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Abstract

This thesis considers the optimal employment of a wide area search munition

in a battlespace where a target is known to be uniformly distributed among false tar-

gets which are Poisson distributed. The Poisson distribution’s parameter is obtained

from readily available battlespace intelligence. This work formulates and solves the

optimal control problem for deriving the optimal sensor threshold schedule in order to

maximize the probability of attacking the target during the battlespace sweep while

constraining the probability of attacking a false target. The efficiency gained by op-

timally varying the sensor threshold is compared against the performance achieved

with a static, optimum sensor threshold setting. The Weapon Operating Character-

istic, the relationship between maximum achievable probability of target attack and

maximum allowable probability of false target attack, is developed.
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Optimal Sensor Threshold Control and the

Weapon Operating Characteristic for

Autonomous Search and Attack Munitions

I. Introduction

1.1 Overview

Ever increasing technological advancements have substantially contributed to

autonomous technology. In particular, the aerospace industry has seen increased re-

search and development efforts towards autonomous unmanned aerial vehicles (UAVs).

Currently, UAVs perform a wide range of wartime (and peacetime) activities including

reconnaissance, and in some cases, attack. The spectrum of UAVs includes high-value

assets, akin to modern, multi-role aerial platforms, to inexpensive, disposable plat-

forms designed to execute a single mission or task. The new capability afforded by

these autonomous assets fills an important role in new emerging paradigms charac-

teristic of the Western style of war. One persistent, almost dogmatic, theme has been

to “do more with less”. This concept is supported by the emergence of better au-

tonomous technology because, in many cases, UAVs and other forms of autonomous

technology are able to automate and perform tasks that otherwise require intensive

commitment of human and other resources. Furthermore, autonomous machines are

not as limited as humans in the bandwidth of cooperation. Because of the benefits

to be gained by cooperative synergism, cooperative control of autonomous agents,

enabled by improvements in modern, autonomous systems, is in parallel development

with autonomous machines.

This research addresses optimal control algorithms for UAVs autonomously per-

forming search and destroy missions. Cooperative control could be further applied

to optimize the performance of a swarm of autonomous munitions; however, it is

desirable to have each individual agent acting autonomously before implementing co-

1



operative capabilities. The optimal control aspect is the focus of this thesis, namely,

the performance optimization of individual autonomous agents. This research follows

previous work done (mostly at the Air Force Institute of Technology—AFIT) in simi-

lar areas. Specifically, this thesis investigates the mission efficiency to be gained from

optimal control of dynamically varying parameters such as the agent’s sensor thresh-

old. This chapter will be followed by a detailed mathematical buildup and discussion

of the previous work that has been accomplished in this area and then by the actual

methodology and results on this research. The rest of this chapter will address the

scope, motivation, historical background, objectives and a concise summary of this

research.

1.2 Scope

Cooperative control is a relatively new discipline that covers a wide range of

topics dealing with establishing a scheme of cooperation among autonomous agents. In

other words, cooperative control efforts attempt to network and integrate machines so

they can work together to achieve greater utility as defined by their objectives, much in

the same way as humans inherently act in a group sharing the same goal. Cooperative

control includes such topics as formation flight, path planning and automated aerial

refueling. The objective of these examples is to increase the efficiency of the mission

by synergizing the efforts of the involved agents. For instance, consider cooperative

path planning of autonomous UAVs. The optimal path for a single vehicle given a

set of objectives is readily derived. Cooperative path planning seeks to reconfigure

that trajectory to incorporate awareness of other vehicles. A cooperative path plan

will incorporate multiple assets into the overall mission by positioning each vehicle

to maximize the overall objective success, not necessarily with respect to one vehicle

or another. In most cases, the overall mission efficiency of a cooperative mission is

greater than can be achieved by a single asset.

The subset of cooperative control that this research addresses is cooperative

search, classification, and attack. As the name would suggest, the aim is to configure
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agents, each with the individual capability to autonomously search for targets, clas-

sify them as true or false targets, and decide to attack them with awareness of other

munitions in the same area trying to achieve the same goal. This thesis is further

scoped to address the optimization of an individual munition’s performance. Previous

work has already shown that substantial mission efficiency may be gained by cooper-

atively controlling a swarm of such autonomous munitions in an area as opposed to

releasing individual munitions in an area each with the individual search, classifica-

tion and attack objective, but lacking awareness of the other collocated agents. In the

future, the previous work on cooperative decision making should be combined with

the results of this thesis, namely, the optimal sensor threshold control of autonomous

munitions, to achieve increased performance from an autonomous swarm. Obviously

this scenario is futuristic—one in which policy makers and the general public trust

and rely upon autonomous machines to safely and effectively perform lethal, wartime

missions. However, garnering support and engendering confidence in this budding

theory is one of the advantages of this research.

1.3 Motivation

There are ample potential benefits of this research. First, this thesis supports

the paradigm shift introduced above—that modern approaches to conducting warfare

increasingly seek methods of doing more with less. The most valued resource in mili-

tary operations is the human resource. When able, it is desirable to decrease the risk

to human beings as much as possible. To this end, it is desirable to use autonomous

agents for as many tasks as possible, the prospect of which is becoming more and

more feasible with advances in technology. At the same time that use of autonomous

machines mitigates the risk to humans in hazardous environments, cooperative control

of said machines is useful for increasing the overall mission efficiency. For the same

reason that many human-performed, combat air operations are carried out in flights

of aircraft instead of individual aircraft, cooperative control of machines carrying the

3



same tasks may result in increased mission efficiency. Several examples of this shown

in previous research are presented in chapter II of this thesis.

Another motivating factor of this research is the fact that it contributes to

the cutting edge of advances in technology. It belongs to the set of research that

is developing the mathematical and technical infrastructure for future realization of

greater capability. Current trends in technological advancement and deployment of

autonomous machines (particularly in the military aerospace sector) clearly indicate

a future of greater dependence on autonomous agents. As recently as the last decade

the U.S. Air Force has progressed from deploying UAVs with a great deal of human

intervention and control, to greater autonomy of UAVs and even arming UAVs such

as the Predator with lethal weapons. An increasing number of munitions in Air Force

inventories around the world are capable of autonomously performing tasks previously

impossible without direct human intervention. Much like Billy Mitchell’s visionary

insight at the dawn of airpower in the United States, there is clear indication that in

the near future, military powers will rely on unsupervised, autonomous platforms and

munitions to carry out tasks, such as the search and destroy mission. This research

is in direct support of this emergent capability.

In addition to the futuristic benefits of this research there are also immediate

benefits to be gained from this thesis effort. A currently actionable outcome of this re-

search is a set of analytical tools that may be used to assess the effectiveness of current

operations in realistic, real-world search and destroy missions. The concepts devel-

oped in this work directly apply to current search and destroy operations, whether

human or robotic. Specifically, the analytical tool developed by this research affords

policy makers and war fighters a probabilistic assessment of desired target kill with

consideration of the presence of false targets (either intentional decoys or otherwise

misidentified targets). The theory and application to current assessment of concepts

of operations (CONOPS) and rules of engagement (ROE) will be further developed

and presented in section V of this thesis.
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1.4 Background

In 1998, David Jacques and Robert Leblanc first formalized the stochastic the-

ory enabling a more realistic assessment tool for the autonomous wide area search

munition (WASM) in their paper, “Effectiveness Analysis for Wide Area Search Mu-

nitions” [5]. Traditionally, the effectiveness of a given munition was judged by the

absolute probability of kill metric, Pk. The probability of kill was a subjective as-

sessment that was bestowed upon a given munition. The main disadvantage of this

metric (and motivation for Jacques and Leblanc’s work) was that the Pk for a given

munition did not consider the stochastic variation encountered by a munition in the

real world. This discrepancy has become more notable and worthy of consideration

with the increasing autonomy of munitions. In the authors’ own words, ”The single

shot Pk numbers associated with most direct attack munitions are not directly appli-

cable to wide area search munitions because they do not account for the difficulty of

searching over tens of square kilometers in order to find a target of interest” [5]. The

new theory incorporated the possibility of falsely classifying and attacking a target,

or not detecting an intended target’s presence at all. This probabilistic approach is

necessary and useful when dealing with munitions capable of autonomously identi-

fying and attacking targets, because the possibility exists that the automatic target

recognition (ATR) and attack algorithms in the munitions may commit errors when

subjected to the stochastic variation present in the real world.

Given the level of trust necessary to employ munitions in an autonomous search

and destroy role at some point in the future, the success and hence the decision to use

autonomous munitions will have to be judged by the probabilistic metric introduced

above. It will be impossible to deterministically establish the effectiveness or success

of a given munition. However, with readily available intelligence information about

the munition’s area of operation, probabilistic bounds on the success and failure (false

target attack) of a given autonomous munition may be derived which would enable

war fighters and policy makers to make decisions concerning the use of the munition.

This analytical framework has been one of the main emphases of research in previous
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years. In addition to this development, other work has been accomplished (using

this probabilistic framework) to optimize the cooperative behavior of a swarm of

munitions. Works by Gillen, Dunkel, Decker, and Kish [2–4, 7] have all been aimed

at satisfying this objective. Specifically, their work, all accomplished at AFIT, has

discovered mission efficiency gains by the optimization of various decision parameters

such as when to cooperatively versus individually classify and attack based on scenario

parameters. Further works by Jacques, Kish and Pachter [6, 9] have extended the

idea of optimizing the mission efficiency of a swarm of autonomous munitions by

addressing the optimal control of dynamically varying parameters. These parameters

are variables that may be actively controlled or changed by the munition during the

mission. Examples include, but are not limited to, sensor threshold, vehicle velocity,

search pattern, sensor swath width, and ATR parameters. Work on optimal control

of dynamically variable parameters has only begun very recently with the paper by

Kish, Jacques and Pachter [9]. The main focus of my research will be to address some

of the remaining gaps in this area of research.

1.5 Objectives

The objective of this research is to extend the results of the work on optimal

control of munition sensor threshold that Kish produced in 2005 [7]. His original work

showed that increasing mission efficiency was possible for a swarm of autonomous mu-

nitions by optimizing the sensor threshold. The impact of this research is discussed in

greater detail in chapter II of this thesis. The objective of this research is to apply the

results of the optimization to produce a WASM Operating Characteristic (WOC)—a

performance metric for an autonomous WASM in a battlespace environment with

false targets. Mission efficiency is gauged by the probability of attacking true, in-

tended targets. At the same time it is important to avoid attacking false targets.

In the case of a swarm of single-use munitions, a false target attack would result in

a wasted munition - that is, a munition expended for no reason. This consequence

is less severe in the case of multiple use munitions, such as a platform with multi-
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ple warheads; however, the scope of this research is confined to single-use munitions.

A false target could also contain adverse political value such as a hospital or civil

structure. Attacking this type of false target is also undesirable, so the optimization

of the probability of true target attack must be performed while at the same time

constraining the probability of false target attack to an acceptable level.

As an example of this type of optimization, consider a munition sensitive to a

particular type of target. The munition can vary its sensitivity to the unique charac-

teristics of the target which uniquely identify it as that type of target. If the munition

increases its threshold such that it is less sensitive to the target’s characteristics, it

will be more discriminating of false targets, because it will be more likely to dismiss

false alarms of targets with similar attributes. However, the munition will coinci-

dentally hamper its own ability to detect real targets. Thus the end result will be

a decreased probability of attacking false targets, but also a decreased probability

of attacking true targets. The converse may also be true if the threshold is lowered

to allow consideration of more targets. In this case, the munition will increase its

probability of identifying and attacking a true target, but it will at the same time

increase the risk of being fooled by a false target. In addition to answering the opti-

mal threshold balance question, the threshold optimization also affords other valuable

insights. For instance, if a munition is close to the end of its time of flight and it has

not encountered and detected any targets of interest, it is desirable (optimal, in fact)

to lower the sensor threshold to allow consideration of a greater number of targets in

the short time remaining for the target. Otherwise, if the munition keeps its thresh-

old high, it will keep its probability of true target detection and attack low which

increases the chances of wasting the munition. This scenario is commonly referred

to as a go-for-broke tactic. Studying the results of the optimization and observing

the implications yields these insights and more. A detailed treatment follows in the

subsequent chapters.
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1.6 Approach and Methodology

The approach to achieve the optimal control schedule for the dynamically vari-

able sensor threshold of an autonomous munition in a search and destroy mission will

use mathematical optimization techniques. Discrete optimization methods are used

to corroborate the results of the continuous-time formulation. The theoretic frame-

work established in the literature, which is based on the Poisson probability law, is

well suited for closed form functional optimization and optimal control techniques.

