splitting the

problem into a set of temporal tasks, called options [21], and creating a hierarchy of

tasks to solve the problem [4]. All methods decompose the large problem into smaller,

more manageable parts that then have individual solutions that combine to create a

final solution. These methods were created to battle the issue of large state space by

reducing the processed state space each part requires.

8

2.3.1 Hierarchical Abstract Machines. A HAM is a program which places

a set of constraints on the policy for a learning agent. The constraints limit the

actions possible given a state and the HAM [14]. These machines can be created in

a hierarchy, a tree structure, to provide a set of constrained policies and constrained

actions possible [14]. The hierarchy allows the highest level to learn only when to use

a lower level action, versus attempting to learn the entire state. This abstraction is

useful for complex behaviors in robots and complex problems, including multiple goal

systems.

The machines in a HAM are defined by a set of states, a transition function, and

an initialize function [14]. There are four possible state types within a machine [14]:

• Action - execute an action in the environment

• Call - call another HAM as a subroutine

• Choice - a nondeterministic state transition

• Stop - halts execution and returns to previous HAM.

The transition function stochastically moves the machine state from one to another

after an action, choice, or call is completed. The transition function takes the current

state and environment into account while transitioning to another state. This allows

the learning to affect the environment and the environment to affect the learning [14].

Parr does explain the environment can be partially observable and the machines can

still function, but assumes the environment is completely observable in the tests [14].

A HAM is started with a single machine which controls the execution of all other

machines and monitors the completion of all machine actions. Parr uses a grid world

to explain the setup of the navigation HAM. The grid world is made up of a series

of hallways and intersections with randomly placed obstacles in the hallways. Parr’s

navigation HAM has three layers to it. The top layer is a machine used to choose the

direction of movement down a hallway in one of four cardinal compass points [14].

This machine is used as the initial start machine in the HAM. The second level is

9

a set of four machines which actually move the agent in the specified direction [14].

These machines introduce the constraints of individual machines within the HAM.

Each machine only selects an action in line with the direction they are specified

to move the agent in [14]. Within these directional machines, a choice is made to

handle obstacles in one of four ways, two back away from the obstacle and the others

follow walls in an attempt to circumvent the obstacle [14]. The final layer in the

HAM activates the primitive controls on the agent to perform the selected actions.

The transition function within Parr’s navigation HAM uses partial state descriptions

(from sensors) to move the state from machine to machine and produce an output

action for the agent to undertake.

Since HAMs operate and learn within a reduced state space, the learning rate is

faster and exploration occurs more with HAM than a simple reinforcement learning

algorithm [14]. Parr developed a HAMQ, which takes the concepts from Q-learning

and applies the HAM concepts. The addition of machine state takes the Q value

function from Equation 2.7 to

Q([sc,mc], a) ← Q([sc,mc], a) + α[rc + βcV ([t, n])−Q([sc,mc], a), (2.10)

which extends the state action pair to the state, machine state action triplet [14].

Since it is based off of Q-learning, HAMQ also converges to the optimal policy for

any state with probability of 1 [14] [22].

The hierarchical learning done HAMs is based upon a set of machines with con-

straints on possible actions selected from each machine. The ability for one machine

to call another and vice versa creates a linkage between all machines and can be

implemented to learn the optimal policy given the set of machines can cover the set

of all possible actions [14]. Parr demonstrated HAMs can be used in reinforcement

learning domains with a decrease in convergence time [14].

10

2.3.2 Option Hierarchy. The second method of HRL is Sutton’s option

method. Sutton attempts to abstract complex problems using temporal abstractions

[21]. This abstraction follows how people think of an action or goal. For example,

if someone wants to call a taxi, they must lookup the number, pick up the phone,

dial the number, and talk to the taxi dispatcher. This series of actions are abstracted

by the person into one goal, call a taxi. However, the abstraction does not stop

there; each of those goals can be broken into the individual actions require to satisfy

those goals [21]. Sutton attempts to use temporal abstraction as the basis to create

a hierarchy of actions and have an agent learn and perform complex actions and

multiple goals [21].

Since reinforcement learning techniques use the Markov assumptions to limit

state knowledge to previous state and current state, many cannot take advantage

of temporal abstraction [21]. Therefore, Sutton introduces SMDPs and uses the ex-

tended reinforcement learning techniques to allow for these discrete-event continuous-

time models which can take a variable amount of time into consideration [21]. Sutton

merges the concepts between MDP and SMDPs by splitting the unknown variable

time steps for SMDPs into set length time steps. He can accurately perform rein-

forcement learning using temporal abstractions with his options methods [21].

Options consist of three parts: a policy to select actions, a termination condition,

and an initiation set. The initiation set is the set of requirements before the policy

is allowed to be invoked [21]. If the option is to take an action with an MDP, the

algorithm handles it just like Q-learning. With the assumption that the option will

complete the task or at least know when it can be terminated based on the termination

function [21]. If the option requires using a SMDP, there is an additional timeout

function used to ensure the option does not continue indefinitely [21]. The actions

selected are not merely based upon st, the options take the state history into account;

allowing the invocation of actions based upon a series of time steps (artificial or

not) [21].

11

There can be two types of options: primitive options which are single time

step actions; and multi-step options which take a variable amount of time to perform

multiple actions. The multi-step options rely on the primitive options to perform

the actual actions as they are similar to the state action pairs used by reinforcement

learning [21]. Since the options are defined similarly to actions and can be terminated

in a set way, a program can create a sequence of options and provide a higher option

to call the sequence of lower options, creating a temporal abstracted hierarchy. Using

a simple grid world with a set of rooms and adjoining hallways, Sutton demonstrates

how an option policy can be used to perform complex actions and achieve multiple

goals. For instance if an agent needs to get from one room to another and place

something down in a corner, a set of options can be created. The high level option

is the sequence of options, move to second room, move to corner, and place object

down. These three options in turn create their own sequence of options, multi-step

or primitive. The hierarchy is built until all options can be terminated by a set

of conditions. An additional bonus is the ability for options to share termination

conditions between sets [21].

The hierarchy allows the options to learn a policy based on abstraction. Similar

to Parr’s HAMs, the options method creates levels of abstraction to alleviate issues

with complex state spaces. Options can additionally handle SMDPs with temporal

abstraction since the policies take a small history of states into account and artificially

produce a MDP based on constant time steps [21]. Sutton showed the options method

can effectively and efficiently provide solutions for complex problems and multiple goal

problems. The learning and planning rate decreased over basic reinforcement learning

techniques by the addition of the option hierarchy [21].

2.3.3 MAXQ. All basic algorithms for learning or planning are considered

”flat” - they treat the search space as one flat space; they do not take into account

steps or hierarchies in the problem. MAXQ was developed by Dietterich as a method

to allow for hierarchical MDPs to be learned by a system [4]. HRL methods take the

12

search space and decompose it into a hierarchy of subtasks in one of three documented

methods. The first method, employed by Sutton takes an option method, where

the policy is fixed and implemented by the programmer [21]. The second method

defines the subtasks in terms of a non-deterministic finite-state controller, used in

Parr and Russell’s hierarchy of abstract machines [14]. The final method, used in

MAXQ, defines the subtasks in terms of a termination predicate and a local reward

function [4]. Where the first two methods rely on reducing the problem into a single

SMDP, MAXQ reduces the problem to a set of SMDPs, who’s policies can be learned

simultaneously. All three methods do share a common drawback, the learned policy

may be suboptimal. Nonetheless, the learned policy will be the best possible policy

based on the constraints introduced by the programmer [4].

The task of the taxi problem, described in detail in Section 3.1, illustrates

the need to support temporal abstraction, state abstraction, and subtask sharing.

Temporal abstraction is needed as the different subtasks take differing amounts of time

and this is inconsequential for the policy learning [4]. State abstraction is needed to

prune irrelevant state components from the overall problem solution. Finally, subtask

sharing allows the learning algorithm to learn the subtask policy once and reuse the

subtask as needed again in the hierarchy [4].

The first step to solve a hierarchical problem is to identify the subtasks, primitive

actions, and related hierarchy, taking each need from above into account; Figure 2.1

shows an example of a task graph for the taxi problem. The decomposition takes

the core MDP and separates into a set of subtasks, these subtasks could be primitive

actions or other subtasks. The hierarchy creates a dependency between the root

task and the subtasks, where the solution of the root is based on the solution for

the subtask [2]. An important aspect of the task graph is the arbitrary order of

children, the order is determined by the policy at the parent’s level. The graph only

limits the action choices at each subtask [4]. Each of these subtasks contains three

components. First, it has a subtask policy πi, which dictates the selection order of

its children. Second, each subtask has a termination predicate, which identifies when

13

Figure 2.1: A task hierarchy graph for the Taxi World Problem.

the subtask policy is complete and can stop execution. Third, each subtask a pseudo-

reward function that assigns reward values to all states encountered in the subtask [4].

MAXQ adds one additional component to allow for a series of SMDPs to be solved,

a stack containing the subtasks hierarchy called is passed into each subtask called.

At any given time, the top of the stack stores the current subtask. This allows the

individual subtasks to not be concerned with the state outside of its SMDP.

Given the hierarchical decomposition into n subtasks, as described by the task

graph, a hierarchical policy is defined as π = π0,...,πn, where πi is the policy of subtask

i. The hierarchical value function used by MAXQ is defined as

V π(i, s) = V π(πi(s), s) +
∑

s′,τ

P π
i (s′, τ |s, πi(s))γ

τV π(i, s′), (2.11)

where Vπ(i,s) is the expected return for completing subtask i. Similarly, the state-

action value function, can be defined as

Qπ(i, s, a) = V π(a, s) +
∑

s′,τ

P π
i (s′, τ |s, πi(s))γ

τQπ(i, s′, π(s′)). (2.12)

14

Dietterich identifies the summation in the state-action value function as the comple-

tion function, Cπ

Cπ(i, s, a) =
∑

s′,τ

P π
i (s′, τ |s, πi(s))γ

τQπ(i, s′, π(s′)), (2.13)

which gives the expected return for completing subtask i after subtask a is performed.

Rewriting Equation 2.12 using the completion function yields

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a). (2.14)

These equations allow the hierarchical value function to be represented, assuming n

subtasks, in set order ai, i0n, starting at the root.

V π(0, s) = V π(an, s) + Cπ(an−1, s, an) (2.15)

+ · · ·+ Cπ(a1, s, a2) + Cπ(0, s, a1), (2.16)

where

V π(an, s) =
∑

s′
P (s′|s, an)R(s′|s, an). (2.17)

The decomposition is the foundation for the MAXQ learning algorithm, which

is able to learn hierarchical policies. The algorithm is recursively applied to a form

of a SMDP Q-learning to estimate the completion function for subtasks. If the agent

follows the GLIE policy, Section 2.2.2, and is further constrained to break ties in

the same order, the algorithm converges with probability 1 to the unique recursively

optimal policy fir the root task in the task graph [4]. A recursively optimal policy

is a hierarchical policy such that for all subtasks, the subtask policy is optimal for

that SMDP [4]. This differs from hierarchical optimal policy, which is optimal across

all the policies learned within the hierarchical constraints [2]. Dietterich chose to

pursue the weaker recursively optimal policy to allow for subtask reuse. By creating

the optimal subtask policy, it allows the policy learned to be used regardless of the

15

parameters passed in to the subtask. This reuse reduces the time needed to learn a

subtask and thus reduces the overall problem time requirement [2].

Dietterich provides two versions of the MAXQ algorithm. First, MAXQ-0 which

assumes only at the completion of the subtask will the agent receive a reward. Second,

MAXQ-Q which allows the addition of a pseudo-reward. For instance, as described

in the taxi problem, each movement has a reward of -1, a bad pickup/putdown is -20.

These rewards are taken into consideration for the learning of the recursively optimal

policy, adding additional computations to the value function.

Algorithm 3 MAXQ-Q Algorithm [4]

1: {function MAXQ-Q(MaxNode i, State s)}
2: let seq = (), be the sequence of states visited while executing i
3: if i is a primitive MaxNode then
4: execute i, receive r, and observe result state s′

5: Vt+1(i, s) ← (1− αt(i)) · Vt(i, s) + αt(i) · rt

6: push s onto the beginning of seq
7: else
8: let count = 0
9: while Ti(s) is false do

10: choose an action a according to the current exploration policy πx(i, s)
11: let childSeq = MAXQ-Q(a,s), where childSeq is the sequence of states visited

while executing action a. (in reverse order)
12: observe result state s′

13: let a∗ = arg maxa′ [C̃t(i, s
′, a′) + Vt(a

′, s′)]
14: let N = 1
15: for each s in childSeq do
16: C̃t+1(i, s, a) ← (1−αt(i))·C̃t(i, s, a)+αt(i)·γN [R̃i(s

′)+C̃t(i, s
′, a∗)+Vt(a

∗, s)]

17: Ct+1(i, s, a) ← (1− αt(i)) · Ct(i, s, a) + αt(i) · γN [Ct(i, s
′, a∗) + Vt(a

∗, s′)]
18: N ← N + 1
19: append childSeq onto front of seq
20: s ← s′

21: return seq
22: {end MAXQ-Q}

16

2.4 Ant Colony Optimization

Mimicking the foraging behaviors of a colony of ants, an algorithm can be used

to model the ants activities and the natural strategy used by the colony. ACO at-

tempts to follow these ideas based on the laying of pheromone across the ant’s path

to mark the path taken [5]. Using the concept of a metaheuristic, ACO can be used

to provide solutions for many NP-complete problems [5]. Since the emerging behavior

for following the basic ACO metaheuristic algorithm, Algorithm 4, results in the ants

finding the shortest path from a source to a destination, the most common problem

ACO is tested against is the traveling salesman problem [3].

Algorithm 4 The Ant Colony Optimization Metaheuristic [5]

1: Set parameters, initialize pheromone trails
2: while termination condition not met do
3: for m = 1 to M do
4: {Construct ant solutions}
5: Initialize partial solution, Sp

m = ∅
6: repeat
7: Select a feasible solution component using stochastic selection, N(Sp

m)
8: {Selection based on Equations 2.18 and 2.19}
9: Add solution component to partial solution, Sp

m ∪N(Sp
m)

10: until Sp
m is a full solution

11: {Apply local search (optional)}
12: Perform local search to solutions found (problem specific)
13: {Update pheromone}
14: Decrease all pheromone through evaporation
15: Increase pheromone associated with the set of good solutions
16: {Pheromone updates based on Equations 2.22 and 2.23}

Following the ACO metaheuristic several versions have been created to handle

different NP-complete problems by creating a unique model for the assigned problem.

It has covered domains from the TSP to the quadratic assignment problem. This

range of problems has made ACO a viable algorithm for those complex domains [5].

These ACO variations not only generate solutions for specific problems, but are also

enhancements to the metaheuristic including modifications to the algorithm [3]. These

variations are discussed in the following sections.

17

2.4.1 Ant Colony System. The ant colony system (ACS) uses the ACO

metaheuristic to mimic the real world behavior of an ant colony and its method of

finding and remembering a food source location [3]. This memory is created by the

introduction of a pheromone matrix used by ACS to save the results of an ant learning

a path. ACS uses a positive feedback method to reinforce the better solution found by

a set of ants [3]. The stochastic nature of the ant system allows a solution to escape

from local minima and promote better exploration of the solution space. Since ACS

is considered a local search, an optimal solution is not guaranteed [6]. However, the

computation requirements are significantly less for ACS than a deterministic global

search [3].

The premise of the ACS is to track the tours found by a set of ants across a

period of time and update the solutions created with an additional update to the

best solution discovered so far. Each ant finds a solution based on a series of next

city selections. ACS exploits a candidate list, a set of the cl closest cities to the

starting city, where cl is constant. When the candidate list is empty, the ant selects

the closest city from those remaining. If the candidate list is not empty, a probability

is generated, if it is below a threshold, q0, the city is selected based on

j = arg max
u∈Jk

i

{[τiu(t)] · [ηiu]
β}, (2.18)

where i is current city, k is ant, Jk
i is remaining cities, τiu(t) is the pheromone across

edge (i, u), ηiu is the visibility of u from i, and β is a constant. If greater than q0, the

selection is based on the probability

pk
ij(t) =

[τij(t)] · [ηij]
β

∑
l∈Jk

i
[τil(t)] · [ηil]β

. (2.19)

These three selection criteria promote exploitation and exploration of the solution

space. The max argument selection allows the ant to follow the pheromone, the

probability selection allows the ant to selection another path away from the strongest

18

pheromone, and the closest city selection is a local-greedy search [3]. After an ant has

selected the next city, Equation 2.20 shows the local update to the pheromone on the

selected edge.

τij(t) ← (1− ρ) · τij(t) + ρ · τ0, (2.20)

where ρ is a constant and τ0 is

τ0 = (n · Lnn)−1, (2.21)

Lnn is the tour length found through the nearest neighbor heuristic. After all ants

have found a complete tour, a comparison between each ant’s solution and the current

best solution found is made. If an ant has a better solution, the shortest path and

length are updated. A global pheromone update is then made based on the best

solution currently found

∀(i, j) ∈ T+, τij ← (1− ρ) · τij(t) + ρ ·∆τij(t), (2.22)

where

∆τij(t) = 1/L+, (2.23)

and T+ and L+ are the shortest tour and length respectively. This process of ants

finding solutions and updating pheromone is repeated for a constant number of time

steps. The last shortest path saved is the best path found through all episodes and

the pheromone matrix represents the learning performed by the algorithm. Since it

is a valid documented stochastic approach to solving the TSP, ACS provides a solid

algorithm to build the clustering onto and compare results against [3].

2.4.2 Other Variations. There are other versions of ACO used to generate

solutions for problems. The first documented ACO algorithm, ant system’s (AS)

main characteristic is that pheromone values are updated by all ants who generate a

solution each iteration. Similar to ACS’s global pheromone update, AS updates the

19

pheromone on a selected edge by

τij ← (1− ρ) · τij +
M∑

k=1

∆τ k
ij, (2.24)

where ρ is the evaporation rate, M is the number of ants, and ∆τ k
ij is

∆τ k
ij =





Q/Lk, if ant k used edge (i, j) in its tour,

0, otherwise

, (2.25)

where Q is a constant, and Lk is the length of the tour generated by ant k [5]. The

edge selection in AS is determined by the probability calculation,

pk
ij =





τα
ij ·ηβ

ij∑
cil∈N(S

p
k
)
τα
il ·ηβ

il

, if cij ∈ NSp
k ,

0, otherwise

, (2.26)

where N(Sp
k) is the set of possible edges and ηij is the visibility function,

ηij =
1

dij

, (2.27)

where dij is the distance between cities i and j [3].

The next variation of ACO, MAX-MIN ant system (MMAS)changes two aspects

of AS. It allows only the best ant to update the pheromone and bounds the pheromone

value [5] [19]. Modifying Equation 2.24 for the single best ant pheromone update

results in

τij ← [(1− ρ) · τij + ∆τ best
ij]τ

max

τmin
, (2.28)

where τmax and τmin are the pheromone bounds [5]. If the resultant pheromone value

is outside the declared bounds, it is changed to the nearest limit [19]. Using the best

20

ant also modifies Equation 2.25 by removing the constant Q resulting in

∆τ best
ij =





1/Lbest, if (i, j) is in the best tour,

0, otherwise

, (2.29)

where Lbest is the length of the best tour. This value may be either the best tour

found that iteration, iteration-best, the best solution found through all iterations,

best-so-far, or a combination of both [19].

2.5 Data Clustering

Data clustering is used to group data into common sets using an unsupervised

method. Much like the HRL problems and TSP, clustering is a difficult problem

combinatorially and deterministic algorithms are not available. Therefore, stochas-

tic algorithms to estimate the final cluster solutions have been develop to provide

near-optimal solutions with significantly less computational times. These algorithms

provide the TSP task decomposition used to merge ACO domain with HRL meth-

ods. This research looks at two common clustering algorithms which meet this goal,

k -means and G-means.

2.5.1 k-Means. Data clustering by the k-means algorithm is a stochastic

search and cannot guarantee the optimal clustering solution. The objective is to

cluster a two dimensional data set into clusters based on the given attribute values [13].

The mathematical objective is to minimize the global error of all clusters [13]

min E =
k∑

i=1

∑
xj∈Si

|xj − µi|2, (2.30)

where there are k clusters of data points Si and µi is the mean of each cluster’s data

points.

21

The number of clusters, k, is determined before any clustering begins. The

algorithm begins with a random selection of these k means. All data points are then

assigned to the closest mean. After all data sets are determined, the means’ locations

are recalculated based on the attribute values of the data points assigned to them.

The process is then repeated until a predetermined convergence rate is passed; when

the total delta of the means is less than a threshold. This signals convergence of the

algorithm and clustering is considered complete.

This stochastic nature of the initial means determination causes issues with the

optimality of the final solution. Documented performance of the algorithm has shown

the final solution quality depends heavily on the initial mean selection [9]. With the

presented algorithm, no care is taken with the initial selection and the solution may

actually decrease the effectiveness of the partitioning efforts. The other issue with the

k-means algorithm is the set number of clusters, predetermined before the algorithm

begins. With an incorrect number of clusters, results are varied and of low quality [9].

2.5.2 G-Means. The issues with k-means clustering stem from the assump-

tions made about the data set. The center-based clustering algorithms, k-means

included, assume the data is in a unimodal distribution, such as Gaussian [9]. There-

fore, only one mean should represent the data in that distribution. Using too many

means create a complex and inefficient representation. Likewise, using too few ab-

stracts the distribution differences and creates a too simple data representation [9].

With a constant k value, k-means cannot distinguish between the complex and ab-

stracted representations. G-means alleviates the need to predetermine k and uses a

statistical calculation to decide whether to split a simple mean into two or keep it the

same [9].

The algorithm performs the clustering in the same manner as k-means with a

possibly increasing k after each episode. A set of means is created, starting with only

one mean. The G-means algorithm calls the k-means with the single mean. The data

is then clustered and examined. Hamerly discusses the use of the Anderson-Darling

22

statistic in determining if a mean should be split or not [9]. The statistical calculation

to be examined, modified for mean estimation [9]

A2
∗(Z) = A2(Z)(1 +

4

n
− 25

n2
), (2.31)

where

A2(Z) = − 1

n

n∑
i=1

(2i− 1)[log(zi) + log(1− zn+1−i)]− n (2.32)

These equations provide the test for the split of a cluster. The algorithm follows these

steps to determine is a cluster is to be split. A mean is selected and a significance

level α is chosen. Two centers are initialized based on the selected mean. Hamerly

suggests two methods to determine the new means. The first is to select a small

vector, m, which provides two new means at µ±m [9]. The second method finds the

main principal component s of the data (with an eigenvalue of λ) and produces

m = s

√
2λ

π
, (2.33)

which provides the two new centers [9]. For this application, we have selected the first

version to avoid complex calculations within the partitioning method. The algorithm

then runs k-means on the data set and the two new starting means. The means

calculated by k-means produce a vector between them, v = c1 − c2. The algorithm

projects the data onto the new vector v by

∀x ∈ X, x′ = 〈x, v〉/‖v‖2, (2.34)

and transforms it to a mean of 0 and variance of 1. Finally, zi is calculated and

substituted into Equation 2.31. If A2
∗(Z) is within the confidence level α, then reject

new means and replace original one. Otherwise, discard the original mean and accept

the new ones. Hamerly showed this algorithm correctly identifies the number of

centers needed regardless of the data distribution or density [9]. By using G-means,

23

the clusters will not have a predetermined k value and should more accurately and

effectively partition the data.

2.6 Summary

The methodologies presented in this chapter represent the basis for this research.

The problem decomposition by a hierarchical reinforcement learning method, allow

a large and complex problem to be solved individually and combined in some hier-

archical manner to produce a feasible solution. Whether the decomposition be done

to use a set of machines, temporal state options, or a hierarchy of tasks, the smaller

problems can be solved faster and with less computational requirements. In addi-

tion, the introduction of ant colony optimization as a possible reinforcement learning

method will provide insight into the possibility of transferring the HRL techniques to

its domain.

24

Algorithm 5 ACS-TSP Algorithm [3]

1: /* Initialization */
2: for every edge (i, j) do
3: τij = τ0

4: Generate a candidate list for each city
5: for k = 1 to total number of cities do
6: Place ant k on a randomly chosen city
7: Let T+ be the shortest tour found and L+ be its length

8: /* Main Loop */
9: for t = 1 to tmax do

10: for k = 1 to M do
11: /*Solution Construction*/
12: Get a local copy of all candidate lists
13: Build tour tk by doing the following n− 1 times:
14: if the candidate list is not empty then
15: Choose the next available city, j ∈ Jk

i in the candidate list as follows:
16:

j =

{
argmaxu∈Jk

i
{[τiu]

α × [ηiu]
β}, when q ≤ q0

J, otherwise

17: where J ∈ Jk
i is chosen according to the probability:

18:

p =
[τiu]

α × [ηiu]
β

∑
l∈Jk

i
[τil]α × [ηil]β

19: and where i is the current location
20: else
21: choose the closest j ∈ Jk

i

22: Remove j from all local candidate lists

23: /* Local Pheromone Update */
24: After each transition ant k applies the local update rule:
25: τij = (1− ρ)× τij + ρ×∆τ0

26: for k = 1 to total number of cities do
27: if an improved tour is found by ant k then
28: update T+ and L+

29: /* Pheromone Reinforcement */
30: for every edge (i,j) ∈ T+ do
31: Update pheromone trails by applying the rule:
32: τij = (1− ρ)× τij + ρ×∆τij, ∆τij = 1/L+

33: /* Done */
34: print the shortest tour and its length

25

III. MAXQ with Ant-Q Learning

This chapter introduces ant colony optimization to the concepts promoted in Diet-

terich’s MAXQ. It replaces the basic reinforcement learning methods used, Q-learning

and SARSA, with a basic ant colony optimization algorithm, Ant-Q. Exploiting the

similarities between Q-learning and SARSA, the modification of MAXQ to use Ant-Q

is completed with only a few modifications. The major difference stems from Ant-Q’s

use of multiple agents or ants during every episode and at each level. These additional

ants provides the value function with more updates and more state information. The

domain used to showcase the modified algorithm is the taxi world problem.

3.1 Taxi World Problem

Described by Dietterich [4] and used throughout his research as an example

domain, the Taxi World is a grid world problem. Given a grid of size l x m with walls

described as lines between grid cells that block movement between the separated cells.