Special attention is paid to the closed form, continuous time methodology because it

affords a great deal of insight in the performance and operating characteristic of an

autonomous munition operating in the scenario in question. Gaining this insight is

the objective of this thesis.

In reality, of course, any form of optimization may be used to achieve similar

results. In previous work other methods such as the Response Surface Methodology

have been successfully used to perform optimization [3, 4]; however, that optimiza-

tion dealt with optimal decision rules, not optimal control. Standard optimal control

techniques including Pontryagin’s maximum principle and Lagrange multiplier tech-

niques will be used for this problem since it enables closed form optimal solutions

readily achievable considering the functional form of the autonomous search and de-

stroy theoretical framework established in such works as [6]. In addition, this elegant

optimization technique is immune to losses due to numerical imprecision and resistant

to the opacity of meaning in the results that emerge from blindly exercising existing,

commercial, computational optimal control algorithms.

1.6.1 Approach and Methodology: Assumptions. The various scenarios

that describe a single munition or multiple autonomous munitions performing an

autonomous search and destroy mission are established in [6] and elaborated in chap-

ter II of this thesis. There are various scenarios, but for simplicity and to facilitate

focus on the core problem of dynamically varying parameter optimization, only the
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first scenario will be analyzed. This scenario is described by a single target uniformly

distributed among a Poisson field of false targets.

1.7 Summary

The aim of this research is to establish optimal control algorithms for the dy-

namically varying sensor threshold of an autonomous munition performing a search

and destroy mission. Perhaps one day the effectiveness of a swarm will be improved by

applying methods so that optimally-acting individual agents may work cooperatively;

however, the focus of this thesis remains on the individual agent. In addition, this

research will support the development of theory which directly contributes analytical

tools to gauge mission effectiveness of current assets, both manned and unmanned,

performing similar missions in uncertain environments.
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II. Supporting Background and Basic Principles

2.1 Overview

There is a great deal of research that has been accomplished in the field of

cooperative control which encompasses several subtopics. Various companies, research

agencies and universities have accomplished research that addresses the behavior of

machines acting as autonomous agents in environments with varying degrees of real

world representativeness. The literature available in support of the research contained

in this thesis begins with Jacques and Leblanc’s original work posing the stochastic

performance evaluation analysis tool of autonomous munitions [5]. Further work,

mainly carried out at AFIT, has built upon Jacques’ theory and has introduced a

sound, rigorous, theoretical framework for analyzing autonomous UAVs assigned to

a search, classification and attack missions in a stochastic environment. Further

work has addressed optimization of cooperative decision rule parameters as well as

other characteristics of the environment and the autonomous agents operating within

the environment. Additional optimization performed includes dynamically varying

parameter optimization.

This chapter will discuss previous work that has been accomplished pertaining

to the objectives of this research. Previous optimal decision rule determination as

well as optimal control work will be highlighted. Most of this previous work has been

accomplished at AFIT and this thesis serves as a follow-on to that foundation. In ad-

dition this chapter will also elaborate the theoretical and mathematical foundation of

the optimal control problem ensuing in the following chapter. The chapter concludes

with a proposition of the questions left remaining by the previous work and which

gaps this research is aimed to address.

2.2 Scope

The topic of cooperative control implies a wide range of research options. The

many subtopics of cooperative control for autonomous UAVs include formation flight

(e.g. automated aerial refueling), path planning, task allocation, and cooperative

10



search, classification, and attack. The focus of this thesis is the optimal search and

attack mission. Each of the subtopics is related in some way to each of the other

topics and an overall cooperative control scheme must be able to efficiently execute

each one; however, this research assumes that parallel behaviors and actions such as

task allocation and path planning have been solved. What remains is the cooperative

aspect dealing with optimal, collaborative search, classification, and attack. This

scenario is called persistent area denial by Jacques and Pachter in [6]. Further scoping

the problem, this research aims to establish optimal control schemes for individual

UAVs so that the operating characteristic of the individual autonomous agent may

be better understood and incorporated into a cooperative algorithm.

The following is an outline of the previous work that has been accomplished.

This information is presented as a means of framing the current work in the context

relative to the other research efforts that have taken place in the field of cooperative

and optimal control.

2.2.1 Optimal Decision Rules. Using the same theoretical foundation pre-

sented later in section 2.3 as a foundation, work has been accomplished to establish

optimal decision making policies for cooperative versus independent search, classifica-

tion and attack. Consider circumstances such that a swarm of autonomous munitions

or UAVs carrying munitions is released over a battle space. Each vehicle is capable of

autonomously searching an area of the battle space. The vehicles possess the ability

to detect targets with their array of sensors and subsequently submit the sensor data

to an automatic target recognition (ATR) software package for target classification.

This is how the vehicle determines if the detected object is a target or a false target.

At that point the vehicle may choose to attack the target or request a cooperative clas-

sification attempt of the same target by a nearby vehicle. In uncertain environments,

the cooperative classification may be beneficial, because multiple classifications of the

target will produce a higher degree of confidence in the overall classification. The

increased confidence will result in an increased probability of attacking true targets
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and ignoring false ones. Likewise a certain vehicle may request a cooperative attack if

it detects a target and deduces that it has a low probability of killing it with a single

attack or if the vehicle determines that the target is a high priority.

The disadvantage of strictly cooperative behavior is that it requires greater

resources, since the vehicle that was summoned (and agreed) to assist in cooperative

activities forfeited its ability to continue searching and possibly detect additional

targets. The threshold of cooperative activity may vary such that vehicles are more

likely to accept cooperative behavior requests towards the end of the mission since

the probability of encountering a target in the little remaining space to be searched

is minimal. Likewise, in uncertain environments it may be considered more optimal

to forfeit search opportunities in order to address cooperative classification attempts

so that the probability of avoiding false target attack is increased. This may be

especially important in politically sensitive environments. The variation and discovery

of optimal combinations of all these parameters is the essence of the optimal decision

rule work that has been carried out mainly at AFIT by Decker [2], Dunkel [3], Kish,

Jacques, and Pachter [8], and Gillen [4].

2.2.1.1 Methodologies. Gillen’s work specifically addressed the follow-

ing objectives [4]:

1. Establish a methodology for measuring the expected effectiveness of
a cooperative system of wide area search munitions.

2. Develop optimal cooperative engagement decision rules for a variety
of realistic scenarios.

3. Analyze the sensitivities of the decision rule parameters to the preci-
sion of the munition’s ATR algorithm, the lethality of the warhead,
and the characteristics of the battlefield (clutter density, target lay-
out, etc.).

Gillen’s goal was to find the optimal combination of decision parameters. He

used a computer simulation to assess the performance of the vehicles during the mis-

sion (i.e. mission success) as a function of the various decision parameters he was

tuning. Gillen used an optimization technique called Response Surface Methodology
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(RSM) to optimize the decision rules. RSM was particularly useful for this applica-

tion because part of the process inherently enabled the accomplishment of the third

objective cited above which was to analyze the decision parameter sensitivities to

various scenario parameters [4].

Dunkel’s work followed Gillen’s and was closely related. Dunkel’s research also

used RSM, but made use of a different computer simulation to accomplish the follow-

ing objectives [3]:

1. Develop a simulation that incorporates advantages as well as possible
disadvantages of cooperative behavior.

2. Determine under what circumstances (munition and battlefield char-
acteristic) it is beneficial to use cooperative behavior and under what
circumstances it is detrimental to use cooperative behavior.

3. Determine the degree of benefit (if any) gained from cooperative be-
havior over non-cooperative behavior.

Both research efforts effectively showed an increase in mission efficiency by the

use of decision rules optimized through the research. In addition, the latter work

presented a sound analysis of the advantages, disadvantages, and general rules of

thumb concerning the use of cooperative control strategies.

2.2.2 Dynamically Varying Parameter Optimization. Another area of opti-

mization work that has been accomplished involves the optimal control for dynam-

ically varying munition parameters. In particular, Kish’s dissertation [7] solves the

optimal control problem for determining the schedule of velocity and sensor thresh-

old to maximize a munition’s probability of attacking desired targets and avoiding

attacking false targets. Most of the work leading up to Kish’s dissertation assumes

constant munition parameters. However, the design of autonomous wide area search

munitions is conducive to varying certain operating parameters in order to achieve

better performance as opposed to carrying out a mission with fixed, static settings of

those parameters. For instance, consider the case of dynamically varying a munition’s

sensor threshold. The sensor threshold roughly corresponds to the sensitivity of the
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sensor array to detect targets. Lowering the sensor threshold actually improves the

chance of detecting targets but in doing so increases the likelihood of identifying noise

(false targets) as true targets. Alternatively, increasing the sensor threshold decreases

the probability of misidentifying false targets, but also decreases the overall ability to

detect targets. The subject of this thesis follows on to Kish’s work readdressing the

optimal control solution methodology, paying special attention to continuous time for-

mulation and solution methods, and interpreting the weapon operating characteristic

results in a unique way.

The optimization problem is stated as follows [9]:

max PTA

such that PFTA ≤ PFTAmax

Qualitatively this means that it is desirable to increase the probability of attacking

desired targets (PTA) while absolutely constraining the probability of false target

attack (PFTA). This problem will be fully developed in the following chapters of this

thesis. In [7], Kish develops and solves the problem for a variety of scenarios. The

scenarios are described in section 2.3.1 of this chapter.

Kish’s work affords several valuable insights. First, by considering various upper

bounds on the probability of false target attack, one may observe the trend of the

vehicle’s tendency to commit to attacking an object that it has identified as a target.

As one might expect, the higher the acceptable bound on PFTAmax , the more likely the

munition is to commit to an attack near the end of its time of flight. In other words, it

lowers its sensor threshold toward the end of its mission to make it more probable that

it will detect a target while at the same time increasing the risk (to the max acceptable

level) of attacking a false target. In the endgame it might as well ”go for broke” since,

for a single-use munition at the end of its mission, if it has not committed to an attack

it is wasted [9]. Comparing the results of the dynamic threshold optimization to the

static threshold case shows clear improvements in mission efficiency by allowing a
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dynamically variable sensor threshold. Likewise, Kish’s work shows mission efficiency

improvement by optimally varying other dynamic parameters, namely search area

(velocity).

2.3 Foundation

Two key elements developed in the literature are central to this research. They

are the Poisson probability distribution and the confusion matrix, which build up a

framework for stochastic modeling of an autonomous UAV’s environment. Much of

the research in cooperative control to date has made deterministic assumptions. In

most cases this has been necessary to demonstrate the main principles of that research

without any additional, unnecessary complexity. The stochastic approach attempts to

address an element of the realism associated with the actual, operational environment

and develop optimal policies to execute in those scenarios. However, before these

elements can be considered it is necessary to provide a context by establishing the

scenario.

2.3.1 Scenarios. In order to meaningfully characterize a munition’s per-

formance it is necessary to model the environment in which it is operating. The

battlespace (or operating environment) models are called scenarios. Each scenario

describes a different set of mathematical assumptions including desired target distri-

bution and false target distribution. In addition there are certain other characteris-

tics that are assumed about the munition search. Those assumptions are discussed

immediately following the list of scenarios. The scenarios and assumptions permit a

tractable problem to be introduced and solved. Indeed, as is shown later in this thesis

as well as in supporting literature, the mathematical assumptions are not unrepresen-

tative of the real world. In addition, the assumptions and scenarios are designed to be

calculated from readily available battlespace intelligence. For example, the Poisson

probability distribution is a key element of the false target distribution model, see

section 2.3.1.2, and the Poisson law parameter turns out to be the expected number
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of false targets that the munition will encounter during its battlespace sweep. The

Poisson probability law models a random number of encounters during a given time

and is well suited to model a distribution of targets or false targets, because without

further knowledge of the actual location of the false targets, the munition does not

know when it will encounter the false targets. The Poisson distribution yields good

results. Further evidence is presented in chapter V with verification in simulation and

experimentation.