Four destinations are located randomly across the grid, labelled as red, blue, green,

and yellow. The passenger starts randomly at one of these four locations. The taxi can

start at any grid location. The GLIE policy imposed is for the taxi to first navigate

from it’s start location to the passenger’s location. Second, pickup the passenger.

Third, navigate from the passenger’s start location to the passenger’s destination.

Fourth, drop off the passenger. This series of tasks is considered an episode [4]. The

tasks are identified in Figure 3.1, where the leaf nodes are primitive actions and the

parents subtasks.

There are six defined primitive actions in this domain (a) four navigation actions

that move the taxi one square North, South, East, West, (b) a Pickup action, and (c)

a Putdown action. The rewards are -1 for each action, +20 for successfully delivering

a passenger, -10 if the taxi attempts to execute the Pickup or Putdown illegally. In

a world size of 5x5, there are 500 possible states: 25 squares, 5 locations for the

passenger (counting four destinations and the taxi), and 4 destinations [4]. Figure

3.2 shows an example 5x5 Taxi World problem. The labeled squares represent the

26

Figure 3.1: A task hierarchy graph for the Taxi World Problem.

Figure 3.2: A sample problem grid (5x5) for the Taxi World

27

Taxi (T), the four possible destinations (R, G, B, and Y), the passenger is picked

up from one destination and dropped off at another. The heavy lines indicate walls

or obstacles the taxi cannot cross (adding constraints to the problem). All problems

used in this research are formed similar to this example, with varying sizes, number

of obstacles, and destination locations. This domain lends itself to the natural task

decomposition shown in Figure 3.1.

3.2 Ant-Q

Based on the basic ACO algorithm, Ant-Q was developed to merge Q-learning

with the ACO concept [7]. Using the ACS algorithm to perform action selection and

pheromone updates, Ant-Q matches the Q-learning value functions with its own Q-

value function, AQ(s, a), where s is the current state and a is the selected action.

It returns the value of performing the action a from the state s. The concept is the

same as Q-learning with the addition of multiple runs by multiple agents to solve the

problem [7].

However, Ant-Q uses a different learning method than Q-learning or SARSA.

Ant-Q uses a pseudo Q-value function as the value function with a similar but varied

learning function:

AQ(s, a) ← (1− α) · AQ(s, a) + α · [∆AQ(s, a) + γ max
a′

AQ(s′, a′)], (3.1)

where AQ(s,a) is equivalent to Q(s,a) and ∆AQ(s,a) is the delayed reward update.

Ant-Q also provides a method to update the AQ-value function with delayed re-

inforcement. Gambardella and Dorigo discuss two methods, a global-best and an

iteration-best delayed update [7]. The global-best update is calculated by

∆AQ(s, a) =





W/Ck, if (s,a) is performed by global best ant k

0, otherwise

. (3.2)

28

The iteration-best update is the same calculation, but based upon the iteration’s best

ant, not the global best,

∆AQ(s, a) =





W/Ck, if (s,a) is performed by iteration best ant k

0, otherwise

, (3.3)

where W is a constant set to 10, based on the ant system value [7]. Gambardella and

Dorigo selected the iteration-best as the main source of delayed reinforcement update

based on results of both methods [7].

Similar to the ε-greedy selection of Q and SARSA, Ant-Q uses a probability

calculation to determine the action selection. An action is selected by policy with

a probability greater than the constant q0, otherwise a random possible action is

selected [7]. This random action selection allows the algorithm to explore the state

space more and is one of the foundations for Ant-Q [3]. The stochastic calculation is

based on the probability

Pa(s) =
[AQ(s, a)]δ · [HE(s, a)]β∑

u∈As
[AQ(s, u)]δ · [HE(s, u)]β

, ifa ∈ As (3.4)

where δ and β are constants, u is all action possible actions, and HE(s, a) is a

heuristic evaluation for the state action pair [7] (Note: δ is used in this text in place the

common α parameter to avoid confusion with the HRL α parameter). The similarities

between Ant-Q, Q-learning, and SARSA allow Ant-Q to be easily incorporated into

any reinforcement learning algorithm but exploit the ACO metaheuristic.

3.3 MAXQ with Ant-Q Learning

Using the MAXQ algorithm as the foundation to apply Ant-Q learning to, the

resultant algorithm has four modifications:

1. Adaptation of the Ant-Q value function for primitive nodes (replaces Vt(i, s))

2. Iteration through the set of ants (adds to non-primitive node implementation)

29

3. Probabilistic action selection (replaces greedy policy)

4. Adaptation of the Ant-Q value function (replaces C̃t(i, s, a) and Ct(i, s, a))

These changes implement a version of the ant colony optimization metaheuristic

within the HRL algorithm, merging the two domains to solve larger problems faster.

The new algorithm is shown in Algorithm 6.

The first modification replaces the value function with the Ant-Q value function.

The Ant-Q value update changes from Equation 3.1 to

AQt(i, s) ← (1− αt(i)) · AQt(i, s) + αt(i) · rt(i). (3.5)

It replaces the ∆AQ with the reward for performing the primitive action. This sets

the AQ value function in line 5 to the basic Ant-Q learning and promotes the local

update of pheromone based on the primitive action selected.

The second modification implements the strength of ant colony optimization,

allowing a set of ants to solve the current task. By looping through M ants, see line

9, the algorithm creates the colony and creates the global pheromone matrix. This

matrix holds the Ant-Q value function value for primitive actions with a state-action

pair. In addition, a composite Ant-Q value function is created to store the higher

level node values given a state-action pair.

The next modification replaces MAXQ’s greedy policy for action selection with

Ant-Q’s probabilistic selection. The probability allows the ants to explore the solution

space more as it will generate a random action with probability, q0, see line 11. This

change doesn’t affect the overall algorithm as much as other modifications, as it is

similar to the ε-greedy policy currently used by MAXQ.

The final change modifies the composite value function. It replaces the current

MAXQ composite function with the Ant-Q value function. Since the MAXQ value

function takes an eligibility trace (reward degradation) into account, the Ant-Q value

function as described in Equation 3.1 can be modified to fit this desire. The reward

30

degradation is determined by the number of actions needed to make the current task

terminal [4]. Looking at the modified algorithm, see line 17, there is a second Ant-Q

value function created, a composite value. This composite value is used to identify

not primitive tasks and provide a value for the higher level task with a state-action

pair [4].

Algorithm 6 MAXQ-Q with Ant-Q Learning Algorithm

1: {function MAXQ-AntQ(MaxNode i, State s)}
2: let seq=() be the sequence of states visited while executing i
3: if i is a primitive MaxNode then
4: execute i, receive r, and observe result state s′

5: AQt+1(i, s) ← (1− αt(i)) · AQt(i, s) + αt(i) · rt

6: push s onto the beginning of seq
7: else
8: let count = 0
9: for k = 1 to M do

10: while Ti(s) is false do
11: choose an action a according to probability

Pa(s) =

{
[AQ(s,a)]δ·[HE(s,a)]β∑

u∈As
[AQ(s,u)]δ∗[HE(s,u)]β

if q0 ≤ q

random action a ∈ As otherwise

12: let childSeq = MAXQ-AntQ(a,s), where childSeq is the sequence of states
visited while executing action a. (in reverse order)

13: observe result state s′

14: let a∗ = arg maxa′ [˜AQCt(i, s
′, a′) + AQt(a

′, s′)]
15: let N = 1
16: for each s in childSeq do
17: ˜AQCt+1(i, s, a) ← (1 − αt(i)) · ˜AQCt(i, s, a) + αt(i) · γN [R̃i(s

′) +
˜AQCt(i, s

′, a∗) + AQt(a
∗, s)]

18: AQCt+1(i, s, a) ← (1−αt(i)) ·AQCt(i, s, a) + αt(i) · γN [AQCt(i, s
′, a∗) +

AQt(a
∗, s′)]

19: N ← N + 1
20: append childSeq onto front of seq
21: s ← s′

22: return seq
23: {end MAXQ-AntQ}

31

3.4 Summary

These identified modifications are used to create a MAXQ-AntQ algorithm used

to find a solution to multiple goal problem with a predefined task hierarchy. The new

algorithm demonstrates ant colony optimization techniques are useful in a hierarchical

reinforcement learning domain. Through rigorous testing of several taxi world prob-

lems, the MAXQ-AntQ algorithm demonstrates its ability to produce solutions faster

than the MAXQ-Q algorithm. This result provides the springboard to transfer the

HRL techniques to the ant colony optimization domain and the traveling salesman

problem, discussed in the following Chapter.

32

IV. Ant Colony System with Partioning

This chapter introduces the concepts promoted in Dietterich’s MAXQ to the ant

colony optimization domain. It exploits the task hierarchy used with the taxi world

problem and implements a hierarchy for the traveling salesman problem (TSP). Data

clustering algorithms are used to create these potential tasks within the TSP hierarchy.

These clusters are considered primitive tasks and are solved individually to aid in

the generation of a complete solution. The information presented in this chapter

identifies the problem domain, discusses the clustering algorithms, and then presents

the modifications done for this research.

4.1 Traveling Salesman Problem

The TSP is a problem used to demonstrate the complexity of the NP-complete

domain. It is simply described as given a set of cities, find the least cost route to

visit all cities and return to the starting city. In the standard version, used by this

algorithm, the problem is assumed to be symmetric, meaning the cost of traveling

from city a to city b is the same as traveling from city b to city a. Since the problem

is NP-complete, there is no effective algorithm to solve the general TSP.

The complexity of the TSP is based on the combinatorics of constructing a path

through all cities. If there are n cities, given a starting city, there are n− 1 cities to

choose as the next step in the path. The next city is chosen from a set of n− 2 cities

and so forth. Combining these values, results in a (n − 1)! search space. However,

since the problem is symmetric, the space can be divided by 2, resulting in a final

search space of (n− 1)!/2 [1]. This fast growing search space limits the ability to use

a deterministic algorithm to look for the optimal tour and stochastic algorithms are

created to more efficiently locate a feasible tour [1].

A sample TSP is shown in Figure 4.1. It has a city cardinality of five and there

are twelve possible tours to inspect. A tour consists of the ordered list of cities visited

and the cost of the path. The cost of a tour is calculated by the sum of connecting

edges in the tour, including the final edge from the last city back to the starting city.

33

(a) (b)

Figure 4.1: A sample TSP, (a) 5-cities and related edge costs (b) the optimal
solution for this TSP.

4.2 Data Clustering

To exploit the benefits of HRL, the TSP needs a task hierarchy imposed on

it. This research examines the use of data clustering to create this hierarchy. Two

algorithms are reviewed, k-means and G-means, discussed in the next two sections.

These algorithm partition the TSP into a set of subproblems, which when solved

individually combine to generate the complete solution.

4.2.1 k-Means. Each clustering method has a different manner to determine

the exact number of means used and the resultant size of the subproblems. The k-

means algorithm meets this objective fairly well if the number of means, k, is chosen

well. Following the guideline of reducing the overall problem to a TSP no larger

than 50 cities, the algorithm performs a simple calculation to determine a constant k

for the problem. By dividing the number of cities by 50, the partitioning algorithm

determines the k desired. Although this manner does not remove the issues present

with an inaccurate k value [13], it does allow the partitioning to aid in the overall

efficiency of the ACS algorithm.

In order to achieve the best partitioning, the algorithm assumes a uniform dis-

tribution with the k-means algorithm and moving the means in order to have each

34

subproblem contain a desired number of cities, C̄. This is an inaccurate assumption,

as seen with the examination of the TSPs. Therefore, the majority of the subprob-

lems are not balanced with the possibility of many subproblems only containing a few

cities while large subproblems remain, producing inefficiency. This inefficiency leads

to the addition of a better clustering algorithm to reduce the possibility of overlapping

means and inefficient partitioning. The G-means algorithm was selected to produce

the partitions, but also avoid the amount of issues possibly created by the constant k

value [9].

Algorithm 7 k-Means Clustering Algorithm [13]

1: k = n/C̄ {C̄ is desired cluster size}
2: for i = 1 to k do
3: mk = random coordinate within problem range
4: repeat
5: {Repeat calculations until no changes}
6: reset flag to no changes made
7: {Assign cities to cluster}
8: for i = 1 to n do
9: assignedt

n = minm(d(n,m))
10: if assignedt

n 6= assignedt−1
n then

11: flag changes made
12: {Recalculate cluster means}
13: for i = 1 to k do
14: mx

i =
∑n

j=1 jx,wherej∈Ci

|Ci|
15: my

i =
∑n

j=1 jy ,wherej∈Ci

|Ci|
16: until no changes made

4.2.2 G-Means. Using the documented benefit of G-means finding a better

number of means to represent the clusters, this version of the clustering hierarchy

algorithm uses the same principles presented in the k-means clustering but replaces

the clustering technique with G-means. G-means expands off of k-means but uses

a statistical test to determine if the current number of means is appropriate or if

additional ones are needed. The changes are all front-loaded against the k-means

algorithm, by placing another loop around the k-means clustering section of Algorithm

7.

35

Figure 4.2: A sample hierarchy for a 250-city TSP with the number of cities assigned
to each cluster.

The G-means clustering begins with 1 mean, performs k-means clustering, as-

signing all cities to the single cluster. The second step splits the current mean into

two children. The children are selected by adding and subtracting a vector from the

current mean, c to produce two new means located at m ± c. The data set is then

run through k-means again to assigned the cities to the two new child means and

recalculate their location. Once the cities are assigned, the algorithm calculates the

Anderson-Darling statistical test on the cities assigned to determine if the new dis-

tribution is accurately represented by the new means. If it is, the algorithm accepts

the children and replaces the single old mean with the two new means. If not accu-

rately represented, the children are rejected and the old mean remains. This process

is repeated until there are no more accepted splits or all clusters are below minimum

desired size. This minimum check avoids the possibility of clusters being too small and

negating the benefits of using a ant colony optimization technique on the problem.

4.3 HRL ACS with Clustering

The combination of the ACS with a data-clustering algorithm is straight-forward.

The objective is to effectively create a hierarchy of subtasks to partition the overall

problem into smaller TSPs. Unlike Dietterich’s MAXQ, the actual hierarchy is not

programmed by the developer, instead, the algorithm makes use of the data clustering

techniques to determine the actual hierarchy. Figure 4.2 shows a sample hierarchy

generated for a 250 city TSP. This hierarchy not only changes from problem to prob-

lem, but each episode of a problem could have a different hierarchy. The ability to

36

Algorithm 8 G-Means Clustering Algorithm [9]

1: k = 1 {start with 1 cluster}
2: m1 = random coordinate within problem range
3: use k-means to assign cities and recalculate means {see k-means algorithm, lines

6-16)}
4: repeat
5: {Repeat actions until no new splits made}
6: for i = 1 to k do
7: if |Ck| > C̄ then
8: let X ← cities assigned to Ci

9: create children means, mi1 = mi + c and mi2 = mi − c
10: perform k-means on X and new child means
11: calculate vector, v = mi1 −mi2

12: let X ′ ← projection of X onto v
13: transform X ′ to data set with µ = 0 and σ = 1
14: let Z ← the cumulative distribution function ∀xi ∈ X, zi = CDF (xi)

′

15: calculate A2(Z) for Z (Equation 2.32
16: calculate A2

∗(Z) to adjust for means estimation (see Equation 2.31)
17: if A2

∗(Z) > α then
18: {α is desired critical value}
19: mi ← mi1

20: mk+1 ← mi2

21: k ← k + 1
22: perform k-means on current means and all cities
23: until iteration with no splits completed

dynamically create the hierarchy is one of the areas Dietterich recommends as future

extension to MAXQ [4]. Fortunately, TSPs have a potential partitioning method built

into the domain, other domains are not as easily dynamically partitioned. Algorithm

9, shows the addition of clustering to the ACS-TSP algorithm, Algorithm 5. The al-

gorithm follows the structure of MAXQ-AntQ, Algorithm 6. It is a recursive function

that traverses the task hierarchy with the base cases of the cluster TSPs, the leaf

nodes. If the parameter TSP is a base case, the function returns the best solution

found by ACS-TSP. Otherwise, it clusters the TSP using either k-means or G-means

and calls HRL-ACS-C on each child cluster. The solutions for all children are then

combined using a local greedy search.

37

Algorithm 9 HRL ACS with Clustering Algorithm

1: {function HRL-ACS-C(TSP t)}
2: let Tbest = ∅ be the best tour found for the TSP t
3: if t is a cluster TSP then
4: {Generate solution for cluster TSP}
5: Tbest = ACS-TSP(t) {Algorithm 5}
6: else
7: {Generate clusters and solutions for each subproblem}
8: let C = the set of clusters in t {by k-means or G-means, Algorithms 7-8}
9: let TOURS = ∅ be the set of tours for all clusters

10: for each c ∈ C do
11: TOURS(c) = HRL-ACS-C(TSP (c))
12: {Create a TSP for the means of the clusters}
13: let M = the set of means of C
14: Tm = ACS-TSP(TSP (M)) {Algorithm 5}
15: {Combine the tours generated for all subproblems}
16: randomly select first edge, (i, j) ∈ Tm

17: find edge (q, r)|d(q, r) = min d(∀x ∈ Ci,∀y ∈ Cj)
18: let Ti = TOURS(i) be the tour for cluster i
19: select start city s0 ∈ Ci where edge (q, s0) ∈ Ti

20: add Ti to Tbest

21: add edge (q, r) to Tbest

22: let Tj = TOURS(j) be the tour for cluster j
23: add Tj to Tbest with starting city r
24: for each remaining cluster Cl ∈ Tm do
25: assign q ← T last

best

26: find edge (q, r)|d(q, r) = min d(1, ∀y ∈ Cl)
27: add Tl to Tbest with starting city r
28: assign q ← T last

best

29: add edge (q, s0) to Tbest

30: return Tbest

31: {end HRL-ACS-C}

4.4 Summary

This new algorithm provides the framework to dynamically create a task hierar-

chy similar to the MAXQ decomposition discussed in Chapter II. This application of

HRL techniques to the ACO domain should show the ability for complex large prob-

lems to be decomposed in a logical manner and solved efficiently and effectively. The

ability to dynamically create the hierarchy is a by product of using the TSP as the

38

test problem. TSP has a logical task hierarchy in geographical location, but this will

not be true for all problems. The key to adapting the HRL methods to any complex

problem is the task decomposition, which the ACS with clustering can provide.

39

V. Results

This chapter discusses the testing the HRL ACO algorithm on two problem domains

as detailed in Chapters III and IV. There were two set of tests conducted, the first, on

the taxi world problem, includes various problems of increasing state space size and

compares mean training run of convergence between the MAXQ-Q and MAXQ-AntQ

algorithms. The second, on TSP, includes problems increasing in city cardinality and

compares tour statistics and time of ACS-TSP, ACS with k-means, and ACS with

G-means. The implementations introduced in this research were compared to the

results of their respective foundation algorithms, MAXQ-Q for taxi world and ACS-

TSP for TSP. The data is analyzed and statistical differences are highlighted between

the baselines and created algorithms.

5.1 MAXQ with Ant-Q Learning

To assess the feasibility of merging ACO with MAXQ HRL techniques, episodic

runs were performed on a set of taxi world problems with both algorithms. Prob-

lems with sizes of 5x5, 7x7, 10x10, 20x20, 30x30, and 50x50 resulting in 500-50,000

states were tested. The problem list is shown in Table 5.1 with details in Appendix

A. Data collected includes the number of moves in the current solution found by the

algorithm, based on the training run number and the training run of convergence.

Since the learning algorithm/equations are the only difference between MAXQ-ANT

and MAXQ-Q, the focus is on the convergence of the algorithms to the known opti-

mal solution. Although not guaranteed to find the optimal solution, the algorithms

tended to converge to it for the smaller problems, with the convergence for the larger

solution space problems further from optimal. The algorithms were allowed to run a

maximum of 1000 training runs or until the convergence of the solution was within a

set percentage of 1.0%.

To see if the Ant-Q modifications are valid as a learning method within MAXQ,

the data collected matches the documented abilities of the MAXQ-Q algorithm based

the convergence of the learning algorithms. MAXQ-Q uses a cumulative mean reward

40

Table 5.1: Selected Taxi World Problems (refer to Appendix A to see graphical
representation)

Size # States Optimal Policy
5x5 500 14 primitive actions
7x7 980 24 primitive actions

10x10 2000 21 primitive actions
20x20 8000 59 primitive actions
30x30 18000 56 primitive actions
50x50 50000 215 primitive actions

to monitor convergence. These tests use the count of the sequence of moves performed

each training run.

5.1.1 Experiment Setup. The problems selected test the ability of the algo-

rithm to solve multi-goal problems with increasing state space size. Exact problems

are shown in Appendix A. Table 5.1 shows the pertinent information for each prob-

lem. With the final problem of 50,000 possible states, the testing shows the modified

algorithm can handle the larger more complex problems.

Parameters for each learning method were kept consistent with the authors’

documented parameters. Dietterich uses a relatively large value for γ, between 0.7

and 0.9, and a small value for α, between 0.1 and 0.25 [4]. These values are taken from

the development of Q-learning and the tests done within Watkin’s Q-learning [22].

The tests in this work use a γ value of 0.9 and α value of 0.1. These values allow the

eligibility trace of the reward to be propagated across all action-state values and the

value update to be taken in relatively small increments. For the Ant-Q parameters

the Gambardella and Dorigo tested values are used, β is 2 and δ is 1 [7].

Each algorithm was allowed a maximum of 1000 training runs, each consisting

of a single episode. An episode is considered complete when a solution is returned

which meets the four goals dictated by the taxi world problem. The solution must

contain a sequence of events navigating the taxi to the pickup location, picking up the

passenger, navigating to the destination location, and dropping the passenger off. The

convergence of the function value space is compared after each training episode. If the

41

Table 5.2: Selected Parameters for MAXQ-Q and MAXQ-AntQ Testing
Parameter Value

γ 0.9
α 0.1
β 2.0
δ 1.0

Tmax 1000
Convergence 1.0%

difference from Qt−1 to Qt is less than 1.0%, the algorithm is considered converged

and execution is halted. The data collected includes the sequence of primitive actions

in each training run’s solution and the training run convergence is calculated if any.

All parameters are listed in Table 5.2.

5.1.2 Solution Convergence. The MAXQ-Q algorithm provides a docu-

mented baseline for the taxi world problem domain. Examining the data in Table

5.3, the modified algorithm MAXQ-AntQ discussed in Chapter III converges in signif-

icantly fewer training runs than Dietterich’s original algorithm. An Anderson-Darling

test verifies the data is a normal distribution with an α of 0.01; this value tests for

more than one out of 100 values not under a normal distribution curve. A t-test using

an α of 5% determines significant differences between the mean convergence for each

algorithm.

The improvement is an average 12.1% faster convergence rate by using the HRL-

ACO-MAXQ algorithm over MAXQ-Q. The best improvement is noted in the 7x7

sized problem, a 17.8% faster mean convergence rate. This improvement stems from

the ability of MAXQ-AntQ to use a set of agents at each level in the hierarchy rather

than the single agent used in MAXQ-Q [4]. Although neither algorithm converges

to the optimal solution every time, both converge to near-optimal solutions with no

significant difference in solution quality. These results show Ant-Q can be adapted

for use in a hierarchical reinforcement learning domain. By integrating Ant-Q with

42

Table 5.3: Convergence data for MAXQ and MAXQ-AntQ on all selected Taxi
World Problems. Numbers represent the training run number of convergence (*train-
ing runs capped at 1000, bolded represents statistically significantly faster conver-
gence).

MAXQ MAXQ-AntQ
Problem Best Worst Mean Best Worst Mean

5x5 94 124 112±15 83 114 97±17
7x7 109 155 129±21 91 137 106±19

10x10 215 257 232±29 184 249 214±32
20x20 487 504 496±14 378 461 421±41
30x30 744 812 781±48 687 757 724±49
50x50 944 1000* 984±21 811 997 876±46

MAXQ-Q, not only does the learning rate increase, the combination of these two

concepts lends itself to other domain combination possibilities.

5.2 ACS with clustering

The second set of tests incorporates the hierarchical decomposition of the TSP

with the ACS-TSP algorithm. The tests included problems ranging in size from 48

cities to 50,000 cities. These problems were tested by the three algorithms outlined

in Chapter IV, ACS-TSP, HRL ACS with hierarchy generated by k-means clustering,

and HRL ACS with hierarchy generated by G-means clustering. The algorithms were

allowed to run a set number of ants for a constant number of time steps. Data collected

includes the tour statistics, run time, and clustering for the two modified algorithms.

The results identify a tradeoff between solution time and size versus solution quality.

5.2.1 Experiment Setup. The problems selected are listed in Tables 5.4 and

5.5. They vary in size from 48 cities to 50,000 cities. These problem were selected

to show the trends of each algorithm as the problem size grows. The problems taken

from TSPLIB [16] are listed in Table 5.4. In addition, several randomly created

problems are used to show the differences between the three algorithms and highlight

the effects of clustering on non-geographically modeled problems, listed in Table 5.5.

Since these algorithms were created for the sole purpose of this experiment, no known

43

Table 5.4: Selected TSPLIB Traveling Salesman Problems (Optimal tour length
taken from TSPLIB [16]).

Name Number of Cities Distance Measurement Optimal Path
att48 48 ATT 10628
eil51 51 Euclidean 426

berlin52 52 Euclidean 7542
eil76 76 Euclidean 538
eil101 101 Euclidean 629
lin105 105 Euclidean 14379
bier127 127 Euclidean 118282
ch150 150 Euclidean 6528
pr226 226 Euclidean 80369
a280 280 Euclidean 2579
fl417 417 Euclidean 11861

att532 532 ATT 27686
rat783 783 Euclidean 8806
pr1002 1002 Euclidean 259045
d1291 1291 Euclidean 50801

vm1748 1748 Euclidean 336556
u2152 2152 Euclidean 64253
rl5915 5915 Euclidean [565040,565530]
rl11849 11849 Euclidean [920847,923368]

usa13509 13509 Euclidean [19947008,19982889]
brd14051 14051 Euclidean [468942,469445]
d18512 18512 Euclidean [644650,645488]

optimal value is available to compare against, however each algorithm’s solutions can

be contrasted. In addition, the larger problems show the ability for the modified

algorithms, HRL ACS with k-means and G-means, to handle larger problems than

TSP-ACS can in a feasible amount of time.