Some of the battlespace configurations that a munition may operate in are

presented in [6] and are listed as follows:

• Scenario 1: A single target uniformly distributed among a Poisson field of false

targets

• Scenario 2: A Poisson field of targets distributed among a Poisson field of false

targets

• Scenario 3: A field of N targets uniformly distributed among a Poisson field of

false targets

• Scenario 4: A field of N targets and M false targets, both classes uniformly

distributed

• Scenario 5: A field of N targets normally distributed, centered on the origin,

with some variance σ among a Poisson field of false targets

• Scenario 6: A field of N targets and M false targets, both classes normally

distributed, centered on the origin, with target variance, σT , and false target

variance, σFT

Kish’s disseration [7] addresses several of these scenarios as well as additional com-

plexities such as multiple warhead munitions. However, this thesis will concentrate

on the detailed results of the weapon operating characteristic and to concentrate on

this aspect only scenario 1 is considered for this research. The assumptions that ac-

company the scenario description for this thesis are that the munition has a single
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warhead, or is a “single-use” munition, that the munition operates at a constant ve-

locity, and that the battlespace search area is rectangular and the search pattern is

exhaustive and non-duplicative. In other words, this thesis considers a munition with

a dynamically variable sensor threshold in a battlespace environment with a single

true target and a Poisson distribution of false targets. Scenario 1 is explained further

in section 2.3.1.1.

2.3.1.1 Scenario 1. Scenario 1 is described as “a single target uni-

formly distributed amongst a Poisson field of False Targets (FT) in a battle space of

area As” [6]. The parameters of interest are described in detail below. The results

include a probability of a true target being attacked during the munition’s sweep, the

probability of mission success which is also dependent on a probability of kill derived

from the specific munition’s characteristics as well as the environment’s state. Note

that in this thesis the desired target of interest in the scenario 1 battlespace is often

called the true target to more clearly distinguish it from false targets. The results

also include the probability of a false target being attacked during the munition’s

sweep and the aggregate probability of anything being attacked during the mission

(and conversely the probability that the munition survives the battle space sweep,

which in the case of a single-use munition may very well indicate mission failure). By

incorporating time intervals and integrating the aforementioned probabilities over the

total mission duration additional information is presented such as the longevity of the

munition in the case where it is expended, the probability of the munition lasting for

a specified amount of time, the average longevity of a given target (or false target) in

the battle space, and the average time for a target (or false target) attack to occur.

These elementary probabilities are fully developed in [6].

Figure 2.1 illustrates the rectangular battlespace search area. The figure shows

a munition (recall that in this thesis the munition only has one target attack oppor-

tunity, i.e. one warhead) with velocity v and sensor swath width w. The area A
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Figure 2.1: Exhaustive, non-duplicative, rectangular battlespace search area

searched up to time t is expressed as

A = wvt (2.1)

and the total battlespace search area As for the searching occuring during 0 ≤ t ≤ T

where T is the total battlespace search duration is

As = wvT (2.2)

This paper’s focus is on deriving a munition’s optimal sensor threshold setting

schedule to maximize the probability of attacking a true target during an engage-

ment modeled by Scenario 1. First, consider the target encounter. The true target is

uniformly distributed. This means that during an entire battlespace sweep the prob-

ability of encountering the true target at any given location, that is area increment, is

given by dA
As

. For instance, if units of kilometers are chosen to define the battlespace

search area, As, and As = 4 km2 then the probability of encountering the target in

any given square kilometer within the search area is 1
4
. Likewise, the temporal prob-

ability of true target encounter during a time interval of length dt is dt
T

where T is

the time it takes to search the entire battlespace area. The false target distribution

is modelled differently; the explanation follows.
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2.3.1.2 Poisson Probability Distribution. The second outcome results

from encountering a false target. The false targets are distributed according to a

Poisson probability distribution. The Poisson random variable has a sample space, S,

of all integers greater than or equal to 0, and the probability of exactly k encounters

is given by the Poisson probability law

P (k) = e−λ λk

k!
, k = 0, 1, 2, . . . and λ > 0 (2.3)

In terms of the false target distribution the Poisson probability law gives the prob-

ability of encountering k false targets within the search area. Obviously, an action

that a munition may potentially take against a false target is conditioned upon first

encountering that target. The Poisson probability law is commonly used in queuing

theory and other rate-of-arrival type problems. This makes the Poisson probability

law suitable for describing the false target encounters in the WASM scenario. The

non-dimensional Poisson distribution’s parameter, λ, is characterized in terms of den-

sity (number of false targets per unit area), α
[

1
km2

]
, such that when searching the

area A

λ = αA (2.4)

The target density α can be readily discerned from current battlespace intelli-

gence such as an Order of Battle. Let L equal the number of false targets assumed to

be randomly distributed over a search area, As. Then,

α =
L

As

(2.5)

Furthermore, with the area searched up to time t from equation 2.1, the Poisson law

parameter is readily derived from the available battlespace intelligence and munition

operating characteristics

λ =

(
L

As

)
wvt (2.6)
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The Poisson probability law parameter is hence fully developed with basic infor-

mation regarding the munition and the battlespace. Equation 2.3 may now be applied

to yield a usable probability. For instance, to determine the probability of attacking

the desired target (PTA) it is necessary to know the probability that the munition did

not previously attack a false target. The probability of false target attack (PFTA) is

the probability that the munition encounters a false target and incorrectly classifies it

as the true target. Conversely, the probability that the munition does not attack any

false targets, thus enabling it to attack the true target when it encounters it, is the

probability of false target encounter (which is modeled with the Poisson probability

law) times the probability that the munition correctly classifies the object as a false

target. The probabilities of target and false target correct and incorrect classification

conditioned upon encountering a given object are fully explained in section 2.3.2 with

the topic of the confusion matrix. However, for now, suffice to say that the probabil-

ity of correctly classifying a false target is PFTR. Thus the probability of attacking

exactly 0 false targets in the search area A is the probability that 0 false targets are

encountered, plus the probability that exactly one false target is encountered and the

munition correctly classifies it, plus the probability that exactly two false targets are

encountered and correctly classified and so on for for any number of potential false

targets up to ∞. This summation resulting in the probability of not attacking a false

target (PFTA) may be expressed as

PFTA(A) =
∞∑

k=0

P k
FTRe−λ λk

k!
(2.7)

Factoring and simplifying equation 2.7 and recognizing that

∞∑

k=0

(PFTRλ)k

k!
= ePFTRλ

yields

PFTA(A) = e−λ(1−PFTR) (2.8)
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The probability of not attacking any false targets PFTA is a key piece of the mathemat-

ical foundation for the optimal control problem posed in chapter III. The probability

PFTA illustrates how the Poisson probability law is used to generate fundamental

probabilities of interest.

2.3.2 Confusion Matrix and the Receiver Operating Characteristic. The

second important element of the stochastic model buildup is the idea of the confusion

matrix. The notion of identifying, or classifying, a false target was introduced in

section 2.3.1.2 with the explanation of the Poisson probability distribution. The

difference between real and false targets and the munition’s correct identification of

each upon encounter is really the crux of the stochastic model. Non-deterministic

outcomes must be considered if one hopes to produce a realistic performance metric

for an agent operating in a stochastic battlespace, i.e. the real world. To this end, a

simple, binary confusion matrix is given below [6]:

Table 2.1: Binary confusion matrix: Probabilities
of the munition classifying true and false targets con-
ditioned on true or false target encounter.

Encountered Object
Declared Object True Target False Target

True Target PTR 1− PFTR

False Target 1− PTR PFTR

Table 2.1 shows the 4 probabilities associated with how a munition will classify

(or declare) an object that it encounters in the battlespace. Complexity can be added

to a confusion matrix by adding different types of targets. Adding such complexity

adds one more row for each additional, specific type of target that the munition can

encounter and a column for each different type of target for which the munition has

a classification template. It is possible that there are more objects that is is possible

to encounter than the munition knows to classify. The remainder of these “unknown”

targets are grouped into a general false target class. Table 2.1 shows the most general

example of a confusion matrix where consideration is paid solely to a single target
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of interest and every other object that can possibly confuse the munition’s sensor

including purposefully deceptive false targets and environmental clutter is classified

as a false target. The advantage of adding complexity is that it allows consideration of

different types of target for, as an example, assessing the performance of a munition in

attacking priority ranked targets. This thesis, however, will only consider the binary

case.

Each of the values in the four cells of the confusion matrix is a conditional

probability. The two fundamental probabilities are on the diagonal. PTR is the

probability that the munition correctly declares that it has detected a true (desired)

target conditioned on the fact that it actually encounters a true target. Likewise,

PFTR is the probability that the munition correctly declares that it has detected a false

(undesired) target, such as a decoy, conditioned on the fact that it actually encounters

a false target. False targets include objects that are intentionally placed to deceive

the munition as well as natural features inherent in the clutter of the battlespace that

may cause the munition to incorrectly declare the presence of a true target. PTR and

PFTR represent the two possibilities of correct target declaration that a munition may

make based on its associated encounters. This is why the columns of the confusion

matrix must sum to 1, because, for each type of target, true and false, there are only

two possibilities of declaration. The off-diagonal elements are the error probabilities.

The quantity 1− PTR is known as the false negative fraction, or the probability that

the munition will commit a false negative error in the event that it encounters a true

target. The quantity 1 − PFTR is the false positive fraction, or the probability that

the munition will commit a false positive error in the event that it encounters a false

target. Mission success is defined by destroying real targets, thus, the confusion matrix

plays a critical role in establishing the performance characteristics of a munition. The

assumption is that anytime a munition declares a true target it will attack it, and

anytime it declares a false target it will keep searching. Thus, the error probabilities

are both detrimental because if the munition encounters a true target and declares it

false, then it will miss the opportunity to attack the target resulting in mission failure.
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Likewise, if the munition encounters a false target and declares it true, it will attack

the false target, essentially wasting itself and eliminating any future probability of

encountering the target of interest. In addition, this second error can also result in

collateral damage if the attacked false target is a non-combatant.

As Jacques and Pachter [6] point out, the ideal confusion matrix would be no

confusion at all, or, in other words, a perfect identity matrix. Ones on the diagonal

and zeros elsewhere would indicate that all of the vehicle’s sensor information was

perfect, delivering the precise nature of the object that was detected. If the vehicle

encountered a true target, it would always attack it leading to mission success whereas

if it encountered a false target it would always declare it as such and choose to

continue searching. Sadly, the perfect case is purely theoretical since an ideal confusion

matrix is tantamount to omniscience. The ideal confusion matrix has no practical

application because, unfortunately, the imprecision of sensors in general as well as

the inaccuracy and ambiguity of automatic target recognition algorithms means that

sometimes the vehicle will make an errant declaration. Errors will inevitably happen in

actual scenarios which validates the reasoning behind the confusion matrix - especially

the nontrivial case with non-zero off-diagonal elements.