As before, these experiments used the parameters documented by Dorigo in all

three algorithms [6], notably β is 2, δ is 1, ρ is 0.1 and Tmax is 1000. As a divergence

from ACS-TSP, two parameters M , the number of ants and |CL|, the size of the

candidate list were changed based on documented improvements [19]. The number of

ants is set to the number of cities in the problem, with a maximum value of 100. The

candidate list size with set equal to one third the number of cities, with a maximum

44

Table 5.5: Selected Random Traveling Salesman Problems.
Name Number of Cities Distance Measurement

rand75-1 75 Euclidean
rand75-2 75 Euclidean
rand75-3 75 Euclidean
rand100-1 100 Euclidean
rand100-2 100 Euclidean
rand100-3 100 Euclidean
rand200-1 200 Euclidean
rand200-2 200 Euclidean
rand200-3 200 Euclidean
rand500 500 Euclidean
rand750 750 Euclidean
rand1000 1000 Euclidean
rand1500 1500 Euclidean
rand2000 2000 Euclidean
rand5000 5000 Euclidean
rand7500 7500 Euclidean
rand10000 10000 Euclidean
rand25000 25000 Euclidean
rand50000 50000 Euclidean

value of 100. These limitations were placed to ensure the large problems could be

solved on the test machine with the amount of memory available. The final parameter

in ACS-TSP is the value of τ0, this was calculated using the nearest neighbor heuristic

tour solution’s length. This sets the initial pheromone value to the inverse tour length.

The final parameters are needed by the two clustering algorithms. In k-means, the

number of clusters was set to be equal to the number of cities divided by 50 plus one.

This ensured a mean cluster size of approximately 50. In G-means, the statistical test

used by the algorithm required a confidence value. This was selected to be 0.0001,

which determines the critical value for the Anderson-Darling test to pass or not [9].

The algorithm also includes a minimum cluster size of 25. This ensures a cluster with

a smaller size cannot be split, regardless of the distribution. All parameters are listed

in Table 5.6.

45

Table 5.6: Selected Parameters for ACS-TSP and HRL ACS with Clustering Testing

Parameter Value
β 2.0
ρ 0.1

Tmax 1000
M Number of Cities (max 100)
|CL| (Number of Cities)/3 (max 100)

k [(Number of Cities)/50]+1
α (G-means) 0.0001

Minimum cluster size (G-means) 25

Each algorithm was run on the 41 problems identified for 30 episodes each

problem. An episode is considered a set of 1000 time steps. The algorithm was reset

after each episode and the data collected before reset. Data collected includes the

tour statistics and run time for the three algorithms, also clustering statistics for the

two modified algorithms were collected. An Anderson-Darling test verifies the data

is a normal distribution with an α of 0.01; this value tests for more than one out of

100 values not under a normal distribution curve. With the test showing a normal

distribution, the differences cited between algorithms were statistically calculated by

a t-test, with an α of 5%.

5.2.2 Tour Statistics. Tables 5.7-5.12 show the tour statistics for the three

algorithms. In Tables 5.7 and 5.8 there are several problems labeled as ”—”; these

problems have run times that exceed 7 days (86,400 seconds) and are considered

unobtainable based on the total estimated run time of the algorithm for the problem.

Significance of solutions and run times are determined by t-test with an α of 0.05.

Unfortunately, the clustering did not show a continuum of the quality of solutions

from ACS-TSP to the other methods. However, the data showed k-means produces

solutions an average of 5.0% further from optimal than ACS-TSP. Whereas the G-

means algorithm produced solutions approximately 9.5% further from optimal, refer

to Table 5.15.

46

The reason for the difference in solution quality comes from the combination

of the subproblems to generate a complete solution. With the local greedy selection

of the connecting edge, the HRL ACS algorithm makes several inefficient selections.

Figures 5.3.c and 5.4.c show the edges selected in rand200-3 to combine the subprob-

lems to form a complete solution. These edges are not the optimal connections and

many cause a decrease in solution quality.

The largest difference between ACS-TSP and k-means was on problem fl417,

a large disparity of 22.9% further away from optimal. However, on problem u2152,

k-means performed better than ACS-TSP, finding solutions 1.5% closer to optimal.

Although these better solutions appeared only on one problem, it does show the

k-means algorithm can be useful on large problems. Since k-means produced bet-

ter results than G-means, there is no apparent benefit from selecting G-means over

the tested k-means algorithm. G-means’ worst problem was also fl417 with solutions

33.6% longer than optimal than ACS-TSP. G-means only produced significantly better

results than ACS-TSP on one problem pr1002, with 1.0% shorter solutions. However,

G-means never out performs k-means significantly, with an average of 4.5% longer

solutions. Since both HRL ACS algorithms perform worse, it indicates a few possi-

bilities. The hierarchy of clusters was not created correctly (bad clustering), the final

solution generation was inefficient, or clustering leads to a non-optimal partitioning

of the problem space.

Examining results on the randomly generated problems, Tables 5.8, 5.10, and

5.12, demonstrates two benefits in using HRL ACS with clustering. Not only are

the HRL ACS algorithms much faster, but they also have no significant difference

in solution quality; or if they do, it is a better solution than ACS-TSP generates.

These random TSPs were created using a normal distribution, resulting in natural

clusters and a unique city layout. These problems also identify how the HRL ACS

with clustering can provide solutions for very large problems in a feasible amount of

time.

47

Table 5.7: Tour Length Statistics for ACS-TSP on TSPLIB TSPs. A ”—” in results
indicates run time was greater then 7 days.

Name Best Tour Worst Tour Mean Tour % from Optimal
att48 11233 11486 11370.40 ± 77.90 6.99%
eil51 444 480 466.73 ± 7.83 9.56%

berlin52 7569 7876 7765.10 ± 100.10 2.96%
eil76 566 584 574.90 ± 5.51 6.86%
eil101 699 728 715.47 ± 7.31 13.75%
lin105 15445 15984 15707.30 ± 153.72 9.24%
bier127 123891 130582 127370.20 ± 1475.56 7.68%
ch150 7077 7177 7129.10 ± 36.15 9.21%
pr226 88741 90092 89151.25 ± 640.86 10.93%
a280 3101 3213 3161.50 ± 38.63 22.59%
fl417 13937 15496 14064.62 ± 185.62 18.58%

att532 33778 34458 34118.00 ± 480.83 23.23%
rat783 10447 11824 10975.00 ± 106.84 24.63%
pr1002 351449 352760 352104.50 ± 927.02 35.92%
d1291 62454 64885 62448.00 ± 1645.58 22.93%

vm1748 410051 488644 422641.00 ± 4211.16 25.58%
u2152 76878 90313 82465.00 ± 1076.06 28.34%
rl5915 —
rl11849 —

usa13509 —
brd14051 —
d18512 —

Overall, tour statistics show ACS-TSP is the best of the three algorithms to

provide closer to optimal solutions. The two clustering algorithms provide feasible

solutions but have no significant benefit to the quality of solutions; in fact they are

significantly worse solutions as outlined above. These solution differences may be

acceptable with certain problems, but the benefit of using clustering is evident in the

run time to produce these solutions.

5.2.3 Timing. Tables 5.16 and 5.17 show the mean episode run time for

each algorithm on all problems, measured in seconds. Comparing the data, once

a problem could be clustered, there was a significant decrease in run time from the

48

Table 5.8: Tour Length Statistics for ACS-TSP on Random TSPs. A ”—” in results
indicates run time was greater then 7 days.

Name Best Tour Worst Tour Mean Tour
rand75-1 374 385 381.60 ± 3.17
rand75-2 346 366 356.00 ± 5.19
rand75-3 365 380 374.10 ± 4.56
rand100-1 418 427 423.10 ± 2.81
rand100-2 383 393 388.60 ± 3.63
rand100-3 423 436 428.70 ± 4.42
rand200-1 598 605 601.50 ± 4.95
rand200-2 621 628 624.50 ± 4.95
rand200-3 618 624 620.45 ± 3.71
rand500 1011 1120 1020.44 ± 16.76
rand750 1116 1265 1185.05 ± 20.19
rand1000 1585 1684 1621.55 ± 23.59
rand1500 1754 1944 1798.46 ± 46.45
rand2000 2107 3106 2345.00 ± 58.13
rand5000 —
rand7500 —
rand10000 —
rand25000 —
rand50000 —

49

Table 5.9: Tour Length Statistics for HRL ACS with k-Means Clustering on
TSPLIB TSPs.

Name Best
Tour

Worst
Tour

Mean Tour % from
Optimal

att48 11217 11530 11375.30 ± 96.13 7.03%
eil51 448 500 460.20 ± 16.03 8.03%

berlin52 7769 8359 8124.20 ± 214.50 7.72%
eil76 576 600 586.20 ± 7.08 8.96%
eil101 700 767 726.30 ± 22.18 15.47%
lin105 16802 18180 17462.00 ± 541.16 21.44%
bier127 131945 154366 138128.40 ± 6177.48 16.78%
ch150 7095 8129 7550.30 ± 329.26 15.66%
pr226 93786 103547 99489.40 ± 3124.75 23.79%
a280 3221 3410 3292.90 ± 53.97 27.68%
fl417 16059 17663 16775.50 ± 571.45 41.43%

att532 34082 36353 35205.90 ± 697.50 27.16%
rat783 10648 10912 10781.00 ± 81.99 22.43%
pr1002 320359 326770 323613.20 ± 2528.03 24.93%
d1291 68916 71739 70242.00 ± 1419.25 38.27%

vm1748 425496 438887 433516.00 ± 5678.58 28.81%
u2152 80440 83078 82136.00 ± 995.27 27.83%
rl5915 772771 781951 777361.00 ± 6491.24 37.58%
rl11849 1242933 1243809 1243371.00 ± 619.43 35.02%

usa13509 27080659 27550067 27329690.00 ± 160457.00 37.01%
brd14051 613678 622333 618191.60 ± 2638.25 31.83%
d18512 843005 854439 850101.10 ± 8161.80 31.87%

50

Table 5.10: Tour Length Statistics for HRL ACS with k-Means Clustering on Ran-
dom TSPs.

Name Best Tour Worst Tour Mean Tour
rand75-1 369 399 384.30 ± 9.25
rand75-2 339 372 358.20 ± 11.39
rand75-3 379 399 388.70 ± 7.56
rand100-1 448 476 456.70 ± 8.64
rand100-2 402 472 435.30 ± 18.92
rand100-3 446 481 461.50 ± 10.91
rand200-1 577 643 620.00 ± 20.42
rand200-2 578 651 625.00 ± 22.46
rand200-3 605 647 630.60 ± 13.35
rand500 949 1039 983.80 ± 28.06
rand750 1110 1169 1134.50 ± 26.49
rand1000 1355 1390 1375.90 ± 14.07
rand1500 1629 1696 1665.00 ± 23.21
rand2000 1897 1970 1925.90 ± 21.17
rand5000 2665 2725 2695.30 ± 20.09
rand7500 2907 2982 2947.60 ± 25.23
rand10000 3032 3126 3068.20 ± 27.33
rand25000 23998381 24190544 24103771.10 ± 67368.91
rand50000 234985706 237348635 235990494.70 ± 777856.22

51

Table 5.11: Tour Length Statistics for HRL ACS with G-Means Clustering on
TSPLIB TSPs.

Name Best
Tour

Worst
Tour

Mean Tour % from
Optimal

att48 12519 12883 12684.40 ± 129.44 19.35%
eil51 448 511 485.80 ± 21.34 14.04%

berlin52 8194 8369 8299.40 ± 61.93 10.04%
eil76 574 604 583.10 ± 9.45 8.38%
eil101 740 785 772.10 ± 14.43 22.75%
lin105 19458 20958 20189.70 ± 473.46 40.41%
bier127 142935 152570 145971.60 ± 2757.17 23.41%
ch150 7618 7864 7698.10 ± 74.77 17.92%
pr226 100659 110497 107432.10 ± 3188.78 33.67%
a280 3187 3424 3278.20 ± 60.34 27.11%
fl417 17237 18494 18047.40 ± 362.37 52.16%

att532 33978 36124 34971.90 ± 565.17 26.32%
rat783 10694 10986 10881.70 ± 85.65 23.57%
pr1002 318020 324915 318020.00 ± 2227.14 22.77%
d1291 67624 68852 68338.00 ± 447.15 34.52%

vm1748 445692 452338 449367.00 ± 2114.75 33.52%
u2152 83488 84743 83949.90 ± 388.47 30.66%
rl5915 797563 810057 803460.40 ± 5560.79 42.20%
rl11849 1382245 1405399 1393561.00 ± 8976.97 51.33%

usa13509 28711849 28839532 28778014.00 ± 56539.92 44.27%
brd14051 642637 648140 646013.50 ± 1951.86 37.76%
d18512 887854 894026 890488.10 ± 2280.85 38.14%

52

Table 5.12: Tour Length Statistics for HRL ACS with G-Means Clustering on
Random TSPs.

Name Best Tour Worst Tour Mean Tour
rand75-1 416 447 437.70 ± 8.83
rand75-2 368 394 378.90 ± 8.58
rand75-3 383 459 433.40 ± 22.12
rand100-1 463 491 475.30 ± 8.10
rand100-2 426 454 441.40 ± 8.44
rand100-3 499 523 519.50 ± 6.54
rand200-1 613 673 647.20 ± 17.78
rand200-2 638 673 664.00 ± 10.35
rand200-3 647 664 653.70 ± 5.52
rand500 989 1027 1006.60 ± 11.69
rand750 1210 1274 1237.60 ± 23.46
rand1000 1293 1325 1306.71 ± 11.61
rand1500 1630 1675 1656.10± 11.64
rand2000 1868 1925 1902.30 ± 17.66
rand5000 2493 2526 2505.25 ± 14.71
rand7500 2710 2763 2731.40 ± 20.96
rand10000 2912 2923 2917.50 ± 7.78
rand25000 25798896 25969934 25888543.30 ± 60230.36
rand50000 240767950 242495321 241518813.10 ± 594617.44

53

Table 5.13: Side by Side Mean Tour Length for ACS-TSP, HRL ACS with k-Means
Clustering, and HRL ACS with G-Means Clustering on TSPLIB TSPs. A ”—” in
results indicates run time was greater then 7 days.

Name ACS-TSP HRL ACS
k-Means

HRL ACS
G-Means

att48 11370.40 ± 77.90‡ 11375.30 ± 96.13 12684.40 ± 129.44
eil51 466.73 ± 7.83‡ 460.20 ± 16.03 485.80 ± 21.34

berlin52 7765.10 ± 100.10†‡ 8124.20 ± 214.51 8299.40 ± 61.93
eil76 574.90 ± 5.51†‡ 586.20 ± 7.08 583.10 ± 9.45
eil101 715.47 ± 7.31†‡ 726.30 ± 22.18 772.10 ± 14.43
lin105 15707.30 ± 153.72†‡ 17462.00 ± 541.17 20189.70 ± 473.47
bier127 127370.20 ± 1475.56†‡ 138128.40 ± 6177.48 145971.60 ± 2757.17
ch150 7129.10 ± 36.15†‡ 7550.30 ± 329.26 7698.10 ± 74.77
pr226 89151.25 ± 640.86†‡ 99489.40 ± 3124.75 107432.10 ± 3188.78
a280 3161.50 ± 38.63†‡ 3292.90 ± 53.97 3278.20 ± 60.35
fl417 14064.62 ± 185.62†‡ 16775.50 ± 571.45 18047.40 ± 362.37

att532 34118.00 ± 480.83†‡ 35205.90 ± 697.50 34971.90 ± 565.17
rat783 10975.00 ± 106.84 10781.00 ± 81.99† 10881.70 ± 85.65‡

pr1002 352104.50 ± 927.02 323613.20 ± 2528.03† 318020.00 ± 2227.14‡

d1291 62448.00 ± 1645.58†‡ 70242.00 ± 1419.25 68338.00 ± 447.15
vm1748 422641.00 ± 4211.16†‡ 433516.00 ± 5678.58 449367.00 ± 2114.75
u2152 82465.00 ± 1076.06‡ 82136.00 ± 995.27 83949.90 ± 388.47
rl5915 — 777361.00 ± 6491.24† 803460.40 ± 5560.79‡

rl11849 — 1243371.00 ± 619.43† 1393561.00 ± 8976.97‡

usa13509 — 27329690.00 ± 160457.00† 28778014.00 ± 56539.92‡

brd14051 — 618191.60 ± 2638.25† 646013.50 ± 1951.86‡

d18512 — 850101.10 ± 8161.80† 890488.10 ± 2280.85‡

† identifies significantly better results between ACS-TSP and HRL ACS with k-means.
‡ identifies significantly better results between ACS-TSP and HRL ACS with G-means.

54

Table 5.14: Side by Side Mean Tour Length for ACS-TSP, HRL ACS with k-Means
Clustering, and HRL ACS with G-Means Clustering on Random TSPs. A ”—” in
results indicates run time was greater then 7 days.

Name ACS-TSP HRL ACS
k-Means

HRL ACS
G-Means

rand75-1 381.60 ± 3.17‡ 384.30 ± 9.25 437.70 ± 8.83
rand75-2 356.00 ± 5.19‡ 358.20 ± 11.39 378.90 ± 8.58
rand75-3 374.10 ± 4.56†‡ 388.70 ± 7.56 433.40 ± 22.12
rand100-1 423.10 ± 2.81†‡ 456.70 ± 8.64 475.30 ± 8.10
rand100-2 388.60 ± 3.63†‡ 435.30 ± 18.92 441.40 ± 8.44
rand100-3 428.70 ± 4.42†‡ 461.50 ± 10.91 519.50 ± 6.54
rand200-1 601.50 ± 4.95†‡ 620.00 ± 20.42 647.20 ± 17.78
rand200-2 624.50 ± 4.95‡ 625.00 ± 22.47 664.00 ± 10.35
rand200-3 620.45 ± 3.71†‡ 630.60 ± 13.35 653.70 ± 5.52
rand500 1020.44 ± 16.76 983.80 ± 28.06† 1006.60 ± 11.69‡

rand750 1185.05 ± 20.19‡ 1134.50 ± 26.49† 1237.60 ± 23.46
rand1000 1621.55 ± 23.59 1375.90 ± 14.07† 1306.71 ± 11.62‡

rand1500 1798.46 ± 46.45 1665.00 ± 23.21† 1656.10 ± 11.64‡

rand2000 2345.00 ± 58.13 1925.90 ± 21.17† 1902.30 ± 17.66‡

rand5000 — 2695.30 ± 20.09† 2505.25 ± 14.71‡

rand7500 — 2947.60 ± 25.23† 2731.40 ± 20.96‡

rand10000 — 3068.20 ± 27.33† 2917.50 ± 7.78‡

rand25000 — 24103771.10 ± 67368.91† 25888543.30 ± 60230.36‡

rand50000 — 235990494.70 ± 777856.22† 241518813.10 ± 594617.44‡

† identifies significantly better results between ACS-TSP and HRL ACS with k-means.
‡ identifies significantly better results between ACS-TSP and HRL ACS with G-means.

55

Table 5.15: Side by Side % from Optimal Tour Length for ACS-TSP, HRL ACS
with k-Means Clustering, and HRL ACS with G-Means Clustering for best and mean
tour lengths. A ”—” in results indicates run time was greater then 7 days.

ACS-TSP HRL ACS k-Means HRL ACS G-Means
Name Best Mean Best Mean Best Mean
att48 5.69% 6.99%‡ 5.54% 7.03% 17.79% 19.35%
eil51 4.23% 9.56%‡ 5.16% 8.03% 5.16% 14.04%

berlin52 0.36% 2.96%†‡ 3.01% 7.72% 8.64% 10.04%
eil76 5.20% 6.86%†‡ 7.06% 8.96% 6.69% 8.38%
eil101 11.13% 13.75%†‡ 11.29% 15.47% 17.65% 22.75%
lin105 7.41% 9.24%†‡ 16.85% 21.44% 35.32% 40.41%
bier127 4.74% 7.68%†‡ 11.55% 16.78% 20.84% 23.41%
ch150 8.41% 9.21%†‡ 8.69% 15.66% 16.70% 17.92%
pr226 10.42% 10.93%†‡ 16.69% 23.79% 25.25% 33.67%
a280 20.24% 22.59%†‡ 24.89% 27.68% 23.58% 27.11%
fl417 17.50% 18.58%†‡ 35.39% 41.43% 45.33% 52.16%

att532 22.00% 23.23%†‡ 23.10% 27.16% 22.73% 26.32%
rat783 18.64% 24.63% 20.92% 22.43%† 21.44% 23.57%‡

pr1002 35.67% 35.92% 23.67% 24.93%† 22.77% 22.77%‡

d1291 22.94% 22.93%†‡ 35.66% 38.27% 33.12% 34.52%
vm1748 21.84% 25.58%†‡ 26.43% 28.81% 32.43% 33.52%
u2152 19.65% 28.34%‡ 25.19% 27.83% 29.94% 30.66%
rl5915 — 36.76% 37.58%† 41.15% 42.20%‡

rl11849 — 34.98% 35.02%† 50.11% 51.33%‡

usa13509 — 35.76% 37.01%† 43.94% 44.27%‡

brd14051 — 30.86% 31.83%† 37.04% 37.76%‡

d18512 — 30.77% 31.87%† 100.00% 100.00%‡

† identifies significantly better results between ACS-TSP and HRL ACS with k-means.
‡ identifies significantly better results between ACS-TSP and HRL ACS with G-means.

56

basic ACS-TSP to the other algorithms. HRL ACS with k-means produced a solution

on average 20.88 times faster than ACS-TSP. HRL ACS with G-means had similar

improvements, with an average speedup of 20.94 times faster. Taking all problems

into account, G-means improved the time k-means took by a decreased run time of

9.5%.

This benefit was significantly important in the set of unobtainable problems

with ACS-TSP. With problems larger than 5,000 cities, a test run was unobtainable

as the estimated time to complete an episode of 1000 time steps for the u2152 was

approximately 50 days using the tested implementation. However, with both k-means

and G-means clustering, the algorithms were able to produce a solution to the problem

in just over 1 hour per episode. This speedup increased as the problem size increased.

For the 18,512 city problem, d18512, the time for both clustering algorithms to provide

a solution was less than ACS-TSP’s run time for the 532 city problem, att532.

There is however a balance point where k-means begins to produce solutions

faster than G-means. At approximately 6,000 cities, the k-means run time is less than

G-means. This is due to the number of clusters and the resulting TSP created from the

means. As discussed in the next section, G-means generates more clusters, resulting in

a larger TSP used by the recombination algorithm to generate the complete solution.

This large TSP slowed the overall G-means algorithm down in relation to k-means.

Figure 5.1 shows the three algorithms in relation to size of the TSP and run time.

The graph identifies the significant benefit of using the HRL ACS with clustering.

The time decrease is the main benefit of the modified ACS-TSP algorithms. By

providing a solution to large complex TSPs in a faster manner, more problems can

be efficiently solved. This doesn’t change the quality of solutions difference and the

benefits may not outweigh the decrease in effectiveness.

5.2.4 Clustering. The final set of data collected is the clustering completed

by the two different algorithms. K-means uses a set number of clusters, determined

at the start of the algorithm, based on the number of cities divided by a constant. G-

57

Table 5.16: Average single episode runtime for TSP algorithms on TSPLIB TSPs.
A ”—” in results indicate that the run time was greater then 7 days.

Name ACS-TSP HRL ACS
k-Means

HRL ACS
G-Means

att48 99.31 ± 0.72 98.11 ± 0.94 16.60 ± 0.47‡

eil51 114.95 ± 6.27 24.24 ± 1.74† 12.99 ± 0.65‡

berlin52 75.41 ± 0.41 51.55 ± 3.19† 35.83 ± 0.96‡

eil76 332.14 ± 1.85 76.92 ± 1.88† 72.01 ± 0.62‡

eil101 993.23 ± 6.08 86.23 ± 10.01† 22.54 ± 1.22‡

lin105 1267.44 ± 449.92 121.08 ± 41.87† 32.86 ± 3.90‡

bier127 2030.45 ± 91.30 339.44 ± 107.07† 34.05 ± 1.58‡

ch150 2871.27 ± 11.16 286.22 ± 12.16† 150.10 ± 0.70‡

pr226 7795.24 ± 14.98 637.52 ± 16.77† 58.42 ± 5.43‡

a280 14377.42 ± 1148.32 657.15 ± 32.59† 174.26 ± 38.19‡

fl417 25998.78 ± 65.46 2180.84 ± 563.57† 374.16 ± 3.47‡

att532 66638.92 ± 197.84 4476.29 ± 122.22† 1960.91 ± 124.69‡

rat783 68457.44 ± 191.86 1676.22 ± 67.26† 693.49 ± 13.47‡

pr1002 70841.01 ± 3024.64 3736.97 ± 798.39† 1005.07 ± 155.21‡

d1291 224610.70 ± 358.53 7023.33 ± 1210.64† 1215.79 ± 7.30‡

vm1748 390912.11 ± 1070.56 5783.06 ± 1044.50† 1668.15 ± 8.23‡

u2152 615482.70 ± 209.53 4752.79 ± 225.81† 2179.71 ± 18.62‡

rl5915 — 16980.36 ± 1248.41† 9463.71 ± 30.35‡

rl11849 — 43874.86 ± 941.59† 19630.67 ± 841.68‡

usa13509 — 7754.47 ± 2991.83† 30344.16 ± 326.98‡

brd14051 — 9643.83 ± 1440.06† 25921.97 ± 1635.61‡

d18512 — 15156.63 ± 1184.45 40437.22 ± 1175.34‡

† identifies significantly better run time between ACS-TSP and HRL ACS with k-means.
‡ identifies significantly better run time between ACS-TSP and HRL ACS with G-means.

58

Table 5.17: Average single episode runtime for TSP algorithms on Random TSPs.
A ”—” in results indicate that the run time was greater then 7 days.