In fact, the true nature of a munition’s sensor is decidedly un-ideal. PTR is

like a threshold that the munition uses to discriminate objects that appear to be real

targets and ones that don’t. Note that in this example PTR is inversely related to the

sensor threshold level. That is, lowering the threshold level will cause the munition to

consider more objects as real targets, i.e. it will be less discriminating, which will, in

turn, increase the probability that the munition will make the correct declaration when

it encounters a real target. However, PTR is absolutely and inextricably related to the

false positive fraction. Lowering the sensor’s threshold, i.e. increasing PTR, makes the

munition less discriminant which unavoidably increases the munition’s susceptibility

to declaring a false target as a true target. In a real-world representation, PTR is

always monotonically increasing with 1−PFTR so increasing PTR unavoidably pushes

PFTR further from its ideal value of 1.
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The realistic sensor performance characteristic is described by a concept known

as the Receiver Operating Characteristic (ROC). The ROC is the relationship between

PTR and the false positive fraction. The ROC that is used in this work is extracted

from [9] and has been commonly accepted as a representative sensor characteristic

for the subject munition systems. However, other ROC relationships may be used as

long as they meet certain fundamental requirements. The ROC used here is given by

1− PFTR =
PTR

c− (c− 1)PTR

(2.9)

The ROC is parameterized by the non-dimensional scalar c which is a function of

various operational and design characteristics. Basically, it describes how well the

munition system is able to discriminate between true and false targets at a given

sensor threshold setting. The higher the value of c, the better. Examples of aspects

that affect c include munition velocity, sensor quality, ATR algorithm effectiveness,

and target aspect, i.e. the amount of pixels that the sensor is able to detect based

on the target’s exposure. If the munition flies slower, it will most likely be able to

capture more information on a given potential target by dwelling its sensor longer

on the object which improves the sensor’s chance of making a correct classification.

Another example of improving the value c is installing a better quality sensor or

ATR algorithm. It is more favorable to the munition if the sensor is able to better

discriminate target features without adjusting its threshold. Figure 2.2 shows a family

of ROC curves with varying values of c. Note that as c increases, the true to false

positive ratio becomes more favorable.

Figure 2.2 also demonstrates the realism introduced to the problem by more

accurately representing munition sensor characteristics, namely, avoiding the impos-

sible ideal confusion matrix scenario. As previously mentioned, the concept of the

ROC is heuristic so the ROC in equation 2.9 is not the only ROC that may be used,

however, the given form has been shown to be empirically fit [11]. Also, the ROC

used in this thesis meets the requirements for a valid ROC. First, the curve has to
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Figure 2.2: ROC curve for varying values of c

be monotonically increasing. In addition, the points (0, 0) and (1, 1) must exist (and

bound) the curve. The meaning of the endpoints is important. Recall that the ideal

theoretical confusion matrix is the identity matrix; however, ones on the diagonal of

the confusion matrix would produce the ordered pair (0, 1) on the ROC curve which

only exists in the limit at c →∞. Essentially, the ROC says that in order to eliminate

the possibility of committing a false positive error, the munition must also dismiss

any probability of detecting a real target. On the opposite side, if the munition wants

to make sure to detect the true target with probability 1, it must also accept that it

has committed to attacking anything it sees.

A real-world munition may be flown in an artificial, test battlespace with rep-

resentative true and false targets. The frequency of correct classifications at various

sensor threshold settings may be used to populate various points which correspond

to individual confusions matrices on a single ROC curve. A ROC curve can be em-

pirically fit with equation 2.9 and the sensor quality parameter c can be solved. It is

imperative that the sensor package be characterized well because the optimal sensor
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threshold, which is the goal of this thesis, relies just as heavily on an accurate sensor

characterization as the threshold itself.

The munition’s sensor performance at a fixed threshold is characterized by a

single confusion matrix. A ROC curve virtually represents an infinite number of

confusion matrices. Adjusting the munition’s sensor threshold varies PTR and hence

the munition’s operating point on the ROC curve which is given by the ordered pair

(1−PFTR, PTR). Dynamically varying the sensor threshold moves the operating point

along the ROC curve which changes the munition’s confusion matrix and the funda-

mental characterization of the munition and its sensor. The goal of the optimization

in this thesis is to find the optimal schedule for varying PTR such that, for a given c,

the munition avoids attacking false targets and maximizes its probability of attacking

the real one.

2.4 Summary

Over the past several years a sound theoretical foundation has been developed

building on Jacques’ and Leblanc’s original research at Eglin AFB, FL. The resulting

framework supports rigorous theory that provides analytical tools to assess the effec-

tiveness of autonomous UAVs in a cooperative search, classification and attack func-

tion. In addition, multiple optimization efforts have been accomplished which present

a cooperative decision rule optimization process as well as an analytical framework

for the resulting optimal decision strategies. Also, optimal control work has iden-

tified ideal schedules for a munition’s dynamically varying parameters. One of the

key pieces of work in the optimal control area is Kish’s dissertation [7]. This thesis

will address a subset of the optimal control work presented in [7] by readdressing the

Scenario 1 optimal dynamic sensor threshold problem paying special attention to the

continuous time formulation and solution strategy as well as presenting the weapon

operating characteristic in a unique and detailed way. Remaining questions include

dynamic sensor threshold optimization combined with optimal decision policies for a
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cooperative search, classification, and attack mission to be carried out by autonomous

unmanned aerial vehicles.
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III. Optimal Control of Dynamically Varying Sensor

Threshold

3.1 Chapter Overview

Chapter II presented the core mathematical foundation from which the prob-

abilities of interest, namely, PTA and PFTA as a function of a munition’s dynamic

controls, will be developed. Velocity can be varied, but in this thesis velocity is as-

sumed constant and only sensor threshold is varied. Holding velocity constant is a

simplifying assumption that allows one to focus on the weapon operating character-

istic (WOC) results. This chapter builds on the foundation in chapter II by posing

and solving the optimal control problem. The static optimization is presented first as

a baseline where the optimal fixed sensor threshold is solved. The dynamic optimal

control problem follows by first building the unconstrained problem and then adding

a constraint on the maximum allowable probability of false target attack (PFTAmax).

This chapter concludes with the same, constrained optimal control problem posed as a

discrete dynamic optimization problem. Solving the discrete formulation should cor-

roborate the results of the continuous time solution. Chapter IV presents the results

of the optimal control solution, namely the WOC and interprets the results. Chap-

ter V concludes the thesis with a discussion of the results and and how the theory is

applied to current operational scenarios.

3.2 Foundation

The objective of this thesis is to produce an optimal control time history max-

imizing the probability of true target attack in a given search space. Thus, from this

point, temporal relationships will be adopted and probabilities relating to incremen-

tal areas will be abandoned. Indeed, they are interchangeable; however, in this work,

probabilities relating to time will be used. In chapter II the Poisson parameter λ

is developed as a function of the area searched, A, as in equation 2.4. Thus, with

λ ≡ αA, Equation 2.8 is presented in terms of incremental area. In order to transform
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this to a probability dependent on time note that since As = wvT and A = wvt,

A = As
t

T
(3.1)

This makes sense as the area A searched by the munition up to time t is the search

time fraction of the total battlespace search area (remember that a constant velocity

munition is assumed). Furthermore, the overall desired search area for the probability

in equation 2.8 is the munition’s entire battlespace search area, As, thus let

λ = αAs (3.2)

Combining equations 3.1 and 3.2 yields the desired parameter of the Poisson proba-

bility law

αA = λ
t

T
(3.3)

Then, from equation 2.8, the probability of not attacking any false targets as a function

of time is given by

PFTA(t) = e−(1−PFTR)λ t
T (3.4)

The overall probability density function (pdf) corresponding to the probability, f(t) ·
dt, that the intended target is attacked during the time interval, [t, t+dt], is given by

f(t) =
1

T
PTRe−(1−PFTR)λ t

T (3.5)

Another way of thinking of equation (3.5) is that the time of true target attack, t, is

a random variable and f(t) is its pdf. By component, the resulting probability from

f(t) · dt is the probability that the true target has been encountered in that interval

(dt
T

) times the probability that the munition correctly classifies the encountered target

(PTR) times the probability that the munition has not previously engaged a false target

(PFTA).
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In the optimal control problem the probability of attacking the true target

during the battlespace sweep will be the objective function to maximize. However,

the achievement of this goal will be constrained by the probability of not attacking

a false target. Thus the pdf, g(t), for a false target attack must also be obtained.

The probability, g(t) · dt, of attacking a false target during the time interval [t, t + dt]

is the probability that the munition incorrectly classified the true target (1 − PTR),

also known as a false negative error, if it encountered it before time t, times the

probability that the munition has not attacked a false target before time t (PFTA),

times the probability that the munition encounters a false target during the time

interval [t, t + dt] and incorrectly classifies it (with probability 1−PFTR), also known

as a false positive error. Thus, the pdf

g(t) =

[(
1− PTR

t

T

)] [
e−(1−PFTR)λ t

T

] [
1

T
λ(1− PFTR)

]
(3.6)

Several probabilities relevant to the WASM performance may be derived from the two

fundamental probability density functions, f(t) and g(t), including the probability of

mission success and the probability that the munition does not engage anything at

all resulting in its survival of the battlespace sweep. These derivations are presented

in Jacques and Pachter [6].

3.3 Static PTR

The pdfs obtained in Section 3.2, lay the foundation for evaluating the proba-

bility PTA of successfully attacking the intended true target. The objective is to max-

imize PTA by optimally manipulating the sensor threshold-determined probability of

target report PTR while at the same time mitigating the consequence of increasing

PTA, which, unfortunately, is an undesirable simultaneous increase in the probability

PFTA of attacking a false target. For this investigation, which assumes a constant

velocity munition, the munition’s single control variable is the probability of target

report, PTR, which is equivalent to setting the munition’s sensor threshold. The first
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step in understanding the optimal control problem is to gain insight by addressing

the static optimization problem, namely, the optimal setting of a constant PTR.

As previously mentioned, the objective function to maximize is the probability

of target attack during 0 ≤ t ≤ T . The control variable is PTR(t), but for the static

optimization a constant, optimal value, P ∗
TR, is chosen for all t. Furthermore, since

the control variable, PTR, is a probability, it is constrained according to 0 ≤ PTR ≤ 1.

Equation (3.5) is the pdf for the true target attack during a time interval of length dt

beginning at time t, so to obtain the overall probability of target attack in the time

interval of interest (the entire battlespace sweep) the pdf must be integrated. Thus,

the performance function PTA is given by

J ≡ PTA =

∫ T

0

f(t)dt (3.7)

For clarity, from here on the Poisson parameter λ, in equation (3.5), will be re-

placed with λFT to indicate that it is the Poisson parameter corresponding to the

false targets’ distribution in the battlespace. In addition, f(t) should be in terms

of the control variable, PTR, so the term, 1 − PFTR, is eliminated using the sensor’s

ROC—equation (2.9). With these substitutions the static optimization problem is

then

max
PTR

∫ T

0

1

T
PTRe

−
(

PTR
c−(c−1)PTR

)
λFT

t
T dt (3.8)

Non-dimensionalizing the time by setting T := 1 results in the payoff function

max
PTR

PTR

∫ 1

0

e
−

(
PTR

c−(c−1)PTR

)
λFT t

dt (3.9)

Integrating equation (3.9) yields the objective function

PTA(PTR) =
1

λFT

[c− (c− 1)PTR]

[
1− e

−
(

PTR
c−(c−1)PTR

)
λFT

]
(3.10)
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Equation (3.10) is then the mission objective PTA for given values of the problem

parameters λFT and c. One seeks to select an optimal static control setting, PTR, to

apply throughout the mission.

In order to analyze constrained solutions, the expression for the probability of

a false target attack, PFTA, must also be derived. Following the same procedure for

obtaining PTA, the pdf of false target attacks, g(t), must be integrated. Applying the

same substitutions as before for λ and 1 − PFTR into equation (3.6) and integrating

yields the cost function

PFTA(PTR) =

∫ T

0

g(t)dt (3.11)

=

[
1− c− (c− 1)PTR

λFT

] [
1− e

−
(

PTR
c−(c−1)PTR

)
λFT

]
+

PTRe
−

(
PTR

c−(c−1)PTR

)
λFT (3.12)

The results, including the static WOC, are presented in chapter IV. Using equa-

tions 3.10 and 3.12, one can solve for the best possible probability of target attack

during a munition’s battlespace sweep given a maximum allowable probability of at-

tacking a false target. This single munition performance metric is the essence of the

WOC.

3.4 Dynamic PTR

Section 3.3 presented and discussed the methodology and solution for obtaining

the maximum probability of true target attack for a fixed sensor threshold, that is,

a fixed PTR. These results are useful; however, the design of wide area search mu-

nitions allows for dynamically varying the sensor’s threshold. It is thus desirable to

obtain the optimal dynamic PTR schedule such that the mission probability of target

attack is maximized. This optimal control problem is analyzed in Sections 3.4.1 and

3.4.2. First, the continuous time formulation and solution will be presented. The ele-

gance and simplicity of the Poisson probability distribution permits a continuous time,
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closed-form optimal control solution to be obtained. The continuous solution will be

corroborated in the following section by a discrete time formulation and numerical

solution using MATLABr.

3.4.1 Continuous Optimal Control Problem. Similar to the static case in

Section 3.3, the unconstrained problem will be analyzed first followed by the inclusion

of the constraint on the probability of false target attack.

3.4.1.1 Unconstrained Case. The unconstrained optimal control prob-

lem statement is

max
PTR

PTA

Recall from before that the objective, PTA, is the integral of the pdf of true target

attack during the battlespace sweep. Recalling equation (3.7)

PTA =

∫ T

0

f(t)dt

=

∫ 1

0

ue−
∫ t
0 λFT

u
c−(c−1)u

dτdt (3.13)

Note that in the problem formulation the following notation is used

u , PTR

Also, as before, the objective function is normalized by setting T = 1. Finally, note

that the exponent has been replaced with the equivalent integral form to facilitate

the state definition. By introducing the state dynamics as

ẋ =
u

c− (c− 1)u
, x(0) = 0, 0 ≤ t ≤ 1 (3.14)

and recognizing that

x =

∫ t

0

ẋdt =

∫ t

0

u

c− (c− 1)u
dt (3.15)
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the problem statement can be rewritten as

max
u

PTA =

∫ 1

0

ue−λFT xdt (3.16)

subject to the dynamics (3.14)

The Hamiltonian is formed by appending the dynamic constraint to the objective

with a costate, λx,

H = ue−λFT x + λx
u

c− (c− 1)u
(3.17)

The costate differential equation is

λ̇x = −∂H

∂x
= λFT ue−λFT x, λx(1) = 0 (3.18)

From equation (3.18) it can be seen that the costate is monotonically increasing since

its time derivative is always positive. Combining this fact with the costate boundary

condition, also given in Equation (3.18), one infers that

λx(t) < 0, 0 ≤ t < 1 (3.19)

The same type of insight can be derived from the state dynamics. It can be shown

from equation (3.14) that the state, x, is monotonically increasing since its derivative

is always positive. Since the initial value of the state is x(0) = 0, x(t) > 0 for all

0 < t ≤ T . These insights will be useful in characterizing the solution. The optimality

condition is
∂H

∂u
= 0 = e−λFT x + λx

c

[c− (c− 1)u]2
(3.20)

The optimal control is obtained by solving for u in equation 3.20 and is given by

u∗ =
− (√−λxc

)
e

1
2
λFT x + c

c− 1
(3.21)
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One may confirm that this extremum yields the desired maximum of the Hamiltonian

by observing
∂2H

∂u2
< 0, 0 ≤ u ≤ 1 (3.22)

Substituting the optimal control, u∗, from equation (3.21), into the state and

costate dynamics from equations (3.14) and (3.18), gives the two point boundary

value problem

ẋ = − 1

c− 1

(
1−

√
c√−λxe
1
2
λFT x

)
, x(0) = 0, 0 ≤ t ≤ 1 (3.23)

λ̇x = λFT

√
−λxce

− 1
2
λFT xẋ, λx(1) = 0, 0 ≤ t ≤ 1 (3.24)

The idea is to solve the two point boundary value problem posed by equations (3.23)

and (3.24) which would return the optimal state and costate trajectories which could

then be used to plug into the equation for the optimal control in equation (3.21) to

produce the optimal control schedule. The solution method is presented below where

the two equations are reduced to a single differential equation that is a function of

the state variable x and an initial guess of the final state value. This final form of

the TPBVP can easily be solved using a single shooting method especially since the

state dynamics are transparent and provide ample insight as to which direction to

adjust the initial guess and converge on a solution. However, there is a problem that

is insidiously present in equations (3.23) and (3.24) which does not become apparent

until consideration of the fact that the optimal control schedule is not continuous in its

first derivative, i.e. it is piece-wise smooth but has a corner. Specifically, the optimal

control is subject to the laws of probability and is bounded in the interval [0, 1].

This results in an inevitable time that the control will saturate in the unconstrained

problem. The principle behind the control saturation including the saturation time

and its impact on the problem will be investigated later in this section. For now,

suffice to say that the TPBVP in the form of equations (3.23) and (3.24) ignores the

existence of a time where the optimal control schedule does not obey equation (3.21).
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The solution method following from equations (3.23) and (3.24) is presented below as

it is mathematically correct and illustrates a solution methodology pitfall that is easy

to overlook; however, the solution is only actually valid when the control saturation

time is identically equal to 1 which only occurs when c = 1 which is outside the set

of valid values for c. The recommended solution methodology is presented at the end

of this section.

What follows is the faulty solution methodology that ignores the existence or

possibility of a control saturation. In theory it is a promising solution methodology

because the dynamics of the state are fairly well understood; therefore, the TPBV

problem can be solved using the single shooting method with insights from the state

dynamics driving the initial guess for convergence of the shooting method. First the

system of differential equations is reduced to a single differential equation that is a

function of a single variable and unknown boundary conditions. In this case, the

costate differential equation can be solved in terms of x and x(1) and substituted

back into the state differential equation to apply the shooting method. Letting

y , −λx

the following expression is formed from equation 3.24

ẏ√
y

= −λFT ẋ
√

ce−
1
2
λFT x (3.25)

Recognize that
d

dt

√
y =

1

2

ẏ√
y

and that
√

c
d

dt
e−

1
2
λFT x = −1

2

√
cλFT ẋe−

1
2
λFT x

It can now be shown that
d

dt

√
y =

√
c

d

dt
e−

1
2
λFT x (3.26)
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Integrating both sides yields

√
y + Const =

√
c
[
e−

1
2
λFT x + Const

]
(3.27)

which reduces to

y = c
(
e−

1
2
λFT x + Const

)2

(3.28)

Substituting the previous definition for y in equation 3.28 results in

−λx = c
(
e−

1
2
λFT x + Const

)2

(3.29)

The final step is to apply the costate boundary condition, λx(1) = 0, which results

in the costate solution in terms of the state variable, x, and its unknown boundary

condition, x(1),

λx = −c
[
e−

1
2
λFT x − e−

1
2
λFT x(1)

]2

(3.30)

Though the process is mathematically correct thus far, the inconsistency with

the requirements for a valid control schedule, namely 0 ≤ PTR ≤ 1, first appear in

equation (3.30). Even though the costate requirement for a free-final-state optimal

control problem, that λx(1) = 0, was enforced in producing equation (3.30), the un-

derlying assumption that is present is that the resulting solution variable, x(1), is the

final value of the state trajectory solution for equation (3.23), which has incorporated

one and only one form for the optimal control which is given in equation (3.21). The

substitutions that have led up to and supported equation (3.30) do not permit any

modifications or modal changes outside of what is permitted by equation (3.21). Thus

the solution is automatically invalidated if u∗ = 1 for any time t < 1 which is demon-

strated below to always occur for the unconstrained solution. The inconsistency is

not readily apparent if one solves the problem using this solution methodology for

parameter combinations of c and λFT that produce a saturation time close to 1. High

expected numbers of false targets, which directly corresponds to high values of λFT ,

yield solutions that saturate late. The reason that the inconsistency is not readily
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apparent in these cases is because the invalid solution methodology is correct for the

theoretical case where the saturation time is identically equal to 1 and the disparity

grows as the difference 1 − tc grows, where tc is the saturation time. In cases where

the solution is found for parameter combinations of c and λFT that produce an early

saturation time the disparity is obvious: the resulting optimal control schedule is

clearly outside the bounds of a valid probability.

With careful consideration of the insight presented above, substituting the so-

lution for λx from equation (3.30) back into the state differential equation (3.23), we

see that the optimal state trajectory is given by

ẋ =
1

c− 1
· 1

e
1
2
λFT [x(1)−x] − 1

, x(0) = 0, 0 ≤ t ≤ 1 (3.31)

The form of the optimal state trajectory from equation (3.31) can be used with

the single shooting method to make an initial guess of x(1), propagate the dynamic

equation, adjust the guess and finally converge on the optimal state trajectory by

eventually matching the x(1) guess to the final, propagated state value. However,

before doing this, consider that as t → 1, x(1) − x → 0. Therefore, it can be seen

from equation 3.31 that

lim
t→1

ẋ = ∞

This curious result may imply an irregularity at the final time. Recalling the boundary

condition for the costate, λx(1) = 0, it can be seen from equation 3.21 that

u∗(1) =
c

c− 1
> 1

when PFTA is not bounded, i.e. in the unconstrained case. Furthermore, analyzing

the time derivative of the optimal control reveals that u̇∗ > 0 which means the optimal

control is monotonically increasing. This is a usual trait of optimal control problems,

but in this case the control, u = PTR, is a probability, so at the critical time tc it

saturates at 1, its maximum value, and maintains that value until the final time.
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Figure 3.1: General trend of optimal control and annotation of critical saturation
time

The critical time is what is referred to as the “saturation time” above. In related

literature [9] this endgame behavior of the optimal solution is termed ”going for

broke.” Intuitively, it makes sense: if the munition has not yet correctly identified

the true target, and so far it has managed to avoid attacking any false targets and

thus destroying itself, the munition will lower its sensor threshold (increase PTR) to

try to identify anything at all in the final moments of the engagement. After all,

an unused munition is a wasted munition. The saturation time tc depends on the

expected density of false targets in the battlespace (set by the value of λFT ). This

concept will be further developed later.

The general behavior of the optimal control described in the previous paragraph

is illustrated in Figure 3.1. In order to use the shooting method to calculate the

optimal control and/or state trajectory, it is necessary to find the critical time, tc,

when the optimal control saturates, that is, PTR assumes the value 1. The optimal

state trajectory will then be propagated in two parts, the first part for the time

interval 0 ≤ t < tc according to the state trajectory determined by equation (3.14)

with u = u∗, and the second part for the time interval tc ≤ t ≤ 1 also determined by

equation (3.14) but with u∗ = 1.
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By definition

u∗(tc) = 1 (3.32)

Substituting this value into the equation for the state dynamics, equation (3.14), gives

ẋ(t) = 1, tc ≤ t ≤ 1 (3.33)

Integrating equation (3.33) and applying the final condition yields the following

endgame optimal state trajectory (where endgame denotes the period during the

battlespace sweep when the munition’s sensor threshold is low as well as saturated,

i.e. P ∗
TR = 1)

x(t) = t + x(1)− 1, tc ≤ t ≤ 1 (3.34)

The solution for tc is found from the solution to equation (3.34) at time tc as

well as by solving for the costate solution at the same time, λx(tc). The optimal

endgame state trajectory, equation (3.34), is substituted into the costate differential

equation, equation (3.18), along with u∗(tc) = 1 resulting in

λ̇x = λFT e−λFT (x(1)−1)e−λFT t, λx(1) = 0, tc ≤ t ≤ 1 (3.35)

Integrating equation 3.35 and applying its boundary condition gives

λx(t) = e−λFT x(1)
(
1− eλFT (1−t)

)
(3.36)

Making the appropriate substitutions for x(tc) from equation 3.34, λx(tc) from equa-

tion 3.36, and u∗(tc) = 1 into the formula for the optimal control from equation 3.21

and solving for tc yields

tc = 1− 1

λFT

ln

(
c

c− 1

)
(3.37)

It is important to note several insights from the solution for tc. First, tc is

obviously bounded in the search interval between 0 and T , which in this normalized
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Figure 3.2: Feasible parameter domain for c and λFT

case is 0 < tc < 1. The upper bound, tc < 1, can be reduced to yield c < ∞. This

makes sense by considering the ROC (equation 2.9). A value of c = ∞ would mean

that the acquisition sensor was absolutely perfect meaning that it was capable of never

making a false-positive error while at the same time being able to discriminate true

targets. This contradicts the ROC concept as, from before, the true target declaration

(PTR) and the false-positive fraction (1−PFTR) are equal at the points (0, 0) and (1, 1).