Name ACS-TSP HRL ACS
k-Means

HRL ACS
G-Means

rand75-1 321.05 ± 2.84 73.13 ± 6.09† 21.22 ± 1.21‡

rand75-2 323.02 ± 8.68 74.65 ± 3.79† 21.47 ± 0.61‡

rand75-3 337.01 ± 9.74 82.01 ± 7.61† 18.21 ± 0.69‡

rand100-1 811.94 ± 10.62 80.18 ± 2.69† 27.48 ± 0.71‡

rand100-2 800.05 ± 8.45 85.83 ± 7.49† 24.19 ± 0.75‡

rand100-3 787.94 ± 2.41 78.47 ± 4.54† 25.40 ± 0.84‡

rand200-1 5514.16 ± 5.55 232.93 ± 8.38† 48.28 ± 1.50‡

rand200-2 5519.07 ± 7.04 237.03 ± 12.20† 47.55 ± 1.89‡

rand200-3 5534.84 ± 23.59 234.74 ± 6.90† 46.68 ± 0.60‡

rand500 30704.61 ± 9.34 676.09 ± 11.17† 120.15 ± 0.74‡

rand750 54338.13 ± 5.77 1473.64 ± 18.65† 176.20 ± 1.21‡

rand1000 129595.10 ± 27.53 2386.40 ± 18.96† 345.85 ± 5.78‡

rand1500 317790.31 ± 11.07 3063.61 ± 8.52† 430.42 ± 18.53‡

rand2000 432708.33 ± 35.29 3535.09 ± 8.92† 536.14 ± 14.05‡

rand5000 — 13476.09 ± 16.73† 2039.26 ± 9.19‡

rand7500 — 23435.80 ± 14.26† 53407.52 ± 73.31‡

rand10000 — 28929.07 ± 74.97† 102654.70 ± 46.78‡

rand25000 — 128269.40 ± 316.7693† 937460.60 ± 1868.31‡

rand50000 — 275468.46 ± 739.85† 1130765.40 ± 2972.92‡

† identifies significantly better run time between ACS-TSP and HRL ACS with k-means.
‡ identifies significantly better run time between ACS-TSP and HRL ACS with G-means.

59

Figure 5.1: A graph of the three TSP algorithms’ episode speed in relation to each
other for the random TSPs.

means however, uses a statistical test to determine the correct number of clusters for

the problem. Tables 5.18-5.21 show the clustering statistics of each algorithm. With

the exception of the smallest problem, att48, G-means had an average of 111.3% more

clusters but 47.8% smaller sized clusters. This difference highlights the issues with

partitioning the TSP into small problems and recombining.

As noted above, ACS with k-means produces solutions further from optimal

than basic ACS, and G-means produces even further from optimal solutions. The

correlation happens to be between the number of clusters and the quality of solutions.

As the ratio of cities to clusters approaches infinity, the better the solution found.

Since k-means has a higher city to cluster average of 42.58, the solutions are better

than G-means, with an average ratio of 22.76.

Figure 5.3 shows an example clustering of the rand200-3 problem. The figure

identifies the individual clusters and their solutions before, during, and after recom-

bination. Notice that the recombination algorithm does not select the best edges

between clusters and therefore degrades the solution quality. This identifies the ra-

tio discussed above and Figure 5.4 shows the G-means algorithm result. Comparing

60

Figure 5.2: Plot of rand200-3 TSP Cities and the best tour found by ACS-TSP.

these two figures to ACS-TSP’s solution to the same problem, Figure 5.2, the similar-

ities can be identified as the individual solutions tend to converge to similar paths as

the basic ACS-TSP. However, the recombination selects inefficient edges to link the

clusters.

5.3 Summary

The implementation of MAXQ-AntQ established the use of ACO learning tech-

niques within a HRL algorithm and problem domain. In fact, the Ant-Q learning

adaptation increased the learning rate for the problem by an average of 12%, decreas-

ing the number of training runs needed to converge to a near-optimal solution. This

benefit coupled with no significant difference in solution quality, number of primitive

actions, provides the framework to show ACO can be used in HRL and the motivation

to see if the opposite is true, HRL techniques within the ACO problem domain, TSPs.

The results of using data clustering algorithms to create the TSP hierarchy, are

a mix of benefits and disadvantages from the basic ACS-TSP algorithm. The solu-

tion quality is the disadvantage, with k-means producing 5.0% worse solutions and

G-means producing 9.5% worse solutions. However, the benefits are the modified clus-

tering algorithm produces the solutions significantly faster and generates a solution

61

(a) (b)

(c)

Figure 5.3: Plot of rand200-3 TSP Cities and k-Means Clustering Decomposition.
(a) Each group of colored points represent a cluster and are solved as individual
TSPs. (b) Using the cluster means as a hierarchical layer, the individual clusters are
combined dictated by the solution to the means TSP. (c) The resulting TSP solution
using the hierarchical components. The red lines indicate the additional edges added
to combine the decomposed cluster TSPs.

62

(a) (b)

(c)

Figure 5.4: Plot of rand200-3 TSP Cities and G-Means Clustering Decomposition.
(a) Each group of colored points represent a cluster and are solved as individual
TSPs. (b) Using the cluster means as a hierarchical layer, the individual clusters are
combined dictated by the solution to the means TSP. (c) The resulting TSP solution
using the hierarchical components. The red lines indicate the additional edges added
to combine the decomposed cluster TSPs.

63

Table 5.18: Statistics for k-Means Clustering on TSPLIB TSPs.
Name Number of

Clusters
Largest
Cluster
Size

Smallest
Cluster
Size

Mean Cluster
Size

att48 1 48 48 48.00 ± 0.00
eil51 2 33 18 26.00 ± 3.05

berlin52 2 42 10 26.00 ± 15.42
eil76 2 41 35 38.00 ± 2.00
eil101 3 49 22 33.67 ± 7.50
lin105 3 60 11 35.00 ± 11.37
bier127 3 96 3 42.33 ± 25.72
ch150 3 64 42 50.00 ± 6.92
pr226 5 70 41 56.50 ± 13.75
a280 6 76 37 56.00 ± 8.48
fl417 9 156 3 52.13 ± 35.21

att532 11 141 0 53.85 ± 30.45
rat783 16 78 31 52.20 ± 8.60
pr1002 21 107 0 51.17 ± 25.11
d1291 26 120 0 52.16 ± 36.78

vm1748 35 117 9 51.50 ± 21.24
u2152 44 93 20 49.91 ± 12.73
rl5915 118 93 0 50.10 ± 20.29
rl11849 236 110 0 50.22 ± 20.30

usa13509 271 462 0 49.85 ± 61.24
brd14051 282 236 0 49.83 ± 46.14
d18512 371 228 0 49.90 ± 35.37

64

Table 5.19: Statistics for k-Means Clustering on Random TSPs.
Name Number of

Clusters
Largest
Cluster
Size

Smallest
Cluster
Size

Mean Cluster
Size

rand75-1 2 48 27 37.50 ± 4.19
rand75-2 2 45 30 37.50 ± 4.45
rand75-3 2 48 27 37.50 ± 8.76
rand100-1 3 42 26 33.33 ± 5.85
rand100-2 3 47 19 33.33 ± 7.91
rand100-3 3 45 25 33.33 ± 5.47
rand200-1 5 53 24 40.00 ± 7.26
rand200-2 5 52 23 40.00 ± 8.08
rand200-3 5 54 26 40.00 ± 7.67
rand500 11 84 14 45.46 ± 12.12
rand750 16 74 25 46.95 ± 9.89
rand1000 21 78 13 47.62 ± 12.63
rand1500 31 82 20 48.39 ± 11.90
rand2000 41 96 30 48.78 ± 11.53
rand5000 101 100 13 49.51 ± 14.00
rand7500 151 119 12 49.67 ± 14.55
rand10000 201 128 9 49.75 ± 15.49
rand25000 501 133 0 49.90 ± 24.23
rand50000 1000 150 0 50.00 ± 34.38

65

Table 5.20: Statistics for G-Means Clustering on TSPLIB TSPs.
Name Mean

Number
of Clusters

Largest
Cluster
Size

Smallest
Cluster
Size

Mean Cluster
Size

att48 3.00 ± 0.00 22 13 16.00 ± 4.32
eil51 3.00 ± 0.00 21 15 17.00 ± 1.60

berlin52 2.00 ± 0.00 40 12 26.00 ± 14.36
eil76 2.00 ± 0.00 39 37 38.00 ± 1.03
eil101 6.90 ± 0.32 19 10 14.64 ± 2.78
lin105 8.30 ± 0.95 32 4 12.65 ± 6.66
bier127 11.90 ± 0.32 23 4 10.67 ± 5.44
ch150 4.00 ± 0.00 43 31 37.50 ± 4.26
pr226 14.90 ± 0.32 22 7 15.17 ± 5.47
a280 9.70 ± 0.68 50 19 28.87 ± 5.71
fl417 14.90 ± 0.32 50 4 27.99 ± 13.45

att532 17.00 ± 0.00 50 11 31.29 ± 11.11
rat783 22.00 ± 0.00 47 28 35.59 ± 4.23
pr1002 29.90 ± 0.32 49 6 33.51 ± 9.92
d1291 37.00 ± 0.00 48 25 34.89 ± 5.75

vm1748 52.00 ± 0.00 48 15 33.62 ± 7.33
u2152 62.00 ± 0.00 48 19 34.71 ± 6.99
rl5915 169.00 ± 0.00 50 18 35.02 ± 6.34
rl11849 729.00 ± 0.32 24 8 16.26 ± 3.24

usa13509 874.80 ± 2.68 32 4 15.44 ± 4.18
brd14051 823.40 ± 1.58 32 7 17.07 ± 3.26
d18512 1077.70 ± 0.95 26 3 17.18 ± 3.39

66

Table 5.21: Statistics for G-Means Clustering on Random TSPs.
Name Mean

Number
of Clusters

Largest
Cluster
Size

Smallest
Cluster
Size

Mean Cluster
Size

rand75-1 4.00 ± 0.00 21 17 18.75 ± 0.93
rand75-2 4.00 ± 0.00 23 15 18.75 ± 2.35
rand75-3 5.90 ± 0.32 19 8 12.71 ± 3.10
rand100-1 6.00 ± 0.00 24 9 16.67 ± 5.75
rand100-2 6.00 ± 0.00 22 11 16.67 ± 3.55
rand100-3 6.00 ± 0.00 24 9 16.67 ± 4.43
rand200-1 13.00 ± 0.00 24 8 15.39 ± 3.61
rand200-2 12.90 ± 0.32 23 8 15.50 ± 3.30
rand200-3 13.00 ± 0.00 20 9 15.39 ± 3.06
rand500 29.00 ± 0.00 24 12 17.24 ± 2.79
rand750 45.90 ± 0.32 24 8 16.34 ± 3.31
rand1000 59.86 ± 0.38 24 9 16.71 ± 3.61
rand1500 88.00 ± 0.00 24 10 17.05 ± 3.14
rand2000 124.90 ± 0.32 23 5 16.01 ± 3.17
rand5000 300.00 ± 0.00 24 7 16.69 ± 3.32
rand7500 466.20 ± 1.30 24 7 16.08 ± 3.45
rand10000 587.50 ± 0.71 44 16 29.63 ± 3.85
rand25000 1539.00 ± 0.00 24 4 16.46 ± 3.35
rand50000 1517.00 ± 0.00 50 4 32.96 ± 6.09

67

to larger problems in a feasible amount of time. HRL ACS with k-means cluster-

ing produces solutions an average of 20.88 times faster and HRL ACS with G-means

clustering 20.94 times. The HRL ACS with clustering algorithm could also gener-

ate solutions to all problems including those considered infeasible by the ACS-TSP

algorithm.

The differences between k-means and G-means is in the number of clusters

created in the hierarchy. G-means averaged 111.3% more clusters than k-means. This

produced mixed results; the solution quality was 4.5% worse than k-means, identifying

the lower cities per cluster ratio plays a role in the final result. However, G-means

would produce the results in approximately 10% faster run time. Unfortunately, this

run time benefit of G-means has diminishing returns. As the problem size increased

to the much larger problems, more than 15,000 cities, G-means began taking longer

than k-means to produce worse solutions. This came from the large number of clusters

creating a large TSP to solve for the recombination method.

The tradeoff between solution effectiveness and efficiency is needed to be made

for the application of the modified ACS with clustering algorithms to be used. Both

clustering algorithms produce worse results, but in a much faster and efficient manner.

This benefit was evident in very large problems as the basic ACS-TSP solution was

unobtainable with a limited amount of time. The results show k-means can be effective

and efficient if the domain allows semi-optimal solutions, within approximately 25%

of the known optimal.

68

VI. Conclusions

This research demonstrates the feasibility of combining two artificial intelligence do-

mains and the effectiveness of a set of the resultant algorithm. This chapter reiterates

the foundations used to validate the research goals and how the modified algorithms

were designed. The test results from Chapter V are summarized in Section 6.2, and

are followed by potential areas for future work.

6.1 Summary

There is a need to produce effective and efficient algorithms able to solve large,

complex problems. These large problems can be considered models of the real world,

where the size of the state space is larger than a simple deterministic or stochastic

algorithm can handle [18].

The goal of reinforcement learning is to produce a policy an agent can follow to

a near-optimal solution given a problem [20]. Most algorithms complete this task by

combining function approximations with temporal difference methods [8]. In addition,

the Markov assumption allows the algorithm to reduce the stored state history to

only the previous state. This assumption allows the algorithm to lower the model

requirements. However, reinforcement learning methods are not practical for real

world problems as the problem may be multi-goal or just too complex for the algorithm

to solve.