The lower bound of tc is more useful. The bound tc > 0 reduces to the following

direct correspondence between c and λFT

λFT > ln

(
c

c− 1

)
(3.38)

This curve is plotted in Figure 3.2. The relationship between c and λFT indicates that

one may not arbitrarily choose corresponding values. As λFT decreases (indicating

that the munition expects to see a sparser density of false targets) to very small

values, the munition must have reasonably good sensor characteristics to expect to see

anything at all. Likewise, if the munition is equipped with an extremely poor sensor

(low value for c), it makes little sense to release this munition in search of a target
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interspersed among a low density of false targets because there is a high probability

that the munition will be wasted, unable to find the target by the time the battlespace

search is over. Indeed, it is an even worse decision to release a munition with a poor

sensor to search an area with a high density of false targets as it will be difficult to

mitigate the probability of attacking one while maintaining a reasonable probability

of attacking the desired true target. This undesirable outcome is namely because as

the quality of the sensor c decreases, tc also decreases indicating a sooner go for broke

time which is the last action the munition should consider in a battlespace with poor

sensor characteristics. The other important insight regarding the parameters’ impact

on the optimal control saturation time tc is that lowering the false target density λFT

will advance the saturation time while increasing the expected false target density

will delay it. In other words, if the munition expects a lower density of false targets

it can afford to go for broke sooner without an undue risk of encountering any false

targets during the remainder of the mission. In summary, tc varies proportionately

with c and λFT .

As previously noted, the solution method outlined in equation (3.23) through

equation (3.31) is erroneous. The best solution method is to solve the two point

boundary value problem summarized below. The two differential equations are com-

prised of the original form of the state and costate differential equations. The optimal

control is given in equation (3.21). If using the shooting method there are two pos-

sibilities: shooting forward and backward. If shooting forward, make an initial guess

for the costate. Propagate the state and costate incrementally calculating the opti-

mal control at each time step which is used to calculate the next increment of the

state and costate. At the final time compare the value of the costate to the known

boundary condition, λx(1) = 0. With the previously gained insights on the state

and costate dynamics, lower the initial costate guess if the final costate results in a

positive value. Alternatively, one may solve the same problem with a reverse shoot-

ing method. To implement the reverse shooting method apply the costate boundary
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condition, λx(1) = 0, and propagate the state and costate backwards until time t = 0.

Iterate until the initial condition on the state, x(0) = 0, is met.

The shooting method propagation must be accomplished in two parts, from

time 0 ≤ t < tc, and the remainder, tc ≤ t ≤ 1. Alternatively, the state and costate

may be propagated until the optimal control, a function of the state and costate value

at each increment saturates, then u∗ = 1 until the final time. Using this method, tc

is not predetermined, but the mode changes based solely on enforcing the constraint

u∗max = 1 on the control. Solving the problem with or without tc predetermined results

in the same solution.

The following is a summary of all the final equations for the unconstrained,

continuous-time, optimal control history for P ∗
TR(t).

ẋ =





u
c−(c−1)u

, x(0) = 0, 0 ≤ t < tc

1, x(tc) = x(tc), tc ≤ t ≤ 1

(3.39)

λ̇x =





λFT ue−λFT x, λx(0) = λx(0), 0 ≤ t < tc

λFT e−λFT x, λx(1) = 0, tc ≤ t ≤ 1

(3.40)

u∗(x, λx) =





−(
√−λxc)e

1
2 λFT x+c

c−1
, 0 ≤ t < tc

1, tc ≤ t ≤ 1

(3.41)

3.4.1.2 Constrained Case. Having obtained the unconstrained so-

lution, it naturally follows to seek the constrained solution which will deliver the

optimal control schedule to maximize the same objective as before while at the same

time mitigating (i.e. constraining) the probability of attacking a false target. With

this in mind, the problem statement changes to the following

max
u

PTA

such that PFTA ≤ PFTAmax
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Recall the pdf g(t) from equation (3.6)

g(t) =
1

T
· λFT u

c− (c− 1)u

(
1− 1

T

∫ t

0

udτ

)
e−

1
T

λFT

∫ t
0

u
c−(c−1)u

dτ (3.42)

Note that in equation (3.42) the following substitutions have been made—the control

u is defined as

u , PTR,

the term, 1 − PFTR, has been replaced with the ROC curve relationship from equa-

tion (2.9), and the time-dependent terms have been expressed in their integral forms.

As before, the integral form requires the introduction of the state dynamics

ẋ =
u

c− (c− 1)u
, x(0) = 0, 0 ≤ t ≤ 1 (3.43)

ẏ = u, y(0) = 0, 0 ≤ t ≤ 1 (3.44)

Recalling equation (3.11) and substituting the state definition in for the integral terms

in g(t) (see equation 3.15) yields the constraint

PFTA =

∫ 1

0

uλFT

c− (c− 1)u
(1− y)e−λFT xdt (3.45)

where the battlespace sweep time T has been non-dimensionalized setting it equal

to 1. The objective function for the constrained problem is modified by adding the

equality constraint imposed by the probability of false target attack, PFTA, with a

Lagrange multiplier, λ

max
u

J =

∫ 1

0

ue−λFT x + λ
uλFT (1− y)

c− (c− 1)u
e−λFT xdt (3.46)

Note that in this formulation the constraint is appended as an equality constraint.

This means that the solution, u∗(t), will only be optimal insofar as it is not more

beneficial in terms of the probability of target attack to use the unconstrained solution

rather than the constrained solution forcing the probability of false target attack to
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the value specified as the required PFTAmax . The resulting PTA for a mission is not

unique in PFTA except at the optimum meaning that a munition can achieve the same

PTA but with two distinctly different outcomes for the penalty, PFTA. Clearly, the

solution that results in a lower PFTA is desirable. Choosing the problem formulation

with PFTA as an equality constraint as in equation (3.46) will result in a solution that

forces the resulting PFTA to the specified value. As has been previously shown with

the ROC, there is an advantage in raising the allowable PFTA to a certain point since

raising the value of the constraint permits a better outcome for the objective functional

as well. However, at some point it is no longer optimal and the best solution that can

be obtained is the unconstrained solution. This approach, setting the constraint as

an equality, is also related to the penalty approach. The final constraint will be set

by tuning the value of the Lagrange multiplier, λ, λ < 0, until the resulting value for

PFTA matches the maximum allowed for the mission. If the maximum is greater than

value of PFTA produced by the optimal unconstrained solution, then the latter will

be used and the constraint will be inactive. Note that the penalty approach method,

namely, posing the PFTAmax constraint as an equality constraint was chosen in lieu

of posing the same constraint as an inequality. The complexity in adding a slack

variable by posing the constraint as an inequality was probably preserved in the form

of additional work to ensure that for a given parameter combination the optimality of

the solution was maintained. The conditions to ensure optimality are presented later

in this section.

The Hamiltonian for the constrained case is formed by appending the two con-

straints imposed by the dynamics equations, with their associated costates, to the

modified objective function given in equation (3.46)

H = ue−λFT x + λ
uλFT (1− y)

c− (c− 1)u
e−λFT x + λx

u

c− (c− 1)u
+ λyu (3.47)
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Applying Pontryagin’s Maximum Principle, the optimal control is found by solving

for u∗ in the following

∂H

∂u
= 0 = e−λFT x + λ

λFT (1− y)c

[c− (c− 1)u]2
e−λFT x + λx

c

[c− (c− 1)u]2
+ λy (3.48)

Likewise, the costate differential equations are found by taking the derivative of the

Hamiltonian with respect to the states

λ̇x = −∂H

∂x
= λFT ue−λFT x

[
1 + λ

λFT (1− y)

c− (c− 1)u

]
, λx(1) = 0 (3.49)

λ̇y = −∂H

∂y
= λ

uλFT

c− (c− 1)u
e−λFT x, λy(1) = 0 (3.50)

In the interest of verifying the optimality of the solution, the second partial

derivative of the Hamiltonian with respect to the control is given by

∂2H

∂u2
= 2c(c− 1)[c− (c− 1)u]−3

[
λ(1− y)λFT e−λFT x + λx

]
(3.51)

To ensure that the optimal solution is indeed a maximum the sufficient condition is

checked
∂2H

∂u2
< 0 ∀ u∗ (3.52)

The sufficient condition is determined by examining the various terms in equation (3.51).

The necessary condition for the constraint to be met according to the method of La-

grange multipliers, is that λ < 0. In addition, it can be determined from the initial

condition y(0) = 0 and the bounds on the control, and hence ẏ, 0 ≤ ẏ = u ≤ 1 that

0 < y < 1. The remaining variable is λx, which, by removing the (always positive)

leading term in Equation (3.51) and rearranging, can be seen to meet the sufficient

condition in Equation (3.52) when

λx < −λ(1− y)λFT e−λFT x (3.53)
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Unlike the unconstrained solution presented in section 3.4.1.1 where it was shown that

this condition was always met, the constrained solution may or may not be optimal

depending on the value of the states and costates. The real insight is obtained by

looking at Equation (3.53) again in a slightly rearranged form

λ < − λx

λFT (1− y)e−λFT x
(3.54)

In tuning the value of the Lagrange multiplier to achieve the desired PFTAmax reducing

(making more negative) the value for λ tightens the constraint forcing PFTAmax to a

lower allowable value. Increasing λ, i.e. making it less negative, increases (relaxes)

the constraint allowing a higher PFTAmax . In essence, tuning the value for λ varies

the penalty imposed by PFTA in the modified cost function (equation 3.46). As

previously discussed, since PFTAmax is set up as an equality constraint in this problem,

increasing PFTAmax beyond a certain point invalidates the optimality of the solution

as the corresponding mission PTA peaks and then begins to decrease with increasing

PFTA. At this point the second partial in equation (3.51) switches sign invalidating the

condition in Equation (3.52). Equation (3.54) provides a bound on λ identifying the

valid range of values to ensure an optimal solution while meeting the PFTA constraint.

When acquiring a solution, λ may be tuned to any value to adjust the desired PFTAmax

constraint as long as the value for λ meets the condition in Equation (3.54).

From equation (3.48) the optimal control is

u∗ =

√
c

c− 1

[
√

c−
√
−λ(1− y)λFT + λxeλFT x

1 + λyeλFT x

]
(3.55)

The optimal control, u∗, is a function of 4 variables: x, y, λx, and λy. The problem is

shaping up to be a complex TPBV problem. The problem can be simplified somewhat

by reducing the dependence on at least one of the variables, λy. This reduction is only

possible for the constrained case for combinations of parameters (i.e. c, λFT , PFTAmax)

that do not force the control to saturate (u∗ = 1) before the end of the mission. For the
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cases where the saturation does occur, which more closely resemble the unconstrained

solution, the set of differential equations representing the states and costates must be

integrated in a bimodal fashion. The reason is due to the existence of the time

tc which is always present in the unconstrained solution. Reducing the variables

assumes a single set of differential equations valid for time 0 ≤ t ≤ T . Reducing

the variable dimension in the following way ignores the existence of tc which is why

this solution step must not be used for the unconstrained solution, or for parameter

combinations in the constrained solution such that the control saturates before the

end of the mission. The method for finding the critical time, tc, will be addressed

later.

For valid parameter combinations seeking the constrained solution the following

method to reduce the dimension of the problem makes the resulting TPBV problem

more tractable in the event that solving the TPBV problem is the solution method

of choice, or alternate methods are unavailable. The target variable to reduce is λy.

Observe that the state differential equation for x, equation (3.43), can be substituted

into the costate differential equation for λy, equation (3.50). The resulting equation

is

λ̇y = λFT λẋe−λFT x (3.56)

Recognizing that
d

dt

(−λe−λFT x
)

= λFT λẋe−λFT x (3.57)

and integrating both sides yields

λy = −λe−λFT x + Const, λy(1) = 0 (3.58)

After applying the boundary condition and solving for the integration constant the

resulting solution is in terms of x and x(1)—a single state trajectory

λy = λ
[
e−λFT x(1) − e−λFT x

]
(3.59)
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The solution for λy in equation (3.59) can be substituted into the previous equations

for ẋ, λ̇x, and ẏ = u∗, equations (3.43), (3.49), and (3.55) respectively. With these

substitutions the dimension of the TPBV problem is reduced, but the complexity

in terms of satisfying the boundary conditions imposed by the equations has been

preserved. Eliminating the dependence on λy transferred the requirement to converge

to λ(1) = 0 to x(1) = x(1) where the final value in the x state trajectory must be

equal to the initial guess for x(1) which is one of the independent variables resulting

in equation (3.59).

One can find the solution of the TPBV problem in x, y, and λx by first choosing a

value for λ. This value directly corresponds to the PFTAmax constraint. This value can

be adjusted later by tuning λ. Remember that as the solution of the state and costate

differential equations are propagated it is important to continually check the validity of

the value for λ by making sure that it meets the condition specified in equation (3.54).

The initial conditions for x and y are given in equations (3.43) and (3.44), respectively.

Choose an initial guess for λx(0) and x(1) and propagate, or integrate, the differential

equations, also called “shooting”. Converging on the final solution that satisfies the

boundary conditions (and for which optimality is guaranteed), requires iterating the

above steps until the conditions have been met. As with the unconstrained solution

the nature of the state and costate equations affords some insight as to how to adjust

the initial guess to come closer to the solution with each iteration. Given that the

x state differential equation is always positive, x is monotonically increasing from

x(0) = 0. The correct initial guess for x(1) lies somewhere between the guess and

the actual, final propagated value of the x state trajectory. The variable y is positive

and monotonically increasing with the initial condition, y(0) = 0, and, as previously

noted, the sign of the λx costate trajectory varies depending on the optimality of the

solution. Care must be taken to pursue the solution with insight into the convergence

of the solution and the solution itself. For instance it would be wise to solve the

unconstrained problem first. If the PFTA that results from an attempt to obtain

the constrained solution is higher than that resulting from the unconstrained case it
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means that either the process is not converged, one should choose a different value for

λ—the PFTAmax constraint, or the unconstrained solution yields the best performance

that can be achieved with the selected values for c and λFT .

As previously noted, the method outlined above to obtain the constrained so-

lution should only be used when there does not exist a time tc < 1 when u∗(tc) = 1.

This is the case for most constrained solutions; however, the time tc is found as fol-

lows. Recalling the equation for the optimal control, u∗(t) (3.55), and noting that

λx(1) = 0 and λy(1) = 0

u∗(1) =

√
c

c− 1

[√
c−

√
−λ[1− y(1)]λFT

]
(3.60)

The question is, for what value of λ is u∗(1) > 1. This question is posed mathemati-

cally as

1 <

√
c

c− 1

[√
c−

√
−λ[1− y(1)]λFT

]
(3.61)

The set of valid values for λ is less than or equal to zero, so solving for λ, u∗(1) > 1

when

− 1

cλFT [1− y(1)]
< λ ≤ 0 (3.62)

If the condition in equation (3.62) is met there exists some time tc less than 1. As with

the unconstrained solution method, the state and costate solutions may be propagated

with our without the predetermination of tc. If it is determined that tc exists, the

solution may be propagated until the control equals 1, which marks the critical time,

tc. For the remainder of the integration u∗ = 1. The mode changes based solely on

enforcing the constraint for a valid control, 0 ≤ u∗ ≤ 1. Otherwise the time tc may be

predetermined in which case the solution is propagated with u = u∗ from 0 ≤ t < tc

and u∗ = 1 from tc ≤ t ≤ 1. Both solution methods yield identical results.

If tc exists, it is found in a way similar to the unconstrained case presented in

Section 3.4.1.1. First, knowing that u∗(tc) = 1 and substituting it into the equations
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for the state dynamics, equations 3.43 and 3.44, yields the endgame state trajectories

x(t) = t + x(1)− 1, tc ≤ t ≤ 1 (3.63)

y(t) = t + y(1)− 1, tc ≤ t ≤ 1 (3.64)

Substituting the state solutions given in equations 3.63 and 3.64 into the costate

differential equations given in 3.49 and 3.50 and integrating yields solutions for the

costate trajectories in the time interval tc ≤ t ≤ 1. Substitute the solutions for x(tc),

y(tc), λx(tc), and λy(tc) into the expression for u∗(tc) from equation 3.55 and solve for

tc resulting in

tc = 1− 1

λFT

ln

[
λ

c(1 + λ)
+

λFT

1 + λ
[1 + λλFT (1− y(1)) + λ]

]
(3.65)

One observation to note is that the resulting solution for tc and the condition for

the existence of tc (equation 3.62) are both dependent on y(1) which is the integral

of the control. Intuitively, this indicates that as the constraint PFTAmax is relaxed

the area under the sensor threshold schedule curve increases. For a given parameter

combination (i.e. c and λFT ) there is some point at which the area captured by the

optimal control schedule curve grows to a point where the control will go for broke

before the end of the mission. As the area under the curve grows even more the go

for broke time tc occurs earlier.

3.4.2 Discrete Optimal Control Problem. The two-point boundary value

problem proves very challenging, especially as the complexity and dimensionality of

the optimal control problem increases. For this reason an alternate solution method

will be demonstrated that entails a discretized version of the problem and a subsequent

solution by means of a numerical optimization algorithm.
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The Mayer formulation of the discrete-time optimal control problem [1] is given

by

min
u(i),i=0..N−1

φ[s(N)] = −PTA

subject to

s(i + 1) = f [s(i), u(i), i]

ψ[s(N)] = PFTA ≤ PFTAmax

where s represents the state vector


 x

y


. In the Mayer form the path cost (a sum

of incremental probabilities) is represented as a single terminal cost. From Equa-

tion (3.16) the discretized objective, PTA, becomes

φ[x(N)] = ∆t

N∑
i=1

u(i− 1)e−λFT x(i−1) (3.66)

In the same way, from Equation (3.45) the discrete problem constraint, PFTA, is

ψ[s(N)] = ∆t

N∑
i=1

λFT u(i− 1)

c− (c− 1)u(i− 1)
[1− y(i− 1)]e−λFT x(i−1) (3.67)

The discretized state equations are given by

x(i + 1) = x(i) + ∆t
u(i)

c− (c− 1)u(i)
(3.68)

y(i + 1) = y(i) + ∆t u(i) (3.69)

Discrete optimal control problems are solved by representing the continuous time

formulation in terms of a cost at each discrete time step of interest, or an overall path

cost sum, that is is a function of a number of states at each time step as well as a control

vector at each time step. The control vector becomes the parameter vector to vary in

the resulting static, parameter optimization problem. The optimization may be solved
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by a number of algorithms, but for the purposes of this investigation MATLAB’s

‘fmincon’ gradient-search algorithm proved robust and fast enough to accurately and

efficiently find the optimum control vector that agreed with the analytic solution.

3.5 Summary

Chapter III presents and solves the problem to determine the optimal PTR

setting maximizing the probability of attacking the true target and avoiding the false

target attack outcome. Chapter IV presents the results of the optimization, namely,

the Weapon Operating Characteristic (WOC) and its interpretation and meaning

with regards to a munition’s performance in a battlespace with the presence of false

targets.
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IV. The Wide-Area Search Munition Operating

Characteristic

4.1 Overview

Chapter III presented the optimal control problem and its solution for an op-

timal fixed and dynamic PTR. The objective is to characterize a munition so as to

obtain its best possible probability for attacking the true target in Scenario 1 given a

constraint on the probability of the undesirable outcome of attacking a false target.

This chapter presents the wide-area search munition operating characteristic (WOC).

First the static WOC resulting from the solution in section 3.3 is presented followed

by the dynamic WOC from the solutions presented in section 3.4 and a comparison

of the static and dynamic results.

4.2 Static Results

Recall equation 3.10, the mission objective PTA for given values of λFT and c.

The optimum, without concern for the ensuing PFTA, which will eventually become

the constraint, may be found by solving for the value of PTR that equates the deriva-

tive with respect to the control, PTR, of equation (3.10) to zero. Alternatively, one

can observe the peak of the curve plotted in Figure 4.1. Figure (4.1) shows a peak at

P ∗
TA = 0.535, which, for λFT = 25 and c = 100 maximizes the probability of target

attack. This unconstrained optimum is achieved by applying the fixed, unconstrained

optimum sensor threshold corresponding to P ∗
TR = 0.723 for the duration of the muni-

tion’s search and attack mission. The peak and subsequent decline in PTA make sense

because increasing the control past the optimum (analogous to lowering the sensor

threshold beyond the optimum level) substantially inhibits the munition’s probability

of reaching the true target (which it would probably classify correctly since PTR is

set so high) before encountering a false target and incorrectly classifying it (recall

that the false positive fraction, 1 − PFTR, increases with PTR according to the ROC

relationship) resulting in an attack on the false target.
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Figure 4.1: Mission PTA vs static PTR; λFT = 25, c = 100

Adding the constraint derived in equation 3.12, Figure (4.2) overlays the prob-

ability of false target attack obtained from plotting equation (3.12) as a function of

PTR. In addition, the probability of not attacking anything at all (i.e. the muni-

tion survives the battlespace sweep) as a function of PTR is also plotted. This curve,

derived from the resulting probability given by the expression 1 − PTA − PFTA, is

monotonically decreasing, as expected, just as the probability of false target attack is

monotonically increasing.

Figure 4.2 shows the cost that is incurred in terms of the probability of attacking

undesired false targets in the battlespace while attempting to find and attack the true

target. Thus, the maximum PTA can be determined for a given mission constrained

by a maximum allowable probability of false target attack, PFTA. For instance, it can

now be seen that the overall, unconstrained, optimal probability of target attack for

the mission (from Figure 4.1), P ∗
TA = 0.535, incurs a cost of P ∗

FTA = 0.318. However,

suppose that the maximum allowable PFTA is bounded at 0.2; the optimal constrained

solution is now a static P ∗
TR = 0.563 with a resulting P ∗

TA = 0.483.

With the static optimization complete it is now possible to obtain the overall

WASM Operating Characteristic (WOC). The WOC shows the optimum achievable
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Figure 4.2: Mission probability of attack with constant PTR for λFT = 25, c = 100.
Plots show probability of attacking a true target, a false target, and no target at all.

PTA for a given bound on PFTA. This is analogous to the classical ROC from the

theory of communication. The WOC, however, is specific to the munition of interest

as it quantifies its overall mission effectiveness with respect to parameters of interest,

namely PTA and PFTA. The WOC for a munition’s optimal, but fixed, sensor threshold

setting is shown in Figure 4.3. This will also be the goal of the dynamic optimization

in Section 3.4 in addition to the optimal sensor threshold control schedule to achieve

the best objective/cost tradeoff.

The WOC in Figure 4.3 corroborates and readily shows that which can be

inferred from Figures 4.1 and 4.2. First, the WOC is not a monotonically increasing

function. The optimum, unconstrained PTA is clearly seen at the peak of the curve

which matches the optimum value cited earlier as well as the corresponding value of

PFTA. In addition, the WOC clearly shows at which point the value of the constraint,

PFTA, should be capped. This also occurs at the peak of the curve since mandating any

further increase in the probability of false target attack only hinders the achievement

of the objective, namely maximizing the probability of true target attack (note that

this only applies if the problem is solved posing the PFTAmax constraint as an equality
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Figure 4.3: Static WASM Operating Characteristic (WOC); λFT = 25, c = 100

as in this thesis). Indeed the same probability of true target attack may be achieved

by two separate selections of PTR; however, the lower solution is clearly better since

the higher value results in a higher probability of false target attack. In practical

terms this means that as the sensor threshold is reduced (PTR is increased) there is

some point at which the unconstrained solution should be used since it delivers the

highest probability of target attack.

4.3 Dynamic Results

This section continues with the results garnered from solving the optimal control

problem solved in Section 3.4. The dynamic WOC sheds a substantial amount of

insight into the performance of wide-area search munitions operating in a battlespace

environment containing false targets.