Hierarchical reinforcement learning methods attempt to model these complex

problems by using one of two assumptions. First, the ability for an algorithm to

reuse solutions or procedures without changing the model or state space within the

module. This method is used by Parr’s hierarchy of abstract machines [14] and

Sutton’s option algorithm [21]. Dietterich’s MAXQ uses the second method, the

ability to create a hierarchy of state abstraction and learn the current subtask’s policy

as a foundation for the higher levels to use as their policy [4]. MAXQ-Q uses two

types of reinforcement learning to update the policy. The first, Q-learning, relies on

a value function approximation in line with the MDP assumption [22]. This allows

69

the value function to be based upon the state-action pair and updated using only

the current value and the observed reward [22]. This value function and resultant

policy have been proven to converge to the optimal policy with probability of on if

Equation 2.8. The second learning, SARSA, extends Q-learning and adds a second

update function. This update function is dependent on the action to be be selected

in the next state. This creates a quintuplet used to update the current state-action

value. SARSA has also been proven to converge to the optimal policy if a GLIE policy

is used for action selection. MAXQ takes the reinforcement learning in both these

algorithms and creates a hierarchical reinforcement learning algorithm. The hierarchy

is imposed on by the designer onto the problem. This means the programmer must

know the problem decomposition beforehand, which could result in a bad hierarchy

decomposition [4]. This is the foundation this research was built from.

The first stated goal of this research was to demonstrate that ACO learning

methods could scale up using HRL techiniques. To do this, a modified MAXQ al-

gorithm was created to include Ant-Q learning. Ant-Q is an ACO adaptation of

Q-learning and was easily inserted into the MAXQ algorithm. By modifying four ar-

eas, Ant-Q became the learning mechanism within the MAXQ HRL. First, the value

function at primitive action nodes was changed to update the pheromone values of

the state-action pair in accordance with Ant-Q. Second, each hierarchical level in-

corporates the colony concept of ACO and runs through a constant number of ants

performing the action selection. The third change alters the action selection from an

ε-greedy selection to the ACO probabilistic calculation. Finally, the composite value

function at non-primitive nodes is replaced with the Ant-Q value function containing

the pheromone for each hierarchical level.

The second goal of the research was to demonstrate HRL techniques could be

used in the ACO domain. This was done with by using the task hierarchy from HRL

on the TSP. By adapting the concept to the TSP using a graphical data clustering

method it allows for the creation of the task hierarchy. This not only provided the

desired breakdown but also did so dynamically, extending Dietterich’s future direction.

70

Using the base ACS as a foundation, the clustering provide a means to break the larger

problems into smaller ones and reduced the problem complexity and requirements.

The last part is to determine how to recombine the small problems to provide an

overall solution to the initial TSP. This was done using a simple greedy edge selection

based on the TSP solution constructed from the cluster means.

6.2 Results

The results of testing the created algorithms, MAXQ-AntQ and HRL ACS with

clustering, against the baseline algorithms, MAXQ-Q and ACS-TSP, demonstrated

the combination of the two domains, HRL and ACO, was not only feasible but benefi-

cial. The first research goal was accomplished by the adapted MAXQ-AntQ algorithm.

It followed a similar convergence pattern as the MAXQ-Q algorithm with an added

benefit of increasing the learning rate by decreasing the number of training runs to

convergence by an average of 12.1%. There was no significant difference in quality

of solution, demonstrating Ant-Q learning inserted into MAXQ provided a benefit to

the algorithm.

The second goal was accomplished by testing the modified ACS clustering algo-

rithms. Although both k-means and G-means on average provided solutions further

from optimal than ACS-TSP, the difference was only 5.0% for k-means and 9.5% for

G-means. This decrease in solution quality was acceptable as the run time speed up

for both algorithms was greater than 20 times faster. This proved to be especially

significant with large scale problems as the modified algorithms could obtain a solu-

tion while the ACS could not. The final measurement compared the two clustering

algorithms’ ability to decompose the hierarchy. G-means tended to have 111.3% more

clusters than k-means. This allowed G-means to increase speed over k-means by and

additional 9.5%, due to the average cluster size being 47.8% smaller. However, tests

revealed there was a breaking point for G-means where the smaller cluster size would

not benefit the overall algorithm. Around 12,000 cities, G-means required more time

to complete an episode due to the combination TSP size. In addition, the solution

71

quality for G-means did not outperform k-means for any problem and therefore, k-

means demonstrated the best application of the research goal by providing an 20.88

times speed up with only a 5.0% average loss in solution quality over ACS-TSP.

6.3 Future Extensions

There are several areas to continue the research into combining HRL and ACO.

The first is the selection of the HRL algorithm. MAXQ appeared to be well suited

versus the other HRL methods discussed in Chapter II as it provided a simple frame-

work to break the problem into subproblems. A selection of another HRL algorithm

could provide a similar, if not better, result and demonstrate the same properties.

In addition, there has been recent work into the development of an ACS-gridworld

algorithm. This algorithm uses the concepts of area of expertise to produce policies

in a grid world environment [12].

The next area to expand is the design of the clustering algorithms. There are

three areas to look at: the clustering technique, the cluster combination, and the base

TSP algorithm. These areas can all be explored for more options and may provide

a better algorithm design through testing. The clustering technique research could

look at other cluster methodologies, X-means [15], or even additional modifications

to the two selected. For instance, add a minimum cluster size to avoid the issue

with G-means not performing well on large problem sizes. The results showed where

the algorithm is lacking is in the recombination edge selection. Using only a greedy

search results in inefficient overall solutions being produced. An effort could focus on

the edge selection between clusters, including finding the best connection taking into

consideration the final city to the next cluster. Or use the area of expertise discussed

above with ACS-gridworld [12], instead of using the actual individual solutions, use the

pheromone matrix created by the subproblems as the baseline for the larger problem;

this should provide a quickly converging algorithm and may require only running the

overall ACS-TSP algorithm a fraction of the time steps than before. The finally area is

the ACS-TSP algorithm. There are several documented improvements to this baseline

72

algorithm including 2/3-opt [6] and Max-Min Ant System [19]. Those adaptations

could only help with the solutions found using this research’s modified algorithms.

By increasing the quality of the foundation algorithm used, it will benefit all parts of

the TSP hierarchy.

73

Appendix A. Taxi World Problems

This appendix contains the graphical representation for all taxi world problems. In

addition it lists the taxi starting location, pickup, destination goals with the primitive

action count in the optimal policy for the tested problem.

Figure A.1: The test 5x5 taxi world problem. Taxi starts in location (1,1), pickup
is RED, and destination is GREEN. Optimal path is 14 primitive actions (4 move to
RED, 1 PICKUP, 8 move to GREEN, 1 PUTDOWN)

Figure A.2: The test 7x7 taxi world problem. Taxi starts in location (1,1), pickup
is BLUE, and destination is YELLOW. Optimal path is 24 primitive actions (12 move
to BLUE, 1 PICKUP, 10 move to YELLOW, 1 PUTDOWN)

74

Figure A.3: The test 10x10 taxi world problem. Taxi starts in location (1,1), pickup
is GREEN, and destination is BLUE. Optimal path is 21 primitive actions (10 move
to GREEN, 1 PICKUP, 9 move to BLUE, 1 PUTDOWN)

Figure A.4: The test 20x20 taxi world problem. Taxi starts in location (1,1), pickup
is YELLOW, and destination is RED. Optimal path is 59 primitive actions (38 move
to YELLOW, 1 PICKUP, 19 move to RED, 1 PUTDOWN)

75

Figure A.5: The test 30x30 taxi world problem. Taxi starts in location (1,1), pickup
is RED, and destination is BLUE. Optimal path is 56 primitive actions (27 move to
RED, 1 PICKUP, 27 move to BLUE, 1 PUTDOWN)

76

Figure A.6: The test 50x50 taxi world problem. Taxi starts in location (1,1), pickup
is GREEN, and destination is YELLOW. Optimal path is 215 primitive actions (115
move to GREEN, 1 PICKUP, 98 move to YELLOW, 1 PUTDOWN)

77

Bibliography

1. Applegate, David L., Robert E. Bixby, Vasek Chvatal, and William Cook. The
Traveling Salesman Problem: A Computational Study. Princeton University
Press, 41 William Street, Princeton, New Jersey, USA, 08540-5237, 2007.

2. Barto, Andrew G. and Sridhar Mahadevan. “Recent Advances in Hierarchical
Reinforcement Learning”. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003.
ISSN 0924-6703.

3. Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, Inc., 198 Madison Avenue,
New York, New York 10016, 1999.

4. Dietterich, Thomas G. “Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition”. Journal of Artificial Intelligence, (13):227–303,
November 2000.

5. Dorigo, Marco, Mauro Birattari, and Thomas Stutzle. “Ant Colony Optimiza-
tion”. Computational Intellligence Magazine, IEEE, 1(4):28–39, 2006. ISSN 1556-
603X.

6. Dorigo, Marco and Luca Maria Gambardella. “Ant Colony System: A Coopera-
tive Learning Approach to the Traveling Salesman Problem”. IEEE Transactions
on Evolutionary Computation, 1(1):53–66, April 1997.

7. Gambardella, Luca Maria and Marco Dorigo. “Ant-Q: A Reinforcement Learn-
ing Approach to the Traveling Salesman Problem”. International Conference on
Machine Learning, 252–260. 1995.

8. Gordon, Geoffrey J. “Stable function approximation in dynamic programming”.
Armand Prieditis and Stuart Russell (editors), Proceedings of the Twelfth In-
ternational Conference on Machine Learning, 261–268. Morgan Kaufmann, San
Francisco, CA, 1995. URL citeseer.ist.psu.edu/gordon95stable.html.

9. Hamerly, G. and C. Elkan. “Learning the k in k-means”. Proceedings of the Sev-
enteenth Annual Conference on Neural Information Processing Systems (NIPS),
281–288. 2003.

10. Jaakkola, Tommi, Michael I. Jordan, and Satinder P. Singh. On the Convergence
of Stochastic Iterative Dynamic Programming Algorithms. Technical report, Cam-
bridge, MA, USA, 1993.

11. Jianyong, L. and Z. Xiaobo. “On Average Reward Semi-Markov Decision Pro-
cesses with a General Multichain Structure”. Math. Oper. Res., 29(2):339–352,
2004. ISSN 0364-765X.

78

12. Kaelbling, Leslie Pack, Michael L. Littman, and Andrew P. Moore. “Reinforce-
ment Learning: A Survey”. Journal of Artificial Intelligence Research, 4:237–285,
1996.

13. MacQueen, J. B. “Some Methods for classification and analysis of multivariate
observations”. Proceedings of the Fifth Symposium on Mathematical Statistics
and Probabilities, 281–297. 1967.

14. Parr, Ronald and Stuart Russell. “Reinforcement Learning with Hierarchies of
Machines”, January 17 1997.

15. Pelleg, D. and A. Moore. “X-Means: Extending K-Means with Efficient Estima-
tion of the Number of Clusters”. ICML 2000, 2000.

16. Reinelt, Gerhard. “TSPLIB 95”, 2007. URL
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

17. Rummery, G. A. and M. Niranjan. Online Q-learning using connectionist systems.
Cued/finfeng/tr 166, Cambridge University Engineering Department, Cambridge,
England, 1994.

18. Smart, William D. “Explicit Manifold Representations for Value-Functions in
Reinforcement Learning”. Proceedings of the Eighth International Symposium
on Artificial Intelligence and Mathematics. January 2004. Paper number AI&M
25-2004.

19. Stutzle, T. and H. Hoos. “The Max-Min Ant System and Local Search for Com-
binatorial Optimization Problems”, 1999.

20. Sutton, R. and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, 1998.

21. Sutton, Richard S., Doina Precup, and Satinder Singh. “Between MDPs and
semi-MDPs: a framework for temporal abstraction in reinforcement learning”.
Artif. Intell., 112(1-2):181–211, 1999. ISSN 0004-3702.

22. Watkins, Christopher. Learning From Delayed Rewards. Ph.D. thesis, King’s
College, Oxford, May 1989.

79

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

13-09-2007
2. REPORT TYPE

Masters Thesis
3. DATES COVERED (From – To)

Sept 2006 – Sept 2007
5a. CONTRACT NUMBER

5b. GRANT NUMBER

TITLE AND SUBTITLE

SCALING ANT COLONY OPTIMIZATION WITH
HIERARCHICAL REINFORCEMENT LEARNING
PARTITIONING

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

AUTHOR(S)

Dries, Erik J, Capt, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/07-16

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research merges the hierarchical reinforcement learning (HRL) domain and the ant colony optimization (ACO)
domain. The merger produces a HRL ACO algorithm capable of generating solutions for both domains. This
research also provides two specific implementations of the new algorithm: the first a modification to Dietterich's
MAXQ-Q HRL algorithm, the second a hierarchical ACO algorithm. These implementations generate faster results,
with little to no significant change in the quality of solutions for the tested problem domains. The application of
ACO to the MAXQ-Q algorithm replaces the reinforcement learning, Q-learning and SARSA, with the modified ant
colony optimization method, Ant-Q. This algorithm, MAXQ-AntQ, converges to solutions not significantly different
from MAXQ-Q in 88% of the time. This research then transfers HRL techniques to the ACO domain and traveling
salesman problem (TSP). To apply HRL to ACO, a hierarchy must be created for the TSP. A data clustering
algorithm creates these subtasks, with an ACO algorithm to solve the individual and complete problems. This
research tests two clustering algorithms, k-means and G-means. The results demonstrate the algorithm with data
clustering produces solutions 85-95% faster but with 5-10% decrease in solution quality.
15. SUBJECT TERMS
 Ant Colony Optimization, Hierarchical Reinforcement Learning, Metaheuristic Optimization

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Gilbert L. Peterson (ENG)

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

114

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4281
(gilbert.peterson@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Scaling Ant Colony Optimization with Hierarchical Reinforcement Learning Partitioning
	Recommended Citation

	DriesThesis.pdf
	Form298