The key result is the WASM Operating Characteristic, or WOC, which gives

information similar to the classical ROC specific to the performance of an autonomous

search and attack munition. Comparing the results presented in Figure 4.3 to the op-

timal, dynamically varying sensor threshold setting shows the improvement gained by

applying the optimal control approach. Figure 4.4 compares the baseline case where
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Figure 4.4: Static and Dynamic WOC, λFT = 25, c = 100.

the problem parameters are c = 100 and λFT = 25. This is the same parameter com-

bination as in Figure 4.3. There are several things to note from this example. First,

note the obvious improvement in PTA in the dynamic case which applies the opti-

mal schedule for the varying sensor threshold. Various parameter combinations show

different levels of improvement, but several things stand out. Optimally varying the

sensor threshold always produces a higher probability of target attack than maintain-

ing the sensor threshold at an optimal, albeit constant level throughout the mission.

The improvement is very noticeable as PFTAmax is increased; however, even at lower

values of the max allowable false target attack probability, the PTA resulting from

optimally varying the sensor threshold is improved, but it is too small to notice in the

figure. The reason for this is that as the constraint is lowered, i.e. a lower PFTAmax

is imposed, the dynamic optimal control solution (PTR schedule) shifts downward as

well as flattens looking more and more like the static solution. Indeed, one can infer

from the ROC that the trivial case represented at the origin of the ROC, where the

maximum allowable probability of false target attack is zero, would have identical

dynamic and static solutions: flat lines of PTR = 0 from 0 ≤ t ≤ T . The other trait

present in all static vs. dynamic WOC comparisons is that with an increase in the ob-
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jective PTA, there is also an increase in PFTA when the solution is not constrained by

PFTAmax . Presumably this would be acceptable since the chosen PFTAmax is actually

the maximum allowable probability. This concept also relates back to ROC insights.

The ROC indicates that the objective and the penalty unavoidably vary together in

a way governed by c, the parameter that is set by the quality of the sensor, ATR

algorithm, munition velocity, pixels on target, etc. Practically, the static solution is

only constrained up to a certain point where it is no longer beneficial to allow a higher

probability of attacking a false target during the mission since the munition is already

doing the most it can to that end. At that maximum, the unconstrained solution is

used. The same is true for the dynamic solution, however, it can take advantage of

a higher PFTA constraint since the dynamic solution can achieve a higher PTA than

the static one. In cases where the PFTAmax constraint is set low enough that both the

static and dynamic solutions are constrained, the resulting PFTA for both solution

cases is equal, but the dynamic solution still yields a higher PTA.

Another point to note in Figure 4.4 is that the WOC curves flatten at a certain

point corresponding to the transition to the unconstrained, optimal PTR schedule.

Fortunately it is intuitive, but it is important to remember because in the following

figures the WOC will be presented only as the PTA, PFTAmax relationship. The PFTA,

PFTAmax relationship is always one of equality until the breakpoint where PFTA re-

mains constant for the remaining values of PFTAmax . Thus for any desired value of

PFTAmax the resulting PFTA may also be inferred by just looking at the single PTA,

PFTAmax WOC.

The following figures are surface plots illustrating several WOCs. Each individ-

ual WOC is a slice of the surface in the PFTAmax-PTA plane. The WOCs, and therefore

the surface, vary with the sensor’s parameter c. Each surface varies with the number

of assumed false targets, which is specified by λFT .

The first thing to note from Figures 4.5, 4.6, and 4.7 is the WOC trend as c

varies. Holding λFT constant, the surface rises with c. This means that the WOC
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Figure 4.5: Dynamic WOC surface, λFT = 0.5.

Figure 4.6: Dynamic WOC surface, λFT = 5.
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Figure 4.7: Dynamic WOC surface, λFT = 25.

becomes more favorable with higher values of c. The munition can achieve higher

probabilities of true target attack without sacrificing as much in terms of the proba-

bility of attacking a false target. This makes sense because higher values of c mean

that the munition’s sensor is more capable of distinguishing true targets from the

chaff without committing false positives. The result is that the munition implements

higher PTR schedules, or goes for broke earlier, without an undue risk of making a

false positive error on an unintended (false) target. Higher values of c are realized by

making it easier on the munition’s sensor, that is, flying lower or slower and effecting

more pixels (or observation time) on each potential target, improving the automatic

target recognition algorithm, or improving the quality of the sensor itself. Another

point to note is that with increasing c the WOC curve gets steeper. This translates

directly to the effect on the ROC curve with increasing values of c. The munition

performs better without being subject to higher values of PFTAmax . Another way to

think of this is that with higher c the munition achieves its unconstrained best at

lower values of PFTAmax . Otherwise, with poor sensor characteristics, the only way
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for the munition to improve its objective (PTA) is to eat up more PFTA—the essence

of the ROC (and hence WOC) relationship.

The other important insight garnered from the WOC surfaces is the trend that

occurs with changes in the battlespace environment, namely, λFT . As λFT , or the

expected number of false targets in the battlespace, increases the plotted surface

lowers. Also, the steepness of the WOC decreases, i.e., the value of PFTAmax that the

munition achieves its unconstrained best increases. In the interest of making sound

operational decisions, one can observe this shift and obtain a feel for the c
λFT

ratio.

One might decide that this ratio should be no less than 4, for example, indicating

that the munitions ability to classify true targets has to be at least as good as a

certain level dictated by the ratio relative to the expected number of false targets in

the battlespace. This is a direct way that this theoretical research affects the policy

of conducting autonomous search and attack operations.

The downward shift in the WOC surface with increasing λFT indicates that if

the value chosen for λFT is an over-estimate of the actual number of false targets in the

battlespace the probability of false target attack will always be less than the specified

PFTAmax . It will no longer be optimal, but it will most likely be close to optimal,

and more importantly there is insurance that the maximum allowable probability of

attacking an unintended object will be upheld. In other words, in the presence of

uncertainty as to the density of actual false targets the munition will encounter in

the battlespace, it is wiser to overestimate the expected number in order to preserve

PFTAmax . Mathematically, this is expressed as

PFTA ≤ PFTAmax ∀ λFT ≤ λFTmax (4.1)

4.4 Summary

The WOC is the performance characteristic for a properly characterized mu-

nition (quantified by the value for c) assigned to attack a target in a battlespace

containing false targets. The WOC surfaces include the sensor quality information
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as well allowing the potential for observing the characteristic for a range of c if there

is some uncertainty in the weapon characterization. The following chapter discusses

the application of these results as well as simultaneous efforts in simulation and ex-

perimentation that build on the theory presented in this thesis.
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V. Conclusions

5.1 Overview

Applying optimal control techniques to the autonomous munition scenario is not

only fascinating but practically applicable as well. Two concurrent theses written at

AFIT have taken this theoretical research one step closer to practical application with

a verification of the theoretical results in this thesis using a high-fidelity simulation

as well as experimental validation. This chapter discusses the practical application

of this theoretical work as well as the work that was completed simultaneously. The

chapter concludes with recommendations for future work.

5.2 Application of Theory

Chapter I proposed a futuristic scenario where autonomous munitions are trusted

to perform battlespace search and attack operations. In that scenario the munition

may calculate it’s optimal parameter variations in real time or the optimal schedule

may be predetermined. In any case, the munition would perform an optimal bat-

tlespace sweep. The futuristic scenario is the direct application of the optimal sensor

threshold schedule solution. However, there is a practical application of this theory

that can be realized now. The scenario models are realistic mathematical representa-

tions of battlespace search and attack operating areas. Also, the Poisson distribution

conveniently provides an accurate mathematical model for encountering randomly dis-

tributed false targets. Despite intelligence efforts, battlespace environments remain

highly uncertain and, at times, unpredictable. Thus, the probabilistic approach and

stochastic element introduced by the confusion matrix and ROC concept is often the

best representation of a search and attack battlespace.

In light of the fact that this theory is a fairly good representation of the real

world, the optimal solutions derived in this thesis provide a baseline for current op-

erations. Commanders and others who depend on munitions or other vehicles, both

manned and unmanned, to perform search and/or attack type missions have a proba-

bilistic expectation for the performance of their systems operating in the battlespace.
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The WOC is the performance characteristic that can be used to gauge the probability

of mission success and make wiser decisions regarding the employment of expensive

agents to perform the search and attack function. One can readily assess the value

of the objective and the probability that the objective will be successfully completed

against the value of the munition. This usefulness is itself one of the most valuable

outcomes of this research. Indeed, even modern day manned aircraft have a quantifi-

able sensor characterization (quantified by c). Thus, current manned flying operations

could use this theory to obtain the probability of mission success without ever leaving

the ground.

5.3 Concurrent Work in Simulation and Experimentation

Concurrent research at AFIT in the field regarded by this thesis produced sat-

isfying corroboration in simulation and experimentation. The Air Force Research

Lab (AFRL) maintains a high-fidelity UAV simulation named “Multi-UAV” that was

used by Captain Michael Marlin in related thesis research [10]. One of the results that

Capt Marlin produced was Monte Carlo simulations that duplicated the performance

characteristic solved analytically in this work. The simulation was able to duplicate

a stochastic battlespace defined by scenario 1. A munition of varying sensor ability

(quantified by c) was flown in simulation against various numbers of false targets

(quantified by λFT ) and the statistical frequency of mission success (attack of the

intended target) closely agreed with the probability determined by the theoretical

algorithm in this thesis.

The other concurrent thesis that was accomplished during this time frame was

an experimental validation of the concepts related to this thesis [11]. An experimental

testbed was developed which entailed a remote-controlled car with a camera sensor. A

car was chosen to simplify the problem from three dimensions to two. The car repre-

sented a UAV flying at a constant altitude. The camera was able to distinguish colors

and a threshold of the number of pixels present in the field of view was established

as the sensor threshold analog in this thesis. Different types of targets (i.e. true vs.
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false targets) were created from different sized shapes of the color to which the sen-

sor threshold was sensitive. The mock-munition was characterized by observing the

frequency of correct vs. incorrect classifications at different sensor threshold levels.

Essentially, each trial produced a separate confusion matrix. As mentioned in this

thesis, every search system has an associated c; the value of c for the experimental

car was identified by tuning the variable c in the ROC equation (equation 2.9) to

produce the best fit ROC for the experimental sensor setup. The testbed established

and described in [11] is a real-world, reproduction of the theoretical results proposed

in this thesis and validated in simulation.

5.4 Recommendations for Future Work

There are ample opportunities for future research extending the results of this

thesis. First, the optimal results from this theoretical work should be combined with

the optimal decision rules developed in Gillen’s and Dunkel’s theses. The ultimate

goal is to produce autonomous munitions that operate optimally by themselves and

as part of a cooperative swarm.

In addition the experimental testbed begun by Capt Rufa should definitely be

continued. There is a great deal of additional research that can be accomplished to

the end of reproducing the actions of an autonomous munition, or even better yet

multiple, cooperating, autonomous munitions. The theory developed in this thesis

can be used to predict the performance of the experimental testbed. Evaluating

the theoretical prediction and the experimental result in concert will inevitably shed

substantial light on the utility of the practical application of this theory.

5.5 Conclusion

This thesis provides the justification for optimizing search and attack agent

performance in a stochastic battlespace with false targets, and develops and solves

the optimal control problem maximizing the performance of the agent. The math-

ematical foundation for the optimal control problem is sound and furthermore the
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mathematical assumptions forming the foundation of this problem are not made in a

vacuum. Readily available battlespace intelligence and present and foreseeable search

and attack activities form the backbone and justification for the theory. With a rea-

sonable estimate as to the expected number of false targets in the battlespace area,

and a good characterization of the sensor/platform package one may confidently gen-

erate an expected probability that a given target will be attacked by an autonomous

munition as well as the probability that any undesired objects might be attacked.

The aggregation of the true target and corresponding false target probabilities forms

the weapon operating characteristic, the performance metric for a search and attack

munition in a stochastic battlespace with false targets.
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